Sample records for h1 antagonists measured

  1. Effects of central histamine receptors blockade on GABA(A) agonist-induced food intake in broiler cockerels.

    PubMed

    Morteza, Zendehdel; Vahhab, Babapour; Hossein, Jonaidi

    2008-02-01

    In this study, the effect of intracerebroventricular (i.c.v) injection of H1, H2 and H3 antagonists on feed intake induced by GABA(A) agonist was evaluated. In Experiment 1, the animals received chloropheniramine, a H1 antagonist and then muscimol, a GABA(A) agonist. In Experiment 2, chickens received famotidine, a H2 receptor antagonist, prior to injection of muscimol. Finally in Experiment 3, the birds were injected with thioperamide, a H3 receptor antagonist and muscimol. Cumulative food intake was measured 15, 30, 45, 60, 90, 120, 150 and 180 min after injections. The results of this study indicated that effects of muscimol on food intake inhibited by pretreatment with chloropheneramine maleate (p < or = 0.05), significantly, while the famotidine and thioperamide were ineffective. These results suggest the existence of H1-receptor mediated histamine-GABA(A) receptor interaction on food intake in broiler cockerels.

  2. Potentiation of pulmonary reflex response to capsaicin 24h following whole-body acrolein exposure is mediated by TRPV1.

    PubMed

    Hazari, Mehdi S; Rowan, William H; Winsett, Darrell W; Ledbetter, Allen D; Haykal-Coates, Najwa; Watkinson, William P; Costa, Daniel L

    2008-02-01

    Pulmonary C-fibers are stimulated by irritant air pollutants producing apnea, bronchospasm, and decrease in HR. Chemoreflex responses resulting from C-fiber activation are sometimes mediated by TRPV1 and release of substance P. While acrolein has been shown to stimulate C-fibers, the persistence of acrolein effects and the role of C-fibers in these responses are unknown. These experiments were designed to determine the effects of whole-body acrolein exposure and pulmonary chemoreflex response post-acrolein. Rats were exposed to either air or 3 ppm acrolein for 3 h while ventilatory function and HR were measured; 1-day later response to capsaicin challenge was measured in anesthetized rats. Rats experienced apnea and decrease in HR upon exposure to acrolein, which was not affected by either TRPV1 antagonist or NK(1)R antagonist pretreatment. Twenty-four hours later, capsaicin caused apnea and bronchoconstriction in control rats, which was potentiated in rats exposed to acrolein. Pretreatment with TRPV1 antagonist or NK(1)R antagonist prevented potentiation of apneic response and bronchoconstriction 24h post-exposure. These data suggest that although potentiation of pulmonary chemoreflex response 24h post-acrolein is mediated by TRPV1 and release of substance P, cardiopulmonary inhibition during whole-body acrolein exposure is mediated through other mechanisms.

  3. Neurotransmitter-mediated anxiogenic action of PACAP-38 in rats.

    PubMed

    Telegdy, G; Adamik, A

    2015-03-15

    The action of PACAP-38 was studied by measuring the anxiogenic-anxiolytic behavior of rats in an elevated plus maze. PACAP-38 was administered into the lateral brain ventricle and the behavior of the animals was measured 3h later. The possible involvement of transmitters was measured by pretreating the animals with receptor blockers which alone did not influence the task, but in the doses used were effective with other neuropeptides. The receptor antagonist PACAP 6-38 (a PAC 1/VPAC2 receptor antagonist of PACAP-38 receptor), haloperidol (a non-selective dopamine receptor antagonist), phenoxybenzamine (an α1/α2β-adrenergic receptor antagonist), propranolol(a β-adrenergic receptor antagonist), bicuculline (a gamma-aminobutyric acid subunit A receptor antagonist), methysergide (a nonselective 5-HT2 serotonergic receptor antagonist), atropine (a nonselective muscarinic acetylcholine receptor antagonist), naloxone (a nonselective opioid receptor antagonist) and nitro-l-arginine which acts by blocking the enzyme nitric oxide synthase, thereby blocking the nitric oxide synthesis, were tested. The following parameters were measured: the time spent in open arms/the time spent in total entries. PACAP-38 decreased the ratio of time spent in open arms to the time spent in total entries, indicating anxiogenic action. The total number of entries was not altered significantly either by PACAP-38 or by the receptor blockers. The following receptor blockers diminished the action of PACAP-38: PACAP 6-38,haloperidol, methysergide, naloxone and nitro-l-arginine. Pretreatment with atropine, phenoxybenzamine, propranolol and bicuculline did not influence the action of PACAP-38 on the time spent in open arms. The results demonstrate that PACAP-38 administered into the lateral brain ventricle exerted anxiogenic action at 3 h following treatment. Pretreatment of the animals with various receptor blockers indicated that a nonselective dopaminergic receptor antagonist, 5HT2 serotonergic and opioid receptors, nitric oxide and PAC1 receptors are involved in the anxiogenic action induced by PACAP-38. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Antagonist interaction with the human 5-HT7 receptor mediates the rapid and potent inhibition of non-G-protein-stimulated adenylate cyclase activity: a novel GPCR effect

    PubMed Central

    Klein, MT; Teitler, M

    2011-01-01

    BACKGROUND AND PURPOSE The human 5-hydroxytryptamine7 (h5-HT7) receptor is Gs-coupled and stimulates the production of the intracellular signalling molecule cAMP. Previously, we reported a novel property of the h5-HT7 receptor: pseudo-irreversible antagonists irreversibly inhibit forskolin-stimulated (non-receptor-mediated) cAMP production. Herein, we sought to determine if competitive antagonists also affect forskolin-stimulated activity and if this effect is common among other Gs-coupled receptors. EXPERIMENTAL APPROACH Recombinant cell lines expressing h5-HT7 receptors or other receptors of interest were briefly exposed to antagonists; cAMP production was then stimulated by forskolin and quantified by an immunocompetitive assay. KEY RESULTS In human embryonic kidney 293 cells stably expressing h5-HT7 receptors, all competitive antagonists inhibited nearly 100% of forskolin-stimulated cAMP production. This effect was insensitive to pertussis toxin, that is, not Gi/o-mediated. Potency to inhibit forskolin-stimulated activity strongly correlated with h5-HT7 binding affinity (r2= 0.91), indicating that the antagonists acted through h5-HT7 receptors to inhibit forskolin. Potency and maximal effects of clozapine, a prototypical competitive h5-HT7 antagonist, were unaffected by varying forskolin concentration. Antagonist interaction with h5-HT6, human β1, β2, and β3 adrenoceptors did not inhibit forskolin's activity. CONCLUSIONS AND IMPLICATIONS The inhibition of adenylate cyclase, as measured by forskolin's activity, is an underlying property of antagonist interaction with h5-HT7 receptors; however, this is not a common property of other Gs-coupled receptors. This phenomenon may be involved in the roles played by h5-HT7 receptors in human physiology. Development of h5-HT7 antagonists that do not elicit this effect would aid in the elucidation of its mechanisms and shed light on its possible physiological relevance. PMID:21198551

  5. The modulatory role of spinally located histamine receptors in the regulation of the blood glucose level in d-glucose-fed mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2014-02-01

    The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (α-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with α-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, α-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model.

  6. Implementation of a Fluorescence-Based Screening Assay Identifies Histamine H3 Receptor Antagonists Clobenpropit and Iodophenpropit as Subunit-Selective N-Methyl-d-Aspartate Receptor Antagonists

    PubMed Central

    Hansen, Kasper B.; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L.; Yuan, Hongjie; Vance, Katie M.; Orr, Anna G.; Kvist, Trine; Ogden, Kevin K.; Le, Phuong; Vellano, Kimberly M.; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T. J.; Snyder, James P.; Bräuner-Osborne, Hans

    2010-01-01

    N-Methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism. PMID:20197375

  7. Involvement of histaminergic and noradrenergic receptors in the oxytocin-induced food intake in neonatal meat-type chicks.

    PubMed

    Mirnaghizadeh, Seyed Vahid; Zendehdel, Morteza; Babapour, Vahab

    2017-03-01

    Oxytocin neurons have a physiological role in food intake and energy balance. Several studies have shown that central histaminergic and adrenergic systems synapse on oxytocin neurons but there is no information for their interaction on food intake regulation in birds. The purpose of this study was to examine the effects of intracerebroventricular (ICV) injection of α-fluoromethylhistidine (α-FMH, histidine decarboxylase inhibitor), chlorpheniramine (histamine H1 receptors antagonist), famotidine (histamine H2 receptors antagonist), thioperamide (histamine H3 receptors antagonist), prazosin (α1 receptor antagonist), yohimbine (α2 receptor antagonist), metoprolol (β1 adrenergic receptor antagonist), ICI 118,551 (β2 adrenergic receptor antagonist) and SR59230R (β3 adrenergic receptor antagonist) on oxytocin-induced hypophagia in 3-h food-deprived (FD 3 ) neonatal broiler chicken. In Experiment 1, 3 h-fasted chicks were given an ICV injection of saline, α-FMH (250 nmol), oxytocin (10 μg) and co-injection of α-FMH + oxytocin. Experiments 2-9 were similar to experiment 1 except birds were injected with chlorpheniramine (300 nmol), famotidine (82 nmol), thioperamide (300 nmol), prazosin (10 nmol), yohimbine (13 nmol), metoprolol (24 nmol), ICI 118,551(5 nmol) and SR59230R (20 nmol) instead of α-FMH, respectively. After injection cumulative food intake was measured until 120 min post injection. According to the results, ICV injection of oxytocin significantly decreased food intake in broiler chickens (P < 0.001). ICV injection of α-FMH significantly attenuated hypophagic effect of oxytocin (P < 0.001). Also, co-injection of chlorpheniramine plus oxytocin significantly decreased the effect of oxytocin on food intake (P < 0.001). Co-administration of thioperamide and oxytocin significantly amplified hypophagic effect of oxytocin in chickens (P < 0.001). In addition, ICI 118,551 attenuated hypophagic effect of oxytocin (P < 0.001); while famotidine, prazosin, yohimbine, metoprolol and SR59230R had no effect on oxytocin- induced food intake in FD3 broiler chickens. These results suggest that the effect of oxytocin on food intake is probably mediated by histaminergic (via H1 and H3 receptors) and noradrenergic (via β2 receptors) systems in broiler chickens.

  8. The Target Residence Time of Antihistamines Determines Their Antagonism of the G Protein-Coupled Histamine H1 Receptor

    PubMed Central

    Bosma, Reggie; Witt, Gesa; Vaas, Lea A. I.; Josimovic, Ivana; Gribbon, Philip; Vischer, Henry F.; Gul, Sheraz; Leurs, Rob

    2017-01-01

    The pharmacodynamics of drug-candidates is often optimized by metrics that describe target binding (Kd or Ki value) or target modulation (IC50). However, these metrics are determined at equilibrium conditions, and consequently information regarding the onset and offset of target engagement and modulation is lost. Drug-target residence time is a measure for the lifetime of the drug-target complex, which has recently been receiving considerable interest, as target residence time is shown to have prognostic value for the in vivo efficacy of several drugs. In this study, we have investigated the relation between the increased residence time of antihistamines at the histamine H1 receptor (H1R) and the duration of effective target-inhibition by these antagonists. Hela cells, endogenously expressing low levels of the H1R, were incubated with a series of antihistamines and dissociation was initiated by washing away the unbound antihistamines. Using a calcium-sensitive fluorescent dye and a label free, dynamic mass redistribution based assay, functional recovery of the H1R responsiveness was measured by stimulating the cells with histamine over time, and the recovery was quantified as the receptor recovery time. Using these assays, we determined that the receptor recovery time for a set of antihistamines differed more than 40-fold and was highly correlated to their H1R residence times, as determined with competitive radioligand binding experiments to the H1R in a cell homogenate. Thus, the receptor recovery time is proposed as a cell-based and physiologically relevant metric for the lead optimization of G protein-coupled receptor antagonists, like the H1R antagonists. Both, label-free or real-time, classical signaling assays allow an efficient and physiologically relevant determination of kinetic properties of drug molecules. PMID:29033838

  9. Differential involvement of dopamine D-1 and D-2 receptors in the circling behaviour induced by apomorphine, SK & F 38393, pergolide and LY 171555 in 6-hydroxydopamine-lesioned rats.

    PubMed

    Arnt, J; Hyttel, J

    1985-01-01

    The antagonistic effect of dopamine (DA) D-1 and D-2 antagonists against circling behaviour induced by various DA agonists in 6-OHDA-lesioned rats has been investigated. DA D-1/D-2 selectivity of agonists in vitro was measured by the stimulatory effect on DA-sensitive adenylate cyclase in rat striatal homogenates (D-1), the inhibitory effect on electrically-induced release of 3H-DA in rabbit striatal slices (D-2) and the affinity to 3H-piflutixol (D-1) and 3H-spiroperidol (D-2) binding sites in rat striatal membranes. The contralateral circling behaviour induced by the DA D-1 agonist SK & F 38393 was blocked by the DA D-1 antagonist, SCH 23390, and by the mixed DA D-1/D-2 antagonist cis(Z)-flupentixol, but was not influenced by the DA D-2 antagonists spiroperidol and clebopride. In contrast, circling behaviour induced by the preferential DA D-2 agonists pergolide and LY 171555 was blocked by clebopride, spiroperidol, and cis(Z)-flupentixol, but weakly or not influenced by SCH 23390. Apomorphine-induced circling behaviour was blocked by cis(Z)-flupentixol, partially antagonized by SCH 23390 and clebopride but not inhibited by spiroperidol, although the time-course of circling was changed. Combinations of SCH 23390 with spiroperidol or clebopride in low doses completely blocked the effect of apomorphine. These results indicate that DA D-1 and D-2 receptors mediate circling behaviour through separate mechanisms which can be independently manipulated with respective agonists and antagonists.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkes, J.M.; Kajimura, M.; Scott, D.R.

    Isolated rabbit gastric glands were used to study the nature of the muscarinic cholinergic responses of parietal cells. Carbachol stimulation of acid secretion, as measured by the accumulation of aminopyrine, was inhibited by the M1 antagonist, pirenzepine, with an IC50 of 13 microM; by the M2 antagonist, 11,2-(diethylamino)methyl-1 piperidinyl acetyl-5,11-dihydro-6H-pyrido 2,3-b 1,4 benzodiazepin-6-one (AF-DX 116), with an IC50 of 110 microM; and by the M1/M3 antagonist, diphenyl-acetoxy-4-methylpiperidinemethiodide, with an IC50 of 35 nM. The three antagonists displayed equivalent IC50 values for the inhibition of carbachol-stimulated production of 14CO2 from radiolabeled glucose, which is a measure of the turnover of themore » H,K-ATPase, the final step of acid secretion. Intracellular calcium levels were measured in gastric glands loaded with FURA 2. Carbachol was shown to both release calcium from an intracellular pool and to promote calcium entry across the plasma membrane. The calcium entry was inhibitable by 20 microM La3+. The relative potency of the three muscarinic antagonists for inhibition of calcium entry was essentially the same as for inhibition of acid secretion or pump related glucose oxidation. Image analysis of the glands showed the effects of carbachol, and of the antagonists, on intracellular calcium were occurring largely in the parietal cell. The rise in cell calcium due to release of calcium from intracellular stores was inhibited by 4-DAMP with an IC50 of 1.7 nM, suggesting that the release pathway was regulated by a low affinity M3 muscarinic receptor or state; Ca entry and acid secretion are regulated by a high affinity M3 muscarinic receptor or state, inhibited by higher 4-DAMP concentrations, suggesting that it is the steady-state elevation of Ca that is related to parietal cell function rather than the (Ca)i transient.« less

  11. Histamine response and local cooling in the human skin: involvement of H1- and H2-receptors.

    PubMed

    Grossmann, M; Jamieson, M J; Kirch, W

    1999-08-01

    Histamine may contribute locally to cutaneous blood flow control under normal and pathologic conditions. The objective of this study was to observe the influence of skin temperature on histamine vasodilation, and the roles of H1-and H2-receptors using novel noninvasive methods. Eleven healthy subjects received, double-blind, single doses of the H1-receptor antagonist cetirizine (10 mg), cetirizine (10 mg) plus the H2-receptor antagonist cimetidine (400 mg), or placebo on separate occasions. Histamine was dosed cumulatively by iontophoresis to the forearm skin at 34 degrees C and 14 degrees C. Laser-Doppler flux (LDF) was measured at the same sites using customised probeholder/iontophoretic chambers with Peltier cooling elements. Finger mean arterial pressure (MAP) was measured and cutaneous vascular conductance calculated as LDF/MAP. Histamine vasodilation was reduced in cold skin. Cetirizine shifted the histamine dose-response at both temperatures: statistically significantly at 14 degrees C only. Combined H1- and H2-receptor antagonism shifted the response significantly at both temperatures. H1- and H2-receptors mediate histamine-induced skin vasodilation. The sensitivity of these receptors, particularly the H1- receptor, is attenuated at low skin temperature. Whether the reduced effect in cold skin represents specific receptor or postreceptor desensitization, or nonspecific attenuation of cutaneous vasodilation remains to be elucidated.

  12. [Detection of Physiological Activity of Pharmaceuticals in Wastewater and River Water].

    PubMed

    Ihara, Masaru; Zhang, Han; Hanamoto, Seiya; Tanaka, Hiroaki

    2018-01-01

     Pharmaceuticals are widely found in aquatic environments worldwide. Concern about their potential risks to aquatic species has been raised because they are designed to be biologically active. To address this concern, we must know whether biological activity of pharmaceuticals can be detected in waters. Nearly half of all marketed pharmaceuticals act by binding to the G protein-coupled receptor (GPCR). In this study, we measured the physiological activity of GPCR-acting pharmaceuticals in effluent from a wastewater treatment plant (WWTP) and upstream and downstream of its outfall in Japan during 2 years. We used the in vitro transforming growth factor-α (TGFα) shedding assay, which accurately and sensitively detects GPCR activation, to investigate the antagonistic activities of water extracts against receptors for dopamine (D2) and histamine (H1). Activities detected in waters were quantified as antagonist equivalent quantities (EQs). In WWTP effluent extracts, antagonistic activity was detected at several hundred ng/L of sulpiride-EQ (D2) and several μg/L of diphenhydramine (DIP)-EQ (H1). In downstream river water extracts, antagonistic activity against H1 was around several hundred ng/L of DIP-EQ, higher than that upstream owing to the WWTP effluent. This review discusses the research needed to resolve the concern about potential risks of pharmaceuticals in waters to aquatic species.

  13. Inhibition of rabbit platelet activation in vitro by antagonists of platelet-activating factor (PAF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, C.P.; Wood, K.L.

    1986-03-05

    The authors used washed, (/sup 3/H)serotonin-labeled rabbit platelets to study the in vitro aggregation and secretion responses induced by graded doses of PAF in the presence or absence of specific antagonists of PAF. These antagonists included CV-3988, L-652,731, triazolam and alprazolam. Platelets were pretreated with either an antagonist or the appropriate diluent for 60 sec prior to the addition of PAF (2 x 10/sup -10/ to 2 x 10/sup -7/ M). Aggregation was monitored continuously and recorded as the height of the aggregation tracing at 60 sec post-PAF. Secretion of (/sup 3/H)-serotonin was measured in a sample of the plateletsmore » removed at 60 sec post-PAF. When 2 x 10/sup -10/ M PAF was used as the stimulus, the concentration of antagonist needed for 50% inhibition (IC/sub 50/) of secretion was obtained at 0.05 ..mu..M, 0.15 ..mu..M, 0.6 ..mu..M and 2.5 ..mu..M, respectively, for L-652,731, CV-3988, triazolam and alprazolam. The corresponding IC/sub 50/ for aggregation was obtained at 0.2 ..mu..M, 0.1 ..mu..M, 1.5 ..mu..M and 6.5 ..mu..M, respectively. The inhibitory effects of these antagonists could be overcome by increasing the dose of PAF used. Although all of the antagonists were capable of completely inhibiting platelet aggregation and secretion, L-652,731 was the most potent PAF antagonist on a molar basis.« less

  14. Hit-to-lead optimization of 2-(1H-pyrazol-1-yl)-thiazole derivatives as a novel class of EP1 receptor antagonists.

    PubMed

    Atobe, Masakazu; Naganuma, Kenji; Kawanishi, Masashi; Morimoto, Akifumi; Kasahara, Ken-ichi; Ohashi, Shigeki; Suzuki, Hiroko; Hayashi, Takahiko; Miyoshi, Shiro

    2013-11-15

    We describe a medicinal chemistry approach to generate a series of 2-(1H-pyrazol-1-yl)thiazole compounds that act as selective EP1 receptor antagonists. The obtained results suggest that compound 12 provides the best EP1 receptor antagonist activity and demonstrates good oral pharmacokinetics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Identification and characterization of amino-piperidinequinolones and quinazolinones as MCHr1 antagonists.

    PubMed

    Blackburn, Christopher; LaMarche, Matthew J; Brown, James; Che, Jennifer Lee; Cullis, Courtney A; Lai, Sujen; Maguire, Martin; Marsilje, Thomas; Geddes, Bradley; Govek, Elizabeth; Kadambi, Vivek; Doherty, Colleen; Dayton, Brian; Brodjian, Sevan; Marsh, Kennan C; Collins, Christine A; Kym, Philip R

    2006-05-15

    Several potent, functionally active MCHr1 antagonists derived from quinolin-2(1H)-ones and quinazoline-2(1H)-ones have been synthesized and evaluated. Pyridylmethyl substitution at the quinolone 1-position results in derivatives with low-nM binding potency and good selectivity with respect to hERG binding.

  16. The novel non-imidazole histamine H3 receptor antagonist DL77 reduces voluntary alcohol intake and ethanol-induced conditioned place preference in mice.

    PubMed

    Bahi, Amine; Sadek, Bassem; Nurulain, Syed M; Łażewska, Dorota; Kieć-Kononowicz, Katarzyna

    2015-11-01

    It has become clear that histamine H3 receptors (H3R) have been implicated in modulating ethanol intake and preference in laboratory animals. The novel non-imidazole H3R antagonist DL77 with excellent selectivity profile shows high in-vivo potency as well as in-vitro antagonist affinity with ED50 of 2.1 ± 0.2 mg/kg and pKi=8.08, respectively. In the present study, and applying an unlimited access two-bottle choice procedure, the anti-alcohol effects of the H3R antagonist, DL77 (0, 3, 10 and 30 mg/kg; i.p.), were investigated in adult mice. In this C57BL/6 line, effects of DL77 on voluntary alcohol intake and preference, as well as on total fluid intake were evaluated. Results have shown that DL77, dose-dependently, reduced both ethanol intake and preference. These effects were very selective as both saccharin and quinine, used to control for taste sensitivity, and intakes were not affected following DL77 pre-application. More importantly, systemic administration of DL77 (10 mg/kg) during acquisition inhibited ethanol-induced conditioned-place preference (EtOH-CPP) as measured using an unbiased protocol. The anti-alcohol activity observed for DL77 was abrogated when mice were pretreated with the selective H3R agonist R-(α)-methyl-histamine (RAMH) (10 mg/kg), or with the CNS penetrant H1R antagonist pyrilamine (PYR) (10mg/kg). These results suggest that DL77 has a predominant role in two in vivo effects of ethanol. Therefore, signaling via H3R is essential for ethanol-related consumption and conditioned reward and may represent a novel therapeutic pharmacological target to tackle ethanol abuse and alcoholism. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study.

    PubMed

    Newman-Tancredi, A; Gavaudan, S; Conte, C; Chaput, C; Touzard, M; Verrièle, L; Audinot, V; Millan, M J

    1998-08-21

    Recombinant human (h) 5-HT1A receptor-mediated G-protein activation was characterised in membranes of transfected Chinese hamster ovary (CHO) cells by use of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS binding). The potency and efficacy of 21 5-HT receptor agonists and antagonists was determined. The agonists, 5-CT (carboxamidotryptamine) and flesinoxan displayed high affinity (subnanomolar Ki values) and high efficacy (Emax > 90%, relative to 5-HT = 100%). In contrast, ipsapirone, zalospirone and buspirone displayed partial agonist activity. EC50s for agonist stimulation of [35S]GTPgammaS binding correlated well with Ki values from competition binding (r = +0.99). Among the compounds tested for antagonist activity, methiothepin and (+)butaclamol exhibited 'inverse agonist' behaviour, inhibiting basal [35S]GTPgammaS binding. The actions of 17 antipsychotic agents were investigated. Clozapine and several putatively 'atypical' antipsychotic agents, including ziprasidone, quetiapine and tiospirone, exhibited partial agonist activity and marked affinity at h5-HT1A receptors, similar to their affinity at hD2 dopamine receptors. In contrast, risperidone and sertindole displayed low affinity at h5-HT1A receptors and behaved as 'neutral' antagonists, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Likewise the 'typical' neuroleptics, haloperidol, pimozide, raclopride and chlorpromazine exhibited relatively low affinity and 'neutral' antagonist activity at h5-HT1A receptors with Ki values which correlated with their respective Kb values. The present data show that (i) [35S]GTPgammaS binding is an effective method to evaluate the efficacy and potency of agonists and antagonists at recombinant human 5-HT1A receptors. (ii) Like clozapine, several putatively 'atypical' antipsychotic drugs display balanced serotonin h5-HT1A/dopamine hD2 receptor affinity and partial agonist activity at h5-HT1A receptors. (iii) Several 'typical' and some putatively 'atypical' antipsychotic agents displayed antagonist properties at h5-HT1A sites with generally much lower affinity than at hD2 dopamine receptors. It is suggested that agonist activity at 5-HT1A receptors may be of utility for certain antipsychotic agents.

  18. Orally active vasopressin V1a receptor antagonist, SRX251, selectively blocks aggressive behavior.

    PubMed

    Ferris, Craig F; Lu, Shi-Fang; Messenger, Tara; Guillon, Christophe D; Heindel, Ned; Miller, Marvin; Koppel, Gary; Robert Bruns, F; Simon, Neal G

    2006-02-01

    Arginine vasopressin functions as a neurochemical signal in the brain to affect social behavior. There is an expanding literature from animal and human studies showing that vasopressin, through the vasopressin 1A receptor (V1A), can stimulate aggressive behavior. Using a novel monocylic beta lactam platform, a series of orally active vasopressin V1a antagonists was developed with high affinity for the human receptor. SRX251 was chosen from this series of V1a antagonists to screen for effects on serenic activity in a resident-intruder model of offensive aggression. Resident, male Syrian golden hamsters were given oral doses of SRX251 or intraperitoneal Manning compound, a selective V1a receptor antagonist with reduced brain penetrance, at doses of 0.2 microg, 20 microg, 2 mg/kg or vehicle. When tested 90-120 min later, SRX251, but not Manning compound, caused a significant dose-dependent reduction in offensive aggression toward intruders as measured by latency to bite and number of bites. The reduction in aggression persisted for over 6 h and was no longer present 12 h post treatment. SRX251 did not alter the amount of time the resident investigated the intruder, olfactory communication, general motor activity, or sexual motivation. These data corroborate previous studies showing a role for vasopressin neurotransmission in aggression and suggest that V1a receptor antagonists may be used to treat interpersonal violence co-occurring with such illness as ADHD, autism, bipolar disorder, and substance abuse.

  19. Equivalence of litmus paper and intragastric pH probes for intragastric pH monitoring in the intensive care unit.

    PubMed

    Levine, R L; Fromm, R E; Mojtahedzadeh, M; Baghaie, A A; Opekun, A R

    1994-06-01

    To compare the accuracy of litmus paper-determined gastric pH to a nasogastric graphite antimony pH probe. A prospective clinical trial of gastric pH determination in patients enrolled in a study of histamine-2-receptor (H2) antagonists. The medical intensive care unit (ICU) of a 450-bed county hospital. Critically ill ICU patients requiring stress ulcer prophylaxis. Using a crossover design, the patients were randomized to initially receive an H2 antagonist by continuous infusion or intravenous bolus, and subsequently were crossed over to the other limb of the study. Gastric pH was determined using pH-sensitive litmus paper at the initiation of each limb of the study and at 1, 2, 4, and 8 hrs after the initiation of H2 receptor antagonist therapy. In addition, gastric pH was continuously determined over the same time period utilizing a graphite antimony pH probe. Gastric pH measurements determined with litmus paper and intragastric pH probes demonstrated an excellent correlation (r2 = .93, p < .001). McNemar's test of correlated proportions could not demonstrate a significant difference between the two monitoring methods (chi-square = 0.5, p > .47), and the kappa statistic (0.95, p < .001) demonstrated excellent concordance. Bias measurement was 0.01 (95% confidence interval = -0.155 to 0.176). Measurement of intragastric pH, using pH-sensitive litmus paper, is both sensitive and specific when utilizing a graphite antimony nasogastric pH probe as a reference standard. Litmus paper-determined gastric pH testing is both easy to perform and inexpensive. Therefore, based on the current data, we believe this technique (i.e., litmus paper determined gastric pH testing) to be the method of choice for determination of intragastric pH in patients at risk for stress gastric ulcers in the medical ICU.

  20. New H1/H3 antagonists for treating allergic rhinitis: WO2010094643.

    PubMed

    Norman, Peter

    2011-03-01

    This application claims dual receptor specificity antihistamines, active as H(1) and H(3) antagonists, which additionally have a long duration of action that renders them suitable for once daily administration via inhalation for the treatment of allergic rhinitis. The compounds lack CNS penetration and have a high affinity for both histamine receptors.

  1. Antagonism of histamine-activated adenylate cyclase in brain by D-lysergic acid diethylamide.

    PubMed

    Green, J P; Johnson, C L; Weinstein, H; Maayani, S

    1977-12-01

    D-Lysergic acid diethylamide and D-2-bromolysergic acid diethylamide are competitive antagonists of the histamine activation of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing); E.C. 4.6.1.1] in broken cell preparations of the hippocampus and cortex of guinea pig brain. The adenylate cyclase is linked to the histamine H2-receptor. Both D-lysergic acid diethylamide and D-2-bromolysergic acid diethylamide show topological congruency with potent H2-antagonists. D-2-Bromolysergic acid diethylamide is 10 times more potent as an H2-antagonist than cimetidine, which has been the most potent H2-antagonist reported, and D-lysergic acid diethylamide is about equipotent to cimetidine. Blockade of H2-receptors could contribute to the behavioral effects of D-2-bromolysergic acid diethylamide and D-lysergic acid diethylamide.

  2. In vitro histamine H/sub 2/-antagonist activity of the novel compound HUK 978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coombes, J.D.; Norris, D.B.; Rising, T.J.

    1985-11-04

    Histamine stimulated adenylate cyclase from guinea-pig fundic mucosa and /sup 3/H-tiotidine binding in guinea-pig cerebral cortex were used to assess the in-vitro histamine H/sub 2/-activity of the novel H/sub 2/-antagonist HUK 978. The results showed that HUK 978 was a more potent H/sub 2/-antagonist than either cimetidine or ranitidine. HUK 978 was also shown to be devoid of activity at the histamine H-/sub 1/-receptor, the muscarinic receptor and the ..cap alpha.. and ..beta..-adrenergic receptors.

  3. Sodium ion modulates D2 receptor characteristics of dopamine agonist and antagonist binding sites in striatum and retina

    PubMed Central

    Makman, Maynard H.; Dvorkin, B.; Klein, Patrice N.

    1982-01-01

    Sodium ion (Na+) influences binding of both dopamine agonists and antagonists to D2 receptors in striatum and retina. Also, Na+ markedly potentiates the loss of high-affinity agonist binding due to the GTP analogue p[NH]ppG. 2-Amino-6, 7-dihydroxy-1,2,3,4-tetrahydro[5,8-3H]naphthalene ([3H]ADTN) binds exclusively to an agonist conformation of D2 receptor in both striatum and retina, distinct from the antagonist conformation labeled by [3H]spiroperidol or [3H]domperidone in striatum or by [3H]spiroperidol in retina. Na+ is not required for interaction of [3H]ADTN or antagonist radioligand sites with the selective D2 agonist LY-141865, the D2 antagonist domperidone, or nonselective dopamine agonists or antagonists; however, Na+ is necessary for high affinity interaction of those radioligand sites with the D2 antagonists molindone and metoclopramide. With Na+ present, striatal sites for [3H]ADTN, [3H]spiroperidol, and [3H]domperidone have similar affinities for antagonists but only [3H]ADTN sites have high affinity for agonists. Na+ further decreases the low affinity of dopamine agonists for [3H]spiroperidol binding sites. Also, Na+ enhances [3H]spiroperidol and decreases [3H]ADTN binding. Na+ alone causes bound [3H]ADTN to dissociate from at least 30% of striatal and 50% of retinal sites, and with Na+ present [3H]ADTN rapidly dissociates from the remaining sites upon addition of p[NH]ppG. It is proposed that D2 receptors in striatum and retina exist in distinct but interconvertible conformational states, with different properties depending on the presence or absence of Na+ and of guanine nucleotide. PMID:6213964

  4. Quantitative autoradiographic analysis of muscarinic receptor subtypes and their role in representational memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messer, W.S.

    1986-01-01

    Autoradiographic techniques were used to examine the distribution of muscarinic receptors in rat brain slices. Agonist and selective antagonist binding were examined by measuring the ability for unlabeled ligands to inhibit (/sup 3/H)-1-QNB labeling of muscarinic receptors. The distribution of high affinity pirenzepine binding sites (M/sub 1/ subtype) was distinct from the distribution of high affinity carbamylcholine sites, which corresponded to the M/sub 2/ subtype. In a separate assay, the binding profile for pirenzepine was shown to differ from the profile for scopolamine, a classical muscarinic antagonist. Muscarinic antagonists, when injected into the Hippocampus, impaired performance of a representational memorymore » task. Pirenzepine, the M/sub 1/ selective antagonist, produced representational memory deficits. Scopolamine, a less selective muscarinic antagonist, caused increases in running times in some animals which prevented a definitive interpretation of the nature of the impairment. Pirenzepine displayed a higher affinity for the hippocampus and was more effective in producing a selective impairment of representational memory than scopolamine. The data indicated that cholinergic activity in the hippocampus was necessary for representation memory function.« less

  5. Single oral doses of netazepide (YF476), a gastrin receptor antagonist, cause dose-dependent, sustained increases in gastric pH compared with placebo and ranitidine in healthy subjects.

    PubMed

    Boyce, M; David, O; Darwin, K; Mitchell, T; Johnston, A; Warrington, S

    2012-07-01

    Nonclinical studies have shown netazepide (YF476) to be a potent, selective, competitive and orally active gastrin receptor antagonist. To administer to humans for the first time single oral doses of netazepide, to assess their tolerability, safety, pharmacokinetics and effect on 24-h gastric pH. We did two randomised double-blind single-dose studies in healthy subjects. The first (n = 12) was a six-way incomplete crossover pilot study of rising doses of netazepide (range 0.5-100 mg) and placebo. The second (n = 20) was a five-way complete crossover study of netazepide 5, 25 and 100 mg, ranitidine 150 mg and placebo. In both trials we collected frequent blood samples, measured plasma netazepide and calculated pharmacokinetic parameters. In the comparative trial we measured gastric pH continuously for 24 h and compared treatments by percentage time gastric pH ≥4. Netazepide was well tolerated. Median t (max) and t (½) for the 100 mg dose were about 1 and 7 h, respectively, and the pharmacokinetics were dose-proportional. Netazepide and ranitidine each increased gastric pH. Onset of activity was similarly rapid for both. All netazepide doses were more effective than placebo (P ≤ 0.023). Compared with ranitidine, netazepide 5 mg was as effective, and netazepide 25 and 100 mg were much more effective (P ≤ 0.010), over the 24 h after dosing. Activity of ranitidine lasted about 12 h, whereas that of netazepide exceeded 24 h. In human: netazepide is an orally active gastrin antagonist, and gastrin has a major role in controlling gastric acidity. Repeated-dose studies are justified. NCT01538784 and NCT01538797. © 2012 Blackwell Publishing Ltd.

  6. Effects of an orally active vasopressin V1 receptor antagonist.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-05-01

    1. This paper reports on the in vitro and in vivo characteristics of a non-peptide vasopressin V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy)benzoyl]-4-piperidyl)-3,4-dihydro-2( 1H)- quinolinone (OPC-21268). 2. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, [125I]-[d(CH2)5, sarcosine7]AVP from vasopressin V1 receptors in rat liver and kidney membranes, inhibitory concentration of 50% (IC50) 4 x 10(-8), 0.3 mol/L liver and 1.5 x 10(-8), 0.2 mol/L kidney. OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)-d(CH2)5[D-Ileu2, Ileu4]AVP binding to V2 receptors in renal membranes (IC50 > 10(-4) mol/L). 3. After oral administration to rats, OPC-21268 was an effective V1 antagonist to both liver and kidney V1 receptors, in a dose-dependent manner. 4. These studies confirm that OPC-21268 is a potent non-peptide, orally effective V1 vasopressin receptor antagonist.

  7. 5-HT1A receptor antagonists reduce food intake and body weight by reducing total meals with no conditioned taste aversion.

    PubMed

    Dill, M Joelle; Shaw, Janice; Cramer, Jeff; Sindelar, Dana K

    2013-11-01

    Serotonin acts through receptors controlling several physiological functions, including energy homeostasis regulation and food intake. Recent experiments demonstrated that 5-HT1A receptor antagonists reduce food intake. We sought to examine the microstructure of feeding with 5-HT1A receptor antagonists using a food intake monitoring system. We also examined the relationship between food intake, inhibition of binding and pharmacokinetic (PK) profiles of the antagonists. Ex vivo binding revealed that, at doses used in this study to reduce food intake, inhibition of binding of a 5-HT1A agonist by ~40% was reached in diet-induced obese (DIO) mice with a trend for higher binding in DIO vs. lean animals. Additionally, PK analysis detected levels from 2 to 24h post-compound administration. Male DIO mice were administered 5-HT1A receptor antagonists LY439934 (10 or 30 mg/kg, p.o.), WAY100635 (3 or 10mg/kg, s.c.), SRA-333 (10 or 30 mg/kg, p.o.), or NAD-299 (3 or 10mg/kg, s.c.) for 3 days and meal patterns were measured. Analyses revealed that for each antagonist, 24-h food intake was reduced through a specific decrease in the total number of meals. Compared to controls, meal number was decreased 14-35% in the high dose. Average meal size was not changed by any of the compounds. The reduction in food intake reduced body weight 1-4% compared to Vehicle controls. Subsequently, a conditioned taste aversion (CTA) assay was used to determine whether the feeding decrease might be an indicator of aversion, nausea, or visceral illness caused by the antagonists. Using a two bottle preference test, it was found that none of the compounds produced a CTA. The decrease in food intake does not appear to be a response to nausea or malaise. These results indicate that 5-HT1A receptor antagonist suppresses feeding, specifically by decreasing the number of meals, and induce weight loss without an aversive side effect. © 2013 Elsevier Inc. All rights reserved.

  8. Comparison of the effect of the antacid Rennie versus low-dose H2-receptor antagonists (ranitidine, famotidine) on intragastric acidity.

    PubMed

    Netzer, P; Brabetz-Höfliger, A; Bründler, R; Flogerzi, B; Hüsler, J; Halter, F

    1998-04-01

    Symptoms of functional dyspepsia are common and patients often self-medicate with antacids, or with low-dose H2-antagonists which are available as over-the-counter medications. To date, there has been limited information available comparing the effects on intragastric acidity of these two types of over-the-counter medication. Therefore we studied the effect of the antacid Rennie and two H2-antagonists on the intragastric pH of fasting volunteers. Sixteen healthy, fasting volunteers were randomized into a double-blind, placebo-controlled, four-way crossover study comparing Rennie (calcium-magnesium carbonate) 1360 mg, ranitidine 75 mg, famotidine 10 mg and placebo. Their effect on gastric pH was monitored by a 4-h gastric pH-metry. The primary efficacy parameter was the time lag before an intragastric pH > 3.0 was reached after drug administration. The median time lag before pH > 3.0 was reached after drug administration was 5.8 min for Rennie, 64.9 min for ranitidine, 70.1 min for famotidine and 240.0 min for placebo. The percentage of time with values of pH > 3.0 was 10.4% for Rennie, 61.4% for ranitidine, 56.6% for famotidine and 1.4% for placebo. The onset of action in fasting volunteers was significantly faster with the antacid than with the two H2-antagonists. The duration of action was significantly longer with an H2-antagonist than with the antacid. This suggests that the two products should be used for different indications: antacids are superior for rapid pain relief, whereas H2-antagonists might be better for symptom prophylaxis--for example for nocturnal dyspepsia.

  9. Antiviral activity of formyl peptide receptor 2 antagonists against influenza viruses.

    PubMed

    Courtin, Noémie; Fotso, Aurélien Fotso; Fautrad, Pierre; Mas, Floriane; Alessi, Marie-Christine; Riteau, Béatrice

    2017-07-01

    Influenza viruses are one of the most important respiratory pathogens worldwide, causing both epidemic and pandemic infections. The aim of the study was to evaluate the effect of FPR2 antagonists PBP10 and BOC2 on influenza virus replication. We determined that these molecules exhibit antiviral effects against influenza A (H1N1, H3N2, H6N2) and B viruses. FPR2 antagonists used in combination with oseltamivir showed additive antiviral effects. Mechanistically, the antiviral effect of PBP10 and BOC2 is mediated through early inhibition of virus-induced ERK activation. Finally, our preclinical studies showed that FPR2 antagonists protected mice from lethal infections induced by influenza, both in a prophylactic and therapeutic manner. Thus, FPR2 antagonists might be explored for novel treatments against influenza. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes--a new, selective antagonist radioligand for A(2A) adenosine receptors.

    PubMed

    Müller, C E; Maurinsh, J; Sauer, R

    2000-01-01

    The present study describes the preparation and binding properties of a new, potent, and selective A(2A) adenosine receptor (AR) antagonist radioligand, [3H]3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargy lxanth ine ([3H]MSX-2). [3H]MSX-2 binding to rat striatal membranes was saturable and reversible. Saturation experiments showed that [3H]MSX-2 labeled a single class of binding sites with high affinity (K(d)=8.0 nM) and limited capacity (B(max)=1.16 fmol.mg(-1) of protein). The presence of 100 microM GTP, or 10 mM magnesium chloride, respectively, had no effect on [3H]MSX-2 binding. AR agonists competed with the binding of 1 nM [3H]MSX-2 with the following order of potency: 5'-N-ethylcarboxamidoadenosine (NECA)>2-[4-(carboxyethyl)phenylethylamino]-5'-N-ethylcarboxami doaden osine (CGS-21680)>2-chloroadenosine (2-CADO)>N(6)-cyclopentyladenosine (CPA). AR antagonists showed the following order of potency: 8-(m-bromostyryl)-3, 7-dimethyl-1-propargylxanthine (BS-DMPX)>1, 3-dipropyl-8-cyclopentylxanthine (DPCPX)>(R)-5, 6-dimethyl-7-(1-phenylethyl)-2-(4-pyridyl)-7H-pyrrolo[2, 3-d]pyrimidine-4-amine (SH-128)>3,7-dimethyl-1-propargylxanthine (DMPX)>caffeine. The K(i) values for antagonists were in accordance with data from binding studies with the agonist radioligand [3H]CGS21680, while agonist affinities were 3-7-fold lower. [3H]MSX-2 is a highly selective A(2A) AR antagonist radioligand exhibiting a selectivity of at least two orders of magnitude versus all other AR subtypes. The new radioligand shows high specific radioactivity (85 Ci/mmol, 3150 GBq/mmol) and acceptable nonspecific binding at rat striatal membranes of 20-30%, at 1 nM.

  11. Sleep Homeostatic and Waking Behavioral Phenotypes in Egr3-Deficient Mice Associated with Serotonin Receptor 5-HT2 Deficits.

    PubMed

    Grønli, Janne; Clegern, William C; Schmidt, Michelle A; Nemri, Rahmi S; Rempe, Michael J; Gallitano, Amelia L; Wisor, Jonathan P

    2016-12-01

    The expression of the immediate early gene early growth response 3 ( Egr3 ) is a functional marker of brain activity including responses to novelty, sustained wakefulness, and sleep. We examined the role of this gene in regulating wakefulness and sleep. Electroencephalogram/electromyogram (EEG/EMG) were recorded in Egr3 -/- and wild-type (WT) mice during 24 h baseline, 6 h sleep disruption and 6 h recovery. Serotonergic signaling was assessed with 6 h EEG/EMG recordings after injections of nonselective 5-HT2 antagonist (clozapine), selective 5-HT2 antagonists (5-HT2A; MDL100907 and 5-HT2BC; SB206553) and a cocktail of both selective antagonists, administered in a randomized order to each animal. Egr3 -/- mice did not exhibit abnormalities in the timing of wakefulness and slow wave sleep (SWS); however, EEG dynamics in SWS (suppressed 1-3 Hz power) and in quiet wakefulness (elevated 3-8 Hz and 15-35 Hz power) differed in comparison to WT-mice. Egr3 -/- mice showed an exaggerated response to sleep disruption as measured by active wakefulness, but with a blunted increase in homeostatic sleep drive (elevated 1-4 Hz power) relative to WT-mice. Egr3 -/-mice exhibit greatly reduced sedative effects of clozapine at the electroencephalographic level. In addition, clozapine induced a previously undescribed dissociated state (low amplitude, low frequency EEG and a stable, low muscle tone) lasting up to 2 h in WT-mice. Egr3 -/- mice did not exhibit this phenomenon. Selective 5-HT2A antagonist, alone or in combination with selective 5-HT2BC antagonist, caused EEG slowing coincident with behavioral quiescence in WT-mice but not in Egr3 -/- mice. Egr3 has an essential role in regulating cortical arousal, wakefulness, and sleep, presumably by its regulation of 5-HT2 receptors. © 2016 Associated Professional Sleep Societies, LLC.

  12. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. III. Agonist and antagonist properties at serotonin, 5-HT(1) and 5-HT(2), receptor subtypes.

    PubMed

    Newman-Tancredi, Adrian; Cussac, Didier; Quentric, Yann; Touzard, Manuelle; Verrièle, Laurence; Carpentier, Nathalie; Millan, Mark J

    2002-11-01

    Although certain antiparkinson agents interact with serotonin (5-HT) receptors, little information is available concerning functional actions. Herein, we characterized efficacies of apomorphine, bromocriptine, cabergoline, lisuride, piribedil, pergolide, roxindole, and terguride at human (h)5-HT(1A), h5-HT(1B), and h5-HT(1D) receptors [guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding], and at h5-HT(2A), h5-HT(2B), and h5-HT(2C) receptors (depletion of membrane-bound [(3)H]phosphatydilinositol). All drugs stimulated h5-HT(1A) receptors with efficacies (compared with 5-HT, 100%) ranging from modest (apomorphine, 35%) to high (cabergoline, 93%). At h5-HT(1B) receptors, efficacies varied from mild (terguride, 37%) to marked (cabergoline, 102%) and potencies were modest (pEC(50) values of 5.8-7.6): h5-HT(1D) sites were activated with a similar range of efficacies and greater potency (7.1-8.5). Piribedil and apomorphine were inactive at h5-HT(1B) and h5-HT(1D) receptors. At h5-HT(2A) receptors, terguride, lisuride, bromocriptine, cabergoline, and pergolide displayed potent (7.6-8.8) agonist properties (49-103%), whereas apomorphine and roxindole were antagonists and piribedil was inactive. Only pergolide (113%/8.2) and cabergoline (123%/8.6) displayed pronounced agonist properties at h5-HT(2B) receptors. At 5-HT(2C) receptors, lisuride, bromocriptine, pergolide, and cabergoline were efficacious (75-96%) agonists, apomorphine and terguride were antagonists, and piribedil was inactive. MDL100,907 and SB242,084, selective antagonists at 5-HT(2A) and 5-HT(2C) receptors, respectively, abolished these actions of pergolide, cabergoline, and bromocriptine. In conclusion, antiparkinson agents display markedly different patterns of agonist and antagonist properties at multiple 5-HT receptor subtypes. Although all show modest (agonist) activity at 5-HT(1A) sites, their contrasting actions at 5-HT(2A) and 5-HT(2C) sites may be of particular significance to their functional profiles in vivo.

  13. Novel spirotetracyclic zwitterionic dual H(1)/5-HT(2A) receptor antagonists for the treatment of sleep disorders.

    PubMed

    Gianotti, Massimo; Botta, Maurizio; Brough, Stephen; Carletti, Renzo; Castiglioni, Emiliano; Corti, Corrado; Dal-Cin, Michele; Delle Fratte, Sonia; Korajac, Denana; Lovric, Marija; Merlo, Giancarlo; Mesic, Milan; Pavone, Francesca; Piccoli, Laura; Rast, Slavko; Roscic, Maja; Sava, Anna; Smehil, Mario; Stasi, Luigi; Togninelli, Andrea; Wigglesworth, Mark J

    2010-11-11

    Histamine H(1) and serotonin 5-HT(2A) receptors mediate two different mechanisms involved in sleep regulation: H(1) antagonists are sleep inducers, while 5-HT(2A) antagonists are sleep maintainers. Starting from 9'a, a novel spirotetracyclic compound endowed with good H(1)/5-HT(2A) potency but poor selectivity, very high Cli, and a poor P450 profile, a specific optimization strategy was set up. In particular, we investigated the possibility of introducing appropriate amino acid moieties to optimize the developability profile of the series. Following this zwitterionic approach, we were able to identify several advanced leads (51, 65, and 73) with potent dual H(1)/5-HT(2A) activity and appropriate developability profiles. These compounds exhibited efficacy as hypnotic agents in a rat telemetric sleep model with minimal effective doses in the range 3-10 mg/kg po.

  14. Effects of L-histidine depletion and L-tyrosine/L-phenylalanine depletion on sensory and motor processes in healthy volunteers

    PubMed Central

    van Ruitenbeek, P; Sambeth, A; Vermeeren, A; Young, SN; Riedel, WJ

    2009-01-01

    Background and purpose: Animal studies show that histamine plays a role in cognitive functioning and that histamine H3-receptor antagonists, which increase histaminergic function through presynaptic receptors, improve cognitive performance in models of clinical cognitive deficits. In order to test such new drugs in humans, a model for cognitive impairments induced by low histaminergic functions would be useful. Studies with histamine H1-receptor antagonists have shown limitations as a model. Here we evaluated whether depletion of L-histidine, the precursor of histamine, was effective in altering measures associated with histamine in humans and the behavioural and electrophysiological (event-related-potentials) effects. Experimental approach: Seventeen healthy volunteers completed a three-way, double-blind, crossover study with L-histidine depletion, L-tyrosine/L-phenylalanine depletion (active control) and placebo as treatments. Interactions with task manipulations in a choice reaction time task were studied. Task demands were increased using visual stimulus degradation and increased response complexity. In addition, subjective and objective measures of sedation and critical tracking task performance were assessed. Key results: Measures of sedation and critical tracking task performance were not affected by treatment. L-histidine depletion was effective and enlarged the effect of response complexity as measured with the response-locked lateralized readiness potential onset latency. Conclusions and implications: L-histidine depletion affected response- but not stimulus-related processes, in contrast to the effects of H1-receptor antagonists which were previously found to affect primarily stimulus-related processes. L-histidine depletion is promising as a model for histamine-based cognitive impairment. However, these effects need to be confirmed by further studies. PMID:19413574

  15. An antagonistic monoclonal antibody (B-N6) specific for the human neurotensin receptor-1.

    PubMed

    Ovigne, J M; Vermot-Desroches, C; Lecron, J C; Portier, M; Lupker, J; Pecceu, F; Wijdenes, J

    1998-06-01

    The neuropeptide neurotensin (NT) interacts with two types of human receptors (hNTR) termed hNTR-1 and hNTR-2. This study describes a monoclonal antibody (MAb) specific for hNTR-1, B-N6. This MAb binds specifically to hNTR-1, but not to hNTR-2 transfected CHO cells. B-N6 and NT display a reciprocal competition and react in a similar way to trypsin, suggesting that the B-N6 epitope is at or close to the NT binding site on the third extracellular loop. Unlike B-N6, NT induces hNTR-1 internalization. Although neither NT-FITC nor B-N6 binding was detected by flow cytometry on different human cells, specific mRNA expression for hNTR-1 was detected in these cells. In CHO cells expressing hNTR-1 and a luciferase gene coupled to the krox24 reporter, B-N6 and the antagonist SR 48692 inhibited NT-induced intracellular activation of krox24 in a dose-dependent manner. From these results it is concluded that B-N6 is an antagonistic anti-hNTR-1 MAb.

  16. Orally active, nonpeptide vasopressin V1 antagonists. A novel series of 1-(1-substituted 4-piperidyl)-3,4-dihdyro-2(1H)-quinolinone.

    PubMed

    Ogawa, H; Yamamura, Y; Miyamoto, H; Kondo, K; Yamashita, H; Nakaya, K; Chihara, T; Mori, T; Tominaga, M; Yabuuchi, Y

    1993-07-09

    A series of compounds has been synthesized and demonstrated to be antagonists of V1 receptors both in vitro and in vivo. These compounds are structurally related to the 1-(4-piperidyl)-2(1H)-quinolinones, including OPC-21268, an orally bioavailable AVP V1 antagonist with high V1 specificity. It has been found that the introduction of an acetamide group on the terminal alkoxy chain of 41-44 leads to an increase in oral activity. Certain of these compounds may have efficacy in the study of AVP V1 receptors.

  17. Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; el-Fakahany, E.E.

    1985-06-01

    The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/supmore » 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.« less

  18. H2O2 attenuates IGF-1R tyrosine phosphorylation and its survival signaling properties in neuronal cells via NR2B containing NMDA receptor.

    PubMed

    Zeng, Zhiwen; Wang, Dejun; Gaur, Uma; Rifang, Liao; Wang, Haitao; Zheng, Wenhua

    2017-09-12

    Impairment of insulin-like growth factor I (IGF-I) signaling plays an important role in the development of neurodegeneration. In the present study, we investigated the effect of H 2 O 2 on the survival signaling of IGF-1 and its underlying mechanisms in human neuronal cells SH-SY5Y. Our results showed that IGF-1 promoted cell survival and stimulated phosphorylation of IGF-1R as well as its downstream targets like AKT and ERK1/2 in these cells. Meanwhile, these effects of IGF-1 were abolished by H 2 O 2 at 200μM concentration which did not cause any significant toxicity to cells itself in our experiments. Moreover, studies using various glutamate receptor subtype antagonists displayed that N-methyl-D -aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) blocked the effects of H 2 O 2 , whereas other glutamate receptor subtype antagonists, such as non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX), metabolic glutamate receptor antagonists LY341495 and CPCCOEt, had no effect. Further studies revealed that NR2B-containing NMDARs are responsible for these effects as its effects were blocked by pharmacological inhibitor Ro25-698 or specific siRNA for NR2B, but not NR2A. Finally, our data also showed that Ca 2+ influx contributes to the effects of H 2 O 2 . Similar results were obtained in primary cultured cortical neurons. Taken together, the results from the present study suggested that H 2 O 2 attenuated IGF-1R tyrosine phosphorylation and its survival signaling properties via NR2B containing NMDA receptors and Ca 2+ influx in SH-SY5Y cells. Therefore, NMDAR antagonists, especially NR2B-selective ones, combined with IGF-1 may serve as an alternative therapeutic agent for oxidative stress related neurodegenerative disease.

  19. Antagonism of Human Formyl Peptide Receptor 1 (FPR1) by Chromones and Related Isoflavones

    PubMed Central

    Schepetkin, Igor A.; Kirpotina, Liliya N.; Khlebnikov, Andrei I.; Cheng, Ni; Ye, Richard D.; Quinn, Mark T.

    2014-01-01

    Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) expressed on a variety of cell types. Because FPRs play an important role in the regulation of inflammatory reactions implicated in disease pathogenesis, FPR antagonists may represent novel therapeutics for modulating innate immunity. Previously, 4H-chromones were reported to be potent and competitive FPR1 antagonists. In the present studies, 96 additional chromone analogs, including related synthetic and natural isoflavones were evaluated for FPR1 antagonist activity. We identified a number of novel competitive FPR1 antagonists that inhibited fMLF-induced intracellular Ca2+ mobilization in FPR1-HL60 cells and effectively competed with WKYMVm-FITC for binding to FPR1 in FPR1-HL60 and FPR1-RBL cells. Compound 10 (6-hexyl-2-methyl-3-(1-methyl-1H-benzimidazol-2-yl)-4-oxo-4H-chromen-7-yl acetate) was found to be the most potent FPR1-specific antagonist, with binding affinity Ki~100 nM. These chromones inhibited Ca2+ flux and chemotaxis in human neutrophils with nanomolar-micromolar IC50 values. In addition, the most potent novel FPR1 antagonists inhibited fMLF-induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) in FPR1-RBL cells. These antagonists were specific for FPR1 and did not inhibit WKYMVM/WKYMVm-induced intracellular Ca2+ mobilization in FPR2-HL60 cells, FPR3-HL60 cells, RBL cells transfected with murine Fpr1, or interleukin 8-induced Ca2+ flux in human neutrophils and RBL cells transfected with CXC chemokine receptor 1 (CXCR1). Moreover, pharmacophore modeling showed that the active chromones had a significantly higher degree of similarity with the pharmacophore template as compared to inactive analogs. Thus, the chromone/isoflavone scaffold represents a relevant backbone for development of novel FPR1 antagonists. PMID:25450672

  20. The effect of betahistine, a histamine H1 receptor agonist/H3 antagonist, on olanzapine-induced weight gain in first-episode schizophrenia patients.

    PubMed

    Poyurovsky, Michael; Pashinian, Artashes; Levi, Aya; Weizman, Ronit; Weizman, Abraham

    2005-03-01

    Histamine antagonism has been implicated in antipsychotic drug-induced weight gain. Betahistine, a histamine enhancer with H1 agonistic/H3 antagonistic properties (48 mg t.i.d.), was coadministered with olanzapine (10 mg/day) in three first-episode schizophrenia patients for 6 weeks. Body weight was measured at baseline and weekly thereafter. Clinical rating scales were completed at baseline and at week 6. All participants gained weight (mean weight gain 3.1+/-0.9 kg) and a similar pattern of weight gain was observed: an increase during the first 2 weeks and no additional weight gain (two patients) or minor weight loss (one patient) from weeks 3 to 6. None gained 7% of baseline weight, which is the cut-off for clinically significant weight gain. Betahistine was safe and well tolerated and did not interfere with the antipsychotic effect of olanzapine. Our findings justify a placebo-controlled evaluation of the putative weight-attenuating effect of betahistine in olanzapine-induced weight gain.

  1. Blocking Alcoholic Steatosis in Mice with a Peripherally Restricted Purine Antagonist of the Type 1 Cannabinoid Receptor.

    PubMed

    Amato, George S; Manke, Amruta; Harris, Danni L; Wiethe, Robert W; Vasukuttan, Vineetha; Snyder, Rodney W; Lefever, Timothy W; Cortes, Ricardo; Zhang, Yanan; Wang, Shaobin; Runyon, Scott P; Maitra, Rangan

    2018-05-24

    Type 1 cannabinoid receptor (CB1) antagonists have demonstrated promise for the treatment of obesity, liver disease, metabolic syndrome, and dyslipidemias. However, the inhibition of CB1 receptors in the central nervous system can produce adverse effects, including depression, anxiety, and suicidal ideation. Efforts are now underway to produce peripherally restricted CB1 antagonists to circumvent CNS-associated undesirable effects. In this study, a series of analogues were explored in which the 4-aminopiperidine group of compound 2 was replaced with aryl- and heteroaryl-substituted piperazine groups both with and without a spacer. This resulted in mildly basic, potent antagonists of human CB1 (hCB1). The 2-chlorobenzyl piperazine, 25, was found to be potent ( K i = 8 nM); to be >1000-fold selective for hCB1 over hCB2; to have no hERG liability; and to possess favorable ADME properties including high oral absorption and negligible CNS penetration. Compound 25 was tested in a mouse model of alcohol-induced liver steatosis and found to be efficacious. Taken together, 25 represents an exciting lead compound for further clinical development or refinement.

  2. Antagonistic targeting of the histamine H3 receptor decreases caloric intake in higher mammalian species.

    PubMed

    Malmlöf, Kjell; Hastrup, Sven; Wulff, Birgitte Schellerup; Hansen, Barbara C; Peschke, Bernd; Jeppesen, Claus Bekker; Hohlweg, Rolf; Rimvall, Karin

    2007-04-15

    The main purpose of this study was to examine the effects of a selective histamine H(3) receptor antagonist, NNC 38-1202, on caloric intake in pigs and in rhesus monkeys. The compound was given intragastrically (5 or 15 mg/kg), to normal pigs (n=7) and subcutaneously (1 or 0.1mg/kg) to obese rhesus monkeys (n=9). The energy intake recorded following administration of vehicle to the same animals served as control for the effect of the compound. In addition, rhesus monkey and pig histamine H(3) receptors were cloned from hypothalamic tissues and expressed in mammalian cell lines. The in vitro antagonist potencies of NNC 38-1202 at the H(3) receptors were determined using a functional GTPgammaS binding assay. Porcine and human H(3) receptors were found to have 93.3% identity at the amino acid level and the close homology between the monkey and human H(3) receptors (98.4% identity) was confirmed. The antagonist potencies of NNC 38-1202 at the porcine, monkey and human histamine H(3) receptors were high as evidenced by K(i)-values being clearly below 20 nM, whereas the K(i)-value on the rat H(3) receptor was significantly higher (56+/-6.0 nM). NNC 38-1202, given to pigs in a dose of 15 mg/kg, produced a significant (p<0.05) reduction (55%) of calorie intake compared with vehicle alone, (132.6+/-10.0 kcal/kgday versus 59.7+/-10.2 kcal/kgday). In rhesus monkeys administration of 0.1 and 1mg/kg decreased (p<0.05) average calorie intakes by 40 and 75%, respectively. In conclusion, the present study demonstrates that antagonistic targeting of the histamine H(3) receptor decreases caloric intake in higher mammalian species.

  3. Hypothermic and antipyretic effects of ACTH (1-24) and alpha-melanotropin in guinea-pigs

    NASA Technical Reports Server (NTRS)

    Kandasamy, S. B.; Williams, B. A.

    1984-01-01

    Intracerebroventricular administration of adrenocorticotropin (ACTH 1-24) and alpha-melanotropin (alpha-MSH), peptides which occur naturally in brain induced dose-related hypothermia in guinea-pigs at room temperature (21 C) and also produced greater hypothermia at low (10 C) ambient temperature. However, when the experiments were repeated in a warm (30 C) environment, no effect on body temperature was observed. These results indicate that the peptides did not reduce the central set-point of temperature control. The hypothermia induced by ACTH and alpha-MSH was not mediated via histamine H1- or H2-receptors and serotonin since the H1-receptor antagonist, mepyramine, the H2-receptor antagonist, cimetidine, and the serotonin antagonist, methysergide, had no antagonistic effects. The peptides were antipyretic since they reduced pyrogen-induced-fever and hyperthermia due to prostaglandin E2, norepinephrine and dibutyryl cAMP, at a dose which did not affect normal body temperature. The powerful central effects of these peptides on normal body temperature, fever and hyperthermia, together with their presence of the brain regions important to temperature control, suggest that they participate in thermoregulation.

  4. Endothelin receptor antagonist attenuates oxidative stress in a neonatal sepsis piglet model.

    PubMed

    Goto, Tatenobu; Hussein, Mohamed Hamed; Kato, Shin; Daoud, Ghada Abdel-Hamid; Kato, Takenori; Sugiura, Takahiro; Kakita, Hiroki; Nobata, Masanori; Kamei, Michi; Mizuno, Haruo; Imai, Masaki; Ito, Tetsuya; Kato, Ineko; Suzuki, Satoshi; Okada, Noriko; Togari, Hajime; Okada, Hidechika

    2012-12-01

    Oxidative stress (oxidant-antioxidant imbalance) plays an important role in the pathophysiology of neonatal sepsis. This study evaluated whether an antisense peptide endothelin receptor antagonist, ETR-P1/fl, could attenuate oxidative stress in a neonatal sepsis model. A total of 18 3-d-old piglets were anesthetized and mechanically ventilated. Six piglets received cecal ligation and perforation (CLP group) for induction of sepsis. Six piglets also received continuous infusion (0.05 mg/kg/h) of ETR-P1/fl 30 min after CLP (ETR-P1/fl group). Six piglets received a sham operation. Serum total hydroperoxide (TH), biological antioxidant potentials (BAPs), oxidative stress index (OSI, calculated as TH/BAP), interleukin (IL)-6, serum glutamic oxaloacetic transaminase (GOT), and creatinine were measured before CLP and at 1, 3, and 6 h after CLP. CLP evoked a state of shock resulting in elevated TH, OSI, and IL-6 levels. ETR-P1/fl administration after CLP resulted in lower serum TH at 1 and 3 h after CLP, OSI at 1 and 3 h after CLP, IL-6 at 1 and 3 h after CLP, and GOT at 3 and 6 h after CLP as compared with the CLP group. ETR-P1/fl treatment significantly attenuated the elevation of serum oxidative stress markers (TH and OSI), IL-6, and GOT in a progressive neonatal sepsis CLP model.

  5. Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease.

    PubMed

    Rodríguez-Ruiz, Mar; Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Mallol, Josefa; Cortés, Antonio; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Franco, Rafael

    2017-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual receptors. We here report the discovery of dopamine D 1 , histamine H 3 , and N-methyl-D-aspartate (NMDA) glutamate receptor heteromers in heterologous systems and in rodent brain cortex. Heteromers were detected by co-immunoprecipitation and in situ proximity ligation assays (PLA) in the rat cortex where H 3 receptor agonists, via negative cross-talk, and H 3 receptor antagonists, via cross-antagonism, decreased D 1 receptor agonist signaling determined by ERK1/2 or Akt phosphorylation, and counteracted D 1 receptor-mediated excitotoxic cell death. Both D 1 and H 3 receptor antagonists also counteracted NMDA toxicity suggesting a complex interaction between NMDA receptors and D 1 -H 3 receptor heteromer function. Likely due to heteromerization, H 3 receptors act as allosteric regulator for D 1 and NMDA receptors. By bioluminescence resonance energy transfer (BRET), we demonstrated that D 1 or H 3 receptors form heteromers with NR1A/NR2B NMDA receptor subunits. D 1 -H 3 -NMDA receptor complexes were confirmed by BRET combined with fluorescence complementation. The endogenous expression of complexes in mouse cortex was determined by PLA and similar expression was observed in wild-type and APP/PS1 mice. Consistent with allosteric receptor-receptor interactions within the complex, H 3 receptor antagonists reduced NMDA or D 1 receptor-mediated excitotoxic cell death in cortical organotypic cultures. Moreover, H 3 receptor antagonists reverted the toxicity induced by ß 1-42 -amyloid peptide. Thus, histamine H 3 receptors in D 1 -H 3 -NMDA heteroreceptor complexes arise as promising targets to prevent neurodegeneration.

  6. Discovery of 2-(3,5-difluoro-4-methylsulfonaminophenyl)propanamides as potent TRPV1 antagonists.

    PubMed

    Kim, Changhoon; Ann, Jihyae; Lee, Sunho; Sun, Wei; Blumberg, Peter M; Frank-Foltyn, Robert; Bahrenberg, Gregor; Stockhausen, Hannelore; Christoph, Thomas; Lee, Jeewoo

    2018-05-23

    A series of A-region analogues of 2-(3-fluoro-4-methylsufonamidophenyl) propanamide 1 were investigated as TRPV1 antagonists. The analysis of structure-activity relationship indicated that a fluoro group at the 3- (or/and) 5-position and a methylsulfonamido group at the 4-position were optimal for antagonism of TRPV1 activation by capsaicin. The most potent antagonist 6 not only exhibited potent antagonism of activation of hTRPV1 by capsaicin, low pH and elevated temperature but also displayed highly potent antagonism of activation of rTRPV1 by capsaicin. Further studies demonstrated that antagonist 6 blocked the hypothermic effect of capsaicin in vivo, consistent with its in vitro mechanism, and it showed promising analgesic activity in the formalin animal model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Novel selective human melanocortin-3 receptor ligands: Use of the 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one (Aba) scaffold

    PubMed Central

    Ballet, Steven; Mayorov, Alexander V.; Cai, Minying; Tymecka, Dagmara; Chandler, Kevin B.; Palmer, Erin S.; Van Rompaey, Karolien; Misicka, Aleksandra; Tourwé, Dirk; Hruby, Victor J.

    2008-01-01

    In search of new selective antagonists and/or agonists for the human melanocortin receptor subtypes hMC1R to hMC5R to elucidate the specific biological roles of each GPCR, we modified the structures of the superagonist MT-II (Ac-Nle-c[Asp-His-D-Phe-Arg-Trp-Lys]-NH2) and the hMC3R/hMC4R antagonist SHU9119 (Ac-Nle-c[Asp-His-D-Nal(2′)-Arg-Trp-Lys]-NH2) by replacing the His-D-Phe and His-D-Nal(2′) fragments in MT-II and SHU9119, respectively, with Aba-Xxx (4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one-Xxx) dipeptidomimetics (Xxx = D-Phe/pCl-D-Phe/D-Nal(2′)). Employment of the Aba mimetic yielded novel selective high affinity hMC3R and hMC3R/hMC5R antagonists. PMID:17314042

  8. Indomethacin-antihistamine combination for gastric ulceration control

    NASA Technical Reports Server (NTRS)

    Brown, P. A.; Danellis, J. V. (Inventor)

    1981-01-01

    An anti-inflammatory and analgesic composition containing indomethacin and an H sub 1 or an H sub 2 histamine receptor antagonist in an amount sufficient to reduce gastric distress caused by the indomethacin is described. Usable antagonists include pyrilamine, promethazine, metiamide and cimetidine.

  9. Antagonists for the orphan G-protein-coupled receptor GPR55 based on a coumarin scaffold.

    PubMed

    Rempel, Viktor; Volz, Nicole; Gläser, Franziska; Nieger, Martin; Bräse, Stefan; Müller, Christa E

    2013-06-13

    The orphan G-protein-coupled receptor GPR55, which is activated by 1-lysophosphatidylinositol and interacts with cannabinoid (CB) receptor ligands, has been proposed as a new potential drug target for the treatment of diabetes, Parkinson's disease, neuropathic pain, and cancer. We applied β-arrestin assays to identify 3-substituted coumarins as a novel class of antagonists and performed an extensive structure-activity relationship study for GPR55. Selectivity versus the related receptors CB1, CB2, and GPR18 was assessed. Among the 7-unsubstituted coumarins selective, competitive GPR55 antagonists were identified, such as 3-(2-hydroxybenzyl)-5-isopropyl-8-methyl-2H-chromen-2-one (12, PSB-SB-489, IC50 = 1.77 μM, pA2 = 0.547 μM). Derivatives with long alkyl chains in position 7 were potent, possibly allosteric GPR55 antagonists which showed ancillary CB receptor affinity. 7-(1,1-Dimethyloctyl)-5-hydroxy-3-(2-hydroxybenzyl)-2H-chromen-2-one (69, PSB-SB-487, IC50 = 0.113 μM, KB = 0.561 μM) and 7-(1,1-dimethylheptyl)-5-hydroxy-3-(2-hydroxybenzyl)-2H-chromen-2-one (67, PSB-SB-1203, IC50 = 0.261 μM) were the most potent GPR55 antagonists of the present series.

  10. Binding of [3H] SR 49059, a potent nonpeptide vasopressin V1a antagonist, to rat and human liver membranes.

    PubMed

    Serradeil-Le Gal, C; Raufaste, D; Marty, E; Garcia, C; Maffrand, J P; Le Fur, G

    1994-02-28

    The new potent and selective nonpeptide vasopressin V1a antagonist, SR 49059, was tritiated and used for the characterization of rat and human liver AVP V1a receptors. Binding of [3H] SR 49059 was time-dependent, reversible and saturable. A single class of high affinity binding sites was identified with Kd values of 0.63 +/- 0.13 and 2.95 +/- 0.64 nM, in rat and human liver membranes, respectively. The maximal binding capacity (Bmax) was about 7 times higher in rat than in human liver preparations. The relative potencies of several AVP/oxytocin agonists or antagonists to inhibit [3H] SR 49059 binding confirmed that this ligand labeled a homogeneous population of sites with the expected AVP V1a profile. Furthermore, [3H] SR 49059 or unlabeled SR 49059 displayed only slight species differences between rat and human V1a receptors, whereas OPC-21268, another nonpeptide V1a antagonist, exhibited a high species-related potency with more than 500 fold higher affinity for rat than for human liver V1a receptors. Thus, [3H] SR 49059 is the first nonpeptide AVP V1a ligand reported having highly specific activity, stability, specificity and affinity. This makes it a suitable probe for labeling AVP V1a receptors in rat and also in human tissues.

  11. Effect of lysine at C-terminus of the Dmt-Tic opioid pharmacophore.

    PubMed

    Balboni, Gianfranco; Onnis, Valentina; Congiu, Cenzo; Zotti, Margherita; Sasaki, Yusuke; Ambo, Akihiro; Bryant, Sharon D; Jinsmaa, Yunden; Lazarus, Lawrence H; Trapella, Claudio; Salvadori, Severo

    2006-09-07

    Substitution of Gly with side-chain-protected or unprotected Lys in lead compounds containing the opioid pharmacophore Dmt-Tic [H-Dmt-Tic-Gly-NH-CH(2)-Ph, mu agonist/delta antagonist; H-Dmt-Tic-Gly-NH-Ph, mu agonist/delta agonist; and H-Dmt-Tic-NH-CH(2)-Bid, delta agonist (Bid = 1H-benzimidazole-2-yl)] yielded a new series of compounds endowed with distinct pharmacological activities. Compounds (1-10) included high delta- (Ki(delta) = 0.068-0.64 nM) and mu-opioid affinities (Ki(mu) = 0.13-5.50 nM), with a bioactivity that ranged from mu-opioid agonism {10, H-Dmt-Tic-NH-CH[(CH2)4-NH2]-Bid (IC50 GPI = 39.7 nM)} to a selective mu-opioid antagonist [3, H-Dmt-Tic-Lys-NH-CH2-Ph (pA2(mu) = 7.96)] and a selective delta-opioid antagonist [5, H-Dmt-Tic-Lys(Ac)-NH-Ph (pA2(delta) = 12.0)]. The presence of a Lys linker provides new lead compounds in the formation of opioid peptidomimetics containing the Dmt-Tic pharmacophore with distinct agonist and/or antagonist properties.

  12. Pharmacologic characterization of the oxytocin receptor in human uterine smooth muscle cells

    PubMed Central

    Tahara, Atsuo; Tsukada, Junko; Tomura, Yuichi; Wada, Koh-ichi; Kusayama, Toshiyuki; Ishii, Noe; Yatsu, Takeyuki; Uchida, Wataru; Tanaka, Akihiro

    2000-01-01

    [3H]-oxytocin was used to characterize the oxytocin receptor found in human uterine smooth muscle cells (USMC). Specific binding of [3H]-oxytocin to USMC plasma membranes was dependent upon time, temperature and membrane protein concentration. Scatchard plot analysis of equilibrium binding data revealed the existence of a single class of high-affinity binding sites with an apparent equilibrium dissociation constant (Kd) of 0.76 nM and a maximum receptor density (Bmax) of 153 fmol mg−1 protein. The Hill coefficient (nH) did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Competitive inhibition of [3H]-oxytocin binding showed that oxytocin and vasopressin (AVP) receptor agonists and antagonists displaced [3H]-oxytocin in a concentration-dependent manner. The order of potencies for peptide agonists and antagonists was: oxytocin>[Asu1,6]-oxytocin>AVP= atosiban>d(CH2)5Tyr(Me)AVP>[Thr4,Gly7]-oxytocin>dDAVP, and for nonpeptide antagonists was: L-371257>YM087>SR 49059>OPC-21268>SR 121463A>OPC-31260. Oxytocin significantly induced concentration-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) and hyperplasia in USMC. The oxytocin receptor antagonists, atosiban and L-371257, potently and concentration-dependently inhibited oxytocin-induced [Ca2+]i increase and hyperplasia. In contrast, the V1A receptor selective antagonist, SR 49059, and the V2 receptor selective antagonist, SR 121463A, did not potently inhibit oxytocin-induced [Ca2+]i increase and hyperplasia. The potency order of antagonists in inhibiting oxytocin-induced [Ca2+]i increase and hyperplasia was similar to that observed in radioligand binding assays. In conclusion, these data provide evidence that the high-affinity [3H]-oxytocin binding site found in human USMC is a functional oxytocin receptor coupled to [Ca2+]i increase and cell growth. Thus human USMC may prove to be a valuable tool in further investigation of the physiologic and pathophysiologic roles of oxytocin in the uterus. PMID:10694212

  13. Stimulation of cell proliferation by histamine H2 receptors in dimethylhdrazine-induced adenocarcinomata.

    PubMed

    Tutton, P J; Barkla, D H

    1978-03-01

    Cell proliferation in dimethylhydrazine-induced colonic carcinomata was stimulated by histamine and by the histamine H2 receptor agonist dimaprit and inhibited by the histamine H2 receptor antagonists Metiamide and Cimetidine but not by the histamine H1 receptor antagonist Mepyramine. In contrast histamine had no effect on colonic crypt cell proliferation in normal or dimethylhydrazine-treated rats.

  14. Amine-free melanin-concentrating hormone receptor 1 antagonists: Novel 1-(1H-benzimidazol-6-yl)pyridin-2(1H)-one derivatives and design to avoid CYP3A4 time-dependent inhibition.

    PubMed

    Igawa, Hideyuki; Takahashi, Masashi; Shirasaki, Mikio; Kakegawa, Keiko; Kina, Asato; Ikoma, Minoru; Aida, Jumpei; Yasuma, Tsuneo; Okuda, Shoki; Kawata, Yayoi; Noguchi, Toshihiro; Yamamoto, Syunsuke; Fujioka, Yasushi; Kundu, Mrinalkanti; Khamrai, Uttam; Nakayama, Masaharu; Nagisa, Yasutaka; Kasai, Shizuo; Maekawa, Tsuyoshi

    2016-06-01

    Melanin-concentrating hormone (MCH) is an attractive target for antiobesity agents, and numerous drug discovery programs are dedicated to finding small-molecule MCH receptor 1 (MCHR1) antagonists. We recently reported novel pyridine-2(1H)-ones as aliphatic amine-free MCHR1 antagonists that structurally featured an imidazo[1,2-a]pyridine-based bicyclic motif. To investigate imidazopyridine variants with lower basicity and less potential to inhibit cytochrome P450 3A4 (CYP3A4), we designed pyridine-2(1H)-ones bearing various less basic bicyclic motifs. Among these, a lead compound 6a bearing a 1H-benzimidazole motif showed comparable binding affinity to MCHR1 to the corresponding imidazopyridine derivative 1. Optimization of 6a afforded a series of potent thiophene derivatives (6q-u); however, most of these were found to cause time-dependent inhibition (TDI) of CYP3A4. As bioactivation of thiophenes to form sulfoxide or epoxide species was considered to be a major cause of CYP3A4 TDI, we introduced electron withdrawing groups on the thiophene and found that a CF3 group on the ring or a Cl adjacent to the sulfur atom helped prevent CYP3A4 TDI. Consequently, 4-[(5-chlorothiophen-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one (6s) was identified as a potent MCHR1 antagonist without the risk of CYP3A4 TDI, which exhibited a promising safety profile including low CYP3A4 inhibition and exerted significant antiobesity effects in diet-induced obese F344 rats. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. In vitro study of histamine and histamine receptor ligands influence on the adhesion of purified human eosinophils to endothelium.

    PubMed

    Grosicki, Marek; Wójcik, Tomasz; Chlopicki, Stefan; Kieć-Kononowicz, Katarzyna

    2016-04-15

    It is a well-known fact that histamine is involved in eosinophil-dependent inflammatory responses including cellular chemotaxis and migration. Nevertheless, the relative role of histamine receptors in the mechanisms of eosinophils adhesion to endothelial cells is not known. Therefore the aim of presented study was to examine the effect of selective histamine receptors ligands on eosinophils adhesion to endothelium. For that purpose the highly purified human eosinophils have been isolated from the peripheral blood. The viability and functional integrity of isolated eosinophils have been validated in several tests. Histamine as well as 4-methylhistamine (selective H4 agonist) in concentration-dependent manner significantly increased number of eosinophils that adhere to endothelium. Among the selective histamine receptors antagonist or H1 inverse agonist only JNJ7777120 (histamine H4 antagonist) and thioperamide (dual histamine H3/H4 antagonist) had direct effect on eosinophils adhesion to endothelial cells. Antagonists of H1 (diphenhydramine, mepyramine) H2 (ranitidine and famotidine) and H3 (pitolisant) histamine receptors were ineffective. To the best of our knowledge, this is the first study to demonstrate that histamine receptor H4 plays a dominant role in histamine-induced eosinophils adhesion to endothelium. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Characterization of a novel non-peptide vasopressin V1 receptor antagonist (OPC-21268) in the rat.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-08-01

    A non-peptide, orally effective, vasopressin (AVP) V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy) benzoyl]-4-piperidyl)-3,4-dihydro-2(1H)-quinolinone (OPC-21268) has recently been described. This paper reports the in-vitro and in-vivo characterization of OPC-21268 binding to vasopressin receptors in rat liver and kidney. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, 125I-labelled [d(CH2)5,sarcosine7]AVP to V1 receptors in both rat liver and kidney medulla membranes. The concentration of OPC-21268 that displaced 50% of specific AVP binding (IC50) was 40 +/- 3 nmol/l for liver V1 and 15 +/- 2 nmol/l for kidney V1 receptors (mean +/- S.E.M.; n = 3). OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)]d(CH2)5,D-Ile2,Ile4] AVP binding to V2 receptors in renal medulla membranes (IC50 > 0.1 mmol/l). After oral administration to rats, OPC-21268 was an effective V1 antagonist in a time- and dose-dependent manner. Binding kinetic studies showed that OPC-21268 acted as a competitive antagonist at the liver V1 receptor in vitro and in vivo, in addition to its in-vitro competitive effects at the renal V1 receptor. OPC-21268 shows promise as an orally active V1 antagonist.

  17. Intestinal alkaline phosphatase regulates protective surface microclimate pH in rat duodenum.

    PubMed

    Mizumori, Misa; Ham, Maggie; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2009-07-15

    Regulation of localized extracellular pH (pH(o)) maintains normal organ function. An alkaline microclimate overlying the duodenal enterocyte brush border protects the mucosa from luminal acid. We hypothesized that intestinal alkaline phosphatase (IAP) regulates pH(o) due to pH-sensitive ATP hydrolysis as part of an ecto-purinergic pH regulatory system, comprised of cell-surface P2Y receptors and ATP-stimulated duodenal bicarbonate secretion (DBS). To test this hypothesis, we measured DBS in a perfused rat duodenal loop, examining the effect of the competitive alkaline phosphatase inhibitor glycerol phosphate (GP), the ecto-nucleoside triphosphate diphosphohydrolase inhibitor ARL67156, and exogenous nucleotides or P2 receptor agonists on DBS. Furthermore, we measured perfusate ATP concentration with a luciferin-luciferase bioassay. IAP inhibition increased DBS and luminal ATP output. Increased luminal ATP output was partially CFTR dependent, but was not due to cellular injury. Immunofluorescence localized the P2Y(1) receptor to the brush border membrane of duodenal villi. The P2Y(1) agonist 2-methylthio-ADP increased DBS, whereas the P2Y(1) antagonist MRS2179 reduced ATP- or GP-induced DBS. Acid perfusion augmented DBS and ATP release, further enhanced by the IAP inhibitor l-cysteine, and reduced by the exogenous ATPase apyrase. Furthermore, MRS2179 or the highly selective P2Y(1) antagonist MRS2500 co-perfused with acid induced epithelial injury, suggesting that IAP/ATP/P2Y signalling protects the mucosa from acid injury. Increased DBS augments IAP activity presumably by raising pH(o), increasing the rate of ATP degradation, decreasing ATP-mediated DBS, forming a negative feedback loop. The duodenal epithelial brush border IAP-P2Y-HCO(3-) surface microclimate pH regulatory system effectively protects the mucosa from acid injury.

  18. Characteristics of recombinantly expressed rat and human histamine H3 receptors.

    PubMed

    Wulff, Birgitte S; Hastrup, Sven; Rimvall, Karin

    2002-10-18

    Human and rat histamine H(3) receptors were recombinantly expressed and characterized using receptor binding and a functional cAMP assay. Seven of nine agonists had similar affinities and potencies at the rat and human histamine H(3) receptor. S-alpha-methylhistamine had a significantly higher affinity and potency at the human than rat receptor, and for 4-[(1R*,2R*)-2-(5,5-dimethyl-1-hexynyl)cyclopropyl]-1H-imidazole (Perceptin) the preference was the reverse. Only two of six antagonists had similar affinities and potencies at the human and the rat histamine H(3) receptor. Ciproxifan, thioperamide and (1R*,2R*)-trans-2-imidazol-4 ylcyclopropyl) (cyclohexylmethoxy) carboxamide (GT2394) had significantly higher affinities and potencies at the rat than at the human histamine H(3) receptor, while for N-(4-chlorobenzyl)-N-(7-pyrrolodin-1-ylheptyl)guanidine (JB98064) the preference was the reverse. All antagonists also showed potent inverse agonism properties. Iodoproxyfan, Perceptin, proxyfan and GR175737, compounds previously described as histamine H(3) receptor antagonists, acted as full or partial agonists at both the rat and the human histamine H(3) receptor. Copyright 2002 Elsevier Science B.V.

  19. Rational Design of Potent Antagonists to the Human Growth Hormone Receptor

    NASA Astrophysics Data System (ADS)

    Fuh, Germaine; Cunningham, Brian C.; Fukunaga, Rikiro; Nagata, Shigekazu; Goeddel, David V.; Wells, James A.

    1992-06-01

    A hybrid receptor was constructed that contained the extracellular binding domain of the human growth hormone (hGH) receptor linked to the transmembrane and intracellular domains of the murine granulocyte colony-stimulating factor receptor. Addition of hGH to a myeloid leukemia cell line (FDC-P1) that expressed the hybrid receptor caused proliferation of these cells. The mechanism for signal transduction of the hybrid receptor required dimerization because monoclonal antibodies to the hGH receptor were agonists whereas their monovalent fragments were not. Receptor dimerization occurs sequentially-a receptor binds to site 1 on hGH, and then a second receptor molecule binds to site 2 on hGH. On the basis of this sequential mechanism, which may occur in many other cytokine receptors, inactive hGH analogs were designed that were potent antagonists to hGH-induced cell proliferation. Such antagonists could be useful for treating clinical conditions of hGH excess, such as acromegaly.

  20. Sleep Homeostatic and Waking Behavioral Phenotypes in Egr3-Deficient Mice Associated with Serotonin Receptor 5-HT2 Deficits

    PubMed Central

    Grønli, Janne; Clegern, William C.; Schmidt, Michelle A.; Nemri, Rahmi S.; Rempe, Michael J.; Gallitano, Amelia L.; Wisor, Jonathan P.

    2016-01-01

    Study Objective: The expression of the immediate early gene early growth response 3 (Egr3) is a functional marker of brain activity including responses to novelty, sustained wakefulness, and sleep. We examined the role of this gene in regulating wakefulness and sleep. Methods: Electroencephalogram/electromyogram (EEG/EMG) were recorded in Egr3-/- and wild-type (WT) mice during 24 h baseline, 6 h sleep disruption and 6 h recovery. Serotonergic signaling was assessed with 6 h EEG/EMG recordings after injections of nonselective 5-HT2 antagonist (clozapine), selective 5-HT2 antagonists (5-HT2A; MDL100907 and 5-HT2BC; SB206553) and a cocktail of both selective antagonists, administered in a randomized order to each animal. Results: Egr3-/- mice did not exhibit abnormalities in the timing of wakefulness and slow wave sleep (SWS); however, EEG dynamics in SWS (suppressed 1–3 Hz power) and in quiet wakefulness (elevated 3–8 Hz and 15–35 Hz power) differed in comparison to WT-mice. Egr3-/- mice showed an exaggerated response to sleep disruption as measured by active wakefulness, but with a blunted increase in homeostatic sleep drive (elevated 1–4 Hz power) relative to WT-mice. Egr3-/-mice exhibit greatly reduced sedative effects of clozapine at the electroencephalographic level. In addition, clozapine induced a previously undescribed dissociated state (low amplitude, low frequency EEG and a stable, low muscle tone) lasting up to 2 h in WT-mice. Egr3-/- mice did not exhibit this phenomenon. Selective 5-HT2A antagonist, alone or in combination with selective 5-HT2BC antagonist, caused EEG slowing coincident with behavioral quiescence in WT-mice but not in Egr3-/- mice. Conclusion: Egr3 has an essential role in regulating cortical arousal, wakefulness, and sleep, presumably by its regulation of 5-HT2 receptors. Citation: Grønli J, Clegern WC, Schmidt MA, Nemri RS, Rempe MJ, Gallitano AL, Wisor JP. Sleep homeostatic and waking behavioral phenotypes in Egr3-deficient mice associated with serotonin receptor 5-HT2 deficits. SLEEP 2016;39(12):2189–2199. PMID:28057087

  1. The Affinity of D2-Like Dopamine Receptor Antagonists Determines the Time to Maximal Effect on Cocaine Self-Administration

    PubMed Central

    Tabet, Michael R.; Norman, Mantana K.; Fey, Brittney K.; Tsibulsky, Vladimir L.; Millard, Ronald W.

    2011-01-01

    Differences in the time to maximal effect (Tmax) of a series of dopamine receptor antagonists on the self-administration of cocaine are not consistent with their lipophilicity (octanol-water partition coefficients at pH 7.4) and expected rapid entry into the brain after intravenous injection. It was hypothesized that the Tmax reflects the time required for maximal occupancy of receptors, which would occur as equilibrium was approached. If so, the Tmax should be related to the affinity for the relevant receptor population. This hypothesis was tested using a series of nine antagonists having a 2500-fold range of Ki or Kd values for D2-like dopamine receptors. Rats self-administered cocaine at regular intervals and then were injected intravenously with a dose of antagonist, and the self-administration of cocaine was continued for 6 to 10 h. The level of cocaine at the time of every self-administration (satiety threshold) was calculated throughout the session. The satiety threshold was stable before the injection of antagonist and then increased approximately 3-fold over the baseline value at doses of antagonists selected to produce this approximately equivalent maximal magnitude of effect (maximum increase in the equiactive cocaine concentration, satiety threshold; Cmax). Despite the similar Cmax, the mean Tmax varied between 5 and 157 min across this series of antagonists. Furthermore, there was a strong and significant correlation between the in vivo Tmax values for each antagonist and the affinity for D2-like dopamine receptors measured in vitro. It is concluded that the cocaine self-administration paradigm offers a reliable and predictive bioassay for measuring the affinity of a competitive antagonist for D2-like dopamine receptors. PMID:21606176

  2. Discovery of 5-Chloro-1-(5-chloro-2-(methylsulfonyl)benzyl)-2-imino-1,2-dihydropyridine-3-carboxamide (TAK-259) as a Novel, Selective, and Orally Active α1D Adrenoceptor Antagonist with Antiurinary Frequency Effects: Reducing Human Ether-a-go-go-Related Gene (hERG) Liabilities.

    PubMed

    Sakauchi, Nobuki; Kohara, Yasuhisa; Sato, Ayumu; Suzaki, Tomohiko; Imai, Yumi; Okabe, Yuichi; Imai, Shigemitsu; Saikawa, Reiko; Nagabukuro, Hiroshi; Kuno, Haruhiko; Fujita, Hisashi; Kamo, Izumi; Yoshida, Masato

    2016-04-14

    A novel structural class of iminopyridine derivative 1 was identified as a potent and selective human α1D adrenoceptor (α1D adrenergic receptor; α1D-AR) antagonist against α1A- and α1B-AR through screening of an in-house compound library. From initial structure-activity relationship studies, we found lead compound 9m with hERG K(+) channel liability. To develop analogues with reduced hERG K(+) channel inhibition, a combination of site-directed mutagenesis and docking studies was employed. Further optimization led to the discovery of (R)-9s and 9u, which showed antagonistic activity by a bladder strip test in rats with bladder outlet obstruction, as well as ameliorated cystitis-induced urinary frequency in rats. Ultimately, 9u was selected as a clinical candidate. This is the first study to show the utility of iminopyridine derivatives as selective α1D-AR antagonists and evaluate their effects in vivo.

  3. The ERK pathway regulates Na(+)-HCO(3)(-) cotransport activity in adult rat cardiomyocytes.

    PubMed

    Baetz, Delphine; Haworth, Robert S; Avkiran, Metin; Feuvray, Danielle

    2002-11-01

    The sarcolemmal Na(+)-HCO cotransporter (NBC) is stimulated by intracellular acidification and acts as an acid extruder. We examined the role of the ERK pathway of the MAPK cascade as a potential mediator of NBC activation by intracellular acidification in the presence and absence of angiotensin II (ANG II) in adult rat ventricular myocytes. Intracellular pH (pH(i)) was recorded with the use of seminaphthorhodafluor-1. The NH method was used to induce an intracellular acid load. NBC activation was significantly decreased with the ERK inhibitors PD-98059 and U-0126. NBC activity after acidification was increased in the presence of ANG II (pH(i) range of 6.75-7.00). ANG II plus PD-123319 (AT(2) antagonist) still increased NBC activity, whereas ANG II plus losartan (AT(1) antagonist) did not affect it. ERK phosphorylation (measured by immunoblot analysis) during intracellular acidification was increased by ANG II, an effect that was abolished by losartan and U-0126. In conclusion, the MAPK(ERK)-dependent pathway facilitates the rate of pH(i) recovery from acid load through NBC activity and is involved in the AT(1) receptor-mediated stimulation of such activity by ANG II.

  4. Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuercher, William J.; Buckholz†, Richard G.; Campobasso, Nino

    2010-08-12

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  5. Discovery of tertiary sulfonamides as potent liver X receptor antagonists.

    PubMed

    Zuercher, William J; Buckholz, Richard G; Campobasso, Nino; Collins, Jon L; Galardi, Cristin M; Gampe, Robert T; Hyatt, Stephen M; Merrihew, Susan L; Moore, John T; Oplinger, Jeffrey A; Reid, Paul R; Spearing, Paul K; Stanley, Thomas B; Stewart, Eugene L; Willson, Timothy M

    2010-04-22

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  6. The effects of corticotrophin-releasing factor and two antagonists on breathing movements in fetal sheep.

    PubMed Central

    Bennet, L; Johnston, B M; Vale, W W; Gluckman, P D

    1990-01-01

    1. The respiratory effects of corticotrophin-releasing factor (CRF) and the CRF antagonists alpha-helical CRF 9-41 (alpha hCRF) and [DPhe 12, Nle 21-38] rCRF (12-41) (DPhe CRF) have been studied in unanaesthetized fetal lambs of 125-140 days gestation. 2. CRF when given as a 10 micrograms bolus followed by a 5 micrograms h-1 infusion into a lateral cerebral ventricle caused prolonged continuous fetal breathing movements which were stimulated in both amplitude and frequency but which did not persist during hypoxia. 3. Lower doses of CRF (20 ng bolus followed by 10 ng h-1) increased the amplitude but not the frequency of fetal breathing movements which did not become continuous. 4. At higher doses (20 micrograms bolus followed by 10-15 micrograms h-1) CRF induced cerebral convulsions which were also associated with fetal breathing movements of increased amplitude and frequency. 5. The CRF antagonists alpha hCRF and DPhe CRF both inhibited fetal breathing movements and induced a prolonged apnoea which was resistant to the stimulatory effects of 5-6% hypercapnia. 6. We conclude that CRF stimulates breathing movements in the fetal lamb. The finding that administration of the CRF antagonists alone cause apnoea suggests that CRF may have a tonic role in the regulation of fetal breathing movements. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:2348387

  7. Effects of H2-receptor antagonists and anticholinoceptor drugs on gastric and salivary secretion induced by bethanechol in the anaesthetized dog.

    PubMed Central

    Daly, M. J.; Humphray, J. M.; Stables, R.

    1982-01-01

    1 The H2-receptor antagonists, ranitidine and cimetidine, have been compared with atropine and pirenzepine for their effects on gastric acid output, and on salivary secretion from the left parotid gland in the anaesthetized dog. Gastric and salivary secretions were elicited by intravenous infusion of bethanechol. 2 Atropine (0.3-1 microgram/kg) or pirenzepine (3-10 micrograms/kg) reduced both gastric and salivary secretions, pirenzepine showing little evidence of any selectivity for gastric secretion. 3 The H2-receptor antagonists, ranitidine (30-1000 micrograms/kg) and cimetidine (100-3000 micrograms/kg), selectively inhibited gastric secretion and even at relatively high dose levels did not alter salivary volume. PMID:6125223

  8. Down-regulation of pituitary receptors for luteinizing hormone-releasing hormone (LH-RH) in rats by LH-RH antagonist Cetrorelix.

    PubMed Central

    Halmos, G; Schally, A V; Pinski, J; Vadillo-Buenfil, M; Groot, K

    1996-01-01

    Antagonists of luteinizing hormone-releasing hormone (LH-RH), unlike the LH-RH agonists, suppress gonadotropins and sex steroid secretion immediately after administration, without initial stimulatory effects. [Ac-D-Nal(2)1,D-Ph(4Cl)2,D-Pal(3)3,D-Cit6,D-Ala10]LH-R H (SB-75; Cetrorelix) is a modern, potent antagonistic analog of LH-RH. In this study, the binding characteristics of receptors for LH-RH in membrane fractions from rat anterior pituitaries were investigated after a single injection of Cetrorelix at a dose of 100 microg per rat. To determine whether the treatment with Cetrorelix can affect the concentration of measurable LH-RH binding sites, we applied an in vitro method to desaturate LH-RH receptors by chaotropic agents such as manganous chloride (MnCl2) and ammonium thiocyanate (NH4SCN). Our results show that the percentages of occupied LH-RH receptors at 1, 3, and 6 h after administration of Cetrorelix were approximately 28%, 14%, and 10%, respectively, of total receptors. At later time intervals, we could not detect occupied LH-RH binding sites. Ligand competition assays, following in vitro desaturation, demonstrated that rat pituitary LH-RH receptors were significantly (P < 0.01) down-regulated for at least 72 h after administration of Cetrorelix. The lowest receptor concentration was found 3-6 h after Cetrorelix treatment and a recovery in receptor number began within approximately 24 h. The down-regulation of LH-RH binding sites induced by Cetrorelix was accompanied by serum LH and testosterone suppression. Higher LH-RH receptor concentrations coincided with elevated serum hormone levels at later time intervals. Our results indicate that administration of LH-RH antagonist Cetrorelix produces a marked down-regulation of pituitary receptors for LH-RH and not merely an occupancy of binding sites. PMID:8637885

  9. Synthesis and preliminary evaluation of [3H]PSB-0413, a selective antagonist radioligand for platelet P2Y12 receptors.

    PubMed

    El-Tayeb, Ali; Griessmeier, Kerstin J; Müller, Christa E

    2005-12-15

    The selective antagonist radioligand [(3)H]2-propylthioadenosine-5'-adenylic acid (1,1-dichloro-1-phosphonomethyl-1-phosphonyl) anhydride ([(3)H]PSB-0413) was prepared by catalytic hydrogenation of its propargyl precursor with a high specific radioactivity of 74Ci/mmol. In preliminary saturation binding studies, [(3)H]PSB-0413 showed high affinity for platelet P2Y(12) receptors with a K(D) value of 4.57nM. Human platelets had a high density of P2Y(12) receptors exhibiting a B(max) value of 7.66pmol/mg of protein.

  10. Estrogen Receptor α L543A,L544A Mutation Changes Antagonists to Agonists, Correlating with the Ligand Binding Domain Dimerization Associated with DNA Binding Activity*

    PubMed Central

    Arao, Yukitomo; Hamilton, Katherine J.; Coons, Laurel A.; Korach, Kenneth S.

    2013-01-01

    A ligand-dependent nuclear transcription factor, ERα has two transactivating functional domains (AF), AF-1 and AF-2. AF-1 is localized in the N-terminal region, and AF-2 is distributed in the C-terminal ligand-binding domain (LBD) of the ERα protein. Helix 12 (H12) in the LBD is a component of the AF-2, and the configuration of H12 is ligand-inducible to an active or inactive form. We demonstrated previously that the ERα mutant (AF2ER) possessing L543A,L544A mutations in H12 disrupts AF-2 function and reverses antagonists such as fulvestrant/ICI182780 (ICI) or 4-hydoxytamoxifen (OHT) into agonists in the AF2ER knock-in mouse. Our previous in vitro studies suggested that the mode of AF2ER activation is similar to the partial agonist activity of OHT for WT-ERα. However, it is still unclear how antagonists activate ERα. To understand the molecular mechanism of antagonist reversal activity, we analyzed the correlation between the ICI-dependent estrogen-responsive element-mediated transcription activity of AF2ER and AF2ER-LBD dimerization activity. We report here that ICI-dependent AF2ER activation correlated with the activity of AF2ER-LBD homodimerization. Prevention of dimerization impaired the ICI-dependent ERE binding and transcription activity of AF2ER. The dislocation of H12 caused ICI-dependent LBD homodimerization involving the F-domain, the adjoining region of H12. Furthermore, F-domain truncation also strongly depressed the dimerization of WT-ERα-LBD with antagonists but not with E2. AF2ER activation levels with ICI, OHT, and raloxifene were parallel with the degree of AF2ER-LBD homodimerization, supporting a mechanism that antagonist-dependent LBD homodimerization involving the F-domain results in antagonist reversal activity of H12-mutated ERα. PMID:23733188

  11. Blockers for excitatory effects of achatin-I, a tetrapeptide having a D-phenylalanine residue, on a snail neurone.

    PubMed

    Santos, D E; Liu, G J; Takeuchi, H

    1995-01-16

    Some histamine H1 receptor antagonists suppressed the inward current (Iin) of an Achatina identifiable neurone type, PON (periodically oscillating neurone), caused by an Achatina endogenous tetrapeptide having a D-phenylalanine residue, achatin-I (Gly-D-Phe-Ala-Asp), under voltage clamp. Achatin-I was applied locally to the neurone by brief pneumatic pressure ejection and antagonists were administered by perfusion. The dose-response curves of the effective histamine H1 antagonists indicated their potency order to suppress the Iin as follows: chlorcyclizine, promethazine, triprolidine and homochlorcyclizine > trimeprazine and clemastine > diphenylpyraline. The potent drugs were mostly piperazine and phenothiazine types. The effects of chlorcyclizine, promethazine and triprolidine on the dose (the duration of the pressure ejection)-response curve of achatin-I indicated that these drugs affected the Iin caused by achatin-I in a non-competitive manner. The antagonists for the receptors of the small-molecule neurotransmitters other than histamine H1, such as histamine H2, acetylcholine, gamma-aminobutyric acid (GABA), L-glutamic acid, dopamine, alpha- and beta-adrenalin and 5-hydroxytryptamine, had no effect on the Iin caused by achatin-I.

  12. Discovery of sodium R-(+)-4-{2-[5-(2-fluoro-3-methoxyphenyl)-3-(2-fluoro-6-[trifluoromethyl]benzyl)-4-methyl-2,6-dioxo-3,6-dihydro-2H-pyrimidin-1-yl]-1-phenylethylamino}butyrate (elagolix), a potent and orally available nonpeptide antagonist of the human gonadotropin-releasing hormone receptor.

    PubMed

    Chen, Chen; Wu, Dongpei; Guo, Zhiqiang; Xie, Qiu; Reinhart, Greg J; Madan, Ajay; Wen, Jenny; Chen, Takung; Huang, Charles Q; Chen, Mi; Chen, Yongsheng; Tucci, Fabio C; Rowbottom, Martin; Pontillo, Joseph; Zhu, Yun-Fei; Wade, Warren; Saunders, John; Bozigian, Haig; Struthers, R Scott

    2008-12-11

    The discovery of novel uracil phenylethylamines bearing a butyric acid as potent human gonadotropin-releasing hormone receptor (hGnRH-R) antagonists is described. A major focus of this optimization was to improve the CYP3A4 inhibition liability of these uracils while maintaining their GnRH-R potency. R-4-{2-[5-(2-fluoro-3-methoxyphenyl)-3-(2-fluoro-6-[trifluoromethyl]benzyl)-4-methyl-2,6-dioxo-3,6-dihydro-2H-pyrimidin-1-yl]-1-phenylethylamino}butyric acid sodium salt, 10b (elagolix), was identified as a potent and selective hGnRH-R antagonist. Oral administration of 10b suppressed luteinizing hormone in castrated macaques. These efforts led to the identification of 10b as a clinical compound for the treatment of endometriosis.

  13. A pharmacokinetic evaluation of five H(1) antagonists after an oral and intravenous microdose to human subjects.

    PubMed

    Madan, Ajay; O'Brien, Zhihong; Wen, Jianyun; O'Brien, Chris; Farber, Robert H; Beaton, Graham; Crowe, Paul; Oosterhuis, Berend; Garner, R Colin; Lappin, Graham; Bozigian, Haig P

    2009-03-01

    To evaluate the pharmacokinetics (PK) of five H(1) receptor antagonists in human volunteers after a single oral and intravenous (i.v.) microdose (0.1 mg). Five H(1) receptor antagonists, namely NBI-1, NBI-2, NBI-3, NBI-4 and diphenhydramine, were administered to human volunteers as a single 0.1-mg oral and i.v. dose. Blood samples were collected up to 48 h, and the parent compound in the plasma extract was quantified by high-performance liquid chromatography and accelerator mass spectroscopy. The median clearance (CL), apparent volume of distribution (V(d)) and apparent terminal elimination half-life (t(1/2)) of diphenhydramine after an i.v. microdose were 24.7 l h(-1), 302 l and 9.3 h, and the oral C(max) and AUC(0-infinity) were 0.195 ng ml(-1) and 1.52 ng h ml(-1), respectively. These data were consistent with previously published diphenhydramine data at 500 times the microdose. The rank order of oral bioavailability of the five compounds was as follows: NBI-2 > NBI-1 > NBI-3 > diphenhydramine > NBI-4, whereas the rank order for CL was NBI-4 > diphenhydramine > NBI-1 > NBI-3 > NBI-2. Human microdosing provided estimates of clinical PK of four structurally related compounds, which were deemed useful for compound selection.

  14. Elevated basal progesterone levels are associated with increased preovulatory progesterone rise but not with higher pregnancy rates in ICSI cycles with GnRH antagonists.

    PubMed

    Mutlu, Mehmet Firat; Erdem, Mehmet; Mutlu, Ilknur; Bulut, Berk; Erdem, Ahmet

    2017-09-01

    To ascertain the association between basal progesterone (P) levels and the occurrence of preovulatory progesterone rise (PPR) and clinical pregnancy rates (CPRs) in ICSI cycles with GnRH antagonists. Serum P levels of 464 patients were measured on day 2 and day of hCG of cycles. Cycles with basal P levels>1.6ng/mL were cancelled. All embryos were cryopreserved in cycles with P levels≥2ng/mL on the day of hCG. The primary outcome measures were the incidence of PPR (P>1.5ng/mL) and CPR with regard to basal P. Basal P levels were significantly higher in cycles with PPR than in those without PPR (0.63±0.31 vs. 0.48±0.28ng/mL). Area under the curve for basal P according to ROC analysis to discriminate between elevated and normal P levels on the day of hCG was 0.65 (0.58-0.71 95% CI, p<0.01). The cut-off value for basal P levels that best discriminates between cycles with and without PPR was 0.65ng/mL. Cycles with basal P levels above 0.65ng/mL had a significantly higher incidence of PPR (30.9% vs. 13.5%) but similar clinical and cumulative pregnancy rates (38.8% vs. 31.1% and 41.7% vs. 32.6%, respectively) in comparison to cycles with basal P levels below 0.65ng/mL. In multivariate regression analysis, basal P levels, LH level on the first day of antagonist administration, and estradiol levels on the day of hCG trigger were the variables that predicted PPR. Basal P levels were associated with increased incidence of PPR but not with CPR. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Actions of alpha2 adrenoceptor ligands at alpha2A and 5-HT1A receptors: the antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for alpha2A adrenoceptors.

    PubMed

    Newman-Tancredi, A; Nicolas, J P; Audinot, V; Gavaudan, S; Verrièle, L; Touzard, M; Chaput, C; Richard, N; Millan, M J

    1998-08-01

    This study examined the activity of chemically diverse alpha2 adrenoceptor ligands at recombinant human (h) and native rat (r) alpha2A adrenoceptors compared with 5-HT1A receptors. First, in competition binding experiments at h alpha2A and h5-HT1A receptors expressed in CHO cells, several compounds, including the antagonists 1-(2-pyrimidinyl)piperazine (1-PP), (+/-)-idazoxan, benalfocin (SKF 86466), yohimbine and RX 821,002, displayed preference for h alpha2A versus h5-HT1A receptors of only 1.4-, 3.6-, 4-, 10- and 11-fold, respectively (based on differences in pKi values). Clonidine, brimonidine (UK 14304), the benzopyrrolidine fluparoxan and the guanidines guanfacine and guanabenz exhibited intermediate selectivity (22- to 31-fold) for h alpha2A receptors. Only the antagonist atipamezole and the agonist dexmedetomidine (DMT) displayed high preference for alpha2 adrenoceptors (1290- and 91-fold, respectively). Second, the compounds were tested for their ability to induce h5-HT1A receptor-mediated G-protein activation, as indicated by the stimulation of [35S]GTPgammaS binding. All except atipamezole and RX 821,002 exhibited agonist activity, with potencies which correlated with their affinity for h5-HT1A receptors. Relative efficacies (Emax values) were 25-35% for guanabenz, guanfacine, WB 4101 and benalfocin, 50-65% for 1-PP, (+/-)-idazoxan and clonidine, and over 70% for fluparoxan, oxymetazoline and yohimbine (relative to 5-HT = 100%). Yohimbine-induced [35S]GTPgammaS binding was inhibited by the selective 5-HT1A receptor antagonist WAY 100,635. In contrast, RX 821,002 was the only ligand which exhibited antagonist activity at h5-HT1A receptors, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Atipamezole, which exhibited negligeable affinity for 5-HT1A receptors, was inactive. Third, the affinities for r alpha2A differed considerably from the affinities for h alpha2A receptors whereas the affinities for r5-HT1A differed much less from the affinities for h5-HT1A receptors. This affected markedly the affinity ratios of certain compounds. For example, (+/-)-idazoxan was only 3.6-fold selective for h alpha2A versus h5-HT1A but 51-fold selective for r alpha2A versus r5-HT1A receptors. Conversely, yohimbine was tenfold selective for h alpha2A versus h5-HT1A adrenoceptors but 4.2-fold selective for r alpha2A versus r5-HT1A receptors. Nevertheless, both atipamezole and DMT were highly selective for both rat and human alpha2A versus rat or human 5-HT1A receptors. In conclusion, these data indicate that: (1) the agonist DMT and the antagonist atipamezole are the ligands of choice to distinguish alpha2-mediated from 5-HT1A-mediated actions, whilst several of the other compounds show only low or modest selectivity for alpha2A over 5-HT1A receptors; (2) caution should be exercised in experimental and clinical interpretation of the actions of traditionally employed alpha2 ligands, such as clonidine, yohimbine and (+/-)-idazoxan, which exhibit marked agonist activity at 5-HT1A receptors.

  16. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate

    PubMed Central

    Pederson, Larry; Ruan, Ming; Westendorf, Jennifer J.; Khosla, Sundeep; Oursler, Merry Jo

    2008-01-01

    Under most conditions, resorbed bone is nearly precisely replaced in location and amount by new bone. Thus, it has long been recognized that bone loss through osteoclast-mediated bone resorption and bone replacement through osteoblast-mediated bone formation are tightly coupled processes. Abundant data conclusively demonstrate that osteoblasts direct osteoclast differentiation. Key questions remain, however, as to how osteoblasts are recruited to the resorption site and how the amount of bone produced is so precisely controlled. We hypothesized that osteoclasts play a crucial role in the promotion of bone formation. We found that osteoclast conditioned medium stimulates human mesenchymal stem (hMS) cell migration and differentiation toward the osteoblast lineage as measured by mineralized nodule formation in vitro. We identified candidate osteoclast-derived coupling factors using the Affymetrix microarray. We observed significant induction of sphingosine kinase 1 (SPHK1), which catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate (S1P), in mature multinucleated osteoclasts as compared with preosteoclasts. S1P induces osteoblast precursor recruitment and promotes mature cell survival. Wnt10b and BMP6 also were significantly increased in mature osteoclasts, whereas sclerostin levels decreased during differentiation. Stimulation of hMS cell nodule formation by osteoclast conditioned media was attenuated by the Wnt antagonist Dkk1, a BMP6-neutralizing antibody, and by a S1P antagonist. BMP6 antibodies and the S1P antagonist, but not Dkk1, reduced osteoclast conditioned media-induced hMS chemokinesis. In summary, our findings indicate that osteoclasts may recruit osteoprogenitors to the site of bone remodeling through SIP and BMP6 and stimulate bone formation through increased activation of Wnt/BMP pathways. PMID:19075223

  17. Muscarinic receptor M1 and M2 subtypes in the human eye: QNB, pirenzipine, oxotremorine, and AFDX-116 in vitro autoradiography.

    PubMed Central

    Gupta, N; McAllister, R; Drance, S M; Rootman, J; Cynader, M S

    1994-01-01

    Muscarinic cholinergic agents are used to lower intraocular pressure in the medical management of glaucoma and subtypes of muscarinic receptors have now been recognised in many tissues including the eye. To localise muscarinic receptors and their M1 and M2 subtypes in the human eye, in vitro ligand binding and autoradiographic techniques with densitometric quantitation on postmortem eye sections were used. As ligands, [3H] quinuclydinyl benzylate (QNB) (non-subtype specific muscarinic antagonist), [3H]pirenzipine (M1 antagonist), [3H]oxotremorine (M2 muscarinic agonist), [3H]AFDX-116(11[(2[diethylaminomethyl]1-piperidinyl)acetyl]5 , 11dihydro-6H-pyrido [2,3b][1,4]benzodiazepine-6-one) (M2 antagonist) were studied. Specific binding sites for QNB, pirenzipine, and AFDX-116 were localised in the entire ciliary muscle, the iris, and ciliary epithelium. [3H]oxotremorine localised only in the longitudinal portion of the ciliary muscle, and additionally, was not localised in the iris or ciliary epithelium. These results suggest that oxotremorine, by binding selectively to receptors on the longitudinal ciliary muscle and inducing its contraction, may modulate outflow facility independently from accommodation and miosis. Images PMID:7918268

  18. Pharmacologic characterization of the oxytocin receptor in human uterine smooth muscle cells.

    PubMed

    Tahara, A; Tsukada, J; Tomura, Y; Wada, K i; Kusayama, T; Ishii, N; Yatsu, T; Uchida, W; Tanaka, A

    2000-01-01

    [(3)H]-oxytocin was used to characterize the oxytocin receptor found in human uterine smooth muscle cells (USMC). Specific binding of [(3)H]-oxytocin to USMC plasma membranes was dependent upon time, temperature and membrane protein concentration. Scatchard plot analysis of equilibrium binding data revealed the existence of a single class of high-affinity binding sites with an apparent equilibrium dissociation constant (K(d)) of 0.76 nM and a maximum receptor density (B(max)) of 153 fmol mg(-1) protein. The Hill coefficient (n(H)) did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Competitive inhibition of [(3)H]-oxytocin binding showed that oxytocin and vasopressin (AVP) receptor agonists and antagonists displaced [(3)H]-oxytocin in a concentration-dependent manner. The order of potencies for peptide agonists and antagonists was: oxytocin>[Asu(1,6)]-oxytocin>AVP= atosiban>d(CH(2))(5)Tyr(Me)AVP>[Thr(4),Gly(7)]-oxytocin>dDAVP, and for nonpeptide antagonists was: L-371257>YM087>SR 49059>OPC-21268>SR 121463A>OPC-31260. Oxytocin significantly induced concentration-dependent increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) and hyperplasia in USMC. The oxytocin receptor antagonists, atosiban and L-371257, potently and concentration-dependently inhibited oxytocin-induced [Ca(2+)](i) increase and hyperplasia. In contrast, the V(1A) receptor selective antagonist, SR 49059, and the V(2) receptor selective antagonist, SR 121463A, did not potently inhibit oxytocin-induced [Ca(2+)](i) increase and hyperplasia. The potency order of antagonists in inhibiting oxytocin-induced [Ca(2+)](i) increase and hyperplasia was similar to that observed in radioligand binding assays. In conclusion, these data provide evidence that the high-affinity [(3)H]-oxytocin binding site found in human USMC is a functional oxytocin receptor coupled to [Ca(2+)](i) increase and cell growth. Thus human USMC may prove to be a valuable tool in further investigation of the physiologic and pathophysiologic roles of oxytocin in the uterus. British Journal of Pharmacology (2000) 129, 131 - 139

  19. Emodin induces chloride secretion in rat distal colon through activation of mast cells and enteric neurons

    PubMed Central

    Xu, J-D; Liu, S; Wang, W; Li, L-S; Li, X-F; Li, Y; Guo, H; Ji, T; Feng, X-Y; Hou, X-L; Zhang, Y; Zhu, J-X

    2012-01-01

    BACKGROUND AND PURPOSE Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is an active component of many herb-based laxatives. However, its mechanism of action is unclear. The aim of the present study was to investigate the role of mast cells and enteric neurons in emodin-induced ion secretion in the rat colon. EXPERIMENTAL APPROACH Short-circuit current (ISC) recording was used to measure epithelial ion transport. A scanning ion-selective electrode technique was used to directly measure Cl- flux (JCl−) across the epithelium. RIA was used to measure emodin-induced histamine release. KEY RESULTS Basolateral addition of emodin induced a concentration-dependent increase in ISC in colonic mucosa/submucosa preparations, EC50 75 µM. The effect of emodin was blocked by apically applied glibenclamide, a Cl- channel blocker, and by basolateral application of bumetanide, an inhibitor of the Na+-K+-2Cl- cotransporter. Emodin-evoked JCl− in mucosa/submucosa preparations was measured by scanning ion-selective electrode technique, which correlated to the increase in ISC and was significantly suppressed by glibenclamide and bumetanide. Pretreatment with tetrodotoxin and the muscarinic receptor antagonist atropine had no effect on emodin-induced ΔISC in mucosa-only preparations, but significantly reduced emodin-induced ΔISC and JCl− in mucosa/submucosa preparations. The COX inhibitor indomethacin, the mast cell stabilizer ketotifen and H1 receptor antagonist pyrilamine significantly reduced emodin-induced ΔISC in mucosa and mucosa/submucosa preparations. The H2 receptor antagonist cimetidine inhibited emodin-induced ΔISC and JCl− only in the mucosa/submucosa preparations. Furthermore, emodin increased histamine release from the colonic mucosa/submucosa tissues. CONCLUSIONS AND IMPLICATIONS The results suggest that emodin-induced colonic Cl- secretion involves mast cell degranulation and activation of cholinergic and non-cholinergic submucosal neurons. PMID:21718311

  20. Microphysiometric analysis of human α1a-adrenoceptor expressed in Chinese hamster ovary cells

    PubMed Central

    Taniguchi, Takanobu; Inagaki, Rika; Murata, Satoshi; Akiba, Isamu; Muramatsu, Ikunobu

    1999-01-01

    The human recombinant α1a-adrenoceptor (AR) has been stably expressed in Chinese hamster ovary cells. Four stable clones, aH4, aH5, aH6 and aH7, expressing 30, 370, 940 and 2900 fmol AR mg−1 protein, respectively, have been employed to characterize this AR subtype using radioligand binding and microphysiometry to measure extracellular acidification rates.Noradrenaline (NA) gave concentration-dependent responses in microphysiometry with increasing extracellular acidification rates. The potency of NA increased as the receptor density increased; pEC50 values of NA for the clones aH4, aH5, aH6 and aH7 were 6.9, 7.5, 7.8 and 8.1, respectively. This increase of potency according to receptor density indicates the presence of spare receptor for NA. Methoxamine, phenylephrine, oxymetazoline and clonidine also gave concentration-dependent responses with various intrinsic activities.Antagonists shifted concentration-response curves for NA rightward in a concentration-dependent manner. Schild analysis revealed that the affinity profile of this AR subtype to antagonists in the clone aH7 had a typical pattern for the α1a-AR; high affinity for prazosin and WB 4101, and low affinity for BMY7378 (pA2=9.5, 9.8 and 7.3, respectively). This profile is similar in the case of the clone aH4. These affinities were in good agreement with those obtained in binding experiments.These results have demonstrated that (1) classical receptor theory can be applied in microphysiometry, and (2) microphysiometry is a useful tool to investigate the pharmacological characterization of α1a-AR. PMID:10433504

  1. Effects of histamine and 5-hydroxytryptamine on the growth rate of xenografted human bronchogenic carcinomas.

    PubMed

    Sheehan, P F; Baker, T; Tutton, P J; Barkla, D H

    1996-01-01

    1. The influence of histamine and 5-hydroxytryptamine (5-HT) antagonists and agonists on the volume doubling times (Td) of human bronchogenic carcinomas propagated as s.c. xenografts in immunosuppressed mice was examined. 2. The H2-receptor antagonists, cimetidine and ranitidine, increased Td. 3. Treatment with the H2-receptor agonist, 4-methyl histamine, had no effect on Td. 4. Co-administration of 4-methyl histamine and cimetidine abolished the effects of cimetidine. 5. The 5-HT2-receptor antagonists, cinanserin and ketanserin, both increased Td. 6. Treatment with the 5-HT1/2-receptor agonist quipazine (0.1 mg/kg, reflecting 5-HT2 agonist activity) decreased Td, while a higher dose (10.0 mg/kg) had no effect. 7. The 5-HT1/2-receptor antagonist, methiothepin, decreased Td. 8. The 5-HT uptake inhibitor, fluoxetine, increased Td in one tumour line but not in another, while the 5-HT releaser/depletor, fenfluramine, increased Td. 9. Histamine may stimulate tumour growth through the histamine H2-receptor, while the dominant effect of 5-HT is 5-HT1-receptor inhibition. 10. Tumour growth in some bronchogenic carcinomas may involve 5-HT uptake mechanisms.

  2. Insulin restores L-arginine transport requiring adenosine receptors activation in umbilical vein endothelium from late-onset preeclampsia.

    PubMed

    Salsoso, R; Guzmán-Gutiérrez, E; Sáez, T; Bugueño, K; Ramírez, M A; Farías, M; Pardo, F; Leiva, A; Sanhueza, C; Mate, A; Vázquez, C; Sobrevia, L

    2015-03-01

    Preeclampsia is associated with impaired placental vasodilation and reduced endothelial nitric oxide synthase (eNOS) activity in the foetoplacental circulation. Adenosine and insulin stimulate vasodilation in endothelial cells, and this activity is mediated by adenosine receptor activation in uncomplicated pregnancies; however, this activity has yet to be examined in preeclampsia. Early onset preeclampsia is associated with severe placental vasculature alterations that lead to altered foetus growth and development, but whether late-onset preeclampsia (LOPE) alters foetoplacental vascular function is unknown. Vascular reactivity to insulin (0.1-1000 nmol/L, 5 min) and adenosine (1 mmol/L, 5 min) was measured in KCl-preconstricted human umbilical vein rings from normal and LOPE pregnancies using a wire myograph. The protein levels of human cationic amino acid transporter 1 (hCAT-1), adenosine receptor subtypes, total and Ser¹¹⁷⁷- or Thr⁴⁹⁵-phosphorylated eNOS were detected via Western blot, and L-arginine transport (0-1000 μmol/L L-arginine, 3 μCi/mL L-[³H]arginine, 20 s, 37 °C) was measured in the presence or absence of insulin and adenosine receptor agonists or antagonists in human umbilical vein endothelial cells (HUVECs) from normal and LOPE pregnancies. LOPE increased the maximal L-arginine transport capacity and hCAT-1 and eNOS expression and activity compared with normal conditions. The A(2A) adenosine receptor (A(2A)AR) antagonist ZM-241385 blocked these effects of LOPE. Insulin-mediated umbilical vein ring relaxation was lower in LOPE pregnancies than in normal pregnancies and was restored using the A(2A)AR antagonist. The reduced foetoplacental vascular response to insulin may result from A(2A)AR activation in LOPE pregnancies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Characterization of a Novel Small Molecule Subtype Specific Estrogen-Related Receptor α Antagonist in MCF-7 Breast Cancer Cells

    PubMed Central

    Chisamore, Michael J.; Cunningham, Michael E.; Flores, Osvaldo; Wilkinson, Hilary A.; Chen, J. Don

    2009-01-01

    Background The orphan nuclear receptor estrogen-related receptor α (ERRα) is a member of the nuclear receptor superfamily. It was identified through a search for genes encoding proteins related to estrogen receptor α (ERα). An endogenous ligand has not been found. Novel ERRα antagonists that are highly specific for binding to the ligand binding domain (LBD) of ERRα have been recently reported. Research suggests that ERRα may be a novel drug target to treat breast cancer and/or metabolic disorders and this has led to an effort to characterize the mechanisms of action of N-[(2Z)-3-(4,5-dihydro-1,3-thiazol-2-yl)-1,3-thiazolidin-2-yl idene]-5H dibenzo[a,d][7]annulen-5-amine, a novel ERRα specific antagonist. Methodology/Principal Findings We demonstrate this ERRα ligand inhibits ERRα transcriptional activity in MCF-7 cells by luciferase assay but does not affect mRNA levels measured by real-time RT-PCR. Also, ERα (ESR1) mRNA levels were not affected upon treatment with the ERRα antagonist, but other ERRα (ESRRA) target genes such as pS2 (TFF1), osteopontin (SPP1), and aromatase (CYP19A1) mRNA levels decreased. In vitro, the ERRα antagonist prevents the constitutive interaction between ERRα and nuclear receptor coactivators. Furthermore, we use Western blots to demonstrate ERRα protein degradation via the ubiquitin proteasome pathway is increased by the ERRα-subtype specific antagonist. We demonstrate by chromatin immunoprecipitation (ChIP) that the interaction between ACADM, ESRRA, and TFF1 endogenous gene promoters and ERRα protein is decreased when cells are treated with the ligand. Knocking-down ERRα (shRNA) led to similar genomic effects seen when MCF-7 cells were treated with our ERRα antagonist. Conclusions/Significance We report the mechanism of action of a novel ERRα specific antagonist that inhibits transcriptional activity of ERRα, disrupts the constitutive interaction between ERRα and nuclear coactivators, and induces proteasome-dependent ERRα protein degradation. Additionally, we confirmed that knocking-down ERRα lead to similar genomic effects demonstrated in vitro when treated with the ERRα specific antagonist. PMID:19462000

  4. The antidepressant-like effect of 7-fluoro-1,3-diphenylisoquinoline-1-amine in the mouse forced swimming test is mediated by serotonergic and dopaminergic systems.

    PubMed

    Pesarico, Ana Paula; Sampaio, Tuane Bazanella; Stangherlin, Eluza Curte; Mantovani, Anderson C; Zeni, Gilson; Nogueira, Cristina Wayne

    2014-10-03

    The aim of the present study was to investigate the role of monoaminergic system in the antidepressant-like action of 7-fluoro-1,3-diphenylisoquinoline-1-amine (FDPI), a derivative of isoquinoline class, in Swiss mice. The antidepressant-like effect of FDPI was characterized in the modified forced swimming test (FST) and the possible mechanism of action was investigated by using serotonergic, dopaminergic and noradrenergic antagonists. Monoamine oxidase (MAO) activity and [(3)H]serotonin (5-HT) uptake were determined in prefrontal cortices of mice. The results showed that FDPI (1, 10 and 20mg/kg, i.g.) reduced the immobility time and increased the swimming time but did not alter climbing time in the modified FST. These effects were similar to those of paroxetine (8mg/kg, i.p.), a positive control. Pretreatments with p-chlorophenylalanine (100mg/kg, i.p., an inhibitor of 5-HT synthesis), WAY100635 (0.1mg/kg, s.c., 5-HT1A antagonist), ondansetron (1mg/kg, i.p., a 5-HT3 receptor antagonist), haloperidol (0.2mg/kg, i.p., a non-selective D2 receptor antagonist) and SCH23390 (0.05mg/kg, s.c., a D1 receptor antagonist) were effective to block the antidepressant-like effect of FDPI at a dose of 1mg/kg in the FST. Ritanserin (1mg/kg, i.p., a 5-HT2A/2C receptor antagonist), sulpiride (50mg/kg, i.p., a D2 and D3 receptor antagonist), prazosin (1mg/kg, i.p., an α1 receptor antagonist), yohimbine (1mg/kg, i.p., an α2 receptor antagonist) and propranolol (2mg/kg, i.p., a β receptor antagonist) did not modify the effect of FDPI in the FST. FDPI did not change synaptosomal [(3)H]5-HT uptake. At doses of 10 and 20mg/kg FDPI inhibited MAO-A and MAO-B activities. These results suggest that antidepressant-like effect of FDPI is mediated mostly by serotonergic and dopaminergic systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Glucose-independent inhibition of yeast plasma-membrane H+-ATPase by calmodulin antagonists.

    PubMed

    Romero, I; Maldonado, A M; Eraso, P

    1997-03-15

    Glucose metabolism causes activation of the yeast plasma-membrane H+-ATPase. The molecular mechanism of this regulation is not known, but it is probably mediated by phosphorylation of the enzyme. The involvement in this process of several kinases has been suggested but their actual role has not been proved. The physiological role of a calmodulin-dependent protein kinase in glucose-induced activation was investigated by studying the effect of specific calmodulin antagonists on the glucose-induced ATPase kinetic changes in wild-type and two mutant strains affected in the glucose regulation of the enzyme. Preincubation of the cells with calmidazolium or compound 48/80 impeded the increase in ATPase activity by reducing the Vmax of the enzyme without modifying the apparent affinity for ATP in the three strains. In one mutant, pma1-T912A, the putative calmodulin-dependent protein kinase-phosphorylatable Thr-912 was eliminated, and in the other, pma1-P536L, H+-ATPase was constitutively activated, suggesting that the antagonistic effect was not mediated by a calmodulin-dependent protein kinase and not related to glucose regulation. This was corroborated when the in vitro effect of the calmodulin antagonists on H+-ATPase activity was tested. Purified plasma membranes from glucose-starved or glucose-fermenting cells from both pma1-P890X, another constitutively activated ATPase mutant, and wild-type strains were preincubated with calmidazolium or melittin. In all cases, ATP hydrolysis was inhibited with an IC50 of approximately 1 microM. This inhibition was reversed by calmodulin. Analysis of the calmodulin-binding protein pattern in the plasma-membrane fraction eliminates ATPase as the calmodulin target protein. We conclude that H+-ATPase inhibition by calmodulin antagonists is mediated by an as yet unidentified calmodulin-dependent membrane protein.

  6. Role of MCP-1 in pleural effusion development in a carrageenan-induced murine model of pleurisy.

    PubMed

    Lansley, Sally M; Cheah, Hui Min; Lee, Y C Gary

    2017-05-01

    Exudative pleural effusions affect over 1500 patients per million population each year. The pathobiology of pleural exudate formation remains unclear. Our recent study revealed monocyte chemotactic protein-1 (MCP-1) as a key driver of fibrinolytic-induced exudate effusion while another study found a role for MCP-1 in malignant effusion formation. In the present study, we further evaluated the role of MCP-1 in the development of pleural effusion in a mouse model of acute pleural inflammation. λ-Carrageenan (CAR) was injected into the pleural cavity of CD1 mice and pleural effusion volume measured up to 16 h post-injection. Pleural effusion and serum protein and MCP-1 concentrations were measured and differential cell counts performed in fluids. Mice were also treated with either intraperitoneal (i) anti-MCP-1 antibody or isotype control or (ii) an MCP-1 receptor (CCR2) antagonist or vehicle control 12 h prior to and at the time of CAR injection. Intrapleural CAR induced significant pleural fluid accumulation (300.0 ± 49.9 μL) in mice after 4 h. Pleural fluid MCP-1 concentrations were significantly higher than corresponding serum MCP-1 (144 603 ± 23 204 pg/mL vs 3703 ± 801 pg/mL, P < 0.0001). A significant decrease in pleural fluid formation was seen both with anti-MCP-1 antibody (median (interquartile range, IQR): 36 (0-168) μL vs controls 290 (70-436) μL; P = 0.02) or CCR2 antagonist (153 (30-222) μL vs controls 240 (151-331) μL, P = 0.0049). Blockade of MCP-1 activity significantly reduced inflammatory pleural effusion formation in a CAR model. Together with recent successes in MCP-1 blockade in other effusion formation models, our data strongly support clinical evaluation of MCP-1 antagonists as a novel approach to pleural fluid management. © 2016 Asian Pacific Society of Respirology.

  7. A pharmacokinetic evaluation of five H1 antagonists after an oral and intravenous microdose to human subjects

    PubMed Central

    Madan, Ajay; O'Brien, Zhihong; Wen, Jianyun; O'Brien, Chris; Farber, Robert H; Beaton, Graham; Crowe, Paul; Oosterhuis, Berend; Garner, R Colin; Lappin, Graham; Bozigian, Haig P

    2009-01-01

    AIMS To evaluate the pharmacokinetics (PK) of five H1 receptor antagonists in human volunteers after a single oral and intravenous (i.v.) microdose (0.1 mg). METHODS Five H1 receptor antagonists, namely NBI-1, NBI-2, NBI-3, NBI-4 and diphenhydramine, were administered to human volunteers as a single 0.1-mg oral and i.v. dose. Blood samples were collected up to 48 h, and the parent compound in the plasma extract was quantified by high-performance liquid chromatography and accelerator mass spectroscopy. RESULTS The median clearance (CL), apparent volume of distribution (Vd) and apparent terminal elimination half-life (t1/2) of diphenhydramine after an i.v. microdose were 24.7 l h−1, 302 l and 9.3 h, and the oral Cmax and AUC0–∞ were 0.195 ng ml−1 and 1.52 ng h ml−1, respectively. These data were consistent with previously published diphenhydramine data at 500 times the microdose. The rank order of oral bioavailability of the five compounds was as follows: NBI-2 > NBI-1 > NBI-3 > diphenhydramine > NBI-4, whereas the rank order for CL was NBI-4 > diphenhydramine > NBI-1 > NBI-3 > NBI-2. CONCLUSIONS Human microdosing provided estimates of clinical PK of four structurally related compounds, which were deemed useful for compound selection. PMID:19523012

  8. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    PubMed Central

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-01-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1–3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents. PMID:27094554

  9. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    NASA Astrophysics Data System (ADS)

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-04-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1-3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents.

  10. Effect of thromboxane antagonists on ozone-induced airway responses in dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G.L.; Lane, C.G.; O'Byrne, P.M.

    1990-09-01

    Airway hyperresponsiveness after inhaled ozone in dogs may occur as a result of thromboxane release in the airway. In this study, two thromboxane receptor antagonists, L-655,240 and L-670,596, were used in doses that inhibit the response to an inhaled thromboxane mimetic, U-46619, to determine further the role of thromboxane in ozone-induced airway hyperresponsiveness. Dogs were studied on 2 days separated by 1 wk. On each day, the dogs inhaled ozone (3 ppm) for 30 min. On one randomly assigned day, 10 dogs received an infusion of L-655,240 (5 mg.kg-1.h-1) and 5 dogs received an infusion of L-670,596 (1 mg.kg-1.h-1); onmore » the other day dogs received a control infusion. Airway responses to doubling doses of acetylcholine were measured before and after inhalation of ozone and were expressed as the concentration of acetylcholine giving a rise in resistance of 5 cmH2O.l-1.s from baseline (acetylcholine provocation concentration). The development of airway hyperresponsiveness after ozone was not inhibited by the thromboxane antagonists. The mean log difference in the acetylcholine provocative concentration before and after ozone on the L-655,240 treatment day was 0.62 +/- 0.12 (SE) and on the control day was 0.71 +/- 0.12 (P = 0.48); on the L-670,596 treatment day the mean log difference was 0.68 +/- 0.15 (SE) and on the control day it was 0.75 +/- 0.19 (P = 0.45). These results do not support an important role for thromboxane in causing ozone-induced airway hyperresponsiveness.« less

  11. Duration and mechanisms of the increased natural cytotoxicity seen after chronic voluntary exercise in rats.

    PubMed

    Jonsdottir, I H; Johansson, C; Asea, A; Johansson, P; Hellstrand, K; Thorén, P; Hoffmann, P

    1997-08-01

    We have recently shown that in vivo natural cytotoxicity is enhanced after chronic exercise in spontaneously hypertensive rats (SHRs). In the present report, we have studied the duration of this augmentation and some possible mechanisms involved. Exercise consisted of voluntary running for 4-5 weeks, with the running distance ranging from 2.7-15.6 km day(-1) during the last week of running. In vivo cytotoxicity was measured as clearance of injected 51Cr-labelled YAC-1 lymphoma cells from the lungs. The in vivo natural cytotoxicity was increased in running SHRs, and also in SHRs that had their running wheel locked for 24 and 48 h prior to the experiment, and was still present after 96 h. The enhancement of in vivo cytotoxicity after 5 weeks of exercise was abolished after an acute injection of the beta-adrenergic receptor antagonist timolol (0.5 mg kg(-1) i.v.), indicating that catecholamines are involved in this augmentation. Interestingly, 24 h after the last exercise bout, the increased natural cytotoxicity could be blocked by timolol. The opioid receptor antagonist naloxone given subcutaneously for 7 days by osmotic pumps (6 mg kg(-1) h(-1)) could not reverse the increased in vivo cytotoxicity seen in the running SHRs, suggesting that opioid receptor mechanisms are not involved, or at least not the naloxone-sensitive mu-receptor. Natural immunity was not influenced by the histamine H2 receptor antagonist ranitidine, either in controls or in runners, indicating that the natural killer cell-regulatory effect of histamine is not present in SHRs and does not seem to be involved in the exercise-induced changes in natural immune function. We conclude that the augmentation of in vivo natural cytotoxicity after voluntary chronic exercise in rats is long-lasting and that the augmentation is partly mediated by beta-adrenergic receptors.

  12. Blastocyst transfer does not improve cycle outcome as compared to D3 transfer in antagonist cycles with an elevated progesterone level on the day of hCG.

    PubMed

    Demirel, Cem; Aydoğdu, Serkan; Özdemir, Arzu İlknur; Keskin, Gülşah; Baştu, Ercan; Buyru, Faruk

    2017-09-01

    To evaluate the association between progesterone elevation on the day of human chorionic gonadotropin (hCG) administration and clinical pregnancy rates of gonadotropin-releasing hormone (GnRH) antagonist in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycles with the transfer of embryos at different developmental stages (day-3 versus day-5 ETs). This is a retrospective analysis of fresh IVF/ICSI; 194 cycles out of 2676 conducted in a single center. A total of 2676 cycles were analyzed, of which 386 had no progesterone measurements available. Two hundred eighteen cycles had progesterone elevation (p>1.5 ng/mL) giving an overall incidence of 9.5%. Twenty-four cycles were excluded from further analysis. Of the remaining 194 cycles, 151 had day-3 transfers and 43 had blastocyst transfers. There was no statistically significant difference in pregnancy and clinical pregnancy rates per transfer between the D3-ET and D5-ET groups (46% vs. 49%, and 39% vs. 35%, respectively). The results of this study suggest that blastocyst transfer does not improve cycle outcomes compared with D3 transfer in GnRH antagonist cycles with an elevated progesterone level on the day of hCG.

  13. Preclinical pharmacology of bilastine, a new selective histamine H1 receptor antagonist: receptor selectivity and in vitro antihistaminic activity.

    PubMed

    Corcóstegui, Reyes; Labeaga, Luis; Innerárity, Ana; Berisa, Agustin; Orjales, Aurelio

    2005-01-01

    This study aimed to establish the receptor selectivity and antihistaminic activity of bilastine, a new selective antihistamine receptor antagonist. In vitro experiments were conducted using a receptor binding screening panel and guinea-pig and rat tissues. Antihistaminic activity was determined using H1 receptor binding studies and in vitro H1 antagonism studies conducted in guinea-pig tissues and human cell lines. Receptor selectivity was established using a receptor binding screening panel and a receptor antagonism screening conducted in guinea-pig, rat and rabbit tissues. Inhibition of inflammatory mediators was determined through the Schultz-Dale reaction in sensitised guinea-pig ileum. Bilastine binds to histamine H1-receptors as indicated by its displacement of [3H]-pyrilamine from H1-receptors expressed in guinea-pig cerebellum and human embryonic kidney (HEK) cell lines. The studies conducted on guinea-pig smooth muscle demonstrated the capability of bilastine to antagonise H1-receptors. Bilastine is selective for histamine H1-receptors as shown in receptor-binding screening conducted to determine the binding capacity of bilastine to 30 different receptors. The specificity of its H1-receptor antagonistic activity was also demonstrated in a series of in vitro experiments conducted on guinea-pig and rat tissues. The results of these studies confirmed the lack of significant antagonism against serotonin, bradykinin, leukotriene D4, calcium, muscarinic M3-receptors, alpha1-adrenoceptors, beta2-adrenoceptors, and H2- and H3-receptors. The results of the in vitro Schultz-Dale reaction demonstrated that bilastine also has anti-inflammatory activity. These preclinical studies provide evidence that bilastine has H1- antihistamine activity, with high specificity for H1-receptors, and poor or no affinity for other receptors. Bilastine has also been shown to have anti-inflammatory properties.

  14. Pharmacology of modality-specific transient receptor potential vanilloid-1 antagonists that do not alter body temperature.

    PubMed

    Reilly, Regina M; McDonald, Heath A; Puttfarcken, Pamela S; Joshi, Shailen K; Lewis, LaGeisha; Pai, Madhavi; Franklin, Pamela H; Segreti, Jason A; Neelands, Torben R; Han, Ping; Chen, Jun; Mantyh, Patrick W; Ghilardi, Joseph R; Turner, Teresa M; Voight, Eric A; Daanen, Jerome F; Schmidt, Robert G; Gomtsyan, Arthur; Kort, Michael E; Faltynek, Connie R; Kym, Philip R

    2012-08-01

    The transient receptor potential vanilloid-1 (TRPV1) channel is involved in the development and maintenance of pain and participates in the regulation of temperature. The channel is activated by diverse agents, including capsaicin, noxious heat (≥ 43°C), acidic pH (< 6), and endogenous lipids including N-arachidonoyl dopamine (NADA). Antagonists that block all modes of TRPV1 activation elicit hyperthermia. To identify efficacious TRPV1 antagonists that do not affect temperature antagonists representing multiple TRPV1 pharmacophores were evaluated at recombinant rat and human TRPV1 channels with Ca(2+) flux assays, and two classes of antagonists were identified based on their differential ability to inhibit acid activation. Although both classes of antagonists completely blocked capsaicin- and NADA-induced activation of TRPV1, select compounds only partially inhibited activation of the channel by protons. Electrophysiology and calcitonin gene-related peptide release studies confirmed the differential pharmacology of these antagonists at native TRPV1 channels in the rat. Comparison of the in vitro pharmacological properties of these TRPV1 antagonists with their in vivo effects on core body temperature confirms and expands earlier observations that acid-sparing TRPV1 antagonists do not significantly increase core body temperature. Although both classes of compounds elicit equivalent analgesia in a rat model of knee joint pain, the acid-sparing antagonist tested is not effective in a mouse model of bone cancer pain.

  15. A Novel Hydrogen Sulfide-releasing N-Methyl-d-Aspartate Receptor Antagonist Prevents Ischemic Neuronal Death*

    PubMed Central

    Marutani, Eizo; Kosugi, Shizuko; Tokuda, Kentaro; Khatri, Ashok; Nguyen, Rebecca; Atochin, Dmitriy N.; Kida, Kotaro; Van Leyen, Klaus; Arai, Ken; Ichinose, Fumito

    2012-01-01

    Physiological levels of H2S exert neuroprotective effects, whereas high concentrations of H2S may cause neurotoxicity in part via activation of NMDAR. To characterize the neuroprotective effects of combination of exogenous H2S and NMDAR antagonism, we synthesized a novel H2S-releasing NMDAR antagonist N-((1r,3R,5S,7r)-3,5-dimethyladamantan-1-yl)-4-(3-thioxo-3H-1,2-dithiol-4-yl)-benzamide (S-memantine) and examined its effects in vitro and in vivo. S-memantine was synthesized by chemically combining a slow releasing H2S donor 4-(3-thioxo-3H-1,2-dithiol-4-yl)-benzoic acid (ACS48) with a NMDAR antagonist memantine. S-memantine increased intracellular sulfide levels in human neuroblastoma cells (SH-SY5Y) 10-fold as high as that was achieved by ACS48. Incubation with S-memantine after reoxygenation following oxygen and glucose deprivation (OGD) protected SH-SY5Y cells and murine primary cortical neurons more markedly than did ACS48 or memantine. Glutamate-induced intracellular calcium accumulation in primary cortical neurons were aggravated by sodium sulfide (Na2S) or ACS48, but suppressed by memantine and S-memantine. S-memantine prevented glutamate-induced glutathione depletion in SH-SY5Y cells more markedly than did Na2S or ACS48. Administration of S-memantine after global cerebral ischemia and reperfusion more robustly decreased cerebral infarct volume and improved survival and neurological function of mice than did ACS48 or memantine. These results suggest that an H2S-releasing NMDAR antagonist derivative S-memantine prevents ischemic neuronal death, providing a novel therapeutic strategy for ischemic brain injury. PMID:22815476

  16. Identification of novel thiazolo[5,4-d]pyrimidine derivatives as human A1 and A2A adenosine receptor antagonists/inverse agonists.

    PubMed

    Varano, Flavia; Catarzi, Daniela; Falsini, Matteo; Vincenzi, Fabrizio; Pasquini, Silvia; Varani, Katia; Colotta, Vittoria

    2018-07-23

    In this study a new set of thiazolo[5,4-d]pyrimidine derivatives was synthesized. These derivatives bear different substituents at positions 2 and 5 of the thiazolopyrimidine core while maintaining a free amino group at position-7. The new compounds were tested for their affinity and potency at human (h) A 1 , A 2A , A 2B and A 3 adenosine receptors expressed in CHO cells. The results reveal that the higher affinity of these new set of thiazolopyrimidines is toward the hA 1 and hA 2A adenosine receptors subtypes and is tuned by the substitution pattern at both the 2 and 5 positions of the thiazolopyrimidine nucleus. Functional studies evidenced that the compounds behaved as dual A 1 /A 2A antagonists/inverse agonists. Compound 3, bearing a 5-((2-methoxyphenyl) methylamino) group and a phenyl moiety at position 2, displayed the highest affinity (hA 1 K i  = 10.2 nM; hA 2A K i  = 4.72 nM) and behaved as a potent A 1 /A 2A antagonist/inverse agonist (hA 1 IC 50  = 13.4 nM; hA 2A IC 50  = 5.34 nM). Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Muscarinic acetylcholine receptor subtype 4 is essential for cholinergic stimulation of duodenal bicarbonate secretion in mice - relationship to D cell/somatostatin.

    PubMed

    Takeuchi, K; Kita, K; Takahashi, K; Aihara, E; Hayashi, S

    2015-06-01

    We investigated the roles of muscarinic (M) acetylcholine receptor subtype in the cholinergic stimulation of duodenal HCO3(-) secretion using knockout (KO) mice. Wild-type and M1-M5 KO C57BL/6J mice were used. The duodenal mucosa was mounted on an Ussing chamber, and HCO3(-) secretion was measured at pH 7.0 using a pH-stat method in vitro. Carbachol (CCh) or other agents were added to the serosal side. CCh dose-dependently stimulated HCO3(-) secretion in wild-type mice, and this effect was completely inhibited in the presence of atropine. The HCO3(-) response to CCh in wild-type mice was also inhibited by pirenzepine (M1 antagonist), 4DAMP (M3 antagonist), and tropicamide (M4 antagonist), but not by methoctramine (M2 antagonist). CCh stimulated HCO3(-) secretion in M2 and M5 KO animals as effectively as in WT mice; however, this stimulatory effect was significantly attenuated in M1, M3, and M4 KO mice. The decrease observed in the CCh-stimulated HCO3(-) response in M4 KO mice was reversed by the co-application of CYN154806, a somatostatin receptor type 2 (SST2) antagonist. Octreotide (a somatostatin analogue) decreased the basal and CCh-stimulated secretion of HCO3(-) in wild-type mice. The co-localized expression of somatostatin and M4 receptors was confirmed immunohistologically in the duodenum. We concluded that the duodenal HCO3(-) response to CCh was directly mediated by M1/M3 receptors and indirectly modified by M4 receptors. The activation of M4 receptors was assumed to inhibit the release of somatostatin from D cells and potentiate the HCO3(-) response by removing the negative influence of somatostatin via the activation of SST2 receptors.

  18. Activation of either the ETA or the ETB receptors is involved in the development of electrographic seizures following intrahippocampal infusion of the endothelin-1 in immature rats.

    PubMed

    Tsenov, Grygoriy; Vondrakova, Katerina; Otahal, Jakub; Burchfiel, James; Kubova, Hana

    2015-03-01

    The period around birth is a risky time for stroke in infants, which is associated with two major acute and subacute processes: anatomical damage and seizures. It is unclear as to what extent each of these processes independently contributes to poor outcome. Furthermore, it is unclear whether there is an interaction between the two processes - does seizure activity cause additional brain damage beyond that produced by ischemia and/or does brain damage foster seizures? The model of focal cerebral ischemia induced by the intrahippocampal infusion of endothelin-1 (ET-1) in 12-day-old rat was used to examine the role of the endothelin receptors in the development of focal ischemia, symptomatic acute seizures and neurodegeneration. ET-1 (40pmol/μl) was infused either alone or co-administered with selective antagonists of ETA (BQ123; 70nmol/μl) or ETB receptors (BQ788; 70nmol/1μl). Effects of activation of ETB receptors were studied using selective agonist 4-Ala-ET-1 (40pmol/1μl). Regional cerebral blood flow (rCBF) and tissue oxygenation (pO2) were measured in anesthetized animals with a Doppler-flowmeter and a pO2-sensor, respectively. Seizure development was assessed with video-EEG in freely moving rats. Controls received the corresponding volume of the appropriate vehicle (10mM PBS or 0.01% DMSO-PBS solution; pH7.4). The extent of hippocampal lesion was determined using FluoroJade B staining performed 24h after ET-1 infusion. Infusion of ET-1 or ET-1+ETB receptor antagonist reduced rCBF to ~25% and pO2 to ~10% for about 1.5h, whereas selective ETB agonist, ET-1+ETA antagonist and the PBS vehicle had only negligible effect on the rCBF and pO2 levels. Reduction of rCBF was associated with the development of lesion in the injected hippocampus. In all groups, except sham operated and PBS controls, epileptiform activity was observed after activation of the ETA or the ETB receptors. The data revealed a positive correlation between the severity of morphological damage and all the measured seizure parameters (seizure frequency, average and total seizure duration) in the ET-1 group. In addition, the severity of morphological damage positively correlated with the average seizure duration in animals after infusion of ET-1+ETA receptor antagonist or after infusion of ET-1+ETB receptor antagonist. Our results indicate that the activation of ETA receptors is crucial for ischemia development, however either ETA or ETB receptors mediate the development of seizures following the application of ET-1 in immature rats. The dissociation between the ischemic-producing and seizure-producing processes suggests that damage is not necessary to induce seizures, although it may exacerbate them. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors

    PubMed Central

    Chazot, Paul L.; Cowart, Marlon; Gutzmer, Ralf; Leurs, Rob; Liu, Wai L. S.; Stark, Holger; Thurmond, Robin L.; Haas, Helmut L.

    2015-01-01

    Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein–coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated. PMID:26084539

  20. Discovery of highly selective brain-penetrant vasopressin 1a antagonists for the potential treatment of autism via a chemogenomic and scaffold hopping approach.

    PubMed

    Ratni, Hasane; Rogers-Evans, Mark; Bissantz, Caterina; Grundschober, Christophe; Moreau, Jean-Luc; Schuler, Franz; Fischer, Holger; Alvarez Sanchez, Ruben; Schnider, Patrick

    2015-03-12

    From a micromolar high throughput screening hit 7, the successful complementary application of a chemogenomic approach and of a scaffold hopping exercise rapidly led to a low single digit nanomolar human vasopressin 1a (hV1a) receptor antagonist 38. Initial optimization of the mouse V1a activities delivered suitable tool compounds which demonstrated a V1a mediated central in vivo effect. This novel series was further optimized through parallel synthesis with a focus on balancing lipophilicity to achieve robust aqueous solubility while avoiding P-gp mediated efflux. These efforts led to the discovery of the highly potent and selective brain-penetrant hV1a antagonist RO5028442 (8) suitable for human clinical studies in people with autism.

  1. Antinociceptive action of isolated mitragynine from Mitragyna Speciosa through activation of opioid receptor system.

    PubMed

    Shamima, Abdul Rahman; Fakurazi, Sharida; Hidayat, Mohamad Taufik; Hairuszah, Ithnin; Moklas, Mohamad Aris Mohd; Arulselvan, Palanisamy

    2012-01-01

    Cannabinoids and opioids systems share numerous pharmacological properties and antinociception is one of them. Previous findings have shown that mitragynine (MG), a major indole alkaloid found in Mitragyna speciosa (MS) can exert its antinociceptive effects through the opioids system. In the present study, the action of MG was investigated as the antinociceptive agent acting on Cannabinoid receptor type 1 (CB1) and effects on the opioids receptor. The latency time was recorded until the mice showed pain responses such as shaking, licking or jumping and the duration of latency was measured for 2 h at every 15 min interval by hot plate analysis. To investigate the beneficial effects of MG as antinociceptive agent, it was administered intraperitoneally 15 min prior to pain induction with a single dosage (3, 10, 15, 30, and 35 mg/kg b.wt). In this investigation, 35 mg/kg of MG showed significant increase in the latency time and this dosage was used in the antagonist receptor study. The treated groups were administered with AM251 (cannabinoid receptor-1 antagonist), naloxone (non-selective opioid antagonist), naltrindole (δ-opioid antagonist) naloxonazine (μ(1)-receptor antagonist) and norbinaltorpimine (κ-opioid antagonist) respectively, prior to administration of MG (35 mg/kg). The results showed that the antinociceptive effect of MG was not antagonized by AM251; naloxone and naltrindole were effectively blocked; and norbinaltorpimine partially blocked the antinociceptive effect of MG. Naloxonazine did inhibit the effect of MG, but it was not statistically significant. These results demonstrate that CB1 does not directly have a role in the antinociceptive action of MG where the effect was observed with the activation of opioid receptor.

  2. Mitigating hERG Inhibition: Design of Orally Bioavailable CCR5 Antagonists as Potent Inhibitors of R5 HIV-1 Replication

    PubMed Central

    2012-01-01

    A series of CCR5 antagonists representing the thiophene-3-yl-methyl ureas were designed that met the pharmacological criteria for HIV-1 inhibition and mitigated a human ether-a-go-go related gene (hERG) inhibition liability. Reducing lipophilicity was the main design criteria used to identify compounds that did not inhibit the hERG channel, but subtle structural modifications were also important. Interestingly, within this series, compounds with low hERG inhibition prolonged the action potential duration (APD) in dog Purkinje fibers, suggesting a mixed effect on cardiac ion channels. PMID:24900457

  3. Design, synthesis and biological activity of 6-substituted carbamoyl benzimidazoles as new nonpeptidic angiotensin II AT₁ receptor antagonists.

    PubMed

    Zhang, Jun; Wang, Jin-Liang; Zhou, Zhi-Ming; Li, Zhi-Huai; Xue, Wei-Zhe; Xu, Di; Hao, Li-Ping; Han, Xiao-Feng; Fei, Fan; Liu, Ting; Liang, Ai-Hua

    2012-07-15

    A series of 6-substituted carbamoyl benzimidazoles were designed and synthesised as new nonpeptidic angiotensin II AT(1) receptor antagonists. The preliminary pharmacological evaluation revealed a nanomolar AT(1) receptor binding affinity for all compounds in the series, and a potent antagonistic activity in an isolated rabbit aortic strip functional assay for compounds 6f, 6g, 6h and 6k was also demonstrated. Furthermore, evaluation in spontaneous hypertensive rats and a preliminary toxicity evaluation showed that compound 6g is an orally active AT(1) receptor antagonist with low toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. In vivo microdialysis of noradrenaline overflow: effects of alpha-adrenoceptor agonists and antagonists measured by cumulative concentration-response curves.

    PubMed Central

    van Veldhuizen, M. J.; Feenstra, M. G.; Heinsbroek, R. P.; Boer, G. J.

    1993-01-01

    1. The purpose of the present study was to compare the effects of several alpha-adrenoceptor agonists and antagonists on cerebral cortical overflow of endogenous noradrenaline (NA) in freely moving rats. One or two days after the implantation of transcerebral dialysis tubes in the frontoparietal cortex, extracellular NA levels were monitored on-line with high performance liquid chromatography and electrochemical detection. The drugs were applied locally via the dialysis membrane, and effects on NA overflow were determined in cumulative concentration-response curves. 2. The average basal cortical NA overflow of all experiments was 0.25 pg min-1. The alpha 2-adrenoceptor agonists caused a concentration-dependent decrease in NA levels. UK-14,304 was the most potent and B-HT 933 the least potent agonist. The maximal decrease in NA overflow was to 10-15% of control levels after UK-14,304 or moxonidine, to 30% after clonidine and to 50% after B-HT 933 administration. Continuous activation of the presynaptic alpha 2-adrenoceptor with 10(-6) M UK-14,304 caused a decrease in NA levels to 40-50% of basal levels. This decrease was reached within 1 h and remained stable for the entire 3 h measurement period. The alpha 1-adrenoceptor agonists, phenylephrine and methoxamine, induced an increase in NA levels to 225% and 300%, respectively, at a concentration of 10(-3) M. 3. Local application of alpha 2-adrenoceptor antagonists caused an increase in NA levels, with idazoxan being more potent than piperoxan. Yohimbine did not cause any significant change. 4. All drugs used in these in vivo experiments had in vitro recoveries across the dialysis membrane between 10 and 20%.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8102934

  5. Angiotensin AT1 and AT2 receptor antagonists modulate nicotine-evoked [³H]dopamine and [³H]norepinephrine release.

    PubMed

    Narayanaswami, Vidya; Somkuwar, Sucharita S; Horton, David B; Cassis, Lisa A; Dwoskin, Linda P

    2013-09-01

    Tobacco smoking is the leading preventable cause of death in the United States. A major negative health consequence of chronic smoking is hypertension. Untoward addictive and cardiovascular sequelae associated with chronic smoking are mediated by nicotine-induced activation of nicotinic receptors (nAChRs) within striatal dopaminergic and hypothalamic noradrenergic systems. Hypertension involves both brain and peripheral angiotensin systems. Activation of angiotensin type-1 receptors (AT1) release dopamine and norepinephrine. The current study determined the role of AT1 and angiotensin type-2 (AT2) receptors in mediating nicotine-evoked dopamine and norepinephrine release from striatal and hypothalamic slices, respectively. The potential involvement of nAChRs in mediating effects of AT1 antagonist losartan and AT2 antagonist, 1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (PD123319) was evaluated by determining their affinities for α4β2* and α7* nAChRs using [³H]nicotine and [³H]methyllycaconitine binding assays, respectively. Results show that losartan concentration-dependently inhibited nicotine-evoked [³H]dopamine and [³H]norepinephrine release (IC₅₀: 3.9 ± 1.2 and 2.2 ± 0.7 μM; Imax: 82 ± 3 and 89 ± 6%, respectively). In contrast, PD123319 did not alter nicotine-evoked norepinephrine release, and potentiated nicotine-evoked dopamine release. These results indicate that AT1 receptors modulate nicotine-evoked striatal dopamine and hypothalamic norepinephrine release. Furthermore, AT1 receptor activation appears to be counteracted by AT2 receptor activation in striatum. Losartan and PD123319 did not inhibit [³H]nicotine or [³H]methyllycaconitine binding, indicating that these AT1 and AT2 antagonists do not interact with the agonist recognition sites on α4β2* and α7* nAChRs to mediate these effects of nicotine. Thus, angiotensin receptors contribute to the effects of nicotine on dopamine and norepinephrine release in brain regions involved in nicotine reward and hypertension. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Lubiprostone stimulates duodenal bicarbonate secretion in rats.

    PubMed

    Mizumori, Misa; Akiba, Yasutada; Kaunitz, Jonathan D

    2009-10-01

    Lubiprostone, a bicyclic fatty acid, is used for the treatment of chronic constipation. No published study has addressed the effect of lubiprostone on intestinal ion secretion in vivo. The aim of this study was to test the hypothesis that lubiprostone augments duodenal HCO(3) (-) secretion (DBS). Rat proximal duodenal loops were perfused with pH 7.0 Krebs, control vehicle (medium-chain triglycerides), or lubiprostone (0.1-10 microM). We measured DBS with flow-through pH and CO(2) electrodes, perfusate [Cl(-)] with a Cl(-) electrode, and water flux using a non-absorbable ferrocyanide marker. Some rats were pretreated with a potent, selective CFTR antagonist, CFTR(inh)-172 (1 mg/kg, ip), 1 h before experiments. Perfusion of lubiprostone concentration dependently increased DBS, whereas net Cl(-) output and net water output were only increased at 0.1 microM, compared with vehicle. CFTR(inh)-172 reduced lubiprostone (10 microM)-induced DBS increase, whereas net Cl(-) output was also unchanged. Nevertheless, CFTR(inh)-172 reduced basal net water output, which was reversed by lubiprostone. Furthermore, lubiprostone-induced DBS was inhibited by EP4 receptor antagonist, not by an EP1/2 receptor antagonist or by indomethacin pretreatment. In this first study of the effect of lubiprostone on intestinal ion secretion in vivo, lubiprostone stimulated CFTR-dependent DBS without changing net Cl(-) secretion. This effect supports the hypothesis that Cl(-) secreted by CFTR is recycled across the apical membrane by anion exchangers. Recovery of water output during CFTR inhibition suggests that lubiprostone may improve the intestinal phenotype in CF patients. Furthermore, increased DBS suggests that lubiprostone may protect the duodenum from acid-induced injury via EP4 receptor activation.

  7. Inhibition of growth hormone-releasing factor suppresses both sleep and growth hormone secretion in the rat.

    PubMed

    Obál, F; Payne, L; Kapás, L; Opp, M; Krueger, J M

    1991-08-23

    To study the possible involvement of hypothalamic growth hormone-releasing factor (GRF) in sleep regulation, a competitive GRF-antagonist, the peptide (N-Ac-Tyr1,D-Arg2)-GRF(1-29)-NH2, was intracerebroventricularly injected into rats (0.003, 0.3, and 14 nmol), and the EEG and brain temperature were recorded for 12 h during the light cycle of the day. Growth hormone (GH) concentrations were determined from plasma samples taken at 20-min intervals for 3 h after 14 nmol GRF-antagonist. The onset of non-rapid eye movement sleep (NREMS) was delayed in response to 0.3 and 14 nmol GRF-antagonist, the duration of NREMS was decreased for one or more hours and after 14 nmol EEG slow wave amplitudes were decreased during NREMS in postinjection hour 1. The high dose of GRF-antagonist also suppressed REMS for 4 h, inhibited GH secretion, and elicited a slight biphasic variation in brain temperature. These findings, together with previous observations indicating a sleep-promoting effect for GRF, support the hypothesis that hypothalamic GRF is involved in sleep regulation and might be responsible for the correlation between NREMS and GH secretion reported in various species.

  8. The NK1 Receptor Antagonist L822429 Reduces Heroin Reinforcement

    PubMed Central

    Barbier, Estelle; Vendruscolo, Leandro F; Schlosburg, Joel E; Edwards, Scott; Juergens, Nathan; Park, Paula E; Misra, Kaushik K; Cheng, Kejun; Rice, Kenner C; Schank, Jesse; Schulteis, Gery; Koob, George F; Heilig, Markus

    2013-01-01

    Genetic deletion of the neurokinin 1 receptor (NK1R) has been shown to decrease the reinforcing properties of opioids, but it is unknown whether pharmacological NK1R blockade has the same effect. Here, we examined the effect of L822429, a rat-specific NK1R antagonist, on the reinforcing properties of heroin in rats on short (1 h: ShA) or long (12 h: LgA) access to intravenous heroin self-administration. ShA produces heroin self-administration rates that are stable over time, whereas LgA leads to an escalation of heroin intake thought to model important dependence-related aspects of addiction. L822429 reduced heroin self-administration and the motivation to consume heroin, measured using a progressive-ratio schedule, in both ShA and LgA rats. L822429 also decreased anxiety-like behavior in both groups, measured on the elevated plus maze, but did not affect mechanical hypersensitivity observed in LgA rats. Expression of TacR1 (the gene encoding NK1R) was decreased in reward- and stress-related brain areas both in ShA and LgA rats compared with heroin-naïve rats, but did not differ between the two heroin-experienced groups. In contrast, passive exposure to heroin produced increases in TacR1 expression in the prefrontal cortex and nucleus accumbens. Taken together, these results show that pharmacological NK1R blockade attenuates heroin reinforcement. The observation that animals with ShA and LgA to heroin were similarly affected by L822429 indicates that the SP/NK1R system is not specifically involved in neuroadaptations that underlie escalation resulting from LgA self-administration. Instead, the NK1R antagonist appears to attenuate acute, positively reinforcing properties of heroin and may be useful as an adjunct to relapse prevention in detoxified opioid-dependent subjects. PMID:23303056

  9. Evaluation of biological activities of new LH-RH antagonists (T-series) in male and female rats.

    PubMed

    Pinski, J; Yano, T; Janaky, T; Nagy, A; Juhasz, A; Bokser, L; Groot, K; Schally, A V

    1993-01-01

    A series of new highly potent LH-RH antagonists (T-series) has been synthesized in our laboratory. Among these analogs, antagonists [Ac-D-Nal(2), D-Phe(4Cl)2, D-Pal(3)3, D-Lys(A2pr(Car)2)6, D-Ala10]LH-RH (T-140); [Ac-D-Nal(2)1, D-Phe(4Cl)2, D-Pal(3)3, D-Lys(A2pr(Ac)2)6, D-Ala10]LH-RH (T-148); [Ac-D-Nal(2)1, D-Phe(4Cl)2, D-Pal(3)3, D-Lys(A2pr(For)2)6, D-Ala10]LH-RH (T-151) and [Ac-D-Nal(2)1, D-Phe(4Cl)2, D-Pal(3)3, D-Lys(A2bu(For)2)6, D-Ala10]LH-RH (T-159) were the most powerful. Antagonists T-140, T-148 and T-151 produced a complete blockade of ovulation in normal cycling rats at a dose of 1.5 micrograms/rat and antagonist T-159 at a dose of only 0.75 micrograms/rat. The inhibitory effects of compounds T-148, T-151 and T-159 on gonadotropin and sex steroid secretion were investigated in male and female rats. To determine their effect on LH levels in castrated male and ovariectomized female rats, T-148, T-151 and T-159 were injected subcutaneously in doses of 0.625 and 2.5 micrograms/rat. Blood samples were taken at different intervals for 48 h. All three compounds at either dose caused a significant (P < 0.01) decrease in LH levels for more than 6 h. Significant (P < 0.01) inhibition of LH lasted for more than 24 h following a dose of 2.5 micrograms sc of all 3 antagonists in both male and female rats. Serum FSH levels were also suppressed significantly for more than 48 h in castrated male rats by all three antagonists at a dose of 5 micrograms/rat sc.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Structure-5-HT/D2 Receptor Affinity Relationship in a New Group of 1-Arylpiperazynylalkyl Derivatives of 8-Dialkylamino-3,7-dimethyl-1H-purine-2,6(3H,7H)-dione.

    PubMed

    Żmudzki, Paweł; Satała, Grzegorz; Chłoń-Rzepa, Grażyna; Bojarski, Andrzej J; Kazek, Grzegorz; Siwek, Agata; Gryboś, Anna; Głuch-Lutwin, Monika; Wesołowska, Anna; Pawłowski, Maciej

    2016-10-01

    In our previous papers, we have reported that some 8-amino-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione derivatives possessed high affinity and displayed agonistic, partial agonistic, or antagonistic activity for serotonin 5-HT 1A and dopamine D 2 receptors. In order to examine further the influence of the substituent in the position 8 of the purine moiety and the influence of the xanthine core on the affinity for serotonin 5-HT 1A , 5-HT 2A , 5-HT 6 , 5-HT 7 , and dopamine D 2 receptors, two series of 1-arylpiperazynylalkyl derivatives of 8-amino-3,7-dimethyl-1H-purine-2,6(3H,7H)-dione were synthesized. All the final compounds were investigated in in vitro competition binding experiments for the serotonin 5-HT 1A , 5-HT 2A , 5-HT 6 , 5-HT 7 , and dopamine D 2 receptors. The structure-affinity relationships for this group of compounds were discussed. For selected compounds, the functional assays for the 5-HT 1A and D 2 receptors were carried out. The results of the assays indicated that these groups of derivatives possessed antagonistic activity for 5-HT 1A receptors and agonistic, partial agonistic, or antagonistic activity for D 2 receptors. In total, 26 new compounds were synthesized, 20 of which were tested in in vitro binding experiments and 5 were tested in in vitro functional assays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Antihyperalgesic activity of a novel nonpeptide bradykinin B1 receptor antagonist in transgenic mice expressing the human B1 receptor

    PubMed Central

    Fox, Alyson; Kaur, Satbir; Li, Bifang; Panesar, Moh; Saha, Uma; Davis, Clare; Dragoni, Ilaria; Colley, Sian; Ritchie, Tim; Bevan, Stuart; Burgess, Gillian; McIntyre, Peter

    2005-01-01

    We describe the properties of a novel nonpeptide kinin B1 receptor antagonist, NVP-SAA164, and demonstrate its in vivo activity in models of inflammatory pain in transgenic mice expressing the human B1 receptor. NVP-SAA164 showed high affinity for the human B1 receptor expressed in HEK293 cells (Ki 8 nM), and inhibited increases in intracellular calcium induced by desArg10kallidin (desArg10KD) (IC50 33 nM). While a similar high affinity was observed in monkey fibroblasts (Ki 7.7 nM), NVP-SAA164 showed no affinity for the rat B1 receptor expressed in Cos-7 cells. In transgenic mice in which the native B1 receptor was deleted and the gene encoding the human B1 receptor was inserted (hB1 knockin, hB1-KI), hB1 receptor mRNA was induced in tissues following LPS treatment. No mRNA encoding the mouse or human B1 receptor was detected in mouse B1 receptor knockout (mB1-KO) mice following LPS treatment. Freund's complete adjuvant-induced mechanical hyperalgesia was similar in wild-type and hB1-KI mice, but was significantly reduced in mB1-KO animals. Mechanical hyperalgesia induced by injection of the B1 agonist desArg10KD into the contralateral paw 24 h following FCA injection was similar in wild-type and hB1-KI mice, but was absent in mB1-KO animals. Oral administration of NVP-SAA164 produced a dose-related reversal of FCA-induced mechanical hyperalgesia and desArg10KD-induced hyperalgesia in hB1-KI mice, but was inactive against inflammatory pain in wild-type mice. These data demonstrate the use of transgenic technology to investigate the in vivo efficacy of species selective agents and show that NVP-SAA164 is a novel orally active B1 receptor antagonist, providing further support for the utility of B1 receptor antagonists in inflammatory pain conditions in man. PMID:15685199

  12. Rational Design, Pharmacomodulation, and Synthesis of Dual 5-Hydroxytryptamine 7 (5-HT7)/5-Hydroxytryptamine 2A (5-HT2A) Receptor Antagonists and Evaluation by [(18)F]-PET Imaging in a Primate Brain.

    PubMed

    Deau, Emmanuel; Robin, Elodie; Voinea, Raluca; Percina, Nathalie; Satała, Grzegorz; Finaru, Adriana-Luminita; Chartier, Agnès; Tamagnan, Gilles; Alagille, David; Bojarski, Andrzej J; Morisset-Lopez, Séverine; Suzenet, Franck; Guillaumet, Gérald

    2015-10-22

    We report the synthesis of 46 tertiary amine-bearing N-alkylated benzo[d]imidazol-2(3H)-ones, imidazo[4,5-b]pyridin-2(3H)-ones, imidazo[4,5-c]pyridin-2(3H)-ones, benzo[d]oxazol-2(3H)-ones, oxazolo[4,5-b]pyridin-2(3H)-ones and N,N'-dialkylated benzo[d]imidazol-2(3H)-ones. These compounds were evaluated against 5-HT7R, 5-HT2AR, 5-HT1AR, and 5-HT6R as potent dual 5-HT7/5-HT2A serotonin receptors ligands. A thorough study of the structure-activity relationship of the aromatic rings and their substituents, the alkyl chain length and the tertiary amine was conducted. 1-(4-(4-(4-Fluorobenzoyl)piperidin-1-yl)butyl)-1H-benzo[d]imidazol-2(3H)-one (79) and 1-(6-(4-(4-fluorobenzoyl)piperidin-1-yl)hexyl)-1H-benzo[d]imidazol-2(3H)-one (81) were identified as full antagonist ligands on cyclic adenosine monophosphate (cAMP, KB = 4.9 and 5.9 nM, respectively) and inositol monophosphate (IP1, KB = 0.6 and 16 nM, respectively) signaling pathways of 5-HT7R and 5-HT2AR. Both antagonists crossed the blood-brain barrier as evaluated with [(18)F] radiolabeled compounds [(18)F]79 and [(18)F]81 in a primate's central nervous system using positron emission tomography. Both radioligands showed standard uptake values ranging from 0.8 to 1.1, a good plasmatic stability, and a distribution consistent with 5-HT7R and 5-HT2AR in the CNS.

  13. Decreased plasma ghrelin contributes to anorexia following novelty stress.

    PubMed

    Saegusa, Yayoi; Takeda, Hiroshi; Muto, Shuichi; Nakagawa, Koji; Ohnishi, Shunsuke; Sadakane, Chiharu; Nahata, Miwa; Hattori, Tomohisa; Asaka, Masahiro

    2011-10-01

    We hypothesized that anorexia induced by novelty stress caused by exposure to a novel environment may be due to activation of corticotropin-releasing factor (CRF) and subsequently mediated by decreasing peripheral ghrelin concentration via serotonin (5-HT) and melanocortin-4 receptors (MC4R). Each mouse was transferred from group-housed cages to individual cages to establish the novelty stress. We observed the effect of changes in feeding behavior in a novel environment using the method of transferring group-housed mice to individual cages. We investigated the effect of an intracerebroventricular injection of antagonists/agonists of CRF1/2 receptors (CRF1/2Rs), 5-HT(1B)/(2C) receptors (5-HT(1B)/(2C)R), and MC4R to clarify the role of each receptor on the decrease in food intake. Plasma ghrelin levels were also measured. The novelty stress caused a reduction in food intake that was abolished by administering a CRF1R antagonist. Three hours after the novelty stress, appetite reduction was associated with reduced levels of neuropeptide Y/agouti-related peptide mRNA, increased levels of proopiomelanocortin mRNA in the hypothalamus, and a decrease in plasma ghrelin level. Administering a CRF1R antagonist, a 5-HT(1B)/(2C)R antagonist, an MC4R antagonist, exogenous ghrelin, and an enhancer of ghrelin secretion, rikkunshito, resolved the reduction in food intake 3 h after the novelty stress by enhancing circulating ghrelin concentrations. We showed that anorexia during a novelty stress is a process in which CRF1R is activated at the early stage of appetite loss and is subsequently activated by a 5-HT(1B)/(2C)R and MC4R stimulus, leading to decreased peripheral ghrelin concentrations.

  14. Biochemical and pharmacological properties of SR 49059, a new, potent, nonpeptide antagonist of rat and human vasopressin V1a receptors.

    PubMed

    Serradeil-Le Gal, C; Wagnon, J; Garcia, C; Lacour, C; Guiraudou, P; Christophe, B; Villanova, G; Nisato, D; Maffrand, J P; Le Fur, G

    1993-07-01

    SR 49059, a new potent and selective orally active, nonpeptide vasopressin (AVP) antagonist has been characterized in several in vitro and in vivo models. SR 49059 showed high affinity for V1a receptors from rat liver (Ki = 1.6 +/- 0.2) and human platelets, adrenals, and myometrium (Ki ranging from 1.1 to 6.3 nM). The previously described nonpeptide V1 antagonist, OPC-21268, was almost inactive in human tissues at concentrations up to 100 microM. SR 49059 exhibited much lower affinity (two orders of magnitude or more) for AVP V2 (bovine and human), V1b (human), and oxytocin (rat and human) receptors and had no measurable affinity for a great number of other receptors. In vitro, AVP-induced contraction of rat caudal artery was competitively antagonized by SR 49059 (pA2 = 9.42). Furthermore, SR 49059 inhibited AVP-induced human platelet aggregation with an IC50 value of 3.7 +/- 0.4 nM, while OPC-21268 was inactive up to 20 microM. In vivo, SR 49059 inhibited the pressor response to exogenous AVP in pithed rats (intravenous) and in conscious normotensive rats (intravenous and per os) with a long duration of action (> 8 h at 10 mg/kg p.o). In all the biological assays used, SR 49059 was devoid of any intrinsic agonistic activity. Thus, SR 49059 is the most potent and selective nonpeptide AVP V1a antagonist described so far, with marked affinity, selectivity, and efficacy toward both animal and human receptors. With this original profile, SR 49059 constitutes a powerful tool for exploring the therapeutical usefulness of a selective V1a antagonist.

  15. Purinoceptor modulation of noradrenaline release in rat tail artery: tonic modulation mediated by inhibitory P2Y- and facilitatory A2A-purinoceptors.

    PubMed Central

    Gonçalves, J.; Queiroz, G.

    1996-01-01

    1. The effects of analogues of adenosine and ATP on noradrenaline release elicited by electrical stimulation (5 Hz, 2700 pulses) were studied in superfused preparations of rat tail artery. The effects of purinoceptor antagonists, of adenosine deaminase and of adenosine uptake blockade were also examined. Noradrenaline was measured by h.p.l.c. electrochemical detection. 2. The A1-adenosine receptor agonist, N6-cyclopentyladenosine (CPA; 0.1-100 nM) reduced, whereas the A2A-receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 3-30 nM) increased evoked noradrenaline overflow. These effects were antagonized by the A1-adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 20 nM) and the A2-adenosine receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX; 100 nM), respectively. The P2Y-purinoceptor agonist, 2-methylthio-ATP (1-100 microM) reduced noradrenaline overflow, an effect prevented by the P2-purinoceptor antagonist, cibacron blue 3GA (100 microM) and suramin (100 microM). 3. Adenosine deaminase (2 u ml-1), DMPX (100 nM) and inhibition of adenosine uptake with S-(p-nitrobenzyl)-6-thioinosine (NBTI; 50 nM) decreased evoked noradrenaline overflow. DPCPX alone did not change noradrenaline overflow but prevented the inhibition caused by NBTI. The P2Y-purinoceptor antagonist, cibacron blue 3GA (100 microM) increased evoked noradrenaline overflow as did suramin, a non-selective P2-antagonist. 4. It is concluded that, in rat tail artery, inhibitory (A1 and P2Y) and facilitatory (A2A) purinoceptors are present and modulate noradrenaline release evoked by electrical stimulation. Endogenous purines tonically modulate noradrenaline release through activation of inhibitory P2Y and facilitatory A2A purinoceptors, whereas a tonic activation of inhibitory A1 purinoceptors seems to be prevented by adenosine uptake. PMID:8825357

  16. Neurogenic mediators contribute to local edema induced by Micrurus lemniscatus venom

    PubMed Central

    2017-01-01

    Background/Aims Micrurus is one of the four snake genera of medical importance in Brazil. Coral snakes have a broad geographic distribution from the southern United States to Argentina. Micrurine envenomation is characterized by neurotoxic symptoms leading to dyspnea and death. Moreover, various local manifestations, including edema formation, have been described in patients bitten by different species of Micrurus. Thus, we investigated the ability of Micrurus lemniscatus venom (MLV) to induce local edema. We also explored mechanisms underlying this effect, focusing on participation of neuropeptides and mast cells. Methodology/Principal findings Intraplantar injection of MLV (1–10 μg/paw) in rats caused dose- and time-dependent edema with a peak between 15 min and 1 h after injection. MLV also induced degranulation of peritoneal mast cells (MCs). MC depletion by compound 48/80 markedly reduced MLV-induced edema. Pre-treatment (30 min) of rats with either promethazine a histamine H1 receptor antagonist or methysergide, a nonselective 5-HT receptor antagonist, reduced MLV-induced edema. However, neither thioperamide, a histamine H3/H4 receptor antagonist, nor co-injection of MLV with HOE-140, a BK2 receptor antagonist, altered the response. Depletion of neuropeptides by capsaicin or treatment of animals with NK1- and NK2-receptor antagonists (SR 140333 and SR 48968, respectively) markedly reduced MLV-induced edema. Conclusions/Significance In conclusion, MLV induces paw edema in rats by mechanisms involving activation of mast cells and substance P-releasing sensory C-fibers. Tachykinins NKA and NKB, histamine, and serotonin are major mediators of the MLV-induced edematogenic response. Targeting mast cell- and sensory C-fiber-derived mediators should be considered as potential therapeutic approaches to interrupt development of local edema induced by Micrurus venoms. PMID:29161255

  17. Sigma1 receptor antagonists determine the behavioral pattern of the methamphetamine-induced stereotypy in mice

    PubMed Central

    Kitanaka, J.; Kitanaka, N.; Tatsuta, T.; Hall, F.S.; Uhl, G.R.; Tanaka, K.; Nishiyama, N.; Morita, Y.; Takemura, M.

    2011-01-01

    Objective The effects of sigma receptor antagonists on methamphetamine (METH)-induced stereotypy have not been examined. We examined the effects of sigma antagonists on METH-induced stereotypy in mice. Results The administration of METH (10 mg/kg) to male ddY mice induced stereotyped behavior consisting of biting (90.1%), sniffing (4.2%), head bobbing (4.1%), and circling (1.7%) during an observation period of 1 h. Pretreatment of the mice with BMY 14802 (α-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperazinebutanol; 1, 5, and 10 mg/kg), a non-specific sigma receptor antagonist, significantly increased METH-induced sniffing (19.2, 30.5, and 43.8% of total stereotypical behavior) but decreased biting (76.6, 66.9, and 49.3% of total stereotypical behavior) in a dose-dependent manner. This response was completely abolished by (+)-SKF 10,047 ([2S-(2α,6α,11R)]-1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(2-propenyl)-2,6-methano-3-benzazocin-8-ol; 4 and 10 mg/kg), a putative sigma1 receptor agonist, and partially by PB 28 (1-cyclohexyl-4-[3-(1,2,3,4-tetrahydro-5-methoxy-1-naphthalen-1-yl)-n-propyl]piperazine; 1 and 10 mg/kg), a putative sigma2 receptor agonist. The BMY 14802 action on METH-induced stereotypy was mimicked by BD 1047 (N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine; 10 mg/kg), a putative sigma1 receptor antagonist, but not by SM-21 ((±)-tropanyl 2-(4-chlorophenoxy)butanoate; 1 mg/kg), a putative sigma2 receptor antagonist. The BD 1047 effect on METH-induced stereotypy was also abolished completely by (+)-SKF 10,047 and partially by PB 28. The overall frequency of METH-induced stereotypical behavior was unchanged with these sigma receptor ligands, despite the alteration in particular behavioral patterns. The BMY 14802 action on METH-induced stereotypy was unaffected by pretreatment with centrally acting histamine H1 receptor antagonists (pyrilamine or ketotifen, 10 mg/kg), suggesting that these effects are independent of histamine H1 receptor signaling systems. Conclusion In summary, modulation of central sigma1 receptors alters the pattern of METH-induced stereotypy, producing a shift from stereotypical biting to stereotypical sniffing, without affecting the overall frequency of stereotypical behavior. PMID:19052726

  18. Dopamine D3 and D2 Receptor Mechanisms in the Abuse-Related Behavioral Effects of Cocaine: Studies with Preferential Antagonists in Squirrel Monkeys

    PubMed Central

    Grundt, Peter; Cao, Jianjing; Platt, Donna M.; Newman, Amy Hauck; Spealman, Roger D.

    2010-01-01

    Dopamine (DA) D3 and D2 receptor mechanisms are implicated in cocaine's abuse-related behavioral effects, but the relative contribution of the two receptor subtypes is only partially characterized. This study investigated the role of D3 and D2 subtype mechanisms by determining the degree to which the D3-preferring antagonist PG01037 [N-{4-[4-(2,3-dichlorophenyl)-piperazin- 1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl] and the D2-preferring antagonist L-741626 [3-[4-(4-chlorophenyl)-4- hydroxypiperidin-1-yl]methyl-1H-indole] attenuated several behavioral effects of cocaine in squirrel monkeys. Quantitative observational studies established doses of each antagonist that did not produce untoward effects, which were used in subsequent comparisons. In addition, the ability of the D3-preferring agonist PD128907 [(R-(+)-trans-3,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol)] and the D2-preferring agonist sumanirole [(R)-5,6-dihydro-5-(methylamino)-4H- imidazo[4,5,1-ij]quinolin-2(1H)-one(Z)-2-butenedioate] to reproduce cocaine's discriminative stimulus (DS) and priming effects were compared. In monkeys trained to discriminate cocaine from vehicle, both DA antagonists attenuated and both DA agonists partially reproduced cocaine's DS effects. PG01037 also selectively attenuated the cocaine-like DS effects of PD128907, whereas L-741626 attenuated the cocaine-like DS effects of both agonists. In self-administration studies, L-741626 nonselectively reduced cocaine- and food-maintained responding, whereas PG01037 was ineffective against either reinforcer. In studies involving reinstatement of extinguished cocaine seeking, both antagonists attenuated cocaine-induced reinstatement of responding, and both agonists induced at least partial reinstatement of cocaine seeking. L-741626 also attenuated sumanirole-induced, but not PD128907-induced, reinstatement of responding, whereas PG01037 was ineffective against either DA agonist. The results are consistent with a role for D3 and D2 receptor mechanisms in cocaine's DS effects and cocaine-induced reinstatement of drug seeking, but provide no evidence for a major role of D3 receptors in the direct reinforcing effects of cocaine. PMID:20494958

  19. Design of Phthalazinone Amide Histamine H1 Receptor Antagonists for Use in Rhinitis

    PubMed Central

    2017-01-01

    The synthesis of potent amide-containing phthalazinone H1 histamine receptor antagonists is described. Three analogues 3e, 3g, and 9g were equipotent with azelastine and were longer-acting in vitro. Amide 3g had low oral bioavailability, low brain-penetration, high metabolic clearance, and long duration of action in vivo, and it was suitable for once-daily dosing intranasally, with a predicted dose for humans of approximately 0.5 mg per day. PMID:28523114

  20. Investigation on Quantitative Structure Activity Relationships and Pharmacophore Modeling of a Series of mGluR2 Antagonists

    PubMed Central

    Zhang, Meng-Qi; Zhang, Xiao-Le; Li, Yan; Fan, Wen-Jia; Wang, Yong-Hua; Hao, Ming; Zhang, Shu-Wei; Ai, Chun-Zhi

    2011-01-01

    MGluR2 is G protein-coupled receptor that is targeted for diseases like anxiety, depression, Parkinson’s disease and schizophrenia. Herein, we report the three-dimensional quantitative structure–activity relationship (3D-QSAR) studies of a series of 1,3-dihydrobenzo[ b][1,4]diazepin-2-one derivatives as mGluR2 antagonists. Two series of models using two different activities of the antagonists against rat mGluR2, which has been shown to be very similar to the human mGluR2, (activity I: inhibition of [3H]-LY354740; activity II: mGluR2 (1S,3R)-ACPD inhibition of forskolin stimulated cAMP.) were derived from datasets composed of 137 and 69 molecules respectively. For activity I study, the best predictive model obtained from CoMFA analysis yielded a Q2 of 0.513, R2 ncv of 0.868, R2 pred = 0.876, while the CoMSIA model yielded a Q2 of 0.450, R2 ncv = 0.899, R2 pred = 0.735. For activity II study, CoMFA model yielded statistics of Q2 = 0.5, R2 ncv = 0.715, R2 pred = 0.723. These results prove the high predictability of the models. Furthermore, a combined analysis between the CoMFA, CoMSIA contour maps shows that: (1) Bulky substituents in R7, R3 and position A benefit activity I of the antagonists, but decrease it when projected in R8 and position B; (2) Hydrophilic groups at position A and B increase both antagonistic activity I and II; (3) Electrostatic field plays an essential rule in the variance of activity II. In search for more potent mGluR2 antagonists, two pharmacophore models were developed separately for the two activities. The first model reveals six pharmacophoric features, namely an aromatic center, two hydrophobic centers, an H-donor atom, an H-acceptor atom and an H-donor site. The second model shares all features of the first one and has an additional acceptor site, a positive N and an aromatic center. These models can be used as guidance for the development of new mGluR2 antagonists of high activity and selectivity. This work is the first report on 3D-QSAR modeling of these mGluR2 antagonists. All the conclusions may lead to a better understanding of the mechanism of antagonism and be helpful in the design of new potent mGluR2 antagonists. PMID:22016641

  1. Investigation on quantitative structure activity relationships and pharmacophore modeling of a series of mGluR2 antagonists.

    PubMed

    Zhang, Meng-Qi; Zhang, Xiao-Le; Li, Yan; Fan, Wen-Jia; Wang, Yong-Hua; Hao, Ming; Zhang, Shu-Wei; Ai, Chun-Zhi

    2011-01-01

    MGluR2 is G protein-coupled receptor that is targeted for diseases like anxiety, depression, Parkinson's disease and schizophrenia. Herein, we report the three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of a series of 1,3-dihydrobenzo[ b][1,4]diazepin-2-one derivatives as mGluR2 antagonists. Two series of models using two different activities of the antagonists against rat mGluR2, which has been shown to be very similar to the human mGluR2, (activity I: inhibition of [(3)H]-LY354740; activity II: mGluR2 (1S,3R)-ACPD inhibition of forskolin stimulated cAMP.) were derived from datasets composed of 137 and 69 molecules respectively. For activity I study, the best predictive model obtained from CoMFA analysis yielded a Q(2) of 0.513, R(2) (ncv) of 0.868, R(2) (pred) = 0.876, while the CoMSIA model yielded a Q(2) of 0.450, R(2) (ncv) = 0.899, R(2) (pred) = 0.735. For activity II study, CoMFA model yielded statistics of Q(2) = 0.5, R(2) (ncv) = 0.715, R(2) (pred) = 0.723. These results prove the high predictability of the models. Furthermore, a combined analysis between the CoMFA, CoMSIA contour maps shows that: (1) Bulky substituents in R(7), R(3) and position A benefit activity I of the antagonists, but decrease it when projected in R(8) and position B; (2) Hydrophilic groups at position A and B increase both antagonistic activity I and II; (3) Electrostatic field plays an essential rule in the variance of activity II. In search for more potent mGluR2 antagonists, two pharmacophore models were developed separately for the two activities. The first model reveals six pharmacophoric features, namely an aromatic center, two hydrophobic centers, an H-donor atom, an H-acceptor atom and an H-donor site. The second model shares all features of the first one and has an additional acceptor site, a positive N and an aromatic center. These models can be used as guidance for the development of new mGluR2 antagonists of high activity and selectivity. This work is the first report on 3D-QSAR modeling of these mGluR2 antagonists. All the conclusions may lead to a better understanding of the mechanism of antagonism and be helpful in the design of new potent mGluR2 antagonists.

  2. Decreased agonist sensitivity of human GABA(A) receptors by an amino acid variant, isoleucine to valine, in the alpha1 subunit.

    PubMed

    Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nabekura, J; Noguchi, K; Akaike, N; Witt, M R; Nielsen, M

    1997-06-25

    Recombinant human GABA(A) receptors were investigated in vitro by coexpression of cDNAs coding for alpha1, beta2, and gamma2 subunits in the baculovirus/Sf-9 insect cell system. We report that a single amino acid exchange (isoleucine 121 to valine 121) in the N-terminal, extracellular part of the alpha1 subunit induces a marked decrease in agonist GABA(A) receptor ligand sensitivity. The potency of muscimol and GABA to inhibit the binding of the GABA(A) receptor antagonist [3H]SR 95531 (2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide) was higher in receptor complexes of alpha1(ile 121) beta2gamma2 than in those of alpha1(val 121) beta2gamma2 (IC50 values were 32-fold and 26-fold lower for muscimol and GABA, respectively). The apparent affinity of the GABA(A) receptor antagonist bicuculline methiodide to inhibit the binding of [3H]SR 95531 did not differ between the two receptor complex variants. Electrophysiological measurements of GABA induced whole-cell Cl- currents showed a ten-fold decrease in the GABA(A) receptor sensitivity of alpha1 (val 121) beta2gamma2 as compared to alpha1(ile 121) beta2gamma2 receptor complexes. Thus, a relatively small change in the primary structure of the alpha1 subunit leads to a decrease selective for GABA(A) receptor sensitivity to agonist ligands, since no changes were observed in a GABA(A) receptor antagonist affinity and benzodiazepine receptor binding.

  3. Endometrial thickness affects the outcome of in vitro fertilization and embryo transfer in normal responders after GnRH antagonist administration.

    PubMed

    Wu, Yu; Gao, Xiaohong; Lu, Xiang; Xi, Ji; Jiang, Shan; Sun, Yin; Xi, Xiaowei

    2014-10-09

    The goal of this study was to assess the association between endometrial thickness on the chorionic gonadotropin (hCG) day and in vitro fertilization and embryo transfer (IVF-ET) outcome in normal responders after GnRH antagonist administration. A retrospective cohort study was performed in normal responders with GnRH antagonist administration from January 2011-December 2013. Patients were divided into four groups according to endometrial thickness, as follows: <7 mm (group 1), > = 7- < 8 mm (group 2), > = 8- < 14 mm (group 3), and > =14 mm (group 4). A total of 2106 embryo transfer cycles were analyzed. The pregnancy rate (PR) was 44.87%.The clinical pregnancy rate, ongoing pregnancy rate and the implantation rate (17.28%, 13.79%, 10.17%, respectively) were significantly lower in group 1 compared to the other three groups (p < 0.05). The miscarriage rate was higher in patients with endometrial thickness less than 7 mm. The clinical pregnancy rate, ongoing pregnancy rate and implantation rate were highest in patients with endometrial thickness higher than 14 mm, but showed no difference in patients with those of endometrial thickness between 8-14 mm. There is a correlation between endometrial thickness measured on hCG day and clinical outcome in normal responders with GnRH antagonist administration. The pregnancy rate was lower in patients with endometrial thickness less than 7 mm compared with patients with endometrial thickness more than 7 mm.

  4. Opposing effects of AMPA and 5-HT1A receptor blockade on passive avoidance and object recognition performance: correlation with AMPA receptor subunit expression in rat hippocampus.

    PubMed

    Schiapparelli, L; Simón, A M; Del Río, J; Frechilla, D

    2006-06-01

    It has been suggested that antagonists at serotonin 5-HT1A receptors may exert a procognitive effect by facilitating glutamatergic neurotransmission. Here we further explored this issue by looking for the ability of a 5-HT1A antagonist to prevent the learning deficit induced by AMPA receptor blockade in two behavioural procedures in rats, and for concomitant molecular changes presumably involved in memory formation in the hippocampus. Pretraining administration of the competitive AMPA receptor antagonist, NBQX, produced a dose-related retention impairment in a passive avoidance task 24h later, and also impaired retention in a novel object recognition test when an intertrial interval of 3h was selected. Pretreatment with the selective 5-HT1A receptor antagonist, WAY-100635, prevented the learning deficit induced by NBQX in the two behavioural procedures. In biochemical studies performed on rat hippocampus after the retention tests, we found that learning increased the membrane levels of AMPA receptor GluR1 and GluR2/3 subunits, as well as the phosphorylated forms of GluR1, effects that were abolished by NBQX administration before the training session. Pretreatment with WAY-100635 counteracted the NBQX effects and restored the initial learning-specific increase in Ca2+/calmodulin-dependent protein kinase II (CaMKII) function and the later increase in GluR2/3 and phosphorylated GluR1 surface expression. Moreover, administration of WAY-100635 before object recognition training improved recognition memory 24h later and potentiated the learning-associated increase in AMPA receptor subunits. The results support the proposed utility of 5-HT1A antagonists in the treatment of cognitive disorders.

  5. Progress in the development of histamine H3 receptor antagonists/inverse agonists: a patent review (2013-2017).

    PubMed

    Łażewska, Dorota; Kieć-Kononowicz, Katarzyna

    2018-03-01

    Since years, ligands blocking histamine H 3 receptor (H 3 R) activity (antagonists/inverse agonists) are interesting targets in the search for new cures for CNS disorders. Intensive works done by academic and pharmaceutical company researchers have led to many potent and selective H 3 R antagonists/inverse agonists. Some of them have reached to clinical trials. Areas covered: Patent applications from January 2013 to September 2017 and the most important topics connected with H 3 R field are analysed. Espacenet, Patentscope, Pubmed, GoogleScholar or Cochrane Library online databases were principially used to collect all the materials. Expert opinion: The research interest in histamine H 3 R field is still high although the number of patent applications has decreased during the past 4 years (around 20 publications). Complexity of histamine H 3 R biology e.g. many isoforms, constitutive activity, heteromerization with other receptors (dopamine D 2 , D 1 , adenosine A 2A ) and pharmacology make not easy realization and evaluation of therapeutic potential of anti-H 3 R ligands. First results from clinical trials have verified potential utility of histamine H 3 R antagonist/inverse agonists in some diseases. However, more studies are necessary for better understanding of an involvement of the histaminergic system in CNS-related disorders and helping more ligands approach to clinical trials and the market. Lists of abbreviations: hAChEI - human acetylcholinesterase inhibitor; hBuChEI - human butyrylcholinesterase inhibitor; hMAO - human monoamine oxidase; MAO - monoamine oxidase.

  6. Characterization of bradykinin receptors in human lung fibroblasts using the binding of 3[H][Des-Arg10,Leu9]kallidin and [3H]NPC17731.

    PubMed

    Zhang, S P; Codd, E E

    1998-01-01

    Bradykinin (BK) receptors are involved in pain and inflammation. Two BK receptor subtypes, B1 and B2, have been defined based on their pharmacological properties. Both B1 and B2 receptors are G-protein coupled membrane receptors. B1 receptors are present in smooth muscle tissue, whereas B2 receptors are found in both smooth muscle tissue and neurons. [Des-Arg10,Leu9]kallidin (DALKD) is a selective B1 receptor antagonist, and NPC17731 is a selective B2 receptor antagonist. To develop binding assays for the two known BK receptor subtypes, [3H]DALKD and [3H]NPC17731 were used as selective ligands for B1 and B2 receptors respectively. Both ligands bound to the CCD-16 human lung fibroblast membranes reaching equilibrium at 25 degrees C within 30 min. Binding was stable for at least 60 min. The Kd of [3H]DALKD was 0.33 nM and Bmax was 52 fmol/mg membrane protein. The Kd of [3H]NPC17731 was 0.39 nM and Bmax was 700 fmol/mg membrane protein. Competition for [3H]DALKD binding with BK receptor agonists was in the order: [des-Arg10]KD (DAKD) > KD > [des-Arg9]BK (DABK) > BK, and competition for [3H]DALKD binding with BK receptor antagonists was in the order: DALKD > [des-Arg10]Hoe 140 (DAHoe 140) > [des-Arg9,Leu8]BK (DALBK) > NPC17731 > Hoe 140 > DNMFBK, suggesting that [3H]DALKD bound selectively to B1 receptors. By contrast, competition for [3H]NPC17731 binding by BK agonists was in the order: BK > KD > DAKD > DABK, and competition for [3H]NPC17731 binding by BK antagonists was in the order: NPC17731 = Hoe 140 > DNMFBK > DAHoe 140 > DALBK > DALKD, indicating that [3H]NPC17731 labeled B2 receptors selectively. These results demonstrate that [3H]DALKD and [3H]NPC17731 can be used with CCD-16 human lung fibroblast membranes to provide a pair of binding assays for the simultaneous evaluation of B1 and B2 BK receptor subtypes.

  7. General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions.

    PubMed

    Miner, Patricia; Shimonova, Lyudmila; Khaimov, Arthur; Borukhova, Yaffa; Ilyayeva, Ester; Ranaldi, Robert; Bodnar, Richard J

    2012-03-14

    Food intake is significantly increased following administration of agonists of GABA and opioid receptors into the nucleus accumbens shell (NACs) and ventral tegmental area (VTA). GABA-A or GABA-B receptor antagonist pretreatment within the VTA or NACs differentially affects mu-opioid agonist-induced feeding elicited from the same site. Correspondingly, general or selective opioid receptor antagonist pretreatment within the VTA or NACs differentially affects GABA agonist-induced feeding elicited from the same site. Regional interactions have been evaluated in feeding studies by administering antagonists in one site prior to agonist administration in a second site. Thus, opioid antagonist-opioid agonist and GABA antagonist-GABA agonist feeding interactions have been identified between the VTA and NACs. However, pretreatment with GABA-A or GABA-B receptor antagonists in the VTA failed to affect mu opioid agonist-induced feeding elicited from the NACs, and correspondingly, these antagonists administered in the NACs failed to affect mu opioid-induced feeding elicited from the VTA. To evaluate whether regional and reciprocal VTA and NACs feeding interactions occur for opioid receptor modulation of GABA agonist-mediated feeding, the present study examined whether feeding elicited by the GABA-B agonist, baclofen microinjected into the NACs was dose-dependently blocked by pretreatment with general (naltrexone: NTX), mu (beta-funaltrexamine: BFNA), kappa (nor-binaltorphamine: NBNI) or delta (naltrindole: NTI) opioid antagonists in the VTA, and correspondingly, whether VTA baclofen-induced feeding was dose-dependently blocked by NACs pretreatment with NTX, BFNA, NBNI or NTI in rats. Bilateral pairs of cannulae aimed at the VTA and NACs were stereotaxically implanted in rats, and their food intakes were assessed following vehicle and baclofen (200 ng) in each site. Baclofen produced similar magnitudes of increased food intake following VTA and NACs treatment. Baclofen administration in the VTA or NACs was also preceded by administration of NTX (0.1, 1, 5 μg, 0.5 h), BFNA (0.4, 4 μg, 24 h), NBNI (0.6, 6 μg, 0.5 h) or NTI (0.4, 4 μg, 0.5 h) into the other site with intake measured 1, 2 and 4 h after agonist treatment. VTA NTX significantly reduced NACs baclofen-induced feeding. Correspondingly, NACs NTX significantly reduced VTA baclofen-induced feeding, indicating a robust and bidirectional general opioid and GABA-B receptor feeding interaction. Whereas the high, but not low VTA BFNA dose reduced NACs baclofen-induced feeding, NACs BFNA failed to affect VTA baclofen-induced feeding, indicating a unidirectional mu opioid and GABA-B receptor feeding interaction. Whereas VTA NBNI at both doses reduced NACs baclofen-induced feeding, the high, but not low NACs NBNI dose significantly reduced VTA baclofen-induced feeding, indicating a bidirectional kappa opioid and GABA-B receptor feeding interaction. Whereas VTA NTI only transiently reduced NACs baclofen-induced feeding, NACs NTI failed to affect VTA baclofen-induced feeding, indicating a weak unidirectional delta opioid and GABA-B receptor interaction. Whereas administration of NTX or BFNA into the NACs or VTA marginally reduced spontaneous food intake, NBNI or NTI into the same sites failed to alter food intake alone. Therefore, the present study suggests that GABA employs a distributed brain network in mediating its ingestive effects that is dependent upon intact opioid receptor signaling with kappa opioid receptors more involved than mu and delta opioid receptors underlying these regional effects. An alternative hypothesis to be considered is that these effects could be the sum of two independent drug effects (opioid antagonists decreasing and baclofen increasing food intake). Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Synthesis and SAR of highly potent and selective dopamine D3-receptor antagonists: variations on the 1H-pyrimidin-2-one theme.

    PubMed

    Geneste, Hervé; Amberg, Wilhelm; Backfisch, Gisela; Beyerbach, Armin; Braje, Wilfried M; Delzer, Jürgen; Haupt, Andreas; Hutchins, Charles W; King, Linda L; Sauer, Daryl R; Unger, Liliane; Wernet, Wolfgang

    2006-04-01

    In our efforts to further pursue one of the most selective dopamine D(3)-receptor antagonists reported to date, we now describe the synthesis and SAR of novel and highly selective dopamine D(3) antagonists based on a 1H-pyridin-2-one or on a urea scaffold. The most potent compounds exhibited K(i) values toward the D(3) receptor in the nano- to subnanomolar range and high selectivity versus the related D(2) dopamine receptor. Thus, 1H-pyridin-2-one 7b displays oral bioavailability (F=37%) as well as brain penetration (brain plasma ratio 3.7) in rat. Within the urea series, an excellent D(3) versus D(2) selectivity (>100-fold) could be achieved by removal of one NH group (compound 6), although bioavailability (rat) was suboptimal (F<10%). These data significantly enhance our understanding of the D(3) pharmacophore and are expected to lead to novel approaches for the treatment of schizophrenia.

  9. Dopamine receptor antagonists as new mode-of-action insecticide leads for control of Aedes and Culex mosquito vectors.

    PubMed

    Nuss, Andrew B; Ejendal, Karin F K; Doyle, Trevor B; Meyer, Jason M; Lang, Emma G; Watts, Val J; Hill, Catherine A

    2015-03-01

    New mode-of-action insecticides are sought to provide continued control of pesticide resistant arthropod vectors of neglected tropical diseases (NTDs). We previously identified antagonists of the AaDOP2 D1-like dopamine receptor (DAR) from the yellow fever mosquito, Aedes aegypti, with toxicity to Ae. aegypti larvae as leads for novel insecticides. To extend DAR-based insecticide discovery, we evaluated the molecular and pharmacological characteristics of an orthologous DAR target, CqDOP2, from Culex quinquefasciatus, the vector of lymphatic filariasis and West Nile virus. CqDOP2 has 94.7% amino acid identity to AaDOP2 and 28.3% identity to the human D1-like DAR, hD1. CqDOP2 and AaDOP2 exhibited similar pharmacological responses to biogenic amines and DAR antagonists in cell-based assays. The antagonists amitriptyline, amperozide, asenapine, chlorpromazine and doxepin were between 35 to 227-fold more selective at inhibiting the response of CqDOP2 and AaDOP2 in comparison to hD1. Antagonists were toxic to both C. quinquefasciatus and Ae. aegypti larvae, with LC50 values ranging from 41 to 208 μM 72 h post-exposure. Orthologous DOP2 receptors identified from the African malaria mosquito, Anopheles gambiae, the sand fly, Phlebotomus papatasi and the tsetse fly, Glossina morsitans, had high sequence similarity to CqDOP2 and AaDOP2. DAR antagonists represent a putative new insecticide class with activity against C. quinquefasciatus and Ae. aegypti, the two most important mosquito vectors of NTDs. There has been limited change in the sequence and pharmacological properties of the DOP2 DARs of these species since divergence of the tribes Culicini and Aedini. We identified antagonists selective for mosquito versus human DARs and observed a correlation between DAR pharmacology and the in vivo larval toxicity of antagonists. These data demonstrate that sequence similarity can be predictive of target potential. On this basis, we propose expanded insecticide discovery around orthologous DOP2 targets from additional dipteran vectors.

  10. Substance P-induced inflammatory responses in guinea-pig skin: the effect of specific NK1 receptor antagonists and the role of endogenous mediators.

    PubMed Central

    Walsh, D T; Weg, V B; Williams, T J; Nourshargh, S

    1995-01-01

    1. The sensory neuropeptide substance P (SP), when released from sensory nerves, has been implicated in the development of neurogenic inflammation. In the present study, using an in vivo model system, we have characterized and investigated the mechanisms underlying SP-induced leukocyte accumulation and oedema formation in the guinea-pig. 2. Intradermally injected SP (i.d., 10(-13) - 10(-9) mol per site), induced a dose- and time-dependent accumulation of 111In-neutrophils, 111In-eosinophils and oedema formation as measured by the local accumulation of i.v. injected 125I-albumin. The leukocyte accumulation evoked by SP was significant at 10(-10) and 10(-9) mol per site, whereas oedema formation was significant at the lowest dose tested (10(-13) mol per site). 3. The NK1 receptor antagonists, CP-96,345 (1 mg kg-1, i.v.) and RP-67,580 (10 micrograms per site, i.d.), significantly attenuated the oedema formation induced by the lower doses of SP. Oedema formation and leukocyte accumulation induced by 10(-9) mol per site SP were unaffected by either antagonist. 4. SP-elicited responses were not significantly affected by the platelet activating factor (PAF) receptor antagonist, UK-74,505 (2.5 mg kg-1, i.v.) or the H1 histamine receptor antagonist, chlorpheniramine (10(-8) mol per site, i.d.). However, the 111In-eosinophil accumulation, but not the 111In-neutrophil accumulation or oedema formation, induced by SP was significantly inhibited by the specific 5-lipoxygenase (5-LO) inhibitor, ZM-230,487 (10(-8) mol per site, i.d.).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7541689

  11. Novel long‐acting antagonists of muscarinic ACh receptors

    PubMed Central

    Randáková, Alena; Rudajev, Vladimír; Doležal, Vladimír; Boulos, John

    2018-01-01

    Background and Purpose The aim of this study was to develop potent and long‐acting antagonists of muscarinic ACh receptors. The 4‐hexyloxy and 4‐butyloxy derivatives of 1‐[2‐(4‐oxidobenzoyloxy)ethyl]‐1,2,3,6‐tetrahydropyridin‐1‐ium were synthesized and tested for biological activity. Antagonists with long‐residence time at receptors are therapeutic targets for the treatment of several neurological and psychiatric human diseases. Their long‐acting effects allow for reduced daily doses and adverse effects. Experimental Approach The binding and antagonism of functional responses to the agonist carbachol mediated by 4‐hexyloxy compounds were investigated in CHO cells expressing individual subtypes of muscarinic receptors and compared with 4‐butyloxy analogues. Key Results The 4‐hexyloxy derivatives were found to bind muscarinic receptors with micromolar affinity and antagonized the functional response to carbachol with a potency ranging from 30 nM at M1 to 4 μM at M3 receptors. Under washing conditions to reverse antagonism, the half‐life of their antagonistic action ranged from 1.7 h at M2 to 5 h at M5 receptors. Conclusions and Implications The 4‐hexyloxy derivatives were found to be potent long‐acting M1‐preferring antagonists. In view of current literature, M1‐selective antagonists may have therapeutic potential for striatal cholinergic dystonia, delaying epileptic seizure after organophosphate intoxication or relieving depression. These compounds may also serve as a tool for research into cognitive deficits. PMID:29498041

  12. Synthesis and SAR studies of novel 2-(6-aminomethylaryl-2-aryl-4-oxo-quinazolin-3(4H)-yl)acetamide vasopressin V1b receptor antagonists.

    PubMed

    Napier, Susan E; Letourneau, Jeffrey J; Ansari, Nasrin; Auld, Douglas S; Baker, James; Best, Stuart; Campbell-Wan, Leigh; Chan, Ray; Craighead, Mark; Desai, Hema; Ho, Koc-Kan; MacSweeney, Cliona; Milne, Rachel; Richard Morphy, J; Neagu, Irina; Ohlmeyer, Michael H J; Pick, Jack; Presland, Jeremy; Riviello, Chris; Zanetakos, Heather A; Zhao, Jiuqiao; Webb, Maria L

    2011-06-15

    Synthesis and structure-activity relationships (SAR) of a novel series of vasopressin V(1b) antagonists are described. 2-(6-Aminomethylaryl-2-aryl-4-oxo-quinazolin-3(4H)-yl)acetamide have been identified with low nanomolar affinity for the V(1b) receptor and good selectivity with respect to related receptors V(1a), V(2) and OT. Optimised compound 16 shows a good pharmacokinetic profile and activity in a mechanistic model of HPA dysfunction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Investigation of the mechanisms underlying the hypophagic effects of the 5-HT and noradrenaline reuptake inhibitor, sibutramine, in the rat

    PubMed Central

    Jackson, Helen C; Bearham, M Clair; Hutchins, Lisa J; Mazurkiewicz, Sarah E; Needham, Andrew M; Heal, David J

    1997-01-01

    Sibutramine is a novel 5-hydroxytryptamine (5-HT) and noradrenaline reuptake inhibitor (serotonin- noradrenaline reuptake inhibitor, SNRI) which is currently being developed as a treatment for obesity. Sibutramine has been shown to decrease food intake in the rat. In this study we have used a variety of monoamine receptor antagonists to examine the pharmacological mechanisms underlying sibutramine-induced hypophagia. Individually-housed male Sprague-Dawley rats were maintained on reversed phase lighting with free access to food and water. Drugs were administered at 09 h 00 min and food intake was monitored over the following 8 h dark period. Sibutramine (10 mg kg−1, p.o.) produced a significant decrease in food intake during the 8 h following drug administration. This hypophagic response was fully antagonized by the α1-adrenoceptor antagonist, prazosin (0.3 and 1 mg kg−1, i.p.), and partially antagonized by the β1-adrenoceptor antagonist, metoprolol (3 and 10 mg kg−1, i.p.) and the 5-HT receptor antagonists, metergoline (non-selective; 0.3 mg kg−1, i.p.); ritanserin (5-HT2A/2C; 0.1 and 0.5 mg kg−1, i.p.) and SB200646 (5-HT2B/2C; 20 and 40 mg kg−1, p.o.). By contrast, the α2-adrenoceptor antagonist, RX821002 (0.3 and 1 mg kg−1, i.p.) and the β2-adrenoceptor antagonist, ICI 118,551 (3 and 10 mg kg−1, i.p.) did not reduce the decrease in food intake induced by sibutramine. These results demonstrate that β1-adrenoceptors, 5-HT2A/2C-receptors and particularly α1-adrenoceptors, are involved in the effects of sibutramine on food intake and are consistent with the hypothesis that sibutramine-induced hypophagia is related to its ability to inhibit the reuptake of both noradrenaline and 5-HT, with the subsequent activation of a variety of noradrenaline and 5-HT receptor systems. PMID:9283694

  14. Effects of the H3 Antagonist, Thioperamide, on Behavioral Alterations Induced by Systemic MK-801 Administration in Rats

    PubMed Central

    Bardgett, Mark E.; Points, Megan; Roflow, John; Blankenship, Meredith; Griffith, Molly S.

    2009-01-01

    Rationale Recent studies have raised the possibility that antagonists of H3 histamine receptors possess cognitive-enhancing and antipsychotic properties. However, little work has assessed these compounds in classic animal models of schizophrenia. Objectives The purpose of this study was to determine if a prototypical H3 antagonist, thioperamide, could alter behavioral deficits caused by the NMDA receptor antagonist, MK-801, in adult male rats. MK-801 was chosen for study since it produces a state of NMDA receptor hypofunction in rats that may be analogous to the one hypothesized to occur in schizophrenia. Methods The interaction between thioperamide and MK-801 was measured in three behavioral tests: locomotor activity, prepulse inhibition (PPI), and delayed spatial alternation. In each test, rats received a subcutaneous injection of saline or thioperamide (3.0 & 10 mg/kg) followed 20 minutes later by a subcutaneous injection of saline or MK-801 (0.05, 0.10, & 0.30 mg/kg). Results Locomotor activity was significantly elevated by MK-801 in a dose-dependent manner. Thioperamide pretreatment alone did not alter locomotor activity, however its impact on MK-801 was dose-dependent. Each thioperamide dose enhanced the effects of two lower doses of MK801 but reduced the effect of a higher MK-801 dose. Clear deficits in PPI and delayed spatial alternation were produced by MK-801 treatment, but neither impairment was significantly modified by thioperamide pretreatment. Conclusions H3 receptors modulate responses to NMDA antagonists in behaviorally-specific ways and dependent upon the level of NMDA receptor blockade. PMID:19466392

  15. The effects of a 5-HT2 receptor antagonist (ICI 169,369) on changes in waking EEG, pupillary responses and state of arousal in human volunteers.

    PubMed Central

    Millson, D S; Haworth, S J; Rushton, A; Wilkinson, D; Hobson, S; Harry, J

    1991-01-01

    1. ICI 169,369 (2-(2-dimethylamino ethylthio)-3-phenyl quinoline) is a potent selective competitive antagonist of the 5-HT2 receptor in animal models. Effects of ICI 169,369 as single oral doses (80 and 120 mg) separated by 1 week, on the power spectrum of waking EEG, dark adapted pupil responses and sedation score, were studied in a double-blind, placebo controlled, randomised cross over within subject comparison, in six healthy male volunteers. 2. Pupillary responses were measured using a portable infrared pupillometer following 15 min dark adaptation, assessing resting vertical pupil diameter (RPD), light constricted diameter (MPD) and recovered final diameter (FPD) at the end of a 3 s measurement cycle. 3. Both doses of ICI 169,369 produced a mean 36% (range 10-54%) decrease in log 10 power of the waking EEG alpha activity with eyes closed (P less than 0.02), and mean 38% (range 2-86%) increase in theta activity at 2 h compared with placebo. 4. Both 80 and 120 mg doses of ICI 169,369 reduced RPD by approximately 30% from a predose value of 6.25 mm (+/- 0.87; 95% CI) and from placebo values 6.41 mm (+/- 1.06) and 7.48 mm (+/- 1.49) at 3 and 5 h after dosing. MPD was reduced by 50% with the 120 mg dose at 5 h after dosing (placebo 5.2 mm; ICI 169,369 2.7 mm; P less than 0.05). FPD was significantly reduced (P less than 0.01) by both doses at 3 h after dosing.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1958438

  16. 2-(3-Fluoro-4-methylsulfonylaminophenyl) Propanamides as Potent Transient Receptor Potential Vanilloid 1 (TRPV1) Antagonists: Structure Activity Relationships of 2-Amino Derivatives in the N-(6-trifluoromethyl-pyridin-3-ylmethyl) C-region

    PubMed Central

    Kim, Myeong Seop; Ryu, HyungChul; Kang, Dong Wook; Cho, Seong-Hee; Seo, Sejin; Park, Young Soo; Kim, Mi-Yeon; Kwak, Eun Joo; Kim, Yong Soo; Bhondwe, Rahul S.; Kim, Ho Shin; Park, Seul-gi; Son, Karam; Choi, Sun; DeAndrea-Lazarus, Ian; Pearce, Larry V.; Blumberg, Peter M.; Frank, Robert; Bahrenberg, Gregor; Stockhausen, Hannelore; Kögel, Babette Y.; Schiene, Klaus; Christoph, Thomas; Lee, Jeewoo

    2012-01-01

    A series of N-(2-amino-6-trifluoromethyl-pyridin-3-ylmethyl) 2-(3-fluoro-4-methylsulfonylaminophenyl) propanamides were designed combining previously identified pharmacophoric elements and evaluated as hTRPV1 antagonists. The SAR analysis indicated that specific hydrophobic interactions of the 2-amino substituents in the C-region of the ligand were critical for high hTRPV1binding potency. In particular, compound 49S was an excellent TRPV1 antagonist (Ki(CAP) = 0.2 nM; IC50(pH) = 6.3 nM) and was thus ca. 100- and 20-fold more potent, respectively, than the parent compounds 2 and 3 for capsaicin antagonism. Furthermore, it demonstrated strong analgesic activity in the rat neuropathic model superior to 2 with almost no side effects. Compound 49S antagonized capsaicin induced hypothermia in mice, but showed TRPV1-related hyperthermia. The basis for the high potency of 49S compared to 2 is suggested by docking analysis with our hTRPV1 homology model in which the 4-methylpiperidinyl group in the C-region of 49S made additional hydrophobic interactions with the hydrophobic region. PMID:22957803

  17. Use of the mouse jumping test for estimating antagonistic potencies of morphine antagonists.

    PubMed

    Cowan, A

    1976-03-01

    The potencies of 19 reference morphine antagonists have been compared in a modified version of the mouse jumping test. Mice were each implanted subcutaneously with one 75 mg pellet of morphine. Antagonist challenge took place 72 h later and the incidence of repetitive vertical-jumping was monitored over 1 h. A high Pearson correlation coefficient (r = 0.997) was found between quantitative assays based on the total number of jumps per mouse and quantal assays based on mice jumping at least 6 times. A comparison of relative potencies obtained with the mouse test and with non-withdrawn morphine-dependent monkeys gave a Spearman rank order coefficient of 0.91 while a similar comparison with values obtained with the guinea-pig isolated ileum preparation also gave a high correlation coefficient (r= 0.92). Whereas it is difficult to assess the antagonistic component of buprenorphine and cyclorphan with the ileum preparation, both compounds can be satisfactorily assayed in the mouse jumping test. The reported antagonistic properties of ketocyclazocine and profadol could not be confirmed in the mouse model.

  18. The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation.

    PubMed

    Gavva, Narender R; Bannon, Anthony W; Surapaneni, Sekhar; Hovland, David N; Lehto, Sonya G; Gore, Anu; Juan, Todd; Deng, Hong; Han, Bora; Klionsky, Lana; Kuang, Rongzhen; Le, April; Tamir, Rami; Wang, Jue; Youngblood, Brad; Zhu, Dawn; Norman, Mark H; Magal, Ella; Treanor, James J S; Louis, Jean-Claude

    2007-03-28

    The vanilloid receptor TRPV1 (transient receptor potential vanilloid 1) is a cation channel that serves as a polymodal detector of pain-producing stimuli such as capsaicin, protons (pH <5.7), and heat. TRPV1 antagonists block pain behaviors in rodent models of inflammatory, neuropathic, and cancer pain, suggesting their utility as analgesics. Here, we report that TRPV1 antagonists representing various chemotypes cause an increase in body temperature (hyperthermia), identifying a potential issue for their clinical development. Peripheral restriction of antagonists did not eliminate hyperthermia, suggesting that the site of action is predominantly outside of the blood-brain barrier. Antagonists that are ineffective against proton activation also caused hyperthermia, indicating that blocking capsaicin and heat activation of TRPV1 is sufficient to produce hyperthermia. All TRPV1 antagonists evaluated here caused hyperthermia, suggesting that TRPV1 is tonically activated in vivo and that TRPV1 antagonism and hyperthermia are not separable. TRPV1 antagonists caused hyperthermia in multiple species (rats, dogs, and monkeys), demonstrating that TRPV1 function in thermoregulation is conserved from rodents to primates. Together, these results indicate that tonic TRPV1 activation regulates body temperature.

  19. Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle.

    PubMed

    Preiksaitis, H G; Krysiak, P S; Chrones, T; Rajgopal, V; Laurier, L G

    2000-12-01

    Esophageal peristalsis is dependent on activation of muscarinic receptors, but little is known about the roles of specific receptor subtypes in the human esophagus. We examined muscarinic receptor expression and function in human esophageal smooth muscle obtained from patients undergoing resection for cancer. [(3)H]Quinuclidinyl benzylate (QNB)-specific binding was similar in longitudinal muscle (B(max) = 106 +/- 22 fmol/mg of protein, K(d) = 68 +/- 9 pM) and circular muscle (B(max) = 81 +/- 16 fmol/mg of protein, K(d) = 79 +/- 15 pM). Subtype-selective antagonists inhibited [(3)H]QNB similarly in muscle from both layers. Further analysis of antagonist inhibition of [(3)H]QNB binding showed a major site (60-70%) with antagonist affinity profile consistent with the M2 subtype and a second site that could not be classified. Reverse transcription-polymerase chain reaction and immunoblotting demonstrated the presence of all five known muscarinic receptor subtypes, and immunocytochemistry on acutely isolated smooth muscle cells confirmed the expression of each subtype on the muscle cells. Subtype-selective antagonists had similar inhibitory effects on carbachol-evoked contractions in longitudinal muscle and circular muscle strips with pA(2) values of 9.5 +/- 0.1 and 9.6 +/- 0.2 for 4-diphenylacetoxy-N-methylpiperidine methiodide, 7.1 +/- 0.1 and 7.0 +/- 0.2 for pirenzepine, and 6.2 +/- 0.2 and 6.4 +/- 0.2 for methoctramine, respectively. We conclude that human esophageal smooth muscle expresses muscarinic receptor subtypes M1 through M5. The antagonist sensitivity profile for muscle contraction is consistent with activation of the M3 subtype.

  20. Ambulatory blood pressure parameters after canrenone addition to existing treatment regimens with maximum tolerated dose of angiotensin-converting enzyme inhibitors/angiotensin II type 1 receptor blockers plus hydrochlorothiazide in uncontrolled hypertensive patients.

    PubMed

    Guasti, Luigina; Gaudio, Giovanni; Lupi, Alessandro; D'Avino, Marinella; Sala, Carla; Mugellini, Amedeo; Vulpis, Vito; Felis, Salvatore; Sarzani, Riccardo; Vanasia, Massimo; Maffioli, Pamela; Derosa, Giuseppe

    2017-01-01

    Blockade of the renin-angiotensin-aldosterone system is a cornerstone in cardiovascular disease prevention and hypertension treatment. The relevance of ambulatory blood pressure monitoring (ABPM) has been widely confirmed for both increasing the accuracy of blood pressure (BP) measurements, particularly in pharmacological trials, and focusing on 24 h BP prognostic parameters. The aim of this study was to assess the effects of canrenone addition on ambulatory BP in uncontrolled hypertensive patients already treated with the highest tolerated dose of angiotensin-converting enzyme (ACE) inhibitors or angiotensin II type 1 receptor (AT1R) antagonists plus hydrochlorothiazide (HCT). ABPM was performed at baseline and after 3 months of combination therapy in 158 outpatients with stage 1 or 2 hypertension who were randomized to add canrenone (50 or 100 mg) to the pre-existing therapy with ACE inhibitors or AT1R antagonists plus HCT. Twenty-four-hour systolic and diastolic BPs were considered normalized when the values were <130 and <80 mmHg, respectively. The addition of canrenone was associated with a reduction in systolic and diastolic BPs (24 h and daytime and nighttime; P <0.001), mean arterial pressures ( P <0.001), and pulse pressures ( P <0.01). The Δ 24 h systolic/diastolic BPs were -13.5±11.2/-8±8 mmHg and -16.1±13.5/-11.2±8.3 mmHg (50 and 100 mg/day, respectively). In the 50 mg arm, the 24 h systolic and diastolic BPs were normalized in 67.5% and 74% of the patients, respectively, and in 61.6% and 68.5% of the patients in the 100 mg arm, respectively ( P <0.05; P = not significant for 50 vs 100 mg). The percentage of patients whose nocturnal decrease was >10% with respect to diurnal values did not change during combination therapy. Canrenone addition to ACE inhibitors or AT1R antagonists plus HCT was associated with a significant reduction of 24 h BP and to an increased number of patients meeting 24 h ABPM targets in a clinical setting of uncontrolled stage 1 or 2 hypertension.

  1. Systemic salt loading decreases body temperature and increases heat-escape/cold-seeking behaviour via the central AT1 and V1 receptors in rats.

    PubMed

    Konishi, Masahiro; Nagashima, Kei; Kanosue, Kazuyuki

    2002-11-15

    Salt loading decreases body core temperature (T(core)) at neutral ambient temperature (26 degrees C) and increases heat-escape/cold-seeking behaviour in desalivated rats. In this study, we tested the hypothesis that brain angiotensin II (AII) and arginine vasopressin (AVP) are associated with these responses. Surgically desalivated rats (n = 28) were administered an injection (S.C., 10 ml kg(-1)) of either normal saline (154 mM, NS) or hypertonic saline (2500 mM, HS) following an intracerebroventricular injection (10 microl kg(-1)) of an AII AT(1)-receptor antagonist (candesartan, 5 microg microl(-1)), an AVP V(1)-receptor antagonist ((beta-mercapto-beta, beta-cyclopenta-methylene propionyl(1), O-Me-Tyr(2), Arg(8))-vasopressin, 0.5 microg microl(-1)), or normal saline (154 mM). Each rat was placed in a behaviour box, first at 26 degrees C for 1 h to allow the measurement of baseline T(core) and movement. The ambient temperature was then elevated to 40 degrees C for the next 2 h, during which time the rat was able to trigger a 0 degrees C air reward for 30 s by moving into a specific area of the box (operant behaviour). The S.C. HS significantly decreased baseline T(core) at 26 degrees C (36.5 +/- 0.1 degrees C) and increased counts of operant behaviour at 40 degrees C (57 +/- 3) compared with results obtained following S.C. NS injection (37.4 +/- 0.1 degrees C and 42 +/- 1, respectively). These responses to s.c. HS were inhibited by the intracerebroventricular injection of AT(1) (37.3 +/- 0.1 degrees C and 43 +/- 2, respectively; P < 0.05) and V(1) antagonists (37.2 +/- 0.2 degrees C and 42 +/- 2, respectively; P < 0.05), although administration of both antagonists with S.C. NS had no effect. These results suggest that brain AII and AVP are involved in the decrease in T(core) observed at neutral ambient temperature and the increase in heat-escape/cold-seeking behaviour in response to osmotic stimulation, via the central AT(1) and V(1) receptors, respectively

  2. Roles of dopamine receptors in mediating acute modulation of immunological responses in Macrobrachium rosenbergii.

    PubMed

    Chang, Zhong-Wen; Ke, Zhi-Han; Chang, Chin-Chyuan

    2016-02-01

    Dopamine (DA) was found to influence the immunological responses and resistance to pathogen infection in invertebrates. To clarify the possible modulation of DA through dopamine receptors (DAR) against acute environmental stress, the levels of DA, glucose and lactate in the haemolymph of Macrobrachium rosenbergii under hypo- and hyperthermal stresses were measured. The changes in immune parameters such as total haemocyte count (THC), differential haemocyte count (DHC), phenoloxidase (PO) activity, respiratory bursts (RBs), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and phagocytic activity (PA) were evaluated in prawns which received DAR antagonists (SCH23390, SCH, D1 antagonist; domperidone, DOM, D2 antagonist; chlorpromazine, CH, D1+2 antagonist) followed by hypo- (15 °C) and hyperthermal (34 °C) stresses. In addition, pharmacological analysis of the effect DA modulation was studied in haemocytes incubated with DA and DAR antagonists. The results revealed a significant increase in haemolymph DA accompanied with upregulated levels of glucose and lactate in prawns exposed to both hypo- and hyperthermal stresses in 2 h. In addition, a significant decrease in RBs per haemocyte was noted in prawns which received DAR antagonists when they exposed to hyperthermal stress for 30 min. In in vitro test, antagonism on RBs, SOD and GPx activity of haemocytes were further evidenced through D1, D1, D1+D2 DARs, respectively, in the meantime, no significant difference in PO activity and PA was observed among the treatment groups. These results suggest that the upregulation of DA, glucose and lactate in haemolymph might be the response to acute thermal stress for the demand of energy, and the DAR occupied by its antagonistic action impart no effect on immunological responses except RBs in vivo even though the modulation mediated through D1 DAR was further evidenced in RBs, SOD and GPx activities in vitro. It is therefore concluded that thermal stress mediate stress responses not only through DAR but also via diverse pathways, and DA might modulate the levels of RBs, SOD and GPx activities mainly through D1 DAR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Structure-based prediction of subtype selectivity of histamine H3 receptor selective antagonists in clinical trials.

    PubMed

    Kim, Soo-Kyung; Fristrup, Peter; Abrol, Ravinder; Goddard, William A

    2011-12-27

    Histamine receptors (HRs) are excellent drug targets for the treatment of diseases, such as schizophrenia, psychosis, depression, migraine, allergies, asthma, ulcers, and hypertension. Among them, the human H(3) histamine receptor (hH(3)HR) antagonists have been proposed for specific therapeutic applications, including treatment of Alzheimer's disease, attention deficit hyperactivity disorder (ADHD), epilepsy, and obesity. However, many of these drug candidates cause undesired side effects through the cross-reactivity with other histamine receptor subtypes. In order to develop improved selectivity and activity for such treatments, it would be useful to have the three-dimensional structures for all four HRs. We report here the predicted structures of four HR subtypes (H(1), H(2), H(3), and H(4)) using the GEnSeMBLE (GPCR ensemble of structures in membrane bilayer environment) Monte Carlo protocol, sampling ∼35 million combinations of helix packings to predict the 10 most stable packings for each of the four subtypes. Then we used these 10 best protein structures with the DarwinDock Monte Carlo protocol to sample ∼50 000 × 10(20) poses to predict the optimum ligand-protein structures for various agonists and antagonists. We find that E206(5.46) contributes most in binding H(3) selective agonists (5, 6, 7) in agreement with experimental mutation studies. We also find that conserved E5.46/S5.43 in both of hH(3)HR and hH(4)HR are involved in H(3)/ H(4) subtype selectivity. In addition, we find that M378(6.55) in hH(3)HR provides additional hydrophobic interactions different from hH(4)HR (the corresponding amino acid of T323(6.55) in hH(4)HR) to provide additional subtype bias. From these studies, we developed a pharmacophore model based on our predictions for known hH(3)HR selective antagonists in clinical study [ABT-239 1, GSK-189,254 2, PF-3654746 3, and BF2.649 (tiprolisant) 4] that suggests critical selectivity directing elements are: the basic proton interacting with D114(3.32), the spacer, the aromatic ring substituted with the hydrophilic or lipophilic groups interacting with lipophilic pockets in transmembranes (TMs) 3-5-6 and the aliphatic ring located in TMs 2-3-7. These 3D structures for all four HRs should help guide the rational design of novel drugs for the subtype selective antagonists and agonists with reduced side effects.

  4. Design and Synthesis of Benzimidazoles As Novel Corticotropin-Releasing Factor 1 Receptor Antagonists.

    PubMed

    Mochizuki, Michiyo; Kori, Masakuni; Kobayashi, Katsumi; Yano, Takahiko; Sako, Yuu; Tanaka, Maiko; Kanzaki, Naoyuki; Gyorkos, Albert C; Corrette, Christopher P; Cho, Suk Young; Pratt, Scott A; Aso, Kazuyoshi

    2016-03-24

    Benzazole derivatives with a flexible aryl group bonded through a one-atom linker as a new scaffold for a corticotropin-releasing factor 1 (CRF1) receptor antagonist were designed, synthesized, and evaluated. We expected that structural diversity could be expanded beyond that of reported CRF1 receptor antagonists. In a structure-activity relationship study, 4-chloro-N(2)-(4-chloro-2-methoxy-6-methylphenyl)-1-methyl-N(7),N(7)-dipropyl-1H-benzimidazole-2,7-diamine 29g had the most potent binding activity against a human CRF1 receptor and the antagonistic activity (IC50 = 9.5 and 88 nM, respectively) without concerns regarding cytotoxicity at 30 μM. Potent CRF1 receptor-binding activity in brain in an ex vivo test and suppression of stress-induced activation of the hypothalamus-pituitary-adrenocortical (HPA) axis were also observed at 138 μmol/kg of compound 29g after oral administration in mice. Thus, the newly designed benzimidazole 29g showed in vivo CRF1 receptor antagonistic activity and good brain penetration, indicating that it is a promising lead for CRF1 receptor antagonist drug discovery research.

  5. Human microdose evaluation of the novel EP1 receptor antagonist GSK269984A

    PubMed Central

    Ostenfeld, Thor; Beaumont, Claire; Bullman, Jonathan; Beaumont, Maria; Jeffrey, Phillip

    2012-01-01

    AIM The primary objective was to evaluate the pharmacokinetics (PK) of the novel EP1 antagonist GSK269984A in human volunteers after a single oral and intravenous (i.v.) microdose (100 µg). METHOD GSK269984A was administered to two groups of healthy human volunteers as a single oral (n= 5) or i.v. (n= 5) microdose (100 µg). Blood samples were collected for up to 24 h and the parent drug concentrations were measured in separated plasma using a validated high pressure liquid chromatography-tandem mass spectrometry method following solid phase extraction. RESULTS Following the i.v. microdose, the geometric mean values for clearance (CL), steady-state volume of distribution (Vss) and terminal elimination half-life (t1/2) of GSK269984A were 9.8 l h−1, 62.8 l and 8.2 h. Cmax and AUC(0,∞) were 3.2 ng ml−1 and 10.2 ng ml−1 h, respectively; the corresponding oral parameters were 1.8 ng ml−1 and 9.8 ng ml−1 h, respectively. Absolute oral bioavailability was estimated to be 95%. These data were inconsistent with predictions of human PK based on allometric scaling of in vivo PK data from three pre-clinical species (rat, dog and monkey). CONCLUSION For drug development programmes characterized by inconsistencies between pre-clinical in vitro metabolic and in vivo PK data, and where uncertainty exists with respect to allometric predictions of the human PK profile, these data support the early application of a human microdose study to facilitate the selection of compounds for further clinical development. PMID:22497298

  6. Human microdose evaluation of the novel EP1 receptor antagonist GSK269984A.

    PubMed

    Ostenfeld, Thor; Beaumont, Claire; Bullman, Jonathan; Beaumont, Maria; Jeffrey, Phillip

    2012-12-01

    The primary objective was to evaluate the pharmacokinetics (PK) of the novel EP(1) antagonist GSK269984A in human volunteers after a single oral and intravenous (i.v.) microdose (100 µg). GSK269984A was administered to two groups of healthy human volunteers as a single oral (n= 5) or i.v. (n= 5) microdose (100 µg). Blood samples were collected for up to 24 h and the parent drug concentrations were measured in separated plasma using a validated high pressure liquid chromatography-tandem mass spectrometry method following solid phase extraction. Following the i.v. microdose, the geometric mean values for clearance (CL), steady-state volume of distribution (V(ss) ) and terminal elimination half-life (t(1/2) ) of GSK269984A were 9.8 l h(-1) , 62.8 l and 8.2 h. C(max) and AUC(0,∞) were 3.2 ng ml(-1) and 10.2 ng ml(-1)  h, respectively; the corresponding oral parameters were 1.8 ng ml(-1) and 9.8 ng ml(-1)  h, respectively. Absolute oral bioavailability was estimated to be 95%. These data were inconsistent with predictions of human PK based on allometric scaling of in vivo PK data from three pre-clinical species (rat, dog and monkey). For drug development programmes characterized by inconsistencies between pre-clinical in vitro metabolic and in vivo PK data, and where uncertainty exists with respect to allometric predictions of the human PK profile, these data support the early application of a human microdose study to facilitate the selection of compounds for further clinical development. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  7. Pharmacology of JB-9315, a new selective histamine H2-receptor antagonist.

    PubMed

    Palacios, B; Montero, M J; Sevilla, M A; San Román, L

    1998-02-01

    1. The histamine H2-receptor antagonistic activity and antisecretory and antiulcer effects of JB-9315 were studied in comparison with the standard H2 blocker ranitidine. 2. In vitro, JB-9315 is a competitive antagonist of histamine H2 receptors in the isolated, spontaneously beating guinea-pig right atrium, with a pA2 value of 7.30 relative to a value of 7.36 for ranitidine. JB-9315 was specific for the histamine H2 receptor because, at high concentration, it did not affect histamine- or acetylcholine-induced contractions in guinea-pig isolated ileum or rat isolated duodenum, respectively. 3. JB-9315 dose dependently inhibited histamine-, pentagastrin- or carbachol-stimulated acid secretion and basal secretion in the perfused stomach preparation of the anesthetized rat. In the pylorus-ligated rat after intraperitoneal administration, total acid output over 4 h was inhibited by JB-9315 with an ID50 of 32.8 mg/kg, confirming its H2-receptor antagonist properties. 4. JB-9315 showed antiulcer activity against cold stress plus indomethacin-induced lesions with an ID50 of 6.8 mg/kg. 5. JB-9315, 50 and 100 mg/kg, inhibited macroscopic gastric hemorrhagic lesions induced by ethanol. In contrast, ranitidine (50 mg/kg) failed to reduce these lesions. 6. These results indicate that JB-9315 is a new antiulcer drug that exerts a cytoprotective effect in addition to its gastric antisecretory activity.

  8. Ranitidine modifies myeloid cell populations and inhibits breast tumor development and spread in mice

    PubMed Central

    Vila-Leahey, Ava; Oldford, Sharon A.; Marignani, Paola A.; Wang, Jun; Haidl, Ian D.; Marshall, Jean S.

    2016-01-01

    ABSTRACT Histamine receptor 2 (H2) antagonists are widely used clinically for the control of gastrointestinal symptoms, but also impact immune function. They have been reported to reduce tumor growth in established colon and lung cancer models. Histamine has also been reported to modify populations of myeloid-derived suppressor cells (MDSCs). We have examined the impact of the widely used H2 antagonist ranitidine, on both myeloid cell populations and tumor development and spread, in three distinct models of breast cancer that highlight different stages of cancer progression. Oral ranitidine treatment significantly decreased the monocytic MDSC population in the spleen and bone marrow both alone and in the context of an orthotopic breast tumor model. H2 antagonists ranitidine and famotidine, but not H1 or H4 antagonists, significantly inhibited lung metastasis in the 4T1 model. In the E0771 model, ranitidine decreased primary tumor growth while omeprazole treatment had no impact on tumor development. Gemcitabine treatment prevented the tumor growth inhibition associated with ranitidine treatment. In keeping with ranitidine-induced changes in myeloid cell populations in non-tumor-bearing mice, ranitidine also delayed the onset of spontaneous tumor development, and decreased the number of tumors that developed in LKB1−/−/NIC mice. These results indicate that ranitidine alters monocyte populations associated with MDSC activity, and subsequently impacts breast tumor development and outcome. Ranitidine has potential as an adjuvant therapy or preventative agent in breast cancer and provides a novel and safe approach to the long-term reduction of tumor-associated immune suppression. PMID:27622015

  9. TLR4/MyD88/NF-κB signaling and PPAR-γ within the paraventricular nucleus are involved in the effects of telmisartan in hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hong-Bao; Li, Xiang; Huo, Chan-Juan

    Previous findings from our laboratory and others indicate that the main therapeutic effect of angiotensin II type 1 receptor (AT1-R) antagonists is to decrease blood pressure and exert anti-inflammatory effects in the cardiovascular system. In this study, we determined whether AT1-R antagonist telmisartan within the hypothalamic paraventricular nucleus (PVN) attenuates hypertension and hypothalamic inflammation via both the TLR4/MyD88/NF-κB signaling pathway and peroxisome proliferator-activated receptor-γ (PPAR-γ) in the PVN in hypertensive rats. Spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats were treated for 4 weeks through bilateral PVN infusion with the AT1-R antagonist telmisartan (TEL, 10 μg/h), or losartanmore » (LOS, 20 μg/h), or the PPAR-γ antagonist GW9662 (GW, 100 μg/h), or vehicle via osmotic minipump. Mean arterial pressure (MAP) was recorded by a tail-cuff occlusion method. PVN tissue and blood were collected for the measurement of AT1-R, PPAR-γ, pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6), inducible nitric oxide synthase (iNOS), TLR4, MyD88, nuclear factor-kappa B (NF-κB) activity and plasma norepinephrine (NE), respectively. Hypertensive rats exhibited significantly higher level of AT1-R and lower level of PPAR-γ in the PVN. PVN treatment with TEL attenuated MAP, improved cardiac hypertrophy, reduced TNF-α, IL-1β, IL-6, iNOS levels, and plasma NE in SHR but not in WKY rats. These results were associated with reduced TLR4, MyD88 and NF-κB levels and increased PPAR-γ level in the PVN of hypertensive rats. Our findings suggest that TLR4/MyD88/NF-κB signaling and PPAR-γ within the PVN are involved in the beneficial effects of telmisartan in hypertension. - Highlights: • PVN infusion of TEL in spontaneously hypertensive rats is reported. • PVN infusion of TEL attenuates hypertension and proinflammatory cytokines in PVN. • PVN blockade of AT1-R attenuates sympathoexcitation and cardiac hypertrophy. • TLR4/MyD88/NF-κB signaling and PPAR-γ in PVN are involved in the effects of TEL.« less

  10. Effects of naltrexone and LY255582 on ethanol maintenance, seeking, and relapse responding by alcohol-preferring (P) rats.

    PubMed

    Dhaher, Ronnie; Toalston, Jamie E; Hauser, Sheketha R; Bell, Richard L; McKinzie, David L; McBride, William J; Rodd, Zachary A

    2012-02-01

    Research indicates opioid antagonists can reduce alcohol drinking in rodents. However, tests examining the effects of opioid antagonists on ethanol seeking and relapse behavior have been limited. The present study examined the effects of two opioid antagonists on ethanol maintenance, seeking, and relapse responding by alcohol-preferring (P) rats. Adult P rats were self-trained in two-lever operant chambers to self-administer 15% (vol/vol) ethanol on a fixed-ratio 5 (FR5) versus water on a FR1 concurrent schedule of reinforcement in daily 1-h sessions. After 10 weeks, rats underwent extinction training, followed by 2 weeks in their home cages. Rats were then returned to the operant chambers without ethanol or water to measure responses on the ethanol and water levers for four sessions. After a subsequent 2 weeks in the home cage, without access to ethanol, rats were returned to the operant chambers with ethanol and water available. Effects of antagonists on maintenance responding were tested after several weeks of daily 1-h sessions. Naltrexone (NAL; 1-10mg/kg, subcutaneously [s.c.]; n=8/dose), LY255582 (LY; 0.03-1mg/kg, s.c.; n=8/dose), or vehicle were injected 30min before the first session (in the absence of ethanol), following 2 weeks in their home cages, and for four consecutive sessions of ethanol self-administration under maintenance and relapse conditions. Both NAL and LY reduced responses on the ethanol lever without any fluids present, and ethanol self-administration under relapse and on-going drinking conditions, with LY being more potent than NAL. Both NAL and LY were less effective in reducing responding in the absence of ethanol than in reducing ethanol self-administration. Overall, the results indicate that the opioid system is involved in mediating ethanol seeking, and ethanol self-administration under relapse and on-going alcohol drinking, but that different neurocircuits may underlie these behaviors. Published by Elsevier Inc.

  11. Design and synthesis of novel sulfonamide-containing bradykinin hB2 receptor antagonists. 1. Synthesis and SAR of alpha,alpha-dimethylglycine sulfonamides.

    PubMed

    Fattori, Daniela; Rossi, Cristina; Fincham, Christopher I; Berettoni, Marco; Calvani, Federico; Catrambone, Fernando; Felicetti, Patrizia; Gensini, Martina; Terracciano, Rosa; Altamura, Maria; Bressan, Alessandro; Giuliani, Sandro; Maggi, Carlo A; Meini, Stefania; Valenti, Claudio; Quartara, Laura

    2006-06-15

    We recently published the extensive in vivo pharmacological characterization of MEN 16132 (J. Pharmacol. Exp. Ther. 2005, 616-623; Eur. J. Pharmacol. 2005, 528, 7), a member of the sulfonamide-containing human B(2) receptor (hB(2)R) antagonists. Here we report, in detail, how this family of compounds was designed, synthesized, and optimized to provide a group of products with subnanomolar affinity for the hB(2)R and high in vivo potency after topical administration to the respiratory tract. The series was designed on the basis of indications from the X-ray structures of the key structural motifs A and B present in known antagonists and is characterized by the presence of an alpha,alpha-dialkyl amino acid. The first lead (17) of the series was submitted to extensive chemical work to elucidate the structural requirements to increase hB(2) receptor affinity and antagonist potency in bioassays expressing the human B(2) receptor (hB(2)R). The following structural features were selected: a 2,4-dimethylquinoline moiety and a piperazine linker acylated with a basic amino acid. The representative lead compound 68 inhibited the specific binding of [(3)H]BK to hB(2)R with a pKi of 9.4 and antagonized the BK-induced inositolphosphate (IP) accumulation in recombinant cell systems expressing the hB(2)R with a pA(2) of 9.1. Moreover, compound 68 when administered (300 nmol/kg) intratracheally in the anesthetized guinea pig, was able to significantly inhibit BK-induced bronchoconstriction for up to 120 min after its administration, while having a lower and shorter lasting effect on hypotension.

  12. Comparison of the tumor inhibiting effects of three histamine H2-receptor antagonists.

    PubMed

    Tutton, P J; Barkla, D H

    1983-01-01

    Three histamine H2-receptor antagonists, Cimetidine, Metiamide and Ranitidine, were tested for their inhibitory effect on two experimental bowel cancer models. In the first model mitotic rates were measured in dimethylhydrazine-induced tumors of rat colon and in the second model volumetric changes in human large bowel cancer xenografts were assessed. In tumors of rat colon all three drugs were able to suppress mitotic activity, but the effects of Metiamide and Ranitidine were more prolonged than that of Cimetidine in each of two lines of human bowel cancer that were used. Metiamide and Ranitidine were also more effective growth inhibitors than was Cimetidine.

  13. Comparison of the ultrashort gonadotropin-releasing hormone agonist-antagonist protocol with microdose flare -up protocol in poor responders: a preliminary study.

    PubMed

    Berker, Bülent; Duvan, Candan İltemir; Kaya, Cemil; Aytaç, Ruşen; Satıroğlu, Hakan

    2010-01-01

    To determine the potential effect of the ultrashort gonadotropin-releasing hormone (GnRH) agonist/GnRH antagonist protocol versus the microdose GnRH agonist protocol in poor responders undergoing intracytoplasmic sperm injection (ICSI). The patients in the Agonist-Antagonist Group (n=41) were administered the ultrashort GnRH-agonist/ antagonist protocol, while the patients in the Microdose Group (n=41) were stimulated according to the microdose flare-up protocol. The mean number of mature oocytes retrieved was the primary outcome measure. Fertilization rate, implantation rate per embryo and clinical pregnancy rates were secondary outcome measures. There was no differenc between the mean number of mature oocytes retrieved in the two groups. There were also no statistical differences between the two groups in terms of peak serum E2 level, canceled cycles, endometrial thickness on hCG day, number of 2 pronucleus and number of embryos transferred. However, the total gonadotropin consumption and duration of stimulation were significantly higher with the Agonist-Antagonist Group compared with the Microdose Group. The implantation and clinical pregnancy rates were similar between the two groups. Despite the high dose of gonadotropin consumption and longer duration of stimulation with the ultrashort GnRH agonist/ antagonist protocol, it seems that the Agonist-Antagonist Protocol is not inferior to the microdose protocol in poor responders undergoing ICSI.

  14. Mortality Benefit of Recombinant Human Interleukin-1 Receptor Antagonist for Sepsis Varies by Initial Interleukin-1 Receptor Antagonist Plasma Concentration.

    PubMed

    Meyer, Nuala J; Reilly, John P; Anderson, Brian J; Palakshappa, Jessica A; Jones, Tiffanie K; Dunn, Thomas G; Shashaty, Michael G S; Feng, Rui; Christie, Jason D; Opal, Steven M

    2018-01-01

    Plasma interleukin-1 beta may influence sepsis mortality, yet recombinant human interleukin-1 receptor antagonist did not reduce mortality in randomized trials. We tested for heterogeneity in the treatment effect of recombinant human interleukin-1 receptor antagonist by baseline plasma interleukin-1 beta or interleukin-1 receptor antagonist concentration. Retrospective subgroup analysis of randomized controlled trial. Multicenter North American and European clinical trial. Five hundred twenty-nine subjects with sepsis and hypotension or hypoperfusion, representing 59% of the original trial population. Random assignment of placebo or recombinant human interleukin-1 receptor antagonist × 72 hours. We measured prerandomization plasma interleukin-1 beta and interleukin-1 receptor antagonist and tested for statistical interaction between recombinant human interleukin-1 receptor antagonist treatment and baseline plasma interleukin-1 receptor antagonist or interleukin-1 beta concentration on 28-day mortality. There was significant heterogeneity in the effect of recombinant human interleukin-1 receptor antagonist treatment by plasma interleukin-1 receptor antagonist concentration whether plasma interleukin-1 receptor antagonist was divided into deciles (interaction p = 0.046) or dichotomized (interaction p = 0.028). Interaction remained present across different predicted mortality levels. Among subjects with baseline plasma interleukin-1 receptor antagonist above 2,071 pg/mL (n = 283), recombinant human interleukin-1 receptor antagonist therapy reduced adjusted mortality from 45.4% to 34.3% (adjusted risk difference, -0.12; 95% CI, -0.23 to -0.01), p = 0.044. Mortality in subjects with plasma interleukin-1 receptor antagonist below 2,071 pg/mL was not reduced by recombinant human interleukin-1 receptor antagonist (adjusted risk difference, +0.07; 95% CI, -0.04 to +0.17), p = 0.230. Interaction between plasma interleukin-1 beta concentration and recombinant human interleukin-1 receptor antagonist treatment was not statistically significant. We report a heterogeneous effect of recombinant human interleukin-1 receptor antagonist on 28-day sepsis mortality that is potentially predictable by plasma interleukin-1 receptor antagonist in one trial. A precision clinical trial of recombinant human interleukin-1 receptor antagonist targeted to septic patients with high plasma interleukin-1 receptor antagonist may be worthy of consideration.

  15. Effects of the NMDA receptor antagonist, D-CPPene, on sensitization to the operant decrement produced by naloxone in morphine-treated rats.

    PubMed

    Bespalov, A Y; Medvedev, I O; Sukhotina, I A; Zvartau, E E

    2001-04-01

    Sensitization to the rate-decreasing effects of opioid antagonists induced by acute pretreatment with opioid agonists has been suggested to reflect initial changes in opioid systems that underlie physical dependence. Glutamate receptors are implicated in the development and expression of opioid dependence, and antagonists acting at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors have been shown repeatedly to attenuate the severity of opioid withdrawal. The present study evaluated the ability of a competitive NMDA receptor antagonist, D-CPPene (SDZ EAA 494; 3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphonic acid), to affect morphine-induced sensitization to naloxone in rats trained to lever-press on a multiple-trial, fixed-ratio 10 schedule of food reinforcement. D-CPPene (0.3-3 mg/kg) was administered either 4 h or 30 min prior to the test session. Morphine (10 mg/kg) or its vehicle was administered 4 h before naloxone challenge (0.3-3 mg/kg). D-CPPene failed to prevent morphine-induced potentiation of the naloxone-produced decrement in operant performance. Thus, these results suggest that agonist-induced sensitization to behavioral effects of opioid antagonists may be insensitive to NMDA receptor blockade.

  16. The effect of compound 48/80 on contractions induced by toluene diisocyanate in isolated guinea-pig bronchus.

    PubMed

    Mapp, C E; Boniotti, A; Papi, A; Chitano, P; Coser, E; Di Stefano, A; Saetta, M; Ciaccia, A; Fabbri, L M

    1993-06-01

    We have investigated the ability of compound 48/80 and of histamine H1 and H2 receptor antagonists to inhibit toluene diisocyanate-induced contractions in isolated guinea-pig bronchi. Compound 48/80 (100 micrograms/ml) significantly inhibited toluene diisocyanate-induced contractions. By contrast, the two histamine H1 and H2 receptor antagonists, chlorpheniramine (10 microM) and cimetidine, (10 microM) did not affect toluene diisocyanate-induced contractions, but significantly inhibited contractions induced by exogenously applied histamine (100 microM) and by 48/80. We investigated which mechanisms 48/80 used to inhibit toluene diisocyanate-induced contractions, paying particular attention to the possible involvement of capsaicin-sensitive primary afferents. In vitro capsaicin desensitization (10 microM for 30 min followed by washing) significantly reduced compound 48/80-induced contractions. A capsaicin-resistant component of contraction was also evident. Ruthenium red (3 microM), an inorganic dye which acts as a selective functional antagonist of capsaicin, did not affect 48/80-induced contraction. MEN 10,207 (Tyr5,D-Trp6,8,9,Arg10)-neurokinin A (4-10) (3 microM) a selective antagonist of NK2-tachykinin receptors significantly reduced 48/80-induced contractions. These results show that compound 48/80 inhibits toluene diisocyanate-induced contractions in isolated guinea-pig bronchi. It is likely that two mechanisms are involved in the inhibition: (1) the release of mediators other than histamine by mast cells, (2) an effect of 48/80 on sensory nerves.

  17. Effects of Cannabinoid Agonists and Antagonists on Sleep and Breathing in Sprague-Dawley Rats.

    PubMed

    Calik, Michael W; Carley, David W

    2017-09-01

    There are no pharmacological treatments for obstructive sleep apnea syndrome, but dronabinol showed promise in a small pilot study. In anesthetized rats, dronabinol attenuates reflex apnea via activation of cannabinoid (CB) receptors located on vagal afferents; an effect blocked by cannabinoid type 1 (CB1) and/or type 2 (CB2) receptor antagonists. Here, using a natural model of central sleep apnea, we examine the effects of dronabinol, alone and in combination with selective antagonists in conscious rats chronically instrumented to stage sleep and measure cessation of breathing. Adult male Sprague-Dawley rats were anesthetized and implanted with bilateral stainless steel screws into the skull for electroencephalogram recording and bilateral wire electrodes into the nuchal muscles for electromyogram recording. Each animal was recorded by polysomnography on multiple occasions separated by at least 3 days. The study was a fully nested, repeated measures crossover design, such that each rat was recorded following each of 8 intraperitoneal injections: vehicle; vehicle and CB1 antagonist (AM 251); vehicle and CB2 antagonist (AM 630); vehicle and CB1/CB2 antagonist; dronabinol; dronabinol and CB1 antagonist; dronabinol and CB2 antagonist; and dronabinol and CB1/CB2 antagonist. Dronabinol decreased the percent time spent in rapid eye movement (REM) sleep. CB receptor antagonists did not reverse this effect. Dronabinol also decreased apneas during sleep, and this apnea suppression was reversed by CB1 or CB1/CB2 receptor antagonism. Dronabinol's effects on apneas were dependent on CB1 receptor activation, while dronabinol's effects on REM sleep were CB receptor-independent. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  18. Histamine-induced vasodilatation in the human forearm vasculature

    PubMed Central

    Sandilands, Euan A; Crowe, Jane; Cuthbert, Hayley; Jenkins, Paul J; Johnston, Neil R; Eddleston, Michael; Bateman, D Nicholas; Webb, David J

    2013-01-01

    Aim To investigate the mechanism of action of intra-arterial histamine in the human forearm vasculature. Methods Three studies were conducted to assess changes in forearm blood flow (FBF) using venous occlusion plethysmography in response to intra-brachial histamine. First, the dose–response was investigated by assessing FBF throughout a dose-escalating histamine infusion. Next, histamine was infused at a constant dose to assess acute tolerance. Finally, a four way, double-blind, randomized, placebo-controlled crossover study was conducted to assess FBF response to histamine in the presence of H1- and H2-receptor antagonists. Flare and itch were assessed in all studies. Results Histamine caused a dose-dependent increase in FBF, greatest with the highest dose (30 nmol min−1) infused [mean (SEM) infused arm vs. control: 26.8 (5.3) vs. 2.6 ml min−1 100 ml−1; P < 0.0001]. Dose-dependent flare and itch were demonstrated. Acute tolerance was not observed, with an increased FBF persisting throughout the infusion period. H2-receptor antagonism significantly reduced FBF (mean (95% CI) difference from placebo at 30 nmol min−1 histamine: −11.9 ml min−1 100 ml−1 (−4.0, −19.8), P < 0.0001) and flare (mean (95% CI) difference from placebo: −403.7 cm2 (−231.4, 576.0), P < 0.0001). No reduction in FBF or flare was observed in response to the H1-receptor antagonist. Itch was unaffected by the treatments. Histamine did not stimulate vascular release of tissue plasminogen activator or von Willebrand factor. Conclusion Histamine causes dose-dependent vasodilatation, flare and itch in the human forearm. H2-receptors are important in this process. Our results support further exploration of combined H1- and H2-receptor antagonist therapy in acute allergic syndromes. PMID:23488545

  19. Age-related differences in biomarkers of acute inflammation during hospitalization for sepsis.

    PubMed

    Ginde, Adit A; Blatchford, Patrick J; Trzeciak, Stephen; Hollander, Judd E; Birkhahn, Robert; Otero, Ronny; Osborn, Tiffany M; Moretti, Eugene; Nguyen, H Bryant; Gunnerson, Kyle J; Milzman, David; Gaieski, David F; Goyal, Munish; Cairns, Charles B; Rivers, Emanuel P; Shapiro, Nathan I

    2014-08-01

    The authors aimed to evaluate age-related differences in inflammation biomarkers during the first 72 h of hospitalization for sepsis. This was a secondary analysis of a prospective observational cohort of adult patients (n = 855) from 10 urban academic emergency departments with confirmed infection and two or more systemic inflammatory response syndrome criteria. Six inflammation-related biomarkers were analyzed-chemokine (CC-motif) ligand-23, C-reactive protein, interleukin-1 receptor antagonist, neutrophil gelatinase-associated lipocalin (NGAL), peptidoglycan recognition protein, and tumor necrosis factor receptor-1a (TNFR-1a)-measured at presentation and 3, 6, 12, 24, 48, or 72 h later. The median age was 56 (interquartile range, 43 - 72) years, and sepsis severity was 38% sepsis, 16% severe sepsis without shock, and 46% septic shock; the overall 30-day mortality was 12%. Older age was associated with higher sepsis severity: 41% of subjects aged 18 to 34 years had severe sepsis or septic shock compared with 71% for those aged 65 years or older (P < 0.001). In longitudinal models adjusting for demographics, comorbidities, and infection source, older age was associated with higher baseline values for chemokine (CC-motif) ligand-23, interleukin-1 receptor antagonist, NGAL, and TNFR-1a (all P < 0.05). However, older adults had higher mean values during the entire 72-h period only for NGAL and TNFR-1a and higher final 72-h values only for TNFR-1a. Adjustment or stratification by sepsis severity did not change the age-inflammation associations. Although older adults had higher levels of inflammation at presentation and an increased incidence of severe sepsis and septic shock, these age-related differences in inflammation largely resolved during the first 72 h of hospitalization.

  20. Potent and long-acting corticotropin releasing factor (CRF) receptor 2 selective peptide competitive antagonists.

    PubMed

    Rivier, J; Gulyas, J; Kirby, D; Low, W; Perrin, M H; Kunitake, K; DiGruccio, M; Vaughan, J; Reubi, J C; Waser, B; Koerber, S C; Martinez, V; Wang, L; Taché, Y; Vale, W

    2002-10-10

    We present evidence that members of the corticotropin releasing factor (CRF) family assume distinct structures when interacting with the CRF(1) and CRF(2) receptors. Predictive methods, physicochemical measurements, and structure-activity relationship studies have suggested that CRF, its family members, and competitive antagonists such as astressin [cyclo(30-33)[DPhe(12),Nle(21),Glu(30),Lys(33),Nle(38)]hCRF((12-41))] assume an alpha-helical conformation when interacting with their receptors. We had shown that alpha-helical CRF((9-41)) and sauvagine showed some selectivity for CRF receptors other than that responsible for ACTH secretion(1) and later for CRF2.(2) More recently, we suggested the possibility of a helix-turn-helix motif around a turn encompassing residues 30-33(3) that would confer high affinity for both CRF(1) and CRF(2)(2,4) in agonists and antagonists of all members of the CRF family.(3) On the other hand, the substitutions that conferred ca. 100-fold CRF(2) selectivity to the antagonist antisauvagine-30 [[DPhe(11),His(12)]sauvagine((11-40))] did not confer such property to the corresponding N-terminally extended agonists. We find here that a Glu(32)-Lys(35) side chain to side chain covalent lactam constraint in hCRF and the corresponding Glu(31)-Lys(34) side chain to side chain covalent lactam constraint in sauvagine yield potent ligands that are selective for CRF(2). Additionally, we introduced deletions and substitutions known to increase duration of action to yield antagonists such as cyclo(31-34)[DPhe(11),His(12),C(alpha)MeLeu(13,39),Nle(17),Glu(31),Lys(34)]Ac-sauvagine((8-40)) (astressin(2)-B) with CRF(2) selectivities greater than 100-fold. CRF receptor autoradiography was performed in rat tissue known to express CRF(2) and CRF(1) in order to confirm that astressin(2)-B could indeed bind to established CRF(2) but not CRF(1) receptor-expressing tissues. Extended duration of action of astressin(2)-B vs that of antisauvagine-30 is demonstrated in the CRF(2)-mediated animal model whereby the inhibition of gastric emptying of a solid meal in mice by urocortin administered intraperitoneally at time zero is antagonized by the administration of astressin(2)-B but not by antisauvagine-30 at times -3 and -6 h while both peptides are effective when given 10 min before urocortin.

  1. Hit-to-lead optimization of pyrrolo[1,2-a]quinoxalines as novel cannabinoid type 1 receptor antagonists.

    PubMed

    Szabó, György; Kiss, Róbert; Páyer-Lengyel, Dóra; Vukics, Krisztina; Szikra, Judit; Baki, Andrea; Molnár, László; Fischer, János; Keseru, György M

    2009-07-01

    Hit-to-lead optimization of a novel series of N-alkyl-N-[2-oxo-2-(4-aryl-4H-pyrrolo[1,2-a]quinoxaline-5-yl)-ethyl]-carboxylic acid amides, derived from a high throughput screening (HTS) hit, are described. Subsequent optimization led to identification of in vitro potent cannabinoid 1 receptor (CB1R) antagonists representing a new class of compounds in this area.

  2. The comparison of microdose flare-up and multiple dose antagonist protocols based on hCG day estradiol (E2), progesterone (P) and P/E2 ratio among poor responder patients in ICSI-ET cycles.

    PubMed

    Cicek, M N; Kahyaoglu, I; Kahyaoglu, S

    2015-02-01

    Elevated progesterone levels surpassing exact treshold values impede endometrial receptivity and decrease clinical pregnancy rates in different responder patients during assisted reproductive techniques. A progesterone (P): estradiol (E2) ratio of > 1 on the day of hCG administration has also been suggested to be a manifestation of low ovarian reserve. The clinical significance of P/E2 ratio on the day of hCG administration was investigated among poor responder patients. Based on the ESHRE Bologna consensus criteria related to poor ovarian response diagnosis, 48 poor responder patients were treated with the microdose flare-up regimen and 34 patients were treated with the multiple-dose GnRH antagonist protocol. All patients were destined to perform a ICSI-ET procedure at the end of the stimulation protocols. Progesterone levels and P/E2 ratios have been detected during controlled ovarian hyperstimulation. In the microdose flare-up group; the duration of stimulation, total gonadotropin dose used and hCG day E2 levels were significantly higher than the multiple dose antagonist group. However, the mean hCG day P/E2 rate in the microdose flare-up group was less than that in the multiple-dose antagonist group. The clinical pregnancy rates were non significantly higher in the multiple dose antagonist protocol group than in microdose flare-up group. Impaired endometrial receptivity caused by elevated P levels results with lower pregnancy rates. Regardless of the selected stimulation protocol, poor responder patients are not prone to exhibit high P and E2 secretion. Increased P/E2 ratio of > 1 on hCG day has limited value to predict cycle outcomes in poor responder patients because of ovarian follicle depletion.

  3. MEN16132, a novel potent and selective nonpeptide antagonist for the human bradykinin B2 receptor. In vitro pharmacology and molecular characterization.

    PubMed

    Cucchi, Paola; Meini, Stefania; Bressan, Alessandro; Catalani, Claudio; Bellucci, Francesca; Santicioli, Paolo; Lecci, Alessandro; Faiella, Angela; Rotondaro, Luigi; Giuliani, Sandro; Giolitti, Alessandro; Quartara, Laura; Maggi, Carlo Alberto

    2005-12-28

    The pharmacological characterization of the novel nonpeptide antagonist for the B2 receptor, namely MEN16132 (4-(S)-Amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride) is presented. The affinity of MEN16132 for the bradykinin B2 receptor has been investigated by means of competition studies at [3H]bradykinin binding to membranes prepared from Chinese Hamster Ovary (CHO) cells expressing the human bradykinin B2 receptor (pKi 10.5), human lung fibroblasts (pKi 10.5), guinea pig airways (pKi 10.0), guinea pig ileum longitudinal smooth muscle (pKi 10.2), or guinea pig cultured colonic myocytes (pKi 10.3). In all assays MEN16132 was as potent as the peptide antagonist Icatibant, and from 3- to 100-fold more potent than the reference nonpeptide antagonists FR173657 or LF16-0687. The selectivity for the bradykinin B2 receptor was checked at the human bradykinin B1 receptor (pKi<5), and at a panel of 26 different receptors and channels. The antagonist potency was measured in functional assays, i.e., in blocking the bradykinin induced inositolphosphates (IP) accumulation at the human (CHO: pKB 10.3) and guinea pig (colonic myocytes: pKB 10.3) B2 receptor, or in antagonizing the bradykinin induced contractile responses in human (detrusor smooth muscle: pKB 9.9) and guinea pig (ileum longitudinal smooth muscle: pKB 10.1) tissues. In both functional assay types MEN16132 exerted a different antagonist pattern, i.e., surmountable at the human and insurmountable at the guinea pig bradykinin B2 receptors. Moreover, the receptor determinants important for the high affinity interaction of MEN16132 with the human bradykinin B2 receptor were investigated by means of radioligand binding studies performed at 24 point-mutated receptors. The results obtained revealed that residues in transmembrane segment 2 (W86A), 3 (I110A), 6 (W256A), and 7 (Y295A, Y295F but not much Y295W), were crucial for the high affinity of MEN16132. In conclusion, MEN16132 is a new, potent, and selective nonpeptide bradykinin B2 receptor antagonist.

  4. Association between Kinin B1 Receptor Expression and Leukocyte Trafficking across Mouse Mesenteric Postcapillary Venules

    PubMed Central

    McLean, Peter G.; Ahluwalia, Amrita; Perretti, Mauro

    2000-01-01

    Using intravital microscopy, we examined the role played by B1 receptors in leukocyte trafficking across mouse mesenteric postcapillary venules in vivo. B1 receptor blockade attenuated interleukin (IL)-1β–induced (5 ng intraperitoneally, 2 h) leukocyte–endothelial cell interactions and leukocyte emigration (∼50% reduction). The B1 receptor agonist des-Arg9bradykinin (DABK), although inactive in saline- or IL-8–treated mice, caused marked neutrophil rolling, adhesion, and emigration 24 h after challenge with IL-1β (when the cellular response to IL-1β had subsided). Reverse transcriptase polymerase chain reaction and Western blot revealed a temporal association between the DABK-induced response and upregulation of mesenteric B1 receptor mRNA and de novo protein expression after IL-1β treatment. DABK-induced leukocyte trafficking was antagonized by the B1 receptor antagonist des-arg10HOE 140 but not by the B2 receptor antagonist HOE 140. Similarly, DABK effects were maintained in B2 receptor knockout mice. The DABK-induced responses involved the release of neuropeptides from C fibers, as capsaicin treatment inhibited the responses. Treatment with the neurokinin (NK)1 and NK3 receptor antagonists attenuated the responses, whereas NK2, calcitonin gene-related peptide, or platelet-activating factor receptor antagonists had no effect. Substance P caused leukocyte recruitment that, similar to DABK, was inhibited by NK1 and NK3 receptor blockade. Mast cell depletion using compound 48/80 reduced DABK-induced leukocyte trafficking, and DABK treatment was shown histologically to induce mast cell degranulation. DABK-induced trafficking was inhibited by histamine H1 receptor blockade. Our findings provide clear evidence that B1 receptors play an important role in the mediation of leukocyte–endothelial cell interactions in postcapillary venules, leading to leukocyte recruitment during an inflammatory response. This involves activation of C fibers and mast cells, release of substance P and histamine, and stimulation of NK1, NK3, and H1 receptors. PMID:10934225

  5. Nerve growth factor enhances cough via a central mechanism of action.

    PubMed

    El-Hashim, Ahmed Z; Jaffal, Sahar M; Al-Rashidi, Fatma T; Luqmani, Yunus A; Akhtar, Saghir

    2013-08-01

    The mechanisms involved in enhanced cough induced by central and inhaled NGF in guinea pigs were investigated. Cough and airway function were assessed by plethysmography following inhaled or intracerebroventricular (i.c.v.) NGF treatment. Expression of TrkA and/or TRPV1 was determined in bronchi and/or brainstem by real-time PCR and immunoblotting. I.c.v. and inhaled NGF enhanced citric acid induced-cough and airway obstruction. Pretreatment (i.c.v.) with antagonists of TrkA (K252a) or TRPV1 (IRTX) significantly reduced both the NGF (i.c.v.) enhanced cough and airway obstruction whereas the NK1 antagonist (FK888) inhibited only cough. The H1 antagonist (cetirizine) did not affect either. Inhaled NGF increased phosphorylation of TrkA receptors in the bronchi but not the brainstem at 0.5h post-treatment. TrkA mRNA was elevated at 0.5h in the bronchi and at 24h in the brainstem while TRPV1 mRNA was elevated from 0.5h to 24h in brainstem and at 24h in the bronchi. Pretreatment (i.c.v.) with IRTX, but not K252a, significantly inhibited the inhaled NGF-enhanced cough. Central NGF administration enhances cough and airway obstruction by mechanisms dependent on central activation of TrkA, TRPV1 and NK1 receptors while inhaled NGF enhances cough via a mechanism dependent on central TRPV1 and not TrkA receptors. These data show that NGF, in addition to its effects on the airways, has an important central mechanism of action in the enhancement of cough. Therefore, therapeutic strategies targeting NGF signaling in both the airways and CNS may be more effective in the management of cough. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Inhibiting thyrotropin/insulin-like growth factor 1 receptor crosstalk to treat Graves' ophthalmopathy: studies in orbital fibroblasts in vitro.

    PubMed

    Place, Robert F; Krieger, Christine C; Neumann, Susanne; Gershengorn, Marvin C

    2017-02-01

    Crosstalk between thyrotropin (TSH) receptors and insulin-like growth factor 1 (IGF-1) receptors initiated by activation of TSH receptors could be important in the development of Graves' ophthalmopathy (GO). Specifically, TSH receptor activation alone is sufficient to stimulate hyaluronic acid (HA) secretion, a major component of GO, through both IGF-1 receptor-dependent and -independent pathways. Although an anti-IGF-1 receptor antibody is in clinical trials, its effectiveness depends on the relative importance of IGF-1 versus TSH receptor signalling in GO pathogenesis. TSH and IGF-1 receptor antagonists were used to probe TSH/IGF-1 receptor crosstalk in primary cultures of Graves' orbital fibroblasts (GOFs) following activation with monoclonal TSH receptor antibody, M22. Inhibition of HA secretion following TSH receptor stimulation was measured by modified HA elisa. TSH receptor antagonist, ANTAG3 (NCGC00242364), inhibited both IGF-1 receptor -dependent and -independent pathways at all doses of M22; whereas IGF-1 receptor antagonists linsitinib and 1H7 (inhibitory antibody) lost efficacy at high M22 doses. Combining TSH and IGF-1 receptor antagonists exhibited Loewe additivity within the IGF-1 receptor-dependent component of the M22 concentration-response. Similar effects were observed in GOFs activated by autoantibodies from GO patients' sera. Our data support TSH and IGF-1 receptors as therapeutic targets for GO, but reveal putative conditions for anti-IGF-1 receptor resistance. Combination treatments antagonizing both receptors yield additive effects by inhibiting crosstalk triggered by TSH receptor stimulatory antibodies. Combination therapy may be an effective strategy for dose reduction and/or compensate for any loss of anti-IGF-1 receptor efficacy. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  7. Inhibiting thyrotropin/insulin‐like growth factor 1 receptor crosstalk to treat Graves' ophthalmopathy: studies in orbital fibroblasts in vitro

    PubMed Central

    Place, Robert F; Neumann, Susanne; Gershengorn, Marvin C

    2017-01-01

    Background and Purpose Crosstalk between thyrotropin (TSH) receptors and insulin‐like growth factor 1 (IGF‐1) receptors initiated by activation of TSH receptors could be important in the development of Graves' ophthalmopathy (GO). Specifically, TSH receptor activation alone is sufficient to stimulate hyaluronic acid (HA) secretion, a major component of GO, through both IGF‐1 receptor‐dependent and ‐independent pathways. Although an anti‐IGF‐1 receptor antibody is in clinical trials, its effectiveness depends on the relative importance of IGF‐1 versus TSH receptor signalling in GO pathogenesis. Experimental Approach TSH and IGF‐1 receptor antagonists were used to probe TSH/IGF‐1 receptor crosstalk in primary cultures of Graves' orbital fibroblasts (GOFs) following activation with monoclonal TSH receptor antibody, M22. Inhibition of HA secretion following TSH receptor stimulation was measured by modified HA elisa. Key Results TSH receptor antagonist, ANTAG3 (NCGC00242364), inhibited both IGF‐1 receptor ‐dependent and ‐independent pathways at all doses of M22; whereas IGF‐1 receptor antagonists linsitinib and 1H7 (inhibitory antibody) lost efficacy at high M22 doses. Combining TSH and IGF‐1 receptor antagonists exhibited Loewe additivity within the IGF‐1 receptor‐dependent component of the M22 concentration‐response. Similar effects were observed in GOFs activated by autoantibodies from GO patients' sera. Conclusions and Implications Our data support TSH and IGF‐1 receptors as therapeutic targets for GO, but reveal putative conditions for anti‐IGF‐1 receptor resistance. Combination treatments antagonizing both receptors yield additive effects by inhibiting crosstalk triggered by TSH receptor stimulatory antibodies. Combination therapy may be an effective strategy for dose reduction and/or compensate for any loss of anti‐IGF‐1 receptor efficacy. PMID:27987211

  8. Effect of alpha-adrenoceptor antagonists (phentolamine, nicergoline and prazosin) on reperfusion arrhythmias and noradrenaline release in perfused rat heart.

    PubMed Central

    Bralet, J.; Didier, J.; Moreau, D.; Opie, L. H.; Rochette, L.

    1985-01-01

    Rat isolated hearts were perfused through the left atrium with a modified Krebs-Henseleit solution or mounted on a Langendorff perfusion system. The hearts were prelabelled with [3H]-noradrenaline [( 3H]-NA) and the left main coronary artery was ligated for 10 min after which reperfusion followed. The liberation of [3H]-NA and the development of ventricular tachycardia and fibrillation were monitored throughout. During the occlusion period, ventricular arrhythmias did not occur and heart rate was not significantly altered in the control series. In contrast, reperfusion was followed by ventricular fibrillation and ventricular tachycardia in all the hearts in the control series (Langendorff or 'working' models). The alpha-adrenoceptor antagonists phentolamine (7.1 X 10(-6) M and 7.1 X 10(-5) M) and nicergoline (3.1 X 10(-6) M) diminished or prevented reperfusion arrhythmias. However, prazosin (5.2 X 10(-6) M) was not effective. The lower concentration of phentolamine did not alter the pattern of [3H]-NA release, whereas, high doses of phentolamine and nicergoline increased the release of [3H]-NA. Prazosin (5.2 X 10(-6) M) caused a very marked increase in release of [3H]-NA but was not antiarrhythmic. A 'membrane-stabilizing' effect seems the most appropriate explanation for these antiarrhythmic effects of alpha-antagonist agents. PMID:2858234

  9. Development of a Rapid Throughput Assay for Identification of hNav1.7 Antagonist Using Unique Efficacious Sodium Channel Agonist, Antillatoxin.

    PubMed

    Zhao, Fang; Li, Xichun; Jin, Liang; Zhang, Fan; Inoue, Masayuki; Yu, Boyang; Cao, Zhengyu

    2016-02-16

    Voltage-gated sodium channels (VGSCs) are responsible for the generation of the action potential. Among nine classified VGSC subtypes (Nav1.1-Nav1.9), Nav1.7 is primarily expressed in the sensory neurons, contributing to the nociception transmission. Therefore Nav1.7 becomes a promising target for analgesic drug development. In this study, we compared the influence of an array of VGSC agonists including veratridine, BmK NT1, brevetoxin-2, deltamethrin and antillatoxin (ATX) on membrane depolarization which was detected by Fluorescence Imaging Plate Reader (FLIPR) membrane potential (FMP) blue dye. In HEK-293 cells heterologously expressing hNav1.7 α-subunit, ATX produced a robust membrane depolarization with an EC50 value of 7.8 ± 2.9 nM whereas veratridine, BmK NT1, and deltamethrin produced marginal response. Brevetoxin-2 was without effect on membrane potential change. The ATX response was completely inhibited by tetrodotoxin suggesting that the ATX response was solely derived from hNav1.7 activation, which was consistent with the results where ATX produced a negligible response in null HEK-293 cells. Six VGSC antagonists including lidocaine, lamotrigine, phenytoin, carbamazepine, riluzole, and 2-amino-6-trifluoromethylthiobenzothiazole all concentration-dependently inhibited ATX response with IC50 values comparable to that reported from patch-clamp experiments. Considered together, we demonstrate that ATX is a unique efficacious hNav1.7 activator which offers a useful probe to develop a rapid throughput screening assay to identify hNav1.7 antagonists.

  10. Development of a Rapid Throughput Assay for Identification of hNav1.7 Antagonist Using Unique Efficacious Sodium Channel Agonist, Antillatoxin

    PubMed Central

    Zhao, Fang; Li, Xichun; Jin, Liang; Zhang, Fan; Inoue, Masayuki; Yu, Boyang; Cao, Zhengyu

    2016-01-01

    Voltage-gated sodium channels (VGSCs) are responsible for the generation of the action potential. Among nine classified VGSC subtypes (Nav1.1–Nav1.9), Nav1.7 is primarily expressed in the sensory neurons, contributing to the nociception transmission. Therefore Nav1.7 becomes a promising target for analgesic drug development. In this study, we compared the influence of an array of VGSC agonists including veratridine, BmK NT1, brevetoxin-2, deltamethrin and antillatoxin (ATX) on membrane depolarization which was detected by Fluorescence Imaging Plate Reader (FLIPR) membrane potential (FMP) blue dye. In HEK-293 cells heterologously expressing hNav1.7 α-subunit, ATX produced a robust membrane depolarization with an EC50 value of 7.8 ± 2.9 nM whereas veratridine, BmK NT1, and deltamethrin produced marginal response. Brevetoxin-2 was without effect on membrane potential change. The ATX response was completely inhibited by tetrodotoxin suggesting that the ATX response was solely derived from hNav1.7 activation, which was consistent with the results where ATX produced a negligible response in null HEK-293 cells. Six VGSC antagonists including lidocaine, lamotrigine, phenytoin, carbamazepine, riluzole, and 2-amino-6-trifluoromethylthiobenzothiazole all concentration-dependently inhibited ATX response with IC50 values comparable to that reported from patch-clamp experiments. Considered together, we demonstrate that ATX is a unique efficacious hNav1.7 activator which offers a useful probe to develop a rapid throughput screening assay to identify hNav1.7 antagonists. PMID:26891306

  11. [(3)H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]-purin-5-one ([(3)H]PSB-11), a novel high-affinity antagonist radioligand for human A(3) adenosine receptors.

    PubMed

    Müller, Christa E; Diekmann, Martina; Thorand, Mark; Ozola, Vita

    2002-02-11

    This study describes the preparation and binding properties of [(3)H]PSB-11, a novel, potent, and selective antagonist radioligand for human A(3) adenosine receptors (ARs). [(3)H]PSB-11 binding to membranes of Chinese hamster ovary (CHO) cells expressing the human A(3) AR was saturable and reversible. Saturation experiments showed that [(3)H]PSB-11 labeled a single class of binding sites with high affinity (K(D)=4.9 nM) and limited capacity (B(max)=3500 fmol/mg of protein). PSB-11 is highly selective versus the other adenosine receptor subtypes. The new radioligand shows an extraordinarily low degree of non-specific binding rendering it a very useful tool for studying the (patho)physiological roles of A(3 )ARs.

  12. 5-HT6 receptor agonists and antagonists enhance learning and memory in a conditioned emotion response paradigm by modulation of cholinergic and glutamatergic mechanisms

    PubMed Central

    Woods, S; Clarke, NN; Layfield, R; Fone, KCF

    2012-01-01

    BACKGROUND AND PURPOSE 5-HT6 receptors are abundant in the hippocampus, nucleus accumbens and striatum, supporting their role in learning and memory. Selective 5-HT6 receptor antagonists produce pro-cognitive effects in several learning and memory paradigms while 5-HT6 receptor agonists have been found to enhance and impair memory. EXPERIMENTAL APPROACH The conditioned emotion response (CER) paradigm was validated in rats. Then we examined the effect of the 5-HT6 receptor antagonist, EMD 386088 (10 mg·kg−1, i.p.), and agonists, E-6801 (2.5 mg·kg−1, i.p.) and EMD 386088 (5 mg·kg−1, i.p.) on CER-induced behaviour either alone or after induction of memory impairment by the muscarinic receptor antagonist, scopolamine (0.3 mg·kg−1, i.p) or the NMDA receptor antagonist, MK-801 (0.1 mg·kg−1, i.p). KEY RESULTS Pairing unavoidable foot shocks with a light and tone cue during CER training induced a robust freezing response, providing a quantitative index of contextual memory when the rat was returned to the shock chamber 24 h later. Pretreatment (−20 min pre-training) with scopolamine or MK-801 reduced contextual freezing 24 h after CER training, showing production of memory impairment. Immediate post-training administration of 5-HT6 receptor antagonist, SB-270146, and agonists, EMD 386088 and E-6801, had little effect on CER freezing when given alone, but all significantly reversed scopolamine- and MK-801-induced reduction in freezing. CONCLUSION AND IMPLICATIONS Both the 5-HT6 receptor agonists and antagonist reversed cholinergic- and glutamatergic-induced deficits in associative learning. These findings support the therapeutic potential of 5-HT6 receptor compounds in the treatment of cognitive dysfunction, such as seen in Alzheimer's disease and schizophrenia. PMID:22568655

  13. Guanidine-acylguanidine bioisosteric approach in the design of radioligands: synthesis of a tritium-labeled N(G)-propionylargininamide ([3H]-UR-MK114) as a highly potent and selective neuropeptide Y Y1 receptor antagonist.

    PubMed

    Keller, Max; Pop, Nathalie; Hutzler, Christoph; Beck-Sickinger, Annette G; Bernhardt, Günther; Buschauer, Armin

    2008-12-25

    Synthesis and characterization of (R)-N(alpha)-(2,2-diphenylacetyl)-N-(4-hydroxybenzyl)-N(omega)-([2,3-(3)H]-propanoyl)argininamide ([(3)H]-UR-MK114), an easily accessible tritium-labeled NPY Y(1) receptor (Y(1)R) antagonist (K(B): 0.8 nM, calcium assay, HEL cells) derived from the (R)-argininamide BIBP 3226, is reported. The radioligand binds with high affinity (K(D), saturation: 1.2 nM, kinetic experiments: 1.1 nM, SK-N-MC cells) and selectivity for Y(1)R over Y(2), Y(4), and Y(5) receptors. The title compound is a useful pharmacological tool for the determination of Y(1)R ligand affinities, quantification of Y(1)R binding sites, and autoradiography.

  14. The H3 antagonist, ciproxifan, alleviates the memory impairment but enhances the motor effects of MK-801 (dizocilpine) in rats.

    PubMed

    Bardgett, Mark E; Points, Megan; Kleier, Jennifer; Blankenship, Meredith; Griffith, Molly S

    2010-11-01

    Antagonists of H(3)-type histamine receptors exhibit cognitive-enhancing properties in various memory paradigms as well as evidence of antipsychotic activity in normal animals. The present study determined if a prototypical H(3) antagonist, ciproxifan, could reverse the behavioral effects of MK-801, a drug used in animals to mimic the hypoglutamatergic state suspected to exist in schizophrenia. Four behaviors were chosen for study, locomotor activity, ataxia, prepulse inhibition (PPI), and delayed spatial alternation, since their modification by dizocilpine (MK-801) has been well characterized. Adult male Long-Evans rats were tested after receiving a subcutaneous injection of ciproxifan or vehicle followed 20 min later by a subcutaneous injection of MK-801 or vehicle. Three doses of MK-801 (0.05, 0.1, & 0.3 mg/kg) increased locomotor activity. Each dose of ciproxifan (1.0 & 3.0 mg/kg) enhanced the effect of the moderate dose of MK-801, but suppressed the effect of the high dose. Ciproxifan (3.0 mg/kg) enhanced the effects of MK-801 (0.1 & 0.3 mg/kg) on fine movements and ataxia. Deficits in PPI were observed after treatment with MK-801 (0.05 & 0.1 mg/kg), but ciproxifan did not alter these effects. Delayed spatial alternation was significantly impaired by MK-801 (0.1 mg/kg) at a longer delay, and ciproxifan (3.0 mg/kg) alleviated this impairment. These results indicate that some H(3) antagonists can alleviate the impact of NMDA receptor hypofunction on some forms of memory, but may exacerbate its effect on other behaviors. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. The H3 Antagonist, Ciproxifan, Alleviates the Memory Impairment but Enhances the Motor Effects of MK-801 (Dizocilpine) in Rats.

    PubMed Central

    Bardgett, Mark E.; Points, Megan; Kleier, Jennifer; Blankenship, Meredith; Griffith, Molly S.

    2010-01-01

    Summary Antagonists of H3-type histamine receptors exhibit cognitive-enhancing properties in various memory paradigms as well as evidence of antipsychotic activity in normal animals. The present study determined if a prototypical H3 antagonist, ciproxifan, could reverse the behavioral effects of MK-801, a drug used in animals to mimic the hypoglutamatergic state suspected to exist in schizophrenia. Four behaviors were chosen for study, locomotor activity, ataxia, prepulse inhibition (PPI), and delayed spatial alternation, since their modification by dizocilpine (MK-801) has been well characterized. Adult male Long-Evans rats were tested after receiving a subcutaneous injection of ciproxifan or vehicle followed twenty minutes later by a subcutaneous injection of MK-801 or vehicle. Three doses of MK-801 (0.05, 0.1, & 0.3 mg/kg) increased locomotor activity. Each dose of ciproxifan (1.0 & 3.0 mg/kg) enhanced the effect of the moderate dose of MK-801, but suppressed the effect of the high dose. Ciproxifan (3.0 mg/kg) enhanced the effects of MK-801 (0.1 & 0.3 mg/kg) on fine movements and ataxia. Deficits in PPI were observed after treatment with MK-801 (0.05 & 0.1 mg/kg), but ciproxifan did not alter these effects. Delayed spatial alternation was significantly impaired by MK-801 (0.1 mg/kg) at a longer delay, and ciproxifan (3.0 mg/kg) alleviated this impairment. These results indicate that some H3 antagonists can alleviate the impact of NMDA receptor hypofunction on some forms of memory, but may exacerbate its effect on other behaviors. PMID:20621107

  16. Lactoferrin Levels in Tears are Increased by the Topical Application of Diadenosine Tetraphosphate.

    PubMed

    Loma, Patricia; Guzman-Aranguez, Ana; Perez de Lara, Maria J; Pintor, Jesus

    2016-09-01

    This study was undertaken to determine the effect of the topical application of diadenosine tetraphosphate on lactoferrin levels in rabbit tears. Diadenosine tetraphosphate was topically instilled in a single-dose, tear samples were collected by micropipette and lactoferrin was measured by Enzyme-Linked ImmunoSorbent Assay (ELISA). The concentration of lactoferrin in rabbit tears was significantly increased 1 h after diadenosine tetraphosphate application, remaining elevated for 3 h more. This effect was blocked by P2 receptors antagonists. Topical application of diadenosine tetraphosphate stimulates the secretion of lactoferrin in rabbit tears through P2 receptor activation.

  17. Beta-methyl substitution of cyclohexylalanine in Dmt-Tic-Cha-Phe peptides results in highly potent delta opioid antagonists.

    PubMed

    Tóth, Géza; Ioja, Eniko; Tömböly, Csaba; Ballet, Steven; Tourwé, Dirk; Péter, Antal; Martinek, Tamás; Chung, Nga N; Schiller, Peter W; Benyhe, Sándor; Borsodi, Anna

    2007-01-25

    The opioid peptide TIPP (H-Tyr-Tic-Phe-Phe-OH, Tic:1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) was substituted with Dmt (2',6'-dimethyltyrosine) and a new unnatural amino acid, beta-MeCha (beta-methyl-cyclohexylalanine). This double substitution led to a new series of opioid peptides displaying subnanomolar delta antagonist activity and mu agonist or antagonist properties depending on the configuration of the beta-MeCha residue. The most promising analog, H-Dmt-Tic-(2S,3S)-beta-MeCha-Phe-OH was a very selective delta antagonist both in the mouse vas deferens (MVD) assay (Ke = 0.241 +/- 0.05 nM) and in radioligand binding assay (K i delta = 0.48 +/- 0.05 nM, K i mu/K i delta = 2800). The epimeric peptide H-Dmt-Tic-(2S,3R)-beta-MeCha-Phe-OH and the corresponding peptide amide turned out to be mixed partial mu agonist/delta antagonists in the guinea pig ileum and MVD assays. Our results constitute further examples of the influence of Dmt and beta-methyl substitution as well as C-terminal amidation on the potency, selectivity, and signal transduction properties of TIPP related peptides. Some of these compounds represent valuable pharmacological tools for opioid research.

  18. Dopamine antagonists and brief vision distinguish lens-induced- and form-deprivation-induced myopia.

    PubMed

    Nickla, Debora L; Totonelly, Kristen

    2011-11-01

    In eyes wearing negative lenses, the D2 dopamine antagonist spiperone was only partly effective in preventing the ameliorative effects of brief periods of vision (Nickla et al., 2010), in contrast to reports from studies using form-deprivation. The present study was done to directly compare the effects of spiperone, and the D1 antagonist SCH-23390, on the two different myopiagenic paradigms. 12-day old chickens wore monocular diffusers (form-deprivation) or -10 D lenses attached to the feathers with matching rings of Velcro. Each day for 4 days, 10 μl intravitreal injections of the dopamine D2/D4 antagonist spiperone (5 nmoles) or the D1 antagonist SCH-23390, were given under isoflurane anesthesia, and the diffusers (n = 16; n = 5, respectively) or lenses (n = 20; n = 6) were removed for 2 h immediately after. Saline injections prior to vision were done as controls (form-deprivation: n = 11; lenses: n = 10). Two other saline-injected groups wore the lenses (n = 12) or diffusers (n = 4) continuously. Axial dimensions were measured by high frequency A-scan ultrasonography at the start, and on the last day immediately prior to, and 3 h after the injection. Refractive errors were measured at the end of the experiment using a Hartinger's refractometer. In form-deprived eyes, spiperone, but not SCH-23390, prevented the ocular growth inhibition normally effected by the brief periods of vision (change in vitreous chamber depth, spiperone vs saline: 322 vs 211 μm; p = 0.01). By contrast, neither had any effect on negative lens-wearing eyes given similar unrestricted vision (210 and 234 μm respectively, vs 264 μm). The increased elongation in the spiperone-injected form-deprived eyes did not, however, result in a myopic shift, probably due to the inhibitory effect of the drug on anterior chamber growth (drug vs saline: 96 vs 160 μm; p < 0.01). Finally, spiperone inhibited the vision-induced transient choroidal thickening in form-deprived eyes, while SCH-23390 did not. These results indicate that the dopaminergic mechanisms mediating the protective effects of brief periods of unrestricted vision differ for form-deprivation versus negative lens-wear, which may imply different growth control mechanisms between the two. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist.

    PubMed

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W; Vanden Broeck, Jozef; Tourwé, Dirk

    2011-04-14

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3',5'-(CF(3))(2)-Bn], 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], and 23 [Ac-Tic-NMe-3',5'-(CF(3))(2)-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], which combines the N terminus of the established Dmt(1)-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH(2)) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, that is, Dmt-D-Arg-Aba-Gly-NH(2) (36), also proved to be an extremely potent and balanced μ and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaba, D.M.; Metz, S.; Maze, M.

    Transthoracic electric countershock can cause necrotic myocardial lesions in humans as well as experimental animals. The authors investigated the effect on postcountershock myocardial damage of pretreatment with prazosin, an alpha-1 antagonist; L-metoprolol, a beta-1 antagonist, and verapamil, a calcium channel-blocking agent. Twenty dogs were anesthetized with halothane and given two transthoracic countershocks of 295 delivered joules each after drug or vehicle treatment. Myocardial injury was quantitated 24 h following countershock by measuring the uptake of technetium-99m pyrophosphate in the myocardium. Elevated technetium-99m pyrophosphate uptake occurred in visible lesions in most dogs regardless of drug treatment. For each of four parametersmore » of myocardial damage there was no statistically significant difference between control animals and those treated with prazosin, metoprolol, or verapamil. These data suggest that adrenergic or calcium channel-mediated mechanisms are not involved in the pathogenesis of postcountershock myocardial damage.« less

  1. Potent and selective CC chemokine receptor 1 antagonists labeled with carbon-13, carbon-14, and tritium.

    PubMed

    Latli, Bachir; Hrapchak, Matt; Cheveliakov, Maxim; Reeves, Jonathan T; Marsini, Maurice; Busacca, Carl A; Senanayake, Chris H

    2018-05-15

    1-(4-Fluorophenyl)-1H-pyrazolo[3,4-c]pyridine-4-carboxylic acid (2-methanesulfonyl-pyridin-4-ylmethyl)-amide (1) and its analogs (2) and (3) are potent CCR1 antagonists intended for the treatment of rheumatoid arthritis. The detailed syntheses of these 3 compounds labeled with carbon-13 as well as the preparation of (1) and (2) labeled with carbon-14, and (1) labeled with tritium, are described. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Saw palmetto extracts potently and noncompetitively inhibit human alpha1-adrenoceptors in vitro.

    PubMed

    Goepel, M; Hecker, U; Krege, S; Rübben, H; Michel, M C

    1999-02-15

    We wanted to test whether phytotherapeutic agents used in the treatment of lower urinary tract symptoms have alpha1-adrenoceptor antagonistic properties in vitro. Preparations of beta-sitosterol and extracts of stinging nettle, medicinal pumpkin, and saw palmetto were obtained from several pharmaceutical companies. They were tested for their ability to inhibit [3H]tamsulosin binding to human prostatic alpha1-adrenoceptors and [3H]prazosin binding to cloned human alpha1A- and alpha1B-adrenoceptors. Inhibition of phenylephrine-stimulated [3H]inositol phosphate formation by cloned receptors was also investigated. Up to the highest concentration which could be tested, preparations of beta-sitosterol, stinging nettle, and medicinal pumpkin were without consistent inhibitory effect in all assays. In contrast, all tested saw palmetto extracts inhibited radioligand binding to human alpha1-adrenoceptors and agonist-induced [3H]inositol phosphate formation. Saturation binding experiments in the presence of a single saw palmetto extract concentration indicated a noncompetitive antagonism. The relationship between active concentrations in vitro and recommended therapeutic doses for the saw palmetto extracts was slightly lower than that for several chemically defined alpha1-adrenoceptor antagonists. Saw palmetto extracts have alpha1-adrenoceptor-inhibitory properties. If bioavailability and other pharmacokinetic properties of these ingredients are similar to those of the chemically defined alpha1-adrenoceptor antagonists, alpha1-adrenoceptor antagonism might be involved in the therapeutic effects of these extracts in patients with lower urinary tract symptoms suggestive of benign prostatic obstruction.

  3. Communication between mast cells and rat submucosal neurons.

    PubMed

    Bell, Anna; Althaus, Mike; Diener, Martin

    2015-08-01

    Histamine is a mast cell mediator released e.g. during food allergy. The aim of the project was to identify the effect of histamine on rat submucosal neurons and the mechanisms involved. Cultured submucosal neurons from rat colon express H1, H2 and H3 receptors as shown by immunocytochemical staining confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) with messenger RNA (mRNA) isolated from submucosal homogenates as starting material. Histamine evoked a biphasic rise of the cytosolic Ca(2+) concentration in cultured submucosal neurons, consisting in a release of intracellularly stored Ca(2+) followed by an influx from the extracellular space. Although agonists of all three receptor subtypes evoked an increase in the cytosolic Ca(2+) concentration, experiments with antagonists revealed that mainly H1 (and to a lesser degree H2) receptors mediate the response to histamine. In coculture experiments with RBL-2H3 cells, a mast cell equivalent, compound 48/80, evoked an increase in the cytosolic Ca(2+) concentration of neighbouring neurons. Like the response to native histamine, the neuronal response to the mast cell degranulator was strongly inhibited by the H1 receptor antagonist pyrilamine and reduced by the H2 receptor antagonist cimetidine. In rats sensitized against ovalbumin, exposure to the antigen induced a rise in short-circuit current (I sc) across colonic mucosa-submucosa preparations without a significant increase in paracellular fluorescein fluxes. Pyrilamine strongly inhibited the increase in I sc, a weaker inhibition was observed after blockade of protease receptors or 5-lipoxygenase. Consequently, H1 receptors on submucosal neurons seem to play a pivotal role in the communication between mast cells and the enteric nervous system.

  4. Ciproxifan, an H3 receptor antagonist, improves short-term recognition memory impaired by isoflurane anesthesia.

    PubMed

    Ding, Fang; Zheng, Limin; Liu, Min; Chen, Rongfa; Leung, L Stan; Luo, Tao

    2016-08-01

    Exposure to volatile anesthetics has been reported to cause temporary or sustained impairments in learning and memory in pre-clinical studies. The selective antagonists of the histamine H3 receptors (H3R) are considered to be a promising group of novel therapeutic agents for the treatment of cognitive disorders. The aim of this study was to evaluate the effect of H3R antagonist ciproxifan on isoflurane-induced deficits in an object recognition task. Adult C57BL/6 J mice were exposed to isoflurane (1.3 %) or vehicle gas for 2 h. The object recognition tests were carried at 24 h or 7 days after exposure to anesthesia to exploit the tendency of mice to prefer exploring novel objects in an environment when a familiar object is also present. During the training phase, two identical objects were placed in two defined sites of the chamber. During the test phase, performed 1 or 24 h after the training phase, one of the objects was replaced by a new object with a different shape. The time spent exploring each object was recorded. A robust deficit in object recognition memory occurred 1 day after exposure to isoflurane anesthesia. Isoflurane-treated mice spent significantly less time exploring a novel object at 1 h but not at 24 h after the training phase. The deficit in short-term memory was reversed by the administration of ciproxifan 30 min before behavioral training. Isoflurane exposure induces reversible deficits in object recognition memory. Ciproxifan appears to be a potential therapeutic agent for improving post-anesthesia cognitive memory performance.

  5. Pharmacological characterization of the human histamine H2 receptor stably expressed in Chinese hamster ovary cells.

    PubMed Central

    Leurs, R.; Smit, M. J.; Menge, W. M.; Timmerman, H.

    1994-01-01

    1. The gene for the human histamine H2 receptor was stably expressed in Chinese hamster ovary (CHO) cells and characterized by [125I]-iodoaminopotentidine binding studies. In addition, the coupling of the expressed receptor protein to a variety of signal transduction pathways was investigated. 2. After cotransfection of CHO cells with pCMVhumH2 and pUT626, a phleomycine-resistant clonal cell line (CHOhumH2) was isolated that expressed 565 +/- 35 fmol kg-1 protein binding sites with high affinity (0.21 +/- 0.02 nM) for the H2 antagonist, [125I]-iodoaminopotentidine. 3. Displacement studies with a variety of H2 antagonists indicated that the encoded protein was indistinguishable from the H2 receptor identified in human brain membranes and guinea-pig right atrium. The Ki-values observed in the various preparations correlated very well (r2 = 0.996-0.920). 4. Displacement studies with histamine showed that a limited fraction (32 +/- 6%) of the binding sites showed a high affinity for histamine (2 +/- 1.2 microM); the shallow displacement curves were reflected by a Hill-coefficient significantly different from unity (nH = 0.58 +/- 0.09). The addition of 100 microM Gpp(NH)p resulted in a steepening of the displacement curve (nH = 0.79 +/- 0.02) and a loss of high affinity sites for histamine. 5. Displacement studies with other agonists indicated that the recently developed specific H2 agonists, amthamine and amselamine, showed an approximately 4-5 fold higher affinity for the human H2 receptor than histamine. 6. Stimulation of CHOhumH2 cells with histamine resulted in a rapid rise of the intracellular cyclic AMP levels. After 10 min an approximately 10 fold increase in cyclic AMP could be measured.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4 PMID:7921611

  6. Antivirulence Isoquinolone Mannosides: Optimization of the Biaryl Aglycone for FimH Lectin Binding Affinity and Efficacy in the Treatment of Chronic UTI.

    PubMed

    Jarvis, Cassie; Han, Zhenfu; Kalas, Vasilios; Klein, Roger; Pinkner, Jerome S; Ford, Bradley; Binkley, Jana; Cusumano, Corinne K; Cusumano, Zachary; Mydock-McGrane, Laurel; Hultgren, Scott J; Janetka, James W

    2016-02-17

    Uropathogenic E. coli (UPEC) employ the mannose-binding adhesin FimH to colonize the bladder epithelium during urinary tract infection (UTI). Previously reported FimH antagonists exhibit good potency and efficacy, but low bioavailability and a short half-life in vivo. In a rational design strategy, we obtained an X-ray structure of lead mannosides and then designed mannosides with improved drug-like properties. We show that cyclizing the carboxamide onto the biphenyl B-ring aglycone of biphenyl mannosides into a fused heterocyclic ring, generates new biaryl mannosides such as isoquinolone 22 (2-methyl-4-(1-oxo-1,2-dihydroisoquinolin-7-yl)phenyl α-d-mannopyranoside) with enhanced potency and in vivo efficacy resulting from increased oral bioavailability. N-Substitution of the isoquinolone aglycone with various functionalities produced a new potent subseries of FimH antagonists. All analogues of the subseries have higher FimH binding affinity than unsubstituted lead 22, as determined by thermal shift differential scanning fluorimetry assay. Mannosides with pyridyl substitution on the isoquinolone group inhibit bacteria-mediated hemagglutination and prevent biofilm formation by UPEC with single-digit nanomolar potency, which is unprecedented for any FimH antagonists or any other antivirulence compounds reported to date. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Comparison of the ultrashort gonadotropin-releasing hormone agonist-antagonist protocol with microdose flare -up protocol in poor responders: a preliminary study

    PubMed Central

    Berker, Bülent; Duvan, Candan İltemir; Kaya, Cemil; Aytaç, Ruşen; Şatıroğlu, Hakan

    2010-01-01

    Objective To determine the potential effect of the ultrashort gonadotropin-releasing hormone (GnRH) agonist/GnRH antagonist protocol versus the microdose GnRH agonist protocol in poor responders undergoing intracytoplasmic sperm injection (ICSI). Material and Methods The patients in the Agonist-Antagonist Group (n=41) were administered the ultrashort GnRH-agonist/ antagonist protocol, while the patients in the Microdose Group (n=41) were stimulated according to the microdose flare-up protocol. The mean number of mature oocytes retrieved was the primary outcome measure. Fertilization rate, implantation rate per embryo and clinical pregnancy rates were secondary outcome measures. Results There was no differenc between the mean number of mature oocytes retrieved in the two groups. There were also no statistical differences between the two groups in terms of peak serum E2 level, canceled cycles, endometrial thickness on hCG day, number of 2 pronucleus and number of embryos transferred. However, the total gonadotropin consumption and duration of stimulation were significantly higher with the Agonist-Antagonist Group compared with the Microdose Group. The implantation and clinical pregnancy rates were similar between the two groups. Conclusion Despite the high dose of gonadotropin consumption and longer duration of stimulation with the ultrashort GnRH agonist/ antagonist protocol, it seems that the Agonist-Antagonist Protocol is not inferior to the microdose protocol in poor responders undergoing ICSI. PMID:24591934

  8. Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells.

    PubMed

    Vita, N; Oury-Donat, F; Chalon, P; Guillemot, M; Kaghad, M; Bachy, A; Thurneyssen, O; Garcia, S; Poinot-Chazel, C; Casellas, P; Keane, P; Le Fur, G; Maffrand, J P; Soubrie, P; Caput, D; Ferrara, P

    1998-11-06

    The human levocabastine-sensitive neurotensin NT2 receptor was cloned from a cortex cDNA library and stably expressed in Chinese hamster ovary (CHO) cells in order to study its binding and signalling characteristics. The receptor binds neurotensin as well as several other ligands already described for neurotensin NT1 receptor. It also binds levocabastine, a histamine H1 receptor antagonist that is not recognised by neurotensin NT1 receptor. Neurotensin binding to recombinant neurotensin NT2 receptor expressed in CHO cells does not elicit a biological response as determined by second messenger measurements. Levocabastine, and the peptides neuromedin N and xenin were also ineffective on neurotensin NT2 receptor activation. Experiments with the neurotensin NT1 receptor antagonists SR48692 and SR142948A, resulted in the unanticipated discovery that both molecules are potent agonists on neurotensin NT2 receptor. Both compounds, following binding to neurotensin NT2 receptor, enhance inositol phosphates (IP) formation with a subsequent [Ca2+]i mobilisation; induce arachidonic acid release; and stimulate mitogen-activated protein kinase (MAPK) activity. Interestingly, these activities are antagonised by neurotensin and levocabastine in a concentration-dependent manner. These activities suggest that the human neurotensin NT2 receptor may be of physiological importance and that a natural agonist for the receptor may exist.

  9. Chapter 5: Allergic rhinitis.

    PubMed

    Uzzaman, Ashraf; Story, Rachel

    2012-01-01

    Rhinitis is a symptomatic inflammatory disorder of the nose with different causes such as allergic, nonallergic, infectious, hormonal, drug induced, and occupational and from conditions such as sarcoidosis and necrotizing antineutrophil cytoplasmic antibodies positive (Wegener's) granulomatosis. Allergic rhinitis affects up to 40% of the population and results in nasal (ocular, soft palate, and inner ear) itching, congestion, sneezing, and clear rhinorrhea. Allergic rhinitis causes extranasal untoward effects including decreased quality of life, decreased sleep quality, obstructive sleep apnea, absenteeism from work and school, and impaired performance at work and school termed "presenteeism." The nasal mucosa is extremely vascular and changes in blood supply can lead to obstruction. Parasympathetic stimulation promotes an increase in nasal cavity resistance and nasal gland secretion. Sympathetic stimulation leads to vasoconstriction and consequent decrease in nasal cavity resistance. The nasal mucosa also contains noradrenergic noncholinergic system, but the contribution to clinical symptoms of neuropeptides such as substance P remains unclear. Management of allergic rhinitis combines allergen avoidance measures with pharmacotherapy, allergen immunotherapy, and education. Medications used for the treatment of allergic rhinitis can be administered intranasally or orally and include oral and intranasal H(1)-receptor antagonists (antihistamines), intranasal and systemic corticosteroids, intranasal anticholinergic agents, and leukotriene receptor antagonists. For intermittent mild allergic rhinitis, an oral or intranasal antihistamine is recommended. In individuals with persistent moderate/severe allergic rhinitis, an intranasal corticosteroid is preferred. When used in combination, an intranasal H(1)-receptor antagonist and a nasal steroid provide greater symptomatic relief than monotherapy. Allergen immunotherapy is the only disease-modifying intervention available.

  10. Inhibition of /sup 3/H-leukotriene D4 binding to guinea pig lung receptors by the novel leukotriene antagonist ICI 198,615

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharony, D.; Falcone, R.C.; Krell, R.D.

    1987-12-01

    The specific binding of (/sup 3/H)5(S)hydroxy-6(R)-S-cysteinylglycyl -7(E),9(E),11(Z),14(Z)-eicosatetraenoic acid ((/sup 3/H)LTD4) to receptors on guinea pig lung parenchymal membranes and its inhibition by ICI 198,615, a representative example of a new class of leukotriene antagonists, was characterized by a receptor-ligand binding assay. (/sup 3/H)LTD4 bound specifically and rapidly (Kon = 0.29 +/- 0.6 nM-1.min-1) reaching equilibrium within 15 min. The rate of binding was greatly inhibited in the presence of ICI 198,615. Excess LTD4 or ICI 198,615 slowly (t1/2 = 20 min) dissociated about 70% of the receptor-bound (/sup 3/H)LTD4, whereas in combination with GTP analogs, both induced a rapid (t1/2more » less than 5 min) and full dissociation. Equilibrium saturation analysis of (/sup 3/H)LTD4 binding demonstrated a saturable (Bmax = 1014 +/- 174 fmol/mg) and high affinity (Kd = 0.43 +/- 0.09 nM) binding site. A high degree of stereoselectivity was demonstrated with inhibition of binding by the stereoisomers of LTD4: S,R much greater than R,R greater than R,S much greater than S,S. The rank order for inhibition of binding by peptide leukotriene was: LTD4 greater than 5(S)-hydroxy-6(R)-S-cysteinyl-7(E),9(E),11(Z),14(Z)-eicosatetraenoic acid much greater than 5(S)hydroxy-6(R)-S-glutathionyl-7(E),9(E),11(Z),14(Z)-eicosatetraenoic acid (potency ratios were: 1:4:590). In competition assays, ICI 198,615 competitively inhibited binding of (/sup 3/H)LTD4 (Ki = 0.27 +/- 0.16 nM) and was 2300-fold and 3100-fold more potent than LY171883 or FPL55712. These data, together with results obtained previously in functional receptor assays, illustrate that this new class of leukotriene antagonists are the most potent and selective competitive antagonists of LTD4 receptors yet described.« less

  11. Discovery and characterization of ACT-335827, an orally available, brain penetrant orexin receptor type 1 selective antagonist.

    PubMed

    Steiner, Michel A; Gatfield, John; Brisbare-Roch, Catherine; Dietrich, Hendrik; Treiber, Alexander; Jenck, Francois; Boss, Christoph

    2013-06-01

    Stress relief: Orexin neuropeptides regulate arousal and stress processing through orexin receptor type 1 (OXR-1) and 2 (OXR-2) signaling. A selective OXR-1 antagonist, represented by a phenylglycine-amide substituted tetrahydropapaverine derivative (ACT-335827), is described that is orally available, penetrates the brain, and decreases fear, compulsive behaviors and autonomic stress reactions in rats. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Isolation and Evaluation of New Antagonist Bacillus Strains for the Control of Pathogenic and Mycotoxigenic Fungi of Fig Orchards.

    PubMed

    Öztopuz, Özlem; Pekin, Gülseren; Park, Ro Dong; Eltem, Rengin

    2018-05-03

    Bacillus is an antagonistic bacteria that shows high effectiveness against different phytopathogenic fungi and produces various lytic enzymes, such as chitosanase, chitinase, protease, and gluconase. The aim of this study is to determine Bacillus spp. for lytic enzyme production and to evaluate the antifungal effects of the selected strains for biocontrol of mycotoxigenic and phytopathogenic fungi. A total of 92 endospore-forming bacterial isolates from the 24 fig orchard soil samples were screened for chitosanase production, and six best chitosanolytic isolates were selected to determine chitinase, protease, and N-acetyl-β-hexosaminidase activity and molecularly identified. The antagonistic activities of six Bacillus strains against Aspergillus niger EGE-K-213, Aspergillus foetidus EGE-K-211, Aspergillus ochraceus EGE-K-217, and Fusarium solani KCTC 6328 were evaluated. Fungal spore germination inhibition and biomass inhibition activities were also measured against A. niger EGE-K-213. The results demonstrated that Bacillus mojavensis EGE-B-5.2i and Bacillus thuringiensis EGE-B-14.1i were more efficient antifungal agents against A. niger EGE-K-213. B. mojavensis EGE-B-5.2i has shown maximum inhibition of the biomass (30.4%), and B. thuringiensis EGE-B-14.1i has shown maximum inhibition of spore germination (33.1%) at 12 h. This is the first study reporting the potential of antagonist Bacillus strains as biocontrol agents against mycotoxigenic fungi of fig orchads.

  13. Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines.

    PubMed

    Massi, Paola; Vaccani, Angelo; Ceruti, Stefania; Colombo, Arianna; Abbracchio, Maria P; Parolaro, Daniela

    2004-03-01

    Recently, cannabinoids (CBs) have been shown to possess antitumor properties. Because the psychoactivity of cannabinoid compounds limits their medicinal usage, we undertook the present study to evaluate the in vitro antiproliferative ability of cannabidiol (CBD), a nonpsychoactive cannabinoid compound, on U87 and U373 human glioma cell lines. The addition of CBD to the culture medium led to a dramatic drop of mitochondrial oxidative metabolism [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide test] and viability in glioma cells, in a concentration-dependent manner that was already evident 24 h after CBD exposure, with an apparent IC(50) of 25 microM. The antiproliferative effect of CBD was partially prevented by the CB2 receptor antagonist N-[(1S)-endo-1,3,3-trimethylbicyclo[2,2,1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528; SR2) and alpha-tocopherol. By contrast, the CB1 cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR141716; SR1), capsazepine (vanilloid receptor antagonist), the inhibitors of ceramide generation, or pertussis toxin did not counteract CBD effects. We also show, for the first time, that the antiproliferative effect of CBD was correlated to induction of apoptosis, as determined by cytofluorimetric analysis and single-strand DNA staining, which was not reverted by cannabinoid antagonists. Finally, CBD, administered s.c. to nude mice at the dose of 0.5 mg/mouse, significantly inhibited the growth of subcutaneously implanted U87 human glioma cells. In conclusion, the nonpsychoactive CBD was able to produce a significant antitumor activity both in vitro and in vivo, thus suggesting a possible application of CBD as an antineoplastic agent.

  14. Reduced sickle erythrocyte dehydration in vivo by endothelin-1 receptor antagonists.

    PubMed

    Rivera, Alicia

    2007-09-01

    Elevated plasma levels of cytokines such as endothelin-1 (ET-1) have been shown to be associated with sickle cell disease (SCD). However, the role of ET-1 in the pathophysiology of SCD is not entirely clear. I now show that treatment of SAD mice, a transgenic mouse model of SCD, with BQ-788 (0.33 mg.kg(-1).day(-1) intraperitoneally for 14 days), an ET-1 receptor B (ET(B)) antagonist, induced a significant decrease in Gardos channel activity (1.7 +/- 0.1 to 1.0 +/- 0.4 mmol.10(13) cell(-1).h(-1), n = 3, P = 0.019) and reduced the erythrocyte density profile by decreasing the mean density (D(50); n = 4, P = 0.012). These effects were not observed in mice treated with BQ-123, an ET-1 receptor A (ET(A)) antagonist. A mixture of both antagonists induced a similar change in density profile as with BQ-788 alone that was associated with an increase in mean cellular volume and a decrease in corpuscular hemoglobin concentration mean. I also observed in vitro effects of ET-1 on human sickle erythrocyte dehydration that was blocked by BQ-788 and a mixture of ET(B)/ET(A) antagonists but not by ET(A) antagonist alone. These results show that erythrocyte hydration status in vivo is mediated via activation of the ET(B) receptor, leading to Gardos channel modulation in SCD.

  15. Antihistamines and Birth Defects: A Systematic Review of the Literature

    PubMed Central

    Gilboa, Suzanne M.; Ailes, Elizabeth C.; Rai, Ramona P.; Anderson, Jaynia A.; Honein, Margaret A.

    2015-01-01

    Introduction Approximately 10-15% of women reportedly take an antihistamine during pregnancy for the relief of nausea and vomiting, allergy and asthma symptoms, or indigestion. Antihistamines include histamine H1-receptor and H2-receptor antagonists. Areas covered This is a systematic evaluation of the peer-reviewed epidemiologic literature published through February 2014 on the association between prenatal exposure to antihistamines and birth defects. Papers addressing histamine H1- or H2-receptor antagonists are included. Papers addressing pyridoxine plus doxylamine (Bendectin in the United States, Debendox in the United Kingdom, Diclectin in Canada, Lenotan and Merbental in other countries) prior to the year 2001 were excluded post-hoc because of several previously published meta-analyses and commentaries on this medication. Expert opinion The literature on the safety of antihistamine use during pregnancy with respect to birth defects is generally reassuring though the positive findings from a few large studies warrant corroboration in other populations. The findings in the literature are considered in light of three critical methodological issues: (1) selection of appropriate study population; (2) ascertainment of antihistamine exposures; and (3) ascertainment of birth defects outcomes. Selected antihistamines have been very well-studied (e.g. loratadine); others, especially H2- receptor antagonists, require additional study before an assessment of safety with respect to birth defects risk could be made. PMID:25307228

  16. Differences in muscarinic acetylcholine receptor subtypes in the central nervous system of long sleep and short sleep mice. [Ethanol effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, M.; Ming, X.; McArdle, J.J.

    Differences in voluntary ethanol consumption have been noted in various inbred strains of mice and pharmacogenetic approaches have been used to study the mechanisms of action of many drugs such as ethanol. Long-sleep (LS) and short-sleep (SS) mice, selectively bred for differences in ethanol induced narcosis, provide a method by which a relationship between the differential responsiveness of these geno-types and muscarinic acetylcholine receptors (mAChR) may be evaluated. Sleep times after injection of 3ml ethanol/kg (i.p.) verified the higher sensitivity of LS vs. SS. Mean body weights of LS (26.5g) vs. SS (22g) were also significantly (p<.01) greater. Binding assaysmore » for ({sup 3}H)(-) quinuclidinylbenzilate (({sup 3}H)(-)QNB), a specific but nonsubtype selective mAChR antagonist, ({sup 3}H)pirenzepine (({sup 3}H)PZ), a specific M1 mAChR antagonist and ({sup 3}H)11-2-((2-((diethylamino) methyl)-1-piperidinyl) acetyl)-5,11-dihydro-6H-pyrido (2,3-b) (1,4) benzodiazepine-6-one, (({sup 3}H)AF-DX 116), an M2 selective antagonist were performed to determine mAChR affinity (K{sub d}) and density (B{sub max}) in CNS regions such as the cerebral cortex, hippocampus, corpus striatum and other areas. Significantly lower (30-40%) ({sup 3}H)(-)QNB binding suggests that SS have fewer mAChR's than LS in many areas. These differences may relate to their differential ethanol sensitivity.« less

  17. Nematode cholinergic pharmacology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segerberg, M.A.

    1989-01-01

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe ({sup 3}H)N-methylscopolamine (({sup 3}H)NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissuralmore » motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs.« less

  18. A selective antagonist reveals a potential role of G protein-coupled receptor 55 in platelet and endothelial cell function.

    PubMed

    Kargl, Julia; Brown, Andrew J; Andersen, Liisa; Dorn, Georg; Schicho, Rudolf; Waldhoer, Maria; Heinemann, Akos

    2013-07-01

    The G protein-coupled receptor 55 (GPR55) is a lysophosphatidylinositol (LPI) receptor that is also responsive to certain cannabinoids. Although GPR55 has been implicated in several (patho)physiologic functions, its role remains enigmatic owing mainly to the lack of selective GPR55 antagonists. Here we show that the compound CID16020046 ((4-[4-(3-hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1H,4H,5H,6H-pyrrolo[3,4-c]pyrazol-5-yl] benzoic acid) is a selective GPR55 antagonist. In yeast cells expressing human GPR55, CID16020046 antagonized agonist-induced receptor activation. In human embryonic kidney (HEK293) cells stably expressing human GPR55, the compound behaved as an antagonist on LPI-mediated Ca²⁺ release and extracellular signal-regulated kinases activation, but not in HEK293 cells expressing cannabinoid receptor 1 or 2 (CB₁ or CB₂). CID16020046 concentration dependently inhibited LPI-induced activation of nuclear factor of activated T-cells (NFAT), nuclear factor κ of activated B cells (NF-κB) and serum response element, translocation of NFAT and NF-κB, and GPR55 internalization. It reduced LPI-induced wound healing in primary human lung microvascular endothelial cells and reversed LPI-inhibited platelet aggregation, suggesting a novel role for GPR55 in platelet and endothelial cell function. CID16020046 is therefore a valuable tool to study GPR55-mediated mechanisms in primary cells and tissues.

  19. The steroidogenic response and corpus luteum expression of the steroidogenic acute regulatory protein after human chorionic gonadotropin administration at different times in the human luteal phase.

    PubMed

    Kohen, Paulina; Castro, Olga; Palomino, Alberto; Muñoz, Alex; Christenson, Lane K; Sierralta, Walter; Carvallo, Pilar; Strauss, Jerome F; Devoto, Luigi

    2003-07-01

    This study was designed 1) to assess corpus luteum (CL) steroidogenesis in response to exogenous human chorionic gonadotropin (hCG) at different times during the luteal phase, 2) to examine the effect of hCG on steroidogenic acute regulatory protein (StAR) expression within the CL, 3) to correlate StAR expression and luteal steroidogenic responses to hCG, and 4) to determine whether endogenous LH regulates ovarian steroidogenesis in the early luteal phase. Blood was collected before and after hCG treatment for steroid and hCGbeta determinations. CL were obtained at the time of surgery to assess StAR gene and protein expression. During the early luteal phase various women received the GnRH antagonist for 24-48 h; some of them also received hCG 24 h after the GnRH antagonist. A slight steroidogenic response to hCG was observed in early luteal phase; 17alpha-hydroxyprogesterone, but not progesterone (P4), levels were significantly increased 8 h post-hCG, indicating a differential response by the granulosa and theca-lutein cells. The 1.6- and 4.4-kb StAR transcripts and the 37-kDa preprotein and 30-kDa mature StAR protein did not change post-hCG administration in early luteal phase CL. In contrast, the StAR 4.4- and 1.6-kb transcripts diminished significantly (P < 0.05) after the antagonist treatment. Immunohistochemical staining for StAR protein was weak, particularly in granulosa-lutein cells. Treatment with hCG restored StAR mRNA and protein and plasma P4 levels within 24 h in antagonist-treated women. hCG stimulated the highest plasma concentrations of P4 and estradiol in the midluteal phase, indicating its greatest steroidogenic capacity. Midluteal tissue StAR gene and protein expression increased by 1.6- and 1.4-fold after 24 h of hCG treatment, respectively. Administration of hCG resulted in the greatest increment in plasma P4 (4-fold) and 17alpha-hydroxyprogesterone (3-fold) levels over baseline in the late luteal phase. This was associated with an increase in StAR mRNA (3.5-fold) and protein (1.8-fold). Collectively, these data indicate that 1) the hCG-stimulated steroidogenic response is dependent on the age of the CL; 2) the early luteal phase CL is relatively insensitive to exogenous hCG in the presence of normal pituitary gonadotropin support, but becomes responsive when the latter is withdrawn; 3) the hCG-stimulated steroidogenic response in the mid- and late luteal phase is correlated with increased StAR mRNA and protein abundance; and 4) there are differential responses of small and large luteal cells to hCG stimulation that depend upon the age of the CL.

  20. Antihistamines and birth defects: a systematic review of the literature.

    PubMed

    Gilboa, Suzanne M; Ailes, Elizabeth C; Rai, Ramona P; Anderson, Jaynia A; Honein, Margaret A

    2014-12-01

    Approximately 10 - 15% of women reportedly take an antihistamine during pregnancy for the relief of nausea and vomiting, allergy and asthma symptoms, or indigestion. Antihistamines include histamine H1-receptor and H2-receptor antagonists. This is a systematic evaluation of the peer-reviewed epidemiologic literature published through February 2014 on the association between prenatal exposure to antihistamines and birth defects. Papers addressing histamine H1- or H2-receptor antagonists are included. Papers addressing pyridoxine plus doxylamine (Bendectin in the United States, Debendox in the United Kingdom, Diclectin in Canada, Lenotan and Merbental in other countries) prior to the year 2001 were excluded post hoc because of several previously published meta-analyses and commentaries on this medication. The literature on the safety of antihistamine use during pregnancy with respect to birth defects is generally reassuring though the positive findings from a few large studies warrant corroboration in other populations. The findings in the literature are considered in light of three critical methodological issues: i) selection of appropriate study population; ii) ascertainment of antihistamine exposures; and iii) ascertainment of birth defect outcomes. Selected antihistamines have been very well studied (e.g., loratadine); others, especially H2-receptor antagonists, require additional study before an assessment of safety with respect to birth defect risk could be made.

  1. Blunting of the HPA-axis underlies the lack of preventive efficacy of early post-stressor single-dose Delta-9-tetrahydrocannabinol (THC).

    PubMed

    Mayer, Tzur Alexander; Matar, Michael Alex; Kaplan, Zeev; Zohar, Joseph; Cohen, Hagit

    2014-07-01

    The therapeutic value of Delta-9-tetrahydrocannabinol (Δ9-THC) in the aftermath of trauma has recently raised interest. A prospective animal model for posttraumatic stress disorder was employed to assess the behavioral effects of a single dose of Δ9-THC administered intraperitoneally following exposure to psychogenic stress. Animals were exposed to predator scent stress and treated 1h later with Δ9-THC (1, 5 and 10mg/kg) or vehicle. The outcome measures included behavior in an elevated plus-maze and acoustic startle response 1, 6 and 24 h or 7 days after exposure and freezing behavior upon exposure to a trauma cue on day 8. Pre-set cut-off behavioral criteria classified exposed animals as those with "extreme," "minimal" or "intermediate" (partial) response. Circulating corticosterone levels were assessed over 2h after exposure with and without Δ9-THC. The behavioral effects of a CB1 antagonist (AM251) administered systemically 1h post exposure were evaluated. In the short term (1-6 h), 5 mg/kg of Δ9-THC effectively attenuated anxiety-like behaviors. In the longer-term (7 days), it showed no effect in attenuating PTSD-like behavioral stress responses, or freezing response to trauma cue. Δ9-THC significantly decreased corticosterone levels. In contrast, administration of AM251 (a CB1 antagonist/inverse agonist) 1 h post exposure attenuated long-term behavioral stress responses through activation of the HPA-axis. The demonstrated lack of preventive efficacy of early Δ9-THC treatment and reports of its anxiogenic effects in many individuals raises doubts not only regarding its potential clinical value, but also the advisability of clinical trials. The endocannabinoids exert complex effects on behavioral responses mediating glucocorticoid effects on memory of traumatic experiences. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Effect of glutamate receptor antagonists and antirheumatic drugs on proliferation of synoviocytes in vitro.

    PubMed

    Parada-Turska, Jolanta; Rzeski, Wojciech; Majdan, Maria; Kandefer-Szerszeń, Martyna; Turski, Waldemar A

    2006-03-27

    One of the most striking features of inflammatory arthritis is the hyperplasia of synovial fibroblasts. It is not known whether the massive synovial hyperplasia characteristic of rheumatoid arthritis is due to the proliferation of synovial fibroblasts or to defective apoptosis. It has been found that glutamate receptor antagonists inhibit proliferation of different human tumour cells and the anticancer potential of glutamate receptor antagonists was suggested. Here, we investigated the effect of glutamate receptor antagonists and selected antirheumatic drugs on proliferation of synoviocytes in vitro. Experiments were conducted on rabbit synoviocytes cell line HIG-82 obtained from American Type Culture Collection (Menassas, VA, USA). Cell proliferation was assessed by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The IC50 value (the concentration of drug necessary to induce 50% inhibition) together with confidence limits was calculated. Glutamate receptor antagonists, 1-(4-aminophenyl)-3,5-dihydro-7,8-dimethoxy-4H-2,3-benzodiazepin-4-one (CFM-2), riluzole, memantine, 1-4-aminophenyl-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (GYKI 52466), dizocilpine, ketamine and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX), inhibited proliferation of synoviocytes with the following IC50 values (in mM): 0.014, 0.017, 0.065, 0.102, 0.15, 0.435 and 1.16, respectively. Antirheumatic drugs, celecoxib, diclofenac, nimesulide, sulfasalazine, naproxen and methotrexate, inhibited proliferation of synoviocytes with the following IC50 values (in mM): 0.0043, 0.034, 0.044, 0.096, 0.385 and 1.123, respectively. Thus, the antiproliferative potential of glutamate receptor antagonists is comparable to that of antirheumatic drugs.

  3. Perioperative management of vitamin K antagonists in patients with low thromboembolic risk undergoing elective surgery: A prospective experience.

    PubMed

    Becerra, Ana Florencia; Cornavaca, María Teresita; Revigliono, José Ignacio; Contreras, Alejandro; Albertini, Ricardo; Tabares, Aldo Hugo

    2017-10-11

    To quantify thromboembolic and bleeding events in patients with low thromboembolic risk, who were chronically receiving vitamin K antagonists and undergoing elective surgery. A descriptive, prospective, single-center study was conducted between December 2010 and July 2014. Patients aged over 18 years old, chronically anticoagulated with vitamin K antagonists and admitted for elective surgery were included in the study. We excluded patients with a creatinine clearance<30ml/min, a body weight>120kg, heparin-induced thrombocytopenia, pregnant women, carriers of an epidural catheter for analgesia, patients who underwent unscheduled surgery and high thromboembolic risk-patients. Vitamin K antagonists were discontinued 5 days prior to the procedure without administering anticoagulant enoxaparin. The NIR was measured 24h before the procedure. A single dose of 3mg of vitamin K was administered in cases of a NIR>1.5. Vitamin K antagonists was resumed according to the surgical bleeding risk. Events were registered between 5 days prior to the procedure until 30 days after it. A total of 75 procedures were included in the study. Fifty-six patients (74.7%) received vitamin K antagonists for atrial fibrillation, 15 suffered from venous thromboembolism (20%) and 4 had mechanical heart valves (5.3%). Twenty-six patients (34.5%) underwent high-bleeding risk surgeries and 49 (65.5%) underwent low risk procedures. No thromboembolic event was recorded. Four bleeding events (5.3%) were reported, 3 of which were considered major bleeding events (2 fatal). Suspending vitamin K antagonists with no bridging therapy performed in patients with a low thromboembolic risk does not expose such patients to a significant risk of embolic events. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  4. Effects of melanocortin-4 receptor agonists and antagonists on expression of genes related to reproduction in spotted scat, Scatophagus argus.

    PubMed

    Jiang, Dong-Neng; Li, Jian-Tao; Tao, Ya-Xiong; Chen, Hua-Pu; Deng, Si-Ping; Zhu, Chun-Hua; Li, Guang-Li

    2017-05-01

    Melanocortin-4 receptor (Mc4r) function related to reproduction in fish has not been extensively investigated. Here, we report on gene expression changes by real-time PCR following treatment with Mc4r agonists and antagonists in the spotted scat (Scatophagus argus). Using in vitro incubated hypothalamus, the Mc4r nonselective agonist NDP-MSH ([Nle 4 , D-Phe 7 ]-α-melanocyte stimulating hormone; 10 -6 M) and selective agonist THIQ (N-[(3R)-1, 2, 3, 4-Tetrahydroisoquinolinium-3-ylcarbonyl]- (1R)-1-(4-chlorobenzyl)-2-[4-cyclohexyl-4-(1H-1,2,4-triazol-1-ylmethyl) piperidin-1-yl]-2-oxoethylamine; 10 -7 M) significantly increased the expression of gnrh (Gonadotropin releasing hormone), while the Mc4r nonselective antagonist SHU9119 (Ac-Nle-[Asp-His-DPhe/DNal(2')-Arg-Trp-Lys]-NH2; 10 -6 M) and selective antagonist Ipsen 5i (compound 5i synthesized in Ipsen Research Laboratories; 10 -6 M) significantly inhibited gnrh expression after 3 h of incubation. In incubated pituitary tissue, NDP-MSH and THIQ significantly increased the expression of fshb (Follicle-stimulating hormone beta subunit) and lhb (Luteinizing hormone beta subunit), while SHU9119 and Ipsen 5i significantly decreased fshb and lhb expression after 3 h of incubation. During the in vivo experiment, THIQ (1 mg/kg bw) significantly increased gnrh expression in hypothalamic tissue, as well as the fshb and lhb expression in pituitary tissue 12 h after abdominal injection. Furthermore, Ipsen 5i (1 mg/kg bw) significantly inhibited gnrh expression in hypothalamic tissue, as well as fshb and lhb gene expression in pituitary tissue 12 h after abdominal injection. In summary, Mc4r singling appears to stimulate gnrh expression in the hypothalamus, thereby modulating the synthesis of Fsh and Lh in the pituitary. In addition, Mc4r also appears to directly regulate fshb and lhb levels in the pituitary in spotted scat. Our study suggests that Mc4r, through the hypothalamus and pituitary, participates in reproductive regulation in fish.

  5. Activation of the Chemosensory Ion Channels TRPA1 and TRPV1 by Hydroalcohol Extract of Kalopanax pictus Leaves.

    PubMed

    Son, Hee Jin; Kim, Yiseul; Misaka, Takumi; Noh, Bong Soo; Rhyu, Mee-Ra

    2012-11-01

    TRPA1 and TRPV1 are members of the TRP superfamily of structurally related, nonselective cation channels. TRPA1 and TRPV1 are often co-expressed in sensory neurons and play an important role in somatosense such as cold, pain, and irritants. The first leaves of Kalopanax pictus Nakai (Araliaceae) have long been used as a culinary ingredient in Korea because of their unique chemesthetic flavor. In this study, we observed the intracellular Ca(2+) response to cultured cells expressing human TRPA1 (hTRPA1) and human TRPV1 (hTRPV1) by Ca(2+) imaging analysis to investigate the ability of the first leaves of K. pictus to activate the hTRPA1 and hTRPV1. An 80% ethanol extract of K. pictus (KPEx) increased intracellular Ca(2+) influx in a response time- and concentration-dependent manner via either hTRPA1 or hTRPV1. KPEx-induced response to hTRPA1 was markedly attenuated by ruthenium red, a general blocker of TRP channels, and HC-030031, a specific antagonist of TRPA1. In addition, the intracellular Ca(2+) influx attained with KPEx to hTRPV1 was mostly blocked by ruthenium red, and capsazepine, a specific antagonist of TRPV1. These results indicate that KPEx selectively activates both hTRPA1 and hTRPV1, which may provide evidence that the first leaves of K. pictus primarily activate TRPA1 and TRPV1 to induce their unique chemesthetic sense.

  6. Dopamine Transporter-Dependent and -Independent Striatal Binding of the Benztropine Analog JHW 007, a Cocaine Antagonist with Low Abuse Liability

    PubMed Central

    Kopajtic, Theresa A.; Liu, Yi; Surratt, Christopher K.; Donovan, David M.; Newman, Amy H.; Katz, Jonathan L.

    2010-01-01

    The benztropine analog N-(n-butyl)-3α-[bis(4′-fluorophenyl)methoxy]-tropane (JHW 007) displays high affinity for the dopamine transporter (DAT), but unlike typical DAT ligands, has relatively low abuse liability and blocks the effects of cocaine, including its self-administration. To determine sites responsible for the cocaine antagonist effects of JHW 007, its in vitro binding was compared with that of methyl (1R,2S,3S,5S)-3-(4-fluorophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (WIN 35428) in rats, mice, and human DAT (hDAT)-transfected cells. A one-site model, with Kd values of 4.21 (rat) and 8.99 nM (mouse) best fit the [3H]WIN 35428 data. [3H]JHW 007 binding best fit a two-site model (rat, 7.40/4400 nM; mouse, 8.18/2750 nM), although a one-site fit was observed with hDAT membranes (43.7 nM). Drugs selective for the norepinephrine and serotonin transporters had relatively low affinity in competition with [3H]JHW 007 binding, as did drugs selective for other sites identified previously as potential JHW 007 binding sites. The association of [3H]WIN 35428 best fit a one-phase model, whereas the association of [3H]JHW 007 best fit a two-phase model in all tissues. Because cocaine antagonist effects of JHW 007 have been observed previously soon after injection, its rapid association observed here may contribute to those effects. Multiple [3H]JHW 007 binding sites were obtained in tissue from mice lacking the DAT, suggesting these as yet unidentified sites as potential contributors to the cocaine antagonist effects of JHW 007. Unlike WIN 35428, the binding of JHW 007 was Na+-independent. This feature of JHW 007 has been linked to the conformational status of the DAT, which in turn may contribute to the antagonism of cocaine. PMID:20855444

  7. Can human allergy drug fexofenadine, an antagonist of histamine (H1) receptor, be used to treat dog and cat? Homology modeling, docking and molecular dynamic Simulation of three H1 receptors in complex with fexofenadine.

    PubMed

    Sader, Safaa; Cai, Jun; Muller, Anna C G; Wu, Chun

    2017-08-01

    Fexofenadine, a potent antagonist to human histamine 1 (H 1 ) receptor, is a non-sedative third generation antihistamine that is widely used to treat various human allergic conditions such as allergic rhinitis, conjunctivitis and atopic dermatitis. Encouragingly, it's been successfully used to treat canine atopic dermatitis, this supports the notion that it might have a great potential for treating other canine allergic conditions and other mammal pets such as dog. Regrettably, while there is a myriad of studies conducted on the interactions of antihistamines with human H 1 receptor, the similar studies on non-human pet H 1 are considerably scarce. The published studies using the first and second generation antihistamines drugs have shown that the antihistamine response is varied and unpredictable. Thus, to probe its efficacy on pet, the homology models of dog and cat H 1 receptors were built based on the crystal structure of human H 1 receptor bound to antagonist doxepin (PDB 3RZE) and fexofenadine was subsequently docked to human, dog and cat H 1 receptors. The docked complexes are then subjected to 1000ns molecular dynamics (MD) simulations with explicit membrane. Our calculated MM/GBSA binding energies indicated that fexofenadine binds comparably to the three receptors; and our MD data also showed the binding poses, structural and dynamic features among three receptors are very similar. Therefore, our data supported the application of fexofenadine to the H 1 related allergic conditions of dog and cat. Nonetheless, subtle systemic differences among human, dog and cat H 1 receptors were also identified. Clearly, there is still a space to develop a more selective, potent and safe antihistamine alternatives such as Fexofenadine for dog or cat based on these differences. Our computation approach might provide a fast and economic way to predict if human antihistamine drugs can also be safely and efficaciously administered to animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. AHR-16303B, a novel antagonist of 5-HT2 receptors and voltage-sensitive calcium channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, R.J.; Appell, K.C.; Kilpatrick, B.F.

    1991-01-01

    In vivo and in vitro methods were used to characterize AHR-16303B, a novel compound with antagonistic action at 5-HT2 receptors and voltage-sensitive calcium channels. The 5-HT2 receptor-antagonistic properties of AHR-16303B were demonstrated by inhibition of (a) (3H)ketanserin binding to rat cerebral cortical membranes (IC50 = 165 nM); (b) 5-hydroxytryptamine (5-HT)-induced foot edema in rats (minimum effective dose, (MED) = 0.32 mg/kg orally, p.o.); (c) 5-HT-induced vasopressor responses in spontaneously hypertensive rats (SHR) (ID50 = 0.18 mg/kg intravenously (i.v.), 1.8 mg/kg p.o.), (d) 5-HT-induced antidiuresis in rats (MED = 1 mg/kg p.o.), and (e) platelet aggregation induced by 5-HT + ADPmore » (IC50 = 1.5 mM). The calcium antagonist properties of AHR-16303B were demonstrated by inhibition of (a) (3H)nimodipine binding to voltage-sensitive calcium channels on rabbit skeletal muscle membranes (IC50 = 15 nM), (b) KCl-stimulated calcium flux into cultured PC12 cells (IC50 = 81 nM), and (c) CaCl2-induced contractions of rabbit thoracic aortic strips (pA2 = 8.84). AHR-16303B had little or no effect on binding of radioligands to dopamine2 (DA2) alpha 1, alpha 2, H1, 5-HT1 alpha, beta 2, muscarinic M1, or sigma opioid receptors; had no effect on 5-HT3 receptor-mediated vagal bradycardia; and had only minor negative inotropic, chronotropic, and dromotropic effects on isolated guinea pig atria. In conscious SHR, 30 mg/kg p.o. AHR-16303B completely prevented the vasopressor responses to i.v. 5-HT, and decreased blood pressure (BP) by 24% 3 h after dosing.« less

  9. Memantine improves memory impairment and depressive-like behavior induced by amphetamine withdrawal in rats.

    PubMed

    Marszalek-Grabska, M; Gibula-Bruzda, E; Jenda, M; Gawel, K; Kotlinska, J H

    2016-07-01

    Amphetamine (AMPH) induces deficits in cognition, and depressive-like behavior following withdrawal. The aim of the present study was to investigate whether pre-treatment with memantine (5mg/kg, i.p.), a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, attenuates memory impairment induced by withdrawal from a 1 day binge regimen of AMPH (2mg/kg, four times every 2h, i.p.), in the novel object recognition test in rats. Herein, the influence of scopolamine (0.1mg/kg), an antagonist of the muscarinic cholinergic receptors, and the impact of MK-801 (0.1mg/kg), an antagonist of the NMDA receptors, on the memantine effect, were ascertained. Furthermore, the impact of memantine (5; 10; 20mg/kg, i.p.) was measured on depression-like effects of abstinence, 14 days after the last AMPH treatment (2mg/kg×1×14 days), in the forced swim test. In this test, the efficacy of memantine was compared to that of tricyclic antidepressant imipramine (10; 20; 30mg/kg, i.p.). Our study indicated that withdrawal from a binge regimen of AMPH impaired recognition memory. This effect was attenuated by administration of memantine at both 72h and 7 days of withdrawal. Moreover, prior administration of scopolamine, but not MK-801, decreased the memantine-induced recognition memory improvement. In addition, memantine reversed the AMPH-induced depressive-like behavior in the forced swim test in rats. The antidepressant-like effects of memantine were stronger than those of imipramine. Our study indicates that memantine constitutes a useful approach towards preventing cognitive deficits induced by withdrawal from an AMPH binge regimen and by depressive-like behavior during AMPH abstinence. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Paradoxical effects of oxytocin and vasopressin on basal prolactin secretion and the estrogen-induced prolactin surge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Leemin; Pan, Jenntser

    1990-01-01

    The roles of oxytocin (OT) and vasopressin (AVP) on both basal and estrogen-induced prolactin (PRL) secretion were examined. Adult female Sprague-Dawley rats that were ovariectomized for 3 weeks and received estrogen treatment for 1 week were used. Intravenous administration of hormones and serial blood sampling were accomplished through indwelling intraatrial catheters which were implanted two days before. Plasma PRL levels were measured by radioimmunoassay. Oxytocin at a dose of 20 {mu}g/rat stimulated a moderate PRL release in the morning and lower doses were without effect. Vasopressin was most effective at a dose of 5 {mu}g/rat in stimulating PRL release, whilemore » consecutive injections of higher doses were less effective. In contrast, TRH, ranging from 1 to 8 {mu}g/rat, induced a dose-dependent increases in PRL secretion. Using the effective dosages determined from the morning studies, repeated injections of either OT, AVP or their specific antagonists MPOMeOVT were given hourly between 1300 to 1800h and blood samples were obtained hourly from 1100 to 1900h. It was found that either OT or AVP significantly reduced the afternoon PRL surge, while their antagonists were not as effective.« less

  11. Use of molecular modeling aided design to dial out hERG liability in adenosine A(2A) receptor antagonists.

    PubMed

    Deng, Qiaolin; Lim, Yeon-Hee; Anand, Rajan; Yu, Younong; Kim, Jae-hun; Zhou, Wei; Zheng, Junying; Tempest, Paul; Levorse, Dorothy; Zhang, Xiaoping; Greene, Scott; Mullins, Deborra; Culberson, Chris; Sherborne, Brad; Parker, Eric M; Stamford, Andrew; Ali, Amjad

    2015-08-01

    Molecular modeling was performed on a triazolo quinazoline lead compound to help develop a series of adenosine A2A receptor antagonists with improved hERG profile. Superposition of the lead compound onto MK-499, a benchmark hERG inhibitor, combined with pKa calculations and measurement, identified terminal fluorobenzene to be responsible for hERG activity. Docking of the lead compound into an A2A crystal structure suggested that this group is located at a flexible, spacious, and solvent-exposed opening of the binding pocket, making it possible to tolerate various functional groups. Transformation analysis (MMP, matched molecular pair) of in-house available experimental data on hERG provided suggestions for modifications in order to mitigate this liability. This led to the synthesis of a series of compounds with significantly reduced hERG activity. The strategy used in the modeling work can be applied to other medicinal chemistry programs to help improve hERG profile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Interleukin-1 antagonism moderates the inflammatory state associated with Type 1 diabetes during clinical trials conducted at disease onset.

    PubMed

    Cabrera, Susanne M; Wang, Xujing; Chen, Yi-Guang; Jia, Shuang; Kaldunski, Mary L; Greenbaum, Carla J; Mandrup-Poulsen, Thomas; Hessner, Martin J

    2016-04-01

    It was hypothesized that IL-1 antagonism would preserve β-cell function in new onset Type 1 diabetes (T1D). However, the Anti-Interleukin-1 in Diabetes Action (AIDA) and TrialNet Canakinumab (TN-14) trials failed to show efficacy of IL-1 receptor antagonist (IL-1Ra) or canakinumab, as measured by stimulated C-peptide response. Additional measures are needed to define immune state changes associated with therapeutic responses. Here, we studied these trial participants with plasma-induced transcriptional analysis. In blinded analyses, 70.2% of AIDA and 68.9% of TN-14 participants were correctly called to their treatment arm. While the transcriptional signatures from the two trials were distinct, both therapies achieved varying immunomodulation consistent with IL-1 inhibition. On average, IL-1 antagonism resulted in modest normalization relative to healthy controls. At endpoint, signatures were quantified using a gene ontology-based inflammatory index, and an inverse relationship was observed between measured inflammation and stimulated C-peptide response in IL-1Ra- and canakinumab-treated patients. Cytokine neutralization studies showed that IL-1α and IL-1β additively contribute to the T1D inflammatory state. Finally, analyses of baseline signatures were indicative of later therapeutic response. Despite the absence of clinical efficacy by IL-1 antagonist therapy, transcriptional analysis detected immunomodulation and may yield new insight when applied to other clinical trials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine.

    PubMed

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H; Alhaj, Mazin; Cooke, Helen J; Grants, Iveta; Ren, Tianhua; Christofi, Fievos L

    2009-12-01

    We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl(-) secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (I(sc), Cl(-) secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N(3)-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC(50) for IB-MECA was 0.8 microM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex I(sc) responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that eADO acts at low-affinity A3 receptors in addition to high-affinity A1 receptors to suppress coordinated responses triggered by immune-histamine H2 receptor activation. The short interplexus circuit activated by histamine involves adenosine, acetylcholine, substance P, and serotonin. We postulate that A3 receptor modulation may occur in gut inflammatory diseases or allergic responses involving mast cell and histamine release.

  14. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine

    PubMed Central

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H.; Alhaj, Mazin; Cooke, Helen J.; Grants, Iveta; Ren, Tianhua

    2009-01-01

    We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl− secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (Isc, Cl− secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N6-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC50 for IB-MECA was 0.8 μM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex Isc responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that eADO acts at low-affinity A3 receptors in addition to high-affinity A1 receptors to suppress coordinated responses triggered by immune-histamine H2 receptor activation. The short interplexus circuit activated by histamine involves adenosine, acetylcholine, substance P, and serotonin. We postulate that A3 receptor modulation may occur in gut inflammatory diseases or allergic responses involving mast cell and histamine release. PMID:19808660

  15. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    PubMed Central

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  16. The role of H2 receptor antagonist premedication in pregnant day care patients.

    PubMed

    Stock, J G; Sutherland, A D

    1985-09-01

    In a randomised study of 132 pregnant outpatients, the effect on gastric volume and pH of oral premedication with a single dose of an H2 antagonist was investigated. Either cimetidine 400 mg (n = 33), or ranitidine 150 mg (n = 33), were given 90 to 120 minutes before scheduled surgery. Mean pH was significantly higher in cimetidine (5.0) and ranitidine (5.2) groups, and mean volume was significantly lower in cimetidine (13.2 ml) and ranitidine (11.1 ml) groups compared with 66 untreated patients (pH 1.6, volume 22.1 ml). A gastric pH less than or equal to 2.5 was found in 97 per cent of unpremedicated patients and 35 per cent of these patients also had a gastric volume greater than or equal to 25 ml. Eighty-three per cent of patients received their premedication within 75-200 minutes of surgery. Patients premedicated within that range had a significantly lower incidence of either a gastric pH less than or equal to 2.5 or a volume greater than or equal to 25 ml (p less than 0.01). Both cimetidine and ranitidine significantly reduced the number of patients with these risk factors. Four patients, however, in the cimetidine group had both a pH less than or equal to 2.5 and a volume greater than or equal to 25 ml. Pharmacological manipulation of the gastric environment does not prevent aspiration and clearly cannot be substituted for careful airway management and vigilance on the part of the anaesthetist. However, premedication of pregnant outpatients with a single, oral dose of an H2 antagonist is a simple, inexpensive, safe and effective way of reducing the risk of a severe aspiration pneumonitis.

  17. One pot synthesis of some new substituted hexahydro 2H-1,3-benzoxazine derivatives.

    PubMed

    Safak, C; Simsek, R; Altas, Y; Erol, K; Boydag, S

    1996-09-01

    In this paper, we synthesized nineteen new compounds having 2,4-diaryl-5-oxohexahydro-2H-1,3-benzoxazine structure by the reaction of 1,3-cyclohexanedione, aromatic aldehyde and ammonium acetate. In addition, we evaluated calcium antagonistic activity of these compounds versus nicardipine.

  18. Central endogenous histamine modulates sympathetic outflow through H3 receptors in the conscious rabbit

    PubMed Central

    Charles, Julian; Angus, James A; Wright, Christine E

    2003-01-01

    This study examined the role of histamine H3 receptors in vagal and sympathetic autonomic reflexes in the conscious rabbit, and in rabbit and guinea-pig isolated right atria. The baroreceptor-heart rate reflex (baroreflex), Bezold-Jarisch-like and nasopharyngeal reflexes were assessed after these treatments (i.v.; with H1 and H2 receptor block): (i) vehicle (saline; n=11); (ii) H3 receptor agonist, (R)-α-methylhistamine (R-α-MH) 100 μg kg−1+100 μg kg−1 h−1 (n=9); (iii) H3 receptor antagonist, thioperamide 1 mg kg−1+1 mg kg−1 h−1 (n=11); (iv) R-α-MH and thioperamide (n=6); and (v) H2 and H3 antagonist, burimamide 6.3 mg kg−1+6.3 mg kg−1 h−1 (n=4). R-α-MH caused a thioperamide-sensitive fall in mean arterial pressure (MAP) of 8±1 mmHg and tachycardia of 18±2 bpm (P<0.0005). Burimamide was without effect, however thioperamide elicited an increase in MAP of 4±1 mmHg (P<0.01), but no change in heart rate (HR). R-α-MH caused a 44% decrease in the average gain of the baroreflex (P=0.0001); this effect was antagonised by thioperamide. Thioperamide caused a parallel rightward shift in the barocurve with an increase in MAP of 5 mmHg (P<0.05). Burimamide had no effect on the baroreflex. The vagally mediated bradycardia elicited by the Bezold-Jarisch and nasopharyngeal reflexes was unaffected by H3 receptor ligand administration. R-α-MH (⩽10 μM) caused a thioperamide-sensitive depression of both sympathetic and vagal responses in guinea-pig atria, but had no effect in rabbit atria. As H3 receptor activation caused a significant decrease in baroreflex gain without affecting HR range, the former is unlikely to be simply due to peripheral sympatholysis (supported by the lack of effect in isolated atria). Central H3 receptors may have a tonic role in the baroreflex as thioperamide caused a rightward resetting of the barocurve. In contrast, the peripherally acting H3 antagonist burimamide was without effect. These findings suggest a role for central histamine H3 receptors in cardiovascular homeostasis in the rabbit. PMID:12839877

  19. Melatonin partially protects 661W cells from H2O2-induced death by inhibiting Fas/FasL-caspase-3.

    PubMed

    Sánchez-Bretaño, Aída; Baba, Kenkichi; Janjua, Uzair; Piano, Ilaria; Gargini, Claudia; Tosini, Gianluca

    2017-01-01

    Previous studies have shown that melatonin (MEL) signaling is involved in the modulation of photoreceptor viability during aging. Recent work by our laboratory suggested that MEL may protect cones by modulating the Fas/FasL-caspase-3 pathway. In this study, we first investigated the presence of MEL receptors (MT 1 and MT 2 ) in 661W cells, then whether MEL can prevent H 2 O 2 -induced cell death, and last, through which pathway MEL confers protection. The mRNA and proteins of the MEL receptors were detected with quantitative PCR (q-PCR) and immunocytochemistry, respectively. To test the protective effect of MEL, 661W cells were treated with H 2 O 2 for 2 h in the presence or absence of MEL, a MEL agonist, and an antagonist. To study the pathways involved in H 2 O 2 -mediated cell death, a Fas/FasL antagonist was used before the exposure to H 2 O 2 . Finally, Fas/FasL and caspase-3 mRNA was analyzed with q-PCR and immunocytochemistry in cells treated with H 2 O 2 and/or MEL. Cell viability was analyzed by using Trypan Blue. Both MEL receptors (MT 1 and MT 2 ) were detected at the mRNA and protein levels in 661W cells. MEL partially prevented H 2 O 2 -mediated cell death (20-25%). This effect was replicated with IIK7 (a melatonin receptor agonist) when used at a concentration of 1 µM. Preincubation with luzindole (a melatonin receptor antagonist) blocked MEL protection. Kp7-6, an antagonist of Fas/FasL, blocked cell death caused by H 2 O 2 similarly to what was observed for MEL. Fas, FasL, and caspase-3 expression was increased in cells treated with H 2 O 2 , and this effect was prevented by MEL. Finally, MEL treatment partially prevented the activation of caspase-3 caused by H 2 O 2 . The results demonstrate that MEL receptors are present and functional in 661W cells. MEL can prevent photoreceptor cell death induced by H 2 O 2 via the inhibition of the proapoptotic pathway Fas/FasL-caspase-3.

  20. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist

    PubMed Central

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N.; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W.; Broeck, Jozef Vanden; Tourwé, Dirk

    2011-01-01

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3′,5′-(CF3)2-Bn], 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn] and 23 [Ac-Tic-NMe-3′,5′-(CF3)2-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], which combines the N-terminus of the established Dmt1-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH2) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, i.e. Dmt-D-Arg-Aba-Gly-NH2 36, also proved to be an extremely potent and balanced μ- and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity. PMID:21413804

  1. Validation and pharmacological characterisation of MK-801-induced locomotor hyperactivity in BALB/C mice as an assay for detection of novel antipsychotics.

    PubMed

    Bradford, Andrea M; Savage, Kevin M; Jones, Declan N C; Kalinichev, Mikhail

    2010-10-01

    We evaluated locomotor hyperactivity induced in BALB/C mice by an N-methyl-D-aspartate receptor antagonist MK-801 as an assay for the detection of antipsychotic drugs. We assessed the effects of antipsychotic drugs to validate the assay (study 1), selective dopamine and serotonin ligands for pharmacological characterisation of the model (study 2) and a number of compounds with efficacy in models of schizophrenia to understand the predictive validity of the model (study 3). Adult males (n  = 9/group) were pretreated with a test compound, habituated to locomotor activity cages before receiving MK-801 (0.32 mg/kg) and activity recorded for a further 75 or 120 min. In study 1, we tested haloperidol, clozapine, olanzapine, risperidone, ziprasidone, aripiprazole, sertindole and quetiapine. In study 2, we tested SCH23390 (D(1) antagonist), sulpiride (D(2)/D(3) antagonist), raclopride (D(2)/D(3) antagonist), SB-277011 (D(3) antagonist), L-745,870 (D(4) antagonist), WAY100635 (5-HT(1A) antagonist), 8-OH-DPAT (5-HT(1A) agonist), ketanserin (5-HT(2A)/5-HT(2C) antagonist) and SB-242084 (5-HT(2C) antagonist). In study 3, we tested xanomeline (M(1)/M(4) receptor agonist), LY379268 (mGluR2/3 receptor agonist), diazepam (GABA(A) modulator) and thioperamide (H(3) receptor antagonist). All antipsychotics suppressed MK-801-induced hyperactivity in a dose-dependent and specific manner. The effects of antipsychotics appear to be mediated via dopamine D(1), D(2) and 5-HT(2) receptors. Xanomeline, LY379268 and diazepam were active in this assay while thioperamide was not. MK-801-induced hyperactivity in BALB/C mice model of positive symptoms has shown predictive validity with novel compounds acing at M(1)/M(4), mGluR2/3 and GABA(A) receptors and can be used as a screening assay for detection of novel pharmacotherapies targeting those receptors.

  2. Cooling-induced contraction in ovine airways smooth muscle.

    PubMed

    Mustafa, S M; Pilcher, C W; Williams, K I

    1999-02-01

    The mechanism of cold-induced bronchoconstriction is poorly understood. This prompted the present study whose aim was to determine the step-wise direct effect of cooling on smooth muscle of isolated ovine airways and analyse the role of calcium in the mechanisms involved. Isolated tracheal strips and bronchial segments were suspended in organ baths containing Krebs' solution for isometric tension recording. Tissue responses during stepwise cooling from 37 to 5 degrees C were examined. Cooling induced a rapid and reproducible contraction proportional to cooling temperature in ovine tracheal and bronchial preparations which was epithelium-independent. On readjustment to 37 degrees C the tone returned rapidly to basal level. Maximum contraction was achieved at a temperature of 5 degrees C for trachea and 15 degrees C for bronchiole. Cooling-induced contractions (CIC) was resistant to tetrodotoxin (1; 10 micrometer), and not affected by the muscarinic antagonist atropine (1 micrometer) or the alpha-adrenergic antagonist phentolamine (1 micrometer), or the histamine H1-antagonist mepyramine (1 micrometer) or indomethacin (1 micrometer). Ca2+ antagonists (nifedipine and verapamil) and Mn2+ raised tracheal but not bronchiolar tone and augmented CIC. Incubation in Ca2+-free, EGTA-containing Krebs' solution for 5 min had no effect on CIC, although it significantly reduced KCl-induced contraction by up to 75%. Cooling inhibited Ca2+ influx measured using 45Ca2+ uptake. Caffeine (100 micrometer) significantly inhibited CIC. The results show that cooling-induced contractions do not appear to involve activation of nerve endings, all surface reception systems or Ca2+ influx. However, CIC is mainly dependent on release of intracellular Ca2+. Copyright 1999 The Italian Pharmacological Society.

  3. [The effects of epinephrine and adrenergic antagonists on adenosine 3', 5'-monophosphate level of bovine trabecular cells in vitro].

    PubMed

    Lu, Y; Li, M; Shen, Y

    1998-03-01

    To determine the effects of epinephrine (EPI) and adrenergic antagonists on adenosine 3', 5'-monophosphate (cAMP) level of bovine trabecular cells (BTC) in vitro. (3)H-cAMP was used in protein binding assay for measuring the intracellular level of cAMP. (1) 10(-5) mol/L EPI induced a fold increase of cAMP in cultured BTC in vitro; (2) Timilol and ICI 118, 551 blocked efficiently the effect of EPI at a lower concentration (10(-6) mol/L). (3) Bisoprolol did not efficiently block the effect of EPI unless at high concentrations (>or= 10(-5) mol/L). The effects of EPI increasing outflow facility may be associated with its increase of cAMP in trabecular cells; BTC contains beta-adrenergic receptors, and beta(2)-adrenergic receptors are dominant.

  4. Pharmacophore modeling and conformational analysis in the gas phase and in aqueous solution of regioisomeric melatonin analogs. A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Mendoza-Figueroa, Humberto; Martínez-Gudiño, Gelacio; Villanueva-Luna, Jorge E.; Trujillo-Serrato, Joel J.; Morales-Ríos, Martha S.

    2017-04-01

    In this work, 2-(N-acylaminoalkyl)indoles 1a-1d, that incorporate a pMeOBn group at the 3-position of the indole ring were virtual screened as potential melatoninergic ligands by analog-based design study using pharmacophore modeling. Pharmacophore models for melatoninergic agonist and antagonist activity were developed in order to identify the molecular constraints that define the geometric relationship among chemical features in each model. The best hypothesis consisted of six features for agonists and eight features for antagonists. The models suggest that the agonists and antagonists can share the same 3D arrangement for the six common pharmacophoric elements identified: two hydrogen bond acceptors (HBA), one hydrogen bond donor (HBD), one hydrophobic area (H), and two aromatic rings (AR). The extra hydrofobic interaction might be used as criterion for identified the pharmacological antagonist profile. Based on the pharmacophore fit, it was found that structures 1c and 1d show a good structural overlay that meets the requirements for the antagonistic pharmacophore hypothesis. Molecular modeling studies using the PCM solvation model predicted that the most stable conformers of 1a-1d match the antagonist pharmacophore hypothesis in contrast to those in the gas phase. Structures 1a-1c were synthesized only but the activities were not tested.

  5. Roles of affinity and lipophilicity in the slow kinetics of prostanoid receptor antagonists on isolated smooth muscle preparations

    PubMed Central

    Jones, RL; Woodward, DF; Wang, JW; Clark, RL

    2011-01-01

    BACKGROUND AND PURPOSE The highly lipophilic acyl-sulphonamides L-798106 and L-826266 showed surprisingly slow antagonism of the prostanoid EP3 receptor system in guinea-pig aorta. Roles of affinity and lipophilicity in the onset kinetics of these and other prostanoid ligands were investigated. EXPERIMENTAL APPROACH Antagonist selectivity was assessed using a panel of human recombinant prostanoid receptor-fluorimetric imaging plate reader assays. Potencies/affinities and onset half-times of agonists and antagonists were obtained on guinea-pig-isolated aorta and vas deferens. n-Octanol-water partition coefficients were predicted. KEY RESULTS L-798106, L-826266 and the less lipophilic congener (DG)-3ap appear to behave as selective, competitive-reversible EP3 antagonists. For ligands of low to moderate lipophilicity, potency increments for EP3 and TP (thromboxane-like) agonism on guinea-pig aorta (above pEC50 of 8.0) were associated with progressively longer onset half-times; similar trends were found for TP and histamine H1 antagonism above a pA2 limit of 8.0. In contrast, L-798106 (EP3), L-826266 (EP3, TP) and the lipophilic H1 antagonists astemizole and terfenadine exhibited very slow onset rates despite their moderate affinities; (DG)-3ap (EP3) had a faster onset. Agonism and antagonism on the vas deferens EP3 system were overall much faster, although trends were similar. CONCLUSIONS AND IMPLICATIONS High affinity and high liphophilicity may contribute to the slow onsets of prostanoid ligands in some isolated smooth muscle preparations. Both relationships are explicable by tissue disposition under the limited diffusion model. EP3 antagonists used as research tools should have moderate lipophilicity. The influence of lipophilicity on the potential clinical use of EP3 antagonists is discussed. PMID:20973775

  6. Stereochemical studies of the monocyclic agouti-related protein (103-122) Arg-Phe-Phe residues: conversion of a melanocortin-4 receptor antagonist into an agonist and results in the discovery of a potent and selective melanocortin-1 agonist.

    PubMed

    Joseph, Christine G; Wang, Xiang S; Scott, Joseph W; Bauzo, Rayna M; Xiang, Zhimin; Richards, Nigel G; Haskell-Luevano, Carrie

    2004-12-30

    The agouti-related protein (AGRP) is an endogenous antagonist of the centrally expressed melanocortin receptors. The melanocortin-4 receptor (MC4R) is involved in energy homeostasis, food intake, sexual function, and obesity. The endogenous hAGRP protein is 132 amino acids in length, possesses five disulfide bridges at the C-terminus of the molecule, and is expressed in the hypothalamus of the brain. We have previously reported that a monocyclic hAGRP(103-122) peptide is an antagonist at the melanocortin receptors expressed in the brain. Stereochemical inversion from the endogenous l- to d-isomers of single or multiple amino acid modifications in this monocyclic truncated hAGRP sequence resulted in molecules that are converted from melanocortin receptor antagonists into melanocortin receptor agonists. The Asp-Pro-Ala-Ala-Thr-Ala-Tyr-cyclo[Cys-Arg-DPhe-DPhe-Asn-Ala-Phe-Cys]-Tyr-Ala-Arg-Lys-Leu peptide resulted in a 60 nM melanocortin-1 receptor agonist that is 100-fold selective versus the mMC4R, 1000-fold selective versus the mMC3R, and ca. 180-fold selective versus the mMC5R. In attempts to identify putative ligand-receptor interactions that may be participating in the agonist induced stimulation of the MC4R, selected ligands were docked into a homology molecular model of the mMC4R. These modeling studies have putatively identified hAGRP ligand DArg111-mMC4RAsn115 (TM3) and the hAGRP DPhe113-mMC4RPhe176 (TM4) interactions as important for agonist activity.

  7. Characterization of protoberberine analogs employed as novel human P2X{sub 7} receptor antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ga Eun; Lee, Won-Gil; Lee, Song-Yi

    The P2X{sub 7} receptor (P2X{sub 7}R), a member of the ATP-gated ion channel family, is regarded as a promising target for therapy of immune-related diseases including rheumatoid arthritis and chronic pain. A group of novel protoberberine analogs (compounds 3-5), discovered by screening of chemical libraries, was here investigated with respect to their function as P2X{sub 7}R antagonists. Compounds 3-5 non-competitively inhibited BzATP-induced ethidium ion influx into hP2X{sub 7}-expressing HEK293 cells, with IC{sub 50} values of 100-300 nM. This antagonistic action on the channel further confirmed that both BzATP-induced inward currents and Ca{sup 2+} influx were strongly inhibited by compounds 3-5more » in patch-clamp and Ca{sup 2+} influx assays. The antagonists also effectively suppressed downstream signaling of P2X{sub 7} receptors including IL-1{beta} release and phosphorylation of ERK1/2 and p38 proteins in hP2X{sub 7}-expressing HEK293 cells or in differentiated human monocytes (THP-1 cells). Moreover, IL-2 secretion from CD3/CD28-stimulated Jurkat T cell was also dramatically inhibited by the antagonist. These results imply that novel protoberberine analogs may modulate P2X{sub 7} receptor-mediated immune responses by allosteric inhibition of the receptor. - Graphical abstract: Display Omitted« less

  8. Multiple elements of the allergic arm of the immune response modulate autoimmune demyelination

    PubMed Central

    Pedotti, Rosetta; DeVoss, Jason J.; Youssef, Sawsan; Mitchell, Dennis; Wedemeyer, Jochen; Madanat, Rami; Garren, Hideki; Fontoura, Paulo; Tsai, Mindy; Galli, Stephen J.; Sobel, Raymond A.; Steinman, Lawrence

    2003-01-01

    Analysis of mRNA from multiple sclerosis lesions revealed increased amounts of transcripts for several genes encoding molecules traditionally associated with allergic responses, including prostaglandin D synthase, histamine receptor type 1 (H1R), platelet activating factor receptor, Ig Fc ɛ receptor 1 (FcɛRI), and tryptase. We now demonstrate that, in the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), mediated by T helper 1 (Th1) T cells, histamine receptor 1 and 2 (H1R and H2R) are present on inflammatory cells in brain lesions. Th1 cells reactive to myelin proteolipid protein expressed more H1R and less H2R than Th2 cells. Pyrilamine, an H1R antagonist, blocked EAE, and the platelet activating factor receptor antagonist CV6209 reduced the severity of EAE. EAE severity was also decreased in mice with disruption of the genes encoding Ig FcγRIII or both FcγRIII and FcɛRI. Prostaglandin D synthase and tryptase transcripts were elevated in EAE brain. Taken together, these data reveal extensive involvement of elements of the immune response associated with allergy in autoimmune demyelination. The pathogenesis of demyelination must now be viewed as encompassing elements of both Th1 responses and “allergic” responses. PMID:12576552

  9. The effects of endomorphins on striatal [3H]GABA release induced by electrical stimulation: an in vitro superfusion study in rats.

    PubMed

    Bagosi, Zsolt; Jászberényi, Miklós; Telegdy, Gyula

    2009-05-01

    The endomorphins (EM1 and EM2) are selective endogenous ligands for mu-opioid receptors (MOR1 and MOR2) with neurotransmitter and neuromodulator roles in mammals. In the present study we investigated the potential actions of EMs on striatal GABA release and the implication of different MORs in these processes. Rat striatal slices were preincubated with tritium-labelled GABA ([(3)H]GABA), pretreated with selective MOR1 and MOR2 antagonist beta-funaltrexamine and selective MOR1 antagonist naloxonazine and then superfused with the selective MOR agonists, EM1 and EM2. EM1 significantly decreased the striatal [(3)H]GABA release induced by electrical stimulation. Beta-funaltrexamine antagonized the inhibitory action of EM1, but naloxonazine did not affect it considerably. EM2 was ineffective, even in case of specific enzyme inhibitor diprotin A pretreatment. The results demonstrate that EM1 decreases GABA release in the basal ganglia through MOR2, while EM2 does not influence it.

  10. NMDA receptor antagonists inhibit catalepsy induced by either dopamine D1 or D2 receptor antagonists.

    PubMed

    Moore, N A; Blackman, A; Awere, S; Leander, J D

    1993-06-11

    In the present study, we investigated the ability of NMDA receptor antagonists to inhibit catalepsy induced by haloperidol, or SCH23390 and clebopride, selective dopamine D1 and D2 receptor antagonists respectively. Catalepsy was measured by recording the time the animal remained with its forepaws placed over a rod 6 cm above the bench. Pretreatment with either the non-competitive NMDA receptor antagonist, MK-801 (0.25-0.5 mg/kg i.p.) or the competitive antagonist, LY274614 (10-20 mg/kg i.p.) reduced the cataleptic response produced by haloperidol (10 mg/kg), SCH23390 (2.5-10 mg/kp i.p.) or clebopride (5-20 mg/kg i.p.). This demonstrates that NMDA receptor antagonists will reduce both dopamine D1 and D2 receptor antagonist-induced catalepsy. Muscle relaxant doses of chlordiazepoxide (10 mg/kg i.p.) failed to reduce the catalepsy induced by haloperidol, suggesting that the anticataleptic effect of the NMDA receptor antagonists was not due to a non-specific action. These results support the hypothesis that NMDA receptor antagonists may have beneficial effects in disorders involving reduced dopaminergic function, such as Parkinson's disease.

  11. Dopamine antagonists during parturition disrupt maternal care and the retention of maternal behavior in rats.

    PubMed

    Byrnes, Elizabeth M; Rigero, Beth A; Bridges, Robert S

    2002-11-01

    Brief contact with pups at parturition enables the female rat to establish and retain the full repertoire of maternal behaviors, allowing her to respond rapidly to pups in the future. To determine whether the dopamine system is involved in the retention of maternal behavior, females were continuously infused with dopamine antagonists during the periparturitional period and then allowed either a brief interaction period with pups (3 h) or no interaction with pups (pups removed as they were born). Females were exposed to either the D1-like antagonist SCH 23390 (0.1 or 1.0 mg/kg/day) or the D2-like antagonist clebopride (0.5 or 1.0 mg/kg/day). The high dose of either DA antagonist resulted in significant attenuation of maternal care immediately postpartum. When tested for the retention of maternal behavior 7 days later, however, only the females exposed to the D2 antagonist displayed a delayed response to shown full maternal behavior (FMB) towards donor pups. Thus, while both dopamine receptor subtypes appear necessary for the full and rapid expression of maternal behavior during the early postpartum period, only the D2 receptor subtype appears to be involved in the retention of this behavior.

  12. The Conformational Variability of FimH: Which Conformation Represents the Therapeutic Target?

    PubMed

    Eris, Deniz; Preston, Roland C; Scharenberg, Meike; Hulliger, Fabian; Abgottspon, Daniela; Pang, Lijuan; Jiang, Xiaohua; Schwardt, Oliver; Ernst, Beat

    2016-06-02

    FimH is a bacterial lectin found at the tips of type 1 pili of uropathogenic Escherichia coli (UPEC). It mediates shear-enhanced adhesion to mannosylated surfaces. Binding of UPEC to urothelial cells initiates the infection cycle leading to urinary tract infections (UTIs). Antiadhesive glycomimetics based on α-d-mannopyranose offer an attractive alternative to the conventional antibiotic treatment because they do not induce a selection pressure and are therefore expected to have a reduced resistance potential. Genetic variation of the fimH gene in clinically isolated UPEC has been associated with distinct mannose binding phenotypes. For this reason, we investigated the mannose binding characteristics of four FimH variants with mannose-based ligands under static and hydrodynamic conditions. The selected FimH variants showed individually different binding behavior under both sets of conditions as a result of the conformational variability of FimH. Clinically relevant FimH variants typically exist in a dynamic conformational equilibrium. Additionally, we evaluated inhibitory potencies of four FimH antagonists representing different structural classes. Inhibitory potencies of three of the tested antagonists were dependent on the binding phenotype and hence on the conformational equilibrium of the FimH variant. However, the squarate derivative was the notable exception and inhibited FimH variants irrespective of their binding phenotype. Information on antagonist affinities towards various FimH variants has remained largely unconsidered despite being essential for successful antiadhesion therapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis, radiolabeling, and preliminary biological evaluation of [3H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine, a potent antagonist radioligand for the P2X7 receptor.

    PubMed

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Pavani, Maria Giovanna; Tabrizi, Mojgan Aghazadeh; Moorman, Allan R; Di Virgilio, Francesco; Cattabriga, Elena; Pancaldi, Cecilia; Gessi, Stefania; Borea, Pier Andrea

    2004-11-15

    The design, synthesis, and preliminary biological evaluation of the first potent radioligand antagonist for the P2X(7) receptor, named [(3)H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine (compound 13), are reported. This compound bound to human P2X(7) receptors expressed in HEK transfected cells with K(D) and B(max) value of 3.46+/-0.1 nM and 727+/-73 fmol/mg of protein, respectively. The high affinity and facile labeling makes it a promising radioligand for a further characterization of P2X(7) receptor subtype.

  14. Nucleus accumbens acetylcholine and food intake: decreased muscarinic tone reduces feeding but not food-seeking.

    PubMed

    Pratt, Wayne E; Blackstone, Kaitlin

    2009-03-02

    Separate groups of food-deprived rats were given 2h access to food after receiving bilateral nucleus accumbens infusions of the muscarinic antagonist scopolamine methyl bromide (at 0, 1.0, and 10.0 microg/side), the M2-preferring agonist oxotremorine sesquifumarate (Oxo-S; at 0, 1.0, or 10.0 microg/side) or the M2 antagonist AFDX-116 (at 0, 0.2, or 1.0 microg/side). Injections of scopolamine or Oxo-S, but not AFDX-116, reduced food consumption across the 2h. These experiments confirm a critical role for Acb acetylcholine in promoting food ingestion, and suggest that decreased acetylcholine tone at post-synaptic muscarinic receptors disrupts normal consummatory behavior.

  15. Androgen Receptor Antagonists and Anti-Prostate Cancer Activities of Some Newly Synthesized Substituted Fused Pyrazolo-, Triazolo- and Thiazolo-Pyrimidine Derivatives

    PubMed Central

    Bahashwan, Saleh A.; Fayed, Ahmed A.; Ramadan, Mohamed A.; Amr, Abd El-Galil E.; Al-Harbi, Naif O.

    2014-01-01

    A series of substituted pyrazole, triazole and thiazole derivatives (2–13) were synthesized from 1-(naphtho[1,2-d]thiazol-2-yl)hydrazine as starting material and evaluated as androgen receptor antagonists and anti-prostate cancer agents. The newly synthesized compounds showed potent androgen receptor antagonists and anti-prostate cancer activities with low toxicity (lethal dose 50 (LD50)) comparable to Bicalutamide as reference drug. The structures of newly synthesized compounds were confirmed by IR, 1H-NMR, 13C-NMR, and MS spectral data and elemental analysis. The detailed synthesis, spectroscopic data, LD50 values and pharmacological activities of the synthesized compounds are reported. PMID:25421248

  16. Supplementation with a recombinant human chorionic gonadotropin microdose leads to similar outcomes in ovarian stimulation with recombinant follicle-stimulating hormone using either a gonadotropin-releasing hormone agonist or antagonist for pituitary suppression.

    PubMed

    Cavagna, Mario; Maldonado, Luiz Guilherme Louzada; de Souza Bonetti, Tatiana Carvalho; de Almeida Ferreira Braga, Daniela Paes; Iaconelli, Assumpto; Borges, Edson

    2010-06-01

    To compare the outcomes of protocols for ovarian stimulation with recombinant hCG microdose, with GnRH agonists and antagonists for pituitary suppression. Prospective nonrandomized clinical trial. A private assisted reproduction center. We studied 182 patients undergoing intracytoplasmic sperm injection (ICSI) cycles, allocated into two groups: GnRH agonist group, in which patients received a GnRH agonist (n = 73), and a GnRH antagonist group, in which patients were administered a GnRH antagonist for pituitary suppression (n = 109). Pituitary suppression with GnRH agonist or GnRH antagonist. Ovarian stimulation carried out with recombinant FSH and supplemented with recombinant hCG microdose. Total dose of recombinant FSH and recombinant hCG administered; E(2) concentrations and endometrial width on the day of hCG trigger; number of follicles aspirated, oocytes and mature oocytes retrieved; fertilization, pregnancy (PR), implantation, and miscarriage rates. The total dose of recombinant FSH and recombinant hCG administered were similar between groups, as were the E(2) concentrations and endometrial width. The number of follicles aspirated, oocytes, and metaphase II oocytes collected were also comparable. There were no statistically significant differences in fertilization, PR, implantation, and miscarriage rates in the GnRH agonist and GnRH antagonist groups. When using recombinant hCG microdose supplementation for controlled ovarian stimulation (COS), there are no differences in laboratory or clinical outcomes with the use of either GnRH antagonist or agonist for pituitary suppression. Copyright (c) 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. The H(2)-receptor antagonist ranitidine interferes with clopidogrel-mediated P2Y(12) inhibition in platelets.

    PubMed

    Schäfer, Andreas; Flierl, Ulrike; Pförtsch, Stephanie; Seydelmann, Nora; Micka, Jan; Bauersachs, Johann

    2010-10-01

    Use of proton-pump inhibitors (PPIs) is common in patients on dual antiplatelet therapy (DAT). Recent warnings about potential interactions of PPIs with clopidogrel metabolism leading to impaired DAT efficacy has prompted the recommendation of substituting PPIs with H(2)-receptor antagonists such as ranitidine. We investigated whether ranitidine interacts with P2Y(12) inhibition on the platelet level. Blood was collected from 15 patients with stable coronary artery disease, who had undergone elective coronary intervention. Clopidogrel responsiveness was assessed 24h after the administration of a 600mg loading dose using the P2Y(12) specific platelet-reactivity-index (PRI) and light-transmittance aggregometry in the presence and absence of a pharmacologically relevant concentration of the H(2)-receptor antagonist ranitidine (400ng/ml). Adding ranitidine enhanced P2Y(12)-mediated platelet reactivity to ADP assessed by the PRI (mean PRI+/-SEM: before ranitidine 28+/-5%; after ranitidine 37+/-5%, p=0.0025). Similarly, prostaglandin E1 (PGE(1))-mediated inhibition of ADP-induced aggregation was abrogated in the presence of ranitidine (Agg(max)+/-SEM: before PGE(1) 41+/-2%; after PGE(1) 29+/-2%, p<0.01 vs. before PGE(1); after PGE(1)+ranitidine 42+/-2%, p<0.01 vs. after PGE(1)). Exposition of platelets with ranitidine significantly enhanced their responsiveness to ADP and contributed to impaired P2Y(12) inhibition suggesting that ranitidine interacts with clopidogrel efficacy through adenylyl cyclase inhibition on the platelet level. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Features of natural and gonadotropin-releasing hormone antagonist-induced corpus luteum regression and effects of in vivo human chorionic gonadotropin.

    PubMed

    Del Canto, Felipe; Sierralta, Walter; Kohen, Paulina; Muñoz, Alex; Strauss, Jerome F; Devoto, Luigi

    2007-11-01

    The natural process of luteolysis and luteal regression is induced by withdrawal of gonadotropin support. The objectives of this study were: 1) to compare the functional changes and apoptotic features of natural human luteal regression and induced luteal regression; 2) to define the ultrastructural characteristics of the corpus luteum at the time of natural luteal regression and induced luteal regression; and 3) to examine the effect of human chorionic gonadotropin (hCG) on the steroidogenic response and apoptotic markers within the regressing corpus luteum. Twenty-three women with normal menstrual cycles undergoing tubal ligation donated corpus luteum at specific stages in the luteal phase. Some women received a GnRH antagonist prior to collection of corpus luteum, others received an injection of hCG with or without prior treatment with a GnRH antagonist. Main outcome measures were plasma hormone levels and analysis of excised luteal tissue for markers of apoptosis, histology, and ultrastructure. The progesterone and estradiol levels, corpus luteum DNA, and protein contents in induced luteal regression resembled those of natural luteal regression. hCG treatment raised progesterone and estradiol in both natural luteal regression and induced luteal regression. The increase in apoptosis detected in induced luteal regression by cytochrome c in the cytosol, activated caspase-3, and nuclear DNA fragmentation, was similar to that observed in natural luteal regression. The antiapoptotic protein Bcl-2 was significantly lower during natural luteal regression. The proapoptotic proteins Bax and Bak were at a constant level. Apoptotic and nonapoptotic death of luteal cells was observed in natural luteal regression and induced luteal regression at the ultrastructural level. hCG prevented apoptotic cell death, but not autophagy. The low number of apoptotic cells disclosed and the frequent autophagocytic suggest that multiple mechanisms are involved in cell death at luteal regression. hCG restores steroidogenic function and restrains the apoptotic process, but not autophagy.

  19. Hydrogen peroxide preferentially activates capsaicin-sensitive high threshold afferents via TRPA1 channels in the guinea pig bladder.

    PubMed

    Nicholas, S; Yuan, S Y; Brookes, S J H; Spencer, N J; Zagorodnyuk, V P

    2017-01-01

    There is increasing evidence suggesting that ROS play a major pathological role in bladder dysfunction induced by bladder inflammation and/or obstruction. The aim of this study was to determine the effect of H 2 O 2 on different types of bladder afferents and its mechanism of action on sensory neurons in the guinea pig bladder. 'Close-to-target' single unit extracellular recordings were made from fine branches of pelvic nerves entering the guinea pig bladder, in flat sheet preparations, in vitro. H 2 O 2 (300-1000 μM) preferentially and potently activated capsaicin-sensitive high threshold afferents but not low threshold stretch-sensitive afferents, which were only activated by significantly higher concentrations of hydrogen peroxide. The TRPV1 channel agonist, capsaicin, excited 86% of high threshold afferents. The TRPA1 channel agonist, allyl isothiocyanate and the TRPM8 channel agonist, icilin activated 72% and 47% of capsaicin-sensitive high threshold afferents respectively. The TRPA1 channel antagonist, HC-030031, but not the TRPV1 channel antagonist, capsazepine or the TRPM8 channel antagonist, N-(2-aminoethyl)-N-[[3-methoxy-4-(phenylmethoxy)phenyl]methyl]thiophene-2-carboxamide, significantly inhibited the H 2 O 2 -induced activation of high threshold afferents. Dimethylthiourea and deferoxamine did not significantly change the effect of H 2 O 2 on high threshold afferents. The findings show that H 2 O 2 , in the concentration range detected in inflammation or reperfusion after ischaemia, evoked long-lasting activation of the majority of capsaicin-sensitive high threshold afferents, but not low threshold stretch-sensitive afferents. The data suggest that the TRPA1 channels located on these capsaicin-sensitive afferent fibres are probable targets of ROS released during oxidative stress. © 2016 The British Pharmacological Society.

  20. Potentiation of the gastric antisecretory activity of histamine H2-receptor antagonists by clebopride.

    PubMed

    Fernández, A G; Massingham, R; Roberts, D J

    1988-05-01

    The substituted benzamide, clebopride, at doses (0.03-3 mg kg-1 i.p.) that were without effect per se on the secretion of gastric acid in pylorus ligated (Shay) rats, potentiated the antisecretory effects of the histamine H2 receptor antagonists cimetidine and ranitidine in this model but not those of the muscarine receptor antagonist pirenzepine nor those of the proton pump inhibitor omeprazole. By contrast, clebopride was without influence on the inhibitory effects of cimetidine on pentagastrin-induced secretion in perfused stomach (Ghosh and Schild) preparations in anaesthetized rats. The significance of these findings is discussed in relation to the previously described potentiating effects of clebopride on the anti-ulcer activity of cimetidine in various experimental models, and the potential beneficial effects of such combined therapy in the clinic.

  1. Discovery and evaluation of a series of 3-acylindole imidazopyridine platelet-activating factor antagonists.

    PubMed

    Curtin, M L; Davidsen, S K; Heyman, H R; Garland, R B; Sheppard, G S; Florjancic, A S; Xu, L; Carrera, G M; Steinman, D H; Trautmann, J A; Albert, D H; Magoc, T J; Tapang, P; Rhein, D A; Conway, R G; Luo, G; Denissen, J F; Marsh, K C; Morgan, D W; Summers, J B

    1998-01-01

    Studies conducted with the goal of discovering a second-generation platelet-activating factor (PAF) antagonist have identified a novel class of potent and orally active antagonists which have high aqueous solubility and long duration of action in animal models. The compounds arose from the combination of the lipophilic indole portion of Abbott's first-generation PAF antagonist ABT-299 (2) with the methylimidazopyridine heterocycle moiety of British Biotechnology's BB-882 (1) and possess the positive attributes of both of these clinical candidates. Structure-activity relationship (SAR) studies indicated that modification of the indole and benzoyl spacer of lead compound 7b gave analogues that were more potent, longer-lived, and bioavailable and resulted in the identification of 1-(N, N-dimethylcarbamoyl)-4-ethynyl-3-[3-fluoro-4-[(1H-2-methylimidazo[4,5-c] pyrid-1-yl)methyl]benzoyl]indole hydrochloride (ABT-491, 22 m.HCl) which has been evaluated extensively and is currently in clinical development.

  2. A role for endogenous histamine in interleukin-8-induced neutrophil infiltration into mouse air-pouch: investigation of the modulatory action of systemic and local dexamethasone.

    PubMed

    Perretti, M; Harris, J G; Flower, R J

    1994-07-01

    1. When injected into a 6-day-old mouse air-pouch, human recombinant interleukin-8 (IL-8; 0.03-3 micrograms) induced, in a dose-dependent fashion, an accumulation of neutrophils which could be reliably assessed 4 h after the injection. No protein extravasation was measured above the values obtained with the vehicle alone (carboxymethylcellulose, CMC, 0.5% w/v in phosphate-buffered solution, PBS). 2. The IL-8 effect (routinely evaluated at 1 microgram dose) was inhibited neither by local administration of actinomycin D (1 microgram) nor by systemic treatment with indomethacin (1 mg kg-1, i.v.), BWA4C (5 mg kg-1, p.o.), methysergide (6 mg kg-1, i.p.) and RP67580 (2 mg kg-1, i.p.). 3. Treatment of mice with the H1 antagonist, mepyramine (1-10 mg kg-1, i.p.) resulted in a dose-dependent inhibition of the cell accumulation elicited by the chemokine, with a maximal reduction of approximately 50-60%. The mepyramine effect was not due to a non specific reduction of neutrophil function, since treatment with this drug (6 mg kg-1, i.p.) did not modify the cell infiltration measured in response to a challenge with interleukin-1 beta (20 ng) or with the vehicle CMC to any extent. Moreover, treatment of mice with mepyramine did not modify cell counts in a peripheral blood film with respect to controls. Two other H1 antagonists, chemically unrelated to mepyramine, diphenhydramine (9 mg kg-1, i.p.) and triprolidine (0.5 mg kg-1, i.p.), inhibited IL-8-induced migration to a similar extent (approximately 50-60%), whereas the H2 antagonist, ranitidine (5 mg kg-1, i.p.) was without effect. 4. The concept that endogenous histamine could be involved in the IL-8 effect was strengthened in two ways: (i) addition of histamine (0.2-2 microg) to a small dose of IL-8 (0.3 microg) potentiated the cell elicitation induced by the chemokine without having any effect on its own; (ii) IL-8-induced neutrophil accumulation was greatly impaired in animals depleted of mast cell amines by sub-chronic (5 day) treatment with compound 48/80 according to an established protocol.5. The glucocorticoid dexamethasone (Dex; 1-50 microg per mouse, i.v., corresponding approximately to 0.03-1.5 mg kg-1, given i.v. 2 h prior to challenge with IL-8) potently inhibited neutrophil infiltration with an approximate ED50 of 5 microg per mouse (~ 0.3 mg kg-1 , i.v.). Passive immunisation of mice with a polyclonal sheep serum raised against the steroid-inducible anti-inflammatory protein lipocortin 1 (LCl)abolished the inhibitory action of Dex whereas a control serum was without effect.6. Local administration of Dex at a dose which was ineffective when given systemically (1 microg) also reduced neutrophil migration induced by IL-8, either alone or in combination with histamine. This local inhibition (~50%), also seen with hydrocortisone (30 microg), was prevented by the concomitant administration of the steroid antagonist RU38486 (10 microg) indicating the involvement of glucocorticoid receptor in the response.7. These findings characterize further the mechanisms underlying PMN recruitment induced by IL-8 in vivo, and point to a role for histamine. The anti-inflammatory action of the glucocorticoids, as in some other models, appears to be LCl-dependent when these drugs are given systemically and LCl independent when the steroids are given locally.

  3. Serotonin-induced hypophagia is mediated via α2 and β2 adrenergic receptors in neonatal layer-type chickens.

    PubMed

    Zendehdel, M; Sardari, F; Hassanpour, S; Rahnema, M; Adeli, A; Ghashghayi, E

    2017-06-01

    1. Serotoninergic and adrenergic systems play crucial roles in feed intake regulation in avians but there is no report on possible interactions among them. So, in this study, 5 experiments were designed to evaluate the interaction of central serotonergic and adrenergic systems on food intake regulation in 3 h food deprived (FD 3 ) neonatal layer-type chickens. 2. In Experiment 1, chickens received intracerebroventricular (ICV) injection of control solution, serotonin (56.74 nmol), prazosin (α 1 receptor antagonist, 10 nmol) and co-injection of serotonin plus prazosin. In Experiment 2, control solution, serotonin (56.74 nmol), yohimbine (α 2 receptor antagonist, 13 nmol) and co-injection of serotonin plus yohimbine were used. In Experiment 3, the birds received control solution, serotonin (56.74 nmol), metoprolol (β 1 receptor antagonist, 24 nmol) and co-injection of serotonin plus metoprolol. In Experiment 4, injections were control solution, serotonin (56.74 nmol), ICI 118.551 (β 2 receptor antagonist, 5 nmol) and serotonin plus ICI 118.551. In Experiment 5, control solution, serotonin (56.74 nmol), SR59230R (β 3 receptor antagonist, 20 nmol) and co-administration of serotonin and SR59230R were injected. In all experiments the cumulative food intake was measured until 120 min post injection. 3. The results showed that ICV injection of serotonin alone decreased food intake in chickens. A combined injection of serotonin plus ICI 118.551 significantly attenuated serotonin-induced hypophagia. Also, co-administration of serotonin and yohimbine significantly amplified the hypophagic effect of serotonin. However, prazosin, metoprolol and SR59230R had no effect on serotonin-induced hypophagia in chickens. 4. These results suggest that serotonin-induced feeding behaviour is probably mediated via α 2 and β 2 adrenergic receptors in neonatal layer-type chicken.

  4. Novel quinolinone-phosphonic acid AMPA antagonists devoid of nephrotoxicity.

    PubMed

    Cordi, Alex A; Desos, Patrice; Ruano, Elisabeth; Al-Badri, Hashim; Fugier, Claude; Chapman, Astrid G; Meldrum, Brian S; Thomas, Jean-Yves; Roger, Anita; Lestage, Pierre

    2002-10-01

    We reported previously the synthesis and structure-activity relationships (SAR) in a series of 2-(1H)-oxoquinolines bearing different acidic functions in the 3-position. Exploiting these SAR, we were able to identify 6,7-dichloro-2-(1H)-oxoquinoline-3-phosphonic acid compound 3 (S 17625) as a potent, in vivo active AMPA antagonist. Unfortunately, during the course of the development, nephrotoxicity was manifest at therapeutically effective doses. Considering that some similitude exists between S 17625 and probenecid, a compound known to protect against the nephrotoxicity and/or slow the clearance of different drugs, we decided to synthesise some new analogues of S 17625 incorporating some of the salient features of probenecid. Replacement of the chlorine in position 6 by a sulfonylamine led to very potent AMPA antagonists endowed with good in vivo activity and lacking nephrotoxicity potential. Amongst the compounds evaluated, derivatives 7a and 7s appear to be the most promising and are currently evaluated in therapeutically relevant stroke models.

  5. Further Optimization and Evaluation of Bioavailable, Mixed-Efficacy μ-Opioid Receptor (MOR) Agonists/δ-Opioid Receptor (DOR) Antagonists: Balancing MOR and DOR Affinities.

    PubMed

    Harland, Aubrie A; Yeomans, Larisa; Griggs, Nicholas W; Anand, Jessica P; Pogozheva, Irina D; Jutkiewicz, Emily M; Traynor, John R; Mosberg, Henry I

    2015-11-25

    In a previously described peptidomimetic series, we reported the development of bifunctional μ-opioid receptor (MOR) agonist and δ-opioid receptor (DOR) antagonist ligands with a lead compound that produced antinociception for 1 h after intraperitoneal administration in mice. In this paper, we expand on our original series by presenting two modifications, both of which were designed with the following objectives: (1) probing bioavailability and improving metabolic stability, (2) balancing affinities between MOR and DOR while reducing affinity and efficacy at the κ-opioid receptor (KOR), and (3) improving in vivo efficacy. Here, we establish that, through N-acetylation of our original peptidomimetic series, we are able to improve DOR affinity and increase selectivity relative to KOR while maintaining the desired MOR agonist/DOR antagonist profile. From initial in vivo studies, one compound (14a) was found to produce dose-dependent antinociception after peripheral administration with an improved duration of action of longer than 3 h.

  6. Adenosine signaling in reserpine-induced depression in rats.

    PubMed

    Minor, Thomas R; Hanff, Thomas C

    2015-06-01

    A single, 6 mg/kg intraperitoneal injection of reserpine increased floating time during forced swim testing 24h after administration in rats in five experiments. Although such behavioral depression traditionally is attributed to drug-induced depletion of brain monoamines, we examined the potential contribution of adenosine signaling, which is plausibly activated by reserpine treatment and contributes to behavioral depression in other paradigms. Whereas peripheral administration of the highly selective A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.5, 1.0, or 5.0mg/kg i.p.) 15 min before swim testing failed to improve performance in reserpine-treated rats, swim deficits were completely reversed by 7 mg/kg of the nonselective receptor antagonist caffeine. Performance deficits were also reversed by the nonselective A2 antagonist 3,7-dimethylxanthine (0, 0.5, 1.0mg/kg i.p.), and the highly selective A2A receptor antagonist (CSC: 8-(3 chlorostyral)caffeine) (0.01, 0.1, or 1.0mg/kg i.p.) in a dose-dependent manner. The highly selective A2B antagonist alloxazine had no beneficial effect on swim performance at any dose under study (0.1, 1.0, and 5.0mg/kg i.p.). Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effect of the C3a-receptor antagonist SB 290157 on anti-OVA polyclonal antibody-induced arthritis.

    PubMed

    Hutamekalin, Pilaiwanwadee; Takeda, Kohei; Tani, Mitsuhiro; Tsuga, Yuko; Ogawa, Naoki; Mizutani, Nobuaki; Yoshino, Shin

    2010-01-01

    It was investigated whether the C3a-receptor antagonist (C3aRA) SB 290157 was involved in the suppression of anti-OVA pAb-induced arthritis because it is well known that anaphylatoxin C3a plays a crucial role in the development of an effective inflammatory response during complement activation. Anti-OVA pAb-induced arthritis was induced in DBA/1J mice by administration of anti-OVA pAb 0.5 h prior to intra-articular (i.a.) injection of OVA (0 h). Two peaks of joint swelling were observed at 0.5 and 3 h. The role of C3aRA in arthritis was investigated by injection of SB 290157 at concentrations of 10 and 30 mg/kg at 0 and 2 h. The antagonist was able to reduce joint swelling only at 3 h, and about 50% inhibition of joint swelling was observed with the concentration of 30 mg/kg. The C3 level was significantly decreased at 3 h compared with naïve mice showing complement consumption. Furthermore, the C3 activation was observed and increased corresponding to the graded concentration of anti-OVA pAb. The results also revealed that the C3aRA was able to reduce the expression of IL-1beta in synovial tissue. Taken together, the results suggested that C3aRA may be effective in the inhibition of arthritis.

  8. Nonpeptidic urotensin-II receptor antagonists I: in vitro pharmacological characterization of SB-706375

    PubMed Central

    Douglas, Stephen A; Behm, David J; Aiyar, Nambi V; Naselsky, Diane; Disa, Jyoti; Brooks, David P; Ohlstein, Eliot H; Gleason, John G; Sarau, Henry M; Foley, James J; Buckley, Peter T; Schmidt, Dulcie B; Wixted, William E; Widdowson, Katherine; Riley, Graham; Jin, Jian; Gallagher, Timothy F; Schmidt, Stanley J; Ridgers, Lance; Christmann, Lisa T; Keenan, Richard M; Knight, Steven D; Dhanak, Dashyant

    2005-01-01

    SB-706375 potently inhibited [125I]hU-II binding to both mammalian recombinant and ‘native' UT receptors (Ki 4.7±1.5 to 20.7±3.6 nM at rodent, feline and primate recombinant UT receptors and Ki 5.4±0.4 nM at the endogenous UT receptor in SJRH30 cells). Prior exposure to SB-706375 (1 μM, 30 min) did not alter [125I]hU-II binding affinity or density in recombinant cells (KD 3.1±0.4 vs 5.8±0.9 nM and Bmax 3.1±1.0 vs 2.8±0.8 pmol mg−1) consistent with a reversible mode of action. The novel, nonpeptidic radioligand [3H]SB-657510, a close analogue of SB-706375, bound to the monkey UT receptor (KD 2.6±0.4 nM, Bmax 0.86±0.12 pmol mg−1) in a manner that was inhibited by both U-II isopeptides and SB-706375 (Ki 4.6±1.4 to 17.6±5.4 nM) consistent with the sulphonamides and native U-II ligands sharing a common UT receptor binding domain. SB-706375 was a potent, competitive hU-II antagonist across species with pKb 7.29–8.00 in HEK293-UT receptor cells (inhibition of [Ca2+]i-mobilization) and pKb 7.47 in rat isolated aorta (inhibition of contraction). SB-706375 also reversed tone established in the rat aorta by prior exposure to hU-II (Kapp∼20 nM). SB-706375 was a selective U-II antagonist with ⩾100-fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (Ki/IC50>1 μM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin-1 were unaltered by SB-706375 (1 μM). In summary, SB-706375 is a high-affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross-species activity that will assist in delineating the pathophysiological actions of U-II in mammals. PMID:15852036

  9. Effects of GABA receptor antagonists on thresholds of P23H rat retinal ganglion cells to electrical stimulation of the retina

    NASA Astrophysics Data System (ADS)

    Jensen, Ralph J.; Rizzo, Joseph F., III

    2011-06-01

    An electronic retinal prosthesis may provide useful vision for patients suffering from retinitis pigmentosa (RP). In animal models of RP, the amount of current needed to activate retinal ganglion cells (RGCs) is higher than in normal, healthy retinas. In this study, we sought to reduce the stimulation thresholds of RGCs in a degenerate rat model (P23H-line 1) by blocking GABA receptor mediated inhibition in the retina. We examined the effects of TPMPA, a GABAC receptor antagonist, and SR95531, a GABAA receptor antagonist, on the electrically evoked responses of RGCs to biphasic current pulses delivered to the subretinal surface through a 400 µm diameter electrode. Both TPMPA and SR95531 reduced the stimulation thresholds of ON-center RGCs on average by 15% and 20% respectively. Co-application of the two GABA receptor antagonists had the greatest effect, on average reducing stimulation thresholds by 32%. In addition, co-application of the two GABA receptor antagonists increased the magnitude of the electrically evoked responses on average three-fold. Neither TPMPA nor SR95531, applied alone or in combination, had consistent effects on the stimulation thresholds of OFF-center RGCs. We suggest that the effects of the GABA receptor antagonists on ON-center RGCs may be attributable to blockage of GABA receptors on the axon terminals of ON bipolar cells.

  10. Dopamine induces inhibitory effects on the circular muscle contractility of mouse distal colon via D1- and D2-like receptors.

    PubMed

    Auteri, Michelangelo; Zizzo, Maria Grazia; Amato, Antonella; Serio, Rosa

    2016-08-01

    Dopamine (DA) acts as gut motility modulator, via D1- and D2-like receptors, but its effective role is far from being clear. Since alterations of the dopaminergic system could lead to gastrointestinal dysfunctions, a characterization of the enteric dopaminergic system is mandatory. In this study, we investigated the role of DA and D1- and D2-like receptors in the contractility of the circular muscle of mouse distal colon by organ-bath technique. DA caused relaxation in carbachol-precontracted circular muscle strips, sensitive to domperidone, D2-like receptor antagonist, and mimicked by bromocriptine, D2-like receptor agonist. 7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH-23390), D1-like receptor antagonist, neural toxins, L-NAME (nitric oxide (NO) synthase inhibitor), 2'-deoxy-N 6 -methyl adenosine 3',5'-diphosphate diammonium salt (MRS 2179), purinergic P2Y1 antagonist, or adrenergic antagonists were ineffective. DA also reduced the amplitude of neurally evoked cholinergic contractions. The effect was mimicked by (±)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrobromide (SKF-38393), D1-like receptor agonist and antagonized by SCH-23390, MRS 2179, or L-NAME. Western blotting analysis determined the expression of DA receptor proteins in mouse distal colon. Notably, SCH-23390 per se induced an increase in amplitude of spontaneous and neurally evoked cholinergic contractions, unaffected by neural blockers, L-NAME, MRS 2179, muscarinic, adrenergic, or D2-like receptor antagonists. Indeed, SCH-23390-induced effects were antagonized by an adenylyl cyclase blocker. In conclusion, DA inhibits colonic motility in mice via D2- and D1-like receptors, the latter reducing acetylcholine release from enteric neurons, involving nitrergic and purinergic systems. Whether constitutively active D1-like receptors, linked to adenylyl cyclase pathway, are involved in a tonic inhibitory control of colonic contractility is questioned.

  11. Endogenous Prolactin Generated During Peripheral Inflammation Contributes to Thermal Hyperalgesia

    PubMed Central

    Scotland, Phoebe E.; Patil, Mayur; Belugin, Sergei; Henry, Michael A.; Goffin, Vincent; Hargreaves, Kenneth M.; Akopian, Armen N.

    2011-01-01

    Prolactin (PRL) is a hormone and a neuromodulator. PRL sensitizes TRPV1 responses in sensory neurons, but it is not clear whether peripheral inflammation results in the release of endogenous PRL, or whether endogenous PRL is capable of acting as an inflammatory mediator in a sex-dependent manner. To address these questions, we examined inflammation-induced release of endogenous PRL, and its regulation of thermal hyperalgesia in female and male rats. PRL is expressed in several types of peripheral neuronal and non-neuronal cells, including TRPV1-positive nerve fibers, preadipocytes and activated macrophages/monocytes localized in the vicinity of nerves. Evaluation of PRL levels in hindpaws and plasma indicated that complete Freund’s adjuvant (CFA) stimulates release of peripheral, but not systemic PRL within 6–48h in both ovariectomized females with estradiol replacement (OVX-E) and male rats. The time course of release varies in OVX-E and male rats. We next employed the prolactin receptor (PRL-R) antagonist, Δ1-9-G129R-hPRL to assess the role of locally-produced PRL in nociception. Applied at a ratio of 1:1 (PRL:Δ1-9-G129R-hPRL; 40nM each), this antagonist was able to nearly (≈80%) reverse PRL-induced sensitization of capsaicin responses in rat sensory neurons. CFA-induced inflammatory thermal hyperalgesia in OVX-E rat hindpaws was significantly reduced in a dose-dependent manner by the PRL-R antagonist at the 6h, but not the 24h time point. In contrast, PRL contributed to inflammatory thermal hyperalgesia in male rats at 24h, but not 6h. In summary, these findings indicate that inflammation leads to accumulation of endogenous PRL in female and male rats. Further, PRL acts as an inflammatory mediator at different time points for female and male rats. PMID:21777304

  12. Structure-based virtual screening and characterization of a novel IL-6 antagonistic compound from synthetic compound database.

    PubMed

    Wang, Jing; Qiao, Chunxia; Xiao, He; Lin, Zhou; Li, Yan; Zhang, Jiyan; Shen, Beifen; Fu, Tinghuan; Feng, Jiannan

    2016-01-01

    According to the three-dimensional (3D) complex structure of (hIL-6⋅hIL-6R⋅gp 130) 2 and the binding orientation of hIL-6, three compounds with high affinity to hIL-6R and bioactivity to block hIL-6 in vitro were screened theoretically from the chemical databases, including 3D-Available Chemicals Directory (ACD) and MDL Drug Data Report (MDDR), by means of the computer-guided virtual screening method. Using distance geometry, molecular modeling and molecular dynamics trajectory analysis methods, the binding mode and binding energy of the three compounds were evaluated theoretically. Enzyme-linked immunosorbent assay analysis demonstrated that all the three compounds could block IL-6 binding to IL-6R specifically. However, only compound 1 could effectively antagonize the function of hIL-6 and inhibit the proliferation of XG-7 cells in a dose-dependent manner, whereas it showed no cytotoxicity to SP2/0 or L929 cells. These data demonstrated that the compound 1 could be a promising candidate of hIL-6 antagonist.

  13. The comparision of effect of microdose GnRH-a flare-up, GnRH antagonist/aromatase inhibitor letrozole and GnRH antagonist/clomiphene citrate protocols on IVF outcomes in poor responder patients.

    PubMed

    Ozcan Cenksoy, Pinar; Ficicioglu, Cem; Kizilkale, Ozge; Suhha Bostanci, Mehmet; Bakacak, Murat; Yesiladali, Mert; Kaspar, Cigdem

    2014-07-01

    To compare the effects of microdose GnRH-a flare-up, GnRH antagonist/aromatase inhibitor letrozole and GnRH antagonist/clomiphene citrate protocols on IVF outcomes in poor responder patients. Of 225 patients, 83 patients were in microdose flare-up group (Group 1), 70 patients were in GnRH antagonist/letrozole group (Group 2) and 72 patients were in GnRH antagonist/clomiphene citrate group (Group 3). Demographic and endocrine characteristics, the total number of oocytes retrieved, cancellation rate and clinical pregnancy rate were collected Results: Total dosage of gonadotropins (p=0.002) and serum E2 levels on the day of hCG administration (p=0.010) were significantly higher and duration of stimulations (p=0.03) was significantly longer in group 1. The number of oocytes retrieved was significantly greater in group 1 and 2 when compare to those of group 3 (p=0,000). There was a trend towards increasing cycle cancellation rates with GnRH antagonist/clomiphene citrate and GnRH antagonist/letrozole. Our finding suggest that the results of microdose flare-up protocol are better than other two used treatment protocols, in terms of maximum estradiol levels, number of mature oocytes retrieved, and cancellation rate and it still seems to be superior the ovarian stimulation regime for the poor responder patients.

  14. Sepsis Strengthens Antagonistic Actions of Neostigmine on Rocuronium in a Rat Model of Cecal Ligation and Puncture

    PubMed Central

    Wu, Jin; Jin, Tian; Wang, Hong; Li, Shi-Tong

    2016-01-01

    Background: The antagonistic actions of anticholinesterase drugs on non-depolarizing muscle relaxants are theoretically related to the activity of acetylcholinesterase (AChE) in the neuromuscular junction (NMJ). However, till date the changes of AChE activity in the NMJ during sepsis have not been directly investigated. We aimed to investigate the effects of sepsis on the antagonistic actions of neostigmine on rocuronium (Roc) and the underlying changes of AChE activity in the NMJ in a rat model of cecal ligation and puncture (CLP). Methods: A total of 28 male adult Sprague-Dawley rats were randomized to undergo a sham surgery (the sham group, n = 12) or CLP (the septic group, n = 16). After 24 h, the time-response curves of the antagonistic actions of 0.1 or 0.5 μmol/L of neostigmine on Roc (10 μmol/L)-depressed diaphragm twitch tension were measured. Meanwhile, the activity of AChE in the NMJ was detected using a modified Karnovsky and Roots method. The mRNA levels of the primary transcript and the type T transcript of AChE (AChET) in the diaphragm were determined by real-time reverse transcription-polymerase chain reaction. Results: Four of 16 rats in the septic group died within 24 h. The time-response curves of both two concentrations of neostigmine in the septic group showed significant upward shifts from those in the sham group (P < 0.001 for 0.1 μmol/L; P = 0.009 for 0.5 μmol/L). Meanwhile, the average optical density of AChE in the NMJ in the septic group was significantly lower than that in the sham group (0.517 ± 0.045 vs. 1.047 ± 0.087, P < 0.001). The AChE and AChET mRNA expression levels in the septic group were significantly lower than those in the sham group (P = 0.002 for AChE; P = 0.001 for AChET). Conclusions: Sepsis strengthened the antagonistic actions of neostigmine on Roc-depressed twitch tension of the diaphragm by inhibiting the activity of AChE in the NMJ. The reduced content of AChE might be one of the possible causes of the decreased AChE activity in the NMJ. PMID:27270546

  15. Pharmacological characterization of the cysteinyl-leukotriene antagonists CGP 45715A (iralukast) and CGP 57698 in human airways in vitro

    PubMed Central

    Capra, Valérie; Bolla, Manlio; Angelo Belloni, Pier; Mezzetti, Maurizio; Carlo Folco, G; Nicosia, Simonetta; Enrico Rovati, G

    1998-01-01

    Cysteinyl-leukotrienes (cysteinyl-LTs) are important mediators in the pathogenesis of asthma. They cause bronchoconstriction, mucus hypersecretion, increase in microvascular permeability, plasma extravasation and eosinophil recruitment. We investigated the pharmacological profile of the cysteinyl-LT antagonists CGP 45715A (iralukast), a structural analogue of LTD4 and CGP 57698, a quinoline type antagonist, in human airways in vitro, by performing binding studies on human lung parenchyma membranes and functional studies on human isolated bronchial strips. Competition curves vs [3H]-LTD4 on human lung parenchyma membranes demonstrated that: (a) both antagonists were able to compete for the two sites labelled by [3H]-LTD4; (b) as in all the G-protein coupled receptors, iralukast and CGP 57698 did not discriminate between the high and the low affinity states of the CysLT receptor labelled by LTD4 (Ki1=Ki2=16.6 nM±36% CV and Ki1= Ki2=5.7 nM±19% CV, respectively); (c) iralukast, but not CGP 57698, displayed a slow binding kinetic, because preincubation (15 min) increased its antagonist potency. In functional studies: (a) iralukast and CGP 57698 antagonized LTD4-induced contraction of human bronchi, with pA2 values of 7.77±4.3% CV and 8.51±1.6% CV, respectively, and slopes not significantly different from unity; (b) the maximal LTD4 response in the presence of CGP 57698 was actually increased, thus clearly deviating from apparent simple competition. Both antagonists significantly inhibited antigen-induced contraction of human isolated bronchial strips in a concentration-dependent manner, lowering the upper plateau of the anti-IgE curves. In conclusion, the results of the present in vitro investigation indicate that iralukast and CGP 57698 are potent antagonists of LTD4 in human airways, with affinities in the nanomolar range, similar to those obtained for ICI 204,219 and ONO 1078, two of the most clinically advanced CysLT receptor antagonists. Thus, these compounds might be useful drugs for the therapy of asthma and other allergic diseases. PMID:9504401

  16. The role of tachykinin NK1 and NK2 receptors in atropine-resistant colonic propulsion in anaesthetized guinea-pigs.

    PubMed

    Lecci, A; Giuliani, S; Tramontana, M; Giorgio, R D; Maggi, C A

    1998-05-01

    1. The role of endogenous tachykinins on guinea-pig colonic propulsion was investigated by using potent and selective tachykinin NK1 and NK2 receptor antagonists. Colonic propulsion and contractions were determined by means of a balloon-catheter device, inserted into the rectum of guanethidine (68 micromol kg(-1), s.c., 18 and 2 h before)-pretreated, urethane-anaesthetized guinea-pigs. Propulsion of the device (dynamic model) was determined by measuring the length of the catheter expelled during 60 min filling of the balloon (flow rate 5 microl min(-1)). 2. In control conditions the tachykinin NK1 receptor antagonist SR 140333 (1 micromol kg(-1), i.v.) did not affect either colonic propulsion or the amplitude of contractions. The tachykinin NK2 receptor antagonists MEN 10627 and MEN 11420 (1 micromol kg(-1), i.v.) increased colonic propulsion at 10 min (+120% and 150%, respectively) but at 60 min the effect was significant only for MEN 10627 (+84%). SR 48968 (1 micromol kg(-1), i.v.) did not significantly enhance the colonic propulsion. None of these tachykinin NK2 receptor antagonists modified the amplitude of colonic contractions. In contrast, both atropine (6 micromol kg(-1), i.v., plus infusion of 1.8 micromol h(-1)) and hexamethonium (55 micromol kg(-1), i.v., plus infusion of 17 micromol h(-1)) abolished propulsion (81% and 87% inhibition, respectively) and decreased the amplitude of contractions (68% inhibition for either treatment). 3. In atropine-treated animals (6 micromol kg(-1), i.v., plus infusion of 1.8 micromol h(-1)), apamin (30 nmol kg(-1), i.v.) restored colonic propulsion (+416%) and increased the amplitude of contractions (+367% as compared to atropine alone). Hexamethonium (55 micromol kg(-1), i.v., plus infusion of 17 micromol h(-1)) abolished the apamin-induced, atropine-resistant colonic propulsion (97% inhibition) and reduced the amplitude of the atropine-resistant contractions (52% inhibition). 4. The apamin-induced, atropine-resistant colonic propulsion was inhibited by SR 140333 (-69% at 1 micromol kg(-1)), SR 48968 (-78% at 1 micromol kg(-1)), MEN 11420 (-59% at 1 micromol kg(-1)) and MEN 10627 (-50% at 1 micromol kg(-1)), although the latter effect was not statistically significant. The combined administration of SR 140,333 and MEN 10,627 (1 micromol kg(-1) for each antagonist) almost completely abolished colonic propulsion (90% inhibition). The amplitude of colonic contractions was also reduced by SR 140333 (-42%), SR 48968 (-29%), MEN 11420 (-45%) but not by MEN 10627 (-16%). The combined administration of SR 140333 and MEN 10,627 reduced the amplitude of contractions by 47%. SR 140603 (1 micromol kg(-1), i.v.), the less potent enantiomer of SR 140333, was inactive. 5. In control animals, apamin (30 nmol kg(-1), i.v.) enhanced colonic propulsion (+84%) and increased the amplitude of contractions (+68%), as compared to the vehicle. Hexamethonium (55 micromol kg(-1), i.v. plus infusion of 17 micromol h(-1)) inhibited propulsion (86% inhibition) and decreased the amplitude of contractions (49% inhibition). SR 140333, SR 48968, MEN 11420, MEN 10627, or the coadministration of SR 140333 and MEN 10627 had no effect. 6. In a separate series of experiments, the mean amplitude of colonic contractions was also recorded under isovolumetric conditions through the balloon-catheter device kept in place at 75 mm from the anal sphincter (static model). In control conditions, neither SR 140333 nor MEN 11420 modified the amplitude of contractions. In atropine-pretreated guinea-pigs, SR 140333 and MEN 11420 (0.1-1 micromol kg(-1)) dose-dependently decreased the amplitude of contractions. In apamin- and atropine-pretreated animals, only the highest (1 micromol kg(-1)) dose of SR 140333 or MEN 11420 significantly decreased the amplitude of contractions. The inhibitory potency of atropine (0.3-1 micromol kg(-1)) was similar in apamin-pretreated animals and in controls. 7. It was concluded that, in anaesthetized guinea-pigs, endogenous tachykinins, acting through both NK(1) and NK(2) receptors, act as non-cholinergic excitatory neurotransmitters in promoting an apamin-evoked reflex propulsive activity of the distal colon.

  17. Interaction of a vasopressin antagonist with vasopressin receptors in the septum of the rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorsa, D.M.; Brot, M.D.; Shewey, L.M.

    1988-01-01

    The ability of d(CH2)5-Tyr(Me)-arginine-8-vasopressin, an antagonist of peripheral pressoric (V1-type) vasopressin receptors, to label vasopressin binding sites in the septum of the rat brain was evaluated. Using crude membrane preparations from the septum, /sup 3/H-arginine-8-vasopressin (AVP) specifically labels a single class of binding sites with a Kd of 2.9 nM and maximum binding site concentration of 19.8 fmole/mg protein. /sup 3/H-Antag also labels a single class of membrane sites but with higher affinity (Kd = 0.47 nM) and lower capacity (10.1 fmole/mg protein) than /sup 3/H-AVP. The rank order of potency of various competitor peptides for /sup 3/H-AVP and /supmore » 3/H-Antag binding was similar. Oxytocin was 100-1,000 fold less potent than AVP in competing for binding with both ligands. /sup 3/H-AVP and /sup 3/H-Antag showed similar labeling patterns when incubated with septal tissue slices. Unlabeled Antag also effectively antagonized vasopressin-stimulated phosphatidylinositol hydrolysis in septal tissue slices.« less

  18. H89 dihydrochloride hydrate and calphostin C lower the body temperature through TRPV1.

    PubMed

    Bao, Dongyan; Zhao, Wenqing; Dai, Congcong; Wan, Hongmei; Cao, Yu

    2018-01-01

    The transient receptor potential vanilloid (TRPV1) serves as a negative regulator of body temperature, and during fever conditions its expression can lead to a decrease in temperature. TRPV1 is regulated by a variety of enzymes; however, it is currently unclear whether the regulation of TRPV1 phosphorylation may serve a role in the increase in TRPV1 expression during fever. In the present study, using an in vivo experimental method, rat brain ventricles were injected with the protein kinase A (PKA) antagonist, H89, and the protein kinase C (PKC) antagonist, calphostin C, and fever was induced using lipopolysaccharide (LPS) in order to detect the expression of TRPV1 and phosphorylated (p‑)TRPV1, the intracellular Ca2+ concentration [(Ca2+)i] of hypothalami and rat body temperature. The results demonstrated that following the generation of fever using LPS, the expressions of TRPV1 and p‑TRPV1, and hypothalamic [Ca2+]i markedly increased. In addition, following an injection with the PKA or PKC antagonist, the temperature increased further due to the inhibition of p‑TRPV1. Thus, it was hypothesized that PKA and PKC may be involved in TRPV1 phosphorylation, resulting in a temperature reduction during LPS‑induced fever conditions.

  19. H89 dihydrochloride hydrate and calphostin C lower the body temperature through TRPV1

    PubMed Central

    Bao, Dongyan; Zhao, Wenqing; Dai, Congcong; Wan, Hongmei; Cao, Yu

    2018-01-01

    The transient receptor potential vanilloid (TRPV1) serves as a negative regulator of body temperature, and during fever conditions its expression can lead to a decrease in temperature. TRPV1 is regulated by a variety of enzymes; however, it is currently unclear whether the regulation of TRPV1 phosphorylation may serve a role in the increase in TRPV1 expression during fever. In the present study, using an in vivo experimental method, rat brain ventricles were injected with the protein kinase A (PKA) antagonist, H89, and the protein kinase C (PKC) antagonist, calphostin C, and fever was induced using lipopolysaccharide (LPS) in order to detect the expression of TRPV1 and phosphorylated (p-)TRPV1, the intracellular Ca2+ concentration [(Ca2+)i] of hypothalami and rat body temperature. The results demonstrated that following the generation of fever using LPS, the expressions of TRPV1 and p-TRPV1, and hypothalamic [Ca2+]i markedly increased. In addition, following an injection with the PKA or PKC antagonist, the temperature increased further due to the inhibition of p-TRPV1. Thus, it was hypothesized that PKA and PKC may be involved in TRPV1 phosphorylation, resulting in a temperature reduction during LPS-induced fever conditions. PMID:29257197

  20. Comparison of the effects of histamine and tolazoline on adenylate cyclase activity from guinea pig heart.

    PubMed

    Weinryb, I; Michel, I M

    1975-01-01

    Both histamine and tolazoline (2-benzyl-2-imidazoline) stimulated particulate fractions of adenylate cyclase from guinea pig myocardium. Tolazoline was one-tenth as potent, and about two-thirds as active at maximally effective levels, as was histamine. Enhancement of cyclase activity by tolazoline was additive with that by isoproterenol, and the histamine and tolazoline concentration-response curves were parallel, suggesting that tolazoline acted at the same site as histamine. At maximally effective concentrations, tolazoline did not affect ATPase or cyclic AMP phosphodiesterase activities associated with the cyclase preparations. The H1-receptor antagonist mepyramine, and the H2 antagonist, burimamide, blocked stimulation of cyclase by tolazoline at one-tenth the molarity of agonist. Both antagonists were less effective vs. histamine stimulation of heart cyclase in particulate fractions or whole homogenates, with mepyramine being generally more potent. It is suggested that the molecular basis of the stimulatory effect of tolazoline on cardiac tissue may be histaminergic stimulation of adenylate cyclase. Furthermore, the lack of potency of burimamide as a histamine antagonist and its lack of specificity compared to mepyramine, at the subcellular level, indicate that histamine-responsive adenylate cyclase from heart may not be a satisfactory molecular model for the H2 receptor pharmacology of histamine in cardiac tissue.

  1. Contribution of the central histaminergic transmission in the cataleptic and neuroleptic effects of haloperidol.

    PubMed

    Jain, Nishant S; Tandi, Lakshyapati; Verma, Lokesh

    2015-12-01

    The antipsychotic properties of haloperidol are primarily attributed to its ability to block dopamine D2 receptors. Histaminergic transmission modulates some of the behavioral effects of haloperidol. Hence, the present study investigated the contribution of central histaminergic transmission in the cataleptic and neuroleptic effect of haloperidol respectively, using bar test and conditioned avoidance response (CAR) in a two-way shuttle box. The studies revealed that haloperidol (0.50 or 1 mg/kg, i.p.) exhibited cataleptic behavior and inhibited conditioned avoidance response (CAR) in the doses 0.25 or 0.50 mg in rats. The rats, pretreated centrally (i.c.v.) with histamine precursor, L-histidine (1, 2.5 μg) or histamine neuronal inducer (H3 receptor antagonist), thioperamide (20, 50 μg/rat), showed an enhanced cataleptic effect with sub-maximal dose of haloperidol (0.5 mg/kg, i.p.). Similarly, the neuroleptic effect of haloperidol (0.25 mg/kg, i.p.) in CAR was also potentiated in the rats pretreated with L-histidine (2.5 μg) or thioperamide (50 μg/rat). Further, the cataleptic effect of haloperidol (1 mg/kg, i.p.) was attenuated in rats pretreated with the H1 receptor antagonist, chlorpheniramine (60, 80 μg/rat, i.c.v.) or H2 receptor antagonist, ranitidine (60 μg/rat, i.c.v.). However, the neuroleptic effect of haloperidol (0.5 mg/kg, i.p.) was completely reversed by pretreatment with ranitidine (60 μg/rat, i.c.v.), and partially attenuated by chlorpheniramine (80 μg/rat, i.c.v.). These findings suggest the possible involvement of histaminergic transmission in the cataleptic and neuroleptic effects of haloperidol probably via H1 or H2 receptor stimulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. 3-(Fur-2-yl)-10-(2-phenylethyl)-[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one, a novel adenosine receptor antagonist with A(2A)-mediated neuroprotective effects.

    PubMed

    Scatena, Alessia; Fornai, Francesco; Trincavelli, Maria Letizia; Taliani, Sabrina; Daniele, Simona; Pugliesi, Isabella; Cosconati, Sandro; Martini, Claudia; Da Settimo, Federico

    2011-09-21

    In this study, compound FTBI (3-(2-furyl)-10-(2-phenylethyl)[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one) was selected from a small library of triazinobenzimidazole derivatives as a potent A(2A) adenosine receptor (AR) antagonist and tested for its neuroprotective effects against two different kinds of dopaminergic neurotoxins, 1-methyl-4-phenylpyridinium (MPP+) and methamphetamine (METH), in rat PC12 and in human neuroblastoma SH-SY5Y cell lines. FTBI, in a concentration range corresponding to its affinity for A(2A) AR subtype, significantly increased the number of viable PC12 cells after their exposure to METH and, to a similar extent, to MPP+, as demonstrated in both trypan blue exclusion assay and in cytological staining. These neuroprotective effects were also observed with a classical A(2A) AR antagonist, ZM241385, and appeared to be completely counteracted by the AR agonist, NECA, supporting A(2A) ARs are directly involved in FTBI-mediated effects. Similarly, in human SH-SY5Y cells, FTBI was able to prevent cell toxicity induced by MPP+ and METH, showing that this A(2A) AR antagonist has a neuroprotective effect independently by the specific cell model. Altogether these results demonstrate that the A(2A) AR blockade mediates cell protection against neurotoxicity induced by dopaminergic neurotoxins in dopamine containing cells, supporting the potential use of A(2A) AR antagonists in dopaminergic degenerative diseases including Parkinson's disease.

  3. Endogenous prolactin generated during peripheral inflammation contributes to thermal hyperalgesia.

    PubMed

    Scotland, Phoebe E; Patil, Mayur; Belugin, Sergei; Henry, Michael A; Goffin, Vincent; Hargreaves, Kenneth M; Akopian, Armen N

    2011-09-01

    Prolactin (PRL) is a hormone and a neuromodulator. It sensitizes TRPV1 (transient receptor potential cation channel subfamily V member 1) responses in sensory neurons, but it is not clear whether peripheral inflammation results in the release of endogenous PRL, or whether endogenous PRL is capable of acting as an inflammatory mediator in a sex-dependent manner. To address these questions, we examined inflammation-induced release of endogenous PRL, and its regulation of thermal hyperalgesia in female and male rats. PRL is expressed in several types of peripheral neuronal and non-neuronal cells, including TRPV1-positive nerve fibers, preadipocytes and activated macrophages/monocytes localized in the vicinity of nerves. Evaluation of PRL levels in hindpaws and plasma indicated that complete Freund's adjuvant (CFA) stimulates release of peripheral, but not systemic, PRL within 6-48 h in both ovariectomized females with estradiol replacement (OVX-E) and intact male rats. The time course of release varies in OVX-E and intact male rats. We next employed the prolactin receptor (PRL-R) antagonist Δ1-9-G129R-hPRL to assess the role of locally produced PRL in nociception. Applied at a ratio of 1 : 1 (PRL:Δ1-9-G129R-hPRL; 40 nm each), this antagonist was able to nearly (≈ 80%) reverse PRL-induced sensitization of capsaicin responses in rat sensory neurons. CFA-induced inflammatory thermal hyperalgesia in OVX-E rat hindpaws was significantly reduced in a dose-dependent manner by the PRL-R antagonist at 6 h but not at 24 h. In contrast, PRL contributed to inflammatory thermal hyperalgesia in intact male rats at 24, but not at 6 h. These findings indicate that inflammation leads to accumulation of endogenous PRL in female and male rats. Furthermore, PRL acts as an inflammatory mediator at different time points for female and intact male rats. © 2011 UT Health Science Center San Antonio. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. Histamine H2 receptor - Involvement in gastric ulceration

    NASA Technical Reports Server (NTRS)

    Brown, P. A.; Vernikos-Danellis, J.; Brown, T. H.

    1976-01-01

    The involvement of the H1 and H2 receptors for histamine in the pathogenesis of gastric ulcers was investigated in rats. Metiamide, an H2 receptor antagonist, reliably reduced ulceration produced by stress alone or by a combination of stress and aspirin. In contrast, pyrilamine, which blocks only the H1 receptor, was without effect under these same conditions. The results support the hypothesis that histamine mediates both stress and stress plus aspirin induced ulceration by a mechanism involving the H2 receptor.

  5. [Antagonistic interaction between Clostridium butyricum and enterohemorrhagic Escherichia coli O157:H7].

    PubMed

    Takahashi, M; Taguchi, H; Yamaguchi, H; Osaki, T; Sakazaki, R; Kamiya, S

    1999-01-01

    Antagonistic interaction between Clostridium butyricum strain MIYAIRI 588 and enterohemorrhagic Esherichia coli (EHEC) strain O157:H7 006 was examined using streptomycin-treated SPF mice and germ free mice. All SPF mice pretreated with streptomycin were colonized with EHEC O157:H7. On the other hand, only 20% of the SPF mice pretreated with streptomycin and C. butyricum were colonized with EHEC O157:H7. In addition, germ free mice died within 4-7 days after infection with EHEC O157:H7. In contrast, all gnotobiotic mice mono-associated with C. butyricum survived after the challenge with EHEC O157:H7. Both the number of EHEC and the amounts of shiga-like cytotoxin (SLT, type 1 and type 2) in fecal contents of gnotobiotic mice treated with C. butyricum were less than those of mice infected with only EHEC O157:H7. In conclusion, the probiotic bacterium, C. butyricum strain MIYAIRI 588, has a preventive effect against EHEC O157:H7 infection.

  6. Antagonistic effects of atipamezole, yohimbine, and prazosin on xylazine-induced diuresis in clinically normal cats

    PubMed Central

    Murahata, Yusuke; Miki, Yuya; Hikasa, Yoshiaki

    2014-01-01

    This study aimed to investigate and compare the antagonistic effects of atipamezole, yohimbine, and prazosin on xylazine-induced diuresis in clinically normal cats. Five cats were repeatedly used in each of the 9 groups. One group was not medicated. Cats in the other groups received 2 mg/kg BW xylazine intramuscularly, and saline (as the control); 160 μg/kg BW prazosin; or 40, 160, or 480 μg/kg BW atipamezole or yohimbine intravenously 0.5 h later. Urine and blood samples were collected 10 times over 8 h. Urine volume, pH, and specific gravity; plasma arginine vasopressin (AVP) concentration; and creatinine, osmolality, and electrolyte values in both urine and plasma were measured. Both atipamezole and yohimbine antagonized xylazine-induced diuresis, but prazosin did not. The antidiuretic effect of atipamezole was more potent than that of yohimbine but not dose-dependent, in contrast to the effect of yohimbine at the tested doses. Both atipamezole and yohimbine reversed xylazine-induced decreases in both urine specific gravity and osmolality, and the increase in free water clearance. Glomerular filtration rate, osmolar clearance, and plasma electrolyte concentrations were not significantly altered. Antidiuresis of either atipamezole or yohimbine was not related to the area under the curve for AVP concentration, although the highest dose of both atipamezole and yohimbine increased plasma AVP concentration initially and temporarily, suggesting that this may in part influence antidiuretic effects of both agents. The diuretic effect of xylazine in cats may be mediated by α2-adrenoceptors but not α1-adrenoceptors. Atipamezole and yohimbine can be used as antagonistic agents against xylazine-induced diuresis in clinically normal cats. PMID:25356000

  7. Interaction of ligands with the opiate receptors of brain membranes: Regulation by ions and nucleotides

    PubMed Central

    Blume, Arthur J.

    1978-01-01

    This study shows that nucleotides, as well as ions, regulate the opiate receptors of brain. GMP-P(NH)P and Na+ reduce the amount of steady-state specific [3H]dihydromorphine binding and increase the rate of dissociation of the ligand from the opiate receptor. In contrast, Mn2+ decreases the rate of ligand dissociation and antagonizes the ability of Na+ to increase dissociation. The effects of GMP-P(NH)P on steady-state binding and dissociation are not reversed by washing. Only GTP, GDP, ITP, and IMP-P(NH)P, in addition to GMP-P(NH)P, increase the rate of dihydromorphine dissociation. The site of nucleotide action appears to have high affinity: <1 μM GMP-P(NH)P produces half-maximal increases in ligand dissociation. GMP-P(NH)P- and Na+-directed increases in dissociation have also been found for the opiate agonists [3H]etorphine, [3H]Leu-enkephalin, and [3H]Met-enkephalin and the opiate antagonist [3H]naltrexone. Mn2+-directed decreases in dissociation have been found for the agonist [3H]-etorphine and the antagonist [3H]naltrexone. Although the plasma membrane receptors for a number of other neuro-transmitters and hormones are also regulated by guanine nucleotides, the opiate receptors appear unique because only they show nucleotide regulation of both agonist and antagonist binding. PMID:205867

  8. TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch.

    PubMed

    Jian, Tunyu; Yang, Niuniu; Yang, Yan; Zhu, Chan; Yuan, Xiaolin; Yu, Guang; Wang, Changming; Wang, Zhongli; Shi, Hao; Tang, Min; He, Qian; Lan, Lei; Wu, Guanyi; Tang, Zongxiang

    2016-01-01

    Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG) neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip)-a histamine H4 receptor special agonist under cutaneous injection-obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3-50 μM) could also induce a dose-dependent increase in intracellular Ca(2+) ([Ca(2+)]i) of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca(2+) responses. In addition, immepip-induced [Ca(2+)]i increase could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons' responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation.

  9. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews.

    PubMed

    Ward, Alexander H; Siegwart, John T; Frost, Michael R; Norton, Thomas T

    2017-01-01

    We examined the effect of intravitreal injections of D1-like and D2-like dopamine receptor agonists and antagonists and D4 receptor drugs on form-deprivation myopia (FDM) in tree shrews, mammals closely related to primates. In eleven groups (n = 7 per group), we measured the amount of FDM produced by monocular form deprivation (FD) over an 11-day treatment period. The untreated fellow eye served as a control. Animals also received daily 5 µL intravitreal injections in the FD eye. The reference group received 0.85% NaCl vehicle. Four groups received a higher, or lower, dose of a D1-like receptor agonist (SKF38393) or antagonist (SCH23390). Four groups received a higher, or lower, dose of a D2-like receptor agonist (quinpirole) or antagonist (spiperone). Two groups received the D4 receptor agonist (PD168077) or antagonist (PD168568). Refractions were measured daily; axial component dimensions were measured on day 1 (before treatment) and day 12. We found that in groups receiving the D1-like receptor agonist or antagonist, the development of FDM and altered ocular component dimensions did not differ from the NaCl group. Groups receiving the D2-like receptor agonist or antagonist at the higher dose developed significantly less FDM and had shorter vitreous chambers than the NaCl group. The D4 receptor agonist, but not the antagonist, was nearly as effective as the D2-like agonist in reducing FDM. Thus, using intravitreally-administered agents, we did not find evidence supporting a role for the D1-like receptor pathway in reducing FDM in tree shrews. The reduction of FDM by the dopamine D2-like agonist supported a role for the D2-like receptor pathway in the control of FDM. The reduction of FDM by the D4 receptor agonist, but not the D4 antagonist, suggests an important role for activation of the dopamine D4 receptor in the control of axial elongation and refractive development.

  10. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews

    PubMed Central

    Ward, Alexander H.; Siegwart, John T.; Frost, Michael R.; Norton, Thomas T.

    2017-01-01

    We examined the effect of intravitreal injections of D1-like and D2-like dopamine receptor agonists and antagonists and D4 receptor drugs on form-deprivation myopia (FDM) in tree shrews, mammals closely related to primates. In eleven groups (n = 7 per group), we measured the amount of FDM produced by monocular form deprivation (FD) over an 11-day treatment period. The untreated fellow eye served as a control. Animals also received daily 5 μL intravitreal injections in the FD eye. The reference group received 0.85% NaCl vehicle. Four groups received a higher, or lower, dose of a D1-like receptor agonist (SKF38393) or antagonist (SCH23390). Four groups received a higher, or lower, dose of a D2-like receptor agonist (quinpirole) or antagonist (spiperone). Two groups received the D4 receptor agonist (PD168077) or antagonist (PD168568). Refractions were measured daily; axial component dimensions were measured on day 1 (before treatment) and day 12. We found that in groups receiving the D1-like receptor agonist or antagonist, the development of FDM and altered ocular component dimensions did not differ from the NaCl group. Groups receiving the D2-like receptor agonist or antagonist at the higher dose developed significantly less FDM and had shorter vitreous chambers than the NaCl group. The D4 receptor agonist, but not the antagonist, was nearly as effective as the D2-like agonist in reducing FDM. Thus, using intravitreally-administered agents, we did not find evidence supporting a role for the D1-like receptor pathway in reducing FDM in tree shrews. The reduction of FDM by the dopamine D2-like agonist supported a role for the D2-like receptor pathway in the control of FDM. The reduction of FDM by the D4 receptor agonist, but not the D4 antagonist, suggests an important role for activation of the dopamine D4 receptor in the control of axial elongation and refractive development. PMID:28304244

  11. Thoracic vagal efferent nerve stimulation evokes substance P-induced early airway bronchonstriction and late proinflammatory and oxidative injury in the rat respiratory tract.

    PubMed

    Li, Ping-Chia; Li, Sheng-Chung; Lin, Yuan-Ju; Liang, Jin-Tung; Chien, Chiang-Ting; Shaw, Chen-Fu

    2005-01-01

    Electrical stimulation of efferent thoracic vagus nerve (TVN) evoked neurogenic inflammation in respiratory tract of atropine-treated rats by an undefined mechanism. We explored whether efferent TVN stimulation via substance P facilitates neurogenic inflammation via action of nuclear factor-kappaB (NF-kappaB) activation and reactive oxygen species (ROS) production. Our results showed that increased frequency of TVN stimulation concomitantly increased substance P-enhanced hypotension, and bronchoconstriction (increases in smooth muscle electromyographic activity and total pulmonary resistance). The enhanced SP release evoked the appearance of endothelial gap in silver-stained leaky venules, India-ink labeled extravasation, and accumulations of inflammatory cells in the respiratory tract, contributing to trachea plasma extravasation as well as increases in blood O (2)(-) and H(2)O(2) ROS amount. L-732138 (NK(1) receptor antagonist), SR-48968 (NK(2) receptor antagonist), dimethylthiourea (H(2)O(2) scavenger) or catechins (O (2)(-) and H(2)O(2) scavenger) pretreatment reduced efferent TVN stimulation-enhanced hypotension, bronchoconstriction, and plasma extravasation. Increased frequency of TVN stimulation significantly upregulated the expression of nuclear factor-kappaB (NF-kappaB) in nuclear protein and intercellular adhesion molecule-1 (ICAM-1) in total protein of the lower respiratory tract tissue. The upregulation of NF-kappaB and ICAM-1 was attenuated by NK receptor antagonist and antioxidants. In conclusion, TVN efferent stimulation increases substance P release to trigger NF-kappaB mediated ICAM-1 expression and O (2)(-) and H(2)O(2) ROS production in the respiratory tract.

  12. δ opioid receptor antagonist, ICI 174,864, is suitable for the early treatment of uncontrolled hemorrhagic shock in rats.

    PubMed

    Liu, Liangming; Tian, Kunlun; Zhu, Yu; Ding, Xiaoli; Li, Tao

    2013-08-01

    Fluid resuscitation is the essential step for early treatment of traumatic hemorrhagic shock. However, its implementation is greatly limited before hospital or during evacuation. The authors investigated whether δ opioid receptor antagonist ICI 174,864 was suitable for the early treatment of traumatic hemorrhagic shock. With uncontrolled hemorrhagic-shock rats, the antishock effects of six dosages of ICI 174,864 (0.1, 0.3, 0.5, 1, 3, and 5 mg/kg) infused with or without a small volume of lactated Ringer's solution (LR) before bleeding controlled or bleeding cessation at different times were observed. ICI 174,864 (0.1-3 mg/kg) with or without 1/4 volume of LR infusion showed dose-dependent increase in the mean arterial blood pressure, and significantly prolonged the survival time and 8-h survival rate, as compared with ICI 174,864 plus 1/2 volume of LR infusion. The best effect was shown with 3 mg/kg of ICI 174,864. Bleeding cessation at 1, 2, or 3 h during infusion of ICI 174,864 (3 mg/kg) plus 1/4 volume of LR improved subsequent treatment (70% 24-h survival rate vs. 50 and 10% 24-h survival rate in hypotensive resuscitation and LR group, respectively). There was significant improvement in hemodynamic parameters, oxygen delivery, and tissue perfusion of hemorrhagic-shock rats with 3 mg/kg of ICI 174,864 plus 1/4 volume of LR infusion. δ Opioid receptor antagonist ICI 174,864 alone or with small volume of fluid infusion has good beneficial effect on uncontrolled hemorrhagic shock. Its early application can "buy" time for subsequent treatment of traumatic shock.

  13. Histamine H{sub 3} receptor antagonist OUP-186 attenuates the proliferation of cultured human breast cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Satoshi; Sakaguchi, Minoru; Yoneyama, Hiroki

    Histamine is involved in various physiological functions, including its neurotransmitter actions in the central nervous system and its action as a causative agent of inflammation, allergic reactions, and gastric acid secretions. Histamine expression and biosynthesis have been detected in breast cancer cells. It was recently suggested that the histamine H{sub 3} receptor (H{sub 3}R) plays a role in the proliferation of breast cancer cells. We recently developed the non-imidazole H{sub 3}R antagonist OUP-186 which exhibited a potent and selective human H{sub 3}R antagonistic activity as well as no activity against the human histamine H{sub 4} receptor (H{sub 4}R). In thismore » study, we compared the effects of OUP-186 on the proliferation of estrogen receptor negative (ER−) breast cancer cells (MDA-MB-231) and ER+ breast cancer cells (MCF7) to the effects of clobenpropit (potent imidazole-containing H{sub 3}R antagonist). OUP-186 and clobenpropit suppressed the proliferation of breast cancer cells. The IC{sub 50} values at 48 h for OUP-186 and clobenpropit were approximately 10 μM and 50 μM, respectively. Furthermore, OUP-186 potently induced cell death by activating caspase-3/7, whereas cell death was only slightly induced by clobenpropit. In addition, OUP-186 treatment blocked the proliferation increase triggered by 100 μM (R)-(-)-α-methylhistamine (H{sub 3}R agonist). The use of 4-methylhistamine (H{sub 4}R agonist) and JNJ10191584 (selective H{sub 4}R antagonist) did not affect breast cancer proliferation. These results indicate that OUP-186 potently suppresses proliferation and induces caspase-dependent apoptotic death in both ER+ and ER-breast cancer cells. - Highlights: • OUP-186, a histamine H{sub 3} receptor antagonist, effects breast cancer cell growth. • OUP-186 potently suppressed proliferation and induced caspase-dependent apoptosis. • OUP-186 may be an effective drug against ER+ and ER− breast cancers.« less

  14. Discovery of 1-[9-(4-chlorophenyl)-8-(2-chlorophenyl)-9H-purin-6-yl]-4-ethylaminopiperidine-4-carboxylic acid amide hydrochloride (CP-945,598), a novel, potent, and selective cannabinoid type 1 receptor antagonist.

    PubMed

    Griffith, David A; Hadcock, John R; Black, Shawn C; Iredale, Philip A; Carpino, Philip A; DaSilva-Jardine, Paul; Day, Robert; DiBrino, Joseph; Dow, Robert L; Landis, Margaret S; O'Connor, Rebecca E; Scott, Dennis O

    2009-01-22

    We report the structure-activity relationships, design, and synthesis of the novel cannabinoid type 1 (CB1) receptor antagonist 3a (CP-945,598). Compound 3a showed subnanomolar potency at human CB1 receptors in binding (Ki = 0.7 nM) and functional assays (Ki = 0.12 nM). In vivo, compound 3a reversed cannabinoid agonist-mediated responses, reduced food intake, and increased energy expenditure and fat oxidation in rodents.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raulli, R.; Crews, F.T.

    The potency of various alpha adrenergic compounds on stimulation of phosphatidylinositol (PI) hydrolysis was determined using (/sup 3/H)-inositol labelled cerebral cortical slices. Norepinephrine-induced PI hydrolysis was inhibited by the alpha/sub 1/ selective antagonist prazosin (1 ..mu..M) but not the beta receptor antagonist propranolol (1 ..mu..M). Tramazoline, (-)-ephedrine, and (+/-)-phenylpropanolamine were all found to be partial agonists at 1 mM concentrations. Clonidine, naphazoline, trazodone, and the novel antidepressant mianserin at concentrations of 100 ..mu..M to 1 mM produced no significant increase in PI hydrolysis above control levels. The relationship between responses and receptor binding will be discussed.

  16. High pH-Sensitive TRPA1 Activation in Odontoblasts Regulates Mineralization.

    PubMed

    Kimura, M; Sase, T; Higashikawa, A; Sato, M; Sato, T; Tazaki, M; Shibukawa, Y

    2016-08-01

    Calcium hydroxide and mineral trioxide aggregate are widely used for indirect and direct pulp capping and root canal filling. Their dissociation into Ca(2+) and OH(-) in dental pulp creates an alkaline environment, which activates reparative/reactionary dentinogenesis. However, the mechanisms by which odontoblasts detect the pH of the extracellular environment remain unclear. We examined the alkali-sensitive intracellular Ca(2+) signaling pathway in rat odontoblasts. In the presence or absence of extracellular Ca(2+), application of alkaline solution increased intracellular Ca(2+) concentration, or [Ca(2+)]i Alkaline solution-induced [Ca(2+)]i increases depended on extracellular pH (8.5 to 10.5) in both the absence and the presence of extracellular Ca(2+) The amplitude was smaller in the absence than in the presence of extracellular Ca(2+) Each increase in [Ca(2+)]i, activated by pH 7.5, 8.5, or 9.5, depended on extracellular Ca(2+) concentration; the equilibrium binding constant for extracellular Ca(2+) concentration decreased as extracellular pH increased (1.04 mM at pH 7.5 to 0.11 mM at pH 9.5). Repeated applications of alkaline solution did not have a desensitizing effect on alkali-induced [Ca(2+)]i increases and inward currents. In the presence of extracellular Ca(2+), alkaline solution-induced [Ca(2+)]i increases were suppressed by application of an antagonist of transient receptor potential ankyrin subfamily member 1 (TRPA1) channels. Ca(2+) exclusion efficiency during alkaline solution-induced [Ca(2+)]i increases was reduced by a Na(+)-Ca(2+) exchanger antagonist. Alizarin red and von Kossa staining revealed increased mineralization levels under repeated high pH stimulation, whereas the TRPA1 antagonist strongly reduced this effect. These findings indicate that alkaline stimuli-such as the alkaline environment inside dental pulp treated with calcium hydroxide or mineral trioxide aggregate-activate Ca(2+) mobilization via Ca(2+) influx mediated by TRPA1 channels and intracellular Ca(2+) release in odontoblasts. High pH-sensing mechanisms in odontoblasts are important for activating dentinogenesis induced by an alkaline environment. © International & American Associations for Dental Research 2016.

  17. Cost-effectiveness of treatment regimens for the eradication of Helicobacter pylori in duodenal ulcer.

    PubMed

    Vakil, N; Fennerty, M B

    1996-02-01

    Eradication of Helicobacter pylori with antimicrobials was recommended by a recent NIH consensus panel for all infected patients with peptic ulcer disease. The precise regimen that should be used for eradication of the infection remains uncertain because of the variety of regimens described, variable results with the regimens, and difficulties in predicting drug compliance outside clinical trials. A decision analysis tree was developed with three regimens that are widely used regimens for the eradication of H. pylori: 1) 2-wk triple drug therapy (metronidazole, bismuth, tetracycline with H2 receptor antagonist), 2) 2-wk omeprazole and amoxicillin, and 3) 2-wk omeprazole and clarithromycin. Traditional H2 receptor antagonist therapy was used for comparison. A 2-yr time period was chosen for study to allow sufficient time for relapse and to evaluate its effect on the treatment strategy. Probabilities for eradication, compliance, and metronidazole resistance were determined from published data, and assumptions were tested by sensitivity analysis. Standard 2-wk triple drug therapy was the least expensive strategy ($720), and conventional H2 receptor antagonist therapy was the most expensive ($1791). Costs with 2-wk therapy with omeprazole and clarithromycin ($768) were lower than with omeprazole and amoxicillin ($1028). Treatment to eradicate H. pylori in infected patients with duodenal ulcer is a less expensive strategy than traditional therapy with H2 receptor antagonists. Triple drug therapy is the optimal regimen in areas where metronidazole resistance rates are < 36% and compliance is > 53%. Omeprazole and amoxicillin is not cost-effective unless eradication rates are greater than 74%. Dual drug therapy with omeprazole and clarithromycin is effective in regions where metronidazole resistance is high or where it is anticipated that there would be poor compliance with the more complicated triple drug therapy regimen.

  18. Hypersensitivity reaction to ranitidine: description of a case and review of the literature.

    PubMed

    Foti, Caterina; Cassano, Nicoletta; Panebianco, Rosanna; Calogiuri, Gian Franco; Vena, Gino A

    2009-01-01

    Ranitidine is an H2-receptor antagonist which is usually well tolerated. Hypersensitivity reactions to ranitidine, as well as other H2 antihistamines, have been rarely described. We report the case of a 47-year-old woman who developed an anaphylactic reaction to ranitidine used as intravenous premedication before anesthesia induction. The patient's history revealed that previous use of oral ranitidine for a peptic ulcer disease did not cause any adverse reaction. Intradermal test with ranitidine at a dilution of 1:100 gave an intense positive reaction. The protective role of H2-receptor antagonists as premedication is still unclear and should be carefully reconsidered on the basis of the available controversial evidence and the possible risk of hypersensitivity reactions.

  19. A tachykinin NK1 receptor antagonist, CP-122,721-1, attenuates kainic acid-induced seizure activity.

    PubMed

    Zachrisson, O; Lindefors, N; Brené, S

    1998-10-01

    Substance P (SP) can play an important role in neuronal survival. To analyze the role of SP in excitotoxicity, kainic acid (KA) was administered to rats and in situ hybridization was used to analyze the levels of the SP encoding preprotachykinin-A (PPT-A) mRNA in striatal and hippocampal subregions 1, 4, and 24 h and 7 days after KA. In striatum and piriform cortex, PPT-A mRNA peaked 4 h after KA while in hippocampus, levels peaked after 24 h. KA caused seizures and neuronal toxicity as indicated by a reduction of the number of neurons in the hippocampal CA1 subregion after 7 days. KA was later administered alone or following pretreatment with the tachykinin NK1 receptor antagonist CP-122,721-1 (0.3 mg/kg). The pretreatment decreased seizure activity and a negative correlation was found between seizure activity and survival of CA1 neurons. Conclusively, treatment with CP-122,721-1 has a seizure inhibiting property and may possibly counteract KA-induced nerve cell death in CA1. Copyright 1998 Elsevier Science B.V.

  20. Delayed preconditioning with NMDA receptor antagonists in a rat model of perinatal asphyxia.

    PubMed

    Makarewicz, Dorota; Sulejczak, Dorota; Duszczyk, Małgorzata; Małek, Michał; Słomka, Marta; Lazarewicz, Jerzy W

    2014-01-01

    In vitro experiments have demonstrated that preconditioning primary neuronal cultures by temporary application of NMDA receptor antagonists induces long-term tolerance against lethal insults. In the present study we tested whether similar effects also occur in brain submitted to ischemia in vivo and whether the potential benefit outweighs the danger of enhancing the constitutive apoptosis in the developing brain. Memantine in pharmacologically relevant doses of 5 mg/kg or (+)MK-801 (3 mg/kg) was administered i.p. 24, 48, 72 and 96 h before 3-min global forebrain ischemia in adult Mongolian gerbils or prior to hypoxia/ischemia in 7-day-old rats. Neuronal loss in the hippocampal CA1 in gerbils or weight deficit of the ischemic hemispheres in the rat pups was evaluated after 14 days. Also, the number of apoptotic neurons in the immature rat brain was evaluated. In gerbils only the application of (+)MK-801 24 h before ischemia resulted in significant prevention of the loss of pyramidal neurons. In rat pups administration of (+)MK-801 at all studied times before hypoxia-ischemia, or pretreatment with memantine or with hypoxia taken as a positive control 48 to 92 h before the insult, significantly reduced brain damage. Both NMDA receptor antagonists equally reduced the number of apoptotic neurons after hypoxia-ischemia, while (+)MK-801-evoked potentiation of constitutive apoptosis greatly exceeded the effect of memantine. We ascribe neuroprotection induced in the immature rats by the pretreatment with both NMDA receptor antagonists 48 to 92 h before hypoxia-ischemia to tolerance evoked by preconditioning, while the neuroprotective effect of (+)MK-801 applied 24 h before the insults may be attributed to direct consequences of the inhibition of NMDA receptors. This is the first report demonstrating the phenomenon of inducing tolerance against hypoxia-ischemia in vivo in developing rat brain by preconditioning with NMDA receptor antagonists.

  1. Substituted 7-amino-5-thio-thiazolo[4,5-d]pyrimidines as potent and selective antagonists of the fractalkine receptor (CX3CR1).

    PubMed

    Karlström, Sofia; Nordvall, Gunnar; Sohn, Daniel; Hettman, Andreas; Turek, Dominika; Åhlin, Kristofer; Kers, Annika; Claesson, Martina; Slivo, Can; Lo-Alfredsson, Yvonne; Petersson, Carl; Bessidskaia, Galina; Svensson, Per H; Rein, Tobias; Jerning, Eva; Malmberg, Åsa; Ahlgen, Charlotte; Ray, Colin; Vares, Lauri; Ivanov, Vladimir; Johansson, Rolf

    2013-04-25

    We have developed two parallel series, A and B, of CX3CR1 antagonists for the treatment of multiple sclerosis. By modifying the substituents on the 7-amino-5-thio-thiazolo[4,5-d]pyrimidine core structure, we were able to achieve compounds with high selectivity for CX3CR1 over the closely related CXCR2 receptor. The structure-activity relationships showed that a leucinol moiety attached to the core-structure in the 7-position together with α-methyl branched benzyl derivatives in the 5-position displayed promising affinity, and selectivity as well as physicochemical properties, as exemplified by compounds 18a and 24h. We show the preparation of the first potent and selective orally available CX3CR1 antagonists.

  2. Comparing the cardiovascular therapeutic indices of glycopyrronium and tiotropium in an integrated rat pharmacokinetic, pharmacodynamic and safety model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trifilieff, Alexandre; Ethell, Brian T.; Sykes, David A.

    Long acting inhaled muscarinic receptor antagonists, such as tiotropium, are widely used as bronchodilator therapy for chronic obstructive pulmonary disease (COPD). Although this class of compounds is generally considered to be safe and well tolerated in COPD patients the cardiovascular safety of tiotropium has recently been questioned. We describe a rat in vivo model that allows the concurrent assessment of muscarinic antagonist potency, bronchodilator efficacy and a potential for side effects, and we use this model to compare tiotropium with NVA237 (glycopyrronium bromide), a recently approved inhaled muscarinic antagonist for COPD. Anaesthetized Brown Norway rats were dosed intratracheally at 1more » or 6 h prior to receiving increasing doses of intravenous methacholine. Changes in airway resistance and cardiovascular function were recorded and therapeutic indices were calculated against the ED{sub 50} values for the inhibition of methacholine-induced bronchoconstriction. At both time points studied, greater therapeutic indices for hypotension and bradycardia were observed with glycopyrronium (19.5 and 28.5 fold at 1 h; > 200 fold at 6 h) than with tiotropium (1.5 and 4.2 fold at 1 h; 4.6 and 5.5 fold at 6 h). Pharmacokinetic, protein plasma binding and rat muscarinic receptor binding properties for both compounds were determined and used to generate an integrated model of systemic M{sub 2} muscarinic receptor occupancy, which predicted significantly higher M{sub 2} receptor blockade at ED{sub 50} doses with tiotropium than with glycopyrronium. In our preclinical model there was an improved safety profile for glycopyrronium when compared with tiotropium. - Highlights: • We use an in vivo rat model to study CV safety of inhaled muscarinic antagonists. • We integrate protein and receptor binding and PK of tiotropium and glycopyrrolate. • At ED{sub 50} doses for bronchoprotection we model systemic M{sub 2} receptor occupancy. • Glycopyrrolate demonstrates lower M{sub 2} occupancy at bronchoprotective doses. • Glycopyrrolate demonstrates an improved CV safety profile, versus tiotropium.« less

  3. 3-Arylpiperazinylethyl-1H-pyrrolo[2,3-d]pyrimidine-2,4(3H,7H)-dione derivatives as novel, high-affinity and selective alpha(1)-adrenoceptor ligands.

    PubMed

    Pittalà, Valeria; Romeo, Giuseppe; Salerno, Loredana; Siracusa, Maria Angela; Modica, Maria; Materia, Luisa; Mereghetti, Ilario; Cagnotto, Alfredo; Mennini, Tiziana; Marucci, Gabriella; Angeli, Piero; Russo, Filippo

    2006-01-01

    The discovery of a new series of selective and high-affinity alpha(1)-adrenoceptor (alpha(1)-AR) ligands, characterized by a 1H-pyrrolo[2,3-d]-pyrimidine-2,4(3H,7H)-dione system, is described in this paper. Some synthesized compounds, including 20, 22, and 30, displayed affinity in the nanomolar range for alpha(1)-ARs and substantial selectivity with respect to 5-HT(1A) and dopaminergic D(1) and D(2) receptors. Functional assays, performed on selected derivatives, showed antagonistic properties.

  4. Differing time dependencies of object recognition memory impairments produced by nicotinic and muscarinic cholinergic antagonism in perirhinal cortex

    PubMed Central

    Tinsley, Chris J.; Fontaine-Palmer, Nadine S.; Vincent, Maria; Endean, Emma P.E.; Aggleton, John P.; Brown, Malcolm W.; Warburton, E. Clea

    2011-01-01

    The roles of muscarinic and nicotinic cholinergic receptors in perirhinal cortex in object recognition memory were compared. Rats' discrimination of a novel object preference test (NOP) test was measured after either systemic or local infusion into the perirhinal cortex of the nicotinic receptor antagonist methyllycaconitine (MLA), which targets alpha-7 (α7) amongst other nicotinic receptors or the muscarinic receptor antagonists scopolamine, AFDX-384, and pirenzepine. Methyllycaconitine administered systemically or intraperirhinally before acquisition impaired recognition memory tested after a 24-h, but not a 20-min delay. In contrast, all three muscarinic antagonists produced a similar, unusual pattern of impairment with amnesia after a 20-min delay, but remembrance after a 24-h delay. Thus, the amnesic effects of nicotinic and muscarinic antagonism were doubly dissociated across the 20-min and 24-h delays. The same pattern of shorter-term but not longer-term memory impairment was found for scopolamine whether the object preference test was carried out in a square arena or a Y-maze and whether rats of the Dark Agouti or Lister-hooded strains were used. Coinfusion of MLA and either scopolamine or AFDX-384 produced an impairment profile matching that for MLA. Hence, the antagonists did not act additively when coadministered. These findings establish an important role in recognition memory for both nicotinic and muscarinic cholinergic receptors in perirhinal cortex, and provide a challenge to simple ideas about the role of cholinergic processes in recognition memory: The effects of muscarinic and nicotinic antagonism are neither independent nor additive. PMID:21693636

  5. Differing time dependencies of object recognition memory impairments produced by nicotinic and muscarinic cholinergic antagonism in perirhinal cortex.

    PubMed

    Tinsley, Chris J; Fontaine-Palmer, Nadine S; Vincent, Maria; Endean, Emma P E; Aggleton, John P; Brown, Malcolm W; Warburton, E Clea

    2011-01-01

    The roles of muscarinic and nicotinic cholinergic receptors in perirhinal cortex in object recognition memory were compared. Rats' discrimination of a novel object preference test (NOP) test was measured after either systemic or local infusion into the perirhinal cortex of the nicotinic receptor antagonist methyllycaconitine (MLA), which targets alpha-7 (α7) amongst other nicotinic receptors or the muscarinic receptor antagonists scopolamine, AFDX-384, and pirenzepine. Methyllycaconitine administered systemically or intraperirhinally before acquisition impaired recognition memory tested after a 24-h, but not a 20-min delay. In contrast, all three muscarinic antagonists produced a similar, unusual pattern of impairment with amnesia after a 20-min delay, but remembrance after a 24-h delay. Thus, the amnesic effects of nicotinic and muscarinic antagonism were doubly dissociated across the 20-min and 24-h delays. The same pattern of shorter-term but not longer-term memory impairment was found for scopolamine whether the object preference test was carried out in a square arena or a Y-maze and whether rats of the Dark Agouti or Lister-hooded strains were used. Coinfusion of MLA and either scopolamine or AFDX-384 produced an impairment profile matching that for MLA. Hence, the antagonists did not act additively when coadministered. These findings establish an important role in recognition memory for both nicotinic and muscarinic cholinergic receptors in perirhinal cortex, and provide a challenge to simple ideas about the role of cholinergic processes in recognition memory: The effects of muscarinic and nicotinic antagonism are neither independent nor additive.

  6. Cholecystokinin receptors on gallbladder muscle and pancreatic acinar cells: a comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Schrenck, T.; Moran, T.H.; Heinz-Erian, P.

    1988-10-01

    To compare receptors for cholecystokinin (CCK) in pancreas and gallbladder, we measured binding of 125I-Bolton-Hunter-labeled CCK-8 (125I-BH-CCK-8) to tissue sections from guinea pig gallbladder and pancreas under identical conditions. In both tissues, binding had similar time-, temperature-, and pH dependence, was reversible, saturable and inhibited only by CCK related peptides or CCK receptor antagonists. Autoradiography localized 125I-BH-CCK-8 binding to the smooth muscle layer in the gallbladder. Binding of 125I-BH-CCK-8 to gallbladder sections was inhibited by various agonists with the following potencies (IC50):CCK-8 (0.4 nM) greater than des(SO3)CCK-8 (0.07 microM) greater than gastrin-17-I (1.7 +/- 0.3 microM) and by various receptormore » antagonists with the following potencies: L364,718 (1.5 nM) greater than CR 1409 (0.19 microM) greater than asperlicin = CBZ-CCK-(27-32)-NH2 (1 microM) greater than Bt2cGMP (120 microM). Similar potencies were found for the agonists and antagonists for pancreas sections. Inhibition of binding of 125I-BH-CCK-8 by 11 different analogues of proglumide gave similar potencies for both pancreas and gallbladder. The potencies of agonists in stimulating and antagonists in inhibiting CCK-stimulated contraction or amylase release correlated closely with their abilities to inhibit 125I-BH-CCK-8 binding to gallbladder or pancreas sections or acini, respectively. The present results demonstrate and characterize a method that can be used to compare the CCK receptors in guinea pig gallbladder and pancreas under identical conditions. Moreover, this study demonstrates that gallbladder and pancreatic CCK receptors have similar affinities for the various agonists and antagonists tested and, therefore, provides no evidence that they represent different subtypes of CCK receptors that can be distinguished pharmacologically.« less

  7. Novel 5-HT6 receptor antagonists/D2 receptor partial agonists targeting behavioral and psychological symptoms of dementia.

    PubMed

    Kołaczkowski, Marcin; Marcinkowska, Monika; Bucki, Adam; Śniecikowska, Joanna; Pawłowski, Maciej; Kazek, Grzegorz; Siwek, Agata; Jastrzębska-Więsek, Magdalena; Partyka, Anna; Wasik, Anna; Wesołowska, Anna; Mierzejewski, Paweł; Bienkowski, Przemyslaw

    2015-03-06

    We describe a novel class of designed multiple ligands (DMLs) combining serotonin 5-HT6 receptor (5-HT6R) antagonism with dopamine D2 receptor (D2R) partial agonism. Prototype hybrid molecules were designed using docking to receptor homology models. Diverse pharmacophore moieties yielded 3 series of hybrids with varying in vitro properties at 5-HT6R and D2R, and at M1 receptor and hERG channel antitargets. 4-(piperazin-1-yl)-1H-indole derivatives showed highest antagonist potency at 5-HT6R, with 7-butoxy-3,4-dihydroquinolin-2(1H)-one and 2-propoxybenzamide derivatives having promising D2R partial agonism. 2-(3-(4-(1-(phenylsulfonyl)-1H-indol-4-yl)piperazin-1-yl)propoxy)benzamide (47) exhibited nanomolar affinity at both 5-HT6R and D2R and was evaluated in rat models. It displayed potent antidepressant-like and anxiolytic-like activity in the Porsolt and Vogel tests, respectively, more pronounced than that of a reference selective 5-HT6R antagonist or D2R partial agonist. In addition, 47 also showed antidepressant-like activity (Porsolt's test) and anxiolytic-like activity (open field test) in aged (>18-month old) rats. In operant conditioning tests, 47 enhanced responding for sweet reward in the saccharin self-administration test, consistent with anti-anhedonic properties. Further, 47 facilitated extinction of non-reinforced responding for sweet reward, suggesting potential procognitive activity. Taken together, these studies suggest that DMLs combining 5-HT6R antagonism and D2R partial agonism may successfully target affective disorders in patients from different age groups without a risk of cognitive deficits. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Further studies on lead compounds containing the opioid pharmacophore Dmt-Tic.

    PubMed

    Balboni, Gianfranco; Fiorini, Stella; Baldisserotto, Anna; Trapella, Claudio; Sasaki, Yusuke; Ambo, Akihiro; Marczak, Ewa D; Lazarus, Lawrence H; Salvadori, Severo

    2008-08-28

    Some reference opioids containing the Dmt-Tic pharmacophore, especially the delta agonists H-Dmt-Tic-Gly-NH-Ph (1) and H-Dmt-Tic-NH-(S)CH(CH2-COOH)-Bid (4) (UFP-512) were evaluated for the influence of the substitution of Gly with aspartic acid, its chirality, and the importance of the -NH-Ph and N(1)H-Bid hydrogens in the inductions of delta agonism. The results provide the following conclusions: (i) Asp increases delta selectivity by lowering the mu affinity; (ii) -NH-Ph and N(1)H-Bid nitrogens methylation transforms the delta agonists into delta antagonists; (iii) the substitution of Gly with L-Asp/D-Asp in the delta agonist H-Dmt-Tic-Gly-NH-Ph gave delta antagonists; the same substitution in the delta agonist H-Dmt-Tic-NH-CH2-Bid yielded more selective agonists, H-Dmt-Tic-NH-(S)CH(CH2-COOH)-Bid and H-Dmt-Tic-NH-(R)CH(CH2-COOH)-Bid; (iv) L-Asp seems important only in functional bioactivity, not in receptor affinity; (v) H-Dmt-Tic-NH-(S)CH(CH2-COOH)-Bid(N(1)-Me) (10) evidenced analgesia similar to 4, which was reversed by naltrindole only in the tail flick. 4 and 10 had opposite behaviours in mice; 4 caused agitation, 10 gave sedation and convulsions.

  9. Antagonistic effect of chosen lactic acid bacteria strains on Salmonella species in meat and fermented sausages.

    PubMed

    Gomółka-Pawlicka, M; Uradziński, J

    2003-01-01

    The aim of this study was to determine of influence of 15 strains of lactic acid bacteria on the growth of 7 Salmonella spp. strains in model set-ups, and in meat and ripened fermented sausages. The investigations were performed within the framework of three alternate stages which differed in respect to the products studied, the number of Lactobacillus spp. strains and, partly, methodological approach. The ratio between lactic acid bacteria and Salmonella strains studied was, depending on the alternate, 1:1, 1:2 and 2:1, respectively. The investigations also covered the water activity (a(w)) and pH of the tested products. The results obtained are shown in 12 figures and suggest that all the lactic acid bacteria strains used within the framework of the model set-ups showed antagonistic effect on all the Salmonella spp. strains. However, these abilities were not observed with respect to some lactic acid bacteria strains in meat and fermented sausage. The temperature and length of the incubation period of sausages, but not a(w) and pH, were found to have a distinct influence on the antagonistic interaction between the bacteria.

  10. Modulation of 3H-noradrenaline release by presynaptic opioid, cannabinoid and bradykinin receptors and β-adrenoceptors in mouse tissues

    PubMed Central

    Trendelenburg, A U; Cox, S L; Schelb, V; Klebroff, W; Khairallah, L; Starke, K

    2000-01-01

    Release-modulating opioid and cannabinoid (CB) receptors, β-adrenoceptors and bradykinin receptors at noradrenergic axons were studied in mouse tissues (occipito-parietal cortex, heart atria, vas deferens and spleen) preincubated with 3H-noradrenaline. Experiments using the OP1 receptor-selective agonists DPDPE and DSLET, the OP2-selective agonists U50488H and U69593, the OP3-selective agonist DAMGO, the ORL1 receptor-selective agonist nociceptin, and a number of selective antagonists showed that the noradrenergic axons innervating the occipito-parietal cortex possess release-inhibiting OP3 and ORL1 receptors, those innervating atria OP1, ORL1 and possibly OP3 receptors, and those innervating the vas deferens all four opioid receptor types. Experiments using the non-selective CB agonists WIN 55,212-2 and CP 55,940 and the CB1-selective antagonist SR 141716A indicated that the noradrenergic axons of the vas deferens possess release-inhibiting CB1 receptors. Presynaptic CB receptors were not found in the occipito-parietal cortex, in atria or in the spleen. Experiments using the non-selective β-adrenoceptor agonist isoprenaline and the β2-selective agonist salbutamol, as well as subtype-selective antagonists, demonstrated the occurrence of release-enhancing β2-adrenoceptors at the sympathetic axons of atria and the spleen, but demonstrated their absence in the occipito-parietal cortex and the vas deferens. Experiments with bradykinin and the B2-selective antagonist Hoe 140 showed the operation of release-enhancing B2 receptors at the sympathetic axons of atria, the vas deferens and the spleen, but showed their absence in the occipito-parietal cortex. The experiments document a number of new presynaptic receptor locations. They confirm and extend the existence of marked tissue and species differences in presynaptic receptors at noradrenergic neurons. PMID:10807669

  11. PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats.

    PubMed

    Horswill, J G; Bali, U; Shaaban, S; Keily, J F; Jeevaratnam, P; Babbs, A J; Reynet, C; Wong Kai In, P

    2007-11-01

    Rimonabant (Acomplia, SR141716A), a cannabinoid CB1 receptor inverse agonist, has recently been approved for the treatment of obesity. There are, however, concerns regarding its side effect profile. Developing a CB1 antagonist with a different pharmacological mechanism may lead to a safer alternative. To this end we have screened a proprietary small molecule library and have discovered a novel class of allosteric antagonist at CB1 receptors. Herein, we have characterized an optimized prototypical molecule, PSNCBAM-1, and its hypophagic effects in vivo. A CB1 yeast reporter assay was used as a primary screen. PSNCBAM-1 was additionally characterized in [35S]-GTPgammaS, cAMP and radioligand binding assays. An acute rat feeding model was used to evaluate its effects on food intake and body weight in vivo. In CB1 receptor yeast reporter assays, PSNCBAM-1 blocked the effects induced by agonists such as CP55,940, WIN55212-2, anandamide (AEA) or 2-arachidonoyl glycerol (2-AG). The antagonist characteristics of PSNCBAM-1 were confirmed in [35S]-GTPgammaS binding and cAMP assays and was shown to be non-competitive by Schild analyses. PSNCBAM-1 did not affect CB2 receptors. In radioligand binding assays, PSNCBAM-1 increased the binding of [3H]CP55,940 despite its antagonist effects. In an acute rat feeding model, PSNCBAM-1 decreased food intake and body weight. PSNCBAM-1 exerted its effects through selective allosteric modulation of the CB1 receptor. The acute effects on food intake and body weight induced in rats provide a first report of in vivo activity for an allosteric CB1 receptor antagonist.

  12. PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats

    PubMed Central

    Horswill, J G; Bali, U; Shaaban, S; Keily, J F; Jeevaratnam, P; Babbs, A J; Reynet, C; Wong Kai In, P

    2007-01-01

    Background and purpose: Rimonabant (AcompliaTM, SR141716A), a cannabinoid CB1 receptor inverse agonist, has recently been approved for the treatment of obesity. There are, however, concerns regarding its side effect profile. Developing a CB1 antagonist with a different pharmacological mechanism may lead to a safer alternative. To this end we have screened a proprietary small molecule library and have discovered a novel class of allosteric antagonist at CB1 receptors. Herein, we have characterized an optimized prototypical molecule, PSNCBAM-1, and its hypophagic effects in vivo. Experimental approach: A CB1 yeast reporter assay was used as a primary screen. PSNCBAM-1 was additionally characterized in [35S]-GTPγS, cAMP and radioligand binding assays. An acute rat feeding model was used to evaluate its effects on food intake and body weight in vivo. Key results: In CB1 receptor yeast reporter assays, PSNCBAM-1 blocked the effects induced by agonists such as CP55,940, WIN55212-2, anandamide (AEA) or 2-arachidonoyl glycerol (2-AG). The antagonist characteristics of PSNCBAM-1 were confirmed in [35S]-GTPγS binding and cAMP assays and was shown to be non-competitive by Schild analyses. PSNCBAM-1 did not affect CB2 receptors. In radioligand binding assays, PSNCBAM-1 increased the binding of [3H]CP55,940 despite its antagonist effects. In an acute rat feeding model, PSNCBAM-1 decreased food intake and body weight. Conclusions and implications: PSNCBAM-1 exerted its effects through selective allosteric modulation of the CB1 receptor. The acute effects on food intake and body weight induced in rats provide a first report of in vivo activity for an allosteric CB1 receptor antagonist. PMID:17592509

  13. Three-dimensional quantitative structure-activity relationship CoMSIA/CoMFA and LeapFrog studies on novel series of bicyclo [4.1.0] heptanes derivatives as melanin-concentrating hormone receptor R1 antagonists.

    PubMed

    Morales-Bayuelo, Alejandro; Ayazo, Hernan; Vivas-Reyes, Ricardo

    2010-10-01

    Comparative molecular similarity indices analysis (CoMSIA) and comparative molecular field analysis (CoMFA) were performed on a series of bicyclo [4.1.0] heptanes derivatives as melanin-concentrating hormone receptor R1 antagonists (MCHR1 antagonists). Molecular superimposition of antagonists on the template structure was performed by database alignment method. The statistically significant model was established on sixty five molecules, which were validated by a test set of ten molecules. The CoMSIA model yielded the best predictive model with a q(2) = 0.639, non cross-validated R(2) of 0.953, F value of 92.802, bootstrapped R(2) of 0.971, standard error of prediction = 0.402, and standard error of estimate = 0.146 while the CoMFA model yielded a q(2) = 0.680, non cross-validated R(2) of 0.922, F value of 114.351, bootstrapped R(2) of 0.925, standard error of prediction = 0.364, and standard error of estimate = 0.180. CoMFA analysis maps were employed for generating a pseudo cavity for LeapFrog calculation. The contour maps obtained from 3D-QSAR studies were appraised for activity trends for the molecules analyzed. The results show the variability of steric and electrostatic contributions that determine the activity of the MCHR1 antagonist, with these results we proposed new antagonists that may be more potent than previously reported, these novel antagonists were designed from the addition of highly electronegative groups in the substituent di(i-C(3)H(7))N- of the bicycle [4.1.0] heptanes, using the model CoMFA which also was used for the molecular design using the technique LeapFrog. The data generated from the present study will further help to design novel, potent, and selective MCHR1 antagonists. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  14. Cardioprotective effects of calcitonin gene-related peptide in isolated rat heart and in H9c2 cells via redox signaling.

    PubMed

    Tullio, Francesca; Penna, Claudia; Cabiale, Karine; Femminò, Saveria; Galloni, Marco; Pagliaro, Pasquale

    2017-06-01

    The calcitonin-gene-related-peptide (CGRP) release is coupled to the signaling of Angeli's salt in determining vasodilator effects. However, it is unknown whether CGRP is involved in Angeli's salt cardioprotective effects and which are the mechanisms of protection. We aimed to determine whether CGRP is involved in myocardial protection induced by Angeli's salt. We also analyzed the intracellular signaling pathway activated by CGRP. Isolated rat hearts were pre-treated with Angeli's salt or Angeli's salt plus CGRP 8-37 , a specific CGRP-receptor antagonist, and subjected to ischemia (30-min) and reperfusion (120-min). Moreover, we studied CGRP-induced protection during oxidative stress (H 2 O 2 ) and hypoxia/reoxygenation protocols in H9c2 cardiomyocytes. Cell vitality and mitochondrial membrane potential (ΔYm, MMP) were measured using MTT and JC-1 dyes. Angeli's salt reduced infarct size and ameliorated post-ischemic cardiac function via a CGRP-receptor-dependent mechanism. Pre-treatment with CGRP increased H9c2 survival upon challenging with either H 2 O 2 (redox stress) or hypoxia/reoxygenation (H/R stress). Under these stress conditions, reduction in MMP and cell death were partly prevented by CGRP. These CGRP beneficial effects were blocked by CGRP 8-37. During H/R stress, pre-treatment with either CGRP-receptor, protein kinase C (PKC) or mitochondrial K ATP channel antagonists, and pre-treatment with an antioxidant (2-mercaptopropionylglycine) blocked the protection mediated by CGRP. In conclusion, CGRP is involved in the cardioprotective effects of Angeli's salt. In H9c2 cardiomyocytes, CGRP elicits PKC-dependent and mitochondrial-K ATP -redox-dependent mechanisms. Hence, CGRP is an important factor in the redox-sensible cardioprotective effects of Angeli's salt. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Receptor stimulated formation of inositol phosphates in cultures of bovine adrenal medullary cells: the effects of bradykinin, bombesin and neurotensin.

    PubMed

    Bunn, S J; Marley, P D; Livett, B G

    1990-04-01

    The ability of a number of drugs and neuropeptides to stimulate phosphoinositide metabolism in cultured bovine adrenal medullary cells has been assessed. Low concentrations (10 nM) of angiotensin II, bradykinin, histamine, arginine-vasopressin, and bombesin, and high (10 microM) concentrations of oxytocin, prostaglandins E1, and E2, beta-endorphin, and neurotensin stimulated significant accumulation of [3H]inositol phosphates in adrenal medullary cells preloaded with [3H)]inositol. Bradykinin stimulated a significant response at concentration as low as 10pM, with an EC50 of approximately 0.5 nM. The response was markedly inhibited by the bradykinin B2 antagonist [Thi5,8,D-Phe7] bradykinin but not the B1 antagonist [Des-Arg9,Leu8] bradykinin. Higher concentrations of bombesin and neurotensin were required to elicit a response (10 nM and 10 microM respectively). The bombesin response was sensitive to inhibition by the bombesin antagonist [D-Arg1,D-Pro2,D-Trp7,9Leu11]-substance P. In contrast, the neurotensin response was not reduced by the NT1 antagonist [D-Trp11]-neurotensin. These results indicate there are a number of agents that can stimulate phosphatidylinositide hydrolysis in the adrenal medullary cells by acting on different classes of receptors. Such a range of diverse agonists that stimulate inositol phosphate formation will facilitate further analysis of the phosphatidylinositide breakdown in chromaffin cell function.

  16. Head-to-head comparison of H2-receptor antagonists and proton pump inhibitors in the treatment of erosive esophagitis: A meta-analysis

    PubMed Central

    Wang, Wei-Hong; Huang, Jia-Qing; Zheng, Ge-Fan; Xia, Harry Hua-Xiang; Wong, Wai-Man; Lam, Shiu-Kum; Wong, Benjamin Chun-Yu

    2005-01-01

    AIM: To systematically evaluate the efficacy of H2-receptor antagonists (H2RAs) and proton pump inhibitors in healing erosive esophagitis (EE). METHODS: A meta-analysis was performed. A literature search was conducted in PubMed, Medline, Embase, and Cochrane databases to include randomized controlled head-to-head comparative trials evaluating the efficacy of H2RAs or proton pump inhibitors in healing EE. Relative risk (RR) and 95% confidence interval (CI) were calculated under a random-effects model. RESULTS: RRs of cumulative healing rates for each comparison at 8 wk were: high dose vs standard dose H2RAs, 1.17 (95%CI, 1.02-1.33); standard dose proton pump inhibitors vs standard dose H2RAs, 1.59 (95%CI, 1.44-1.75); standard dose other proton pump inhibitors vs standard dose omeprazole, 1.06 (95%CI, 0.98-1.06). Proton pump inhibitors produced consistently greater healing rates than H2RAs of all doses across all grades of esophagitis, including patients refractory to H2RAs. Healing rates achieved with standard dose omeprazole were similar to those with other proton pump inhibitors in all grades of esophagitis. CONCLUSION: H2RAs are less effective for treating patients with erosive esophagitis, especially in those with severe forms of esophagitis. Standard dose proton pump inhibitors are significantly more effective than H2RAs in healing esophagitis of all grades. Proton pump inhibitors given at the recommended dose are equally effective for healing esophagitis. PMID:15996033

  17. 8-Substituted 1,3-dimethyltetrahydropyrazino[2,1-f]purinediones: Water-soluble adenosine receptor antagonists and monoamine oxidase B inhibitors.

    PubMed

    Brunschweiger, Andreas; Koch, Pierre; Schlenk, Miriam; Rafehi, Muhammad; Radjainia, Hamid; Küppers, Petra; Hinz, Sonja; Pineda, Felipe; Wiese, Michael; Hockemeyer, Jörg; Heer, Jag; Denonne, Frédéric; Müller, Christa E

    2016-11-01

    Multitarget approaches, i.e., addressing two or more targets simultaneously with a therapeutic agent, are hypothesized to offer additive therapeutic benefit for the treatment of neurodegenerative diseases. Validated targets for the treatment of Parkinson's disease are, among others, the A 2A adenosine receptor (AR) and the enzyme monoamine oxidase B (MAO-B). Additional blockade of brain A 1 ARs may also be beneficial. We recently described 8-benzyl-substituted tetrahydropyrazino[2,1-f]purinediones as a new lead structure for the development of such multi-target drugs. We have now designed a new series of tetrahydropyrazino[2,1-f]purinediones to extensively explore their structure-activity-relationships. Several compounds blocked human and rat A 1 and A 2A ARs at similar concentrations representing dual A 1 /A 2A antagonists with high selectivity versus the other AR subtypes. Among the best dual A 1 /A 2A AR antagonists were 8-(3-(4-chlorophenyl)propyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (41, K i human A 1 : 65.5nM, A 2A : 230nM; K i rat A 1 : 352nM, A 2A : 316nM) and 1,3-dimethyl-8-((2-(thiophen-2-yl)thiazol-4-yl)methyl)-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (57, K i human A 1 : 642nM, A 2A : 203nM; K i rat A 1 : 166nM, A 2A : 121nM). Compound 57 was found to be well water-soluble (0.7mg/mL) at a physiological pH value of 7.4. One of the new compounds showed triple-target inhibition: (R)-1,3-dimethyl-8-(2,1,3,4-tetrahydronaphthalen-1-yl)-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (49) was about equipotent at A 1 and A 2A ARs and at MAO-B (K i human A 1 : 393nM, human A 2A : 595nM, IC 50 human MAO-B: 210nM) thus allowing future in vivo explorations of the intended multi-target approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Protective effect of histamine H2 receptor antagonist ranitidine against rotenone-induced apoptosis.

    PubMed

    Park, Hae Jeong; Kim, Hak Jae; Park, Hyun-Kyung; Chung, Joo-Ho

    2009-11-01

    Histamine H(2) receptor antagonists have been reported to improve the motor symptoms of Parkinson's disease (PD) patients and to exert neuroprotective effects. In this study, we investigated the protective effects of the H(2) receptor antagonist ranitidine on rotenone-induced apoptosis in human dopaminergic SH-SY5Y cells, focusing on mitogen-activated protein kinases (MAPKs) and caspases (CASPs)-mediated apoptotic events. Ranitidine blocked the rotenone-induced phosphorylation of c-Jun NH(2)-terminal protein kinase (JNK) and P38 MAPK (P38), and promoted the phosphorylation of extracellular signal-regulated protein kinase (ERK). Ranitidine also prevented the down-regulation of B-cell CLL/lymphoma 2 (BCL2) and the up-regulation of BCL2-associated X protein (BAX) by rotenone. Furthermore, ranitidine not only attenuated rotenone-induced cleavages of CASP9, poly(ADP-ribose) polymerase-1 (PARP) and CASP3, but also suppressed CASP3 enzyme activity. These results indicate that ranitidine protects against rotenone-induced apoptosis, inhibiting phosphorylation of JNK and P38, and activation of CASPs in human dopaminergic SH-SY5Y cells.

  19. Spinal 5-HT2 and 5-HT3 receptors mediate low, but not high, frequency TENS-induced antihyperalgesia in rats

    PubMed Central

    Radhakrishnan, Rajan; King, Ellen W.; Dickman, Janelle K.; Herold, Carli A.; Johnston, Natalie F.; Spurgin, Megan L.; Sluka, Kathleen A.

    2009-01-01

    Transcutaneous electrical nerve stimulation (TENS) is a form of non-pharmacological treatment for pain. Involvement of descending inhibitory systems is implicated in TENS-induced analgesia. In the present study, the roles of spinal 5-HT and α2-adrenoceptors in TENS analgesia were investigated in rats. Hyperalgesia was induced by inflaming the knee joint with 3% kaolin—carrageenan mixture and assessed by measuring paw withdrawal latency (PWL) to heat before and 4 h after injection. The (1) α2-adrenergic antagonist yohimbine (30 μg), (2) 5-HT antagonist methysergide (5-HT1 and 5-HT2,30 μg), one of the 5-HT receptor subtype antagonists, (3) NAN-190 (5-HT1A, 15 μg), (4) ketanserin (5-HT2A, 30 μg), (5) MDL-72222 (5-HT3, 12 μg), or (6) vehicle was administered intrathecally prior to TENS treatment. Low (4 Hz) or high (100 Hz) frequency TENS at sensory intensity was then applied to the inflamed knee for 20 min and PWL was determined. Selectivity of the antagonists used was confirmed using respective agonists administered intrathecally. Yohimbine had no effect on the antihyperalgesia produced by low or high frequency TENS. Methysergide and MDL-72222 prevented the antihyperalgesia produced by low, but not high, frequency TENS. Ketanserin attenuated the antihyperalgesic effects of low frequency TENS whereas NAN-190 had no effect. The results from the present study show that spinal 5-HT receptors mediate low, but not high, frequency TENS-induced antihyperalgesia through activation of 5-HT2A and 5-HT3 receptors in rats. Furthermore, spinal noradrenergic receptors are not involved in either low or high frequency TENS antihyperalgesia. PMID:14499437

  20. Studies on molecular properties prediction and histamine H3 receptor affinities of novel ligands with uracil-based motifs.

    PubMed

    Lipani, Luca; Odadzic, Dalibor; Weizel, Lilia; Schwed, Johannes-Stephan; Sadek, Bassem; Stark, Holger

    2014-10-30

    The histamine H3 receptor (H3R) plays a role in cognitive and memory processes and is involved in different neurological disorders, including Alzheimer's disease, schizophrenia, and narcolepsy. Therefore, several hH3R antagonists/inverse agonists entered clinical phases for a broad spectrum of mainly centrally occurring diseases. However, many other promising candidates failed due to their pharmacokinetic profile, mostly because of their strong lipophilicity accompanied with low solubility. Analysis of previous potential H3R selective antagonists/inverse agonists, e.g. pitolisant, revealed promising results concerning physicochemical properties and drug-likeness. Herein, a series of new hH3R ligands 8-20 consisting of piperidin-1-yl or piperidin-1-yl-propoxyphenyl coupled to different uracil, thymine, and 5,6-dimethyluracil related moieties, were synthesized, evaluated on their binding properties at the hH3R and the estimation of different physicochemical and drug-likeness properties. Due to the coupling to various positions at pyrimidine-2,4-(1H,3H)-dione, affinity at hH3Rs and drug-likeness parameters have been improved. For instance, compound 9 showed in addition to high affinity at the hH3R (pKi (hH3R) = 8.14) clog S, clog P, LE, LipE, and drug-likeness score values of -4.36, 3.47, 0.34, 4.63, and 1.54, respectively. Also, the methyl substituted analog 17 (pKi (hH3R) = 8.15) revealed LE, LipE and drug-likeness score values of -3.29, 2.47, 0.49, 5.52, and 1.76, respectively. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Histamine Promotes the Release of Interleukin-6 via the H1R/p38 and NF-κB Pathways in Nasal Fibroblasts.

    PubMed

    Park, Il-Ho; Um, Ji-Young; Cho, Jung-Sun; Lee, Seung Hoon; Lee, Sang Hag; Lee, Heung-Man

    2014-11-01

    Based on the close relationship between histamine and interleukin 6 (IL-6), we hypothesized that histamine may regulate the production of cytokines, such as IL-6, during allergic inflammation. Here, we examined the role of histamine in IL-6 production and histamine receptor activity in nasal fibroblasts, along with the mechanisms underlying these effects. Experiments were performed using nasal fibroblasts from 8 normal patients. RT-PCR was used to identify the major histamine receptors expressed in nasal fibroblasts. Fibroblasts were then treated with histamine with or without histamine-receptor antagonists, and monitored for IL-6 production using an ELISA. Four potential downstream signaling molecules, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and NF-κB, were evaluated by Western blot, and a luciferase reporter assay. Elevated expression was seen for all histamine receptors, with IL-6 protein levels increasing significantly following histamine stimulation. Among the histamine-receptor specific antagonists, only the H1R antagonist significantly decreased IL-6 production in histamine-stimulated nasal fibroblasts. Histamine increased the expression level of phosphorylated p38 (pp38), pERK, and pJNK, as well as NF-κB induction. The H1R antagonist actively suppressed pp38 and NF-κB expression in histamine-induced nasal fibroblasts, but not pERK and pJNK. The p38 inhibitor strongly attenuated IL-6 production in histamine-stimulated nasal fibroblasts. The data presented here suggest that antihistamines may be involved in the regulation of cytokines, such as IL-6, due to the role of histamine as an inflammatory mediator in nasal fibroblasts.

  2. Vasopressin and a nonpeptide antidiuretic hormone receptor antagonist (OPC-31260).

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J M; Risvanis, J; Johnston, C I

    1994-03-01

    The development of nonpeptide orally active AVP analogues has provided a new tool with which to assess the physiological and pathophysiological role of vasopressin (AVP). We have previously characterised the nonpeptide vasopressin V1 receptor antagonist OPC-21268, and now report the in vitro characterisation of the nonpeptide V2 receptor antagonist OPC-31260 in the rat. OPC-31260 caused a concentration-dependent displacement of the selective AVP V2 receptor antagonist radioligand, [3H]desGly-NH2(9)[d(CH2)5, D-Ile2,Ile4]AVP from V2 receptors in rat kidney medulla membranes. The concentration of OPC-31260 that displaced 50% of specific AVP binding (IC50) was 20 +/- 2 nmol/l for renal V2 receptors. OPC-31260 also caused a concentration-dependent displacement of the selective AVP V1 receptor antagonist radioligand, [125I]-[d(CH2)5,sarcosine7]AVP from V1 receptors in both rat liver and kidney medulla membranes. The IC50 was 500 +/- 30 nmol/l for both renal and liver V1 receptors. After oral administration to rats, OPC-31260 was an effective inhibitor of AVP at renal V2 and liver V1 receptors in a time-dependent manner. In vitro binding kinetic studies showed that OPC-31260 was a competitive antagonist at both the renal V2 receptor and the hepatic V1 receptor. OPC-31260 is a nonpeptide, orally effective competitive inhibitor of AVP with a V2:V1 receptor selectivity ratio of 25:1 indicating relative V2 receptor selectivity.

  3. Differential profile of typical, atypical and third generation antipsychotics at human 5-HT7a receptors coupled to adenylyl cyclase: detection of agonist and inverse agonist properties.

    PubMed

    Rauly-Lestienne, Isabelle; Boutet-Robinet, Elisa; Ailhaud, Marie-Christine; Newman-Tancredi, Adrian; Cussac, Didier

    2007-10-01

    5-HT(7) receptors are present in thalamus and limbic structures, and a possible role of these receptors in the pathology of schizophrenia has been evoked. In this study, we examined binding affinity and agonist/antagonist/inverse agonist properties at these receptors of a large series of antipsychotics, i.e., typical, atypical, and third generation compounds preferentially targeting D(2) and 5-HT(1A) sites. Adenylyl cyclase (AC) activity was measured in HEK293 cells stably expressing the human (h) 5-HT(7a) receptor isoform. 5-HT and 5-CT increased cyclic adenosine monophosphate level by about 20-fold whereas (+)-8-OH-DPAT, the antidyskinetic agent sarizotan, and the novel antipsychotic compound bifeprunox exhibited partial agonist properties at h5-HT(7a) receptors stimulating AC. Other compounds antagonized 5-HT-induced AC activity with pK (B) values which correlated with their pK (i) as determined by competition binding vs [(3)H]5-CT. The selective 5-HT(7) receptor ligand, SB269970, was the most potent antagonist. For antipsychotic compounds, the following rank order of antagonism potency (pK (B)) was ziprasidone > tiospirone > SSR181507 > or = clozapine > or = olanzapine > SLV-314 > SLV-313 > or = aripiprazole > or = chlorpromazine > nemonapride > haloperidol. Interestingly, pretreatment of HEK293-h5-HT(7a) cells with forskolin enhanced basal AC activity and revealed inverse agonist properties for both typical and atypical antipsychotics as well as for aripiprazole. In contrast, other novel antipsychotics exhibited diverse 5-HT(7a) properties; SLV-313 and SLV-314 behaved as quasi-neutral antagonists, SSR181507 acted as an inverse agonist, and bifeprunox as a partial agonist, as mentioned above. In conclusion, the differential properties of third generation antipsychotics at 5-HT(7) receptors may influence their antipsychotic profile.

  4. Pharmacological characterization of ATPM [(-)-3-aminothiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride], a novel mixed kappa-agonist and mu-agonist/-antagonist that attenuates morphine antinociceptive tolerance and heroin self-administration behavior.

    PubMed

    Wang, Yu-Jun; Tao, Yi-Min; Li, Fu-Ying; Wang, Yu-Hua; Xu, Xue-Jun; Chen, Jie; Cao, Ying-Lin; Chi, Zhi-Qiang; Neumeyer, John L; Zhang, Ao; Liu, Jing-Gen

    2009-04-01

    ATPM [(-)-3-amino-thiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride] was found to have mixed kappa- and mu-opioid activity and identified to act as a full kappa-agonist and a partial mu-agonist by in vitro binding assays. The present study was undertaken to characterize its in vivo effects on morphine antinociceptive tolerance in mice and heroin self-administration in rats. ATPM was demonstrated to yield more potent antinociceptive effects than (-)U50,488H (trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide). It was further found that the antinociceptive effects of ATPM were mediated by kappa- and mu-, but not delta-opioid, receptors. In addition to its agonist profile on the mu-receptor, ATPM also acted as a mu-antagonist, as measured by its inhibition of morphine-induced antinociception. It is more important that ATPM had a greater ratio of the ED(50) value of sedation to that of antinociception than (-)U50,488 (11.8 versus 3.7), indicative of a less sedative effect than (-)U50,488H. In addition, ATPM showed less potential to develop antinociceptive tolerance relative to (-)U50,488H and morphine. Moreover, it dose-dependently inhibited morphine-induced antinociceptive tolerance. Furthermore, it was found that chronic treatment of rats for 8 consecutive days with ATPM (0.5 mg/kg s.c.) produced sustained decreases in heroin self-administration. (-)U50,488H (2 mg/kg s.c.) also produced similar inhibitory effect. Taken together, our findings demonstrated that ATPM, a novel mixed kappa-agonist and mu-agonist/-antagonist, could inhibit morphine-induced antinociceptive tolerance, with less potential to develop tolerance and reduce heroin self-administration with less sedative effect. kappa-Agonists with some mu-activity appear to offer some advantages over selective kappa-agonists for the treatment of heroin abuse.

  5. 7-tert-Butyl-6-(4-chloro-phenyl)-2-thioxo-2,3-dihydro-1H-pyrido[2,3-d]pyrimidin-4-one, a classic polymodal inhibitor of transient receptor potential vanilloid type 1 with a reduced liability for hyperthermia, is analgesic and ameliorates visceral hypersensitivity.

    PubMed

    Nash, Mark S; McIntyre, Peter; Groarke, Alex; Lilley, Elliot; Culshaw, Andrew; Hallett, Allan; Panesar, Moh; Fox, Alyson; Bevan, Stuart

    2012-08-01

    The therapeutic potential of transient receptor potential vanilloid type 1 (TRPV1) antagonists for chronic pain has been recognized for more than a decade. However, preclinical and clinical data revealed that acute pharmacological blockade of TRPV1 perturbs thermoregulation, resulting in hyperthermia, which is a major hurdle for the clinical development of these drugs. Here, we describe the properties of 7-tert-butyl-6-(4-chloro-phenyl)-2-thioxo-2,3-dihydro-1H-pyrido[2,3-d]pyrimidin-4-one (BCTP), a TRPV1 antagonist with excellent analgesic properties that does not induce significant hyperthermia in rodents at doses providing maximal analgesia. BCTP is a classic polymodal inhibitor of TRPV1, blocking activation of the human channel by capsaicin and low pH with IC(50) values of 65.4 and 26.4 nM, respectively. Similar activity was observed with rat TRPV1, and the inhibition by BCTP was competitive and reversible. BCTP also blocked heat-induced activation of TRPV1. In rats, the inhibition of capsaicin-induced mechanical hyperalgesia was observed with a D(50) value of 2 mg/kg p.o. BCTP also reversed visceral hypersensitivity and somatic inflammatory pain, and using a model of neuropathic pain in TRPV1 null mice we confirmed that its analgesic properties were solely through the inhibition of TRPV1. We were surprised to find that BCTP administered orally induced only a maximal 0.6°C increase in core body temperature at the highest tested doses (30 and 100 mg/kg), contrasting markedly with N-[4-({6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl}oxy)-1,3-benzothiazol-2-yl]acetamide (AMG517), a clinically tested TRPV1 antagonist, which induced marked hyperthermia (>1°C) at doses eliciting submaximal reversal of capsaicin-induced hyperalgesia. The combined data indicate that TRPV1 antagonists with a classic polymodal inhibition profile can be identified where the analgesic action is separated from the effects on body temperature.

  6. Effects of 5-HT5A receptor blockade on amnesia or forgetting.

    PubMed

    Aparicio-Nava, L; Márquez-García, L A; Meneses, A

    2018-01-09

    Previously the effects (0.01-3.0 mg/kg) of post-training SB-699551 (a 5-HT 5A receptor antagonist) were reported in the associative learning task of autoshaping, showing that SB-699551 (0.1 mg/kg) decreased lever-press conditioned responses (CR) during short-term (STM; 1.5-h) or (3.0 mg/kg) long-term memory (LTM; 24-h); relative to the vehicle animals. Moreover, as pro-cognitive efficacy of SB-699551 was reported in the ketamine-model of schizophrenia. Hence, firstly aiming improving performance (conditioned response, CR), in this work autoshaping lever-press vs. nose-poke response was compared; secondly, new set of animals were randomly assigned to SB-699551 plus forgetting or amnesia protocols. Results show that the nose-poke operandum reduced inter-individual variance, increased CR and produced a progressive CR until 48-h. After one week of no training/testing sessions (i.e., interruption of 216 h), the forgetting was observed; i.e., the CR% of control-saline group significantly decreased. In contrast, SB-699551 at 0.3 and 3.0 mg/kg prevents forgetting. Additionally, as previously reported the non-competitive NMDA receptor antagonist dizocilpine (0.2 mg/kg) or the non-selective cholinergic antagonist scopolamine (0.3 mg/kg) decreased CR in STM. SB-699551 (0.3 mg/kg) alone also produced amnesia-like effect. Co-administration of SB-699551-dizocilpine or SB-699551-scopolamine reversed the SB-699551 induced-amnesic effects in LTM (24-h). Nose-poke seems to be a reliable operandum. The anti-amnesic and anti-forgetting mechanisms of amnesic SB-699551-dose remain unclear. The present findings are consistent with the notion that low doses of 5-HT 5A receptor antagonists might be useful for reversing memory deficits associated to forgetting and amnesia. Of course, further experiments are necessary. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Aggression and increased glutamate in the mPFC during withdrawal from intermittent alcohol in outbred mice.

    PubMed

    Hwa, Lara S; Nathanson, Anna J; Shimamoto, Akiko; Tayeh, Jillian K; Wilens, Allison R; Holly, Elizabeth N; Newman, Emily L; DeBold, Joseph F; Miczek, Klaus A

    2015-08-01

    Disrupted social behavior, including occasional aggressive outbursts, is characteristic of withdrawal from long-term alcohol (EtOH) use. Heavy EtOH use and exaggerated responses during withdrawal may be treated using glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonists. The current experiments explore aggression and medial prefrontal cortex (mPFC) glutamate as consequences of withdrawal from intermittent access to EtOH and changes in aggression and mPFC glutamate caused by NMDAR antagonists memantine and ketamine. Swiss male mice underwent withdrawal following 1-8 weeks of intermittent access to 20 % EtOH. Aggressive and nonaggressive behaviors with a conspecific were measured 6-8 h into EtOH withdrawal after memantine or ketamine (0-30 mg/kg, i.p.) administration. In separate mice, extracellular mPFC glutamate after memantine was measured during withdrawal using in vivo microdialysis. At 6-8 h withdrawal from EtOH, mice exhibited more convulsions and aggression and decreased social contact compared to age-matched water controls. Memantine, but not ketamine, increased withdrawal aggression at the 5-mg/kg dose in mice with a history of 8 weeks of EtOH but not 1 or 4 weeks of EtOH or in water drinkers. Tonic mPFC glutamate was higher during withdrawal after 8 weeks of EtOH compared to 1 week of EtOH or 8 weeks of water. Five milligrams per kilogram of memantine increased glutamate in 8-week EtOH mice, but also in 1-week EtOH and water drinkers. These studies reveal aggressive behavior as a novel symptom of EtOH withdrawal in outbred mice and confirm a role of NMDARs during withdrawal aggression and for disrupted social behavior.

  8. Aggression and increased glutamate in the mPFC during withdrawal from intermittent alcohol in outbred mice

    PubMed Central

    Hwa, Lara S.; Nathanson, Anna J.; Shimamoto, Akiko; Tayeh, Jillian K.; Wilens, Allison R.; Holly, Elizabeth N.; Newman, Emily L.; DeBold, Joseph F.; Miczek, Klaus A.

    2015-01-01

    Rationale Disrupted social behavior, including occasional aggressive outbursts, is characteristic of withdrawal from long-term alcohol (EtOH) use. Heavy EtOH use and exaggerated responses during withdrawal may be treated using glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonists. Objectives The current experiments explore aggression and medial prefrontal cortex (mPFC) glutamate as consequences of withdrawal from intermittent access to EtOH, and changes in aggression and mPFC glutamate caused by NMDAR antagonists memantine and ketamine. Methods Swiss male mice underwent withdrawal following 1-8 weeks of intermittent access to 20% EtOH. Aggressive and non-aggressive behaviors with a conspecific were measured 6-8 h into EtOH withdrawal after memantine or ketamine (0-30 mg/kg, i.p.) administration. In separate mice, extracellular mPFC glutamate after memantine was measured during withdrawal using in vivo microdialysis. Results At 6-8 h withdrawal from EtOH, mice exhibited more convulsions and aggression, and decreased social contact compared to age-matched water controls. Memantine, but not ketamine, increased withdrawal aggression at the 5 mg/kg dose in mice with a history of 8 weeks EtOH but not 1 or 4 weeks of EtOH or in water drinkers. Tonic mPFC glutamate was higher during withdrawal after 8 weeks EtOH compared to 1 week EtOH or 8 weeks water. Five mg/kg memantine increased glutamate in 8 week EtOH mice, but also in 1 week EtOH and water drinkers. Conclusions These studies reveal aggressive behavior as a novel symptom of EtOH withdrawal in outbred mice and confirm a role of NMDARs during withdrawal aggression and for disrupted social behavior. PMID:25899790

  9. Editor's Highlight: Structure-Based Investigation on the Binding and Activation of Typical Pesticides With Thyroid Receptor.

    PubMed

    Xiang, Dandan; Han, Jian; Yao, Tingting; Wang, Qiangwei; Zhou, Bingsheng; Mohamed, Abou Donia; Zhu, Guonian

    2017-12-01

    A broad range of pesticides have been reported to interfere with the normal function of the thyroid endocrine system. However, the precise mechanism(s) of action has not yet been thoroughly elucidated. In this study, 21 pesticides were assessed for their binding interactions and the potential to disrupt thyroid homeostasis. In the GH3 luciferase reporter gene assays, 5 of the pesticides tested had agonistic effects in the order of procymidone > imidacloprid > mancozeb > fluroxypyr > atrazine. 11 pesticides inhibited luciferase activity of T3 to varying degrees, demonstrating their antagonistic activity. And there are 4 pesticides showed mixed effects when treated with different concentrations. Surface plasmon resonance (SPR) biosensor technique was used to directly measure the binding interactions of these pesticides to the human thyroid hormone receptor (hTR). 13 pesticides were observed to bind directly with TR, with a KD ranging from 4.80E-08 M to 9.44E-07 M. The association and disassociation of the hTR/pesticide complex revealed 2 distinctive binding modes between the agonists and antagonists. At the same time, a different binding mode was displayed by the pesticides showed mix agonist and antagonist activity. In addition, the molecular docking simulation analyses indicated that the interaction energy calculated by CDOCKER for the agonists and antagonists correlated well with the KD values measured by the surface plasmon resonance assay. These results help to explain the differences of the TR activities of these tested pesticides. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Effect of the glucocorticoid receptor antagonist Org 34850 on fast and delayed feedback of corticosterone release.

    PubMed

    Spiga, Francesca; Harrison, Louise R; Wood, Susan A; MacSweeney, Cliona P; Thomson, Fiona J; Craighead, Mark; Grassie, Morag; Lightman, Stafford L

    2008-02-01

    We investigated the effect of the glucocorticoid receptor (GR) antagonist Org 34850 on fast and delayed inhibition of corticosterone secretion in response to the synthetic glucocorticoid methylprednisolone (MPL). Male rats were implanted with a catheter in the right jugular vein, for blood sampling and MPL administration, and with an s.c. cannula for Org 34850 administration. All experiments were conducted at the diurnal hormonal peak in the late afternoon. Rats were connected to an automated sampling system and blood samples were collected every 5 or 10 min. Org 34850 (10 mg/kg, s.c.) or vehicle (5% mulgofen in saline) was injected at 1630 h; 30 min later, rats received an injection of MPL (500 microg/rat, i.v.) or saline (0.1 ml/rat). We found that an acute administration of MPL rapidly decreased the basal corticosterone secretion and this effect was not prevented by acute pretreatment with Org 34850. However, blockade of GR with Org 34850 prevented delayed inhibition of MPL on corticosterone secretion measured between 4 and 12 h after MPL administration. Our data suggest an involvement of GR in modulating delayed, but not fast, inhibition induced by MPL on basal corticosterone secretion.

  11. Effect of LF 16-0687MS, a new nonpeptide bradykinin B2 receptor antagonist, in a rat model of closed head trauma.

    PubMed

    Pruneau, D; Chorny, I; Benkovitz, V; Artru, A; Roitblat, L; Shapira, Y

    1999-11-01

    Bradykinin is an endogenous nonapeptide which potently dilates the cerebral vasculature and markedly increases vascular permeability. These effects are mediated by B2 receptors located on the vascular endothelium. Previous experimental studies have shown that blockade of the kallikreinkinin system, which mediates the formation of bradykinin, afforded a reduction of the brain edema that developed following a cryogenic cortical lesion. In the present study, we investigated the effect of LF 16-0687MS, a novel nonpeptide B2 receptor antagonist, on cerebral edema and neurological severity score (NSS) after closed head injury to rats. LF 16-0687MS or its vehicle (NaCl 0.9%) was continuously infused at 10, 30, and 100 microg/kg/min over 23 h starting 1 h after a focal trauma to the left hemisphere was induced using a weight-drop device. The extent of edema formation was evaluated 24 h after trauma from left and right hemispheres samples by measurement of specific gravity and water content. In a separate study, a neurological severity score based on scoring of behavioural and motor functions was evaluated 1 h and over 1 week after trauma. LF 16-0687MS at 100 microg/kg/min markedly reduced the development of brain edema as indicated by a 68% increase in specific gravity (p<0.05) and a 64% decrease of water content (p<0.05) in the left hemisphere. In addition the recovery of neurological function was significantly improved by 100 microg/kg/min LF 16-0687MS from day 3 to day 7 after CHT. In a separate experiment, we also showed that LF 16-0687MS at 100 microg/kg/min given either 1 h before or 30 min after CHT did not affect mean arterial blood pressure. These results show that blockade of bradykinin B2 receptors is an effective approach to reduce cerebral edema and to improve neurological outcome after a focal contusion to the cranium.

  12. Compatibility and Stability of Rolapitant Injectable Emulsion Admixed with Dexamethasone Sodium Phosphate.

    PubMed

    Wu, George; Yeung, Stanley; Chen, Frank

    2017-01-01

    Neurokinin-1 receptor antagonist, 5-hydroxytryptamine-3 receptor antagonist, and dexamethasone combination therapy is the standard of care for the prevention of chemotherapy-induced nausea and vomiting. Herein, we describe the physical and chemical stability of an injectable emulsion of the Neurokinin-1 receptor antagonist rolapitant 185 mg in 92.5 mL (free base, 166.5 mg in 92.5 mL) admixed with either 2.5 mL of dexamethasone sodium phosphate (10 mg) or 5 mL of dexamethasone sodium phosphate (20 mg). Admixtures were prepared and stored in two types of container closures (glass and Crystal Zenith plastic bottles) and four types of intravenous administration tubing sets (or intravenous tubing sets). The assessment of the physical and chemical stability was conducted on admixtures packaged in bottled samples stored at room temperature (20°C to 25°C under fluorescent light) and evaluated at 0, 1, and 6 hours. For admixtures in intravenous tubing sets, the assessment of physicochemical stability was performed after 0 and 7 hours of storage at 20°C to 25°C, and then after 20 hours (total 27 hours) under refrigeration (2°C to 8°C) and protected from light. Physical stability was assessed by visually examining the bottle contents under normal room light and measuring turbidity and particulate matter. Chemical stability was assessed by measuring the pH of the admixture and determining drug concentrations through high-performance liquid chromatographic analysis. Results showed that all samples were physically compatible throughout the duration of the study. The admixtures stayed within narrow and acceptable ranges in pH, turbidity, and particulate matter. Admixtures of rolapitant and dexamethasone were chemically stable when stored in glass and Crystal Zenith bottles for at least 6 hours at room temperature, as well as in the four selected intravenous tubing sets for 7 hours at 20°C to 25°C and then for 20 (total 27 hours) hours at 2°C to 8°C. No loss of potency of any admixed component occurred in the samples stored at the temperature ranges studied. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  13. Sensitive Indirect Spectrophotometric Method for Determination of H2-Receptor Antagonists in Pharmaceutical Formulations

    PubMed Central

    Darwish, Ibrahim A.; Hussein, Samiha A.; Mahmoud, Ashraf M.; Hassan, Ahmed I.

    2007-01-01

    A simple, accurate and sensitive spectrophotometric method has been developed and validated for determination of H2-receptor antagonists: cimetidine, famotidine, nizatidine, and ranitidine hydrochloride. The method was based on the oxidation of these drugs with cerium (IV) in presence of perchloric acid and subsequent measurement of the excess Ce (IV) by its reaction with p-dimethylaminocinnamaldehyde to give a red colored product (λmax at 464 nm). The decrease in the absorption intensity (ΔA) of the colored product, due to the presence of the drug was correlated with its concentration in the sample solution. Different variables affecting the reaction were carefully studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9985-0.9994) were found between ΔA values and the concentrations of the drugs in a concentration range of 1-16 µg ml-1. The assay limits of detection and quantitation were 0.12-0.44 and 0.37-1.33 µg ml-1, respectively. The method was validated, in terms of accuracy, precision, ruggedness, and robustness; the results were satisfactory. The proposed method was successfully applied to the analysis of the investigated drugs in their pure and pharmaceutical dosage forms (recovery was 98.8-102.5 ± 0.79-1.72%) without interference from the common excipients. The results obtained by the proposed method were comparable with those obtained by the official methods. PMID:23675034

  14. Involvement of substance P in the development of cisplatin-induced acute and delayed pica in rats

    PubMed Central

    Yamamoto, Kouichi; Asano, Keiko; Tasaka, Ayana; Ogura, Yuko; Kim, Seikou; Ito, Yui; Yamatodani, Atsushi

    2014-01-01

    Background and Purpose Although substance P (SP) and neurokinin NK1 receptors have been reported to be involved in cisplatin-induced acute and delayed emesis, their precise roles remain unclear. Pica, the consumption of non-nutrient materials such as kaolin in rats, can be used as a model of nausea in humans. We investigated the time-dependent changes in cisplatin-induced pica and the involvement of SP and NK1 receptors in this behaviour. Experimental Approach Rats were administered cisplatin with or without a daily injection of a 5-HT3 receptor antagonist (granisetron) or an NK1 receptor antagonist (aprepitant), and kaolin intake was then monitored for 5 days. The effects of granisetron on the cisplatin-induced expression of preprotachykinin-A (PPT-A) mRNA, which encodes mainly for SP, and on SP release in the medulla, measured by in vivo brain microdialysis, were also investigated. Key Results Cisplatin induced pica within 8 h of its administration that continued for 5 days. Granisetron inhibited the acute phase (day 1), but not the delayed phase (days 2–5), of pica, whereas aprepitant abolished both phases. Within 24 h of the injection of cisplatin, PPT-A mRNA expression and SP release in the medulla were significantly increased; these findings lasted during the observation period and were inhibited by granisetron for up to 24 h. Conclusions and Implications The profiles of cisplatin-induced pica in rats are similar to clinical findings for cisplatin-induced emesis in humans, and we showed that SP production in the medulla and activation of NK1 receptors are involved in this cisplatin-induced pica. PMID:24641692

  15. Involvement of substance P in the development of cisplatin-induced acute and delayed pica in rats.

    PubMed

    Yamamoto, Kouichi; Asano, Keiko; Tasaka, Ayana; Ogura, Yuko; Kim, Seikou; Ito, Yui; Yamatodani, Atsushi

    2014-06-01

    Although substance P (SP) and neurokinin NK1 receptors have been reported to be involved in cisplatin-induced acute and delayed emesis, their precise roles remain unclear. Pica, the consumption of non-nutrient materials such as kaolin in rats, can be used as a model of nausea in humans. We investigated the time-dependent changes in cisplatin-induced pica and the involvement of SP and NK1 receptors in this behaviour. Rats were administered cisplatin with or without a daily injection of a 5-HT3 receptor antagonist (granisetron) or an NK1 receptor antagonist (aprepitant), and kaolin intake was then monitored for 5 days. The effects of granisetron on the cisplatin-induced expression of preprotachykinin-A (PPT-A) mRNA, which encodes mainly for SP, and on SP release in the medulla, measured by in vivo brain microdialysis, were also investigated. Cisplatin induced pica within 8 h of its administration that continued for 5 days. Granisetron inhibited the acute phase (day 1), but not the delayed phase (days 2-5), of pica, whereas aprepitant abolished both phases. Within 24 h of the injection of cisplatin, PPT-A mRNA expression and SP release in the medulla were significantly increased; these findings lasted during the observation period and were inhibited by granisetron for up to 24 h. The profiles of cisplatin-induced pica in rats are similar to clinical findings for cisplatin-induced emesis in humans, and we showed that SP production in the medulla and activation of NK1 receptors are involved in this cisplatin-induced pica. © 2014 The British Pharmacological Society.

  16. D-Cycloserine improves functional outcome after traumatic brain injury with wide therapeutic window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeleye, A.; Biegon, A.; Adeleye, A.

    It has been long thought that hyperactivation of N-methyl-D-aspartate (NMDA) receptors underlies neurological decline after traumatic brain injury. However, all clinical trials with NMDA receptor antagonists failed. Since NMDA receptors are down-regulated from 4 h to 2 weeks after brain injury, activation at 24 h, rather than inhibition, of these receptors, was previously shown to be beneficial in mice. Here, we tested the therapeutic window, dose regimen and mechanism of action of the NMDA receptor partial agonist d-cycloserine (DCS) in traumatic brain injury. Male mice were subjected to trauma using a weight-drop model, and administered 10 mg/kg (i.p.) DCS ormore » vehicle once (8, 16, 24, or 72 h) twice (24 and 48 h) or three times (24, 48 and 72 h). Functional recovery was assessed for up to 60 days, using a Neurological Severity Score that measures neurobehavioral parameters. In all groups in which treatment was begun at 24 or 72 h neurobehavioral function was significantly better than in the vehicle-treated groups. Additional doses, on days 2 and 3 did not further improve recovery. Mice treated at 8 h or 16 h post injury did not differ from the vehicle-treated controls. Co-administration of the NMDA receptor antagonist MK-801 completely blocked the protective effect of DCS given at 24 h. Infarct volume measured by 2,3,5-triphenyltetrazolium chloride staining at 48 h or by cresyl violet at 28 days was not affected by DCS treatment. Since DCS is used clinically for other indications, the present study offers a novel approach for treating human traumatic brain injury with a therapeutic window of at least 24 h.« less

  17. Synthesis of carbon-11-labeled 5-HT6R antagonists as new candidate PET radioligands for imaging of Alzheimer's disease.

    PubMed

    Wang, Xiaohong; Dong, Fugui; Miao, Caihong; Li, Wei; Wang, Min; Gao, Mingzhang; Zheng, Qi-Huang; Xu, Zhidong

    2018-06-01

    Carbon-11-labeled serotonin (5-hydroxytryptamine) 6 receptor (5-HT 6 R) antagonists, 1-[(2-bromophenyl)sulfonyl]-5-[ 11 C]methoxy-3-[(4-methyl-1-piperazinyl)methyl]-1H-indole (O-[ 11 C]2a) and 1-[(2-bromophenyl)sulfonyl]-5-methoxy-3-[(4-[ 11 C]methyl-1-piperazinyl)methyl]-1H-indole (N-[ 11 C]2a), 5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1H-indole (O-[ 11 C]2b) and 5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1H-indole (N-[ 11 C]2b), 1-((4-isopropylphenyl)sulfonyl)-5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1H-indole (O-[ 11 C]2c) and 1-((4-isopropylphenyl)sulfonyl)-5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1H-indole (N-[ 11 C]2c), 1-((4-fluorophenyl)sulfonyl)-5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1H-indole (O-[ 11 C]2d) and 1-((4-fluorophenyl)sulfonyl)-5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1H-indole (N-[ 11 C]2d), were prepared from their O- or N-desmethylated precursors with [ 11 C]CH 3 OTf through O- or N-[ 11 C]methylation and isolated by HPLC combined with SPE in 40-50% radiochemical yield, based on [ 11 C]CO 2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (MA) at EOB was 370-740 GBq/μmol with a total synthesis time of ∼40-min from EOB. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Pharmacological Studies of NOP Receptor Agonists as Novel Analgesics

    DTIC Science & Technology

    2010-05-01

    hydroxymethyl-4-piperidyl]-3-ethyl-1, 3-dihydro- 2H- benzimidazol -2-one (J-113397). J Med Chem 42: 5061–5063. Ko MC, Butelman ER, Traynor JR, Woods JH (1998a...ethyl-1,3-dihydro-2H- benzimidazol -2-one) was used to compare their antagonist effects against both morphine (100 nmol)- and UFP-112 (10 nmol)-induced...3S,4S)-1- (Cyclooctylmethyl)-3-(hydroxymethyl)-4-piperidinyl]-3-ethyl- 1,3-dihydro-2H- benzimidazol -2-one) (Tocris Bioscience, Ellisville, MO), and

  19. Discovery of Fevipiprant (NVP-QAW039), a Potent and Selective DP2 Receptor Antagonist for Treatment of Asthma

    PubMed Central

    2017-01-01

    Further optimization of an initial DP2 receptor antagonist clinical candidate NVP-QAV680 led to the discovery of a follow-up molecule 2-(2-methyl-1-(4-(methylsulfonyl)-2-(trifluoromethyl)benzyl)-1H-pyrrolo[2,3-b]pyridin-3-yl)acetic acid (compound 11, NVP-QAW039, fevipiprant), which exhibits improved potency on human eosinophils and Th2 cells, together with a longer receptor residence time, and is currently in clinical trials for severe asthma. PMID:28523115

  20. Involvement of Cannabinoid Signaling in Vincristine-Induced Gastrointestinal Dysmotility in the Rat.

    PubMed

    Vera, Gema; López-Pérez, Ana E; Uranga, José A; Girón, Rocío; Martín-Fontelles, Ma Isabel; Abalo, Raquel

    2017-01-01

    Background: In different models of paralytic ileus, cannabinoid receptors are overexpressed and endogenous cannabinoids are massively released, contributing to gastrointestinal dysmotility. The antitumoral drug vincristine depresses gastrointestinal motility and a similar mechanism could participate in this effect. Therefore, our aim was to determine, using CB 1 and CB 2 antagonists, whether an increased endocannabinoid tone is involved in vincristine-induced gastrointestinal ileus. Methods: First, we confirmed the effects of vincristine on the gut mucosa, by conventional histological techniques, and characterized its effects on motility, by radiographic means. Conscious male Wistar rats received an intraperitoneal injection of vincristine (0.1-0.5 mg/kg), and barium sulfate (2.5 ml; 2 g/ml) was intragastrically administered 0, 24, or 48 h later. Serial X-rays were obtained at different time-points (0-8 h) after contrast. X-rays were used to build motility curves for each gastrointestinal region and determine the size of stomach and caecum. Tissue samples were taken for histology 48 h after saline or vincristine (0.5 mg/kg). Second, AM251 (a CB 1 receptor antagonist) and AM630 (a CB 2 receptor antagonist) were used to determine if CB 1 and/or CB 2 receptors are involved in vincristine-induced gastrointestinal dysmotility. Key results: Vincristine induced damage to the mucosa of ileum and colon and reduced gastrointestinal motor function at 0.5 mg/kg. The effect on motor function was particularly evident when the study started 24 h after administration. AM251, but not AM630, significantly prevented vincristine effect, particularly in the small intestine, when administered thrice. AM251 alone did not significantly alter gastrointestinal motility. Conclusions: The fact that AM251, but not AM630, is capable of reducing the effect of vincristine suggests that, like in other experimental models of paralytic ileus, an increased cannabinoid tone develops and is at least partially responsible for the alterations induced by the antitumoral drug on gastrointestinal motor function. Thus, CB 1 antagonists might be useful to prevent/treat ileus induced by vincristine.

  1. Involvement of Cannabinoid Signaling in Vincristine-Induced Gastrointestinal Dysmotility in the Rat

    PubMed Central

    Vera, Gema; López-Pérez, Ana E.; Uranga, José A.; Girón, Rocío; Martín-Fontelles, Ma Isabel; Abalo, Raquel

    2017-01-01

    Background: In different models of paralytic ileus, cannabinoid receptors are overexpressed and endogenous cannabinoids are massively released, contributing to gastrointestinal dysmotility. The antitumoral drug vincristine depresses gastrointestinal motility and a similar mechanism could participate in this effect. Therefore, our aim was to determine, using CB1 and CB2 antagonists, whether an increased endocannabinoid tone is involved in vincristine-induced gastrointestinal ileus. Methods: First, we confirmed the effects of vincristine on the gut mucosa, by conventional histological techniques, and characterized its effects on motility, by radiographic means. Conscious male Wistar rats received an intraperitoneal injection of vincristine (0.1–0.5 mg/kg), and barium sulfate (2.5 ml; 2 g/ml) was intragastrically administered 0, 24, or 48 h later. Serial X-rays were obtained at different time-points (0–8 h) after contrast. X-rays were used to build motility curves for each gastrointestinal region and determine the size of stomach and caecum. Tissue samples were taken for histology 48 h after saline or vincristine (0.5 mg/kg). Second, AM251 (a CB1 receptor antagonist) and AM630 (a CB2 receptor antagonist) were used to determine if CB1 and/or CB2 receptors are involved in vincristine-induced gastrointestinal dysmotility. Key results: Vincristine induced damage to the mucosa of ileum and colon and reduced gastrointestinal motor function at 0.5 mg/kg. The effect on motor function was particularly evident when the study started 24 h after administration. AM251, but not AM630, significantly prevented vincristine effect, particularly in the small intestine, when administered thrice. AM251 alone did not significantly alter gastrointestinal motility. Conclusions: The fact that AM251, but not AM630, is capable of reducing the effect of vincristine suggests that, like in other experimental models of paralytic ileus, an increased cannabinoid tone develops and is at least partially responsible for the alterations induced by the antitumoral drug on gastrointestinal motor function. Thus, CB1 antagonists might be useful to prevent/treat ileus induced by vincristine. PMID:28220074

  2. Time-dependent impact of glutamatergic modulators on the promnesiant effect of 5-HT6R blockade on mice recognition memory.

    PubMed

    Asselot, Rachel; Simon-O'Brien, Emmanuelle; Lebourgeois, Sophie; Nee, Gérald; Delaunay, Virgile; Duchatelle, Pascal; Bouet, Valentine; Dauphin, François

    2017-04-01

    Selective antagonists at serotonin 5-HT 6 receptors (5-HT 6 R) improve memory performance in rodents and are currently under clinical investigations. If blockade of 5-HT 6 R is known to increase glutamate release, only two studies have so far demonstrated an interaction between 5-HT 6 R and glutamate transmission, but both, using the non-competitive NMDA antagonist MK-801, insensitive to variations of glutamate concentrations. In a place recognition task, we investigated here in mice the role of glutamate transmission in the beneficial effects of 5-HT 6 R blockade (SB-271046). Through the use of increasing intervals (2, 4 and 6h) between acquisition and retrieval, we investigated the time-dependent impact of two different glutamatergic modulators. NMDAR-dependant glutamate transmission (NMDA Receptors) was either blocked by the competitive antagonist at NMDAR, CGS 19755, or potentiated by the glycine transporter type 1 (GlyT1) inhibitor, NFPS. Results showed that neither SB-271046, nor CGS 19755, nor NFPS, alter behavioural performances after short intervals, i.e. when control mice displayed significant memory performances (2h and 4h) (respectively 10, 3, and 0.625mg.kg -1 ). Conversely, with the 6h-interval, a situation in which spontaneous forgetting is observed in control mice, SB-271046 improved recognition memory performances. This beneficial effect was prevented when co-administered with either CGS 19755 or NFPS, which themselves had no effect. Interestingly, a dose-dependent effect was observed with NFPS, with promnesic effect observed at lower dose (0.156mg.kg -1 ) when administrated alone, whereas it did no modify promnesic effect of SB-271046. These results demonstrate that promnesiant effect induced by 5-HT 6 R blockade is sensitive to the competitive blockade of NMDAR and underline the need of a fine adjustment of the inhibition of GlyT1. Overall, our findings support the idea of a complex crosstalk between serotonergic and glutamatergic systems in the promnesic properties of 5-HT 6 R antagonists. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Single-Trait and Antagonistic Index Selection for Litter Size and Body Weight in Mice

    PubMed Central

    Eisen, E. J.

    1978-01-01

    Individual selection based on female performance only was conducted in four lines of mice: L+ for increased litter size, W+ for increased 6-week body weight, L-W+ for a selection index aimed at decreasing litter size and increasing 6-week body weight and L+W- for a selection index aimed at increasing litter size and decreasing 6-week body weight. A fifth line (K) served as an unselected control. All litters were standardized to eight mice at one day of age. Expected heritability was based on twice the regression of offspring on dam (h2d), which contains additive genetic variance due to direct (σ2Ao) and maternal (σ2Am) effects and their covariance (σAoAm). Responses and correlated responses were measured either deviated (method 1) or not deviated (method 2) from the control line. Realized heritabilities (h2R) for litter size were 0.19 ± 0.04 (1) and 0.16 ± 0.03 (2), which were similar to h 2d of 0.17 ± 0.04. The h2 R for 6-week body weight of 0.55 ± 0.07 (1) and 0.44 ± 0.07 (2) agreed with h2d of 0.42 ± 0.02. Realized genetic correlations (r*GR) between litter size and 6-week body weight calculated from the double-selection experiment were 0.52 ± 0.10 (1) and 0.52 ± 0.13 (2), which were not significantly different from the base population estimate of r* Gd = 0.63 ± 0.14. Divergence (L-W + minus L+W-) in the antagonistic index selection lines was 0.21 ± 0.01 index units (I = 0.305 PW - 0.436 PL, where P W and PL are the phenotypic values for 6-week body weight and litter size, respectively.). The h2 R of index units of 0.14 ± 0.02 calculated from divergence agreed with h2d of 0.14 ± 0.04. Divergences in litter size (-0.19 ± 0.07) and 6-week body weight (0.46 ± 0.10) were in the expected direction. Antagonistic index selection yielded about one-half the expected divergence in litter size, while divergence in 6-week body weight was only slightly less than expected. Realized genetic correlations indicated that litter size, 6-week body weight and index units each showed positive pleiotropy with 3-week body weight, postweaning gain and weight at vaginal introitus and negative pleiotropy with age at vaginal introitus. Sex ratio and several components of fitness (days from joining to parturition, percent fertile matings and percent perinatal survival) did not change significantly in the selected lines. PMID:17248819

  4. A long-lasting oral preformulation of the angiotensin II AT1 receptor antagonist losartan.

    PubMed

    De Paula, Washington X; Denadai, Ângelo M L; Braga, Aline N G; Shastri, V Prasad; Pinheiro, Sérgio V B; Frezard, Frederic; Santos, Robson A S; Sinisterra, Ruben D

    2018-05-10

    Losartan (Los), a non-peptidic orally active agent, reduces arterial pressure through specific and selective blockade of angiotensin II receptor AT1. However, this widely used AT1 antagonist presents low bioavailability and needs once or twice a day dosage. In order to improve its bioavailability, we used the host: guest strategy based on β-cyclodextrin (βCD). The results suggest that Los included in βCD showed a typical pulsatile release pattern after oral administration to rats, with increasing the levels of plasma of Los. In addition, the inclusion compound presented oral efficacy for 72 h, in contrast to Los alone, which shows antagonist effect for only 6 h. In transgenic (mREN2)L27 rats, the Los/βCD complex reduced blood pressure for about 6 d, whereas Los alone reduced blood pressure for only 2 d. More importantly, using this host: guest strategy, sustained release of Los for over a week via the oral route can be achieved without the need for encapsulation in a polymeric carrier. The proposed preformulation increased the efficacy reducing the dose or spacing between each dose intake.

  5. PUNISHING AND CARDIOVASCULAR EFFECTS OF INTRAVENOUS HISTAMINE IN RATS: PHARMACOLOGICAL SELECTIVITY

    PubMed Central

    Podlesnik, Christopher A.; Jimenez-Gomez, Corina

    2014-01-01

    Although drugs may serve as reinforcers or punishers of operant behavior, the punishing function has received much less experimental attention than the reinforcing function. A sensitive method for studying drug-induced punishment is to assess choice for a punished response over an unpunished response. In these experiments, rats chose between pressing one lever and receiving a sucrose pellet or pressing another lever and receiving a sucrose pellet plus an intravenous injection of histamine. When sucrose was delivered equally frequently for either the punished or the unpunished response, rats selected the unpunished lever consistently, but decreases in the punished response did not differ as a function of intravenous histamine dose (0.1–1 mg/kg/inj). Changing the procedure so that sucrose was delivered on the unpunished lever with p = .5 increased the rats’ responding on the punished lever with saline injections. In addition, the same range of histamine doses produced a much larger range of responses on the punished lever that was dose dependent. Using these procedures to assess the receptors mediating histamine’s effects, the histamine H1-receptor antagonists, pyrilamine and ketotifen, antagonized the punishing effect of histamine, but the histamine H2-receptor antagonist ranitidine did not. However, ranitidine pretreatments reduced histamine-induced heart-rate increases to a greater extent than did the histamine H1-receptor antagonists when administered at the same doses examined under conditions of histamine punishment. Overall, the present findings extend the general hypothesis that activation of histamine H1-receptors mediates the punishing effects of histamine. They also introduce methods for rapidly assessing pharmacological mechanisms underlying drug-induced punishment. PMID:23982898

  6. Characterization of (/sup 3/H)pirenzepine binding to muscarinic cholinergic receptors solubilized from rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luthin, G.R.; Wolfe, B.B.

    Membranes prepared from rat cerebral cortex were solubilized in buffer containing 1% digitonin. Material present in the supernatant after centrifugation at 147,000 X g was shown to contain binding sites for both (/sup 3/H)quinuclidinyl benzilate ((/sup 3/H)QNB) and (/sup 3/H)pirenzepine ((/sup 3/H)PZ). Recovery of binding sites was approximately 25% of the initial membrane-bound (/sup 3/H)QNB binding sites. The Kd values for (/sup 3/H)QNB and (/sup 3/H)PZ binding to solubilized receptors were 0.3 nM and 0.1 microM, respectively. As has been observed previously in membrane preparations, (/sup 3/H)PZ appeared to label fewer solubilized binding sites than did (/sup 3/H)QNB. Maximum bindingmore » values for (/sup 3/H)PZ and (/sup 3/H)QNB binding to solubilized receptors were approximately 400 and 950 fmol/mg of protein, respectively. Competition curves for PZ inhibiting the binding of (/sup 3/H)QNB, however, had Hill slopes of 1, with a Ki value of 0.24 microM. The k1 and k-1 for (/sup 3/H)PZ binding were 3.5 X 10(6) M-1 min-1 and 0.13 min-1, respectively. The muscarinic receptor antagonists atropine, scopolamine and PZ inhibited the binding of (/sup 3/H)QNB and (/sup 3/H)PZ to solubilized receptors with Hill slopes of 1, as did the muscarinic receptor agonist oxotremorine. The muscarinic receptor agonist carbachol competed for (/sup 3/H)QNB and (/sup 3/H)PZ binding with a Hill slope of less than 1 in cerebral cortex, but not in cerebellum. GTP did not alter the interactions of carbachol or oxotremorine with the solubilized receptor. Together, these data suggest that muscarinic receptor sites solubilized from rat brain retain their abilities to interact selectively with muscarinic receptor agonists and antagonists.« less

  7. Blonanserin, an antipsychotic and dopamine D₂/D₃receptor antagonist, and ameliorated alcohol dependence.

    PubMed

    Takaki, Manabu; Ujike, Hiroshi

    2013-01-01

    Blonanserin (BNS) is used for treatment of both positive and negative symptoms of schizophrenia in Japan and Korea. Because BNS has weak α1 receptor blocking activities and is almost devoid of histamine H1 and muscarinic M1 antagonist activity, BNS is better tolerated than other atypical antipsychotics. A high degree of D₃ receptor blockage is reported to be predictive of drug abuse and alcoholism, and BNS has strong D₃ receptor antagonism. Thus, BNS may be useful in the treatment of alcoholism. We present a case in which BNS ameliorated alcohol dependence.

  8. Pharmacological mechanisms underlying the cardiovascular effects of the "bath salt" constituent 3,4-methylenedioxypyrovalerone (MDPV).

    PubMed

    Schindler, Charles W; Thorndike, Eric B; Suzuki, Masaki; Rice, Kenner C; Baumann, Michael H

    2016-12-01

    3,4-Methylenedioxypyrovalerone (MDPV) is a synthetic cathinone with stimulatory cardiovascular effects that can lead to serious medical complications. Here, we examined the pharmacological mechanisms underlying these cardiovascular actions of MDPV in conscious rats. Male Sprague-Dawley rats had telemetry transmitters surgically implanted for the measurement of BP and heart rate (HR). On test days, rats were placed individually in standard isolation cubicles. Following drug treatment, cardiovascular parameters were monitored for 3 h sessions. Racemic MDPV (0.3-3.0 mg·kg -1 ) increased BP and HR in a dose-dependent manner. The S(+) enantiomer (0.3-3.0 mg·kg -1 ) of MDPV produced similar effects, while the R(-) enantiomer (0.3-3.0 mg·kg -1 ) had no effects. Neither of the hydroxylated phase I metabolites of MDPV altered cardiovascular parameters significantly from baseline. Pretreatment with the ganglionic blocker chlorisondamine (1 and 3 mg·kg -1 ) antagonized the increases in BP and HR produced by 1 mg·kg -1 MDPV. The α 1 -adrenoceptor antagonist prazosin (0.3 mg·kg -1 ) attenuated the increase in BP following MDPV, while the β-adrenoceptor antagonists propranolol (1 mg·kg -1 ) and atenolol (1 and 3 mg·kg -1 ) attenuated the HR increases. The S(+) enantiomer appeared to mediate the cardiovascular effects of MDPV, while the metabolites of MDPV did not alter BP or HR significantly; MDPV increased BP and HR through activation of central sympathetic outflow. Mixed-action α/β-adrenoceptor antagonists may be useful as treatments in counteracting the adverse cardiovascular effects of MDPV. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  9. Several down, a few to go: histamine H3 receptor ligands making the final push towards the market?

    PubMed

    Kuhne, Sebastiaan; Wijtmans, Maikel; Lim, Herman D; Leurs, Rob; de Esch, Iwan J P

    2011-12-01

    The histamine H(3) receptor (H(3)R) plays a pivotal role in a plethora of therapeutic areas. Blocking the H(3)R with antagonists/inverse agonists has been postulated to be of broad therapeutic use. Indeed, H(3)R antagonists/inverse agonists have been extensively evaluated in the clinic. Here, we address new developments, insights obtained and challenges encountered in the clinical evaluations. For recent H(3)R clinical candidates, the status and results of the corresponding clinical trial(s) will be discussed along with preclinical data. In all, it becomes evident that clinical evaluation of H(3)R antagonists/inverse agonists is characterized by mixed results. On one hand, Pitolisant has successfully passed several Phase II trials and seems to be the most advanced compound in the clinic now, being in Phase III. On the other hand, some compounds (e.g., PF-03654647 and MK-0249) failed at Phase II clinical level for several indications. A challenging feature in H(3)R research is the multifaceted role of the receptor at a molecular/biochemical level, which can complicate targeting by small molecules at several (pre)clinical levels. Accordingly, H(3)R antagonists/inverse agonists require further testing to pinpoint the determinants for clinical efficacy and to aid in the final push towards the market.

  10. Identification of two H3-histamine receptor subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, R.E. Jr.; Zweig, A.; Shih, N.Y.

    The H3-histamine receptor provides feedback inhibition of histamine synthesis and release as well as inhibition of other neurotransmitter release. We have characterized this receptor by radioligand binding studies with the H3 agonist N alpha-(3H)methylhistamine ((3H)NAMHA). The results of (3H)NAMHA saturation binding and NAMHA inhibition of (3H)NAMHA binding were consistent with an apparently single class of receptors (KD = 0.37 nM, Bmax = 73 fmol/mg of protein) and competition assays with other agonists and the antagonists impromidine and dimaprit disclosed only a single class of sites. In contrast, inhibition of (3H)NAMHA binding by the specific high affinity H3 antagonist thioperamide revealedmore » two classes of sites (KiA = 5 nM, BmaxA = 30 fmol/mg of protein; KiB = 68 nM, BmaxB = 48 fmol/mg of protein). Burimamide, another antagonist that, like thioperamide, contains a thiourea group, likewise discriminated between two classes of sites. In addition to differences between some antagonist potencies for the two receptors, there is a differential guanine nucleotide sensitivity of the two. The affinity of the H3A receptor for (3H) NAMHA was reduced less than 2-fold, whereas (3H)NAMHA binding to the H3B receptor was undetectable in the presence of guanosine 5'-O-(3-thiotriphosphate). The distinction between H3A and H3B receptor subtypes, the former a high affinity and the latter a low affinity thioperamide site, draws support from published in vitro data.« less

  11. Effect of a kinin B2 receptor antagonist on LPS- and cytokine-induced neutrophil migration in rats

    PubMed Central

    Santos, Danielle R; Calixto, João B; Souza, Glória E P

    2003-01-01

    This study examines the involvement of kinins in neutrophil migration into rat subcutaneous air pouches triggered by lipopolysaccharide (LPS), as well as the putative roles played by kinin B1 and B2 receptors, tumour necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and selectins in this response. LPS (5 ng to 10 μg cavity−1) injected into the 6-day-old pouch induced a dose- and time-dependent neutrophil migration which peaked between 4 and 6 h, and was maximal following the dose of 100 ng cavity−1 (saline: 0.46±0.1; LPS: 43±3.70 × 106 cells cavity−1 at 6 h). Bradykinin (BK) (600 nmol) injected into the pouch of saline-treated rats induced only modest neutrophil migration (0.73±0.16 × 106 cells cavity−1). A more robust response to BK (3.2±0.25 × 106 cells cavity−1) was seen in animals pretreated with captopril, but this was still smaller than the responses to IL-1β or TNF-α (15 pmol: 23±2.2 × 106 and 75 pmol: 29.5±2 × 106 cells cavity−1, respectively). Nevertheless, the B1 agonist des-Arg9-BK (600 nmol) failed to induce neutrophil migration. HOE-140 (1 and 2 mg kg−1), a B2 receptor antagonist, reduced LPS-induced neutrophil migration. HOE-140 also reduced the neutrophil migration induced by BK, but had no effect on the migration promoted by IL-1β or TNF-α. des-Arg9-[Leu8]-BK, B1 receptor antagonist was ineffective in changing neutrophil migration caused by any of these stimuli. Neutrophil migration induced by LPS or BK was reduced by interleukin-1 receptor antagonist (IL-1ra) (1 mg kg−1), sheep anti-rat TNF serum (anti-TNF serum) (0.3 ml cavity−1), and the nonspecific selectin inhibitor fucoidin (10 mg kg−1). TNF-α levels in the pouch fluid were increased by LPS or BK injection, peaking at 0.5–1 h and gradually declining thereafter up to 6 h. IL-1β levels increased steadily throughout the 6 h period. HOE-140 markedly inhibited the rise in IL-1β and TNF-α levels in pouch fluid triggered by both stimuli. These results indicate that BK participates importantly in selectin-dependent neutrophil migration into the air pouch triggered by LPS in the rat, by stimulating B2 receptors coupled to synthesis/release of TNF-α and IL-1β. PMID:12770932

  12. Obesity-stimulated aldosterone release is not related to an S1P-dependent mechanism.

    PubMed

    Werth, Stephan; Müller-Fielitz, Helge; Raasch, Walter

    2017-12-01

    Aldosterone has been identified as an important factor in obesity-associated hypertension. Here, we investigated whether sphingosine-1-phosphate (S1P), which has previously been linked to obesity, increases aldosterone release. S1P-induced aldosterone release was determined in NCI H295R cells in the presence of S1P receptor (S1PR) antagonists. In vivo release of S1P (100-300 µg/kg bw ) was investigated in pithed, lean Sprague Dawley (SD) rats, diet-obese spontaneous hypertensive rats (SHRs), as well as in lean or obese Zucker rats. Aldosterone secretion was increased in NCI H295R cells by S1P, the selective S1PR1 agonist SEW2871 and the selective S1PR2 antagonist JTE013. Treatment with the S1PR1 antagonist W146 or fingolimod and the S1PR1/3 antagonist VPbib2319 decreased baseline and/or S1P-stimulated aldosterone release. Compared to saline-treated SD rats, plasma aldosterone increased by ~50 pg/mL after infusing S1P. Baseline levels of S1P and aldosterone were higher in obese than in lean SHRs. Adrenal S1PR expression did not differ between chow- or CD-fed rats that had the highest S1PR1 and lowest S1PR4 levels. S1P induced a short-lasting increase in plasma aldosterone in obese, but not in lean SHRs. However, 2-ANOVA did not demonstrate any difference between lean and obese rats. S1P-induced aldosterone release was also similar between obese and lean Zucker rats. We conclude that S1P is a local regulator of aldosterone production. S1PR1 agonism induces an increase in aldosterone secretion, while stimulating adrenal S1PR2 receptor suppresses aldosterone production. A significant role of S1P in influencing aldosterone secretion in states of obesity seems unlikely. © 2017 Society for Endocrinology.

  13. Hydrogen peroxide preferentially activates capsaicin‐sensitive high threshold afferents via TRPA1 channels in the guinea pig bladder

    PubMed Central

    Nicholas, S; Yuan, S Y; Brookes, S J H; Spencer, N J

    2016-01-01

    Background and Purpose There is increasing evidence suggesting that ROS play a major pathological role in bladder dysfunction induced by bladder inflammation and/or obstruction. The aim of this study was to determine the effect of H2O2 on different types of bladder afferents and its mechanism of action on sensory neurons in the guinea pig bladder. Experimental Approach ‘Close‐to‐target’ single unit extracellular recordings were made from fine branches of pelvic nerves entering the guinea pig bladder, in flat sheet preparations, in vitro. Key Results H2O2 (300–1000 μM) preferentially and potently activated capsaicin‐sensitive high threshold afferents but not low threshold stretch‐sensitive afferents, which were only activated by significantly higher concentrations of hydrogen peroxide. The TRPV1 channel agonist, capsaicin, excited 86% of high threshold afferents. The TRPA1 channel agonist, allyl isothiocyanate and the TRPM8 channel agonist, icilin activated 72% and 47% of capsaicin‐sensitive high threshold afferents respectively. The TRPA1 channel antagonist, HC‐030031, but not the TRPV1 channel antagonist, capsazepine or the TRPM8 channel antagonist, N‐(2‐aminoethyl)‐N‐[[3‐methoxy‐4‐(phenylmethoxy)phenyl]methyl]thiophene‐2‐carboxamide, significantly inhibited the H2O2‐induced activation of high threshold afferents. Dimethylthiourea and deferoxamine did not significantly change the effect of H2O2 on high threshold afferents. Conclusions and Implications The findings show that H2O2, in the concentration range detected in inflammation or reperfusion after ischaemia, evoked long‐lasting activation of the majority of capsaicin‐sensitive high threshold afferents, but not low threshold stretch‐sensitive afferents. The data suggest that the TRPA1 channels located on these capsaicin‐sensitive afferent fibres are probable targets of ROS released during oxidative stress. PMID:27792844

  14. The Cannabinoids Δ8THC, CBD, and HU-308 Act via Distinct Receptors to Reduce Corneal Pain and Inflammation.

    PubMed

    Thapa, Dinesh; Cairns, Elizabeth A; Szczesniak, Anna-Maria; Toguri, James T; Caldwell, Meggie D; Kelly, Melanie E M

    2018-01-01

    Background and Purpose: Corneal injury can result in dysfunction of corneal nociceptive signaling and corneal sensitization. Activation of the endocannabinoid system has been reported to be analgesic and anti-inflammatory. The purpose of this research was to investigate the antinociceptive and anti-inflammatory effects of cannabinoids with reported actions at cannabinoid 1 (CB 1 R) and cannabinoid 2 (CB 2 R) receptors and/or noncannabinoid receptors in an experimental model of corneal hyperalgesia. Methods: Corneal hyperalgesia (increased pain response) was generated using chemical cauterization of the corneal epithelium in wild-type (WT) and CB 2 R knockout (CB 2 R -/- ) mice. Cauterized eyes were treated topically with the phytocannabinoids Δ 8 -tetrahydrocannabinol (Δ 8 THC) or cannabidiol (CBD), or the CBD derivative HU-308, in the presence or absence of the CB 1 R antagonist AM251 (2.0 mg/kg i.p.), or the 5-HT 1A receptor antagonist WAY100635 (1 mg/kg i.p.). Behavioral pain responses to a topical capsaicin challenge at 6 h postinjury were quantified from video recordings. Mice were euthanized at 6 and 12 h postcorneal injury for immunohistochemical analysis to quantify corneal neutrophil infiltration. Results: Corneal cauterization resulted in hyperalgesia to capsaicin at 6 h postinjury compared to sham control eyes. Neutrophil infiltration, indicative of inflammation, was apparent at 6 and 12 h postinjury in WT mice. Application of Δ 8 THC, CBD, and HU-308 reduced the pain score and neutrophil infiltration in WT mice. The antinociceptive and anti-inflammatory actions of Δ 8 THC, but not CBD, were blocked by the CB 1 R antagonist AM251, but were still apparent, for both cannabinoids, in CB 2 R -/- mice. However, the antinociceptive and anti-inflammatory actions of HU-308 were absent in the CB 2 R -/- mice. The antinociceptive and anti-inflammatory effects of CBD were blocked by the 5-HT 1A antagonist WAY100635. Conclusion: Topical cannabinoids reduce corneal hyperalgesia and inflammation. The antinociceptive and anti-inflammatory effects of Δ 8 THC are mediated primarily via CB 1 R, whereas that of the cannabinoids CBD and HU-308, involve activation of 5-HT 1A receptors and CB 2 Rs, respectively. Cannabinoids could be a novel clinical therapy for corneal pain and inflammation resulting from ocular surface injury.

  15. Effect of the novel histamine H2-antagonist 5,6-dimethyl-2-[4-[3-(1- piperidinomethyl)phenoxy]-(z)-2-butenylamino]-4(1H)-pyrimidine dihydrochloride on histamine-induced gastric acid secretion in Heidenhain pouch dogs.

    PubMed

    Uchida, M; Ohba, S; Ikarashi, Y; Misaki, N; Kawano, O

    1993-08-01

    Effects of IGN-2098 (5,6-dimethyl-2-[4-[3-(1-piperidinomethyl)phenoxy]- (z)-2-butenylamino]-4(1H)-pyrimidone dihydrochloride, CAS 126869-04-3) a novel histamine H2-antagonist, on histamine-induced gastric acid secretion were investigated in Heidenhain pouch dogs in comparison with those of famotidine, roxatidine acetate HCl and cimetidine. Orally administered IGN-2098 (0.03-1.0 mg/kg), famotidine (0.01-0.3 mg/kg), roxatidine acetate HCl (0.1-1.0 mg/kg) and cimetidine (0.3-3.0 mg/kg) showed dose-dependent inhibition on histamine-induced gastric acid secretion, and ED50 values of IGN-2098, famotidine, roxatidine acetate HCl and cimetidine were 0.077, 0.024, 0.200 and 0.585 mg/kg, respectively. IGN-2098 was effective even at 6 h after administration and ED50 value was 0.315 mg/kg. IGN-2098 was effective also by intravenous route. The inhibitory effect of IGN-2098 on histamine-induced gastric secretion was not affected by the repeated administration of IGN-2098 (1 mg/kg b.i.d. for 14 days). These results show that IGN-2098 is a potent and long acting antisecretory agent and is a useful antisecretory drug for the treatment of peptic ulcer disease.

  16. The binding of [3H]-propylbenzilylcholine mustard by longitudinal muscle strips from guinea-pig small intestine

    PubMed Central

    Burgen, A.S.V.; Hiley, C.R.; Young, J.M.

    1974-01-01

    1 The synthesis of tritium labelled propylbenzilylcholine mustard ([3H]-PrBCM; N-2′-chloroethyl-N-[2″, 3″-3H2] propyl-2-aminoethyl benzilate) is described. 2 The uptake by muscle strips was measured and shown to be considerably increased by previous immersion of the muscle in distilled water. 3 A considerable part of the uptake is inhibited selectively by atropine, but not by nicotinic antagonists. A number of muscarinic agonists also inhibit uptake and their apparent affinity constants have been determined. 4 The uptake by atropine-sensitive sites is temperature-insensitive, whereas the other sites are temperature-sensitive. Recovery is highly temperature-sensitive and there is good agreement between recovery of sensitivity to agonists and loss of radioactivity from the muscle. PMID:4150888

  17. Characteristics of children and adolescents first prescribed proton pump inhibitors or histamine-2-receptor antagonists: an observational cohort study.

    PubMed

    Ruigómez, Ana; Kool-Houweling, Leanne M A; García Rodríguez, Luis A; Penning-van Beest, Fernie J A; Herings, Ron M C

    2017-12-01

    To describe the characteristics of pediatric patients prescribed proton pump inhibitors (PPIs) vs those of pediatric patients prescribed histamine-2-receptor antagonists (H 2 RAs). Observational studies were conducted using The Health Improvement Network (THIN) and the PHARMO Database Network. Patients aged 0-18 years who were first prescribed a PPI or H 2 RA between October 1, 2009 and September 30, 2012 (THIN) or between September 1, 2008 and August 31, 2011 (PHARMO) were included. Patient characteristics were identified and compared between the PPI and H 2 RA cohorts using odds ratios (ORs) and 95% confidence intervals (CIs) adjusted for age and sex. The mean age (years) was higher in the PPI than in the H 2 RA cohorts (THIN 12.3 [n = 8204] vs 5.4 [n = 7937], PHARMO 11.0 [n = 15 362] vs 7.1 [n = 6168]). Previous respiratory disease was more common in the PPI than in the H 2 RA cohort in THIN (OR = 1.19, 95% CI = 1.08-1.30), as were asthma and respiratory medication use in PHARMO (OR = 1.27, 95% CI = 1.12-1.45 and OR = 1.23, 95% CI = 1.10-1.38, respectively) and oral corticosteroid use in both databases (OR = 1.45, 95% CI = 1.10-1.92 [THIN]; OR = 2.80, 95% CI = 2.11-3.71 [PHARMO]). Non-steroidal anti-inflammatory drugs, antibiotics, and oral contraceptives were also more common in PPI than in H 2 RA cohorts in both databases. Pediatric patients receiving PPIs and those receiving H 2 RAs may represent different patient populations. PPIs may be more commonly prescribed than H 2 RAs among patients with respiratory diseases.

  18. Associations of Proton-Pump Inhibitors and H2 Receptor Antagonists with Chronic Kidney Disease: A Meta-Analysis.

    PubMed

    Wijarnpreecha, Karn; Thongprayoon, Charat; Chesdachai, Supavit; Panjawatanana, Panadeekarn; Ungprasert, Patompong; Cheungpasitporn, Wisit

    2017-10-01

    The aim of this meta-analysis was to assess the risks of chronic kidney disease (CKD) and/or end-stage kidney disease (ESRD) in patients who are taking proton-pump inhibitors (PPIs) and/or H2 receptor antagonists (H2RAs). Comprehensive literature review was conducted utilizing MEDLINE and EMBASE databases through April 2017 to identify all studies that investigated the risks of CKD or ESRD in patients taking PPIs/H2RAs versus those without PPIs/H2RAs. Pooled risk ratios (RR) and 95% confidence interval (CI) were calculated using a random-effect, generic inverse variance method of DerSimonian and Laird. The protocol for this study is registered with PROSPERO (International Prospective Register of Systematic Reviews; no. CRD42017067252). Five studies with 536,902 participants were patients were identified and included in the data analysis. When compared with non-PPIs users, the pooled risk ratio (RR) of CKD or ESRD in patients with PPI use was 1.33 (95% CI 1.18-1.51). Pre-specified subgroup analysis (stratified by CKD or ESRD status) demonstrated pooled RRs of 1.22 (95% CI 1.14-1.30) for association between PPI use and CKD and 1.88 (95% CI 1.71-2.06) for association between PPI use and ESRD, respectively. However, there was no association between the use of H2RAs and CKD with a pooled RR of 1.02 (95% CI 0.83-1.25). When compared with the use of H2RAs, the pooled RR of CKD in patients with PPI use was 1.29 (95% CI 1.22-1.36). Our study demonstrates statistically significant 1.3-fold increased risks of CKD and ESRD in patients using PPIs, but not in patients using H2RAs.

  19. 4-Benzothiazole-7-hydroxyindolinyl diaryl ureas are potent P2Y1 antagonists with favorable pharmacokinetics: low clearance and small volume of distribution.

    PubMed

    Qiao, Jennifer X; Wang, Tammy C; Hiebert, Sheldon; Hu, Carol H; Schumacher, William A; Spronk, Steven A; Clark, Charles G; Han, Ying; Hua, Ji; Price, Laura A; Shen, Hong; Chacko, Silvi A; Everlof, Gerry; Bostwick, Jeffrey S; Steinbacher, Thomas E; Li, Yi-Xin; Huang, Christine S; Seiffert, Dietmar A; Rehfuss, Robert; Wexler, Ruth R; Lam, Patrick Y S

    2014-10-01

    Current antithrombotic discovery efforts target compounds that are highly efficacious in thrombus reduction with less bleeding liability than the standard of care. Preclinical data suggest that P2Y1 antagonists may have lower bleeding liabilities than P2Y12 antagonists while providing similar antithrombotic efficacy. This article describes our continuous SAR efforts in a series of 7-hydroxyindolinyl diaryl ureas. When dosed orally, 4-trifluoromethyl-7-hydroxy-3,3-dimethylindolinyl analogue 4 was highly efficacious in a model of arterial thrombosis in rats with limited bleeding. The chemically labile CF3 group in 4 was then transformed to various groups via a novel one-step synthesis, yielding a series of potent P2Y1 antagonists. Among them, the 4-benzothiazole-substituted indolines had desirable PK properties in rats, specifically, low clearance and small volume of distribution. In addition, compound 40 had high i.v. exposure and modest bioavailability, giving it the best overall profile. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cyproheptadine Enhances the I K of Mouse Cortical Neurons through Sigma-1 Receptor-Mediated Intracellular Signal Pathway

    PubMed Central

    He, Yan-Lin; Zhang, Chun-Lei; Gao, Xiao-Fei; Yao, Jin-Jing; Hu, Chang-Long; Mei, Yan-Ai

    2012-01-01

    Cyproheptadine (CPH) is a histamine- and serotonin-receptor antagonist, and its effects are observed recently in the modulation of multiple intracellular signals. In this study, we used cortical neurons and HEK-293 cells transfected with Kv2.1 α-subunit to address whether CPH modify neural voltage-gated K+ channels by a mechanism independent of its serotonergic and histaminergic properties. Our results demonstrate that intracellularly delivered CPH increased the I K by reducing the activity of protein kinas A (PKA). Inhibition of Gi eliminated the CPH-induced effect on both the I K and PKA. Blocking of 5-HT-, M-, D2-, H1- or H2- type GPCR receptors with relevant antagonists did not eliminate the CPH-induced effect on the I K. Antagonists of the sigma-1 receptor, however, blocked the effect of CPH. Moreover, the inhibition of sigma-1 by siRNA knockdown significantly reduced the CPH-induced effect on the I K. On the contrary, sigma-1 receptor agonist mimicked the effects of CPH on the induction of I K. A ligand-receptor binding assay indicated that CPH bound to the sigma-1 receptor. Similar effect of CPH were obtained from HEK-293 cells transfected with the α-subunit of Kv2.1. In overall, we reveal for the first time that CPH enhances the I K by modulating activity of PKA, and that the associated activation of the sigma-1 receptor/Gi-protein pathway might be involved. Our findings illustrate an uncharacterized effect of CPH on neuron excitability through the I K, which is independent of histamine H1 and serotonin receptors. PMID:22844454

  1. Endogenous calcitonin gene-related peptide (CGRP) mediates adrenergic-dependent vasodilation induced by nicotine in mesenteric resistance arteries of the rat

    PubMed Central

    Shiraki, Hinako; Kawasaki, Hiromu; Tezuka, Satoko; Nakatsuma, Akira; Kurosaki, Yuji

    2000-01-01

    The mechanisms underlying vasodilator effect of nicotine on mesenteric resistance blood vessels and the role of calcitonin gene-related peptide (CGRP)-containing (CGRPergic) vasodilator nerves were studied in the rat. Mesenteric vascular beds isolated from Wistar rats were perfused with Krebs solution, and perfusion pressure was measured with a pressure transducer. In preparations with intact endothelium and contracted by perfusion with Krebs solution containing methoxamine, perfusion of nicotine (1–100 μM) for 1 min caused a concentration-dependent vasodilator response without vasoconstriction. The nicotine-induced vasodilation was markedly inhibited by hexamethonium (nicotinic cholinoceptor antagonist, 10 μM) and blocked by guanethidine (adrenergic neuron blocker, 5 μM). Either denervation by cold storage (4°C for 72 h) or adrenergic denervation by 6-hydroxydopamine (toxin for adrenergic neurons, 2 mM for 20 min incubation, twice) blocked the nicotine-induced vasodilation. Neither endothelium removal with perfusion of sodium deoxycholate (1.80 mg ml−1, for 30 s) nor treatment with Nω-nitro-L-arginine (nitric oxide synthase inhibitor, 100 μM), atropine (muscarinic cholinoceptor antagonist, 10 nM) or propranolol (β-adrenoceptor antagonist, 100 nM) affected the nicotine-induced vasodilation. In preparations without endothelium, treatment with capsaicin (depleting CGRP-containing sensory nerves, 1 μM) or human CGRP[8–37] (CGRP receptor antagonist, 0.5 μM) markedly inhibited the nicotine-induced vasodilation. These results suggest that, in the mesenteric resistance artery of the rat, nicotine induces vasodilation, which is independent of the function of the endothelium and is involved in activation of CGRPergic nerves. It is also suggested that nicotine stimulates presynaptic nicotinic cholinoceptors on adrenergic nerves to release adrenergic neurotransmitters, which then act on CGRPergic nerves to release endogenous CGRP from the nerve. PMID:10882393

  2. Intrarater Reliability of Muscle Strength and Hamstring to Quadriceps Strength Imbalance Ratios During Concentric, Isometric, and Eccentric Maximal Voluntary Contractions Using the Isoforce Dynamometer.

    PubMed

    Mau-Moeller, Anett; Gube, Martin; Felser, Sabine; Feldhege, Frank; Weippert, Matthias; Husmann, Florian; Tischer, Thomas; Bader, Rainer; Bruhn, Sven; Behrens, Martin

    2017-08-17

    To determine intrasession and intersession reliability of strength measurements and hamstrings to quadriceps strength imbalance ratios (H/Q ratios) using the new isoforce dynamometer. Repeated measures. Exercise science laboratory. Thirty healthy subjects (15 females, 15 males, 27.8 years). Coefficient of variation (CV) and intraclass correlation coefficients (ICC) were calculated for (1) strength parameters, that is peak torque, mean work, and mean power for concentric and eccentric maximal voluntary contractions; isometric maximal voluntary torque (IMVT); rate of torque development (RTD), and (2) H/Q ratios, that is conventional concentric, eccentric, and isometric H/Q ratios (Hcon/Qcon at 60 deg/s, 120 deg/s, and 180 deg/s, Hecc/Qecc at -60 deg/s and Hiso/Qiso) and functional eccentric antagonist to concentric agonist H/Q ratios (Hecc/Qcon and Hcon/Qecc). High reliability: CV <10%, ICC >0.90; moderate reliability: CV between 10% and 20%, ICC between 0.80 and 0.90; low reliability: CV >20%, ICC <0.80. (1) Strength parameters: (a) high intrasession reliability for concentric, eccentric, and isometric measurements, (b) moderate-to-high intersession reliability for concentric and eccentric measurements and IMVT, and (c) moderate-to-high intrasession reliability but low intersession reliability for RTD. (2) H/Q ratios: (a) moderate-to-high intrasession reliability for conventional ratios, (b) high intrasession reliability for functional ratios, (c) higher intersession reliability for Hcon/Qcon and Hiso/Qiso (moderate to high) than Hecc/Qecc (low to moderate), and (d) higher intersession reliability for conventional H/Q ratios (low to high) than functional H/Q ratios (low to moderate). The results have confirmed the reliability of strength parameters and the most frequently used H/Q ratios.

  3. A novel urotensin II receptor antagonist, KR-36996, improved cardiac function and attenuated cardiac hypertrophy in experimental heart failure.

    PubMed

    Oh, Kwang-Seok; Lee, Jeong Hyun; Yi, Kyu Yang; Lim, Chae Jo; Park, Byung Kil; Seo, Ho Won; Lee, Byung Ho

    2017-03-15

    Urotensin II and its receptor are thought to be involved in various cardiovascular diseases such as heart failure, pulmonary hypertension and atherosclerosis. Since the regulation of the urotensin II/urotensin II receptor offers a great potential for therapeutic strategies related to the treatment of cardiovascular diseases, the study of selective and potent antagonists for urotensin II receptor is more fascinating. This study was designed to determine the potential therapeutic effects of a newly developed novel urotensin II receptor antagonist, N-(1-(3-bromo-4-(piperidin-4-yloxy)benzyl)piperidin-4-yl)benzo[b]thiophene-3-carboxamide (KR-36996), in experimental models of heart failure. KR-36996 displayed a high binding affinity (Ki=4.44±0.67nM) and selectivity for urotensin II receptor. In cell-based study, KR-36996 significantly inhibited urotensin II-induced stress fiber formation and cellular hypertrophy in H9c2 UT cells. In transverse aortic constriction-induced cardiac hypertrophy model in mice, the daily oral administration of KR-36996 (30mg/kg) for 14 days significantly decreased left ventricular weight by 40% (P<0.05). In myocardial infarction-induced chronic heart failure model in rats, repeated echocardiography and hemodynamic measurements demonstrated remarkable improvement of the cardiac performance by KR-36996 treatment (25 and 50mg/kg/day, p.o.) for 12 weeks. Moreover, KR-36996 decreased interstitial fibrosis and cardiomyocyte hypertrophy in the infarct border zone. These results suggest that potent and selective urotensin II receptor antagonist could efficiently attenuate both cardiac hypertrophy and dysfunction in experimental heart failure. KR-36996 may be useful as an effective urotensin II receptor antagonist for pharmaceutical or clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Modulation of food consumption and sleep-wake cycle in mice by the neutral CB1 antagonist ABD459.

    PubMed

    Goonawardena, Anushka V; Plano, Andrea; Robinson, Lianne; Ross, Ruth; Greig, Iain; Pertwee, Roger G; Hampson, Robert E; Platt, Bettina; Riedel, Gernot

    2015-04-01

    The brain endocannabinoid system is a potential target for the treatment of psychiatric and metabolic conditions. Here, a novel CB1 receptor antagonist (ABD459) was synthesized and assayed for pharmacological efficacy in vitro and for modulation of food consumption, vigilance staging and cortical electroencephalography in the mouse. ABD459 completely displaced the CB1 agonist CP99540 at a Ki of 8.6 nmol/l, and did not affect basal, but antagonized CP55940-induced GTPγS binding with a KB of 7.7 nmol/l. Acute ABD459 (3-20 mg/kg) reliably inhibited food consumption in nonfasted mice, without affecting motor activity. Active food seeking was reduced for 5-6 h postdrug, with no rebound after washout. Epidural recording of electroencephalogram confirmed that ABD459 (3 mg/kg) robustly reduced rapid eye movement (REM) sleep, with no alterations of wakefulness or non-REM sleep. Effects were strongest during 3 h postdrug, followed by a progressive washout period. The CB1 antagonist AM251 (3 mg/kg) and agonist WIN-55,212-2 (WIN-2: 3 mg/kg) also reduced REM, but variously affected other vigilance stages. WIN-2 caused a global suppression of normalized spectral power. AM251 and ABD459 lowered delta power and increased power in the theta band in the hippocampus, but not the prefrontal cortex. The neutral antagonist ABD459 thus showed a specific role of endocannabinoid release in attention and arousal, possibly through modulation of cholinergic activity.

  5. Facilitation and inhibition by capsaicin of cholinergic neurotransmission in the guinea-pig small intestine.

    PubMed

    Geber, Christian; Mang, Christian F; Kilbinger, Heinz

    2006-01-01

    The effects of capsaicin on [3H]acetylcholine release and muscle contraction were studied on the myenteric plexus-longitudinal muscle preparation of the guinea-pig ileum preincubated with [3H]choline. Capsaicin concentration-dependently increased both basal [3H]acetylcholine release (pEC50 7.0) and muscle tone (pEC50 6.1). The facilitatory effects of capsaicin were antagonized by 1 microM capsazepine (pK (B) 7.0 and 7.6), and by the combined blockade of NK1 and NK3 tachykinin receptors with the antagonists CP99994 plus SR142801 (each 0.1 microM). This suggests that stimulation by capsaicin of TRPV1 receptors on primary afferent fibres causes a release of tachykinins which, in turn, mediate via NK1 and NK3 receptors an increase in acetylcholine release. The capsaicin-induced acetylcholine release was significantly enhanced by the NO synthase inhibitor L-NG-nitroarginine (100 microM). This indicates that tachykinins released from sensory neurons also stimulate nitrergic neurons and thus lead, via NO release, to inhibition of acetylcholine release. Capsaicin concentration-dependently reduced the electrically-evoked [3H]acetylcholine release (pEC50 6.4) and twitch contractions (pEC50 5.9). The inhibitory effects were not affected by either capsazepine, NK1 and NK3 receptor antagonists, the cannabinoid CB1 antagonist SR141716A or by L-NG-nitroarginine. Desensitization of TRPV1 receptors by a short exposure to 3 microM capsaicin abolished the facilitatory responses to a subsequent administration, but did not modify the inhibitory effects. In summary, capsaicin has a dual effect on cholinergic neurotransmission. The facilitatory effect is indirect and involves tachykinin release and excitation of NK1 and NK3 receptors on cholinergic neurons. The inhibition of acetylcholine release may be due to a decrease of Ca2+ influx into cholinergic neurons.

  6. CC12, A High Affinity Ligand for 3H-Cimetidine Binding, is an Improgan Antagonist

    PubMed Central

    Hough, Lindsay B.; Nalwalk, Julia W.; Phillips, James G.; Kern, Brian; Shan, Zhixing; Wentland, Mark P.; de Esch, Iwan J.P.; Janssen, Elwin; Barr, Travis; Stadel, Rebecca

    2007-01-01

    Summary Improgan, a chemical congener of cimetidine, is a highly effective non-opioid analgesic when injected into the CNS. Despite extensive characterization, neither the improgan receptor, nor a pharmacological antagonist of improgan has been previously described. Presently, the specific binding of 3H-cimetidine (3HCIM) in brain fractions was used to discover 4(5)-((4-iodobenzyl)thiomethyl)-1H-imidazole, which behaved in vivo as the first improgan antagonist. The synthesis and pharmacological properties of this drug (named CC12) are described herein. In rats, CC12 (50 – 500 nmol, icv) produced dose-dependent inhibition of improgan (200 – 400 nmol) antinociception on the tail flick and hot plate tests. When given alone to rats, CC12 had no effects on nociceptive latencies, or on other observable behavioral or motor functions. Maximal inhibitory effects of CC12 (500 nmol) were fully surmounted with a large icv dose of improgan (800 nmol), demonstrating competitive antagonism. In mice, CC12 (200-400 nmol, icv) behaved as a partial agonist, producing incomplete improgan antagonism, but also limited antinociception when given alone. Radioligand binding, receptor autoradiography, and electrophysiology experiments showed that CC12's antagonist properties are not explained by activity at 25 sites relevant to analgesia, including known receptors for cannabinoids, opioids or histamine. The use of CC12 as an improgan antagonist will facilitate the characterization of improgan analgesia. Furthermore, because CC12 was also found presently to inhibit opioid and cannabinoid antinociception, it is suggested that this drug modifies a biochemical mechanism shared by several classes of analgesics. Elucidation of this mechanism will enhance understanding of the biochemistry of pain relief. PMID:17336343

  7. Antagonistic effect of chosen lactic acid bacteria strains on Yersinia enterocolitica species in model set-ups, meat and fermented sausages.

    PubMed

    Gomółka-Pawlicka, M; Uradziński, J

    2003-01-01

    The present study was aimed at determining the influence of 15 strains of lactic acid bacteria on the growth of 8 Yersinia enterocolitica strains in model set-ups, and in meat and ageing fermented sausages. The investigations were performed within the framework of three alternate stages which differed in respect to the products studied, the number of Lactobacillus sp. strains and, partly, methodological approach. The ratio between lactic acid bacteria and Yersinia enterocolitica strains studied was, depending on the variant of experiment, 1:1, 1:2 and 2:1, respectively. The study also considered water activity (aw) and pH of the products investigated. The results suggest that all the lactic acid bacteria strains used within the framework of the model set-ups had antagonistic effect on all the Salmonella sp. strains. However, this ability was not observed with respect to of tested lactic acid bacteria strains in meat and fermented sausage. This ability was possessed by one of the strains investigated--Lactobacillus helveticus T 78. The temperature and time of the incubation of sausages, but not aw and pH, were found to have a distinct influence on the antagonistic interaction between the bacteria tested.

  8. The effects of a selective 5-HT2 receptor antagonist (ICI 170,809) on platelet aggregation and pupillary responses in healthy volunteers.

    PubMed Central

    Millson, D S; Jessup, C L; Swaisland, A; Haworth, S; Rushton, A; Harry, J D

    1992-01-01

    1. ICI 170,809 (2-(2-dimethylamino-2-methylpropylthio)-3-phenylquinoline hydrochloride) is a potent 5-hydroxytryptamine (5-HT) type 2 postsynaptic receptor antagonist. 2. Effects of ICI 170,809 as single oral doses (3, 7, 15 and 30 mg) or placebo were studied on the duration of antagonism for the ex vivo platelet aggregatory response to 5-HT and to the pupillary light constrictor response in eight healthy male volunteers. 3. Pupillary dark adapted responses to a 0.5 s light stimulus were measured using a portable infrared pupillometer, for up to 24 h after dosing. 4. The in vitro platelet 5-HT aggregation response was reduced by ICI 170,809, with depression of the dose-response curve to 5-HT at all concentrations of 5-HT and with no evidence for a parallel shift. 5. The ex vivo platelet 5-HT response demonstrated a dose related significant (P less than 0.02) decrease in aggregation reaching a maximum at 2 h after dosing with the effect persisting for at least 8 h after dosing with the 7 and 15 mg doses. 6. Resting pupil diameter (RPD), and light induced pupillary responses in the dark adapted pupil, showed a significant (P less than 0.01) dose related reduction with significant (P less than 0.05) effects still present with the 15 and 30 mg doses at 8 h after dosing. 7. We conclude that, changes in both ex vivo platelet aggregation to 5-HT and dark adapted pupil size, are significantly correlated (P less than 0.0001) with log plasma concentrations (ng ml-1) of ICI 170,809, enabling the assessment of 5-HT2-receptor antagonism in man. PMID:1576048

  9. SALT EFFECTS ON SWARMERS OF DUNALIELLA VIRIDIS TEOD

    PubMed Central

    Baas-Becking, L. G. M.

    1931-01-01

    1. Dunaliella viridis Teodoresco thrives equally well in solutions of NaCl 1 to 4 mol and pH 6 to 9. 2. The organism is sensitive to calcium and magnesium, especially in acid medium. 3. Calcium and magnesium are antagonistic. In a molar solution of NaCl the antagonistic relation Mg:Ca is 4 to 5. In a 4 molar solution of NaCl the proportion becomes many times as great (20:1). 4. Although the strains used in this investigation did not occur in sea water concentrates, the increase in the antagonistic ratio Mg:Ca in which they can live closely paralleled the changes in this ratio which take place when sea water evaporates. 5. The other organisms which occurred in the cultures each show a specific relation to Ca and Mg. 6. The size of the cells of Dunaliella does not decrease with increasing NaCl content. PMID:19872621

  10. Pharmacological characterization of human recombinant melatonin mt1 and MT2 receptors

    PubMed Central

    Browning, Christopher; Beresford, Isabel; Fraser, Neil; Giles, Heather

    2000-01-01

    We have pharmacologically characterized recombinant human mt1 and MT2 receptors, stably expressed in Chinese hamster ovary cells (CHO-mt1 and CHO-MT2), by measurement of [3H]-melatonin binding and forskolin-stimulated cyclic AMP (cAMP) production. [3H]-melatonin bound to mt1 and MT2 receptors with pKD values of 9.89 and 9.56 and Bmax values of 1.20 and 0.82 pmol mg−1 protein, respectively. Whilst most melatonin receptor agonists had similar affinities for mt1 and MT2 receptors, a number of putative antagonists had substantially higher affinities for MT2 receptors, including luzindole (11 fold), GR128107 (23 fold) and 4-P-PDOT (61 fold). In both CHO-mt1 and CHO-MT2 cells, melatonin inhibited forskolin-stimulated accumulation of cyclic AMP in a concentration-dependent manner (pIC50 9.53 and 9.74, respectively) causing 83 and 64% inhibition of cyclic AMP production at 100 nM, respectively. The potencies of a range of melatonin receptor agonists were determined. At MT2 receptors, melatonin, 2-iodomelatonin and 6-chloromelatonin were essentially equipotent, whilst at the mt1 receptor these agonists gave the rank order of potency of 2-iodomelatonin>melatonin>6-chloromelatonin. In both CHO-mt1 and CHO-MT2 cells, melatonin-induced inhibition of forskolin-stimulated cyclic AMP production was antagonized in a concentration-dependent manner by the melatonin receptor antagonist luzindole, with pA2 values of 5.75 and 7.64, respectively. Melatonin-mediated responses were abolished by pre-treatment of cells with pertussis toxin, consistent with activation of Gi/Go G-proteins. This is the first report of the use of [3H]-melatonin for the characterization of recombinant mt1 and MT2 receptors. Our results demonstrate that these receptor subtypes have distinct pharmacological profiles. PMID:10696085

  11. Developmental plasticity in the D1- and D2-mediation of motor behavior in rats depleted of dopamine as neonates.

    PubMed

    Byrnes, E M; Ughrin, Y; Bruno, J P

    1996-12-01

    D1- and D2-like antagonist-induced catalepsy and dorsal immobility were studied in pups (Day 10) and weanlings (Days 20, 28, or 35) that received intraventricular injection of 6-OHDA (50 micrograms/hemisphere) or its vehicle solution or postnatal Day 3. The ability of the D1 of D2 antagonists to induce immobility differed as a function of the lesion condition and the age at the time of testing. Moreover, the two behavioral measures exhibited differences in their specific D1 and D2 receptor modulation. Administration of the D1 antagonist SCH 23390 (0.2 or 1.0 mg/kg) or the D2 antagonist clebopride (1.0, 10.0, or 20.0 mg/kg) led to catalepsy and dorsal immobility in intact rats, regardless of test age. Both antagonists induced catalepsy and dorsal immobility in rats depleted of DA when tested on Day 10. However, the effects of each antagonist in DA-depleted rats were ether negligible or significantly less than in controls when animals were tested as weanlings. These data suggest lesion-induced changes in the DA receptor modulation of motor behavior and that this plasticity requires more than a week to become apparent.

  12. Identification of spinal 5-HT sub 3 receptors and their role in the modulation of nociceptive responses in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaum, S.R.

    1988-01-01

    The project consisted of two related studies: (1) the characterization of serotonin binding sites in crude and purified synaptic membranes prepared from the rat spinal cord, and (2) the association of serotonin binding sites with functional 5-HT receptor responses in the modulation of nociceptive information at the level of the spinal cord. The first series of experiments involved the preparation of membranes from the dorsal and ventral halves of the rat spinal cord and the demonstration of specific ({sup 3}H)serotonin binding to these membranes. High affinity binding sites which conformed to the 5-HT{sub 3} subtype were identified in dorsal, butmore » not ventral spinal cord synaptic membranes. These experiments also confirmed the presence of high affinity ({sup 3}H)5-HT binding sites in dorsal spinal cord synaptic membranes of the 5-HT{sub 1} subtype. The second group of studies demonstrated the ability of selective 5-HT{sub 3} antagonists to inhibit the antinociceptive response to intrathecally administered 5-HT, as measured by a change in tail flick and hot plate latencies. Intrathecal pretreatment with the selective 5-HT{sub 3} antagonists ICS 205-930 or MDL 72222 abolished the antinociceptive effects of 5-HT. Furthermore, the selective 5-HT{sub 3} agonist 2-methyl-5-HT mimicked the antinociceptive effects of 5-HT.« less

  13. Histamine H3 receptors aggravate cerebral ischaemic injury by histamine-independent mechanisms

    PubMed Central

    Yan, Haijing; Zhang, Xiangnan; Hu, Weiwei; Ma, Jing; Hou, Weiwei; Zhang, Xingzhou; Wang, Xiaofen; Gao, Jieqiong; Shen, Yao; Lv, Jianxin; Ohtsu, Hiroshi; Han, Feng; Wang, Guanghui; Chen, Zhong

    2014-01-01

    The role of the histamine H3 receptor (H3R) in cerebral ischaemia/reperfusion (I/R) injury remains unknown. Here we show that H3R expression is upregulated after I/R in two mouse models. H3R antagonists and H3R knockout attenuate I/R injury, which is reversed by an H3R-selective agonist. Interestingly, H1R and H2R antagonists, a histidine decarboxylase (HDC) inhibitor and HDC knockout all fail to compromise the protection by H3R blockade. H3R blockade inhibits mTOR phosphorylation and reinforces autophagy. The neuroprotection by H3R antagonism is reversed by 3-methyladenine and siRNA for Atg7, and is diminished in Atg5−/− mouse embryonic fibroblasts. Furthermore, the peptide Tat-H3RCT414-436, which blocks CLIC4 binding with H3Rs, or siRNA for CLIC4, further increases I/R-induced autophagy and protects against I/R injury. Therefore, H3R promotes I/R injury while its antagonism protects against ischaemic injury via histamine-independent mechanisms that involve suppressing H3R/CLIC4 binding-activated autophagy, suggesting that H3R inhibition is a therapeutic target for cerebral ischaemia. PMID:24566390

  14. Lubiprostone targets prostanoid EP4 receptors in ovine airways

    PubMed Central

    Cuthbert, AW

    2011-01-01

    BACKGROUND AND PURPOSE Lubiprostone, a prostaglandin E1 derivative, is reported to activate ClC-2 chloride channels located in the apical membranes of a number of transporting epithelia. Lack of functioning CFTR chloride channels in epithelia is responsible for the genetic disease cystic fibrosis, therefore, surrogate channels that can operate independently of CFTR are of interest. This study explores the target receptor(s) for lubiprostone in airway epithelium. EXPERIMENTAL APPROACH All experiments were performed on the ventral tracheal epithelium of sheep. Epithelia were used to measure anion secretion from the apical surface as short circuit current or as fluid secretion from individual airway submucosal glands, using an optical method. KEY RESULTS The EP4 antagonists L-161982 and GW627368 inhibited short circuit current responses to lubiprostone, while EP1,2&3 receptor antagonists were without effect. Similarly, lubiprostone induced secretion in airway submucosal glands was inhibited by L-161982. L-161982 effectively competed with lubiprostone with a Kd value of 0.058 µM, close to its value for binding to human EP4 receptors (0.024 µM). The selective EP4 agonist L-902688 and lubiprostone behaved similarly with respect to EP4 receptor antagonists. Results of experiments with H89, a protein kinase A inhibitor, were consistent with lubiprostone acting through a Gs-protein coupled EP4 receptor/cAMP cascade. CONCLUSIONS AND IMPLICATIONS Lubiprostone-induced short-circuit currents and submucosal gland secretions were inhibited by selective EP4 receptor antagonists. The results suggest EP4 receptor activation by lubiprostone triggers cAMP production necessary for CFTR activation and the secretory responses, a possibility precluded in CF tissues. PMID:20883477

  15. Mechanisms underlying the inhibitory effects of tachykinin receptor antagonists on eosinophil recruitment in an allergic pleurisy model in mice

    PubMed Central

    Alessandri, Ana Letícia; Pinho, Vanessa; Souza, Danielle G; Castro, Maria Salete de A; Klein, André; Teixeira, Mauro M

    2003-01-01

    The activation of tachykinin NK receptors by neuropeptides may induce the recruitment of eosinophils in vivo. The aim of the present study was to investigate the effects and underlying mechanism(s) of the action of tachykinin receptor antagonists on eosinophil recruitment in a model of allergic pleurisy in mice. Pretreatment of immunized mice with capsaicin partially prevented the recruitment of eosinophils after antigen challenge, suggesting the potential contribution of sensory nerves for the recruitment of eosinophils Local (10–50 nmol per pleural cavity) or systemic (100–300 nmol per animal) pretreatment with the tachykinin NK1 receptor antagonist SR140333 prevented the recruitment of eosinophils induced by antigen challenge of immunized mice. Neither tachykinin NK2 nor NK3 receptor antagonists suppressed eosinophil recruitment. Pretreatment with SR140333 failed to prevent the antigen-induced increase of interleukin-5 concentrations in the pleural cavity. Similarly, SR140333 failed to affect the bone marrow eosinophilia observed at 48 h after antigen challenge of immunized mice. SR140333 induced a significant increase in the concentrations of antigen-induced eotaxin at 6 h after challenge. Antigen challenge of immunized mice induced a significant increase of Leucotriene B4 (LTB4) concentrations at 6 h after challenge. Pretreatment with SR140333 prevented the antigen-induced increase of LTB4 concentrations. Our data suggest an important role for NK1 receptor activation with consequent LTB4 release and eosinophil recruitment in a model of allergic pleurisy in the mouse. Tachykinins appear to be released mainly from peripheral endings of capsaicin-sensitive sensory neurons and may act on mast cells to facilitate antigen-driven release of LTB4. PMID:14585802

  16. Effects of antidepressant drugs on histamine-H/sub 1/ receptors in the brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, H.; Oegren, S.O.

    1984-02-06

    The histamine-H/sub 1/ receptor blocking properties of a number of structurally different antidepressant drugs have been evaluated using a /sup 3/H-mepyramine binding assay and a guinea-pig ileum preparation. The tricyclic antidepressants all inhibited the histamine-H/sub 1/ receptor. Some newer antidepressant drugs, such as zimeldine and nomifensine were devoid of activity while others, such as iprindole and mianserin were very potent. It is concluded that antagonistic effects on the histamine-H/sub 1/ receptor is not associated with the therapeutic efficacy in depression, but may contribute to the sedative effects of the antidepressant drugs.

  17. Effects of the TRPV1 antagonist ABT-102 on body temperature in healthy volunteers: pharmacokinetic/pharmacodynamic analysis of three phase 1 trials

    PubMed Central

    Othman, Ahmed A; Nothaft, Wolfram; Awni, Walid M; Dutta, Sandeep

    2013-01-01

    Aim To characterize quantitatively the relationship between ABT-102, a potent and selective TRPV1 antagonist, exposure and its effects on body temperature in humans using a population pharmacokinetic/pharmacodynamic modelling approach. Methods Serial pharmacokinetic and body temperature (oral or core) measurements from three double-blind, randomized, placebo-controlled studies [single dose (2, 6, 18, 30 and 40 mg, solution formulation), multiple dose (2, 4 and 8 mg twice daily for 7 days, solution formulation) and multiple-dose (1, 2 and 4 mg twice daily for 7 days, solid dispersion formulation)] were analyzed. nonmem was used for model development and the model building steps were guided by pre-specified diagnostic and statistical criteria. The final model was qualified using non-parametric bootstrap and visual predictive check. Results The developed body temperature model included additive components of baseline, circadian rhythm (cosine function of time) and ABT-102 effect (Emax function of plasma concentration) with tolerance development (decrease in ABT-102 Emax over time). Type of body temperature measurement (oral vs. core) was included as a fixed effect on baseline, amplitude of circadian rhythm and residual error. The model estimates (95% bootstrap confidence interval) were: baseline oral body temperature, 36.3 (36.3, 36.4)°C; baseline core body temperature, 37.0 (37.0, 37.1)°C; oral circadian amplitude, 0.25 (0.22, 0.28)°C; core circadian amplitude, 0.31 (0.28, 0.34)°C; circadian phase shift, 7.6 (7.3, 7.9) h; ABT-102 Emax, 2.2 (1.9, 2.7)°C; ABT-102 EC50, 20 (15, 28) ng ml−1; tolerance T50, 28 (20, 43) h. Conclusions At exposures predicted to exert analgesic activity in humans, the effect of ABT-102 on body temperature is estimated to be 0.6 to 0.8°C. This effect attenuates within 2 to 3 days of dosing. PMID:22966986

  18. Histamine H3 receptor antagonists display antischizophrenic activities in rats treated with MK-801.

    PubMed

    Mahmood, Danish; Akhtar, Mohd; Jahan, Kausar; Goswami, Dipanjan

    2016-09-01

    Animal models based on N-methyl-d-aspartate receptor blockade have been extensively used for schizophrenia. Ketamine and MK-801 produce behaviors related to schizophrenia and exacerbated symptoms in patients with schizophrenia, which led to the use of PCP (phencyclidine)- and MK-801 (dizocilpine)-treated animals as models for schizophrenia. The study investigated the effect of subchronic dosing (once daily, 7 days) of histamine H3 receptor (H3R) antagonists, ciproxifan (CPX) (3 mg/kg, i.p.), and clobenpropit (CBP) (15 mg/kg, i.p.) on MK-801 (0.2 mg/kg, i.p.)-induced locomotor activity and also measured dopamine and histamine levels in rat's brain homogenates. The study also included clozapine (CLZ) (3.0 mg/kg, i.p.) and chlorpromazine (CPZ) (3.0 mg/kg, i.p.), the atypical and typical antipsychotic, respectively. Atypical and typical antipsychotic was used to serve as clinically relevant reference agents to compare the effects of the H3R antagonists. MK-801 significantly increased horizontal locomotor activity, which was reduced with CPX and CBP. MK-801-induced locomotor hyperactivity attenuated by CPX and CBP was comparable to CLZ and CPZ. MK-801 raised striatal dopamine level, which was reduced in rats pretreated with CPX and CBP. CPZ also significantly lowered striatal dopamine levels, although the decrease was less robust compared to CLZ, CPX, and CBP. MK-801 increased histamine content although to a lesser degree. Subchronic treatment with CPX and CBP exhibited further increased histamine levels in the hypothalamus compared to MK-801 treatment alone. Histamine H3 receptor agonist, R-α methylhistamine (10 mg/kg, i.p.), counteracted the effect of CPX and CBP. The present study shows the positive effects of CPX and CBP on MK-801-induced schizophrenia-like behaviors in rodents.

  19. Maintained cocaine self-administration is determined by quantal responses: implications for the measurement of antagonist potency.

    PubMed

    Norman, Andrew B; Tabet, Michael R; Norman, Mantana K; Tsibulsky, Vladimir L

    2014-02-01

    The change in frequency of cocaine self-administration as a function of the unit dose is widely assumed to represent a graded pharmacodynamic response. Alternatively, a pharmacological theory states that during maintained self-administration, a quantal response occurs at a minimum maintained cocaine concentration (satiety threshold). Rats self-administered cocaine at unit doses spanning an 8-fold range from 0.75 to 6 µmol/kg. Despite an approximately 7-fold difference in the interinjection intervals, there were no differences in the plasma cocaine concentration at the time of lever press across this range of unit doses, consistent with the satiety threshold representing an equiactive cocaine concentration. Because self-administration always occurs when cocaine concentrations decline back to the satiety threshold, this behavior represents a process of automatic back titration of equiactive agonist concentrations. Therefore, the lower frequency of self-administration at higher unit doses is caused by an increase in the duration of the cocaine-induced satiety response, and the graded dose-frequency relationship is due to cocaine pharmacokinetics. After the interinjection intervals at a particular unit dose were stable, rats were injected with the competitive D₁-like dopamine receptor antagonist R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH23390; 15 nmol/kg intravenously) and the session continued. At all cocaine unit doses, SCH23390 accelerated self-administration with a concomitant increase in the calculated satiety threshold, and these equiactive cocaine concentration ratios were independent of the cocaine unit dose. Therefore, the measurement of antagonist potency requires only a single unit dose of cocaine, selected on the basis of convenience, and using multiple cocaine unit doses is redundant.

  20. Clebopride enhances contractility of the guinea pig stomach by blocking peripheral D2 dopamine receptor and alpha-2 adrenoceptor.

    PubMed

    Takeda, K; Taniyama, K; Kuno, T; Sano, I; Ishikawa, T; Ohmura, I; Tanaka, C

    1991-05-01

    The mechanism of action of clebopride on the motility of guinea pig stomach was examined by the receptor binding assay for bovine brain membrane and by measuring gastric contractility and the release of acetylcholine from the stomach. The receptor binding assay revealed that clebopride bound to the D2 dopamine receptor with a high affinity and to the alpha-2 adrenoceptor and 5-HT2 serotonin receptor with relatively lower affinity, and not to D1 dopamine, alpha-1 adrenergic, muscarinic acetylcholine, H1 histamine, or opioid receptor. In strips of the stomach, clebopride at 10(-8) M to 10(-5) M enhanced the electrical transmural stimulation-evoked contraction and the release of acetylcholine. This enhancement was attributed to the blockade of the D2 dopamine receptor and alpha-2 adrenoceptor because: 1) Maximum responses obtained with specific D2 dopamine receptor antagonist, domperidone, and with specific alpha-2 adrenoceptor antagonist, yohimbine, were smaller than that with clebopride, and the sum of the effects of these two specific receptor antagonists is approximately equal to the effect of clebopride. 2) The facilitatory effect of clebopride was partially eliminated by pretreatment of the sample with domperidone or yohimbine, and the facilitatory effect of clebopride was not observed in preparations treated with the combination of domperidone and yohimbine. Clebopride also antagonized the inhibitory effects of dopamine and clonidine on the electrical transmural stimulation-evoked responses. These results indicate that clebopride acts on post ganglionic cholinergic neurons at D2 and alpha-2 receptors in this preparation to enhance enteric nervous system stimulated motility.

  1. ANTISECRETORY TREATMENT FOR PEDIATRIC GASTROESOPHAGEAL REFLUX DISEASE - A SYSTEMATIC REVIEW.

    PubMed

    Mattos, Ângelo Zambam de; Marchese, Gabriela Meirelles; Fonseca, Bárbara Brum; Kupski, Carlos; Machado, Marta Brenner

    2017-12-01

    Proton pump inhibitors and histamine H2 receptor antagonists are two of the most commonly prescribed drug classes for pediatric gastroesophageal reflux disease, but their efficacy is controversial. Many patients are treated with these drugs for atypical manifestations attributed to gastroesophageal reflux, even that causal relation is not proven. To evaluate the use of proton pump inhibitors and histamine H2 receptor antagonists in pediatric gastroesophageal reflux disease through a systematic review. A systematic review was performed, using MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials databases. The search was limited to studies published in English, Portuguese or Spanish. There was no limitation regarding date of publication. Studies were considered eligible if they were randomized-controlled trials, evaluating proton pump inhibitors and/or histamine H2 receptor antagonists for the treatment of pediatric gastroesophageal reflux disease. Studies published only as abstracts, studies evaluating only non-clinical outcomes and studies exclusively comparing different doses of the same drug were excluded. Data extraction was performed by independent investigators. The study protocol was registered at PROSPERO platform (CRD42016040156). After analyzing 735 retrieved references, 23 studies (1598 randomized patients) were included in the systematic review. Eight studies demonstrated that both proton pump inhibitors and histamine H2 receptor antagonists were effective against typical manifestations of gastroesophageal reflux disease, and that there was no evidence of benefit in combining the latter to the former or in routinely prescribing long-term maintenance treatments. Three studies evaluated the effect of treatments on children with asthma, and neither proton pump inhibitors nor histamine H2 receptor antagonists proved to be significantly better than placebo. One study compared different combinations of omeprazole, bethanechol and placebo for the treatment of children with cough, and there is no clear definition on the best strategy. Another study demonstrated that omeprazole performed better than ranitidine for the treatment of extraesophageal reflux manifestations. Ten studies failed to demonstrate significant benefits of proton pump inhibitors or histamine H2 receptor antagonists for the treatment of unspecific manifestations attributed to gastroesophageal reflux in infants. Proton pump inhibitors or histamine H2 receptor antagonists may be used to treat children with gastroesophageal reflux disease, but not to treat asthma or unspecific symptoms.

  2. Fenspiride inhibits histamine-induced responses in a lung epithelial cell line.

    PubMed

    Quartulli, F; Pinelli, E; Broué-Chabbert, A; Gossart, S; Girard, V; Pipy, B

    1998-05-08

    Using the human lung epithelial WI26VA4 cell line, we investigated the capacity of fenspiride, an anti-inflammatory drug with anti-bronchoconstrictor properties, to interfere with histamine-induced intracellular Ca2+ increase and eicosanoid formation. Histamine and a histamine H1 receptor agonist elicited a rapid and transient intracellular Ca2+ increase (0-60 s) in fluo 3-loaded WI26VA4 cells. This response was antagonized by the histamine H1 receptor antagonist, diphenhydramine, the histamine H2 receptor antagonist, cimetidine, having no effect. Fenspiride (10(-7)-10(-5) M) inhibited the histamine H1 receptor-induced Ca2+ increase. In addition, histamine induced a biphasic increase in arachidonic acid release. The initial rise (0-30 s), a rapid and transient arachidonic acid release, was responsible for the histamine-induced intracellular Ca2+ increase. In the second phase release (15-60 min), a sustained arachidonic acid release appeared to be associated with the formation of cyclooxygenase and lipoxygenase metabolites. Fenspiride (10(-5) M) abolished both phases of histamine-induced arachidonic acid release. These results suggest that anti-inflammatory and antibronchoconstrictor properties of fenspiride may result from the inhibition of these effects of histamine.

  3. Contribution of mast cells to the oedema induced by Bothrops moojeni snake venom and a pharmacological assessment of the inflammatory mediators involved.

    PubMed

    Galvão Nascimento, Neide; Sampaio, Marlos Cortez; Amaral Olivo, Renata; Teixeira, Catarina

    2010-01-01

    The ability of Bothrops moojeni venom (BmV) to induce oedema in mice, the involvement of principal inflammatory mediators and mast cells (MCs) were investigated. The intraplantar injection of BmV (0.3-6 microg/paw) caused a dose- and time-dependent oedema with a peak between 30 and 60 min after venom injection (0.3-1 microg/paw), disappearing within 24h. Either MCs granule inhibition or depletion by cromoglycate or C48/80, respectively, markedly reduced BmV-induced oedema. MCs depletion by imatinib also reduced oedema. Intraperitoneal BmV injection (2.5-10 microg/site) induced MCs degranulation and release of PGD(2). Treatment with promethazine, cimetidine or thioperamide, histamine H1, H2 and H3/H4 receptor antagonists, respectively, markedly reduced the initial phase of oedema. Combined treatment with these antagonists further reduced, but not abrogated oedema. Indomethacin or eterocoxib (cyclooxygenase inhibitors) reduced oedema until 180 min, whereas zileuton (lipoxygenase inhibitor) affected this event until 60 min. Dexamethazone caused a long lasting reduction of oedema. However, L-NAME and aminoguanidine (NO synthase inhibitors) significantly increased BmV-induced oedema. In conclusion, BmV induces oedema, mediated by MCs degranulation, histamine by H1, H2, H3/H4 receptors, prostaglandins and leukotrienes, and down-regulated by NO. Partial neutralization of oedema was observed even when polyspecific bothropic antivenom was injected immediately after venom. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Proton pump inhibitors therapy vs H2 receptor antagonists therapy for upper gastrointestinal bleeding after endoscopy: A meta-analysis

    PubMed Central

    Zhang, Ying-Shi; Li, Qing; He, Bo-Sai; Liu, Ran; Li, Zuo-Jing

    2015-01-01

    AIM: To compare the therapeutic effects of proton pump inhibitors vs H2 receptor antagonists for upper gastrointestinal bleeding in patients after successful endoscopy. METHODS: We searched the Cochrane library, MEDLINE, EMBASE and PubMed for randomized controlled trials until July 2014 for this study. The risk of bias was evaluated by the Cochrane Collaboration’s tool and all of the studies had acceptable quality. The main outcomes included mortality, re-bleeding, received surgery rate, blood transfusion units and hospital stay time. These outcomes were estimated using odds ratios (OR) and mean difference with 95% confidence interval (CI). RevMan 5.3.3 software and Stata 12.0 software were used for data analyses. RESULTS: Ten randomized controlled trials involving 1283 patients were included in this review; 678 subjects were in the proton pump inhibitors (PPI) group and the remaining 605 subjects were in the H2 receptor antagonists (H2RA) group. The meta-analysis results revealed that after successful endoscopic therapy, compared with H2RA, PPI therapy had statistically significantly decreased the recurrent bleeding rate (OR = 0.36; 95%CI: 0.25-0.51) and receiving surgery rate (OR = 0.29; 95%CI: 0.09-0.96). There were no statistically significant differences in mortality (OR = 0.46; 95%CI: 0.17-1.23). However, significant heterogeneity was present in both the numbers of patients requiring blood transfusion after treatment [weighted mean difference (WMD), -0.70 unit; 95%CI: -1.64 - 0.25] and the time that patients remained hospitalized [WMD, -0.77 d; 95%CI: -1.87 - 0.34]. The Begg’s test (P = 0.283) and Egger’s test (P = 0.339) demonstrated that there was no publication bias in our meta-analysis. CONCLUSION: In patients with upper gastrointestinal bleeding after successful endoscopic therapy, compared with H2RA, PPI may be a more effective therapy. PMID:26034370

  5. Pellitorine, an extract of Tetradium daniellii, is an antagonist of the ion channel TRPV1.

    PubMed

    Oláh, Zoltán; Rédei, Dóra; Pecze, László; Vizler, Csaba; Jósvay, Katalin; Forgó, Péter; Winter, Zoltán; Dombi, György; Szakonyi, Gerda; Hohmann, Judit

    2017-10-15

    Transient Receptor Potential Vanilloid 1 (TRPV1) confers noxious heat and inflammatory pain signals in the peripheral nervous system. Clinical trial of resiniferatoxin from Euphorbia species is successfully aimed at TRPV1 in cancer pain management and heading toward new selective painkiller status that further validates this target for drug discovery efforts. Evodia species, used in traditional medicine for hundreds of years, are a recognised source of different TRPV1 agonists, but no antagonist has yet been reported. In a search for painkiller leads, we noted for the first time a TRPV1 antagonist activity in the fresh fruits of Tetradium daniellii (Benn.) T.G. Hartley (syn. Evodia hupehensis Dode). Through a combination of extraction and purification methods with functional TRPV1-specific Ca 2+ uptake assays (bioactivity-guided fractionation/isolation/purification); we isolated a new painkiller candidate that is a distant structural homologue of capsiate exovanilloids and endovanilloids such as anandamide, but a putative competitive inhibitor of the TRPV1. Four additional inactive compounds (N-isobutyl-4,5-epoxy-2E-decadienamide, geranylpsoralen, 8-(7',8'-epoxygeranyloxy)psoralen, and xanthotoxol) were also co-purified with pellitorine. Their structures were established by extensive 1D- and 2D-NMR spectroscopic analysis. 1 H- and 13 C NMR determination of the chemical structure revealed it to be pellitorine, (2E,4E)-N-(2-methylpropyl)deca-2,4-dienamide, which can compete structurally with algesics released in inflammation. In contrast to previous isolates from Evodia species, pellitorine blocked capsaicin-evoked Ca 2+ uptake with an IC 50 of 154 µg/ml (0.69 mM/l). N-Isobutyl-4,5-epoxy-2E-decadienamide and geranylpsoralen, 8-(7',8'-epoxygeranyloxy)psoralen, and xanthotoxol did not affect the TRPV1. This is the first evidence that pellitorine, an aliphatic alkylamide analogue of capsaicin, can serve as an antagonist of the TRPV1 and may inhibit exovanilloid-induced pain. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Water-avoidance stress enhances gastric contractions in freely moving conscious rats: role of peripheral CRF receptors.

    PubMed

    Nozu, Tsukasa; Kumei, Shima; Takakusaki, Kaoru; Okumura, Toshikatsu

    2014-05-01

    Stress alters gastrointestinal motility through central and peripheral corticotropin-releasing factor (CRF) pathways. Accumulating evidence has demonstrated that peripheral CRF is deeply involved in the regulation of gastric motility, and enhances gastric contractions through CRF receptor type 1 (CRF1) and delays gastric emptying (GE) through CRF receptor type 2 (CRF2). Since little is known whether water-avoidance stress (WAS) alters gastric motility, the present study tried to clarify this question and the involvement of peripheral CRF receptor subtypes in the mechanisms. We recorded intraluminal gastric pressure waves using a perfused manometric method. The rats were anesthetized and the manometric catheter was inserted into the stomach 4-6 days before the experiments. We assessed the area under the manometric trace as the motor index (MI), and compared this result with those obtained 1 h before and after initiation of WAS in nonfasted conscious rats. Solid GE for 1 h was also measured. WAS significantly increased gastric contractions. Intraperitoneal (ip) administration of astressin (100 μg/kg, 5 min prior to stress), a nonselective CRF antagonist, blocked the response to WAS. On the other hand, pretreatment (5 min prior to stress) with neither astressin2-B (200 μg/kg, ip), a selective CRF2 antagonist, nor urocortin 2 (30 μg/kg, ip), a selective CRF2 agonist, modified the response to WAS. These drugs did not alter the basal MI. WAS did not change GE. WAS may activate peripheral CRF1 but not CRF2 signaling and stimulates gastric contractions without altering GE.

  7. Anticonvulsant effects of isomeric nonimidazole histamine H3 receptor antagonists

    PubMed Central

    Sadek, Bassem; Saad, Ali; Schwed, Johannes Stephan; Weizel, Lilia; Walter, Miriam; Stark, Holger

    2016-01-01

    Phenytoin (PHT), valproic acid, and modern antiepileptic drugs (AEDs), eg, remacemide, loreclezole, and safinamide, are only effective within a maximum of 70%–80% of epileptic patients, and in many cases the clinical use of AEDs is restricted by their side effects. Therefore, a continuous need remains to discover innovative chemical entities for the development of active and safer AEDs. Ligands targeting central histamine H3 receptors (H3Rs) for epilepsy might be a promising therapeutic approach. To determine the potential of H3Rs ligands as new AEDs, we recently reported that no anticonvulsant effects were observed for the (S)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propanamide (1). In continuation of our research, we asked whether anticonvulsant differences in activities will be observed for its R-enantiomer, namely, (R)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propaneamide (2) and analogs thereof, in maximum electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced convulsion models in rats having PHT and valproic acid (VPA) as reference AEDs. Unlike the S-enantiomer (1), the results show that animals pretreated intraperitoneally (ip) with the R-enantiomer 2 (10 mg/kg) were moderately protected in MES and STR induced models, whereas proconvulsant effect was observed for the same ligand in PTZ-induced convulsion models. However, animals pretreated with intraperitoneal doses of 5, 10, or 15 mg/kg of structurally bulkier (R)-enantiomer (3), in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-yl)propoxy)phenyl)methanol, and its (S)-enantiomer (4) significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the (R)-enantiomer (3) in MES model were significantly greater than those of the standard H3R inverse agonist/antagonist pitolisant, comparable with those observed for PHT, and reversed when rats were pretreated with the selective H3R agonist R-(α)-methyl-histamine. Comparisons of the observed antagonistic in vitro affinities among the ligands 1–6 revealed profound stereoselectivity at human H3Rs with varying preferences for this receptor subtype. Moreover, the in vivo anticonvulsant effects observed in this study for ligands 1–6 showed stereoselectivity in different convulsion models in male adult rats. PMID:27853355

  8. Anticonvulsant effects of isomeric nonimidazole histamine H3 receptor antagonists.

    PubMed

    Sadek, Bassem; Saad, Ali; Schwed, Johannes Stephan; Weizel, Lilia; Walter, Miriam; Stark, Holger

    2016-01-01

    Phenytoin (PHT), valproic acid, and modern antiepileptic drugs (AEDs), eg, remacemide, loreclezole, and safinamide, are only effective within a maximum of 70%-80% of epileptic patients, and in many cases the clinical use of AEDs is restricted by their side effects. Therefore, a continuous need remains to discover innovative chemical entities for the development of active and safer AEDs. Ligands targeting central histamine H 3 receptors (H 3 Rs) for epilepsy might be a promising therapeutic approach. To determine the potential of H 3 Rs ligands as new AEDs, we recently reported that no anticonvulsant effects were observed for the ( S )-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propanamide ( 1 ). In continuation of our research, we asked whether anticonvulsant differences in activities will be observed for its R -enantiomer, namely, ( R )-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propaneamide ( 2 ) and analogs thereof, in maximum electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced convulsion models in rats having PHT and valproic acid (VPA) as reference AEDs. Unlike the S -enantiomer ( 1 ), the results show that animals pretreated intraperitoneally (ip) with the R -enantiomer 2 (10 mg/kg) were moderately protected in MES and STR induced models, whereas proconvulsant effect was observed for the same ligand in PTZ-induced convulsion models. However, animals pretreated with intraperitoneal doses of 5, 10, or 15 mg/kg of structurally bulkier ( R )-enantiomer ( 3 ), in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-yl)propoxy)phenyl)methanol, and its ( S )-enantiomer ( 4 ) significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the ( R )-enantiomer ( 3 ) in MES model were significantly greater than those of the standard H 3 R inverse agonist/antagonist pitolisant, comparable with those observed for PHT, and reversed when rats were pretreated with the selective H 3 R agonist R -(α)-methyl-histamine. Comparisons of the observed antagonistic in vitro affinities among the ligands 1 - 6 revealed profound stereoselectivity at human H 3 Rs with varying preferences for this receptor subtype. Moreover, the in vivo anticonvulsant effects observed in this study for ligands 1 - 6 showed stereoselectivity in different convulsion models in male adult rats.

  9. The effects of inulin and fructo-oligosaccharide on the probiotic properties of Lactobacillus spp. isolated from human milk.

    PubMed

    Tulumoğlu, Şener; Erdem, Belgin; Şimşek, Ömer

    2018-05-22

    This study aims to determine the effects of inulin and fructo-oligosaccharide (FOS) on the probiotic properties of five Lactobacillus spp. isolated from human milk. Lactobacillus spp. were isolated and identified, and the growth characteristics, acid and bile salt tolerance, antagonistic effects, and cholesterol assimilation of Lactobacillus strains were investigated in the presence of inulin and FOS. Lactobacillus casei L1 was able to utilize inulin and FOS as carbon source as well as glucose even other strains were able to use, including Lactobacillus rhamnosus GG. This strain also showed high tolerance to acid and bile salt, even at pH 2.5 and 0.5% bile salt levels, respectively. Inulin and FOS promoted the antimicrobial activity of L. casei L1 against pathogenic bacteria. Cholesterol assimilation was higher than in the other and control probiotic strains in the presence inulin and FOS, which were measured as 14 and 25 mg/dL, respectively. In conclusion, L. casei L1 can use both inulin and FOS to maintain its viability both at digestive conditions and also the relevant prebiotics, and show broad antagonistic activity and cholesterol assimilation.

  10. The effect of memantine on trinitrobenzene sulfonic acid-induced ulcerative colitis in mice.

    PubMed

    Motaghi, Ehsan; Hajhashemi, Valiollah; Mahzouni, Parvin; Minaiyan, Mohsen

    2016-12-15

    Previous reports suggest a significant role for N-Methyl-D-aspartate (NMDA) activation in inflammatory processes. So, this study was conducted to investigate the effect of memantine, a commonly used NMDA receptor antagonist, on inflammatory changes in mice model of colitis. Colitis was induced by intracolonic instillation of trinitrobenzene sulfonic acid (TNBS) (40mg/kg). Animals received memantine (12.5, 25 and 50mg/kg, i.p.), glutamate (2g/kg, p.o.) or dexamethasone (1mg/kg, i.p.) 24h before TNBS instillation and daily thereafter for 4 days. The colonic injury was measured by clinical, macroscopic, microscopic and biochemical analysis. Memantine significantly attenuated the body weight loss, colon weight, the plasma levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and colon level of tumor necrosis factor-α (TNF-α) and myeloperoxidase (MPO); as well as macroscopic and microscopic signs of colitis. Oral administration of glutamate had no significant effect on investigated parameters. Memantine as a NMDA antagonist may provide a novel venue for the development of strategies for the treatment of ulcerative colitis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Bioprospecting marine actinomycetes for multidrug-resistant pathogen control from Rameswaram coastal area, Tamil Nadu, India.

    PubMed

    Wahaab, Femina; Subramaniam, Kalidass

    2018-01-01

    A potent Streptomyces bacillaris strain RAM25C4 was isolated for controlling methicillin-resistant Staphylococcus aureus and multidrug-resistant bacteria such as Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa. A total of 131 actinomycetes were isolated from the Rameswaram coastal region, Tamil Nadu, India. Among 131 actinomycetes, maximum number of actinomycetes (55%) isolated at the distance of 3-6 m from seashore. Out of 131 actinomycetes, 85% of the actinomycetes exhibited different degree of antagonistic activity against test pathogens. The antagonistic activity evaluated using actinomycetes direct culture filtrate and culture filtrate extracts. Among these culture filtrate, extracts had supreme antagonistic activity against multidrug-resistant bacteria and the solvent ethyl acetate was the best for extracting secondary metabolites from actinomycetes. In HPTLC analysis, the presence of macrolides, terpenoids, and quinolones was identified in RAM25C4 extract. In GC-MS analysis, various potent compounds such as phenolic compound-2,6-di-tert-butylphenol, alkaloid compound-1H, 5H, pyrrolo (1' 2':3, 4) imidazo, and quinolone compound-1,4-benzenediol, 2,5-bis(1,1-dimethylethyl) were identified in the ethyl acetate extract of RAM25C4. The phylogenetic analysis of 16S rRNA gene sequence of RAM25C4 isolate was deposited in NCBI with name Streptomyces bacillaris strain RAM25C4 and accession number KM513543.

  12. Effects of GABA ligands injected into the nucleus accumbens shell on fear/anxiety-like and feeding behaviours in food-deprived rats.

    PubMed

    Lopes, Ana Paula Fraga; Ganzer, Laís; Borges, Aline Caon; Kochenborger, Larissa; Januário, Ana Cláudia; Faria, Moacir Serralvo; Marino-Neto, José; Paschoalini, Marta Aparecida

    2012-03-01

    In an attempt to establish a relationship between food intake and fear/anxiety-related behaviours, the goal of this study was to investigate the effect of bilateral injections of GABAA (Muscimol, MUS, doses 25 and 50ng/side) and GABAB (Baclofen, BAC, doses 32 and 64ng/side) receptor agonists in the nucleus accumbens shell (AcbSh) on the level of fear/anxiety-like and feeding behaviours in 24h food-deprived rats. The antagonists of GABAA (Bicuculline, BIC, doses 75 and 150ng/side) and GABAB (Saclofen, SAC, doses 1.5 and 3μg/side) were also tested. The results indicated that the total number of risk assessment behaviour decreased after the injection of both doses of GABAA agonist (MUS) into the AcbSh of 24h food-deprived rats exposed to elevated plus maze. Similar results were obtained after treatment with both doses of GABAB (BAC) agonist in the AcbSh. These data indicated that the activation of both GABAA and GABAB receptors within the AcbSh caused anxiolysis in 24h food-deprived rats. In addition, feeding behaviour (food intake, feeding latency and feeding duration) remained unchanged after treatment with both GABA agonists. In contrast, both food intake and feeding duration decreased after injections of both doses of BIC (GABAA antagonist), while the feeding latency remained unchanged after treatment with both GABA antagonists in the AcbSh of 24h food-deprived rats. The treatment with SAC (GABAB antagonist) did not affect feeding behaviour. Collectively, these data suggest that emotional changes evoked by pharmacological manipulation of the GABA neurotransmission in the AcbSh are not linked with changes in food intake. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. [Screening strains for Trichoderma spp. for strong antagonism against ginseng root pathogens and study on their biological characters].

    PubMed

    Zhao, A-Na; Ding, Wan-Long; Zhu, Dian-Long

    2006-10-01

    To screen the Trichodenna spp. for strong antagonist against ginseng root pathogens. The biological characters of ten Trichoderma strains were compared by culturing on different media. And their antagonistic activity against Phytophthora cactorum, Cylindrocarpon destructans and Rhizoctonia solani were measured on PDA. Tv04-2 and Th3080 showed a good growth on soil solution medium and PDA, and also showed high inhibitory efficacy to the three pathogens. The two Trichoderma strains showed different growth rate under light conditions and pH. Trichoderma strains were sensitive to most fungicides used in ginseng root disease controlling, however Tv04-2 was not sensitive to the fungicide Junchong Jueba.

  14. Carbachol induces Ca(2+)-dependent contraction via muscarinic M2 and M3 receptors in rat intestinal subepithelial myofibroblasts.

    PubMed

    Iwanaga, Koichi; Murata, Takahisa; Okada, Muneyoshi; Hori, Masatoshi; Ozaki, Hiroshi

    2009-07-01

    Intestinal myofibroblasts (IMFs) that exist adjacent to the basement membrane of intestines have contractility and contribute to physical barriers of the intestine. Nerve endings distribute adjacent to IMFs, suggesting neurotransmitters may influence IMFs motility; however, there is no direct evidence showing the interaction. Here, we isolated IMFs from rat colon and investigated the effect of acetylcholine on IMFs contractility. In the collagen gel contraction assay, carbachol (1 - 10 microM) and the muscarinic receptor agonist bethanechol (30 - 300 microM) dose-dependently induced IMFs contraction. Pretreatment with the muscarinic receptor antagonist atropine (1 - 10 nM) inhibited carbachol-induced contraction. In RT-PCR, mRNA expression of all muscarinic receptor subtypes (M(1) - M(5)) was detected in IMFs. Subsequently we found pretreatment with the muscarinic M(2) receptor antagonist 11-([2-[(diethylamino)methyl]-1-piperdinyl]acetyl)-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one (AF-DX116) (10 and 30 nM) or the muscarinic M(3) receptor antagonist 4-diphenylacetoxy-N-methyl-piperidine (4-DAMP) (3 and 10 nM) dose-dependently inhibited carbachol-induced contraction. In Ca(2+) measurement, 1 - 10 microM carbachol and 30 - 300 microM bethanechol elevated the intracellular Ca(2+) concentration ([Ca(2+)](i)) in IMFs. Atropine (10 nM) eliminated carbachol-induced [Ca(2+)](i) elevation. The Ca(2+)-channel blocker LaCl(3) (3 microM) abolished carbachol-induced [Ca(2+)](i) elevation and contraction. Furthermore, AF-DX116 and 4-DAMP dose-dependently inhibited the carbachol-induced [Ca(2+)](i) elevation. These observations suggest that acetylcholine elicits Ca(2+)-dependent IMF contraction through muscarinic M(2) and M(3) receptors.

  15. Facilitation of fear extinction by novelty depends on dopamine acting on D1-subtype dopamine receptors in hippocampus

    PubMed Central

    Menezes, Jefferson; Alves, Niége; Borges, Sidnei; Roehrs, Rafael; de Carvalho Myskiw, Jociane; Furini, Cristiane Regina Guerino; Izquierdo, Ivan; Mello-Carpes, Pâmela B.

    2015-01-01

    Extinction is the learned inhibition of retrieval. Recently it was shown that a brief exposure to a novel environment enhances the extinction of contextual fear in rats, an effect explainable by a synaptic tagging-and-capture process. Here we examine whether this also happens with the extinction of another fear-motivated task, inhibitory avoidance (IA), and whether it depends on dopamine acting on D1 or D5 receptors. Rats were trained first in IA and then in extinction of this task. The retention of extinction was measured 24 h later. A 5-min exposure to a novel environment 30 min before extinction training enhanced its retention. Right after exposure to the novelty, animals were given bilateral intrahippocampal infusions of vehicle (VEH), of the protein synthesis inhibitor anisomycin, of the D1/D5 dopaminergic antagonist SCH23390, of the PKA inhibitor Rp-cAMP or of the PKC inhibitor Gö6976, and of the PKA stimulator Sp-cAMP or of the PKC stimulator PMA. The novelty increased hippocampal dopamine levels and facilitated the extinction, which was inhibited by intrahippocampal protein synthesis inhibitor anisomysin, D1/D5 dopaminerdic antagonist SCH23390, or PKA inhibitor Rp-cAMP and unaffected by PKC inhibitor Gö6976; additionally, the hippocampal infusion of PKA stimulator Sp-cAMP reverts the effect of D1/D5 dopaminergic antagonist SCH 23390, but the infusion of PKC stimulator PMA does not. The results attest to the generality of the novelty effect on fear extinction, suggest that it relies on synaptic tagging and capture, and show that it depends on hippocampal dopamine D1 but not D5 receptors. PMID:25775606

  16. Comparison of inflammatory responses following robotic and open colorectal surgery: a prospective study.

    PubMed

    Zawadzki, Marek; Krzystek-Korpacka, Malgorzata; Gamian, Andrzej; Witkiewicz, Wojciech

    2017-03-01

    Robotic colorectal surgery continues to rise in popularity, but there remains little evidence on the stress response following the procedure. The aim of this study was to evaluate the inflammatory response to robotic colorectal surgery and compare it with the response generated by open colorectal surgery. This was a prospective nonrandomized comparative study involving 61 patients with colorectal cancer. The evaluation of inflammatory response to either robotic or open colorectal surgery was expressed as changes in interleukin-1β, interleukin-1 receptor antagonist, interleukin-6, tumor necrosis factor-α, C-reactive protein, and procalcitonin during the first three postoperative days. Of the 61 patients, 33 underwent robotic colorectal surgery while 28 had open colorectal surgery. Groups were comparable with respect to age, sex, BMI, cancer stage, and type of resection. The relative increase of interleukin-1 receptor antagonist at 8 h postoperative, compared to baseline, was higher in the open group (P = 0.006). The decrease of interleukin-1 receptor antagonist on postoperative days 1 and 3, compared to the maximum at 8 h, was more pronounced in the open group than in the robotic group (P = 0.008, P = 0.006, respectively), and the relative increase of interleukin-6 at 8 h after incision was higher in the open group (P = 0.007). The relative increase of procalcitonin on postoperative days 1 and 3 was higher in the open group than the robotic group (P < 0.001, P = 0.004, respectively). This study shows that when compared with open colorectal surgery, robotic colorectal surgery results in a less pronounced inflammatory response and more pronounced anti-inflammatory action.

  17. Engineering endomorphin drugs: state of the art

    PubMed Central

    Lazarus, Lawrence H; Okada, Yoshio

    2011-01-01

    Importance of the field Although EM-1 (H-Tyr-Pro-Phe-Trp-NH2) and EM-2 (H-Tyr-Pro-Phe-Phe-NH2) are primarily considered agonists for the μ-opioid receptor (MOR), systematic alterations to specific residues provided antagonists and ligands with mixed μ/δ-opioid properties suitable for application to health related topics. Areas covered in this review This review attempts to succinctly provide insight on the development and bioactivity of endomorphin analogues during the past decade. Rational design approaches will focus on the engineering of endomorphin agonists, antagonists and mixed ligands for their application as a multi-target ligand. What the reader will gain While the application of endomorphins as antinociceptive agents and numerous biological endpoints were experimental delineated in laboratory animals and in vitro, clinical use is currently absent. However, structural alterations provide enhanced stability, formation of MOR antagonists or mixed and dual μ/δ-acting ligands could find considerable therapeutic potential. Take home message Aside from alleviating pain, EM analogues open new horizons in the treatment of medical syndromes involving neural reward mechanisms and extraneural regulation effects on homeostasis. Highly selective MOR antagonists may be promising to reduce inflammation, attenuate addiction to drugs and excess consumption of high caloric food, ameliorate alcoholism, affect the immune system and combat opioid bowel dysfunction. PMID:22214283

  18. Antidepressant and anxiolytic properties of the methanolic extract of Momordica charantia Linn (Cucurbitaceae) and its mechanism of action.

    PubMed

    Ishola, I O; Akinyede, A A; Sholarin, A M

    2014-07-01

    The whole plant of Momordica charantia Linn (Cucurbitaceae) is used in traditional African medicine in the management of depressive illness. Momordica charantia (MC) (50-400 mg/kg, p.o.) was administered 1 h before behavioural studies using the forced swimming test (FST) and tail suspension test (TST) to investigate antidepressant-like effect while the anxiolytic-like effect was evaluated with elevated plus maze test (EPM), hole-board test (HBT), and light-dark test (LDT). Acute treatment with MC (50-400 mg/kg) significantly increased swimming time (86.51%) and reduced the duration of immobility (52.35%) in FST and TST with peak effects observed at 200 mg/kg, respectively, in comparison to control. The pretreatment of mice with either sulpiride (dopamine D2 receptor antagonist), or metergoline (5-HT2 receptor antagonist), or cyproheptadine (5-HT2 receptor antagonist), or prazosin (α1-adrenoceptor antagonist), or yohimbine (α2-adrenoceptor antagonist), and atropine (muscarinic cholinergic receptor antagonist) 15 min before oral administration of MC (200 mg/kg) significantly blocked its anti-immobility effect. Similarly, MC (200 mg/kg) significantly reduced anxiety by increasing the open arm exploration (64.27%) in EPM, number of head-dips in HBT (34.38%), and time spent in light compartment (29.38%) in the LDT. However, pretreatment with flumazenil (GABAA receptor antagonist) 15 min before MC (200 mg/kg) significantly blocked (54.76%) its anxiolytic effect. The findings in this study showed that MC possesses antidepressant-like effect that is dependent on the serotonergic (5-HT2 receptor), noradrenergic (α1- and α2-adrenoceptors), dopaminergic (D2 receptor), and muscarinic cholinergic systems and an anxiolytic-like effect that might involve an action on benzodiazepine-type receptor. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Eledoisin and Kassinin, but not Enterokassinin, stimulate ion transport in frog skin.

    PubMed

    Lippe, Claudio; Bellantuono, Vito; Ardizzone, Concetta; Cassano, Giuseppe

    2004-11-01

    In frog skin, tachykinins stimulate the ion transport, estimated by measuring the short-circuit current (SCC) value, by interacting with NK1-like receptors. In this paper we show that Kassinin (NK2 preferring in mammals) increases the SCC, while Enterokassinin has no effect. Therefore, either 2 Pro residues or 1 Pro and 1 basic amino acid must be present in the part exceeding the C-terminal pentapeptide. Eledoisin (NK3 preferring in mammals) stimulation of SCC is reduced by CP99994 and SR48968 (NK1 and NK2 antagonists) and not affected by SB222200 (NK3 antagonist). None of the three antagonists affects Kassinin stimulation of SCC.

  20. Pharmacological characterization of BR-A-657, a highly potent nonpeptide angiotensin II receptor antagonist.

    PubMed

    Chi, Yong Ha; Lee, Joo Han; Kim, Je Hak; Tan, Hyun Kwang; Kim, Sang Lin; Lee, Jae Yeol; Rim, Hong-Kun; Paik, Soo Heui; Lee, Kyung-Tae

    2013-01-01

    The pharmacological profile of BR-A-657, 2-n-butyl-5-dimethylamino-thiocarbonyl-methyl-6-methyl-3-{[2-(1H-tetrazole-5-yl)biphenyl-4-yl]methyl}-pyrimidin-4(3H)-one, a new nonpeptide AT1-selective angiotensin receptor antagonist, has been investigated in a variety of in vitro and in vivo experimental models. In the present study, BR-A-657 displaced [(125)I][Sar(1)-Ile(8)]angiotensin II (Ang II) from its specific binding sites to AT1 subtype receptors in membrane fractions of HEK-293 cells with an IC50 of 0.16 nM. In a functional assay using isolated rabbit thoracic aorta, BR-A-657 inhibited the contractile response to Ang II (pD'2: 9.15) with a significant reduction in the maximum. In conscious rats, BR-A-657 (0.01, 0.1, 1 mg/kg; intravenously (i.v.)) dose-dependently antagonized Ang II-induced pressor responses. In addition, BR-A-657 dose-dependently decreased mean arterial pressure in furosemide-treated rats and renal hypertensive rats. Moreover, BR-A-657 given orally at 1 and 3 mg/kg reduced blood pressure in conscious renal hypertensive rats. Taken together, these findings indicate that BR-A-657 is a potent and specific antagonist of Ang II at the AT1 receptor subtype, and reveal the molecular basis responsible for the marked lowering of blood pressure in conscious rats.

  1. Adenosine A1 receptor antagonist, L-97-1, improves survival and protects the kidney in a rat model of cecal ligation and puncture induced sepsis☆

    PubMed Central

    Wilson, Constance N.; Vance, Constance O.; Lechner, Melissa G.; Matuschak, George M.; Lechner, Andrew J.

    2014-01-01

    Previously it was reported that combining antibiotics with L-97-1, an adenosine A1 receptor antagonist, significantly improves survival and blocks acute lung injury induced by Yersinia pestis CO 99 in a rat model of pneumonic plague. In the current studies using a conscious rat model of cecal ligation and puncture (CLP) sepsis, L-97-1 was administered in daily intravenous infusions in combination with antibiotics to simulate the use of L-97-1 as an anti-sepsis therapeutic in the clinical setting. In these studies, when administered at 12 hours (h) following CLP, in combination with broad spectrum antibiotics, ceftriaxone and clindamycin, L-97-1 improves 7 day (d) survival [25%, 35%, and 75%, respectively for L-97-1 (10 mg/kg/h, 12.5 mg/kg/h, and 15 mg/kg/h) versus (vs.) 25% for antibiotics alone] in a dose-dependent manner. The addition of L-97-1, 15 mg/kg/h to antibiotics significantly increased 7 d survival following CLP compared to therapy with either antibiotics alone (P = 0.002) or L-97-1 at 15 mg/kg/h alone (P < 0.001) and was not significantly different than survival in sham CLP animals (Log-rank (Mantel-Cox) test with Bonferroni’s correction for multiple comparisons). Moreover, in these studies, in combination with antibiotics L-97-1 dose-dependently protects the kidney, significantly improving renal function at 24 h post CLP at 10 mg/kg/h (P < 0.001), 12.5 mg/kg/h (P < 0.0001), and 15 mg/kg/h (P < 0.0001) vs. antibiotics alone (ANOVA followed by Tukey’s post-hoc test for pair-wise comparisons). The results of these studies support efficacy for L-97-1 as an anti-sepsis therapeutic. PMID:25041842

  2. Characterization of SB-271046: A potent, selective and orally active 5-HT6 receptor antagonist

    PubMed Central

    Routledge, Carol; Bromidge, Steven M; Moss, Stephen F; Price, Gary W; Hirst, Warren; Newman, Helen; Riley, Graham; Gager, Tracey; Stean, Tania; Upton, Neil; Clarke, Stephen E; Brown, Anthony M; Middlemiss, Derek N

    2000-01-01

    SB-271046, potently displaced [3H]-LSD and [125I]-SB-258585 from human 5-HT6 receptors recombinantly expressed in HeLa cells in vitro (pKi 8.92 and 9.09 respectively). SB-271046 also displaced [125I]-SB-258585 from human caudate putamen and rat and pig striatum membranes (pKi 8.81, 9.02 and 8.55 respectively). SB-271046 was over 200 fold selective for the 5-HT6 receptor vs 55 other receptors, binding sites and ion channels. In functional studies on human 5-HT6 receptors SB-271046 competitively antagonized 5-HT-induced stimulation of adenylyl cyclase activity with a pA2 of 8.71. SB-271046 produced an increase in seizure threshold over a wide-dose range in the rat maximal electroshock seizure threshold (MEST) test, with a minimum effective dose of ⩽0.1 mg kg−1 p.o. and maximum effect at 4 h post-dose. The level of anticonvulsant activity achieved correlated well with the blood concentrations of SB-271046 (EC50 of 0.16 μM) and brain concentrations of 0.01–0.04 μM at Cmax. These data, together with the observed anticonvulsant activity of other selective 5-HT6 receptor antagonists, SB-258510 (10 mg kg−1, 2–6 h pre-test) and Ro 04-6790 (1–30 mg kg−1, 1 h pre-test), in the rat MEST test, suggest that the anticonvulsant properties of SB-271046 are likely to be mediated by 5-HT6 receptors. Overall, these studies demonstrate that SB-271046 is a potent and selective 5-HT6 receptor antagonist and is orally active in the rat MEST test. SB-271046 represents a valuable tool for evaluating the in vivo central function of 5-HT6 receptors. PMID:10928964

  3. The HIV-1 viral protein Tat increases glutamate and decreases GABA exocytosis from human and mouse neocortical nerve endings.

    PubMed

    Musante, Veronica; Summa, Maria; Neri, Elisa; Puliti, Aldamaria; Godowicz, Tomasz T; Severi, Paolo; Battaglia, Giuseppe; Raiteri, Maurizio; Pittaluga, Anna

    2010-08-01

    Human immunodeficiency virus-1 (HIV-1)-encoded transactivator of transcription (Tat) potentiated the depolarization-evoked exocytosis of [(3)H]D-aspartate ([(3)H]D-ASP) from human neocortical terminals. The metabotropic glutamate (mGlu) 1 receptor antagonist 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) prevented this effect, whereas the mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP) was ineffective. Western blot analysis showed that human neocortex synaptosomes possess mGlu1 and mGlu5 receptors. Tat potentiated the K(+)-evoked release of [(3)H]D-ASP or of endogenous glutamate from mouse neocortical synaptosomes in a CPCCOEt-sensitive and MPEP-insensitive manner. Deletion of mGlu1 receptors (crv4/crv4 mice) or mGlu5 receptors (mGlu5(-/-)mouse) silenced Tat effects. Tat enhanced inositol 1,4,5-trisphosphate production in human and mouse neocortical synaptosomes, consistent with the involvement of group I mGlu receptors. Tat inhibited the K(+)-evoked release of [(3)H]gamma-aminobutyric acid ([(3)H]GABA) from human synaptosomes and that of endogenous GABA or [(3)H]GABA from mouse nerve terminals; the inhibition was insensitive to CPCCOEt or MPEP. Tat-induced effects were retained by Tat(37-72) but not by Tat(48-85). In mouse neocortical slices, Tat facilitated the K(+)- and the veratridine-induced release of [(3)H]D-ASP in a CPCCOEt-sensitive manner and was ineffective in crv4/crv4 mouse slices. These observations are relevant to the comprehension of the pathophysiological effects of Tat in central nervous system and may suggest new potential therapeutic approaches to the cure of HIV-1-associated dementia.

  4. A Functional Melanocortin System May Be Required for Chronic CNS-Mediated Antidiabetic and Cardiovascular Actions of Leptin

    PubMed Central

    da Silva, Alexandre A.; do Carmo, Jussara M.; Freeman, J. Nathan; Tallam, Lakshmi S.; Hall, John E.

    2009-01-01

    OBJECTIVE We recently showed that leptin has powerful central nervous system (CNS)-mediated antidiabetic and cardiovascular actions. This study tested whether the CNS melanocortin system mediates these actions of leptin in diabetic rats. RESEARCH DESIGN AND METHODS A cannula was placed in the lateral ventricle of Sprague-Dawley rats for intracerebroventricular infusions, and arterial and venous catheters were implanted to measure mean arterial pressure (MAP) and heart rate 24 h/day and for intravenous infusions. After recovery from surgery for 8 days, rats were injected with streptozotocin (STZ), and 5 days later, either saline or the melanocortin 3 and 4 receptor (MC3/4R) antagonist SHU-9119 (1 nmol/h) was infused intracerebroventricularly for 17 days. Seven days after starting the antagonist, leptin (0.62 μg/h) was added to the intracerebroventricular infusion for 10 days. Another group of diabetic rats was infused with the MC3/4R agonist MTII (10 ng/h i.c.v.) for 12 days, followed by 7 days at 50 ng/h. RESULTS Induction of diabetes caused hyperphagia, hyperglycemia, and decreases in heart rate (−76 bpm) and MAP (−7 mmHg). Leptin restored appetite, blood glucose, heart rate, and MAP back to pre-diabetic values in vehicle-treated rats, whereas it had no effect in SHU-9119–treated rats. MTII infusions transiently reduced blood glucose and raised heart rate and MAP, which returned to diabetic values 5–7 days after starting the infusion. CONCLUSIONS Although a functional melanocortin system is necessary for the CNS-mediated antidiabetic and cardiovascular actions of leptin, chronic MC3/4R activation is apparently not sufficient to mimic these actions of leptin that may involve interactions of multiple pathways. PMID:19491210

  5. Hippocampal long term memory: effect of the cholinergic system on local protein synthesis.

    PubMed

    Lana, Daniele; Cerbai, Francesca; Di Russo, Jacopo; Boscaro, Francesca; Giannetti, Ambra; Petkova-Kirova, Polina; Pugliese, Anna Maria; Giovannini, Maria Grazia

    2013-11-01

    The present study was aimed at establishing a link between the cholinergic system and the pathway of mTOR and its downstream effector p70S6K, likely actors in long term memory encoding. We performed in vivo behavioral experiments using the step down inhibitory avoidance test (IA) in adult Wistar rats to evaluate memory formation under different conditions, and immunohistochemistry on hippocampal slices to evaluate the level and the time-course of mTOR and p70S6K activation. We also examined the effect of RAPA, inhibitor of mTORC1 formation, and of the acetylcholine (ACh) muscarinic receptor antagonist scopolamine (SCOP) or ACh nicotinic receptor antagonist mecamylamine (MECA) on short and long term memory formation and on the functionality of the mTOR pathway. Acquisition test was performed 30 min after i.c.v. injection of RAPA, a time sufficient for the drug to diffuse to CA1 pyramidal neurons, as demonstrated by MALDI-TOF-TOF imaging. Recall test was performed 1 h, 4 h or 24 h after acquisition. To confirm our results we performed in vitro experiments on live hippocampal slices: we evaluated whether stimulation of the cholinergic system with the cholinergic receptor agonist carbachol (CCh) activated the mTOR pathway and whether the administration of the above-mentioned antagonists together with CCh could revert this activation. We found that (1) mTOR and p70S6K activation in the hippocampus were involved in long term memory formation; (2) RAPA administration caused inhibition of mTOR activation at 1 h and 4 h and of p70S6K activation at 4 h, and long term memory impairment at 24 h after acquisition; (3) scopolamine treatment caused short but not long term memory impairment with an early increase of mTOR/p70S6K activation at 1 h followed by stabilization at longer times; (4) mecamylamine plus scopolamine treatment caused short term memory impairment at 1 h and 4 h and reduced the scopolamine-induced increase of mTOR/p70S6K activation at 1 h and 4 h; (5) mecamylamine plus scopolamine treatment did not impair long term memory formation; (6) in vitro treatment with carbachol activated mTOR and p70S6K and this effect was blocked by scopolamine and mecamylamine. Taken together our data reinforce the idea that distinct molecular mechanisms are at the basis of the two different forms of memory and are in accordance with data presented by other groups that there exist molecular mechanisms that underlie short term memory, others that underlie long term memories, but some mechanisms are involved in both. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. N-terminal modifications improve the receptor affinity and pharmacokinetics of radiolabeled peptidic gastrin-releasing peptide receptor antagonists: examples of 68Ga- and 64Cu-labeled peptides for PET imaging.

    PubMed

    Gourni, Eleni; Mansi, Rosalba; Jamous, Mazen; Waser, Beatrice; Smerling, Christiane; Burian, Antje; Buchegger, Franz; Reubi, Jean Claude; Maecke, Helmut R

    2014-10-01

    Gastrin-releasing peptide receptors (GRPrs) are overexpressed on a variety of human cancers, providing the opportunity for peptide receptor targeting via radiolabeled bombesin-based peptides. As part of our ongoing investigations into the development of improved GRPr antagonists, this study aimed at verifying whether and how N-terminal modulations improve the affinity and pharmacokinetics of radiolabeled GRPr antagonists. The potent GRPr antagonist MJ9, Pip-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH(2) (Pip, 4-amino-1-carboxymethyl-piperidine), was conjugated to 1,4,7-triazacyclononane, 1-glutaric acid-4,7 acetic acid (NODAGA), and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and radiolabeled with (68)Ga and (64)Cu. The GRPr affinity of the corresponding metalloconjugates was determined using (125)I-Tyr(4)-BN as a radioligand. The labeling efficiency of (68)Ga(3+) was compared between NODAGA-MJ9 and NOTA-MJ9 in acetate buffer, at room temperature and at 95°C. The (68)Ga and (64)Cu conjugates were further evaluated in vivo in PC3 tumor xenografts by biodistribution and PET imaging studies. The half maximum inhibitory concentrations of all the metalloconjugates are in the high picomolar-low nanomolar range, and these are the most affine-radiolabeled GRPr antagonists we have studied so far in our laboratory. NODAGA-MJ9 incorporates (68)Ga(3+) nearly quantitatively (>98%) at room temperature within 10 min and at much lower peptide concentrations (1.4 × 10(-6) M) than NOTA-MJ9, for which the labeling yield was approximately 45% under the same conditions and increased to 75% at 95°C for 5 min. Biodistribution studies showed high and specific tumor uptake, with a maximum of 23.3 ± 2.0 percentage injected activity per gram of tissue (%IA/g) for (68)Ga-NOTA-MJ9 and 16.7 ± 2.0 %IA/g for (68)Ga-NODAGA-MJ9 at 1 h after injection. The acquisition of PET images with the (64)Cu-MJ9 conjugates at later time points clearly showed the efficient clearance of the accumulated activity from the background already at 4 h after injection, whereas tumor uptake still remained high. The high pancreas uptake for all radiotracers at 1 h after injection was rapidly washed out, resulting in an increased tumor-to-pancreas ratio at later time points. We have developed 2 GRPr antagonistic radioligands, which are improved in terms of binding affinity and overall biodistribution profile. Their promising in vivo pharmacokinetic performance may contribute to the improvement of the diagnostic imaging of tumors overexpressing GRPr. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. Interactions between angiotensin AT1 receptor antagonists and second-generation antiepileptic drugs in the test of maximal electroshock.

    PubMed

    Łukawski, Krzysztof; Janowska, Agnieszka; Jakubus, Tomasz; Czuczwar, Stanisław J

    2014-06-01

    The anticonvulsant activity of angiotensin AT1 receptor antagonists, losartan (2-n-butyl-4-chloro-5-hydroxymethyl-1-[(2'(1H-tetrazol-5-yl)-biphenil-4-yl)methyl]imidazole) and telmisartan (49-[(1,49-dimethyl-29-propyl[2,69-bi-1H-benzimidazo]-19-yl)methyl]-[1,19-biphenyl]-2-carboxylic acid), has been reported recently. It is suggested that AT1 receptor antagonists may affect the protective action of antiepileptic drugs. The aim of this study was to determine the influence of losartan and telmisartan on the anticonvulsant activity of some second-generation antiepileptics (lamotrigine - LTG, oxcarbazepine - OXC, and topiramate - TPM). For this purpose, the maximal electroshock seizure (MES) test in mice was used. Additionally, the drug combinations were checked for adverse effects in the passive avoidance and chimney tests. In the MES test, losartan at the doses of 30 and 50 mg/kg, administered intraperitoneally (i.p.), potentiated the protective action of LTG (P < 0.01). This interaction was not accompanied by a significant change of LTG level either in plasma or in the brain. Telmisartan at the dose of 30 mg/kg i.p. enhanced the anticonvulsant action of TPM (P < 0.01). However, this interaction was pharmacokinetic in nature, as telmisartan significantly increased plasma and total brain concentrations of TPM (P < 0.001). The combinations of AT1 receptor antagonists with antiepileptic drugs did not affect retention in the passive avoidance test or motor coordination in the chimney test. The potentiation of the anticonvulsant action of LTG by losartan probably on account of pharmacodynamic interactions, make this combination important for further experimental and clinical studies. The combination of telmisartan and TPM is less beneficial due to pharmacokinetic interactions. © 2013 The Authors Fundamental and Clinical Pharmacology © 2013 Société Française de Pharmacologie et de Thérapeutique.

  8. Discovery, SAR, and Radiolabeling of Halogenated Benzimidazole Carboxamide Antagonists as Useful Tools for (alpha)4(beta)1 Integrin Expressed on T- and B-cell Lymphomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, R D; Natarajan, A; Lau, E Y

    2010-02-08

    The cell surface receptor {alpha}{sub 4}{beta}{sub 1} integrin is an attractive yet poorly understood target for selective diagnosis and treatment of T- and B-cell lymphomas. This report focuses on the rapid microwave preparation of medicinally pertinent benzimidazole heterocycles, structure-activity relationships (SAR) of novel halobenzimidazole carboxamide antagonists 3-6, and preliminary biological evaluation of radioiodinated agents 7, 8, and 18. The I-125 derivative 18 had good tumor uptake (12 {+-} 1% ID/g at 24 h; 4.5 {+-} 1% ID/g at 48 h) and tumor:kidney ratio ({approx}4:1 at 24 h; 2.5:1 at 48 h) in xenograft murine models of B-cell lymphoma. Molecular homologymore » models of {alpha}{sub 4}{beta}{sub 1} integrin have predicted that docked halobenzimidazole carboxamides have the halogen atom in a suitable orientation for halogen-hydrogen bonding. These high affinity ({approx} pM binding) halogenated ligands are attractive tools for medicinal and biological use; the fluoro and iodo derivatives are potential radiodiagnostic ({sup 18}F) or radiotherapeutic ({sup 131}I) agents, whereas the chloro and bromo analogues could provide structural insight into integrin-ligand interactions through photoaffinity cross-linking/mass spectroscopy experiments, as well as co-crystallization X-ray studies.« less

  9. Naloxone-blocked depriming effect of anxiolytic selank on apomorphine-induced behavioral manifestations of hyperfunction of dopamine system.

    PubMed

    Meshavkin, V K; Kost, N V; Sokolov, O Yu; Zolotarev, Yu A; Myasoedov, N F; Zozulya, A A

    2006-11-01

    Peptide anxiolytic selank (Thr-Lys-Pro-Arg-Pro-Gly-Pro) applied intraperitoneally in doses of 0.01, 0.1, 1.0, and 10.0 mg/kg to mice reduces behavioral manifestations of dopaminergic system induced by apomorphine in the verticalization test. This effect was comparable to that of atypical antipsychotic olanzapine in near-therapeutic doses (0.1 and 1.0 mg/kg, intraperitoneally) and was blocked with nonselective opioid receptor antagonist naloxone (10 mg/kg, intraperitoneally). Radioreceptor assay showed that selank did not displace nonselective D2-dopamine receptor antagonist (3)H-spiperone (EC50>100 microM) and delta- and micro-opioid receptor ligand 3H-DADLE (EC50>40 microM) from specific binding sites on rat brain membranes. It is hypothesized that the revealed behavioral effect of selank is mediated by its modulating effect on the endogenous opioid system and specifically, by its effect on activity of enkephalin-degrading enzymes.

  10. Isolation and characterization of antagonistic fungi against potato scab pathogens from potato field soils.

    PubMed

    Tagawa, Masahiro; Tamaki, Hideyuki; Manome, Akira; Koyama, Osamu; Kamagata, Yoichi

    2010-04-01

    Potato scab is a serious plant disease caused by several Streptomyces sp., and effective control methods remain unavailable. Although antagonistic bacteria and phages against potato scab pathogens have been reported, to the best of our knowledge, there is no information about fungi that are antagonistic to the pathogens. The aim of this study was to isolate fungal antagonists, characterize their phylogenetic positions, determine their antagonistic activities against potato scab pathogens, and highlight their potential use as control agents under lower pH conditions. Fifteen fungal stains isolated from potato field soils were found to have antagonistic activity against three well-known potato scab pathogens: Streptomyces scabiei, Streptomyces acidiscabiei, and Streptomyces turgidiscabiei. These 15 fungal strains were phylogenetically classified into at least six orders and nine genera based on 18S rRNA gene sequencing analysis. These fungal isolates were related to members of the genera Penicillium, Eupenicillium, Chaetomium, Fusarium, Cladosporium, Mortierella, Kionochaeta, Pseudogymnoascus, and Lecythophora. The antagonistic activities of most of the fungal isolates were highly strengthened under the lower pH conditions, suggesting the advantage of combining their use with a traditional method such as soil acidification. This is the first report to demonstrate that phylogenetically diverse fungi show antagonistic activity against major potato scab pathogens. These fungal strains could be used as potential agents to control potato scab disease.

  11. New antagonists of LHRH. II. Inhibition and potentiation of LHRH by closely related analogues.

    PubMed

    Bajusz, S; Csernus, V J; Janaky, T; Bokser, L; Fekete, M; Schally, A V

    1988-12-01

    Modifications of the previously described LHRH antagonists, [Ac-D-Nal(2)1, D-Phe(4Cl)2, D-Trp3, D-Cit6, D-Ala10]LHRH and the corresponding D-Hci6 analogue, have been made to alter the hydrophobicity of the N-terminal acetyl-tripeptide portion. Substitution of D-Trp3 with the less hydrophobic D-Pal(3) had only marginal effects on the antagonistic activities and receptor binding potencies of the D-Cit/D-Hci6 analogues, but it appeared to further improve the toxicity lowering effect of D-Cit/D-Hci6 substitution. Antagonists containing D-Pal(3)3 and D-Cit/D-Hci6 residues, i.e. [Ac-D-Nal(2)1, D-Phe(4Cl)2, D-Pal(3)3, D-Cit6, D-Ala10]LHRH (SB-75) and [Ac-D-Nal(2)1, D-Phe(4Cl)2, D-Pal(3)3, D-Hci6, D-Ala10]LHRH (SB-88), were completely free of the toxic effects, such as cyanosis and respiratory depression leading to death, which have been observed in rats with the D-Trp3, D-Arg6 antagonist and related antagonists. Replacement of the N-acetyl group with the hydrophilic carbamoyl group caused a slight decrease in antagonistic activities, particularly in vitro. Introduction of urethane type acyl group such as methoxycarbonyl (Moc) or t-butoxycarbonyl (Boc) led to analogues that showed LHRH-potentiating effect. The increase in potency induced by these analogues, e.g. [Moc-D-Nal(2)1, D-Phe(4Cl)2, D-Trp3, D-Cit6, D-Ala10]LHRH and [Boc-D-Phe1, D-Phe(4Cl)2, D-Pal(3)3, D-Cit6, D-Ala10]LHRH, was 170-260% and persisted for more than 2 h when studied in a superfused rat pituitary system.

  12. Isolation and identification of a novel bacterium, Lactobacillus sakei subsp. dgh strain 5, and optimization of growth condition for highest antagonistic activity.

    PubMed

    Tashakor, Amin; Hosseinzadehdehkordi, Mahshid; Emruzi, Zeynab; Gholami, Dariush

    2017-05-01

    In the present study, we isolated Lactobacillus sakei strain DGH5 from raw beef meat. This bacterium plays an inhibitory effect against food-spoiling bacteria and food-borne pathogens, including Listeria monocytogenes, a gram-positive and pathogenic bacterium. Lactobacillus sakei strain DGH5 was identified through both phenotypical and biochemical tests accompanied with 16S rRNA sequence analysis. Among all the sources of carbon, nitrogen and phosphorous forms, we selected the most potent compounds to optimize the condition for the highest antagonistic activity. Among the sugars, polygalacturonic acid demonstrated to improve the antagonistic activity. Ammonium nitrate demonstrated to be suitable nitrogen sources. Amongst phosphorous sources, disodium hydrogen phosphate had the greatest antagonistic effect. According to Taguchi's orthogonal array, temperature, disodium hydrogen phosphate and soy Peptone had significant effect on antagonistic activity. Furthermore, mean comparisons showed that the optimum conditions achieved at pH 6.0, 25 °C temperature, 1.5% (w/v) Na 2 HPO 4 and 0.5% (w/v) peptone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Selective Activation of Cannabinoid CB2 Receptors Suppresses Neuropathic Nociception Induced by Treatment with the Chemotherapeutic Agent Paclitaxel in Rats

    PubMed Central

    Rahn, Elizabeth J.; Zvonok, Alexander M.; Thakur, Ganesh A.; Khanolkar, Atmaram D.; Makriyannis, Alexandros; Hohmann, Andrea G.

    2009-01-01

    Activation of cannabinoid CB2 receptors suppresses neuropathic pain induced by traumatic nerve injury. The present studies were conducted to evaluate the efficacy of cannabinoid CB2 receptor activation in suppressing painful peripheral neuropathy evoked by chemotherapeutic treatment with the anti-tumor agent paclitaxel. Rats received paclitaxel (2 mg/kg i.p. per day) on four alternate days to induce mechanical hypersensitivity (mechanical allodynia). Mechanical allodynia was defined as a lowering of the threshold for paw withdrawal to stimulation of the plantar hind paw surface with an electronic von Frey stimulator. Mechanical allodynia developed in paclitaxel-treated animals relative to groups receiving the cremophor: ethanol: saline vehicle at the same times. Two structurally distinct cannabinoid CB2 agonists—the aminoalkylindole (R,S)-AM1241 ((R,S)-(2-iodo-5-nitrophenyl)-[1-((1-methyl-piperidin-2-yl)methyl)-1H-indol-3-yl]-methanone) and the cannabilactone AM1714 (1,9-dihydroxy-3-(1′,1′-dimethylheptyl)-6H-benzo[c]chromene-6-one)—produced a dose-related suppression of established paclitaxel-evoked mechanical allodynia following systemic administration. Pretreatment with the CB2 antagonist SR144528 (5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-N-(1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl)-1H-pyrazole-3-carboxamide), but not the CB1 antagonist SR141716 (5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide), blocked the anti-allodynic effects of both (R,S)-AM1241 and AM1714. Moreover, (R)-AM1241, but not (S)-AM1241, suppressed paclitaxel-evoked mechanical allodynia relative to either vehicle treatment or pre-injection thresholds, consistent with mediation by CB2. Administration of either the CB1 or CB2 antagonist alone failed to alter paclitaxel-evoked mechanical allodynia. Moreover, (R,S)-AM1241 did not alter paw withdrawal thresholds in rats that received the cremophor vehicle in lieu of paclitaxel whereas AM1714 induced a modest antinociceptive effect. Our data suggest that cannabinoid CB2 receptors may be important therapeutic targets for the treatment of chemotherapy-evoked neuropathy. PMID:18664590

  14. Selective activation of cannabinoid CB2 receptors suppresses neuropathic nociception induced by treatment with the chemotherapeutic agent paclitaxel in rats.

    PubMed

    Rahn, Elizabeth J; Zvonok, Alexander M; Thakur, Ganesh A; Khanolkar, Atmaram D; Makriyannis, Alexandros; Hohmann, Andrea G

    2008-11-01

    Activation of cannabinoid CB(2) receptors suppresses neuropathic pain induced by traumatic nerve injury. The present studies were conducted to evaluate the efficacy of cannabinoid CB(2) receptor activation in suppressing painful peripheral neuropathy evoked by chemotherapeutic treatment with the antitumor agent paclitaxel. Rats received paclitaxel (2 mg/kg i.p./day) on 4 alternate days to induce mechanical hypersensitivity (mechanical allodynia). Mechanical allodynia was defined as a lowering of the threshold for paw withdrawal to stimulation of the plantar hind paw surface with an electronic von Frey stimulator. Mechanical allodynia developed in paclitaxel-treated animals relative to groups receiving the Cremophor EL/ethanol/saline vehicle at the same times. Two structurally distinct cannabinoid CB(2) agonists, the aminoalkylindole (R,S)-AM1241 [(R,S)-(2-iodo-5-nitrophenyl)-[1-((1-methyl-piperidin-2-yl)methyl)-1H-indol-3-yl]-methanone] and the cannabilactone AM1714 (1,9-dihydroxy-3-(1',1'-dimethylheptyl)-6H-benzo[c]chromene-6-one), produced a dose-related suppression of established paclitaxel-evoked mechanical allodynia after systemic administration. Pretreatment with the CB(2) antagonist SR144528 [5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-N-(1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl)-1H-pyrazole-3-carboxamide], but not the CB(1) antagonist SR141716 [5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide], blocked the antiallodynic effects of both (R,S)-AM1241 and AM1714. Moreover, (R)-AM1241, but not (S)-AM1241, suppressed paclitaxel-evoked mechanical allodynia relative to either vehicle treatment or preinjection thresholds, consistent with mediation by CB(2). Administration of either the CB(1) or CB(2) antagonist alone failed to alter paclitaxel-evoked mechanical allodynia. Moreover, (R,S)-AM1241 did not alter paw withdrawal thresholds in rats that received the Cremophor EL vehicle in lieu of paclitaxel, whereas AM1714 induced a modest antinociceptive effect. Our data suggest that cannabinoid CB(2) receptors may be important therapeutic targets for the treatment of chemotherapy-evoked neuropathy.

  15. Effect of single point mutations of the human tachykinin NK1 receptor on antagonist affinity.

    PubMed

    Lundstrom, K; Hawcock, A B; Vargas, A; Ward, P; Thomas, P; Naylor, A

    1997-10-15

    Molecular modelling and site-directed mutagenesis were used to identify eleven amino acid residues which may be involved in antagonist binding of the human tachykinin NK1 receptor. Recombinant receptors were expressed in mammalian cells using the Semliki Forest virus system. Wild type and mutant receptors showed similar expression levels in BHK and CHO cells, verified by metabolic labelling. Binding affinities were determined for a variety of tachykinin NK1 receptor antagonists in SFV-infected CHO cells. The binding affinity for GR203040, CP 99,994 and CP 96,345 was significantly reduced by mutant Q165A. The mutant F268A significantly reduced the affinity for GR203040 and CP 99,994 and the mutant H197A had reduced affinity for CP 96,345. All antagonists seemed to bind in a similar region of the receptor, but do not all rely on the same binding site interactions. Functional coupling to G-proteins was assayed by intracellular Ca2+ release in SFV-infected CHO cells. The wild type receptor and all mutants except A162L and F268A responded to substance P stimulation.

  16. Structural Diversity of Ligand-Binding Androgen Receptors Revealed by Microsecond Long Molecular Dynamics Simulations and Enhanced Sampling.

    PubMed

    Duan, Mojie; Liu, Na; Zhou, Wenfang; Li, Dan; Yang, Minghui; Hou, Tingjun

    2016-09-13

    Androgen receptor (AR) plays important roles in the development of prostate cancer (PCa). The antagonistic drugs, which suppress the activity of AR, are widely used in the treatment of PCa. However, the molecular mechanism of antagonism about how ligands affect the structures of AR remains elusive. To better understand the conformational variability of ARs bound with agonists or antagonists, we performed long time unbiased molecular dynamics (MD) simulations and enhanced sampling simulations for the ligand binding domain of AR (AR-LBD) in complex with various ligands. Based on the simulation results, we proposed an allosteric pathway linking ligands and helix 12 (H12) of AR-LBD, which involves the interactions among the ligands and the residues W741, H874, and I899. The interaction pathway provides an atomistic explanation of how ligands affect the structure of AR-LBD. A repositioning of H12 was observed, but it is facilitated by the C-terminal of H12, instead of by the loop between helix 11 (H11) and H12. The bias-exchange metadynamics simulations further demonstrated the above observations. More importantly, the free energy profiles constructed by the enhanced sampling simulations revealed the transition process between the antagonistic form and agonistic form of AR-LBD. Our results would be helpful for the design of more efficient antagonists of AR to combat PCa.

  17. Discovery of Natural Products as Novel and Potent FXR Antagonists by Virtual Screening

    NASA Astrophysics Data System (ADS)

    Diao, Yanyan; Jiang, Jing; Zhang, Shoude; Li, Shiliang; Shan, Lei; Huang, Jin; Zhang, Weidong; Li, Honglin

    2018-04-01

    Farnesoid X receptor (FXR) is a member of nuclear receptor family involved in multiple physiological processes through regulating specific target genes. The critical role of FXR as a transcriptional regulator makes it a promising target for diverse diseases, especially those related to metabolic disorders such as diabetes and cholestasis. However, the underlying activation mechanism of FXR is still a blur owing to the absence of proper FXR modulators. To identify potential FXR modulators, an in-house natural product database (NPD) containing over 4000 compounds was screened by structure-based virtual screening strategy and subsequent hit-based similarity searching method. After the yeast two-hybrid (Y2H) assay, six natural products were identified as FXR antagonists which blocked the CDCA-induced SRC-1 association. The IC50 values of compounds 2a, a diterpene bearing polycyclic skeleton, and 3a, named daphneone with chain scaffold, are as low as 1.29 μM and 1.79 μM, respectively. Compared to the control compound guggulsterone (IC50 = 6.47 μM), compounds 2a and 3a displayed 5-fold and 3-fold higher antagonistic activities against FXR, respectively. Remarkably, the two representative compounds shared low topological similarities with other reported FXR antagonists. According to the putative binding poses, the molecular basis of these antagonists against FXR was also elucidated in this report.

  18. Administration of nicotinic receptor antagonists during the period of memory consolidation affects passive avoidance learning and modulates synaptic efficiency in the CA1 region in vivo.

    PubMed

    Dobryakova, Y V; Gurskaya, O Ya; Markevich, V A

    2015-01-22

    We examined whether a non-selective antagonist of nAChRs mecamylamine and selective antagonists of α4β2-containing nAChRs dihydro-β-erythroidine (DHβE) and α7-containing nAChRs methyllycaconitine (MLA) affect learning performance and synaptic efficiency in the CA1 area of the hippocampus of freely moving rats during the memory consolidation period. Adult male Wistar rats received mecamylamine (0.5 mg/kg), DHβE (1 mg/kg), MLA (2 mg/kg) or saline immediately after training in a passive avoidance task. Memory retention was examined 24 h after the training. The changes in the latency of the first entry into a dark compartment of a test chamber were chosen as a criterion of learning. The ability of nAChRs antagonists to induce changes in the basal level of focal potentials (fEPSP, field excitatory postsynaptic potential) was estimated before training (baseline), 90 min after the training (consolidation period) and 24 h after the training (retention period). We found that in untrained rats mecamylamine, DHβE and MLA diminished the amplitude of fEPSP within the first 90 min after the injection; similar effect was observed in DHβE- and MLA-treated trained animals. These suppressive effects of DHβE and MLA were associated with memory loss. In contrast, mecamylamine, when applied to trained animals, tended to increase latency to enter the dark chamber and did not influence fEPSP during first 90 min after injection. Thus, the nAChRs antagonists with different selectivity induced different changes in fEPSP and behavior which suggests that nAChRs with different subunit composition are diversely involved in memory consolidation. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Effect of a 5-lipoxygenase inhibitor and leukotriene antagonist (PF 5901) on antigen-induced airway responses in neonatally immunized rabbits.

    PubMed Central

    Herd, C. M.; Donigi-Gale, D.; Shoupe, T. S.; Burroughs, D. A.; Yeadon, M.; Page, C. P.

    1994-01-01

    1. The effect of a single intratracheal dose (10 mg) of PF 5901 (2-[3(1-hydroxyhexyl) phenoxymethyl] quinoline hydrochloride, a specific inhibitor of the 5-lipoxygenase pathway of arachidonic acid metabolism and a leukotriene D4 antagonist) on airway changes induced in response to Alternaria tenuis aerosol challenge was assessed in adult rabbits neonatally immunized. Leukotriene generation was determined in vivo by measuring leukotriene B4 (LTB4) levels in bronchoalveolar lavage (BAL) fluid and ex vivo by measuring calcium ionophore-stimulated production of LTB4 in whole blood. 2. While PF 5901 (10 mg) had no significant effect on the acute bronchoconstriction induced by antigen, this dose was sufficient to inhibit significantly the increase in airway responsiveness to inhaled histamine 24 h following antigen challenge (P < 0.05). 3. Total leucocyte infiltration into the airways induced by antigen, as assessed by bronchoalveolar lavage, was significantly inhibited by pretreatment with PF 5901 (10 mg). However, the pulmonary infiltration of neutrophils and eosinophils induced by antigen was unaltered by prior treatment with PF 5901 (10 mg). 4. PF 5901 (10 mg) had no effect on ex vivo LTB4 synthesis in whole blood. However, the antigen-induced increase in LTB4 levels in BAL 24 h following challenge was significantly inhibited (P < 0.05). 5. We suggest from the results of the present study that the antigen-induced airway hyperresponsiveness to inhaled histamine in immunized rabbits is mediated, at least in part, by products of the 5-lipoxygenase metabolic pathway, and is not dependent on the extent of eosinophil or neutrophil influx into the airway lumen. PMID:8032653

  20. In vivo pharmacological characterisation of bilastine, a potent and selective histamine H1 receptor antagonist.

    PubMed

    Corcóstegui, Reyes; Labeaga, Luis; Innerárity, Ana; Berisa, Agustín; Orjales, Aurelio

    2006-01-01

    We set out to establish the in vivo histamine H(1) receptor antagonistic (antihistaminic) and antiallergic properties of bilastine. In vivo antihistaminic activity experiments consisted of measurement of: inhibition of increase in capillary permeability and reduction in microvascular extravasation and bronchospasm in rats and guinea pigs induced by histamine and other inflammatory mediators; and protection against lethality induced by histamine and other inflammatory mediators in rats. In vivo antiallergic activity experiments consisted of measurement of passive and active cutaneous anaphylactic reactions as well as type III and type IV allergic reactions in sensitised rodents. In the in vivo antihistaminic activity experiments, bilastine was shown to have a positive effect, similar to that of cetirizine and more potent than that of fexofenadine. The results of the in vivo antiallergic activity experiments showed that the properties of bilastine in this setting are similar to those observed for cetirizine and superior to fexofenadine in the model of passive cutaneous anaphylactic reaction. When active cutaneous anaphylactic reaction experiments were conducted, bilastine showed significant activity, less potent than that observed with cetirizine but superior to that of fexofenadine. Evaluation of the type III allergic reaction showed that of the antihistamines only bilastine was able to inhibit oedema in sensitised mice, although its effect in this respect was much less potent than that observed with dexamethasone. In terms of the type IV allergic reaction, neither bilastine, cetirizine nor fexofenadine significantly modified the effect caused by oxazolone. The results of our in vivo preclinical studies corroborate those obtained from previously conducted in vitro experiments of bilastine, and provide evidence that bilastine possesses antihistaminic as well as antiallergic properties, with similar potency to cetirizine and superior potency to fexofenadine.

  1. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells inmore » the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by mecamylamine. {alpha}1 and {alpha}3-nAChR mRNA expression was significantly upregulated in NASH fibrosis compared to normal livers. Conclusion: Nicotine at levels in smokers' blood is pro-fibrogenic, through actions on hHSCs expressed nAChRs. Therefore, CS, via its nicotine content, may worsen liver fibrosis. Moreover, nicotinic receptor antagonists may have utility as novel anti-fibrotic agents.« less

  2. The role of neuropeptide Y in the ovine fetal cardiovascular response to reduced oxygenation

    PubMed Central

    Sanhueza, Emilia M; Johansen-Bibby, Anja A; Fletcher, Andrew J W; Riquelme, Raquel A; Daniels, Alejandro J; Serón-Ferré, Maria; Gaete, Cristián R; Carrasco, Jorge E; Llanos, Aníbal J; Giussani, Dino A

    2003-01-01

    This study investigated the role of neuropeptide Y (NPY) in mediating cardiovascular responses to reduced oxygenation in the late gestation ovine fetus by: (1) comparing the effects on the cardiovascular system of an exogenous infusion of NPY with those elicited by moderate or severe reductions in fetal oxygenation; and (2) determining the effect of fetal i.v. treatment with a selective NPY-Y1 receptor antagonist on the fetal cardiovascular responses to acute moderate hypoxaemia. Under general anaesthesia, 14 sheep fetuses (0.8–0.9 of gestation) were surgically prepared with vascular and amniotic catheters. In 5 of these fetuses, a Transonic flow probe was also implanted around a femoral artery. Following at least 5 days of recovery, one group of fetuses (n = 9) was subjected to a 30 min treatment period with exogenous NPY (17 μg kg−1 bolus plus 0.85 μg kg−1 min−1 infusion). In this group, fetal blood pressure and heart rate were monitored continuously and the distribution of the fetal combined ventricular output was assessed via injection of radiolabelled microspheres before and during treatment. The second group of fetuses instrumented with the femoral flow probe (n = 5) were subjected to a 3 h experiment consisting of 1 h of normoxia, 1 h of hypoxaemia, and 1 h of recovery during a slow i.v. infusion of vehicle. One or two days later, the acute hypoxaemia protocol was repeated during fetal i.v. treatment with a selective NPY-Y1 receptor antagonist (50 μg kg−1bolus + 1.5 μg kg−1 min−1 infusion). In these fetuses, fetal arterial blood pressure, heart rate and femoral vascular resistance were recorded continuously. The results show that fetal treatment with exogenous NPY mimics the fetal cardiovascular responses to asphyxia, and that treatment of the sheep fetus with a selective NPY-Y1 receptor antagonist does not affect the fetal cardiovascular response to acute moderate hypoxaemia. These results support a greater role for NPY in mediating the fetal cardiovascular responses to acute asphyxia than to acute moderate hypoxaemia. PMID:12563013

  3. Histamine release and fibrinogen adsorption mediate acute inflammatory responses to biomaterial implants in humans

    PubMed Central

    Zdolsek, Johann; Eaton, John W; Tang, Liping

    2007-01-01

    Background Medical implants often fail as a result of so-called foreign body reactions during which inflammatory cells are recruited to implant surfaces. Despite the clinical importance of this phenomenon, the mechanisms involved in these reactions to biomedical implants in humans are not well understood. The results from animal studies suggest that both fibrinogen adsorption to the implant surface and histamine release by local mast cells are involved in biomaterial-mediated acute inflammatory responses. The purpose of this study was to test this hypothesis in humans. Methods Thirteen male medical student volunteers (Caucasian, 21–30 years of age) were employed for this study. To assess the importance of fibrinogen adsorption, six volunteers were implanted with polyethylene teraphthalate disks pre-coated with their own (fibrinogen-containing) plasma or (fibrinogen-free) serum. To evaluate the importance of histamine, seven volunteers were implanted with uncoated disks with or without prior oral administration of histamine receptor antagonists. The acute inflammatory response was estimated 24 hours later by measuring the activities of implant-associated phagocyte-specific enzymes. Results Plasma coated implants accumulated significantly more phagocytes than did serum coated implants and the recruited cells were predominantly macrophage/monocytes. Administration of both H1 and H2 histamine receptor antagonists greatly reduced the recruitment of macrophages/monocytes and neutrophils on implant surfaces. Conclusion In humans – as in rodents – biomaterial-mediated inflammatory responses involve at least two crucial events: histamine-mediated phagocyte recruitment and phagocyte accumulation on implant surfaces engendered by spontaneously adsorbed host fibrinogen. Based on these results, we conclude that reducing fibrinogen:surface interactions should enhance biocompatibility and that administration of histamine receptor antagonists prior to, and shortly after, medical device implantation should improve the functionality and longevity of medical implants. PMID:17603911

  4. Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece.

    PubMed

    Ntalli, Nikoletta G; Ferrari, Federico; Giannakou, Ioannis; Menkissoglu-Spiroudi, Urania

    2011-03-01

    Biorational means for phytonematode control were studied within the context of an increasingly ecofriendly pest management global approach. The nematicidal activity and the chemical composition of essential oils (EOs) isolated from seven plants grown in Greece and ten selected compounds extracted from them against second-stage juveniles (J2) of Meloidogyne incognita (Kof. & White) Chitwood were evaluated using juvenile paralysis experiments. Additionally, synergistic and antagonistic interactions between nematicidal terpenes were studied using an effect addition model, with the comparison made at one concentration level. The 96 h EC(50) values of Foeniculum vulgare Mill., Pimpinella anisum L., Eucalyptus meliodora A Cunn ex Schauer and Pistacia terebinthus L. were 231, 269, 807 and 1116 µg mL(-1) , respectively, in an immersion bioassay. Benzaldehyde (9 µg mL(-1) ) was the most toxic compound, followed by γ-eudesmol (50 µg mL(-1) ) and estragole (180 µg mL(-1) ), based on 96 h EC(50) values. The most potent terpene pairs between which synergistic actions were found, in decreasing order, were: trans-anethole/geraniol, trans-anethole/eugenol, carvacrol/eugenol and geraniol/carvacrol. This is the first report on the activity of F. vulgare, P. anisum, E. meliodora and P. terebinthus, and additionally on synergistic/antagonistic nematicidal terpene interactions, against M. incognita, providing alternative methods for nematode control. Copyright © 2010 Society of Chemical Industry.

  5. The Cannabinoids Δ8THC, CBD, and HU-308 Act via Distinct Receptors to Reduce Corneal Pain and Inflammation

    PubMed Central

    Thapa, Dinesh; Cairns, Elizabeth A.; Szczesniak, Anna-Maria; Toguri, James T.; Caldwell, Meggie D.; Kelly, Melanie E. M.

    2018-01-01

    Abstract Background and Purpose: Corneal injury can result in dysfunction of corneal nociceptive signaling and corneal sensitization. Activation of the endocannabinoid system has been reported to be analgesic and anti-inflammatory. The purpose of this research was to investigate the antinociceptive and anti-inflammatory effects of cannabinoids with reported actions at cannabinoid 1 (CB1R) and cannabinoid 2 (CB2R) receptors and/or noncannabinoid receptors in an experimental model of corneal hyperalgesia. Methods: Corneal hyperalgesia (increased pain response) was generated using chemical cauterization of the corneal epithelium in wild-type (WT) and CB2R knockout (CB2R−/−) mice. Cauterized eyes were treated topically with the phytocannabinoids Δ8-tetrahydrocannabinol (Δ8THC) or cannabidiol (CBD), or the CBD derivative HU-308, in the presence or absence of the CB1R antagonist AM251 (2.0 mg/kg i.p.), or the 5-HT1A receptor antagonist WAY100635 (1 mg/kg i.p.). Behavioral pain responses to a topical capsaicin challenge at 6 h postinjury were quantified from video recordings. Mice were euthanized at 6 and 12 h postcorneal injury for immunohistochemical analysis to quantify corneal neutrophil infiltration. Results: Corneal cauterization resulted in hyperalgesia to capsaicin at 6 h postinjury compared to sham control eyes. Neutrophil infiltration, indicative of inflammation, was apparent at 6 and 12 h postinjury in WT mice. Application of Δ8THC, CBD, and HU-308 reduced the pain score and neutrophil infiltration in WT mice. The antinociceptive and anti-inflammatory actions of Δ8THC, but not CBD, were blocked by the CB1R antagonist AM251, but were still apparent, for both cannabinoids, in CB2R−/− mice. However, the antinociceptive and anti-inflammatory actions of HU-308 were absent in the CB2R−/− mice. The antinociceptive and anti-inflammatory effects of CBD were blocked by the 5-HT1A antagonist WAY100635. Conclusion: Topical cannabinoids reduce corneal hyperalgesia and inflammation. The antinociceptive and anti-inflammatory effects of Δ8THC are mediated primarily via CB1R, whereas that of the cannabinoids CBD and HU-308, involve activation of 5-HT1A receptors and CB2Rs, respectively. Cannabinoids could be a novel clinical therapy for corneal pain and inflammation resulting from ocular surface injury. PMID:29450258

  6. Effect of Combined Treatment with AT1 Receptor Antagonists and Tiagabine on Seizures, Memory and Motor Coordination in Mice.

    PubMed

    Łukawski, Krzysztof; Janowska, Agnieszka; Czuczwar, Stanisław J

    2015-01-01

    Losartan and telmisartan, angiotensin AT1 receptor antagonists, are widely used antihypertensive drugs in patients. It is also known that arterial hypertension is often present in people with epilepsy, therefore, drug interactions between AT1 receptor antagonists and antiepileptic drugs can occur in clinical practice. The aim of the current study was to assess the effect of losartan and telmisartan on the anticonvulsant activity of tiagabine, a second-generation antiepileptic drug, in mice. Additionally, the effect of the combined treatment with AT1 receptor antagonists and TGB on long-term memory and motor coordination has been assessed in animals. The study was performed on male Swiss mice. Convulsions were examined in the maximal electroshock seizure threshold test. Long-term memory was measured in the passive-avoidance task and motor coordination was evaluated in the chimney test. AT1 receptor antagonists and TGB were administered intraperitoneally. Losartan (50 mg/kg) or telmisartan (30 mg/kg) did not influence the anticonvulsant activity of TGB applied at doses of 2, 4 and 6 mg/kg. However, both AT1 receptor antagonists in combinations with TGB (6 mg/kg) impaired motor coordination in the chimney test. The concomitant treatment of the drugs did not decrease retention in the passive avoidance task. It is suggested that losartan and telmisartan should not affect the anticonvulsant action of TGB in people with epilepsy. Because the combined treatment with AT1 receptor antagonists and TGB led to neurotoxic effects in animals, caution is advised during concomitant use of these drugs in patients.

  7. Antidepressant-like responses to the combined sigma and 5-HT1A receptor agonist OPC-14523.

    PubMed

    Tottori, K; Miwa, T; Uwahodo, Y; Yamada, S; Nakai, M; Oshiro, Y; Kikuchi, T; Altar, C A

    2001-12-01

    The antidepressant-like activity of a novel compound, OPC-14523, was investigated in comparison with the conventional antidepressants, fluoxetine and imipramine. OPC-14523 bound with nanomolar affinities to sigma receptors (IC(50)=47-56 nM), the 5-HT(1A) receptor (IC(50)=2.3 nM), and the 5-HT transporter (IC(50)=80 nM). OPC-14523 inhibited the in vitro reuptake of 3H-5-HT (IC(50)=27 nM), but it showed very weak inhibitory activity on 3H-NE and 3H-DA reuptake. OPC-14523 did not inhibit MAO A or B activities or muscarinic receptors. A single oral administration of OPC-14523 produced a marked antidepressant-like effect in the forced swimming test (FST) with rats (ED(50)=27 mg/kg) and mice (ED(50)=20mg/kg) without affecting the general locomotor activity. In contrast, fluoxetine and imipramine each required at least four days of repeated dosing to show this activity. The acute activity of OPC-14523 was blocked by pretreatment with the sigma receptor antagonist NE-100 or the selective 5-HT(1A) receptor antagonist WAY-100635. The induction of flat body posture by OPC-14523 was blocked by the selective 5-HT(1A) receptor antagonist NAN-190, and forebrain 5-HT biosynthesis was attenuated by OPC-14523 at behaviorally effective doses. In contrast, OPC-14523, unlike fluoxetine, failed to inhibit 5-HT reuptake at oral doses below 100mg/kg. Thus, the acute antidepressant-like action of OPC-14523 is achieved by the combined stimulation of sigma and 5-HT(1A) receptors without inhibition of 5-HT reuptake in vivo.

  8. Identification of putative agouti-related protein(87-132)-melanocortin-4 receptor interactions by homology molecular modeling and validation using chimeric peptide ligands.

    PubMed

    Wilczynski, Andrzej; Wang, Xiang S; Joseph, Christine G; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Sorensen, Nicholas B; Shaw, Amanda M; Millard, William J; Richards, Nigel G; Haskell-Luevano, Carrie

    2004-04-22

    Agouti-related protein (AGRP) is one of only two naturally known antagonists of G-protein-coupled receptors (GPCRs) identified to date. Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these melanocortin receptors. Insight into putative interactions between the antagonist AGRP amino acids with the melanocortin-4 receptor (MC4R) may be important for the design of unique ligands for the treatment of obesity related diseases and is currently lacking in the literature. A three-dimensional homology molecular model of the mouse MC4 receptor complex with the hAGRP(87-132) ligand docked into the receptor has been developed to identify putative antagonist ligand-receptor interactions. Key putative AGRP-MC4R interactions include the Arg111 of hAGRP(87-132) interacting in a negatively charged pocket located in a cavity formed by transmembrane spanning (TM) helices 1, 2, 3, and 7, capped by the acidic first extracellular loop (EL1) and specifically with the conserved melanocortin receptor residues mMC4R Glu92 (TM2), mMC4R Asp114 (TM3), and mMC4R Asp118 (TM3). Additionally, Phe112 and Phe113 of hAGRP(87-132) putatively interact with an aromatic hydrophobic pocket formed by the mMC4 receptor residues Phe176 (TM4), Phe193 (TM5), Phe253 (TM6), and Phe254 (TM6). To validate the AGRP-mMC4R model complex presented herein from a ligand perspective, we generated nine chimeric peptide ligands based on a modified antagonist template of the hAGRP(109-118) (Tyr-c[Asp-Arg-Phe-Phe-Asn-Ala-Phe-Dpr]-Tyr-NH(2)). In these chimeric ligands, the antagonist AGRP Arg-Phe-Phe residues were replaced by the melanocortin agonist His/D-Phe-Arg-Trp amino acids. These peptides resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs). The most notable results include the identification of a novel subnanomolar melanocortin peptide template Tyr-c[Asp-His-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) that is equipotent to alpha-MSH at the mMC1, mMC3, and mMC5 receptors but is 30-fold more potent than alpha-MSH at the mMC4R. Additionally, these studies identified a new and novel >200-fold MC4R versus MC3R selective peptide Tyr-c[Asp-D-Phe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) template. Furthermore, when the His-DPhe-Arg-Trp sequence is used to replace the hAGRP Arg-Phe-Phe residues in the "mini"-AGRP (hAGRP87-120, C105A) template, a potent nanomolar agonist resulted at the mMC1R and MC3-5Rs.

  9. Leptin, immune responses and autoimmune disease. Perspectives on the use of leptin antagonists.

    PubMed

    Peelman, F; Iserentant, H; Eyckerman, S; Zabeau, L; Tavernier, J

    2005-01-01

    The pivotal role of leptin in regulating body weight and energy homeostasis is very well established. More recently, leptin also emerged as an important regulator of T-cell-dependent immunity. Reduced leptin levels, as observed during periods of starvation, correlate with an impaired cellular immune response, whereby especially the T(H)1 pro-inflammatory immune response appears to be affected. Physiologically, this could reflect the high energy demand of such processes, which are suppressed in animals or people with nutrient shortage. Several autoimmune diseases are T(H)1 T-cell dependent. In line with a pro-inflammatory role for leptin, animal models of leptin deficiency are markedly resistant to a variety of T-cell dependent autoimmune diseases. Here, we review the role of leptin in immune responses, with emphasis on autoimmune diseases. The design and potential use of leptin antagonists is also discussed.

  10. Vasotocin- and mesotocin-induced increases in short-circuit current across tree frog skin.

    PubMed

    Takada, Makoto; Fujimaki-Aoba, Kayo; Hokari, Shigeru

    2011-02-01

    In adult amphibian skin, Na(+) crosses from outside to inside. This Na(+) transport can be measured as the amiloride-blockable short-circuit current (SCC) across the skin. We investigated the effects of arginine vasotocin (AVT) and mesotocin (MT), and those of antagonists of the vasopressin and oxytocin receptors, on the SCC across Hyla japonica skin. (1) Both AVT (100 pmol/L or more) and MT (1 nmol/L or more) increased the SCC. (2) The AVT- and MT-induced increases in SCC recovered with time (downregulation). (3) These AVT/MT-induced effects were blocked by application of OPC-31260 (vasopressin V(2)-receptor antagonist). (4) The OPC-31260 concentration needed to block the AVT-induced response was lower upon post-application (after application of agonist) than upon pre-application (before application of agonist), suggesting the number of receptors may have decreased after AVT application. (5) Upon repeated application of AVT (100 pmol/L), the induced SCC increase did not differ significantly between the 1st and 2nd applications. (6) The time to reach the half-maximum value of the AVT-induced or MT-induced increase in SCC was not significantly different between washout and post-application of OPC-31260, suggesting that post-application of OPC-31260 cleared AVT and MT from their receptors. The effects of AVT, MT, and their antagonists in H. japonica, which is adapted to a terrestrial habitat, are compared with our previously published data on Rana catesbeiana (=Lithobates catesbeianus), which is adapted to a semiaquatic habitat.

  11. Autonomic control of post-air-breathing tachycardia in Clarias gariepinus (Teleostei: Clariidae).

    PubMed

    Teixeira, Mariana Teodoro; Armelin, Vinicius Araújo; Abe, Augusto Shinya; Rantin, Francisco Tadeu; Florindo, Luiz Henrique

    2015-08-01

    The African catfish (Clarias gariepinus) is a teleost with bimodal respiration that utilizes a paired suprabranchial chamber located in the gill cavity as an air-breathing organ. Like all air-breathing fishes studied to date, the African catfish exhibits pronounced changes in heart rate (f H) that are associated with air-breathing events. We acquired f H, gill-breathing frequency (f G) and air-breathing frequency (f AB) in situations that require or do not require air breathing (during normoxia and hypoxia), and we assessed the autonomic control of post-air-breathing tachycardia using an infusion of the β-adrenergic antagonist propranolol and the muscarinic cholinergic antagonist atropine. During normoxia, C. gariepinus presented low f AB (1.85 ± 0.73 AB h(-1)) and a constant f G (43.16 ± 1.74 breaths min(-1)). During non-critical hypoxia (PO2 = 60 mmHg), f AB in the African catfish increased to 5.42 ± 1.19 AB h(-1) and f G decreased to 39.12 ± 1.58 breaths min(-1). During critical hypoxia (PO2 = 20 mmHg), f AB increased to 7.4 ± 1.39 AB h(-1) and f G decreased to 34.97 ± 1.78 breaths min(-1). These results were expected for a facultative air breather. Each air breath (AB) was followed by a brief but significant tachycardia, which in the critical hypoxia trials, reached a maximum of 143 % of the pre-AB f H values of untreated animals. Pharmacological blockade allowed the calculation of cardiac autonomic tones, which showed that post-AB tachycardia is predominantly regulated by the parasympathetic subdivision of the autonomic nervous system.

  12. Divergent Effects of Anandamide Transporter Inhibitors with Different Target Selectivity on Social Play Behavior in Adolescent Rats

    PubMed Central

    Trezza, Viviana; Vanderschuren, Louk J. M. J.

    2009-01-01

    The endocannabinoid system plays an important role in the modulation of affect, motivation, and emotion. Social play behavior is a natural reinforcer in adolescent rats, and we have recently shown that interacting endocannabinoid, opioid, and dopamine systems modulate social play. In the present study, we tested the hypothesis that, in contrast to administration of exogenous cannabinoid agonists, increasing local endocannabinoid signaling through anandamide transporter inhibition enhances social play. To this aim, we tested the effects of two anandamide transporter inhibitors with different target selectivity on social play behavior in adolescent rats. Interestingly, we found that the prototypical anandamide transporter inhibitor N-(4-hydroxyphenyl)-arachidonamide (AM404) reduced social play, whereas its more selective analog N-arachidonoyl-(2-methyl-4-hydroxyphenyl)amine (VDM11) enhanced it. The effects of AM404 were not mediated through its known pharmacological targets, since they were not blocked by the CB1 cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716A), the CB2 cannabinoid receptor antagonist N-(1,3,3-trimethylbicyclo(2.2.1)heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide (SR144528), or by the transient receptor potential vanilloid 1 receptor antagonist capsazepine. In contrast, the increase in social play induced by VDM11 was dependent on cannabinoid, opioid, and dopaminergic neurotransmission, since it was blocked by the CB1 cannabinoid receptor antagonist SR141716A, the opioid receptor antagonist naloxone, and the dopamine receptor antagonist α-flupenthixol. These findings support the notion that anandamide plays an important role in the modulation of social interaction in adolescent rats, and they suggest that selective anandamide transporter inhibitors might be useful for the treatment of social dysfunctions. Furthermore, these results suggest that off-target effects may be responsible for some of the conflicting effects of anandamide transporter inhibitors on behavior. PMID:18948500

  13. Differential binding of /sup 3/H-imipramine and /sup 3/H-mianserin in rat cerebral cortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumbrille-Ross, A.; Tang, S.W.; Coscina, D.V.

    1981-11-16

    Drug competition profiles, effect of raphe lesion, and sodium dependency of the binding of two antidepressant drugs /sup 3/H-imipramine and /sup 3/H-mianserin to rat cerebral cortex homogenate were compared to examine whether the drugs bound to a common ''antidepressant receptor.'' Of the neurotransmitters tested, only serotonin displaced binding of both /sup 3/H-imipramine and /sup 3/H-mianserin. /sup 3/H-Mianserin binding was potently displaced by serotonin S/sub 2/ antagonists and exhibited a profile similar to that of /sup 3/H-spiperone binding. In the presence of the serotonin S/sub 2/ antagonist spiperone, antihistamines (H/sub 1/) potently displaced /sup 3/H-mianserin binding. /sup 3/H-Imipramine binding was displacedmore » potently by serotonin uptake inhibitors. The order of potency of serotonergic drugs in displacing /sup 3/H-imipramine binding was not similar to their order in displacing /sup 3/H-spiperone or -3H-serotonin binding. Prior midbrain raphe lesions greatly decreased the binding of /sup 3/H-imipramine but did not alter binding of /sup 3/H-mianserin. Binding of /sup 3/H-imipramine but not /sup 3/H-mianserin was sodium dependent. These results show that /sup 3/H-imipramine and /sup 3/H-mianserin bind to different receptors. /sup 3/H-Imipramine binds to a presynaptic serotonin receptor which is probably related to a serotonin uptake recognition site, the binding of which is sodium dependent. /sup 3/H-Mianserin binds to postsynaptic receptors, possibly both serotonin S/sub 2/ and histamine H/sub 1/ receptors, the binding of which is sodium independent.« less

  14. H1- and H2-receptor characterization in the tracheal circulation of sheep.

    PubMed Central

    Webber, S. E.; Salonen, R. O.; Widdicombe, J. G.

    1988-01-01

    1. The effects of histamine, the specific H1-agonist SKF 71481-A2 and the H2-agonist dimaprit were examined on tracheal vascular resistance in sheep anaesthetized with pentobarbitone. Tracheal vascular resistance was determined by perfusing the cranial tracheal arteries at constant flows and measuring inflow pressures. Changes in tracheal smooth muscle tone were also measured. 2. Histamine and SKF 71481-A2 contracted the tracheal smooth muscle and this effect was blocked by the H1-antagonist mepyramine. Stimulation of H2-receptors with dimaprit had no effect on tracheal smooth muscle tone. 3. Histamine had a complex action on the tracheal vasculature producing either a triphasic change (early dilatation then constriction followed by late dilatation) or just a constriction. SKF 71481-A2 always produced a biphasic change in vascular resistance (dilatation followed by constriction). Dimaprit dilated the tracheal vasculature. 4. The late dilatation produced by histamine in some sheep was blocked by bilateral cervical vagotomy but the mechanism for this effect is not known. No other responses to histamine, SKF 71481-A2 or dimaprit were affected by vagotomy. 5. The vasoconstriction produced by histamine and SKF 71481-A2 was antagonized by mepyramine indicating a H1-receptor-mediated effect. Cimetidine had no effect on the vasoconstriction to histamine suggesting a lack of involvement of H2-receptors. 6. The vasodilatation produced by histamine and SKF 71481-A2 was also antagonized by mepyramine, again suggesting a H1-receptor-mediated action. Cimetidine had no effect on the vasodilator response to histamine indicating no involvement of H2-receptors in this response. 7. The dilator effect of dimaprit was antagonized by cimetidine suggesting this effect was mediated by H2-receptors. 8. We conclude that H1-receptors in the various parts of the sheep tracheal vasculature can cause increases and decreases in total tracheal vascular resistance; that H2-receptors decrease resistance; and that the tracheal smooth muscle contracts on activation of H1-receptors but has no response to H2-agonists. PMID:2906559

  15. Pituitary adenylate cyclase activating polypeptide and PAC1 receptor signaling increase Homer 1a expression in central and peripheral neurons.

    PubMed

    Girard, Beatrice M; Keller, Emily T; Schutz, Kristin C; May, Victor; Braas, Karen M

    2004-12-15

    Pituitary adenylate cyclase activating polypeptides (PACAP) and PAC1 receptor signaling have diverse roles in central and peripheral nervous system development and function. In recent microarray analyses for PACAP and PAC1 receptor modulation of neuronal transcripts, the mRNA of Homer 1a (H1a), which encodes the noncrosslinking and immediate early gene product isoform of Homer, was identified to be strongly upregulated in superior cervical ganglion (SCG) sympathetic neurons. Given the prominent roles of Homer in synaptogenesis, synaptic protein complex assembly and receptor/channel signaling, we have examined the ability for PACAP to induce H1a expression in sympathetic, cortical and hippocampal neurons to evaluate more comprehensively the roles of PACAP in synaptic function. In both central and peripheral neuronal cultures, PACAP peptides increased transiently H1a transcript levels approximately 3.5- to 6-fold. From real-time quantitative PCR measurements, the temporal patterns of PACAP-mediated H1a mRNA induction among the different neuronal cultures appeared similar although the onset of sympathetic H1a transcript expression appeared protracted. The increase in H1a transcripts was accompanied by increases in H1a protein levels. Comparative studies with VIP and PACAP(6-38) antagonist demonstrated that the PACAP effects reflected PAC1 receptor activation and signaling. The PAC1 receptor isoforms expressed in central and peripheral neurons can engage diverse intracellular second messenger systems, and studies using selective signaling pathway inhibitors demonstrated that the cyclic AMP/PKA and MEK/ERK cascades are principal mediators of the PACAP-mediated H1a induction response. In modulating H1a transcript and protein expression, these studies may implicate broad roles for PACAP and PAC1 receptor signaling in synaptic development and plasticity.

  16. Structure-based identification and characterisation of structurally novel human P2X7 receptor antagonists.

    PubMed

    Caseley, Emily A; Muench, Stephen P; Fishwick, Colin W; Jiang, Lin-Hua

    2016-09-15

    The P2X7 receptor (P2X7R) plays an important role in diverse conditions associated with tissue damage and inflammation, meaning that the human P2X7R (hP2X7R) is an attractive therapeutic target. The crystal structures of the zebrafish P2X4R in the closed and ATP-bound open states provide an unprecedented opportunity for structure-guided identification of new ligands. The present study performed virtual screening of ∼100,000 structurally diverse compounds against the ATP-binding pocket in the hP2X7R. This identified three compounds (C23, C40 and C60) out of 73 top-ranked compounds by testing against hP2X7R-mediated Ca(2+) responses. These compounds were further characterised using Ca(2+) imaging, patch-clamp current recording, YO-PRO-1 uptake and propidium iodide cell death assays. All three compounds inhibited BzATP-induced Ca(2+) responses concentration-dependently with IC50s of 5.1±0.3μM, 4.8±0.8μM and 3.2±0.2μM, respectively. C23 and C40 inhibited BzATP-induced currents in a reversible and concentration-dependent manner, with IC50s of 0.35±0.3μM and 1.2±0.1μM, respectively, but surprisingly C60 did not affect BzATP-induced currents up to 100μM. They suppressed BzATP-induced YO-PRO-1 uptake with IC50s of 1.8±0.9μM, 1.0±0.1μM and 0.8±0.2μM, respectively. Furthermore, these three compounds strongly protected against ATP-induced cell death. Among them, C40 and C60 exhibited strong specificity towards the hP2X7R over the hP2X4R and rP2X3R. In conclusion, our study reports the identification of three novel hP2X7R antagonists with micromolar potency for the first time using a structure-based approach, including the first P2X7R antagonist with preferential inhibition of large pore formation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. [Involvement of cross interaction between central cholinergic and histaminergic systems in the nucleus tractus solitarius in regulating carotid sinus baroreceptor reflex].

    PubMed

    Hu, Li-Xun; Zhang, Guo-Xing; Zhang, Yu-Ying; Zhao, Hong-Fen; Yu, Kang-Ying; Wang, Guo-Qing

    2013-12-25

    The carotid sinus baroreceptor reflex (CSR) is an important approach for regulating arterial blood pressure homeostasis instantaneously and physiologically. Activation of the central histaminergic or cholinergic systems results in CSR functional inhibitory resetting. However, it is unclear whether two systems at the nucleus tractus solitarius (NTS) level display cross interaction to regulate the CSR or not. In the present study, the left or right carotid sinus region was isolated from the systemic circulation in Sprague-Dawley rats (sinus nerve was reserved) anesthetized with pentobarbital sodium. Respective intubation was conducted into one side isolated carotid sinus and into the femoral artery for recording the intracarotid sinus pressure (ISP) and mean arterial pressure (MAP) simultaneously with pressure transducers connection in vivo. ISP was set at the level of 0 mmHg to eliminate the effect of initial internal pressure of the carotid sinus on the CSR function. To trigger CSR, the ISP was quickly elevated from 0 mmHg to 280 mmHg in a stepwise manner (40 mmHg) which was added at every step for over 4 s, and then ISP returned to 0 mmHg in similar steps. The original data of ISP and corresponding MAP were fitted to a modified logistic equation with five parameters to obtain the ISP-MAP, ISP-Gain relationship curves and the CSR characteristic parameters, which were statistically compared and analyzed separately. Under the precondition of no influence on the basic levels of the artery blood pressure, the effects and potential regulatory mechanism of preceding microinjection with different cholinoceptor antagonists, the selective cholinergic M1 receptor antagonist, i.e., pirenzepine (PRZ), the M2 receptor antagonist, i.e., methoctramine (MTR) or the N1 receptor antagonist, i.e., hexamethonium (HEX) into the NTS on the changes in function of CSR induced by intracerebroventricular injection (i.c.v.) of histamine (HA) in rats were observed. Meanwhile, the actions and possible modulatory mechanism of preceding microinjection with different histaminergic receptor antagonists, the selective histaminergic H1 receptor antagonist, i.e., chlorpheniramine (CHL) or the H2 receptor antagonist, i.e., cimetidine (CIM) into the NTS on the changes in function of CSR resulted from the i.c.v. cholinesterase inhibitor, physostigmine (PHY) were also examined in order to confirm and to analyze effects of cross interaction between central histaminergic and cholinergic systems on CSR. The main results obtained are as follows. (1) Standalone microinjection of different selective cholinergic receptor antagonists (PRZ, MTR or HEX) or different selective histaminergic receptor antagonists (CHL or CIM) into the NTS with each given dose had no effects on the CSR function and on the basic levels of the artery blood pressure, respectively (P > 0.05). (2) The pretreatment of PRZ or MTR into the NTS with each corresponding dose could attenuate CSR resetting resulted from i.c.v. HA in some degrees, which remarkably moved the posterior half range of ISP-MAP relationship curve downwards (P < 0.05), shifted the middle part of ISP-Gain relationship curve upwards (P < 0.05), and increased reflex parameters such as the MAP range and maximum gain (P < 0.05), but decreased parameters such as saturation pressure and intracarotid sinus pressure at maximum gain (P < 0.05). The catabatic effects of pretreatment with MTR into the NTS on CSR resetting induced by i.c.v. HA were more obvious than those with PRZ (P < 0.05), but pretreatment of HEX with given dose into the NTS had no effects on CSR resetting induced by i.c.v. HA (P > 0.05). (3) The effects of pretreatment of CHL or CIM into the NTS with each corresponding dose on CSR resetting made by i.c.v. PHY were similar to those of pretreatment of PRZ or MTR into the NTS on CSR resetting resulted from i.c.v. HA, and the decreasing effects of pretreatment with CHL into the NTS on CSR resetting induced by i.c.v. PHY were more remarkable than those with CIM (P < 0.05). These findings suggest that CSR resetting resulted from either HA or PHY into the lateral ventricle may partly involve the descending histaminergic or cholinergic pathway from the hypothalamus to NTS, which might evoke a cross activation of the cholinergic system in the NTS, via cholinergic M1 and M2 receptors mediation, especially the M2 receptors showing actions, or trigger another cross activation of the histaminergic system in the NTS, by histaminergic H1 and H2 receptors mediation, especially the H1 receptors displaying effects.

  18. Potential Antagonist of Folic Acid Metabolism as Malarial Drugs,

    DTIC Science & Technology

    1982-09-01

    which sen.irited from the hydrocloric acid was filtered and then washed with water (25 ml). The reaction gave 2.3 g of the product which melted be...neutralized with cold dilute hydrocloric acid and evaporated to dryness. The residue was then extracted with methylene chloride filtered, and again...FhGh6/15hEE 1281 12.5 ~I1.50 IIA 132ii MJCRc)tll I’RE SOLU i UN ltIS CHiARI AD FINAL REPORT POTENTIAL ANTAGONIST OF FOLIC ACID METABOLISM AS MALARIAL

  19. A selective estrogen receptor modulator for the treatment of hot flushes.

    PubMed

    Wallace, Owen B; Lauwers, Kenneth S; Dodge, Jeffrey A; May, Scott A; Calvin, Joel R; Hinklin, Ronald; Bryant, Henry U; Shetler, Pamela K; Adrian, Mary D; Geiser, Andrew G; Sato, Masahiko; Burris, Thomas P

    2006-02-09

    A selective estrogen receptor modulator (SERM) for the potential treatment of hot flushes is described. (R)-(+)-7,9-difluoro-5-[4-(2-piperidin-1-ylethoxy)phenyl]-5H-6-oxachrysen-2-ol, LSN2120310, potently binds ERalpha and ERbeta and is an antagonist in MCF-7 breast adenocarcinoma and Ishikawa uterine cancer cell lines. The compound is a potent estrogen antagonist in the rat uterus. In ovariectomized rats, the compound lowers cholesterol, maintains bone mineral density, and is efficacious in a morphine dependent rat model of hot flush efficacy.

  20. MF498 [N-{[4-(5,9-Diethoxy-6-oxo-6,8-dihydro-7H-pyrrolo[3,4-g]quinolin-7-yl)-3-methylbenzyl]sulfonyl}-2-(2-methoxyphenyl)acetamide], a selective E prostanoid receptor 4 antagonist, relieves joint inflammation and pain in rodent models of rheumatoid and osteoarthritis.

    PubMed

    Clark, Patsy; Rowland, Steven E; Denis, Danielle; Mathieu, Marie-Claude; Stocco, Rino; Poirier, Hugo; Burch, Jason; Han, Yongxin; Audoly, Laurent; Therien, Alex G; Xu, Daigen

    2008-05-01

    Previous evidence has implicated E prostanoid receptor 4 (EP4) in mechanical hyperalgesia induced by subplantar inflammation. However, its role in chronic arthritis remains to be further defined because previous attempts have generated two conflicting lines of evidence, with one showing a marked reduction of arthritis induced by a collagen antibody in mice lacking EP4, but not EP1-EP3, and the other showing no impact of EP4 antagonism on arthritis induced by collagen. Here, we assessed the effect of a novel and selective EP4 antagonist MF498 [N-{[4-(5,9-diethoxy-6-oxo-6,8-dihydro-7H-pyrrolo[3,4-g]quinolin-7-yl)-3-methylbenzyl]sulfonyl}-2-(2-methoxyphenyl)acetamide] on inflammation in adjuvant-induced arthritis (AIA), a rat model for rheumatoid arthritis (RA), and joint pain in a guinea pig model of iodoacetate-induced osteoarthritis (OA). In the AIA model, MF498, but not the antagonist for EP1, MF266-1 [1-(5-{3-[2-(benzyloxy)-5-chlorophenyl]-2-thienyl}pyridin-3-yl)-2,2,2-trifluoroethane-1,1-diol] or EP3 MF266-3 [(2E)-N-[(5-bromo-2-methoxyphenyl)sulfonyl]-3-[5-chloro-2-(2-naphthylmethyl)phenyl]acrylamide], inhibited inflammation, with a similar efficacy as a selective cyclooxygenase 2 (COX-2) inhibitor MF-tricyclic. In addition, MF498 was as effective as an nonsteroidal anti-inflammatory drug, diclofenac, or a selective microsomal prostaglandin E synthase-1 inhibitor, MF63 [2-(6-chloro-1H-phenanthro[9,10-d]imidazol-2-yl)isophthalonitrile], in relieving OA-like pain in guinea pigs. When tested in rat models of gastrointestinal toxicity, the EP4 antagonist was well tolerated, causing no mucosal leakage or erosions. Lastly, we evaluated the renal effect of MF498 in a furosemide-induced diuresis model and demonstrated that the compound displayed a similar renal effect as MF-tricyclic [3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl)phenyl)-2-(5H)-furanone], reducing furosemide-induced natriuresis by approximately 50%. These results not only suggest that EP4 is the major EP receptor in both RA and OA but also provide a proof of principle to the concept that antagonism of EP4 may be useful for treatment of arthritis.

  1. A novel post-exposure medical countermeasure L-97-1 improves survival and acute lung injury following intratracheal infection with Yersinia pestis

    PubMed Central

    Wilson, Constance N; Vance, Constance O; Doyle, Timothy M; Brink, David S; Matuschak, George M; Lechner, Andrew J

    2012-01-01

    Yersinia pestis, a Gram-negative bacillus causing plague and Centers for Disease Control and Prevention (CDC) classified Category A pathogen, has high potential as a bioweapon. Lipopolysaccharide, a virulence factor for Y. pestis, binds to and activates A1 adenosine receptor (AR)s and, in animals, A1AR antagonists block induced acute lung injury (ALI) and increase survival following cecal ligation and perforation. In this study, rats were infected intratracheally with viable Y. pestis [CO99 (pCD1+/Δpgm) 1 × 108 CFU/animal] and treated daily for 3 d with ciprofloxacin (cipro), the A1AR antagonist L-97-1, or cipro plus L-97-1 starting at 0, 6, 24, 48, or 72 h post-Y. pestis. At 72 h post-Y. pestis, cipro plus L-97-1 significantly improved 6-d survival to 60–70% vs 28% for cipro plus H2O and 33% for untreated Y. pestis controls (P = 0.02, logrank test). Lung edema, hemorrhage and leukocyte infiltration index (LII) were evaluated histologically to produce ALI scores. Cipro plus L-97-1 significantly reduced lung edema, as well as aggregate lung injury scores vs controls or cipro plus H2O, and LII vs controls (P < 0.05, Student's unpaired t test). These results support efficacy for L-97-1 as a post-exposure medical countermeasure, adjunctive therapy to antibiotics for Y. pestis. PMID:21862597

  2. Structure-activity relationship of 5-chloro-2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole analogues as 5-HT(6) receptor agonists.

    PubMed

    Mattsson, Cecilia; Svensson, Peder; Boettcher, Henning; Sonesson, Clas

    2013-05-01

    To further investigate the structure-activity relationship (SAR) of the 5-hydroxytryptamine type 6 (5-HT6) receptor agonist 5-chloro-2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole (EMD386088, 6), a series of 2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles were synthesized, and in vitro affinity to, and functional activity at 5-HT6 receptors was tested. We focused on substituents made at the indole N(1)-, 2- and 5-positions and these were found to not only influence the affinity at 5-HT6 receptors but also the intrinsic activity leading to antagonists, partial agonists and full agonists. In order for a compound to demonstrate potent 5-HT6 receptor agonist properties, the indole N(1) should be unsubstituted, an alkyl group such as 2-methyl is needed and finally halogen substituents in the indole 5-position (fluoro, chloro or, bromo) were essential requirements. However, the introduction of a benzenesulfonyl group at N(1)-position switched the full agonist 6 to be a 5-HT6 receptor antagonist (30). A few compounds within the 2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles were also screened for off-targets and generally they displayed low affinity for other 5-HT subtypes and serotonin transporter protein (SERT). Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Opposing actions of dibutyryl cyclic AMP and GMP on temperature in conscious guinea-pigs

    NASA Technical Reports Server (NTRS)

    Kandasamy, S. B.; Williaes, B. A.

    1983-01-01

    It is shown that the intracerebroventricular administration of dibutyryl cyclic AMP (Db-cAMP) induced hyperthermia in guinea pigs which was not mediated through prostaglandins or norepinephrine since a prostaglandin synthesis inhibitor and an alpha-adrenergic receptor blocking agent did not antagonize the hyperthermia. However, the hyperthermic response to Db-cAMP was attenuated by the central administration of a beta-adrenergic receptor antagonist, which indicates that cAMP may be involved, through beta-adrenergic receptors, in the central regulation of heat production and conservation. The central administration of Db-cGMP produced hypothermia which was not mediated via histamine H1 or H2 receptors and serotonin. The antagonism of hypothermia induced by Db-cGMP and acetylcholine + physostigmine by central administration of a cholinergic muscarine receptor antagonist and not by a cholinergic nicotinic receptor antagonist suggests that cholinoceptive neurons and endogenous cGMP may regulate heat loss through cholinergic muscarine receptors. It is concluded that these results indicate a regulatory role in thermoregulation provided by a balance between opposing actions of cAMP and cGMP in guinea pigs.

  4. Binding, Thermodynamics, and Selectivity of a Non-peptide Antagonist to the Melanocortin-4 Receptor

    PubMed Central

    Saleh, Noureldin; Kleinau, Gunnar; Heyder, Nicolas; Clark, Timothy; Hildebrand, Peter W.; Scheerer, Patrick

    2018-01-01

    The melanocortin-4 receptor (MC4R) is a potential drug target for treatment of obesity, anxiety, depression, and sexual dysfunction. Crystal structures for MC4R are not yet available, which has hindered successful structure-based drug design. Using microsecond-scale molecular-dynamics simulations, we have investigated selective binding of the non-peptide antagonist MCL0129 to a homology model of human MC4R (hMC4R). This approach revealed that, at the end of a multi-step binding process, MCL0129 spontaneously adopts a binding mode in which it blocks the agonistic-binding site. This binding mode was confirmed in subsequent metadynamics simulations, which gave an affinity for human hMC4R that matches the experimentally determined value. Extending our simulations of MCL0129 binding to hMC1R and hMC3R, we find that receptor subtype selectivity for hMC4R depends on few amino acids located in various structural elements of the receptor. These insights may support rational drug design targeting the melanocortin systems.

  5. Automation of [(18) F]fluoroacetaldehyde synthesis: application to a recombinant human interleukin-1 receptor antagonist (rhIL-1RA).

    PubMed

    Morris, Olivia; McMahon, Adam; Boutin, Herve; Grigg, Julian; Prenant, Christian

    2016-06-15

    [(18) F]Fluoroacetaldehyde is a biocompatible prosthetic group that has been implemented pre-clinically using a semi-automated remotely controlled system. Automation of radiosyntheses permits use of higher levels of [(18) F]fluoride whilst minimising radiochemist exposure and enhancing reproducibility. In order to achieve full-automation of [(18) F]fluoroacetaldehyde peptide radiolabelling, a customised GE Tracerlab FX-FN with fully programmed automated synthesis was developed. The automated synthesis of [(18) F]fluoroacetaldehyde is carried out using a commercially available precursor, with reproducible yields of 26% ± 3 (decay-corrected, n = 10) within 45 min. Fully automated radiolabelling of a protein, recombinant human interleukin-1 receptor antagonist (rhIL-1RA), with [(18) F]fluoroacetaldehyde was achieved within 2 h. Radiolabelling efficiency of rhIL-1RA with [(18) F]fluoroacetaldehyde was confirmed using HPLC and reached 20% ± 10 (n = 5). Overall RCY of [(18) F]rhIL-1RA was 5% ± 2 (decay-corrected, n = 5) within 2 h starting from 35 to 40 GBq of [(18) F]fluoride. Specific activity measurements of 8.11-13.5 GBq/µmol were attained (n = 5), a near three-fold improvement of those achieved using the semi-automated approach. The strategy can be applied to radiolabelling a range of peptides and proteins with [(18) F]fluoroacetaldehyde analogous to other aldehyde-bearing prosthetic groups, yet automation of the method provides reproducibility thereby aiding translation to Good Manufacturing Practice manufacture and the transformation from pre-clinical to clinical production. Copyright © 2016 The Authors. Journal of Labelled Compounds and Radiopharmaceuticals published by John Wiley & Sons, Ltd.

  6. Changes in interleukin-1 signal modulators induced by 3,4-methylenedioxymethamphetamine (MDMA): regulation by CB2 receptors and implications for neurotoxicity

    PubMed Central

    2011-01-01

    Background 3,4-Methylenedioxymethamphetamine (MDMA) produces a neuroinflammatory reaction in rat brain characterized by an increase in interleukin-1 beta (IL-1β) and microglial activation. The CB2 receptor agonist JWH-015 reduces both these changes and partially protects against MDMA-induced neurotoxicity. We have examined MDMA-induced changes in IL-1 receptor antagonist (IL-1ra) levels and IL-1 receptor type I (IL-1RI) expression and the effects of JWH-015. The cellular location of IL-1β and IL-1RI was also examined. MDMA-treated animals were given the soluble form of IL-1RI (sIL-1RI) and neurotoxic effects examined. Methods Dark Agouti rats received MDMA (12.5 mg/kg, i.p.) and levels of IL-1ra and expression of IL-1RI measured 1 h, 3 h or 6 h later. JWH-015 (2.4 mg/kg, i.p.) was injected 48 h, 24 h and 0.5 h before MDMA and IL-1ra and IL-1RI measured. For localization studies, animals were sacrificed 1 h or 3 h following MDMA and stained for IL-1β or IL-1RI in combination with neuronal and microglial markers. sIL-1RI (3 μg/animal; i.c.v.) was administered 5 min before MDMA and 3 h later. 5-HT transporter density was determined 7 days after MDMA injection. Results MDMA produced an increase in IL-ra levels and a decrease in IL-1RI expression in hypothalamus which was prevented by CB2 receptor activation. IL-1RI expression was localized on neuronal cell bodies while IL-1β expression was observed in microglial cells following MDMA. sIL-1RI potentiated MDMA-induced neurotoxicity. MDMA also increased IgG immunostaining indicating that blood brain-barrier permeability was compromised. Conclusions In summary, MDMA produces changes in IL-1 signal modulators which are modified by CB2 receptor activation. These results indicate that IL-1β may play a partial role in MDMA-induced neurotoxicity. PMID:21595923

  7. Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation.

    PubMed

    Więckowska, Anna; Kołaczkowski, Marcin; Bucki, Adam; Godyń, Justyna; Marcinkowska, Monika; Więckowski, Krzysztof; Zaręba, Paula; Siwek, Agata; Kazek, Grzegorz; Głuch-Lutwin, Monika; Mierzejewski, Paweł; Bienkowski, Przemysław; Sienkiewicz-Jarosz, Halina; Knez, Damijan; Wichur, Tomasz; Gobec, Stanislav; Malawska, Barbara

    2016-11-29

    As currently postulated, a complex treatment may be key to an effective therapy for Alzheimer's disease (AD). Recent clinical trials in patients with moderate AD have shown a superior effect of the combination therapy of donepezil (a selective acetylcholinesterase inhibitor) with idalopirdine (a 5-HT 6 receptor antagonist) over monotherapy with donepezil. Here, we present the first report on the design, synthesis and biological evaluation of a novel class of multifunctional ligands that combines a 5-HT 6 receptor antagonist with a cholinesterase inhibitor. Novel multi-target-directed ligands (MTDLs) were designed by combining pharmacophores directed against the 5-HT 6 receptor (1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-indole) and cholinesterases (tacrine or N-benzylpiperidine analogues). In vitro evaluation led to the identification of tacrine derivative 12 with well-balanced potencies against the 5-HT 6 receptor (K b  = 27 nM), acetylcholinesterase and butyrylcholinesterase (IC 50 hAChE  = 12 nM, IC 50 hBuChE  = 29 nM). The compound also showed good in vitro blood-brain-barrier permeability (PAMPA-BBB assay), which was confirmed in vivo (open field study). Central cholinomimetic activity was confirmed in vivo in rats using a scopolamine-induced hyperlocomotion model. A novel class of multifunctional ligands with compound 12 as the best derivative in a series represents an excellent starting point for the further development of an effective treatment for AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Early induction of IL-1 receptor antagonist (IL-1Ra) in infants and children undergoing surgery.

    PubMed Central

    O Nualláin, E M; Puri, P; Reen, D J

    1993-01-01

    The cytokine response to injury or trauma is of interest in terms of both its mediation of the acute phase response and its possible relation to the immunological depression observed after major surgery. In this study, the production of cytokines IL-1 beta, tumour necrosis factor-alpha (TNF-alpha), IL-6 and the naturally occurring inhibitor of IL-1, IL-1Ra, have been investigated in infants and children undergoing Swenson's pull-through operation for Hirschsprung's disease. Samples of peripheral blood were taken before, during and after surgery for the measurement of cytokines. IL-1Ra levels increased significantly (P < 0.01) at 2 h after commencement of surgery, with maximal levels for individual patients being attained between 3 h and 5 h (range 7.6-67.9 ng/ml). The mean level of IL-1Ra was maximal (26.2 ng/ml) at 5 h and returned to baseline levels between 24 h and 72 h. There were no changes observed in the circulating levels of IL-1 beta in nine out of 11 patients following commencement of surgery. TNF-alpha levels did not increase in any of the patients studied. IL-6 levels increased significantly (P < 0.02) 3 h after commencement of surgery, reaching maximum concentrations at 24 h (range 20-670 pg/ml), with levels falling between 48 h and 72 h. This study demonstrates, in vivo, the independent induction of IL-1Ra without a concomitant increase of IL-1 beta levels after major surgery. It also shows that IL-1Ra is the earliest cytokine produced in response to surgical stress. PMID:8348747

  9. Design, synthesis and evaluation of MCH receptor 1 antagonists--Part III: Discovery of pre-clinical development candidate BI 186908.

    PubMed

    Oost, Thorsten; Heckel, Armin; Kley, Jörg T; Lehmann, Thorsten; Müller, Stephan; Roth, Gerald J; Rudolf, Klaus; Arndt, Kirsten; Budzinski, Ralph; Lenter, Martin; Lotz, Ralf R H; Maier, Gerd-Michael; Markert, Michael; Thomas, Leo; Stenkamp, Dirk

    2015-08-15

    Although overweight and obesity are highly prevalent conditions, options to treat them are still very limited. As part of our search for safe and effective MCH-R1 antagonists for the treatment of obesity, two series of pyridones and pyridazinones were evaluated. Optimization was aimed at improving DMPK properties by increasing metabolic stability and improving the safety profile by reducing inhibition of the hERG channel and reducing the potential to induce phospholipidosis. Steric shielding of a labile keto moiety with an ortho-methyl group and fine-tuning of the polarity in several parts of the molecule resulted in BI 186908 (11 g), a potent and selective MCH-R1 antagonist with favorable DMPK and CMC properties. Chronic administration of BI 186908 resulted in significant body weight reduction comparable to sibutramine in a 4 week diet-induced obesity model in rats. Based on its favorable safety profile, BI 186908 was advanced to pre-clinical development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Measure of anxiety-related behaviors and hippocampal BDNF levels associated to the amnesic effect induced by MK-801 evaluated in the modified elevated plus-maze in rats.

    PubMed

    Hill, Ximena López; Richeri, Analía; Scorza, Cecilia

    2015-08-01

    Non-competitive N-methyl-d-aspartate receptor (NMDA-R) antagonists impair rodent cognition. Specifically, MK-801, the most potent NMDA-R antagonist, induces an amnesic effect on the modified elevated plus maze (mEPM) learning test in rodents, which reflects spatial long-term memory. However, alterations in anxiety-related behaviors could overlap this amnesic effect. Accumulated evidence supports the role of brain-derived neurotrophic factor (BDNF) in learning and memory processes and deficits in hippocampal BDNF function, which underlie cognitive impairments, have been extensively reported. Therefore, we investigated if changes in anxiety-related behaviors and hippocampal BDNF levels are related with the amnesic effect induced by MK-801 in the mEPM.Transfer latency (TL) as an index of spatial memory in the mEPM was used. TL1 was evaluated 30 min after saline/MK-801 injection (day 1, acquisition session) while learning/memory performance was measured 24 h later at TL2 (day 2, retention session). Also at TL2, two other experimental groups were added to measure the anxiety-related behaviors using the classic EPM and BDNF protein levels by ELISA. To evaluate if amnesia endures, an additional session was recorded on day 3 (TL3) and BDNF levels were measured.While TL1 was not significantly modified by MK-801, TL2 was increased compared to the control group indicating an amnesic effect. This effect was not mimicked by anxiety-related behaviors and it was associated to a significant attenuation of BDNF levels. During the third post-training day, the cognitive performance of MK-801-treated animals was improved and an increased BDNF protein expression in the hippocampus accompanied this change

  11. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell.

    PubMed

    Mulherin, Andrew J; Oh, Amy H; Kim, Helena; Grieco, Anthony; Lauffer, Lina M; Brubaker, Patricia L

    2011-12-01

    Glucagon-like peptide-1(7-36NH2) (GLP-1) is secreted by the intestinal L cell in response to both nutrient and neural stimulation, resulting in enhanced glucose-dependent insulin secretion. GLP-1 is therefore an attractive therapeutic for the treatment of type 2 diabetes. The antidiabetic drug, metformin, is known to increase circulating GLP-1 levels, although its mechanism of action is unknown. Direct effects of metformin (5-2000 μm) or another AMP kinase activator, aminoimidazole carboxamide ribonucleotide (100-1000 μm) on GLP-1 secretion were assessed in murine human NCI-H716, and rat FRIC L cells. Neither agent stimulated GLP-1 secretion in any model, despite increasing AMP kinase phosphorylation (P < 0.05-0.01). Treatment of rats with metformin (300 mg/kg, per os) or aminoimidazole carboxamide ribonucleotide (250 mg/kg, sc) increased plasma total GLP-1 over 2 h, reaching 37 ± 9 and 29 ± 9 pg/ml (P < 0.001), respectively, compared with basal (7 ± 1 pg/ml). Plasma activity of the GLP-1-degrading enzyme, dipeptidylpeptidase-IV, was not affected by metformin treatment. Pretreatment with the nonspecific muscarinic antagonist, atropine (1 mg/kg, iv), decreased metformin-induced GLP-1 secretion by 55 ± 11% (P < 0.05). Pretreatment with the muscarinic (M) 3 receptor antagonist, 1-1-dimethyl-4-diphenylacetoxypiperidinium iodide (500 μg/kg, iv), also decreased the GLP-1 area under curve, by 48 ± 8% (P < 0.05), whereas the antagonists pirenzepine (M1) and gallamine (M2) had no effect. Furthermore, chronic bilateral subdiaphragmatic vagotomy decreased basal secretion compared with sham-operated animals (7 ± 1 vs. 13 ± 1 pg/ml, P < 0.001) but did not alter the GLP-1 response to metformin. In contrast, pretreatment with the gastrin-releasing peptide antagonist, RC-3095 (100 μg/kg, sc), reduced the GLP-1 response to metformin, by 55 ± 6% (P < 0.01) at 30 min. These studies elucidate the mechanism underlying metformin-induced GLP-1 secretion and highlight the benefits of using metformin with dipeptidylpeptidase-IV inhibitors in patients with type 2 diabetes.

  12. Synthesis, Modeling, and Pharmacological Evaluation of UMB 425, a Mixed μ Agonist/δ Antagonist Opioid Analgesic with Reduced Tolerance Liabilities

    PubMed Central

    2013-01-01

    Opioid narcotics are used for the treatment of moderate-to-severe pain and primarily exert their analgesic effects through μ receptors. Although traditional μ agonists can cause undesired side effects, including tolerance, addition of δ antagonists can attenuate said side effects. Herein, we report 4a,9-dihydroxy-7a-(hydroxymethyl)-3-methyl-2,3,4,4a,5,6-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7(7aH)-one (UMB 425) a 5,14-bridged morphinan-based orvinol precursor synthesized from thebaine. Although UMB 425 lacks δ-specific motifs, conformationally sampled pharmacophore models for μ and δ receptors predict it to have efficacy similar to morphine at μ receptors and similar to naltrexone at δ receptors, due to the compound sampling conformations in which the hydroxyl moiety interacts with the receptors similar to orvinols. As predicted, UMB 425 exhibits a mixed μ agonist/δ antagonist profile as determined in receptor binding and [35S]GTPγS functional assays in CHO cells. In vivo studies in mice show that UMB 425 displays potent antinociception in the hot plate and tail-flick assays. The antinociceptive effects of UMB 425 are blocked by naloxone, but not by the κ-selective antagonist norbinaltorphimine. During a 6-day tolerance paradigm, UMB 425 maintains significantly greater antinociception compared to morphine. These studies thus indicate that, even in the absence of δ-specific motifs fused to the C-ring, UMB 425 has mixed μ agonist/δ antagonist properties in vitro that translate to reduced tolerance liabilities in vivo. PMID:23713721

  13. Cannabinoid WIN 55,212-2 inhibits TRPV1 in trigeminal ganglion neurons via PKA and PKC pathways.

    PubMed

    Wang, Wei; Cao, Xuehong; Liu, Changjin; Liu, Lieju

    2012-02-01

    Although the inhibitory effect of cannabinoids on transient receptor potential vanilloid 1 (TRPV1) channel may explain the efficacy of peripheral cannabinoids in antihyperalgesia and antinociceptive actions, the mechanism for cannabinoid-induced inhibition of TRPV1 in primary sensory neurons is not understood. Therefore, we explored how WIN55,212-2 (WIN, a synthetic cannabinoid) inhibited TRPV1 in rat trigeminal ganglion neurons. A "bell"-shaped concentration-dependent curve was obtained from the effects of WIN on TRPV1 channel. The maximal inhibition on capsaicin-induced current (I (cap)) by WIN was at a concentration of 10(-9) M, and at this concentration I (cap) was reduced by 95 ± 1.6%. When the concentration of WIN was at 10(-6) M, it displayed a stimulatory effect on I (cap). In this study, several intracellular signaling transduction pathways were tested to study whether they were involved in the inhibitory effects of WIN on I (cap). We found that the inhibitory effect of WIN on I (cap) was completely reversed by PKA antagonists H-89 and KT5720 as well as by PKC antagonists BIM and staurosporine. It was also found that the inhibitory effect was partly reversed by PKG antagonist PKGi, while G-protein antagonist GDP-βs/pertussis toxin (PTX) and PLC antagonist U-73122 had no effect on the inhibitory effect of WIN on I(cap). These results suggest that several intracellular signaling transduction pathways including PKA and PKC systems underlie the inhibitory effects of WIN on I (cap); however, G protein-coupled receptors CB1 or CB2 were not involved.

  14. Evidence for the involvement of the opioid system in the antidepressant-like effect of folic acid in the mouse forced swimming test.

    PubMed

    Brocardo, Patrícia S; Budni, Josiane; Lobato, Kelly R; Santos, Adair Roberto S; Rodrigues, Ana Lúcia S

    2009-06-08

    The opioid system has been implicated in major depression and in the mechanism of action of antidepressants. This study investigated the involvement of the opioid system in the antidepressant-like effect of the water-soluble B-vitamin folic acid in the forced swimming test (FST). The effect of folic acid (10 nmol/site, i.c.v.) was prevented by the pretreatment of mice with naloxone (1 mg/kg, i.p., a nonselective opioid receptor antagonist), naltrindole (3 mg/kg, i.p., a selective delta-opioid receptor antagonist), naloxonazine (10 mg/kg, i.p., a selective mu(1)-opioid receptor antagonist, 24 h before), but not with naloxone methiodide (1 mg/kg, s.c., a peripherally acting opioid receptor antagonist). In addition, a sub-effective dose of folic acid (1 nmol/site, i.c.v.) produced a synergistic antidepressant-like effect in the FST with a sub-effective dose of morphine (1 mg/kg, s.c.). A further approach was designed to investigate the possible relationship between the opioid system and NMDA receptors in the mechanism of action of folic acid in the FST. Pretreatment of the animals with naloxone (1 mg/kg, i.p.) prevented the synergistic antidepressant-like effect of folic acid (1 nmol/site, i.c.v.) and MK-801 (0.001 mg/kg, i.p., a non-competitive NMDA receptor antagonist). Together the results firstly indicate that the anti-immobility effect of folic acid in the FST is mediated by an interaction with the opioid system (mu(1) and delta), likely dependent on the inhibition of NMDA receptors elicited by folic acid.

  15. Effect of famotidine on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor

    PubMed Central

    Upreti, Vijay V; Song, Yan; Wang, Jessie; Byon, Wonkyung; Boyd, Rebecca A; Pursley, Janice M; LaCreta, Frank; Frost, Charles E

    2013-01-01

    Background Apixaban is an oral, selective, direct factor Xa inhibitor approved for thromboprophylaxis after orthopedic surgery and stroke prevention in patients with atrial fibrillation, and under development for treatment of venous thromboembolism. This study investigated the effect of a gastric acid suppressant, famotidine (a histamine H2-receptor antagonist), on the pharmacokinetics of apixaban in healthy subjects. Methods This two-period, two-treatment crossover study randomized 18 healthy subjects to receive a single oral dose of apixaban 10 mg with and without a single oral dose of famotidine 40 mg administered 3 hours before dosing with apixaban. Plasma apixaban concentrations were measured up to 60 hours post-dose and pharmacokinetic parameters were calculated. Results Famotidine did not affect maximum apixaban plasma concentration (Cmax) or area under the plasma concentration-time curve from zero to infinite time (AUC∞). Point estimates for ratios of geometric means with and without famotidine were close to unity for Cmax (0.978) and AUC∞ (1.007), and 90% confidence intervals were entirely contained within the 80%–125% no-effect interval. Administration of apixaban alone and with famotidine was well tolerated. Conclusion Famotidine does not affect the pharmacokinetics of apixaban, consistent with the physicochemical properties of apixaban (lack of an ionizable group and pH-independent solubility). Apixaban pharmacokinetics would not be affected by an increase in gastrointestinal pH due to underlying conditions (eg, achlorhydria), or by gastrointestinal pH-mediated effects of other histamine H2-receptor antagonists, antacids, or proton pump inhibitors. Given that famotidine is also an inhibitor of the human organic cation transporter (hOCT), these results indicate that apixaban pharmacokinetics are not influenced by hOCT uptake transporter inhibitors. Overall, these results support that apixaban can be administered without regard to coadministration of gastric acid modifiers. PMID:23637566

  16. Mechanisms underlying clinical efficacy of Angiotensin II type 2 receptor (AT2R) antagonist EMA401 in neuropathic pain: clinical tissue and in vitro studies.

    PubMed

    Anand, Uma; Yiangou, Yiangos; Sinisi, Marco; Fox, Michael; MacQuillan, Anthony; Quick, Tom; Korchev, Yuri E; Bountra, Chas; McCarthy, Tom; Anand, Praveen

    2015-06-26

    The clinical efficacy of the Angiotensin II (AngII) receptor AT2R antagonist EMA401, a novel peripherally-restricted analgesic, was reported recently in post-herpetic neuralgia. While previous studies have shown that AT2R is expressed by nociceptors in human DRG (hDRG), and that EMA401 inhibits capsaicin responses in cultured hDRG neurons, the expression and levels of its endogenous ligands AngII and AngIII in clinical neuropathic pain tissues, and their signalling pathways, require investigation. We have immunostained AngII, AT2R and the capsaicin receptor TRPV1 in control post-mortem and avulsion injured hDRG, control and injured human nerves, and in cultured hDRG neurons. AngII, AngIII, and Ang-(1-7) levels were quantified by ELISA. The in vitro effects of AngII, AT2R agonist C21, and Nerve growth factor (NGF) were measured on neurite lengths; AngII, NGF and EMA401 effects on expression of p38 and p42/44 MAPK were measured using quantitative immunofluorescence, and on capsaicin responses using calcium imaging. AngII immunostaining was observed in approximately 75% of small/medium diameter neurons in control (n = 5) and avulsion injured (n = 8) hDRG, but not large neurons i.e. similar to TRPV1. AngII was co-localised with AT2R and TRPV1 in hDRG and in vitro. AngII staining by image analysis showed no significant difference between control (n = 12) and injured (n = 13) human nerves. AngII levels by ELISA were also similar in control human nerves (4.09 ± 0.36 pmol/g, n = 31), injured nerves (3.99 ± 0.79 pmol/g, n = 7), and painful neuromas (3.43 ± 0.73 pmol/g, n = 12); AngIII and Ang-(1-7) levels were undetectable (<0.03 and 0.05 pmol/g respectively). Neurite lengths were significantly increased in the presence of NGF, AngII and C21 in cultured DRG neurons. AngII and, as expected, NGF significantly increased signal intensity of p38 and p42/44 MAPK, which was reversed by EMA401. AngII mediated sensitization of capsaicin responses was not observed in the presence of MAP kinase inhibitor PD98059, and the kinase inhibitor staurosporine. The major AT2R ligand in human peripheral nerves is AngII, and its levels are maintained in injured nerves. EMA401 may act on paracrine/autocrine mechanisms at peripheral nerve terminals, or intracrine mechanisms, to reduce neuropathic pain signalling in AngII/NGF/TRPV1-convergent pathways.

  17. [Methods of preventing phlebitis induced by infusion of fosaprepitant].

    PubMed

    Kohno, Emiko; Kanematsu, Sayaka; Okazaki, Satoshi; Ogata, Makoto; Kanemitsu, Meiko; Yamashita, Hiromi; Syuntou, Kaori; Sekita, Masako; Nishioka, Ryoko; Yoshida, Hideyuki

    2015-03-01

    At our hospital, we use aprepitant for nausea and vomiting when administering highly emetic anticancer agents, according to "Guidelines for the Appropriate Use of Antiemetic Agents" given by the Japan Society of Clinical Oncology. We initiated the intravenous administration of fosaprepitant for better compliance compared with aprepitant; however, we observed phlebitis after the infusion of fosaprepitant. Therefore, we investigated measures to reduce phlebitis associated with the infusion of fosaprepitant. For the first premedication, fosaprepitant (150 mg) was dissolved in 100 mL of saline and administered for 30 minutes; 1 of 2 patients showed grade 4 phlebitis. For the modified premedication, fosaprepitant, dexamethasone, and 5- HT(3) antagonist were dissolved in 100 mL of saline and administered for 30 minutes. The modified premedication was administered to a total of 27 patients; 5 patients developed mild phlebitis (grade 1), but infusion could be continued by treating their phlebitis with a hot pack. We used a combination of dexamethasone and 5-HT(3) antagonist with fosaprepitant as a modified premedication in order to avoid drug-induced vascular damage, which resulted in the pH decreasing to 6.20-7.55 (close to neutral) and a shorter infusion time.

  18. Serotonergic modulation of the rat pup ultrasonic isolation call: studies with 5HT1 and 5HT2 subtype-selective agonists and antagonists.

    PubMed

    Winslow, J T; Insel, T R

    1991-01-01

    A modulatory role for serotonin has been described for the development and expression of the ultrasonic call of infant rat pups during brief maternal separations. In previous studies, serotonin reuptake inhibitors selectively reduced the rate of calling following acute administration to 9-11-day-old pups and a serotonin neurotoxin (MDMA) systematically disrupted the development of ultrasonic vocalizations but not other measures of motor development. In the current studies, we extended our investigations to include drugs with purported receptor subtype selectivities. Consistent with previous reports, acute administration of 5HT1A agonists buspirone and 8-OH-DPAT [+/-)-8-hydroxy-2-(di-N-propylamino)tetralin) reduced the rate of calling at doses which did not affect motor activity or core body temperature. The rate reducing effects of buspirone persisted up to 1 but not 2 h after injection. Administration of purported 5HT1B receptor agonists, CGS12066B (7-trifluoromethyl-4(4-methyl-1-piperazinyl)-pyrrolo[1,2-a] quinoxaline) and TFMPP (1-[3-fluoromethyl)phenyl]-piperazine) increased the rate of calling depending on the specificity of the drug for the 5HT1B receptor. d,l-Propranolol, a 5HT1 receptor antagonist, blocked the effects of both 8-OH-DPAT and TFMPP. m-CPP (1-(3-chlorophenyl)piperazine) and DOI [+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane), drugs with putative actions at 5HT1C and 5HT2 receptor sites both decreased calling but differed according to their effects on motor activity. Ritanserin, a 5HT2 and 5HT1C antagonist, produced a dose-related increase in call rate. A dose of ritanserin with no apparent intrinsic effects effectively antagonized DOI rate reducing effects but potentiated the rate reducing effects of m-CPP.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Extraction of ranitidine and nizatidine with using imidazolium ionic liquids prior spectrophotometric and chromatographic detection.

    PubMed

    Kiszkiel, Ilona; Starczewska, Barbara; Leśniewska, Barbara; Późniak, Patrycja

    2015-03-15

    A new extraction medium was proposed for liquid-liquid extraction of the histamine H2 receptor antagonists ranitidine (RNT) and nizatidine (NZT). The ionic liquids with low vapor pressure and favorable solvating properties for a range of compounds such as 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C4mim][Tf2N] were tested for isolation of analytes. The extraction parameters of RNT and NZT, namely, amount of ionic liquid, pH of sample solution, shaking and centrifugation time were optimized. The isolation processes were performed with 1 mL of the ionic liquids. The extracted samples (pH values near 4) were shaken at 1750 rpm. The influence of interfering substances on the efficiency of extraction process was also studied. Methods for the histamine H2 receptor antagonists (ranitidine and nizatidine) determination after their separation using imidazolium ionic liquids by high performance liquid chromatography (HPLC) combined with UV spectrophotometry were developed. The application of ionic liquids in extraction step allows for selective isolation of analytes from aqueous matrices and their preconcentration. The above methods were applied to the determination of RNT and NZT in environmental samples (river water and wastewater after treatment). Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Indometh acin-antihistamine combination for gastric ulceration control

    NASA Technical Reports Server (NTRS)

    Brown, P. A.; Vernikos, J. (Inventor)

    1980-01-01

    An anti-inflammatory and analgesic composition containing indomethacin and an H2 histamine receptor antagonist in an amount sufficient to reduce gastric distress caused by the indomethacin was developed. Usable antagonists are metiamide and cimetidine.

  1. SSR126768A (4-chloro-3-[(3R)-(+)-5-chloro-1-(2,4-dimethoxybenzyl)-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-N-ethyl-N-(3-pyridylmethyl)-benzamide, hydrochloride): a new selective and orally active oxytocin receptor antagonist for the prevention of preterm labor.

    PubMed

    Serradeil-Le Gal, Claudine; Valette, Gérard; Foulon, Loïc; Germain, Guy; Advenier, Charles; Naline, Emmanuel; Bardou, Marc; Martinolle, Jean-Pierre; Pouzet, Brigitte; Raufaste, Danielle; Garcia, Corinne; Double-Cazanave, Eléonore; Pauly, Maxime; Pascal, Marc; Barbier, Alain; Scatton, Bernard; Maffrand, Jean-Pierre; Le Fur, Gérard

    2004-04-01

    4-chloro-3-[(3R)-(+)-5-chloro-1-(2,4-dimethoxybenzyl)-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-N-ethyl-N-(3-pyridylmethyl)benzamide, hydrochloride (SSR126768A), a new potent and selective, orally active oxytocin (OT) receptor antagonist was characterized in several biochemical and pharmacological models. In binding studies, SSR126768A showed nanomolar affinity for rat and human recombinant and native OT receptors (K(i) = 0.44 nM) and exhibited much lower affinity for V(1a), V(1b), and V(2) receptors. In addition, it did not interact with a large number of other receptors, enzymes, and ion channels (1 microM). In autoradiographic experiments performed on at-term human pregnant uterus sections, SSR126768A dose dependently displaced [I(125)]d(CH(2))(5)[Tyr(Me)(2), Thr(4), Orn(8) (125)I-Tyr-NH(2)(9)]VT in situ labeling to OT receptors highly expressed in these tissues. In functional studies, SSR126768A behaved as a full antagonist and potently antagonized OT-induced intracellular Ca(2+) increase (K(i) = 0.50 nM) and prostaglandin release (K(i) = 0.45 nM) in human uterine smooth muscle cells. In rat isolated myometrium, OT-induced uterine contractions were competitively antagonized by SSR126768A (pA(2) = 8.47). Similarly, in human pregnant myometrial strips, SSR126768A inhibited the contractile uterine response to OT. In conscious telemetrated rats, oral administration of SSR126768A (1-10 mg/kg) produced a competitive inhibition of the dose response to OT on uterine contractions up to 24 h at 3 mg/kg p.o.; no tachyphylaxis was observed after 4-day repeated treatment. Finally, SSR126768A (30 mg/kg p.o.) significantly delayed parturition in pregnant rats in labor similar to ritodrine (10 mg/kg p.o.). Thus, SSR126768A is a potent, highly selective, orally active OT receptor antagonist with a long duration of action. This molecule could find therapeutic application as a tocolytic agent for acute and chronic oral management of preterm labor.

  2. AMPA receptor antagonist NBQX attenuates later-life epileptic seizures and autistic-like social deficits following neonatal seizures.

    PubMed

    Lippman-Bell, Jocelyn J; Rakhade, Sanjay N; Klein, Peter M; Obeid, Makram; Jackson, Michele C; Joseph, Annelise; Jensen, Frances E

    2013-11-01

    To determine whether AMPA receptor (AMPAR) antagonist NBQX can prevent early mammalian target of rapamycin (mTOR) pathway activation and long-term sequelae following neonatal seizures in rats, including later-life spontaneous recurrent seizures, CA3 mossy fiber sprouting, and autistic-like social deficits. Long-Evans rats experienced hypoxia-induced neonatal seizures (HS) at postnatal day (P)10. NBQX (20 mg/kg) was administered immediately following HS (every 12 h × 4 doses). Twelve hours post-HS, we assessed mTOR activation marker phosphorylated p70-S6 kinase (p-p70S6K) in hippocampus and cortex of vehicle (HS + V) or NBQX-treated post-HS rats (HS + N) versus littermate controls (C + V). Spontaneous seizure activity was compared between groups by epidural cortical electroencephalography (EEG) at P70-100. Aberrant mossy fiber sprouting was measured using Timm staining. Finally, we assessed behavior between P30 and P38. Postseizure NBQX treatment significantly attenuated seizure-induced increases in p-p70S6K in the hippocampus (p < 0.01) and cortex (p < 0.001). Although spontaneous recurrent seizures increased in adulthood in HS + V rats compared to controls (3.22 ± 1 seizures/h; p = 0.03), NBQX significantly attenuated later-life seizures (0.14 ± 0.1 seizures/h; p = 0.046). HS + N rats showed less aberrant mossy fiber sprouting (115 ± 8.0%) than vehicle-treated post-HS rats (174 ± 10%, p = 0.004), compared to controls (normalized to 100%). Finally, NBQX treatment prevented alterations in later-life social behavior; post-HS rats showed significantly decreased preference for a novel over a familiar rat (71.0 ± 12 s) compared to controls (99.0 ± 15.6 s; p < 0.01), whereas HS + N rats showed social novelty preference similar to controls (114.3 ± 14.1 s). Brief NBQX administration during the 48 h postseizure in P10 Long-Evans rats suppresses transient mTOR pathway activation and attenuates spontaneous recurrent seizures, social preference deficits, and mossy fiber sprouting observed in vehicle-treated adult rats after early life seizures. These results suggest that acute AMPAR antagonist treatment during the latent period immediately following neonatal HS can modify seizure-induced activation of mTOR, reduce the frequency of later-life seizures, and protect against CA3 mossy fiber sprouting and autistic-like social deficits. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  3. Role of peripheral sigma-1 receptors in ischaemic pain: Potential interactions with ASIC and P2X receptors.

    PubMed

    Kwon, S G; Roh, D H; Yoon, S Y; Choi, S R; Choi, H S; Moon, J Y; Kang, S Y; Kim, H W; Han, H J; Beitz, A J; Oh, S B; Lee, J H

    2016-04-01

    The role of peripheral sigma-1 receptors (Sig-1Rs) in normal nociception and in pathologically induced pain conditions has not been thoroughly investigated. Since there is mounting evidence that Sig-1Rs modulate ischaemia-induced pathological conditions, we investigated the role of Sig-1Rs in ischaemia-induced mechanical allodynia (MA) and addressed their possible interaction with acid-sensing ion channels (ASICs) and P2X receptors at the ischaemic site. We used a rodent model of hindlimb thrombus-induced ischaemic pain (TIIP) to investigate their role. Western blot was performed to observe changes in Sig-1R expression in peripheral nervous tissues. MA was measured after intraplantar (i.pl.) injections of antagonists for the Sig-1, ASIC and P2X receptors in TIIP rats or agonists of each receptor in naïve rats. Sig-1R expression significantly increased in skin, sciatic nerve and dorsal root ganglia at 3 days post-TIIP surgery. I.pl. injections of the Sig-1R antagonist, BD-1047 on post-operative days 0-3 significantly attenuated the development of MA during the induction phase, but had no effect on MA when given during the maintenance phase (days 3-6 post-surgery). BD-1047 synergistically increased amiloride (an ASICs blocker)- and TNP-ATP (a P2X antagonist)-induced analgesic effects in TIIP rats. In naïve rats, i.pl. injection of Sig-1R agonist PRE-084 alone did not produce MA; but it did induce MA when co-administered with either an acidic pH solution or a sub-effective dose of αβmeATP. Peripheral Sig-1Rs contribute to the induction of ischaemia-induced MA via facilitation of ASICs and P2X receptors. Thus, peripheral Sig-1Rs represent a novel therapeutic target for the treatment of ischaemic pain. © 2015 European Pain Federation - EFIC®

  4. Lead identification of acetylcholinesterase inhibitors-histamine H3 receptor antagonists from molecular modeling.

    PubMed

    Bembenek, Scott D; Keith, John M; Letavic, Michael A; Apodaca, Richard; Barbier, Ann J; Dvorak, Lisa; Aluisio, Leah; Miller, Kirsten L; Lovenberg, Timothy W; Carruthers, Nicholas I

    2008-03-15

    Currently, the only clinically effective treatment for Alzheimer's disease (AD) is the use of acetylcholinesterase (AChE) inhibitors. These inhibitors have limited efficacy in that they only treat the symptoms and not the disease itself. Additionally, they often have unpleasant side effects. Here we consider the viability of a single molecule having the actions of both an AChE inhibitor and histamine H(3) receptor antagonist. Both histamine H(3) receptor antagonists and AChE inhibitors improve and augment cholinergic neurotransmission in the cortex. However, whereas an AChE inhibitor will impart its effect everywhere, a histamine H(3) antagonist will raise acetylcholine levels mostly in the brain as its mode of action will primarily be on the central nervous system. Therefore, the combination of both activities in a single molecule could be advantageous. Indeed, studies suggest an appropriate dual-acting compound may offer the desired therapeutic effect with fewer unpleasant side effects [CNS Drugs2004, 18, 827]. Further, recent studies(2) indicate the peripheral anionic site (PAS) of AChE interacts with the beta-amyloid (betaA) peptide. Consequently, a molecule capable of disrupting this interaction may have a significant impact on the production of or the aggregation of betaA. This may result in slowing down the progression of the disease rather than only treating the symptoms as current therapies do. Here, we detail how the use of the available crystal structure information, pharmacophore modeling and docking (automated, manual, classical, and QM/MM) lead to the identification of an AChE inhibitor-histamine H(3) receptor antagonist. Further, based on our models we speculate that this dual-acting compound may interact with the PAS. Such a dual-acting compound may be able to affect the pathology of AD in addition to providing symptomatic relief.

  5. Dopamine D1 receptor activation maintains motor coordination in injured rats but does not accelerate the recovery of the motor coordination deficit.

    PubMed

    Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Alfaro-Rodríguez, Alfonso; Reyes-Legorreta, Celia; Garza-Montaño, Paloma; González-Piña, Rigoberto; Bueno-Nava, Antonio

    2018-01-15

    The sensorimotor cortex and the striatum are interconnected by the corticostriatal pathway, suggesting that cortical injury alters the striatal function that is associated with skilled movements and motor learning, which are functions that may be modulated by dopamine (DA). In this study, we explored motor coordination and balance in order to investigate whether the activation of D 1 receptors (D 1 Rs) modulates functional recovery after cortical injury. The results of the beam-walking test showed motor deficit in the injured group at 24, 48 and 96h post-injury, and the recovery time was observed at 192h after cortical injury. In the sham and injured rats, systemic administration of the D 1 R antagonist SCH-23390 (1mg/kg) alone at 24, 48, 96 and 192h significantly (P<0.01) increased the motor deficit, while administration of the D 1 R agonist SKF-38393 alone (2, 3 and 4mg/kg) at 24, 48, 96 and 192h post-injury did not produce a significant difference; however, the co-administration of SKF-38393 and SCH-23390 prevented the antagonist-induced increase in the motor deficit. The cortical+striatal injury showed significantly increased the motor deficit at 24, 48, 96 and 192h post-injury (P<0.01) but did not show recovery at 192h. In conclusion, the administration of the D 1 R agonist did not accelerate the motor recovery, but the activation of D 1 Rs maintained motor coordination, confirming that an intact striatum may be necessary for achieving recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality.

    PubMed

    Osuchowski, Marcin F; Welch, Kathy; Siddiqui, Javed; Remick, Daniel G

    2006-08-01

    Mortality in sepsis remains unacceptably high and attempts to modulate the inflammatory response failed to improve survival. Previous reports postulated that the sepsis-triggered immunological cascade is multimodal: initial systemic inflammatory response syndrome (SIRS; excessive pro-, but no/low anti-inflammatory plasma mediators), intermediate homeostasis with a mixed anti-inflammatory response syndrome (MARS; both pro- and anti-inflammatory mediators) and final compensatory anti-inflammatory response syndrome (CARS; excessive anti-, but no/low proinflammatory mediators). To verify this, we examined the evolution of the inflammatory response during the early phase of murine sepsis by repetitive blood sampling of septic animals. Increased plasma concentrations of proinflammatory (IL-6, TNF, IL-1beta, KC, MIP-2, MCP-1, and eotaxin) and anti-inflammatory (TNF soluble receptors, IL-10, IL-1 receptor antagonist) cytokines were observed in early deaths (days 1-5). These elevations occurred simultaneously for both the pro- and anti-inflammatory mediators. Plasma levels of IL-6 (26 ng/ml), TNF-alpha (12 ng/ml), KC (33 ng/ml), MIP-2 (14 ng/ml), IL-1 receptor antagonist (65 ng/ml), TNF soluble receptor I (3 ng/ml), and TNF soluble receptor II (14 ng/ml) accurately predicted mortality within 24 h. In contrast, these parameters were not elevated in either the late-deaths (day 6-28) or survivors. Surprisingly, either pro- or anti-inflammatory cytokines were also reliable in predicting mortality up to 48 h before outcome. These data demonstrate that the initial inflammatory response directly correlates to early but not late sepsis mortality. This multifaceted response questions the use of a simple proinflammatory cytokine measurement for classifying the inflammatory status during sepsis.

  7. Tc-labeling of Peptidomimetic Antagonist to Selectively Target alpha(v)beta(3) Receptor-Positive Tumor: Comparison of PDA and EDDA as co-Ligands.

    PubMed

    Shin, In Soo; Maeng, Jin Soo; Jang, Beom-Su; You, Eric; Cheng, Kenneth; Li, King C P; Wood, Bradford; Carrasquillo, Jorge A; Danthi, S Narasimhan; Paik, Chang H

    2010-01-01

    OBJECTIVES: The aim of this research was to synthesize radiolabeled peptidomimetic integrin alpha(v)beta(3) antagonist with (99m)Tc for rapid targeting of integrin alpha(v)beta(3) receptors in tumor to produce a high tumor to background ratio. METHODS: The amino terminus of 4-[2-(3,4,5,6-tetra-hydropyrimidin-2-ylamino)-ethyloxy]benzoyl-2-(S)-[N-(3-amino-neopenta-1-carbamyl)]-aminoethylsulfonyl-amino-beta-alanine hydrochloride (IAC) was conjugated with N-hydroxysuccinimide ester of HYNIC and labeled with (99m)Tc using tricine with either 1,5-pyridinedicarboxylic acid (PDA) or ethylenediamine-N,N'-diacetic acid (EDDA) as the co-ligand. The products, (99m)Tc EDDA(2)/HYNIC-IAC (P1) and (99m)Tc PDA (tricin)/HYNIC-IAC (P2) were subjected to in vitro serum stability, receptor-binding, biodistribution and imaging studies. RESULTS: P1 and P2 were synthesized with an overall yield of >80%. P1 was slightly more stable than P2 when incubated in serum at 37 degrees C for 18 hrs (84 vs 77% intact). The In vitro receptor-binding of P1 was higher than that of P2 (78.02 +/- 13.48 vs 51.05 +/- 14.05%) when incubated with alpha(v)beta(3) at a molar excess (0.8 muM). This receptor binding was completely blocked by a molar excess of an unlabeled peptidomimetic antagonist. Their differences shown in serum stability and the receptor-binding appeared to be related to their biological behaviors in tumor uptake and retention; the 1 h tumor uptakes of P1 and P2 were 3.17+/-0.52 and 2.13+/-0.17 % ID/g, respectively. P1 was retained in the tumor longer than P2. P1 was excreted primarily through the renal system whereas P2 complex was excreted equally via both renal and hepatobiliary systems. Thus, P1 was retained in the whole-body with 27.25 +/- 3.67% ID at 4 h whereas 54.04 +/- 3.57% ID of P2 remained in the whole-body at 4 h. This higher whole-body retention of P2 appeared to be resulted from a higher amount of radioactivity retained in liver and intestine. These findings were supported by imaging studies showing higher tumor-to-abdominal contrast for P1 than for P2 at 3 h postinjection. CONCLUSIONS: P1 showed good tumor targeting properties with a rapid tumor uptake, prolonged tumor retention and fast whole-body clearance kinetics. These findings warrant further investigation of the HYNIC method of (99m)Tc labeling of other peptidomimetic antagonists using EDDA as a coligand.

  8. Changes in cholecystokinin and peptide Y gene expression with feeding in yellowtail (Seriola quinqueradiata): relation to pancreatic exocrine regulation.

    PubMed

    Murashita, Koji; Fukada, Haruhisa; Hosokawa, Hidetsuyo; Masumoto, Toshiro

    2007-03-01

    In fish, the regulation of digestive enzyme secretion by hormonal control such as cholecystokinin (CCK) and neuropeptide Y (NPY)-related peptide is not well understood. To investigate the roles of fish CCK and peptide Y (PY) in digestive enzyme secretion, mRNA levels of CCK and PY, pyloric caeca enzyme activities and mRNA levels of pancreatic digestive enzymes (lipase, trypsin and amylase) were measured at pre- and post-prandial stages in yellowtail. Pyloric caeca were sampled at 0, 0.5, 1.5, 3, 6, 12, 24 and 48 h after feeding. The mRNA levels of trypsin and amylase increased after feeding, suggesting that transcription was induced by feed ingestion. Digestive enzyme activities decreased in exocrine pancreas after feeding, suggesting the stored enzyme was secreted from pancreas post-prandially. mRNA levels for CCK displayed a time-dependent increase, peaking between 1.5 and 3 h after-feeding followed by a rapid decrease 3 to 6 h after feeding. The mRNA expression pattern of PY was inverse to the pattern of CCK, decreasing until 1.5 h after feeding and then rising to initial levels by 12 h after feeding. These results suggest that CCK and PY work antagonistically in the exocrine pancreas of yellowtail.

  9. Agonism and Antagonism at the Insulin Receptor

    PubMed Central

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B.; Kiselyov, Vladislav V.; De Meyts, Pierre

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed. PMID:23300584

  10. Endocrine-Disrupting Effects of Pesticides through Interference with Human Glucocorticoid Receptor.

    PubMed

    Zhang, Jianyun; Zhang, Jing; Liu, Rui; Gan, Jay; Liu, Jing; Liu, Weiping

    2016-01-05

    Many pesticides have been identified as endocrine-disrupting chemicals (EDCs) due to their ability to bind sex-steroid hormone receptors. However, little attention has been paid to the ability of pesticides to interfere with other steroid hormone receptors such as glucocorticoid receptor (GR) that plays a critical role in metabolic, endocrine, immune, and nervous systems. In this study, the glucocorticoidic and antiglucocorticoidic effects of 34 pesticides on human GR were investigated using luciferase reporter gene assay. Surprisingly, none of the test chemicals showed GR agonistic activity, but 12 chemicals exhibited apparent antagonistic effects. Bifenthrin, λ-cyhalothrin, cypermethrin, resmethrin, o,p'-DDT, p,p'-DDT, methoxychlor, ethiofencarb, and tolylfluanid showed remarkable GR antagonistic properties with RIC20 values lower than 10(-6) M. The disruption of glucocorticoid-responsive genes in H4IIE and J774A.1 cells was further evaluated on these 12 GR antagonists. In H4IIEcells, four organochlorine insecticides, bifenthrin, and 3-PBA decreased cortisol-induced PEPCK gene expression, while o,p'-DDT and methoxychlor inhibited cortisol-stimulated Arg and TAT gene expression. Cypermethrin and tolyfluanid attenuated cortisol-induced TAT expression. In J774A.1 cells, λ-cyhalothrin, resmethrin, 3-PBA, o,p'-DDT, p,p'-DDT, p,p'-DDE, methoxychlor- and tolylfluanid-reduced cortisol-stimulated GILZ expression. Furthermore, molecular docking simulation indicated that different interactions may stabilize the binding between molecules and GR. Our findings suggest that comprehensive screening and evaluation of GR antagonists and agonists should be considered to better understand the health and ecological risks of man-made chemicals such as pesticides.

  11. The relevance of kalikrein-kinin system via activation of B2 receptor in LPS-induced fever in rats.

    PubMed

    Soares, Denis de Melo; Santos, Danielle R; Rummel, Christoph; Ott, Daniela; Melo, Míriam C C; Roth, Joachim; Calixto, João B; Souza, Glória E P

    2017-11-01

    This study evaluated the involvement of endogenous kallikrein-kinin system and the bradykinin (BK) B 1 and B 2 receptors on LPS- induced fever and the POA cells involved in this response. Male Wistar rats received either i.v. (1 mg/kg), i.c.v. (20 nmol) or i.h. (2 nmol) injections of icatibant (B 2 receptor antagonist) 30 or 60 min, respectively, before the stimuli. DALBK (B 1 receptor antagonist) was given either 15min before BK (i.c.v.) or 30 min before LPS (i.v.). Captopril (5 mg/kg, sc.,) was given 1 h prior LPS or BK. Concentrations of BK and total kininogenon CSF, plasma and tissue kallikrein were evaluated. Rectal temperatures (rT) were assessed by telethermometry. Ca ++ signaling in POA cells was performed in rat pup brain tissue microcultures. Icatibant reduced LPS fever while, captopril exacerbated that response, an effect abolished by icatibant. Icatibant (i.h.) reduced fever to BK (i.h.) but not that induced by LPS (i.v.). BK increased intracellular calcium concentration in neurons and astrocytes. LPS increased levels of bradykinin, tissue kallikrein and total kininogen. BK (i.c.v.) increased rT and decreased tail skin temperature. Captopril potentiated BK-induced fever an effect abolished by icatibant. DALBK reduced the fever induced by BK. BK (i.c.v.) increased the CSF PGE 2 concentration. Effect abolished by indomethacin (i.p.). LPS activates endogenous kalikrein-kinin system leading to production of BK, which by acting on B 2 -receptors of POA cells causes prostaglandin synthesis that in turn produces fever. Thus, a kinin B 2 -receptor antagonist that enters into the brain could constitute a new and interesting strategy to treat fever. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Synthesis, structural elucidation and pharmacological properties of some 5-acetyl-3,4-dihydro-6-methyl-4-(substituted phenyl)-2(1H) -pyrimidinones.

    PubMed

    Yarim, M; Sarac, S; Ertan, M; Batu, O S; Erol, K

    1999-06-30

    In this study, the synthesis of some new 5-acetyl-3,4-dihydro-6-methyl-4-(substituted phenyl)-2(1H)-pyrimidinones has been reported. The compounds were prepared by the Biginelli reaction of acetylacetone with aromatic aldehydes and urea. The structures of the compounds were characterized by UV, IR, 1H NMR, 13C NRM, mass spectra and elementary analysis. The calcium antagonistic activity of these compounds was tested in vitro on rat ileum precontracted with 4 x 10(-3) M barium chloride.

  13. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature.

    PubMed

    Alawi, Khadija M; Aubdool, Aisah A; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D; Keeble, Julie E

    2015-10-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders. © FASEB.

  14. The Sigma-1 Receptor Antagonist, S1RA, Reduces Stroke Damage, Ameliorates Post-Stroke Neurological Deficits and Suppresses the Overexpression of MMP-9.

    PubMed

    Sánchez-Blázquez, Pilar; Pozo-Rodrigálvarez, Andrea; Merlos, Manuel; Garzón, Javier

    2018-06-01

    The glutamate N-methyl-D-aspartate receptor (NMDAR) plays an essential role in the excitotoxic neural damage that follows ischaemic stroke. Because the sigma-1 receptor (σ1R) can regulate NMDAR transmission, exogenous and putative endogenous regulators of σ1R have been investigated using animal models of ischaemic stroke. As both agonists and antagonists provide some neural protection, the selective involvement of σ1Rs in these effects has been questioned. The availability of S1RA (E-52862/MR309), a highly selective σ1R antagonist, prompted us to explore its therapeutic potential in an animal model of focal cerebral ischaemia. Mice were subjected to right middle cerebral artery occlusion (MCAO), and post-ischaemic infarct volume and neurological deficits were determined across a range of intervals after the stroke-inducing surgery. Intracerebroventricular or intravenous treatment with S1RA significantly reduced the cerebral infarct size and neurological deficits caused by permanent MCAO (pMCAO). Compared with the control/sham-operated mice, the neuroprotective effects of S1RA were observed when delivered up to 5 h prior to surgery and 3 h after ischaemic onset. Interestingly, neither mice with the genetic deletion of σ1R nor wild-type mice that were pre-treated with the σ1R agonist PRE084 showed beneficial effects after S1RA administration with regard to stroke infarction. S1RA-treated mice showed faster behavioural recovery from stroke; this finding complements the significant decreases in matrix metalloproteinase-9 (MMP-9) expression and reactive astrogliosis surrounding the infarcted cortex. Our data indicate that S1RA, via σ1R, holds promising potential for clinical application as a therapeutic agent for ischaemic stroke.

  15. Fevipiprant (QAW039), a Slowly Dissociating CRTh2 Antagonist with the Potential for Improved Clinical Efficacy.

    PubMed

    Sykes, David A; Bradley, Michelle E; Riddy, Darren M; Willard, Elizabeth; Reilly, John; Miah, Asadh; Bauer, Carsten; Watson, Simon J; Sandham, David A; Dubois, Gerald; Charlton, Steven J

    2016-05-01

    Here we describe the pharmacologic properties of a series of clinically relevant chemoattractant receptor-homologous molecules expressed on T-helper type 2 (CRTh2) receptor antagonists, including fevipiprant (NVP-QAW039 or QAW039), which is currently in development for the treatment of allergic diseases. [(3)H]-QAW039 displayed high affinity for the human CRTh2 receptor (1.14 ± 0.44 nM) expressed in Chinese hamster ovary cells, the binding being reversible and competitive with the native agonist prostaglandin D2(PGD2). The binding kinetics of QAW039 determined directly using [(3)H]-QAW039 revealed mean kinetic on (kon) and off (koff) values for QAW039 of 4.5 × 10(7)M(-1)min(-1)and 0.048 minute(-1), respectively. Importantly, thekoffof QAW039 (half-life = 14.4 minutes) was >7-fold slower than the slowest reference compound tested, AZD-1981. In functional studies, QAW039 behaved as an insurmountable antagonist of PGD2-stimulated [(35)S]-GTPγS activation, and its effects were not fully reversed by increasing concentrations of PGD2after an initial 15-minute incubation period. This behavior is consistent with its relatively slow dissociation from the human CRTh2 receptor. In contrast for the other ligands tested this time-dependent effect on maximal stimulation was fully reversed by the 15-minute time point, whereas QAW039's effects persisted for >180 minutes. All CRTh2 antagonists tested inhibited PGD2-stimulated human eosinophil shape change, but importantly QAW039 retained its potency in the whole-blood shape-change assay relative to the isolated shape change assay, potentially reflective of its relatively slower off rate from the CRTh2 receptor. QAW039 was also a potent inhibitor of PGD2-induced cytokine release in human Th2 cells. Slow CRTh2 antagonist dissociation could provide increased receptor coverage in the face of pathologic PGD2concentrations, which may be clinically relevant. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Duodenal bicarbonate secretion and mucosal protection. Neurohumoral influence and transport mechanisms.

    PubMed

    Säfsten, B

    1993-01-01

    Duodenal mucosal bicarbonate secretion (DMBS) plays an important role in the defence against acid discharged from the stomach. The secretion by duodenum immediately distal to the Brunner's glands area and devoid of pancreatic and biliary secretions, was investigated in vivo in anaesthetized Sprague-Dawley rats and in vitro in mucosae isolated from the American bullfrog. Transport mechanisms were studied in isolated rat duodenal enterocytes and identified by use of digitized microfluorometry and the fluoroprobe BCECF. Cyclic AMP production in enterocytes of villus vs. crypt origin was measured with radioimmunoassay. The benzodiazepines diazepam and Ro 15-1788 stimulated DMBS in the rat when administered intravenously or intracerebroventricularly; however, their stimulatory effect was abolished by bilateral proximal vagotomy, and they had no effect on the secretion by isolated bullfrog mucosa. It is concluded that these benzodiazepines stimulate secretion by acting upon the central nervous system and that their effects are vagally mediated. Dopamine, the catechol-O-methyl-transferase-inhibitor nitecapone, and the dopamine D1 agonist SKF-38393 all stimulated DMBS. The peripherally acting antagonist domperidone while having no influence on basal DMBS did prevent the influences of SKF-38393 and nitecapone. The alpha 1-antagonist prazosin had no such effects and the combined results suggest that DMBS is stimulated via peripheral dopamine D1 receptors. Intravenous, but not central nervous, administration of the muscarinic M1 receptor antagonists pirenzepine and telenzepine effectively stimulated DMBS; however their effectiveness was dependent on intact vagal nerves. Phentolamine, an unselective alpha-adrenergic antagonist, prevented the stimulation by pirenzepine and telenzepine and stimulation by carbachol was abolished by hexamethonium. It is concluded that peripheral nicotinergic and muscarinergic M1 receptors mediate stimulation of DMBS, in part by acting upon peripheral sympathetic ganglia. Whereas dopamine and SKF-38393 caused a time-dependent increase in the accumulation of cyclic AMP in duodenal enterocytes of crypt and villous origin, the D2 agonist quinpirole had an inhibitive influence. Crypt and villus cells differed in their respective time-courses in response to vasoactive intestinal polypeptide. Finally, Cl-/HCO3- exchange, Na+/H+ exchange and NaHCO3 cotransport were identified as membrane acid/base transport mechanisms in isolated duodenal enterocytes.

  17. Similar Efficacy of Proton-Pump Inhibitors vs H2-Receptor Antagonists in Reducing Risk of Upper Gastrointestinal Bleeding or Ulcers in High-Risk Users of Low-Dose Aspirin.

    PubMed

    Chan, Francis K L; Kyaw, Moe; Tanigawa, Tetsuya; Higuchi, Kazuhide; Fujimoto, Kazuma; Cheong, Pui Kuan; Lee, Vivian; Kinoshita, Yoshikazu; Naito, Yuji; Watanabe, Toshio; Ching, Jessica Y L; Lam, Kelvin; Lo, Angeline; Chan, Heyson; Lui, Rashid; Tang, Raymond S Y; Sakata, Yasuhisa; Tse, Yee Kit; Takeuchi, Toshihisa; Handa, Osamu; Nebiki, Hiroko; Wu, Justin C Y; Abe, Takashi; Mishiro, Tsuyoshi; Ng, Siew C; Arakawa, Tetsuo

    2017-01-01

    It is not clear whether H 2 -receptor antagonists (H2RAs) reduce the risk of gastrointestinal (GI) bleeding in aspirin users at high risk. We performed a double-blind randomized trial to compare the effects of a proton pump inhibitor (PPI) vs a H2RA antagonist in preventing recurrent upper GI bleeding and ulcers in high-risk aspirin users. We studied 270 users of low-dose aspirin (≤325 mg/day) with a history of endoscopically confirmed ulcer bleeding at 8 sites in Hong Kong and Japan. After healing of ulcers, subjects with negative results from tests for Helicobacter pylori resumed aspirin (80 mg) daily and were assigned randomly to groups given a once-daily PPI (rabeprazole, 20 mg; n = 138) or H2RA (famotidine, 40 mg; n = 132) for up to 12 months. Subjects were evaluated every 2 months; endoscopy was repeated if they developed symptoms of upper GI bleeding or had a reduction in hemoglobin level greater than 2 g/dL and after 12 months of follow-up evaluation. The adequacy of upper GI protection was assessed by end points of recurrent upper GI bleeding and a composite of recurrent upper GI bleeding or recurrent endoscopic ulcers at month 12. During the 12-month study period, upper GI bleeding recurred in 1 patient receiving rabeprazole (0.7%; 95% confidence interval [CI], 0.1%-5.1%) and in 4 patients receiving famotidine (3.1%; 95% CI, 1.2%-8.1%) (P = .16). The composite end point of recurrent bleeding or endoscopic ulcers at month 12 was reached by 9 patients receiving rabeprazole (7.9%; 95% CI, 4.2%-14.7%) and 13 patients receiving famotidine (12.4%; 95% CI, 7.4%-20.4%) (P = .26). In a randomized controlled trial of users of low-dose aspirin at risk for recurrent GI bleeding, a slightly lower proportion of patients receiving a PPI along with aspirin developed recurrent bleeding or ulcer than of patients receiving an H2RA with the aspirin, although this difference was not statistically significant. ClincialTrials.gov no: NCT01408186. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. Effects of rhynchophylline on GluN1 and GluN2B expressions in primary cultured hippocampal neurons.

    PubMed

    He, Yan; Zeng, Sheng-Ya; Zhou, Shi-Wen; Qian, Gui-Sheng; Peng, Kang; Mo, Zhi-Xian; Zhou, Ji-Yin

    2014-10-01

    N-methyl-d-aspartate (NMDA) receptor subunits GluN1 and GluN2B in hippocampal neurons play key roles in anxiety. Our previous studies show that rhynchophylline, an active component of the Uncaria species, down-regulates GluN2B expression in the hippocampal CA1 area of amphetamine-induced rat. The effects of rhynchophylline on expressions of GluN1 and GluN2B in primary hippocampal neurons in neonatal rats in vitro were investigated. Neonatal hippocampal neurons were cultured with neurobasal-A medium. After incubation for 6h or 48 h with rhynchophylline (non-competitive NMDAR antagonist) and MK-801 (non-competitive NMDAR antagonist with anxiolytic effect, as the control drug) from day 6, neuron toxicity, mRNA and protein expressions of GluN1 and GluN2B were analyzed. GluN1 is mainly distributed on neuronal axons and dendritic trunks, cytoplasm and cell membrane near axons and dendrites. GluN2B is mainly distributed on the membrane, dendrites, and axon membranes. GluN1 and GluN2B are codistributed on dendritic trunks and dendritic spines. After 48 h incubation, a lower concentration of rhynchophylline (lower than 400 μmol/L) and MK-801 (lower than 200 μmol/L) have no toxicity on neonatal hippocampal neurons. Rhynchophylline up-regulated GluN1 mRNA expression at 6h and mRNA and protein expressions at 48h, but down-regulated GluN2B mRNA and protein expressions at 48 h. However, GluN1 and GluN2B mRNA expressions were down-regulated at 6h, and mRNA and protein expressions were both up-regulated by MK-801 at 48h. These findings show that rhynchophylline reciprocally regulates GluN1 and GluN2B expressions in hippocampal neurons, indicating a potential anxiolytic property for rhynchophylline. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Observational Study to Assess the Therapeutic Value of Four Ovarian Hyperstimulation Protocols in IVF After Pituitary Suppression with GnRH Antagonists in Normally Responding Women.

    PubMed

    Ana, Monzó; Vicente, Montañana; María, Rubio José; Trinidad, García-Gimeno; Alberto, Romeu

    2011-02-22

    To compare the clinical results of four different protocols of COH for IVF-ICSI in normovulatory women, using in all cases pituitary suppression with GnRH antagonists. A single center, open label, parallel-controlled, prospective, post-authorization study under the approved conditions for use where 305 normal responders women who were candidates to COH were assigned to r-FSH +hp-hMG (n = 51, Group I), hp-hMG (n = 61, Group II), fixed-dose r-FSH (n = 118, Group III), and r-FSH with potential dose adjustment (n = 75, Group IV) to subsequently undergo IVF-ICSI. During stimulation, Group IV needed significantly more days of stimulation as compared to Group II [8.09 ± 1.25 vs. 7.62 ± 1.17; P < 0.05], but was the group in which more oocytes were recovered [Group I: 9.43 ± 4.99 vs. Group II: 8.96 ± 4.82 vs. Group III: 8.78 ± 3.72 vs. Group IV: 11.62 ± 5.80; P < 0.05]. No significant differences were seen between the groups in terms of clinical and ongoing pregnancy, but among patients in whom two embryos with similar quality parameters (ASEBIR) were transferred, the group treated with hp-hMG alone achieved a significantly greater clinical pregnancy rate as compared to all other groups [Group I: 31.6%, Group II: 56.4%, Group III: 28.7%, Group IV: 32.7%; P < 0.05]. Although randomized clinical trials should be conducted to achieve a more reliable conclusion, these observations support the concept that stimulation with hp-hMG could be beneficial in normal responders women undergoing pituitary suppression with GnRH antagonists.

  20. Antidepressant-like effect of the organoselenium compound ebselen in mice: evidence for the involvement of the monoaminergic system.

    PubMed

    Posser, Thaís; Kaster, Manuella P; Baraúna, Sara Cristiane; Rocha, João B T; Rodrigues, Ana Lúcia S; Leal, Rodrigo B

    2009-01-05

    Ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one] is a seleno-organic compound which possesses a potent antioxidant activity and has been shown to exert neuroprotective effects in vitro and in vivo in a variety of pro-oxidative insults. The present study investigates a possible antidepressant activity of ebselen using two predictive tests for antidepressant activity in rodents: the forced swimming test and tail suspension test. Additionally, the mechanisms involved in the antidepressant-like effect of ebselen in mice were also assessed. Ebselen (10 mg/kg, s.c.) decreased the immobility time in the forced swimming test without accompanying changes in ambulation in the open-field test. In contrast, the administration of ebselen (10-30 mg/kg) did not produce any effect in the tail suspension test. The anti-immobility effect of ebselen (10 mg/kg, s.c.) was not prevented by pre-treatment of mice with p-chlorophenylalanine (PCPA, 100 mg/kg, i.p., an inhibitor of serotonin synthesis, 4 consecutive days), NAN-190 (0.5 mg/kg, i.p., a serotonin 5-HT(1A) receptor antagonist) or ketanserin (5 mg/kg, i.p., a serotonin 5-HT(2A/2C) receptor antagonist). On the other hand, the pre-treatment of mice with prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D(1) receptor antagonist) or sulpiride (50 mg/kg, i.p., a dopamine D(2) receptor antagonist) completely blocked the antidepressant-like effect of ebselen (10 mg/kg, s.c.) in the forced swimming test. It may be concluded that ebselen produces an antidepressant-like effect in the forced swimming test that seems to be dependent on its interaction with the noradrenergic and dopaminergic systems, but not with the serotonergic system.

  1. Comparative Analysis of Virtual Screening Approaches in the Search for Novel EphA2 Receptor Antagonists.

    PubMed

    Callegari, Donatella; Pala, Daniele; Scalvini, Laura; Tognolini, Massimiliano; Incerti, Matteo; Rivara, Silvia; Mor, Marco; Lodola, Alessio

    2015-09-17

    The EphA2 receptor and its ephrin-A1 ligand form a key cell communication system, which has been found overexpressed in many cancer types and involved in tumor growth. Recent medicinal chemistry efforts have identified bile acid derivatives as low micromolar binders of the EphA2 receptor. However, these compounds suffer from poor physicochemical properties, hampering their use in vivo. The identification of compounds able to disrupt the EphA2-ephrin-A1 complex lacking the bile acid scaffold may lead to new pharmacological tools suitable for in vivo studies. To identify the most promising virtual screening (VS) protocol aimed at finding novel EphA2 antagonists, we investigated the ability of both ligand-based and structure-based approaches to retrieve known EphA2 antagonists from libraries of decoys with similar molecular properties. While ligand-based VSs were conducted using UniPR129 and ephrin-A1 ligand as reference structures, structure-based VSs were performed with Glide, using the X-ray structure of the EphA2 receptor/ephrin-A1 complex. A comparison of enrichment factors showed that ligand-based approaches outperformed the structure-based ones, suggesting ligand-based methods using the G-H loop of ephrin-A1 ligand as template as the most promising protocols to search for novel EphA2 antagonists.

  2. JB-9322, a new selective histamine H2-receptor antagonist with potent gastric mucosal protective properties.

    PubMed

    Palacios, B; Montero, M J; Sevilla, M A; Román, L S

    1995-05-01

    1. JB-9322 is a selective histamine H2-receptor antagonist with gastric antisecretory activity and mucosal protective properties. 2. The affinity of JB-9322 for the guinea-pig atria histamine H2-receptor was approximately 2 times greater than that of ranitidine. 3. In vivo, the ID50 value for the inhibition of gastric acid secretion in pylorus-ligated rats was 5.28 mg kg-1 intraperitoneally. JB-9322 also dose-dependently inhibited gastric juice volume and pepsin secretion. In gastric lumen-perfused rats, intravenous injection of JB-9322 dose-dependently reduced histamine-, pentagastrin- and carbachol-stimulated gastric acid secretion. 4. JB-9322 showed antiulcer activity against aspirin and indomethacin-induced gastric lesions and was more potent than ranitidine. 5. JB-9322 effectively inhibited macroscopic gastric haemorrhagic lesions induced by ethanol. Intraperitoneal injection was effective in preventing the lesions as well as oral treatment. The oral ID50 value for these lesions was 1.33 mg kg-1. By contrast, ranitidine (50 mg kg-1) failed to reduce these lesions. In addition, the protective effect of JB-9322 was independent of prostaglandin synthesis. 6. These results indicate that JB-9322 is a new antiulcer drug that exerts a potent cytoprotective effect in addition to its gastric antisecretory activity.

  3. Neurogenic airway microvascular leakage induced by toluene inhalation in rats.

    PubMed

    Sakamoto, Tatsuo; Kamijima, Michihiro; Miyake, Mio

    2012-06-15

    Toluene is a representative airborne occupational and domestic pollutant that causes eye and respiratory tract irritation. We investigated whether a single inhalation of toluene elicits microvascular leakage in the rat airway. We also evaluated the effects of CP-99,994, a tachykinin NK(1) receptor antagonist, and ketotifen, a histamine H1 receptor antagonist with mast cell-stabilizing properties, on the airway response. The content of Evans blue dye that extravasated into the tissues was measured as an index of plasma leakage. Toluene (18-450 ppm, 10 min) concentration-dependently induced dye leakage into the trachea and main bronchi of anesthetized and mechanically ventilated rats. Toluene at concentrations of ≥ 50 and ≥ 30 ppm caused significant responses in the trachea and main bronchi, respectively, which both peaked after exposure to 135 ppm toluene for 10 min. This response was abolished by CP-99,994 (5 mg/kg i.v.), but not by ketotifen (1mg/kg i.v.). Nebulized phosphoramidon (1 mM, 1 min), a neutral endopeptidase 24.11 inhibitor, significantly enhanced the response induced by toluene (135 ppm, 10 min) compared with nebulized 0.9% saline (1 min). These results show that toluene can rapidly increase airway plasma leakage that is predominantly mediated by tachykinins endogenously released from airway sensory nerves. However, mast cell activation might not be important in this airway response. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Evolution of the Bifunctional Lead μ Agonist / δ Antagonist Containing the Dmt-Tic Opioid Pharmacophore.

    PubMed

    Balboni, Gianfranco; Salvadori, Severo; Trapella, Claudio; Knapp, Brian I; Bidlack, Jean M; Lazarus, Lawrence H; Peng, Xuemei; Neumeyer, John L

    2010-02-17

    Based on a renewed importance recently attributed to bi- or multifunctional opioids, we report the synthesis and pharmacological evaluation of some analogues derived from our lead μ agonist / δ antagonist, H-Dmt-Tic-Gly-NH-Bzl. Our previous studies focused on the importance of the C-teminal benzyl function in the induction of such bifunctional activity. The introduction of some substituents in the para position of the phenyl ring (-Cl, -CH(3), partially -NO(2), inactive -NH(2)) was found to give a more potent μ agonist / antagonist effect associated with a relatively unmodified δ antagonist activity (pA(2) = 8.28-9.02). Increasing the steric hindrance of the benzyl group (using diphenylmethyl and tetrahydroisoquinoline functionalities) substantially maintained the μ agonist and δ antagonist activities of the lead compound. Finally and quite unexpectedly D-Tic2, considered as a wrong opioid message now; inserted into the reference compound in lieu of L-Tic, provided a μ agonist / δ agonist better than our reference ligand (H-Dmt-Tic-Gly-NH-Ph) and was endowed with the same pharmacological profile.

  5. Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants.

    PubMed

    Hu, Xiuli; Jiang, Mingyi; Zhang, Jianhua; Zhang, Aying; Lin, Fan; Tan, Mingpu

    2007-01-01

    * Using pharmacological and biochemical approaches, the role of calmodulin (CaM) and the relationship between CaM and hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays) plants were investigated. * Treatment with ABA or H(2)O(2) led to significant increases in the concentration of cytosolic Ca(2+) in the protoplasts of mesophyll cells and in the expression of the calmodulin 1 (CaM1) gene and the content of CaM in leaves of maize plants, and enhanced the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes. The up-regulation of the antioxidant enzymes was almost completely blocked by pretreatments with two CaM antagonists. * Pretreatments with CaM antagonists almost completely inhibited ABA-induced H(2)O(2) production throughout ABA treatment, but pretreatment with an inhibitor or scavenger of reactive oxygen species (ROS) did not affect the initial increase in the contents of CaM induced by ABA. * Our results suggest that Ca(2+)-CaM is involved in ABA-induced antioxidant defense, and that cross-talk between Ca(2+)-CaM and H(2)O(2) plays a pivotal role in ABA signaling.

  6. Synthesis and antidepressant properties of novel 2-substituted 4,5-dihydro-1H-imidazole derivatives.

    PubMed

    Wentland, M P; Bailey, D M; Alexander, E J; Castaldi, M J; Ferrari, R A; Haubrich, D R; Luttinger, D A; Perrone, M H

    1987-08-01

    A unique combination of alpha 2-adrenoreceptor antagonist and serotonin-selective reuptake inhibitory activities has been identified in a series of 2-substituted 4,5-dihydro-1H-imidazole derivatives. This combination of blocking activities has provided one of these derivatives, napamezole hydrochloride (2), with potential as an antidepressant. A discussion of the syntheses of these compounds includes a convenient method for the conversion of nitriles to imidazolines with ethylenediamine and trimethylaluminum.

  7. Dietary trace amine-dependent vasoconstriction in porcine coronary artery

    PubMed Central

    Herbert, A A; Kidd, E J; Broadley, K J

    2008-01-01

    Background and purpose: The dietary trace amines tyramine and β-phenylethylamine (β-PEA) can increase blood pressure. However, the mechanisms involved in the vascular effect of trace amines have not been fully established. The purpose of this study was to evaluate whether trace amine-dependent vasoconstriction was brought about by tyramine and β-PEA acting as indirect sympathomimetic agents, as previously assumed, or whether trace amine-dependent vasoconstriction could be mediated by recently discovered trace amine-associated (TAA) receptors. Experimental approach: The responses to p-tyramine and β-PEA were investigated in vitro in rings of the left anterior descending coronary arteries of pigs. Key results: p-Tyramine induced a concentration-dependent (0.1–3 mM) vasoconstriction. The maximum response and pD2 value for p-tyramine was unaffected by endothelium removal or pre-treatment with antagonists for adrenoceptors, histamine, dopamine or 5-HT receptors. β-PEA also produced a concentration-dependent (0.3–10 mM) vasoconstriction which was unaffected by endothelium removal, β-adrenoceptor or 5-HT receptor antagonists. A substantial, but reduced, response to β-PEA was obtained in the presence of prazosin (α1-adrenoceptor antagonist), haloperidol (D2/D3 dopamine receptor antagonist) or mepyramine (H1 histamine receptor antagonist). The pD2 value for β-PEA was unaffected by any of the antagonists tested. Conclusions and implications: Vasoconstriction induced by p-tyramine does not involve an indirect sympathomimetic effect, although vasoconstriction caused by β-PEA may occur, in part, by this mechanism. We therefore propose that trace amine-dependent vasoconstriction is mediated by phenylethylamine-specific receptors, which are closely related to or identical to TAA receptors. These receptors could provide a target for new antihypertensive therapies. PMID:18604230

  8. Human trabecular meshwork cells express BMP antagonist mRNAs and proteins.

    PubMed

    Tovar-Vidales, Tara; Fitzgerald, Ashley M; Clark, Abbot F

    2016-06-01

    Glaucoma patients have elevated aqueous humor and trabecular meshwork (TM) levels of transforming growth factor-beta2 (TGF-β2). TGF-β2 has been associated with increased extracellular matrix (ECM) deposition (i.e. fibronectin), which is attributed to the increased resistance of aqueous humor outflow through the TM. We have previously demonstrated that bone morphogenetic protein (BMP) 4 selectively counteracts the profibrotic effect of TGF-β2 with respect to ECM synthesis in the TM, and this action is reversed by the BMP antagonist gremlin. Thus, the BMP and TGF-β signaling pathways antagonize each other's antifibrotic and profibrotic roles. The purpose of this study was to determine whether cultured human TM cells: (a) express other BMP antagonists including noggin, chordin, BMPER, BAMBI, Smurf1 and 2, and (b) whether expression of these proteins is regulated by exogenous TGF-β2 treatment. Primary human trabecular meshwork (TM) cells were grown to confluency and treated with TGF-β2 (5 ng/ml) for 24 or 48 h in serum-free medium. Untreated cell served as controls. qPCR and Western immunoblots (WB) determined that human TM cells expressed mRNAs and proteins for the BMP antagonist proteins: noggin, chordin, BMPER, BAMBI, and Smurf1/2. Exogenous TGF-β2 decreased chordin, BMPER, BAMBI, and Smurf1 mRNA and protein expression. In contrast, TGF-β2 increased secreted noggin and Smurf2 mRNA and protein levels. BMP antagonist members are expressed in the human TM. These molecules may be involved in the normal function of the TM as well as TM pathogenesis. Altered expression of BMP antagonist members may lead to functional changes in the human TM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Role of 2',6'-dimethyl-l-tyrosine (Dmt) in some opioid lead compounds.

    PubMed

    Balboni, Gianfranco; Marzola, Erika; Sasaki, Yusuke; Ambo, Akihiro; Marczak, Ewa D; Lazarus, Lawrence H; Salvadori, Severo

    2010-08-15

    Here we evaluated how the interchange of the amino acids 2',6'-dimethyl-L-tyrosine (Dmt), 2',6'-difluoro-L-tyrosine (Dft), and tyrosine in position 1 can affect the pharmacological characterization of some reference opioid peptides and pseudopeptides. Generally, Dft and Tyr provide analogues with a similar pharmacological profile, despite different pK(a) values. Dmt/Tyr(Dft) replacement gives activity changes depending on the reference opioid in which the modification was made. Whereas, H-Dmt-Tic-Asp *-Bid is a potent and selective delta agonist (MVD, IC(50)=0.12nM); H-Dft-Tic-Asp *-Bid and H-Tyr-Tic-Asp *-Bid are potent and selective delta antagonists (pA(2)=8.95 and 8.85, respectively). When these amino acids are employed in the synthesis of deltorphin B and its Dmt(1) and Dft(1) analogues, the three compounds maintain a very similar delta agonism (MVD, IC(50) 0.32-0.53 nM) with a decrease in selectivity relative to the Dmt(1) analogue. In the less selective H-Dmt-Tic-Gly *-Bid the replacement of Dmt with Dft and Tyr retains the delta agonism but with a decrease in potency. Antagonists containing the Dmt-Tic pharmacophore do not support the exchange of Dmt with Dft or Tyr. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Aprepitant as an add-on therapy in children receiving highly emetogenic chemotherapy: a randomized, double-blind, placebo-controlled trial.

    PubMed

    Bakhshi, Sameer; Batra, Atul; Biswas, Bivas; Dhawan, Deepa; Paul, Reeja; Sreenivas, Vishnubhatla

    2015-11-01

    Aprepitant, a neurokinin-1 receptor antagonist, in combination with 5 HT-3 antagonist and dexamethasone is recommended in adults receiving moderately and highly emetogenic chemotherapy to reduce chemotherapy-induced vomiting (CIV). Data for use of aprepitant in children is limited and hence aprepitant is not recommended by Pediatric Oncology Group of Ontario guidelines for prevention of CIV in children <12 years. A randomized, double-blind, placebo-controlled trial was conducted at a single center in chemotherapy naïve children (5-18 years) receiving highly emetogenic chemotherapy. All patients received intravenous ondansetron (0.15 mg/kg) and dexamethasone (0.15 mg/kg) prior to chemotherapy followed by oral ondansetron and dexamethasone. Patients randomly assigned to aprepitant arm received oral aprepitant (15-40 kg = days 1-3, 80 mg; 41-65 kg = day 1, 125 mg and days 2-3, 80 mg) 1 h before chemotherapy. Control group received placebo as add-on therapy. Primary outcome measure was the incidence of acute moderate to severe vomiting, which was defined as more than two vomiting episodes within 24 h after the administration of the first chemotherapy dose until 24 h after the last chemotherapy dose in the block. Complete response (CR) was defined as absence of vomiting and retching during the specified phase. Of the 96 randomized patients, three were excluded from analysis; 93 patients were analyzed (50 in aprepitant arm and 43 in placebo arm). Acute moderate and severe vomiting was reported in 72 % patients receiving placebo and 38 % patients receiving aprepitant (p = 0.001). Complete response rates during acute phase were significantly higher in aprepitant arm (48 vs. 12 %, p < 0.001). No major adverse effects were reported by patients/guardians. This double-blind, randomized, placebo-controlled trial shows that aprepitant significantly decreases the incidence of CIV during acute phase when used as an add-on drug with ondansetron and dexamethasone in children receiving highly emetogenic chemotherapy.

  11. Structure-activity relationships studies on weakly basic N-arylsulfonylindoles with an antagonistic profile in the 5-HT6 receptor

    NASA Astrophysics Data System (ADS)

    Mella, Jaime; Villegas, Francisco; Morales-Verdejo, César; Lagos, Carlos F.; Recabarren-Gajardo, Gonzalo

    2017-07-01

    We recently reported a series of 39 weakly basic N-arylsulfonylindoles as novel 5-HT6 antagonists. Eight of the compounds exhibited moderate to high binding affinities, with 2-(4-(2-Methoxyphenyl)piperazin-1-yl)-1-(1-tosyl-1H-indol-3-yl)ethanol 16 showing the highest binding affinity (pKi = 7.87). Given these encouraging results and as a continuation of our research, we performed an extensive step-by-step search for the best 3D-QSAR model that allows us to rationally propose novel molecules with improved 5-HT6 affinity based on our previously reported series. A comparative molecular similarity indices analysis (CoMSIA) model built on a docking-based alignment was developed, wherein steric, electrostatic, hydrophobic and hydrogen bond properties are correlated with biological activity. The model was validated internally and externally (q2 = 0.721; r2pred = 0.938), and identified the sulfonyl and hydroxyl groups and the piperazine ring among the main regions of the molecules that can be modified to create new 5-HT6 antagonists.

  12. Behavioral approach to nondyskinetic dopamine antagonists: identification of seroquel.

    PubMed

    Warawa, E J; Migler, B M; Ohnmacht, C J; Needles, A L; Gatos, G C; McLaren, F M; Nelson, C L; Kirkland, K M

    2001-02-01

    A great need exists for antipsychotic drugs which will not induce extrapyramidal symptoms (EPS) and tardive dyskinesias (TDs). These side effects are deemed to be a consequence of nonselective blockade of nigrostriatal and mesolimbic dopamine D2 receptors. Nondyskinetic clozapine (1) is a low-potency D2 dopamine receptor antagonist which appears to act selectively in the mesolimbic area. In this work dopamine antagonism was assessed in two mouse behavioral assays: antagonism of apomorphine-induced climbing and antagonism of apomorphine-induced disruption of swimming. The potential for the liability of dyskinesias was determined in haloperidol-sensitized Cebus monkeys. Initial examination of a few close cogeners of 1 enhanced confidence in the Cebus model as a predictor of dyskinetic potential. Considering dibenzazepines, 2 was not dyskinetic whereas 2a was dyskinetic. Among dibenzodiazepines, 1 did not induce dyskinesias whereas its N-2-(2-hydroxyethoxy)ethyl analogue 3 was dyskinetic. The emergence of such distinctions presented an opportunity. Thus, aromatic and N-substituted analogues of 6-(piperazin-1-yl)-11H-dibenz[b,e]azepines and 11-(piperazin-1-yl)dibenzo[b,f][1,4]thiazepines and -oxazepines were prepared and evaluated. 11-(4-[2-(2-Hydroxyethoxy)ethyl]piperazin-1-yl)dibenzo[b,f][1,4]thiazepine (23) was found to be an apomorphine antagonist comparable to clozapine. It was essentially nondyskinetic in the Cebus model. With 23 as a platform, a number of N-substituted analogues were found to be good apomorphine antagonists but all were dyskinetic.

  13. Structure/function relationships of calcitonin analogues as agonists, antagonists, or inverse agonists in a constitutively activated receptor cell system.

    PubMed

    Pozvek, G; Hilton, J M; Quiza, M; Houssami, S; Sexton, P M

    1997-04-01

    The structure/function relationship of salmon calcitonin (sCT) analogues was investigated in heterologous calcitonin receptor (CTR) expression systems. sCT analogues with progressive amino-terminal truncations intermediate of sCT-(1-32) to sCT-(8-32) were examined for their ability to act as agonists, antagonists, or inverse agonists. Two CTR cell clones, B8-H10 and G12-E12, which express approximately 5 million and 25,000 C1b receptors/cell, respectively, were used for this study. The B8-H10 clone has an approximately 80-fold increase in basal levels of intracellular cAMP due to constitutive activation of the overexpressed receptor. In whole-cell competition binding studies, sCT-(1-32) was more potent than any of its amino-terminally truncated analogues in competition for 125I-sCT binding. In cAMP accumulation studies, sCT-(1-32) and modified analogues sCT-(2-32) and sCT-(3-32) had agonist activities. SDZ-216-710, with an amino-terminal truncation of four amino acids, behaved as a partial agonist/antagonist, whereas amino-terminal truncations of six or seven amino acid residues produced a 16-fold reduction in basal cAMP levels and attenuated the response to the agonist sCT-(1-32) in the constitutively active CTR system. This inverse agonist effect was insensitive to pertussis toxin inhibition. In contrast, the inverse agonist activity of these peptides was not observed in the nonconstitutively active CTR system, in which sCT analogues with amino-terminal truncations of four or more amino acids behaved as neutral competitive antagonists. These results suggest that the inverse agonist activity is mediated by stabilization of the inactive state of the receptor, which does not couple to G protein, and attenuates basal signaling initiated by ligand-independent activation of the effector adenylyl cyclase.

  14. JS-K, an arylating nitric oxide (NO) donor, has synergistic anti-leukemic activity with cytarabine (ARA-C).

    PubMed

    Shami, Paul J; Maciag, Anna E; Eddington, Jordan K; Udupi, Vidya; Kosak, Ken M; Saavedra, Joseph E; Keefer, Larry K

    2009-11-01

    We have designed prodrugs that release nitric oxide (NO) on metabolism by glutathione S-transferases (GST). This design exploits the upregulation of GST in acute myeloid leukemia (AML) cells. O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, a member of this class) has potent anti-leukemic activity. HL-60 myeloid leukemia cells were used for in vitro studies of the combination of JS-K with daunorubicin (DAUNO), cytarabine (ARA-C) or etoposide (ETOP) using the median effect method to determine synergistic, antagonistic, or additive effects. Combinations of JS-K added simultaneously, 2h before or 2h after the other compounds were used. JS-K and DAUNO were antagonistic in all three drug sequences. JS-K and ETOP were also antagonistic but to a lesser degree. JS-K and ARA-C showed strong synergy. The combination index at the 50% fraction affected was 0.37+/-0.23, 0.24+/-0.27, and 0.15+/-0.11 for simultaneous, JS-K first and ARA-C first additions, respectively. JS-K by itself induced DNA strand breaks at relatively high concentrations. However, at submicromolar concentrations, it significantly augmented ARA-C-induced DNA strand breaks. NMR spectroscopy revealed no evidence of chemical interaction between JS-K and the other chemotherapeutic agents. We conclude that ARA-C and JS-K have synergistic anti-leukemic activity and warrant further exploration in combination.

  15. [The effect of nimodipine on cochlear blood flow in the guinea pig].

    PubMed

    Meyer, P; Werner, E; Schmidt, R; Grützmacher, W; Gehrig, W; Seuter, F

    1994-10-01

    The influence of nimodipine (Nimotop, CAS 66085-59-4), a selectively cerebrovascularly acting 1,4-dihydropyridine calcium antagonist, on the cochlear blood flow (CBF) was studied in 19 guinea pigs (6 controls). The hydrogen clearance measurements were carried out under alpha-chloralose-ethylurethane anaesthesia, artificial respiration with simultaneous control of electrocardiogram, blood pressure, body temperature and arterial pH (hourly). The indirect measurement of CBF was carried out by means of hydrogen clearance in the perilymphatic space (basal turn) before and after intravenous application of 1 microgram nimodipine/kg/min. The mean arterial blood pressure remained within the +/- 5% range of the initial value during the experiment. Under treatment with nimodipine the CBF showed a non-significant average increase of 4.69% and under placebo (20% ethanol, 17% polyethylenglycol 400, citrate buffer), a non-significant average decrease of 6.16%. The influence of nimodipine on CBF was underlined by the overcompensation of the placebo effect.

  16. Platelet-activating factor (PAF) receptor-binding antagonist activity of Malaysian medicinal plants.

    PubMed

    Jantan, I; Rafi, I A A; Jalil, J

    2005-01-01

    Forty-nine methanol extracts of 37 species of Malaysian medicinal plants were investigated for their inhibitory effects on platelet-activating factor (PAF) binding to rabbit platelets, using 3H-PAF as a ligand. Among them, the extracts of six Zingiberaceae species (Alpinia galanga Swartz., Boesenbergia pandurata Roxb., Curcuma ochorrhiza Val., C. aeruginosa Roxb., Zingiber officinale Rosc. and Z. zerumbet Koenig.), two Cinnamomum species (C. altissimum Kosterm. and C. pubescens Kochummen.), Goniothalamus malayanus Hook. f. Momordica charantia Linn. and Piper aduncum L. are potential sources of new PAF antagonists, as they showed significant inhibitory effects with IC50 values ranging from 1.2 to 18.4 microg ml(-1).

  17. Involvement of sympathetic nervous system and brown fat in endotoxin-induced fever in rats.

    PubMed

    Jepson, M M; Millward, D J; Rothwell, N J; Stock, M J

    1988-11-01

    The object of this study was to assess the role of brown adipose tissue (BAT) and the sympathetic nervous system in the rise in heat production associated with endotoxin-induced fever. Oxygen consumption (VO2) was found to be significantly increased (28%) over a 4-h period after two doses of endotoxin (Escherichia coli lipopolysaccharide, 0.3 mg/100 g body wt) given 24 h apart. Injection of a mixed beta-adrenoceptor antagonist (propranolol) reduced VO2 by 14% in endotoxin-treated rats, whereas the selective beta 1- (atenolol) or beta 2- (ICI 118551) antagonists suppressed VO2 by 10%. These drugs did not affect VO2 in control animals. BAT thermogenic activity assessed from measurements of in vitro mitochondrial guanosine 5'-diphosphate (GDP) binding was elevated by 54% in interscapular BAT and by 171% in other BAT depots. Surgical denervation of one lobe of the interscapular depot prevented these responses. Endotoxin failed to stimulate GDP binding in rats fed protein-deficient diets. This may have been because BAT thermogenic activity was already elevated in control rats fed these diets or because endotoxin caused a marked suppression of food intake in the protein-deficient animals. The results indicate that sympathetic activation of BAT is involved in the thermogenic responses to endotoxin and that these can be modified by dietary manipulation.

  18. Characterization of the adenosine receptor in cultured embryonic chick atrial myocytes: Coupling to modulation of contractility and adenylate cyclase activity and identification by direct radioligand binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, B.T.

    1989-06-01

    Adenosine receptors in a spontaneously contracting atrial myocyte culture from 14-day chick embryos were characterized by radioligand binding studies and by examining the involvement of G-protein in coupling these receptors to a high-affinity state and to the adenylate cyclase and the myocyte contractility. Binding of the antagonist radioligand (3H)-8-cyclopentyl-1,3-diproylxanthine ((3H)CPX) was rapid, reversible and saturable and was to a homogeneous population of sites with a Kd value of 2.1 +/- 0.2 nM and an apparent maximum binding of 26.2 +/- 3 fmol/mg of protein (n = 10, +/- S.E.). Guanyl-5-yl-(beta, gamma-imido)diphosphate had no effect on either the Kd or themore » maximum binding and CPX reversed the N6-R-phenyl-2-propyladenosine-induced inhibition of adenylate cyclase activity and contractility, indicating that (3H) CPX is an antagonist radioligand. Competition curves for (3H) CPX binding by a series of reference adenosine agonists were consistent with labeling of an A1 adenosine receptor and were better fit by a two-site model than by a one-site model. ADP-ribosylation of the G-protein by the endogenous NAD+ in the presence of pertussis toxin shifted the competition curves from bi to monophasic with Ki values similar to those of the KL observed in the absence of prior pertussis intoxication. The adenosine agonists were capable of inhibiting both the adenylate cyclase activity and myocyte contractility in either the absence or the presence of isoproterenol. The A1 adenosine receptor-selective antagonist CPX reversed these agonist effects. The order of ability of the reference adenosine receptor agonists in causing these inhibitory effects was similar to the order of potency of the same agonists in inhibiting the specific (3H)CPX binding (N6-R-phenyl-2-propyladenosine greater than N6-S-phenyl-2-propyladenosine or N-ethyladenosine-5'-uronic acid).« less

  19. Effect of neutral endopeptidase inhibitor on bradykinin-induced bronchoconstriction.

    PubMed

    Kamijo, Y; Hayashi, I; Soma, K; Ohwada, T; Majima, M

    2001-11-21

    To evaluate whether neutral endopeptidase (NEP) inhibitors have adverse respiratory effects, the influence of a NEP inhibitor on bradykinin (BK)-induced bronchoconstriction was investigated. In anesthetized and artificially ventilated guinea pigs, changes in airway opening pressure (Pao) were measured as an index of bronchoconstriction. An infusion of phosphoramidon (3 mg kg(-1) h(-1)), a NEP inhibitor, significantly enhanced the bronchoconstriction induced by high-dose BK (30 nmol kg(-1), i.v.). Capsaicin (0.1 mg kg(-1), i.v.) and SR48968 (0.3 mg kg(-1), i.v.), an NK2 receptor antagonist, significantly inhibited the phosphoramidon-induced enhancement of BK-induced bronchoconstriction, although FK888 (3 mg kg(-1), i.v.), an NK1 receptor antagonist, did not. Both neurokinin A (NKA) (0.1-3 nmol kg(-1), i.v.) and substance P (SP) (0.1-3 nmol kg(-1), i.v.) induced dose-dependent bronchoconstriction which was enhanced by phosphoramidon infusion, although these enhancements were more prominent in the NKA series. Phosphoramidon partially inhibited BK degradation in lung homogenate, and both NKA and SP degradation in the lung homogenate were significantly suppressed by phosphoramidon. In bronchoalveolar lavage fluid (BALF), levels of NKA and SP were significantly elevated after a bolus of BK with a phosphoramidon infusion. These results suggest that NEP inhibitors may have adverse respiratory effects resulting from inhibition of the degradation of neurokinins, but mainly of NKA, when a large amount of BK is generated.

  20. Anti-androgenic effects of S-40542, a novel non-steroidal selective androgen receptor modulator (SARM) for the treatment of benign prostatic hyperplasia.

    PubMed

    Nejishima, Hiroaki; Yamamoto, Noriko; Suzuki, Mika; Furuya, Kazuyuki; Nagata, Naoya; Yamada, Shizuo

    2012-10-01

    Selective androgen receptor modulators (SARMs) would provide alternative therapeutic agent for androgen-related diseases. We identified a tetrahydroquinoline (THQ) derivative, 1-(8-nitro-3a, 4, 5, 9b-tetrahydro-3H-cyclopenta[c]quinolin-4-yl) ethane-1, 2-diol (S-40542) as a novel SARM antagonist. Affinity for nuclear receptors of S-40542 was evaluated in receptor-binding studies. Androgen receptor (AR) transcriptional activity of S-40542 was investigated by luciferase reporter assay in DU145AR cells. Normal and benign prostatic hyperplasia (BPH) model rats were repeatedly treated with S-40542 and flutamide. The tissue weights of prostate and levator ani muscle as well as blood levels of testosterone and luteinizing hormone were measured. S-40542 bound to the AR with high affinity. S-40542 at relatively high concentrations increased the transcriptional activity. This agent also showed a concentration-dependent AR antagonistic action in the presence of 1 nM 5α-dihydrotestosterone. Repeated treatment with S-40542 and flutamide decreased dose-dependently the weights of the prostate to a similar extent. In contrast, the tissue weight-reducing effect by S-40542 treatment on the levator ani muscle was much weaker than that of flutamide. S-40542 had little effect on the blood level of testosterone and luteinizing hormone, whereas flutamide increased the level of both hormones. Furthermore, S-40542 decreased dose-dependently prostate weight of BPH rats. The current results indicate that S-40542 possesses the prostate-selective SARM activity, suggestive of clinical benefit against benign prostate hyperplasia. THQ compounds may be useful for the research of mode of action of SARMs and for the development of safe SARM antagonists. Copyright © 2012 Wiley Periodicals, Inc.

  1. Amelioration of Cold Injury-Induced Cortical Brain Edema Formation by Selective Endothelin ETB Receptor Antagonists in Mice

    PubMed Central

    Michinaga, Shotaro; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Koyama, Yutaka

    2014-01-01

    Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs) are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice). Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV) administration of BQ788 (ETB antagonist), IRL-2500 (ETB antagonist), or FR139317 (ETA antagonist) prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults. PMID:25000290

  2. Aspirin- and Indomethacin-Induced Ulcers and their Antagonism by Anthihistamines

    NASA Technical Reports Server (NTRS)

    Brown, Patricia A.; Sawrey, James M.; Vernikos, Joan

    1978-01-01

    Gastric ulceration produced by aspirin and indomethacin was compared in acutely stressed and non-stressed rats. We found a synergism between these anti-inflammatory agents and acute stress in the production of gastric ulcers. Even at relatively high doses, neither agent caused appreciable gastric damage in non-stressed rats, whereas moderate doses of both agents produced massive ulceration in stressed rats. The synergism appears unrelated to the effect of these agents on the pituitary-adrenal response. The size and regional distribution of ulcers produced by aspirin and indomethacin in stressed rats were comparable. However, the dose--response curves of the two drugs were markedly dissimilar. Furthermore, the ulceration produced by indomethacin was attenuated by both H(sub 1) and H(sub 2) histamine receptor antagonists, whereas ulceration produced by aspirin was attenuated only by an H(sub 2) antagonist. The results suggest that the ulcerogenic mechanism of indomethacin may differ from that of aspirin and add to the growing evidence on the importance of endogenous histamine in various forms of gastric ulceration.

  3. Eye and heart morphogenesis are dependent on melatonin signaling in chick embryos.

    PubMed

    Nogueira, Renato C; Sampaio, Lucia de Fatima S

    2017-10-15

    Calmodulin is vital for chick embryos morphogenesis in the incubation time 48-66 h when the rudimentary C-shaped heart attains an S-shaped pattern and the optic vesicles develop into optic cups. Melatonin is in the extraembryonic yolk sac of the avian egg; melatonin binds calmodulin. The aim of this study was to investigate the function of melatonin in the formation of the chick embryo optic cups and S-shaped heart, by pharmacological methods and immunoassays. Mel1a melatonin receptor immunofluorescence was distributed in the optic cups and rudimentary hearts. We separated embryonated chicken eggs at 48 h of incubation into basal, control and drug-treated groups, with treatment applied in the egg air sac. At 66 h of incubation, embryos were excised from the eggs and analyzed. Embryos from the basal, control (distilled water), melatonin and 6-chloromelatonin (melatonin receptor agonist) groups had regular optic cups and an S-shaped heart, while those from the calmidazolium (calmodulin inhibitor) group did not. Embryos from the luzindole (melatonin receptor antagonist) and prazosin (Mel1c melatonin receptor antagonist) groups did not have regular optic cups. Embryos from the 4-P-PDOT (Mel1b melatonin receptor antagonist) group did not have an S-shaped heart. Previous application of the melatonin, 6-chloromelatonin or forskolin (adenylate cyclase enhancer) prevented the abnormal appearance of chick embryos from the calmidazolium, luzindole, prazosin and 4-P-PDOT groups. However, 6-chloromelatonin and forskolin only partially prevented the development of defective eye cups in embryos from the calmidazolium group. The results suggested that melatonin modulates chick embryo morphogenesis via calmodulin and membrane receptors. © 2017. Published by The Company of Biologists Ltd.

  4. Histamine H1-receptor antagonists against Leishmania (L.) infantum: an in vitro and in vivo evaluation using phosphatidylserine-liposomes.

    PubMed

    Pinto, Erika G; da Costa-Silva, Thais A; Tempone, Andre Gustavo

    2014-09-01

    Considering the limited and toxic therapeutic arsenal available for visceral leishmaniasis (VL), the drug repositioning approach could represent a promising tool to the introduction of alternative therapies. Histamine H1-receptor antagonists are drugs belonging to different therapeutic classes, including antiallergics and anxyolitics. In this work, we described for the first time the activity of H1-antagonists against L. (L.) infantum and their potential effectiveness in an experimental hamster model. The evaluation against promastigotes demonstrated that chlorpheniramine, cinnarizine, hydroxyzine, ketotifen, loratadine, quetiapine and risperidone exerted a leishmanicidal effect against promastigotes, with IC50 values in the range of 13-84μM. The antihistaminic drug cinnarizine demonstrated effectiveness against the intracellular amastigotes, with an IC50 value of 21μM. The mammalian cytotoxicity was investigated in NCTC cells, resulting in IC50 values in the range of 57-229μM. Cinnarizine was in vivo studied as a free formulation and entrapped into phosphatidylserine-liposomes. The free drug was administered for eight consecutive days at 50mg/kg by intraperitoneal route (i.p.) and at 100mg/kg by oral route to L. infantum-infected hamsters, but showed lack of effectiveness in both regimens, as detected by real time PCR. The liposomal formulation was administered by i.p. route at 3mg/kg for eight days and reduced the parasite burden to 54% in liver when compared to untreated group; no improvement was observed in the spleen of infected hamsters. Cinnarizine is the first antihistaminic drug with antileishmanial activity and could be used as scaffold for drug design studies for VL. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: ( sup 3 H)nicotine as an agonist photoaffinity label

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, R.E.; Cohen, J.B.

    1991-07-16

    The agonist ({sup 3}H)nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). ({sup 3}H)Nicotine binds at equilibrium with K{sub eq} = 0.6 {mu}M to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with ({sup 3}H)nicotine resulted in covalent incorporation into the {alpha}- and {gamma}-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the {alpha}-subunit was labeled via both agonist sites but the {gamma}-subunit was labeled only via the site that binds d-tubocurarine with highmore » affinity. Chymotryptic digestion of the {alpha}-subunit confirmed that Try-198 was the principal amino acid labeled by ({sup 3}H)nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde ({sup 3}H)Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.« less

  6. Synthesis, biological evaluation, and computational studies of Tri- and tetracyclic nitrogen-bridgehead compounds as potent dual-acting AChE inhibitors and hH3 receptor antagonists.

    PubMed

    Darras, Fouad H; Pockes, Steffen; Huang, Guozheng; Wehle, Sarah; Strasser, Andrea; Wittmann, Hans-Joachim; Nimczick, Martin; Sotriffer, Christoph A; Decker, Michael

    2014-03-19

    Combination of AChE inhibiting and histamine H3 receptor antagonizing properties in a single molecule might show synergistic effects to improve cognitive deficits in Alzheimer's disease, since both pharmacological actions are able to enhance cholinergic neurotransmission in the cortex. However, whereas AChE inhibitors prevent hydrolysis of acetylcholine also peripherally, histamine H3 antagonists will raise acetylcholine levels mostly in the brain due to predominant occurrence of the receptor in the central nervous system. In this work, we designed and synthesized two novel classes of tri- and tetracyclic nitrogen-bridgehead compounds acting as dual AChE inhibitors and histamine H3 antagonists by combining the nitrogen-bridgehead moiety of novel AChE inhibitors with a second N-basic fragment based on the piperidinylpropoxy pharmacophore with different spacer lengths. Intensive structure-activity relationships (SARs) with regard to both biological targets led to compound 41 which showed balanced affinities as hAChE inhibitor with IC50 = 33.9 nM, and hH3R antagonism with Ki = 76.2 nM with greater than 200-fold selectivity over the other histamine receptor subtypes. Molecular docking studies were performed to explain the potent AChE inhibition of the target compounds and molecular dynamics studies to explain high affinity at the hH3R.

  7. [11C]AZ10419096 - a full antagonist PET radioligand for imaging brain 5-HT1B receptors.

    PubMed

    Lindberg, Anton; Nag, Sangram; Schou, Magnus; Takano, Akihiro; Matsumoto, Junya; Amini, Nahid; Elmore, Charles S; Farde, Lars; Pike, Victor W; Halldin, Christer

    2017-11-01

    The serotonergic system is widely present in all regions of the central nervous system (CNS) and plays a key modulatory role in many of its functions. Positron emission tomography (PET) is used to study several serotonin receptors in CNS in vivo. The G-protein coupled receptor 5-HT 1B is mostly present in the occipital cortex and in midbrain and is linked to several psychiatric disorders. There is evidence that agonist PET radioligands for neuroreceptors are more sensitive to endogenous neurotransmitters than antagonists. Our previously developed 5-HT 1B receptor PET radioligand, [ 11 C]AZ10419369, is now considered a partial agonist. In this work we are aiming to develop a full antagonist PET radioligand for imaging brain 5-HT 1B receptors, and evaluate its sensitivity to increased endogenous serotonin concentration. [ 11 C]AZ10419096 was synthesized by rapid methylation of the prepared corresponding N-desmethyl precursor with [ 11 C]methyl triflate. Five PET measurements were performed in cynomolgus monkeys, consisting of two at baseline, one after treatment of a monkey with a 5-HT 1B antagonist, AR-A000002, and two in which fenfluramine was administered during scanning to induce endogenous serotonin release. [ 11 C]AZ10419096 was synthesized in high yield and purity within 30 min, including purification, formulation and sterile filtration. The baseline PET measurements demonstrated [ 11 C]AZ10419096 to have favorable radioligand characteristics, including high specific binding in brain regions that have high 5-HT 1B density, such as occipital cortex and globus pallidus, as well as subsequent rapid elimination from brain and a minor abundance of lipophilic radiometabolites in plasma. AR-A00002 completely blocked radioligand receptor-specific binding. Fenfluramine produced a distinct displacement of radioligand consistent with an expected increase of synaptic endogenous serotonin concentration. [ 11 C]AZ10419096, a full 5-HT 1B antagonist PET radioligand, demonstrates high specific binding in monkey brain that is sensitive to competition from a known 5-HT 1B antagonist as well as to putatively increased endogenous serotonin levels. Published by Elsevier Inc.

  8. Insulin-Increased L-Arginine Transport Requires A2A Adenosine Receptors Activation in Human Umbilical Vein Endothelium

    PubMed Central

    Guzmán-Gutiérrez, Enrique; Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Pardo, Fabián; Leiva, Andrea; Sobrevia, Luis

    2012-01-01

    Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1). This process involves the activation of A2A adenosine receptors (A2AAR) in human umbilical vein endothelial cells (HUVECs). Insulin increases hCAT-1 activity and expression in HUVECs, and A2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C) in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor) and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR), and SLC7A1 (for hCAT-1) reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1−1606 or pGL3-hCAT-1−650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1−1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes. PMID:22844517

  9. Diuretic effects of KW-3902 (8-(noradamantan-3-yl)-1,3-dipropylxanthine), a novel adenosine A1 receptor antagonist, in conscious dogs.

    PubMed

    Kobayashi, T; Mizumoto, H; Karasawa, A

    1993-12-01

    The diuretic effects of KW-3902 (8-(noradamantan-3-yl)-1,3-dipropylxanthine), a novel adenosine A1 receptor antagonist, were determined and compared with those of trichlormethiazide (TCM) and furosemide in saline-loaded conscious dogs. KW-3902, at doses higher than 0.1 mg/kg (p.o.), produced dose-dependent increases of urine volume and sodium excretion and these effects were statistically significant at doses of 1-100 mg/kg. The increase in potassium excretion was lower than that of sodium, and the ratio of sodium to potassium excretion (Na/K) tended to be elevated. TCM (0.3 mg/kg) and furosemide (3 mg/kg) also induced increases in urine volume and sodium excretion. The diuretic effects of KW-3902 lasted for 4 h after administration, whereas TCM and furosemide caused significant natriuresis for 2 h after administration. Thus, KW-3902 exhibited a longer lasting natriuresis than TCM and furosemide. These results indicate that adenosine A1 receptor blockade by KW-3902 causes consistent diuresis and natriuresis in dogs and suggest that adenosine A1 receptor blockade is a promising approach to diuretic therapy.

  10. Studies on gastric bicarbonate secretion in man.

    PubMed

    Forssell, H

    1987-01-01

    A method for measurement of human basal and stimulated gastric bicarbonate secretion was developed in the present investigation. The mechanisms involved in the regulation of basal, vagus nerve stimulated as well as fundic distension induced bicarbonate secretion were studied. The investigations were performed in healthy subjects and duodenal ulcer patients, the latter group before and/or after a proximal gastric vagotomy operation. Healthy subjects as well as ulcer patients were premedicated with a histamine H2-receptor antagonist and gastric bicarbonate secretion was determined by use of a gastric perfusion system in combination with computerized continuous recordings of pH and PCO2. The contribution of alkaline saliva to the measured gastric bicarbonate secretion was minimized by continuous salivary suction and correction was made for swallowed saliva by measurement of amylase in the gastric aspirate. A high rate of gastric perfusion facilitated the identification of alkaline duodenogastric reflux and also eliminated its influence on the measurement of gastric bicarbonate secretion. Validation of the measuring system by instillation of small amounts of bicarbonate showed a satisfactory correlation between added and recovered bicarbonate in the range of bicarbonate determinations usually recorded. Decreasing intragastric pH to between 3 and 4 converted all secreted bicarbonate into CO2, but did not affect the measured value of bicarbonate secretion. Vagal stimulation accomplished by sham feeding increased gastric bicarbonate secretion in sixteen healthy subjects from 410 +/- 39 mumol/h to 692 +/- 67 mumol/h (mean +/- SEM, p less than 0.001). This response was independent of intragastric pH in the range of 2 to 7. The muscarinic receptor antagonist, benzilonium bromide, almost abolished the sham feeding response while indomethacin left it nearly unchanged. Nine duodenal ulcer patients had identical basal and vagally stimulated bicarbonate output as healthy subjects. Two months after proximal gastric vagotomy, the basal bicarbonate secretion was significantly increased, whereas the output in response to sham feeding was unaltered. In the early postoperative period, anticholinergics reduced the enhanced basal bicarbonate secretion to a preoperative level. In six healthy subjects, graded fundic distension with a balloon to volumes of 150 ml, 300 ml and 600 ml, each distension period lasting 60 minutes, increased the bicarbonate secretion by 46% (p less than 0.05), 28% (NS) and 84% (p less than 0.05), respectively.(ABSTRACT TRUNCATED AT 400 WORDS)

  11. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lind, Genevieve E.; Mou, Tung-Chung; Tamborini, Lucia

    NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with boundmore » ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity.« less

  12. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits

    PubMed Central

    Lind, Genevieve E.; Mou, Tung-Chung; Tamborini, Lucia; Pomper, Martin G.; De Micheli, Carlo; Conti, Paola; Pinto, Andrea

    2017-01-01

    NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with bound ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity. PMID:28760974

  13. Synergistic and Antagonistic Effects of Salinity and pH on Germination in Switchgrass (Panicum virgatum L.)

    PubMed Central

    Liu, Yuan; Wang, Quanzhen; Zhang, Yunwei; Cui, Jian; Chen, Guo; Xie, Bao; Wu, Chunhui; Liu, Haitao

    2014-01-01

    The effects of salt-alkaline mixed stress on switchgrass were investigated by evaluating seed germination and the proline, malondialdehyde (MDA) and soluble sugar contents in three switchgrass (Panicum virgatum L.) cultivars in order to identify which can be successfully produced on marginal lands affected by salt-alkaline mixed stress. The experimental conditions consisted of four levels of salinity (10, 60, 110 and 160 mM) and four pH levels (7.1, 8.3, 9.5 and 10.7). The effects of salt-alkaline mixed stress with equivalent coupling of the salinity and pH level on the switchgrass were explored via model analyses. Switchgrass was capable of germinating and surviving well in all treatments under low-alkaline pH (pH≤8.3), regardless of the salinity. However, seed germination and seedling growth were sharply reduced at higher pH values in conjunction with salinity. The salinity and pH had synergetic effects on the germination percentage, germination index, plumular length and the soluble sugar and proline contents in switchgrass. However, these two factors exhibited antagonistic effects on the radicular length of switchgrass. The combined effects of salinity and pH and the interactions between them should be considered when evaluating the strength of salt-alkaline mixed stress. PMID:24454834

  14. A Flexible Multidose GnRH Antagonist versus a Microdose Flare-Up GnRH Agonist Combined with a Flexible Multidose GnRH Antagonist Protocol in Poor Responders to IVF.

    PubMed

    Çelik, Gayem İnayet Turgay; Sütçü, Havva Kömür; Akpak, Yaşam Kemal; Akar, Münire Erman

    2015-01-01

    To compare the effectiveness of a flexible multidose gonadotropin-releasing hormone (GnRH) antagonist against the effectiveness of a microdose flare-up GnRH agonist combined with a flexible multidose GnRH antagonist protocol in poor responders to in vitro fertilization (IVF). A retrospective study in Akdeniz University, Faculty of Medicine, Department of Obstetrics and Gynecology, IVF Center, for 131 poor responders in the intracytoplasmic sperm injection-embryo transfer (ICSI-ET) program between January 2006 and November 2012. The groups were compared to the patients' characteristics, controlled ovarian stimulation (COH) results, and laboratory results. Combination protocol was applied to 46 patients (group 1), and a single protocol was applied to 85 patients (group 2). In group 1, the duration of the treatment was longer and the dose of FSH was higher. The cycle cancellation rate was significantly higher in group 2 (26.1% versus 38.8%). A significant difference was not observed with respect to the number and quality of oocytes and embryos or to the number of embryos transferred. There were no statistically significant differences in the hCG positivity (9.5% versus 9.4%) or the clinical pregnancy rates (7.1% versus 10.6%). The combination protocol does not provide additional efficacy.

  15. A Flexible Multidose GnRH Antagonist versus a Microdose Flare-Up GnRH Agonist Combined with a Flexible Multidose GnRH Antagonist Protocol in Poor Responders to IVF

    PubMed Central

    Turgay Çelik, Gayem İnayet; Sütçü, Havva Kömür; Akpak, Yaşam Kemal; Akar, Münire Erman

    2015-01-01

    Objective. To compare the effectiveness of a flexible multidose gonadotropin-releasing hormone (GnRH) antagonist against the effectiveness of a microdose flare-up GnRH agonist combined with a flexible multidose GnRH antagonist protocol in poor responders to in vitro fertilization (IVF). Study Design. A retrospective study in Akdeniz University, Faculty of Medicine, Department of Obstetrics and Gynecology, IVF Center, for 131 poor responders in the intracytoplasmic sperm injection-embryo transfer (ICSI-ET) program between January 2006 and November 2012. The groups were compared to the patients' characteristics, controlled ovarian stimulation (COH) results, and laboratory results. Results. Combination protocol was applied to 46 patients (group 1), and a single protocol was applied to 85 patients (group 2). In group 1, the duration of the treatment was longer and the dose of FSH was higher. The cycle cancellation rate was significantly higher in group 2 (26.1% versus 38.8%). A significant difference was not observed with respect to the number and quality of oocytes and embryos or to the number of embryos transferred. There were no statistically significant differences in the hCG positivity (9.5% versus 9.4%) or the clinical pregnancy rates (7.1% versus 10.6%). Conclusion. The combination protocol does not provide additional efficacy. PMID:26161425

  16. Pharmacological Characterization of H05, a Novel Serotonin and Noradrenaline Reuptake Inhibitor with Moderate 5-HT2A Antagonist Activity for the Treatment of Depression.

    PubMed

    Xu, Xiangqing; Wei, Yaqin; Guo, Qiang; Zhao, Song; Liu, Zhiqiang; Xiao, Ting; Liu, Yani; Qiu, Yinli; Hou, Yuanyuan; Zhang, Guisen; Wang, KeWei

    2018-06-01

    Multitarget antidepressants selectively inhibiting monoaminergic transporters and 5-hydroxytryptamine (5-HT) 2A receptor have demonstrated higher efficacy and fewer side effects than selective serotonin reuptake inhibitors. In the present study, we synthesized a series of novel 3-(benzo[d][1,3]dioxol-4-yloxy)-3-arylpropyl amine derivatives, among which compound H05 was identified as a lead, exhibiting potent inhibitory effects on both serotonin ( K i = 4.81 nM) and norepinephrine (NE) ( K i = 6.72 nM) transporters and moderate 5-HT 2A antagonist activity (IC 50 = 60.37 nM). H05 was able to dose-dependently reduce the immobility duration in mouse forced swimming test and tail suspension test, with the minimal effective doses lower than those of duloxetine, and showed no stimulatory effect on locomotor activity. The administration of H05 (5, 10, and 20 mg/kg, by mouth) significantly shortened the immobility time of adrenocorticotropin-treated rats that serve as a model of treatment-resistant depression, whereas imipramine (30 mg/kg, by mouth) and duloxetine (30 mg/kg, by mouth) showed no obvious effects. Chronic treatment with H05 reversed the depressive-like behaviors in a rat model of chronic unpredictable mild stress and a mouse model of corticosterone-induced depression. Microdialysis analysis revealed that the administration of H05 at either 10 or 20 mg/kg increased the release of 5-HT and NE from the frontal cortex. The pharmacokinetic (PK) and brain penetration analyses suggest that H05 has favorable PK properties with good blood-brain penetration ability. Therefore, it can be concluded that H05, a novel serotonin and NE reuptake inhibitor with 5-HT 2A antagonist activity, possesses efficacious activity in the preclinical models of depression and treatment-resistant depression, and it may warrant further evaluation for clinical development. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Guest Programmable Multistep Spin Crossover in a Porous 2-D Hofmann-Type Material.

    PubMed

    Murphy, Michael J; Zenere, Katrina A; Ragon, Florence; Southon, Peter D; Kepert, Cameron J; Neville, Suzanne M

    2017-01-25

    The spin crossover (SCO) phenomenon defines an elegant class of switchable materials that can show cooperative transitions when long-range elastic interactions are present. Such materials can show multistepped transitions, targeted both fundamentally and for expanded data storage applications, when antagonistic interactions (i.e., competing ferro- and antiferro-elastic interactions) drive concerted lattice distortions. To this end, a new SCO framework scaffold, [Fe II (bztrz) 2 (Pd II (CN) 4 )]·n(guest) (bztrz = (E)-1-phenyl-N-(1,2,4-triazol-4-yl)methanimine, 1·n(guest)), has been prepared that supports a variety of antagonistic solid state interactions alongside a distinct dual guest pore system. In this 2-D Hofmann-type material we find that inbuilt competition between ferro- and antiferro-elastic interactions provides a SCO behavior that is intrinsically frustrated. This frustration is harnessed by guest exchange to yield a very broad array of spin transition characters in the one framework lattice (one- (1·(H 2 O,EtOH)), two- (1·3H 2 O) and three-stepped (1·∼2H 2 O) transitions and SCO-deactivation (1)). This variety of behaviors illustrates that the degree of elastic frustration can be manipulated by molecular guests, which suggests that the structural features that contribute to multistep switching may be more subtle than previously anticipated.

  18. Altered mental status in older adults with histamine2-receptor antagonists: a population-based study.

    PubMed

    Tawadrous, Davy; Dixon, Stephanie; Shariff, Salimah Z; Fleet, Jamie; Gandhi, Sonja; Jain, Arsh K; Weir, Matthew A; Gomes, Tara; Garg, Amit X

    2014-10-01

    Standard doses of histamine2-receptor antagonists (H2RAs) may induce altered mental status in older adults, especially in those with chronic kidney disease (CKD). Population-based cohort study of older adults who started a new H2RA between 2002 and 2011 was conducted. Ninety percent received the current standard H2RA dose in routine care. There was no significant difference in 27 baseline patient characteristics. The primary outcome was hospitalization with an urgent head computed tomography (CT) scan (proxy for altered mental status), and the secondary outcome was all-cause mortality also within 30days of a new H2RA prescription. Standard vs. low H2RA dose was associated with a higher risk of hospitalization with an urgent head CT scan (0.98% vs. 0.74%, absolute risk difference 0.24% [95% CI 0.11% to 0.36%], relative risk 1.33 [95% CI 1.12 to 1.58]). This risk was not modified by the presence of CKD (interaction P value=0.71). Standard vs. low H2RA dose was associated with a higher risk of mortality (1.07% vs.0.74%; absolute risk difference 0.34% [95% CI 0.20% to 0.46%], relative risk 1.46 [95% CI 1.23 to 1.73]). Compared to a lower dose, initiation of the current standard dose of H2RA in older adults is associated with a small absolute increase in the 30-day risk of altered mental status (using neuroimaging as a proxy), even in the absence of CKD. This risk may be avoided by initiating older adults on low doses of H2RAs for gastroesophogeal reflux disease, and increasing dosing as necessary for symptom control. Copyright © 2014 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  19. Potent aquaretic agent. A novel nonpeptide selective vasopressin 2 antagonist (OPC-31260) in men.

    PubMed Central

    Ohnishi, A; Orita, Y; Okahara, R; Fujihara, H; Inoue, T; Yamamura, Y; Yabuuchi, Y; Tanaka, T

    1993-01-01

    Solute-free water diuretics (aquaretics) by antagonizing hydrosmotic vasopressin receptors (V2) may be useful in treating water-retaining diseases. The effects of intravenous administration of a newly developed nonpeptide, selective V2 antagonist, OPC-31260, at doses ranging from 0.017 to 1.0 mg/kg to groups of healthy, normally hydrated men were compared with those of 0.33 mg/kg furosemide and placebo. OPC-31260 increased the hypotonic urine volume dose dependently for the first 4 h, while furosemide induced sodium diuresis for 2 h. The absolute increase in the cumulative response in the urine to the highest doses of OPC-31260 was not significantly different from that to furosemide. The higher doses of OPC-31260 rapidly lowered urine osmolality for 2 h, particularly between minutes 15 and 45 (e.g., 1.0-mg/kg dose: 63 +/- 2 mOsm/kg in urine collected between minutes 30 and 45). In a marked hypotonic diuresis, mean free water clearance of the 4-h urine increased dose proportionally into the positive range, reaching 1.80 +/- 0.21 ml/min at 1.0 mg/kg. Whereas furosemide induced marked Na and K diuresis, OPC-31260 increased urinary Na excretion only slightly. At 4 h, 0.75 and 1.0 mg/kg of OPC-31260 almost doubled the plasma arginine vasopressin; and the higher doses increased plasma osmolality and plasma Na slightly, but did not alter plasma K, blood pressure, or heart rate. OPC-31260 thus safely induced a potent aquaretic effect in men. Images PMID:8254021

  20. Interaction of a radiolabeled agonist with cardiac muscarinic cholinergic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harden, T.K.; Meeker, R.B.; Martin, M.W.

    The interaction of a radiolabeled muscarinic cholinergic receptor agonist, (methyl-/sup 3/H)oxotremorine acetate ((/sup 3/H)OXO), with a washed membrane preparation derived from rat heart, has been studied. In binding assays at 4 degrees C, the rate constants for association and dissociation of (/sup 3/H)OXO were 2 X 10(7) M-1 min-1 and 5 X 10(-3) min-1, respectively, Saturation binding isotherms indicated that binding was to a single population of sites with a Kd of approximately 300 pM. The density of (/sup 3/H)OXO binding sites (90-100 fmol/mg of protein) was approximately 75% of that determined for the radiolabeled receptor antagonist (/sup 3/H)quinuclidinyl benzilate.more » Both muscarinic receptor agonists and antagonists inhibited the binding of (/sup 3/H)OXO with high affinity and Hill slopes of approximately one. Guanine nucleotides completely inhibited the binding of (/sup 3/H)OXO. This effect was on the maximum binding (Bmax) of (/sup 3/H)OXO with no change occurring in the Kd; the order of potency for five nucleotides was guanosine 5'-O-(3-thio-triphosphate) greater than 5'-guanylylimidodiphosphate greater than GTP greater than or equal to guanosine/diphosphate greater than GMP. The (/sup 3/H)OXO-induced interaction of muscarinic receptors with a guanine nucleotide binding protein was stable to solubilization. That is, membrane receptors that were prelabeled with (/sup 3/H)OXO could be solubilized with digitonin, and the addition of guanine nucleotides to the soluble, (/sup 3/H)OXO-labeled complex resulted in dissociation of (/sup 3/H)OXO from the receptor. Pretreatment of membranes with relatively low concentrations of N-ethylmaleimide inhibited (/sup 3/H)OXO binding by 85% with no change in the Kd of (/sup 3/H)OXO, and with no effect on (/sup 3/H)quinuclidinyl benzilate binding.« less

Top