Sample records for h1299 cell line

  1. BCI induces apoptosis via generation of reactive oxygen species and activation of intrinsic mitochondrial pathway in H1299 lung cancer cells.

    PubMed

    Shin, Jong-Woon; Kwon, Sae-Bom; Bak, Yesol; Lee, Sang-Ku; Yoon, Do-Young

    2018-03-28

    The compound (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI) is known as an inhibitor of dual specific phosphatase 1/6 and mitogen-activated protein kinase. However, its precise anti-lung cancer mechanism remains unknown. In this study, the effects of BCI on the viability of non-small cell lung cancer cell lines NCI-H1299, A549, and NCI-H460 were evaluated. We confirmed that BCI significantly inhibited the viability of p53(-) NCI-H1299 cells as compared to NCI-H460 and A549 cells, which express wild-type p53. Furthermore, BCI treatment increased the level of cellular reactive oxygen species and pre-treatment of cells with N-acetylcysteine markedly attenuated BCI-mediated apoptosis of NCI-H1299 cells. BCI induced cellular morphological changes, inhibited viability, and produced reactive oxygen species in NCI-H1299 cells in a dose-dependent manner. BCI induced processing of caspase-9, caspase-3, and poly ADP-ribose polymerase as well as the release of cytochrome c from the mitochondria into the cytosol. In addition, BCI downregulated Bcl-2 expression and enhanced Bax expression in a dose-dependent manner in NCI-H1299 cells. However, BCI failed to modulate the expression of the death receptor and extrinsic factor caspase-8 and Bid, a linker between the intrinsic and extrinsic apoptotic pathways in NCI-H1299 cells. Thus, BCI induces apoptosis via generation of reactive oxygen species and activation of the intrinsic pathway in NCI-H1299 cells.

  2. EML4-ALK induces epithelial–mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Fuchun; Liu, Xiaoke, E-mail: liuxk57@163.com; Qing, Qin, E-mail: qinqingscu@126.com

    2015-04-10

    The echinoderm microtubule-associated protein-like 4(EML4) – anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanced invasive migration and increased expression of EMT-inducing transcription factors. H1299-EML4-ALK cells also displayed cancer stem cell-like properties with a concomitant up-regulation of CD133 and enhanced ability of mammospheres formation. Moreover, we found that inhibition of ERK1/2 reversed EMT induced by EML4-ALK in H1299 cells.more » Taken together, these results suggested that EML4-ALK induced ERK activation is mechanistically associated with EMT phenotype. Thus, inhibition of ERK signaling pathway could be a potential strategy in treatment of NSCLC patients with EML4-ALK translocation. - Highlights: • EML4-ALK induced epithelial–mesenchymal transition in H1299 cells. • Expression of EML4-ALK promotes invasion and migration in vitro. • EML4-ALK enhanced sphere formation and stem cell-like properties in H1299 cells. • Blockage of ERK1/2 reverse Epithelial–Mesenchymal transition induced by EML4-ALK.« less

  3. EML4-ALK induces epithelial-mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells.

    PubMed

    Guo, Fuchun; Liu, Xiaoke; Qing, Qin; Sang, Yaxiong; Feng, Chengjun; Li, Xiaoyu; Jiang, Li; Su, Pei; Wang, Yongsheng

    2015-04-10

    The echinoderm microtubule-associated protein-like 4(EML4)--anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanced invasive migration and increased expression of EMT-inducing transcription factors. H1299-EML4-ALK cells also displayed cancer stem cell-like properties with a concomitant up-regulation of CD133 and enhanced ability of mammospheres formation. Moreover, we found that inhibition of ERK1/2 reversed EMT induced by EML4-ALK in H1299 cells. Taken together, these results suggested that EML4-ALK induced ERK activation is mechanistically associated with EMT phenotype. Thus, inhibition of ERK signaling pathway could be a potential strategy in treatment of NSCLC patients with EML4-ALK translocation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells

    PubMed Central

    2014-01-01

    Objective Myricetin, a common dietary flavonoid is widely distributed in fruits and vegetables, and is used as a health food supplement based on its immune function, anti-oxidation, anti-tumor, and anti-inflammatory properties. The aim of this study was to investigate the effects of myricetin on combination with radiotherapy enhance radiosensitivity of lung cancer A549 and H1299 cells. Methods A549 cells and H1299 cells were exposed to X-ray with or without myricetin treatment. Colony formation assays, CCK-8 assay, flow cytometry and Caspase-3 level detection were used to evaluate the radiosensitization activity of myricetin on cell proliferation and apoptosis in vitro. Nude mouse tumor xenograft model was built to assessed radiosensitization effect of myricetin in vivo. Results Compared with the exposed group without myricetin treatment, the groups treated with myricetin showed significantly suppressed cell surviving fraction and proliferation, increased the cell apoptosis and increased Caspase-3 protein expression after X-ray exposure in vitro. And in vivo assay, growth speed of tumor xenografts was significantly decreased in irradiated mice treated with myricetin. Conclusions The study demonstrated both in vitro and in vivo evidence that combination of myricetin with radiotherapy can enhance tumor radiosensitivity of pulmonary carcinoma A549 and H1299 cells, and myricetin could be a potential radiosensitizer for lung cancer therapy. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5791518001210633 PMID:24650056

  5. Knockdown of hepatoma-derived growth factor-related protein-3 induces apoptosis of H1299 cells via ROS-dependent and p53-independent NF-κB activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Hong Shik; Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791; Baek, Jeong-Hwa

    2014-07-11

    Highlights: • HRP-3 is a radiation- and anticancer drug-responsive protein in H1299 cells. • Depletion of HRP-3 induces apoptosis of radio- and chemoresistant H1299 cells. • Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. • ROS generation enhances NF-κB activity, which acts as an upstream signal in the c-Myc/Noxa apoptotic pathway. - Abstract: We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates themore » radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells.« less

  6. Combined treatment of curcumin and small molecule inhibitors suppresses proliferation of A549 and H1299 human non-small-cell lung cancer cells.

    PubMed

    Lin, Hui-Ping; Kuo, Li-Kuo; Chuu, Chih-Pin

    2012-01-01

    Curcumin (diferuloylmethane) is a phenolic compound present in turmeric and is ingested daily in many parts of the world. Curcumin has been reported to cause inhibition on proliferation and induction of apoptosis in many human cancer cell lines, including non-small cell lung cancer cells (NSCLC). However, the clinical application of curcumin is restricted by its low bioavailability. In this report, it was observed that combined treatment of a low dosage of curcumin (5-10 µM) with a low concentration (0.1-2.5 µM) of small molecule inhibitors, including AG1478, AG1024, PD173074, LY294002 and caffeic acid phenethyl ester (CAPE) increased the growth inhibition in two human NSCLC cell lines: A549 and H1299 cells. The observation suggested that combined treatment of a low dosage of curcumin with inhibitors against epidermal growth factor receptor (EGFR), insulin-like growth factor 1 (IGF-1R), fibroblast growth factors receptor (FGFR), phosphatidylinositol 3-kinases (PI3K) or NF-κB signaling pathway may be a potential adjuvant therapy beneficial to NSCLC patients. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Comparative assessment of a 99mTc labeled H1299.2-HYNIC peptide bearing two different co-ligands for tumor-targeted imaging.

    PubMed

    Torabizadeh, Seyedeh Atekeh; Abedi, Seyed Mohammad; Noaparast, Zohreh; Hosseinimehr, Seyed Jalal

    2017-05-01

    Peptides are a class of targeting agents that bind to cancer-specific cell surfaces. Since they specifically target cancer cells, they could be used as molecular imaging tools. In this study, the 15-mer peptide Ac-H1299.2 (YAAWPASGAWTGTAP) was conjugated with HYNIC via lysine amino acid on C-terminus and labeled with 99m Tc using tricine and EDDA/tricine as the co-ligands. These radiotracers were evaluated for potential utilization in diagnostic imaging of ovarian cancer cells (SKOV-3). The cell-specificity of these radiolabeled peptides was determined based on their binding on an ovarian cancer cell line (SKOV-3), and displaying a low affinity for lung adenocarcinoma cell line (A549) and breast cancer cell line (MCF7). Biodistribution studies were conducted in normal mice as well as in nude mice bearing SKOV-3 ovarian cancer xenografts. HYNIC-peptide was labeled with 99m Tc with more than 99% efficiency and showed high stability in buffer and serum. We observed nanomolar binding affinities for both radiolabeled peptides. The tumor uptakes were 3.27%±0.46% and 1.55%±0.20% for tricine and 2.34±1.1% and 1.09%±0.18% for EDDA/tricine at 1 and 4h after injection, respectively. A higher tumor to background ratio and lower radioactivity in the blood were observed for EDDA/tricine co-ligands, leading to clear tumor visualization in imaging with injection of this peptide. This new 99m Tc-labeled peptide selectively targeted ovarian cancer and introduction of a (EDDA/tricine) as a co-ligand improved the pharmacokinetics of 99m Tc-labeled H1299.2 for tumor imaging in animals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. In vitro synergistic antitumor efficacy of sequentially combined chemotherapy/icotinib in non‑small cell lung cancer cell lines.

    PubMed

    Wang, Min-Cong; Liang, Xuan; Liu, Zhi-Yan; Cui, Jie; Liu, Ying; Jing, Li; Jiang, Li-Li; Ma, Jie-Qun; Han, Li-Li; Guo, Qian-Qian; Yang, Cheng-Cheng; Wang, Jing; Wu, Tao; Nan, Ke-Jun; Yao, Yu

    2015-01-01

    The concurrent administration of chemotherapy and epidermal growth factor receptor‑tyrosine kinase inhibitors (EGFR‑TKIs) has previously produced a negative interaction and failed to confer a survival benefit to non‑small cell lung cancer (NSCLC) patients compared with first‑line cytotoxic chemotherapy. The present study aimed to investigate the optimal schedule of the combined treatment of cisplatin/paclitaxel and icotinib in NSCLC cell lines and clarify the underlying mechanisms. HCC827, H1975, H1299 and A549 human NSCLC cell lines with wild‑type and mutant EGFR genes were used as in vitro models to define the differential effects of various schedules of cisplatin/paclitaxel with icotinib treatments on cell growth, proliferation, cell cycle distribution, apoptosis, and EGFR signaling pathway. Sequence‑dependent antiproliferative effects differed among the four NSCLC cell lines, and were not associated with EGFR mutation, constitutive expression levels of EGFR or downstream signaling molecules. The antiproliferative effect of cisplatin plus paclitaxel followed by icotinib was superior to that of cisplatin or paclitaxel followed by icotinib in the HCC827, H1975, H1299 and A549 cell lines, and induced more cell apoptosis and G0/G1 phase arrest. Cisplatin and paclitaxel significantly increased the expression of EGFR phosphorylation in the HCC827 cell line. However, only paclitaxel increased the expression of EGFR phosphorylation in the H1975 cell line. Cisplatin/paclitaxel followed by icotinib influenced the expression of p‑EGFR and p‑AKT, although the expression of p‑ERK1/2 remained unchanged. The results suggest that the optimal schedule of the combined treatment of cisplatin/paclitaxel and icotinib differed among the NSCLC cell lines. The results also provide molecular evidence to support clinical treatment strategies for NSCLC patients.

  9. Overexpression of PHRF1 attenuates the proliferation and tumorigenicity of non-small cell lung cancer cells.

    PubMed

    Wang, Yadong; Wang, Haiyu; Pan, Teng; Li, Li; Li, Jiangmin; Yang, Haiyan

    2016-09-27

    The aim of this study was to investigate the potential role of PHRF1 in lung tumorigenesis. Western blot analysis was used to detect the expression of proteins. Quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry, soft agar assay and tumor formation assay in nude mice were applied. Cell cycle distribution was analyzed by flow cytometry. The lower level of PHRF1 mRNA was observed in human lung cancer tissues than that in paracancerous tissues. The decreased expression of PHRF1 protein was observed in H1299 and H1650 cell lines than that in 16HBE and BEAS-2B cell lines. The decreased expression of PHRF1 protein was observed in malignant 16HBE cells compared to control cells. The reduced expression of PHRF1 protein was observed in mice lung tissues treated with BaP than that in control group. Overexpression of PHRF1 inhibited H1299 cell proliferation, colony formation in vitro and growth of tumor xenograft in vivo, and arrested cell cycle in G1 phase. The decreased expression of TGIF and c-Myc proteins and the increased expression of p21 protein were observed in H1299-PHRF1 cells compared with H1299-pvoid cells. In conclusion, our findings suggest that overexpression of PHRF1 attenuated the proliferation and tumorigenicity of non-small cell lung cancer cell line of H1299.

  10. Adhesion molecules affected by treatment of lung cancer cells with epidermal growth factor.

    PubMed

    Fonseca, Fernando L A; Azzalis, Ligia A; Feder, David; Nogoceke, Everson; Junqueira, Virginia B C; Valenti, Vitor E; de Abreu, Luiz Carlos

    2011-10-01

    Lung cancer is one of the leading causes of death in the world. Some tumor events are attributed to an important group of molecules (cadherins and integrins). We evaluated the interactions of cell adhesion molecules in cell lines from lung cancer. Two lung cancer cell lines were nonmetastatic (H358 and H441) and two were metastatic (H1299 and H292). All cell lines were treated with epidermal growth factor (EGF), and Western blot analysis was performed to assess the interactions between these proteins. The bronchoalveolar cells H358 showed the three analyzed proteins: E-cadherin, β-catenin, and p120 catenin. The adenocarcinoma cells H441 did not present p120 catenin, and carcinoma cells did not show E-cadherin (H1299) or p120 catenin (H292). FAK (pTyr925) was dephosphorylated in adenocarcinoma cells H441, absent in carcinoma cells H1299, and upregulated in the other carcinoma cells H292. p130Cas showed no difference when the cell lines were treated with EGF for 30 min; it was absent in the metastatic carcinoma cells H1299. Paxillin was dephosphorylated in adenocarcinoma cells H441 and also absent in other metastatic carcinoma cells H292. Vinculin showed the same results, and talin was downregulated in adenocarcinoma cells H441 when the cells were treated with EGF. Rap1 was downregulated and PYK2 was upregulated in the same cell line. Our data help to comprehend the mechanism involved in cell migration to the blood and metastasis generation. In conclusion, the expression patterns of cell-cell adhesion were not affected by EGF treatment but it affected cell-extracellular matrix adhesion.

  11. 22 CFR 129.9 - Reports.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Directorate of Defense Trade Controls enumerating and describing its brokering activities by quantity, type, U... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Reports. 129.9 Section 129.9 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS REGISTRATION AND LICENSING OF BROKERS § 129.9...

  12. 22 CFR 129.9 - Reports.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Directorate of Defense Trade Controls enumerating and describing its brokering activities by quantity, type, U... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Reports. 129.9 Section 129.9 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS REGISTRATION AND LICENSING OF BROKERS § 129.9...

  13. 22 CFR 129.9 - Reports.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Reports. 129.9 Section 129.9 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS REGISTRATION AND LICENSING OF BROKERS § 129.9 Reports. Any person required to register under this part shall provide annually a report to the...

  14. 21 CFR 12.99 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Motions. 12.99 Section 12.99 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL FORMAL EVIDENTIARY PUBLIC HEARING Hearing Procedures § 12.99 Motions. (a) A motion on any matter relating to the proceeding is to be...

  15. Antiproliferative activity of Haematoxylum brasiletto H. Karst

    PubMed Central

    Bello-Martínez, J; Jiménez-Estrada, M; Rosas-Acevedo, JL; Avila-Caballero, LP; Vidal-Gutierrez, M; Patiño-Morales, C; Ortiz-Sánchez, E; Robles-Zepeda, RE

    2017-01-01

    Background: Haematoxylum brasiletto is a tree that grows in Central America, commonly known as “Palo de Brasil,” which is used in the traditional medicine for the treatment of cancer and gastric ulcers. Objective: The aim of this study was to isolate the compounds responsible for antiproliferative activity of H. brasiletto. Materials and Methods: A bioassay-guided fractionation of ethanol extract of H. brasiletto was performed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide cell proliferation assay to measure the antiproliferative activity on six human cancer cell lines (A549, LS180, HeLa, SiHa, MDA-MB-231, and NCI-H1299) and one human noncancer cell line (ARPE-19). The ethanol extract was partitioned with hexane, dichloromethane, and ethyl acetate. The active dichloromethane fraction was fractioned by silica-column chromatography, and active subfractions were separated using preparative-thin layer chromatography. The chemical structure of an isolated compound was elucidated with different chemical and spectroscopic methods. Results: The flavonoid brazilin (1) was isolated from the heartwood of H. brasiletto. The measurement of antiproliferative activity showed that brazilin can inhibit the growth of SiHa, MDA-MB-231, A549, and NCI-H1299 cell lines by 50% at doses of 44.3, 48.7, 45.4, and 48.7 μM, respectively. Furthermore, the flavonoid showed a high antiproliferative activity on LS 180 and HeLa with IC50 values of 62.2 and 71.9 μM, respectively. Brazilin also exhibited a high antiproliferative activity on the human noncancer cell line ARPE-19 with an IC50 value of 37.9 μM. Conclusions: Brazilin: (6aS, 11bR)-7,11b-Dihidro-6H-indeno[2,1-c] cromeno-3,6a, 9,10-tetrol was isolated; this compound demonstrated antiproliferative activity against several human cancer cell lines. This work demonstrated that brazilin, a flavonoid isolated and characterized of H. brasiletto, has antiproliferative activity against cancer cell lines. SUMMARY The

  16. 21 CFR 73.1299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferric ferrocyanide. 73.1299 Section 73.1299 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1299 Ferric ferrocyanide. (a) Identity. (1) The color additive ferric ferrocyanide is a ferric hexacyanoferrate pigment characterized by the structual...

  17. 21 CFR 73.1299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Ferric ferrocyanide. 73.1299 Section 73.1299 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1299 Ferric ferrocyanide. (a) Identity. (1) The...

  18. 21 CFR 73.1299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Ferric ferrocyanide. 73.1299 Section 73.1299 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1299 Ferric ferrocyanide. (a) Identity. (1) The...

  19. 21 CFR 73.1299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Ferric ferrocyanide. 73.1299 Section 73.1299 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1299 Ferric ferrocyanide. (a) Identity. (1) The...

  20. 21 CFR 73.1299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Ferric ferrocyanide. 73.1299 Section 73.1299 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1299 Ferric ferrocyanide. (a) Identity. (1) The...

  1. Distinct CPT-induced deaths in lung cancer cells caused by clathrin-mediated internalization of CP micelles

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Sheng; Cheng, Ru-You; Lo, Yu-Lun; Hsu, Chin; Chen, Su-Hwei; Chiu, Chien-Chih; Wang, Li-Fang

    2016-02-01

    We previously synthesized a chondroitin sulfate-graft-poly(ε-caprolactone) copolymer (H-CP) with a high content of poly(ε-caprolactone) (18.7 mol%), which self-assembled in water into a rod-like micelle to encapsulate hydrophobic camptothecin (CPT) in the core (micelle/CPT) for tumor-targeted drug delivery. As a result of the recognition of the micelle by CD44, the micelle/CPT entered CRL-5802 cells efficiently and released CPT efficaciously, resulting in higher tumor suppression than commercial CPT-11. In this study, H1299 cells were found to have a higher CD44 expression than CRL-5802 cells. However, the lower CD44-expressing CRL-5802 cells had a higher percentage of cell death and higher cellular uptake of the micelle/CPT than the higher CD44-expressing H1299 cells. Examination of the internalization pathway of the micelle/CPT in the presence of different endocytic chemical inhibitors showed that the CRL-5802 cells involved clathrin-mediated endocytosis, which was not found in the H1299 cells. Analysis of the cell cycle of the two cell lines exposed to the micelle/CPT revealed that the CRL-5802 cells arrested mainly in the S phase and the H1299 cells arrested mainly in the G2-M phase. A consistent result was also found in the evaluation of γ-H2AX expression, which was about three-fold higher in the CRL-5802 cells than in the H1299 cells. A near-infrared dye, IR780, was encapsulated into the micelle to observe the in vivo biodistribution of the micelle/IR780 in tumor-bearing mice. The CRL-5802 tumor showed a higher fluorescence intensity than the H1299 tumor at any tracing time after 1 h. Thus we tentatively concluded that CRL-5802 cells utilized the clathrin-mediated internalization pathway and arrested in the S phase on exposure to the micelle/CPT; all are possible reasons for the better therapeutic outcome in CRL-5802 cells than in H1299 cells.We previously synthesized a chondroitin sulfate-graft-poly(ε-caprolactone) copolymer (H-CP) with a high content of

  2. 40 CFR 272.1250-272.1299 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false [Reserved] 272.1250-272.1299 Section 272.1250-272.1299 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Mississippi §§ 272.1250-272.1299 [Reserved] ...

  3. 40 CFR 272.1250-272.1299 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false [Reserved] 272.1250-272.1299 Section 272.1250-272.1299 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Mississippi §§ 272.1250-272.1299 [Reserved] ...

  4. 40 CFR 272.1250-272.1299 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false [Reserved] 272.1250-272.1299 Section 272.1250-272.1299 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Mississippi §§ 272.1250-272.1299 [Reserved] ...

  5. 40 CFR 272.1250-272.1299 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false [Reserved] 272.1250-272.1299 Section 272.1250-272.1299 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Mississippi §§ 272.1250-272.1299 [Reserved] ...

  6. 8 CFR 1299.2 - Specific immigration review forms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Specific immigration review forms. 1299.2 Section 1299.2 Aliens and Nationality EXECUTIVE OFFICE FOR IMMIGRATION REVIEW, DEPARTMENT OF JUSTICE NATIONALITY REGULATIONS IMMIGRATION REVIEW FORMS § 1299.2 Specific immigration review forms. The Director of...

  7. CCDC106 promotes non-small cell lung cancer cell proliferation.

    PubMed

    Zhang, Xiupeng; Zheng, Qin; Wang, Chen; Zhou, Haijing; Jiang, Guiyang; Miao, Yuan; Zhang, Yong; Liu, Yang; Li, Qingchang; Qiu, Xueshan; Wang, Enhua

    2017-04-18

    Coiled-coil domain containing (CCDC) family members enhance tumor cell proliferation, and high CCDC protein levels correlate with unfavorable prognoses. Limited research demonstrated that CCDC106 may promote the degradation of p53/TP53 protein and inhibit its transactivity. The present study demonstrated that CCDC106 expression correlates with advanced TNM stage (P = 0.008), positive regional lymph node metastasis (P < 0.001), and poor overall survival (P < 0.001) in 183 non-small cell lung cancer cases. A549 and H1299 cells were selected as representative of CCDC106-low and CCDC106-high expressing cell lines, respectively. CCDC106 overexpression promoted A549 cell proliferation and xenograft tumor growth in nude mice, while siRNA-mediated CCDC106 knockdown inhibited H1299 cell proliferation. CCDC106 promoted AKT phosphorylation and upregulated the cell cycle-regulating proteins Cyclin A2 and Cyclin B1. Cell proliferation promoted by CCDC106 via Cyclin A2 and Cyclin B1 was rescued by treatment with the AKT inhibitor, LY294002. Our studies revealed that CCDC106 is associated with non-small cell lung cancer progression and unfavorable prognosis. CCDC106 enhanced Cyclin A2 and Cyclin B1 expression and promoted A549 and H1299 cell proliferation, which depended on AKT signaling. These results suggest that CCDC106 may be a novel target for lung cancer treatment.

  8. Biocompatible and label-free separation of cancer cells from cell culture lines from white blood cells in ferrofluids.

    PubMed

    Zhao, Wujun; Cheng, Rui; Lim, So Hyun; Miller, Joshua R; Zhang, Weizhong; Tang, Wei; Xie, Jin; Mao, Leidong

    2017-06-27

    This paper reports a biocompatible and label-free cell separation method using ferrofluids that can separate a variety of low-concentration cancer cells from cell culture lines (∼100 cancer cells per mL) from undiluted white blood cells, with a throughput of 1.2 mL h -1 and an average separation efficiency of 82.2%. The separation is based on the size difference of the cancer cells and white blood cells, and is conducted in a custom-made biocompatible ferrofluid that retains not only excellent short-term viabilities but also normal proliferations of 7 commonly used cancer cell lines. A microfluidic device is designed and optimized specifically to shorten the time of live cells' exposure to ferrofluids from hours to seconds, by eliminating time-consuming off-chip sample preparation and extraction steps and integrating them on-chip to achieve a one-step process. As a proof-of-concept demonstration, a ferrofluid with 0.26% volume fraction was used in this microfluidic device to separate spiked cancer cells from cell lines at a concentration of ∼100 cells per mL from white blood cells with a throughput of 1.2 mL h -1 . The separation efficiencies were 80 ± 3%, 81 ± 5%, 82 ± 5%, 82 ± 4%, and 86 ± 6% for A549 lung cancer, H1299 lung cancer, MCF-7 breast cancer, MDA-MB-231 breast cancer, and PC-3 prostate cancer cell lines, respectively. The separated cancer cells' purity was between 25.3% and 28.8%. In addition, the separated cancer cells from this strategy showed an average short-term viability of 94.4 ± 1.3%, and these separated cells were cultured and demonstrated normal proliferation to confluence even after the separation process. Owing to its excellent biocompatibility and label-free operation and its ability to recover low concentrations of cancer cells from white blood cells, this method could lead to a promising tool for rare cell separation.

  9. Folate receptor-targeted nanoparticle delivery of HuR-RNAi suppresses lung cancer cell proliferation and migration.

    PubMed

    Muralidharan, Ranganayaki; Babu, Anish; Amreddy, Narsireddy; Basalingappa, Kanthesh; Mehta, Meghna; Chen, Allshine; Zhao, Yan Daniel; Kompella, Uday B; Munshi, Anupama; Ramesh, Rajagopal

    2016-06-21

    Human antigen R (HuR) is an RNA binding protein that is overexpressed in many human cancers, including lung cancer, and has been shown to regulate the expression of several oncoproteins. Further, HuR overexpression in cancer cells has been associated with poor-prognosis and therapy resistance. Therefore, we hypothesized that targeted inhibition of HuR in cancer cells should suppress several HuR-regulated oncoproteins resulting in an effective anticancer efficacy. To test our hypothesis, in the present study we investigated the efficacy of folate receptor-α (FRA)-targeted DOTAP:Cholesterol lipid nanoparticles carrying HuR siRNA (HuR-FNP) against human lung cancer cells. The therapeutic efficacy of HuR-FNP was tested in FRA overexpressing human H1299 lung cancer cell line and compared to normal lung fibroblast (CCD16) cells that had low to no FRA expression. Physico-chemical characterization studies showed HuR-FNP particle size was 303.3 nm in diameter and had a positive surface charge (+4.3 mV). Gel retardation and serum stability assays showed that the FNPs were efficiently protected siRNA from rapid degradation. FNP uptake was significantly higher in H1299 cells compared to CCD16 cells indicating a receptor-dose effect. The results of competitive inhibition studies in H1299 cells demonstrated that HuR-FNPs were efficiently internalized via FRA-mediated endocytosis. Biologic studies demonstrated HuR-FNP but not C-FNP (control siRNA) induced G1 phase cell-cycle arrest and apoptosis in H1299 cells resulting in significant growth inhibition. Further, HuR-FNP exhibited significantly higher cytotoxicity against H1299 cells than it did against CCD16 cells. The reduction in H1299 cell viability was correlated with a marked decrease in HuR mRNA and protein expression. Further, reduced expression of HuR-regulated oncoproteins (cyclin D1, cyclin E, and Bcl-2) and increased p27 tumor suppressor protein were observed in HuR-FNP-treated H1299 cells but not in C

  10. Ligand independent aryl hydrocarbon receptor inhibits lung cancer cell invasion by degradation of Smad4.

    PubMed

    Lee, Chen-Chen; Yang, Wen-Hao; Li, Ching-Hao; Cheng, Yu-Wen; Tsai, Chi-Hao; Kang, Jaw-Jou

    2016-07-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent-activated transcriptional factor that regulates the metabolism of xenobiotic and endogenous compounds. Although AhR plays a crucial role in air toxicant-induced carcinogenesis, AhR expression was shown to negatively regulate tumorigenesis. Therefore, in the present study, we investigated the effect of AhR without ligand treatment on cancer invasion in lung cancer cell lines. Lung cancer cells expressing lower levels of AhR showed higher invasion ability (H1299 cells) compared with cells expressing higher levels of AhR (A549 cells). Overexpression of AhR in H1299 cells inhibited the invasion ability. We found that vimentin expression was inhibited in AhR-overexpressing H1299 cells. Additionally, the expression of EMT-related transcriptional factors Snail and ID-1 decreased. Interestingly, we found that Smad4 degradation was induced in AhR-overexpressing H1299 cells. Our data showed that AhR could interact with Jun-activation domain binding protein (Jab1) and Smad4, which may cause degradation of Smad4 by the proteasome. Our data suggest that AhR affects the transforming growth factor-β signaling pathway by inducing Smad4 degradation by the proteasome and suppressing tumor metastasis via epithelial to mesenchymal transition reduction in lung cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Evaluation of somatostatin and nucleolin receptors for therapeutic delivery in non-small cell lung cancer stem cells applying the somatostatin-analog DOTATATE and the nucleolin-targeting aptamer AS1411.

    PubMed

    Holmboe, Sif; Hansen, Pernille Lund; Thisgaard, Helge; Block, Ines; Müller, Carolin; Langkjær, Niels; Høilund-Carlsen, Poul Flemming; Olsen, Birgitte Brinkmann; Mollenhauer, Jan

    2017-01-01

    Cancer stem cells represent the putative tumor-driving subpopulation thought to account for drug resistance, relapse, and metastatic spread of epithelial and other cancer types. Accordingly, cell surface markers for therapeutic delivery to cancer stem cells are subject of intense research. Somatostatin receptor 2 and nucleolin are known to be overexpressed by various cancer types, which have elicited comprehensive efforts to explore their therapeutic utilization. Here, we evaluated somatostatin receptor 2 targeting and nucleolin targeting for therapeutic delivery to cancer stem cells from lung cancer. Nucleolin is expressed highly but not selectively, while somatostatin receptor 2 is expressed selectively but not highly by cancer cells. The non-small cell lung cancer cell lines A549 and H1299, displayed average levels of both surface molecules as judged based on analysis of a larger cell line panel. H1299 compared to A549 cells showed significantly elevated sphere-forming capacity, indicating higher cancer stem cell content, thus qualifying as suitable test system. Nucleolin-targeting 57Co-DOTA-AS1411 aptamer showed efficient internalization by cancer cells and, remarkably, at even higher efficiency by cancer stem cells. In contrast, somatostatin receptor 2 expression levels were not sufficiently high in H1299 cells to confer efficient uptake by either non-cancer stem cells or cancer stem cells. The data provides indication that the nucleolin-targeting AS1411 aptamer might be used for therapeutic delivery to non-small cell lung cancer stem cells.

  12. Synergistic effect of phenformin in non-small cell lung cancer (NSCLC) ionizing radiation treatment.

    PubMed

    Wang, Jia; Xia, Shi'an; Zhu, Zhizhen

    2015-03-01

    Biguanides, used for anti-diabetic drugs, bring more attention in cancer research for their beneficial effects. Phenformin is more potent than metformin. However its potential application as a anti-cancer regent is far behind metformin. In order to investigate any beneficial effect of combination of Phenformin and radiotherapy, non-small cell lung cancer cell lines A549 and H1299 were exposure under different dose of ionizing radiation with or without Phenformin. Results indicated Phenformin showed synergistic effect and could induce more cancer cell apoptosis and inhibition of tumor growth compared with ionizing radiation alone. Furthermore, this synergistic effect may be through different pathway according to cancer cell genotype background. Our results showed Phenformin induced AMPK activation in A549 but not H1299. However, Phenformin activated eIF2α in both cell lines. Our findings implicated Phenformin may be used as radiosensitizer for non-small cell lung cancer therapy.

  13. In vitro Development of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide with Case Studies

    PubMed Central

    McDermott, Martina; Eustace, Alex J.; Busschots, Steven; Breen, Laura; Crown, John; Clynes, Martin; O’Donovan, Norma; Stordal, Britta

    2014-01-01

    The development of a drug-resistant cell line can take from 3 to 18 months. However, little is published on the methodology of this development process. This article will discuss key decisions to be made prior to starting resistant cell line development; the choice of parent cell line, dose of selecting agent, treatment interval, and optimizing the dose of drug for the parent cell line. Clinically relevant drug-resistant cell lines are developed by mimicking the conditions cancer patients experience during chemotherapy and cell lines display between two- and eight-fold resistance compared to their parental cell line. Doses of drug administered are low, and a pulsed treatment strategy is often used where the cells recover in drug-free media. High-level laboratory models are developed with the aim of understanding potential mechanisms of resistance to chemotherapy agents. Doses of drug are higher and escalated over time. It is common to have difficulty developing stable clinically relevant drug-resistant cell lines. A comparative selection strategy of multiple cell lines or multiple chemotherapeutic agents mitigates this risk and gives insight into which agents or type of cell line develops resistance easily. Successful selection strategies from our research are presented. Pulsed-selection produced platinum or taxane-resistant large cell lung cancer (H1299 and H460) and temozolomide-resistant melanoma (Malme-3M and HT144) cell lines. Continuous selection produced a lapatinib-resistant breast cancer cell line (HCC1954). Techniques for maintaining drug-resistant cell lines are outlined including; maintaining cells with chemotherapy, pulse treating with chemotherapy, or returning to master drug-resistant stocks. The heterogeneity of drug-resistant models produced from the same parent cell line with the same chemotherapy agent is explored with reference to P-glycoprotein. Heterogeneity in drug-resistant cell lines reflects the heterogeneity that can occur in clinical

  14. Development of an in vitro skin sensitization test using human cell lines; human Cell Line Activation Test (h-CLAT). II. An inter-laboratory study of the h-CLAT.

    PubMed

    Sakaguchi, H; Ashikaga, T; Miyazawa, M; Yoshida, Y; Ito, Y; Yoneyama, K; Hirota, M; Itagaki, H; Toyoda, H; Suzuki, H

    2006-08-01

    Recent regulatory changes have placed a major emphasis on in vitro safety testing and alternative models. In regard to skin sensitization tests, dendritic cells (DCs) derived from human peripheral blood have been considered in the development of new in vitro alternatives. Human cell lines have been also reported recently. In our previous study, we suggested that measuring CD86 and/or CD54 expression on THP-1 cells (human monocytic leukemia cell line) could be used as an in vitro skin sensitization method. An inter-laboratory study among two laboratories was undertaken in Japan in order to further develop an in vitro skin sensitization model. In the present study, we used two human cell lines: THP-1 and U-937 (human histiocytic lymphoma cell line). First we optimized our test protocol (refer to the related paper entitled "optimization of the h-CLAT protocol" within this journal) and then we did an inter-laboratory validation with nine chemicals using the optimized protocol. We measured the expression of CD86 and CD54 on the above cells using flow cytometry after a 24h and 48h exposure to six known allergens (e.g., DNCB, pPD, NiSO(4)) and three non-allergens (e.g., SLS, tween 80). For the sample test concentration, four doses (0.1x, 0.5x, 1x, and 2x of the 50% inhibitory concentration (IC(50))) were evaluated. IC(50) was calculated using MTT assay. We found that allergens/non-allergens were better predicted using THP-1 cells compared to U-937 cells following a 24 h and a 48 h exposure. We also found that the 24h treatment time tended to have a better accuracy than the 48 h treatment time for THP-1 cells. Expression of CD86 and CD54 were good predictive markers for THP-1 cells, but for U-937 cells, expression of CD86 was a better predictor than CD54, at the 24h and the 48 h treatment time. The accuracy also improved when both markers (CD86 and CD54) were used as compared with a single marker for THP-1 cells. Both laboratories gave a good prediction of allergen

  15. 8 CFR 1299.1 - Use of immigration forms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1299.1 Aliens and Nationality EXECUTIVE OFFICE FOR IMMIGRATION REVIEW, DEPARTMENT OF JUSTICE NATIONALITY REGULATIONS IMMIGRATION REVIEW FORMS § 1299.1 Use of immigration forms. In addition to forms prepared by the Executive Office for Immigration Review, the Executive Office for Immigration Review...

  16. Xeroderma pigmentosum, complementation group D expression in H1299 lung cancer cells following benzo[a]pyrene exposure as well as in head and neck cancer patients.

    PubMed

    Lin, Chang-Shen; Chiou, Wen-Yen; Lee, Ka-Wo; Chen, Tzu-Fen; Lin, Yuan-Jen; Huang, Jau-Ling

    2016-01-01

    DNA repair genes play critical roles in response to carcinogen-induced and anticancer therapy-induced DNA damage. Benzo[a]pyrene (BaP), the most carcinogenic polycyclic aromatic hydrocarbon (PAH), is classified as a group 1 carcinogen by International Agency for Research on Cancer. The aims of this study were to (1) evaluate the effects of BaP on DNA repair activity and expression of DNA repair genes in vitro and (2) examine the role of xeroderma pigmentosum, complementation group D (XPD) mRNA expression in human head and neck cancers. Host cell reactivation assay showed that BaP inhibited nucleotide excision repair in H1299 lung cancer cells. DNA repair through the non-homologous end-joining pathway was not affected by BaP. Real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) and Western blot demonstrated that XPD was downregulated by BaP treatment. BaP exposure did not apparently affect expression of another 11 DNA repair genes. BaP treatment increased the DNA damage marker γ-H2AX and ultraviolet (UV) sensitivity, supporting an impairment of DNA repair in BaP-treated cells. XPD expression was also examined by quantitative RT-PCR in 68 head and neck cancers, and a lower XPD mRNA level was found in smokers' cancer specimens. Importantly, reduced XPD expression was correlated with patient 5-year overall survival rate (35 vs. 56%) and was an independent prognostic factor (hazard ratio: 2.27). Data demonstrated that XPD downregulation was correlated with BaP exposure and human head and neck cancer survival.

  17. BAD overexpression inhibits cell growth and induces apoptosis via mitochondrial-dependent pathway in non-small cell lung cancer.

    PubMed

    Jiang, Li; Luo, Man; Liu, Dan; Chen, Bojiang; Zhang, Wen; Mai, Lin; Zeng, Jing; Huang, Na; Huang, Yi; Mo, Xianming; Li, Weimin

    2013-06-01

    The pro-apoptotic Bcl-2 protein BAD initiated apoptosis in human cells and has been identified as a prognostic marker in non-small cell lung cancer (NSCLC). In this study, we aimed to explore the functions of BAD in NSCLC. Overexpression of BAD was performed by transfecting different NSCLC cell lines with wild-type BAD. Cell proliferation, cell cycle, apoptosis, and invasion were characterized in vitro. Tumorigenicity was analyzed in vivo. Western blot was performed to determine the effects of BAD overexpression on the Bcl-2 family proteins and apoptosis-related proteins. Overexpression of BAD significantly inhibited cell proliferation in H1299, H292, and SPC-A1 but not in SK-MES-1 and H460 cell lines in vitro. BAD overexpression also reduced the tumorigenicity of H1299/SPC-A1 cell in vivo. However, no appreciable effects on cell cycle distribution and invasion were observed in all these cell lines. BAD overexpression also induced apoptosis in all cell types, in which process expression of mitochondrial cytochrom c (cyto-c) and caspase 3 were increased, whereas Bcl-xl, Bcl-2, Bax and caspase 8 expressions did not changed. These findings indicated that a mitochondrial pathway, in which process cyto-c was released from mitochondrial to activate caspase 3, was involved in BAD overexpression-mediated apoptosis. Our data suggested that increased expression of BAD enhance apoptosis and has negative influence on cell proliferation and tumor growth in NSCLC. Bad is a new potential target for tumor interventions.

  18. Label-free ferrohydrodynamic cell separation of circulating tumor cells.

    PubMed

    Zhao, Wujun; Cheng, Rui; Jenkins, Brittany D; Zhu, Taotao; Okonkwo, Nneoma E; Jones, Courtney E; Davis, Melissa B; Kavuri, Sravan K; Hao, Zhonglin; Schroeder, Carsten; Mao, Leidong

    2017-09-12

    Circulating tumor cells (CTCs) have significant implications in both basic cancer research and clinical applications. To address the limited availability of viable CTCs for fundamental and clinical investigations, effective separation of extremely rare CTCs from blood is critical. Ferrohydrodynamic cell separation (FCS), a label-free method that conducted cell sorting based on cell size difference in biocompatible ferrofluids, has thus far not been able to enrich low-concentration CTCs from cancer patients' blood because of technical challenges associated with processing clinical samples. In this study, we demonstrated the development of a laminar-flow microfluidic FCS device that was capable of enriching rare CTCs from patients' blood in a biocompatible manner with a high throughput (6 mL h -1 ) and a high rate of recovery (92.9%). Systematic optimization of the FCS devices through a validated analytical model was performed to determine optimal magnetic field and its gradient, ferrofluid properties, and cell throughput that could process clinically relevant amount of blood. We first validated the capability of the FCS devices by successfully separating low-concentration (∼100 cells per mL) cancer cells using six cultured cell lines from undiluted white blood cells (WBCs), with an average 92.9% cancer cell recovery rate and an average 11.7% purity of separated cancer cells, at a throughput of 6 mL per hour. Specifically, at ∼100 cancer cells per mL spike ratio, the recovery rates of cancer cells were 92.3 ± 3.6% (H1299 lung cancer), 88.3 ± 5.5% (A549 lung cancer), 93.7 ± 5.5% (H3122 lung cancer), 95.3 ± 6.0% (PC-3 prostate cancer), 94.7 ± 4.0% (MCF-7 breast cancer), and 93.0 ± 5.3% (HCC1806 breast cancer), and the corresponding purities of separated cancer cells were 11.1 ± 1.2% (H1299 lung cancer), 10.1 ± 1.7% (A549 lung cancer), 12.1 ± 2.1% (H3122 lung cancer), 12.8 ± 1.6% (PC-3 prostate cancer), 11.9 ± 1.8% (MCF-7 breast cancer), and 12.2 ± 1

  19. Combinational treatment with retinoic acid derivatives in non-small cell lung carcinoma in vitro.

    PubMed

    Choi, Eun Jung; Whang, Young Mi; Kim, Seok Jin; Kim, Hyun Jin; Kim, Yeul Hong

    2007-09-01

    The growth inhibitory effects of four retinoic acid (RA) derivatives, 9-cis RA, 13-cis RA, N-(4-hydroxyphenyl) retinamide (4-HPR), and all-trans retinoic acid (ATRA) were compared. In addition, the effects of various combinations of these four agents were examined on non-small cell lung carcinoma (NSCLC) cell-lines, and on the expressions of retinoic acid receptors (RARs) and retinoid X receptors (RXRs) on these cells. At the clinically achievable concentration of 1 microM, only 4-HPR inhibited the growths of H1299 and H460 cells-lines. However, retinoic acid receptor beta(RAR beta) expression was up-regulated on H460 and H1299 cells treated with 1 microM of ATRA, 13-cis RA, or 9-cis RA. All NSCLC cell lines showed growth inhibition when exposed sequentially to 1 microM ATRA and 0.1 microM 4-HPR. In particular, sequential treatment with 1 microM ATRA or 13-cis RA and 4-HPR markedly inhibited H1703 cell growth; these cells exhibited no basal RAR beta expression and were refractory to 4-HPR. However, in NSCLC cell lines that expressed RAR beta, the expressional levels of RAR beta were up-regulated by ATRA alone and by sequential treatment with ATRA and 4-HPR. 4-HPR was found to be the most active of the four agents in terms of NSCLC growth-inhibition. Moreover, sequential treatments with ATRA or 13-cis RA followed by 4-HPR were found to have synergistic growth-inhibitory effects and to regulate RAR expression.

  20. Apoptosis Activation in Human Lung Cancer Cell Lines by a Novel Synthetic Peptide Derived from Conus californicus Venom

    PubMed Central

    Oroz-Parra, Irasema; Navarro, Mario; Cervantes-Luevano, Karla E.; Álvarez-Delgado, Carolina; Salvesen, Guy; Sanchez-Campos, Liliana N.; Licea-Navarro, Alexei F.

    2016-01-01

    Lung cancer is one of the most common types of cancer in men and women and a leading cause of death worldwide resulting in more than one million deaths per year. The venom of marine snails Conus contains up to 200 pharmacologically active compounds that target several receptors in the cell membrane. Due to their diversity and specific binding properties, Conus toxins hold great potential as source of new drugs against cancer. We analyzed the cytotoxic effect of a 17-amino acid synthetic peptide (s-cal14.1a) that is based on a native toxin (cal14.1a) isolated from the sea snail Conus californicus. Cytotoxicity studies in four lung cancer cell lines were complemented with measurement of gene expression of apoptosis-related proteins Bcl-2, BAX and the pro-survival proteins NFκB-1 and COX-2, as well as quantification of caspase activity. Our results showed that H1299 and H1437 cell lines treated with s-call4.1a had decreased cell viability, activated caspases, and reduced expression of the pro-survival protein NFκB-1. To our knowledge, this is the first report describing activation of apoptosis in human lung cancer cell lines by s-cal14.1a and we offer insight into the possible mechanism of action. PMID:26861394

  1. Radiosensitization of tumour cell lines by the polyphenol Gossypol results from depressed double-strand break repair and not from enhanced apoptosis.

    PubMed

    Kasten-Pisula, Ulla; Windhorst, Sabine; Dahm-Daphi, Jochen; Mayr, Georg; Dikomey, Ekkehard

    2007-06-01

    New drugs are needed to increase the efficiency of radiotherapy in order to improve the therapeutic outcome of tumour patients. In this respect, the polyphenol Gossypol might be of interest, because of its effect on apoptosis and DNA repair, which is either mediated directly or indirectly via the inositol phosphate metabolism. It was investigated, whether these effects result in enhanced radiosensitivity of tumour cells. Tumour cell lines investigated: A549, FaDu, H1299, MCF7 and Du145. Cell cycle distribution was determined by FACS analysis, apoptosis was measured by DAPI staining and caspase3/7 activity. Double-strand breaks (DSB) were investigated via gammaH2AX-foci and cell survival by colony formation assay. The level of inositol phosphates was determined by HPLC, protein expression by Western blot. In A549 cells, Gossypol at concentrations 1microM strongly affects proliferation with only a modest arrest in the G1-phase, but with no increase in the fraction of apoptotic cells or the number of additional DSB. Additional DSB were only seen in FaDu cells, where Gossypol (2microM) was extremely toxic with a plating efficiency <0.002. When combined with irradiation, incubation with Gossypol (1-2microM) was found to result in an enhanced radiosensitivity with, however, a substantial variation. While there was a strong radiosensitization for FaDu and Du145 cells, there was an intermediate response for A549 cells, but almost no effect for H1299 and MCF7 cells. This sensitization was not caused from an elevated rate of apoptosis, but primarily resulted from reduced DSB repair capacity. The reduction in DSB repair could be ascribed neither to changes in the level of repair proteins relevant for non-homologous end-joining (Ku70, Ku80, DNA-PKcs) nor to changes in the level of higher phosphorylated inositols, whereby the latter were even found to be enhanced by Gossypol. For some tumour cell lines treatment with low concentrations of Gossypol can be used to inhibit DSB

  2. Pellino-1 confers chemoresistance in lung cancer cells by upregulating cIAP2 through Lys63-mediated polyubiquitination

    PubMed Central

    Koh, Jaemoon; Chung, Doo Hyun

    2016-01-01

    Pellino-1 is an E3 ubiquitin ligase that mediates immune receptor signaling pathways. The role of Pellino-1 in oncogenesis of lung cancer was investigated in this study. Pellino-1 expression was increased in human lung cancer cell lines compared with non-neoplastic lung cell lines. Pellino-1 overexpression in human lung cancer cells, A549 and H1299 cells, increased the survival and colony forming ability. Pellino-1 overexpression in these cells also conferred resistance to cisplatin- or paclitaxel-induced apoptosis. In contrast, depletion of Pellino-1 decreased the survival of A549 and H1299 cells and sensitized these cells to cisplatin- and paclitaxel-induced apoptosis. Pellino-1 overexpression in A549 and H1299 cells upregulated the expression of inhibitor of apoptosis (IAP) proteins, including cIAP1 and cIAP2, while Pellino-1 depletion downregulated these molecules. Notably, Pellino-1 directly interacted with cIAP2 and stabilized cIAP2 through lysine63-mediated polyubiquitination via its E3 ligase activity. Pellino-1-mediated chemoresistance in lung cancer cells was dependent on the induction of cIAP2. Moreover, a strong positive correlation between Pellino-1 and the cIAP2 expression was observed in human lung adenocarcinoma tissues. Taken together, these results demonstrate that Pellino-1 contributes to lung oncogenesis through the overexpression of cIAP2 and promotion of cell survival and chemoresistance. Pellino-1 might be a novel oncogene and potential therapeutic target in lung cancer. PMID:27248820

  3. Induction of reactive oxygen species-stimulated distinctive autophagy by chelerythrine in non-small cell lung cancer cells.

    PubMed

    Tang, Zheng-Hai; Cao, Wen-Xiang; Wang, Zhao-Yu; Lu, Jia-Hong; Liu, Bo; Chen, Xiuping; Lu, Jin-Jian

    2017-08-01

    Chelerythrine (CHE), a natural benzo[c]phenanthridine alkaloid, shows anti-cancer effect through a number of mechanisms. Herein, the effect and mechanism of the CHE-induced autophagy, a type II programmed cell death, in non-small cell lung cancer (NSCLC) cells were studied for the first time. CHE induced cell viability decrease, colony formation inhibition, and apoptosis in a concentration-dependent manner in NSCLC A549 and NCI-H1299 cells. In addition, CHE triggered the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II). The CHE-induced expression of LC3-II was further increased in the combination treatment with chloroquine (CQ), an autophagy inhibitor, and large amounts of red-puncta were observed in the CHE-treated A549 cells with stable expression of mRFP-EGFP-LC3, indicating that CHE induces autophagy flux. Silence of beclin 1 reversed the CHE-induced expression of LC3-II. Inhibition of autophagy remarkably reversed the CHE-induced cell viability decrease and apoptosis in NCI-H1299 cells but not in A549 cells. Furthermore, CHE triggered reactive oxygen species (ROS) generation in both cell lines. A decreased level of ROS through pretreatment with N-acetyl-L-cysteine reversed the CHE-induced cell viability decrease, apoptosis, and autophagy. Taken together, CHE induced distinctive autophagy in A549 (accompanied autophagy) and NCI-H1299 (pro-death autophagy) cells and a decreased level of ROS reversed the effect of CHE in NSCLC cells in terms of cell viability, apoptosis, and autophagy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Development of a Novel SPECT Tracer to Image c-Met Expression in Non-Small Cell Lung Cancer in a Human Tumor Xenograft.

    PubMed

    Han, Zhaoguo; Xiao, Yadi; Wang, Kai; Yan, Ji; Xiao, Zunyu; Fang, Fang; Jin, Zhongnan; Liu, Yang; Sun, Xilin; Shen, Baozhong

    2018-05-18

    Rationale: Elevated expression of the c-Met receptor plays a crucial role in cancers. In non-small cell lung cancer (NSCLC), aberrant activation of c-Met signaling pathway contributes to tumorigenesis and cancer progression, and may mediate acquired resistance to epidermal growth factor receptor-targeted therapy. c-Met is therefore emerging as a promising therapeutic target for treating NSCLC, and the methods for noninvasive in vivo assessment of c-Met expression will improve NSCLC treatment and diagnosis. Methods: A new peptide-based (cMBP) radiotracer targeting c-Met, 99m Tc-hydrazine nicotinamide (HYNIC)-cMBP, was developed for single photon emission computed tomography (SPECT) imaging. Cell uptake assays were performed on two NSCLC cell lines with different c-Met expression: H1993 (high expression) and H1299 (no expression). In vivo tumor specificity was assessed by SPECT imaging in tumor-bearing mice at 0.5, 1, 2 and 4 h after injection of the probe. Blocking assays, biodistribution and autoradiography were also conducted to determine probe specificity. Results: 99m Tc-HYNIC-cMBP was prepared with high efficiency and showed higher uptake in H1993 cells than H1299 cells. Biodistribution and autoradiography also showed significantly higher accumulation of 99m Tc-HYNIC-cMBP in H1993 tumors than H1299 (H1993: 4.74±1.43 %ID/g and H1299: 1.00±0.37 %ID/g at 0.5h, p<0.05). H1993 tumors were clearly visualized at 0.5h in SPECT images, whereas H1299 tumors were not observed at any time. Specificity of 99m Tc-HYNIC-cMBP to c-Met was demonstrated by competitive block with excess un-radiolabeled peptide. Conclusion: We developed a novel SPECT tracer, 99m Tc-HYNIC-cMBP, for c-Met-targeted imaging in NSCLC that specifically bound to c-Met with favorable pharmacokinetics in vitro and in vivo. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  5. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuexia; Li, Xiaohui; Liu, Gang

    2015-01-30

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo.more » We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression.« less

  6. Synergistic Effect of the Combination of Novel Suberoylanilide Hydroxamic Acid Derivatives with Cisplatin on Anti-proliferation of Human Cancer Cells.

    PubMed

    Xie, Rui; Shi, Jinghua; Cheng, Chunhui; Yun, Fan; Liu, Xia; Tang, Pingwah; Wu, Xinying; Yang, Ming; Yuan, Qipeng

    2016-01-01

    A novel, green, and atom-economical boric acid catalyzed direct amidation without the use of any coupling agents for the preparation of suberoylanilide hydroxamic acid (SAHA) and SAHA-based inhibitors targeting anti-proliferation of cancer cells is provided. The new SAHA-based inhibitor B123, when used alone, exhibited higher anti-proliferative activities than SAHA or Cisplatin against a number of human cancer cells. We have examined the effect of combination of these SAHA-based inhibitors with Cisplatin. We found synergistic effects of the combination of SAHA-based inhibitors with Cisplatin over a wide range of concentrations against human liver cancer cells HepG2 and two human lung cancer cell lines H1299 and H460. This synergism leads up to 8-fold of dose reduction for Cisplatin in the combination with our synthesized inhibitor B123 against H1299.

  7. Targeting glucosylceramide synthase induction of cell surface globotriaosylceramide (Gb3) in acquired cisplatin-resistance of lung cancer and malignant pleural mesothelioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, Andreas, E-mail: andreas.tyler@medbio.umu.se; Johansson, Anders; Karlsson, Terese

    resistance of NSCLC and MPM cells. Tumour cell resistance to MDR1 inhibitors of cell surface MDR1 and Gb3 could explain the aggressiveness of NSCLC and MPM. Therapy with GCS activity inhibitors or toxin targeting of the Gb3 receptor may substantially reduce acquired cisplatin drug resistance of NSCLC and MPM cells. - Highlights: • The cisplatin-resistant cells had increased cell surface Gb3 and MDR1. • PPMP decreased extracellular Gb3 in the resistant cell lines. • Cyclosporin A decreased extracellular Gb3 and MDR1 in H1299 cells. • PPMP, but not cyclosporin A, potentiated cisplatin cytotoxicity in all cells. • Resistance to inhibitors of MDR1 and Gb3 could explain aggressiveness of NSCLC and MPM.« less

  8. Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties

    PubMed Central

    Leung, Elaine Lai-Han; Fiscus, Ronald R.; Tung, James W.; Tin, Vicky Pui-Chi; Cheng, Lik Cheung; Sihoe, Alan Dart-Loon; Fink, Louis M.; Ma, Yupo; Wong, Maria Pik

    2010-01-01

    Background The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential. Methodology/Principal Finding The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44− cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44− cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44− cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas. Conclusion/Significance Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify

  9. Pyruvate kinase M knockdown-induced signaling via AMP-activated protein kinase promotes mitochondrial biogenesis, autophagy, and cancer cell survival.

    PubMed

    Prakasam, Gopinath; Singh, Rajnish Kumar; Iqbal, Mohammad Askandar; Saini, Sunil Kumar; Tiku, Ashu Bhan; Bamezai, Rameshwar N K

    2017-09-15

    Preferential expression of the low-activity (dimeric) M2 isoform of pyruvate kinase (PK) over its constitutively active splice variant M1 isoform is considered critical for aerobic glycolysis in cancer cells. However, our results reported here indicate co-expression of PKM1 and PKM2 and their possible physical interaction in cancer cells. We show that knockdown of either PKM1 or PKM2 differentially affects net PK activity, viability, and cellular ATP levels of the lung carcinoma cell lines H1299 and A549. The stable knockdown of PK isoforms in A549 cells significantly reduced the cellular ATP level, whereas in H1299 cells the level of ATP was unaltered. Interestingly, the PKM1/2 knockdown in H1299 cells activated AMP-activated protein kinase (AMPK) signaling and stimulated mitochondrial biogenesis and autophagy to maintain energy homeostasis. In contrast, knocking down either of the PKM isoforms in A549 cells lacking LKB1, a serine/threonine protein kinase upstream of AMPK, failed to activate AMPK and sustain energy homeostasis and resulted in apoptosis. Moreover, in a similar genetic background of silenced PKM1 or PKM2, the knocking down of AMPKα1/2 catalytic subunit in H1299 cells induced apoptosis. Our findings help explain why previous targeting of PKM2 in cancer cells to control tumor growth has not met with the expected success. We suggest that this lack of success is because of AMPK-mediated energy metabolism rewiring, protecting cancer cell viability. On the basis of our observations, we propose an alternative therapeutic strategy of silencing either of the PKM isoforms along with AMPK in tumors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Effects of direct current electric fields on lung cancer cell electrotaxis in a PMMA-based microfluidic device.

    PubMed

    Li, Yaping; Xu, Tao; Chen, Xiaomei; Lin, Shin; Cho, Michael; Sun, Dong; Yang, Mengsu

    2017-03-01

    Tumor metastasis is the primary cause of cancer death. Numerous studies have demonstrated the electrotactic responses of various cancer cell types, and suggested its potential implications in metastasis. In this study, we used a microfluidic device to emulate endogenous direct current electric field (dcEF) environment, and studied the electrotactic migration of non-small cell lung cancer cell lines (H460, HCC827, H1299, and H1975) and the underlying mechanisms. These cell lines exhibited greatly different response in applied dcEFs (2-6 V/cm). While H460 cells (large cell carcinoma) showed slight migration toward cathode, H1299 cells (large cell carcinoma) showed increased motility and dcEF-dependent anodal migration with cell reorientation. H1975 cells (adenocarcinoma) showed dcEF-dependent cathodal migration with increased motility, and HCC827 cells (adenocarcinoma) responded positively in migration speed and reorientation but minimally in migrating directions to dcEF. Activation of MAPK and PI3K signaling pathways was found to be associated with the realignment and directed migration of lung cancer cells. In addition, both Ca 2+ influx through activated stretch-activated calcium channels (SACCs) (but not voltage-gated calcium channels, VGCCs) and Ca 2+ release from intracellular storage were involved in lung cancer cell electrotactic responses. The results demonstrated that the microfluidic device provided a stable and controllable microenvironment for cell electrotaxis study, and revealed that the electrotactic responses of lung cancer cells were heterogeneous and cell-type dependent, and multiple signals contributed to lung cancer cells electrotaxis.

  11. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam production—source-wide emission limitation. Each owner or operator of a new or existing slabstock...

  12. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam production—source-wide emission limitation. Each owner or operator of a new or existing slabstock...

  13. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam... procedures in paragraphs (c)(1) through (4) of this section, unless a recovery device is used. Slabstock foam...

  14. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam... procedures in paragraphs (c)(1) through (4) of this section, unless a recovery device is used. Slabstock foam...

  15. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam... procedures in paragraphs (c)(1) through (4) of this section, unless a recovery device is used. Slabstock foam...

  16. CRISPR/Cas9 Genetic Modification of CYP3A5 *3 in HuH-7 Human Hepatocyte Cell Line Leads to Cell Lines with Increased Midazolam and Tacrolimus Metabolism.

    PubMed

    Dorr, Casey R; Remmel, Rory P; Muthusamy, Amutha; Fisher, James; Moriarity, Branden S; Yasuda, Kazuto; Wu, Baolin; Guan, Weihua; Schuetz, Erin G; Oetting, William S; Jacobson, Pamala A; Israni, Ajay K

    2017-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 engineering of the CYP3A5 *3 locus (rs776746) in human liver cell line HuH-7 ( CYP3A5 *3/*3 ) has led to three CYP3A5 *1 cell lines by deletion of the exon 3B splice junction or point mutation. Cell lines CYP3A5 *1/*3 sd (single deletion), CYP3A5 *1/*1 dd (double deletion), or CYP3A5 *1/*3 pm (point mutation) expressed the CYP3A5 *1 mRNA and had elevated CYP3A5 mRNA ( P < 0.0005 for all engineered cell lines) and protein expression compared with HuH-7. In metabolism assays, HuH-7 had less tacrolimus (all P < 0.05) or midazolam (MDZ) (all P < 0.005) disappearance than all engineered cell lines. HuH-7 had less 1-OH MDZ (all P < 0.0005) or 4-OH (all P < 0.005) production in metabolism assays than all bioengineered cell lines. We confirmed CYP3A5 metabolic activity with the CYP3A4 selective inhibitor CYP3CIDE. This is the first report of genomic CYP3A5 bioengineering in human cell lines with drug metabolism analysis. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Regulation of intracellular pH in cancer cell lines under normoxia and hypoxia.

    PubMed

    Hulikova, Alzbeta; Harris, Adrian L; Vaughan-Jones, Richard D; Swietach, Pawel

    2013-04-01

    Acid-extrusion by active transport is important in metabolically active cancer cells, where it removes excess intracellular acid and sets the intracellular resting pH. Hypoxia is a major trigger of adaptive responses in cancer, but its effect on acid-extrusion remains unclear. We studied pH-regulation under normoxia and hypoxia in eight cancer cell-lines (HCT116, RT112, MDA-MB-468, MCF10A, HT29, HT1080, MiaPaca2, HeLa) using the pH-sensitive fluorophore, cSNARF-1. Hypoxia responses were triggered by pre-incubation in low O(2) or with the 2-oxoglutarate-dependent dioxygenase inhibitor dimethyloxalylglycine (DMOG). By selective pharmacological inhibition or transport-substrate removal, acid-extrusion flux was dissected into components due to Na(+)/H(+) exchange (NHE) and Na(+)-dependent HCO(3)(-) transport. In half of the cell-lines (HCT116, RT112, MDA-MB-468, MCF10A), acid-extrusion on NHE was the dominant flux during an acid load, and in all of these, bar one (MDA-MB-468), NHE-flux was reduced following hypoxic incubation. Further studies in HCT116 cells showed that <4-h hypoxic incubation reduced NHE-flux reversibly with a time-constant of 1-2 h. This was not associated with a change in expression of NHE1, the principal NHE isoform. Following 48-h hypoxia, inhibition of NHE-flux persisted but became only slowly reversible and associated with reduced expression of the glycosylated form of NHE1. Acid-extrusion by Na(+)-dependent HCO(3)(-) transport was hypoxia-insensitive and comparable in all cell lines. This constitutive and stable element of pH-regulation was found to be important for setting and stabilizing resting pH at a mildly alkaline level (conducive for growth), irrespective of oxygenation status. In contrast, the more variable flux on NHE underlies cell-specific differences in their dynamic response to larger acid loads. Copyright © 2012 Wiley Periodicals, Inc.

  18. Attenuation of the DNA Damage Response by Transforming Growth Factor-Beta Inhibitors Enhances Radiation Sensitivity of Non–Small-Cell Lung Cancer Cells In Vitro and In Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Shisuo; Bouquet, Sophie; Lo, Chen-Hao

    2015-01-01

    Purpose: To determine whether transforming growth factor (TGF)-β inhibition increases the response to radiation therapy in human and mouse non–small-cell lung carcinoma (NSCLC) cells in vitro and in vivo. Methods and Materials: TGF-β–mediated growth response and pathway activation were examined in human NSCLC NCI-H1299, NCI-H292, and A549 cell lines and murine Lewis lung cancer (LLC) cells. Cells were treated in vitro with LY364947, a small-molecule inhibitor of the TGF-β type 1 receptor kinase, or with the pan-isoform TGF-β neutralizing monoclonal antibody 1D11 before radiation exposure. The DNA damage response was assessed by ataxia telangiectasia mutated (ATM) or Trp53 protein phosphorylation, γH2AX foci formation,more » or comet assay in irradiated cells. Radiation sensitivity was determined by clonogenic assay. Mice bearing syngeneic subcutaneous LLC tumors were treated with 5 fractions of 6 Gy and/or neutralizing or control antibody. Results: The NCI-H1299, A549, and LLC NSCLC cell lines pretreated with LY364947 before radiation exposure exhibited compromised DNA damage response, indicated by decreased ATM and p53 phosphorylation, reduced γH2AX foci, and increased radiosensitivity. The NCI-H292 cells were unresponsive. Transforming growth factor-β signaling inhibition in irradiated LLC cells resulted in unresolved DNA damage. Subcutaneous LLC tumors in mice treated with TGF-β neutralizing antibody exhibited fewer γH2AX foci after irradiation and significantly greater tumor growth delay in combination with fractionated radiation. Conclusions: Inhibition of TGF-β before radiation attenuated DNA damage recognition and increased radiosensitivity in most NSCLC cells in vitro and promoted radiation-induced tumor control in vivo. These data support the rationale for concurrent TGF-β inhibition and RT to provide therapeutic benefit in NSCLC.« less

  19. Chandipura virus growth kinetics in vertebrate cell lines, insect cell lines & embryonated eggs.

    PubMed

    Jadi, R S; Sudeep, A B; Kumar, Satyendra; Arankalle, V A; Mishra, A C

    2010-08-01

    Since not much information on Chandipura virus is available, an attempt was made to study the growth kinetics of the virus in certain vertebrate, invertebrate cell lines and embryonated chicken eggs. Comparative study of Chandipura virus (CHPV) growth kinetics in three vertebrate cell lines [Vero E6, Rhabdo myosarcoma (RD), Porcine stable kidney (PS) cell lines], two insect cell lines [Aedes aegypti (AA) and Phlebotomus papatasi (PP-9) cell lines] and embryonated pathogen free chicken eggs was conducted, by tissue culture infective dose 50 per cent (TCID(50)) and indirect immunofluorescence assay (IFA). All the cell lines and embryonated egg supported the growth of CHPV and yielded high virus titre. The vertebrate cell lines showed distinct cytopathic effect (CPE) within 4-6 h post infection (PI), while no CPE was observed in insect cell lines. PP-9 cell line was the most sensitive system to CHPV as viral antigen could be detected at 1 h PI by IFA. Our results demonstrated that all the systems were susceptible to CHPV and achieved high yield of virus. However, the PP-9 cell line had an edge over the others due to its high sensitivity to the virus which might be useful for detection and isolation of the virus during epidemics.

  20. 6-gingerdiols as the major metabolites of 6-gingerol in cancer cells and in mice and their cytotoxic effects on human cancer cells.

    PubMed

    Lv, Lishuang; Chen, Huadong; Soroka, Dominique; Chen, Xiaoxin; Leung, TinChung; Sang, Shengmin

    2012-11-14

    6-Gingerol, a major pungent component of ginger (Zingiber officinale Roscoe, Zingiberaceae), has been reported to have antitumor activities. However, the metabolic fate of 6-gingerol and the contribution of its metabolites to the observed activities are still unclear. In the present study, we investigated the biotransformation of 6-gingerol in different cancer cells and in mice, purified and identified the major metabolites from human lung cancer cells, and determined the effects of the major metabolites on the proliferation of human cancer cells. Our results show that 6-gingerol is extensively metabolized in H-1299 human lung cancer cells, CL-13 mouse lung cancer cells, HCT-116 and HT-29 human colon cancer cells, and in mice. The two major metabolites in H-1299 cells were purified and identified as (3R,5S)-6-gingerdiol (M1) and (3S,5S)-6-gingerdiol (M2) based on the analysis of their 1D and 2D NMR data. Both metabolites induced cytotoxicity in cancer cells after 24 h, with M1 having a comparable effect to 6-gingerol in H-1299 cells.

  1. IDH1 R132H decreases proliferation of glioma cell lines in vitro and in vivo.

    PubMed

    Bralten, Linda B C; Kloosterhof, Nanne K; Balvers, Rutger; Sacchetti, Andrea; Lapre, Lariesa; Lamfers, Martine; Leenstra, Sieger; de Jonge, Hugo; Kros, Johan M; Jansen, Erwin E W; Struys, Eduard A; Jakobs, Cornelis; Salomons, Gajja S; Diks, Sander H; Peppelenbosch, Maikel; Kremer, Andreas; Hoogenraad, Casper C; Smitt, Peter A E Sillevis; French, Pim J

    2011-03-01

    A high percentage of grade II and III gliomas have mutations in the gene encoding isocitrate dehydrogenase (IDH1). This mutation is always a heterozygous point mutation that affects the amino acid arginine at position 132 and results in loss of its native enzymatic activity and gain of alternative enzymatic activity (producing D-2-hydroxyglutarate). The objective of this study was to investigate the cellular effects of R132H mutations in IDH1. Functional consequences of IDH1(R132H) mutations were examined among others using fluorescence-activated cell sorting, kinome and expression arrays, biochemical assays, and intracranial injections on 3 different (glioma) cell lines with stable overexpression of IDH1(R132H) . IDH1(R132H) overexpression in established glioma cell lines in vitro resulted in a marked decrease in proliferation, decreased Akt phosphorylation, altered morphology, and a more contact-dependent cell migration. The reduced proliferation is related to accumulation of D-2-hydroxyglutarate that is produced by IDH1(R132H) . Mice injected with IDH1(R132H) U87 cells have prolonged survival compared to mice injected with IDH1(wt) or green fluorescent protein-expressing U87 cells. Our results demonstrate that IDH1(R132H) dominantly reduces aggressiveness of established glioma cell lines in vitro and in vivo. In addition, the IDH1(R132H) -IDH1(wt) heterodimer has higher enzymatic activity than the IDH1(R132H) -IDH1(R132H) homodimer. Our observations in model systems of glioma might lead to a better understanding of the biology of IDH1 mutant gliomas, which are typically low grade and often slow growing. Copyright © 2011 American Neurological Association.

  2. Oncogenic activation of c-Abl in non-small cell lung cancer cells lacking FUS1 expression: inhibition of c-Abl by the tumor suppressor gene product Fus1.

    PubMed

    Lin, J; Sun, T; Ji, L; Deng, W; Roth, J; Minna, J; Arlinghaus, R

    2007-10-25

    In lung cancer, frequent loss of one allele of chromosome 3p is seen in both small cell lung cancer and non-small cell lung cancer (NSCLC), providing evidence of tumor suppressor genes (TSGs) in this chromosomal region. The mechanism of Fus1 tumor suppressor activity is unknown. We have found that a Fus1 peptide inhibits the Abl tyrosine kinase in vitro (IC(50) 35 microM). The inhibitory Fus1 sequence was derived from a region that was deleted in a mutant FUS1 gene (FUS1 (1-80)) detected in some lung cancer cell lines. Importantly, a stearic acid-modified form of this peptide was required for the inhibition, but stearic acid alone was not inhibitory. Two NSCLC cell lines, which lack expression of wild-type Fus1, contain activated c-Abl. Forced expression of an inducible FUS1 cDNA in H1299 NSCLC cells decreased levels of activated c-Abl and inhibited its tyrosine kinase activity. Similarly, treatment of c-Abl immune complexes with the inhibitory Fus1 peptide also reduced the level of c-Abl in these immune complexes. The size and number of colonies of the NSCLC cell line, H1,299, in soft agar was strongly inhibited by the Abl kinase inhibitor imatinib mesylate. Co-expression of FUS1 and c-ABL in COS1 cells blocked activation of c-Abl tyrosine kinase. In contrast, co-expression of mutant FUS1 (1-80) with c-ABL had little inhibitory activity against c-Abl. These findings provide strong evidence that c-Abl is a possible target in NSCLC patients that have reduced expression of Fus1 in their tumor cells.

  3. Thyroid cell lines in research on goitrogenesis.

    PubMed

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.

  4. 6-Gingerdiols as the Major Metabolites of 6-Gingerol in Cancer Cells and in Mice and Their Cytotoxic Effects on Human Cancer Cells

    PubMed Central

    Lv, Lishuang; Chen, Huadong; Soroka, Dominique; Chen, Xiaoxin; Leung, TinChung; Sang, Shengmin

    2012-01-01

    6-Gingerol, a major pungent component of ginger (Zingiber officinale Roscoe, Zingiberaceae), has been reported to have anti-tumor activities. However, the metabolic fate of 6-gingerol and the contribution of its metabolites to the observed activities are still unclear. In the present study, we investigated the biotransformation of 6-gingerol in different cancer cells and in mice, purified and identified the major metabolites from human lung cancer cells, and determined the effects of the major metabolites on the proliferation of human cancer cells. Our results show that 6-gingerol is extensively metabolized in H-1299 human lung cancer cells, CL-13 mouse lung cancer cells, HCT-116 and HT-29 human colon cancer cells, and in mice. The two major metabolites in H-1299 cells were purified and identified as (3R,5S)-6-gingerdiol (M1) and (3S,5S)-6-gingerdiol (M2) based on the analysis of their 1D and 2D NMR data. Both metabolites induced cytotoxicity in cancer cells after 24 hours, with M1 having a comparable effect to 6-gingerol in H-1299 cells. PMID:23066935

  5. Antiproliferative/cytotoxic effects of molecular iodine, povidone-iodine and Lugol's solution in different human carcinoma cell lines.

    PubMed

    Rösner, Harald; Möller, Wolfgang; Groebner, Sabine; Torremante, Pompilio

    2016-09-01

    Clinical trials have revealed that molecular iodine (I 2 ) has beneficial effects in fibrocystic breast disease and in cyclic mastalgia. Likewise, povidone-iodine (PVP-I), which is widely used in clinical practice as an antiseptic agent following tumour surgery, has been demonstrated to have cytotoxic effects on colon cancer and ascites tumour cells. Our previous study indicated that the growth of breast cancer and seven other human malignant cell lines was variably diminished by I 2 and iodolactones. With the intention of developing an iodine-based anticancer therapy, the present investigations extended these studies by comparing the cytotoxic capacities of I 2 , potassium iodide (KJ), PVP-I and Lugol's solution on various human carcinoma cell lines. Upon staining the cell nuclei with Hoechst 33342, the cell densities were determined microscopically. While KJ alone did not affect cell proliferation, it enhanced the antiproliferative activity of I 2 . In addition, PVP-I significantly inhibited the proliferation of human MCF-7 breast carcinoma, IPC melanoma, and A549 and H1299 lung carcinoma cells in a concentration corresponding to 20 µM I 2 . Likewise, Lugol's solution in concentrations corresponding to 20-80 µM I 2 were observed to reduce the growth of MCF-7 cells. Experiments with fresh human blood samples revealed that the antiproliferative activity of PVP-I and I 2 is preserved in blood plasma to a high degree. These findings suggest that PVP-I, Lugol's solution, and a combination of iodide and I 2 may be potent agents for use in the development of antitumour strategies.

  6. Antiproliferative/cytotoxic effects of molecular iodine, povidone-iodine and Lugol's solution in different human carcinoma cell lines

    PubMed Central

    Rösner, Harald; Möller, Wolfgang; Groebner, Sabine; Torremante, Pompilio

    2016-01-01

    Clinical trials have revealed that molecular iodine (I2) has beneficial effects in fibrocystic breast disease and in cyclic mastalgia. Likewise, povidone-iodine (PVP-I), which is widely used in clinical practice as an antiseptic agent following tumour surgery, has been demonstrated to have cytotoxic effects on colon cancer and ascites tumour cells. Our previous study indicated that the growth of breast cancer and seven other human malignant cell lines was variably diminished by I2 and iodolactones. With the intention of developing an iodine-based anticancer therapy, the present investigations extended these studies by comparing the cytotoxic capacities of I2, potassium iodide (KJ), PVP-I and Lugol's solution on various human carcinoma cell lines. Upon staining the cell nuclei with Hoechst 33342, the cell densities were determined microscopically. While KJ alone did not affect cell proliferation, it enhanced the antiproliferative activity of I2. In addition, PVP-I significantly inhibited the proliferation of human MCF-7 breast carcinoma, IPC melanoma, and A549 and H1299 lung carcinoma cells in a concentration corresponding to 20 µM I2. Likewise, Lugol's solution in concentrations corresponding to 20–80 µM I2 were observed to reduce the growth of MCF-7 cells. Experiments with fresh human blood samples revealed that the antiproliferative activity of PVP-I and I2 is preserved in blood plasma to a high degree. These findings suggest that PVP-I, Lugol's solution, and a combination of iodide and I2 may be potent agents for use in the development of antitumour strategies. PMID:27602156

  7. 4β-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest

    PubMed Central

    2010-01-01

    Background The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Methods Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug. Results It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (p < 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4βHWE in both dose- and time-dependent manners (p < 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC50) of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 μg/mL for 24 h. Conclusions In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer. PMID:20167063

  8. 4beta-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest.

    PubMed

    Yen, Ching-Yu; Chiu, Chien-Chih; Chang, Fang-Rong; Chen, Jeff Yi-Fu; Hwang, Chi-Ching; Hseu, You-Cheng; Yang, Hsin-Ling; Lee, Alan Yueh-Luen; Tsai, Ming-Tz; Guo, Zong-Lun; Cheng, Yu-Shan; Liu, Yin-Chang; Lan, Yu-Hsuan; Chang, Yu-Ching; Ko, Ying-Chin; Chang, Hsueh-Wei; Wu, Yang-Chang

    2010-02-18

    The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Herein, we isolated the main pure compound, 4beta-Hydroxywithanolide (4betaHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug. It was shown that DNA damage was significantly induced by 1, 5, and 10 microg/mL 4betaHWE for 2 h in a dose-dependent manner (p < 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4betaHWE in both dose- and time-dependent manners (p < 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC50) of 4betaHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 microg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4betaHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 microg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 microg/mL for 24 h. In this study, we demonstrated that golden berry-derived 4betaHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer.

  9. 42 CFR 493.1299 - Standard: Postanalytic systems quality assessment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Postanalytic systems quality assessment... Nonwaived Testing Postanalytic Systems § 493.1299 Standard: Postanalytic systems quality assessment. (a) The....1291. (b) The postanalytic systems quality assessment must include a review of the effectiveness of...

  10. Establishment and characterization of a dairy goat mammary epithelial cell line with human telomerase (hT-MECs).

    PubMed

    Shi, Huaiping; Shi, Hengbo; Luo, Jun; Wang, Wei; Haile, Abiel B; Xu, Huifen; Li, Jun

    2014-07-01

    Although research on dairy goat mammary gland have referred extensively to molecular mechanisms, research on lines of dairy goat mammary epithelial cells (MECs) are still rare. This paper sought to establish an immortal MEC line by stable transfection of human telomerase. MECs from a lactating (45 days post-parturition) Xinong Saanen dairy goat were cultured purely and subsequently transfected with a plasmid carrying the sequence of human telomerase. Immortalized MECs by human telomerase (hT-MECs) exhibited a typical cobblestone morphology and activity and expression levels of telomerase resembled that of MCF-7 cells. hT-MECs on passage 42 grew vigorously and 'S' sigmoid curves of growth were observed. Moreover, hT-MECs maintained a normal chromosome modal number of 2n=60, keratin 8 and epithelial membrane antigen (EMA) were evidently expressed, and beta-casein protein was synthesized and secreted. Beta-casein expression was enhanced by prolactin (P<0.05). Lipid droplets were found in hT-MECs, and messenger RNA levels of PPARG, SREBP, FASN, ACC and SCD in hT-MECs (passage 40) were similar to MECs (passage 7). In conclusion, the obtained hT-MEC line retained a normal morphology, growth characteristics, cytogenetics and secretory characteristics as primary MECs. Hence, it can be a representative model cell line, for molecular and functional analysis, of dairy goat MECs for an extended period of time. © 2014 Japanese Society of Animal Science.

  11. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo.

    PubMed

    He, Yan; Du, Zhiyun; Ma, Shijing; Liu, Yue; Li, Dongli; Huang, Huarong; Jiang, Sen; Cheng, Shupeng; Wu, Wenjing; Zhang, Kun; Zheng, Xi

    2016-01-01

    Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention.

  12. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo

    PubMed Central

    He, Yan; Du, Zhiyun; Ma, Shijing; Liu, Yue; Li, Dongli; Huang, Huarong; Jiang, Sen; Cheng, Shupeng; Wu, Wenjing; Zhang, Kun; Zheng, Xi

    2016-01-01

    Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention. PMID:27217750

  13. Carfilzomib demonstrates broad anti-tumor activity in pre-clinical non-small cell and small cell lung cancer models.

    PubMed

    Baker, Amanda F; Hanke, Neale T; Sands, Barbara J; Carbajal, Liliana; Anderl, Janet L; Garland, Linda L

    2014-12-31

    Carfilzomib (CFZ) is a proteasome inhibitor that selectively and irreversibly binds to its target and has been approved in the US for treatment of relapsed and refractory multiple myeloma. Phase 1B studies of CFZ reported signals of clinical activity in solid tumors, including small cell lung cancer (SCLC). The aim of this study was to investigate the activity of CFZ in lung cancer models. A diverse panel of human lung cancer cell lines and a SHP77 small cell lung cancer xenograft model were used to investigate the anti-tumor activity of CFZ. CFZ treatment inhibited both the constitutive proteasome and the immunoproteasome in lung cancer cell lines. CFZ had marked anti-proliferative activity in A549, H1993, H520, H460, and H1299 non-small cell lung cancer (NSCLC) cell lines, with IC50 values after 96 hour exposure from <1.0 nM to 36 nM. CFZ had more variable effects in the SHP77 and DMS114 SCLC cell lines, with IC50 values at 96 hours from <1 nM to 203 nM. Western blot analysis of CFZ-treated H1993 and SHP77 cells showed cleavage of poly ADP ribose polymerase (PARP) and caspase-3, indicative of apoptosis, and induction of microtubule-associated protein-1 light chain-3B (LC3B), indicative of autophagy. In SHP77 flank xenograft tumors, CFZ monotherapy inhibited tumor growth and prolonged survival, while no additive or synergistic anti-tumor efficacy was observed for CFZ + cisplatin (CDDP). CFZ demonstrated anti-proliferative activity in lung cancer cell lines in vitro and resulted in a significant survival advantage in mice with SHP77 SCLC xenografts, supporting further pre-clinical and clinical investigations of CFZ in NSCLC and SCLC.

  14. Drug Transporter Protein Quantification of Immortalized Human Lung Cell Lines Derived from Tracheobronchial Epithelial Cells (Calu-3 and BEAS2-B), Bronchiolar-Alveolar Cells (NCI-H292 and NCI-H441), and Alveolar Type II-like Cells (A549) by Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Sakamoto, Atsushi; Matsumaru, Takehisa; Yamamura, Norio; Suzuki, Shinobu; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya

    2015-09-01

    Understanding the mechanisms of drug transport in the human lung is an important issue in pulmonary drug discovery and development. For this purpose, there is an increasing interest in immortalized lung cell lines as alternatives to primary cultured lung cells. We recently reported the protein expression in human lung tissues and pulmonary epithelial cells in primary culture, (Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) whereas comprehensive quantification of protein expressions in immortalized lung cell lines is sparse. Therefore, the aim of the present study was to clarify the drug transporter protein expression of five commercially available immortalized lung cell lines derived from tracheobronchial cells (Calu-3 and BEAS2-B), bronchiolar-alveolar cells (NCI-H292 and NCI-H441), and alveolar type II cells (A549), by liquid chromatography-tandem mass spectrometry-based approaches. Among transporters detected, breast cancer-resistance protein in Calu-3, NCI-H292, NCI-H441, and A549 and OCTN2 in BEAS2-B showed the highest protein expression. Compared with data from our previous study,(Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) NCI-H441 was the most similar with primary lung cells from all regions in terms of protein expression of organic cation/carnitine transporter 1 (OCTN1). In conclusion, the protein expression profiles of transporters in five immortalized lung cell lines were determined, and these findings may contribute to a better understanding of drug transport in immortalized lung cell lines. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Anti-proliferative activity of 2,6-dichloro-9- or 7-(ethoxycarbonylmethyl)-9H- or 7H-purines against several human solid tumour cell lines.

    PubMed

    Morales, Fátima; Ramírez, Alberto; Conejo-García, Ana; Morata, Cynthia; Marchal, Juan A; Campos, Joaquín M

    2014-04-09

    As leads we took several benzo-fused seven- and six-membered scaffolds linked to the pyrimidine or purine moieties with notable anti-proliferative activity against human breast, colon and melanoma cancerous cell lines. We then decided to maintain the double-ringed nitrogenous bases and change the other components to the ethyl acetate moiety. This way six purine and two 5-fluorouracil derivatives were obtained and evaluated against the MCF-7, HCT-116, A-375 and G-361 cancer cell lines. Two QSARs are obtained between the anti-proliferative IC₅₀ values for compounds 26-33 and the clog P against the melanoma cell lines A-375 and G-361. Our results show that two of the analogues [ethyl 2-(2,6-dichloro-9H- or 7H-purine-9- or 7-yl)acetates (30 and 33, respectively)] are potent cytotoxic agents against all the tumour cell lines assayed, showing single-digit micromolar IC₅₀ values. This exemplifies the potential of our previously reported purine compounds to qualify as lead structures for medicinal chemistry campaigns, affording simplified analogues easy to synthesize and with a noteworthy bioactivity. The selective activity of 30 and 33 against the melanoma cell line A-375, via apoptosis, supposes a great advantage for a future therapeutic use. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Epigenetic therapy potential of suberoylanilide hydroxamic acid on invasive human non-small cell lung cancer cells.

    PubMed

    Zhang, Shirong; Wu, Kan; Feng, Jianguo; Wu, Zhibing; Deng, Qinghua; Guo, Chao; Xia, Bing; Zhang, Jing; Huang, Haixiu; Zhu, Lucheng; Zhang, Ke; Shen, Binghui; Chen, Xufeng; Ma, Shenglin

    2016-10-18

    Metastasis is the reason for most cancer death, and a crucial primary step for cancer metastasis is invasion of the surrounding tissue, which may be initiated by some rare tumor cells that escape the heterogeneous primary tumor. In this study, we isolated invasive subpopulations of cancer cells from human non-small cell lung cancer (NSCLC) H460 and H1299 cell lines, and determined the gene expression profiles and the responses of these invasive cancer cells to treatments of ionizing radiation and chemotherapeutic agents. The subpopulation of highly invasive NSCLC cells showed epigenetic signatures of epithelial-mesenchymal transition, cancer cell stemness, increased DNA damage repair and cell survival signaling. We also investigated the epigenetic therapy potential of suberoylanilide hydroxamic acid (SAHA) on invasive cancer cells, and found that SAHA suppresses cancer cell invasiveness and sensitizes cancer cells to treatments of IR and chemotherapeutic agents. Our results provide guidelines for identification of metastatic predictors and for clinical management of NSCLC. This study also suggests a beneficial clinical potential of SAHA as a chemotherapeutic agent for NSCLC patients.

  17. Rumex L. species induce apoptosis in 1301, EOL-1 and H-9 cell lines.

    PubMed

    Wegiera, Magdalena; Smolarz, Helena D; Bogucka-Kocka, Anna

    2012-01-01

    The Rumex L. (dock) species for many centuries have been used in medical treatment, through their adstringent, spasmolitic or cholagogic action. In the present study, the in vitro screening of cytotoxic activities of ethanol extract from roots, leaves and fruits of six Rumex species: R. acetosa L., R. acetosella L., R. confertus Willd., R. crispus L., R. hydrolapathum Huds. and R. obtusifolius L. were performed. We found remarkable cytotoxic activities on leukemic 1301 and EOL-1 cell lines and T cell line at concentration dependent manners. Cytotoxic activity was determined in two ways: trypan blue test and annexin-V FITC and propidium iodide assay. Received IC50 values of investigated extracts on 1301, EOL-1 and H-9 cell lines ranged from 0.22, 0.17 and 0.04 to 2.56, 1.91 and 1.83 mg/mL, respectively. Analysis of morphological changes demonstrated that the extract exerted cell-death via apoptosis. The overall activities of Rumex species support the traditional use of the extract from the fruits of R. confertus, R. crispus, R. hydrolapathum and R. obtusifolius in the treatment of cancer.

  18. Subcloning the RBL-2H3 mucosal mast cell line reduces Ca2+ response heterogeneity at the single-cell level.

    PubMed

    Kuchtey, J; Fewtrell, C

    1996-03-01

    Ca2+ imaging experiments have revealed that for a wide variety of cell types, including RBL-2H3 mucosal mast cells, there are considerable cell-to-cell differences of the Ca2+ responses of individual cells. This heterogeneity is evident in both the shape and latency of the responses. Mast cells within a single microscopic field of view, which have experienced identical culture conditions and experimental preparation, display a wide variety of responses upon antigen stimulation. We have subcloned the RBL-2H3 mucosal mast cell line to test the hypothesis that genetic heterogeneity within the population is the cause of the Ca2+ response heterogeneity. We found that cell-to-cell variability was significantly reduced in four of five clonal lines. The response heterogeneity remaining within the clones was not an experimental artifact caused by differences in the amount of fura-2 loaded by individual cells. Factors other than genetic heterogeneity must partly account for Ca2+ response heterogeneity. It is possible that the complex shapes and variability of the Ca2+ responses are reflections of the fact that there are multiple factors underlying the Ca2-response to antigen stimulation. Small differences from cell to cell in one or more of these factors could be a cause of the remaining Ca2+ response heterogeneity.

  19. Design, synthesis and biological evaluation of 1H-1,2,3-Triazole-Linked-1H‑Dibenzo[b,h]xanthenes as Inductors of ROS-Mediated Apoptosis in the Breast Cancer Cell Line MCF-7.

    PubMed

    Bortolot, Carolina S; da S M Forezi, Luana; Marra, Roberta K F; Reis, Marcelo I P; Sa, Barbara V F E; Filho, Ricardo Imbroisi; Ghasemishahrestani, Zeinab; Sola-Penna, Mauro; Zancan, Patricia; Ferreira, Vitor F; de C da Silva, Fernando

    2018-05-23

    Low molecular weight 1,2,3-triazoles and naphthoquinones are endowed with various types of biological activity, such as against cancer, HIV and bacteria. However, in some cases, the conjugation of these two nuclei considerably increases their biological activities Objective: In this work, we decided to study the synthesis and screening of bis-naphthoquinones and xanthenes tethered to 1,2,3-triazoles against cancer cell lines, specifically the human breast cancer cell line MCF-7. Starting from lawsone and aryl-1H-1,2,3-triazole-4-carbaldehydes (10a-h) several new 7-(1-aryl-1H-1,2,3-triazol-4-yl)-6H-dibenzo[b,h]xanthene-5,6,8,13(7H)-tetraones (12a-h) and 3,3'-((1-aryl-1H-1,2,3-triazol-4-yl)methylene)bis(2-hydroxynaphthalene-1,4-diones) 11a-h were synthesized and evaluated for their cytotoxic activities using the human breast cancer cell line MCF-7 and the non-tumor cell line MCF10A as control. We performed test of cell viability, cell proliferation, intracellular ATP content and cell cytometry to determine reactive oxygen species (ROS) formation. Based on these results, we found that compound 12a promote ROS production, interfering with energy metabolism, cell viability and proliferation, and thus promoting an whole cell damage. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Cytotoxic effect of achatinin(H) (lectin) from Achatina fulica against a human mammary carcinoma cell line (MCF7).

    PubMed

    Dharmu, Indra; Ramamurty, N; Kannan, Ramalingam; Babu, Mary

    2007-01-01

    The hemolymph-derived achatinin(H) (lectin) from Achatina fulica showed a marked cytotoxic effect on MCF7, a human mammary carcinoma cell line. IC(50) values as measured by the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay for achatinin(H) ranged from 6 to 10 microg/ml in the MCF7 cells. MCF7 cells showed significant morphological changes leading to cell death. The above cell death was observed after 48 h of treatment with 8 microg/ml when compared to untreated cells. Alterations in the tumor marker enzymes, as well as in antioxidant enzymes, were observed after achatinin(H) treatment. The specificity and purity of the achatinin(H) was confirmed by the Western blot assay. Achatinin(H) binding to MCF7 cells was detected by anti-achatinin(H), and visualization of the achatinin(H) binding sites on confluent MCF7 cells was confirmed by flourescein isothiocyanate conjugated secondary antibody. MCF7-treated cells fluoresced, indicating the presence of achatinin(H) binding sites. Fluorescence-activated cell sorting analysis of the cell cycle showed a significant increase in S-phase in MCF7 cells after 48 h of achatinin(H) treatment. The cells were arrested in G(2)/M phase of the cell cycle after 48 h with significant changes in cell viability. Cellular damage was confirmed by agarose gel electrophoresis with the characteristic appearance of a DNA streak in treated MCF7 cells indicating the ongoing apoptosis.

  1. TSH-induced cyclic AMP production in an ovine thyroid cell line: OVNIS 5H.

    PubMed

    Fayet, G; Aouani, A; Hovsépian, S

    1986-01-06

    The TSH-induced cyclic AMP response was studied using a 3-year-old ovine thyroid cell line TSH-independent for growth: OVNIS 5H. The kinetics of cyclic AMP production was followed both in cell layers and in cell culture media, with or without phosphodiesterase inhibitor. It is noteworthy that following the first wave in cyclic AMP obtained within minutes, we observed later a sustained exponential increase in cyclic AMP during the 5 days following TSH stimulation. A bioassay of TSH was derived allowing measurement of 1 microU/ml TSH from a crude bTSH preparation.

  2. Two clonal cell lines of immortalized human corneal endothelial cells show either differentiated or precursor cell characteristics.

    PubMed

    Valtink, Monika; Gruschwitz, Rita; Funk, Richard H W; Engelmann, Katrin

    2008-01-01

    Access to primary human corneal endothelial cells (HCEC) is limited and donor-derived differences between cultures exacerbate the issue of data reproducibility, whereas cell lines can provide sufficient numbers of homogenous cells for multiple experiments. An immortalized HCEC population was adapted to serum-free culture medium and repeated cloning was performed. Clonally grown cells were propagated under serum-free conditions and growth curves were recorded. Cells were characterized immunocytochemically for junctional proteins, collagens, Na,K-ATPase and HCEC-specific 9.3.E-antigen. Ultrastructure was monitored by scanning and transmission electron microscopy. Two clonal cell lines, HCEC-B4G12 and HCEC-H9C1, could be isolated and expanded, which differed morphologically: B4G12 cells were polygonal, strongly adherent and formed a strict monolayer, H9C1 cells were less adherent and formed floating spheres. The generation time of B4G12 cells was 62.26 +/- 14.5 h and that of H9C1 cells 44.05 +/- 5.05 h. Scanning electron microscopy revealed that B4G12 cells had a smooth cell surface, while H9C1 cells had numerous thin filopodia. Both cell lines expressed ZO-1 and occludin adequately, and little but well detectable amounts of connexin-43. Expression of HCEC-specific 9.3.E-antigen was found commensurately in both cell lines, while expression of Na,K-ATPase alpha1 was higher in H9C1 cells than in B4G12 cells. B4G12 cells expressed collagen IV abundantly and almost no collagen III, while H9C1 cells expressed both collagens at reasonable amounts. It is concluded that the clonal cell line B4G12 represents an ideal model of differentiated HCEC, while H9C1 may reflect features of developing or transitional HCEC. Copyright 2008 S. Karger AG, Basel.

  3. Knockdown of hTERT and concurrent treatment with interferon-gamma inhibited proliferation and invasion of human glioblastoma cell lines

    PubMed Central

    George, Joseph; Banik, Naren L.; Ray, Swapan K.

    2011-01-01

    Human telomerase reverse transcriptase (hTERT) is the catalytic component of telomerase that facilitates tumor cell invasion and proliferation. Telomerase and hTERT are remarkably upregulated in majority of cancers including glioblastoma. Interferon-gamma (IFN-γ) modulates several cellular activities including cell cycle and multiplication through transcriptional regulation. The present investigation was designed to unravel the molecular mechanisms of the inhibition of cell proliferation, migration, and invasion of human glioblastoma SNB-19 and LN-18 cell lines after knockdown of hTERT using a plasmid vector based siRNA and concurrent treatment with IFN-γ. We observed more than 80% inhibition of cell proliferation, migration, and invasion of both cell lines after the treatment with combination of hTERT siRNA and IFN-γ. Our studies also showed accumulation of apoptotic cells in subG1 phase and an increase in cell population in G0/G1 with a reduction in G2/M phase indicating cell cycle arrest in G0/G1 phase for apoptosis. Semiquantitative and real-time RT-PCR analyses demonstrated significant downregulation of c- Myc and upregulation of p21 Waf1 and p27 Kip1. Western blotting confirmed the downregulation of the molecules involved in cell proliferation, migration, and invasion and also showed upregulation of cell cycle inhibitors. In conclusion, our study demonstrated that knockdown of hTERT siRNA and concurrent treatment with IFN-γ effectively inhibited cell proliferation, migration, and invasion in glioblastoma cells through downregulation of the molecules involved in these processes and cell cycle inhibition. Therefore, the combination of hTERT siRNA and IFN-γ offers a potential therapeutic strategy for controlling growth of human glioblastoma cells. PMID:20394835

  4. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    PubMed

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-02-03

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts. Copyright © 2016 John Wiley & Sons, Inc.

  5. Iso-suillin from Suillus flavus Induces Apoptosis in Human Small Cell Lung Cancer H446 Cell Line

    PubMed Central

    Zhao, Jun-Xia; Zhang, Qing-Shuang; Chen, Ying; Yao, Sheng-Jie; Yan, Yong-Xin; Wang, Ying; Zhang, Jin-Xiu; Wang, Li-An

    2016-01-01

    Background: The suillin isoform iso-suillin is a natural substance isolated from a petroleum ether extract of the fruiting bodies of the mushroom Suillus flavus. Previous studies have found its inhibition effect on some cancer cells, and we aimed to study its effects on human small cell lung cancer H446 cell line. Methods: Cell viability was measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cellular morphological changes (apoptosis and necrosis) were evaluated using an electron microscope and Hoechst 33258 staining detected by the inverted microscope. Flow cytometry was used to detect cell apoptosis, cell cycle distribution, and mitochondrial membrane potential. Protein expression was determined by Western blotting analysis. Results: Here, we describe the ability of iso-suillin to inhibit the growth of H446 cells in time- and dose-dependent way. Iso-suillin had no obvious impact on normal human lymphocyte proliferation at low concentrations (9.09, 18.17, or 36.35 μmol/L) but promoted lymphocyte proliferation at a high concentration (72.70 μmol/L). After treatment of different concentrations of iso-suillin (6.82, 13.63, or 20.45 μmol/L), the apoptosis rate of H446 cells increased with increasing concentrations of iso-suillin (16.70%, 35.54%, and 49.20%, respectively, all P < 0.05 compared with the control), and the expression of related apoptotic proteins in the mitochondrial pathway including cytochrome c and caspase-9 were up-regulated compared with the control (all P < 0.05). On the contrary, Bcl-2/Bax ratio was down-regulated compared with the control. Besides, the expression of pro-apoptotic proteins in the death receptor apoptosis pathway, including Fas-associating protein with a novel death domain and caspase-8, and the expression of caspase-3, a downstream regulatory protein of apoptosis, were also increased compared with the control (all P < 0.05). Inhibitors of caspase-9 and caspase-8 reversed the apoptosis process in

  6. Iso-suillin from Suillus flavus Induces Apoptosis in Human Small Cell Lung Cancer H446 Cell Line.

    PubMed

    Zhao, Jun-Xia; Zhang, Qing-Shuang; Chen, Ying; Yao, Sheng-Jie; Yan, Yong-Xin; Wang, Ying; Zhang, Jin-Xiu; Wang, Li-An

    2016-05-20

    The suillin isoform iso-suillin is a natural substance isolated from a petroleum ether extract of the fruiting bodies of the mushroom Suillus flavus. Previous studies have found its inhibition effect on some cancer cells, and we aimed to study its effects on human small cell lung cancer H446 cell line. Cell viability was measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cellular morphological changes (apoptosis and necrosis) were evaluated using an electron microscope and Hoechst 33258 staining detected by the inverted microscope. Flow cytometry was used to detect cell apoptosis, cell cycle distribution, and mitochondrial membrane potential. Protein expression was determined by Western blotting analysis. Here, we describe the ability of iso-suillin to inhibit the growth of H446 cells in time- and dose-dependent way. Iso-suillin had no obvious impact on normal human lymphocyte proliferation at low concentrations (9.09, 18.17, or 36.35 μmol/L) but promoted lymphocyte proliferation at a high concentration (72.70 μmol/L). After treatment of different concentrations of iso-suillin (6.82, 13.63, or 20.45 μmol/L), the apoptosis rate of H446 cells increased with increasing concentrations of iso-suillin (16.70%, 35.54%, and 49.20%, respectively, all P < 0.05 compared with the control), and the expression of related apoptotic proteins in the mitochondrial pathway including cytochrome c and caspase-9 were up-regulated compared with the control (all P < 0.05). On the contrary, Bcl-2/Bax ratio was down-regulated compared with the control. Besides, the expression of pro-apoptotic proteins in the death receptor apoptosis pathway, including Fas-associating protein with a novel death domain and caspase-8, and the expression of caspase-3, a downstream regulatory protein of apoptosis, were also increased compared with the control (all P < 0.05). Inhibitors of caspase-9 and caspase-8 reversed the apoptosis process in H446 cells to varying degrees

  7. Improvement of the antiproliferative effect of rapamycin on tumor cell lines by poly (monomethylitaconate)-based pH-sensitive, plasma stable liposomes.

    PubMed

    Ghanbarzadeh, Saeed; Arami, Sanam; Pourmoazzen, Zhaleh; Khorrami, Arash

    2014-03-01

    pH-responsive polymers produce liposomes with pH-sensitive property which can release their encapsulated drug under mild acidic conditions found inside the cellular endosomes, inflammatory tissues and cancerous cells. The aim of this study was preparing pH-sensitive and plasma stable liposomes in order to enhance the selectivity and antiproliferative effect of Rapamycin. In the present study we used PEG-poly (monomethylitaconate)-CholC6 (PEG-PMMI-CholC6) copolymer and Oleic acid (OA) to induce pH-sensitive property in Rapamycin liposomes. pH-sensitive liposomal formulations bearing copolymer PEG-PMMI-CholC6 and OA were characterized in regard to physicochemical stability, pH-responsiveness and stability in human plasma. The ability of pH-sensitive liposomes in enhancing the cytotoxicity of Rapamycin was evaluated in vitro by using colon cancer cell line (HT-29) and compared with its cytotoxicity on human umbilical vein endothelial cell (HUVEC) line. Both formulations were found to release their contents under mild acidic conditions rapidly. However, unlike OA-based liposomes, the PEG-PMMI-CholC6 bearing liposomes preserved their pH-sensitivity in plasma. Both types of pH-sensitive Rapamycin-loaded liposomes exhibited high physicochemical stability and could deliver antiproliferative agent into HT-29 cells much more efficiently in comparison with conventional liposomes. Conversely, the antiproliferative effect of pH-sensitive liposomes on HUVEC cell line was less than conventional liposomes. This study showed that both OA and PEG-PMMI-CholC6-based vesicles could submit pH-sensitive property, however, only PEG-PMMI-CholC6-based liposomes could preserve pH-sensitive property after incubation in plasma. As a result pH-sensitive PEG-PMMI-CholC6-based liposomal formulation can improve the selectivity, stability and antiproliferative effect of Rapamycin. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Evaluation of cytotoxic, membrane, and DNA damaging effects of Thymus revolutus Célak essential oil on different cancer cells.

    PubMed

    Özkan, Aysun; Erdoğan, Ayşe

    2017-04-18

    In this study, we evaluated Thymus revolutus Célak essential oil and its two main constituents, γ-terpinene and p-cymene, as potential oxidative agents against lung cancer and epidermoid carcinoma cells. Cell viability assessment was made by CellTiter-Blue1397904493 cell viability and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay after treatment with 5-600 μg/mL concentrations of essential oil, γ-terpinene, and p-cymene. Malondialdehyde and 8-hydroxy-2'-deoxyguanosine levels in parental H1299, epirubicin-resistant (drug-resistant) H1299, A549, and A431 cells were also assayed after essential oil, γ-terpinene, and p-cymene had been administered for 24 h. Glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GRx), and glucose 6-phosphate dehydrogenase (G6PD) activities were determined. Parental H1299 cells were found to be more sensitive to the cytotoxic effects of all compounds. While A431 cells had the highest membrane damage, which was caused by essential oil (IC 50 and IC 70 ), A549 cells had the highest DNA damage at IC 50 and IC 70 p-cymene concentrations. G6PD, GST, GRx, and GPx enzyme activities of cells, which increased against these compounds, depended on concentrations, incubation times, and antioxidant capacities of the cells. This study suggests that different cancer cells showed different cellular responses against potential antitumor and prooxidative effects of the essential oil and its two main constituents.

  9. Cytotoxic Activities of Physalis minima L. Chloroform Extract on Human Lung Adenocarcinoma NCI-H23 Cell Lines by Induction of Apoptosis

    PubMed Central

    Leong, Ooi Kheng; Muhammad, Tengku Sifzizul Tengku; Sulaiman, Shaida Fariza

    2011-01-01

    Physalis minima L. is reputed for having anticancer property. In this study, the chloroform extract of this plant exhibited remarkable cytotoxic activities on NCI-H23 (human lung adenocarcinoma) cell line at dose- and time-dependent manners (after 24, 48 and 72 h of incubation). Analysis of cell-death mechanism demonstrated that the extract exerted apoptotic programed cell death in NCI-H23 cells with typical DNA fragmentation, which is a biochemical hallmark of apoptosis. Morphological observation using transmission electron microscope (TEM) also displayed apoptotic characteristics in the treated cells, including clumping and margination of chromatins, followed by convolution of the nuclear and budding of the cells to produce membrane-bound apoptotic bodies. Different stages of apoptotic programed cell death as well as phosphatidylserine externalization were confirmed using annexin V and propidium iodide staining. Furthermore, acute exposure to the extract produced a significant regulation of c-myc, caspase-3 and p53 mRNA expression in this cell line. Due to its apoptotic effect on NCI-H23 cells, it is strongly suggested that the extract could be further developed as an anticancer drug. PMID:19541726

  10. Knockdown of POLDIP2 suppresses tumor growth and invasion capacity and is linked to unfavorable transformation ability and metastatic feature in non-small cell lung cancer.

    PubMed

    Chen, Ying-Chieh; Kuo, Chih-Chi; Chian, Chih-Feng; Tzao, Ching; Chang, Shan-Yueh; Shih, Yu-Lueng; Lin, Ya-Wen; Yu, Mu-Hsien; Su, Her-Young

    2018-07-01

    The main problem in the treatment of non-small cell lung cancer (NSCLC) is metastasis. Epithelial-mesenchymal transition (EMT) is known as the critical signaling in tumor progression, metastasis, and also the drug resistance. In this study, we reported a novel gene Polymerase delta-interacting protein 2 (POLDIP2) was downregulated in NSCLC tissues and first demonstrated that overexpression of POLDIP2 increased the anchorage-independent growth (AIG) and invasiveness of H1299 cells. In addition, we examined that knockdown of POLDIP2 in H1299 and A549 cells reduced tumorigenicity and metastatic capacity in vitro and also in vivo. Moreover, downregulation of the cell proliferation marker cyclin D1 and EMT markers CDH2, Slug, and Twist was showed in H1299 cells by POLDIP2 knockdown, suggesting that the inhibition of malignancy was affected by modulating key genes for tumor growth and invasiveness. Taken together, our study is the first study that demonstrated that POLDIP2 gene was function as an oncogene in NSCLC and implied the oncogenic ability might be through promoting cell proliferation or EMT. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Establishment of optimized MDCK cell lines for reliable efflux transport studies.

    PubMed

    Gartzke, Dominik; Fricker, Gert

    2014-04-01

    Madin-Darby canine kidney (MDCK) cells transfected with human MDR1 gene (MDCK-MDR1) encoding for P-glycoprotein (hPgp, ABCB1) are widely used for transport studies to identify drug candidates as substrates of this efflux protein. Therefore, it is necessary to rely on constant and comparable expression levels of Pgp to avoid false negative or positive results. We generated a cell line with homogenously high and stable expression of hPgp through sorting single clones from a MDCK-MDR1 cell pool using fluorescence-activated cell sorting (FACS). To obtain control cell lines for evaluation of cross-interactions with endogenous canine Pgp (cPgp) wild-type cells were sorted with a low expression pattern of cPgp in comparison with the MDCK-MDR1. Expression of other transporters was also characterized in both cell lines by quantitative real-time PCR and Western blot. Pgp function was investigated applying the Calcein-AM assay as well as bidirectional transport assays using (3) H-Digoxin, (3) H-Vinblastine, and (3) H-Quinidine as substrates. Generated MDCK-MDR1 cell lines showed high expression of hPgp. Control MDCK-WT cells were optimized in showing a comparable expression level of cPgp in comparison with MDCK-MDR1 cell lines. Generated cell lines showed higher and more selective Pgp transport compared with parental cells. Therefore, they provide a significant improvement in the performance of efflux studies yielding more reliable results. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines

    PubMed Central

    2010-01-01

    To overcome loss of stem-like properties and spontaneous differentiation those hinder the expansion and application of human mesenchymal stem cells (hMSCs), we have clonally isolated permanent and stable human MSC lines by ectopic overexpression of primary cell cultures of hMSCs with HPV 16 E6E7 and human telomerase reverse transcriptase (hTERT) genes. These cells were found to have a differentiation potential far beyond the ordinary hMSCs. They expressed trophoectoderm and germline specific markers upon differentiation with BMP4 and retinoic acid, respectively. Furthermore, they displayed higher osteogenic and neural differentiation efficiency than primary hMSCs or hMSCs expressed HPV16 E6E7 alone with a decrease in methylation level as proven by a global CpG island methylation profile analysis. Notably, the demethylated CpG islands were highly associated with development and differentiation associated genes. Principal component analysis further pointed out the expression profile of the cells converged toward embryonic stem cells. These data demonstrate these cells not only are a useful tool for the studies of cell differentiation both for the mesenchymal and neurogenic lineages, but also provide a valuable source of cells for cell therapy studies in animal models of skeletal and neurological disorders. PMID:20670406

  13. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies.

    PubMed

    Eigenmann, Daniela E; Xue, Gongda; Kim, Kwang S; Moses, Ashlee V; Hamburger, Matthias; Oufir, Mouhssin

    2013-11-22

    Reliable human in vitro blood-brain barrier (BBB) models suitable for high-throughput screening are urgently needed in early drug discovery and development for assessing the ability of promising bioactive compounds to overcome the BBB. To establish an improved human in vitro BBB model, we compared four currently available and well characterized immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, with respect to barrier tightness and paracellular permeability. Co-culture systems using immortalized human astrocytes (SVG-A cell line) and immortalized human pericytes (HBPCT cell line) were designed with the aim of positively influencing barrier tightness. Tight junction (TJ) formation was assessed by transendothelial electrical resistance (TEER) measurements using a conventional epithelial voltohmmeter (EVOM) and an automated CellZscope system which records TEER and cell layer capacitance (CCL) in real-time.Paracellular permeability was assessed using two fluorescent marker compounds with low BBB penetration (sodium fluorescein (Na-F) and lucifer yellow (LY)). Conditions were optimized for each endothelial cell line by screening a series of 24-well tissue culture inserts from different providers. For hBMEC cells, further optimization was carried out by varying coating material, coating procedure, cell seeding density, and growth media composition. Biochemical characterization of cell type-specific transmembrane adherens junction protein VE-cadherin and of TJ proteins ZO-1 and claudin-5 were carried out for each endothelial cell line. In addition, immunostaining for ZO-1 in hBMEC cell line was performed. The four cell lines all expressed the endothelial cell type-specific adherens junction protein VE-cadherin. The TJ protein ZO-1 was expressed in hCMEC/D3 and in hBMEC cells. ZO-1 expression could be confirmed in hBMEC cells by immunocytochemical staining. Claudin-5 expression was detected in hCMEC/D3, TY10, and at a very low level

  14. Bufalin inhibits the differentiation and proliferation of human osteosarcoma cell line hMG63-derived cancer stem cells.

    PubMed

    Chang, Yuewen; Zhao, Yongfang; Zhan, Hongsheng; Wei, Xiaoen; Liu, Tianjin; Zheng, Bo

    2014-02-01

    Cancer stem cells (CSCs) play an important role in drug resistance of tumor and are responsible for high recurrence rates. Agents that can suppress the proliferation and differentiation of CSCs would provide new opportunity to fight against tumor recurrence. In this study, we developed a new strategy to enrich CSCs in human osteosarcoma cell line hMG63. Using these CSCs as model, we tested the effect of bufalin, a traditional Chinese medicine, on the proliferation and differentiation of CSCs. hMG63 cells were cultured in poly-HEMA-treated dish and cancer stem cell-specific medium. In this nonadhesive culture system, hMG63 formed spheres, which were then collected and injected into the immunodeficient mice. Cisplatin was administered every 3 days for five times. The enriched xenograft tumors were cultured in cancer stem cell-specific medium again to form tumor spheres. Expression of cancer stem cell markers of these cells was measured by flow cytometry. These cells were then treated with bufalin, and the proliferation and differentiation ability were indicated by the expression level of molecular markers and the formation of sphere again in vitro. We obtained a low CD133+/CD44 cell population with high-level stem cell marker. When treated with bufalin, the sphere could not get attached to the flask and failed to differentiate, which was indicated by the stable expression of stem cell marker CD133 and OCT-4 in the condition permissive to differentiation. Treatment of bufalin also suppressed the single cells isolated from the sphere to form sphere again in the nonadhesive culture system, and a decreased expression of proliferation marker Ki67 was also detected in these cells. Sphere-formed and chemoresistant colon xenograft tumors in immunodeficient mice could enrich cancer stem cell population. Bufalin could inhibit proliferation and differentiation of CSCs.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Atsushi; Graduate School of Science and Engineering, Saitama University, Saitama 338-8570; Green Tea Laboratory, Saitama Prefectural Agriculture and Forestry Research Center, Saitama 358-0042

    Highlights: •EGCG reduced cell motility of highly metastatic human lung cancer cells. •EGCG increased cell stiffness of the cells, indicating the inhibition of phenotypes of EMT. •EGCG inhibited expression of vimentin and Slug in the cells at the leading edge of scratch. •Treatment of MβCD increased cell stiffness, and inhibited cell motility and vimentin expression. •Inhibition of EMT phenotypes with EGCG is a mechanism-based inhibition of cancer metastasis. -- Abstract: Cell motility and cell stiffness are closely related to metastatic activity of cancer cells. (−)-Epigallocatechin gallate (EGCG) has been shown to inhibit spontaneous metastasis of melanoma cell line into themore » lungs of mice, so we studied the effects of EGCG on cell motility, cell stiffness, and expression of vimentin and Slug, which are molecular phenotypes of epithelial–mesenchymal transition (EMT). Treatments of human non-small cell lung cancer cell lines H1299 and Lu99 with 50 and 100 μM EGCG reduced cell motility to 67.5% and 43.7% in H1299, and 71.7% and 31.5% in Lu99, respectively in in vitro wound healing assay. Studies on cell stiffness using atomic force microscope (AFM) revealed that treatment with 50 μM EGCG increased Young’s modulus of H1299 from 1.24 to 2.25 kPa and that of Lu99 from 1.29 to 2.28 kPa, showing a 2-fold increase in cell stiffness, i.e. rigid elasticity of cell membrane. Furthermore, treatment with 50 μM EGCG inhibited high expression of vimentin and Slug in the cells at a leading edge of scratch. Methyl-β-cyclodextrin, a reagent to deplete cholesterol in plasma membrane, showed inhibition of EMT phenotypes similar that by EGCG, suggesting that EGCG induces inhibition of EMT phenotypes by alteration of membrane organization.« less

  16. Selection of Phage Display Peptides Targeting Human Pluripotent Stem Cell-Derived Progenitor Cell Lines.

    PubMed

    Bignone, Paola A; Krupa, Rachel A; West, Michael D; Larocca, David

    2016-01-01

    The ability of human pluripotent stem cells (hPS) to both self-renew and differentiate into virtually any cell type makes them a promising source of cells for cell-based regenerative therapies. However, stem cell identity, purity, and scalability remain formidable challenges that need to be overcome for translation of pluripotent stem cell research into clinical applications. Directed differentiation from hPS cells is inefficient and residual contamination with pluripotent cells that have the potential to form tumors remains problematic. The derivation of scalable (self-renewing) embryonic progenitor stem cell lines offers a solution because they are well defined and clonally pure. Clonally pure progenitor stem cell lines also provide a means for identifying cell surface targeting reagents that are useful for identification, tracking, and repeated derivation of the corresponding progenitor stem cell types from additional hPS cell sources. Such stem cell targeting reagents can then be applied to the manufacture of genetically diverse banks of human embryonic progenitor cell lines for drug screening, disease modeling, and cell therapy. Here we present methods to identify human embryonic progenitor stem cell targeting peptides by selection of phage display libraries on clonal embryonic progenitor cell lines and demonstrate their use for targeting quantum dots (Qdots) for stem cell labeling.

  17. The antiproliferative effect of C2-ceramide on lung cancer cells through apoptosis by inhibiting Akt and NFκB.

    PubMed

    Lin, I-Ling; Chou, Han-Lin; Lee, Jin-Ching; Chen, Feng-Wei; Fong, Yao; Chang, Wei-Chiao; Huang, Hurng Wern; Wu, Chang-Yi; Chang, Wen-Tsan; Wang, Hui-Min David; Chiu, Chien-Chih

    2014-01-06

    The anticancer effects of ceramide have been reported in many types of cancers but less in lung cancer. In this study, we used C2-ceramide to further investigate its possible anticancer effects and mechanisms on non-small cell lung cancer (NSCLC) H1299 cells. The result of cell proliferation in terms of trypan blue assay showed high dose of C2-ceramide inhibited cell survival after 24 h treatment. The flow cytometry-based assays indicated the effect of apoptosis, chromatin condensation, and G1 arrest in terms of Annexin V/propidium iodide (PI), DAPI, and PI stainings, respectively. Moreover, the decreased protein level of p-Akt, p-NFκB, survivin and cyclin A2 were detected by Western blot assay. Taken together, these results indicated the antiproliferative effect of C2-ceramide is majorly responsible for cell apoptosis in lung cancer H1299 cells.

  18. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies

    PubMed Central

    2013-01-01

    Background Reliable human in vitro blood–brain barrier (BBB) models suitable for high-throughput screening are urgently needed in early drug discovery and development for assessing the ability of promising bioactive compounds to overcome the BBB. To establish an improved human in vitro BBB model, we compared four currently available and well characterized immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, with respect to barrier tightness and paracellular permeability. Co-culture systems using immortalized human astrocytes (SVG-A cell line) and immortalized human pericytes (HBPCT cell line) were designed with the aim of positively influencing barrier tightness. Methods Tight junction (TJ) formation was assessed by transendothelial electrical resistance (TEER) measurements using a conventional epithelial voltohmmeter (EVOM) and an automated CellZscope system which records TEER and cell layer capacitance (CCL) in real-time. Paracellular permeability was assessed using two fluorescent marker compounds with low BBB penetration (sodium fluorescein (Na-F) and lucifer yellow (LY)). Conditions were optimized for each endothelial cell line by screening a series of 24-well tissue culture inserts from different providers. For hBMEC cells, further optimization was carried out by varying coating material, coating procedure, cell seeding density, and growth media composition. Biochemical characterization of cell type-specific transmembrane adherens junction protein VE-cadherin and of TJ proteins ZO-1 and claudin-5 were carried out for each endothelial cell line. In addition, immunostaining for ZO-1 in hBMEC cell line was performed. Results The four cell lines all expressed the endothelial cell type-specific adherens junction protein VE-cadherin. The TJ protein ZO-1 was expressed in hCMEC/D3 and in hBMEC cells. ZO-1 expression could be confirmed in hBMEC cells by immunocytochemical staining. Claudin-5 expression was detected in hCMEC/D3

  19. An immortalized goat mammary epithelial cell line induced with human telomerase reverse transcriptase (hTERT) gene transfer.

    PubMed

    He, Y L; Wu, Y H; He, X N; Liu, F J; He, X Y; Zhang, Y

    2009-06-01

    Although mammary epithelial cell lines can provide a rapid and reliable indicator of gene expression efficiency of transgenic animals, their short lifespan greatly limits this application. To provide stable and long lifespan cells, goat mammary epithelial cells (GMECs) were transduced with pLNCX2-hTERT by retrovirus-mediated gene transfer. Transduced GMECs were evaluated by reverse transcriptase polymerase chain reaction (RT-PCR), proliferation assays, karyotype analysis, telomerase activity assay, western blotting, soft agar assay, and injection into nude mice. Non-transduced GMECs were used as a control. The hTERT-GMECs had higher telomerase activity and extended proliferative lifespan compared to non-transfected GMECs; even after Passage 50, hTERT-GMECs had a near diploid complement of chromosomes. Furthermore, they did not gain the anchorage-independent growth property and were not associated with a malignant phenotype in vitro or in vivo.

  20. Unsuccessful derivation of human embryonic stem cell lines from pairs of human blastomeres.

    PubMed

    Fong, Chui-Yee; Richards, Mark; Bongso, Ariff

    2006-08-01

    Human embryonic stem cells (hESC) that differentiate into all three primordial germ layers have been established. Differentiation of these cells into desirable lineages offers hope for future transplantation therapies. Currently, hESC lines are derived from the inner cell mass (ICM) of blastocysts, leading to destruction of the embryo, and thus the process is ethically controversial. Successful attempts at deriving hESC lines from blastomeres without destruction of the ensuing embryo have not been reported. One or two blastomeres are routinely biopsied from 8-cell embryos for preimplantation genetic diagnosis. In this study it was therefore attempted to derive hESC lines from paired blastomeres. Of 66 pairs of 8-cell stage blastomeres, four pairs produced two morula and two blastocyst-like structures. When plated on mitomycin-C-treated mouse embryonic fibroblasts, one morula and one blastocyst-like structure separately produced small colonies containing hESC-like cells with prominent nucleoli and high nuclear-cytoplasmic ratios. When these colonies were detached and plated onto fresh feeders, there was no further colony formation or ensuing hESC lines. The results showed that it might not be possible to derive hESC lines directly from paired blastomeres. A minimum number of blastomeres in close contact with one another may be required to successfully generate an hESC line as blastomeres, like ICM and hESC cells, may be 'social' cells.

  1. Metabolites of ginger component [6]-shogaol remain bioactive in cancer cells and have low toxicity in normal cells: chemical synthesis and biological evaluation.

    PubMed

    Zhu, Yingdong; Warin, Renaud F; Soroka, Dominique N; Chen, Huadong; Sang, Shengmin

    2013-01-01

    Our previous study found that [6]-shogaol, a major bioactive component in ginger, is extensively metabolized in cancer cells and in mice. It is unclear whether these metabolites retain bioactivity. The aim of the current study is to synthesize the major metabolites of [6]-shogaol and evaluate their inhibition of growth and induction of apoptosis in human cancer cells. Twelve metabolites of [6]-shogaol (M1, M2, and M4-M13) were successfully synthesized using simple and easily accessible chemical methods. Growth inhibition assays showed that most metabolites of [6]-shogaol had measurable activities against human cancer cells HCT-116 and H-1299. In particular, metabolite M2 greatly retained the biological activities of [6]-shogaol, with an IC(50) of 24.43 µM in HCT-116 human colon cancer cells and an IC(50) of 25.82 µM in H-1299 human lung cancer cells. Also exhibiting a relatively high potency was thiol-conjugate M13, with IC(50) values of 45.47 and 47.77 µM toward HCT-116 and H-1299 cells, respectively. The toxicity evaluation of the synthetic metabolites (M1, M2, and M4-M13) against human normal fibroblast colon cells CCD-18Co and human normal lung cells IMR-90 demonstrated a detoxifying metabolic biotransformation of [6]-shogaol. The most active metabolite M2 had almost no toxicity to CCD-18Co and IMR-90 normal cells with IC(50)s of 99.18 and 98.30 µM, respectively. TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay indicated that apoptosis was triggered by metabolites M2, M13, and its two diastereomers M13-1 and M13-2. There was no significant difference between the apoptotic effect of [6]-shogaol and the effect of M2 and M13 after 6 hour treatment.

  2. The influence of differential processing of procathepsin H on its aminopeptidase activity, secretion and subcellular localization in human cell lines.

    PubMed

    Rojnik, Matija; Jevnikar, Zala R; Doljak, Bojan; Turk, Samo; Zidar, Nace; Kos, Janko

    2012-10-01

    Cathepsin H is a unique member of the cysteine cathepsins that acts primarily as an aminopeptidase. Like other cysteine cathepsins, it is synthesized as an inactive precursor and activated by proteolytic removal of its propeptide. Here we demonstrate that, in human cells, the processing of the propeptide is an autocatalytic, multistep process proceeding from an inactive 41kDa pro-form, through a 30kDa intermediate form, to the 28kDa mature form. Tyr87P and Gly90P were identified as the two major endopeptidase cleavage sites, converting the 30kDa form into the mature 28kDa form. The level of processing differs significantly in different human cell lines. In monocyte-derived macrophages U937 and prostate cancer cells PC-3, the 28kDa form is predominant, whereas in osteoblasts HOS the processing from the 30kDa form to the 28kDa form is significantly lower. The aminopeptidase activity of the enzyme and its subcellular localization are independent of the product, however the 30kDa form was not secreted in HOS cells. The activity of the resulting cathepsin H in U937 cells was significantly lower than that in HOS cells, presumably due to the high levels of endogenous cysteine protease inhibitor cystatin F present specifically in this cell line. These results provide an insight into the dependence of human cathepsin H processing and regulation on cell type. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Differential effect of grape seed extract against human non-small-cell lung cancer cells: the role of reactive oxygen species and apoptosis induction.

    PubMed

    Tyagi, Alpna; Raina, Komal; Gangar, Subhash; Kaur, Manjinder; Agarwal, Rajesh; Agarwal, Chapla

    2013-01-01

    The present study examines grape seed extract (GSE) efficacy against a series of non-small-cell lung cancer (NSCLC) cell lines that differ in their Kras and p53 status to establish GSE potential as a cytotoxic agent against a wide range of lung cancer cells. GSE suppressed growth and induced apoptotic death in NSCLC cells irrespective of their k-Ras status, with more sensitivity toward H460 and H322 (wt k-Ras) than A549 and H1299 cells (mutated k-Ras). Mechanistic studies in A549 and H460 cells, selected, based on comparative efficacy of GSE at higher and lower doses, respectively, showed that apoptotic death involves cytochrome c release associated caspases 9 and 3 activation, and poly (ADP-ribosyl) polymerase cleavage, strong phosphorylation of ERK1/2 and JNK1/2, downregulation of cell survival proteins, and upregulated proapoptotic Bak expression. Importantly, GSE treatment caused a strong superoxide radical-associated oxidative stress, significantly decreased intracellular reduced glutathione levels, suggesting, for the first time, the involvement of GSE-caused oxidative stress in its apoptotic inducing activity in these cells. Because GSE is a widely-consumed dietary agent with no known untoward effects, our results support future studies to establish GSE efficacy and usefulness against NSCLC control.

  4. The relationship between CD86/CD54 expression and THP-1 cell viability in an in vitro skin sensitization test--human cell line activation test (h-CLAT).

    PubMed

    Sakaguchi, Hitoshi; Ashikaga, Takao; Miyazawa, Masaaki; Kosaka, Nanae; Ito, Yuichi; Yoneyama, Katsurako; Sono, Sakiko; Itagaki, Hiroshi; Toyoda, Hidekazu; Suzuki, Hiroyuki

    2009-04-01

    Recent regulations for cosmetics in Europe prohibit animal testing for evaluating the sensitization potential of chemicals to improve animal welfare. Yet, there is not an acceptable Organization for Economic Co-operation and Development non-animal skin sensitization test method. Several in vitro skin sensitization methods that focus on the activation of Langerhans cells, including human cell lines, are being evaluated as possible alternatives. In our previous study, we optimized our human cell line activation test (h-CLAT) using THP-1 cells (monocytic leukemia cell line) and conducted an inter-laboratory study. We found that measuring CD86/CD54 expression may be useful for predicting skin sensitization. The aim of this study was to confirm the relationship between CD86/CD54 expression and THP-1 cell viability in the h-CLAT. In this study, 21 allergens (e.g., dinitrochlorobenzene, p-phenylenediamine, Ni) and 8 non-allergens (e.g., SLS, lactic acid) were evaluated. For each chemical, more than 10 concentrations that gave a predicted cell viability range of 20-95% were used. The data showed that expression patterns of CD86/CD54 differed depending on chemical. For most allergens, cytotoxicity (65-90% cell viability) was needed for enhancement of CD86/CD54 expression. The criteria of "CD86 > or = 150 or CD54 > or = 200" resulted in an accuracy of 93%, which confirms appropriate cut-off criteria for h-CLAT. Furthermore, a good correlation was observed between EC3 of local lymph node assay and EC150(CD86) or EC200(CD54) of h-CLAT (12 or 16 chemicals, respectively), which would provide a useful estimate of allergic potency. These findings suggest that h-CLAT would be a good robust in vitro skin sensitization test.

  5. Establishment and characterization of scleroderma fibroblast clonal cell lines by introduction of the hTERT gene

    PubMed Central

    Kapanadze, Bagrat; Morris, Erin; Smith, Edwin; Trojanowska, Maria

    2010-01-01

    Abstract Lack of an adequate experimental model has hindered the ability to fully understand scleroderma (SSc) pathogenesis. Current SSc research is based on the study of cultured fibroblasts from skin biopsies. In depth characterization of the SSc fibroblast phenotype is hindered by the limited lifespan and heterogeneity of these cells. The goal of this study was to isolate high collagen-producing fibroblasts from SSc biopsies and extend their lifespan with hTERT immortalization to enable characterization of their phenotype. Fibroblasts from two pairs of closely matched normal and SSc biopsies were infected with an hTERT lentivirus. Infected colonies were isolated, cultured into clonal cell lines and analysed with respect to profibrotic gene expression. The mRNA levels of nine profibrotic genes were measured by quantitative real-time PCR. Protein levels were assessed by Western blot. The hTERT SSc clones were heterogeneous with regards to expression of the profibrotic genes measured. A subset of the SSc clones showed elevated expression levels of collagen I, connective tissue growth factor and thrombospondin 1 mRNA, while expression of other genes was not significantly changed. Elevated expression of collagen I protein and mRNA was correlative with elevated expression of connective tissue growth factor. Several hTERT clones expressed high levels of pSmad1, Smad1 and TGF-βRI indicative of altered TGF-β signalling. A portion of SSc clones expressed several profibrotic genes. This study demonstrates that select characteristics of the SSc phenotype are expressed in a subset of activated fibroblasts in culture. The clonal SSc cell lines may present a new and useful model to investigate the mechanisms involved in SSc fibrosis. PMID:19432820

  6. Establishment and characterization of scleroderma fibroblast clonal cell lines by introduction of the hTERT gene.

    PubMed

    Kapanadze, Bagrat; Morris, Erin; Smith, Edwin; Trojanowska, Maria

    2010-05-01

    Lack of an adequate experimental model has hindered the ability to fully understand scleroderma (SSc) pathogenesis. Current SSc research is based on the study of cultured fibroblasts from skin biopsies. In depth characterization of the SSc fibroblast phenotype is hindered by the limited lifespan and heterogeneity of these cells. The goal of this study was to isolate high collagen-producing fibroblasts from SSc biopsies and extend their lifespan with hTERT immortalization to enable characterization of their phenotype. Fibroblasts from two pairs of closely matched normal and SSc biopsies were infected with an hTERT lentivirus. Infected colonies were isolated, cultured into clonal cell lines and analysed with respect to profibrotic gene expression. The mRNA levels of nine profibrotic genes were measured by quantitative real-time PCR. Protein levels were assessed by Western blot. The hTERT SSc clones were heterogeneous with regards to expression of the profibrotic genes measured. A subset of the SSc clones showed elevated expression levels of collagen I, connective tissue growth factor and thrombospondin 1 mRNA, while expression of other genes was not significantly changed. Elevated expression of collagen I protein and mRNA was correlative with elevated expression of connective tissue growth factor. Several hTERT clones expressed high levels of pSmad1, Smad1 and TGF-betaRI indicative of altered TGF-beta signalling. A portion of SSc clones expressed several profibrotic genes. This study demonstrates that select characteristics of the SSc phenotype are expressed in a subset of activated fibroblasts in culture. The clonal SSc cell lines may present a new and useful model to investigate the mechanisms involved in SSc fibrosis.

  7. Downregulation of telomerase activity in human promyelocytic cell line using RNA interference.

    PubMed

    Miri-Moghaddam, E; Deezagi, A; Soheili, Z S

    2009-12-01

    Telomerase is a ribonucleoprotein complex. It consists of two main components, human telomerase reverse transcriptase (hTERT) and human telomerase RNA. High telomerase activity is present in most malignant cells, but it is barely detectable in majority of somatic cells. The direct correlation between telomerase reactivation and carcinogens has made hTERT a key target for anticancer therapeutic studies. In this study, for the first time, we evaluated the ability of the new generation of short interfering RNA (siRNA) to regulate telomerase activity in the human promyelocytic leukemia cell line (HL-60). Transient transfection cell line by hTERT siRNAs resulted in statistically significant suppression of hTERT messenger RNAs which were detected by quantitative real-time polymerase chain reaction, while the expressed hTERT protein levels were measured by flow cytometry. The results of telomeric repeat amplification protocol showed that telomerase activity was significantly reduced upon transfection of the HL-60 cell line with hTERT siRNAs. The results of this study showed that telomerase activity and cell proliferation were efficiently inhibited in the hTERT siRNA-treated leukemic cell line.

  8. Lidocaine inhibits the proliferation of lung cancer by regulating the expression of GOLT1A.

    PubMed

    Zhang, Lei; Hu, Rong; Cheng, Yanyong; Wu, Xiaoyang; Xi, Siwei; Sun, Yu; Jiang, Hong

    2017-10-01

    Lidocaine is the most commonly used local anaesthetic in clinical and can inhibit proliferation, suppress invasion and migration and induce apoptosis in human lung adenocarcinoma (LAD) cells. However, its specific downstream molecular mechanism is unclear. LAD cell lines, A549 and H1299 cells, were treated with lidocaine. The proliferation was evaluated by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) and bromodeoxyuridine (BrdU) assay. The expression level of related proteins was detected by real-time quantitative PCR (qPCR) and Western blot assay. The results indicated that lidocaine dose-dependently suppressed the proliferation of A549 and H1299 cells. In the LAD patients' samples, GOLT1A was upregulated and involved in the poor prognosis and higher grade malignancy. Additionally, GOLT1A mediates the function of lidocaine on repressing proliferation by regulating the cell cycle in A549 cells. Our findings suggest that lidocaine downregulates the GOLT1A expression to repress the proliferation of lung cancer cells. © 2017 John Wiley & Sons Ltd.

  9. Inhibition of H3K9me2 Reduces Hair Cell Regeneration after Hair Cell Loss in the Zebrafish Lateral Line by Down-Regulating the Wnt and Fgf Signaling Pathways

    PubMed Central

    Tang, Dongmei; Lin, Qin; He, Yingzi; Chai, Renjie; Li, Huawei

    2016-01-01

    The activation of neuromast (NM) supporting cell (SC) proliferation leads to hair cell (HC) regeneration in the zebrafish lateral line. Epigenetic mechanisms have been reported that regulate HC regeneration in the zebrafish lateral line, but the role of H3K9me2 in HC regeneration after HC loss remains poorly understood. In this study, we focused on the role of H3K9me2 in HC regeneration following neomycin-induced HC loss. To investigate the effects of H3K9me2 in HC regeneration, we took advantage of the G9a/GLP-specific inhibitor BIX01294 that significantly reduces the dimethylation of H3K9. We found that BIX01294 significantly reduced HC regeneration after neomycin-induced HC loss in the zebrafish lateral line. BIX01294 also significantly reduced the proliferation of NM cells and led to fewer SCs in the lateral line. In situ hybridization showed that BIX01294 significantly down-regulated the Wnt and Fgf signaling pathways, which resulted in reduced SC proliferation and HC regeneration in the NMs of the lateral line. Altogether, our results suggest that down-regulation of H3K9me2 significantly decreases HC regeneration after neomycin-induced HC loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus H3K9me2 plays a critical role in HC regeneration. PMID:27303264

  10. Multihormonal regulation of thyroglobulin production by the OVNIS 6H thyroid cell line.

    PubMed

    Aouani, A; Hovsépian, S; Fayet, G

    1988-02-01

    The hormonal regulation of thyroglobulin production has been studied using a clone of the ovine thyroid cell line: OVNIS 6H. 3 among the 6 hormones proposed for serum replacement are required for an optimal thyroglobulin production; insulin, hydrocortisone and thyrotropin. Insulin alone stimulates thyroglobulin production. The presence of insulin is also required to observe hydrocortisone and TSH stimulations. Newborn calf serum inhibits thyroglobulin production. The best conditions for optimal thyroglobulin expression and TSH responsiveness are obtained in serum-free medium supplemented with 5 micrograms/ml insulin, 100 nM hydrocortisone and 1 mU/ml TSH.

  11. [Establishment of a human bladder cancer cell line stably co-expressing hSPRY2 and luciferase genes and its subcutaneous tumor xenograft model in nude mice].

    PubMed

    Yin, Xiaotao; Li, Fanglong; Jin, Yipeng; Yin, Zhaoyang; Qi, Siyong; Wu, Shuai; Wang, Zicheng; Wang, Lin; Yu, Jiyun; Gao, Jiangping

    2017-03-01

    Objective To establish a human bladder cancer cell line stably co-expressing human sprouty2 (hSPRY2) and luciferase (Luc) genes simultaneously, and develop its subcutaneous tumor xenograft model in nude mice. Methods The hSPRY2 and Luc gene segments were amplified by PCR, and were cloned into lentiviral vector pCDH and pLVX respectively to produce corresponding lentivirus particles. The J82 human bladder cancer cells were infected with these two kinds of lentivirus particles, and then further screened by puromycin and G418. The expressions of hSPRY2 and Luc genes were detected by bioluminescence, immunofluorescence and Western blot analysis. The screened J82-hSPRY2/Luc cells were injected subcutaneously into BALB/c nude mice, and the growth of tumor was monitored dynamically using in vivo fluorescence imaging system. Results J82-hSPRY2/Luc cell line stably expressing hSPRY2 and Luc genes was established successfully. Bioluminescence, immunofluorescence and Western blot analysis validated the expressions of hSPRY2 and Luc genes. The in vivo fluorescence imaging system showed obvious fluorescence in subcutaneous tumor xenograft in nude mice. Conclusion The J82-hSPRY2/Luc bladder cancer cell line and its subcutaneous tumor xenograft model in nude mice have been established successfully.

  12. The EndoC-βH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates.

    PubMed

    Tsonkova, Violeta Georgieva; Sand, Fredrik Wolfhagen; Wolf, Xenia Asbæk; Grunnet, Lars Groth; Kirstine Ringgaard, Anna; Ingvorsen, Camilla; Winkel, Louise; Kalisz, Mark; Dalgaard, Kevin; Bruun, Christine; Fels, Johannes Josef; Helgstrand, Charlotte; Hastrup, Sven; Öberg, Fredrik Kryh; Vernet, Erik; Sandrini, Michael Paolo Bastner; Shaw, Allan Christian; Jessen, Carsten; Grønborg, Mads; Hald, Jacob; Willenbrock, Hanni; Madsen, Dennis; Wernersson, Rasmus; Hansson, Lena; Jensen, Jan Nygaard; Plesner, Annette; Alanentalo, Tomas; Petersen, Maja Borup Kjær; Grapin-Botton, Anne; Honoré, Christian; Ahnfelt-Rønne, Jonas; Hecksher-Sørensen, Jacob; Ravassard, Philippe; Madsen, Ole D; Rescan, Claude; Frogne, Thomas

    2018-02-01

    To characterize the EndoC-βH1 cell line as a model for human beta cells and evaluate its beta cell functionality, focusing on insulin secretion, proliferation, apoptosis and ER stress, with the objective to assess its potential as a screening platform for identification of novel anti-diabetic drug candidates. EndoC-βH1 was transplanted into mice for validation of in vivo functionality. Insulin secretion was evaluated in cells cultured as monolayer and as pseudoislets, as well as in diabetic mice. Cytokine induced apoptosis, glucolipotoxicity, and ER stress responses were assessed. Beta cell relevant mRNA and protein expression were investigated by qPCR and antibody staining. Hundreds of proteins or peptides were tested for their effect on insulin secretion and proliferation. Transplantation of EndoC-βH1 cells restored normoglycemia in streptozotocin induced diabetic mice. Both in vitro and in vivo, we observed a clear insulin response to glucose, and, in vitro, we found a significant increase in insulin secretion from EndoC-βH1 pseudoislets compared to monolayer cultures for both glucose and incretins. Apoptosis and ER stress were inducible in the cells and caspase 3/7 activity was elevated in response to cytokines, but not affected by the saturated fatty acid palmitate. By screening of various proteins and peptides, we found Bombesin (BB) receptor agonists and Pituitary Adenylate Cyclase-Activating Polypeptides (PACAP) to significantly induce insulin secretion and the proteins SerpinA6, STC1, and APOH to significantly stimulate proliferation. ER stress was readily induced by Tunicamycin and resulted in a reduction of insulin mRNA. Somatostatin (SST) was found to be expressed by 1% of the cells and manipulation of the SST receptors was found to significantly affect insulin secretion. Overall, the EndoC-βH1 cells strongly resemble human islet beta cells in terms of glucose and incretin stimulated insulin secretion capabilities. The cell line has an active

  13. Potentiation of in vitro and in vivo antitumor efficacy of doxorubicin by cyclin-dependent kinase inhibitor P276-00 in human non-small cell lung cancer cells.

    PubMed

    Rathos, Maggie J; Khanwalkar, Harshal; Joshi, Kavita; Manohar, Sonal M; Joshi, Kalpana S

    2013-01-23

    In the present study, we show that the combination of doxorubicin with the cyclin-dependent kinase inhibitor P276-00 was synergistic at suboptimal doses in the non-small cell lung carcinoma (NSCLC) cell lines and induces extensive apoptosis than either drug alone in H-460 human NSCLC cells. Synergistic effects of P276-00 and doxorubicin on growth inhibition was studied using the Propidium Iodide (PI) assay. The doses showing the best synergistic effect was determined and these doses were used for further mechanistic studies such as western blotting, cell cycle analysis and RT-PCR. The in vivo efficacy of the combination was evaluated using the H-460 xenograft model. The combination of 100 nM doxorubicin followed by 1200 nM P276-00 showed synergistic effect in the p53-positive and p53-mutated cell lines H-460 and H23 respectively as compared to the p53-null cell line H1299. Abrogation of doxorubicin-induced G2/M arrest and induction of apoptosis was observed in the combination treatment. This was associated with induction of tumor suppressor protein p53 and reduction of anti-apoptotic protein Bcl-2. Furthermore, doxorubicin alone greatly induced COX-2, a NF-κB target and Cdk-1, a target of P276-00, which was downregulated by P276-00 in the combination. Doxorubicin when combined with P276-00 in a sequence-specific manner significantly inhibited tumor growth, compared with either doxorubicin or P276-00 alone in H-460 xenograft model. These findings suggest that this combination may increase the therapeutic index over doxorubicin alone and reduce systemic toxicity of doxorubicin most likely via an inhibition of doxorubicin-induced chemoresistance involving NF-κB signaling and inhibition of Cdk-1 which is involved in cell cycle progression.

  14. Potentiation of in vitro and in vivo antitumor efficacy of doxorubicin by cyclin-dependent kinase inhibitor P276-00 in human non-small cell lung cancer cells

    PubMed Central

    2013-01-01

    Background In the present study, we show that the combination of doxorubicin with the cyclin-dependent kinase inhibitor P276-00 was synergistic at suboptimal doses in the non-small cell lung carcinoma (NSCLC) cell lines and induces extensive apoptosis than either drug alone in H-460 human NSCLC cells. Methods Synergistic effects of P276-00 and doxorubicin on growth inhibition was studied using the Propidium Iodide (PI) assay. The doses showing the best synergistic effect was determined and these doses were used for further mechanistic studies such as western blotting, cell cycle analysis and RT-PCR. The in vivo efficacy of the combination was evaluated using the H-460 xenograft model. Results The combination of 100 nM doxorubicin followed by 1200 nM P276-00 showed synergistic effect in the p53-positive and p53-mutated cell lines H-460 and H23 respectively as compared to the p53-null cell line H1299. Abrogation of doxorubicin-induced G2/M arrest and induction of apoptosis was observed in the combination treatment. This was associated with induction of tumor suppressor protein p53 and reduction of anti-apoptotic protein Bcl-2. Furthermore, doxorubicin alone greatly induced COX-2, a NF-κB target and Cdk-1, a target of P276-00, which was downregulated by P276-00 in the combination. Doxorubicin when combined with P276-00 in a sequence-specific manner significantly inhibited tumor growth, compared with either doxorubicin or P276-00 alone in H-460 xenograft model. Conclusion These findings suggest that this combination may increase the therapeutic index over doxorubicin alone and reduce systemic toxicity of doxorubicin most likely via an inhibition of doxorubicin-induced chemoresistance involving NF-κB signaling and inhibition of Cdk-1 which is involved in cell cycle progression. PMID:23343191

  15. Establishment and characterization of five immortalized human scalp dermal papilla cell lines.

    PubMed

    Kwack, Mi Hee; Yang, Jung Min; Won, Gong Hee; Kim, Moon Kyu; Kim, Jung Chul; Sung, Young Kwan

    2018-02-05

    Dermal papilla (DP) regulates the growth and cycling of hair follicles. Cultured DP cells are useful for the study of their role in relation to hair growth and regeneration. However, cultivation of human DP cells is tedious and difficult. In addition, cultured DP cells possess a relatively short replicative life span, requiring immortalized human DP cell lines. We previously established an immortalized human DP cell line, SV40T-hTERT-DPC, by introducing human telomerase reverse transcriptase (hTERT) gene into the transformed cell line, SV40T-DPC. In this study, we co-transfected the simian virus 40 large T antigen (SV40T-Ag) and hTERT into DP cells from scalp hair follicles from a male with androgenetic alopecia and established five immortalized DP cell lines and named KNU-101, KNU-102, KNU-103, KNU-201 and KNU-202. We then evaluated tumorigenicity, expression of DP markers, responses to androgen, Wnt3a and BMP4, and expression of DP signature genes. These cell lines displayed early passage morphology and maintained responses to androgen, Wnt and BMP. Furthermore, these cell lines expressed DP markers and DP signature genes. KNU cell lines established in this study are potentially useful sources for hair research. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Synthesis and cytotoxic evaluation of some new 4(3H)-quinazolinones on HeLa cell line

    PubMed Central

    Khodarahmi, G.A.; Shamshiri, M.; Hassanzadeh, F.

    2012-01-01

    Quinazolinone backbone is present in a large number of bioactive substances. Since remarkable cytotoxic activity is associated with some 4(3H)-quinazolinones, in this study some 4(3H)-quinazolinone were synthesized and screened against HeLa cells. The synthesis was performed via reaction of anthranilic acid with dicarboxylic anhydrides to produce carboxylic acids derivatives. The products were heated in acetic anhydride to produce benzoxazinones. Finally, 4(3H)-quinazolinones were synthesized by reaction between benzoxazinones and primary amines. The assessment of the structure of the synthesized compounds was based on spectral data (FT-IR, Mass and 1HNMR). Subsequently, cytotoxic activity of compounds 3, 6, 9 and 13 (individually and in combination with doxorubicin) was evaluated on HeLa cell line using MTT assay. The results indicated that the tested compounds did not show significant cytotoxicity alone and in combination with doxorubicin (1 and 20 μM). PMID:23181089

  17. Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos

    PubMed Central

    Geens, Mieke; Mateizel, Ileana; Sermon, Karen; De Rycke, Martine; Spits, Claudia; Cauffman, Greet; Devroey, Paul; Tournaye, Herman; Liebaers, Inge; Van de Velde, Hilde

    2009-01-01

    BACKGROUND Recently, we demonstrated that single blastomeres of a 4-cell stage human embryo are able to develop into blastocysts with inner cell mass and trophectoderm. To further investigate potency at the 4-cell stage, we aimed to derive pluripotent human embryonic stem cells (hESC) from single blastomeres. METHODS Four 4-cell stage embryos were split on Day 2 of preimplantation development and the 16 blastomeres were individually cultured in sequential medium. On Day 3 or 4, the blastomere-derived embryos were plated on inactivated mouse embryonic fibroblasts (MEFs). RESULTS Ten out of sixteen blastomere-derived morulae attached to the MEFs, and two produced an outgrowth. They were mechanically passaged onto fresh MEFs as described for blastocyst ICM-derived hESC, and shown to express the typical stemness markers by immunocytochemistry and/or RT–PCR. In vivo pluripotency was confirmed by the presence of all three germ layers in the teratoma obtained after injection in immunodeficient mice. The first hESC line displays a mosaic normal/abnormal 46, XX, dup(7)(q33qter), del(18)(q23qter) karyotype. The second hESC line displays a normal 46, XY karyotype. CONCLUSION We report the successful derivation and characterization of two hESC lines from single blastomeres of four split 4-cell stage human embryos. These two hESC lines were derived from distinct embryos, proving that at least one of the 4-cell stage blastomeres is pluripotent. PMID:19633307

  18. Intracellular pH gradients in migrating cells.

    PubMed

    Martin, Christine; Pedersen, Stine F; Schwab, Albrecht; Stock, Christian

    2011-03-01

    Cell polarization along the axis of movement is required for migration. The localization of proteins and regulators of the migratory machinery to either the cell front or its rear results in a spatial asymmetry enabling cells to simultaneously coordinate cell protrusion and retraction. Protons might function as such unevenly distributed regulators as they modulate the interaction of focal adhesion proteins and components of the cytoskeleton in vitro. However, an intracellular pH (pH(i)) gradient reflecting a spatial asymmetry of protons has not been shown so far. One major regulator of pH(i), the Na(+)/H(+) exchanger NHE1, is essential for cell migration and accumulates at the cell front. Here, we test the hypothesis that the uneven distribution of NHE1 activity creates a pH(i) gradient in migrating cells. Using the pH-sensitive fluorescent dye BCECF, pH(i) was measured in five cell lines (MV3, B16V, NIH3T3, MDCK-F1, EA.hy926) along the axis of movement. Differences in pH(i) between the front and the rear end (ΔpH(i) front-rear) were present in all cell lines, and inhibition of NHE1 either with HOE642 or by absence of extracellular Na(+) caused the pH(i) gradient to flatten or disappear. In conclusion, pH(i) gradients established by NHE1 activity exist along the axis of movement.

  19. Cell cycle-dependent changes in H3K56ac in human cells

    PubMed Central

    Stejskal, Stanislav; Stepka, Karel; Tesarova, Lenka; Stejskal, Karel; Matejkova, Martina; Simara, Pavel; Zdrahal, Zbynek; Koutna, Irena

    2015-01-01

    The incorporation of histone H3 with an acetylated lysine 56 (H3K56ac) into the nucleosome is important for chromatin remodeling and serves as a marker of new nucleosomes during DNA replication and repair in yeast. However, in human cells, the level of H3K56ac is greatly reduced, and its role during the cell cycle is controversial. Our aim was to determine the potential of H3K56ac to regulate cell cycle progression in different human cell lines. A significant increase in the number of H3K56ac foci, but not in H3K56ac protein levels, was observed during the S and G2 phases in cancer cell lines, but was not observed in embryonic stem cell lines. Despite this increase, the H3K56ac signal was not present in late replication chromatin, and H3K56ac protein levels did not decrease after the inhibition of DNA replication. H3K56ac was not tightly associated with the chromatin and was primarily localized to active chromatin regions. Our results support the role of H3K56ac in transcriptionally active chromatin areas but do not confirm H3K56ac as a marker of newly synthetized nucleosomes in DNA replication. PMID:26645646

  20. Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells.

    PubMed

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4-10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.

  1. Dosage and Cell Line Dependent Inhibitory Effect of bFGF Supplement in Human Pluripotent Stem Cell Culture on Inactivated Human Mesenchymal Stem Cells

    PubMed Central

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4–10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system. PMID:24465853

  2. HIV-1 replication in cell lines harboring INI1/hSNF5 mutations.

    PubMed

    Sorin, Masha; Yung, Eric; Wu, Xuhong; Kalpana, Ganjam V

    2006-08-31

    INI1/hSNF5 is a cellular protein that directly interacts with HIV-1 integrase (IN). It is specifically incorporated into HIV-1 virions. A dominant negative mutant derived from INI1 inhibits HIV-1 replication. Recent studies indicate that INI1 is associated with pre-integration and reverse transcription complexes that are formed upon viral entry into the target cells. INI1 also is a tumor suppressor, biallelically deleted/mutated in malignant rhabdoid tumors. We have utilized cell lines derived from the rhabdoid tumors, MON and STA-WT1, that harbor either null or truncating mutations of INI1 respectively, to assess the effect of INI1 on HIV-1 replication. We found that while HIV-1 virions produced in 293T cells efficiently transduced MON and STA-WT1 cells, HIV-1 particle production was severely reduced in both of these cells. Reintroduction of INI1 into MON and STA-WT1 significantly enhanced the particle production in both cell lines. HIV-1 particles produced in MON cells were reduced for infectivity, while those produced in STA-WT1 were not. Further analysis indicated the presence of INI1 in those virions produced from STA-WT1 but not from those produced from MON cells. HIV-1 produced in MON cells were defective for synthesis of early and late reverse transcription products in the target cells. Furthermore, virions produced in MON cells were defective for exogenous reverse transcriptase activity carried out using exogenous template, primer and substrate. Our results suggest that INI1-deficient cells exhibit reduced particle production that can be partly enhanced by re-introduction of INI1. Infectivity of HIV-1 produced in some but not all INI1 defective cells, is affected and this defect may correlate to the lack of INI1 and/or some other proteins in these virions. The block in early events of virion produced from MON cells appears to be at the stage of reverse transcription. These studies suggest that presence of INI1 or some other host factor in virions and

  3. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    PubMed

    Xiao, Yang; Kwong, Mandy; Daemen, Anneleen; Belvin, Marcia; Liang, Xiaorong; Hatzivassiliou, Georgia; O'Brien, Thomas

    2016-01-01

    Nicotinamide adenine dinucleotide (NAD) is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM) to nicotinamide mononucleotide (NMN), the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334), one that shows intermediate sensitivity (NCI-H441), and one that is insensitive (LC-KJ). Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP) and had lower reactive oxygen species (ROS) levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  4. Regulation of voltage-gated potassium channels attenuates resistance of side-population cells to gefitinib in the human lung cancer cell line NCI-H460.

    PubMed

    Choi, Seon Young; Kim, Hang-Rae; Ryu, Pan Dong; Lee, So Yeong

    2017-02-21

    Side-population (SP) cells that exclude anti-cancer drugs have been found in various tumor cell lines. Moreover, SP cells have a higher proliferative potential and drug resistance than main population cells (Non-SP cells). Also, several ion channels are responsible for the drug resistance and proliferation of SP cells in cancer. To confirm the expression and function of voltage-gated potassium (Kv) channels of SP cells, these cells, as well as highly expressed ATP-binding cassette (ABC) transporters and stemness genes, were isolated from a gefitinib-resistant human lung adenocarcinoma cell line (NCI-H460), using Hoechst 33342 efflux. In the present study, we found that mRNA expression of Kv channels in SP cells was different compared to Non-SP cells, and the resistance of SP cells to gefitinib was weakened with a combination treatment of gefitinib and Kv channel blockers or a Kv7 opener, compared to single-treatment gefitinib, through inhibition of the Ras-Raf signaling pathway. The findings indicate that Kv channels in SP cells could be new targets for reducing the resistance to gefitinib.

  5. No Relationship between Embryo Morphology and Successful Derivation of Human Embryonic Stem Cell Lines

    PubMed Central

    Ström, Susanne; Rodriguez-Wallberg, Kenny; Holm, Frida; Bergström, Rosita; Eklund, Linda; Strömberg, Anne-Marie; Hovatta, Outi

    2010-01-01

    Background The large number (30) of permanent human embryonic stem cell (hESC) lines and additional 29 which did not continue growing, in our laboratory at Karolinska Institutet have given us a possibility to analyse the relationship between embryo morphology and the success of derivation of hESC lines. The derivation method has been improved during the period 2002–2009, towards fewer xeno-components. Embryo quality is important as regards the likelihood of pregnancy, but there is little information regarding likelihood of stem cell derivation. Methods We evaluated the relationship of pronuclear zygote stage, the score based on embryo morphology and developmental rate at cleavage state, and the morphology of the blastocyst at the time of donation to stem cell research, to see how they correlated to successful establishment of new hESC lines. Results Derivation of hESC lines succeeded from poor quality and good quality embryos in the same extent. In several blastocysts, no real inner cell mass (ICM) was seen, but permanent well growing hESC lines could be established. One tripronuclear (3PN) zygote, which developed to blastocyst stage, gave origin to a karyotypically normal hESC line. Conclusion Even very poor quality embryos with few cells in the ICM can give origin to hESC lines. PMID:21217828

  6. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jun-Hai; Zhao, Chun-Liu; Ding, Lan-Bao

    2015-10-09

    The transcription factor forkhead box D3 (FOXD3), widely studied as a transcriptional repressor in embryogenesis, participates in the carcinogenesis of many cancers. However, the expression pattern and role of FOXD3 in non-small cell lung cancer (NSCLC) have not been well characterized. We report that FOXD3 is significantly downregulated in NSCLC cell lines and clinical tissues. FOXD3 overexpression significantly inhibits cell growth and results in G1 cell cycle arrest in NSCLC A549 and H1299 cells. In a xenograft tumor model, FOXD3 overexpression inhibits tumor growth and angiogenesis. Remarkably, expression of vascular endothelial growth factor (VEGF) was reduced in FOXD3 overexpression models bothmore » in vitro and in vivo. These findings suggest that FOXD3 plays a potential tumor suppressor role in NSCLC progression and represents a promising clinical prognostic marker and therapeutic target for this disease. - Highlights: • FOXD3 is downregulated in NSCLC cell lines and tissues. • FOXD3 overexpression inhibited cell proliferation in NSCLC cells. • FOXD3 overexpression led to decreased angiogenesis in NSCLC cells in vitro and in vivo.« less

  7. A human beta cell line with drug inducible excision of immortalizing transgenes

    PubMed Central

    Benazra, Marion; Lecomte, Marie-José; Colace, Claire; Müller, Andreas; Machado, Cécile; Pechberty, Severine; Bricout-Neveu, Emilie; Grenier-Godard, Maud; Solimena, Michele; Scharfmann, Raphaël; Czernichow, Paul; Ravassard, Philippe

    2015-01-01

    Objectives Access to immortalized human pancreatic beta cell lines that are phenotypically close to genuine adult beta cells, represent a major tool to better understand human beta cell physiology and develop new therapeutics for Diabetes. Here we derived a new conditionally immortalized human beta cell line, EndoC-βH3 in which immortalizing transgene can be efficiently removed by simple addition of tamoxifen. Methods We used lentiviral mediated gene transfer to stably integrate a tamoxifen inducible form of CRE (CRE-ERT2) into the recently developed conditionally immortalized EndoC βH2 line. The resulting EndoC-βH3 line was characterized before and after tamoxifen treatment for cell proliferation, insulin content and insulin secretion. Results We showed that EndoC-βH3 expressing CRE-ERT2 can be massively amplified in culture. We established an optimized tamoxifen treatment to efficiently excise the immortalizing transgenes resulting in proliferation arrest. In addition, insulin expression raised by 12 fold and insulin content increased by 23 fold reaching 2 μg of insulin per million cells. Such massive increase was accompanied by enhanced insulin secretion upon glucose stimulation. We further observed that tamoxifen treated cells maintained a stable function for 5 weeks in culture. Conclusions EndoC βH3 cell line represents a powerful tool that allows, using a simple and efficient procedure, the massive production of functional non-proliferative human beta cells. Such cells are close to genuine human beta cells and maintain a stable phenotype for 5 weeks in culture. PMID:26909308

  8. Regulation of the angiopoietin-2 gene by hCG in ovarian cancer cell line OVCAR-3.

    PubMed

    Pietrowski, D; Wiehle, P; Sator, M; Just, A; Keck, C

    2010-05-01

    Angiogenesis is a crucial step in growing tissues including many tumors. It is regulated by pro- and antiangiogenic factors including the family of angiopoietins and their corresponding receptors. In previous work we have shown that in human ovarian cells the expression of angiopoietin 2 (ANG2) is regulated by human chorionic gonadotropin (hCG). To better understand the mechanisms of hCG-dependent regulation of the ANG2-gene we have now investigated upstream regulatory active elements of the ANG2-promoter in the ovarian carcinoma cell line OVCAR-3. We cloned several ANG2-promoter-fragments of different lengths into a luciferase reporter-gene-vector and analyzed the corresponding ANG2 expression before and after hCG stimulation. We identified regions of the ANG2-promoter between 1 048 bp and 613 bp upstream of the transcriptional start site where hCG-dependent pathways promote a significant downregulation of gene expression. By sequence analysis of this area we found several potential binding sites for transcription factors that are involved in regulation of ANG2-expression, vascular development and ovarian function. These encompass the forkhead family transcription factors FOXC2 and FOXO1 as well as the CCAAT/enhancer binding protein family (C/EBP). In conclusion, we have demonstrated that the regulation of ANG2-expression in ovarian cancer cells is hCG-dependent and we suggest that forkhead transcription factor and C/EBP-dependent pathways are involved in the regulation of ANG2-expression in ovarian cancer cells. Georg Thieme Verlag KG Stuttgart-New York.

  9. Metabolites of Ginger Component [6]-Shogaol Remain Bioactive in Cancer Cells and Have Low Toxicity in Normal Cells: Chemical Synthesis and Biological Evaluation

    PubMed Central

    Zhu, Yingdong; Chen, Huadong; Sang, Shengmin

    2013-01-01

    Our previous study found that [6]-shogaol, a major bioactive component in ginger, is extensively metabolized in cancer cells and in mice. It is unclear whether these metabolites retain bioactivity. The aim of the current study is to synthesize the major metabolites of [6]-shogaol and evaluate their inhibition of growth and induction of apoptosis in human cancer cells. Twelve metabolites of [6]-shogaol (M1, M2, and M4–M13) were successfully synthesized using simple and easily accessible chemical methods. Growth inhibition assays showed that most metabolites of [6]-shogaol had measurable activities against human cancer cells HCT-116 and H-1299. In particular, metabolite M2 greatly retained the biological activities of [6]-shogaol, with an IC50 of 24.43 µM in HCT-116 human colon cancer cells and an IC50 of 25.82 µM in H-1299 human lung cancer cells. Also exhibiting a relatively high potency was thiol-conjugate M13, with IC50 values of 45.47 and 47.77 µM toward HCT-116 and H-1299 cells, respectively. The toxicity evaluation of the synthetic metabolites (M1, M2, and M4–M13) against human normal fibroblast colon cells CCD-18Co and human normal lung cells IMR-90 demonstrated a detoxifying metabolic biotransformation of [6]-shogaol. The most active metabolite M2 had almost no toxicity to CCD-18Co and IMR-90 normal cells with IC50s of 99.18 and 98.30 µM, respectively. TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay indicated that apoptosis was triggered by metabolites M2, M13, and its two diastereomers M13-1 and M13-2. There was no significant difference between the apoptotic effect of [6]-shogaol and the effect of M2 and M13 after 6 hour treatment. PMID:23382939

  10. Overexpression of SAMD9 suppresses tumorigenesis and progression during non small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Qing; Yu, Tao; Ren, Yao-Yao

    2014-11-07

    Highlights: • SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). • Knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro. • Overexpression of SAMD9 suppressed proliferation and invasion in A549 cells in vitro. • Depletion of SAMD9 increases tumor formation in vivo. - Abstract: The Sterile Alpha Motif Domain-containing 9 (SAMD9) gene has been recently emphasized during the discovery that it is expressed at a lower level in aggressive fibromatosis and some cases of breast and colon cancer, however, the underlying mechanisms are poorly understood. Here, we found that SAMD9 ismore » down-regulated in human non-small cell lung cancer (NSCLC). Furthermore, knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro and overexpression of SAMD9 suppressed proliferation and invasion in A549 cells. Finally, depletion of SAMD9 increases tumor formation in vivo. Our results may provide a strategy for blocking NSCLC tumorigenesis and progression.« less

  11. Establishment and Characterization of a Telomerase-Immortalized Sheep Trophoblast Cell Line.

    PubMed

    Zhang, Yufei; Shi, Jing; Liu, Shuying

    2016-01-01

    The primary sheep trophoblast cells (STCs) have a finite lifespan in culture. This feature limits the scope for long-term in vitro studies with STCs. This study was an attempt to establish and characterize a telomerase-immortalized sheep trophoblast cell line. STCs were isolated and purified by using Percoll and specific immunoaffinity purification, respectively. The purified STCs were transfected with a plasmid carrying sequences of human telomerase reverse transcriptase (hTERT) to create immortalized sheep trophoblast cell line (hTERT-STCs). hTERT-STCs showed a stable expression of hTERT gene, serially passaged for a year, and showed active proliferation without signs of senescence. Cytokeratin 7 (CK-7), secreted human chorionic gonadotrophin subunit β (CG-β), placental lactogen (PL), and endogenous jaagsiekte sheep retrovirus (enJSRV) envelope genes were expressed in hTERT-STCs. Transwell cell invasion assay indicated that hTERT-STCs still possessed the same invasive characteristics as normal primary sheep trophoblast cells. hTERT-STCs could not grow in soft agar and did not develop into tumors in nude mice. In this study, we established a strain of immortalized sheep trophoblast cell line which could be gainfully employed in the future as an experimental model to study trophoblast cells with secretory function, invasive features, and probable biological function of enJSRV envelope genes.

  12. TUSC2 downregulates PD-L1 expression in non-small cell lung cancer (NSCLC).

    PubMed

    Cao, Xiaobo; Zhao, Yang; Wang, Jing; Dai, Bingbing; Gentile, Emanuela; Lin, Jing; Pu, Xingxiang; Ji, Lin; Wu, Shuhong; Meraz, Ismail; Majidi, Mourad; Roth, Jack A

    2017-12-08

    Expression of the TUSC2 tumor-suppressor gene in TUSC2-deficient NSCLC cells decreased PD-L1 expression and inhibited mTOR activity. Overexpressing TUSC2 or treatment with rapamycin resulted in similar inhibition of PD-L1 expression. Both TUSC2 and rapamycin decreased p70 and SK6 phosphorylation, suggesting that TUSC2 and rapamycin share the same mTOR target. Microarray mRNA expression analysis using TUSC2-inducible H1299 showed that genes that negatively regulate the mTOR pathway were significantly upregulated by TUSC2 compared with control. The presence of IFN-γ significantly increased PD-L1 expression in lung cancer cell lines, but overexpressing TUSC2 in these cell lines prevented PD-L1 from increasing in the presence of IFN-γ. Taken together, these findings show that TUSC2 can decrease PD-L1 expression in lung cancer cells. This ability to modify the tumor microenvironment suggests that TUSC2 could be added to checkpoint inhibitors to improve the treatment of lung cancer.

  13. TUSC2 downregulates PD-L1 expression in non-small cell lung cancer (NSCLC)

    PubMed Central

    Cao, Xiaobo; Zhao, Yang; Wang, Jing; Dai, Bingbing; Gentile, Emanuela; Lin, Jing; Pu, Xingxiang; Ji, Lin; Wu, Shuhong; Meraz, Ismail; Majidi, Mourad; Roth, Jack A.

    2017-01-01

    Expression of the TUSC2 tumor-suppressor gene in TUSC2-deficient NSCLC cells decreased PD-L1 expression and inhibited mTOR activity. Overexpressing TUSC2 or treatment with rapamycin resulted in similar inhibition of PD-L1 expression. Both TUSC2 and rapamycin decreased p70 and SK6 phosphorylation, suggesting that TUSC2 and rapamycin share the same mTOR target. Microarray mRNA expression analysis using TUSC2-inducible H1299 showed that genes that negatively regulate the mTOR pathway were significantly upregulated by TUSC2 compared with control. The presence of IFN-γ significantly increased PD-L1 expression in lung cancer cell lines, but overexpressing TUSC2 in these cell lines prevented PD-L1 from increasing in the presence of IFN-γ. Taken together, these findings show that TUSC2 can decrease PD-L1 expression in lung cancer cells. This ability to modify the tumor microenvironment suggests that TUSC2 could be added to checkpoint inhibitors to improve the treatment of lung cancer. PMID:29296193

  14. Variability of human pluripotent stem cell lines.

    PubMed

    Ortmann, Daniel; Vallier, Ludovic

    2017-10-01

    Human pluripotent stem cells derived from embryos (human Embryonic Stem Cells or hESCs) or generated by direct reprogramming of somatic cells (human Induced Pluripotent Stem Cells or hiPSCs) can proliferate almost indefinitely in vitro while maintaining the capacity to differentiate into a broad diversity of cell types. These two properties (self-renewal and pluripotency) confers human pluripotent stem cells a unique interest for clinical applications since they could allow the production of infinite quantities of cells for disease modelling, drug screening and cell based therapy. However, recent studies have clearly established that human pluripotent stem cell lines can display variable capacity to differentiate into specific lineages. Consequently, the development of universal protocols of differentiation which could work efficiently with any human pluripotent cell line is complicated substantially. As a consequence, each protocol needs to be adapted to every cell line thereby limiting large scale applications and precluding personalised therapies. Here, we summarise our knowledge concerning the origin of this variability and describe potential solutions currently available to bypass this major challenge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Predicting skin sensitization potential and inter-laboratory reproducibility of a human Cell Line Activation Test (h-CLAT) in the European Cosmetics Association (COLIPA) ring trials.

    PubMed

    Sakaguchi, Hitoshi; Ryan, Cindy; Ovigne, Jean-Marc; Schroeder, Klaus R; Ashikaga, Takao

    2010-09-01

    Regulatory policies in Europe prohibited the testing of cosmetic ingredients in animals for a number of toxicological endpoints. Currently no validated non-animal test methods exist for skin sensitization. Evaluation of changes in cell surface marker expression in dendritic cell (DC)-surrogate cell lines represents one non-animal approach. The human Cell Line Activation Test (h-CLAT) examines the level of CD86 and CD54 expression on the surface of THP-1 cells, a human monocytic leukemia cell line, following 24h of chemical exposure. To examine protocol transferability, between-lab reproducibility, and predictive capacity, the h-CLAT has been evaluated by five independent laboratories in several ring trials (RTs) coordinated by the European Cosmetics Association (COLIPA). The results of the first and second RTs demonstrated that the protocol was transferable and basically had good between-lab reproducibility and predictivity, but there were some false negative data. To improve performance, protocol and prediction model were modified. Using the modified prediction model in the first and second RT, accuracy was improved. However, about 15% of the outcomes were not correctly identified, which exposes some of the limitations of the assay. For the chemicals evaluated, the limitation may due to chemical being a weak allergen or having low solubility (ex. alpha-hexylcinnamaldehyde). The third RT evaluated the modified prediction model and satisfactory results were obtained. From the RT data, the feasibility of utilizing cell lines as surrogate DC in development of in vitro skin sensitization methods shows promise. The data also support initiating formal pre-validation of the h-CLAT in order to fully understand the capabilities and limitations of the assay. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. [Effects of icotinib hydrochloride on the proliferation and apoptosis of human lung cancer cell lines].

    PubMed

    Ma, Li; Han, Xiao-hong; Wang, Shuai; Wang, Jian-fei; Shi, Yuan-kai

    2012-09-25

    To explore the effects of icotinib on the proliferation and apoptosis of various lung cancer cell lines. Human lung cancer cell lines HCC827, H1650, H1975, A549 and human epidermal cancer cell line A431 were treated in vitro with icotinib or gefitinib at a concentration gradient of 0 - 40 µmol/L. Their proliferation effects were analyzed by the thiazolyl blue (MTT) assay and the apoptotic effects detected by flow cytometer. The downstream signaling proteins were detected by Western blot. The median inhibitory concentrations (IC(50)) of icotinib for A431 and HCC827 cell lines were (0.04 ± 0.02) and (0.15 ± 0.06) µmol/L respectively. No significant differences existed between the inhibitions of gefitinib and icotinib on A431, HCC827, H1650, H1975 and A549 cell lines (all P > 0.05). Compared with H1650, H1975 and A549 cell lines, icotinib significantly inhibited A431 (P = 0.009, 0.005 and 0.000) and HCC827 (P = 0.001, 0.001 and 0.000) cell lines. And it lowered the expressions of p-AKT, p-ERK and survivin protein expression through the inhibited activity of p-EGFR protein. Icotinib can arrest the proliferation of lung adenocarcinoma cells with EGFR mutation or over-expression by inhibiting the signal pathways of AKT-ERK and survivin.

  17. Generation and characteristics of human Sertoli cell line immortalized by overexpression of human telomerase

    PubMed Central

    Wen, Liping; Yuan, Qingqing; Sun, Min; Niu, Minghui; Wang, Hong; Fu, Hongyong; Zhou, Fan; Yao, Chencheng; Wang, Xiaobo; Li, Zheng; He, Zuping

    2017-01-01

    Sertoli cells are required for normal spermatogenesis and they can be reprogrammed to other types of functional cells. However, the number of primary Sertoli cells is rare and human Sertoli cell line is unavailable. In this study, we have for the first time reported a stable human Sertoli cell line, namely hS1 cells, by overexpression of human telomerase. The hS1 cells expressed a number of hallmarks for human Sertoli cells, including SOX9, WT1, GDNF, SCF, BMP4, BMP6, GATA4, and VIM, and they were negative for 3β-HSD, SMA, and VASA. Higher levels of AR and FSHR were observed in hS1 cells compared to primary human Sertoli cells. Microarray analysis showed that 70.4% of global gene profiles of hS1 cells were similar to primary human Sertoli cells. Proliferation assay demonstrated that hS1 cells proliferated rapidly and they could be passaged for more than 30 times in 6 months. Neither Y chromosome microdeletion nor tumorgenesis was detected in this cell line and 90% normal karyotypes existed in hS1 cells. Collectively, we have established the first human Sertoli cell line with phenotype of primary human Sertoli cells, an unlimited proliferation potential and high safety, which could offer sufficient human Sertoli cells for basic research as well as reproductive and regenerative medicine. PMID:28152522

  18. Derivation of the King's College London human embryonic stem cell lines.

    PubMed

    Stephenson, Emma L; Braude, Peter R

    2010-04-01

    Since the derivation of the first human embryonic stem cell (hESC) line in 1998, there has been substantial interest in the potential of these cells for regenerative medicine and cell therapy and in the use of hESCs carrying clinically relevant genetic mutations as models for disease research and therapeutic target identification. There is still a need to improve derivation efficiency and further the understanding of the basic biology of these cells and to develop clinical grade culture systems with the aim of producing cell lines suitable for subsequent manipulation for therapy. The derivation of initial hESC lines at King's College London is discussed here, with focus on derivation methodology. Each of the derivations was distinctive. Although the stage and morphology of each blastocyst were generally similar in each attempt, the behaviour of the colonies was unpredictable; colony morphology and development was different with each attempt. Days 5, 6 and 7 blastocysts were used successfully, and the number of days until appearance of stem-like cells varied from 4 to 14 d. Routine characterisation analyses were performed on three lines, all of which displayed appropriate marker expression and survived cryopreservation-thaw cycles. From the lines discussed, four are at various stages of the deposition process with the UKSCB, one is pending submission and two are unsuitable for banking. Continued open and transparent reporting of results and collaborations will maximise the efficiency of derivation and facilitate the development of standardised protocols for the derivation and early culture of hESC lines.

  19. Silencing of B7-H4 suppresses the tumorigenicity of the MGC-803 human gastric cancer cell line and promotes cell apoptosis via the mitochondrial signaling pathway.

    PubMed

    Zhou, Donghui; Zhou, Yong; Li, Chao; Yang, Lina

    2018-04-01

    B7-H4 is a transmembrane protein which is a member of the B7 superfamily. It is overexpressed in various types of cancer, including gastric cancer. However, the effects of B7-H4 on the tumorigenicity of gastric cancer and the underlying mechanisms have not yet been fully explored. Thus, the aim of this study was to examine the effects of B7-H4 on the tumorigenicity of gastric cancer cells and to elucidate the underlying mechanisms. For this purpose, B7-H4 expression in gastric cancer tissues was detected by immunohistochemical staining. The effects of B7-H4 on the biological behavior of the MGC-803 human gastric cancer cell line were examined by Cell Counting kit-8 (CCK-8) assay, cell cycle analysis, wound healing assay, Annexin V/propidium iodide staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Moreover, the expression levels of apoptotic markers, such as cleaved caspase‑3, cleaved caspase‑9, Bcl-2 and Bax were examined by western blot analysis. Immunohistochemical staining revealed that a high expression of B7-H4 was found in about 41.8% of tissues obtained from patients with gastric cancer. Comparative analysis revealed that B7-H4 expression significantly correlated with lymph node metastasis and the TNM stage. The results of CCK-8 assay, cell cycle analysis, wound healing assay, Annexin V/propidium iodide staining assay and TUNEL assay all demonstrated that the silencing of B7-H4 by small interfering RNA decreased cell proliferation, suppressed cell motility, and induced cell cycle arrest and the apoptosis of MGC-803 human gastric cancer cells. Furthermore, the results of western blot analysis indicated that the downregulation of B7-H4 induced the apoptosis of the MGC-803 cells via the mitochondrial signaling pathway through the activation of caspase‑3 and caspase‑9, and by altering the Bax/Bcl-2 ratio in a manner that favored apoptosis. Based on the findings on human gastric cancer cell line MGC-803, the

  20. Cervical Cancer Cell Line Secretome Highlights the Roles of Transforming Growth Factor-Beta-Induced Protein ig-h3, Peroxiredoxin-2, and NRF2 on Cervical Carcinogenesis.

    PubMed

    Kontostathi, Georgia; Zoidakis, Jerome; Makridakis, Manousos; Lygirou, Vasiliki; Mermelekas, George; Papadopoulos, Theofilos; Vougas, Konstantinos; Vlamis-Gardikas, Alexios; Drakakis, Peter; Loutradis, Dimitrios; Vlahou, Antonia; Anagnou, Nicholas P; Pappa, Kalliopi I

    2017-01-01

    Cancer cells acquire unique secretome compositions that contribute to tumor development and metastasis. The aim of our study was to elucidate the biological processes involved in cervical cancer, by performing a proteomic analysis of the secretome from the following informative cervical cell lines: SiHa (HPV16+), HeLa (HPV18+), C33A (HPV-), and HCK1T (normal). Proteins were analyzed by 2D gel electrophoresis coupled to MALDI-TOF-MS. Enrichment of secreted proteins with characteristic profiles for each cell line was followed by the identification of differentially expressed proteins. Particularly, transforming growth factor-beta-induced protein ig-h3 (Beta ig-h3) and peroxiredoxin-2 (PRDX2) overexpression in the secretome of cancer cell lines was detected and confirmed by Western blot. Bioinformatics analysis identified the transcription factor NRF2 as a regulator of differentially expressed proteins in the cervical cancer secretome. NRF2 levels were measured by both Western blot and Multiple Reaction Monitoring (MRM) in the total cell extract of the four cell lines. NRF2 was upregulated in SiHa and C33A compared to HCK1T. In conclusion, the secreted proteins identified in cervical cancer cell lines indicate that aberrant NRF2-mediated oxidative stress response (OSR) is a prominent feature of cervical carcinogenesis.

  1. Adaptation of the human Cell Line Activation Test (h-CLAT) to Animal-Product-Free Conditions.

    PubMed

    Edwards, Alexander; Roscoe, Lottie; Longmore, Christopher; Bailey, Fiona; Sim, Bushra; Treasure, Carol

    2018-06-13

    Skin sensitisers are substances that can elicit allergic responses following skin contact and the process by which this occurs is described as skin sensitisation. Skin sensitisation is defined as a series of key events, that form an adverse outcome pathway (AOP). Key event three in the AOP is dendritic cell activation that can be modelled by the human Cell Line Activation Test (h-CLAT) and is typified by changes in cell surface markers CD54 and CD86 in dendritic cells. The h-CLAT is accepted at a regulatory level (OECD Test-Guideline (TG)442E) and can be used to assess skin sensitisation potential as part of an integrated approach to testing and assessment (IATA). Stakeholders in the cosmetics and chemical industries have scientific and ethical concerns relating to use of animal derived material and have communicated a strong preference for fully human based in vitro methods. Therefore, we adapted the h-CLAT to animal-product-free conditions and validated the adapted method with the proficiency panel substances in Annex II of TG442E, using 3 independent batches of pooled human serum. The modified method showed equivalence to the validated reference method (VRM), as all proficiency substances were correctly classified. Comparable values for CV75 (concentration yielding 75% cell viability), EC150 and EC200 (concentration yielding RFI of ≥150 for CD86 and ≥200 for CD54) were obtained. Data generated using the adapted method may be used in European REACH submissions, provided the proficiency data is included. We are seeking formal inclusion of the adaptation into TG442E, enabling compliance with global regulations.

  2. Destruxin B Isolated from Entomopathogenic Fungus Metarhizium anisopliae Induces Apoptosis via a Bcl-2 Family-Dependent Mitochondrial Pathway in Human Nonsmall Cell Lung Cancer Cells

    PubMed Central

    Wu, Chun-Chi; Chen, Tzu-Hsiu; Liu, Bing-Lan; Wu, Li-Chen; Chen, Yung-Ching; Tzeng, Yew-Min; Hsu, Shih-Lan

    2013-01-01

    Destruxin B, isolated from entomopathogenic fungus Metarhizium anisopliae, is one of the cyclodepsipeptides with insecticidal and anticancer activities. In this study, destruxin B was extracted and purified by ion-exchange chromatography, silica gel chromatography, and semipreparative high-performance liquid chromatography. The potential anticancer effects and molecular mechanisms of destruxin B in human nonsmall cell lung cancer cell lines were characterized. Our results showed that destruxin B induced apoptotic cell death in A549 cells. This event was accompanied by the activation of caspase-2, -3, and -9. Moreover, destruxin B increased the expression level of proapoptotic molecule, PUMA, while decreased antiapoptotic molecule Mcl-1. Additionally, the translocation of Bax from cytosol to mitochondrial membrane was observed upon destruxin B treatment. Knockdown of Bax by shRNA effectively attenuated destruxin-B-triggered apoptosis in A549 cells. Interestingly, similar toxic effects and underlying mechanisms including caspase activation, upregulation of PUMA, and downregulation of Mcl-1 were also observed in a p53-null lung cancer H1299 cell line upon destruxin B treatment. Taken together, our findings suggest that destruxin-B-induced apoptosis in human nonsmall cell lung cancer cells is via a Bcl-2 family-dependent mitochondrial pathway. PMID:24204395

  3. Cordycepin Induces Apoptosis and Inhibits Proliferation of Human Lung Cancer Cell Line H1975 via Inhibiting the Phosphorylation of EGFR.

    PubMed

    Wang, Zheng; Wu, Xue; Liang, Yan-Ni; Wang, Li; Song, Zhong-Xing; Liu, Jian-Li; Tang, Zhi-Shu

    2016-09-27

    Cordycepin is an active component of the traditional Chinese medicine Cordyceps sinensis and Cordyceps militaris with notable anticancer activity. Though the prominent inhibitory activity was reported in different kinds of cancer cell lines, the concrete mechanisms remain elusive. It was reported that cordycepin could be converted into tri-phosphates in vivo to confuse a number of enzymes and interfere the normal cell function. For the inhibitory mechanism of EGFR inhibitors and the structure similarity of ATP and tri-phosphated cordycepin, human lung cancer cell line H1975 was employed to investigate the inhibitory effect of cordycepin. The results showed that cordycepin could inhibit cell proliferation and induce apoptosis in a dose-dependent manner. Cell cycle analysis revealed that H1975 cells could be arrested at the G₀/G₁ phase after cordycepin treatment. The expression levels of apoptosis-related protein Caspase-3 and Bcl-2 and phosphorylated expression levels of EGFR, AKT and ERK1/2 were all decreased compared with the control group stimulated with EGF. However, the protein expression levels of proapoptotic protein Bax and cleaved caspase-3 were increased. These results implied that cordycepin could inhibit cell proliferation and induce apoptosis via the EGFR signaling pathway. Our results indicated that there was potential to seek a novel EGFR inhibitor from cordycepin and its chemical derivatives.

  4. Characterization of osimertinib (AZD9291)-resistant non-small cell lung cancer NCI-H1975/OSIR cell line

    PubMed Central

    Guo, Xia; Fong, Chi Man Vivienne; Chen, Xiuping; Lu, Jin-Jian

    2016-01-01

    Osimertinib (OSI, also known as AZD9291) is the newest FDA-approved epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor for non-small cell lung cancer (NSCLC) patients with EGFR T790M mutation. However, resistance to OSI is likely to progress and the study of potential OSI-resistant mechanisms in advanced is necessary. Here, the OSI-resistant NCI-H1975/OSIR cells were established. After cells developed resistance to OSI, cell proliferation was decreased while cell migration and invasion were increased. The NCI-H1975/OSIR cells exhibited more resistance to gefitinib, erlotinib, afatinib, rociletinib, doxorubicin, and fluorouracil, meanwhile showing higher sensitivity to paclitaxel, when compared with NCI-H1975 cells. In addition, the NCI-H1975/OSIR cells did not display multidrug resistance phenotype. The activation and expression of EGFR were decreased after cells exhibited resistance. Compared with NCI-H1975 cells, the activation of ERK and AKT in NCI-H1975/OSIR cells could not be significantly inhibited by OSI treatment. Navitoclax (ABT-263)-induced cell viability inhibition and apoptosis were more significant in NCI-H1975/OSIR cells than that in NCI-H1975 cells. Moreover, these effects of navitoclax in NCI-H1975/OSIR cells could be reversed by pretreatment of Z-VAD-FMK. Collectively, loss of EGFR could pose as one of the OSI-resistant mechanisms and navitoclax might be the candidate drug for OSI-resistant NSCLC patients. PMID:27835594

  5. Optimization of trypsins for influenza A/H1N1 virus replication in MDCK SI-6 cells, a novel MDCK cell line.

    PubMed

    Iskandar, Viska I; Sasaki, Yutaka; Yoshino, Naoto; Abubakar, Raden Z R; Sato, Shigehiro; Muraki, Yasushi

    2018-02-01

    A cell-based vaccine production method for influenza virus may be an effective and more rapid alternative to egg-based systems. For high-yield virus production, the effect of bovine, porcine, fungal, and recombinant trypsins on influenza A/H1N1 virus replication in MDCK SI-6 cells (SI-6 cells), a novel MDCK cell line developed by our research group, was examined. SI-6 cells infected with influenza A/H1N1 virus were incubated in the presence of four trypsin types at various concentrations, and virus yields in the culture medium were evaluated by a hemagglutination (HA) assay. Virus growth was most efficient in the presence of bovine and porcine trypsins. An analysis of the optimized concentration and definitive HA titer of each trypsin by Gaussian distribution revealed that comparable high virus yields (166.1 and 164.2 HAU/50μl) were obtained at the optimized concentrations of bovine (0.4μg/ml) and porcine (2.1μg/ml) trypsins, respectively, the yields of which were significantly higher than that of fungal and recombinant trypsins. We conclude that bovine and porcine trypsins are suitable for influenza A/H1N1 virus replication in SI-6 cells. This result complements our previous study and suggests the possible application of SI-6 cells to the development of cell-based influenza vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Spindle pole body component 25 homolog expressed by ECM stiffening is required for lung cancer cell proliferation.

    PubMed

    Jeong, Jangho; Keum, Seula; Kim, Daehwan; You, Eunae; Ko, Panseon; Lee, Jieun; Kim, Jaegu; Kim, Jung-Woong; Rhee, Sangmyung

    2018-06-12

    Accumulating evidence has shown that matrix stiffening in cancer tissue by the deposition of extracellular matrix (ECM) is closely related with severe tumor progression. However, much less is known about the genes affected by matrix stiffness and its signaling for cancer progression. In the current research, we investigated the differential gene expression of a non-small lung adenocarcinoma cell line, H1299, cultured under the conditions of soft (∼0.5 kPa) and stiff (∼40 kPa) matrices, mimicking the mechanical environments of normal and cancerous tissues, respectively. For integrated transcriptome analysis, the genes identified by ECM stiffening were compared with 8248 genes retrieved from The Cancer Genome Atlas Lung Adenocarcinoma (TCGA). In stiff matrix, 29 genes were significantly upregulated, while 75 genes were downregulated. The screening of hazard ratios for these genes using the Kaplan-Meier Plotter identified 8 genes most closely associated with cancer progression under the condition of matrix stiffening. Among these genes, spindle pole body component 25 homolog (SPC25) was one of the most up-regulated genes in stiff matrix and tumor tissue. Knockdown of SPC25 in H1299cells using shRNA significantly inhibited cell proliferation with downregulation of the expression of checkpoint protein, Cyclin B1, under the condition of stiff matrix whereas the proliferation rate in soft matrix was not affected by SPC25 silencing. Thus, our findings provide novel key molecules for studying the relationship of extracellular matrix stiffening and cancer progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Cervical Cancer Cell Line Secretome Highlights the Roles of Transforming Growth Factor-Beta-Induced Protein ig-h3, Peroxiredoxin-2, and NRF2 on Cervical Carcinogenesis

    PubMed Central

    Zoidakis, Jerome; Makridakis, Manousos; Lygirou, Vasiliki; Mermelekas, George; Vougas, Konstantinos; Drakakis, Peter

    2017-01-01

    Cancer cells acquire unique secretome compositions that contribute to tumor development and metastasis. The aim of our study was to elucidate the biological processes involved in cervical cancer, by performing a proteomic analysis of the secretome from the following informative cervical cell lines: SiHa (HPV16+), HeLa (HPV18+), C33A (HPV−), and HCK1T (normal). Proteins were analyzed by 2D gel electrophoresis coupled to MALDI-TOF-MS. Enrichment of secreted proteins with characteristic profiles for each cell line was followed by the identification of differentially expressed proteins. Particularly, transforming growth factor-beta-induced protein ig-h3 (Beta ig-h3) and peroxiredoxin-2 (PRDX2) overexpression in the secretome of cancer cell lines was detected and confirmed by Western blot. Bioinformatics analysis identified the transcription factor NRF2 as a regulator of differentially expressed proteins in the cervical cancer secretome. NRF2 levels were measured by both Western blot and Multiple Reaction Monitoring (MRM) in the total cell extract of the four cell lines. NRF2 was upregulated in SiHa and C33A compared to HCK1T. In conclusion, the secreted proteins identified in cervical cancer cell lines indicate that aberrant NRF2-mediated oxidative stress response (OSR) is a prominent feature of cervical carcinogenesis. PMID:28261610

  8. Electrical characterization of single cells using polysilicon wire ion sensor in an isolation window.

    PubMed

    Wu, You-Lin; Hsu, Po-Yen; Hsu, Chung-Ping; Wang, Chih-Cheng; Lee, Li-Wen; Lin, Jing-Jenn

    2011-10-01

    A polysilicon wire (PSW) sensor can detect the H(+) ion density (pH value) of the medium coated on its surface, and different cells produce different extracellular acidification and hence different H(+) ion densities. Based on this, we used a PSW sensor in combination with a mold-cast polydimethylsiloxane (PDMS) isolation window to detect the adhesion, apoptosis and extracellular acidification of single normal cells and single cancer cells. Single living human normal cells WI38, MRC5, and BEAS-2B as well as non-small-cell lung cancer (NSCLC) cells A549, H1299, and CH27 were cultivated separately inside the isolation window. The current flowing through the PSW channel was measured. From the PSW channel current change as a function of time, we determined the cell adhesion time by observing the time required for the current change to saturate, since a stable extracellular ion density was established after the cells were completely adhered to the PSW surface. The apoptosis of cells can also be determined when the channel current change drops to zero. We found that all the NSCLC cells had a higher channel current change and hence a lower pH value than the normal cells anytime after they were seeded. The corresponding average pH values were 5.86 for A549, 6.00 for H1299, 6.20 for CH27, 6.90 for BEAS-2B, 6.96for MRC5, and 7.02 for WI38, respectively, after the cells were completely adhered to the PSW surface. Our results show that NSCLC cells have a stronger cell-substrate adhesion and a higher extracellular acidification rate than normal cells.

  9. Glutamine drives glutathione synthesis and contributes to radiation sensitivity of A549 and H460 lung cancer cell lines

    PubMed Central

    Sappington, Daniel R.; Siegel, Eric R.; Hiatt, Gloria; Desai, Abhishek; Penney, Rosalind B.; Jamshidi-Parsian, Azemat; Griffin, Robert J.; Boysen, Gunnar

    2016-01-01

    Background Increased glutamine uptake is known to drive cancer cell proliferation, making tumor cells glutamine-dependent. Glutamine provides additional carbon and nitrogen sources for cell growth. The first step in glutamine utilization is its conversion to glutamate by glutaminase (GLS). Glutamate is a precursor for glutathione synthesis, and we investigated the hypothesis that glutamine drives glutathione synthesis and thereby contributes to cellular defense systems. Methods The importance of glutamine for glutathione synthesis was studied in H460 and A549 lung cancer cell lines using glutamine-free medium and Bis-2-(5-phenyl-acetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) a GLS inhibitor. Metabolic activities were determined by targeted mass spectrometry. Results A significant correlation between glutamine consumption and glutathione excretion was demonstrated in H460 and A549 tumor cells. Culturing in the presence of [13C5]glutamine demonstrated that by 12 hrs >50% of excreted glutathione is derived from glutamine. Culturing in glutamine-free medium or treatment with BPTES, a glutaminase (GLS)-specific inhibitor, reduced cell proliferation and viability, and abolished glutathione excretion. Treatment with glutathione-ester prevented BPTES induced cytotoxicity. Inhibition of GLS markedly radiosensitized the lung tumor cell lines, suggesting an important role of glutamine-derived glutathione in determining radiation sensitivity. Conclusions We demonstrate here for the first time that a significant amount of extracellular glutathione is directly derived from glutamine. This finding adds yet another important function to the already known glutamine dependence of tumor cells and probably tumors as well. General significance Glutamine is essential for synthesis and excretion of glutathione to promote cell growth and viability. PMID:26825773

  10. Establishment of a Brazilian line of human embryonic stem cells in defined medium: implications for cell therapy in an ethnically diverse population.

    PubMed

    Fraga, Ana M; Sukoyan, Marina; Rajan, Prithi; Braga, Daniela Paes de Almeida Ferreira; Iaconelli, Assumpto; Franco, José Gonçalves; Borges, Edson; Pereira, Lygia V

    2011-01-01

    Pluripotent human embryonic stem (hES) cells are an important experimental tool for basic and applied research, and a potential source of different tissues for transplantation. However, one important challenge for the clinical use of these cells is the issue of immunocompatibility, which may be dealt with by the establishment of hES cell banks to attend different populations. Here we describe the derivation and characterization of a line of hES cells from the Brazilian population, named BR-1, in commercial defined medium. In contrast to the other hES cell lines established in defined medium, BR-1 maintained a stable normal karyotype as determined by genomic array analysis after 6 months in continuous culture (passage 29). To our knowledge, this is the first reported line of hES cells derived in South America. We have determined its genomic ancestry and compared the HLA-profile of BR-1 and another 22 hES cell lines established elsewhere with those of the Brazilian population, finding they would match only 0.011% of those individuals. Our results highlight the challenges involved in hES cell banking for populations with a high degree of ethnic admixture.

  11. Establishment and characterization of three immortal bovine muscular epithelial cell lines.

    PubMed

    Jin, Xun; Lee, Joong-Seob; Kwak, Sungwook; Lee, Soo-Yeon; Jung, Ji-Eun; Kim, Tae-Kyung; Xu, Chenxiong; Hong, Zhongshan; Li, Zhehu; Kim, Sun-Myung; Pian, Xumin; Lee, Dong-Hee; Yoon, Jong-Taek; You, Seungkwon; Choi, Yun-Jaie; Kim, Huunggee

    2006-02-28

    We have established three immortal bovine muscular epithelial (BME) cell lines, one spontaneously immortalized (BMES), the second SV40LT-mediated (BMEV) and the third hTERT-mediated (BMET). The morphology of the three immortal cell lines was similar to that of early passage primary BME cells. Each of the immortal cell lines made cytokeratin, a typical epithelial marker. BMET grew faster than the other immortal lines and the BME cells, in 10% FBS-DMEM medium, whereas neither the primary cells nor the three immortal cell lines grew in 0.5% FBS-DMEM. The primary BME cells and the immortal cell lines, with the exception of BMES, made increasing amounts of p53 protein when treated with doxorubicin, a DNA damaging agent. On the other hand, almost half of the cells in populations of the three immortal cell lines may lack p16(INK4a) regulatory function, compared to primary BME cells that were growth arrested by enforced expression of p16(INK4a). In soft-agar assays, the primary cells and immortal cell lines proved to be less transformed in phenotype than HeLa cells. The three immortal epithelial-type cell lines reported here are the first cell lines established from muscle tissue of bovine or other species.

  12. Nontoxic concentration of DNA-PK inhibitor NU7441 radio-sensitizes lung tumor cells with little effect on double strand break repair.

    PubMed

    Sunada, Shigeaki; Kanai, Hideki; Lee, Younghyun; Yasuda, Takeshi; Hirakawa, Hirokazu; Liu, Cuihua; Fujimori, Akira; Uesaka, Mitsuru; Okayasu, Ryuichi

    2016-09-01

    High-linear energy transfer (LET) heavy ions have been increasingly employed as a useful alternative to conventional photon radiotherapy. As recent studies suggested that high LET radiation mainly affects the nonhomologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair, we further investigated this concept by evaluating the combined effect of an NHEJ inhibitor (NU7441) at a non-toxic concentration and carbon ions. NU7441-treated non-small cell lung cancer (NSCLC) A549 and H1299 cells were irradiated with X-rays and carbon ions (290 MeV/n, 50 keV/μm). Cell survival was measured by clonogenic assay. DNA DSB repair, cell cycle distribution, DNA fragmentation and cellular senescence induction were studied using a flow cytometer. Senescence-associated protein p21 was detected by western blotting. In the present study, 0.3 μM of NU7441, nontoxic to both normal and tumor cells, caused a significant radio-sensitization in tumor cells exposed to X-rays and carbon ions. This concentration did not seem to cause inhibition of DNA DSB repair but induced a significant G2/M arrest, which was particularly emphasized in p53-null H1299 cells treated with NU7441 and carbon ions. In addition, the combined treatment induced more DNA fragmentation and a higher degree of senescence in H1299 cells than in A549 cells, indicating that DNA-PK inhibitor contributes to various modes of cell death in a p53-dependent manner. In summary, NSCLC cells irradiated with carbon ions were radio-sensitized by a low concentration of DNA-PK inhibitor NU7441 through a strong G2/M cell cycle arrest. Our findings may contribute to further effective radiotherapy using heavy ions. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  13. Influenza viruses production: Evaluation of a novel avian cell line DuckCelt®-T17.

    PubMed

    Petiot, Emma; Proust, Anaïs; Traversier, Aurélien; Durous, Laurent; Dappozze, Frédéric; Gras, Marianne; Guillard, Chantal; Balloul, Jean-Marc; Rosa-Calatrava, Manuel

    2018-05-24

    The influenza vaccine manufacturing industry is looking for production cell lines that are easily scalable, highly permissive to multiple viruses, and more effective in term of viral productivity. One critical characteristic of such cell lines is their ability to grow in suspension, in serum free conditions and at high cell densities. Influenza virus causing severe epidemics both in human and animals is an important threat to world healthcare. The repetitive apparition of influenza pandemic outbreaks in the last 20years explains that manufacturing sector is still looking for more effective production processes to replace/supplement embryonated egg-based process. Cell-based production strategy, with a focus on avian cell lines, is one of the promising solutions. Three avian cell lines, namely duck EB66®cells (Valneva), duck AGE.CR® cells (Probiogen) and quail QOR/2E11 cells (Baxter), are now competing with traditional mammalian cell platforms (Vero and MDCK cells) used for influenza vaccine productions and are currently at advance stage of commercial development for the manufacture of influenza vaccines. The DuckCelt®-T17 cell line presented in this work is a novel avian cell line developed by Transgene. This cell line was generated from primary embryo duck cells with the constitutive expression of the duck telomerase reverse transcriptase (dTERT). The DuckCelt®-T17 cells were able to grow in batch suspension cultures and serum-free conditions up to 6.5×10 6 cell/ml and were easily scaled from 10ml up to 3l bioreactor. In the present study, DuckCelt®-T17 cell line was tested for its abilities to produce various human, avian and porcine influenza strains. Most of the viral strains were produced at significant infectious titers (>5.8 log TCID50/ml) with optimization of the infection conditions. Human strains H1N1 and H3N2, as well as all the avian strains tested (H5N2, H7N1, H3N8, H11N9, H12N5) were the most efficiently produced with highest titre reached of 9

  14. CLO: The cell line ontology

    PubMed Central

    2014-01-01

    Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development. PMID:25852852

  15. Derivation of novel genetically diverse human embryonic stem cell lines.

    PubMed

    Stefanova, Valentina T; Grifo, James A; Hansis, Christoph

    2012-06-10

    Human embryonic stem cells (hESCs) have the potential to revolutionize many biomedical fields ranging from basic research to disease modeling, regenerative medicine, drug discovery, and toxicity testing. A multitude of hESC lines have been derived worldwide since the first 5 lines by Thomson et al. 13 years ago, but many of these are poorly characterized, unavailable, or do not represent desired traits, thus making them unsuitable for application purposes. In order to provide the scientific community with better options, we have derived 12 new hESC lines at New York University from discarded genetically normal and abnormal embryos using the latest techniques. We examined the genetic status of the NYUES lines in detail as well as their molecular and cellular features and DNA fingerprinting profile. Furthermore, we differentiated our hESCs into the tissues most affected by a specific condition or into clinically desired cell types. To our knowledge, a number of characteristics of our hESCs have not been previously reported, for example, mutation for alpha thalassemia X-linked mental retardation syndrome, linkage to conditions with a genetic component such as asthma or poor sperm morphology, and novel combinations of ethnic backgrounds. Importantly, all of our undifferentiated euploid female lines tested to date did not show X chromosome inactivation, believed to result in superior potency. We continue to derive new hESC lines and add them to the NIH registry and other registries. This should facilitate the use of our hESCs and lead to advancements for patient-benefitting applications.

  16. Derivation and characterization of human embryonic stem cell lines from poor quality embryos.

    PubMed

    Liu, Weiqiang; Yin, Yifei; Long, Xiaolin; Luo, Yumei; Jiang, Yonghua; Zhang, Wenhong; Du, Hongzi; Li, Shaoying; Zheng, Yuhong; Li, Qing; Chen, Xinjie; Liao, Baoping; Xiao, Guohong; Wang, Weihua; Sun, Xiaofang

    2009-04-01

    Poor quality embryos discarded from in vitro fertilization (IVF) laboratories are good sources for deriving human embryonic stem cell (hESC) lines. In this study, 166 poor quality embryos donated from IVF centers on day 3 were cultured in a blastocyst medium for 2 days, and 32 early blastocysts were further cultured in a blastocyst optimum culture medium for additional 2 days so that the inner cell masses (ICMs) could be identified and isolated easily. The ICMs of 17 blastocysts were isolated by a mechanical method, while those of the other 15 blastocysts were isolated by immunosurgery. All isolated ICMs were inoculated onto a feeder layer for subcultivation. The rates of ICM attachment, primary ICM colony formation and the efficiency of hESC derivation were similar between the ICMs isolated by the two methods (P>0.05). As a result, four new hESC lines were established. Three cell lines had normal karyotypes and one had an unbalanced Robertsonian translocation. All cell lines showed normal hESC characteristics and had the differentiation ability. In conclusion, we established a stable and effective method for hESC isolation and culture, and it was confirmed that the mechanical isolation was an effective method to isolate ICMs from poor embryos. These results further indicate that hESC lines can be derived from poor quality embryos discarded by IVF laboratories.

  17. Increasing The Genetic Admixture of Available Lines of Human Pluripotent Stem Cells

    PubMed Central

    Tofoli, Fabiano A.; Dasso, Maximiliano; Morato-Marques, Mariana; Nunes, Kelly; Pereira, Lucas Assis; da Silva, Giselle Siqueira; Fonseca, Simone A. S.; Costas, Roberta Montero; Santos, Hadassa Campos; da Costa Pereira, Alexandre; Lotufo, Paulo A.; Bensenor, Isabela M.; Meyer, Diogo; Pereira, Lygia Veiga

    2016-01-01

    Human pluripotent stem cells (hPSCs) may significantly improve drug development pipeline, serving as an in vitro system for the identification of novel leads, and for testing drug toxicity. Furthermore, these cells may be used to address the issue of differential drug response, a phenomenon greatly influenced by genetic factors. This application depends on the availability of hPSC lines from populations with diverse ancestries. So far, it has been reported that most lines of hPSCs derived worldwide are of European or East Asian ancestries. We have established 23 lines of hPSCs from Brazilian individuals, and we report the analysis of their genomic ancestry. We show that embryo-derived PSCs are mostly of European descent, while induced PSCs derived from participants of a national-wide Brazilian cohort study present high levels of admixed European, African and Native American genomic ancestry. Additionally, we use high density SNP data and estimate local ancestries, particularly those of CYP genes loci. Such information will be of key importance when interpreting variation among cell lines with respect to cellular phenotypes of interest. The availability of genetically admixed lines of hPSCs will be of relevance when setting up future in vitro studies of drug response. PMID:27708369

  18. Hydrophilic CeO2 nanocubes protect pancreatic β-cell line INS-1 from H2O2-induced oxidative stress

    NASA Astrophysics Data System (ADS)

    Lyu, Guang-Ming; Wang, Yan-Jie; Huang, Xue; Zhang, Huai-Yuan; Sun, Ling-Dong; Liu, Yan-Jun; Yan, Chun-Hua

    2016-04-01

    Oxidative stress plays a key role in the occurrence and development of diabetes. With their unique redox properties, CeO2 nanoparticles (nanoceria) exhibit promising potential for the treatment of diabetes resulting from oxidative stress. Here, we develop a novel preparation of hydrophilic CeO2 nanocubes (NCs) with two different sizes (5 nm and 25 nm) via an acetate assisted hydrothermal method. Dynamic light scattering, zeta potential measurements and thermogravimetric analyses were utilized to investigate the changes in the physico-chemical characteristics of CeO2 NCs when exposed to in vitro cell culture conditions. CCK-8 assays revealed that the CeO2 NCs did not impair cell proliferation in the pancreatic β-cell line INS-1 at the highest dose of 200 μg mL-1 over the time scale of 72 h, while being able to protect INS-1 cells from H2O2-induced cytotoxicity even after protein adsorption. It is also noteworthy that nanoceria with a smaller hydrodynamic radius exhibit stronger antioxidant and anti-apoptotic effects, which is consistent with their H2O2 quenching capability in biological systems. These findings suggest that nanoceria can be used as an excellent antioxidant for controlling oxidative stress-induced pancreatic β-cell damage.Oxidative stress plays a key role in the occurrence and development of diabetes. With their unique redox properties, CeO2 nanoparticles (nanoceria) exhibit promising potential for the treatment of diabetes resulting from oxidative stress. Here, we develop a novel preparation of hydrophilic CeO2 nanocubes (NCs) with two different sizes (5 nm and 25 nm) via an acetate assisted hydrothermal method. Dynamic light scattering, zeta potential measurements and thermogravimetric analyses were utilized to investigate the changes in the physico-chemical characteristics of CeO2 NCs when exposed to in vitro cell culture conditions. CCK-8 assays revealed that the CeO2 NCs did not impair cell proliferation in the pancreatic β-cell line INS-1 at

  19. Bactericidal impact of Ag, ZnO and mixed AgZnO colloidal nanoparticles on H37Rv Mycobacterium tuberculosis phagocytized by THP-1 cell lines.

    PubMed

    Jafari, Alireza; Mosavari, Nader; Movahedzadeh, Farahnaz; Nodooshan, Saeedeh Jafari; Safarkar, Roya; Moro, Rossella; Kamalzadeh, Morteza; Majidpour, Ali; Boustanshenas, Mina; Mosavi, Tahereh

    2017-09-01

    The purpose of this research project was to infection of human macrophages (THP-1) cell lines by H 37 Rv strain of Mycobacterium tuberculosis (H 37 RvMTB) and find out the ratio/dilution of mixture silver (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) whose ability to eliminate phagocytized bacteria compared to rifampicin. The colloidal Ag NPs and ZnO NPs were synthesized and their characteristics were evaluated. The THP-1 cell lines were infected with different concentration of H 37 RvMTB. Next, the infected cells were treated with different ratios/dilutions of Ag NPs, ZnO NPs and rifampicin. The THP-1 were lysed and were cultured in Lowenstein-Jensen agar medium, for eight weeks. The TEM and AFM images of NPs and H 37 RvMTB were supplied. It is observed that Ag NPs, 2 Ag :8 ZnO and 8 Ag :2 ZnO did not have any anti-tubercular effects on phagocytized H 37 RvMTB. Conversely, ZnO NPs somehow eliminated 18.7 × 10 4  CFU ml -1 of H 37 RvMTB in concentration of ∼ 0.468 ppm. To compare with 40 ppm of rifampicin, ∼ 0.663 ppm of 5 Ag :5 ZnO had the ability to kill of H 37 RvMTB, too. Based on previous research, ZnO NPs had strong anti-tubercular impact against H 37 RvMTB to in-vitro condition, but it was toxic in concentration of ∼ 0.468 ppm to both of THP-1 and normal lung (MRC-5) cell lines. It also seems that 5 Ag :5 ZnO is justified because in concentration of ∼ 0.663 ppm of 5 Ag :5 ZnO , phagocytized H 37 RvMTB into the THP-1 had died without any toxicity effects against THP-1 and also MRC-5 cell lines. It is obvious that the mixture of colloidal silver and zinc oxide NPs with ratio of 5 Ag :5 ZnO would be trustworthy options as anti-tubercular nano-drugs in future researches. Copyright © 2017. Published by Elsevier Ltd.

  20. Effects of phytoestrogens on the trophoblast tumour cell lines BeWo and Jeg3.

    PubMed

    Plessow, D; Waldschläger, J; Richter, D U; Jeschke, U; Bruer, G; Briese, V; Friese, K

    2003-01-01

    Phytoestrogens are a diverse group of nonsteroidal plant compounds that occur naturally in many plants. Because they possess a ring system similar to estrogens they are able to bind to estrogen receptors in humans. With this study we tested the effects of the phytoestrogens genistein and daidzein in cell proliferation and the production of progesterone and hCG in trophoblast tumour cells of the cell lines BeWo and Jeg3. The phytoestrogens genistein and daidzein were incubated in different concentrations with trophoblast tumour cells. Untreated cells were used as controls. At designated times, aliquots were removed and tested for progesterone and hCG. In addition we tested the effects of phytoestrogens on cell proliferation. Different concentrations of genistein and daidzein were cultivated with trophoblast tumour cells. After designated times, 1 microCi thymidin-(methyl-3H) was added. Methyl-3H thymidin incorporation was tested and compared to incorporation results of untreated cells. With this study we could show that the production of the steroid hormone progesterone and the protein hormone hCG is influenced by the phytoestrogens genistein and daidzein in trophoblast tumour cells of the cell lines BeWo and Jeg3. We found a correlation between the effects on the proliferation and the production of progesterone and hCG at high concentrations of genistein and daidzein in the cell lines tested. With low concentrations of genistein and daidzein we observed a stimulation of the production of hCG and a weak inhibition of proliferation in both cell lines BeWo and Jeg3. The results obtained with this study suggest that only high doses of phytoestrogens (> 1 mumol/ml) can reduce the proliferation of trophoblast tumour cells significantly. Low doses of phytoestrogens induced a higher hCG production in both cell lines tested. Although high hCG production did not lead to a higher proliferation rate of the tumour cells tested, hCG is able to induce neovascularisation in tumour

  1. hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines

    PubMed Central

    Masi, A; Becchetti, A; Restano-Cassulini, R; Polvani, S; Hofmann, G; Buccoliero, A M; Paglierani, M; Pollo, B; Taddei, G L; Gallina, P; Di Lorenzo, N; Franceschetti, S; Wanke, E; Arcangeli, A

    2005-01-01

    Recent studies have led to considerable advancement in our understanding of the molecular mechanisms that underlie the relentless cell growth and invasiveness of human gliomas. Partial understanding of these mechanisms has (1) improved the classification for gliomas, by identifying prognostic subgroups, and (2) pointed to novel potential therapeutic targets. Some classes of ion channels have turned out to be involved in the pathogenesis and malignancy of gliomas. We studied the expression and properties of K+ channels in primary cultures obtained from surgical specimens: human ether a gò-gò related (hERG)1 voltage-dependent K+ channels, which have been found to be overexpressed in various human cancers, and human ether a gò-gò-like 2 channels, that share many of hERG1's biophysical features. The expression pattern of these two channels was compared to that of the classical inward rectifying K+ channels, IRK, that are widely expressed in astrocytic cells and classically considered a marker of astrocytic differentiation. In our study, hERG1 was found to be specifically overexpressed in high-grade astrocytomas, that is, glioblastoma multiforme (GBM). In addition, we present evidence that, in GBM cell lines, hERG1 channel activity actively contributes to malignancy by promoting vascular endothelial growth factor secretion, thus stimulating the neoangiogenesis typical of high-grade gliomas. Our data provide important confirmation for studies proposing the hERG1 channel as a molecular marker of tumour progression and a possible target for novel anticancer therapies. PMID:16175187

  2. Combined treatment with Ad-hTRAIL and DTIC or SAHA is associated with increased mitochondrial-mediated apoptosis in human melanoma cell lines.

    PubMed

    Lillehammer, Trine; Engesaeter, Birgit O; Prasmickaite, Lina; Maelandsmo, Gunhild M; Fodstad, Oystein; Engebraaten, Olav

    2007-06-01

    Currently, dacarbazine (DTIC) is the only approved systemic treatment for metastatic malignant melanoma. However, the modest treatment effect encourages studies on novel therapeutic molecules, delivery systems and combination therapies. Full-length TRAIL, delivered from an adenoviral vector (Ad-hTRAIL), was studied in combination with DTIC or the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) in human melanoma cell lines. The cytotoxic potential of the combination treatments was assessed by cell viability measurements and CalcuSyn analysis. Involvement of apoptosis was analyzed by TUNEL staining, mitochondrial membrane potential measurements, and activation and expression levels of caspases and other mediators of apoptosis. Ad-hTRAIL in combination with DTIC or SAHA resulted in additive or synergistic growth inhibition compared to each treatment used as single agent. Both combinations augmented apoptosis, which was mediated through the death receptor (DR) pathway by enhanced activation of caspase-8, and through increased loss of mitochondrial integrity. Provoked cleavage of Bid, which bridges the extrinsic and intrinsic apoptosis pathways, and downregulation of the anti-apoptotic mediators Bcl-X(L), Mcl-1 and XIAP (but not Bcl-2) were critical contributing factors. Increased levels of DR4 and DR5 were not a common underlying mechanism as DTIC did not affect the levels of either of the receptors. However, SAHA-induced expression of DR4 may have reduced the TRAIL resistance in the SKMEL-28 cell line. Administration of Ad-hTRAIL in combination with DTIC or SAHA enhances apoptosis in human melanoma cell lines, and suggests that the therapeutic potential of such treatment strategies should be further evaluated for possible clinical use.

  3. MicroRNA-196b Inhibits Cell Growth and Metastasis of Lung Cancer Cells by Targeting Runx2.

    PubMed

    Bai, Xiaoxue; Meng, Lin; Sun, Huijie; Li, Zhuo; Zhang, Xiufang; Hua, Shucheng

    2017-01-01

    Lung cancer is one of the most common causes of cancer related deaths worldwide. The role of several microRNAs (miRNAs) including miR-196b in different cancers has already been established. The study was aimed to explore the role of miR-196b in lung cancer and its possible underlying mechanism. Human lung cancer cell line A549 was transfected with miR-196b mimic, miR-196b inhibitor and corresponding controls. Then cell viability, migration, invasion, and apoptosis of A549 lung cancer cells either with overexpression or with suppression of miR-196b were estimated sequentially. Next, dual luciferase activity assay was performed to clarify whether Runx2 was a direct target of miR-196b. Finally, the expressions of main factors associated with epithelial mesenchymal transition (EMT), PI3K/AKT/GSK3β, Smad, and JNK pathways were detected by western blot. MiR-196b expression was significantly decreased in A549, H1650 and H1299 cell lines compared with in WI-38 and HEL-1 cell lines. Overexpression of miR-196b suppressed cell viability, migration, invasion, and induced apoptosis as well as inhibited TGF-β induced EMT process in A549 cells. In addition, Runx2 was a putative target of miR-196b, and Runx2 silence remarkably increased cell apoptosis and abolished the promotive effects of miR-196b suppression on cell viability, migration and invasion. Finally, miR-196b also mediated its action by inactivation of PI3K/AKT/GSK3β, Smad, and JNK pathways by down-regulation of Runx2. MiR-196b functions as a tumor suppressor that inhibited cell growth and metastasis of lung cancer cells by targeting Runx2. These findings provided further evidences for treatment of lung cancer. The Author(s). Published by S. Karger AG, Basel.

  4. A molecular scheme for improved characterization of human embryonic stem cell lines

    PubMed Central

    Josephson, Richard; Sykes, Gregory; Liu, Ying; Ording, Carol; Xu, Weining; Zeng, Xianmin; Shin, Soojung; Loring, Jeanne; Maitra, Anirban; Rao, Mahendra S; Auerbach, Jonathan M

    2006-01-01

    Background Human embryonic stem cells (hESC) offer a renewable source of a wide range of cell types for use in research and cell-based therapies to treat disease. Inspection of protein markers provides important information about the current state of the cells and data for subsequent manipulations. However, hESC must be routinely analyzed at the genomic level to guard against deleterious changes during extensive propagation, expansion, and manipulation in vitro. Results We found that short tandem repeat (STR) analysis, human leukocyte antigen (HLA) typing, single nucleotide polymorphism (SNP) genomic analysis, mitochondrial DNA sequencing, and gene expression analysis by microarray can be used to fully describe any hESC culture in terms of its identity, stability, and undifferentiated state. Conclusion Here we describe, using molecular biology alone, a comprehensive characterization of 17 different hESC lines. The use of amplified nucleic acids means that for the first time full characterization of hESC lines can be performed with little time investment and a minimum of material. The information thus gained will facilitate comparison of lines and replication of results between laboratories. PMID:16919167

  5. Inhibitory effect of emodin on human hepatoma cell line SMMC-7721 and its mechanism.

    PubMed

    Zhang, Xia; Chen, Yingping; Zhang, Ting; Zhang, Yaming

    2015-03-01

    Da Huang (Radix et Rhizoma Rhei) is the dried root or rhizome of Rheum palmatum L., Rheum tanguticum Maxim ex Balf. or Rheum officinale Braill of family Polygonaceae. It has heat clearing, damp drying, fire purging and toxin removing effects. Because of its definite curative efficacy, it has been widely applied in clinical settings. To study the inhibitory effect of emodin on human hepatoma cell line SMMC-7721 and its mechanism. MTT assay, flow cytometry and electron microscopy were used to investigate the inhibitory effect of different concentrations of emodin on human hepatoma cell line SMMC-7721. 12 h, 24 h and 48 h after the action of 20, 40 and 80 umol/L emodin on SMMC-7721 cells, the proliferation of human hepatoma SMMC-7721 cells was inhibited; the inhibitory effects showed time-and concentration-dependence. 48 h after the action of different concentrations of emodin on SMMC-7721 cells, cells in G2/M phase increased significantly, while the proportion of S phase cells gradually declined. Emodin can inhibit human hepatoma cell line SMMC-7721.

  6. Modulation of microRNA expression in human lung cancer cells by the G9a histone methyltransferase inhibitor BIX01294

    PubMed Central

    PANG, ALAN LAP-YIN; TITLE, ALEXANDRA C.; RENNERT, OWEN M.

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression of their target genes at the post-transcriptional level. In cancer cells, miRNAs, depending on the biological functions of their target genes, may have a tumor-promoting or -suppressing effect. Treatment of cancer cells with inhibitors of DNA methylation and/or histone deacetylation modulates the expression level of miRNAs, which provides evidence for epigenetic regulation of miRNA expression. The consequences of inhibition of histone methyltransferase on miRNA expression, however, have not been thoroughly investigated. The present study examined the expression pattern of miRNAs in the non-small cell lung cancer cell line, H1299 with or without treatment of BIX01294, a potent chemical inhibitor of G9a methyltransferase that catalyzes the mono-and di-methylation of the lysine 9 residue of histone H3. By coupling microarray analysis with quantitative real-time polymerase chain reaction analysis, two miRNAs were identified that showed consistent downregulation following BIX01294 treatment. The results indicate that histone H3 methylation regulates miRNA expression in lung cancer cells, which may provide additional insight for future chemical treatment of lung cancer. PMID:24932239

  7. CellLineNavigator: a workbench for cancer cell line analysis

    PubMed Central

    Krupp, Markus; Itzel, Timo; Maass, Thorsten; Hildebrandt, Andreas; Galle, Peter R.; Teufel, Andreas

    2013-01-01

    The CellLineNavigator database, freely available at http://www.medicalgenomics.org/celllinenavigator, is a web-based workbench for large scale comparisons of a large collection of diverse cell lines. It aims to support experimental design in the fields of genomics, systems biology and translational biomedical research. Currently, this compendium holds genome wide expression profiles of 317 different cancer cell lines, categorized into 57 different pathological states and 28 individual tissues. To enlarge the scope of CellLineNavigator, the database was furthermore closely linked to commonly used bioinformatics databases and knowledge repositories. To ensure easy data access and search ability, a simple data and an intuitive querying interface were implemented. It allows the user to explore and filter gene expression, focusing on pathological or physiological conditions. For a more complex search, the advanced query interface may be used to query for (i) differentially expressed genes; (ii) pathological or physiological conditions; or (iii) gene names or functional attributes, such as Kyoto Encyclopaedia of Genes and Genomes pathway maps. These queries may also be combined. Finally, CellLineNavigator allows additional advanced analysis of differentially regulated genes by a direct link to the Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resources. PMID:23118487

  8. In vitro effects of Apixaban on 5 different cancer cell lines

    PubMed Central

    Guasti, Luigina; Moretto, Paola; Vigetti, Davide; Ageno, Walter; Dentali, Francesco; Maresca, Andrea M.; Campiotti, Leonardo; Grandi, Anna M.; Passi, Alberto

    2017-01-01

    Background Cancer is associated with hypercoagulability. However, several data suggest that anticoagulant drugs may have an effect on tumor development and progression mediated by both coagulation dependent processes and non-coagulation dependent processes. Therefore, we investigated the in vitro effects of Apixaban on cell proliferation, mortality, cell migration, gene expression and matrix metalloproteinase in 5 different cancer cell lines. Methods The following cancer cell lines, and 2 normal fibroblast cultures (lung and dermal fibroblasts), were studied: OVCAR3 (ovarian cancer), MDA MB 231 (breast cancer), CaCO-2 (colon cancer), LNCaP (prostate cancer) and U937 (histiocytic lymphoma). Proliferation and cell mortality were assessed in control cells and Apixaban treated cultures (dose from 0.1 to 5 μg/ml, 0 to 96-h). Necrosis/Apoptosis (fluorescence microscopy), cell migration (24-h after scratch test), matrix metalloproteinase (MMP) activity and mRNA expression (RT PCR) of p16, p21, p53 and HAS were also assessed. Results High-dose (5 μg/ml) Apixaban incubation was associated with a significantly reduced proliferation in 3 cancer cell lines (OVCAR3, CaCO-2 and LNCaP) and with increased cancer cell mortality in all, except LNCaP, cancer lines. Apoptosis seems to account for the increased mortality. The migration capacity seems to be impaired after high-dose Apixaban incubation in OVCAR3 and CaCO-2 cells. Data on mRNA expression suggest a consistent increase in tumor suppression gene p16 in all cell lines. Conclusions Our data suggest that high-dose Apixaban may be able to interfere with cancer cell in vitro, reducing proliferation and increasing cancer cell mortality through apoptosis in several cancer cell lines. PMID:29023465

  9. A defective retroviral vector encoding human interferon-alpha2 can transduce human leukemic cell lines.

    PubMed

    Austruy, E; Bagnis, C; Carbuccia, N; Maroc, C; Birg, F; Dubreuil, P; Mannoni, P; Chabannon, C

    1998-01-01

    Using the LXSN backbone, a defective retroviral vector (LISN) was constructed that encodes the human interferon (IFN)-alpha2 (hIFN-alpha2) gene and the neomycin resistance gene; the hIFN-alpha2 gene was cloned from human placental genomic DNA. High titers of the LISN retrovirus were produced by the amphotropic packaging cell line GP+envAM12. LISN is able to infect three human hematopoietic and leukemic cell lines: K562, LAMA-84, and TF-1. G418-resistant cells were detected in a similar proportion after infection with either the LISN retroviral vector or the LnLSN retroviral vector (encoding the nlsLacZ gene instead of hIFN-alpha2), suggesting that hIFN-alpha2 does not inhibit (or only partially inhibits) the production of retroviral particles by the packaging cell line and the infection of human cells. LISN-infected cells express and secrete hIFN-alpha2 as demonstrated by Northern blot analysis of poly(A)+ RNA, detection of the intracellular protein by fluorescence-activated cell sorter analysis, and detection of secreted hIFN-alpha in cell supernatants using an enzyme-linked immunosorbent assay. Retrovirally produced hIFN-alpha2 is biologically active, as demonstrated by the partial inhibition of the growth of K562 and TF-1, the modulation of the expression of cell surface antigens, the induction of the (2'-5') oligoadenylate synthetase, and, for LAMA-84, the down-modulation of the BCR-ABL protein. We conclude that the infection of human leukemic cell lines with a retroviral vector encoding hIFN-alpha2 is feasible and induces the expected biological effects. This experimental model will be useful in investigating the possibility of transducing normal and leukemic cells and hematopoietic progenitors and in determining the consequences of the autocrine production of hIFN-alpha2 on the behavior of these cells.

  10. WE-H-BRA-06: Experimental Investigation of RBE for Lung Cancer Cell Lines as a Function of Dose and LET in Proton, Helium and Carbon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, D; Titt, U; Bronk, L

    2016-06-15

    Purpose: Investigate and quantify the effect of dose and LET on the RBE of protons, helium and carbon ions. Methods: High throughput, high accuracy experimental setups were custom designed to investigate the Relative Biological Effectiveness (RBE) dependence on the dose and Linear Energy Transfer (LET) values for proton, helium and carbon ion beams. The experiment was conducted at the HIT facility in collaboration with the DKFZ in Heidelberg/Germany. Clonogenic assays of two human lung cancer cell lines, H460 and H1437, were investigated in this study. γH2AX foci staining on the H460 cell line was also undertaken to facilitate the studymore » of differential DNA double-strand break induction and repair between low-design available at the HIT facility. Specific points along the Bragg curve corresponding to well-defined doses and LET values were chosen by appropriate selection of the pre-absorber thicknesses. With a setup design for horizontal beam lines we were able to minimize ion scattering in the cell plate, resulting in narrower energy spectra and hence LET distributions in the Bragg peak and in the distal falloff regions, compared to the earlier experiments. Results: Approximately 16,000 samples of cancer cells were irradiated during 23 hours of beam time. The preliminary results of the survival curves for both cell lines show a distinct dependence on LET for a given dose with decreased survival fractions at increasing LET values, encountered at the Bragg peak and in the distal falloff. Conclusion: Our preliminary findings are indicative of the importance of novel variable-RBE models for proton therapy and provide insight into the RBE of heavy ions for possible future heavy ion therapy facilities in the US. Funding support: SINF 2015/16.« less

  11. Establishment and characterization of fetal fibroblast cell lines for generating human lysozyme transgenic goats by somatic cell nuclear transfer.

    PubMed

    Liu, Jun; Luo, Yan; Zheng, Liming; Liu, Qingqing; Yang, Zhongcai; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Zhang, Yong

    2013-10-01

    This study was performed to qualify goat fetal fibroblast (GFF) cell lines for genetic modification and somatic cell nuclear transfer (SCNT) to produce human lysozyme (hLYZ) transgenic goats. Nine GFF cell lines were established from different fetuses, and the proliferative lifespan and chromosomal stability were analyzed. The results suggested that cell lines with a longer lifespan had stable chromosomes compared with those of cells lines with a shorter lifespan. According to the proliferative lifespan, we divided GFF cell lines into two groups: cell lines with a long lifespan (GFF1/2/7/8/9; group L) and cell lines with a short lifespan (GFF3/4/5/6; group S). Next, a hLYZ expression vector was introduced into these cell lines by electroporation. The efficiencies of colony formation, expansion in culture, and the quality of transgenic clonal cell lines were significant higher in group L than those in group S. The mean fusion rate and blastocyst rate in group L were higher than those in group S (80.3 ± 1.7 vs. 65.1 ± 4.2 % and 19.5 ± 0.6 vs. 15.1 ± 1.1 %, respectively, P < 0.05). After transferring cloned embryos into the oviducts of recipient goats, three live kids were born. PCR and Southern blot analyses confirmed integration of the transgene in cloned goats. In conclusion, the lifespan of GFF cell lines has a major effect on the efficiency to produce transgenic cloned goats. Therefore, the proliferative lifespan of primary cells may be used as a criterion to characterize the quality of cell lines for genetic modification and SCNT.

  12. Candidate Water Vapor Lines to Locate the H2O Snowline through High-dispersion Spectroscopic Observations. III. Submillimeter H2 16O and H2 18O Lines

    NASA Astrophysics Data System (ADS)

    Notsu, Shota; Nomura, Hideko; Walsh, Catherine; Honda, Mitsuhiko; Hirota, Tomoya; Akiyama, Eiji; Millar, T. J.

    2018-03-01

    In this paper, we extend the results presented in our former papers on using ortho-{{{H}}}2{}16{{O}} line profiles to constrain the location of the H2O snowline in T Tauri and Herbig Ae disks, to include submillimeter para-{{{H}}}2{}16{{O}} and ortho- and para-{{{H}}}2{}18{{O}} lines. Since the number densities of the ortho- and para-{{{H}}}2{}18{{O}} molecules are about 560 times smaller than their 16O analogs, they trace deeper into the disk than the ortho-{{{H}}}2{}16{{O}} lines (down to z = 0, i.e., the midplane). Thus these {{{H}}}2{}18{{O}} lines are potentially better probes of the position of the H2O snowline at the disk midplane, depending on the dust optical depth. The values of the Einstein A coefficients of submillimeter candidate water lines tend to be lower (typically <10‑4 s‑1) than infrared candidate water lines. Thus in the submillimeter candidate water line cases, the local intensity from the outer optically thin region in the disk is around 104 times smaller than that in the infrared candidate water line cases. Therefore, in the submillimeter lines, especially {{{H}}}2{}18{{O}} and para-{{{H}}}2{}16{{O}} lines with relatively lower upper state energies (∼a few 100 K) can also locate the position of the H2O snowline. We also investigate the possibility of future observations with ALMA to identify the position of the water snowline. There are several candidate water lines that trace the hot water gas inside the H2O snowline in ALMA Bands 5–10.

  13. Host cell reactivation of gamma-irradiated adenovirus 5 in human cell lines of varying radiosensitivity.

    PubMed Central

    Eady, J. J.; Peacock, J. H.; McMillan, T. J.

    1992-01-01

    DNA repair processes play an important role in the determination of radiation response in both normal and tumour cells. We have investigated one aspect of DNA repair in a number of human cell lines of varying radiosensitivity using the adenovirus 5 host cell reactivation assay (HCR). In this technique, gamma-irradiated virions are used to infect cells and the ability of the cellular repair systems to process this damage is assayed by a convenient immunoperoxidase method recognising viral structural antigen expression on the cell membrane 48 h after infection. Reduced HCR was exhibited by radioresistant HeLa cells and by a radiosensitive neuroblastoma cell line, HX142. In contrast, an ataxia telangiectasia cell line, AT5 BIVA, did not show reduced HCR. On the basis of these results we can make no general conclusions about the relevance of HCR to cellular radiosensitivity. We have extended these studies to determine whether our cell lines exhibited enhanced viral reactivation (ER) following a small priming dose of gamma-radiation given to the cells before viral infection. No evidence for this phenomenon was found either in normal or tumour cell lines. PMID:1637659

  14. The inhibition of lung cancer cell migration by AhR-regulated autophagy

    PubMed Central

    Tsai, Chi-Hao; Li, Ching-Hao; Cheng, Yu-Wen; Lee, Chen-Chen; Liao, Po-Lin; Lin, Cheng-Hui; Huang, Shih-Hsuan; Kang, Jaw-Jou

    2017-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is highly expressed in multiple organs and tissues. Whereas AhR mediates the metabolism of xenobiotic and endogenous compounds, its novel function in cancer epithelial-mesenchymal transition (EMT) remains controversial. Autophagy also participates in tumour progression through its functions in cell homeostasis and facilitates adaptation to EMT progression. In the present study, we found that AhR-regulated autophagy positively modulates EMT in non-small cell lung cancer cells. The motility of A549, H1299, and CL1-5 cells were correlated with different AhR expression levels. Invasive potential and cell morphology also changed when AhR protein expression was altered. Moreover, AhR levels exerted a contrasting effect on autophagy potential. Autophagy was higher in CL1-5 and H1299 cells with lower AhR levels than in A549 cells. Both AhR overexpression and autophagy inhibition decreased CL1-5 metastasis in vivo. Furthermore, AhR promoted BNIP3 ubiquitination for proteasomal degradation. AhR silencing in A549 cells also reduced BNIP3 ubiquitination. Taken together, these results provide a novel insight into the cross-linking between AhR and autophagy, we addressed the mechanistic BNIP3 modulation by endogenous AhR, which affect cancer cell EMT progression. PMID:28195146

  15. The inhibition of lung cancer cell migration by AhR-regulated autophagy.

    PubMed

    Tsai, Chi-Hao; Li, Ching-Hao; Cheng, Yu-Wen; Lee, Chen-Chen; Liao, Po-Lin; Lin, Cheng-Hui; Huang, Shih-Hsuan; Kang, Jaw-Jou

    2017-02-14

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is highly expressed in multiple organs and tissues. Whereas AhR mediates the metabolism of xenobiotic and endogenous compounds, its novel function in cancer epithelial-mesenchymal transition (EMT) remains controversial. Autophagy also participates in tumour progression through its functions in cell homeostasis and facilitates adaptation to EMT progression. In the present study, we found that AhR-regulated autophagy positively modulates EMT in non-small cell lung cancer cells. The motility of A549, H1299, and CL1-5 cells were correlated with different AhR expression levels. Invasive potential and cell morphology also changed when AhR protein expression was altered. Moreover, AhR levels exerted a contrasting effect on autophagy potential. Autophagy was higher in CL1-5 and H1299 cells with lower AhR levels than in A549 cells. Both AhR overexpression and autophagy inhibition decreased CL1-5 metastasis in vivo. Furthermore, AhR promoted BNIP3 ubiquitination for proteasomal degradation. AhR silencing in A549 cells also reduced BNIP3 ubiquitination. Taken together, these results provide a novel insight into the cross-linking between AhR and autophagy, we addressed the mechanistic BNIP3 modulation by endogenous AhR, which affect cancer cell EMT progression.

  16. Human Brain Microvascular Endothelial Cells Derived from the BC1 iPS Cell Line Exhibit a Blood-Brain Barrier Phenotype.

    PubMed

    Katt, Moriah E; Xu, Zinnia S; Gerecht, Sharon; Searson, Peter C

    2016-01-01

    The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial cells (hBMECs) from human induced pluripotent stem cells (iPSCs) may provide a solution to this problem. Here we demonstrate the derivation of hBMECs extended to two new human iPSC lines: BC1 and GFP-labeled BC1. These hBMECs highly express adherens and tight junction proteins VE-cadherin, ZO-1, occludin, and claudin-5. The addition of retinoic acid upregulates VE-cadherin expression, and results in a significant increase in transendothelial electrical resistance to physiological values. The permeabilities of tacrine, rhodamine 123, and Lucifer yellow are similar to values obtained for MDCK cells. The efflux ratio for rhodamine 123 across hBMECs is in the range 2-4 indicating polarization of efflux transporters. Using the rod assay to assess cell organization in small vessels and capillaries, we show that hBMECs resist elongation with decreasing diameter but show progressive axial alignment. The derivation of hBMECs with a blood-brain barrier phenotype from the BC1 cell line highlights that the protocol is robust. The expression of GFP in hBMECs derived from the BC1-GFP cell line provides an important new resource for BBB research.

  17. Cell lines derived from the squash bug, Anasa tristis (Coreidae: Hemiptera).

    PubMed

    Goodman, Cynthia L; Ringbauer, Joseph A; Li, Yao-Fa; Lincoln, Tamra Reall; Stanley, David

    2017-05-01

    The squash bug, Anasa tristis, is a pest of cucurbits that exerts direct damage on crops and is a vector of plant pathogens. We established cell lines from this insect to serve as tools for basic biology, including virology and immunology, as well as applied studies, such as insecticide development programs. We initiated 15 cell cultures, using nine media or combinations of media. The media yielding the best results were a modification of Kimura's medium and a combination of two commercially available cell culture media (EX-CELL 420 and L15). We designated the two cell lines as BCIRL-AtE-CLG11 and BCIRL-AtE-CLG15. From the AtE-CLG15 line, we isolated two sub-lines, A and B. Of these, the most consistently replicating line was AtE-CLG15A. We determined the doubling time of this line (190 h) and its mean cell diameter (14.5 ± 0.7 μm). We characterized the AtE-CLG15A line using DAF-PCR. The BCIRL-AtE-CLG15A cell line is now available for researchers world-wide.

  18. Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection

    NASA Astrophysics Data System (ADS)

    Sinha, Rileen; Winer, Andrew G.; Chevinsky, Michael; Jakubowski, Christopher; Chen, Ying-Bei; Dong, Yiyu; Tickoo, Satish K.; Reuter, Victor E.; Russo, Paul; Coleman, Jonathan A.; Sander, Chris; Hsieh, James J.; Hakimi, A. Ari

    2017-05-01

    The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe (chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number alterations shows that most cell lines resemble ccRCC, a few (including some often used as models of ccRCC) resemble pRCC, and none resemble chRCC. Human ccRCC tumours clustering with cell lines display clinical and genomic features of more aggressive disease, suggesting that cell lines best represent aggressive tumours. We stratify mutations and copy number alterations for important kidney cancer genes by the consistency between databases, and classify cell lines into established gene expression-based indolent and aggressive subtypes. Our results could aid investigators in analysing appropriate renal cancer cell lines.

  19. A comparative evaluation of in vitro skin sensitisation tests: the human cell-line activation test (h-CLAT) versus the local lymph node assay (LLNA).

    PubMed

    Ashikaga, Takao; Sakaguchi, Hitoshi; Sono, Sakiko; Kosaka, Nanae; Ishikawa, Makie; Nukada, Yuko; Miyazawa, Masaaki; Ito, Yuichi; Nishiyama, Naohiro; Itagaki, Hiroshi

    2010-08-01

    We previously developed the human cell-line activation test (h-CLAT) in vitro skin sensitisation test, based on our reported finding that a 24-hour exposure of THP-1 cells (a human monocytic leukaemia cell line) to sensitisers is sufficient to induce the augmented expression of CD86 and CD54. The aim of this study is to confirm the predictive value of h-CLAT for skin sensitisation activity by employing a larger number of test chemicals. One hundred chemicals were selected, according to their categorisation in the local lymph node assay (LLNA), as being: extreme, strong, moderate and weak sensitisers, and non-sensitisers. The correlation of the h-CLAT results with the LLNA results was 84%. There were some false negatives (e.g. benzoyl peroxide, hexyl cinnamic aldehyde) and some false positives (e.g. 1-bromobutane, diethylphthalate). Eight out of the 9 false negatives (89%) were water-insoluble chemicals. The h-CLAT could positively predict not only extreme and strong sensitisers, but also moderate and weak sensitisers, though the detection rates of weak sensitisers and non-sensitisers were comparatively low. Some sensitisers enhanced both CD86 and CD54 levels, and some enhanced the level of only one of them. The use of the combination of CD86 and CD54 induction as a positive indicator, improved the accuracy of the test. In conclusion, the h-CLAT is expected to be a useful cell-based in vitro method for predicting skin sensitisation potential. 2010 FRAME.

  20. Resistance to DNA-damaging treatment in non-small cell lung cancer tumor-initiating cells involves reduced DNA-PK/ATM activation and diminished cell cycle arrest

    PubMed Central

    Lundholm, L; Hååg, P; Zong, D; Juntti, T; Mörk, B; Lewensohn, R; Viktorsson, K

    2013-01-01

    Increasing evidence suggests that tumor-initiating cells (TICs), also called cancer stem cells, are partly responsible for resistance to DNA-damaging treatment. Here we addressed if such a phenotype may contribute to radio- and cisplatin resistance in non-small cell lung cancer (NSCLC). We showed that four out of eight NSCLC cell lines (H125, A549, H1299 and H23) possess sphere-forming capacity when cultured in stem cell media and three of these display elevated levels of CD133. Indeed, sphere-forming NSCLC cells, hereafter called TICs, showed a reduced apoptotic response and increased survival after irradiation (IR), as compared with the corresponding bulk cell population. Decreased cytotoxicity and apoptotic signaling manifested by diminished poly (ADP-ribose) polymerase (PARP) cleavage and caspase 3 activity was also evident in TICs after cisplatin treatment. Neither radiation nor cisplatin resistance was due to quiescence as H125 TICs proliferated at a rate comparable to bulk cells. However, TICs displayed less pronounced G2 cell cycle arrest and S/G2-phase block after IR and cisplatin, respectively. Additionally, we confirmed a cisplatin-refractory phenotype of H125 TICs in vivo in a mouse xenograft model. We further examined TICs for altered expression or activation of DNA damage repair proteins as a way to explain their increased radio- and/or chemotherapy resistance. Indeed, we found that TICs exhibited increased basal γH2AX (H2A histone family, member X) expression and diminished DNA damage-induced phosphorylation of DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia-mutated (ATM), Krüppel-associated protein 1 (KAP1) and monoubiquitination of Fanconi anemia, complementation group D2 (FANCD2). As a proof of principle, ATM inhibition in bulk cells increased their cisplatin resistance, as demonstrated by reduced PARP cleavage. In conclusion, we show that reduced apoptotic response, altered DNA repair signaling and cell cycle perturbations in NSCLC

  1. Single-cell intracellular nano-pH probes†

    PubMed Central

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2016-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution. PMID:27708772

  2. Single-cell intracellular nano-pH probes.

    PubMed

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution.

  3. Directional cell migration in an extracellular pH gradient: a model study with an engineered cell line and primary microvascular endothelial cells.

    PubMed

    Paradise, Ranjani K; Whitfield, Matthew J; Lauffenburger, Douglas A; Van Vliet, Krystyn J

    2013-02-15

    Extracellular pH (pH(e)) gradients are characteristic of tumor and wound environments. Cell migration in these environments is critical to tumor progression and wound healing. While it has been shown previously that cell migration can be modulated in conditions of spatially invariant acidic pH(e) due to acid-induced activation of cell surface integrin receptors, the effects of pH(e) gradients on cell migration remain unknown. Here, we investigate cell migration in an extracellular pH(e) gradient, using both model α(v)β(3) CHO-B2 cells and primary microvascular endothelial cells. For both cell types, we find that the mean cell position shifts toward the acidic end of the gradient over time, and that cells preferentially polarize toward the acidic end of the gradient during migration. We further demonstrate that cell membrane protrusion stability and actin-integrin adhesion complex formation are increased in acidic pH(e), which could contribute to the preferential polarization toward acidic pH(e) that we observed for cells in pH(e) gradients. These results provide the first demonstration of preferential cell migration toward acid in a pH(e) gradient, with intriguing implications for directed cell migration in the tumor and wound healing environments. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Quantification of apoptotic DNA fragmentation in a transformed uterine epithelial cell line, HRE-H9, using capillary electrophoresis with laser-induced fluorescence detector (CE-LIF).

    PubMed

    Fiscus, R R; Leung, C P; Yuen, J P; Chan, H C

    2001-01-01

    Apoptotic cell death of uterine epithelial cells is thought to play an important role in the onset of menstruation and the successful implantation of an embryo during early pregnancy. Abnormal apoptosis in these cells can result in dysmenorrhoea and infertility. In addition, decreased rate of epithelial apoptosis likely contributes to endometriosis. A key step in the onset of apoptosis in these cells is cleavage of the genomic DNA between nucleosomes, resulting in polynucleosomal-sized fragments of DNA. The conventional technique for assessing apoptotic DNA fragmentation uses agarose (slab) gel electrophoresis (i.e. DNA laddering). However, recent technological advances in the use of capillary electrophoresis (CE), particularly the introduction of the laser-induced fluorescence detector (LIF), has made it possible to perform DNA laddering with improved automation and much greater sensitivity. In the present study, we have further developed the CE-LIF technique by using a DNA standard curve to quantify accurately the amount of DNA in the apoptotic DNA fragments and have applied this new quantitative technique to study apoptosis in a transformed uterine epithelial cell line, the HRE-H9 cells. Apoptosis was induced in the HRE-H9 cells by serum deprivation for 5, 7 and 24 h, resulting in increased DNA fragmentation of 2.2-, 3.1- and 6.2-fold, respectively, above the 0 h or plus-serum controls. This ultrasensitive CE-LIF technique provides a novel method for accurately measuring the actions of pro- or anti-apoptotic agents or conditions on uterine epithelial cell lines. Copyright 2001 Academic Press.

  5. Derivation and characterization of Chinese human embryonic stem cell line with high potential to differentiate into pancreatic and hepatic cells.

    PubMed

    Shi, Cheng; Shen, Huan; Jiang, Wei; Song, Zhi-Hua; Wang, Cheng-Yan; Wei, Li-Hui

    2011-04-01

    Human embryonic stem cells have prospective uses in regenerative medicine and drug screening. Every human embryonic stem cell line has its own genetic background, which determines its specific ability for differentiation as well as susceptibility to drugs. It is necessary to compile many human embryonic stem cell lines with various backgrounds for future clinical use, especially in China due to its large population. This study contributes to isolating new Chinese human embryonic stem cell lines with clarified directly differentiation ability. Donated embryos that exceeded clinical use in our in vitro fertilization-embryo transfer (IVF-ET) center were collected to establish human embryonic stem cells lines with informed consent. The classic growth factors of basic fibroblast growth factor (bFGF) and recombinant human leukaemia inhibitory factor (hLIF) for culturing embryonic stem cells were used to capture the stem cells from the plated embryos. Mechanical and enzymetic methods were used to propagate the newly established human embryonic stem cells line. The new cell line was checked for pluripotent characteristics with detecting the expression of stemness genes and observing spontaneous differentiation both in vitro and in vivo. Finally similar step-wise protocols from definitive endoderm to target specific cells were used to check the cell line's ability to directly differentiate into pancreatic and hepatic cells. We generated a new Chinese human embryonic stem cells line, CH1. This cell line showed the same characteristics as other reported Chinese human embryonic stem cells lines: normal morphology, karyotype and pluripotency in vitro and in vivo. The CH1 cells could be directly differentiated towards pancreatic and hepatic cells with equal efficiency compared to the H1 cell line. This newly established Chinese cell line, CH1, which is pluripotent and has high potential to differentiate into pancreatic and hepatic cells, will provide a useful tool for embryo

  6. Arsenite and Cadmium Activate MAPK/ERK via Membrane Estrogen Receptors and G-Protein Coupled Estrogen Receptor Signaling in Human Lung Adenocarcinoma Cells.

    PubMed

    Huff, Mary O; Todd, Sarah L; Smith, Aaron L; Elpers, Julie T; Smith, Alexander P; Murphy, Robert D; Bleser-Shartzer, Allison S; Hoerter, Jacob E; Radde, Brandie N; Klinge, Carolyn M

    2016-07-01

    Epidemiological evidence indicates that cadmium and arsenic exposure increase lung cancer risk. Cadmium and arsenic are environmental contaminants that act as endocrine disruptors (EDs) by activating estrogen receptors (ERs) in breast and other cancer cell lines but their activity as EDs in lung cancer is untested. Here, we examined the effect of cadmium chloride (CdCl2) and sodium arsenite (NaAsO2) on the proliferation of human lung adenocarcinoma cell lines. Results demonstrated that both CdCl2 and NaAsO2 stimulated cell proliferation at environmentally relevant nM concentrations in a similar manner to 17β-estradiol (E2) in H1793, H2073, and H1944 cells but not in H1792 or H1299 cells. Further studies in H1793 cells showed that 100 nM CdCl2 and NaAsO2 rapidly stimulated mitogen-activated protein kinase (MAPK, extracellular-signal-regulated kinases) phosphorylation with a peak detected at 15 min. Inhibitor studies suggest that rapid MAPK phosphorylation by NaAsO2, CdCl2, and E2 involves ER, Src, epidermal growth factor receptor, and G-protein coupled ER (GPER) in a pertussis toxin-sensitive pathway. CdCl2 and E2 activation of MAPK may also involve ERβ. This study supports the involvement of membrane ER and GPER signaling in mediating cellular responses to environmentally relevant nM concentrations of CdCl2 and NaAsO2 in lung adenocarcinoma cells. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking.

    PubMed

    Corral-Vázquez, C; Aguilar-Quesada, R; Catalina, P; Lucena-Aguilar, G; Ligero, G; Miranda, B; Carrillo-Ávila, J A

    2017-06-01

    Establishment of continuous cell lines from human normal and tumor tissues is an extended and useful methodology for molecular characterization of cancer pathophysiology and drug development in research laboratories. The exchange of these cell lines between different labs is a common practice that can compromise assays reliability due to contamination with microorganism such as mycoplasma or cells from different flasks that compromise experiment reproducibility and reliability. Great proportions of cell lines are contaminated with mycoplasma and/or are replaced by cells derived for a different origin during processing or distribution process. The scientific community has underestimated this problem and thousand of research experiment has been done with cell lines that are incorrectly identified and wrong scientific conclusions have been published. Regular contamination and authentication tests are necessary in order to avoid negative consequences of widespread misidentified and contaminated cell lines. Cell banks generate, store and distribute cell lines for research, being mandatory a consistent and continuous quality program. Methods implementation for guaranteeing both, the absence of mycoplasma and authentication in the supplied cell lines, has been performed in the Andalusian Health System Biobank. Specifically, precise results were obtained using real time PCR detection for mycoplasma and 10 STRs identification by capillary electrophoresis for cell line authentication. Advantages and disadvantages of these protocols are discussed.

  8. Radiation Response of Cancer Stem-Like Cells From Established Human Cell Lines After Sorting for Surface Markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Assar, Osama; Muschel, Ruth J.; Mantoni, Tine S.

    2009-11-15

    Purpose: A subpopulation of cancer stem-like cells (CSLC) is hypothesized to exist in different cancer cell lines and to mediate radioresistance in solid tumors. Methods and Materials: Cells were stained for CSLC markers and sorted (fluorescence-activated cell sorter/magnetic beads) to compare foci and radiosensitivity of phosphorylated histone H2AX at Ser 139 (gamma-H2AX) in sorted vs. unsorted populations in eight cell lines from different organs. CSLC properties were examined using anchorage-independent growth and levels of activated Notch1. Validation consisted of testing tumorigenicity and postirradiation enrichment of CSLC in xenograft tumors. Results: The quantity of CSLC was generally in good agreement withmore » primary tumors. CSLC from MDA-MB-231 (breast) and Panc-1 and PSN-1 (both pancreatic) cells had fewer residual gamma-H2AX foci than unsorted cells, pointing to radioresistance of CSLC. However, only MDA-MB-231 CSLC were more radioresistant than unsorted cells. Furthermore, MDA-MB-231 CSLC showed enhanced anchorage-independent growth and overexpression of activated Notch1 protein. The expression of cancer stem cell surface markers in the MDA-MB-231 xenograft model was increased after exposure to fractionated radiation. In contrast to PSN-1 cells, a growth advantage for MDA-MB-231 CSLC xenograft tumors was found compared to tumors arising from unsorted cells. Conclusions: CSLC subpopulations showed no general radioresistant phenotype, despite the quantities of CSLC subpopulations shown to correspond relatively well in other reports. Likewise, CSLC characteristics were found in some but not all of the tested cell lines. The reported problems in testing for CSLC in cell lines may be overcome by additional techniques, beyond sorting for markers.« less

  9. [Establishment of fibroblast cell line and its biological characteristics in Matou goat].

    PubMed

    Li, Tianda; Liu, Chousheng; Wang, Zhigang; Zhang, Liping; Sun, Xiuzhu; Zhao, Junjin; Meng, Fei; Luo, Guihe; Zhu, Jinqing

    2008-12-01

    Taking Matou goat ear margin as the study material, we succeeded in established a fibroblast cell line by the method of explant culture directly. Observations on morphology, dynamic growth, determination of viability, analysis of karyotype, test of microorganism and other characteristics were detected. Results showed: Population Doubling Time (PDT) of cells was approximately 36 h; Cell viability was 96.7% after thawing; The status of cell After passage was constant; Analysis of chromosomal karyotyps indicated that diploid (2n=60) account for 98% in the cell line. Every index in the cell line met all the standard quality controls of ATCC in USA. The established of Matou goat ear fibroblast cell line has not only important genetic resources preserved at the cell level, but also valuable material for genome, postgenome and somatic cell nuclear transfer research.

  10. Inhibition of endogenous hydrogen sulfide production in clear-cell renal cell carcinoma cell lines and xenografts restricts their growth, survival and angiogenic potential

    PubMed Central

    Sonke, Eric; Verrydt, Megan; Postenka, Carl O.; Pardhan, Siddika; Willie, Chantalle J.; Mazzola, Clarisse R.; Hammers, Matthew D.; Pluth, Michael D.; Lobb, Ian; Power, Nicholas E.; Chambers, Ann F.; Leong, Hon S.; Sener, Alp

    2016-01-01

    Clear cell renal cell carcinoma (ccRCC) is characterized by Von Hippel–Lindau (VHL)-deficiency, resulting in pseudohypoxic, angiogenic and glycolytic tumours. Hydrogen sulfide (H2S) is an endogenously-produced gasotransmitter that accumulates under hypoxia and has been shown to be pro-angiogenic and cytoprotective in cancer. It was hypothesized that H2S levels are elevated in VHL-deficient ccRCC, contributing to survival, metabolism and angiogenesis. Using the H2S-specific probe MeRhoAz, it was found that H2S levels were higher in VHL-deficient ccRCC cell lines compared to cells with wild-type VHL. Inhibition of H2S-producing enzymes could reduce the proliferation, metabolism and survival of ccRCC cell lines, as determined by live-cell imaging, XTT/ATP assay, and flow cytometry respectively. Using the chorioallantoic membrane angiogenesis model, it was found that systemic inhibition of endogenous H2S production was able to decrease vascularization of VHL-deficient ccRCC xenografts. Endogenous H2S production is an attractive new target in ccRCC due to its involvement in multiple aspects of disease. PMID:26068241

  11. Radiation Response in Two HPV-Infected Head-and-Neck Cancer Cell Lines in Comparison to a Non-HPV-Infected Cell Line and Relationship to Signaling Through AKT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Anjali K.; Lee, John H.; Wilke, Werner W.

    2009-07-01

    Purpose: Human papilloma virus (HPV)-associated cancers of the head and neck (H and N) are increasing in frequency and are often treated with radiation. There are conflicting data in the literature regarding the radiation response in the presence of HPV infection, with some data suggesting they may be more sensitive to radiation. There are few studies looking at in vitro effects of HPV and further sensitization by inhibitors of specific signaling pathways. We are in the process of starting a clinical trial in H and N cancer patients using nelfinavir (NFV) (which inhibits Akt) and it would be important tomore » know the effect of HPV on radiation response {+-} NFV. Methods and Materials: Two naturally infected HPV-16 cell lines (UPCI-SCC90 and UMSCC47) and the HPV-negative SQ20B H and N squamous carcinoma cells were used. Western blots with or without 10 uM NFV were done to evaluate signaling from the PI3K-Akt pathway. Clonogenic assays were done in the three cell lines with or without NFV. Results: Both UPCI-SCC90 and UMSCC47 cells were sensitive to radiation as compared with SQ20B and the degree corresponded to Akt activation. The SQ20B cell line has an activating mutation in EGFR resulting in phosphorylation (P) of Akt; UMSCC47 has decreased P-phosphatase and TENsin (PTEN), resulting in increased P-Akt; UPCI-SCC90 had overexpression of P-PTEN and decreased P-Akt. NFV resulted in downregulation of Akt in all three cell lines, resulting in sensitization to radiation. Conclusions: HPV-infected H and N cancers are sensitive to radiation. The degree of sensitivity correlates to Akt activation and they can be further sensitized by NFV00.« less

  12. Higher titers of some H5N1 and recent human H1N1 and H3N2 influenza viruses in Mv1 Lu vs. MDCK cells

    PubMed Central

    2011-01-01

    Background The infectivity of influenza A viruses can differ among the various primary cells and continuous cell lines used for such measurements. Over many years, we observed that all things equal, the cytopathic effects caused by influenza A subtype H1N1, H3N2, and H5N1 viruses were often detected earlier in a mink lung epithelial cell line (Mv1 Lu) than in MDCK cells. We asked whether virus yields as measured by the 50% tissue culture infectious dose and plaque forming titer also differed in MDCK and Mv1 Lu cells infected by the same influenza virus subtypes. Results The 50% tissue culture infectious dose and plaque forming titer of many influenza A subtype H1N1, H3N2, and H5N1 viruses was higher in Mv1 Lu than in MDCK cells. Conclusions The yields of influenza subtype H1N1, H3N2, and H5N1 viruses can be higher in Mv1 Lu cells than in MDCK cells. PMID:21314955

  13. The cell line NCl-H441 is a useful in vitro model for transport studies of human distal lung epithelial barrier.

    PubMed

    Salomon, Johanna J; Muchitsch, Viktoria E; Gausterer, Julia C; Schwagerus, Elena; Huwer, Hanno; Daum, Nicole; Lehr, Claus-Michael; Ehrhardt, Carsten

    2014-03-03

    The lack of a well characterized, continuously growing in vitro model of human distal lung epithelial phenotype constitutes a serious limitation in the area of inhalation biopharmaceutics, particularly in the context of transepithelial transport studies. Here, we investigated if a human lung adenocarcinoma cell line, NCl-H441, has potential to serve as an in vitro model of human distal lung epithelium. The development of barrier properties was studied by immunocytochemistry (ICC) against the junction proteins zonula occludens protein 1 (ZO-1) and E-cadherin and measurement of transepithelial electrical resistance (TEER). Moreover, transport studies with the paracellular marker compounds fluorescein sodium and fluorescein isothiocyanate (FITC)-labeled dextrans of molecular weights ranging from 4 to 70 kDa were carried out. The expression of P-glycoprotein (P-gp; ABCB1) and organic cation transporters (OCT/Ns; SLC22A1-A5) was investigated by ICC and immunoblot. P-gp function was assessed by monolayer release and bidirectional transport studies using rhodamine 123 (Rh123) and the inhibitors verapamil and LY335979. Uptake of 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP(+)) was measured, in order to assess organic cation transporter function in vitro. Furthermore, the inhibitory potential of several organic cations on ASP(+) uptake was studied. NCl-H441 cells, when grown under liquid-covered conditions, formed confluent, electrically tight monolayers with peak TEER values of approximately 1000 Ω·cm(2), after 8-12 days in culture. These monolayers were able to differentiate paracellularly transported substrates according to their molecular weight. Presence of P-gp, OCT1, OCT2, OCT3, OCTN1, and OCTN2 was confirmed by Western blot and ICC and was similar to data from freshly isolated human alveolar epithelial cells in primary culture. Rh123 release from NCI-H441 monolayers was time-dependent and showed low, albeit significant attenuation by both inhibitors

  14. Time, Concentration, and pH-Dependent Transport and Uptake of Anthocyanins in a Human Gastric Epithelial (NCI-N87) Cell Line.

    PubMed

    Atnip, Allison A; Sigurdson, Gregory T; Bomser, Joshua; Giusti, M Mónica

    2017-02-18

    Anthocyanins are the largest class of water soluble plant pigments and a common part of the human diet. They may have many potential health benefits, including antioxidant, anti-inflammatory, anti-cancer, and cardioprotective activities. However, anthocyanin metabolism is not well understood. Studies suggest that anthocyanins absorption may occur in the stomach, in which the acidic pH favors anthocyanin stability. A gastric epithelial cell line (NCI-N87) has been used to study the behavior of anthocyanins at a pH range of 3.0-7.4. This work examines the effects of time (0-3 h), concentration (50-1500 µM), and pH (3.0, 5.0, 7.4) on the transport and uptake of anthocyanins using NCI-N87 cells. Anthocyanins were transported from the apical to basolateral side of NCI-N87 cells in time and dose dependent manners. Over the treatment time of 3 h the rate of transport increased, especially with higher anthocyanin concentrations. The non-linear rate of transport may suggest an active mechanism for the transport of anthocyanins across the NCI-N87 monolayer. At apical pH 3.0, higher anthocyanin transport was observed compared to pH 5.0 and 7.4. Reduced transport of anthocyanins was found to occur at apical pH 5.0.

  15. Time, Concentration, and pH-Dependent Transport and Uptake of Anthocyanins in a Human Gastric Epithelial (NCI-N87) Cell Line

    PubMed Central

    Atnip, Allison A.; Sigurdson, Gregory T.; Bomser, Joshua; Giusti, M. Mónica

    2017-01-01

    Anthocyanins are the largest class of water soluble plant pigments and a common part of the human diet. They may have many potential health benefits, including antioxidant, anti-inflammatory, anti-cancer, and cardioprotective activities. However, anthocyanin metabolism is not well understood. Studies suggest that anthocyanins absorption may occur in the stomach, in which the acidic pH favors anthocyanin stability. A gastric epithelial cell line (NCI-N87) has been used to study the behavior of anthocyanins at a pH range of 3.0–7.4. This work examines the effects of time (0–3 h), concentration (50–1500 µM), and pH (3.0, 5.0, 7.4) on the transport and uptake of anthocyanins using NCI-N87 cells. Anthocyanins were transported from the apical to basolateral side of NCI-N87 cells in time and dose dependent manners. Over the treatment time of 3 h the rate of transport increased, especially with higher anthocyanin concentrations. The non-linear rate of transport may suggest an active mechanism for the transport of anthocyanins across the NCI-N87 monolayer. At apical pH 3.0, higher anthocyanin transport was observed compared to pH 5.0 and 7.4. Reduced transport of anthocyanins was found to occur at apical pH 5.0. PMID:28218720

  16. Methylation of Wnt7a Is Modulated by DNMT1 and Cigarette Smoke Condensate in Non-Small Cell Lung Cancer

    PubMed Central

    Tennis, Meredith A.; VanScoyk, Michelle M.; Wilson, Lora A.; Kelley, Nicole; Winn, Robert A.

    2012-01-01

    Wnt7a is known to be a tumor suppressor that is lost in NSCLC, but no mechanism of loss has been established. Methylation of promoter regions has been established as a common mechanism of loss of tumor suppressor expression in NSCLC. We previously demonstrated that loss of Wnt7a in non-transformed lung epithelial cell lines led to increased cell growth, altered 3-D culture growth, and increased migration. The Wnt7a promoter has a higher percentage of methylation in NSCLC tumor tissue compared to matched normal lung tissue and methylation of the promoter region leads to decreased activity. We treated H157 and H1299 NSCLC cell lines with 5-Aza-2′-deoxycytidine and detected loss of Wnt7a promoter methylation, increased Wnt7a expression, and increased activity of the Wnt7a lung signaling pathway. When DNMT1 expression was knocked down by shRNA, expression of Wnt7a increased and methylation decreased. Together these data suggest that in NSCLC, Wnt7a is lost by methylation in a subset of tumors and that this methylation is maintained by DNMT1. Restoration of Wnt7a expression through demethylation could be an important therapeutic approach in the treatment of NSCLC. PMID:22403725

  17. Leptospermum flavescens Constituent-LF1 Causes Cell Death through the Induction of Cell Cycle Arrest and Apoptosis in Human Lung Carcinoma Cells

    PubMed Central

    Navanesan, Suerialoasan; Abdul Wahab, Norhanom; Manickam, Sugumaran; Sim, Kae Shin

    2015-01-01

    Leptospermum flavescens Sm. (Myrtaceae), locally known as ‘Senna makki’ is a smallish tree that is widespread and recorded to naturally occur in the montane regions above 900 m a.s.l from Burma to Australia. Although the species is recorded to be used traditionally to treat various ailments, there is limited data on biological and chemical investigations of L. flavescens. The aim of the present study was to investigate and understand the ability of L. flavescens in inducing cell death in lung cancer cells. The cytotoxic potentials of the extraction yields (methanol, hexane, ethyl acetate and water extracts as wells as a semi pure fraction, LF1) were evaluated against two human non-small cell lung carcinoma cell lines (A549 and NCI-H1299) using the MTT assay. LF1 showed the greatest cytotoxic effect against both cell lines with IC50 values of 7.12 ± 0.07 and 9.62 ± 0.50 μg/ml respectively. LF1 treated cells showed a sub-G1 region in the cell cycle analysis and also caused the presence of apoptotic morphologies in cells stained with acridine orange and ethidium bromide. Treatment with LF1 manifested an apoptotic population in cells that were evaluated using the Annexin V/ propidium iodide assay. Increasing dosage of LF1 caused a rise in the presence of activated caspase-3 enzymes in treated cells. Blockage of cell cycle progression was also observed in LF1-treated cells. These findings suggest that LF1 induces apoptosis and cell cycle arrest in treated lung cancer cells. Further studies are being conducted to isolate and identify the active compound as well to better understand the mechanism involved in inducing cell death. PMID:26287817

  18. Retino-protective effect of Bucida buceras against oxidative stress induced by H2O2 in human retinal pigment epithelial cells line.

    PubMed

    Iloki-Assanga, Simon Bernard; Lewis-Luján, Lidianys María; Fernández-Angulo, Daniela; Gil-Salido, Armida Andrea; Lara-Espinoza, Claudia Lizeth; Rubio-Pino, José Luis

    2015-07-29

    Reactive Oxygen Species (ROS) impair the physiological functions of Retinal Pigment Epithelial (RPE) cells, which are known as one major cause of age-related macular degeneration and retinopathy diseases. The purpose of this study is to explore the cytoprotective effects of the antioxidant Bucida buceras extract in co-treatment with hydrogen peroxide (H2O2) delivery as a single addition or with continuous generation using glucose oxidase (GOx) in ARPE-19 cell cultures. The mechanism of Bucida buceras extract is believed to be associated with their antioxidant capacity to protect cells against oxidative stress. A comparative oxidative stress H2O2-induced was performed by addition and enzymatic generation using glucose oxidase on human retinal pigment epithelial cells line. H2O2-induced injury was measured by toxic effects (cell death and apoptotic pathway) and intracellular redox status: glutathione (GSH), antioxidant enzymes (catalase and glutathione peroxidase) and reducing power (FRAP). The retino-protective effect of co-treatment with Bucida buceras extract on H2O2-induced human RPE cell injury was investigated by cell death (MTT assay) and oxidative stress biomarkers (H2O2, GSH, CAT, GPx and FRAP). Bucida buceras L. extract is believed to be associated with the ability to prevent cellular oxidative stress. When added as a pulse, H2O2 is rapidly depleted and the cytotoxicity analyses show that cells can tolerate short exposure to high peroxide doses delivered as a pulse but are susceptible to lower chronic doses. Co-treatment with Bucida buceras was able to protect the cells against H2O2-induced injury. In addition to preventing cell death treatment with antioxidant plant could also reverse the significant decrease in GSH level, catalase activity and reducing power caused by H2O2. These findings suggest that Bucida buceras could protect RPE against ocular pathogenesis associated with oxidative stress induced by H2O2-delivered by addition and enzymatic generation.

  19. 76 FR 21366 - Notice to All Interested Parties of the Termination of the Receivership of 1299, Oaktree Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... FEDERAL DEPOSIT INSURANCE CORPORATION Notice to All Interested Parties of the Termination of the Receivership of 1299, Oaktree Federal Savings, New Orleans, LA and 7804, Oaktree Savings Bank, SSB Notice is... Savings, New Orleans, Louisiana and for Oaktree Savings Bank, SSB (``Receiver'') intends to terminate its...

  20. Acidosis Decreases c-Myc Oncogene Expression in Human Lymphoma Cells: A Role for the Proton-Sensing G Protein-Coupled Receptor TDAG8

    PubMed Central

    Li, Zhigang; Dong, Lixue; Dean, Eric; Yang, Li V.

    2013-01-01

    Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65) is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs). Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression. PMID:24152439

  1. The human leukocyte antigen G promotes trophoblast fusion and β-hCG production through the Erk1/2 pathway in human choriocarcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji-meng; State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101; Zhao, Hong-xi

    2013-05-10

    Highlights: •HLA-G expression promotes BeWo cells fusion and fusogenic gene expression. •HLA-G is capable of inducing β-hCG production in human choriocarcinoma cell lines. •Up-regulation of β-hCG production by HLA-G is mediated via the Erk1/2 pathway. -- Abstract: The human leukocyte antigen G (HLA-G) is expressed on the fetal–maternal interface and plays a role in protecting fetal-derived trophoblasts from the maternal immune response, allowing trophoblasts to invade the uterus. However, HLA-G also possesses immune suppressing-independent functions. We found that HLA-G expressing BeWo choriocarcinoma cells increased cell–cell fusion compared to control BeWo cells under forskolin treatment. Regardless of forskolin treatment, the expressionmore » of fusogenic gene mRNAs, including syncytin-1, the transcription factor glial cell missing 1 (Gcm1), and beta human chorionic gonadotropin (β-hCG) were elevated. HLA-G up-regulates β-hCG production in human choriocarcinoma cells because HLA-G knockdown in JEG-3 cells induces a dramatic decrease in β-hCG compared with control cells. The defect in β-hCG production in HLA-G knocked-down cells could not be completely overcome by stimulating hCG production through increasing intracellular cAMP levels. HLA-G expressing cells have increased phosphorylation levels for extracellular signal-regulated kinase1/2 (Erk1/2) in BeWo cells. The Erk1/2 pathway is inactivated after the inhibition of HLA-G expression in JEG-3 cells. Finally, Erk1/2 inhibition was able to suppress the increased hCG production induced by HLA-G expression. Together, these data suggest novel roles for HLA-G in regulating β-hCG production via the modulation of the Erk1/2 pathway and by inducing trophoblast cell fusion.« less

  2. Overexpression of microRNA-21 strengthens stem cell-like characteristics in a hepatocellular carcinoma cell line.

    PubMed

    Jiang, Jinghang; Yang, Peipei; Guo, Zhe; Yang, Rirong; Yang, Haojie; Yang, Fuquan; Li, Lequn; Xiang, Bangde

    2016-10-28

    Liver cancer stem cells (LCSCs) have been shown to express higher levels of microRNA-21 (miR-21). Here, we examine the possible contributions of miR-21 to the phenotype of LCSCs in culture and in xenograft tumors in nude mice. The hepatocellular carcinoma cell line MHCC-97H was stably transformed with a retroviral vector to establish cells overexpressing miR-21, while a cell line transformed with empty vector served as a negative control. RT-PCR and Western blotting were used to evaluate the effects of miR-21 overexpression on the expression of various LCSC markers, a Transwell assay was used to assess the effects on cell migration and invasion, and a spheroid formation assay was used to examine the effects on clonogenesis. The effects of miR-21 overexpression were also examined in tumors in nude mice. An MHCC-97H cell line was constructed that stably overexpresses miR-21 at 7.78 ± 1.51-fold higher levels than the negative control cell line. Expression of the LCSC markers CD13, Ep-CAM, CD90, and OCT4 was significantly higher in the miR-21-overexpressing cell line than in the negative control at both mRNA and protein levels. The overexpressing cell line formed larger, tighter, and more numerous spheroids. Overexpression of miR-21 was associated with greater cell migration and invasion. Tumors of overexpressing cells in nude mice had a significantly larger mean volume after 34 days of growth (773.62 ± 163.46 mm 3 ) than tumors of negative control cells (502.79 ± 33.94 mm 3 , p = 0.048), as well as greater mean weight (0.422 ± 0.019 vs. 0.346 ± 0.006 g, p = 0.003). Overexpression of miR-21 strengthens the phenotype of LCSCs, facilitating invasion, migration, and tumorigenesis in hepatocellular carcinoma.

  3. Molluscan cells in culture: primary cell cultures and cell lines

    PubMed Central

    Yoshino, T. P.; Bickham, U.; Bayne, C. J.

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

  4. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines.

    PubMed

    Yu, Vicky; Rahimy, Mehran; Korrapati, Avinaash; Xuan, Yinan; Zou, Angela E; Krishnan, Aswini R; Tsui, Tzuhan; Aguilera, Joseph A; Advani, Sunil; Crotty Alexander, Laura E; Brumund, Kevin T; Wang-Rodriguez, Jessica; Ongkeko, Weg M

    2016-01-01

    Evaluate the cytotoxicity and genotoxicity of short- and long-term e-cigarette vapor exposure on a panel of normal epithelial and head and neck squamous cell carcinoma (HNSCC) cell lines. HaCaT, UMSCC10B, and HN30 were treated with nicotine-containing and nicotine-free vapor extract from two popular e-cigarette brands for periods ranging from 48 h to 8 weeks. Cytotoxicity was assessed using Annexin V flow cytometric analysis, trypan blue exclusion, and clonogenic assays. Genotoxicity in the form of DNA strand breaks was quantified using the neutral comet assay and γ-H2AX immunostaining. E-cigarette-exposed cells showed significantly reduced cell viability and clonogenic survival, along with increased rates of apoptosis and necrosis, regardless of e-cigarette vapor nicotine content. They also exhibited significantly increased comet tail length and accumulation of γ-H2AX foci, demonstrating increased DNA strand breaks. E-cigarette vapor, both with and without nicotine, is cytotoxic to epithelial cell lines and is a DNA strand break-inducing agent. Further assessment of the potential carcinogenic effects of e-cigarette vapor is urgently needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines

    PubMed Central

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines. PMID:18927105

  6. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines.

    PubMed

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.

  7. Line Profile of H Lyman-Beta Emission from Dissociative Excitation of H2

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Ahmed, Syed M.; Liu, Xian-Ming

    1996-01-01

    A high-resolution ultraviolet spectrometer was employed for a measurement of the H Lyman-Beta(H L(sub Beta)) emission Doppler line profile at 1025.7 A from dissociative excitation of H2 by electron impact. Analysis of the deconvolved line profile reveals the existence of a narrow central peak, less than 30 mA full width at half maximum (FWHM), and a broad pedestal base about 260 mA FWHM. Analysis of the red wing of the line profile is complicated by a group of Wemer and Lyman rotational lines 160-220 mA from the line center. Analysis of the blue wing of the line profile gives the kinetic-energy distribution. There are two main kinetic-energy components to the H(3p) distribution: (1) a slow distribution with a peak value near 0 eV from singly excited states, and (2) a fast distribution with a peak contribution near 7 eV from doubly excited states. Using two different techniques, the absolute cross section of H L(sub Beta)p is found to be 3.2+/-.8 x 10(exp -19)sq cm at 100-eV electron impact energy. The experimental cross-section and line-profile results can be compared to previous studies of H(alpha) (6563.7 A) for principal quantum number n=3 and L(sub alpha)(1215.7 A) for n=2.

  8. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemoto, Kiyomitsu, E-mail: nemoto@u-shizuoka-ken.ac.jp; Ikeda, Ayaka; Yoshida, Chiaki

    Highlights: ► Nobiletin-mediated alterations of gene expression were examined with DNA microarrays. ► Three organ-derived cell lines were treated with 100 μM nobiletin for 24 h. ► In all cell lines, 3 endoplasmic reticulum stress-responsive genes were up-regulated. ► Some cell cycle-regulating and oxidative stress-promoting genes were down-regulated. ► These alterations may contribute to nobiletin-mediated biological effects. -- Abstract: Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitromore » and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines – 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells – were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum

  9. Up-Regulation of Pro-Inflammatory Cytokines and Chemokine Production in Avian Influenza H9N2 Virus-Infected Human Lung Epithelial Cell Line (A549).

    PubMed

    Farzin, Hamidreza; Toroghi, Reza; Haghparast, Alireza

    2016-01-01

    Influenza H9N2 virus mostly infects avian species but poses a potential health risk to humans. Little is known about the mammalian host immune responses to H9N2 virus. To obtain insight into the innate immune responses of human lung epithelial cells to the avian H9N2 virus, the expressions of pro-inflammatory cytokines and chemokine in the human airway epithelial cells infected with avian H9N2 virus were examined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). H9N2 virus was able to cultivate in the human lung epithelial cell line (A549) and stimulate production of pro-inflammatory cytokines (IL-1β, IL-6) and chemokine (IL-8). Expressions of cytokine genes were up-regulated to a significantly higher level for IL-1β (p < 0.01), IL-6 (p < 0.01 after 12 hours and p < 0.05 after 24 hours) and IL-8 (p < 0.01 after 12 hours and p < 0.001 after 24 hours) in virus-cultured A549 cells as compared with non-virus-cultured cells. The amount of IL-6 and IL-1β proteins secreted into the culture medium was also increased after virus culture infection of A549 cell line compared to non-virus-cultured A549 cells and were significant in both IL-1β (p < 0.05 in 18 hours and p < 0.001 in 24-48 hours harvested supernatant) and IL-6 (p < 0.001). Silencing the p65 component of NF-κB in A549 cells suppressed the stimulatory effects of influenza virus on secretion of pro-inflammatory cytokines and chemokine. The findings in this study will broaden our understanding of host innate immune mechanisms and the pathogenesis of H9N2 influenza viruses in human respiratory epithelium.

  10. ExoMol molecular line lists XIX: high-accuracy computed hot line lists for H218O and H217O

    NASA Astrophysics Data System (ADS)

    Polyansky, Oleg L.; Kyuberis, Aleksandra A.; Lodi, Lorenzo; Tennyson, Jonathan; Yurchenko, Sergei N.; Ovsyannikov, Roman I.; Zobov, Nikolai F.

    2017-04-01

    Hot line lists for two isotopologues of water, H218O and H217O, are presented. The calculations employ newly constructed potential energy surfaces (PES), which take advantage of a novel method for using the large set of experimental energy levels for H216O to give high-quality predictions for H218O and H217O. This procedure greatly extends the energy range for which a PES can be accurately determined, allowing an accurate prediction of higher lying energy levels than are currently known from direct laboratory measurements. This PES is combined with a high-accuracy, ab initio dipole moment surface of water in the computation of all energy levels, transition frequencies and associated Einstein A coefficients for states with rotational excitation up to J = 50 and energies up to 30 000 cm-1. The resulting HotWat78 line lists complement the well-used BT2 H216O line list. Full line lists are made available online as Supporting Information and at www.exomol.com.

  11. Metabolic cooperation between co-cultured lung cancer cells and lung fibroblasts.

    PubMed

    Koukourakis, Michael I; Kalamida, Dimitra; Mitrakas, Achilleas G; Liousia, Maria; Pouliliou, Stamatia; Sivridis, Efthimios; Giatromanolaki, Alexandra

    2017-11-01

    Cooperation of cancer cells with stromal cells, such as cancer-associated fibroblasts (CAFs), has been revealed as a mechanism sustaining cancer cell survival and growth. In the current study, we focus on the metabolic interactions of MRC5 lung fibroblasts with lung cancer cells (A549 and H1299) using co-culture experiments and studying changes of the metabolic protein expression profile and of their growth and migration abilities. Using western blotting, confocal microscopy and RT-PCR, we observed that in co-cultures MRC5 respond by upregulating pyruvate dehydrogenase (PDH) and the monocarboxylate transporter MCT1. In contrast, cancer cells increase the expression of glucose transporters (GLUT1), LDH5, PDH kinase and the levels of phosphorylated/inactivated pPDH. H1299 cells growing in the same culture medium with fibroblasts exhibit a 'metastasis-like' phenomenon by forming nests within the fibroblast area. LDH5 and pPDH were drastically upregulated in these nests. The growth rate of both MRC5 and cancer cells increased in co-cultures. Suppression of LDHA or PDK1 in cancer cells abrogates the stimulatory signal from cancer cells to fibroblasts. Incubation of MRC5 fibroblasts with lactate resulted in an increase of LDHB and of PDH expression. Silencing of PDH gene in fibroblasts, or silencing of PDK1 or LDHA gene in tumor cells, impedes cancer cell's migration ability. Overall, a metabolic cooperation between lung cancer cells and fibroblasts has been confirmed in the context of direct Warburg effect, thus the fibroblasts reinforce aerobic metabolism to support the intensified anaerobic glycolytic pathways exploited by cancer cells.

  12. Radiation sensitivity of Merkel cell carcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, J.H.; Ramsay, J.R.; Birrell, G.W.

    1995-07-30

    Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT)more » assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.« less

  13. Synthesis of Rapamycin Derivatives Containing the Triazole Moiety Used as Potential mTOR-Targeted Anticancer Agents.

    PubMed

    Xie, Lijun; Huang, Jie; Chen, Xiaoming; Yu, Hui; Li, Kualiang; Yang, Dan; Chen, Xiaqin; Ying, Jiayin; Pan, Fusheng; Lv, Youbing; Cheng, Yuanrong

    2016-06-01

    Rapamycin, a potent antifungal antibiotic, was approved as immunosuppressant, and lately its derivatives have been developed into mTOR targeting anticancer drugs. Structure modification was performed at the C-42 position of rapamycin, and a novel series of rapamycin triazole hybrids (4a-d, 5a-e, 8a-e, and 9a-e) was facilely synthesized via Huisgen's reaction. The anticancer activity of these compounds was evaluated against the Caski, H1299, MGC-803, and H460 human cancer cell lines. Some of the derivatives (8a-e, 9a-e) appeared to have stronger activity than that of rapamycin; however, 4a-d and 5a-e failed to show potential anticancer activity. Compound 9e with a (2,4-dichlorophenylamino)methyl moiety on the triazole ring was the most active anticancer compound, which showed IC50 values of 6.05 (Caski), 7.89 (H1299), 25.88 (MGC-803), and 8.60 μM (H460). In addition, research on the mechanism showed that 9e was able to cause cell morphological changes and to induce apoptosis in the Caski cell line. Most importantly, 9e can decrease the phosphorylation of mTOR and of its downstream key proteins, S6 and P70S6K1, indicating that 9e can effectively inhibit the mTOR signaling pathway. Thus, it may have the potential to become a new mTOR inhibitor against various cancers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dependence of Relative Expression of NTR1 and EGFR on Cell Density and Extracellular pH in Human Pancreatic Cancer Cell Lines

    PubMed Central

    Olszewski-Hamilton, Ulrike; Hamilton, Gerhard

    2011-01-01

    Pancreatic adenocarcinoma is a devastating disease characterized by early dissemination and poor prognosis. These solid tumors express receptors for neuropeptides like neurotensin (NT) or epidermal growth factor (EGF) and exhibit acidic regions when grown beyond a certain size. We previously demonstrated increases in intracellular Ca2+ levels, intracellular pH and interleukin-8 (IL-8) secretion in BxPC-3 and PANC-1 pancreatic cancer cells in response to a stable NT analog. The present study aimed at investigation of the dependence of the relative expression of NT receptor 1 (NTR1) and EGFR in BxPC-3 and MIA PaCa-2 cells on cell density and extracellular pH (pHe). MTT assays revealed the NTR1 inhibitor SR 142948-sensitive Lys8-ψ-Lys9NT (8–13)-induced proliferation in BxPC-3 and PANC-1 cells. Confluent cultures of BxPC3 and HT-29 lines exhibited highest expression of NTR1 and lowest of EGFR and expression of NTR1 was maximal at slightly acidic pHe. IL-8 production was stimulated by Lys8-ψ-Lys9NT (8–13) and even enhanced at both acidic and alkaline pHe in BxPC-3 and PANC-1 cells. In conclusion, our in vitro study suggests that one contributing factor to the minor responses obtained with EGFR-directed therapy may be downregulation of this receptor in tumor cell aggregates, possibly resulting in acquisition of a more aggressive phenotype via other growth factor receptors like NTR1. PMID:24212612

  15. Zinc Finger Nuclease Mediated Knockout of ADP-Dependent Glucokinase in Cancer Cell Lines: Effects on Cell Survival and Mitochondrial Oxidative Metabolism

    PubMed Central

    Richter, Susan; Morrison, Shona; Connor, Tim; Su, Jiechuang; Print, Cristin G.; Ronimus, Ron S.; McGee, Sean L.; Wilson, William R.

    2013-01-01

    Zinc finger nucleases (ZFN) are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of ADPGK, which encodes an ADP-dependent glucokinase (ADPGK), in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116). All four clones had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p = 0.002) and 4.3±0.8% (p = 0.001) for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser) under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis in these lines. PMID:23799003

  16. A New Extensively Characterised Conditionally Immortal Muscle Cell-Line for Investigating Therapeutic Strategies in Muscular Dystrophies

    PubMed Central

    Muses, Sofia; Morgan, Jennifer E.; Wells, Dominic J.

    2011-01-01

    A new conditionally immortal satellite cell-derived cell-line, H2K 2B4, was generated from the H2Kb-tsA58 immortomouse. Under permissive conditions H2K 2B4 cells terminally differentiate in vitro to form uniform myotubes with a myogenic protein profile comparable with freshly isolated satellite cells. Following engraftment into immunodeficient dystrophin-deficient mice, H2K 2B4 cells regenerated host muscle with donor derived myofibres that persisted for at least 24 weeks, without forming tumours. These cells were readily transfectable using both retrovirus and the non-viral transfection methods and importantly upon transplantation, were able to reconstitute the satellite cell niche with functional donor derived satellite cells. Finally using the Class II DNA transposon, Sleeping Beauty, we successfully integrated a reporter plasmid into the genome of H2K 2B4 cells without hindering the myogenic differentiation. Overall, these data suggest that H2K 2B4 cells represent a readily transfectable stable cell-line in which to investigate future stem cell based therapies for muscle disease. PMID:21935475

  17. A new extensively characterised conditionally immortal muscle cell-line for investigating therapeutic strategies in muscular dystrophies.

    PubMed

    Muses, Sofia; Morgan, Jennifer E; Wells, Dominic J

    2011-01-01

    A new conditionally immortal satellite cell-derived cell-line, H2K 2B4, was generated from the H2K(b)-tsA58 immortomouse. Under permissive conditions H2K 2B4 cells terminally differentiate in vitro to form uniform myotubes with a myogenic protein profile comparable with freshly isolated satellite cells. Following engraftment into immunodeficient dystrophin-deficient mice, H2K 2B4 cells regenerated host muscle with donor derived myofibres that persisted for at least 24 weeks, without forming tumours. These cells were readily transfectable using both retrovirus and the non-viral transfection methods and importantly upon transplantation, were able to reconstitute the satellite cell niche with functional donor derived satellite cells. Finally using the Class II DNA transposon, Sleeping Beauty, we successfully integrated a reporter plasmid into the genome of H2K 2B4 cells without hindering the myogenic differentiation. Overall, these data suggest that H2K 2B4 cells represent a readily transfectable stable cell-line in which to investigate future stem cell based therapies for muscle disease.

  18. BHD Tumor Cell Line and Renal Cell Carcinoma Line | NCI Technology Transfer Center | TTC

    Cancer.gov

    Scientists at the National Cancer Institute  have developed a novel renal cell carcinoma (RCC) cell line designated UOK257, which was derived from the surgical kidney tissue of a patient with hereditary Birt-Hogg-Dube''''(BHD) syndrome and companion cell line UOK257-2 in which FLCN expression has been restored by lentivirus infection. The NCI Urologic Oncology Branch seeks parties interested in licensing or collaborative research to co-develop, evaluate, or commercialize kidney cancer tumor cell lines.

  19. Dioxonaphthoimidazoliums AB1 and YM155 disrupt phosphorylation of p50 in the NF-κB pathway

    PubMed Central

    Chin, Tan Min; Go, Mei Lin

    2016-01-01

    The NF-κB pathway is overexpressed in non-small cell lung cancers (NSCLC) and contributes to the poor prognosis and high mortality characterizing this malignancy. Silencing the p50 and p65 NF-κB subunits in the NSCLC H1299 cell line led to profound loss in cell viability and downregulated anti-apoptotic proteins survivin and Mcl1. We also showed that a survivin suppressant, the dioxonaphthoimidazolium YM155, and its structural analog AB1 arrested the growth of H1299 cells at nanomolar concentrations. Both compounds were apoptogenic and suppressed survivin and other anti-apoptotic proteins (Mcl1, Bcl-2, Bcl-xl) in a dose- and/or time-dependent manner. YM155 and AB1 did not affect the expression of key proteins (IκBα, p65, p50) involved in NF-κB signaling. Stable IκBα levels suggest that the NF-κB/IκB complex and proteins upstream of IκBα, were not targeted. Neither did the compounds intercept the nuclear translocation of the p50 and p65 subunits. On the other hand, YM155 and AB1 suppressed the phosphorylation of the p50 subunit at Ser337 which is critical in promoting the binding of NF-κB dimers to DNA. Both compounds duly impeded the binding of NF-κB dimers to DNA and attenuated transcriptional activity of luciferase-transfected HEK293 cells controlled by NF-κB response elements. We propose that the “silencing” the NF-κB pathway effected by these compounds contributed to their potent apoptogenic effects on H1299. Notwithstanding, the mechanism(s) involved in their ability to abolish phosphorylation of p50 remains to be elucidated. Taken together, these results disclose a novel facet of functionalized dioxonaphthoimidazoliums that could account for their potent cell killing property. PMID:26872379

  20. Escherichia coli STb toxin induces apoptosis in intestinal epithelial cell lines.

    PubMed

    Syed, H Claudia; Dubreuil, J Daniel

    2012-09-01

    A previous study conducted in our laboratory demonstrated that cells having internalized Escherichia coli STb toxin display apoptotic-like morphology. We therefore investigated if STb could induce programmed cell death in both a human and an animal intestinal epithelial cell lines. HRT-18 (Human Colon Tumor) and IEC-18 (Rat Ileum Epithelial Cells) cell lines were used. As STb is frequently tested in a rat model, the IEC-18 cell line was most relevant to our work. The cell lines were treated with various amounts of purified STb (nanomole range) for a period of 24 h after which cells were harvested and examined for apoptotic characteristics. Caspase-9, the initiator of mitochondrion-mediated apoptosis, and caspase-3, an effector of caspase-9, were both activated following STb intoxication of HRT-18 and IEC-18 cells whereas caspase-8, the initiator caspase of the extrinsic pathway, was not activated. For both cell lines, agarose gel electrophoresis of the cell DNA content reveals laddering of DNA, resulting from DNA fragmentation, a characteristic of apoptosis. Hoechst 33342-stained DNA of STb-treated cell lines, observed using fluorescence microscopy, revealed condensation and fragmentation of the nuclei. Apoptotic indexes calculated from fragmented nuclei of Hoechst 33342-stained DNA for HRT-18 and IEC-18 cells showed an STb dose-dependent response. Overall, these data indicate that STb toxin induces a mitochondrion-mediated caspase-dependent apoptotic pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Sulforaphane suppresses EMT and metastasis in human lung cancer through miR-616-5p-mediated GSK3β/β-catenin signaling pathways.

    PubMed

    Wang, Da-Xuan; Zou, Yu-Jiao; Zhuang, Xi-Bin; Chen, Shu-Xing; Lin, Yong; Li, Wen-Lan; Lin, Jun-Jin; Lin, Zhi-Qiang

    2017-02-01

    Sulforaphane is a common antioxidant selectively abundant in cruciferous plants, which exhibits effective anti-cancer actions in control of tumorigenesis or progression of various cancers. A recent study has shown that sulforaphane attenuates the EGFR signaling pathway in non-small cell lung cancer (NSCLC), suggesting its potential anti-metastatic effects. In this study we assessed the involvement of sulforaphane and miR-616-5p in epithelial-mesenchymal transition (EMT) and NSCLC metastasis. Sulforaphane suppressed the cell proliferation in human NSCLC cell lines H1299, 95C and 95D with IC 50 values of 9.52±1.23, 9.04±1.90 and 17.35±2.03 μmol/L, respectively. At low concentrations (1-5 μmol/L), sulforaphane dose-dependently inhibited the migration and invasion of 95D and H1299 cells with relatively high metastatic potential. The anti-metastatic action of sulforaphane was confirmed in 95D and H1299 cell xenografts in vivo. In fresh NSCLC tissue samples from 179 patients, miR-616-5p levels were upregulated in late-stage NSCLCs, and strongly correlated with risk of NSCLC recurrence and metastasis. Consistent with the clinic observation, miR-616-5p levels in the 3 NSCLC cell lines were correlated with their metastatic ability, and were decreased by sulforaphane treatment. Silencing miR-616-5p markedly suppressed the migration and invasion of 95D cells in vitro and NSCLC metastasis in vivo. Further studies revealed that miR-616-5p directly targeted GSK3β and decreased its expression, whereas sulforaphane decreased miR-616-5p levels by histone modification, and followed by inactivation of the GSK3β/β-catenin signaling pathway and inhibition of EMT, which was characterized by loss of epithelial markers and acquisition of a mesenchymal phenotype in NSCLC cells. Our findings suggest that sulforaphane is a potential adjuvant chemotherapeutic agent for the prevention of NSCLC recurrence and metastasis, and miR-616-5p can be clinically utilized as a biomarker or

  2. Sulforaphane suppresses EMT and metastasis in human lung cancer through miR-616-5p-mediated GSK3β/β-catenin signaling pathways

    PubMed Central

    Wang, Da-xuan; Zou, Yu-jiao; Zhuang, Xi-bin; Chen, Shu-xing; Lin, Yong; Li, Wen-lan; Lin, Jun-jin; Lin, Zhi-qiang

    2017-01-01

    Sulforaphane is a common antioxidant selectively abundant in cruciferous plants, which exhibits effective anti-cancer actions in control of tumorigenesis or progression of various cancers. A recent study has shown that sulforaphane attenuates the EGFR signaling pathway in non-small cell lung cancer (NSCLC), suggesting its potential anti-metastatic effects. In this study we assessed the involvement of sulforaphane and miR-616-5p in epithelial-mesenchymal transition (EMT) and NSCLC metastasis. Sulforaphane suppressed the cell proliferation in human NSCLC cell lines H1299, 95C and 95D with IC50 values of 9.52±1.23, 9.04±1.90 and 17.35±2.03 μmol/L, respectively. At low concentrations (1–5 μmol/L), sulforaphane dose-dependently inhibited the migration and invasion of 95D and H1299 cells with relatively high metastatic potential. The anti-metastatic action of sulforaphane was confirmed in 95D and H1299 cell xenografts in vivo. In fresh NSCLC tissue samples from 179 patients, miR-616-5p levels were upregulated in late-stage NSCLCs, and strongly correlated with risk of NSCLC recurrence and metastasis. Consistent with the clinic observation, miR-616-5p levels in the 3 NSCLC cell lines were correlated with their metastatic ability, and were decreased by sulforaphane treatment. Silencing miR-616-5p markedly suppressed the migration and invasion of 95D cells in vitro and NSCLC metastasis in vivo. Further studies revealed that miR-616-5p directly targeted GSK3β and decreased its expression, whereas sulforaphane decreased miR-616-5p levels by histone modification, and followed by inactivation of the GSK3β/β-catenin signaling pathway and inhibition of EMT, which was characterized by loss of epithelial markers and acquisition of a mesenchymal phenotype in NSCLC cells. Our findings suggest that sulforaphane is a potential adjuvant chemotherapeutic agent for the prevention of NSCLC recurrence and metastasis, and miR-616-5p can be clinically utilized as a biomarker or

  3. Heavy isotope labeling study of the turnover of forskolin-stimulated adenylate cyclase in BC/sup 3/H1 cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhelal, R.; Bockaert, J.; Mermet-Bouvier, R.

    1987-06-25

    We have used the method of heavy isotope labeling to study the metabolic turnover of adenylate cyclase in a nonfusing muscle cell line, the BC/sup 3/H1 cells. These cells contains an adenylate cyclase coupled to beta-adrenergic receptors and highly stimulated by forskolin, a potent activator of the enzyme. After transfer of the cells from normal medium to heavy medium (a medium containing heavy labeled amino acids, /sup 3/H, /sup 13/C, /sup 15/N), heavy isotope-labeled adenylate cyclase molecules progressively replace pre-existing light molecules. In sucrose gradient differential sedimentation, after a 5-day switch in heavy medium, the enzyme exhibited a higher massmore » (s = 8.40 +/- 0.03 S, n = 13) compared to the control enzyme. Indeed, the increase in the sedimentation coefficient of the heavy molecules was due to the synthesis of new molecules of adenylate cyclase labeled with heavy isotope amino acids since in the presence of cycloheximide, an inhibitor of protein synthesis, no change in the sedimentation pattern of the forskolin-stimulated adenylate cyclase occurred. After incorporation of heavy isotope amino acids in the adenylate cyclase molecules, the kinetics parameters of the enzyme did not change. However, adenylate cyclase from cells incubated with heavy medium exhibits an activity about 2-fold lower than control. After switching the cells to the heavy medium, the decrease of the activity of the enzyme occurred during the first 24 h and thereafter remained at a steady state for at least 4 days. In contrast, 24 h after the switch, the sedimentation coefficient of forskolin-stimulated adenylate cyclase was progressively shifted to a higher value.« less

  4. Antitumoral effect of vanadium compounds in malignant melanoma cell lines.

    PubMed

    Rozzo, Carla; Sanna, Daniele; Garribba, Eugenio; Serra, Maria; Cantara, Alessio; Palmieri, Giuseppe; Pisano, Marina

    2017-09-01

    In this study we evaluated the anticancer activity against malignant melanoma (MM) of four different vanadium species: the inorganic anion vanadate(V) (indicated with VN), and three oxidovanadium(IV) complexes, [V IV O(dhp) 2 ] where dhp - is the anion 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS2), [V IV O(mpp) 2 ] where mpp - is 1-methyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS3), and [V IV O(ppp) 2 ] where ppp - is 1-phenyl-2-methyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS4). The antitumor effects of these compounds were studied against two different MM cell lines (A375 and CN-mel) and a fibroblast cell line (BJ) as normal control. All tested V compounds exert antiproliferative activity on MM cells in a dose dependent manner (IC 50 ranges from 2.4μM up to 14μM) being A375 the most sensitive cell line. VN and VS2 were the two most active compounds against A375 (IC 50 of 4.7 and 2.6μM, respectively), causing apoptosis and cell cycle block. The experimental data indicate that the cell cycle arrest occurs at different phases for the two V species analyzed (G2 checkpoint for VN and G0/G1 for VS2), showing the importance of the chemical form in determining their mechanism of action. These results add more insights into the landscape of vanadium versatility in biological systems and into its role as a potential cancer therapeutic agent. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Synthesis, characterization and cytotoxic studies of water soluble [(η5-C5H5)2Mo(thionucleobase/thionucleoside)]Cl complexes in breast and colon cancer cell lines

    PubMed Central

    Acevedo-Acevedo, Débora; Matta, Jaime; Meléndez, Enrique

    2010-01-01

    Four new water soluble molybdenocene complexes were synthesized in aqueous solution at pH 7.0. The new species, [(η5-C5H5)2Mo(L)]Cl (L= 6-mercaptopurine, 2-amino-6-mercaptopurine, (-)-2-amino-6-mercaptopurine ribose and 6-mercaptopurine ribose), were characterized by spectroscopic methods. NMR spectroscopic data showed the presence of two coordination isomers, S(6), N(7) and S(6), N(1), in aqueous solution, being S(6), N(7) the most stable. The antiproliferative activities of the new species were investigated in HT-29 colon and MCF-7 breast cancer cell lines. The incorporation of molybdenocene (Cp2Mo2+) into the thionucleobases/thionucleosides decreases their cytotoxic activities in HT-29 colon cancer cell line. In contrast, in the MCF-7 cell line, [Cp2Mo(2-amino-6-mercaptopurine)]Cl showed a high cytotoxic activity. This is most likely a consequence of the enhanced lipophilic character on the thionucleobase combined with synergism between Cp2Mo2+ and the thionucleobase ligand. PMID:21399723

  6. Preclinical Testing of an Oncolytic Parvovirus: Standard Protoparvovirus H-1PV Efficiently Induces Osteosarcoma Cell Lysis In Vitro.

    PubMed

    Geiss, Carsten; Kis, Zoltán; Leuchs, Barbara; Frank-Stöhr, Monika; Schlehofer, Jörg R; Rommelaere, Jean; Dinsart, Christiane; Lacroix, Jeannine

    2017-10-17

    Osteosarcoma is the most frequent malignant disease of the bone. On the basis of early clinical experience in the 1960s with H-1 protoparvovirus (H-1PV) in osteosarcoma patients, this effective oncolytic virus was selected for systematic preclinical testing on various osteosarcoma cell cultures. A panel of five human osteosarcoma cell lines (CAL 72, H-OS, MG-63, SaOS-2, U-2OS) was tested. Virus oncoselectivity was confirmed by infecting non-malignant human neonatal fibroblasts and osteoblasts used as culture models of non-transformed mesenchymal cells. H-1PV was found to enter osteosarcoma cells and to induce viral DNA replication, transcription of viral genes, and translation to viral proteins. After H-1PV infection, release of infectious viral particles from osteosarcoma cells into the supernatant indicated successful viral assembly and egress. Crystal violet staining revealed progressive cytomorphological changes in all osteosarcoma cell lines. Infection of osteosarcoma cell lines with the standard H-1PV caused an arrest of the cell cycle in the G2 phase, and these lines had a limited capacity for standard H-1PV virus replication. The cytotoxicity of wild-type H-1PV virus towards osteosarcoma cells was compared in vitro with that of two variants, Del H-1PV and DM H-1PV, previously described as fitness variants displaying higher infectivity and spreading in human transformed cell lines of different origins. Surprisingly, wild-type H-1PV displayed the strongest cytostatic and cytotoxic effects in this analysis and thus seems the most promising for the next preclinical validation steps in vivo.

  7. Entrainment of Breast Cell Lines Results in Rhythmic Fluctuations of MicroRNAs

    PubMed Central

    Chacolla-Huaringa, Rafael; Trevino, Victor; Scott, Sean-Patrick

    2017-01-01

    Circadian rhythms are essential for temporal (~24 h) regulation of molecular processes in diverse species. Dysregulation of circadian gene expression has been implicated in the pathogenesis of various disorders, including hypertension, diabetes, depression, and cancer. Recently, microRNAs (miRNAs) have been identified as critical modulators of gene expression post-transcriptionally, and perhaps involved in circadian clock architecture or their output functions. The aim of the present study is to explore the temporal expression of miRNAs among entrained breast cell lines. For this purpose, we evaluated the temporal (28 h) expression of 2006 miRNAs in MCF-10A, MCF-7, and MDA-MB-231 cells using microarrays after serum shock entrainment. We noted hundreds of miRNAs that exhibit rhythmic fluctuations in each breast cell line, and some of them across two or three cell lines. Afterwards, we validated the rhythmic profiles exhibited by miR-141-5p, miR-1225-5p, miR-17-5p, miR-222-5p, miR-769-3p, and miR-548ay-3p in the above cell lines, as well as in ZR-7530 and HCC-1954 using RT-qPCR. Our results show that serum shock entrainment in breast cells lines induces rhythmic fluctuations of distinct sets of miRNAs, which have the potential to be related to endogenous circadian clock, but extensive investigation is required to elucidate that connection. PMID:28704935

  8. Authentication of M14 melanoma cell line proves misidentification of MDA‐MB‐435 breast cancer cell line

    PubMed Central

    Korch, Christopher; Hall, Erin M.; Dirks, Wilhelm G.; Ewing, Margaret; Faries, Mark; Varella‐Garcia, Marileila; Robinson, Steven; Storts, Douglas; Turner, Jacqueline A.; Wang, Ying; Burnett, Edward C.; Healy, Lyn; Kniss, Douglas; Neve, Richard M.; Nims, Raymond W.; Reid, Yvonne A.; Robinson, William A.

    2017-01-01

    A variety of analytical approaches have indicated that melanoma cell line UCLA‐SO‐M14 (M14) and breast carcinoma cell line MDA‐MB‐435 originate from a common donor. This indicates that at some point in the past, one of these cell lines became misidentified, meaning that it ceased to correspond to the reported donor and instead became falsely identified (through cross‐contamination or other means) as a cell line from a different donor. Initial studies concluded that MDA‐MB‐435 was the misidentified cell line and M14 was the authentic cell line, although contradictory evidence has been published, resulting in further confusion. To address this question, we obtained early samples of the melanoma cell line (M14), a lymphoblastoid cell line from the same donor (ML14), and donor serum preserved at the originator's institution. M14 samples were cryopreserved in December 1975, before MDA‐MB‐435 cells were established in culture. Through a series of molecular characterizations, including short tandem repeat (STR) profiling and cytogenetic analysis, we demonstrated that later samples of M14 and MDA‐MB‐435 correspond to samples of M14 frozen in 1975, to the lymphoblastoid cell line ML14, and to the melanoma donor's STR profile, sex and blood type. This work demonstrates conclusively that M14 is the authentic cell line and MDA‐MB‐435 is misidentified. With clear provenance information and authentication testing of early samples, it is possible to resolve debates regarding the origins of problematic cell lines that are widely used in cancer research. PMID:28940260

  9. [SP600125-induced polyploidization of megakaryocytic leukemia cell lines by ribosomal protein S6 kinase 1 depends on the degree of cell differentiation].

    PubMed

    Wang, Lili; Yang, Jingang; Li, Changling; Xing, Sining; Yu, Ying; Liu, Shuo; Zhao, Song; Ma, Dongchu

    2016-10-01

    Objective To investigate regulatory role of ribosomal protein S6 kinase 1 (S6K1) in the polyploidization of different megakaryocytic leukemia cell lines at the different differentiation stages. Methods Megakaryocytic leukemia cell lines (Dami, Meg-01 and HEL cells) were induced towards polyploidization by SP600125, a c-Jun N-terminal kinase (JNK) inhibitor. The SP600125-inducing process was blocked by H-89, a cAMP-dependent protein kinase (PKA) inhibitor. The phenotype (CD41a, CD42a and CD42b) and DNA ploidy were detected by flow cytometry. The expression and phosphorylation of S6K1 and related proteins were detected by Western blotting. Results SP600125 induced polyploidization and increased the phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1) in Dami, Meg-01 and HEL cells. However, the effect of SP600125 on polyploidization of the three cell lines was different, with the strongest effect on Dami cells and the weakest on Meg-01 cells. Moreover, SP600125 increased the phosphorylation of S6K1 Thr421/Ser424 and decreased the phosphorylation of Thr389 in Dami cells. However, it only increased the phosphorylation of Thr389 in HEL cells and had no effect on the phosphorylation of S6K1 in Meg-01 cells. Interestingly, H-89 only partially blocked the polyploidization of Dami cells, although it decreased the phosphorylation of 4E-BP1 in all SP600125-induced three cell lines. Noticeably, H-89 decreased the phosphorylation of S6K1 Thr421/Ser424 and increased the phosphorylation of Thr389 in Dami cells. However, H-89 had no effect on the phosphorylation of Thr421/Ser424, although it increased the phosphorylation of Thr389 in Meg-01 and HEL cells. Phenotypic analysis showed that the three cell lines were at different levels of differentiation in megakaryocytic lineage, with the highest differentiation in Dami and the lowest in Meg-01 cells. Conclusion SP600125-induced polyploidization of megakaryocytic leukemia cell lines is dependent on the effect

  10. Publishing SNP genotypes of human embryonic stem cell lines: policy statement of the International Stem Cell Forum Ethics Working Party.

    PubMed

    Knoppers, Bartha M; Isasi, Rosario; Benvenisty, Nissim; Kim, Ock-Joo; Lomax, Geoffrey; Morris, Clive; Murray, Thomas H; Lee, Eng Hin; Perry, Margery; Richardson, Genevra; Sipp, Douglas; Tanner, Klaus; Wahlström, Jan; de Wert, Guido; Zeng, Fanyi

    2011-09-01

    Novel methods and associated tools permitting individual identification in publicly accessible SNP databases have become a debatable issue. There is growing concern that current technical and ethical safeguards to protect the identities of donors could be insufficient. In the context of human embryonic stem cell research, there are no studies focusing on the probability that an hESC line donor could be identified by analyzing published SNP profiles and associated genotypic and phenotypic information. We present the International Stem Cell Forum (ISCF) Ethics Working Party's Policy Statement on "Publishing SNP Genotypes of Human Embryonic Stem Cell Lines (hESC)". The Statement prospectively addresses issues surrounding the publication of genotypic data and associated annotations of hESC lines in open access databases. It proposes a balanced approach between the goals of open science and data sharing with the respect for fundamental bioethical principles (autonomy, privacy, beneficence, justice and research merit and integrity).

  11. Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain barrier model.

    PubMed

    Ohtsuki, Sumio; Ikeda, Chiemi; Uchida, Yasuo; Sakamoto, Yumi; Miller, Florence; Glacial, Fabienne; Decleves, Xavier; Scherrmann, Jean-Michel; Couraud, Pierre-Olivier; Kubo, Yoshiyuki; Tachikawa, Masanori; Terasaki, Tetsuya

    2013-01-07

    Human cerebral microvascular endothelial cell line hCMEC/D3 is an established model of the human blood-brain barrier (BBB). The purpose of the present study was to determine, by means of quantitative targeted absolute proteomics, the protein expression levels in hCMEC/D3 cells of multiple transporters, receptors and junction proteins for comparison with our previously reported findings in isolated human brain microvessels. Among 91 target molecules, 12 transporters, 2 receptors, 1 junction protein and 1 membrane marker were present at quantifiable levels in plasma membrane fraction of hCMEC/D3 cells. ABCA2, MDR1, MRP4, BCRP, GLUT1, 4F2hc, MCT1, ENT1, transferrin and insulin receptors and claudin-5 were detected in both hCMEC/D3 cells and human brain microvessels. After normalization based on Na(+)/K(+) ATPase expression, the differences in protein expression levels between hCMEC/D3 cells and human brain microvessels were within 4-fold for these proteins, with the exceptions of ENT1, transferrin receptor and claudin-5. ABCA8, LAT1, LRP1 and γ-GTP were below the limit of quantification in the cells, but were found in human brain microvessels. ABCA3, ABCA6, MRP1 and ATA1 were found only in hCMEC/D3 cells. Furthermore, compared with human umbilical vein endothelial cells (HUVECs) as reference nonbrain endothelial cells, MDR1 was found only in hCMEC/D3 cells, and GLUT1 expression was 15-fold higher in hCMEC/D3 cells than in HUVECs. In conclusion, this is the first study to examine the suitability and limitations of the hCMEC/D3 cell line as a BBB functional model in terms of quantitative expression levels of transporters, receptors and tight junction proteins.

  12. Preclinical Testing of an Oncolytic Parvovirus: Standard Protoparvovirus H-1PV Efficiently Induces Osteosarcoma Cell Lysis In Vitro

    PubMed Central

    Leuchs, Barbara; Frank-Stöhr, Monika; Schlehofer, Jörg R.; Rommelaere, Jean; Lacroix, Jeannine

    2017-01-01

    Osteosarcoma is the most frequent malignant disease of the bone. On the basis of early clinical experience in the 1960s with H-1 protoparvovirus (H-1PV) in osteosarcoma patients, this effective oncolytic virus was selected for systematic preclinical testing on various osteosarcoma cell cultures. A panel of five human osteosarcoma cell lines (CAL 72, H-OS, MG-63, SaOS-2, U-2OS) was tested. Virus oncoselectivity was confirmed by infecting non-malignant human neonatal fibroblasts and osteoblasts used as culture models of non-transformed mesenchymal cells. H-1PV was found to enter osteosarcoma cells and to induce viral DNA replication, transcription of viral genes, and translation to viral proteins. After H-1PV infection, release of infectious viral particles from osteosarcoma cells into the supernatant indicated successful viral assembly and egress. Crystal violet staining revealed progressive cytomorphological changes in all osteosarcoma cell lines. Infection of osteosarcoma cell lines with the standard H-1PV caused an arrest of the cell cycle in the G2 phase, and these lines had a limited capacity for standard H-1PV virus replication. The cytotoxicity of wild-type H-1PV virus towards osteosarcoma cells was compared in vitro with that of two variants, Del H-1PV and DM H-1PV, previously described as fitness variants displaying higher infectivity and spreading in human transformed cell lines of different origins. Surprisingly, wild-type H-1PV displayed the strongest cytostatic and cytotoxic effects in this analysis and thus seems the most promising for the next preclinical validation steps in vivo. PMID:29039746

  13. [PHI regulates histone methylation and acetylation in Burkitt lymphoma Daudi cell line].

    PubMed

    Hong, Ling-Ling; Ma, Xu-Dong; Huang, Yi-Qun

    2011-02-01

    This study was purposed to investigate the effects of phenylhexyl isothiocyanate (PHI) on Burkitt lymphoma Daudi cell line and regulation of histone acetylation and methylation in Daudi cells, and to explore the potential mechanism. The apoptotic rate of Daudi cells treated with PHI was measured by flow cytometry, the changes of histone H3 and H4 acetylation, histone H3K9 and H3K4 methylation in Daudi cells treated with PHI were detected by Western blot. The results showed that PHI could induce apoptosis of Daudi cells, increased the acetylation level of H3 and H4, enhanced the methylation of H3K4, but reduced the methylation of H3K9. It is concluded that the PHI can up-regulate the acetylation level of histone H3 associated with transcription stimulation and the methylation of histone H3K4, down-regulate the methylation on histone H3K9 associated with transcription inhibition, promotes the apoptosis of Daudi cells. PHI may be a potential agent for target therapy of lymphoma.

  14. Cardiomyocyte H9c2 cells present a valuable alternative to fish lethal testing for azoxystrobin.

    PubMed

    Rodrigues, Elsa T; Pardal, Miguel Â; Laizé, Vincent; Cancela, M Leonor; Oliveira, Paulo J; Serafim, Teresa L

    2015-11-01

    The present study aims at identifying, among six mammalian and fish cell lines, a sensitive cell line whose in vitro median inhibitory concentration (IC50) better matches the in vivo short-term Sparus aurata median lethal concentration (LC50). IC50s and LC50 were assessed after exposure to the widely used fungicide azoxystrobin (AZX). Statistical results were relevant for most cell lines after 48 h of AZX exposure, being H9c2 the most sensitive cells, as well as the ones which provided the best prediction of fish toxicity, with a LC50,96h/IC50,48h = 0.581. H9c2 cell proliferation upon 72 h of AZX exposure revealed a LC50,96h/IC50,72h = 0.998. Therefore, identical absolute sensitivities were attained for both in vitro and in vivo assays. To conclude, the H9c2 cell-based assay is reliable and represents a suitable ethical alternative to conventional fish assays for AZX, and could be used to get valuable insights into the toxic effects of other pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Comparison of the usefulness of the CACO-2 cell line with standard substrates for isolation of swine influenza A viruses.

    PubMed

    Chiapponi, Chiara; Zanni, Irene; Garbarino, Chiara; Barigazzi, Giuseppe; Foni, Emanuela

    2010-01-01

    Influenza A virus isolation is undertaken routinely in embryonated chicken eggs, but to improve virus detection various cell lines can be used. The CACO-2 cell line was compared to the MDCK cell line and embryonated chicken eggs for the isolation of H1N1, H1N2, H3N2 swine influenza A virus subtypes from clinical specimens. From 2006 to 2008, 104 influenza A samples found positive by PCR from 42 respiratory outbreaks in Italian swine farms were examined by virus isolation. Sixty swine influenza A viruses were isolated (16 H1N1, 28 H1N2 and 16 H3N2) and their growth behaviour on the different substrates was examined. 16/16 H1N1, 28/28 H1N2 and 8/16 of H3N2 viruses were isolated from the CACO-2 cell line, while 7/16 H1N1, 3/28 H1N2 and 16/16 H3N2 viruses were isolated using embryonated chicken eggs. Only 9/16 H1N1, 1/28 H1N2 and 6/16 H3N2 viruses replicated in MDCK cells. A link was found between viral hemagglutinin and the isolation rate on the various substrates. The CACO-2 line was statistically more sensitive (Fisher's exact test, p<0.01) compared to the MDCK cells and embryonated chicken eggs for the isolation of H1N1 and H1N2 subtypes. In contrast influenza A H3N2 virus was isolated more readily in embryonated chicken eggs than in cultured cells (Fisher's exact test, p<0.01).

  16. Combination of suberoylanilide hydroxamic acid with heavy ion therapy shows promising effects in infantile sarcoma cell lines

    PubMed Central

    2011-01-01

    Introduction The pan-HDAC inhibitor (HDACI) suberoylanilide hydroxamic acid (SAHA) has previously shown to be a radio-sensitizer to conventional photon radiotherapy (XRT) in pediatric sarcoma cell lines. Here, we investigate its effect on the response of two sarcoma cell lines and a normal tissue cell line to heavy ion irradiation (HIT). Materials and methods Clonogenic assays after different doses of heavy ions were performed. DNA damage and repair were evaluated by measuring γH2AX via flow-cytometry. Apoptosis and cell cycle analysis were also measured via flow cytometry. Protein expression of repair proteins, p53 and p21 were measured using immunoblot analysis. Changes of nuclear architecture after treatment with SAHA and HIT were observed in one of the sarcoma cell lines via light microscopy after staining towards chromatin and γH2AX. Results Corresponding with previously reported photon data, SAHA lead to an increase of sensitivity to heavy ions along with an increase of DSB and apoptosis in the two sarcoma cell lines. In contrast, in the osteoblast cell line (hFOB 1.19), the combination of SAHA and HIT showed a significant radio-protective effect. Laser scanning microscopy revealed no significant morphologic changes after HIT compared to the combined treatment with SAHA. Immunoblot analysis revealed no significant up or down regulation of p53. However, p21 was significantly increased by SAHA and combination treatment as compared to HIT only in the two sarcoma cell lines - again in contrast to the osteoblast cell line. Changes in the repair kinetics of DSB p53-independent apoptosis with p21 involvement may be part of the underlying mechanisms for radio-sensitization by SAHA. Conclusion Our in vitro data suggest an increase of the therapeutic ratio by the combination of SAHA with HIT in infantile sarcoma cell lines. PMID:21933400

  17. Establishment of a cell line producing bone morphogenetic protein from a human osteosarcoma.

    PubMed

    Takaoka, K; Yoshikawa, H; Masuhara, K; Sugamoto, K; Tsuda, T; Aoki, Y; Ono, K; Sakamoto, Y

    1989-07-01

    A human osteosarcoma cell line was established from a biopsy specimen from a 13-year-old girl. The osteosarcoma tissue was maintained in athymic nude mice (Balb C nu/nu) by serial transplantation for three years. The tumor was excised from a host mouse and digested with collagenase. The isolated cells were cultured by 98 passages in 14 months, and clones of osteosarcoma cells were obtained by limiting dilution. A clone named human osteosarcoma cell 6 (H-OS-6) that showed the osteoblastic phenotypes of productions of bone morphogenetic protein (BMP) and alkaline phosphatase and a response to human parathyroid hormone (h-PTH 1-34) was selected. The morphology of its chromosomes indicated its human origin. This human osteosarcoma cell line is unique in producing BMP under in vitro conditions.

  18. Generation of H1 PAX6WT/EGFP reporter cells to purify PAX6 positive neural stem/progenitor cells.

    PubMed

    Wu, Wei; Liu, Juli; Su, Zhenghui; Li, Zhonghao; Ma, Ning; Huang, Ke; Zhou, Tiancheng; Wang, Linli

    2018-08-25

    Neural conversion from human pluripotent cells (hPSCs) is a potential therapy to neurological disease in the future. However, this is still limited by efficiency and stability of existed protocols used for neural induction from hPSCs. To overcome this obstacle, we developed a reporter system to screen PAX6 + neural progenitor/stem cells using transcription activator like effector nuclease (TALEN). We found that knock-in 2 A-EGFP cassette into PAX6 exon of human embryonic stem cells H1 with TALEN-based homology recombination could establish PAX6 WT/EGFP H1 reporter cell line fast and efficiently. This reporter cell line could differentiate into PAX6 and EGFP double positive neural progenitor/stem cells (NPCs/NSCs) after neural induction. Those PAX6 WT/EGFP NPCs could be purified, expanded and specified to post-mitotic neurons in vitro efficiently. With this reporter cell line, we also screened out 1 NPC-specific microRNA, hsa-miR-99a-5p, and 3 ESCs-enriched miRNAs, hsa-miR-302c-5p, hsa-miR-512-3p and hsa-miR-518 b. In conclusion, the TALEN-based neural stem cell screening system is safe and efficient and could help researcher to acquire adequate and pure neural progenitor cells for further application. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Calibration of H-alpha/H-beta Indexes for Emission Line Objects

    NASA Astrophysics Data System (ADS)

    Hintz, Eric G.; Joner, Michael D.

    2016-01-01

    In Joner and Hintz (2015) they report on a standard star system for calibration of H-alpha and H-beta observations. This work was based on data obtained with the Dominion Astrophysical Observatory 1.2-m telescope. As part of the data acquisition for that project, a large number of emission line objects were also observed. We will report on the preliminary results for the emission line data set. This will include a comparison of equivalent width measurements of each line with the matching index. We will also examine the relation between the absorption line objects previously published and the emission line objects, along with a discussion of the transition point. Object types included are Be stars, high mass x-ray binaries, one low mass x-ray binary, Herbig Ae/Be stars, pre-main sequence stars, T Tauri stars, young stellar objects, and one BY Draconis star. Some of these objects come from Cygnus OB-2, NGC 659, NGC 663, NGC 869 and NGC 884.

  20. Establishment and characterization of a novel osteosarcoma cell line: CHOS.

    PubMed

    Liu, Yunlu; Feng, Xiaobo; Zhang, Yukun; Jiang, Hongyan; Cai, Xianyi; Yan, Xinxin; Huang, Zengfa; Mo, Fengbo; Yang, Wen; Yang, Cao; Yang, Shuhua; Liu, Xianzhe

    2016-12-01

    Osteosarcoma has a well-recognized bimodal distribution, with the first peak in adolescence and another in the elderly age-group. The elderly patients have different clinical features and a poorer prognosis as compared to adolescents. To better understand the biological features of osteosarcoma in the elderly population, we established a new human osteosarcoma cell line from a 58-year-old man with primary chondroblastic osteosarcoma. After 6 months of continuous culture in vitro for over 50 passages, an immortalized cell line CHOS was established. The cell line was well-characterized by cytogenetic, biomarker, functional, and histological analyses. The CHOS cells exhibited a spindle-shaped morphology and a doubling time of 36 h. Cytogenetic analysis of CHOS cells revealed the loss of chromosome Y and the gain of chromosome 12. Quantitative real-time polymerase chain reaction (RT-PCR), Western blotting and/or immunofluorescence revealed the expression of chondroblastic, mesenchymal and tumor metastasis markers in the CHOS cells. Compared with the osteosarcoma cell line, the CHOS cells were found to be more sensitive to cisplatin and doxorubicin, but were resistant to methotrexate. The cell line was highly tumorigenic and maintained the histological characteristics and invasive nature of the original tumor. Furthermore, on immunohistochemical analysis, the xenografts and metastases were found to co-express collagen II, aggrecan, vimentin and S100A4 that resembled the original tumor cells. Our results indicate, the potential of CHOS cell line to serve as a useful tool for further studies on the molecular biology of osteosarcoma, especially in the elderly patients. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2116-2125, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Drug/Cell-line Browser: interactive canvas visualization of cancer drug/cell-line viability assay datasets.

    PubMed

    Duan, Qiaonan; Wang, Zichen; Fernandez, Nicolas F; Rouillard, Andrew D; Tan, Christopher M; Benes, Cyril H; Ma'ayan, Avi

    2014-11-15

    Recently, several high profile studies collected cell viability data from panels of cancer cell lines treated with many drugs applied at different concentrations. Such drug sensitivity data for cancer cell lines provide suggestive treatments for different types and subtypes of cancer. Visualization of these datasets can reveal patterns that may not be obvious by examining the data without such efforts. Here we introduce Drug/Cell-line Browser (DCB), an online interactive HTML5 data visualization tool for interacting with three of the recently published datasets of cancer cell lines/drug-viability studies. DCB uses clustering and canvas visualization of the drugs and the cell lines, as well as a bar graph that summarizes drug effectiveness for the tissue of origin or the cancer subtypes for single or multiple drugs. DCB can help in understanding drug response patterns and prioritizing drug/cancer cell line interactions by tissue of origin or cancer subtype. DCB is an open source Web-based tool that is freely available at: http://www.maayanlab.net/LINCS/DCB CONTACT: avi.maayan@mssm.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Development and characterization of two cell lines PDF and PDH from Puntius denisonii (Day 1865).

    PubMed

    Lakra, Wazir S; Goswami, M; Yadav, Kamalendra; Gopalakrishnan, A; Patiyal, R S; Singh, M

    2011-02-01

    The Puntius denisonii colloquially and more popularly referred to as Miss Kerala is a subtropical fish belonging to the genus Puntius (Barb) and family Cyprinidae. Two cell lines PDF and PDH were developed from the caudal fin and heart of P. denisonii, respectively. The cell lines were optimally maintained at 26°C in Leibovitz-15 medium supplemented with 10% fetal bovine serum. A diploid count of 50 chromosomes at passage 50 was observed in both the cell lines. The high growth potential of the cell lines was reflected from the cell doubling time of 28 and 30 h of PDF and PDH cell lines, respectively. The viability of the PDF and PDH cell lines was 70% and 76%, respectively, after 4 mo of storage in liquid nitrogen (-196°C). The origin of the cell lines was confirmed by the amplification of 653 bp fragments of cytochrome oxidase subunit I of mitochondrial DNA genes.

  3. Metabolic Profile of Oral Squamous Carcinoma Cell Lines Relies on a Higher Demand of Lipid Metabolism in Metastatic Cells

    PubMed Central

    Sant’Anna-Silva, Ana Carolina B.; Santos, Gilson C.; Campos, Samir P. Costa; Oliveira Gomes, André Marco; Pérez-Valencia, Juan Alberto; Rumjanek, Franklin David

    2018-01-01

    Tumor cells are subjected to a broad range of selective pressures. As a result of the imposed stress, subpopulations of surviving cells exhibit individual biochemical phenotypes that reflect metabolic reprograming. The present work aimed at investigating metabolic parameters of cells displaying increasing degrees of metastatic potential. The metabolites present in cell extracts fraction of tongue fibroblasts and of cell lines derived from human tongue squamous cell carcinoma lineages displaying increasing metastatic potential (SCC9 ZsG, LN1 and LN2) were analyzed by 1H NMR (nuclear magnetic resonance) spectroscopy. Living, intact cells were also examined by the non-invasive method of fluorescence lifetime imaging microscopy (FLIM) based on the auto fluorescence of endogenous NADH. The cell lines reproducibly exhibited distinct metabolic profiles confirmed by Partial Least-Square Discriminant Analysis (PLS-DA) of the spectra. Measurement of endogenous free and bound NAD(P)H relative concentrations in the intact cell lines showed that ZsG and LN1 cells displayed high heterogeneity in the energy metabolism, indicating that the cells would oscillate between glycolysis and oxidative metabolism depending on the microenvironment’s composition. However, LN2 cells appeared to have more contributions to the oxidative status, displaying a lower NAD(P)H free/bound ratio. Functional experiments of energy metabolism, mitochondrial physiology, and proliferation assays revealed that all lineages exhibited similar energy features, although resorting to different bioenergetics strategies to face metabolic demands. These differentiated functions may also promote metastasis. We propose that lipid metabolism is related to the increased invasiveness as a result of the accumulation of malonate, methyl malonic acid, n-acetyl and unsaturated fatty acids (CH2)n in parallel with the metastatic potential progression, thus suggesting that the NAD(P)H reflected the lipid catabolic

  4. Regulation of intracellular pH in LLC-PK1 cells by Na+/H+ exchange.

    PubMed

    Montrose, M H; Murer, H

    1986-01-01

    Suspensions of LLC-PK1 cells (a continuous epitheliod cell line with renal characteristics) are examined for mechanisms of intracellular pH regulation using the fluorescent probe BCECF. Initial experiments determine suitable calibration procedures for use of the BCECF fluorescent signal. They also determine that the cell suspension contains cells which (after 4 hr in suspension) have Na+ and K+ gradients comparable to those of cells in monolayer culture. The steady-state intracellular pH (7.05 +/- 0.01, n = 5) of cells which have recovered in (pH 7.4) Na+-containing medium is not affected over several minutes by addition of 100 microM amiloride or removal of extracellular Na+ (Na+o less than 1 mM). In contrast, when the cells recover from an acid load (caused by NH4 preincubation and removal), the recovery is largely Na+ dependent and is sensitive to 100 microM amiloride. These results suggest that with resting pH near neutrality, both Na+o/H+i and Na+i/H+o exchange reactions are functionally inactive (compared to cellular buffering capacity). In contrast, Na+o/H+i exchange is activated by an increased cellular acid load. This activation may be observed directly either as a stimulation of net H+ efflux or net Na+ influx with decreasing intracellular pH. The extrapolation of this latter data suggests a "set point" of Na+/H+ exchange of approximately pH 7.0, consistent with the observed resting intracellular pH of approximately 7.05.

  5. Molecular and functional characterization of choline transporter in the human trophoblastic cell line JEG-3 cells.

    PubMed

    Yara, M; Iwao, B; Hara, N; Yamanaka, T; Uchino, H; Inazu, M

    2015-06-01

    Choline is essential for the synthesis of the major membrane phospholipid phosphatidylcholine (PC), the methyl donor betaine and the neurotransmitter acetylcholine (ACh), which is involved in several vital biological functions that play key roles in fetal development. In this study, we examined the molecular and functional characteristics of choline uptake in the human trophoblastic cell line JEG-3. We examined [(3)H]choline uptake in the human trophoblastic cell line JEG-3. The expression of CTL1 and CTL2 was evaluated by quantitative real-time PCR, western blotting and immunocytochemistry. We demonstrated that JEG-3 cells take up [(3)H] choline by a saturable process that is mediated by a Na(+)-independent and pH-dependent transport system. The cells have two different [(3)H] choline transport systems, high- and low-affinity, with Km values of 28.4 ± 5.0 μM and 210.6 ± 55.1 μM, respectively. Cationic compounds and hemicholinium-3 (HC-3) inhibited choline uptake. Choline transporter-like protein 1 (CTL1) and CTL2 mRNA and protein were highly expressed in JEG-3 cells and were localized to the plasma membrane. The present results suggest that choline is mainly transported via a high-affinity choline transport system (CTL1) and a low-affinity choline transport system (CTL2) in human trophoblastic JEG-3 cells. These transporters play an important role in the growth of the fetus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Identification of a Novel Lysosomal Trafficking Peptide using Phage Display Biopanning Coupled with Endocytic Selection Pressure

    PubMed Central

    2015-01-01

    Methods to select ligands that accumulate specifically in cancer cells and traffic through a defined endocytic pathway may facilitate rapid pairing of ligands with linkers suitable for drug conjugate therapies. We performed phage display biopanning on cancer cells that are treated with selective inhibitors of a given mechanism of endocytosis. Using chlorpromazine to inhibit clathrin-mediated endocytosis in H1299 nonsmall cell lung cancer cells, we identified two clones, ATEPRKQYATPRVFWTDAPG (15.1) and a novel peptide LQWRRDDNVHNFGVWARYRL (H1299.3). The peptides segregate by mechanism of endocytosis and subsequent location of subcellular accumulation. The H1299.3 peptide primarily utilizes clathrin-mediated endocytosis and colocalizes with Lamp1, a lysosomal marker. Conversely, the 15.1 peptide is clathrin-independent and localizes to a perinuclear region. Thus, this novel phage display scheme allows for selection of peptides that selectively internalize into cells via a known mechanism of endocytosis. These types of selections may allow for better matching of linker with targeting ligand by selecting ligands that internalize and traffic to known subcellular locations. PMID:25188559

  7. Micro-RNA expression in cisplatin resistant germ cell tumor cell lines

    PubMed Central

    2011-01-01

    Background We compared microRNA expression patterns in three cisplatin resistant sublines derived from paternal cisplatin sensitive germ cell tumor cell lines in order to improve our understanding of the mechanisms of cisplatin resistance. Methods Three cisplatin resistant sublines (NTERA-2-R, NCCIT-R, 2102EP-R) showing 2.7-11.3-fold increase in drug resistance after intermittent exposure to increasing doses of cisplatin were compared to their parental counterparts, three well established relatively cisplatin sensitive germ cell tumor cell lines (NTERA-2, NCCIT, 2102EP). Cells were cultured and total RNA was isolated from all 6 cell lines in three independent experiments. RNA was converted into cDNA and quantitative RT-PCR was run using 384 well low density arrays covering almost all (738) known microRNA species of human origin. Results Altogether 72 of 738 (9.8%) microRNAs appeared differentially expressed between sensitive and resistant cell line pairs (NTERA-2R/NTERA-2 = 43, NCCIT-R/NCCIT = 53, 2102EP-R/2102EP = 15) of which 46.7-95.3% were up-regulated (NTERA-2R/NTERA-2 = 95.3%, NCCIT-R/NCCIT = 62.3%, 2102EP-R/2102EP = 46.7%). The number of genes showing differential expression in more than one of the cell line pairs was 34 between NTERA-2R/NTERA-2 (79%) and NCCIT-R/NCCIT (64%), and 3 and 4, respectively, between these two cell lines and 2102EP-R/2102EP (about 27%). Only the has-miR-10b involved in breast cancer invasion and metastasis and has-miR-512-3p appeared to be up-regulated (2-3-fold) in all three cell lines. The hsa-miR-371-373 cluster (counteracting cellular senescence and linked with differentiation potency), as well as hsa-miR-520c/-520h (inhibiting the tumor suppressor p21) were 3.9-16.3 fold up-regulated in two of the three cisplatin resistant cell lines. Several new micro-RNA species missing an annotation towards cisplatin resistance could be identified. These were hsa-miR-512-3p/-515/-517/-518/-525 (up to 8.1-fold up-regulated) and hsa-miR-99a

  8. Genistein enhances the effect of epidermal growth factor receptor tyrosine kinase inhibitors and inhibits nuclear factor kappa B in nonsmall cell lung cancer cell lines.

    PubMed

    Gadgeel, Shirish M; Ali, Shadan; Philip, Philip A; Wozniak, Antoinette; Sarkar, Fazlul H

    2009-05-15

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have shown modest clinical benefit in patients with relapsed nonsmall cell lung cancer (NSCLC). Down-regulation of Akt appears to correlate with the antitumor activity of EGFR-TKIs. Akt activates nuclear factor kappa B (NF-kappaB), which transcribes genes important for cell survival, invasion, and metastasis. The authors hypothesized that genistein, through the inhibition of NF-kappaB, could enhance the activity of EGFR-TKIs in NSCLCs. Three NSCLC cell lines with various EGFR mutation status and sensitivities to EGFR-TKIs were selected: H3255 (L858R), H1650 (del E746-A750), and H1781 (wild-type EGFR). Cells were treated with erlotinib, gefitinib, genistein, or the combination of each of the EGFR-TKIs with genistein. Cell survival and apoptosis were assessed, and expression levels of EGFR, pAkt, cyclooxygenase-2 (COX-2), E-cadherin, prostaglandin E(2) (PGE(2)), and NF-kappaB were measured. Both EGFR-TKIs demonstrated growth inhibition and apoptosis in each of the cell lines, but H1650 and H1781 were much less sensitive. Genistein demonstrated some antitumor activity in all cell lines, but enhanced growth inhibition and apoptosis when combined with the EGFR-TKIs in each of the cell lines. Both combinations down-regulated NF-kappaB significantly more than either agent alone in H3255. In addition, the combinations reduced the expression of EGFR, pAkt, COX-2, and PGE(2,) consistent with inactivation of NF-kappaB. The authors concluded that genistein enhances the antitumor effects of EGFR-TKIs in 3 separate NSCLC cell lines. This enhanced activity is in part because of greater reduction in the DNA-binding activity of NF-kappaB when EGFR-TKIs were combined with genistein.

  9. Phosphate uptake by a kidney cell line (LLC-PK1).

    PubMed

    Rabito, C A

    1983-07-01

    The uptake of inorganic phosphate was studied in an epithelial cell line of renal origin. Phosphate was accumulated through a mechanism with several features of a carrier-mediated process. The influx was accounted for by a saturable Na+-dependent and a nonsaturable Na+-independent process. Kinetic analysis at pH 6.6 and 7.4 suggests that the dibasic form of phosphate is the form transported by the saturable Na+-dependent system. The presence of Na+ in the incubation medium increased Vmax without affecting Km. Arsenate competitively inhibited the Na+-dependent phosphate transport with a Ki of 1.2 mM at 140 mM Na+ and pH 7.4. Other known inhibitors of phosphate reabsorption in the proximal tubule also inhibited phosphate transport by this cell line. Uptake studies from either side of the monolayers indicated that this transport system is preferentially located in the apical membrane of the cultured renal cells. These results show a close similarity between the Na+-dependent phosphate transport system in LLC-PK1 cells and the system present in the apical membrane of the proximal tubular cells.

  10. Development of recombinant cell line co-expressing mutated Nav1.5, Kir2.1, and hERG for the safety assay of drug candidates.

    PubMed

    Fujii, Masato; Ohya, Susumu; Yamamura, Hisao; Imaizumi, Yuji

    2012-07-01

    To provide a high-throughput screening method for human ether-a-go-go-gene-related gene (hERG) K(+) channel inhibition, a new recombinant cell line, in which single action potential (AP)-induced cell death was produced by gene transfection. Mutated human cardiac Na(+) channel Nav1.5 (IFM/Q3), which shows extremely slow inactivation, and wild-type inward rectifier K(+) channel, Kir2.1, were stably co-expressed in HEK293 cells (IFM/Q3+Kir2.1). In IFM/Q3+Kir2.1, application of single electrical stimulation (ES) elicited a long AP lasting more than 30 s and led cells to die by more than 70%, whereas HEK293 co-transfected with wild-type Nav1.5 and Kir2.1 fully survived. The additional expression of hERG K(+) channels in IFM/Q3+Kir2.1 shortened the duration of evoked AP and thereby markedly reduced the cell death. The treatment of the cells with hERG channel inhibitors such as nifekalant, E-4031, cisapride, terfenadine, and verapamil, recovered the prolonged AP and dose-dependently facilitated cell death upon ES. The EC(50) values to induce the cell death were 3 µM, 19 nM, 17 nM, 74 nM, and 3 µM, respectively, whereas 10 µM nifedipine did not induce cell death. Results indicate the high utility of this cell system for hERG K(+) channel safety assay.

  11. History of leukemia-lymphoma cell lines.

    PubMed

    Drexler, Hans G; Macleod, Roderick A F

    2010-08-01

    We outline the near 50-year history of leukemia-lymphoma (LL) cell lines - a key model system in biomedicine. Due to the detailed documentation of their oncogenomic and transcriptional alterations via recent advances in molecular medicine, LL cell lines may be fitted to parent tumors with a degree of precision unattainable in other cancers. We have surveyed the corpus of published LL cell lines and found 637 examples that meet minimum standards of authentication and characterization. Alarmingly, the rate of establishment of new LL cell lines has plummeted over the last decade. Although the main hematopoietic developmental cell types are represented by cell lines, some LL categories stubbornly resist establishment in vitro. The advent of engineering techniques for immortalizing primary human cells that maintain differentiation means the time is ripe for renewed search for in vitro models from un(der)represented hematologic entities. Given their manifold applications in biomedicine, there is little doubt that LL-derived cell lines will continue to play a vital part well into the next half-century as well. © 2010 The Authors. Human Cell © 2010 Japan Human Cell Society.

  12. Notch-1 regulates pulmonary neuroendocrine cell differentiation in cell lines and in transgenic mice.

    PubMed

    Shan, Lin; Aster, Jon C; Sklar, Jeffrey; Sunday, Mary E

    2007-02-01

    The notch gene family encodes transmembrane receptors that regulate cell differentiation by interacting with surface ligands on adjacent cells. Previously, we demonstrated that tumor necrosis factor-alpha (TNF) induces neuroendocrine (NE) cell differentiation in H82, but not H526, undifferentiated small cell lung carcinoma lines. We now test the hypothesis that TNF mediates NE cell differentiation in part by altering Notch gene expression. First, using RT-PCR, we determined that TNF treatment of H82, but not H526, transiently decreases notch-1 mRNA in parallel with induction of gene expression for the NE-specific marker DOPA decarboxylase (DDC). Second, we treated H82 and H526 with notch-1 antisense vs. sense oligodeoxynucleotides. Using quantitative RT-PCR and Western analyses we demonstrate that DDC mRNA and protein are increased in H82 by notch-1 antisense, whereas notch-1 mRNA and activated Notch-1 protein are decreased. mRNA for Hes1, a transcription factor downstream from activated Notch, is also decreased by Notch-1 antisense in H82 but not H526. After 7 days of Notch-1 antisense treatment, neural cell adhesion molecule (NCAM) immunoreactivity is induced in H82 but not H526. Third, we generated transgenic mice bearing notch-1 driven by the neural/NE-specific calcitonin promoter, which express activated Notch-1 in developing lung epithelium. Newborn NotchCal mouse lungs have high levels of hes1 mRNA, reflecting increased activated Notch, compared with wild-type. NotchCal lungs have decreased CGRP-positive NE cells, decreased protein gene product 9.5 (PGP9.5)-positive NE cells, and decreased gastrin-releasing peptide (GRP), CGRP, and DDC mRNA levels compared with normal littermates. Cumulatively, these observations provide further support for a role for Notch-1 signaling in regulating pulmonary NE cell differentiation.

  13. Novel revertants of H-ras oncogene-transformed R6-PKC3 cells.

    PubMed Central

    Krauss, R S; Guadagno, S N; Weinstein, I B

    1992-01-01

    Rat 6 fibroblasts that overproduce protein kinase C beta 1 (R6-PKC3 cells) are hypersensitive to complete transformation by the T24 H-ras oncogene; yet T24 H-ras-transformed R6-PKC3 cells are killed when exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA) (W.-L. W. Hsiao, G. M. Housey, M. D. Johnson, and I. B. Weinstein, Mol. Cell. Biol. 9:2641-2647, 1989). Treatment of an R6-PKC3 subclone that harbors a T24 H-ras gene under the control of an inducible mouse metallothionein I promoter with ZnSO4 and TPA is extremely cytocidal. This procedure was used to isolate rare revertants that are resistant to this toxicity. Two revertant lines, R-1a and ER-1-2, continue to express very high levels of protein kinase C enzyme activity but, unlike the parental cells, do not grow in soft agar. Furthermore, these revertants are resistant to the induction of anchorage-independent growth by the v-src, v-H-ras, v-raf, and, in the case of the R-1a line, v-fos oncogenes. Both revertant lines, however, retain the ability to undergo morphological alterations when either treated with TPA or infected with a v-H-ras virus, thus dissociating anchorage independence from morphological transformation. The revertant phenotype of both R-1a and ER-1-2 cells is dominant over the transformed phenotype in somatic cell hybridizations. Interestingly, the revertant lines no longer induce the metallothionein I-T24 H-ras construct or the endogenous metallothionein I and II genes in response to three distinct agents: ZnSO4, TPA, and dexamethasone. The reduction in activity of metallothionein promoters seen in these revertants may reflect defects in signal transduction pathways that control the expression of genes mediating specific effects of protein kinase C and certain oncogenes in cell transformation. Images PMID:1535685

  14. In Vitro Differentiation and Propagation of Urothelium from Pluripotent Stem Cell Lines.

    PubMed

    Osborn, Stephanie L; Kurzrock, Eric A

    2018-01-01

    Bioengineering of bladder tissue, particularly for those patients who have advanced bladder disease, requires a source of urothelium that is healthy, capable of significant proliferation in vitro and immunologically tolerated upon transplant. As pluripotent stem cells have the potential to fulfill such criteria, they provide a critical cell source from which urothelium might be derived in vitro and used clinically. Herein, we describe the in vitro differentiation of urothelium from the H9 human embryonic stem cell (hESC) line through the definitive endoderm (DE) phase via selective culture techniques. The protocol can be used to derive urothelium from other hESCs or human-induced pluripotent stem cells.

  15. Functional Characterization Of Peptide Transporters In MDCKII -MDR1 Cell line As A Model For Oral Absorption Studies

    PubMed Central

    Agarwal, Sheetal; Jain, Ritesh; Pal, Dhananjay; K.Mitra, Ashim

    2007-01-01

    MDCKII-MDR1 cell line has been extensively selected as a model to study P-gp-mediated drug efflux. Recently, investigators have employed this cell line for studying influx of peptide prodrug derivatives of parent compounds which are P-gp substrates. Therefore, the objective of this study is to functionally characterize the peptide mediated uptake and transport of [3H] Glycylsarcosine ([3H] Gly-Sar), a model peptide substrate across MDCKII-MDR1 cells. [3H] Gly-Sar uptake from apical (AP) and basolateral (BL) membranes was found to be time dependent and saturable. Michaelis-Menten (Km) constants of [3H] Gly-Sar uptake across the AP and BL directions in MDCKII-MDR1 cell line were found to be 457 ± 37 μM and 464 ± 85 μM respectively. Vmax values in AP and BL directions for the peptide transporters in MDCKII-MDR1 cell line were calculated to be 0.035 ± 0.001 and 0.35 ± 0.034 pmol/min/mg protein respectively. Uptake of [3H] Gly-Sar was significantly inhibited in the presence of aminocephalosporins and ACE-Inhibitors, known substrates for peptide transporters in both the AP and BL directions. Permeability of [3H] Gly-Sar in the BL direction was maximal at pH 4 as compared to pH 5, 6 and 7.4 whereas such permeability in the AP direction was optimal at pH 7.4. Transepithelial transport of [3H] Gly-Sar in the AP-BL direction was significantly lower than from BL-AP direction at all observed pHs. No statistical difference was observed in the transepithelial permeability of [3H] Gly-Sar across both AP and BL directions over 4–10 days of growth period. The present study indicates that peptide transporters are effectively involved in the bidirectional transport of Gly-Sar across MDCKII-MDR1 cell line; the BL peptide transporter can transport Gly-Sar at a greater rate as compared to the AP peptide transporter. Results from these studies suggest the application of MDCKII-MDR1 cell line as a rapid effective tool to study peptide mediated influx of compounds that may be

  16. Effects of 1,3,5-triphenyl-4,5-dihydro-1H-pyrazole derivatives on cell-cycle and apoptosis in human acute leukemia cell lines.

    PubMed

    Santos Bubniak, Lorena Dos; Gaspar, Pâmela Cristina; de Moraes, Ana Carolina Rabello; Bigolin, Alisson; de Souza, Rubia Karine; Buzzi, Fátima Campos; Corrêa, Rogério; Filho, Valdir Cechinel; Bretanha, Lizandra Czermainski; Micke, Gustavo Amadeu; Nunes, Ricardo José; Santos-Silva, Maria Cláudia

    2017-05-01

    Pyrazoline is an important 5-membered nitrogen heterocycle that has been extensively researched. Ten derivatives were synthesized and tested for antileukemic effects on 2 human acute leukemia cell lines, K562 and Jurkat. The most cytotoxic of these derivatives, compound 21, was chosen for investigation of cytotoxicity mechanisms. The results obtained with selectivity calculations revealed that compound 21 is more selective for acute leukemia (K562 and Jurkat cell lines) than for other tumor cell lines. Moreover, compound 21 was not cytotoxic to normal cell lines, indicating a potential use in clinical tests. Compound 21 caused a significant cell cycle arrest in the S-phase in Jurkat cells and increased the proportion of cells in the sub G0/G1 phase in both cell lines. Cells treated with compound 21 demonstrated morphological changes characteristic of apoptosis in the EB/AO assay, confirmed by externalization of phosphatidylserine by the annexin V - fluorescein isothiocyanate method and by DNA fragmentation. An investigation of cytotoxicity mechanisms suggests the involvement of an intrinsic apoptosis pathway due to mitochondrial damage and an increase in the ratio of mitochondrial Bax/Bcl2. Pyrazoline 21 obeyed Lipinski's "rule of five" for drug-likeness. Based on these preliminary results, the antileukemic activity of compound 21 makes it a potential anticancer agent.

  17. MicroRNA-138 Regulates DNA Damage Response in Small Cell Lung Cancer Cells by Directly Targeting H2AX.

    PubMed

    Yang, Huan; Luo, Jinwen; Liu, Zhiguang; Zhou, Rui; Luo, Hong

    2015-04-01

    Lung cancer is the leading cause of cancer death worldwide and small cell lung cancer (SCLC) accounts for a significant proportion of all lung cancer cases. Even so, the underlying mechanism governing SCLC development remains poorly understood and SCLC related cancer death stands high despite decades of intensive investigation. We noted that both miR-138 and H2AX have been implicated in development of various malignancies. Also, there is a recent report showing the role of miR-138 in mediating DNA damage response by targeting H2AX. In light of these data, we sought to characterize the role of miR-138 for SCLC cell growth and cell-cycle progression by regulating H2AX expression. Results showed that miR-138 is significantly down-regulated in SCLC tumor tissues as well as in three SCLC cell lines. After successfully engineering miR-138 overexpression in one of the SCLC cell lines, NCI-H2081, we observed a remarkable reduction of cell growth and a significant inhibition on cell-cycle progression. Moreover, we were able to show that miR-138 potently inhibits H2AX expression, which suggests that H2AX may serve as a downstream executor for miR-138. Consistent with this hypothesis, we found that engineered H2AX knockdown achieves a similar effect as observed for miR-138 overexpression in terms of SCLC growth and cell cycle regulation. We also showed that H2AX overexpression largely abolished miR-138-mediated SCLC cancer cell growth and cell-cycle progression inhibition, which strongly suggests, at least in vitro, that miR-138 potently regulates SCLC development by targeting H2AX. In addition, we found lower miR-138 expression confers SCLC cells with greater DNA damage repair capacity. Finally, we were able to show miR-138 overexpression inhibits DNA damage repair in SCLC cells while miR-138 knockdown further facilitates DNA damage repair in these cells after IR. To date, there has been no study showing the role of miR-138/H2AX machinery in SCLC development. Our results may

  18. Immunological response induced by cryoablation against murine H22 hepatoma cell line in vivo.

    PubMed

    Yang, Xueling; Li, Xiaoli; Guo, Zhi; Si, Tongguo; Yu, Haipeng; Xing, Wenge

    2018-02-01

    To describe immunological consequences induced by cryoablation against H22 cells in vivo. Adult BALB/c mice underwent subcutaneous implantation of H22 cells. All of them were assigned into three groups randomly: group A (false surgery), group B (cryoablation) and group C (cryoablation plus Freund's adjuvant). Animals were sacrificed 1, 2 and 3 weeks after treatment. Serum IFN-γ and IL-4, Th1/Th2 in spleens and cytotoxicity were detected. Compared with that of group A, (1) INF-γ of group B was higher, but IL-4 was lower; cryoablation plus Freund's adjuvant enhanced these effects. (2) Th1/Th2 rose significantly in both group B and group C. (3) Strong cytolytic activity against H22 cells of group B and group C was found on day 7, 14 and 21. Our study showed a marked shift toward Th1 and IFN-γ expression after cryoablation, with an immuno-stimulatory effect against murine H22 hepatoma Cell. Copyright © 2017. Published by Elsevier Inc.

  19. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines

    PubMed Central

    Yu, Vicky; Rahimy, Mehran; Korrapati, Avinaash; Xuan, Yinan; Zou, Angela E.; Krishnan, Aswini R.; Tsui, Tzuhan; Aguilera, Joseph A.; Advani, Sunil; Crotty Alexander, Laura E.; Brumund, Kevin T.; Wang-Rodriguez, Jessica

    2016-01-01

    Objectives Evaluate the cytotoxicity and genotoxicity of short- and long-term e-cigarette vapor exposure on a panel of normal epithelial and head and neck squamous cell carcinoma (HNSCC) cell lines. Materials and Methods HaCaT, UMSCC10B, and HN30 were treated with nicotine-containing and nicotine-free vapor extract from two popular e-cigarette brands for periods ranging from 48 hours to 8 weeks. Cytotoxicity was assessed using Annexin V flow cytometric analysis, trypan blue exclusion, and clonogenic assays. Genotoxicity in the form of DNA strand breaks was quantified using the neutral comet assay and γ-H2AX immunostaining. Results E-cigarette-exposed cells showed significantly reduced cell viability and clonogenic survival, along with increased rates of apoptosis and necrosis, regardless of e-cigarette vapor nicotine content. They also exhibited significantly increased comet tail length and accumulation of γ-H2AX foci, demonstrating increased DNA strand breaks. Conclusion E-cigarette vapor, both with and without nicotine, is cytotoxic to epithelial cell lines and is a DNA strand break-inducing agent. Further assessment of the potential carcinogenic effects of e-cigarette vapor is urgently needed. PMID:26547127

  20. Limitations of the hCMEC/D3 cell line as a model for Aβ clearance by the human blood-brain barrier.

    PubMed

    Biemans, Elisanne A L M; Jäkel, Lieke; de Waal, Robert M W; Kuiperij, H Bea; Verbeek, Marcel M

    2017-07-01

    Alzheimer's disease and cerebral amyloid angiopathy are characterized by accumulation of amyloid-β (Aβ) at the cerebrovasculature due to decreased clearance at the blood-brain barrier (BBB). However, the exact mechanism of Aβ clearance across this barrier has not been fully elucidated. The hCMEC/D3 cell line has been characterized as a valid model for the BBB. In this study we evaluated the use of this model to study Aβ clearance across the BBB, with an emphasis on brain-to-blood directional permeability. Barrier integrity of hCMEC/D3 monolayers was confirmed for large molecules in both the apical to basolateral and the reverse direction. However, permeability for smaller molecules was substantially higher, especially in basolateral to apical direction, and barrier formation for Aβ was completely absent in this direction. In addition, hCMEC/D3 cells failed to develop a high TEER, possibly caused by incomplete formation of tight junctions. We conclude that the hCMEC/D3 model has several limitations to study the cerebral clearance of Aβ. Therefore, the model needs further characterization before this cell system can be generally applied as a model to study cerebral Aβ clearance. © 2016 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc. © 2016 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  1. H α and H β Raman scattering line profiles of the symbiotic star AG Pegasi

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Jae; Hyung, Siek

    2018-04-01

    The H α and H β line profiles of the symbiotic star AG Pegasi, observed in 1998 September (phase ϕ = 10.24), display top narrow double Gaussian components and bottom broad components (FWHM = 200-400 km s-1). The photoionization model indicates that the ionized zone, responsible for the hydrogen Balmer and Lyman lines, is radiation-bounded, with a hydrogen gas number density of nH ˜ 109.85 cm-3 and a gas temperature of Te = 12 000-15 000 K. We have carried out Monte Carlo simulations to fit the Raman scattering broad wings, assuming that the hydrogen Ly β and Ly γ lines emitted within the radiation-bounded H II zone around a white dwarf have the same double Gaussian line profile shape as the hydrogen Balmer lines. The simulation shows that the scattering H I zones are attached to (or located just outside) the inner H II shells. The best fit to the observed broad H I line profiles indicates that the column density of the scattering neutral zone is NH ≃ 3-5 × 1019 cm-2. We have examined whether the geometrical structure responsible for the observed H α and H β line profiles is a bipolar conical shell structure, consisting of the radiation-bounded ionized zone and the outer material bounded neutral zone. The expanding bipolar structure might be two opposite regions of the common envelope or the outer shell of the Roche lobe around the hot white dwarf, formed through the mass inflows from the giant star and pushed out by the fast winds from the hot white dwarf.

  2. Superoxide Dismutase Mimetic GC4419 Enhances the Oxidation of Pharmacological Ascorbate and Its Anticancer Effects in an H₂O₂-Dependent Manner.

    PubMed

    Heer, Collin D; Davis, Andrew B; Riffe, David B; Wagner, Brett A; Falls, Kelly C; Allen, Bryan G; Buettner, Garry R; Beardsley, Robert A; Riley, Dennis P; Spitz, Douglas R

    2018-01-19

    Lung cancer, together with head and neck cancer, accounts for more than one-fourth of cancer deaths worldwide. New, non-toxic therapeutic approaches are needed. High-dose IV vitamin C (aka, pharmacological ascorbate; P-AscH - ) represents a promising adjuvant to radiochemotherapy that exerts its anti-cancer effects via metal-catalyzed oxidation to form H₂O₂. Mn(III)-porphyrins possessing superoxide dismutase (SOD) mimetic activity have been shown to increase the rate of oxidation of AscH - , enhancing the anti-tumor effects of AscH - in several cancer types. The current study demonstrates that the Mn(II)-containing pentaazamacrocyclic selective SOD mimetic GC4419 may serve as an AscH - /O₂ •- oxidoreductase as evidenced by the increased rate of oxygen consumption, steady-state concentrations of ascorbate radical, and H₂O₂ production in complete cell culture media. GC4419, but not CuZnSOD, was shown to significantly enhance the toxicity of AscH - in H1299, SCC25, SQ20B, and Cal27 cancer cell lines. This enhanced cancer cell killing was dependent upon the catalytic activity of the SOD mimetic and the generation of H₂O₂, as determined using conditional overexpression of catalase in H1299T cells. GC4419 combined with AscH - was also capable of enhancing radiation-induced cancer cell killing. Currently, AscH - and GC4419 are each being tested separately in clinical trials in combination with radiation therapy. Data presented here support the hypothesis that the combination of GC4419 and AscH - may provide an effective means by which to further enhance radiation therapy responses.

  3. Development and characterization of a hydrogen peroxide-resistant cholangiocyte cell line: A novel model of oxidative stress-related cholangiocarcinoma genesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanan, Raynoo; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002; Techasen, Anchalee

    Oxidative stress is a cause of inflammation–related diseases, including cancers. Cholangiocarcinoma is a liver cancer with bile duct epithelial cell phenotypes. Our previous studies in animal and human models indicated that oxidative stress is a major cause of cholangiocarcinoma development. Hydrogen peroxide (H{sub 2}O{sub 2}) can generate hydroxyl radicals, which damage lipids, proteins, and nucleic acids, leading to cell death. However, some cells can survive by adapting to oxidative stress conditions, and selective clonal expansion of these resistant cells would be involved in oxidative stress-related carcinogenesis. The present study aimed to establish H{sub 2}O{sub 2}-resistant cell line from an immortal cholangiocytemore » cell line (MMNK1) by chronic treatment with low-concentration H{sub 2}O{sub 2} (25 μM). After 72 days of induction, H{sub 2}O{sub 2}-resistant cell lines (ox-MMNK1-L) were obtained. The ox-MMNK1-L cell line showed H{sub 2}O{sub 2}-resistant properties, increasing the expression of the anti-oxidant genes catalase (CAT), superoxide dismutase-1 (SOD1), superoxide dismutase-2 (SOD2), and superoxide dismutase-3 (SOD3) and the enzyme activities of CAT and intracellular SODs. Furthermore, the resistant cells showed increased expression levels of an epigenetics-related gene, DNA methyltransferase-1 (DNMT1), when compared to the parental cells. Interestingly, the ox-MMNK1-L cell line had a significantly higher cell proliferation rate than the MMNK1 normal cell line. Moreover, ox-MMNK1-L cells showed pseudopodia formation and the loss of cell-to-cell adhesion (multi-layers) under additional oxidative stress (100 μM H{sub 2}O{sub 2}). These findings suggest that H{sub 2}O{sub 2}-resistant cells can be used as a model of oxidative stress-related cholangiocarcinoma genesis through molecular changes such as alteration of gene expression and epigenetic changes. - Highlights: • An H{sub 2}O{sub 2}-resistant ox-MMNK1-L cells was established

  4. A novel, immortal, and multipotent human neural stem cell line generating functional neurons and oligodendrocytes.

    PubMed

    De Filippis, Lidia; Lamorte, Giuseppe; Snyder, Evan Y; Malgaroli, Antonio; Vescovi, Angelo L

    2007-09-01

    The discovery and study of neural stem cells have revolutionized our understanding of the neurogenetic process, and their inherent ability to adopt expansive growth behavior in vitro is of paramount importance for the development of novel therapeutics based on neural cell replacement. Recent advances in high-throughput assays for drug development and gene discovery dictate the need for rapid, reproducible, long-term expansion of human neural stem cells (hNSCs). In this view, the complement of wild-type cell lines currently available is insufficient. Here we report the establishment of a stable human neural stem cell line (immortalized human NSCs [IhNSCs]) by v-myc-mediated immortalization of previously derived wild-type hNSCs. These cells demonstrate three- to fourfold faster proliferation than wild-type cells in response to growth factors but retain rather similar properties, including multipotentiality. By molecular biology, biochemistry, immunocytochemistry, fluorescence microscopy, and electrophysiology, we show that upon growth factor removal, IhNSCs completely downregulate v-myc expression, cease proliferation, and differentiate terminally into three major neural lineages: astrocytes, oligodendrocytes, and neurons. The latter are functional, mature cells displaying clear-cut morphological and physiological features of terminally differentiated neurons, encompassing mostly the GABAergic, glutamatergic, and cholinergic phenotypes. Finally, IhNSCs produce bona fide oligodendrocytes in fractions up to 20% of total cell number. This is in contrast to the negligible propensity of hNSCs to generate oligodendroglia reported so far. Thus, we describe an immortalized hNSC line endowed with the properties of normal hNSCs and suitable for developing the novel, reliable assays and reproducible high-throughput gene and drug screening that are essential in both diagnostics and cell therapy studies.

  5. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felthaus, O.; Department of Oral and Maxillofacial Surgery, University of Regensburg; Ettl, T.

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simplemore » method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.« less

  6. Establishment and characterization of novel epithelial-like cell lines derived from human periodontal ligament tissue in vitro.

    PubMed

    Tansriratanawong, Kallapat; Ishikawa, Hiroshi; Toyomura, Junko; Sato, Soh

    2017-10-01

    In this study, novel human-derived epithelial-like cells (hEPLCs) lines were established from periodontal ligament (PDL) tissues, which were composed of a variety of cell types and exhibited complex cellular activities. To elucidate the putative features distinguishing these from epithelial rest of Malassez (ERM), we characterized hEPLCs based on cell lineage markers and tight junction protein expression. The aim of this study was, therefore, to establish and characterize hEPLCs lines from PDL tissues. The hEPLCs were isolated from PDL of third molar teeth. Cellular morphology and cell organelles were observed thoroughly. The characteristics of epithelial-endothelial-mesenchymal-like cells were compared in several markers by gene expression and immunofluorescence, to ERM and human umbilical-vein endothelial cells (HUVECs). The resistance between cellular junctions was assessed by transepithelial electron resistance, and inflammatory cytokines were detected by ELISA after infecting hEPLCs with periodontopathic bacteria. The hEPLCs developed into small epithelial-like cells in pavement appearance similar to ERM. However, gene expression patterns and immunofluorescence results were different from ERM and HUVECs, especially in tight junction markers (Claudin, ZO-1, and Occludins), and endothelial markers (vWF, CD34). The transepithelial electron resistance indicated higher resistance in hEPLCs, as compared to ERM. Periodontopathic bacteria were phagocytosed with upregulation of inflammatory cytokine secretion within 24 h. In conclusion, hEPLCs that were derived using the single cell isolation method formed tight multilayers colonies, as well as strongly expressed tight junction markers in gene expression and immunofluorescence. Novel hEPLCs lines exhibited differently from ERM, which might provide some specific functions such as metabolic exchange and defense mechanism against bacterial invasion in periodontal tissue.

  7. piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells

    PubMed Central

    Pezic, Dubravka; Manakov, Sergei A.; Sachidanandam, Ravi; Aravin, Alexei A.

    2014-01-01

    Transposable elements (TEs) occupy a large fraction of metazoan genomes and pose a constant threat to genomic integrity. This threat is particularly critical in germ cells, as changes in the genome that are induced by TEs will be transmitted to the next generation. Small noncoding piwi-interacting RNAs (piRNAs) recognize and silence a diverse set of TEs in germ cells. In mice, piRNA-guided transposon repression correlates with establishment of CpG DNA methylation on their sequences, yet the mechanism and the spectrum of genomic targets of piRNA silencing are unknown. Here we show that in addition to DNA methylation, the piRNA pathway is required to maintain a high level of the repressive H3K9me3 histone modification on long interspersed nuclear elements (LINEs) in germ cells. piRNA-dependent chromatin repression targets exclusively full-length elements of actively transposing LINE families, demonstrating the remarkable ability of the piRNA pathway to recognize active elements among the large number of genomic transposon fragments. PMID:24939875

  8. Isolation, Characterization, and Establishment of Spontaneously Immortalized Cell Line HRPE-2S With Stem Cell Properties.

    PubMed

    Shams Najafabadi, Hoda; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Ranaei Pirmardan, Ehsan; Masoumi, Maryam

    2017-10-01

    The retinal pigment epithelium is a monolayer of highly specialized pigmented cells located between the neural retina and the Bruch's membrane of the choroid. RPE cells play a crucial role in the maintenance and function of the underlying photoreceptors. This study introduces a spontaneously arising human retinal pigment epithelial cell line, HRPE-2S, which was isolated from primary RPE cell culture of 2 days old male donor. We characterized morphology and functional properties of the new cell line. The immortalized cell line was maintained in culture for more than 70 passages and 240 divisions. The average doubling time of the cells was approximately 22 h and got freezed at 26th passage. The cell line expressed RPE-specific markers RPE65 and cell junction protein ZO1 as an epithelial cell marker. It also expressed CHX10, PAX6, Nestin, SOX2 as stem and retinal progenitor cell markers. Ki67 as a marker of cell proliferation was expressed in all HRPE-2S cells. It represented typical epithelial cobblestone morphology and did not phenotypically change through several passages. Stem cell-like aggregations (neurospheres) were observed in SEM microscopy. The cells represented high mitotic index. They could be viable under hypoxic conditions and serum deprivation. According to functional studies, the cell line exhibited stem cell-like behaviors with particular emphasis on its self-renewal capacity. LDH isoenzymes expression pattern confirmed the same cellular source for both of the HRPE-2S cells and primary RPE cells. Characteristics of HRPE-2S cells promise it as an in vitro model for RPE stem cell-based researches. J. Cell. Physiol. 232: 2626-2640, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Inhibiting the Aurora B Kinase Potently Suppresses Repopulation During Fractionated Irradiation of Human Lung Cancer Cell Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sak, Ali, E-mail: ali.sak@uni-due.de; Stuschke, Martin; Groneberg, Michael

    2012-10-01

    Purpose: The use of molecular-targeted agents during radiotherapy of non-small-cell lung cancer (NSCLC) is a promising strategy to inhibit repopulation, thereby improving therapeutic outcome. We assessed the combined effectiveness of inhibiting Aurora B kinase and irradiation on human NSCLC cell lines in vitro. Methods and Materials: NSCLC cell lines were exposed to concentrations of AZD1152-hydroxyquinazoline pyrazol anilide (AZD1152-HQPA) inhibiting colony formation by 50% (IC50{sub clone}) in combination with single dose irradiation or different fractionation schedules using multiple 2-Gy fractions per day up to total doses of 4-40 Gy. The total irradiation dose required to control growth of 50% of themore » plaque monolayers (TCD50) was determined. Apoptosis, G2/M progression, and polyploidization were also analyzed. Results: TCD50 values after single dose irradiation were similar for the H460 and H661 cell lines with 11.4 {+-} 0.2 Gy and 10.7 {+-} 0.3 Gy, respectively. Fractionated irradiation using 3 Multiplication-Sign 2 Gy/day, 2 Multiplication-Sign 2 Gy/day, and 1 Multiplication-Sign 2 Gy/day schedules significantly increased TCD50 values for both cell lines grown as plaque monolayers with increasing radiation treatment time. This could be explained by a repopulation effect per day that counteracts 75 {+-} 8% and 27 {+-} 6% of the effect of a 2-Gy fraction in H460 and H661 cells, respectively. AZD1152-HQPA treatment concomitant to radiotherapy significantly decreased the daily repopulation effect (H460: 28 {+-} 5%, H661: 10 {+-} 4% of a 2-Gy fraction per day). Treatment with IC50{sub clone} AZD1152-HPQA did not induce apoptosis, prolong radiation-induced G2 arrest, or delay cell cycle progression before the spindle check point. However, polyploidization was detected, especially in cell lines without functional p53. Conclusions: Inhibition of Aurora B kinase with low AZD1152-HQPA concentrations during irradiation of NSCLC cell lines affects repopulation

  10. Isolation and characterization of conditionally immortalized mouse glomerular endothelial cell lines.

    PubMed

    Rops, Angelique L; van der Vlag, Johan; Jacobs, Cor W; Dijkman, Henry B; Lensen, Joost F; Wijnhoven, Tessa J; van den Heuvel, Lambert P; van Kuppevelt, Toin H; Berden, Jo H

    2004-12-01

    The culture and establishment of glomerular cell lines has proven to be an important tool for the understanding of glomerular cell functions in glomerular physiology and pathology. Especially, the recent establishment of a conditionally immortalized visceral epithelial cell line has greatly boosted the research on podocyte biology. Glomeruli were isolated from H-2Kb-tsA58 transgenic mice that contain a gene encoding a temperature-sensitive variant of the SV40 large tumor antigen, facilitating proliferative growth at 33 degrees C and differentiation at 37 degrees C. Glomerular endothelial cells were isolated from glomerular outgrowth by magnetic beads loaded with CD31, CD105, GSL I-B4, and ULEX. Clonal cell lines were characterized by immunofluorescence staining with antibodies/lectins specific for markers of endothelial cells, podocytes, and mesangial cells. Putative glomerular endothelial cell lines were analyzed for (1) cytokine-induced expression of adhesion molecules; (2) tube formation on Matrigel coating; and (3) the presence of fenestrae. As judged by immunostaining for Wilms tumor-1, smooth muscle actin (SMA), podocalyxin, and von Willebrand factor (vWF), we obtained putative endothelial, podocyte and mesangial cell lines. The mouse glomerular endothelial cell clone #1 (mGEnC-1) was positive for vWF, podocalyxin, CD31, CD105, VE-cadherin, GSL I-B4, and ULEX, internalized acetylated-low-density lipoprotein (LDL), and showed increased expression of adhesion molecules after activation with proinflammatory cytokines. Furthermore, mGEnC-1 formed tubes and contained nondiaphragmed fenestrae. The mGEnC-1 represents a conditionally immortalized cell line with various characteristics of differentiated glomerular endothelial cells when cultured at 37 degrees C. Most important, mGEnC-1 contains nondiaphragmed fenestrae, which is a unique feature of glomerular endothelial cells.

  11. Different toxic effects of YTX in tumor K-562 and lymphoblastoid cell lines

    PubMed Central

    Fernández-Araujo, Andrea; Sánchez, Jon A.; Alfonso, Amparo; Vieytes, Mercedes R.; Botana, Luis M.

    2015-01-01

    Yessotoxin (YTX) modulates cellular phosphodiesterases (PDEs). In this regard, opposite effects had been described in the tumor model K-562 cell line and fresh human lymphocytes in terms of cell viability, cyclic adenosine 3',5'-cyclic monophosphate (cAMP) production and protein expression after YTX treatment. Studies in depth of the pathways activated by YTX in K-562 cell line, have demonstrated the activation of two different cell death types, apoptosis, and autophagy after 24 and 48 h of treatment, respectively. Furthermore, the key role of type 4A PDE (PDE4A) in both pathways activated by YTX was demonstrated. Therefore, taking into account the differences between cellular lines and fresh cells, a study of cell death pathways activated by YTX in a non-tumor cell line with mitotic activity, was performed. The cellular model used was the lymphoblastoid cell line that represents a non-tumor model with normal apoptotic and mitotic machinery. In this context, cell viability and cell proliferation, expression of proteins involved in cell death activated by YTX and mitochondrial mass, were studied after the incubation with the toxin. Opposite to the tumor model, no cell death activation was observed in lymphoblastoid cell line in the presence of YTX. In this sense, variations in apoptosis hallmarks were not detected in the lymphoblastoid cell line after YTX incubation, whereas this type I of programmed cell death was observed in K-562 cells. On the other hand, autophagy cell death was triggered in this cellular line, while other autophagic process is suggested in lymphoblastoid cells. These YTX effects are related to PDE4A in both cellular lines. In addition, while cell death is triggered in K-562 cells after YTX treatment, in lymphoblastoid cells the toxin stops cellular proliferation. These results point to YTX as a specific toxic compound of tumor cells, since in the non-tumor lymphoblastoid cell line, no cell death hallmarks are observed. PMID:26136685

  12. Cell line specific modulation of connexin43 expression after exposure to ionizing radiation.

    PubMed

    Banaz-Yaşar, Ferya; Tischka, Rabea; Iliakis, George; Winterhager, Elke; Gellhaus, Alexandra

    2005-01-01

    Gap junctional intercellular communication plays a significant role in mediating radiation-induced bystander effects. However, the level of Cx43 itself is influenced by ionizing radiation, which could modify the bystander effect. Here we have investigated several cell lines for the modulation of Cx43 expression 24 h after irradiation with 5 Gy X-rays. The mouse endothelial cell line bEnd3 revealed a significantly elevated level of Cx43 already 15 min after exposure to X-rays, whereas human hybrid endothelial cells (EA.hy926) exhibited a transient downregulation of Cx43 mRNA. No obvious changes in the communication properties of the different cell lines could be observed after irradiation. The communication-deficient malignant human trophoblast cell line Jeg3 stably transfected with Cx43 did not reveal any induction of endogenous nor alteration in the exogenous Cx43 transcript level upon exposure to 5 Gy. Taken together, our data show a cell line specific modulation of Cx43 expression after exposure to X-rays.

  13. Apoptosis and reduced cell proliferation of HL-60 cell line caused by human telomerase reverse transcriptase inhibition by siRNA.

    PubMed

    Miri-Moghaddam, Ebrahim; Deezagi, Abdolkhaleg; Soheili, Zahra Sohaila; Shariati, Parvin

    2010-01-01

    The close correlation between telomerase activity and human telomerase reverse transcriptase (hTERT) expression has made hTERT to be considered as a selective molecular target for human cancer therapy. In this study, the ability of short-interfering RNA (siRNA) to downregulate hTERT expression and its correlation with cell growth and apoptosis in the promyelocytic cell line HL-60 was evaluated. hTERT siRNA was designed and transfected to HL-60. hTERT mRNA expression, cell proliferation and apoptotic cells were measured. The results indicated that hTERT siRNA resulted in 97.2 ± 0.6% downregulation of the hTERT mRNA content; inhibition of the cell proliferation rate was about 52.8 ± 2.3% and the apoptotic index of cells was 30.5 ± 1.5%. hTERT plays an essential role in cell proliferation and control of the viability of leukemic cells, thus promising the development of drugs for leukemia. Copyright © 2010 S. Karger AG, Basel.

  14. Apoptosis inducing factor gene depletion inhibits zearalenone-induced cell death in a goat Leydig cell line.

    PubMed

    Yang, Diqi; Jiang, Tingting; Lin, Pengfei; Chen, Huatao; Wang, Lei; Wang, Nan; Zhao, Fan; Tang, Keqiong; Zhou, Dong; Wang, Aihua; Jin, Yaping

    2017-01-01

    Zearalenone (ZEA) is a contaminant of human food and animal feedstuffs that causes health hazards. However, the signal pathways underlying ZEA toxicity remain elusive. The aims of this study were to determine which pathways are involved in ZEA-induced cell death and investigate the effect of apoptosis inducing factor (AIF) on cell death during ZEA treatment in the immortalized goat Leydig cell line hTERT-GLC. This study showed that ZEA-induced cell death in hTERT-GLCs works via endoplasmic reticulum (ER) stress, the caspase-dependent pathway, the caspase-independent pathway and autophagy. Recombinant lentiviral vectors were constructed to silence AIF expression in hTERT-GLCs. Flow cytometry results showed that knockdown of AIF diminished ZEA-induced cell apoptosis in hTERT-GLCs. Furthermore, we found AIF depletion down-regulated phosphoIRE1α, GRP78, CHOP and promoted the switch of LC3-I to LC3-II. Therefore, ZEA induces cytotoxicity in hTERT-GLCs via different pathways, while AIF-mediated signaling plays a critical role in ZEA-induced cell death in hTERT-GLCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. LINE-1 Cultured Cell Retrotransposition Assay

    PubMed Central

    Kopera, Huira C.; Larson, Peter A.; Moldovan, John B.; Richardson, Sandra R.; Liu, Ying; Moran, John V.

    2016-01-01

    Summary The Long INterspersed Element-1 (LINE-1 or L1) retrotransposition assay has facilitated the discovery and characterization of active (i.e., retrotransposition-competent) LINE-1 sequences from mammalian genomes. In this assay, an engineered LINE-1 containing a retrotransposition reporter cassette is transiently transfected into a cultured cell line. Expression of the reporter cassette, which occurs only after a successful round of retrotransposition, allows the detection and quantification of the LINE-1 retrotransposition efficiency. This assay has yielded insight into the mechanism of LINE-1 retrotransposition. It also has provided a greater understanding of how the cell regulates LINE-1 retrotransposition and how LINE-1 retrotransposition impacts the structure of mammalian genomes. Below, we provide a brief introduction to LINE-1 biology and then detail how the LINE-1 retrotransposition assay is performed in cultured mammalian cells. PMID:26895052

  16. Establishment of a rat hepatoma-derived cell line proliferating in D-phenylalanine medium and expressing D-amino-acid oxidase.

    PubMed

    Yoda, N; Konno, R; Nagashima, S

    2001-01-01

    A cell line (R-Y121B.DF) has been established from a cell line (R-Y121B) derived from a rat hepatoma line (H4-II-E). The R-Y121B.DF cells have been continuously cultured in a serum-free modified Eagle's minimum essential medium in which L-phenylalanine was replaced by D-phenylalanine. They had D-amino-acid oxidase (DAO) activity which is essential for the growth in the medium containing D-amino acids. The enzyme activity of the R-Y121B.DF cells was approximately one-fourth of that of the rat liver. Northern hybridization using a DAO cDNA probe detected a hybridizing signal in the R-Y121B.DF cells and the rat liver but not in the parental R-Y121B and H4-II-E cells. Reverse transcription-polymerase chain reaction using DAO-specific primers amplified a DNA fragment of the expected size in the R-Y121B.DF cells but not in the R-Y121B and H4-II-E cells. This fragment was confirmed to be DAO cDNA by nucleotide sequencing. Western blotting showed that DAO protein was present in the R-Y121B.DF cells and the rat liver but not in the R-Y121B and H4-II-E cells. Southern hybridization showed that the DAO gene structure was not different among the R-Y121B.DF cells, R-Y121B cells, H4-II-E cells, and the rat liver. These results indicate that the R-Y121B.DF is a unique cell line which proliferates in the medium containing D-phenylalanine and explicitly expresses DAO. This line is useful for the study of DAO in vitro.

  17. Production Process for Stem Cell Based Therapeutic Implants: Expansion of the Production Cell Line and Cultivation of Encapsulated Cells

    NASA Astrophysics Data System (ADS)

    Weber, C.; Pohl, S.; Poertner, R.; Pino-Grace, Pablo; Freimark, D.; Wallrapp, C.; Geigle, P.; Czermak, P.

    Cell based therapy promises the treatment of many diseases like diabetes mellitus, Parkinson disease or stroke. Microencapsulation of the cells protects them against host-vs-graft reactions and thus enables the usage of allogenic cell lines for the manufacturing of cell therapeutic implants. The production process of such implants consists mainly of the three steps expansion of the cells, encapsulation of the cells, and cultivation of the encapsulated cells in order to increase their vitality and thus quality. This chapter deals with the development of fixed-bed bioreactor-based cultivation procedures used in the first and third step of production. The bioreactor system for the expansion of the stem cell line (hMSC-TERT) is based on non-porous glass spheres, which support cell growth and harvesting with high yield and vitality. The cultivation process for the spherical cell based implants leads to an increase of vitality and additionally enables the application of a medium-based differentiation protocol.

  18. UPregulated single-stranded DNA-binding protein 1 induces cell chemoresistance to cisplatin in lung cancer cell lines.

    PubMed

    Zhao, Xiang; He, Rong; Liu, Yu; Wu, Yongkai; Kang, Leitao

    2017-07-01

    Cisplatin and its analogues are widely used as anti-tumor drugs in lung cancer but many cisplatin-resistant lung cancer cases have been identified in recent years. Single-stranded DNA-binding protein 1 (SSDBP1) can effectively induce H69 cell resistance to cisplatin in our previous identification; thus, it is necessary to explore the mechanism underlying the effects of SSDBP1-induced resistance to cisplatin. First, SSDBP1-overexpressed or silent cell line was constructed and used to analyze the effects of SSDBP1 on chemoresistance of lung cancer cells to cisplatin. SSDBP1 expression was assayed by real-time PCR and Western blot. Next, the effects of SSDBP1 on cisplatin sensitivity, proliferation, and apoptosis of lung cancer cell lines were assayed by MTT and flow cytometry, respectively; ABC transporters, apoptosis-related genes, and cell cycle-related genes by real-time PCR, and DNA wound repair by comet assay. Low expression of SSDBP1 was observed in H69 cells, while increased expression in cisplatin-resistant H69 cells. Upregulated expression of SSDBP1 in H69AR cells was identified to promote proliferation and cisplatin resistance and inhibit apoptosis, while downregulation of SSDBP1 to inhibit cisplatin resistance and proliferation and promoted apoptosis. Moreover, SSDBP1 promoted the expression of P2gp, MRP1, Cyclin D1, and CDK4 and inhibited the expression of caspase 3 and caspase 9. Furthermore, SSDBP1 promoted the DNA wound repair. These results indicated that SSDBP1 may induce cell chemoresistance of cisplatin through promoting DNA repair, resistance-related gene expression, cell proliferation, and inhibiting apoptosis.

  19. Differential pathotropism of non-immortalized and immortalized human neural stem cell lines in a focal demyelination model.

    PubMed

    Ferrari, Daniela; Zalfa, Cristina; Nodari, Laura Rota; Gelati, Maurizio; Carlessi, Luigi; Delia, Domenico; Vescovi, Angelo Luigi; De Filippis, Lidia

    2012-04-01

    Cell therapy is reaching the stage of phase I clinical trials for post-traumatic, post-ischemic, or neurodegenerative disorders, and the selection of the appropriate cell source is essential. In order to assess the capacity of different human neural stem cell lines (hNSC) to contribute to neural tissue regeneration and to reduce the local inflammation after an acute injury, we transplanted GMP-grade non-immortalized hNSCs and v-myc (v-IhNSC), c-myc T58A (T-IhNSC) immortalized cells into the corpus callosum of adult rats after 5 days from focal demyelination induced by lysophosphatidylcholine. At 15 days from transplantation, hNSC and T-IhNSC migrated to the lesioned area where they promoted endogenous remyelination and differentiated into mature oligodendrocytes, while the all three cell lines were able to integrate in the SVZ. Moreover, where demyelination was accompanied by an inflammatory reaction, a significant reduction of microglial cells' activation was observed. This effect correlated with a differential migratory pattern of transplanted hNSC and IhNSC, significantly enhanced in the former, thus suggesting a specific NSC-mediated immunomodulatory effect on the local inflammation. We provide evidence that, in the subacute phase of a demyelination injury, different human immortalized and non-immortalized NSC lines, all sharing homing to the stem niche, display a differential pathotropism, both through cell-autonomous and non-cell autonomous effects. Overall, these findings promote IhNSC as an inexhaustible cell source for large-scale preclinical studies and non-immortalized GMP grade hNSC lines as an efficacious, safe, and reliable therapeutic tool for future clinical applications.

  20. The neuroendocrine phenotype, genomic profile and therapeutic sensitivity of GEPNET cell lines

    PubMed Central

    Hofving, Tobias; Arvidsson, Yvonne; Almobarak, Bilal; Inge, Linda; Pfragner, Roswitha; Persson, Marta; Stenman, Göran; Kristiansson, Erik; Johanson, Viktor; Nilsson, Ola

    2018-01-01

    Experimental models of neuroendocrine tumour disease are scarce, and no comprehensive characterisation of existing gastroenteropancreatic neuroendocrine tumour (GEPNET) cell lines has been reported. In this study, we aimed to define the molecular characteristics and therapeutic sensitivity of these cell lines. We therefore performed immunophenotyping, copy number profiling, whole-exome sequencing and a large-scale inhibitor screening of seven GEPNET cell lines. Four cell lines, GOT1, P-STS, BON-1 and QGP-1, displayed a neuroendocrine phenotype while three others, KRJ-I, L-STS and H-STS, did not. Instead, these three cell lines were identified as lymphoblastoid. Characterisation of remaining authentic GEPNET cell lines by copy number profiling showed that GOT1, among other chromosomal alterations, harboured losses on chromosome 18 encompassing the SMAD4 gene, while P-STS had a loss on 11q. BON-1 had a homozygous loss of CDKN2A and CDKN2B, and QGP-1 harboured amplifications of MDM2 and HMGA2. Whole-exome sequencing revealed both disease-characteristic mutations (e.g. ATRX mutation in QGP-1) and, for patient tumours, rare genetic events (e.g. TP53 mutation in P-STS, BON-1 and QGP-1). A large-scale inhibitor screening showed that cell lines from pancreatic NETs to a greater extent, when compared to small intestinal NETs, were sensitive to inhibitors of MEK. Similarly, neuroendocrine NET cells originating from the small intestine were considerably more sensitive to a group of HDAC inhibitors. Taken together, our results provide a comprehensive characterisation of GEPNET cell lines, demonstrate their relevance as neuroendocrine tumour models and explore their therapeutic sensitivity to a broad range of inhibitors. PMID:29444910

  1. Epigenetic activation of SIN1 promotes NSCLC cell proliferation and metastasis by affecting the epithelial–mesenchymal transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zhongwu; Wang, Yaqin; Wang, Yuemei

    Stress-activated protein kinase (SAPK) interacting protein 1 (SIN1) is an essential component of mTORC2. Previous studies have shown that SIN1 is a key regulator of Akt pathway which plays an important role in various pathological conditions including cancer. While its effects and mechanisms on the progression of NSCLC remain unknown. In this study, we report that SIN1 is able to promote the growth and migration of NSCLC cells both in vitro and in vivo. Overexpression of SIN1 promoted A549 and H1299 cells proliferation by both MTT and colony formation assays. Consistently, knockdown of SIN1 inhibited the proliferation of these cells. In transwell assay,more » overexpression of SIN1 increased the migration of A549 and H1299 cells, while SIN1 knockdown reduced their migration. In a tumor xenograft model, overexpression of SIN1 promoted tumor growth of A549 cells in vivo, while SIN1 knockdown suppresses the tumor growth. We also found a mechanistic link between SIN1 and H3K4me3, H3K4me3 is involved in SIN1 upregulation. Moreover, SIN1 can significantly promote the in vitro migration and invasion of NSCLC cells via induction epithelial mesenchymal transition (EMT) process, which subsequently leads to transcriptional downregulation of epithelial marker E-cadherin and upregulation of mesenchymal markers N-cadherin and Vimentin expression. Together, our results reveal that SIN1 plays an important role in NSCLC and SIN1 is a potential biomarker and a promising target in the treatment of NSCLC.« less

  2. A hybrid of coumarin and phenylsulfonylfuroxan induces caspase-dependent apoptosis and cytoprotective autophagy in lung adenocarcinoma cells.

    PubMed

    Wang, Qian; Guo, Yalan; Jiang, Shanshan; Dong, Mengxue; Kuerban, Kudelaidi; Li, Jiyang; Feng, Meiqing; Chen, Ying; Ye, Li

    2018-01-15

    Lung adenocarcinoma is the most primary histologic subtype of non-small cell lung cancer (NSCLC). Compound 8b, a novel coumarin derivative with phenylsulfonylfuroxan group, shows significant antiproliferation activity against lung adenocarcinoma cell with low toxicity. This study aims to uncover the potential of compound 8b in relation to apoptosis as well as autophagy induction in lung adenocarcinoma cells. The cytotoxicity and apoptosis of A549 and H1299 cells induced by compound 8b were detected by MTT, microscope and western blot analysis. Autophagy was determined by TEM, confocal microscopy and western blot analysis. Akt/mTOR and Erk signaling pathway were also examined by western blot analysis. First, significant growth inhibition and caspase-dependent apoptosis were observed in compound 8b-treated A549 and H1299 cells. Then, we confirmed compound 8b-induced autophagy by autophagosomes formation, upregulated expression of autophagy-related protein LC3-II and autophagic flux. Importantly, abolishing autophagy using inhibitors and ATG5 siRNA enhanced the cytotoxicity of compound 8b, indicating the cytoprotective role of autophagy in lung adenocarcinoma. Further mechanistic investigations suggested that Akt/mTOR and Erk signaling pathways contributed to autophagy induction by compound 8b. This results demonstrate that compound 8b induces caspase-dependent apoptosis as well as cytoprotective autophagy in lung adenocarcinoma cells, which may provide scientific evidence for developing this furoxan-based NO-releasing coumarin derivative as a potential anti-lung adenocarcinoma therapeutic agents. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Establishment and evaluation of a stable steroidogenic goat Leydig cell line.

    PubMed

    Zhou, Jinhua; Dai, Rui; Lei, Lanjie; Lin, Pengfei; Lu, Xiaolong; Wang, Xiangguo; Tang, Keqiong; Wang, Aihua; Jin, Yaping

    2016-04-01

    Leydig cells play a key role in synthesizing androgen and regulating spermatogenesis. The dysfunction of Leydig cells may lead to various male diseases. Although primary Leydig cell cultures have been used, their finite lifespan hinders the assessment of long-term effects. In the present study, primary goat Leydig cells (GLCs) were immortalized via the transfection of a plasmid containing the human telomerase reverse transcriptase (hTERT) gene. The expressions of hTERT and telomerase activity were evaluated in transduced GLCs (hTERT-GLCs). These cells steadily expressed the hTERT gene and exhibited longer telomere lengths at passage 55 that were similar to those of HeLa cells. The hTERT-GLCs at passages 30 and 50 expressed genes that encoded key proteins, enzymes and receptors that are inherent to normal Leydig cells, for example, steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD) and LH-receptor (LH-R). Additionally, the immortalized goat Leydig cells secreted detectable quantities of testosterone in response to hCG stimulation. Furthermore, this cell line appeared to proliferate more quickly than the control cells, although no neoplastic transformation occurred in vitro. We concluded that the GLCs immortalized with hTERT retained their original characteristics and might provide a useful model for the study of Leydig cell function. © 2015 Japanese Society of Animal Science.

  4. Establishment and characterization of outer root sheath (ORS) cell line from Jining grey goat.

    PubMed

    Cui, Zhifeng; Hu, Yanxia; Wang, Hui; Zeng, Yongqing; Dong, Bin; Zhu, Houshun; Dong, Zhongdian; Liu, Zhiyuan

    2012-03-01

    A new line of outer root sheath (ORS) cells was established from hair follicles of Jining grey goat by using a mechanical separation combined with enzyme digestion. Cell morphology is described at different phases. The chromosome analysis of ORS cells, identification of the ORS cells and morphological reversion test were detected at the 4th and 40th passages. The ORS cells were healthy and the growth characteristics were stable with a population doubling time of 52 h. Chromosome analysis showed that >58% of cells were diploid. Test for ORS cell line CK19 expression was positive. This newly established ORS cell line not only lays the foundation for further studying on the growth, regeneration, development law of goat hair follicle but also provides a mirror for the research of human hair in medical field.

  5. Generation and Characterisation of Cisplatin-Resistant Non-Small Cell Lung Cancer Cell Lines Displaying a Stem-Like Signature

    PubMed Central

    Barr, Martin P.; Gray, Steven G.; Hoffmann, Andreas C.; Hilger, Ralf A.; Thomale, Juergen; O’Flaherty, John D.; Fennell, Dean A.; Richard, Derek; O’Leary, John J.; O’Byrne, Kenneth J.

    2013-01-01

    Introduction Inherent and acquired cisplatin resistance reduces the effectiveness of this agent in the management of non-small cell lung cancer (NSCLC). Understanding the molecular mechanisms underlying this process may result in the development of novel agents to enhance the sensitivity of cisplatin. Methods An isogenic model of cisplatin resistance was generated in a panel of NSCLC cell lines (A549, SKMES-1, MOR, H460). Over a period of twelve months, cisplatin resistant (CisR) cell lines were derived from original, age-matched parent cells (PT) and subsequently characterized. Proliferation (MTT) and clonogenic survival assays (crystal violet) were carried out between PT and CisR cells. Cellular response to cisplatin-induced apoptosis and cell cycle distribution were examined by FACS analysis. A panel of cancer stem cell and pluripotent markers was examined in addition to the EMT proteins, c-Met and β-catenin. Cisplatin-DNA adduct formation, DNA damage (γH2AX) and cellular platinum uptake (ICP-MS) was also assessed. Results Characterisation studies demonstrated a decreased proliferative capacity of lung tumour cells in response to cisplatin, increased resistance to cisplatin-induced cell death, accumulation of resistant cells in the G0/G1 phase of the cell cycle and enhanced clonogenic survival ability. Moreover, resistant cells displayed a putative stem-like signature with increased expression of CD133+/CD44+cells and increased ALDH activity relative to their corresponding parental cells. The stem cell markers, Nanog, Oct-4 and SOX-2, were significantly upregulated as were the EMT markers, c-Met and β-catenin. While resistant sublines demonstrated decreased uptake of cisplatin in response to treatment, reduced cisplatin-GpG DNA adduct formation and significantly decreased γH2AX foci were observed compared to parental cell lines. Conclusion Our results identified cisplatin resistant subpopulations of NSCLC cells with a putative stem-like signature, providing

  6. Sequentially administrated of pemetrexed with icotinib/erlotinib in lung adenocarcinoma cell lines in vitro

    PubMed Central

    Feng, Xiuli; Zhang, Yan; Li, Tao; Li, Yu

    2017-01-01

    Combination of chemotherapy and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) had been proved to be a potent anti-drug for the treatment of tumors. However, survival time was not extended for the patients with lung adenocarcinoma (AdC) compared with first-line chemotherapy. In the present study, we attempt to assess the optimal schedule of the combined administration of pemetrexed and icotinib/erlotinib in AdC cell lines. Human lung AdC cell lines with wild-type (A549), EGFR T790M (H1975) and activating EGFR mutation (HCC827) were applied in vitro to assess the differential efficacy of various sequential regimens on cell viability, cell apoptosis and cell cycle distribution. The results suggested that the antiproliferative effect of the sequence of pemetrexed followed by icotinib/erlotinib was more effective than that of icotinib/erlotinib followed by pemetrexed. Additionally, a reduction of G1 phase and increased S phase in sequence of pemetrexed followed by icotinib/erlotinib was also observed, promoting cell apoptosis. Thus, the sequential administration of pemetrexed followed by icotinib/erlotinib exerted a synergistic effect on HCC827 and H1975 cell lines compared with the reverse sequence. The sequential treatment of pemetrexed followed by icotinib/erlotinib has been demonstrated promising results. This treatment strategy warrants further confirmation in patients with advanced lung AdC. PMID:29371987

  7. Sequentially administrated of pemetrexed with icotinib/erlotinib in lung adenocarcinoma cell lines in vitro.

    PubMed

    Feng, Xiuli; Zhang, Yan; Li, Tao; Li, Yu

    2017-12-26

    Combination of chemotherapy and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) had been proved to be a potent anti-drug for the treatment of tumors. However, survival time was not extended for the patients with lung adenocarcinoma (AdC) compared with first-line chemotherapy. In the present study, we attempt to assess the optimal schedule of the combined administration of pemetrexed and icotinib/erlotinib in AdC cell lines. Human lung AdC cell lines with wild-type (A549), EGFR T790M (H1975) and activating EGFR mutation (HCC827) were applied in vitro to assess the differential efficacy of various sequential regimens on cell viability, cell apoptosis and cell cycle distribution. The results suggested that the antiproliferative effect of the sequence of pemetrexed followed by icotinib/erlotinib was more effective than that of icotinib/erlotinib followed by pemetrexed. Additionally, a reduction of G1 phase and increased S phase in sequence of pemetrexed followed by icotinib/erlotinib was also observed, promoting cell apoptosis. Thus, the sequential administration of pemetrexed followed by icotinib/erlotinib exerted a synergistic effect on HCC827 and H1975 cell lines compared with the reverse sequence. The sequential treatment of pemetrexed followed by icotinib/erlotinib has been demonstrated promising results. This treatment strategy warrants further confirmation in patients with advanced lung AdC.

  8. Effect of sulphur mustard on human skin cell lines with differential agent sensitivity.

    PubMed

    Simpson, Rachel; Lindsay, Christopher D

    2005-01-01

    The ability of sulphur mustard (HD) to induce DNA damage places limits on the efficacy of approaches aimed at protecting human cells from the cytotoxic effects of HD using a variety of protective agents such as thiol-containing esters and protease inhibitors. In the present study, potential alternative strategies were investigated by examining the differential effects of HD on G361, SVK14, HaCaT and NCTC 2544 human skin cells. The G361 cell line was more resistant to the cytotoxic effects of HD than the NCTC, HaCaT and SVK14 cell lines at HD doses of >3 and <100 microM HD as determined by the MTT assay. At 72 h after exposure to 60 microM HD there was up to an 8.8-fold difference (P < 0.0001) between G361 and SVK14 cell culture viability. Buthionine sulphoximine (BSO) pretreatment increased the sensitivity of all four cell lines to HD. A substantial proportion of the resistance of G361 cells to HD was attributable to BSO-mediated effects on antioxidant-mediated metabolism, although G361 cultures still retained a high degree of viability at 30 microM HD following BSO pretreatment. Cell cycle analysis confirmed that SVK14 cells were relatively more sensitive to HD, as shown by the 2.1-fold reduction (P < 0.0001) in the percentage of cells in G0/G1 phase 24 h after HD exposure compared with control cultures. This compared well with a 1.2-fold increase (P < 0.05) in the percentage of G361 cells in G0/G1 phase following HD exposure, suggesting the existence of a more efficient G0/G1 checkpoint control mechanism in this cell line. Manipulation of the cell cycle using various modulating agents did not increase the resistance of cell lines to the cytotoxic effects of HD. Crown copyright 2005

  9. Copy number abnormality of acute lymphoblastic leukemia cell lines based on their genetic subtypes.

    PubMed

    Tomoyasu, Chihiro; Imamura, Toshihiko; Tomii, Toshihiro; Yano, Mio; Asai, Daisuke; Goto, Hiroaki; Shimada, Akira; Sanada, Masashi; Iwamoto, Shotaro; Takita, Junko; Minegishi, Masayoshi; Inukai, Takeshi; Sugita, Kanji; Hosoi, Hajime

    2018-05-21

    In this study, we performed genetic analysis of 83 B cell precursor acute lymphoblastic leukemia (B-ALL) cell lines. First, we performed multiplex ligation-dependent probe amplification analysis to identify copy number abnormalities (CNAs) in eight genes associated with B-ALL according to genetic subtype. In Ph + B-ALL cell lines, the frequencies of IKZF1, CDKN2A/2B, BTG1, and PAX5 deletion were significantly higher than those in Ph - B-ALL cell lines. The frequency of CDKN2A/2B deletion in KMT2A rearranged cell lines was significantly lower than that in non-KMT2A rearranged cell lines. These findings suggest that CNAs are correlated with genetic subtype in B-ALL cell lines. In addition, we determined that three B-other ALL cell lines had IKZF1 deletions (YCUB-5, KOPN49, and KOPN75); we therefore performed comprehensive genetic analysis of these cell lines. YCUB-5, KOPN49, and KOPN75 had P2RY8-CRLF2, IgH-CRLF2, and PAX5-ETV6 fusions, respectively. Moreover, targeted capture sequencing revealed that YCUB-5 had JAK2 R683I and KRAS G12D, and KOPN49 had JAK2 R683G and KRAS G13D mutations. These data may contribute to progress in the field of leukemia research.

  10. Cytotoxicity and Bioactivity of Calcium Silicate Cements Combined with Niobium Oxide in Different Cell Lines.

    PubMed

    Mestieri, Leticia Boldrin; Gomes-Cornélio, Ana Lívia; Rodrigues, Elisandra Márcia; Faria, Gisele; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mário

    2017-01-01

    The aim of this study was to evaluate the cytotoxicity and bioactivity of calcium silicate-based cements combined with niobium oxide (Nb2O5) micro and nanoparticles, comparing the response in different cell lines. This evaluation used four cell lines: two primary cultures (human dental pulp cells - hDPCs and human dental follicle cells - hDFCs) and two immortalized cultures (human osteoblast-like cells - Saos-2 and mouse periodontal ligament cells - mPDL). The tested materials were: White Portland Cement (PC), mineral trioxide aggregate (MTA), white Portland cement combined with microparticles (PC/Nb2O5µ) or nanoparticles (PC/Nb2O5n) of niobium oxide (Nb2O5). Cytotoxicity was evaluated by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) and trypan blue exclusion assays and bioactivity by alkaline phosphatase (ALP) enzyme activity. Results were analyzed by ANOVA and Tukey test (a=0.05). PC/Nb2O5n presented similar or higher cell viability than PC/Nb2O5µ in all cell lines. Moreover, the materials presented similar or higher cell viability than MTA. Saos-2 exhibited high ALP activity, highlighting PC/Nb2O5µ material at 7 days of exposure. In conclusion, calcium silicate cements combined with micro and nanoparticles of Nb2O5 presented cytocompatibility and bioactivity, demonstrating the potential of Nb2O5 as an alternative radiopacifier agent for these cements. The different cell lines had similar response to cytotoxicity evaluation of calcium silicate cements. However, bioactivity was more accurately detected in human osteoblast-like cell line, Saos-2.

  11. Production of thrombopoietin (TPO) by rat hepatocytes and hepatoma cell lines.

    PubMed

    Shimada, Y; Kato, T; Ogami, K; Horie, K; Kokubo, A; Kudo, Y; Maeda, E; Sohma, Y; Akahori, H; Kawamura, K

    1995-12-01

    Recently, we purified rat thrombopoietin (TPO) from plasma of irradiated rats (XRP) by measuring its activity that stimulated the production of megakaryocytes from megakaryocyte progenitor cells (CFU-MK) in vitro. We then cloned the cDNAs for rat and human TPO. In this study, we found the production of TPO by hepatocytes isolated with the collagenase perfusion method from both normal and thrombocytopenic rats, by a two-step fractionation of hepatocyte culture medium (CM). Subsequently, CM of rat hepatoma cell lines was screened for the presence of TPO; three cell lines, H4-II-E, McA-RH8994, and HTC, were found to produce TPO. According to the purification procedure for TPO from XRP, TPO was partially purified from 2 L CM of each of three cell lines with a six-step procedure. In the final reverse-phase column, TPO from each cell line was eluted with the same retention time as that from XRP, and the TPO fraction exhibited megakaryocyte colony-stimulating activity (Meg-CSA). TPO-active fraction eluted from the final reverse-phase column was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), extracted from the gel, and assayed. TPO activity from each cell line was found in the respective molecular weight region, indicating the heterogeneity of the TPO molecule. Using reverse transcriptase-polymerase chain reaction (RT-PCR), we detected the expression of TPO mRNA in hepatocytes, three hepatoma cell lines, normal rat liver, and X-irradiated rat liver. Northern blot analysis showed that TPO mRNA was expressed mainly in liver among the various organs tested. These data demonstrate that TPO is produced by rat hepatocytes and hepatoma cell lines and suggest that liver may be the primary organ that produces TPO.

  12. CITED2 silencing sensitizes cancer cells to cisplatin by inhibiting p53 trans-activation and chromatin relaxation on the ERCC1 DNA repair gene

    PubMed Central

    Liu, Yu-Chin; Chang, Pu-Yuan; Chao, Chuck C.-K.

    2015-01-01

    In this study, we show that silencing of CITED2 using small-hairpin RNA (shCITED2) induced DNA damage and reduction of ERCC1 gene expression in HEK293, HeLa and H1299 cells, even in the absence of cisplatin. In contrast, ectopic expression of ERCC1 significantly reduced intrinsic and induced DNA damage levels, and rescued the effects of CITED2 silencing on cell viability. The effects of CITED2 silencing on DNA repair and cell death were associated with p53 activity. Furthermore, CITED2 silencing caused severe elimination of the p300 protein and markers of relaxed chromatin (acetylated H3 and H4, i.e. H3K9Ac and H3K14Ac) in HEK293 cells. Chromatin immunoprecipitation assays further revealed that DNA damage induced binding of p53 along with H3K9Ac or H3K14Ac at the ERCC1 promoter, an effect which was almost entirely abrogated by silencing of CITED2 or p300. Moreover, lentivirus-based CITED2 silencing sensitized HeLa cell line-derived tumor xenografts to cisplatin in immune-deficient mice. These results demonstrate that CITED2/p300 can be recruited by p53 at the promoter of the repair gene ERCC1 in response to cisplatin-induced DNA damage. The CITED2/p300/p53/ERCC1 pathway is thus involved in the cell response to cisplatin and represents a potential target for cancer therapy. PMID:26384430

  13. Establishment and characterization of fetal and maternal mesenchymal stem/stromal cell lines from the human term placenta.

    PubMed

    Qin, Sharon Q; Kusuma, Gina D; Al-Sowayan, Batla; Pace, Rishika A; Isenmann, Sandra; Pertile, Mark D; Gronthos, Stan; Abumaree, Mohamed H; Brennecke, Shaun P; Kalionis, Bill

    2016-03-01

    Human placental mesenchymal stem/stromal cells (MSC) are an attractive source of MSC with great therapeutic potential. However, primary MSC are difficult to study in vitro due to their limited lifespan and patient-to-patient variation. Fetal and maternal MSC were prepared from cells of the chorionic and basal plates of the placenta, respectively. Fetal and maternal MSC were transduced with the human telomerase reverse transcriptase (hTERT). Conventional stem cell assays assessed the MSC characteristics of the cell lines. Functional assays for cell proliferation, cell migration and ability to form colonies in soft agar were used to assess the whether transduced cells retained properties of primary MSC. Fetal chorionic and maternal MSC were successfully transduced with hTERT to create the cell lines CMSC29 and DMSC23 respectively. The lifespans of CMSC29 and DMSC23 were extended in cell culture. Both cell lines retained important MSC characteristics including cell surface marker expression and multipotent differentiation potential. Neither of the cell lines was tumourigenic in vitro. Gene expression differences were observed between CMSC29 and DMSC23 cells and their corresponding parent, primary MSC. Both cell lines show similar migration potential to their corresponding primary, parent MSC. The data show that transduced MSC retained important functional properties of the primary MSC. There were gene expression and functional differences between cell lines CMSC29 and DMSC23 that reflect their different tissue microenvironments of the parent, primary MSC. CMSC29 and DMSC23 cell lines could be useful tools for optimisation and functional studies of MSC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Generating mammalian stable cell lines by electroporation.

    PubMed

    A Longo, Patti; Kavran, Jennifer M; Kim, Min-Sung; Leahy, Daniel J

    2013-01-01

    Expression of functional, recombinant mammalian proteins often requires expression in mammalian cells (see Single Cell Cloning of a Stable Mammalian Cell Line). If the expressed protein needs to be made frequently, it can be best to generate a stable cell line instead of performing repeated transient transfections into mammalian cells. Here, we describe a method to generate stable cell lines via electroporation followed by selection steps. This protocol will be limited to the CHO dhfr-Urlaub et al. (1983) and LEC1 cell lines, which in our experience perform the best with this method. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1.

    PubMed

    Velásquez, Celestino; Amako, Yutaka; Harold, Alexis; Toptan, Tuna; Chang, Yuan; Shuda, Masahiro

    2018-01-01

    Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.

  16. Fruit extract from a Sechium edule hybrid induce apoptosis in leukaemic cell lines but not in normal cells.

    PubMed

    Aguiñiga-Sánchez, Itzen; Soto-Hernández, Marcos; Cadena-Iñiguez, Jorge; Ruíz-Posadas, Lucero del Mar; Cadena-Zamudio, Jorge David; González-Ugarte, Ana Karen; Steider, Benny Weiss; Santiago-Osorio, Edelmiro

    2015-01-01

    The antiproliferative potential of a crude extract from the chayote hybrid H-837-07-GISeM® and its potential for apoptosis induction were assessed in leukaemic cell lines and normal mouse bone marrow mononuclear cells (BM-MNCs). The extract strongly inhibited the proliferation of the P388, J774, and WEHI-3 cell lines (with an IC50 below 1.3 μg·mL(-1)), reduced cell viability, and induced apoptotic body production, phosphatidylserine translocation, and DNA fragmentation. However, the extract had no effect on BM-MNCs. We postulate that these properties make the extract a good candidate for an anti-tumour agent for clinical use.

  17. Curcumin improves the efficacy of cisplatin by targeting cancer stem-like cells through p21 and cyclin D1-mediated tumour cell inhibition in non-small cell lung cancer cell lines

    PubMed Central

    BAHARUDDIN, PUTERI; SATAR, NAZILAH; FAKIRUDDIN, KAMAL SHAIK; ZAKARIA, NORASHIKIN; LIM, MOON NIAN; YUSOFF, NARAZAH MOHD; ZAKARIA, ZUBAIDAH; YAHAYA, BADRUL HISHAM

    2016-01-01

    Natural compounds such as curcumin have the ability to enhance the therapeutic effectiveness of common chemotherapy agents through cancer stem-like cell (CSC) sensitisation. In the present study, we showed that curcumin enhanced the sensitivity of the double-positive (CD166+/EpCAM+) CSC subpopulation in non-small cell lung cancer (NSCLC) cell lines (A549 and H2170) to cisplatin-induced apoptosis and inhibition of metastasis. Our results revealed that initial exposure of NSCLC cell lines to curcumin (10–40 µM) markedly reduced the percentage of viability to an average of ~51 and ~54% compared to treatment with low dose cisplatin (3 µM) with only 94 and 86% in both the A549 and H2170 cells. Moreover, sensitisation of NSCLC cell lines to curcumin through combined treatment enhanced the single effect induced by low dose cisplatin on the apoptosis of the double-positive CSC subpopulation by 18 and 20% in the A549 and H2170 cells, respectively. Furthermore, we found that curcumin enhanced the inhibitory effects of cisplatin on the highly migratory CD166+/EpCAM+ subpopulation, marked by a reduction in cell migration to 9 and 21% in the A549 and H2170 cells, respectively, indicating that curcumin may increase the sensitivity of CSCs to cisplatin-induced migratory inhibition. We also observed that the mRNA expression of cyclin D1 was downregulated, while a substantial increased in p21 expression was noted, followed by Apaf1 and caspase-9 activation in the double-positive (CD166+/EpCAM+) CSC subpopulation of A549 cells, suggested that the combined treatments induced cell cycle arrest, therefore triggering CSC growth inhibition via the intrinsic apoptotic pathway. In conclusion, we provided novel evidence of the previously unknown therapeutic effects of curcumin, either alone or in combination with cisplatin on the inhibition of the CD166+/EpCAM+ subpopulation of NSCLC cell lines. This finding demonstrated the potential therapeutic approach of using curcumin that may

  18. Establishment and characterization of 13 cell lines from a green turtle (Chelonia mydas) with fibropapillomas

    USGS Publications Warehouse

    Lu, Y.; Nerurkar, V.R.; Aguirre, A.A.; Work, Thierry M.; Balazs, G.H.; Yanagihara, R.

    1999-01-01

    Thirteen cell lines were established and characterized from brain, kidney, lung, spleen, heart, liver, gall bladder, urinary bladder, pancreas, testis, skin, and periorbital and tumor tissues of an immature male green turtle (Chelonia mydas) with fibropapillomas. Cell lines were optimally maintained at 30A? C in RPMI 1640 medium supplemented with 10% fetal bovine serum. Propagation of the turtle cell lines was serum dependent, and plating efficiencies ranged from 13 to 37%. The cell lines, which have been subcultivated more than 20 times, had a doubling time of approximately 30 to 36 h. When tested for their sensitivity to several fish viruses, most of the cell lines were susceptible to a rhabdovirus, spring viremia carp virus, but refractory to channel catfish virus (a herpesvirus), infectious pancreatic necrosis virus (a birnavirus), and two other fish rhabdoviruses, infectious hematopoietic necrosis virus and viral hemorrhagic septicemia virus. During in vitro subcultivation, tumor-like cell aggregates appeared in cell lines derived from lungs, testis, and periorbital and tumor tissues, and small, naked intranuclear virus particles were detected by thin-section electron microscopy. These cell lines are currently being used in attempts to isolate the putative etiologic virus of green turtle fibropapilloma.

  19. Effect of Chromatin Structure on the Extent and Distribution of DNA Double Strand Breaks Produced by Ionizing Radiation; Comparative Study of hESC and Differentiated Cells Lines.

    PubMed

    Venkatesh, Priyanka; Panyutin, Irina V; Remeeva, Evgenia; Neumann, Ronald D; Panyutin, Igor G

    2016-01-02

    Chromatin structure affects the extent of DNA damage and repair. Thus, it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin regions. Human embryonic stem cells (hESC) have a more open chromatin structure than differentiated cells. Here, we study the effect of chromatin structure in hESC on initial DSB formation and subsequent DSB repair. DSB were scored by comet assay; and DSB repair was assessed by repair foci formation via 53BP1 antibody staining. We found that in hESC, heterochromatin is confined to distinct regions, while in differentiated cells it is distributed more evenly within the nuclei. The same dose of ionizing radiation produced considerably more DSB in hESC than in differentiated derivatives, normal human fibroblasts; and one cancer cell line. At the same time, the number of DNA repair foci were not statistically different among these cells. We showed that in hESC, DNA repair foci localized almost exclusively outside the heterochromatin regions. We also noticed that exposure to ionizing radiation resulted in an increase in heterochromatin marker H3K9me3 in cancer HT1080 cells, and to a lesser extent in IMR90 normal fibroblasts, but not in hESCs. These results demonstrate the importance of chromatin conformation for DNA protection and DNA damage repair; and indicate the difference of these processes in hESC.

  20. ExoMol line lists XXIV: a new hot line list for silicon monohydride, SiH

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Sinden, Frances; Lodi, Lorenzo; Hill, Christian; Gorman, Maire N.; Tennyson, Jonathan

    2018-02-01

    SiH has long been observed in the spectrum of our Sun and other cool stars. Computed line lists for the main isotopologues of silicon monohydride, 28SiH, 29SiH, 30SiH and 28SiD are presented. These line lists consider rotation-vibration transitions within the ground X 2Π electronic state as well as transitions to the low-lying A 2Δ and a 4Σ- states. Ab initio potential energy (PECs) and dipole moment curves along with spin-orbit and electronic angular momentum couplings between them are calculated using the multireference configuration interaction level of theory with the MOLPRO package. The PEC for the ground X 2Π state is refined to available experimental data with a typical accuracy of around 0.01 cm-1 or better. The 28SiH line list includes 11 785 rovibronic states and 1724 841 transitions with associated Einstein-A coefficients for angular momentum J up to 82.5 and covering wavenumbers up to 31 340 cm-1 (λ < 0.319 μm). Spectra are simulated using the new line list and comparisons made with various experimental spectra. These line lists are applicable up to temperatures of 5000 K, making them relevant to astrophysical objects such as exoplanetary atmospheres and cool stars and opening up the possibility of detection in the interstellar medium. These line lists, called SiGHTLY, are available at the ExoMol (www.exomol.com) and CDS data base websites.

  1. Is ABA involved in tolerance responses to salinity by affecting cytoplasm ion homeostasis in rice cell lines?

    PubMed

    Pons, Raül; Cornejo, María Jesús; Sanz, Amparo

    2013-01-01

    The ability of plant cells to maintain cytoplasm ion homeostasis under saline stress is among the main mechanisms involved in salt tolerance. To cope with excess Na(+), cells extrude it from the cytoplasm, which requires expenditure of metabolic energy, provided by H(+) gradients generated by membrane-bound H(+)-pumps. ABA is well-known to be involved in physiological processes elicited or enhanced by stresses causing cell dehydration. In this work we studied the possible implication of this plant hormone in the control of salt-induced cellular mechanisms conducting to Na(+) extrusion from the cytoplasm. We used rice (Oryza sativa L.) cell lines selected for their different tolerance to salinity to measure the response to ABA of H(+)-pumps and Na(+)/H(+)-antiporters associated to the plasma membrane and the tonoplast. Our results show that ABA generally enhances H(+)-pumping under salt stress but not under control conditions. This effect occurs to a higher extent across the tonoplast in the more tolerant lines (L-T). Na(+)/H(+) antiport activity is practically undetectable in calli under control conditions, pre-treated or not with ABA, but shows a strong activation under salinity across the tonoplast, particularly in L-T lines (cv Bahia) and also across de plasma membrane in cv Bomba. In these lines, prior treatments with ABA tend to reduce the NaCl enhanced activity of both antiporters. Overall, under saline conditions ABA seems to affect synergistically H(+) pumping and antagonistically Na(+) extrusion. A complex network of positive and negative regulatory signals seems involved in restoring ion cell homeostasis under salt stress. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. Establishment of an indicator cell line to quantify bovine foamy virus infection.

    PubMed

    Ma, Zhe; Hao, Peng; Yao, Xue; Liu, Chang; Tan, Juan; Liu, Li; Yang, Rongge; Geng, Yunqi; Chen, Qimin; Qiao, Wentao

    2008-08-01

    A cell line derived from baby hamster kidney (BHK-21) cells was transfected with the enhanced green fluorescent protein gene driven by the bovine foamy virus (BFV) long terminal repeat (LTR) to establish a BFV indicator cell line (BICL). Among 48 clones, one clone was chosen for its little constitutive enhanced green fluorescent protein (EGFP) expression and high level of EGFP expression after activation by BFV infection. By detecting the EGFP expression of the BFV indicator cell line, the titers of BFV were quantified by the end point method. As a result, the titer determined by the EGFP based assay 5-6 days post infection (d.p.i.) was 100 fold higher than traditional assays measuring cytopathic effects 8-9 d.p.i.. Moreover, the EGFP based assay was also used to determine the titer of those cells infected by BFV without inducing cytopathic effects. Using this simple and rapid assay, we examined the in vitro host range of BFV. It was found that BFV can productively infect various cell lines derived from bovine, human, rat and monkey. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Cellosaurus, a Cell-Line Knowledge Resource

    PubMed Central

    Bairoch, Amos

    2018-01-01

    The Cellosaurus is a knowledge resource on cell lines. It aims to describe all cell lines used in biomedical research. Its scope encompasses both vertebrates and invertebrates. Currently, information for >100,000 cell lines is provided. For each cell line, it provides a wealth of information, cross-references, and literature citations. The Cellosaurus is available on the ExPASy server (https://web.expasy.org/cellosaurus/) and can be downloaded in a variety of formats. Among its many uses, the Cellosaurus is a key resource to help researchers identify potentially contaminated/misidentified cell lines, thus contributing to improving the quality of research in the life sciences. PMID:29805321

  4. Spontaneous pyrogen production by mouse histiocytic and myelomonocytic tumor cell lines in vitro.

    PubMed

    Bodel, P

    1978-05-01

    Tumor-associated fever occurs commonly in acute leukemias and lymphomas. We investigated the capacity for in vitro production of pyrogen by three mouse histiocytic lymphoma cell lines (J-774, PU5-1.8, p 388 D1), one myelomonoyctic line (WEHI-3), and tow lymphoma-derived lines, RAW-8 and R-8. Pyrogen was released spontaneously into the culture medium during growth by all cell lines with macrophage or myeloid characteristics including lysozyme production; R-8 cells, of presumed B-lymphocyte origin, did not produce pyrogen. When injected into mice, the pyrogens gave fever curves typical of endogenous pyrogen, were inactived by heating to 56 degrees C and by pronase digestion, and appeared to be secreted continuously by viable cells. Two pyrogenic molecular species produced by H-774 cells were identified by Sephadex filtration, one of mol wt approximately equal to 30,000, and the other greater than or equal to 60,000. By contrast, three carcinoma cell lines of human origin and SV-40 3T3 mouse fibroblasts did not produce pyrogen in vitro. These results suggest that some malignant cells derived from phagocytic cells of bone marrow origin retain their capacity for pyrogen production, and may spontaneously secrete pyrogen during growth.

  5. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    PubMed Central

    Mari, Emanuela; Mardente, Stefania; Morgante, Emanuela; Tafani, Marco; Lococo, Emanuela; Fico, Flavia; Valentini, Federica; Zicari, Alessandra

    2016-01-01

    Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells. PMID:27916824

  6. A comparison between PLGA-PEG and NIPAAm-MAA nanocarriers in curcumin delivery for hTERT silencing in lung cancer cell line.

    PubMed

    Roointan, A; Sharifi-Rad, M; Badrzadeh, F; Sharifi-Rad, J

    2016-08-29

    Lung cancer is the most common cancer among men. Since the main reason of cancer cells immortality is telomerase activity, targeting of such enzyme can be a promising approach in cancer therapy. Curcumin is a safe and efficient anticancer agent in this context, but its applications in cancer therapy are limited because of its hydrophobic structure and low solubility in water. Today, using nanocarriers for delivery of such anticancer agents is a well performed method. Here, we developed and compared the efficiency of two nanocarriers (PLGA-PEG and NIPAAm-MAA) in delivery of curcumin and also in levels of hTERT silencing in lung cancer cell line (calu-6). Scanning electron microscopy, MTT assays and real-time PCR were used for imaging, cytotoxicity testing and measuring the expression levels of hTERT after treatment of cells with different concentrations of free curcumin and curcumin loaded nanocarriers. The MTT results demonstrated that the IC50 values of curcumin loaded nanocarriers were in lower concentrations than free curcumin. The hTERT expression levels were decreased by curcumin loaded PLGA-PEG more than curcumin loaded NIPAAm-MAA and free curcumin. Our results showed that the curcumin loaded PLGA-PEG can be a useful nano based carrier for delivery of anti-cancer agents such as curcumin to fight lung cancer.

  7. Changes of heterogeneous cell populations in the Ishikawa cell line during long-term culture: Proposal for an in vitro clonal evolution model of tumor cells.

    PubMed

    Kasai, Fumio; Hirayama, Noriko; Ozawa, Midori; Iemura, Masashi; Kohara, Arihiro

    2016-06-01

    Genomic changes in tumor cell lines can occur during culture, leading to differences between cell lines carrying the same name. In this study, genome profiles between low and high passages were investigated in the Ishikawa 3-H-12 cell line (JCRB1505). Cells contained between 43 and 46 chromosomes and the modal number changed from 46 to 45 during culture. Cytogenetic analysis revealed that a translocation t(9;14), observed in all metaphases, is a robust marker for this cell line. Single-nucleotide polymorphism microarrays showed a heterogeneous copy number in the early passages and distinct profiles at late passages. These results demonstrate that cell culture can lead to elimination of ancestral clones by sequential selection, resulting in extensive replacement with a novel clone. Our observations on Ishikawa cells in vitro are different from the in vivo heterogeneity in which ancestral clones are often retained during tumor evolution and suggest a model for in vitro clonal evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Antioxidant and Antiproliferative Activities of Heated Sterilized Pepsin Hydrolysate Derived from Half-Fin Anchovy (Setipinna taty)

    PubMed Central

    Song, Ru; Wei, Rongbian; Zhang, Bin; Yang, Zuisu; Wang, Dongfeng

    2011-01-01

    In this paper we studied the antioxidant and antiproliferative activities of the heated pepsin hydrolysate from a marine fish half-fin anchovy (HAHp-H). Furthermore, we compared the chemical profiles including the amino acid composition, the browning intensity, the IR and UV-visible spectra, and the molecular weight distribution between the half-fin anchovy pepsin hydrolysate (HAHp) and HAHp-H. Results showed that heat sterilization on HAHp improved the 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical-scavenging activity and reducing power. In addition, the antiproliferative activities were all increased for HAHp-H on DU-145 human prostate cancer cell line, 1299 human lung cancer cell line and 109 human esophagus cancer cell line. The contents of free amino acid and reducing sugar of HAHp-H were decreased (P < 0.05). However, hydrophobic amino acid residues and the browning intensity of HAHp-H were increased. FT-IR spectroscopy indicated that amide I and amide III bands of HAHp-H were slightly modified, whereas band intensity of amide II was reduced dramatically. Thermal sterilization resulted in the increased fractions of HAHp-H with molecular weight of 3000–5000 Da and below 500 Da. The enhanced antioxidant and antiproliferative activities of HAHp-H might be attributed to the Maillard reaction. PMID:21747752

  9. Application of fish cell lines for evaluating the chromium induced cytotoxicity, genotoxicity and oxidative stress.

    PubMed

    Taju, G; Abdul Majeed, S; Nambi, K S N; Sahul Hameed, A S

    2017-10-01

    In the present study, we hypothesize that cytotoxicity, genotoxicity and oxidative stress play a key role in chromium induced toxicity in SISS, SISK, IEE, IEK, IEG, SICH and ICG cell lines after 24 h exposure. Three fish species namely Lates calcarifer, Etroplus suratensis and Catla catla were exposed to the concentrations of 0, 10, 20, 30, 40 and 50 mg/L of chromium for 96 h under static conditions for conducting acute toxicity tests. LC 50 was then calculated. The percentage cell survival was assessed by multiple endpoints such as MTT, NR, AB and CB assays in the seven fish cell lines exposed to different concentrations of chromium and EC 50 values of all the four endpoints were calculated. High significances were noted in the correlations between each in vitro cytotoxicity assays and in vivo mortality data. Cell shrinkage, cell detachment, vacuolations and cell swelling at the highest concentration of chromium (50 mg/L) were seen on microscopic examination of cell morphology. Comet assay and Hoechst staining were carried out to assess DNA damage and nuclear fragmentation in the seven fish lines exposed to chromium. The results of antioxidant parameters obtained indicate a significant reduction in the level of catalase, superoxide dismutase, glutathione S-transferase and Glutathione peroxidase, and increased level of lipid peroxidation in all the cell lines exposed to chromium. These results confirm that fish cell lines could be used as an alternative to whole fish for cytotoxicity, genotoxicity and oxidative stress assessment in chromium toxicity studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Characterization of protein marker expression, tumorigenicity, and doxorubicin chemoresistance in two new canine mammary tumor cell lines.

    PubMed

    Hsiao, Yen-Ling; Hsieh, Tai-Zu; Liou, Chian-Jiun; Cheng, Yeong-Hsiang; Lin, Chung-Tien; Chang, Chi-Yao; Lai, Yu-Shen

    2014-09-30

    Canine mammary tumors (CMTs) are the most common type of cancer found in female dogs. Establishment and evaluation of tumor cell lines can facilitate investigations of the biological mechanisms of cancer. Different cell models are used to investigate genetic, epigenetic, and cellular pathways, cancer progression, and cancer therapeutics. Establishment of new cell models will greatly facilitate research in this field. In the present study, we established and characterized two new CMT cell lines derived from a single CMT. We established two cell lines from a single malignant CMT specimen: DTK-E and DTK-SME. Morphologically, the DTK-E cells were large, flat, and epithelial-like, whereas DTK-SME cells were round and epithelial-like. Doubling times were 24 h for DTK-E and 18 h for DTK-SME. On western blots, both cell lines expressed cytokeratin AE1, vimentin, cytokeratin 7 (CK7), and heat shock protein 27 (HSP27). Moreover, investigation of chemoresistance revealed that DTK-SME was more resistant to doxorubicin-induced apoptosis than DTK-E was. After xenotransplantation, both DTK-E and DTK-SME tumors appeared within 14 days, but the average size of DTK-SME tumors was greater than that of DTK-E tumors after 56 days. We established two new cell lines from a single CMT, which exhibit significant diversity in cell morphology, protein marker expression, tumorigenicity, and chemoresistance. The results of this study revealed that the DTK-SME cell line was more resistant to doxorubicin-induced apoptosis and exhibited higher tumorigenicity in vivo than the DTK-E cell line. We anticipate that the two novel CMT cell lines established in this study will be useful for investigating the tumorigenesis of mammary carcinomas and for screening anticancer drugs.

  11. Alkaline pH induces IRR-mediated phosphorylation of IRS-1 and actin cytoskeleton remodeling in a pancreatic beta cell line.

    PubMed

    Deyev, Igor E; Popova, Nadezhda V; Serova, Oxana V; Zhenilo, Svetlana V; Regoli, Marì; Bertelli, Eugenio; Petrenko, Alexander G

    2017-07-01

    Secretion of mildly alkaline (pH 8.0-8.5) juice to intestines is one of the key functions of the pancreas. Recent reports indicate that the pancreatic duct system containing the alkaline juice may adjoin the endocrine cells of pancreatic islets. We have previously identified the insulin receptor-related receptor (IRR) that is expressed in islets as a sensor of mildly alkaline extracellular media. In this study, we show that those islet cells that are in contact with the excretory ducts are also IRR-expressing cells. We further analyzed the effects of alkaline media on pancreatic beta cell line MIN6. Activation of endogenous IRR but not of the insulin receptor was detected that could be inhibited with linsitinib. The IRR autophosphorylation correlated with pH-dependent linsitinib-sensitive activation of insulin receptor substrate 1 (IRS-1), the primary adaptor in the insulin signaling pathway. However, in contrast with insulin stimulation, no protein kinase B (Akt/PKB) phosphorylation was detected as a result of alkali treatment. We observed overexpression of several early response genes (EGR2, IER2, FOSB, EGR1 and NPAS4) upon alkali treatment of MIN6 cells but those were IRR-independent. The alkaline medium but not insulin also triggered actin cytoskeleton remodeling that was blocked by pre-incubation with linsitinib. We propose that the activation of IRR by alkali might be part of a local loop of signaling between the exocrine and endocrine parts of the pancreas where alkalinization of the juice facilitate insulin release that increases the volume of secreted juice to control its pH and bicabonate content. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. Achillea millefolium L. hydroethanolic extract inhibits growth of human tumor cell lines by interfering with cell cycle and inducing apoptosis.

    PubMed

    Pereira, Joana M; Peixoto, Vanessa; Teixeira, Alexandra; Sousa, Diana; Barros, Lillian; Ferreira, Isabel C F R; Vasconcelos, M Helena

    2018-06-05

    The cell growth inhibitory activity of the hydroethanolic extract of Achillea millefolium was studied in human tumor cell lines (NCI-H460 and HCT-15) and its mechanism of action was investigated. The GI 50 concentration was determined with the sulforhodamine B assay and cell cycle and apoptosis were analyzed by flow cytometry following incubation with PI or Annexin V FITC/PI, respectively. The expression levels of proteins involved in cell cycle and apoptosis were analyzed by Western blot. The extracts were characterized regarding their phenolic composition by LC-DAD-ESI/MS. 3,5-O-Dicaffeoylquinic acid, followed by 5-O-caffeoylquinic acid, were the main phenolic acids, while, luteolin-O-acetylhexoside and apigenin-O-acetylhexoside were the main flavonoids. This extract decreased the growth of the tested cell lines, being more potent in HCT-15 and then in NCI-H460 cells. Two different concentrations of the extract (75 and 100 μg/mL) caused alterations in cell cycle profile and increased apoptosis levels in HCT-15 and NCI-H460 cells. Moreover, the extract caused an increase in p53 and p21 expression in NCI-H460 cells (which have wt p53), and reduced XIAP levels in HCT-15 cells (with mutant p53). This work enhances the importance of A. millefolium as source of bioactive phenolic compounds, particularly of XIAP inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Proteome alteration induced by hTERT transfection of human fibroblast cells.

    PubMed

    Mazzucchelli, Gabriel D; Gabelica, Valérie; Smargiasso, Nicolas; Fléron, Maximilien; Ashimwe, Wilson; Rosu, Frédéric; De Pauw-Gillet, Marie-Claire; Riou, Jean-François; De Pauw, Edwin

    2008-04-17

    Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT) gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38). Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV) and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis) analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest that telomerase expression enhances natural cell repair

  14. Efficient culture of Chlamydia pneumoniae with cell lines derived from the human respiratory tract.

    PubMed Central

    Wong, K H; Skelton, S K; Chan, Y K

    1992-01-01

    Two established cell lines, H 292 and HEp-2, originating from the human respiratory tract, were found to be significantly more efficient and practical than the currently used HeLa 229 cells for growth of Chlamydia pneumoniae. Six strains of C. pneumoniae recently isolated from patients with respiratory ailments were used as test cultures. The H 292 and HEp-2 cells yielded much higher inclusion counts for all the test strains than did HeLa 229 cells. When they were compared with each other, H 292 cells yielded more inclusions than did HEp-2 cells, and the differences were statistically significant in 10 of 18 test sets. A simple system with these two cell lines appeared to be very efficient for culturing C. pneumoniae. It does not require treatment of tissue cells with DEAE-dextran before infection, and it may eliminate the need for serial subpassages of specimens to increase culture sensitivity. Monolayers of these cells remained intact and viable in the Chlamydia growth medium so that reinfection could take place, resulting in greatly increased inclusion counts for specimens containing few infectious units. This system may make it more practical for laboratories to culture for C. pneumoniae for treatment of infections and outbreak intervention and will facilitate studies on this recently recognized pathogen. PMID:1629316

  15. Predictive performance of the human Cell Line Activation Test (h-CLAT) for lipophilic chemicals with high octanol-water partition coefficients.

    PubMed

    Takenouchi, Osamu; Miyazawa, Masaaki; Saito, Kazutoshi; Ashikaga, Takao; Sakaguchi, Hitoshi

    2013-01-01

    To meet the urgent need for a reliable alternative test for predicting skin sensitizing potential of many chemicals, we have developed a cell-based in vitro test, human Cell Line Activation Test (h-CLAT). However, the predictive performance for lipophilic chemicals in the h-CLAT still remains relatively unknown. Moreover, it's suggested that low water solubility of chemicals might induce false negative outcomes. Thus, in this study, we tested relatively low water soluble 37 chemicals with log Kow values above and below 3.5 in the h-CLAT. The small-scale assessment resulted in nine false negative outcomes for chemicals with log Kow values greater than 3.5. We then created a dataset of 143 chemicals by combining the existing dataset of 106 chemicals and examined the predictive performance of the h-CLAT for chemicals with a log Kow of less than 3.5; a total of 112 chemicals from the 143 chemicals in the dataset. The sensitivity and overall accuracy for the 143 chemicals were 83% and 80%, respectively. In contrast, sensitivity and overall accuracy for the 112 chemicals with log Kow values below 3.5 improved to 94% and 88%, respectively. These data suggested that the h-CLAT could successfully detect sensitizers with log Kow values up to 3.5. When chemicals with log Kow values greater than 3.5 that were deemed positive by h-CLAT were included with the 112 chemicals, the sensitivity and accuracy in terms of the resulting applicable 128 chemicals out of the 143 chemicals became 95% and 88%, respectively. The use of log Kow values gave the h-CLAT a higher predictive performance. Our results demonstrated that the h-CLAT could predict sensitizing potential of various chemicals, which contain lipophilic chemicals using a large-scale chemical dataset.

  16. [Construction of Rev-erbβ gene knockout HEK293 cell line with CRISPR/Cas9 system].

    PubMed

    Chen, Fang; Zhang, Weifeng; Zhao, Junli; Yang, Peiyan; Ma, Rui; Xia, Haibin

    2016-11-01

    Objective To prepare Rev-erbβ knockout HEK293 cells using clustered regularly interspaced short palindromic repeats/Cas 9 nuclease (CRISPR/Cas9) gene editing technology. Methods The knock-in or knockout of Rev-erbβ gene could be realized by single-guide RNA (sgRNA)-mediated Cas9 cutting of target DNA, and followed by DNA homologous recombination or non-homologous end joining-mediated DNA repair. Firstly, four sgRNAs were designed for Rev-erbβ gene. The sgRNA1 and sgRNA2 with the higher activity were respectively used to construct pCMV-hCas9-U6-Rev-erbβ sgRNA1 and pCMV-hCas9-U6-Rev-erbβ sgRNA2. Then, pCMV-hCas9-U6-Rev-erbβ sgRNA1, pCMV-hCas9-U6-Rev-erbβ sgRNA2 and pAd5-E1/hRev-erbβ donor plasmid vectors were co-transfected into HEK293 cells. Through drug screening, cloning and sequencing, the Rev-erbβ gene-knockout HEK293 (Rev-erbβ -/- ) cell lines were obtained with one chain integrated with exogenous gene fragment and the other chain for deletion mutants. Finally, the HEK293 (Rev-erbβ -/- ) cell lines (C3-6) was detected with real-time quantitative PCR and Western blotting. Results Expression of Rev-erbβ mRNA and protein was undetectable in HEK293 Rev-erbβ -/- cell line. Conclusion Using CRISPR/Cas9 technology, the HEK293 Rev-erbβ -/- cell line has been successfully constructed, which would provide an effective tool for the study on the function of Rev-erbβ.

  17. Synthesis of a high molecular weight thyroglobulin dimer by two ovine thyroid cell lines: the OVNIS.

    PubMed

    Hovsépian, S; Aouani, A; Fayet, G

    1986-05-01

    The OVNIS 6H and 5H thyroid cells, 2 permanent cell lines isolated 3 years ago from ovine tissue, synthesize a high molecular weight glycosylated protein, immunologically related to ovine thyroglobulin, which is similar to the prothyroid hormone dimer (17-19) S: thyroglobulin. Using sucrose gradient centrifugation and cell labelling with [14C]Leu or [3H]GlNH2, radioactivity was observed in proteins purified from cell layers and from cell culture media. Addition of thyrotropin to or removal from the media resulted respectively in an increase (+773%) or decrease (-1090%) of the total radioactivity detected in the (17-19)S thyroglobulin fraction. Estimation of thyroglobulin by RIA gave similar though less pronounced effects. These experiments prove (1) that thyroglobulin is still expressed in these OVNIS thyroid cell lines even after 3 years of permanent culture, (2) that TSH modulates the level of this protein through a TSH-receptor functional system.

  18. Identification and pharmacological characterization of native, functional human urotensin-II receptors in rhabdomyosarcoma cell lines

    PubMed Central

    Douglas, Stephen A; Naselsky, Diane; Ao, Zhaohui; Disa, Jyoti; Herold, Christopher L; Lynch, Frank; Aiyar, Nambi V

    2004-01-01

    In an effort to identify endogenous, native mammalian urotensin-II (U-II) receptors (UT), a diverse range of human, primate and rodent cell lines (49 in total) were screened for the presence of detectable [125I]hU-II binding sites. UT mRNA (Northern blot, PCR) and protein (immunocytochemistry) were evident in human skeletal muscle tissue and cells. [125I]hU-II bound to a homogenous population of high-affinity, saturable (Kd 67.0±11.8 pM, Bmax 9687±843 sites cell−1) receptors in the skeletal muscle (rhabdomyosarcoma) cell line SJRH30. Radiolabel was characteristically slow to dissociate (⩽15% dissociation 90 min). A lower density of high-affinity U-II binding sites was also evident in the rhabdomyosarcoma cell line TE671 (1667±165 sites cell−1, Kd 74±8 pM). Consistent with the profile recorded in human recombinant UT-HEK293 cells, [125I]hU-II binding to SJRH30 cells was selectively displaced by both mammalian and fish U-II isopeptides (Kis 0.5±0.1–1.2±0.3 nM) and related analogues (hU-II[4-11]>[Cys5,10]Acm hU-II; Kis 0.4±0.1 and 864±193 nM, respectively). U-II receptor activation was functionally coupled to phospholipase C-mediated [Ca2+]i mobilization (EC50 6.9±2.2 nM) in SJRH30 cells. The present study is the first to identify the presence of ‘endogenous' U-II receptors in SJRH30 and TE671 cells. SJRH30 cells, in particular, might prove to be of utility for (a) investigating the pharmacological properties of hU-II and related small molecule antagonists at native human UT and (b) delineating the role of this neuropeptide in the (patho)physiological regulation of mammalian neuromuscular function. PMID:15210573

  19. Protective effects of nicergoline against hydrogen peroxide toxicity in rat neuronal cell line.

    PubMed

    Iwata, E; Miyazaki, I; Asanuma, M; Iida, A; Ogawa, N

    1998-07-17

    We examined the effects of nicergoline on hydrogen peroxide (H2O2)-induced neurotoxicity in cultured rat neuronal cell line (B50). H2O2 induced death of B50 cells in a dose-dependent manner. The H2O2-induced neuronal cell death was significantly decreased in B50 cells maintained in the presence of nicergoline. We compared the levels of antioxidants (glutathione, catalase and superoxide dismutase) in nicergoline-treated and untreated B50 cells. Lipid peroxidation products (thiobarbituric acid reactive substances, TBARS) levels were also measured. Cultures treated with nicergoline had higher levels of catalase activity. TBARS level was significantly lower in nicergoline-treated cells than in untreated cells. Our results suggest that nicergoline may induce the up-regulation of intracellular antioxidant defences and protect the neuronal cells against oxidative stress.

  20. Synthesis of novel forskolin isoxazole derivatives with potent anti-cancer activity against breast cancer cell lines.

    PubMed

    Burra, Srinivas; Voora, Vani; Rao, Ch Prasad; Vijay Kumar, P; Kancha, Rama Krishna; David Krupadanam, G L

    2017-09-15

    Forskolin C 1 -isoxazole derivatives (3,5-regioisomers) (11a-e, 14, 15a-h and 15, 16a-g) were synthesized regioselectively by adopting 1,3-dipolar cycloadditions. These derivatives were tested using estrogen receptor positive breast cancer cell lines MCF-7 and BT-474. Majority of the compounds exhibited activity against the p53-positive MCF-7 breast cancer cells but not against the p53-negative BT-474 breast cancer cells. Among forskolin derivatives, compounds 11a, 11c, 14a, 14f, 14g, 14h, 15b, 16g and 17b exhibited higher anti-cancer activity against MCF-7 cell line with an IC 50 ≤1µM. The derivative 14f exhibited highest activity in both p53-positive (MCF-7) and p53-negative (BT-474) breast cancer cell lines with an IC 50 of 0.5µM. Copyright © 2017. Published by Elsevier Ltd.

  1. Development of a new canine osteosarcoma cell line.

    PubMed

    Séguin, B; Zwerdling, T; McCallan, J L; DeCock, H E V; Dewe, L L; Naydan, D K; Young, A E; Bannasch, D L; Foreman, O; Kent, M S

    2006-12-01

    Establishing a canine osteosarcoma (OSA) cell line can be useful to develop in vivo and in vitro models of OSA. The goal of this study was to develop, characterize and authenticate a new canine OSA cell line and a clone. A cell line and a clone were developed with standard cell culture techniques from a naturally occurring OSA in a dog. The clonal cell line induced a tumour after injection in RAG 1-deficient mouse. Histology was consistent with OSA. The original tumour from the dog and the tumour induced in the mouse were both reactive with vimentin and osteonectin (ON). The parent cell line and clonal cell line were reactive with ON, osteocalcin and alkaline phosphatase. Loss of heterozygosity was found in the same three microsatellite markers in the parent and clonal cell lines, and the tumour tissue grown in the mouse.

  2. Establishment and evaluation of a stable steroidogenic caprine luteal cell line.

    PubMed

    Li, Wei; Xu, Xingang; Huang, Yong; Li, Zhaocai; Yu, Gaoshui; Wang, Zhisheng; Ding, Li; Tong, Dewen

    2012-07-15

    Many physiological, biological, pharmacologic, and toxicologic events and compounds affect the function of Saanen dairy goat luteal cells, resulting in implantation failure or early embryonic loss. Although primary luteal cell cultures have been used, their finite lifespan precludes assessment of long-term effects. In the present study, primary caprine luteal cells (CLCs) were immortalized through transfection of a plasmid containing the human telomerase reverse transcriptase (hTERT) gene. The expression of hTERT and telomerase activity were evaluated in transduced CLCs (hTERT-CLCs). In this study, these cells steadily expressed hTERT gene and exhibited higher telomerase activity at Passages 30 and 50. The hTERT-CLCs at Passages 30 and 50 expressed genes encoding key proteins, enzymes and receptors inherent to normal luteal cells, e.g., steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD), and LH-receptor (LH-R). In addition, immortalized caprine luteal cells produced detectable quantities of progesterone in response to 8-bromo-cAMP (8-Br-cAMP) or 22(R)-hydroxycholesterol (22R-HC) stimulation. Furthermore, this cell line appeared to proliferate more quickly than control cells, although no neoplastic transformation occurred either in vivo or in vitro. We concluded the immortalized CLCs by hTERT retained their original characteristics and may provide a useful model to study luteal cell functions. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Establishment of a Human Conjunctival Epithelial Cell Line Lacking the Functional Tacstd2 Gene (An American Ophthalmological Society Thesis)

    PubMed Central

    Kinoshita, Shigeru; Kawasaki, Satoshi; Kitazawa, Koji; Shinomiya, Katsuhiko

    2012-01-01

    Purpose: To report the establishment of a human conjunctival epithelial cell line lacking the functional tumor-associated calcium signal transducer 2 (TACSTD2) gene to be used as an in vitro model of gelatinous drop-like corneal dystrophy (GDLD), a rare disease in which the corneal epithelial barrier function is significantly compromized by the loss of function mutation of the TACSTD2 gene. Methods: A small piece of conjunctival tissue was obtained from a GDLD patient. The conjunctival epithelial cells were enzymatically separated and dissociated from the tissue and immortalized by the lentiviral introduction of the SV40 large T antigen and human telomerase reverse transcriptase (hTERT) genes. Population doubling, protein expression, and transepithelial resistance (TER) analyses were performed to assess the appropriateness of the established cell line as an in vitro model for GDLD. Results: The life span of the established cell line was found to be significantly elongated compared to nontransfected conjunctival epithelial cells. The SV40 large T antigen and hTERT genes were stably expressed in the established cell line. The protein expression level of the tight junction–related proteins was significantly low compared to the immortalized normal conjunctival epithelial cell line. TER of the established cell line was found to be significantly low compared to the immortalized normal conjunctival epithelial cell line. Conclusions: Our conjunctival epithelial cell line was successfully immortalized and well mimicked several features of GDLD corneas. This cell line may be useful for the elucidation of the pathogenesis of GDLD and for the development of novel treatments for GDLD. PMID:23818740

  4. Improvement of human cell line activation test (h-CLAT) using short-time exposure methods for prevention of false-negative results.

    PubMed

    Narita, Kazuto; Ishii, Yuuki; Vo, Phuc Thi Hong; Nakagawa, Fumiko; Ogata, Shinichi; Yamashita, Kunihiko; Kojima, Hajime; Itagaki, Hiroshi

    2018-01-01

    Recently, animal testing has been affected by increasing ethical, social, and political concerns regarding animal welfare. Several in vitro safety tests for evaluating skin sensitization, such as the human cell line activation test (h-CLAT), have been proposed. However, similar to other tests, the h-CLAT has produced false-negative results, including in tests for acid anhydride and water-insoluble chemicals. In a previous study, we demonstrated that the cause of false-negative results from phthalic anhydride was hydrolysis by an aqueous vehicle, with IL-8 release from THP-1 cells, and that short-time exposure to liquid paraffin (LP) dispersion medium could reduce false-negative results from acid anhydrides. In the present study, we modified the h-CLAT by applying this exposure method. We found that the modified h-CLAT is a promising method for reducing false-negative results obtained from acid anhydrides and chemicals with octanol-water partition coefficients (LogK ow ) greater than 3.5. Based on the outcomes from the present study, a combination of the original and the modified h-CLAT is suggested for reducing false-negative results. Notably, the combination method provided a sensitivity of 95% (overall chemicals) or 93% (chemicals with LogK ow > 2.0), and an accuracy of 88% (overall chemicals) or 81% (chemicals with LogK ow > 2.0). We found that the combined method is a promising evaluation scheme for reducing false-negative results seen in existing in vitro skin-sensitization tests. In the future, we expect a combination of original and modified h-CLAT to be applied in a newly developed in vitro test for evaluating skin sensitization.

  5. Simple Monitoring of Gene Targeting Efficiency in Human Somatic Cell Lines Using the PIGA Gene

    PubMed Central

    Karnan, Sivasundaram; Konishi, Yuko; Ota, Akinobu; Takahashi, Miyuki; Damdindorj, Lkhagvasuren; Hosokawa, Yoshitaka; Konishi, Hiroyuki

    2012-01-01

    Gene targeting in most of human somatic cell lines has been labor-intensive because of low homologous recombination efficiency. The development of an experimental system that permits a facile evaluation of gene targeting efficiency in human somatic cell lines is the first step towards the improvement of this technology and its application to a broad range of cell lines. In this study, we utilized phosphatidylinositol glycan anchor biosynthesis class A (PIGA), a gene essential for the synthesis of glycosylphosphatidyl inositol (GPI) anchors, as a reporter of gene targeting events in human somatic cell lines. Targeted disruption of PIGA was quantitatively detected with FLAER, a reagent that specifically binds to GPI anchors. Using this PIGA-based reporter system, we successfully detected adeno-associated virus (AAV)-mediated gene targeting events both with and without promoter-trap enrichment of gene-targeted cell population. The PIGA-based reporter system was also capable of reproducing previous findings that an AAV-mediated gene targeting achieves a remarkably higher ratio of homologous versus random integration (H/R ratio) of targeting vectors than a plasmid-mediated gene targeting. The PIGA-based system also detected an approximately 2-fold increase in the H/R ratio achieved by a small negative selection cassette introduced at the end of the AAV-based targeting vector with a promoter-trap system. Thus, our PIGA-based system is useful for monitoring AAV-mediated gene targeting and will assist in improving gene targeting technology in human somatic cell lines. PMID:23056640

  6. Cytotoxic effects of Euterpe oleracea Mart. in malignant cell lines.

    PubMed

    Silva, Dulcelena Ferreira; Vidal, Flávia Castello Branco; Santos, Debora; Costa, Maria Célia Pires; Morgado-Díaz, José Andrés; do Desterro Soares Brandão Nascimento, Maria; de Moura, Roberto Soares

    2014-05-29

    Euterpe oleracea Mart., a plant from the Amazon region, is commonly known as açaí or juçara; it has high nutritional value and elevated levels of lipids, proteins, and minerals. Açaí is an abundant and much consumed fruit by the Amazon local population, and studies have demonstrated that it is rich in phytochemicals with antioxidant, anti-inflammatory, and anticancer activities. Therefore, the aim of this study was to test this plant for anticancer activity in different human malignant cell lines. Cell lines derived from breast and colorectal adenocarcinomas were treated with 10, 20, and 40 μg/mL of bark, seed, and total açaí fruit hydroalcoholic extracts for 24 and 48 h. After treatment, cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and cell morphological features were observed by light and transmission electron microscopy. The type of cell death was also evaluated. The data were analyzed statistically by one-way analysis of variance (ANOVA), followed by Dunnett's or Tukey's post hoc tests, as appropriate. We observed that of all the cell lines tested, MCF-7 was the only line that responded to açaí treatment. The extracts caused significant reduction (p<0.01) in cell viability and altered cell morphological features by inducing the appearance of autophagic vacuoles, as observed by transmission electron microscopy. Furthermore, increased expression of LC3BII, a protein marker of autophagosome formation, was observed by western blotting. Caspase Glo™ assays and morphologic observations by DAPI nuclear staining and transmission electron microscopy did not indicate any apoptotic events. The present study demonstrated that açaí possesses antitumorigenic potential in the MCF-7 cell line. Further studies are needed to identify the compound (s) responsible for this cytotoxic activity and the molecular target in the cell. This discovery of the anticancer potential of açaí may help in the

  7. Establishment and characterization of a telomerase immortalized human gingival epithelial cell line.

    PubMed

    Moffatt-Jauregui, C E; Robinson, B; de Moya, A V; Brockman, R D; Roman, A V; Cash, M N; Culp, D J; Lamont, R J

    2013-12-01

    Gingival keratinocytes are used in model systems to investigate the interaction between periodontal bacteria and the epithelium in the initial stages of the periodontal disease process. Primary gingival epithelial cells (GECs) have a finite lifespan in culture before they enter senescence and cease to replicate, while epithelial cells immortalized with viral proteins can exhibit chromosomal rearrangements. The aim of this study was to generate a telomerase immortalized human gingival epithelial cell line and compare its in vitro behaviour to that of human GECs. Human primary GECs were immortalized with a bmi1/hTERT combination to prevent cell cycle triggers of senescence and telomere shortening. The resultant cell-line, telomerase immortalized gingival keratinocytes (TIGKs), were compared to GECs for cell morphology, karyotype, growth and cytokeratin expression, and further characterized for replicative lifespan, expression of toll-like receptors and invasion by P. gingivalis. TIGKs showed morphologies, karyotype, proliferation rates and expression of characteristic cytokeratin proteins comparable to GECs. TIGKs underwent 36 passages without signs of senescence and expressed transcripts for toll-like receptors 1-6, 8 and 9. A subpopulation of cells underwent stratification after extended time in culture. The cytokeratin profiles of TIGK monolayers were consistent with basal cells. When allowed to stratify, cytokeratin profiles of TIGKs were consistent with suprabasal cells of the junctional epithelium. Further, TIGKs were comparable to GECs in previously reported levels and kinetics of invasion by wild-type P. gingivalis and an invasion defective ΔserB mutant. Results confirm bmi1/hTERT immortalization of primary GECs generated a robust cell line with similar characteristics to the parental cell type. TIGKs represent a valuable model system for the study of oral bacteria interactions with host gingival cells. © 2013 John Wiley & Sons A/S. Published by John Wiley

  8. Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines.

    PubMed

    Kowarz, Eric; Löscher, Denise; Marschalek, Rolf

    2015-04-01

    Stable gene expression in mammalian cells is a prerequisite for many in vitro and in vivo experiments. However, either the integration of plasmids into mammalian genomes or the use of retro-/lentiviral systems have intrinsic limitations. The use of transposable elements, e.g. the Sleeping Beauty system (SB), circumvents most of these drawbacks (integration sites, size limitations) and allows the quick generation of stable cell lines. The integration process of SB is catalyzed by a transposase and the handling of this gene transfer system is easy, fast and safe. Here, we report our improvements made to the existing SB vector system and present two new vector types for robust constitutive or inducible expression of any gene of interest. Both types are available in 16 variants with different selection marker (puromycin, hygromycin, blasticidin, neomycin) and fluorescent protein expression (GFP, RFP, BFP) to fit most experimental requirements. With this system it is possible to generate cell lines from stable transfected cells quickly and reliably in a medium-throughput setting (three to five days). Cell lines robustly express any gene-of-interest, either constitutively or tightly regulated by doxycycline. This allows many laboratory experiments to speed up generation of data in a rapid and robust manner. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination.

    PubMed

    Korch, Christopher; Spillman, Monique A; Jackson, Twila A; Jacobsen, Britta M; Murphy, Susan K; Lessey, Bruce A; Jordan, V Craig; Bradford, Andrew P

    2012-10-01

    Cell lines derived from human ovarian and endometrial cancers, and their immortalized non-malignant counterparts, are critical tools to investigate and characterize molecular mechanisms underlying gynecologic tumorigenesis, and facilitate development of novel therapeutics. To determine the extent of misidentification, contamination and redundancy, with evident consequences for the validity of research based upon these models, we undertook a systematic analysis and cataloging of endometrial and ovarian cell lines. Profiling of cell lines by analysis of DNA microsatellite short tandem repeats (STR), p53 nucleotide polymorphisms and microsatellite instability was performed. Fifty-one ovarian cancer lines were profiled with ten found to be redundant and five (A2008, OV2008, C13, SK-OV-4 and SK-OV-6) identified as cervical cancer cells. Ten endometrial cell lines were analyzed, with RL-92, HEC-1A, HEC-1B, HEC-50, KLE, and AN3CA all exhibiting unique, uncontaminated STR profiles. Multiple variants of Ishikawa and ECC-1 endometrial cancer cell lines were genotyped and analyzed by sequencing of mutations in the p53 gene. The profile of ECC-1 cells did not match the EnCa-101 tumor, from which it was reportedly derived, and all ECC-1 isolates were genotyped as Ishikawa cells, MCF-7 breast cancer cells, or a combination thereof. Two normal, immortalized endometrial epithelial cell lines, HES cells and the hTERT-EEC line, were identified as HeLa cervical carcinoma and MCF-7 breast cancer cells, respectively. Results demonstrate significant misidentification, duplication, and loss of integrity of endometrial and ovarian cancer cell lines. Authentication by STR DNA profiling is a simple and economical method to verify and validate studies undertaken with these models. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Establishment and characterisation of a novel bovine SV40 large T-antigen-transduced foetal hepatocyte-derived cell line.

    PubMed

    Gleich, Alexander; Kaiser, Bastian; Schumann, Julia; Fuhrmann, Herbert

    2016-06-01

    Due to lack of in vitro models for bovine hepatocytes apart from primary cells, there is demand for a bovine hepatocyte-derived cell line. Transduction of bovine foetal hepatocytes with SV40 large T-antigen was performed using the vector pRetro-E2 SV40. Phase contrast microscopy was carried out to evaluate morphology. Immunofluorescence staining was conducted to study expression of keratins, tight junction proteins zona occludens-1 and claudin-1, glucose transporter-2 and P-glycoprotein as well as phosphoenolpyruvate carboxykinase. Urea and triglyceride production was quantified photometrically. Histochemical staining of glycogen by Periodic acid-Schiff stain and of lipids with Oil red O was performed after 24 h incubation with 20 mM glucose and 85 μM palmitic acid, respectively. Gene expression analysis of hepatocyte-typical genes was conducted by reverse transcription PCR. We obtained a SV40LTAg-transduced extended passage cell line, referred to as BFH12. Polygonal growth, keratins, tight junction proteins zona occludens-1 and claudin-1 and glucose transporter-2 as well as P-glycoprotein and phosphoenolpyruvate carboxykinase were attested positively. Urea production calculated as cell-specific rate was 14.2 ± 2.0 fmol/h (early passage) and 17.6 ± 3.7 fmol/h (late passage). Cell-specific triglyceride production was 1.6 ± 0.5 fmol/h (early passage) and 2.1 ± 0.3 fmol/h (late passage). Additionally, cells were positive for glycogen and lipid storage and showed a gene expression pattern resembling foetal hepatocytes. With the properties described here, the novel cell line BFH12 is a hepatocyte-derived cell line which can be used as an in vitro whole cell model.

  11. Assessment of the Tumorigenic Potential of Spontaneously Immortalized and hTERT-Immortalized Cultured Dental Pulp Stem Cells.

    PubMed

    Wilson, Ryan; Urraca, Nora; Skobowiat, Cezary; Hope, Kevin A; Miravalle, Leticia; Chamberlin, Reed; Donaldson, Martin; Seagroves, Tiffany N; Reiter, Lawrence T

    2015-08-01

    Dental pulp stem cells (DPSCs) provide an exciting new avenue to study neurogenetic disorders. DPSCs are neural crest-derived cells with the ability to differentiate into numerous tissues including neurons. The therapeutic potential of stem cell-derived lines exposed to culturing ex vivo before reintroduction into patients could be limited if the cultured cells acquired tumorigenic potential. We tested whether DPSCs that spontaneously immortalized in culture acquired features of transformed cells. We analyzed immortalized DPSCs for anchorage-independent growth, genomic instability, and ability to differentiate into neurons. Finally, we tested both spontaneously immortalized and human telomerase reverse transcriptase (hTERT)-immortalized DPSC lines for the ability to form tumors in immunocompromised animals. Although we observed increased colony-forming potential in soft agar for the spontaneously immortalized and hTERT-immortalized DPSC lines relative to low-passage DPSC, no tumors were detected from any of the DPSC lines tested. We noticed some genomic instability in hTERT-immortalized DPSCs but not in the spontaneously immortalized lines tested. We determined that immortalized DPSC lines generated in our laboratory, whether spontaneously or induced, have not acquired the potential to form tumors in mice. These data suggest cultured DPSC lines that can be differentiated into neurons may be safe for future in vivo therapy for neurobiological diseases. ©AlphaMed Press.

  12. RNA-seq reveals distinctive RNA profiles of small extracellular vesicles from different human liver cancer cell lines.

    PubMed

    Berardocco, Martina; Radeghieri, Annalisa; Busatto, Sara; Gallorini, Marialucia; Raggi, Chiara; Gissi, Clarissa; D'Agnano, Igea; Bergese, Paolo; Felsani, Armando; Berardi, Anna C

    2017-10-10

    Liver cancer (LC) is one of the most common cancers and represents the third highest cause of cancer-related deaths worldwide. Extracellular vesicle (EVs) cargoes, which are selectively enriched in RNA, offer great promise for the diagnosis, prognosis and treatment of LC. Our study analyzed the RNA cargoes of EVs derived from 4 liver-cancer cell lines: HuH7, Hep3B, HepG2 (hepato-cellular carcinoma) and HuH6 (hepatoblastoma), generating two different sets of sequencing libraries for each. One library was size-selected for small RNAs and the other targeted the whole transcriptome. Here are reported genome wide data of the expression level of coding and non-coding transcripts, microRNAs, isomiRs and snoRNAs providing the first comprehensive overview of the extracellular-vesicle RNA cargo released from LC cell lines. The EV-RNA expression profiles of the four liver cancer cell lines share a similar background, but cell-specific features clearly emerge showing the marked heterogeneity of the EV-cargo among the individual cell lines, evident both for the coding and non-coding RNA species.

  13. Characterization of cell lines developed from the glassy-winged sharpshooter, Homalodisca coagulata (Hemiptera: Cicadellidae).

    PubMed

    Kamita, Shizuo G; Do, Zung N; Samra, Aman I; Hagler, James R; Hammock, Bruce D

    2005-01-01

    Four continuous cell lines were established from the embryos of the glassy-winged sharpshooter, Homalodisca coagulata (Say), an economically important insect vector of bacterial pathogens of grape, almond, citrus, oleander, and other agricultural and ornamental plantings. The cell lines were designated GWSS-Z10, GWSS-Z15, GWSS-G3, and GWSS-LH. The GWSS-Z10, GWSS-Z15, and GWSS-G3 lines were cultured in Ex-Cell 401 medium supplemented with 10% fetal bovine serum (FBS), whereas the GWSS-LH line was cultured in LH medium supplemented with 20% FBS. The cell lines were characterized in terms of their morphology, growth, protein composition, and polymerase chain reaction- amplification patterns of their chromosomal deoxyribonucleic acid. The population doubling times of GWSS-Z10, GWSS-Z15, GWSS-G3, and GWSS-LH were 46.2, 90.9, 100.3, and 60.2 h, respectively. These lines should be useful for the study of insect-pathogenic viruses of leafhoppers, aphids, treehoppers, and other related insects as well as plant-pathogenic viruses that are transmitted by these insects.

  14. Properties of resistant cells generated from lung cancer cell lines treated with EGFR inhibitors.

    PubMed

    Ghosh, Gargi; Lian, Xiaojun; Kron, Stephen J; Palecek, Sean P

    2012-03-20

    Epidermal growth factor receptor (EGFR) signaling plays an important role in non-small cell lung cancer (NSCLC) and therapeutics targeted against EGFR have been effective in treating a subset of patients bearing somatic EFGR mutations. However, the cancer eventually progresses during treatment with EGFR inhibitors, even in the patients who respond to these drugs initially. Recent studies have identified that the acquisition of resistance in approximately 50% of cases is due to generation of a secondary mutation (T790M) in the EGFR kinase domain. In about 20% of the cases, resistance is associated with the amplification of MET kinase. In the remaining 30-40% of the cases, the mechanism underpinning the therapeutic resistance is unknown. An erlotinib resistant subline (H1650-ER1) was generated upon continuous exposure of NSCLC cell line NCI-H1650 to erlotinib. Cancer stem cell like traits including expression of stem cell markers, enhanced ability to self-renew and differentiate, and increased tumorigenicity in vitro were assessed in erlotinib resistant H1650-ER1 cells. The erlotinib resistant subline contained a population of cells with properties similar to cancer stem cells. These cells were found to be less sensitive towards erlotinib treatment as measured by cell proliferation and generation of tumor spheres in the presence of erlotinib. Our findings suggest that in cases of NSCLC accompanied by mutant EGFR, treatment targeting inhibition of EGFR kinase activity in differentiated cancer cells may generate a population of cancer cells with stem cell properties.

  15. [Establishment of Z-HL16C cell line.].

    PubMed

    Chen, J P; Li, J; Zhao, S L; Tian, J Y; Ye, F

    2006-09-01

    To establish and study the nature and the application of Z-HL16C cell line. The cell line was continuously passed, frozen stored and recovered. Its application was expanded and the cell type was identified. The cell line had an epithelial-cell-like shape, the size appeared uniform, the cell boundary was distinct. It has been continuously passed, frozen stored and recovered for ten years. Its recovery rate was about 90%. It has been proved to be sensitive to the tested viruses which were enteroviruses (Polio, Cox, Echo), influenza viruses, parainfluenzaviruses, adenoviruses, measles virus. This cell line has been identified as a cancerization cell. The cell line Z-HL16C has been stably established, it has a broad spectrum in sensitivity for culturing viruses.

  16. Recombinant cell lines expressing shRNA targeting herpes simplex virus 2 VP16 inhibit virus replication.

    PubMed

    Zhang, Rui; Wang, Yan; Song, Bo; Han, Zhi Qiang; Xu, Yu Ming

    2012-01-01

    To establish HSV2 VP16 targeting shRNA-expressing cell lines and investigate the antiviral effect of shRNA targeting HSV2 VP16. The cell lines Vero-shRNAs and negative-control Vero-shCON were established. Their inhibition effects on VP16 mRNA expression were tested by real-time fluorescent quantitative polymerase chain reaction (PCR) and their antiviral effects were evaluated by yield reduction assay. The influence of passage numbers on the inhibition ability of cell lines was researched. Vero-shRNA24 targeting the upper stream, Vero-shRNA642 targeting the lower stream and Vero-shCON were established. Vero-shRNA24, Vero-shRNA642 and Vero-shRNA24 + 642 could reduce the VP16 mRNA significantly. Vero-shRNA24 was the most efficient. The HSV2 titers in Vero and Vero-shCON were the highest at 72 h after infection, and started decreasing thereafter. The viral titers of the Vero-shRNA groups reached a peak after 84 h and the highest titers were lower than in the Vero group. The inhibiting effect on VP16 mRNA expression and viral replication of Vero-shRNA24 cell lines of passages 10 and 20 were not significantly different from the primary cell line. Although of no statistical significance, the passage 50 cell line showed decreased inhibiting ability. Recombinant cell lines expressing shRNA targeting HSV2 VP16 were established. They can stably inhibit HSV2 VP16 mRNA expression and viral replication within passage 50. Copyright © 2012 S. Karger AG, Basel.

  17. Human pathogenic Mycoplasma species induced cytokine gene expression in Epstein-Barr virus (EBV)-positive lymphoblastoid cell lines.

    PubMed

    Schäffner, E; Opitz, O; Pietsch, K; Bauer, G; Ehlers, S; Jacobs, E

    1998-04-01

    We addressed the question whether the in vitro interaction of two Epstein-Barr virus (EBV)-genome-positive B cell lines (EB-3 and HilB-gamma) with either Mycoplasma pneumoniae or M. hominis, with the mycoplasma species (M. fermentans, M. fermentans subsp. incognitus, M. penetrans, M. genitalium) or with mycoplasma species known to be mere commensals of the respiratory tract (M. orale and M. salivarium) would result in expression of mRNAs for IL-2, IL-2R, IL-4 and IL-6 as determined by reverse transcriptase (RT)-PCR after 4 and 24 h of cocultivation. The pattern of cytokine gene expression observed depended on (i) the origin of the transformed cell line, (ii) the pathogenicity of the Mycoplasma species, and (iii) the length of cocultivation. The EBV-immortalized lymphoblastoid cell line HilB-gamma showed mRNA expression for IL-2, IL-2-receptor, IL-4 and IL-6 peaking 24 h after stimulation with M. pneumoniae and all AIDS-related mycoplasma species tested. The Burkitt lymphoma cell line EB-3 showed a distinct and isolated strong II-2/IL-2 R-mRNA expression within 4 h after contact with the pathogenic and all of the AIDS related mycoplasma species. In neither EBV-containing cell line cytokine was gene expression detectable after stimulation with the commensal mycoplasma species, M. orale and M. salivarium, indicating species differences in the ability of mycoplasmas to interact with and stimulate B-cell lines. Our data suggest that some mcyoplasma species may act as immunomodulatory cofactors by eliciting inappropriate cytokine gene expression in B cells latently infected with EBV. Therefore, this cultivation model may prove useful in evaluating the pathogenetic potential of novel isolated mycoplasma species. Copyright 1998 Academic Press Limited.

  18. A targeted neuroglial reporter line generated by homologous recombination in human embryonic stem cells.

    PubMed

    Xue, Haipeng; Wu, Sen; Papadeas, Sophia T; Spusta, Steve; Swistowska, Anna Maria; MacArthur, Chad C; Mattson, Mark P; Maragakis, Nicholas J; Capecchi, Mario R; Rao, Mahendra S; Zeng, Xianmin; Liu, Ying

    2009-08-01

    In this study, we targeted Olig2, a basic helix-loop-helix transcription factor that plays an important role in motoneuron and oligodendrocyte development, in human embryonic stem cell (hESC) line BG01 by homologous recombination. One allele of Olig2 locus was replaced by a green fluorescent protein (GFP) cassette with a targeting efficiency of 5.7%. Targeted clone R-Olig2 (like the other clones) retained pluripotency, typical hESC morphology, and a normal parental karyotype 46,XY. Most importantly, GFP expression recapitulated endogenous Olig2 expression when R-Olig2 was induced by sonic hedgehog and retinoic acid, and GFP-positive cells could be purified by fluorescence-activated cell sorting. Consistent with previous reports on rodents, early GFP-expressing cells appeared biased to a neuronal fate, whereas late GFP-expressing cells appeared biased to an oligodendrocytic fate. This was corroborated by myoblast coculture, transplantation into the rat spinal cords, and whole genome expression profiling. The present work reports an hESC reporter line generated by homologous recombination targeting a neural lineage-specific gene, which can be differentiated and sorted to obtain pure neural progenitor populations.

  19. Generation of a human airway epithelium derived basal cell line with multipotent differentiation capacity

    PubMed Central

    2013-01-01

    Background As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype. Methods To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed. Results We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process. Conclusion Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents. PMID:24298994

  20. Comparative proteomics analysis of oral cancer cell lines: identification of cancer associated proteins

    PubMed Central

    2014-01-01

    Background A limiting factor in performing proteomics analysis on cancerous cells is the difficulty in obtaining sufficient amounts of starting material. Cell lines can be used as a simplified model system for studying changes that accompany tumorigenesis. This study used two-dimensional gel electrophoresis (2DE) to compare the whole cell proteome of oral cancer cell lines vs normal cells in an attempt to identify cancer associated proteins. Results Three primary cell cultures of normal cells with a limited lifespan without hTERT immortalization have been successfully established. 2DE was used to compare the whole cell proteome of these cells with that of three oral cancer cell lines. Twenty four protein spots were found to have changed in abundance. MALDI TOF/TOF was then used to determine the identity of these proteins. Identified proteins were classified into seven functional categories – structural proteins, enzymes, regulatory proteins, chaperones and others. IPA core analysis predicted that 18 proteins were related to cancer with involvements in hyperplasia, metastasis, invasion, growth and tumorigenesis. The mRNA expressions of two proteins – 14-3-3 protein sigma and Stress-induced-phosphoprotein 1 – were found to correlate with the corresponding proteins’ abundance. Conclusions The outcome of this analysis demonstrated that a comparative study of whole cell proteome of cancer versus normal cell lines can be used to identify cancer associated proteins. PMID:24422745

  1. The transcriptional diversity of 25 Drosophila cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherbas, Lucy; Willingham, Aarron; Zhang, Dayu

    2010-12-22

    Drosophila melanogaster cell lines are important resources for cell biologists. In this article, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signalingmore » pathways are well represented: most differentiation pathways are ‘‘off’’ and survival/growth pathways ‘‘on.’’ Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common ‘‘cell line‘‘ gene expression pattern. We report the transcriptional profiles of 25 Drosophila melanogaster cell lines, principally by whole-genome tiling microarray analysis of total RNA, carried out as part of the modENCODE project. The data produced in this study add to our knowledge of the cell lines and of the Drosophila transcriptome in several ways. We summarize the expression of previously annotated genes in each of the 25 lines

  2. [Artemisinin inhibits proliferation of gallbladder cancer cell lines through triggering cell cycle arrest and apoptosis].

    PubMed

    Jia, J G; Zhang, L G; Guo, C X; Wang, Y G; Chen, B L; Wang, Y M; Qian, J

    2016-03-01

    To evaluate the effects of artemisinin on proliferation, cell cycle and apoptosis of gallbladder cancer cells. Gallbladder carcinoma cell lines(GBC-SD and NOZ)were cultured in vitro. The effects of artemisinin in different concentration on proliferation of the two cell lines in vitro were examined using MTT assay. The cell cycle distribution of GBC-SD and NOZ cells 24 h after treatments with artemisinin(20 μmol/L) were examined using flow cytometry. The apoptosis of GBC-SD and NOZ cells 24 h after treatments with artemisinin (20 μmol/L) were examined using Annexin V/PI staining.The expressions of p-ERK1/2, CDK4, cyclin D1, p16, cytochrome C and caspase-3 were examined by Western blot assay. t-test and one way ANOVA were used to evaluate the differences between two groups and more than two groups, respectively. The cell proliferation was significantly inhibited by artemisinin, the IC50 of artemisinin against GBC-SD and NOZ cells were 14.05 μmol/L and 12.42 μmol/L, respectively.Artemisinin induced cycle arrest, and G1 population of GBC-SD and NOZ cells increased to 74.60% and 78.86%. Cell apoptosis and apoptotic population of GBC-SD and NOZ cells were increased to 15.67% and 16.51% after dealt with artemisinin, respectively. In addition, expression of p16 was increased, and expressions of p-ERK1/2, CDK4 and cyclin D1 were down-regulated by artemisinin(all P<0.05). Cytochrome C was released from mitochondria to cytoplasm leading to the activation of caspase-3 and PARP after dealt with artemisinin(P<0.05). The inhibition effect of artemisinin on the proliferation gallbladder cancer cells is accompanied by down-regulation of ERK1/2 signaling pathway, G1 phase arrest and triggering caspase-3-mediate apoptosis.

  3. Modular cell-internalizing aptamer nanostructure enables targeted delivery of large functional RNAs in cancer cell lines.

    PubMed

    Porciani, David; Cardwell, Leah N; Tawiah, Kwaku D; Alam, Khalid K; Lange, Margaret J; Daniels, Mark A; Burke, Donald H

    2018-06-11

    Large RNAs and ribonucleoprotein complexes have powerful therapeutic potential, but effective cell-targeted delivery tools are limited. Aptamers that internalize into target cells can deliver siRNAs (<15 kDa, 19-21 nt/strand). We demonstrate a modular nanostructure for cellular delivery of large, functional RNA payloads (50-80 kDa, 175-250 nt) by aptamers that recognize multiple human B cell cancer lines and transferrin receptor-expressing cells. Fluorogenic RNA reporter payloads enable accelerated testing of platform designs and rapid evaluation of assembly and internalization. Modularity is demonstrated by swapping in different targeting and payload aptamers. Both modules internalize into leukemic B cell lines and remained colocalized within endosomes. Fluorescence from internalized RNA persists for ≥2 h, suggesting a sizable window for aptamer payloads to exert influence upon targeted cells. This demonstration of aptamer-mediated, cell-internalizing delivery of large RNAs with retention of functional structure raises the possibility of manipulating endosomes and cells by delivering large aptamers and regulatory RNAs.

  4. Derivation and characterisation of the human embryonic stem cell lines, NOTT1 and NOTT2.

    PubMed

    Priddle, Helen; Allegrucci, Cinzia; Burridge, Paul; Munoz, Maria; Smith, Nigel M; Devlin, Lyndsey; Sjoblom, Cecilia; Chamberlain, Sarah; Watson, Sue; Young, Lorraine E; Denning, Chris

    2010-04-01

    The ability to maintain human embryonic stem cells (hESCs) during long-term culture and yet induce differentiation to multiple lineages potentially provides a novel approach to address various biomedical problems. Here, we describe derivation of hESC lines, NOTT1 and NOTT2, from human blastocysts graded as 3BC and 3CB, respectively. Both lines were successfully maintained as colonies by mechanical passaging on mouse embryonic feeder cells or as monolayers by trypsin-passaging in feeder-free conditions on Matrigel. Undifferentiated cells retained expression of pluripotency markers (OCT4, NANOG, SSEA-4, TRA-1-60 and TRA-1-81), a stable karyotype during long-term culture and could be transfected efficiently with plasmid DNA and short interfering RNA. Differentiation via formation of embryoid bodies resulted in expression of genes associated with early germ layers and terminal lineage specification. The electrophysiology of spontaneously beating NOTT1-derived cardiomyocytes was recorded and these cells were shown to be pharmacologically responsive. Histological examination of teratomas formed by in vivo differentiation of both lines in severe immunocompromised mice showed complex structures including cartilage or smooth muscle (mesoderm), luminal epithelium (endoderm) and neuroectoderm (ectoderm). These observations show that NOTT1 and NOTT2 display the accepted characteristics of hESC pluripotency.

  5. Comparison of steroid receptors from the androgen responsive DDT1 cell line and the nonresponsive HVP cell line.

    PubMed

    Norris, J S; Kohler, P O

    1978-01-01

    Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.

  6. Human somatic cells subjected to genetic induction with six germ line-related factors display meiotic germ cell-like features

    PubMed Central

    Medrano, Jose V.; Martínez-Arroyo, Ana M.; Míguez, Jose M.; Moreno, Inmaculada; Martínez, Sebastián; Quiñonero, Alicia; Díaz-Gimeno, Patricia; Marqués-Marí, Ana I.; Pellicer, Antonio; Remohí, Jose; Simón, Carlos

    2016-01-01

    The in vitro derivation of human germ cells has attracted interest in the last years, but their direct conversion from human somatic cells has not yet been reported. Here we tested the ability of human male somatic cells to directly convert into a meiotic germ cell-like phenotype by inducing them with a combination of selected key germ cell developmental factors. We started with a pool of 12 candidates that were reduced to 6, demonstrating that ectopic expression of the germ line-related genes PRDM1, PRDM14, LIN28A, DAZL, VASA and SYCP3 induced direct conversion of somatic cells (hFSK (46, XY), and hMSC (46, XY)) into a germ cell-like phenotype in vitro. Induced germ cell-like cells showed a marked switch in their transcriptomic profile and expressed several post-meiotic germ line related markers, showed meiotic progression, evidence of epigenetic reprogramming, and approximately 1% were able to complete meiosis as demonstrated by their haploid status and the expression of several post-meiotic markers. Furthermore, xenotransplantation assays demonstrated that a subset of induced cells properly colonize the spermatogonial niche. Knowledge obtained from this work can be used to create in vitro models to study gamete-related diseases in humans. PMID:27112843

  7. Histamine H{sub 3} receptor antagonist OUP-186 attenuates the proliferation of cultured human breast cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Satoshi; Sakaguchi, Minoru; Yoneyama, Hiroki

    Histamine is involved in various physiological functions, including its neurotransmitter actions in the central nervous system and its action as a causative agent of inflammation, allergic reactions, and gastric acid secretions. Histamine expression and biosynthesis have been detected in breast cancer cells. It was recently suggested that the histamine H{sub 3} receptor (H{sub 3}R) plays a role in the proliferation of breast cancer cells. We recently developed the non-imidazole H{sub 3}R antagonist OUP-186 which exhibited a potent and selective human H{sub 3}R antagonistic activity as well as no activity against the human histamine H{sub 4} receptor (H{sub 4}R). In thismore » study, we compared the effects of OUP-186 on the proliferation of estrogen receptor negative (ER−) breast cancer cells (MDA-MB-231) and ER+ breast cancer cells (MCF7) to the effects of clobenpropit (potent imidazole-containing H{sub 3}R antagonist). OUP-186 and clobenpropit suppressed the proliferation of breast cancer cells. The IC{sub 50} values at 48 h for OUP-186 and clobenpropit were approximately 10 μM and 50 μM, respectively. Furthermore, OUP-186 potently induced cell death by activating caspase-3/7, whereas cell death was only slightly induced by clobenpropit. In addition, OUP-186 treatment blocked the proliferation increase triggered by 100 μM (R)-(-)-α-methylhistamine (H{sub 3}R agonist). The use of 4-methylhistamine (H{sub 4}R agonist) and JNJ10191584 (selective H{sub 4}R antagonist) did not affect breast cancer proliferation. These results indicate that OUP-186 potently suppresses proliferation and induces caspase-dependent apoptotic death in both ER+ and ER-breast cancer cells. - Highlights: • OUP-186, a histamine H{sub 3} receptor antagonist, effects breast cancer cell growth. • OUP-186 potently suppressed proliferation and induced caspase-dependent apoptosis. • OUP-186 may be an effective drug against ER+ and ER− breast cancers.« less

  8. A Vitex agnus-castus extract inhibits cell growth and induces apoptosis in prostate epithelial cell lines.

    PubMed

    Weisskopf, M; Schaffner, W; Jundt, G; Sulser, T; Wyler, S; Tullberg-Reinert, H

    2005-10-01

    Extracts of Vitex agnus-castus fruits (VACF) are described to have beneficial effects on disorders related to hyperprolactinemia (cycle disorders, premenstrual syndrome). A VACF extract has recently been shown to exhibit antitumor activities in different human cancer cell lines. In the present study, we explored the antiproliferative effects of a VACF extract with a particular focus on apoptosis-inducing and potential cytotoxic effects. Three different human prostate epithelial cell lines (BPH-1, LNCaP, PC-3) representing different disease stages and androgen responsiveness were chosen. The action of VACF on cell viability was assessed using the WST-8-tetrazolium assay. Cell proliferation in cells receiving VACF alone or in combination with a pan-caspase inhibitor (Z-VAD-fmk) was quantified using a Crystal Violet assay. Flow cytometric cell cycle analysis and measurement of DNA fragmentation using an ELISA method were used for studying the induction of apoptosis. Lactate dehydrogenase (LDH) activity was determined as a marker of cytotoxicity. The extract inhibited proliferation of all three cell lines in a concentration-dependent manner with IC (50) values below 10 microg/mL after treatment for 48 h. Cell cycle analysis and DNA fragmentation assays suggest that part of the cells were undergoing apoptosis. The VACF-induced decrease in cell number was partially inhibited by Z-VAD-fmk, indicating a caspase-dependent apoptotic cell death. However, the concentration-dependent LDH activity of VACF treated cells indicated cytotoxic effects as well. These data suggest that VACF contains components that inhibit proliferation and induce apoptosis in human prostate epithelial cell lines. The extract may be useful for the prevention and/or treatment not only of benign prostatic hyperplasia but also of human prostate cancer.

  9. Differential effects of erufosine on proliferation, wound healing and apoptosis in colorectal cancer cell lines.

    PubMed

    Kaleağasıoğlu, Ferda; Berger, Martin R

    2014-03-01

    The alkylphosphocholine, erucylphospho-N,N, N-trimethylpropanolamine (erufosine), has demonstrated anticancer effects in various cell lines, including leukemia, multiple myeloma, bladder, breast and oral squamous cell carcinoma cells. The purpose of the present study was to investigate its antiproliferative, antimigratory and pro-apoptotic effects in colorectal cancer cell lines, SW480 and CC531. The antiproliferative effect was determined by (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) (MTT) dye reduction assay following exposure to erufosine (3.1-100 µM) for 24-72 h. The antimigratory effect of erufosine (1.6-6 µM) was investigated by a wound healing assay for 12-48 h. Caspase-3/-7 activity was measured to detect apoptotic cell death. Erufosine inhibited cell proliferation in a dose- and time-dependent manner. The IC50 values following 72 h of incubation were 3.4 and 25.4 µM for SW480 and CC531 cells, respectively. erufosine at concentrations of 50 and 100 µM induced caspase-3/-7 activity concentration-dependently in SW480 cells, but only at 100 µM in CC531 cells. Incubation of SW480 cells with erufosine (1.56 µM) for 48 h inhibited migration into the scratched area by 54% as compared to the untreated cells; whereas in CC531 cells, the wound width in the erufosine-treated (1.56-6.25 µM) cells following 48 h was closed 2-fold slower than the rate in the untreated group. Erufosine (25 µM) attenuated osteonectin expression and abolished COL1A1 expression in CC531 cells. Erufosine appears to be a promising treatment agent for colorectal cancer. Rat CC531 cells are less sensitive to erufosine than human SW480 cells.

  10. hCLCA2 is a p53-inducible inhibitor of breast cancer cell proliferation

    PubMed Central

    Walia, Vijay; Ding, Ming; Kumar, Sumit; Nie, Daotai; Premkumar, Louis; Elble, Randolph C.

    2009-01-01

    hCLCA2 is frequently downregulated in breast cancer and is a candidate tumor suppressor gene. We show here that the hCLCA2 gene is strongly induced by p53 in response to DNA damage. Adenoviral expression of p53 induces hCLCA2 in a variety of breast cell lines. Further, we find that p53 binds to consensus elements in the hCLCA2 promoter and mutation of these sites abolishes p53-responsiveness and induction by DNA damage. Adenoviral transduction of hCLCA2 into immortalized cells induces p53, CDK inhibitors p21 and p27, and cell cycle arrest by 24 hours, and caspase induction and apoptosis by 40 hours post-infection. Transduction of the malignant tumor cell line BT549 on the other hand does not induce p53, p21, or p27 but instead induces apoptosis directly and more rapidly. Knockout and knockdown studies indicate that growth inhibition and apoptosis are signaled via multiple pathways. Conversely, suppression of hCLCA2 by RNA interference enhances proliferation of MCF10A and reduces sensitivity to doxorubicin. Gene expression profiles indicate that hCLCA2 levels are strongly predictive of tumor cell sensitivity to doxorubicin and other chemotherapeutics. Because certain Cl- channels are proposed to promote apoptosis by reducing intracellular pH, we tested whether, and established that, hCLCA2 enhances Cl- current in breast cancer cells and reduces pH to ∼6.7. These results reveal hCLCA2 as a novel p53-inducible growth inhibitor, explain how its downregulation confers a survival advantage to tumor cells, and suggest both prognostic and therapeutic applications. PMID:19654313

  11. Runx2 mediates epigenetic silencing of the bone morphogenetic protein-3B (BMP-3B/GDF10) in lung cancer cells

    PubMed Central

    2012-01-01

    Background The Runt-related transcription factor Runx2 is essential for bone development but is also implicated in progression of several cancers of breast, prostate and bone, where it activates cancer-related genes and promotes invasive properties. The transforming growth factor β (TGF-β) family member bone morphogenetic protein-3B (BMP-3B/GDF10) is regarded as a tumor growth inhibitor and a gene silenced in lung cancers; however the regulatory mechanisms leading to its silencing have not been identified. Results Here we show that Runx2 is highly expressed in lung cancer cells and downregulates BMP-3B. This inverse relationship between Runx2 and BMP-3B expression is further supported by increased expression of BMP-3B in mesenchymal cells from Runx2 deficient mice. The ectopic expression of Runx2, but not DNA binding mutant Runx2, in normal lung fibroblast cells and lung cancer cells resulted in suppression of BMP-3B levels. The chromatin immunoprecipitation studies identified that the mechanism of Runx2-mediated suppression of BMP-3B is due to the recruitment of Runx2 and histone H3K9-specific methyltransferase Suv39h1 to BMP-3B proximal promoter and a concomitant increase in histone methylation (H3K9) status. The knockdown of Runx2 in H1299 cells resulted in decreased histone H3K9 methylation on BMP-3B promoter and increased BMP-3B expression levels. Furthermore, co-immunoprecipitation studies showed a direct interaction of Runx2 and Suv39h1 proteins. Phenotypically, Runx2 overexpression in H1299 cells increased wound healing response to TGFβ treatment. Conclusions Our studies identified BMP-3B as a new Runx2 target gene and revealed a novel function of Runx2 in silencing of BMP-3B in lung cancers. Our results suggest that Runx2 is a potential therapeutic target to block tumor suppressor gene silencing in lung cancer cells. PMID:22537242

  12. Characterization of stem-like cells in a new astroblastoma cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coban, Esra Aydemir; Kasikci, Ezgi; Karatas, Omer Faruk

    Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells andmore » cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors. - Highlights: • An establishment of a novel astroblastoma cell line was proposed. • The presence of astroblastic cells and cancer stem-like cells was investigated. • The molecular pathways underlying astroblastomas may be investigated. • New therapeutic strategies for patients with astroblastoma may be developed.« less

  13. O-naphthoquinone isolated from Capraria biflora L. induces selective cytotoxicity in tumor cell lines.

    PubMed

    de S Wisintainer, G G N; Scola, G; Moura, S; Lemos, T L G; Pessoa, C; de Moraes, M O; Souza, L G S; Roesch-Ely, M; Henriques, J A P

    2015-12-21

    Biflorin is an o-naphthoquinone isolated from the roots of the plant Capraria biflora L. (Scrophulariaceae). In this study, the cytotoxic effects of biflorin were verified, and late apoptosis was detected in various cancer cell lines by in situ analysis. The cytotoxicity was further evaluated exclusively for 48 h of treatment in different tumor and non-tumor cell lines (Hep-2, HeLa, HT-29, A-375, and A-549, and HEK-293, respectively). The results indicated that biflorin induced selective cytotoxicity in tumor cells. HeLa cells were more susceptible to biflorin, followed by HT-29, A-549, A-375, and Hep-2 at all concentrations (range 5-50 μg/mL), and the highest half-maximal inhibitory concentration IC50 (56.01 ± 1.17 μg/mL) was observed in HEK-293 cells. Late apoptotic/necrotic events, observed by in situ immunostaining with Annexin V, varied with each cell line; an increase in late apoptotic events was observed corresponding to the increase in biflorin dosage. Hep-2 cells showed a greater percentage of late apoptotic events among the tumor cell lines when treated with higher concentrations of biflorin (69.63 ± 2.28%). The non-tumor HEK-293 line showed greater resistance to late apoptotic events, as well as a lower level of cytotoxicity (77.69 ± 6.68%) than the tested tumor lines. The data presented indicate that biflorin showed an important, possibly selective, cytotoxicity against tumor cell lines, thereby revealing a promising novel substance with potential anticancer activity for tumor therapy.

  14. Effects of retinoic acid-inducible gene-I-like receptors activations and ionizing radiation cotreatment on cytotoxicity against human non-small cell lung cancer in vitro.

    PubMed

    Yoshino, Hironori; Iwabuchi, Miyu; Kazama, Yuka; Furukawa, Maho; Kashiwakura, Ikuo

    2018-04-01

    Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are pattern-recognition receptors that recognize pathogen-associated molecular patterns and induce antiviral immune responses. Recent studies have demonstrated that RLR activation induces antitumor immunity and cytotoxicity against different types of cancer, including lung cancer. However a previous report has demonstrated that ionizing radiation exerts a limited effect on RLR in human monocytic cell-derived macrophages, suggesting that RLR agonists may be used as effective immunostimulants during radiation therapy. However, it is unclear whether ionizing radiation affects the cytotoxicity of RLR agonists against cancer cells. Therefore, in the present study the effects of cotreatment with ionizing radiation and RLR agonists on cytotoxicity against human non-small cell lung cancer cells A549 and H1299 was investigated. Treatment with RLR agonist poly(I:C)/LyoVec™ [poly(I:C)] exerted cytotoxic effects against human non-small cell lung cancer. The cytotoxic effects of poly(I:C) were enhanced by cotreatment with ionizing radiation, and poly(I:C) pretreatment resulted in the radiosensitization of non-small cell lung cancer. Furthermore, cotreatment of A549 and H1299 cells with poly(I:C) and ionizing radiation effectively induced apoptosis in a caspase-dependent manner compared with treatment with poly(I:C) or ionizing radiation alone. These results indicate that RLR agonists and ionizing radiation cotreatment effectively exert cytotoxic effects against human non-small cell lung cancer through caspase-mediated apoptosis.

  15. Effects of retinoic acid-inducible gene-I-like receptors activations and ionizing radiation cotreatment on cytotoxicity against human non-small cell lung cancer in vitro

    PubMed Central

    Yoshino, Hironori; Iwabuchi, Miyu; Kazama, Yuka; Furukawa, Maho; Kashiwakura, Ikuo

    2018-01-01

    Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are pattern-recognition receptors that recognize pathogen-associated molecular patterns and induce antiviral immune responses. Recent studies have demonstrated that RLR activation induces antitumor immunity and cytotoxicity against different types of cancer, including lung cancer. However a previous report has demonstrated that ionizing radiation exerts a limited effect on RLR in human monocytic cell-derived macrophages, suggesting that RLR agonists may be used as effective immunostimulants during radiation therapy. However, it is unclear whether ionizing radiation affects the cytotoxicity of RLR agonists against cancer cells. Therefore, in the present study the effects of cotreatment with ionizing radiation and RLR agonists on cytotoxicity against human non-small cell lung cancer cells A549 and H1299 was investigated. Treatment with RLR agonist poly(I:C)/LyoVec™ [poly(I:C)] exerted cytotoxic effects against human non-small cell lung cancer. The cytotoxic effects of poly(I:C) were enhanced by cotreatment with ionizing radiation, and poly(I:C) pretreatment resulted in the radiosensitization of non-small cell lung cancer. Furthermore, cotreatment of A549 and H1299 cells with poly(I:C) and ionizing radiation effectively induced apoptosis in a caspase-dependent manner compared with treatment with poly(I:C) or ionizing radiation alone. These results indicate that RLR agonists and ionizing radiation cotreatment effectively exert cytotoxic effects against human non-small cell lung cancer through caspase-mediated apoptosis. PMID:29541243

  16. Study on characteristics of in vitro culture and intracellular transduction of exogenous proteins in fibroblast cell line of Liaoning cashmere goat.

    PubMed

    Hu, P F; Guan, W J; Li, X C; Zhang, W X; Li, C L; Ma, Y H

    2013-01-01

    Establishment of fibroblast cell lines of endangered goat breeds and research on the gene or protein functions based on the cells made a significant contribution to the conservation and utilization of genetic resources. In this study, a fibroblast cell line of Liaoning cashmere goat, frozen in 174 cryovials with 5 × 10(6) cells each, was successfully established from 60 goats ear marginal tissues using explant culture and cryopreservation techniques. Biological analysis of in vitro cultured cell line showed that, the cells were morphologically consistent with fibroblasts; the average viability of the cells was 94.9 % before freezing and 90.1 % after thawing; the growth process of cells was consisted of a lag phase, a logarithmic phase and a plateau phase; cell population doubling time was 65.5 h; more than 90 % of cells were diploid prior to the 6th generation; Neither microbial contamination nor cross-contamination was detected. To determine cell permeability, intracellular path and stability of exogenous proteins during the transduction, a TAT protein transduction domain was fused to the C-terminus of enhanced green fluorescent protein, the established fibroblast cell line was treated with the purified exogenous proteins at various concentrations by adding them to the cell culture media for 1-24 h and assayed cell morphology and protein presence, it was found that the purified exogenous proteins readily entered cells at a concentration of 0.1 mg/ml within 1.5 h and some of them could translocate into nucleus, moreover, the exogenous proteins appeared to be stable inside cells for up to 24 h.

  17. In vitro effects of Yunnan Baiyao on canine hemangiosarcoma cell lines.

    PubMed

    Wirth, K A; Kow, K; Salute, M E; Bacon, N J; Milner, R J

    2016-09-01

    Yunnan Baiyao is a Chinese herbal medicine that has been utilized for its anti-inflammatory, haemostatic, wound healing and pain relieving properties in people. It has been utilized in the veterinary profession to control bleeding in dogs with hemangiosarcoma (HSA) and has been anecdotally reported to prolong survival times in dogs with this neoplasm. This study evaluated the in vitro activity of Yunnan Baiyao against three canine HSA cell lines after treatment with increasing concentrations of Yunnan Baiyao (50, 100, 200, 400, 600 and 800 µg mL(-1) ) at 24, 48 and 72 h. Mean half maximum inhibitory concentration (IC50 ) at 72 h for DEN, Fitz, SB was 369.9, 275.9 and 325.3 µg mL(-1) , respectively. Caspase-3/7 activity increased in correlation with the IC50 in each cell line which was confirmed by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL, APO-BRDU Kit; BD Biosciences, San Jose, CA, USA) assay. VEGF in cell supernatant was also quantified. Overall, the study found that Yunnan Baiyao causes dose and time dependent HSA cell death through initiation of caspase-mediated apoptosis, which supports future studies involving Yunnan Baiyao. © 2014 John Wiley & Sons Ltd.

  18. Ontological representation, integration, and analysis of LINCS cell line cells and their cellular responses.

    PubMed

    Ong, Edison; Xie, Jiangan; Ni, Zhaohui; Liu, Qingping; Sarntivijai, Sirarat; Lin, Yu; Cooper, Daniel; Terryn, Raymond; Stathias, Vasileios; Chung, Caty; Schürer, Stephan; He, Yongqun

    2017-12-21

    Aiming to understand cellular responses to different perturbations, the NIH Common Fund Library of Integrated Network-based Cellular Signatures (LINCS) program involves many institutes and laboratories working on over a thousand cell lines. The community-based Cell Line Ontology (CLO) is selected as the default ontology for LINCS cell line representation and integration. CLO has consistently represented all 1097 LINCS cell lines and included information extracted from the LINCS Data Portal and ChEMBL. Using MCF 10A cell line cells as an example, we demonstrated how to ontologically model LINCS cellular signatures such as their non-tumorigenic epithelial cell type, three-dimensional growth, latrunculin-A-induced actin depolymerization and apoptosis, and cell line transfection. A CLO subset view of LINCS cell lines, named LINCS-CLOview, was generated to support systematic LINCS cell line analysis and queries. In summary, LINCS cell lines are currently associated with 43 cell types, 131 tissues and organs, and 121 cancer types. The LINCS-CLO view information can be queried using SPARQL scripts. CLO was used to support ontological representation, integration, and analysis of over a thousand LINCS cell line cells and their cellular responses.

  19. Establishment and cryopreservation of a giant panda skeletal muscle-derived cell line.

    PubMed

    Yu, Fang-Jian; Zeng, Chang-Jun; Zhang, Yan; Wang, Cheng-Dong; Xiong, Tie-Yi; Fang, Sheng-Guo; Zhang, He-Min

    2015-06-01

    The giant panda Ailuropoda melanoleuca is an endangered species and is a symbol for wildlife conservation. Although efforts have been made to protect this rare and endangered species through breeding and conservative biology, the long-term preservation of giant panda genome resources (gametes, tissues, organs, genomic libraries, etc.) is still a practical option. In this study, the giant panda skeletal muscle-derived cell line was successfully established via primary explants culture and cryopreservation techniques. The population doubling time of giant panda skeletal cells was approximately 33.8 h, and this population maintained a high cell viability before and after cryopreservation (95.6% and 90.7%, respectively). The two skeletal muscle-specific genes SMYD1 and MYF6 were expressed and detected by RT-PCR in the giant panda skeletal muscle-derived cell line. Karyotyping analysis revealed that the frequencies of giant panda skeletal muscle cells showing a chromosome number of 2n=42 ranged from 90.6∼94.2%. Thus, the giant panda skeletal muscle-derived cell line provides a vital resource and material platform for further studies and is likely to be useful for the protection of this rare and endangered species.

  20. Rovibrational line-shape parameters for H2 in He and new H2-He potential energy surface

    NASA Astrophysics Data System (ADS)

    Thibault, Franck; Patkowski, Konrad; Żuchowski, Piotr S.; Jóźwiak, Hubert; Ciuryło, Roman; Wcisło, Piotr

    2017-11-01

    We report a new H2-He potential energy surface that, with respect to the previous one [Bakr et al.(2013)], covers much larger range of H2 stretching and exhibits more accurate asymptotic behavior for large separations between H2 and He. Close-coupling calculations performed on this improved potential energy surface allow us to provide line shape parameters for H2 between 5 and 2000 K for Raman isotropic Q lines and anisotropic Q lines (or electric quadrupole lines) and for vibrational bands from the ground up to v = 5 and rotational quantum numbers up to j = 5 . The parameters provided include the usual pressure -broadening and -shifting coefficients as well as the real and imaginary part of Dicke contribution to the Hess profile. The latter parameters can be readily implemented in other line-shape profiles like the most recent one of Hartmann and Tran.

  1. Antibacterial Loaded Spray Dried Chitosan Polyelectrolyte Complexes as Dry Powder Aerosol for the Treatment of Lung Infections

    PubMed Central

    Mishra, Brahmeshwar; Mishra, Madhusmita; Yadav, Sarita Kumari

    2017-01-01

    Inhalation delivery of aerosolized antibacterials is preferred over conventional methods of delivery for targeting lung infection. The present study is concerned with the development and characterization of a novel, spray dried, aerosolized, chitosan polyelectrolyte complex (PEC) based microparticles containing antibacterials for the treatment of lung infections. Chitosan polyelectrolyte complex microparticles were formulated by spray drying process. Prepared spray dried chitosan PEC microparticles were studied for surface morphology, drug encapsulation efficiency, moisture content, Carr’s index, solid state interaction by XRD, aerosolization behaviour and in-vitro drug release. In-vitro cytotoxicity studies of microparticles were carried out on H1299 alveolar cell lines. Antibacterial efficacy of microparticles was assessed on the basis of determination of pharmacokinetic parameters in bronchial alveolar lavage (BAL) of rats using PK/PD analysis. The PEC microparticles were mostly spherical and exhibited high drug encapsulation efficiency. Release profiles showed an initial burst phase followed by a secondary sustained release phase. Good aerosolization behaviour as dry powder inhaler was demonstrated by microparticles with high values of recovered dose, emitted dose, and fine particle fraction. No overt cytotoxicity of microparticles was detected against H1299 alveolar cell line. More than 8 to 9 folds higher Cmax values were obtained in BAL fluid with microparticles as compared to intravenously administered antibacterial solution. The findings of the study suggest that chitosan polyelectrolyte complex based microparticles as dry powder inhaler can be an efficient antibacterial delivery system for sustained and effective management of lung infection. PMID:28496463

  2. Fatty acid binding proteins (FABPs) in prostate, bladder and kidney cancer cell lines and the use of IL-FABP as survival predictor in patients with renal cell carcinoma

    PubMed Central

    2011-01-01

    Background Fatty acid binding proteins (FABP) play an important role in carcinogenesis. Modified FABP expression patterns were described for prostate, bladder and for renal cell carcinoma. Studies on metabolic relationships and interactions in permanent cell lines allow a deeper insight into molecular processes. The aim of this study is therefore a systematic overview on mRNA and protein expressions of seven FABPs in frequently used urological cell lines. Methods Nine cell lines of renal carcinomas, seven of urinary bladder carcinomas, and five of prostate carcinomas were investigated. Quantitative RT-qPCR and western blotting were used to determine different FABPs. In addition, 46 paired cancerous and noncancerous tissue samples from nephrectomy specimen with renal cell carcinomas were investigated regarding the ileum FABP mRNA expression level and associated with survival outcome. Results General characteristics of all urological carcinoma cell lines were the expression of E-and IL-FABP on mRNA and protein level, while the expressions differed between the cell lines. The protein expression was not always congruent with the mRNA expression. Renal cell carcinoma cell lines showed expressions of L-, H- and B-FABP mRNA in addition to the general FABP expression in five out of the eight investigated cell lines. In bladder cancer cell lines, we additionally found the expression of A-FABP mRNA in six cell lines, while H-FABP was present only in three cell lines. In prostate cancer cell lines, a strong reduction of A- and E- FABP mRNA was observed. The expression of B-FABP mRNA and protein was observed only in the 22 RV-1 cells. IL-FABP mRNA was over-expressed in renal tumour tissue. The IL-FABP ratio was identified as an independent indicator of survival outcome. Conclusions Distinctly different FABP expression patterns were observed not only between the cell lines derived from the three cancer types, but also between the cell lines from the same cancer. The FABP

  3. Cell Penetrating Capacity and Internalization Mechanisms Used by the Synthetic Peptide CIGB-552 and Its Relationship with Tumor Cell Line Sensitivity.

    PubMed

    Astrada, Soledad; Fernández Massó, Julio Raúl; Vallespí, Maribel G; Bollati-Fogolín, Mariela

    2018-03-30

    CIGB-552 is a twenty-amino-acid novel synthetic peptide that has proven to be effective in reducing tumor size and increasing lifespan in tumor-bearing mice. Such capability is conferred by its cell-penetrating peptide character, which allows it to enter cells and elicit a pro-apoptotic effect through its major mediator, COMMD1 protein. Cell-penetrating peptides are able to use different internalization mechanisms, such as endocytosis or direct transduction through the plasma membrane. Although CIGB-552 cytotoxicity has been evaluated in several non-tumor- and tumor-derived cell lines, no data regarding the relationship between cell line sensitivity, cell penetrating capacity, the internalization mechanisms involved, COMMD1 expression levels, or its subcellular localization has yet been produced. Here, we present the results obtained from a comparative analysis of CIGB-552 sensitivity, internalization capacity and the mechanisms involved in three human tumor-derived cell lines from different origins: mammary gland, colon and lung (MCF-7, HT-29 and H460, respectively). Furthermore, cell surface markers relevant for internalization processes such as phosphatidylserine, as well as CIGB-552 target COMMD1 expression/localization, were also evaluated. We found that both endocytosis and transduction are involved in CIGB-552 internalization in the three cell lines evaluated. However, CIGB-552 incorporation efficiency and contribution of each mechanism is cell-line dependent. Finally, sensitivity was directly correlated with high internalization capacity in those cell lines where endocytosis had a major contribution on CIGB-552 internalization.

  4. Antiproliferative effect of a food coloring on colon cancer cell line.

    PubMed

    Norizadeh Tazehkand, M

    2017-01-01

    4-MEI (4-Methylimidazole) is used as a chemical intermediate, crude material or component in the manufacture of pharmaceuticals, photographic and photothermographic chemicals, dyes and pigments and agricultural chemicals. 4-MEI is unintentionally found in our food. Caramel colour (which is the most used beverage colouring and food), dark beers and common brands of cola drinks may comprise more than 100 μg of this compound per 12-ounce serving. 4-MEI is widely used by people and colon cancer is common in our countries. So, it was decided to do in vitro analysis of anti-cancer effect of 4-MEI by MTT test using htc-116 cell line.In this study, mouse Htc-116 cell line was treated with 4-MEI concentrations of 300, 450, 600 and 750 µg/mL for 24 hours and 48 hours periods, after that antiproliferative effect of the 4-MEI was studied by MTT assay. In this study 4-MEI at highest concentration of 24h and at all concentration for 48 h treatment time significantly inhibited cell proliferation when it was compared to control. Also, exposing to the 4-MEI for 48 hours led to a decrease in cells proliferation by concentration dependent manner. This result showed that 4-MEI had anticancer effect in htc-116 cells. However, it has to be evaluated with different new studies (Tab. 1, Fig. 4, Ref. 19).

  5. Zidovudine, abacavir and lamivudine increase the radiosensitivity of human esophageal squamous cancer cell lines.

    PubMed

    Chen, Xuan; Wang, Cong; Guan, Shanghui; Liu, Yuan; Han, Lihui; Cheng, Yufeng

    2016-07-01

    Telomerase is a type of reverse transcriptase that is overexpressed in almost all human tumor cells, but not in normal tissues, which provides an opportunity for radiosensitization targeting telomerase. Zidovudine, abacavir and lamivudine are reverse transcriptase inhibitors that have been applied in clinical practice for several years. We sought to explore the radiosensitization effect of these three drugs on human esophageal cancer cell lines. Eca109 and Eca9706 cells were treated with zidovudine, abacavir and lamivudine for 48 h before irradiation was administered. Samples were collected 1 h after irradiation. Clonal efficiency assay was used to evaluate the effect of the combination of these drugs with radiation doses of 2, 4, 6 and 8 Gy. DNA damage was measured by comet assay. Telomerase activity (TA) and relative telomere length (TL) were detected and evaluated by real-time PCR. Apoptosis rates were assessed by flow cytometric analysis. The results showed that all the drugs tested sensitized the esophageal squamous cell carcinoma (ESCC) cell lines to radiation through an increase in radiation-induced DNA damage and cell apoptosis, deregulation of TA and decreasing the shortened TL caused by radiation. Each of the drugs investigated (zidovudine, abacavir and lamivudine) could be used for sensitizing human esophageal cancer cell lines to radiation. Consequently, the present study supports the potential of these three drugs as therapeutic agents for the radiosensitization of esophageal squamous cell cancer.

  6. Anti-proliferative effect of 20-hydroxyecdysone in a lepidopteran cell line.

    PubMed

    Auzoux-Bordenave, Stéphanie; Hatt, Philippe-Jacques; Porcheron, Patrick

    2002-02-01

    Ecdysteroids are steroid hormones involved in the epidermal growth of arthropods, controlling cell proliferation and further differentiation of target cells. The epidermal cell line IAL-PID2, established from imaginal discs of the Indian meal moth Plodia interpunctella kept its sensitivity to ecdysteroids in vitro, cells being able to respond to them by cytological and biochemical changes. When added to the culture medium, 20-hydroxyecdysone (20E) stopped cell proliferation and induced formation of epithelial-like aggregates. In order to better understand the cellular sequence of ecdysteroids signalling in epidermal cells we used the IAL-PID2 cell line for in vitro investigations of cytological events induced by the moulting hormone. After a 40 h serum deprivation, formazan assay (XTT) was routinely used to evaluate anti-proliferative effects of 20E during cell cycle. We established a more precise timing of the period of cell sensitivity to the hormone during the cell cycle, by the use of the mitotic index and the BrdU incorporation test. These in vitro assays were performed in parallel with the description of some hormone dependant cytological events, using immunofluorescent labelling with anti-beta tubulin/FITC antibodies and DNA staining.

  7. Cell line-dependent differences in uptake and retention of the hypoxia-selective nuclear imaging agent Cu-ATSM.

    PubMed

    Burgman, Paul; O'Donoghue, Joseph A; Lewis, Jason S; Welch, Michael J; Humm, John L; Ling, C Clifton

    2005-08-01

    Cu-diacetyl-bis(N(4)-methylthiosemicarbazone) [Cu-ATSM] is a potential marker for tumor hypoxia that has been under evaluation for clinical use. In this study, we examined the mechanisms underlying the uptake of (64)Cu in cells incubated with (64)Cu-ATSM. The in vitro uptake of (64)Cu was determined as a function of oxygenation conditions and incubation time with (64)Cu-ATSM using four and two tumor cell lines of human origin and rodent origin, respectively. Additionally, the rate of (64)Cu efflux and Cu-ATSM metabolism was determined. (64)Cu accumulation is rapid during the first 0.5-1 h of incubation. It is highest in anoxic cells but is also significant in normoxic cells. After this initial period, the level of intracellular (64)Cu varies depending on the cell line and the oxygenation conditions and, in some circumstances, may decrease. During the first 0.5-1 h, the ratio of (64)Cu levels between anoxic and normoxic cells is approximately 2:10 and that between hypoxic (0.5% O(2)) and normoxic cells is approximately 1:2.5, depending on the cell line. These ratios generally decrease at longer times. The (64)Cu-ATSM compound was found to be metabolized during incubation in a manner dependent on oxygenation conditions. Within 2 h under anoxic conditions, (64)Cu-ATSM could no longer be detected, although 60-90% of the amount of (64)Cu added as (64)Cu-ATSM was present in the medium. Non-ATSM (64)Cu was taken up by the cells, albeit at a much slower rate. Efflux rates of (64)Cu were found to be cell line dependent and appeared to be inversely correlated with the final (64)Cu uptake levels under anoxic conditions. The uptake and retention of (64)Cu and their relation to oxygenation conditions were found to be cell line dependent. Given the complexities in the oxygen dependence and cell line-dependent kinetics of uptake and retention of Cu following exposure to Cu-ATSM, the clinical utility of this compound may be disease site specific.

  8. RNA-seq reveals distinctive RNA profiles of small extracellular vesicles from different human liver cancer cell lines

    PubMed Central

    Berardocco, Martina; Radeghieri, Annalisa; Busatto, Sara; Gallorini, Marialucia; Raggi, Chiara; Gissi, Clarissa; D’Agnano, Igea; Bergese, Paolo; Felsani, Armando; Berardi, Anna C.

    2017-01-01

    Liver cancer (LC) is one of the most common cancers and represents the third highest cause of cancer-related deaths worldwide. Extracellular vesicle (EVs) cargoes, which are selectively enriched in RNA, offer great promise for the diagnosis, prognosis and treatment of LC. Our study analyzed the RNA cargoes of EVs derived from 4 liver-cancer cell lines: HuH7, Hep3B, HepG2 (hepato-cellular carcinoma) and HuH6 (hepatoblastoma), generating two different sets of sequencing libraries for each. One library was size-selected for small RNAs and the other targeted the whole transcriptome. Here are reported genome wide data of the expression level of coding and non-coding transcripts, microRNAs, isomiRs and snoRNAs providing the first comprehensive overview of the extracellular-vesicle RNA cargo released from LC cell lines. The EV-RNA expression profiles of the four liver cancer cell lines share a similar background, but cell-specific features clearly emerge showing the marked heterogeneity of the EV-cargo among the individual cell lines, evident both for the coding and non-coding RNA species. PMID:29137313

  9. Enhanced suppression of tumor growth by concomitant treatment of human lung cancer cells with suberoylanilide hydroxamic acid and arsenic trioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, Chia-Wen; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Yao, Ju-Hsien

    2011-11-15

    The efficacy of arsenic trioxide (ATO) against acute promyelocytic leukemia (APL) and relapsed APL has been well documented. ATO may cause DNA damage by generating reactive oxygen intermediates. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, modulates gene and protein expression via histone-dependent or -independent pathways that may result in chromatin decondensation, cell cycle arrest, differentiation, and apoptosis. We investigated whether ATO and SAHA act synergistically to enhance the death of cancer cells. Our current findings showed that combined treatment with ATO and SAHA resulted in enhanced suppression of non-small-cell lung carcinoma in vitro in H1299 cells and in vivomore » in a xenograft mouse model. Flow cytometric analysis of annexin V+ cells showed that apoptotic cell death was significantly enhanced after combined treatment with ATO and SAHA. At the doses used, ATO did not interfere with cell cycle progression, but SAHA induced p21 expression and led to G1 arrest. A Comet assay demonstrated that ATO, but not SAHA, induced DNA strand breaks in H1299 cells; however, co-treatment with SAHA significantly increased ATO-induced DNA damage. Moreover, SAHA enhanced acetylation of histone H3 and sensitized genomic DNA to DNase I digestion. Our results suggest that SAHA may cause chromatin relaxation and increase cellular susceptibility to ATO-induced DNA damage. Combined administration of SAHA and ATO may be an effective approach to the treatment of lung cancer. -- Highlights: Black-Right-Pointing-Pointer ATO and SAHA are therapeutic agents with different action modes. Black-Right-Pointing-Pointer Combination of ATO and SAHA synergistically inhibits tumor cell growth. Black-Right-Pointing-Pointer SAHA loosens chromatin structure resulting in increased sensitivity to DNase I. Black-Right-Pointing-Pointer ATO-induced DNA damage and apoptosis are enhanced by co-treatment with SAHA.« less

  10. The anticancer effect of saffron in two p53 isogenic colorectal cancer cell lines

    PubMed Central

    2012-01-01

    Background Saffron extract, a natural product, has been shown to induce apoptosis in several tumor cell lines. Nevertheless, the p53-dependency of saffron’s mechanism of action in colon cancer remains unexplored. Material and methods In order to examine saffron’s anti-proliferative and pro-apoptotic effects in colorectal cancer cells, we treated two p53 isogenic HCT116 cell lines (HCT wildtype and HCT p53−/−) with different doses of the drug and analyzed cell proliferation and apoptosis in a time-dependent manner. MTT viability and crystal violet assays were performed in order to determine the effective dose of saffron on both cell lines. The cell cycle progress was examined by Flow cytometric analysis. Apoptosis was assessed using Annexin-PI-staining and Western Blotting for caspase 3 and PARP cleavage. Autophagy was determined by Western Blotting of the light chain 3 (LC3)-II and Beclin 1 proteins. The protein content of phospho-H2AX (γH2AX), a sensor of DNA double strand breaks, was also analyzed by Western Blotting. Results Saffron extract induced a p53-dependent pattern of cell cycle distribution with a full G2/M stop in HCT116 p53 wildtype cells. However, it induced a remarkable delay in S/G2 phase transit with entry into mitosis in HCT116 p53 −/− cells. The apoptotic Pre-G1 cell fraction as well as Annexin V staining and caspase 3 cleavage showed a more pronounced apoptosis induction in HCT116 p53 wildtype cells. Obviously, the significantly higher DNA-damage, reflected by ɣH2AX protein levels in cells lacking p53, was coped by up-regulation of autophagy. The saffron-induced LC3-II protein level was a remarkable indication of the accumulation of autophagosomes, a response to the cellular stress condition of drug treatment. Conclusions This is the first study showing the effect of saffron in HCT116 colorectal cancer cells with different p53 status. Saffron induced DNA-damage and apoptosis in both cell lines. However, autophagy has delayed the

  11. MHC class II/ESO tetramer-based generation of in vitro primed anti-tumor T-helper lines for adoptive cell therapy of cancer.

    PubMed

    Poli, Caroline; Raffin, Caroline; Dojcinovic, Danijel; Luescher, Immanuel; Ayyoub, Maha; Valmori, Danila

    2013-02-01

    Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO

  12. Cytotoxic effects of Euterpe oleracea Mart. in malignant cell lines

    PubMed Central

    2014-01-01

    Background Euterpe oleracea Mart., a plant from the Amazon region, is commonly known as açaí or juçara; it has high nutritional value and elevated levels of lipids, proteins, and minerals. Açaí is an abundant and much consumed fruit by the Amazon local population, and studies have demonstrated that it is rich in phytochemicals with antioxidant, anti-inflammatory, and anticancer activities. Therefore, the aim of this study was to test this plant for anticancer activity in different human malignant cell lines. Methods Cell lines derived from breast and colorectal adenocarcinomas were treated with 10, 20, and 40 μg/mL of bark, seed, and total açaí fruit hydroalcoholic extracts for 24 and 48 h. After treatment, cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and cell morphological features were observed by light and transmission electron microscopy. The type of cell death was also evaluated. The data were analyzed statistically by one-way analysis of variance (ANOVA), followed by Dunnett’s or Tukey’s post hoc tests, as appropriate. Results We observed that of all the cell lines tested, MCF-7 was the only line that responded to açaí treatment. The extracts caused significant reduction (p < 0.01) in cell viability and altered cell morphological features by inducing the appearance of autophagic vacuoles, as observed by transmission electron microscopy. Furthermore, increased expression of LC3BII, a protein marker of autophagosome formation, was observed by western blotting. Caspase Glo™ assays and morphologic observations by DAPI nuclear staining and transmission electron microscopy did not indicate any apoptotic events. Conclusions The present study demonstrated that açaí possesses antitumorigenic potential in the MCF-7 cell line. Further studies are needed to identify the compound (s) responsible for this cytotoxic activity and the molecular target in the cell. This discovery of the

  13. Surface receptors on human haematopoietic cell lines.

    PubMed Central

    Huber, C; Sundström, C; Nilsson, K; Wigzell, H

    1976-01-01

    The expression of complement receptors, of Fc receptors, of SRBC receptors and of S-Ig was investigated on human haematopoietic cell lines of proved malignant derivation. According to their origin and to a panel of phenotypic markers these lines have been classified into lymphoma lines, myeloma lines and leukemia lines. Results were compared with those obtained on non-malignant EBV carrying lymphoblastoid cell lines (LCL). Among the lymphoid cell lines the LCL showed a pattern of B-lymphocyte surface markers, i.e. surface immunoglobulins, C3 receptors but low density of Fc receptors. The non-Burkitt lymphoma lines bore in varying degree these B-lymphocyte markers. The lines U-698 M and DG-75 were exceptional in having only surface immunoglobulin. The Burkitt lymphoma lines had all B-lymphocyte markers. The myeloma lines differed from the lymphoid lines in lacking C3 and Fc receptors and showed only trace amounts of surface immunoglobulins. In contrast to lymphoid and myeloma lines, the leukaemia lines were completely lacking surface immunoglobulins, but showed C3 and Fc receptors in variable densities. On line, the ALL derived line MOLT-3 showed the capacity to spontaneous rosette formation with SRBC. The findings that LCL presented a homogeneous pattern of B-lymphocyte surface markers may be of value in order to discriminate between these lines and lines derived from haematopoietic malignancies other than Burkitt lymphomas. PMID:963908

  14. Extracellular pH Modulates Neuroendocrine Prostate Cancer Cell Metabolism and Susceptibility to the Mitochondrial Inhibitor Niclosamide

    PubMed Central

    Ippolito, Joseph E.; Brandenburg, Matthew W.; Ge, Xia; Crowley, Jan R.; Kirmess, Kristopher M.; Som, Avik; D’Avignon, D. Andre; Arbeit, Jeffrey M.; Achilefu, Samuel; Yarasheski, Kevin E.; Milbrandt, Jeffrey

    2016-01-01

    Neuroendocrine prostate cancer is a lethal variant of prostate cancer that is associated with castrate-resistant growth, metastasis, and mortality. The tumor environment of neuroendocrine prostate cancer is heterogeneous and characterized by hypoxia, necrosis, and numerous mitoses. Although acidic extracellular pH has been implicated in aggressive cancer features including metastasis and therapeutic resistance, its role in neuroendocrine prostate cancer physiology and metabolism has not yet been explored. We used the well-characterized PNEC cell line as a model to establish the effects of extracellular pH (pH 6.5, 7.4, and 8.5) on neuroendocrine prostate cancer cell metabolism. We discovered that alkalinization of extracellular pH converted cellular metabolism to a nutrient consumption-dependent state that was susceptible to glucose deprivation, glutamine deprivation, and 2-deoxyglucose (2-DG) mediated inhibition of glycolysis. Conversely, acidic pH shifted cellular metabolism toward an oxidative phosphorylation (OXPHOS)-dependent state that was susceptible to OXPHOS inhibition. Based upon this mechanistic knowledge of pH-dependent metabolism, we identified that the FDA-approved anti-helminthic niclosamide depolarized mitochondrial potential and depleted ATP levels in PNEC cells whose effects were enhanced in acidic pH. To further establish relevance of these findings, we tested the effects of extracellular pH on susceptibility to nutrient deprivation and OXPHOS inhibition in a cohort of castrate-resistant prostate cancer cell lines C4-2B, PC-3, and PC-3M. We discovered similar pH-dependent toxicity profiles among all cell lines with these treatments. These findings underscore a potential importance to acidic extracellular pH in the modulation of cell metabolism in tumors and development of an emerging paradigm that exploits the synergy of environment and therapeutic efficacy in cancer. PMID:27438712

  15. Establishment and partial characterization of a human tumor cell line, GBM-HSF, from a glioblastoma multiforme.

    PubMed

    Qu, Jiagui; Rizak, Joshua D; Fan, Yaodong; Guo, Xiaoxuan; Li, Jiejing; Huma, Tanzeel; Ma, Yuanye

    2014-07-01

    This paper outlines the establishment of a new and stable cell line, designated GBM-HSF, from a malignant glioblastoma multiforme (GBM) removed from a 65-year-old Chinese woman. This cell line has been grown for 1 year without disruption and has been passaged over 50 times. The cells were adherently cultured in RPMI-1640 media with 10% fetal bovine serum supplementation. Cells displayed spindle and polygonal morphology, and displayed multi-layered growth without evidence of contact inhibition. The cell line had a high growth rate with a doubling time of 51 h. The cells were able to grow without adhering to the culture plates, and 4.5% of the total cells formed colonies in soft agar. The cell line has also been found to form tumors in nude mice and to be of a highly invasive nature. The cells were also partially characterized with RT-PCR. The RT-PCR revealed that Nestin, β-tubulin III, Map2, Klf4, Oct4, Sox2, Nanog, and CD26 were positively transcribed, whereas GFAP, Rex1, and CD133 were negatively transcribed in this cell line. These results suggest that the GBM-HSF cell line will provide a good model to study the properties of cancer stem cells and metastasis. It will also facilitate more detailed molecular and cellular studies of GBM cell division and pathology.

  16. A Calibrated H-alpha Index to Monitor Emission Line Objects

    NASA Astrophysics Data System (ADS)

    Hintz, Eric G.; Joner, M. D.

    2013-06-01

    Over an 8 year period we have developed a calibrated H-alpha index, similar to the more traditional H-beta index, based on spectrophotometric observations (Joner & Hintz, 2013) from the DAO 1.2-m Telescope. While developing the calibration for this filter set we also obtained spectra of a number of emission line systems such as high mass x-ray binaries (HMXB), Be stars, and young stellar objects. From this work we find that the main sequence stars fill a very tight relation in the H-alpha/H-beta plane and that the emission line objects are easily detected. We will present the overall location of these emission line objects. We will also present the changes experiences by these objects over the course of the years of the project.

  17. Chondracanthus tenellus (Harvey) hommersand extract protects the human keratinocyte cell line by blocking free radicals and UVB radiation-induced cell damage.

    PubMed

    Piao, Mei Jing; Hyun, Yu Jae; Oh, Tae-Heon; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Suh, In Soo; Hyun, Jin Won

    2012-12-01

    The aim of this study was to investigate the protective effects of the ethanol extract of the red algae Chondracanthus tenellus (Harvey) Hommersand (CTE) on cultured human keratinocyte cell line. The cellular protection conferred by CTE was evidenced by the ability of the extract to absorb ultraviolet B (UVB; 280-320 nm) and to scavenge the radical 1,1-diphenyl-2-picrylhydrazyl, as well as intracellular reactive oxygen species (ROS), induced by either hydrogen peroxide (H(2)O(2)) or UVB radiation. In addition, both superoxide anion generated by the xanthine/xanthine oxidase system and hydroxyl radical generated by the Fenton reaction (FeSO(4) + H(2)O(2)) were scavenged by CTE, as confirmed using electron spin resonance spectrometry. In the human keratinocyte cell line, CTE decreased the degree of injury resulting from UVB-induced oxidative stress to lipids, proteins, and DNA. CTE-treated cells also showed a reduction in UVB-induced apoptosis, as exemplified by fewer apoptotic bodies and less DNA fragmentation. Taken together, these results suggest that CTE confers protection on the human keratinocyte cell line against UVB-induced oxidative stress by absorbing UVB ray and scavenging ROS, thereby reducing injury to cellular constituents.

  18. 77 FR 5489 - Identification of Human Cell Lines Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ...-01] Identification of Human Cell Lines Project AGENCY: National Institute of Standards and Technology... cell line samples as part of the Identification of Human Cell Lines Project. All data and corresponding... cell lines accepted on the NIST Applied Genetics Group Web site at http://www.nist.gov/mml/biochemical...

  19. Aggregation and lack of secretion of most newly synthesized proinsulin in non-beta-cell lines.

    PubMed

    Zhu, Yong Lian; Abdo, Alexander; Gesmonde, Joan F; Zawalich, Kathleen C; Zawalich, Walter; Dannies, Priscilla S

    2004-08-01

    Myoblasts transfected with HB10D insulin secrete more hormone than those transfected with wild-type insulin, as published previously, indicating that production of wild-type insulin is not efficient in these cells. The ability of non-beta-cells to produce insulin was examined in several cell lines. In clones of neuroendocrine GH(4)C(1) cells stably transfected with proinsulin, two thirds of (35)S-proinsulin was degraded within 3 h of synthesis, whereas (35)S-prolactin was stable. In transiently transfected neuroendocrine AtT20 cells, half of (35)S-proinsulin was degraded within 3 h after synthesis, whereas (35)S-GH was stable. In transiently transfected fibroblast COS cells, (35)S-proinsulin was stable for longer, but less than 10% was secreted 8 h after synthesis. Proinsulin formed a concentrated patch detected by immunofluorescence in transfected cells that did not colocalize with calreticulin or BiP, markers for the endoplasmic reticulum, but did colocalize with membrin, a marker for the cis-medial Golgi complex. Proinsulin formed a Lubrol-insoluble aggregate within 30 min after synthesis in non-beta-cells but not in INS-1E cells, a beta-cell line that normally produces insulin. More than 45% of (35)S-HB10D proinsulin was secreted from COS cells 3 h after synthesis, and this mutant formed less Lubrol-insoluble aggregate in the cells than did wild-type hormone. These results indicate that proinsulin production from these non-beta-cells is not efficient and that proinsulin aggregates in their secretory pathways. Factors in the environment of the secretory pathway of beta-cells may prevent aggregation of proinsulin to allow efficient production.

  20. Establishment of two new cell lines derived from human breast carcinomas with HER-2/neu amplification.

    PubMed Central

    Meltzer, P.; Leibovitz, A.; Dalton, W.; Villar, H.; Kute, T.; Davis, J.; Nagle, R.; Trent, J.

    1991-01-01

    Two human cell lines (UACC-812 and 893), both containing significant amplification of the HER-2/neu gene, were established from biopsy specimens of breast carcinomas. One patient had Stage II breast carcinoma; the other had metastatic disease. Characterisation of these lines has revealed that both are highly aneuploid containing multiple clonal chromosome alterations, have doubling times near 100 h, and are oestrogen and progesterone receptor negative. Electron microscopy demonstrates that both lines contain numerous microvilli, cytoplasmic filaments, multivesicular bodies, and desmosomes. Immunoblot analysis for P-glycoprotein using the monoclonal antibody C219 was negative for both patient cell lines. These relatively rare cell lines may represent a useful model to investigate human breast carcinomas. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1674877

  1. Peroxiredoxins are important for the regulation of hydrogen peroxide concentrations in ticks and tick cell line.

    PubMed

    Kusakisako, Kodai; Hernandez, Emmanuel Pacia; Talactac, Melbourne Rio; Yoshii, Kentaro; Umemiya-Shirafuji, Rika; Fujisaki, Kozo; Tanaka, Tetsuya

    2018-03-17

    Ticks are obligate hematophagous ectoparasites, as they need to feed blood from vertebrate hosts for development. Host blood contains high levels of iron. Host-derived iron may lead to high levels of reactive oxygen species (ROS), including hydrogen peroxide (H 2 O 2 ). Since a high concentration of H 2 O 2 causes serious damage to organisms, this molecule is known to be a harmful chemical compound for aerobic organisms. On the other hand, the transparent method is compatible with chemical fluorescent probes. Therefore, we tried to establish the visualizing method for H 2 O 2 in unfed tick tissues. The combination method of a chemical fluorescent probe (BES-H 2 O 2 -Ac) with the transparent method, Scale, demonstrated in unfed tick tissues that H 2 O 2 and paraquat could induce oxidative stress in the tissues, such as the midgut and ovary. In addition, an H 2 O 2 detection method using BES-H 2 O 2 -Ac was established in Ixodes scapularis embryo-derived cell line (ISE6) in vitro to evaluate the antioxidant activity of peroxiredoxins (PRXs), H 2 O 2 scavenging enzymes, against H 2 O 2 in the cells. The effects of paraquat in ISE6 cells were also observed in the PRXs gene-silenced ISE6 cells. A high intensity of H 2 O 2 fluorescence induced by paraquat was observed in the PRX gene-knockdowned cells. These results suggest that H 2 O 2 and paraquat act as an H 2 O 2 inducer, and PRX genes are important for the regulation of the H 2 O 2 concentration in unfed ticks and ISE6 cells. Therefore, this study contributes to the search for H 2 O 2 visualization in ticks and tick cell line and furthers understanding of the tick's oxidative stress induced by H 2 O 2 . Copyright © 2018 Elsevier GmbH. All rights reserved.

  2. 5-demethyltangeretin inhibits human nonsmall cell lung cancer cell growth by inducing G2/M cell cycle arrest and apoptosis.

    PubMed

    Charoensinphon, Noppawat; Qiu, Peiju; Dong, Ping; Zheng, Jinkai; Ngauv, Pearline; Cao, Yong; Li, Shiming; Ho, Chi-Tang; Xiao, Hang

    2013-12-01

    Tangeretin (TAN) and 5-demethyltangeretin (5DT) are two closely related polymethoxyflavones found in citrus fruits. We investigated growth inhibitory effects on three human nonsmall cell lung cancer (NSCLC) cells. Cell viability assay demonstrated that 5DT inhibited NSCLC cell growth in a time- and dose-dependent manner, and IC50 s of 5DT were 79-fold, 57-fold, and 56-fold lower than those of TAN in A549, H460, and H1299 cells, respectively. Flow cytometry analysis showed that 5DT induced extensive G2/M cell cycle arrest and apoptosis in NSCLC cells, while TAN at tenfold higher concentrations did not. The apoptosis induced by 5DT was further confirmed by activation of caspase-3 and cleavage of PARP. Moreover, 5DT dose-dependently upregulated p53 and p21(Cip1/Waf1), and downregulated Cdc-2 (Cdk-1) and cyclin B1. HPLC analysis revealed that the intracellular levels of 5DT in NSCLC cells were 2.7-4.9 fold higher than those of TAN after the cells were treated with 5DT or TAN at the same concentration. Our results demonstrated that 5DT inhibited NSCLC cell growth by inducing G2/M cell cycle arrest and apoptosis. These effects were much stronger than those produced by TAN, which is partially due to the higher intracellular uptake of 5DT than TAN. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The isolation and characterization of a telomerase immortalized goat trophoblast cell line.

    PubMed

    Dong, F; Huang, Y; Li, W; Zhao, X; Zhang, W; Du, Q; Zhang, H; Song, X; Tong, D

    2013-12-01

    Trophoblast cells play vital roles in the processes of embryonic implantation and placentation. Many toxicological compounds can induce the malfunction of trophoblast cells, resulting in implantation failure or early embryonic loss. The finite lifespan of primary trophoblast cells limits investigation of the long-term effects of some toxicological compounds on trophoblast cells in vitro. In this study, primary goat trophoblast cells were purified by density gradient centrifugation and specific immuno-affinity purification. Then, the purified cells were immortalized through transfection of a plasmid containing the human telomerase reverse transcriptase (hTERT) gene. hTERT-transfected goat trophoblast cells (hTERT-GTCs) could steadily express hTERT gene and exhibit higher telomerase activity, and persistently proliferate without any signs of senescence up to 50 passages. The immortalized goat trophoblast cells still possessed the basic and key properties of normal primary goat trophoblast cells to express the specific intracellular marker cytokeratin 7 (CK-7) and secrete chorionic gonadotrophin β-subunit (CG-β) and placental lactogen (PL). Further studies showed that the immortalized goat trophoblast cells expressed vimentin and non-classical MHC class I antigen and exhibited invasive phenotype, suggesting that the immortalized goat trophoblasts resembled human extravillous trophoblasts. In addition, this cell line did not show neoplastic transformation either in vivo or in vitro. We concluded the immortalized goat trophoblast cells by hTERT transfection retained the basic and key characteristics of primary trophoblast cells and may provide a useful model to study the effects of some toxicological compounds on trophoblast cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Induction of Programmed Cell Death by Parvovirus H-1 in U937 Cells: Connection with the Tumor Necrosis Factor Alpha Signalling Pathway

    PubMed Central

    Rayet, Béatrice; Lopez-Guerrero, José-Antonio; Rommelaere, Jean; Dinsart, Christiane

    1998-01-01

    The human promonocytic cell line U937 undergoes apoptosis upon treatment with tumor necrosis factor alpha (TNF-α). This cell line has previously been shown to be very sensitive to the lytic effect of the autonomous parvovirus H-1. Parvovirus infection leads to the activation of the CPP32 ICE-like cysteine protease which cleaves the enzyme poly(ADP-ribose)polymerase and induces morphologic changes that are characteristic of apoptosis in a way that is similar to TNF-α treatment. This effect is also observed when the U937 cells are infected with a recombinant H-1 virus which expresses the nonstructural (NS) proteins but in which the capsid genes are replaced by a reporter gene, indicating that the induction of apoptosis can be assigned to the cytotoxic nonstructural proteins in this cell system. The c-Myc protein, which is overexpressed in U937 cells, is rapidly downregulated during infection, in keeping with a possible role of this product in mediating the apoptotic cell death induced by H-1 virus infection. Interestingly, four clones (designated RU) derived from the U937 cell line and selected for their resistance to H-1 virus (J. A. Lopez-Guerrero et al., Blood 89:1642–1653, 1997) failed to decrease c-Myc expression upon treatment with differentiation agents and also resisted the induction of cell death after TNF-α treatment. Our data suggest that the RU clones have developed defense strategies against apoptosis, either by their failure to downregulate c-Myc and/or by activating antiapoptotic factors. PMID:9765434

  5. Feeder-cell-independent culture of the pig-embryonic-stem-cell-derived exocrine pancreatic cell line, PICM-31

    USDA-ARS?s Scientific Manuscript database

    The adaptation to feeder-independent growth of a pig embryonic stem cell-derived pancreatic cell line is described. The parental PICM-31 cell line, previously characterized as an exocrine pancreas cell line, was colony-cloned two times in succession resulting in the subclonal cell line, PICM-31A1. P...

  6. Assessment of the Tumorigenic Potential of Spontaneously Immortalized and hTERT-Immortalized Cultured Dental Pulp Stem Cells

    PubMed Central

    Wilson, Ryan; Urraca, Nora; Skobowiat, Cezary; Hope, Kevin A.; Miravalle, Leticia; Chamberlin, Reed; Donaldson, Martin; Seagroves, Tiffany N.

    2015-01-01

    Dental pulp stem cells (DPSCs) provide an exciting new avenue to study neurogenetic disorders. DPSCs are neural crest-derived cells with the ability to differentiate into numerous tissues including neurons. The therapeutic potential of stem cell-derived lines exposed to culturing ex vivo before reintroduction into patients could be limited if the cultured cells acquired tumorigenic potential. We tested whether DPSCs that spontaneously immortalized in culture acquired features of transformed cells. We analyzed immortalized DPSCs for anchorage-independent growth, genomic instability, and ability to differentiate into neurons. Finally, we tested both spontaneously immortalized and human telomerase reverse transcriptase (hTERT)-immortalized DPSC lines for the ability to form tumors in immunocompromised animals. Although we observed increased colony-forming potential in soft agar for the spontaneously immortalized and hTERT-immortalized DPSC lines relative to low-passage DPSC, no tumors were detected from any of the DPSC lines tested. We noticed some genomic instability in hTERT-immortalized DPSCs but not in the spontaneously immortalized lines tested. We determined that immortalized DPSC lines generated in our laboratory, whether spontaneously or induced, have not acquired the potential to form tumors in mice. These data suggest cultured DPSC lines that can be differentiated into neurons may be safe for future in vivo therapy for neurobiological diseases. Significance This study demonstrated that immortalized dental pulp stem cells (DPSCs) do not form tumors in animals and that immortalized DPSCs can be differentiated into neurons in culture. These results lend support to the use of primary and immortalized DPSCs for future therapeutic approaches to treatment of neurobiological diseases. PMID:26032749

  7. Morphology, cell viability, karyotype, expression of surface markers and plasticity of three human primary cell line cultures before and after the cryostorage in LN2 and GN2.

    PubMed

    Del Pino, Alberto; Ligero, Gertrudis; López, María B; Navarro, Héctor; Carrillo, Jose A; Pantoll, Siobhan C; Díaz de la Guardia, Rafael

    2015-02-01

    Primary cell line cultures from human skin biopsies, adipose tissue and tumor tissue are valuable samples for research and therapy. In this regard, their derivation, culture, storage, transport and thawing are important steps to be studied. Towards this end, we wanted to establish the derivation, and identify the culture characteristics and the loss of viability of three human primary cell line cultures (human adult dermal fibroblasts (hADFs), human adult mesenchymal stem cells (hMSCs), and primary culture of tumor cells from lung adenocarcinoma (PCTCLA)). Compared to fresh hADFs, hMSCs and PCTCLA, thawed cells stored in a cryogenic Dewar tanks with liquid nitrogen (LN2), displayed 98.20% ± 0.99, 95.40% ± 1.41 and 93.31% ± 3.83 of cell viability, respectively. Thawed cells stored in a Dry Vapor Shipper container with gas phase (GN2), for 20 days, in addition displayed 4.61% ± 2.78, 3.70% ± 4.09 and 9.13% ± 3.51 of average loss of cells viability, respectively, showing strong correlation between the loss of viability in hADFs and the number of post-freezing days in the Dry Vapor Shipper. No significant changes in morphological characteristics or in the expression of surface markers (being hADFs, hMSCs and PCTCLA characterized by positive markers CD73+; CD90+; CD105+; and negative markers CD14-; CD20-; CD34-; and CD45-; n=2) were found. Chromosome abnormalities in the karyotype were not found. In addition, under the right conditions hMSCs were differentiated into adipogenic, osteogenic and chondrogenic lineages in vitro. In this paper, we have shown the characteristics of three human primary cell line cultures when they are stored in LN2 and GN2. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. [Different effects of anticancer drugs on two human thyroid cell lines with different stages of differentiation].

    PubMed

    Yamanaka, T; Hishinuma, A

    1995-01-20

    We established two human thyroid tumor cell lines. One cell line (hPTC) was established from the tissue of a papillary thyroid carcinoma surgically excised from a 27-year-old female patient. The other cell line (hAG) was established from the tissue of an adenomatous goiter excised from a 59-year old female patient. Synthesis of cAMP by hPTC and hAG increased when they were stimulated by TSH. hPTC and hAG continued to divide as a monolayer in a tissue culture for three years and two years, respectively. We assessed the efficacy of anticancer drugs (doxorubicin:ADR, cisplatin:CDDP, nimustine:ACNU, bleomycin:BLM, cyclophosphamide:CPA, aclarubicin:ACR) with resard to hPTC. The hPTC cells were cultured in 24-well plates in the presence of the anticancer drugs for 48 hours, and the cellular DNA of the live cells was measured with diaminobenzoic acid. ADR had the lowest ED50 (0.029 mu g/ml) and the clinical blood concentration was 13.8 times that of the ED50. The clinical blood concentration divided by ED50 for the other anticancer drugs are, in order of higher values, 2.3 for CPA, 1.7 for BLM, 1.2 for CDDP, 0.5 for ACR, and less than 0.1 for ACNU. ADR showed time-independent effects since a 2-hour exposure of ADR to the hPTC cells resulted in the significant reduction of the cellular DNA content of the live cells even after 48 hours. The effects of the other anticancer drugs were time-dependent. We then studied the difference of the effects of ADR on hPTC and hAG. ED50 for hPTC was significantly low (0.035 mu g/ml) compared to that for hAG (0.460 mu g/ml). Since free radical formation is one of the major anticancer mechanisms of ADR the effects of free radicals on ED50's for hPTC and hAG were measured by adding glutathione (GSH), N-acetylcystein (NAC), buthionine sulfoximine (BSO), and alpha-tocopherol (alpha-toco) into the culture media. GSH catches up with free radicals in the extracellular fluid. NAC promotes production of GSH in the cytoplasm, but BSO interferes with

  9. Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks.

    PubMed

    Valletta, Elisa; Kučera, Lukáš; Prokeš, Lubomír; Amato, Filippo; Pivetta, Tiziana; Hampl, Aleš; Havel, Josef; Vaňhara, Petr

    2016-01-01

    Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general.

  10. Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks

    PubMed Central

    Prokeš, Lubomír; Amato, Filippo; Pivetta, Tiziana; Hampl, Aleš; Havel, Josef; Vaňhara, Petr

    2016-01-01

    Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general. PMID:26821236

  11. Effects of pomegranate seed oil on oxidant/antioxidant balance in heart and kidney homogenates and mitochondria of diabetic rats and high glucose-treated H9c2 cell line

    PubMed Central

    Mollazadeh, Hamid; Boroushaki, Mohammad Taher; Soukhtanloo, Mohammad; Afshari, Amir Reza; Vahedi, Mohammad Mahdi

    2017-01-01

    Objective: Oxidative stress is a major cause of diabetes complications. The present study aimed to investigate the beneficial effects of Pomegranate Seed Oil (PSO) on diabetes-induced changes in oxidant/antioxidant balance of the kidney, heart and mitochondria from rats and H9c2 cell line. Materials and Methods: In these in vivo and in vitro studies, male rats were divided into four groups (twelve each): group 1 served as control, group 2-4 received a single dose of streptozotocin (60 mg/kg, i.p), groups 3 and 4 received PSO (0.36 and 0.72 mg/kg/daily, gavage), respectively. After three weeks, six rats of each group and one week later the remaining animals were anaesthetized and the hearts and kidneys were removed and homogenized. Mitochondrial fractions were separated and enzyme activities were measured in each sample. H9c2 cells were pretreated with high levels of glucose (35 mM), and then, incubated with PSO. Finally, cell viability test, reactive oxygen species production and lipid peroxidation were evaluated. Results: Significant reduction in enzymes activity (Superoxide dismutase, Glutathione S-transferase and Paraoxonase 1), compensatory elevation in Glutathione Reductase, Glutathione Peroxidase and Catalase activity followed by reduction after one week and significant elevation in Oxidative Stress Index (OSI) were observed in diabetic group. PSO treatment resulted in a significant increase in enzymes activity and decreased OSI values compared to diabetic group in both tissue and mitochondrial fractions. PSO remarkably decreased glucose-induced toxicity, ROS level and lipid peroxidation in H9c2 cells. Conclusion: Results suggested that PSO has a protective effect against diabetes-induced alterations in oxidant/antioxidant balance in tissues, mitochondrial and H9c2 cell line. PMID:28884082

  12. Andrographolide radiosensitizes human esophageal cancer cell line ECA109 to radiation in vitro.

    PubMed

    Wang, Z-M; Kang, Y-H; Yang, X; Wang, J-F; Zhang, Q; Yang, B-X; Zhao, K-L; Xu, L-P; Yang, L-P; Ma, J-X; Huang, G-H; Cai, J; Sun, X-C

    2016-01-01

    To explore the radiosensitivity of andrographolide on esophageal cancer cell line ECA109. The inhibition effects of andrographolide were measured using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay. Clonogenic survival assay was used to evaluate the effects of andrographolide on the radiosensitivity of esophageal cancer cells. Immunofluorescence was employed to examine Bax expression. The changes in cell cycle distribution and apoptosis were assayed using flow cytometry. The expression of NF-κb/Cleaved-Caspase3/Bax/Bcl-2 was measured using Western blot analysis. DNA damage was detected via γ-H2AX foci counting. With a clear dose and time effects, andrographolide was found to inhibit the proliferation of esophageal cell line ECA109. The results of the clonogenic survival assay show that andrographolide could markedly enhance radiosensitivity (P < 0.05) with a sensitizing enhancement ratio of 1.28. Andrographolide caused a dose-dependent increase in Cleaved-Caspase3/Bax protein expression and a decrease in Bcl-2/NF-κb expression. Apoptosis in andrographolide-treated ECA-109 increased significantly compared with the apoptosis in the simple drug and radiation combined with drug groups (P < 0.001; P < 0.05). Moreover, compared with the independent radiation group, the andrographolide combined with radiation group increased the number of DNA double chain breaks. Andrographolide can increase the radiosensitivity of esophageal cell line ECA109. This result may be associated with the decrease in the NF-κb level and the induced apoptosis of esophageal cancer cells. © 2014 International Society for Diseases of the Esophagus.

  13. Exogenous ACE2 Expression Allows Refractory Cell Lines To Support Severe Acute Respiratory Syndrome Coronavirus Replication

    PubMed Central

    Mossel, Eric C.; Huang, Cheng; Narayanan, Krishna; Makino, Shinji; Tesh, Robert B.; Peters, C. J.

    2005-01-01

    Of 30 cell lines and primary cells examined, productive severe acute respiratory syndrome coronavirus (Urbani strain) (SARS-CoV) infection after low-multiplicity inoculation was detected in only six: three African green monkey kidney epithelial cell lines (Vero, Vero E6, and MA104), a human colon epithelial line (CaCo-2), a porcine kidney epithelial line [PK(15)], and mink lung epithelial cells (Mv 1 Lu). SARS-CoV produced a lytic infection in Vero, Vero E6, and MA104 cells, but there was no visible cytopathic effect in Caco-2, Mv 1 Lu, or PK(15) cells. Multistep growth kinetics were identical in Vero E6 and MA104 cells, with maximum titer reached 24 h postinoculation (hpi). Virus titer was maximal 96 hpi in CaCo-2 cells, and virus was continually produced from infected CaCo-2 cells for at least 6 weeks after infection. CaCo-2 was the only human cell type of 13 tested that supported efficient SARS-CoV replication. Expression of the SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2), resulted in SARS-CoV replication in all refractory cell lines examined. Titers achieved were variable and dependent upon the method of ACE2 expression. PMID:15731278

  14. DOT1L histone methyltransferase regulates the expression of BCAT1 and is involved in sphere formation and cell migration of breast cancer cell lines.

    PubMed

    Oktyabri, Dulamsuren; Ishimura, Akihiko; Tange, Shoichiro; Terashima, Minoru; Suzuki, Takeshi

    2016-04-01

    DOT1L is a histone H3 lysine 79 (H3K79) methyltransferase mainly implicated in leukemia. Here we analyzed the function of DOT1L in breast cancer cells. The expression of DOT1L was up-regulated in malignant breast cancer tissues. Over-expression of DOT1L significantly increased the sphere formation and the cell migration activities of MCF7 breast cancer cell line. In contrast, knockdown of DOT1L reduced the cell migration activity of MDA-MB-231 breast cancer cell line. BCAT1, which encodes a branched-chain amino acid transaminase, was identified as one of the target genes controlled by DOT1L through the regulation of H3K79 methylation. Mechanistic investigation revealed that BCAT1 might be an important regulator responsible for DOT1L-mediated sphere formation and cell migration in breast cancer cells. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. Cytoskeletal stiffness, friction, and fluidity of cancer cell lines with different metastatic potential.

    PubMed

    Coughlin, Mark F; Bielenberg, Diane R; Lenormand, Guillaume; Marinkovic, Marina; Waghorne, Carol G; Zetter, Bruce R; Fredberg, Jeffrey J

    2013-03-01

    We quantified mechanical properties of cancer cells differing in metastatic potential. These cells included normal and H-ras-transformed NIH3T3 fibroblast cells, normal and oncoprotein-overexpressing MCF10A breast cancer cells, and weakly and strongly metastatic cancer cell line pairs originating from human cancers of the skin (A375P and A375SM cells), kidney (SN12C and SN12PM6 cells), prostate (PC3M and PC3MLN4 cells), and bladder (253J and 253JB5 cells). Using magnetic twisting cytometry, cytoskeletal stiffness (g') and internal friction (g″) were measured over a wide frequency range. The dependencies of g' and g″ upon frequency were used to determine the power law exponent x which is a direct measure of cytoskeletal fluidity and quantifies where the cytoskeleton resides along the spectrum of solid-like (x = 1) to fluid-like (x = 2) states. Cytoskeletal fluidity x increased following transformation by H-ras oncogene expression in NIH3T3 cells, overexpression of ErbB2 and 14-3-3-ζ in MCF10A cells, and implantation and growth of PC3M and 253J cells in the prostate and bladder, respectively. Each of these perturbations that had previously been shown to enhance cancer cell motility and invasion are shown here to shift the cytoskeleton towards a more fluid-like state. In contrast, strongly metastatic A375SM and SN12PM6 cells that disseminate by lodging in the microcirculation of peripheral organs had smaller x than did their weakly metastatic cell line pairs A375P and SN12C, respectively. Thus, enhanced hematological dissemination was associated with decreased x and a shift towards a more solid-like cytoskeleton. Taken together, these results are consistent with the notion that adaptations known to enhance metastatic ability in cancer cell lines define a spectrum of fluid-like versus solid-like states, and the position of the cancer cell within this spectrum may be a determinant of cancer progression.

  16. Differential expression of the ufo/axl oncogene in human leukemia-lymphoma cell lines.

    PubMed

    Challier, C; Uphoff, C C; Janssen, J W; Drexler, H G

    1996-05-01

    The ufo protein (also termed axl) is a member of a new family of receptor tyrosine kinases and is encoded by a transforming gene that was initially isolated from primary human myeloid leukemia cells by DNA-mediated transformation of NIH/3T3 cells. The ligand, Gas6, a protein S-related molecule lacking any known function yet, has recently been identified. We report the expression pattern of ufo mRNA in a panel of 76 human continuous leukemia-lymphoma cell lines. The gene was not expressed in cell lines derived from lymphoid malignancies (n=28), but transcription was seen in 3/11 myeloid, 0/6 monocytic, 9/13 erythroid and 11/18 megakaryocytic cell lines. Several cell lines were treated with phorbol ester leading to significant upregulation of the ufo message in constitutively positive cells. An apparent ufo mRNA overexpression was not found in any of the positive leukemia cell lines, but was identified in the drug-resistant subclones of the cervix carcinoma cell line HeLa. Southern blot analysis of restriction enzyme-digested genomic DNA did not provide evidence for gene amplification, but the HeLa subclones showed banding patterns suggestive of gene rearrangement. Two main ufo mRNA bands of 3.2 and 5.0 kb were identified; no differences in the half-lives (t1/2 = 2.5 h) of these two mRNA species could be identified. In summary, ufo, representing a novel type of receptor tyrosine kinase, is expressed solely in myeloid and erythro-megakaryocytic leukemias but not in lymphoid malignancies. These and previous data suggest an involvement of the ufo receptor tyrosine kinase in normal and malignant myelopoiesis; however, its exact role, if any, and mode of operation in leukemogenesis remains to be determined.

  17. Human ESCs predisposition to karyotypic instability: Is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties?

    PubMed

    Catalina, Puri; Montes, Rosa; Ligero, Gertru; Sanchez, Laura; de la Cueva, Teresa; Bueno, Clara; Leone, Paola E; Menendez, Pablo

    2008-10-03

    The use of human embryonic stem cells (hESCs) in research is increasing and hESCs hold the promise for many biological, clinical and toxicological studies. Human ESCs are expected to be chromosomally stable since karyotypic changes represent a pitfall for potential future applications. Recently, several studies have analysed the genomic stability of several hESC lines maintained after prolonged in vitro culture but controversial data has been reported. Here, we prompted to compare the chromosomal stability of three hESC lines maintained in the same laboratory using identical culture conditions and passaging methods. Molecular cytogenetic analyses performed in three different hESC lines maintained in parallel in identical culture conditions revealed significant differences among them in regard to their chromosomal integrity. In feeders, the HS181, SHEF-1 and SHEF-3 hESC lines were chromosomally stable up to 185 passages using either mechanical or enzymatic dissection methods. Despite the three hESC lines were maintained under identical conditions, each hESC line behaved differently upon being transferred to a feeder-free culture system. The two younger hESC lines, HS181 (71 passages) and SHEF-3 (51 passages) became chromosomally unstable shortly after being cultured in feeder-free conditions. The HS181 line gained a chromosome 12 by passage 17 and a marker by passage 21, characterized as a gain of chromosome 20 by SKY. Importantly, the mosaicism for trisomy 12 gradually increased up to 89% by passage 30, suggesting that this karyotypic abnormality provides a selective advantage. Similarly, the SHEF-3 line also acquired a trisomy of chromosome 14 as early as passage 10. However, this karyotypic aberration did not confer selective advantage to the genetically abnormal cells within the bulk culture and the level of mosaicism for the trisomy 14 remained overtime between 15%-36%. Strikingly, however, a much older hESC line, SHEF-1, which was maintained for 185 passages

  18. Inhibition of human lung cancer cell proliferation and survival by wine

    PubMed Central

    2014-01-01

    Background Compounds of plant origin and food components have attracted scientific attention for use as agents for cancer prevention and treatment. Wine contains polyphenols that were shown to have anti-cancer and other health benefits. The survival pathways of Akt and extracellular signal-regulated kinase (Erk), and the tumor suppressor p53 are key modulators of cancer cell growth and survival. In this study, we examined the effects of wine on proliferation and survival of human Non-small cell lung cancer (NSCLC) cells and its effects on signaling events. Methods Human NSCLC adenocarcinoma A549 and H1299 cells were used. Cell proliferation was assessed by thymidine incorporation. Clonogenic assays were used to assess cell survival. Immunoblotting was used to examine total and phosphorylated levels of Akt, Erk and p53. Results In A549 cells red wine inhibited cell proliferation and reduced clonogenic survival at doses as low as 0.02%. Red wine significantly reduced basal and EGF-stimulated Akt and Erk phosphorylation while it increased the levels of total and phosphorylated p53 (Ser15). Control experiments indicated that the anti-proliferative effects of wine were not mediated by the associated contents of ethanol or the polyphenol resveratrol and were independent of glucose transport into cancer cells. White wine also inhibited clonogenic survival, albeit at a higher doses (0.5-2%), and reduced Akt phosphorylation. The effects of both red and white wine on Akt phosphorylation were also verified in H1299 cells. Conclusions Red wine inhibits proliferation of lung cancer cells and blocks clonogenic survival at low concentrations. This is associated with inhibition of basal and EGF-stimulated Akt and Erk signals and enhancement of total and phosphorylated levels of p53. White wine mediates similar effects albeit at higher concentrations. Our data suggest that wine may have considerable anti-tumour and chemoprevention properties in lung cancer and deserves further

  19. Study of the non-stationarity of the atmosphere of κ Cas. Ii. Variability of the H γ, H β, and H α wind-line profiles

    NASA Astrophysics Data System (ADS)

    Rzaev, A. Kh.

    2017-10-01

    We study the variability of the H γ, H β, and H α line profiles in the spectrum of the supergiant κ Cas. The variability pattern proved to be the same for all the lines considered: their profiles are superimposed by blueshifted, central, and redshifted emission. For H γ the positions of the emissions coincide with the positions of the corresponding emissions for He I λλ 5876, 6678 Å lines, and are equal to about -135 ± 30.0 km s-1, -20 ± 20 kms-1, and 135 ± 30.0 kms-1, respectively, whereas the three emissions in the H β profiles are fixed at about -170.0 ± 70.0 kms-1, 20 ± 30 kms-1, and 170.0 ± 70.0 km s-1, respectively. The positions of the blueshifted and central emissions for H α are the same as for H β, with additional blueshifted emission at -135.0 ± 30.0 kms-1, whereas no traces of emission can be seen in the red wing of the line. These emissions show up more conspicuously in wind lines, however, their traces can be seen in all photospheric lines. When passing from wind lines to photospheric lines the intensity of superimposed emission components decreases and the same is true for the absolute values of their positions in line wings expressed in terms of radial velocities. The V/ R variations of the lines studied found in the spectrum of κ Cas and the variability of the H α emission indicate that the star is a supergiant showing Be phenomenon.

  20. Fluorescent Immortalized Human Adipose Derived Stromal Cells (hASCs-TS/GFP+) for Studying Cell Drug Delivery Mediated by Microvesicles.

    PubMed

    Cocce, Valentina; Balducci, Luigi; Falchetti, Maria L; Pascucci, Luisa; Ciusani, Emilio; Brini, Anna T; Sisto, Francesca; Piovani, Giovanna; Alessandri, Giulio; Parati, Eugenio; Cabeza, Laura; Pessina, Augusto

    2017-11-24

    A new tool for the drug delivery is based on the use of Mesenchymal Stromal Cells (MSCs) loaded in vitro with anti-cancer drugs. Unfortunately, the restricted lifespan of MSCs represents a significant limitation to produce them in high amounts and for long time studies. Immortalized MSCs from adipose tissue (hASCs) have been generated as good source of cells with stable features. These cells could improve the development of standardized procedures for both in vitro and preclinical studies. Furthermore they facilitate procedures for preparing large amounts of secretome containing microvesicles (MVs). We used human adipose tissue derived MSCs immortalized with hTERT+SV40 (TS) genes and transfected with GFP (hASCs-TS/GFP+). This line was investigated for its ability to uptake and release anticancer drugs. Microvesicles associated to paclitaxel (MVs/PTX) were isolated, quantified, and tested on pancreatic cancer cells. The line hASCs-TS/GFP+ maintained the main mesenchymal characters and was able to uptake and release, in active form, both paclitaxel and gemcitabine. From paclitaxel loaded hASCs-TS/GFP+ cells were isolated microvesicles in sufficient amount to inhibit "in vitro" the proliferation of pancreatic tumor cells. Our study suggests that human immortalized MSCs could be used for a large scale production of cells for mediated drug delivery. Moreover, the secretion of drug-associated MVs could represent a new way for producing new drug formulation by "biogenesis". In the context of the "advanced cell therapy procedure", the MVs/PTX production would use less resource and time and it could possibly contribute to simplification of GMP procedures. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines.

    PubMed

    Qin, J-Z; Xin, H; Nickoloff, B J

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  2. Persistence of hAQP1 expression in human salivary gland cells following AdhAQP1 transduction is associated with a lack of methylation of hCMV promoter

    PubMed Central

    Zheng, C; Baum, BJ; Liu, X; Goldsmith, CM; Perez, P; Jang, S-I; Cotrim, AP; McCullagh, L; Ambudkar, IS; Alevizos, I

    2017-01-01

    In 2012, we reported that 5 out of 11 subjects in a clinical trial (NCT00372320) administering AdhAQP1 to radiation-damaged parotid glands showed increased saliva flow rates and decreased symptoms over the initial 42 days. AdhAQP1 is a first-generation, E1-deleted, replication-defective, serotype 5 adenoviral vector encoding human aquaporin-1 (hAQP1). This vector uses the human cytomegalovirus enhancer/promoter (hCMVp). As subject peak responses were at times much longer (7–42 days) than expected, we hypothesized that the hCMVp may not be methylated in human salivary gland cells to the extent previously observed in rodent salivary gland cells. This hypothesis was supported in human salivary gland primary cultures and human salivary gland cell lines after transduction with AdhAQP1. Importantly, hAQP1 maintained its function in those cells. Conversely, when we transduced mouse and rat cell lines in vitro and submandibular glands in vivo with AdhAQP1, the hCMVp was gradually methylated over time and associated with decreased hAQP1 expression and function in vitro and decreased hAQP1 expression in vivo. These data suggest that the hCMVp in AdhAQP1was probably not methylated in transduced human salivary gland cells of responding subjects, resulting in an unexpectedly longer functional expression of hAQP1. PMID:26177970

  3. Outgrowth of fibroblast cells from goat skin explants in three different culture media and the establishment of cell lines.

    PubMed

    Singh, Mahipal; Sharma, Anil K

    2011-02-01

    Three different commercially available media, known to support human and porcine-specific fibroblast cultures, were tested for their growth potential on goat skin explants. Although outgrowth of fibroblasts was observed in all media tested, irrespective of breed, porcine-specific media exhibited higher rate of growth. Using this media, three fibroblast cell lines (GSF289, GSF737, and GSF2010) from ear skin explants of normal healthy dairy goats of Kiko and Saanen breed were successfully established in culture. Liquid nitrogen stocks of these frozen cells had a viability rate of 96.2% in in vitro cultures. These cells were morphologically indistinguishable from the cell stocks prior to freezing. Analysis of the growth of a fifth passage culture revealed an 'S' shaped growth curve with a population doubling time of 25 h. The cell lines were found negative for microbial, fungal, and mycoplasma contaminations. These goat skin fibroblast lines and the simple method of their isolation and freezing with high rate of viability will provide additional tools to study molecular mechanisms that regulate fibroblast function and for genetic manipulation of small ruminants.

  4. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    PubMed

    Barkla, D H; Whitehead, R H; Foster, H; Tutton, P J

    1988-09-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting from the apical surface. The microvilli are attached by a core of long microfilaments passing deep into the apical cytoplasm. Between the microvilli are parallel arrays of vesicles (caveoli) containing flocculent material. Two different but not mutually exclusive explanations for the presence of tuft cells are proposed. The first explanation is that tuft cells came from the resected tumour and have survived by mitotic division during subsequent passages. The second explanation suggests that tuft cells are the progeny of undifferentiated tumour cells. Descriptions of tuft cells in colon carcinomas are uncommon and possible reasons for this are presented. The morphology of tuft cells is consistent with that of a highly differentiated cell specialised for absorption, and these new models provide an opportunity to further investigate the structure and function of tuft cells.

  5. Leukemia-lymphoma cell lines as model systems for hematopoietic research.

    PubMed

    Drexler, Hans G; MacLeod, Roderick A F

    2003-01-01

    Continuous human leukemia-lymphoma (LL) cell lines comprise a rich self-renewing resource of accessible and manipulable living cells which has illuminated the pathophysiology of hematopoietic tumors as well as basic cell biology. The major key advantages of continuous cell lines are the unlimited supply and worldwide availability of identical cell material and their cryopreservation. LL cell lines are characterized generally by monoclonal origin and differentiation arrest, sustained proliferation in vitro with preservation of most cellular features, and specific genetic alterations. The most practical classification of LL cell lines assigns them to one of the physiologically occurring cell lineages, based on their immunophenotype, genotype and functional features. Truly malignant cell lines may be distinguished from Epstein-Barr virus (EBV)-immortalized normal cells, using various operational and conceptual parameters. The characterization and publication of new LL cell lines provides important and informative core data which, by opening new avenues for investigation, have become ubiquitous powerful research tools that are available to every investigator by reference cell repositories. There is a need in the scientific community for clean and authenticated LL cell lines to which every scientist has access as offered by these institutionalized public cell line banks. A list of the most useful, robust and freely available reference cell lines is proposed in this review. Clearly, studies of LL cell lines have provided seminal insights into the biology of hematopoietic neoplasia.

  6. Rac3 Regulates Cell Invasion, Migration and EMT in Lung Adenocarcinoma through p38 MAPK Pathway

    PubMed Central

    Zhang, Chenlei; Liu, Tieqin; Wang, Gebang; Wang, Huan; Che, Xiaofang; Gao, Xinghua; Liu, Hongxu

    2017-01-01

    Background: The role of Rac3 in cell proliferation in lung adenocarcinoma has been tackled in our previous study. However, the role of Rac3 in cell invasion and migration of lung adenocarcinoma is still not clear. Methods: The expression of Rac3 in lung adenocarcinoma specimens and paired noncancerous normal tissues were evaluated by immunohistochemistry. Lentivirus-mediated RNA interference (RNAi) was employed to silence Rac3 in lung adenocarcinoma cell lines A549 and H1299. A p38 MAPK inhibitor (LY2228820) was employed to inhibit activity of p38 MAPK pathway. Cell invasion and migration in vitro were examined by invasion and migration assays, respectively. PathScan® intracellular signaling array kit and western blot were employed in mechanism investigation. Results: Rac3 expression was frequently higher in lung adenocarcinoma than paired noncancerous normal tissues. Rac3 expression was an independent risk factor for lymphonode metastasis, and was associated with worse survival outcome. Silencing of Rac3 inhibited cell invasion and cell migration in lung adenocarcinoma cell lines. Knockdown of Rac3 decreased activity of p38 MAPK pathway. LY2228820, which was an important p38 MAPK inhibitor, inhibited Rac3-induced cell invasion and migration of lung adenocarcinoma. E-cadherin expression was increased and vimentin expression was decreased after silencing of Rac3 or following the treatment of LY2228820. Conclusions: Our findings suggest that Rac3 regulates cell invasion, migration and EMT via p38 MAPK pathway. Rac3 may be a potential biomarker of invasion and metastasis for lung adenocarcinoma, and knockdown of Rac3 may potentially serve as a promising therapeutic target for lung adenocarcinoma. PMID:28900489

  7. Continuous human cell lines and method of making same

    DOEpatents

    Stampfer, Martha R.

    1989-01-01

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo[a]pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors.

  8. Continuous human cell lines and method of making same

    DOEpatents

    Stampfer, M.R.

    1985-07-01

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo(a)pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors. 2 tabs.

  9. Effects of curcumin on stem-like cells in human esophageal squamous carcinoma cell lines.

    PubMed

    Almanaa, Taghreed N; Geusz, Michael E; Jamasbi, Roudabeh J

    2012-10-24

    Many cancers contain cell subpopulations that display characteristics of stem cells. Because these cancer stem cells (CSCs) appear to provide resistance to chemo-radiation therapy, development of therapeutic agents that target CSCs is essential. Curcumin is a phytochemical agent that is currently used in clinical trials to test its effectiveness against cancer. However, the effect of curcumin on CSCs is not well established. The current study evaluated curcumin-induced cell death in six cancer cell lines derived from human esophageal squamous cell carcinomas. Moreover, these cell lines and the ones established from cells that survived curcumin treatments were characterized. Cell loss was assayed after TE-1, TE-8, KY-5, KY-10, YES-1, and YES-2 cells were exposed to 20-80 μM curcumin for 30 hrs. Cell lines surviving 40 or 60 μM curcumin were established from these six original lines. The stem cell markers aldehyde dehydrogenase-1A1 (ALDH1A1) and CD44 as well as NF-κB were used to compare CSC-like subpopulations within and among the original lines as well as the curcumin-surviving lines. YES-2 was tested for tumorsphere-forming capabilities. Finally, the surviving lines were treated with 40 and 60 μM curcumin to determine whether their sensitivity was different from the original lines. The cell loss after curcumin treatment increased in a dose-dependent manner in all cell lines. The percentage of cells remaining after 60 μM curcumin treatment varied from 10.9% to 36.3% across the six lines. The cell lines were heterogeneous with respect to ALDH1A1, NF-κB and CD44 expression. KY-5 and YES-1 were the least sensitive and had the highest number of stem-like cells whereas TE-1 had the lowest. The curcumin-surviving lines showed a significant loss in the high staining ALDH1A1 and CD44 cell populations. Tumorspheres formed from YES-2 but were small and rare in the YES-2 surviving line. The curcumin-surviving lines showed a small but significant decrease in sensitivity

  10. [Establishment and characterization of a new carcinoma cell line from uterine cervix of Uyghur women].

    PubMed

    Zhang, Lu; Aerziguli, Tursun; Guzalnur, Abliz

    2012-04-01

    To establish a uterine cervical carcinoma cell line of Uyghur ethnical background and to evaluate the related biological characteristics for future biomedical investigations of diseases in the Uyghur population. Poorly-differentiated squamous cell carcinoma specimens of Uyghur patients were obtained and cultured in vitro by enzymatic digestion method, followed by continuous passaging to reach a stable growth determined by cell viability and growth curve. Morphological study, cell cycling and chromosomal analysis were performed. Tumorigenesis study was conducted by inoculation of nude mice. Biomarker (CK17, CD44, Ki-67, CK14 and vimentin) expression was detected by immunofluorescence and immunocytochemical techniques. A cervical carcinoma cell line was successfully established and maintained for 12 months through 70 passages. The cell line had a stable growth with a population doubling time of 51.9 h. Flask method and double agar-agar assay showed that the cell line had colony-forming rates of 32.5% and 15.6%, respectively. Ultrastructural evaluation demonstrated numerous cell surface protrusions or microvilli, a large number of rod-shape structures in cytoplasm, typical desmosomes and nuclear atypia. Chromosomal analysis revealed human karyotype with the number of chromosomes per cell varying from 32 - 97 with a majority of 54 - 86 (60.3%). Xenogeneic tumors formed in nude mice showed histological structures identical to those of the primary tumor. The cells had high expression of CK17, CD44, Ki-67 and vimentin but no CK14 expression. A cervical carcinoma cell line from a female Uyghur patient is successfully established. The cell line has the characteristics of human cervical squamous cell carcinoma, and it is stable with maintaining the characteristic biological and morphological features in vitro for more than 12 months, therefore, qualified as a stable cell line for further biomedical research.

  11. GAP JUNCTION COMMUNICATON IN A TRANSFECTED HUMAN CELL LINE: ACTION OF MELATONIN AND MAGNETIC FIELDS

    EPA Science Inventory

    GAP JUNCTION COMMUNICTION IN TRANSFECTED HUMAN CELL LINE: ACTION OF MELATONIN AND MAGNETIC FIELDS.

    OBJECTIVE: We previously showed that functional gap junction communication (GJC), as monitored by dye transfer (DT), could be enhanced in mouse C3H 10T112 cells and in mouse...

  12. The aurora kinase inhibitor VX-680 shows anti-cancer effects in primary metastatic cells and the SW13 cell line.

    PubMed

    Pezzani, Raffaele; Rubin, Beatrice; Bertazza, Loris; Redaelli, Marco; Barollo, Susi; Monticelli, Halenya; Baldini, Enke; Mian, Caterina; Mucignat, Carla; Scaroni, Carla; Mantero, Franco; Ulisse, Salvatore; Iacobone, Maurizio; Boscaro, Marco

    2016-10-01

    New therapeutic targets are needed to fight cancer. Aurora kinases (AK) were recently identified as vital key regulators of cell mitosis and have consequently been investigated as therapeutic targets in preclinical and clinical studies. Aurora kinase inhibitors (AKI) have been studied in many cancer types, but their potential capacity to limit or delay metastases has rarely been considered, and never in adrenal tissue. Given the lack of an effective pharmacological therapy for adrenal metastasis and adrenocortical carcinoma, we assessed AKI (VX-680, SNS314, ZM447439) in 2 cell lines (H295R and SW13 cells), 3 cell cultures of primary adrenocortical metastases (from lung cancer), and 4 primary adrenocortical tumor cell cultures. We also tested reversan, which is a P-gp inhibitor (a fundamental efflux pump that can extrude drugs), and we measured AK expression levels in 66 adrenocortical tumor tissue samples. Biomolecular and cellular tests were performed (such as MTT, thymidine assay, Wright's staining, cell cycle and apoptosis analysis, Western blot, qRT-PCR, and mutation analysis). Our results are the first to document AK overexpression in adrenocortical carcinoma as well as in H295R and SW13 cell lines, thus proving the efficacy of AKI against adrenal metastases and in the SW13 cancer cell model. We also demonstrated that reversan and AKI Vx-680 are useless in the H295R cell model, and therefore should not be considered as potential treatments for ACC. Serine/threonine AK inhibition, essentially with VX-680, could be a promising, specific therapeutic tool for eradicating metastases in adrenocortical tissue.

  13. Cytotoxic effects of 2-methoxyestradiol in the hepatocellular carcinoma cell line HepG2.

    PubMed

    El Naga, Reem N Abou; El-Demerdash, Ebtehal; Youssef, Samar S; Abdel-Naim, Ashraf B; El-Merzabani, Mahmoud

    2009-01-01

    The study was designed to examine the potential cytotoxicity of 2-methoxyestradiol (2ME2), a natural 17beta-estradiol metabolite, in hepatocellular carcinoma and the possible underlying mechanisms for this cytotoxicity. The cell line HepG2 was treated with different concentrations of 2ME2 for 48 and 72 h. Using the sulforhodamine B assay, HepG2 was sensitive to the cytotoxic effect of 2ME2. 2ME2 induced cell arrest at the G(2)/M phase and a significant high percentage of apoptotic cells compared to the control group. Also, 2ME2 induced a significant increase in caspase 9 enzymatic activity after 48 and 72 h of treatment compared with control values. The DNA laddering was observed only in cells treated for 72 h. Furthermore, 2ME2 induced a significant decrease in the expression levels of vascular endothelial growth factor (VEGF) gene compared to the control values. 2ME2 exerts cytotoxic activity in the HepG2 cell line by preferential cell blocking at the G(2)/M phase as well as induction of apoptosis as evidenced by increased caspase 9 enzymatic activity and observed DNA laddering in 2ME2-treated HepG2 cells. In addition, a reduction in hypervascularity is an important postulated mechanism as indicated by the significant reduction in the expression of VGEF, one of the most important angiogenic factors.

  14. Downregulation of peptide transporter genes in cell lines transformed with the highly oncogenic adenovirus 12

    PubMed Central

    1994-01-01

    The expression of class I major histocompatibility complex antigens on the surface of cells transformed by adenovirus 12 (Ad12) is generally very low, and correlates with the high oncogenicity of this virus. In primary embryonal fibroblasts from transgenic mice that express both endogenous H-2 genes and a miniature swine class I gene (PD1), Ad12- mediated transformation results in suppression of cell surface expression of all class I antigens. Although class I mRNA levels of PD1 and H-2Db are similar to those in nonvirally transformed cells, recognition of newly synthesized class I molecules by a panel of monoclonal antibodies is impaired, presumably as a result of inefficient assembly and transport of the class I molecules. Class I expression can be partially induced by culturing cells at 26 degrees C, or by coculture of cells with class I binding peptides at 37 degrees C. Analysis of steady state mRNA levels of the TAP1 and TAP2 transporter genes for Ad12-transformed cell lines revealed that they both are significantly reduced, TAP2 by about 100-fold and TAP1 by 5-10-fold. Reconstitution of PD1 and H-2Db, but not H-2Kb, expression is achieved in an Ad12-transformed cell line by stable transfection with a TAP2, but not a TAP1, expression construct. From these data it may be concluded that suppressed expression of peptide transporter genes, especially TAP2, in Ad12-transformed cells inhibits cell surface expression of class I molecules. The failure to fully reconstitute H- 2Db and H-2Kb expression indicates that additional factors are involved in controlling class I gene expression in Ad12-transformed cells. Nevertheless, these results suggest that suppression of peptide transporter genes might be an important mechanism whereby virus- transformed cells escape immune recognition in vivo. PMID:7519239

  15. Establishment of an immortal cynomolgus macaque fibroblast cell line for propagation of cynomolgus macaque cytomegalovirus (CyCMV).

    PubMed

    Ambagala, Aruna P; Marsh, Angie K; Chan, Jacqueline K; Mason, Rosemarie; Pilon, Richard; Fournier, Jocelyn; Sandstrom, Paul; Willer, David O; MacDonald, Kelly S

    2013-05-01

    Cynomolgus macaques are widely used as an animal model in biomedical research. We have established an immortalized cynomolgus macaque fibroblast cell line (MSF-T) by transducing primary dermal fibroblasts isolated from a 13-year-old male cynomolgus macaque with a retrovirus vector expressing human telomerase reverse transcriptase (hTERT). The MSF-T cells showed increased telomerase enzyme activity and reached over 200 in vitro passages compared to the non-transduced dermal fibroblasts, which reached senescence after 43 passages. The MSF-T cell line is free of mycoplasma contamination and is permissive to the newly identified cynomolgus macaque cytomegalovirus (CyCMV). CyCMV productively infects MSF-T cells and induces down-regulation of MHC class I expression. The MSF-T cell line will be extremely useful for the propagation of CyCMV and other cynomolgus herspesviruses in host-derived fibroblast cells, allowing for the retention of host-specific viral genes. Moreover, this cell line will be beneficial for many in vitro experiments related to this animal model.

  16. Novel Immortal Cell Lines Support Cellular Heterogeneity in the Human Annulus Fibrosus.

    PubMed

    van den Akker, Guus G H; Surtel, Don A M; Cremers, Andy; Richardson, Stephen M; Hoyland, Judith A; van Rhijn, Lodewijk W; Voncken, Jan Willem; Welting, Tim J M

    2016-01-01

    Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors. Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor β (TGFβ). The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGFβ induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections. We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of cell-based technology in IVD repair.

  17. Altered synthesis and processing of oligosaccharides of vesicular stomatitis virus glycoprotein in different lectin-resistant Chinese hamster ovary cell lines.

    PubMed

    Hunt, L A

    1980-08-01

    To determine the particular intracellular steps in the glycosylation of the vesicular stomatitis virus (VSV) glycoprotein that were altered in several lectin-resistant CHO cell lines, VSV-infected parental and mutant cells were pulse-labeled for 30 and 120 min with [3H]mannose and [3H]glucosamine. Cell-associated viral glycopeptides were analyzed by gel filtration combined with specific glycosidase digestions and compared with the corresponding mature virion oligosaccharides. The intracellular glycosylation of the VSV glycoprotein in a mutant cell line resistant to phytohemagglutinin was identical to that in the normal cells except for a complete block in processing at a specific step in the final trimming of the oligomannosyl core from five to three mannoses. The results demonstrated that a double-mutant cell line selected from the phytohemagglutinin-resistant cells for resistance to concanavalin A had an additional defect in one of the earliest stages of glycosylation, resulting in smaller precursor oligosaccharides linked to protein.

  18. Altered synthesis and processing of oligosaccharides of vesicular stomatitis virus glycoprotein in different lectin-resistant Chinese hamster ovary cell lines.

    PubMed Central

    Hunt, L A

    1980-01-01

    To determine the particular intracellular steps in the glycosylation of the vesicular stomatitis virus (VSV) glycoprotein that were altered in several lectin-resistant CHO cell lines, VSV-infected parental and mutant cells were pulse-labeled for 30 and 120 min with [3H]mannose and [3H]glucosamine. Cell-associated viral glycopeptides were analyzed by gel filtration combined with specific glycosidase digestions and compared with the corresponding mature virion oligosaccharides. The intracellular glycosylation of the VSV glycoprotein in a mutant cell line resistant to phytohemagglutinin was identical to that in the normal cells except for a complete block in processing at a specific step in the final trimming of the oligomannosyl core from five to three mannoses. The results demonstrated that a double-mutant cell line selected from the phytohemagglutinin-resistant cells for resistance to concanavalin A had an additional defect in one of the earliest stages of glycosylation, resulting in smaller precursor oligosaccharides linked to protein. Images PMID:6255177

  19. Effect of verteporfin-PDT on the Notch signaling pathway in cholangiocarcinoma (CCA) cell lines

    NASA Astrophysics Data System (ADS)

    Cerec, Virginie; Andreola, Fausto; Pereira, Stephen P.

    2009-06-01

    Accumulating preclinical and clinical evidence supports a pro-oncogenic function for Notch signaling in several solid tumors. Therefore, Notch inhibitory agents, such as gamma-secretase inhibitors (GSI), are being investigated as cancer therapeutic agents and a potential adjuvant to conventional chemo/radiotherapy. To date, no in vitro data are available on the cellular response and effect of either photodynamic therapy (PDT) or GSI on human cholangiocarcinoma (CCA). Consequently, we aimed to study the: (i) constitutive expression of Notch signaling pathway in CCA cell lines; (ii) response to Verteporfin-PDT and to GSI, as single agents on CCA cell lines; (iii) effect of Verteporfin-PDT on Notch signaling pathway expression. Expression of Notch signaling components was studied in two cholangiocarcinoma cell lines, HuCCT1 and TFK-1 (intra- and extrahepatic, respectively). No difference in basal expression of Notch1, 2 and Jagged1 was observed in either cell line. In contrast, Notch3 was found to be weakly and highly expressed in HuCCT1 and TFK-1 cells, respectively - supporting our recent microarray data which showed Notch3 overexpression in biliary brushings from patients with extrahepatic CCA. HuCCT1 and TFK-1 differentially responded to Verteporfin-PDT treatment; preliminary data showed no clear effect of GSI on proliferation/apoptosis in either cell line following short exposure (6 and 24h). Following Verteporfin-PDT, Notch1, 2 and Jagged-1 expression was down-regulated in both cell lines, while Notch3 expression was unaffected in HuCCT1 cells and down-regulated in TFK-1 cells. The Notch signaling pathway could represent a potential target for combination therapy in CCA treatment.

  20. Replication of Heliothis virescens ascovirus in insect cell lines.

    PubMed

    Asgari, S

    2006-09-01

    Ascoviruses (AVs) infect larvae of various insect pests belonging to the family Noctuidae. The result of AV infection in the hosts is cleavage of infected cells into vesicles, a unique feature of AV infection. Since insect cell lines facilitate the study of virus life cycles, attempts were made to analyze Heliothis virescens AV (HvAV3e) infection in several cell lines and compare cell pathology to larval infection. In this study, replication and cytopathological effects of HvAV3e on four different cell lines were investigated. HvAV3e replication was confirmed in three noctuid cell lines from Spodoptera frugiperda (Sf9) and Helicoverpa zea (BCIRL-Hz-AM1 and FB33). However, the virus did not replicate in the non-noctuid insect cell line from Pieris rapae (Pieridae). Despite replication of the virus in the three permissive cell lines, the cytopathological effects of the virus were significantly different from that of larval infection.

  1. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J., E-mail: bnickol@lumc.edu

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cellmore » killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.« less

  2. Process development for a recombinant Chinese hamster ovary (CHO) cell line utilizing a metal induced and amplified metallothionein expression system.

    PubMed

    Huang, Edwin P; Marquis, Christopher P; Gray, Peter P

    2004-11-20

    The suspension Chinese Hamster Ovary cell line, 13-10-302, utilizing the metallothionein (MT) expression system producing recombinant human growth hormone (hGH) was studied in a serum-free and cadmium-free medium at different fermentation scales and modes of operation. Initial experiments were carried out to optimize the concentration of metal addition to induce the MT promoter. Subsequently, the cultivation of the 13-10-302 cell line was scaled up from spinner flasks into bioreactors, and the cultivation duration was extended with fed-batch and perfusion strategies utilizing 180 microM zinc to induce the promoter controlling expression of recombinant hGH. It was shown that a fed-batch process could increase the maximum cell numbers twofold, from 3.3 to 6.3 x 10(6) cell/mL, over those obtained in normal batch fermentations, and this coupled with extended fermentation times resulted in a fourfold increase in final hGH titer, from 135 +/- 15 to 670 +/- 70 mg/L at a specific productivity q(hGH) value of 12 pg cell(-1)d(-1). The addition of sodium butyrate increased the specific productivity of hGH in cells to a value of approximately 48 pg cell(-1)d(-1), resulting in a final hGH titer of over a gram per liter during fed-batch runs. A BioSep acoustic cell recycler was used to retain the cells in the bioreactor during perfusion operation. It was necessary to maintain the specific feeding rates (SFR) above a value of 0.2 vvd/(10(6) cell/mL) to maintain the viability and productivity of the 13-10-302 cells; under these conditions the viable cell number increased to over 10(7) cell/mL and resulted in a volumetric productivity of over 120 mg(hGH) L(-1)d(-1). Process development described in this work demonstrates cultivation at various scales and sustained high levels of productivity under cadmium free condition in a CHO cell line utilizing an inducible metallothionein expression system. (c) 2004 Wiley Periodicals, Inc

  3. Relationship between 4-hydroxyanisole toxicity and dopa oxidase activity for three melanoma cell lines.

    PubMed

    Rodriguez-Vicente, J; Vicente-Ortega, V; Canteras-Jordana, M; Calderon-Rubiales, F

    1997-10-01

    We studied the response of mouse B16F10 and SK-MEL-28 and SK-MEL-1 human melanoma cell lines to treatment with 4-hydroxyanisole (4-HA), and attempted to relate the response to the dopa oxidase levels and the morphological characteristics of each cell line. Clear dose-response curves were observed after 24 h of treatment in each cell line, the 4-HA being more toxic to the B16F10 cells, with an ID50 value of 215 microM. This was much lower than that observed for the SK-MEL-28 and SK-MEL-1 cell lines (ID50 of 5.98 mM and 7.17 mM, respectively). There was a direct relationship between toxicity levels and dopa oxidase activity, since the highest specific activity was obtained for B16F10 (15.9 mU), while lower activity was registered for SK-MEL-28 (4.59 mU) and SK-MEL-1 (1.24 mU), which also showed lower 4-HA toxicity. Morphologically, we observed the typical characteristics of cellular injury, with swelling and dilation of the internal membranes and organelles, an increased number of vacuoles, and an increased number of abnormal multilamellar melanosomes or thick clumps of irregularly distributed melanin. On the other hand, we observed that the two cell lines with the lowest dopa oxidase activity contained more mature fully melanized melanosomes than B16F10, pointing to possible alterations in the melanosome transference mechanism and lower enzymatic activity in the mature melanosomes of these two human cell lines.

  4. An immortalized steroidogenic goat granulosa cell line as a model system to study the effect of the endoplasmic reticulum (ER)-stress response on steroidogenesis.

    PubMed

    Yang, Diqi; Wang, Lei; Lin, Pengfei; Jiang, Tingting; Wang, Nan; Zhao, Fan; Chen, Huatao; Tang, Keqiong; Zhou, Dong; Wang, Aihua; Jin, Yaping

    2017-02-16

    With granulosa and theca cells, the ovaries are responsible for producing oocytes and secreting sex steroids such as estrogen and progesterone. Endoplasmic reticulum stress (ERS) plays an important role in follicle atresia and embryo implantation. In this study, goat granulosa cells were isolated from medium-sized (4-6 mm) healthy follicles. Primary granulosa cells were immortalized by transfection with human telomerase reverse transcriptase (hTERT) to establish a goat granulosa cell line (hTERT-GGCs). These hTERT-GGCs expressed hTERT and had relatively long telomeres at passage 50. Furthermore, hTERT-GGCs expressed the gonadotropin receptor genes CYP11A1, StAR, and CYP19A1, which are involved in steroidogenesis. Additionally, progesterone was detectable in hTERT-GGCs. Although the proliferation potential of hTERT-GGCs significantly improved, there was no evidence to suggest that the hTERT-GGCs are tumorigenic. In addition, thapsigargin (Tg) treatment led to a significant dose-dependent decrease in progesterone concentration and steroidogenic enzyme expression. In summary, we successfully generated a stable goat granulosa cell line. We found that Tg induced ERS in hTERT-GGCs, which reduced progesterone production and steroidogenic enzyme expression. Future studies may benefit from using this cell line as a model to explore the molecular mechanisms regulating steroidogenesis and apoptosis in goat granulosa cells.

  5. Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes

    PubMed Central

    Ivanov, Sergey V.; Kuzmin, Igor; Wei, Ming-Hui; Pack, Svetlana; Geil, Laura; Johnson, Bruce E.; Stanbridge, Eric J.; Lerman, Michael I.

    1998-01-01

    To discover genes involved in von Hippel-Lindau (VHL)-mediated carcinogenesis, we used renal cell carcinoma cell lines stably transfected with wild-type VHL-expressing transgenes. Large-scale RNA differential display technology applied to these cell lines identified several differentially expressed genes, including an alpha carbonic anhydrase gene, termed CA12. The deduced protein sequence was classified as a one-pass transmembrane CA possessing an apparently intact catalytic domain in the extracellular CA module. Reintroduced wild-type VHL strongly inhibited the overexpression of the CA12 gene in the parental renal cell carcinoma cell lines. Similar results were obtained with CA9, encoding another transmembrane CA with an intact catalytic domain. Although both domains of the VHL protein contribute to regulation of CA12 expression, the elongin binding domain alone could effectively regulate CA9 expression. We mapped CA12 and CA9 loci to chromosome bands 15q22 and 17q21.2 respectively, regions prone to amplification in some human cancers. Additional experiments are needed to define the role of CA IX and CA XII enzymes in the regulation of pH in the extracellular microenvironment and its potential impact on cancer cell growth. PMID:9770531

  6. Role of epigenetic factors in the selection of the alternative splicing isoforms of human KRAS in colorectal cancer cell lines.

    PubMed

    Riffo-Campos, Ángela L; Gimeno-Valiente, Francisco; Rodríguez, Fernanda M; Cervantes, Andrés; López-Rodas, Gerardo; Franco, Luis; Castillo, Josefa

    2018-04-17

    Mutation-driven activation of KRAS is crucial to cancer development. The human gene yields four mRNA splicing isoforms, 4A and 4B being translated to protein. Their different properties and oncogenic potential have been studied, but the mechanisms deciding the ratio 4A/4B are not known. To address this issue, the expression of the four KRAS isoforms was determined in 9 human colorectal cancer cell lines. HCT116 and SW48 were further selected because they present the highest difference in the ratio 4A/4B (twice as much in HCT116 than in SW48). Chromatin structure was analysed at the exon 4A, characteristic of isoform 4A, at its intronic borders and at the two flanking exons. The low nucleosome occupancy at exon 4A in both cell lines may result in a fast transcriptional rate, which would explain the general lower abundance of isoform 4A, also found in cells and tissues by other authors, but due to its similarity between both cell lines, chromatin structure does not influence alternative splicing. DNA methylation downstream exon 4A significantly differs in HCT116 and SW48 cells, but the CCCTC-binding factor, which affects the processivity of RNA polymerase and the alternative splicing, does not bind the differentially methylated sequences. Quantitative epigenetic analysis at mononucleosomal level revealed significant differences between both cell lines in H3K4me3, H3K27me3, H3K36me3, H3K9ac, H3K27ac and H4K20me1, and the inhibition of some histone-modifying enzymes alters the ratio 4A/4B. It can be concluded that the epigenetic modification of histones has an influence on the selection of isoforms 4A and 4B.

  7. Continuous hematopoietic cell lines as model systems for leukemia-lymphoma research.

    PubMed

    Drexler, H G; Matsuo, A Y; MacLeod, R A

    2000-11-01

    Along with other improvements, the advent of continuous human leukemia-lymphoma (LL) cell lines as a rich resource of abundant, accessible and manipulable living cells has contributed significantly to a better understanding of the pathophysiology of hematopoietic tumors. The first LL cell lines, Burkitt's lymphoma-derived lines, were established in 1963. Since then, more than 1000 cell lines have been described, although not all of them in full detail. The major advantages of continuous cell lines is the unlimited supply and worldwide availability of identical cell material, and the infinite viable storability in liquid nitrogen. LL cell lines are characterized generally by monoclonal origin and differentiation arrest, sustained proliferation in vitro under preservation of most cellular features, and specific genetic alterations. The most practical classification of LL cell lines assigns them to one of the physiologically occurring cell lineages, based on their immunophenotype, genotype and functional features. Truly malignant cell lines must be discerned from Epstein-Barr virus (EBV)-immortalized normal cells, using various distinguishing parameters. However, the picture is not quite so straightforward, as some types of LL cell lines are indeed EBV+, and some EBV+ normal cell lines carry also genetic aberrations and may mimic malignancy-associated features. Apart from EBV and human T-cell leukemia virus in some lines, the majority of wild-type LL cell lines are virus-negative. The efficiency of cell line establishment is rather low and the deliberate establishment of new LL cell lines remains by and large an unpredictable random process. Difficulties in establishing continuous cell lines may be caused by the inappropriate selection of nutrients and growth factors for these cells. Clearly, a generally suitable microenvironment for hematopoietic cells, either malignant or normal, cannot yet be created in vitro. The characterization and publication of new LL cell

  8. Curcumin and Viscum album Extract Decrease Proliferation and Cell Viability of Soft-Tissue Sarcoma Cells: An In Vitro Analysis of Eight Cell Lines Using Real-Time Monitoring and Colorimetric Assays.

    PubMed

    Harati, K; Behr, B; Daigeler, A; Hirsch, T; Jacobsen, F; Renner, M; Harati, A; Wallner, C; Lehnhardt, M; Becerikli, M

    2017-01-01

    The cytostatic effects of the polyphenol curcumin and Viscum album extract (VAE) were assessed in soft-tissue sarcoma (STS) cells. Eight human STS cell lines were used: fibrosarcoma (HT1080), liposarcoma (SW872, T778, MLS-402), synovial sarcoma (SW982, SYO1, 1273), and malignant fibrous histiocytoma (U2197). Primary human fibroblasts served as control cells. Cell proliferation, viability, and cell index (CI) were analyzed by BrdU assay, MTT assay, and real-time cell analysis (RTCA). As indicated by BrdU and MTT, curcumin significantly decreased the cell proliferation of five cell lines (HT1080, SW872, SYO1, 1273, and U2197) and the viability of two cell lines (SW872 and SW982). VAE led to significant decreases of proliferation in eight cell lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, 1293, and U2197) and reduced viability in seven STS lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, and 1273). As indicated by RTCA for 160 h, curcumin decreased the CI of all synovial sarcoma cell lines as well as T778 and HT1080. VAE diminished the CI in most of the synovial sarcoma (SW982, SYO1) and liposarcoma (SW872, T778) cell lines as well as HT1080. Primary fibroblasts were not affected adversely by the two compounds in RTCA. Curcumin and VAE can inhibit the proliferation and viability of STS cells.

  9. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    PubMed Central

    Barkla, D. H.; Whitehead, R. H.; Foster, H.; Tutton, P. J.

    1988-01-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting from the apical surface. The microvilli are attached by a core of long microfilaments passing deep into the apical cytoplasm. Between the microvilli are parallel arrays of vesicles (caveoli) containing flocculent material. Two different but not mutually exclusive explanations for the presence of tuft cells are proposed. The first explanation is that tuft cells came from the resected tumour and have survived by mitotic division during subsequent passages. The second explanation suggests that tuft cells are the progeny of undifferentiated tumour cells. Descriptions of tuft cells in colon carcinomas are uncommon and possible reasons for this are presented. The morphology of tuft cells is consistent with that of a highly differentiated cell specialised for absorption, and these new models provide an opportunity to further investigate the structure and function of tuft cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:3414781

  10. [Apoptosis of human lung carcinoma cell line GLC-82 induced by high power electromagnetic pulse].

    PubMed

    Cao, Xiao-zhe; Zhao, Mei-lan; Wang, De-wen; Dong, Bo

    2002-09-01

    Electromagnetic pulse (EMP) could be used for sterilization of food and the efficiency is higher than 2450 MHz continuous microwave done. This study was designed to evaluate the effect of electromagnetic pulse (EMP) on apoptosis of human lung carcinoma cell line GLC-82, so that to explore and develop therapeutic means for cancer. The injury changes in GLC-82 cells after irradiated with EMP (electric field intensity was 60 kV/m, 5 pulses/2 min) were analyzed by cytometry, MTT chronometry, and flow cytometry. The immunohistochemical SP staining was used to determine the expressions of bcl-2 protein and p53 protein. The stained positive cells were analyzed by CMIAS-II image analysis system at a magnification 400. All data were analyzed by SPSS8.0 software. EMP could obviously inhibited proliferation and activity of lung carcinoma cell line GLC-82. The absorbance value (A570) of MTT decreased immediately, at 0 h, 1 h, and 6 h after the GLC-82 cells irradiated by EMP as compared with control group. The highest apoptosis rate was found to reach 13.38% by flow cytometry at 6 h after EMP irradiation. Down-regulation of bcl-2 expression and up-regulation of p53 expression were induced by EMP. EMP promotes apoptosis of GLC-82 cells. At same time, EMP can down-regulate bcl-2 expression and up-regulate p53 expression in GLC-82 cells. The bcl-2 and the p53 protein may involve the apoptotic process.

  11. Comparative analysis of TGF-β/Smad signaling dependent cytostasis in human hepatocellular carcinoma cell lines.

    PubMed

    Dzieran, Johanna; Fabian, Jasmin; Feng, Teng; Coulouarn, Cédric; Ilkavets, Iryna; Kyselova, Anastasia; Breuhahn, Kai; Dooley, Steven; Meindl-Beinker, Nadja M

    2013-01-01

    Hepatocellular carcinoma (HCC) is a major public health problem due to increased incidence, late diagnosis and limited treatment options. TGF-β is known to provide cytostatic signals during early stages of liver damage and regeneration, but exerts tumor promoting effects in onset and progression of liver cancer. To understand the mechanistic background of such a switch, we systematically correlated loss of cytostatic TGF-β effects with strength and dynamics of its downstream signaling in 10 HCC cell lines. We demonstrate that TGF-β inhibits proliferation and induces apoptosis in cell lines with low endogenous levels of TGF-β and Smad7 and strong transcriptional Smad3 activity (PLC/PRF/5, HepG2, Hep3B, HuH7), previously characterized to express early TGF-β signatures correlated with better outcome in HCC patients. TGF-β dependent cytostasis is blunted in another group of cell lines (HLE, HLF, FLC-4) expressing high amounts of TGF-β and Smad7 and showing significantly reduced Smad3 signaling. Of those, HLE and HLF exhibit late TGF-β signatures, which is associated with bad prognosis in HCC patients. RNAi with Smad3 blunted cytostatic effects in PLC/PRF/5, Hep3B and HuH7. HCC-M and HCC-T represent a third group of cell lines lacking cytostatic TGF-β signaling despite strong and prolonged Smad3 phosphorylation and low Smad7 and TGF-β expression. Inhibitory linker phosphorylation, as in HCC-T, may disrupt C-terminally phosphorylated Smad3 function. In summary, we assort 10 HCC cell lines in at least two clusters with respect to TGF-β sensitivity. Cell lines responsive to the TGF-β cytostatic program, which recapitulate early stage of liver carcinogenesis exhibit transcriptional Smad3 activity. Those with disturbed TGF-β/Smad3 signaling are insensitive to TGF-β dependent cytostasis and might represent late stage of the disease. Regulation of this switch remains complex and cell line specific. These features may be relevant to discriminate stage dependent

  12. Highly efficient radiosensitization of human glioblastoma and lung cancer cells by a G-quadruplex DNA binding compound.

    PubMed

    Merle, Patrick; Gueugneau, Marine; Teulade-Fichou, Marie-Paule; Müller-Barthélémy, Mélanie; Amiard, Simon; Chautard, Emmanuel; Guetta, Corinne; Dedieu, Véronique; Communal, Yves; Mergny, Jean-Louis; Gallego, Maria; White, Charles; Verrelle, Pierre; Tchirkov, Andreï

    2015-11-06

    Telomeres are nucleoprotein structures at the end of chromosomes which stabilize and protect them from nucleotidic degradation and end-to-end fusions. The G-rich telomeric single-stranded DNA overhang can adopt a four-stranded G-quadruplex DNA structure (G4). Stabilization of the G4 structure by binding of small molecule ligands enhances radiosensitivity of tumor cells, and this combined treatment represents a novel anticancer approach. We studied the effect of the platinum-derived G4-ligand, Pt-ctpy, in association with radiation on human glioblastoma (SF763 and SF767) and non-small cell lung cancer (A549 and H1299) cells in vitro and in vivo. Treatments with submicromolar concentrations of Pt-ctpy inhibited tumor proliferation in vitro with cell cycle alterations and induction of apoptosis. Non-toxic concentrations of the ligand were then combined with ionizing radiation. Pt-ctpy radiosensitized all cell lines with dose-enhancement factors between 1.32 and 1.77. The combined treatment led to increased DNA breaks. Furthermore, a significant radiosensitizing effect of Pt-ctpy in mice xenografted with glioblastoma SF763 cells was shown by delayed tumor growth and improved survival. Pt-ctpy can act in synergy with radiation for efficient killing of cancer cells at concentrations at which it has no obvious toxicity per se, opening perspectives for future therapeutic applications.

  13. Characterization of LHY-821, a novel moderately differentiated endometrial carcinoma cell line.

    PubMed

    Hu, Qian; Yu, Li; Chen, Rui; Zhang, Yan; Xie, Ya; Liao, Qinping

    2012-08-01

    Endometrial cancer is a major problem for women but only a small number of comprehensively characterized cell models are available for studies. Here, we established a new cell line derived from a Stage IIIc(1) Grade 2 endometrial adenocarcinoma. The cell line, designated LHY-821, was characterized using growth curve, karyotyping, immunohistochemical staining, immunoblotting, drug sensitivity assay, invasion assay, and xenografting in nude mice. LHY-821 has a doubling time of about 46 h and a colony-forming efficiency of approximately 71 %. These cells expresse high levels of progesterone receptor but not estrogen receptor and are sensitive to medroxyprogesterone acetate (MPA). LHY-821 also expresses pan-cytokeratin, PTEN, p53, β-catenin, IGF-1, and IGF-2. In addition, karyotype analysis revealed that LHY-821 possessed a near diploid karyotype including 6q-, 10p-, Xq-, 13q+, 17p+, and Triplo-12. LHY-821 showed highly tumorigenicity in nude mice (100 %) and weak invasiveness. Chemosensitivity tests showed that LHY-821 was sensitive to both carboplatin and paclitaxel. LHY-821 is an immortalized cell line which had survived more than 80 serial passages; it may provide a novel tool to study the molecular mechanism and potential treatment for endometrial cancer.

  14. Effects of Cabazitaxel in Renal Cell Carcinoma Cell Lines.

    PubMed

    Mizutani, Kosuke; Tomoda, Masashi; Ohno, Yuta; Hayashi, Hideki; Fujita, Yasunori; Kawakami, Kyojiro; Kameyama, Koji; Kato, Taku; Sugiyama, Tadashi; Itoh, Yoshinori; Ito, Masafumi; Deguchi, Takashi

    2015-12-01

    Advanced renal cell carcinoma is treated with mammalian target of rapamycin (mTOR) inhibitors or tyrosine kinase inhibitors (TKIs). The effects of these drugs are, however, limited and novel treatment strategies are required. Clear-cell type renal cell carcinoma (ccRCC) is chemo-resistant, in part, due to expression of multidrug resistance proteins such as p-glycoprotein. Cabazitaxel, a tubulin-binding taxane drug used for castration-resistant prostate cancer, has less affinity for p-glycoprotein compared to docetaxel. In the current study, the effects of docetaxel and cabazitaxel on ccRCC cells were investigated. The expression of p-glycoprotein was evaluated in the ccRCC cell lines, Caki-1, KMRC-1 and OS-RC-2 by western blotting. Cells were treated with cabazitaxel or docetaxel, and growth kinetics and tubulin polymerization were determined by the WST-1 assay and cell-based tubulin polymerization assay, respectively. Intracellular drug concentrations were measured by chromatography. AKT activation after treatment was examined by western blotting. All ccRCC cell lines expressed p-glycoprotein. Cabazitaxel inhibited cell growth and induced tubulin polymerization more potently than docetaxel. The intracellular concentration of cabazitaxel was much higher than docetaxel in all cell lines. Both docetaxel and cabazitaxel inhibit AKT phosphorylation at 5 min among three cells. Cabazitaxel inhibits growth of ccRCC cells expressing p-glycoprotein and could thus be possibly used for advanced ccRCC patients in combination with targeted-therapy enhancing their effects. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Radiation sensitivities of 31 human oesophageal squamous cell carcinoma cell lines

    PubMed Central

    Ban, Sadayuki; Michikawa, Yuichi; Ishikawa, Ken-ichi; Sagara, Masashi; Watanabe, Koji; Shimada, Yutaka; Inazawa, Johji; Imai, Takashi

    2005-01-01

    The purpose of this study was to determine the radiosensitivities of 31 human oesophageal squamous cell carcinoma cell lines with a colony-formation assay. A large variation in radiosensitivity existed among 31 cell lines. Such a large variation may partly explain the poor result of radiotherapy for this cancer. One cell line (KYSE190) demonstrated an unusual radiosensitivity. Ataxia-telangiectasia-mutated (ATM) gene in these cells had five missense mutations, and ATM protein was truncated or degraded. Inability to phosphorylate Chk2 in the irradiated KYSE190 cells suggests that the ATM protein in these cells had lost its function. The dysfunctional ATM protein may be a main cause of unusual radiosensitivity of KYSE190 cells. Because the donor of these cells was not diagnosed with ataxia telangiectasia, mutations in ATM gene might have occurred during the initiation and progression of cancer. Radiosensitive cancer developed in non-hereditary diseased patients must be a good target for radiotherapy. PMID:16045545

  16. Evaluating cell lines as tumour models by comparison of genomic profiles

    PubMed Central

    Domcke, Silvia; Sinha, Rileen; Levine, Douglas A.; Sander, Chris; Schultz, Nikolaus

    2013-01-01

    Cancer cell lines are frequently used as in vitro tumour models. Recent molecular profiles of hundreds of cell lines from The Cancer Cell Line Encyclopedia and thousands of tumour samples from the Cancer Genome Atlas now allow a systematic genomic comparison of cell lines and tumours. Here we analyse a panel of 47 ovarian cancer cell lines and identify those that have the highest genetic similarity to ovarian tumours. Our comparison of copy-number changes, mutations and mRNA expression profiles reveals pronounced differences in molecular profiles between commonly used ovarian cancer cell lines and high-grade serous ovarian cancer tumour samples. We identify several rarely used cell lines that more closely resemble cognate tumour profiles than commonly used cell lines, and we propose these lines as the most suitable models of ovarian cancer. Our results indicate that the gap between cell lines and tumours can be bridged by genomically informed choices of cell line models for all tumour types. PMID:23839242

  17. SMG-1 kinase attenuates mitochondrial ROS production but not cell respiration deficits during hyperoxia.

    PubMed

    Resseguie, Emily A; Brookes, Paul S; O'Reilly, Michael A

    Supplemental oxygen (hyperoxia) used to treat individuals in respiratory distress causes cell injury by enhancing the production of toxic reactive oxygen species (ROS) and inhibiting mitochondrial respiration. The suppressor of morphogenesis of genitalia (SMG-1) kinase is activated during hyperoxia and promotes cell survival by phosphorylating the tumor suppressor p53 on serine 15. Here, we investigate whether SMG-1 and p53 blunt this vicious cycle of progressive ROS production and decline in mitochondrial respiration seen during hyperoxia. Human lung adenocarcinoma A549 and H1299 or colon carcinoma HCT116 cells were depleted of SMG-1, UPF-1, or p53 using RNA interference, and then exposed to room air (21% oxygen) or hyperoxia (95% oxygen). Immunoblotting was used to evaluate protein expression; a Seahorse Bioanalyzer was used to assess cellular respiration; and flow cytometry was used to evaluate fluorescence intensity of cells stained with mitochondrial or redox sensitive dyes. Hyperoxia increased mitochondrial and cytoplasmic ROS and suppressed mitochondrial respiration without changing mitochondrial mass or membrane potential. Depletion of SMG-1 or its cofactor, UPF1, significantly enhanced hyperoxia-induced mitochondrial but not cytosolic ROS abundance. They did not affect mitochondrial mass, membrane potential, or hyperoxia-induced deficits in mitochondrial respiration. Genetic depletion of p53 in A549 cells and ablation of the p53 gene in H1299 or HCT116 cells revealed that SMG-1 influences mitochondrial ROS through activation of p53. Our findings show that hyperoxia does not promote a vicious cycle of progressive mitochondrial ROS and dysfunction because SMG-1-p53 signaling attenuates production of mitochondrial ROS without preserving respiration. This suggests antioxidant therapies that blunt ROS production during hyperoxia may not suffice to restore cellular respiration.

  18. Targeting MET kinase with the small-molecule inhibitor amuvatinib induces cytotoxicity in primary myeloma cells and cell lines

    PubMed Central

    2013-01-01

    Background MET is a receptor tyrosine kinase that is activated by the ligand HGF and this pathway promotes cell survival, migration, and motility. In accordance with its oncogenic role, MET is constitutively active, mutated, or over-expressed in many cancers. Corollary to its impact, inhibition of MET kinase activity causes reduction of the downstream signaling and demise of cells. In myeloma, a B-cell plasma malignancy, MET is neither mutated nor over-expressed, however, HGF is increased in plasma or serum obtained from myeloma patients and this was associated with poor prognosis. The small-molecule, amuvatinib, inhibits MET receptor tyrosine kinase. Based on this background, we hypothesized that targeting the HGF/MET signaling pathway is a rational approach to myeloma therapy and that myeloma cells would be sensitive to amuvatinib. Methods Expression of MET and HGF mRNAs in normal versus malignant plasma cells was compared during disease progression. Cell death and growth as well as MET signaling pathway were assessed in amuvatinib treated primary myeloma cells and cell lines. Results There was a progressive increase in the transcript levels of HGF (but not MET) from normal plasma cells to refractory malignant plasma cells. Amuvatinib readily inhibited MET phosphorylation in primary CD138+ cells from myeloma patients and in concordance, increased cell death. A 48-hr amuvatinib treatment in high HGF-expressing myeloma cell line, U266, resulted in growth inhibition. Levels of cytotoxicity were time-dependent; at 24, 48, and 72 h, amuvatinib (25 μM) resulted in 28%, 40%, and 55% cell death. Consistent with these data, there was an amuvatinib-mediated decrease in MET phosphorylation in the cell line. Amuvatinib at concentrations of 5, 10, or 25 μM readily inhibited HGF-dependent MET, AKT, ERK and GSK-3-beta phosphorylation. MET-mediated effects were not observed in myeloma cell line that has low MET and/or HGF expression. Conclusions These data suggest that at

  19. Mechanisms of acquired resistance to the quinazoline thymidylate synthase inhibitor ZD1694 (Tomudex) in one mouse and three human cell lines.

    PubMed Central

    Jackman, A. L.; Kelland, L. R.; Kimbell, R.; Brown, M.; Gibson, W.; Aherne, G. W.; Hardcastle, A.; Boyle, F. T.

    1995-01-01

    Four cell lines, the mouse L1210 leukaemia, the human W1L2 lymphoblastoid and two human ovarian (CH1 and 41M) cell lines, were made resistant to ZD1694 (Tomudex) by continual exposure to incremental doses of the drug. A 500-fold increase in thymidylate synthase (TS) activity is the primary mechanism of resistance to ZD1694 in the W1L2:RD1694 cell line, which is consequently highly cross-resistant to other folate-based TS inhibitors, including BW1843U89, LY231514 and AG337, but sensitive to antifolates with other enzyme targets. The CH1:RD1694 cell line is 14-fold resistant to ZD1694, largely accounted for by the 4.2-fold increase in TS activity. Cross-resistance was observed to other TS inhibitors, including 5-fluorodeoxyuridine (FdUrd). 41M:RD1694 cells, when exposed to 0.1 microM [3H]ZD1694, accumulated approximately 20-fold less 3H-labelled material over 24 h than the parental line. Data are consistent with this being the result of impaired transport of the drug via the reduced folate/methotrexate carrier. Resistance was therefore observed to methotrexate but not to CB3717, a compound known to use this transport mechanism poorly. The mouse L1210:RD1694 cell line does not accumulate ZD1694 or Methotrexate (MTX) polyglutamates. Folylpolyglutamate synthetase substrate activity (using ZD1694 as the substrate) was decreased to approximately 13% of that observed in the parental line. Cross-resistance was found to those compounds known to be active through polyglutamation. PMID:7537518

  20. Towards High Throughput Cell Growth Screening: A New CMOS 8 × 8 Biosensor Array for Life Science Applications.

    PubMed

    Nabovati, Ghazal; Ghafar-Zadeh, Ebrahim; Letourneau, Antoine; Sawan, Mohamad

    2017-04-01

    In this paper we present a CMOS capacitive sensor array as a compact and low-cost platform for high-throughput cell growth monitoring. The proposed biosensor, consists of an array of 8 × 8 CMOS fully differential charge-based capacitive measurement sensors. A DC-input Σ∆ modulator is used to convert the sensors' signals to digital values for reading out the biological/chemical data and further signal processing. To compensate the mismatch variations between the current mirror transistors, a calibration circuitry is proposed which removes the output voltage offset with less than 8.2% error. We validate the chip functionality using various organic solvents with different dielectric constants. Moreover, we show the response of the chip to different concentrations of Polystyrene beads that have the same electrical properties as the living cells. The experimental results show that the chip allows the detection of a wide range of Polystyrene beads concentrations from as low as 10 beads/ml to 100 k beads/ml. In addition, we present the experimental results from H1299 (human lung carcinoma) cell line where we show that the chip successfully allows the detection of cell attachment and growth over capacitive electrodes in a 30 h measurement time and the results are in consistency with the standard cell-based assays. The capability of proposed device for label-free and real-time detection of cell growth with very high sensitivity opens up the important opportunity for utilizing the device in rapid screening of living cells.

  1. Development and characterization of a novel human Waldenström Macroglobulinemia cell line (RPCI-WM1; Roswell Park Cancer Institute-Waldenström Macroglobulinemia 1)

    PubMed Central

    Chitta, Kasyapa S.; Paulus, Aneel; Ailawadhi, Sikander; Foster, Barbara A.; Moser, Michael T.; Starostik, Petr; Masood, Aisha; Sher, Taimur; Miller, Kena C.; Iancu, Dan M.; Conroy, Jeffrey; Nowak, Norma J.; Sait, Sheila N.; Personett, David A.; Coleman, Morton; Furman, Richard R.; Martin, Peter; Ansell, Stephen M.; Lee, Kelvin; Chanan-Khan, Asher A.

    2015-01-01

    Understanding the biology of Waldenström Macroglobulinemia is hindered by a lack of preclinical models. We report a novel cell line, RPCI-WM1, from a patient treated for WM. The cell line secreted human IgM (hIgM) with k-light chain restriction identical to the primary tumor. The cell line has a modal chromosomal number of 46 and harbors chromosomal changes such as deletion of 6q21, monoallelic deletion of 9p21 (CDKN2A), 13q14 (RB1) and 18q21 (BCL-2) with a consistent amplification of 14q32 (IgH) identical to its founding tumor sample. Clonal relationship was confirmed by identical CDR3 length and single nucleotide polymorphisms as well as a matching IgH sequence of the cell line and founding tumor. Both also harbor a heterozygous, non-synonymous mutation at amino acid 265 in MYD88 gene (L265P). The cell line expresses most of the cell surface markers present on the parent cells. Over all, RPCI-WM1 represents a valuable model to study WM. PMID:22812491

  2. Development and characterization of a novel human Waldenström macroglobulinemia cell line: RPCI-WM1, Roswell Park Cancer Institute - Waldenström Macroglobulinemia 1.

    PubMed

    Chitta, Kasyapa S; Paulus, Aneel; Ailawadhi, Sikander; Foster, Barbara A; Moser, Michael T; Starostik, Petr; Masood, Aisha; Sher, Taimur; Miller, Kena C; Iancu, Dan M; Conroy, Jeffrey; Nowak, Norma J; Sait, Sheila N; Personett, David A; Coleman, Morton; Furman, Richard R; Martin, Peter; Ansell, Stephen M; Lee, Kelvin; Chanan-Khan, Asher A

    2013-02-01

    Understanding the biology of Waldenström macroglobulinemia is hindered by a lack of preclinical models. We report a novel cell line, RPCI-WM1, from a patient treated for WM. The cell line secretes human immunoglobulin M (h-IgM) with κ-light chain restriction identical to the primary tumor. The cell line has a modal chromosomal number of 46 and harbors chromosomal changes such as deletion of 6q21, monoallelic deletion of 9p21 (CDKN2A), 13q14 (RB1) and 18q21 (BCL-2), with a consistent amplification of 14q32 (immunoglobulin heavy chain; IgH) identical to its founding tumor sample. The clonal relationship is confirmed by identical CDR3 length and single nucleotide polymorphisms as well as a matching IgH sequence of the cell line and founding tumor. Both also harbor a heterozygous, non-synonymous mutation at amino acid 265 in the MYD88 gene (L265P). The cell line expresses most of the cell surface markers present on the parent cells. Overall, RPCI-WM1 represents a valuable model to study Waldenström macroglobulinemia.

  3. Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: The role of glutathione

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brechbuhl, Heather M.; Kachadourian, Remy; Min, Elysia

    We hypothesized that flavonoid-induced glutathione (GSH) efflux through multi-drug resistance proteins (MRPs) and subsequent intracellular GSH depletion is a viable mechanism to sensitize cancer cells to chemotherapies. This concept was demonstrated using chrysin (5–25 μM) induced GSH efflux in human non-small cell lung cancer lines exposed to the chemotherapeutic agent, doxorubicin (DOX). Treatment with chrysin resulted in significant and sustained intracellular GSH depletion and the GSH enzyme network in the four cancer cell types was predictive of the severity of chrysin induced intracellular GSH depletion. Gene expression data indicated a positive correlation between basal MRP1, MRP3 and MRP5 expression andmore » total GSH efflux before and after chrysin exposure. Co-treating the cells for 72 h with chrysin (5–30 μM) and DOX (0.025–3.0 μM) significantly enhanced the sensitivity of the cells to DOX as compared to 72-hour DOX alone treatment in all four cell lines. The maximum decrease in the IC{sub 50} values of cells treated with DOX alone compared to co-treatment with chrysin and DOX was 43% in A549 cells, 47% in H157 and H1975 cells and 78% in H460 cells. Chrysin worked synergistically with DOX to induce cancer cell death. This approach could allow for use of lower concentrations and/or sensitize cancer cells to drugs that are typically resistant to therapy. -- Graphical abstract: Possible mechanisms by which chrysin enhances doxorubicin-induced toxicity in cancer cells. Highlights: ► Chyrsin sustains a significant depletion of GSH levels in lung cancer cells. ► Chyrsin synergistically potentiates doxorubicin-induced cancer cell cytotoxicity. ► Cancer cell sensitivity correlated with GSH and MRP gene network expression. ► This approach could allow for lower side effects and targeting resistant tumors.« less

  4. Establishment and characterization of a new marine fish cell line from ovary of barfin flounder ( Verasper moseri)

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohui; Fan, Tingjun; Jiang, Guojian; Yang, Xiuxia

    2015-12-01

    A novel continuous ovary cell line from barfin flounder ( Verasper moseri) (BFO cell line) was established with its primitive application in transgenic expression demonstrated in this study. Primarily cultured cells grew well at 22°C in Dulbecco's modified Eagle medium/F12 medium (DMEM/F12, 1:1; pH 7.2) supplemented with 20% fetal bovine serum (FBS), carboxymethyl chitooligosaccharide, basic fibroblast growth factor (bFGF) and insulin-like growth factor-I (IGF-I). The primary BFO cells in fibroblastic morphology proliferated into a confluent monolayer about 2 weeks later, and were able to be subcultured. Impacts of medium and temperature on the growth of the cells were examined. The optimum growth was found in DMEM/F12 with 20% FBS and at 22°C. The BFO cells can be continuously subcultured to Passage 120 steadily with a population doubling time of 32.7 h at Passage 60. Chromosome analysis revealed that 72% of BFO cells at Passage 60 maintained the normal diploid chromosome number (46) with a normal karyotype of 2st+44t. The results of gene transformation indicated that green fluorescence protein (GFP) positively expressed in these cells after being transformed with pcDNA3.1-GFP. Therefore, a continuous and transformable BFO cell line was successfully established, which may serve as a useful tool for cytotechnological manipulation and transgenic modification of this fish.

  5. Derivation and characterization of a pig embryonic stem cell-derived exocrine pancreatic cell line

    USDA-ARS?s Scientific Manuscript database

    The establishment and initial characterization of a pig embryonic stem cell-derived pancreatic cell line, PICM-31, and a colony-cloned derivative cell line, PICM-31A, is described. The cell lines were propagated for several months at split ratios of 1:3 or 1:5 at each passage on STO feeder cells af...

  6. Expression of human inducible nitric oxide synthase in a tetrahydrobiopterin (H4B)-deficient cell line: H4B promotes assembly of enzyme subunits into an active dimer.

    PubMed Central

    Tzeng, E; Billiar, T R; Robbins, P D; Loftus, M; Stuehr, D J

    1995-01-01

    Murine inducible nitric oxide (NO) synthase (iNOS) is catalytically active only in dimeric form. Assembly of its purified subunits into a dimer requires H4B. To understand the structure-activity relationships of human iNOS, we constitutively expressed recombinant human iNOS in NIH 3T3 cells by using a retroviral vector. These cells are deficient in de novo H4B biosynthesis and the role of H4B in the expression and assembly of active iNOS in an intact cell system could be studied. In the absence of added H4B, NO synthesis by the cells was minimal, whereas cells grown with supplemental H4B or the H4B precursor sepiapterin generated NO (74.1 and 63.3 nmol of nitrite per 10(6) cells per 24 h, respectively). NO synthesis correlated with an increase in intracellular H4B but no increase in iNOS protein. Instead, an increased percentage of dimeric iNOS was observed, rising from 20% in cytosols from unsupplemented cells to 66% in H4B-supplemented cell cytosols. In all cases, only dimeric iNOS displayed catalytic activity. Cytosols prepared from H4B-deficient cells exhibited little iNOS activity but acquired activity during a 60- to 120-min incubation with H4B, reaching final activities of 60-72 pmol of citrulline per mg of protein per min. Reconstitution of cytosolic NO synthesis activity was associated with conversion of monomers into dimeric iNOS during the incubation. Thus, human iNOS subunits dimerize to form an active enzyme, and H4B plays a critical role in promoting dimerization in intact cells. This reveals a post-translational mechanism by which intracellular H4B can regulate iNOS expression. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:8524846

  7. Polymer encapsulated dopaminergic cell lines as "alternative neural grafts".

    PubMed

    Jaeger, C B; Greene, L A; Tresco, P A; Winn, S R; Aebischer, P

    1990-01-01

    Our preliminary findings (Jaeger et al., 1988; Aebischer et al., 1989; Tresco et al., 1989) and the studies in progress show that encapsulated dopaminergic cell lines survive enclosure within a semi-permeable membrane. The encapsulated cells remained viable for extended time periods when maintained in vitro. Moreover, encapsulated PC12 and T28 cells have the potential to survive following their implantation into the forebrain of rats. Cell lines are essentially "immortal" because they continue to divide indefinitely. This property allows perpetual "self-renewal" of a given cell population. However, the capacity of continuous uncontrolled cell division may also lead to tumor formation. This in fact is the case for unencapsulated PC12 cell implants placed into the brain of young Sprague Dawley rats (Jaeger, 1985). Cell line encapsulation has the potential to prevent tumor growth (Jaeger et al., 1988). Survival for 6 months in vitro suggests that encapsulation does not preclude long-term maintenance of an homogeneous cell line like PC12 cells. The presence of mitotic figures in the capsules further supports the likelihood of propagation and self renewal of the encapsulated population. Another significant property of cell lines is that they consist of a single, genetically homogeneous cell type. They do not require specific synaptic interactions for their survival. In the case of PC12 and T28 lines, the cells synthesize and release neurotransmitters. Our data show that PC12 and T28 cells continue to release dopamine spontaneously and to express specific transmitters and enzymes following encapsulation. Thus, cell lines such as these may constitute relatively simple "neural implants" exerting their function via humoral release.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Line Profile of H Lyman (alpha) from Dissociative Excitation of H2 with Application to Jupiter

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Kasnik, Isik; Ahmed, Syed M.; Clarke, John T.

    1995-01-01

    Observations of the H Lyman(alpha) (Ly-alpha) emission from Jupiter have shown pronounced emissions, exceeding solar fluorescence, in the polar aurora and equatorial "bulge" regions. The H Ly-alpha line profiles from these regions are broader than expected, indicating high-energy processes producing fast atoms as determined from the observed Doppler broadening. Toward understanding that process a high-resolution ultraviolet (UV) spectrometer was employed for the first measurement of the H Ly-alpha emission Doppler profile from dissociative excitation of H2 by electron impact. Analysis of the deconvolved line profile reveals the existence of a narrow central peak of 40 +/- 4 mA full width at half maximum and a broad pedestal base about 240 mA wide. Two distinct dissociation mechanisms account for this Doppler structure. Slow H(2p) atoms characterized by a distribution function with peak energy near 80 meV produce the peak profile, which is nearly independent of the electron impact energy. Slow H(2p) atoms arise from direct dissociation and predissociation of singly excited states which have a dissociation limit of 14.68 eV. The wings of H Ly-alpha arise from dissociative excitation of a series of doubly excited states which cross the Franck-Condon region between 23 and 40 eV. The profile of the wings is dependent on the electron impact energy, and the distribution function of fast H(2p) atoms is therefore dependent on the electron impact energy. The fast atom kinetic energy distribution at 100 eV electron impact energy spans the energy range from 1 to 10 eV with a peak near 4 eV. For impact energies above 23 eV the fast atoms contribute to a slightly asymmetric structure of the line profile. The absolute cross sections of the H Ly-alpha line peak and wings were measured over the range from 0 to 200 eV. Analytic model coefficients are given for the measured cross sections which can be applied to planetary atmosphere auroral and dayglow calculations. The dissociative

  9. B7-H4 as a Target for Breast Cancer Immunotherapy

    DTIC Science & Technology

    2012-06-01

    lymphoma and leukemia cell lines. CEM, Karpas 299, and TLBR -1, cell lines derived from acute T-cell lymphoblastic leukemia, large cell anaplastic...Accomplishments  Generation of human B7-H4-Fc fusion protein (antigen).  Discovery of a B7-H4 receptor on CEM, Karpas 299, and TLBR -1 cell lines...CEM Karpas 299 TLBR -1 Jurkat B7-H4R Figure 3. B7-H4 binding to human T-cell lymphoma cell lines. Red

  10. Biologic properties of the thymocyte-activating factor (CETAF) produced by a rabbit corneal cell line (SIRC).

    PubMed

    Grabner, G; Luger, T A; Luger, B M; Smolin, G; Oh, J O

    1983-05-01

    Rabbit corneal epithelial cell cultures produce a cytokine (CETAF) that greatly enhances the proliferation of C3H/HeJ mouse thymocytes. The rabbit corneal cell line SIRC was used to generate CETAF activity in the culture supernatant. CETAF was then partially purified by Sephacryl S-200 gel filtration, where peaks of activity eluted in a molecular weight range of 95,000-55,000 (CETAF I) and 30,000-15,000 (CETAF II). Similar to the epidermal cell-derived thymocyte-activating factor (ETAF), CETAF (I and II) stimulated the growth of a human dermal fibroblast line (CRL 1445) in a dose-dependent manner, but failed to enhance the proliferation of an Interleukin 2 (IL 2)-dependent T-cell line (CT 6). Although CETAF did not exhibit any IL 2 activity, it clearly enhanced the IL 2 production by C3H/HeJ mouse splenocytes stimulated with suboptimal doses of lectins. Crude SIRC supernatants as well as the partially purified CETAF preparations showed a marked inhibition of polymorphonuclear neutrophil migration at high concentrations, but were significantly chemotactic when diluted samples were tested. CETAF release by SIRC cells was increased by stimulation with mitomycin C, phorbolmyristate acetate, hydroxyurea, silica, lipopolysaccaride B, and when the cells were cultured under serum-free conditions. These observations suggest that corneal epithelial cells may not only interact with the immune system in a way similar to keratinocytes, but may also stimulate corneal stromal cell through the production of CETAF.

  11. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    PubMed

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research. © The Author(s) 2014.

  12. THP-1 cell line: an in vitro cell model for immune modulation approach.

    PubMed

    Chanput, Wasaporn; Mes, Jurriaan J; Wichers, Harry J

    2014-11-01

    THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review attempts to summarize and discuss recent publications related to the THP-1 cell model. An overview on the biological similarities and dissimilarities between the THP-1 cell line and human peripheral blood mononuclear cell (PBMC) derived-monocytes and macrophages, as well as the advantages and disadvantages of the use of THP-1 cell line, is included. The review summarizes different published co-cultivation studies of THP-1 cells with other cell types, for instance, intestinal cells, adipocytes, T-lymphocytes, platelets, and vascular smooth muscle cells, which can be an option to study cell-cell interaction in vitro and can be an approach to better mimic in vivo conditions. Macrophage polarization is a relatively new topic which gains interest for which the THP-1 cell line also may be relevant. Besides that an overview of newly released commercial THP-1 engineered-reporter cells and THP-1 inflammasome test-cells is also given. Evaluation of recent papers leads to the conclusion that the THP-1 cell line has unique characteristics as a model to investigate/estimate immune-modulating effects of compounds in both activated and resting conditions of the cells. Although the THP-1 response can hint to potential responses that might occur ex vivo or in vivo, these should be, however, validated by in vivo studies to draw more definite conclusions. Copyright © 2013. Published by Elsevier B.V.

  13. Inhibition of H3K27me3 Histone Demethylase Activity Prevents the Proliferative Regeneration of Zebrafish Lateral Line Neuromasts

    PubMed Central

    Bao, Beier; He, Yingzi; Tang, Dongmei; Li, Wenyan; Li, Huawei

    2017-01-01

    The H3K27 demethylases are involved in a variety of biological processes, including cell differentiation, proliferation, and cell death by regulating transcriptional activity. However, the function of H3K27 demethylation in the field of hearing research is poorly understood. Here, we investigated the role of H3K27me3 histone demethylase activity in hair cell regeneration using an in vivo animal model. Our data showed that pharmacologic inhibition of H3K27 demethylase activity with the specific small-molecule inhibitor GSK-J4 decreased the number of regenerated hair cells in response to neomycin damage. Furthermore, inhibition of H3K27me3 histone demethylase activity dramatically suppressed cell proliferation and activated caspase-3 levels in the regenerating neuromasts of the zebrafish lateral line. GSK-J4 administration also increased the expression of p21 and p27 in neuromast cells and inhibited the ERK signaling pathway. Collectively, our findings indicate that H3K27me3 demethylation is a key epigenetic regulator in the process of hair cell regeneration in zebrafish and suggest that H3K27me3 histone demethylase activity might be a novel therapeutic target for the treatment of hearing loss. PMID:28348517

  14. Development and characterization of Histoplasma capsulatum-reactive murine T-cell lines and clones

    NASA Technical Reports Server (NTRS)

    Deepe, George S., Jr.; Smith, James G.; Denman, David; Bullock, Ward E.; Sonnenfeld, Gerald

    1986-01-01

    Several Histoplasma capsulatum-reactive murine cloned T-cell lines (TCLs) were isolated from spleens of C57BL/6 mice immunized with viable H. capsulatum yeast cells, using the methodology of Kimoto and Fathman (1980). These T-cells were characterized phenotypically as Thy-1.2(+) Lyt-1(+) L3T4(+) Lyt-2(-), that is, as the helper/inducer phenotype. The cloned T cells proliferate in response to histoplasmin and, in some cases, to heterologous fungal anigens. Upon injection of mice with the antigen, the T-cells mediate local delayed-type hypersensitivity responses and, after stimulation, release regulatory lymphokines.

  15. Establishment and characterization of a goat synovial membrane cell line susceptible to small ruminant lentivirus infection.

    PubMed

    Rolland, Morgane; Chauvineau, Cécile; Valas, Stephen; Mamoun, Robert Z; Perrin, Gérard

    2004-06-15

    Primary goat synovial membrane (GSM) cells are widely used to study small ruminant lentiviruses (SRLV), i.e. maedi visna virus (MVV) and caprine arthritis-encephalitis virus (CAEV), but their limited life-span of 15-20 passages in vitro is problematic. Here, we report that ectopic expression of the catalytic subunit of human telomerase (hTERT) was sufficient to immortalize primary GSM cells. Cultures of hTERT-transfected GSM cells have been passaged for 2 years without showing any phenotypic difference from the original primary GSM cells. The hTERT-transfected cells continued to grow beyond a population doubling number of 250, while no net telomere lengthening was observed for these cells. Moreover, the immortalized GSM cells were susceptible to infection by both CAEV and MVV and were able to propagate theses viruses. Such cell line provides a useful source of standard and robust cells for both research and veterinary purposes.

  16. Human Rhabdomyosarcoma Cell Lines for Rhabdomyosarcoma Research: Utility and Pitfalls

    PubMed Central

    Hinson, Ashley R. P.; Jones, Rosanne; Crose, Lisa E. S.; Belyea, Brian C.; Barr, Frederic G.; Linardic, Corinne M.

    2013-01-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell-line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis. PMID:23882450

  17. Generation of genome-modified Drosophila cell lines using SwAP.

    PubMed

    Franz, Alexandra; Brunner, Erich; Basler, Konrad

    2017-10-02

    The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.

  18. JTC801 Induces pH-dependent Death Specifically in Cancer Cells and Slows Growth of Tumors in Mice.

    PubMed

    Song, Xinxin; Zhu, Shan; Xie, Yangchun; Liu, Jiao; Sun, Lingyi; Zeng, Dexing; Wang, Pengcheng; Ma, Xiaochao; Kroemer, Guido; Bartlett, David L; Billiar, Timothy R; Lotze, Michael T; Zeh, Herbert J; Kang, Rui; Tang, Daolin

    2018-04-01

    Maintenance of acid-base homeostasis is required for normal physiology, metabolism, and development. It is not clear how cell death is activated in response to changes in pH. We performed a screen to identify agents that induce cell death in a pH-dependent manner (we call this alkaliptosis) in pancreatic ductal adenocarcinoma cancer (PDAC) cells and tested their effects in mice. We screened a library of 254 compounds that interact with G-protein-coupled receptors (GPCRs) to identify those with cytotoxic activity against a human PDAC cell line (PANC1). We evaluated the ability of JTC801, which binds the opiod receptor and has analgesic effects, to stimulate cell death in human PDAC cell lines (PANC1, MiaPaCa2, CFPAC1, PANC2.03, BxPc3, and CAPAN2), mouse pancreatic cancer-associated stellate cell lines, primary human pancreatic ductal epithelial cells, and 60 cancer cell lines (the NCI-60 panel). Genes encoding proteins in cell death and GPCR signaling pathways, as well as those that regulate nuclear factor-κB (NF-κB) activity, were knocked out, knocked down, or expressed from transgenes in cancer cell lines. JTC801 was administered by gavage to mice with xenograft tumors, C57BL/6 mice with orthographic pancreatic tumors grown from Pdx1-Cre;KRas G12D/+ ;Tp53 R172H/+ (KPC) cells, mice with metastases following tail-vein injection of KPC cells, and Pdx-1-Cre;Kras G12D/+ mice crossed with Hmgb1 flox/flox mice (KCH mice). Pancreata were collected from mice and analyzed for tumor growth and by histology and immunohistochemistry. We compared gene and protein expression levels between human pancreatic cancer tissues and patient survival times using online R2 genomic or immunohistochemistry analyses. Exposure of human PDAC cell lines (PANC1 and MiaPaCa2) to JTC801 did not induce molecular markers of apoptosis (cleavage of caspase 3 or poly [ADP ribose] polymerase [PARP]), necroptosis (interaction between receptor-interacting serine-threonine kinase 3 [RIPK3] and mixed

  19. [Intergration and epression of porcine endogenous retrovinus in the immortal cell line of Banna Minipig Inberd Line-Mesenhymal Stem Cells].

    PubMed

    Yu, Ping; Liu, Jin; Zhang, Li; Li, Shrng-Fu; Bu, Hong; Li, You-Ping; Cheng, Jing-Qui; Lu, Yan-Rong; Long, Dan

    2005-11-01

    To detect the integration and expression of porcine endogenous retrovirus (PERV) in the immortal cell line of Banna Minipig Inbred Line-Mesenchymal Stem Cells (BMI-MSCs). DNA and total RNA of the immortal cell line of BMI-MSCs were extracted and PCR, RT-PCR were performed to detect PERV-gag, pol and env gene, and the type of PERV was also detected. PERV-gag, pol and env gene were all detected in the primary culture and immortal cell line (passage 150 and passage 180) of BMI-MSCs, and the type of PERV was PERV-A, B. Functional expression of PERV-gag and pol mRNA was also detected. In this laboratory, PERV was not lost during the proceeding of pig inbred and since has been in long-term culture of pig cells in vitro. PERV has integrated into the genome of its natural host, and virus mRNA can effectively express. So it is very essential to evaluate the possibility of xenozoonoses in pig-to-human xenotransplantation.

  20. Standards for Cell Line Authentication and Beyond

    PubMed Central

    Cole, Kenneth D.; Plant, Anne L.

    2016-01-01

    Different genomic technologies have been applied to cell line authentication, but only one method (short tandem repeat [STR] profiling) has been the subject of a comprehensive and definitive standard (ASN-0002). Here we discuss the power of this document and why standards such as this are so critical for establishing the consensus technical criteria and practices that can enable progress in the fields of research that use cell lines. We also examine other methods that could be used for authentication and discuss how a combination of methods could be used in a holistic fashion to assess various critical aspects of the quality of cell lines. PMID:27300367

  1. ExoMol line lists XXVIII: The rovibronic spectrum of AlH

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Williams, Henry; Leyland, Paul C.; Lodi, Lorenzo; Tennyson, Jonathan

    2018-06-01

    A new line list for AlH is produced. The WYLLoT line list spans two electronic states X 1Σ+ and A 1Π. A diabatic model is used to model the shallow potential energy curve of the A 1Π state, which has a strong pre-dissociative character with only two bound vibrational states. Both potential energy curves are empirical and were obtained by fitting to experimentally derived energies of the X 1Σ+ and A 1Π electronic states using the diatomic nuclear motion codes DPOTFIT and DUO. High temperature line lists plus partition functions and lifetimes for three isotopologues 27AlH, 27AlD and 26AlH were generated using ab initio dipole moments. The line lists cover both the X-X and A-X systems and are made available in electronic form at the CDS and ExoMol databases.

  2. Peptidomic analysis of human cell lines

    PubMed Central

    Gelman, Julia S.; Sironi, Juan; Castro, Leandro M.; Ferro, Emer S.; Fricker, Lloyd D.

    2011-01-01

    Peptides have been proposed to function in intracellular signaling within the cytosol. Although cytosolic peptides are considered to be highly unstable, a large number of peptides have been detected in mouse brain and other biological samples. In the present study, we evaluated the peptidome of three diverse cell lines: SH-SY5Y, MCF7, and HEK293 cells. A comparison of the peptidomes revealed considerable overlap in the identity of the peptides found in each cell line. The majority of the observed peptides are not derived from the most abundant or least stable proteins in the cell, and approximately half of the cellular peptides correspond to the N- or C- termini of the precursor proteins. Cleavage site analysis revealed a preference for hydrophobic residues in the P1 position. Quantitative peptidomic analysis indicated that the levels of most cellular peptides are not altered in response to elevated intracellular calcium, suggesting that calpain is not responsible for their production. The similarity of the peptidomes of the three cell lines and the lack of correlation with the predicted cellular degradome implies the selective formation or retention of these peptides, consistent with the hypothesis that they are functional in the cells. PMID:21204522

  3. Live imaging of H3K9 acetylation in plant cells

    PubMed Central

    Kurita, Kazuki; Sakamoto, Takuya; Yagi, Noriyoshi; Sakamoto, Yuki; Ito, Akihiro; Nishino, Norikazu; Sako, Kaori; Yoshida, Minoru; Kimura, Hiroshi; Seki, Motoaki; Matsunaga, Sachihiro

    2017-01-01

    Proper regulation of histone acetylation is important in development and cellular responses to environmental stimuli. However, the dynamics of histone acetylation at the single-cell level remains poorly understood. Here we established a transgenic plant cell line to track histone H3 lysine 9 acetylation (H3K9ac) with a modification-specific intracellular antibody (mintbody). The H3K9ac-specific mintbody fused to the enhanced green fluorescent protein (H3K9ac-mintbody-GFP) was introduced into tobacco BY-2 cells. We successfully demonstrated that H3K9ac-mintbody-GFP interacted with H3K9ac in vivo. The ratio of nuclear/cytoplasmic H3K9ac-mintbody-GFP detected in quantitative analysis reflected the endogenous H3K9ac levels. Under chemically induced hyperacetylation conditions with histone deacetylase inhibitors including trichostatin A, Ky-2 and Ky-14, significant enhancement of H3K9ac was detected by H3K9ac-mintbody-GFP dependent on the strength of inhibitors. Conversely, treatment with a histone acetyltransferase inhibitor, C646 caused a reduction in the nuclear to cytoplasmic ratio of H3K9ac-mintbody-GFP. Using this system, we assessed the environmental responses of H3K9ac and found that cold and salt stresses enhanced H3K9ac in tobacco BY-2 cells. In addition, a combination of H3K9ac-mintbody-GFP with 5-ethynyl-2′-deoxyuridine labelling confirmed that H3K9ac level is constant during interphase. PMID:28418019

  4. Tangeretin suppresses IL-1beta-induced cyclooxygenase (COX)-2 expression through inhibition of p38 MAPK, JNK, and AKT activation in human lung carcinoma cells.

    PubMed

    Chen, Kuan-Hung; Weng, Meng-Shih; Lin, Jen-Kun

    2007-01-15

    Tangeretin (5,6,7,8,4'-pentamethoxyflavone) is a polymethoxylated flavonoid concentrated in the peel of citrus fruits. Recent studies have shown that tangeretin exhibits anti-proliferative, anti-invasive, anti-metastatic, and antioxidant activities. However, the anti-inflammatory properties of tangeretin are unclear. In this study, we examine the effects of tangeretin and its structure-related compound, nobiletin, on the expression of cyclooxygenases-2 (COX-2) in human lung epithelial carcinoma cells, A549, and human non-small cell lung carcinoma cells, H1299. Tangeretin exerts a much better inhibitory activity than nobiletin against IL-1beta-induced production of COX-2 in A549 cells, and it effectively represses the constitutively expressed COX-2 in H1299. RT-PCR was used to investigate the transcriptional inhibition of COX-2 by tangeretin. COX-2 mRNA was rapidly induced by IL-1beta in 3h and markedly suppressed by tangeretin. IL-1beta-induced the activation of ERK, p38 MAPK, JNK, and AKT in A549 cells. COX-2 expression in response to IL-1beta was attenuated by pretreatment with SB203580, SP600125, and LY294002, but not with PD98059, suggesting the involvement of p38 MAPK, JNK, and PI3K in this response. Pretreatment of cells with tangeretin inhibited IL-1beta-induced p38 MAPK, JNK, and AKT phosphorylation and the downstream activation of NF-kappaB. These results may reveal that the tangeretin inhibition of IL-1beta-induced COX-2 expression in A549 cells is, at least in part, mediated through suppression of NF-kappaB transcription factor as well as through suppression of the signaling proteins of p38 MAPK, JNK, and PI3K, but not of ERK.

  5. Characterization of endogenous calcium responses in neuronal cell lines.

    PubMed

    Vetter, Irina; Lewis, Richard J

    2010-03-15

    An increasing number of putative therapeutic targets have been identified in recent years for the treatment of neuronal pathophysiologies including pain, epilepsy, stroke and schizophrenia. Many of these targets signal through calcium (Ca(2+)), either by directly facilitating Ca(2+) influx through an ion channel, or through activation of G proteins that couple to intracellular Ca(2+) stores or voltage-gated Ca(2+) channels. Immortalized neuronal cell lines are widely used models to study neuropharmacology. However, systematic pharmacological characterization of the receptors and ion channels expressed in these cell lines is lacking. In this study, we systematically assessed endogenous Ca(2+) signaling in response to addition of agonists at potential therapeutic targets in a range of cell lines of neuronal origin (ND7/23, SH-SY5Y, 50B11, F11 and Neuro2A cells) as well as HEK293 cells, a cell line commonly used for over-expression of receptors and ion channels. This study revealed a remarkable diversity of endogenous Ca(2+) responses in these cell lines, with one or more cell lines responding to addition of trypsin, bradykinin, ATP, nicotine, acetylcholine, histamine and neurotensin. Subtype specificity of these responses was inferred from agonist potency and the effect of receptor subtype specific antagonist. Surprisingly, HEK293 and SH-SY5Y cells responded to the largest number of agonists with potential roles in neuronal signaling. These findings have implications for the heterologous expression of neuronal receptors and ion channels in these cell lines, and highlight the potential of neuron-derived cell lines for the study of a range of endogenously expressed receptors and ion channels that signal through Ca(2+). Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.

  6. Chromatin status of apoptosis genes correlates with sensitivity to chemo-, immune- and radiation therapy in colorectal cancer cell lines.

    PubMed

    Benard, Anne; Janssen, Connie M; van den Elsen, Peter J; van Eggermond, Marja C J A; Hoon, Dave S B; van de Velde, Cornelis J H; Kuppen, Peter J K

    2014-12-01

    The apoptosis pathway of programmed cell death is frequently deregulated in cancer. An intact apoptosis pathway is required for proper response to anti-cancer treatment. We investigated the chromatin status of key apoptosis genes in the apoptosis pathway in colorectal cancer cell lines in relation to apoptosis induced by chemo-, immune- or radiation therapy. Using chromatin immunoprecipitation (ChIP), we measured the presence of transcription-activating histone modifications H3Ac and H3K4me3 and silencing modifications H3K9me3 and H3K27me3 at the gene promoter regions of key apoptosis genes Bax, Bcl2, Caspase-9, Fas (CD95) and p53. Cell lines DLD1, SW620, Colo320, Caco2, Lovo and HT29 were treated with cisplatin, anti-Fas or radiation. The apoptotic response was measured by flow cytometry using propidium iodide and annexin V-FITC. The chromatin status of the apoptosis genes reflected the activation status of the intrinsic (Bax, Bcl2, Caspase-9 and p53) and extrinsic (Fas) pathways. An active intrinsic apoptotic pathway corresponded to sensitivity to cisplatin and radiation treatment of cell lines DLD1, SW620 and Colo320. An active Fas promoter corresponded to an active extrinsic apoptotic pathway in cell line DLD1. mRNA expression data correlated with the chromatin status of the apoptosis genes as measured by ChIP. In conclusion, the results presented in this study indicate that the balance between activating and silencing histone modifications, reflecting the chromatin status of apoptosis genes, can be used to predict the response of tumor cells to different anti-cancer therapies and could provide a novel target to sensitize tumors to obtain adequate treatment responses.

  7. [Establishment of human embryonic stem cell lines and their therapeutic application].

    PubMed

    Suemori, Hirofumi

    2004-03-01

    Embryonic stem (ES) cell lines are pluripotent stem cell lines that can be propagated indefinitely in culture, retaining their potency to differentiate into every type of cell and tissue in the body. ES cell lines were first established from mouse blastocysts, and have been used for research in developmental biology. ES cells have been proven to be very valuable in the genetic modification of the mouse, especially in producing knockout mice. Since establishment of human ES cell lines was reported, their use in cell replacement therapies has been enthusiastically expected. There have been reports of the differentiation of several useful cell types from human ES cell lines, and clinical use of functional tissues and cells from human ES cells is anticipated. In Japan, there have also been many demands for the use of human ES cells in basic and pre-clinical research. We obtained governmental permission to establish human ES cell lines in April 2002 and started research using donated frozen embryos in January 2003. We successfully established three ES cell line from three blastocysts. These cell lines will be distributed at cost to researchers who have governmental permission to use human ES cells.

  8. Novel Immortal Cell Lines Support Cellular Heterogeneity in the Human Annulus Fibrosus

    PubMed Central

    van den Akker, Guus G. H.; Surtel, Don A. M.; Cremers, Andy; Richardson, Stephen M.; Hoyland, Judith A.; van Rhijn, Lodewijk W.

    2016-01-01

    Introduction Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors. Methods Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor β (TGFβ). Results The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGFβ induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections. Conclusion We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of

  9. Cell Proliferation and Epidermal Growth Factor Signaling in Non-small Cell Lung Adenocarcinoma Cell Lines Are Dependent on Rin1

    PubMed Central

    Tomshine, Jin C.; Severson, Sandra R.; Wigle, Dennis A.; Sun, Zhifu; Beleford, Daniah A. T.; Shridhar, Vijayalakshmi; Horazdovsky, Bruce F.

    2009-01-01

    Rin1 is a Rab5 guanine nucleotide exchange factor that plays an important role in Ras-activated endocytosis and growth factor receptor trafficking in fibroblasts. In this study, we show that Rin1 is expressed at high levels in a large number of non-small cell lung adenocarcinoma cell lines, including Hop62, H650, HCC4006, HCC827, EKVX, HCC2935, and A549. Rin1 depletion from A549 cells resulted in a decrease in cell proliferation that was correlated to a decrease in epidermal growth factor receptor (EGFR) signaling. Expression of wild type Rin1 but not the Rab5 guanine nucleotide exchange factor-deficient Rin1 (Rin1Δ) complemented the Rin1 depletion effects, and overexpression of Rin1Δ had a dominant negative effect on cell proliferation. Rin1 depletion stabilized the cell surface levels of EGFR, suggesting that internalization was necessary for robust signaling in A549 cells. In support of this conclusion, introduction of either dominant negative Rab5 or dominant negative dynamin decreased A549 proliferation and EGFR signaling. These data demonstrate that proper internalization and endocytic trafficking are critical for EGFR-mediated signaling in A549 cells and suggest that up-regulation of Rin1 in A549 cell lines may contribute to their proliferative nature. PMID:19570984

  10. Urtica dioica inhibits cell growth and induces apoptosis by targeting Ornithine decarboxylase and Adenosine deaminase as key regulatory enzymes in adenosine and polyamines homeostasis in human breast cancer cell lines.

    PubMed

    Fattahi, Sadegh; Ghadami, Elham; Asouri, Mohsen; Motevalizadeh Ardekanid, Ali; Akhavan-Niaki, Haleh

    2018-02-28

    Breast cancer is a heterogeneous and multifactorial disease with variable disease progression risk, and treatment response. Urtica dioica is a traditional herb used as an adjuvant therapeutic agent in cancer. In the present study, we have evaluated the effects of the aqueous extract of Urtica dioica on Adenosine deaminase (ADA) and Ornithine decarboxylase (ODC1) gene expression in MCF-7, MDA-MB-231, two breast cancer cell lines being estrogen receptor positive and estrogen receptor negative, respectively.  Cell lines were cultured in suitable media. After 24 h, different concentrations of the extract were added and after 72 h, ADA and ODC1 gene expression as well as BCL2 and BAX apoptotic genes were assessed by Taqman real time PCR assay. Cells viability was assessed by MTT assay, and apoptosis was also evaluated at cellular level. The intra and extracellular levels of ODC1 and ADA enzymes were evaluated by ELISA. Results showed differential expression of ADA and ODC1 genes in cancer cell lines. In MCF-7 cell line, the expression level of ADA was upregulated in a dose-dependent manner but its expression did not change in MDA-MB cell line. ODC1 expression was increased in both examined cell lines. Also, increased level of the apoptotic BAX/BCL-2 ratio was detected in MCF-7 cells. These results demonstrated that Urtica dioica induces apoptosis in breast cancer cells by influencing ODC1 and ADA genes expression, and estrogen receptors. The different responses observed with these cell lines could be due to the interaction of Urtica dioica as a phytoestrogen with the estrogen receptor.

  11. Molecular characterization of immortalized normal and dysplastic oral cell lines.

    PubMed

    Dickman, Christopher T D; Towle, Rebecca; Saini, Rajan; Garnis, Cathie

    2015-05-01

    Cell lines have been developed for modeling cancer and cancer progression. The molecular background of these cell lines is often unknown to those using them to model disease behaviors. As molecular alterations are the ultimate drivers of cell phenotypes, having an understanding of the molecular make-up of these systems is critical for understanding the disease biology modeled. Six immortalized normal, one immortalized dysplasia, one self-immortalized dysplasia, and two primary normal cell lines derived from oral tissues were analyzed for DNA copy number changes and changes in both mRNA and miRNA expression using SMRT-v.2 genome-wide tiling comparative genomic hybridization arrays, Agilent Whole Genome 4x44k expression arrays, and Exiqon V2.M-RT-PCR microRNA Human panels. DNA copy number alterations were detected in both normal and dysplastic immortalized cell lines-as well as in the single non-immortalized dysplastic cell line. These lines were found to have changes in expression of genes related to cell cycle control as well as alterations in miRNAs that are deregulated in clinical oral squamous cell carcinoma tissues. Immortal lines-whether normal or dysplastic-had increased disruption in expression relative to primary lines. All data are available as a public resource. Molecular profiling experiments have identified DNA, mRNA, and miRNA alterations for a panel of normal and dysplastic oral tissue cell lines. These data are a valuable resource to those modeling diseases of the oral mucosa, and give insight into the selection of model cell lines and the interpretation of data from those lines. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Malignant hematopoietic cell lines: in vitro models for the study of natural killer cell leukemia-lymphoma.

    PubMed

    Drexler, H G; Matsuo, Y

    2000-05-01

    Malignancies involving natural killer (NK) cells are rare disorders. The complexity of NK cell-involving disorders has only recently been appreciated. Modern classifications discern immature (precursor) from mature NK cell leukemias-lymphomas. Continuous NK leukemia-lymphoma cell lines represent important model systems to study these neoplasms. While there are a number of putative NK cell lines which are, however, either not characterized, not immortalized, non-malignant, non-NK, or plain false cell lines, six bona fide malignant NK cell lines have been established and are sufficiently well characterized: HANK1, KHYG-1, NK-92, NKL, NK-YS and YT. Except for YT which was derived from a not further defined acute lymphoblastic lymphoma, these cell lines were established from patients with various NK cell malignancies. Five of the six cell lines are constitutively interleukin-2-dependent. Their immunoprofile is remarkably similar: CD1-, CD2+, surface CD3 (but cytoplasmic CD3epsilon+), CD4-, CD5-, CD7+, CD8-, CD16-, CD56+, CD57-, TCRalphabeta-, TCRgammadelta-, negative for B cell and myelomonocytic markers. The immunoglobulin heavy chain and T cell receptor genes are all in germline configuration. All six lines show complex chromosomal alterations, with both numerical and structural aberrations, attesting to their malignant and monoclonal nature. Functionally, these cells which contain azurophilic granules in their cytoplasm are nearly universally positive in NK activity assays. Three of five cell lines are Epstein-Barr virus-positive (type II latency). The composite data on these six cell lines allow for the operational definition of a typical malignant NK cell line profile. NK leukemia-lymphoma cell lines will prove invaluable for studies of normal and malignant NK cell biology.

  13. Cytocompatibility of amorphous hydrogenated carbon nitride films deposited by CH4/N2 dielectric barrier discharge plasmas with respect to cell lines

    NASA Astrophysics Data System (ADS)

    Majumdar, Abhijit; Schröder, Karsten; Hippler, Rainer

    2008-10-01

    Special amorphous hydrogenated carbon nitride (a-H-CNx) films have been prepared on glass substrates for the investigation of adhesion and proliferation of different mammalian cell lines. CH4/N2 dielectric barrier discharge plasmas were applied to deposit a-H-CNx coatings at half of the atmospheric pressure. Film quality was modified by varying the CH4:N2 ratio and deposition duration. Chemical composition was determined by x-ray photoelectron spectroscopy and Fourier transformed infrared spectroscopy. The N/C ratio was in the range of 0.20-0.55. A very small surface roughness was verified by atomic force microscopy. Human embryonic kidney (HEK) and rat adrenal pheochromocytoma (PC12) cells were cultivated on the a-H-CNx films to investigate the cytocompatibility of these surfaces. The microscopic images show that both kinds of cells lines were unable to survive. The cells did not adhere to the surfaces, and most of the cells died after certain time spans. Increased amounts of nitrogen in the film induce an accelerated cell death. It is concluded, that the deposited CNx film behaves cytotoxic to HEK and PC12 cell lines.

  14. Aberrant patterns of X chromosome inactivation in a new line of human embryonic stem cells established in physiological oxygen concentrations.

    PubMed

    de Oliveira Georges, Juliana Andrea; Vergani, Naja; Fonseca, Simone Aparecida Siqueira; Fraga, Ana Maria; de Mello, Joana Carvalho Moreira; Albuquerque, Maria Cecília R Maciel; Fujihara, Litsuko Shimabukuro; Pereira, Lygia Veiga

    2014-08-01

    One of the differences between murine and human embryonic stem cells (ESCs) is the epigenetic state of the X chromosomes in female lines. Murine ESCs (mESCs) present two transcriptionally active Xs that will undergo the dosage compensation process of XCI upon differentiation, whereas most human ESCs (hESCs) spontaneously inactivate one X while keeping their pluripotency. Whether this reflects differences in embryonic development of mice and humans, or distinct culture requirements for the two kinds of pluripotent cells is not known. Recently it has been shown that hESCs established in physiological oxygen levels are in a stable pre-XCI state equivalent to that of mESCs, suggesting that culture in low oxygen concentration is enough to preserve that epigenetic state of the X chromosomes. Here we describe the establishment of two new lines of hESCs under physiological oxygen level and the characterization of the XCI state in the 46,XX line BR-5. We show that a fraction of undifferentiated cells present XIST RNA accumulation and single H3K27me foci, characteristic of the inactive X. Moreover, analysis of allele specific gene expression suggests that pluripotent BR-5 cells present completely skewed XCI. Our data indicate that physiological levels of oxygen are not sufficient for the stabilization of the pre-XCI state in hESCs.

  15. Establishment and characterization of feeder cell-dependent bovine fetal liver cell lines.

    PubMed

    Talbot, Neil C; Wang, Ling; Garrett, Wesley M; Caperna, Thomas J; Tang, Young

    2016-03-01

    The establishment and initial characterization of bovine fetal liver cell lines are described. Bovine fetal hepatocytes were cultured from the liver of a 34-d bovine fetus by physical disruption of the liver tissue. Released liver cells and clumps of cells were plated on STO (SIMS mouse strain, thioguanine- and ouabain-resistant) feeder layers and were cultured in a medium supplemented with 10% fetal bovine serum. After 2-3 wk, primary colonies of hepatocytes were observed by phase-contrast microscopic observation. Individual hepatocyte colonies were colony-cloned into independent bovine fetal liver (BFL) cell lines. Two cell lines, BFL-6 and BFL-9, grew the best of several isolates, and they were further characterized for growth potential and for hepatocyte morphology and function. The two cell lines were found to grow markedly better in the presence of the transforming growth factor (TGF)-beta inhibitor, SB431542 (1 μM). Their continuous culture also depended on a particular medium height-for T12.5 flasks, 3 ml total medium produced optimum growth. Higher or lower amounts of medium caused less cell growth or cessation of growth. The cell lines were propagated for over a year at split ratios of 1:2 or 1:3 at each passage until reaching senescence at approximately 30 passages. The cells were laterally polarized with well-developed canalicular spaces occurring between adjacent BFL cells. Treatment of the cultures with cyclic adenosine monophosphate (cAMP)-stimulating chemicals or peptides (e.g., forskolin or glucagon) caused physical expansion of the canaliculi between the cells within 15 min. The cells secreted a spectrum of serum proteins, were positive for the expression of several hepatocyte-specific genes, and converted ammonia to urea, although at a relatively low rate. The culture system provides an in vitro model of fetal bovine hepatocytes and is the first demonstration of the continuous culture of normal bovine hepatocytes as cell lines.

  16. *NO and oxyradical metabolism in new cell lines of rat brain capillary endothelial cells forming the blood-brain barrier.

    PubMed

    Blasig, I E; Giese, H; Schroeter, M L; Sporbert, A; Utepbergenov, D I; Buchwalow, I B; Neubert, K; Schönfelder, G; Freyer, D; Schimke, I; Siems, W E; Paul, M; Haseloff, R F; Blasig, R

    2001-09-01

    To investigate the relevance of *NO and oxyradicals in the blood-brain barrier (BBB), differentiated and well-proliferating brain capillary endothelial cells (BCEC) are required. Therefore, rat BCEC (rBCEC) were transfected with immortalizing genes. The resulting lines exhibited endothelial characteristics (factor VIII, angiotensin-converting enzyme, high prostacyclin/thromboxane release rates) and BBB markers (gamma-glutamyl transpeptidase, alkaline phosphatase). The control line rBCEC2 (mock transfected) revealed fibroblastoid morphology, less factor VIII, reduced gamma-glutamyl transpeptidase, weak radical defence, low prostanoid metabolism, and limited proliferation. Lines transfected with immortalizing genes (especially rBCEC4, polyoma virus large T antigen) conserved primary properties: epitheloid morphology, subcultivation with high proliferation rate under pure culture conditions, and powerful defence against reactive oxygen species (Mn-, Cu/Zn-superoxide dismutase, catalase, glutathione peroxidase, glutathione) effectively controlling radical metabolism. Only 100 microM H2O2 overcame this defence and stimulated the formation of eicosanoids similarly as in primary cells. Some BBB markers were expressed to a lower degree; however, cocultivation with astrocytes intensified these markers (e.g., alkaline phosphatase) and paraendothelial tightness, indicating induction of BBB properties. Inducible NO synthase was induced by a cytokine plus lipopolysaccharide mixture in all lines and primary cells, resulting in *NO release. Comparing the cell lines obtained, rBCEC4 are stable immortalized and reveal the best conservation of properties from primary cells, including enzymes producing or decomposing reactive species. These cells can be subcultivated in large amounts and, hence, they are suitable to study the role of radical metabolism in the BBB and in the cerebral microvasculature. Copyright 2001 Academic Press.

  17. Autophagy Protects Against Aminochrome-Induced Cell Death in Substantia Nigra-Derived Cell Line

    PubMed Central

    Paris, Irmgard; Muñoz, Patricia; Huenchuguala, Sandro; Couve, Eduardo; Sanders, Laurie H.; Greenamyre, John Timothy; Caviedes, Pablo; Segura-Aguilar, Juan

    2011-01-01

    Aminochrome, the precursor of neuromelanin, has been proposed to be involved in the neurodegeneration neuromelanin-containing dopaminergic neurons in Parkinson’s disease. We aimed to study the mechanism of aminochrome-dependent cell death in a cell line derived from rat substantia nigra. We found that aminochrome (50μM), in the presence of NAD(P)H-quinone oxidoreductase, EC 1.6.99.2 (DT)-diaphorase inhibitor dicoumarol (DIC) (100μM), induces significant cell death (62 ± 3%; p < 0.01), increase in caspase-3 activation (p < 0.001), release of cytochrome C, disruption of mitochondrial membrane potential (p < 0.01), damage of mitochondrial DNA, damage of mitochondria determined with transmission electron microscopy, a dramatic morphological change characterized as cell shrinkage, and significant increase in number of autophagic vacuoles. To determine the role of autophagy on aminochrome-induced cell death, we incubated the cells in the presence of vinblastine and rapamycin. Interestingly, 10μM vinblastine induces a 5.9-fold (p < 0.001) and twofold (p < 0.01) significant increase in cell death when the cells were incubated with 30μM aminochrome in the absence and presence of DIC, respectively, whereas 10μM rapamycin preincubated 24 h before addition of 50μM aminochrome in the absence and the presence of 100μM DIC induces a significant decrease (p < 0.001) in cell death. In conclusion, autophagy seems to be an important protective mechanism against two different aminochrome-induced cell deaths that initially showed apoptotic features. The cell death induced by aminochrome when DT-diaphorase is inhibited requires activation of mitochondrial pathway, whereas the cell death induced by aminochrome alone requires inhibition of autophagy-dependent degrading of damaged organelles and recycling through lysosomes. PMID:21427056

  18. Establishment of an ASPL-TFE3 renal cell carcinoma cell line (S-TFE).

    PubMed

    Hirobe, Megumi; Masumori, Naoya; Tanaka, Toshiaki; Kitamura, Hiroshi; Tsukamoto, Taiji

    2013-06-01

    Xp11 translocation renal cell carcinoma is a rare disease diagnosed in children and adolescents in the advanced stage with an aggressive clinical course. Various gene fusions including the transcription factor E3 (TFE3) gene located on chromosome X cause the tumor. We established an Xp11 translocation renal cell carcinoma cell line from a renal tumor in a 18-y-old Japanese female and named it "S-TFE." The cell line and its xenograft demonstrated definite gene fusion including TFE3. They showed strong nuclear staining for TFE3 in immunohistochemistry, TFE3 gene rearrangement in dual-color, break-apart FISH analysis and ASPL-TFE3 type 1 fusion transcripts detected by RT-PCR and direct DNA sequencing. Although many renal cell carcinoma cell lines have been established and investigated, only a few cell lines are recognized as Xp11.2 translocation carcinoma. S-TFE will be useful to examine the characteristics and drug susceptibility of Xp11 translocation renal cell carcinoma.

  19. Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility

    PubMed Central

    Wissing, Silke; Muñoz-Lopez, Martin; Macia, Angela; Yang, Zhiyuan; Montano, Mauricio; Collins, William; Garcia-Perez, Jose Luis; Moran, John V.; Greene, Warner C.

    2012-01-01

    Long interspersed element-1 (LINE-1 or L1) retrotransposons account for nearly 17% of human genomic DNA and represent a major evolutionary force that has reshaped the structure and function of the human genome. However, questions remain concerning both the frequency and the developmental timing of L1 retrotransposition in vivo and whether the mobility of these retroelements commonly results in insertional and post-insertional mechanisms of genomic injury. Cells exhibiting high rates of L1 retrotransposition might be especially at risk for such injury. We assessed L1 mRNA expression and L1 retrotransposition in two biologically relevant cell types, human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), as well as in control parental human dermal fibroblasts (HDFs). Full-length L1 mRNA and the L1 open reading frame 1-encoded protein (ORF1p) were readily detected in hESCs and iPSCs, but not in HDFs. Sequencing analysis proved the expression of human-specific L1 element mRNAs in iPSCs. Bisulfite sequencing revealed that the increased L1 expression observed in iPSCs correlates with an overall decrease in CpG methylation in the L1 promoter region. Finally, retrotransposition of an engineered human L1 element was ∼10-fold more efficient in iPSCs than in parental HDFs. These findings indicate that somatic cell reprogramming is associated with marked increases in L1 expression and perhaps increases in endogenous L1 retrotransposition, which could potentially impact the genomic integrity of the resultant iPSCs. PMID:21989055

  20. Stimulation of complement component C3 synthesis in macrophagelike cell lines by group B streptococci.

    PubMed Central

    Goodrum, K J

    1987-01-01

    Complement levels and complement activation are key determinants in streptococcus-induced inflammatory responses. Activation of macrophage functions, such as complement synthesis, by group B streptococci (GBS) was examined as a possible component of GBS-induced chronic inflammation. Using an enzyme-linked immunosorbent assay, secreted C3 from mouse macrophagelike cell lines (PU5-1.8 and J774A.1) was monitored after cultivation with GBS. Whole, heat-killed GBS (1 to 10 CFU per macrophage) of both type Ia and III strains induced 25 to 300% increases in secreted C3 in both cell lines after a 24-h cultivation. GBS-treated cell lines exhibited increases in secreted lysozyme (10%) and in cellular protein (25 to 50%). Inhibition of macrophage phagocytosis by cytochalasin B inhibited GBS stimulation of C3. Purified cell walls of GBS type III strain 603-79 (1 to 10 micrograms/ml) also enhanced C3 synthesis. Local enhancement of macrophage C3 production by ingested streptococci or by persistent cell wall antigens may serve to promote chronic inflammatory responses. PMID:3552987

  1. Establishment of immortalized murine mesothelial cells and a novel mesothelioma cell line.

    PubMed

    Blum, Walter; Pecze, László; Felley-Bosco, Emanuela; Worthmüller-Rodriguez, Janine; Wu, Licun; Vrugt, Bart; de Perrot, Marc; Schwaller, Beat

    2015-08-01

    Mesothelial cells are susceptible to asbestos fiber-induced cytotoxicity and on longer time scales to transformation; the resulting mesothelioma is a highly aggressive neoplasm that is considered as incurable at the present time Zucali et al. (Cancer Treatment Reviews 37:543-558, 2011). Only few murine cell culture models of immortalized mesothelial cells and mesothelioma cell lines exist to date. We generated SV40-immortalized cell lines derived from wild-type (WT) and neurofibromatosis 2 (merlin) heterozygote (Nf2+/-) mice, both on a commonly used genetic background, C57Bl/6J. All immortalized mesothelial clones consistently grow in DMEM supplemented with fetal bovine serum. Cells can be passaged for more than 40 times without any signs of morphological changes or a decrease in proliferation rate. The tumor suppressor gene NF2 is one of the most frequently mutated genes in human mesothelioma, but its detailed function is still unknown. Thus, these genotypically distinct cell lines likely relevant for malignant mesothelioma formation are expected to serve as useful in vitro models, in particular to compare with in vivo studies in mice of the same genotype. Furthermore, we generated a novel murine mesothelioma cell line RN5 originating from an Nf2+/- mouse subjected to repeated crocidolite exposure. RN5 cells are highly tumorigenic.

  2. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, D.; Oborn, C.J.; Li, M.L.

    1987-09-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appearedmore » to represent myoepithelial cells. The cell lines were examined for expression of {beta}-casein mRNA in the presence or absence of prolactin. The inducibility of {beta}-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types.« less

  3. Performance characteristics of qualified cell lines for isolation and propagation of influenza viruses for vaccine manufacturing.

    PubMed

    Donis, Ruben O; Davis, C Todd; Foust, Angie; Hossain, M Jaber; Johnson, Adam; Klimov, Alexander; Loughlin, Rosette; Xu, Xiyan; Tsai, Theodore; Blayer, Simone; Trusheim, Heidi; Colegate, Tony; Fox, John; Taylor, Beverly; Hussain, Althaf; Barr, Ian; Baas, Chantal; Louwerens, Jaap; Geuns, Ed; Lee, Min-Shi; Venhuizen, Odewijk; Neumeier, Elisabeth; Ziegler, Thedi

    2014-11-12

    Cell culture is now available as a method for the production of influenza vaccines in addition to eggs. In accordance with currently accepted practice, viruses recommended as candidates for vaccine manufacture are isolated and propagated exclusively in hens' eggs prior to distribution to manufacturers. Candidate vaccine viruses isolated in cell culture are not available to support vaccine manufacturing in mammalian cell bioreactors so egg-derived viruses have to be used. Recently influenza A (H3N2) viruses have been difficult to isolate directly in eggs. As mitigation against this difficulty, and the possibility of no suitable egg-isolated candidate viruses being available, it is proposed to consider using mammalian cell lines for primary isolation of influenza viruses as candidates for vaccine production in egg and cell platforms. To investigate this possibility, we tested the antigenic stability of viruses isolated and propagated in cell lines qualified for influenza vaccine manufacture and subsequently investigated antigen yields of such viruses in these cell lines at pilot-scale. Twenty influenza A and B-positive, original clinical specimens were inoculated in three MDCK cell lines. The antigenicity of recovered viruses was tested by hemagglutination inhibition using ferret sera against contemporary vaccine viruses and the amino acid sequences of the hemagglutinin and neuraminidase were determined. MDCK cell lines proved to be highly sensitive for virus isolation. Compared to the virus sequenced from the original specimen, viruses passaged three times in the MDCK lines showed up to 2 amino acid changes in the hemagglutinin. Antigenic stability was also established by hemagglutination inhibition titers comparable to those of the corresponding reference virus. Viruses isolated in any of the three MDCK lines grew reasonably well but variably in three MDCK cells and in VERO cells at pilot-scale. These results indicate that influenza viruses isolated in vaccine

  4. Performance characteristics of qualified cell lines for isolation and propagation of influenza viruses for vaccine manufacturing

    PubMed Central

    Donis, Ruben O.; Chen, i-Mei; Davis, C Todd; Foust, Angie; Hossain, M. Jaber; Johnson, Adam; Klimov, Alexander; Loughlin, Rosette; Xu, Xiyan; Tsai, Theodore; Blayer, Simone; Trusheim, Heidi; Colegate, Tony; Fox, John; Taylor, Beverly; Hussain, Althaf; Barr, Ian; Baas, Chantal; Louwerens, Jaap; Geuns, Ed; Lee, Min-Shi; Venhuizen, odewijk; Neumeier, Elisabeth; Ziegler, Thedi

    2018-01-01

    Cell culture is now available as a method for the production of influenza vaccines in addition to eggs. In accordance with currently accepted practice, viruses recommended as candidates for vaccine manufacture are isolated and propagated exclusively in hens' eggs prior to distribution to manufacturers. Candidate vaccine viruses isolated in cell culture are not available to support vaccine manufacturing in mammalian cell bioreactors so egg-derived viruses have to be used. Recently influenza A (H3N2) viruses have been difficult to isolate directly in eggs. As mitigation against this difficulty, and the possibility of no suitable egg-isolated candidate viruses being available, it is proposed to consider using mammalian cell lines for primary isolation of influenza viruses as candidates for vaccine production in egg and cell platforms. To investigate this possibility, we tested the antigenic stability of viruses isolated and propagated in cell lines qualified for influenza vaccine manufacture and subsequently investigated antigen yields of such viruses in these cell lines at pilot-scale. Twenty influenza A and B-positive, original clinical specimens were inoculated in three MDCK cell lines. The antigenicity of recovered viruses was tested by hemagglutination inhibition using ferret sera against contemporary vaccine viruses and the amino acid sequences of the hemagglutinin and neuraminidase were determined. MDCK cell lines proved to be highly sensitive for virus isolation. Compared to the virus sequenced from the original specimen, viruses passaged three times in the MDCK lines showed up to 2 amino acid changes in the hemagglutinin. Antigenic stability was also established by hemagglutination inhibition titers comparable to those of the corresponding reference virus. Viruses isolated in any of the three MDCK lines grew reasonably well but variably in three MDCK cells and in VERO cells at pilot-scale. These results indicate that influenza viruses isolated in vaccine

  5. Repression of hTERT transcription by the introduction of chromosome 3 into human oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishio, Sachiyo; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, 683-8503; Ohira, Takahito

    Telomerase is a ribonucleoprotein enzyme that maintains telomere length. Telomerase activity is primarily attributed to the expression of telomerase reverse transcriptase (TERT). It has been reported that introduction of an intact human chromosome 3 into the human oral squamous cell carcinoma cell line HSC3 suppresses the tumorigenicity of these cells. However, the mechanisms that regulate tumorigenicity have not been elucidated. To determine whether this reduction in tumorigenicity was accompanied by a reduction in telomerase activity, we investigated the transcriptional activation of TERT in HSC3 microcell hybrid clones with an introduced human chromosome 3 (HSC3#3). HSC#3 cells showed inhibition of hTERT transcriptionmore » compared to that of the parental HSC3 cells. Furthermore, cell fusion experiments showed that hybrids of HSC3 cells and cells of the RCC23 renal carcinoma cell line, which also exhibits suppression of TERT transcription by the introduction of human chromosome 3, also displayed suppressed TERT transcription. These results suggested that human chromosome 3 may carry functionally distinct, additional TERT repressor genes. - Highlights: • hTERT mRNA expression level decreased in the chromosome 3 introduced HSC3 clones. • hTERT mRNA expression level was tend to suppressed in HSC3 and RCC23 hybrid cells. • We provide evidence that human chromosome 3 carries at least two distinct hTERT regulatory factors.« less

  6. Lymphoblast-derived integration-free iPSC line AD-TREM2-3 from a 74 year-old Alzheimer's disease patient expressing the TREM2 p.R47H variant.

    PubMed

    Martins, Soraia; Yigit, Hatice; Bohndorf, Martina; Graffmann, Nina; Fiszl, Aurelian Robert; Wruck, Wasco; Sleegers, Kristel; Van Broeckhoven, Christine; Adjaye, James

    2018-06-01

    Human lymphoblast cells from a male diagnosed with Alzheimer's disease (AD) expressing the TREM2 p.R47H variant were used to generate integration-free induced pluripotent stem cells (iPSCs) by over-expressing episomal-based plasmids harbouring OCT4, SOX2, KLF4, LIN28, L-MYC and p53 shRNA. The derived iPSC line - AD-TREM2-3 was defined as pluripotent based on (i) expression of pluripotency-associated markers (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptome of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.940. Copyright © 2018. Published by Elsevier B.V.

  7. Validation of a recombinant human bactericidal/permeability-increasing protein (hBPI) expression vector using murine mammary gland tumor cells and the early development of hBPI transgenic goat embryos.

    PubMed

    Gui, Tao; Liu, Xing; Tao, Jia; Chen, Jianwen; Li, Yunsheng; Zhang, Meiling; Wu, Ronghua; Zhang, Yuanliang; Peng, Kaisong; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai

    2013-12-01

    Human bactericidal/permeability-increasing protein (hBPI) is the only antibacterial peptide which acts against both gram-negative bacteria and neutralizes endotoxins in human polymorphonuclear neutrophils; therefore, hBPI is of great value in clinical applications. In the study, we constructed a hBPI expression vector (pBC1-Loxp-Neo-Loxp-hBPI) containing the full-length hBPI coding sequence which could be specifically expressed in the mammary gland. To validate the function of the vector, in vitro cultured C127 (mouse mammary Carcinoma Cells) were transfected with the vector, and the transgenic cell clones were selected to express hBPI by hormone induction. The mRNA and protein expression of hBPI showed that the constructed vector was effective and suitable for future application in producing mammary gland bioreactor. Then, female and male goat fibroblasts were transfected with the vector, and two male and two female transgenic clonal cell lines were obtained. Using the transgenic cell lines as nuclear donors for somatic cell nuclear transfer, the reconstructed goat embryos produced from all four clones could develop to blastocysts in vitro. In conclusion, we constructed and validated an efficient mammary gland-specific hBPI expression vector, pBC1-Loxp-Neo-Loxp-hBPI, and transgenic hBPI goat embryos were successfully produced, laying foundations for future production of recombinant hBPI in goat mammary gland. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Fish cell lines as a tool for the ecotoxicity assessment and ranking of engineered nanomaterials.

    PubMed

    Bermejo-Nogales, A; Fernández-Cruz, M L; Navas, J M

    2017-11-01

    Risk assessment of engineered nanomaterials (ENMs) is being hindered by the sheer production volume of these materials. In this regard, the grouping and ranking of ENMs appears as a promising strategy. Here we sought to evaluate the usefulness of in vitro systems based on fish cell lines for ranking a set of ENMs on the basis of their cytotoxicity. We used the topminnow (Poeciliopsis lucida) liver cell line (PLHC-1) and the rainbow trout (Oncorhynchus mykiss) fibroblast-like gonadal cell line (RTG-2). ENMs were obtained from the EU Joint Research Centre repository. The size frequency distribution of ENM suspensions in cell culture media was characterized. Cytotoxicity was evaluated after 24 h of exposure. PLHC-1 cells exhibited higher sensitivity to the ENMs than RTG-2 cells. ZnO-NM was found to exert toxicity mainly by altering lysosome function and metabolic activity, while multi-walled carbon nanotubes (MWCNTs) caused plasma membrane disruption at high concentrations. The hazard ranking for toxicity (ZnO-NM > MWCNT ≥ CeO 2 -NM = SiO 2 -NM) was inversely related to the ranking in size detected in culture medium. Our findings reveal the suitability of fish cell lines for establishing hazard rankings of ENMs in the framework of integrated approaches to testing and assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The surface pH of glass ionomer cavity lining agents.

    PubMed

    Woolford, M J

    1989-12-01

    It is considered that acid release from the surface of glass ionomer (polyalkenoate) cements may be associated with early pulpal sensitivity following the use of these materials. This study was carried out to examine the surface pH of different types of glass ionomer lining cements using a flat-ended pH electrode. It was found that the surface pH remains low for this group of materials during the first hour of setting. Different types of glass ionomer lining cement were also shown to behave differently when considering acid release from the surface. Conclusions regarding the behaviour of glass ionomers should only be made with reference to the specific material tested.

  10. Proton-coupled organic cation antiporter-mediated uptake of apomorphine enantiomers in human brain capillary endothelial cell line hCMEC/D3.

    PubMed

    Okura, Takashi; Higuchi, Kei; Kitamura, Atsushi; Deguchi, Yoshiharu

    2014-01-01

    R(-)-Apomorphine is a dopamine agonist used for rescue management of motor function impairment associated with levodopa therapy in Parkinson's disease patients. The aim of this study was to examine the role of proton-coupled organic cation antiporter in uptake of R(-)-apomorphine and its S-enantiomer in human brain, using human endothelial cell line hCMEC/D3 as a model. Uptake of R(-)- or S(+)-apomorphine into hCMEC/D3 cells was measured under various conditions to evaluate its time-, concentration-, energy- and ion-dependency. Inhibition by selected organic cations was also examined. Uptakes of both R(-)- and S(+)-apomorphine increased with time. The initial uptake velocities of R(-)- and S(+)-apomorphine were concentration-dependent, with similar Km and Vmax values. The cell-to-medium (C/M) ratio of R(-)-apomorphine was significantly reduced by pretreatment with sodium azide, but was not affected by replacement of extracellular sodium ion with N-methylglucamine or potassium. Intracellular alkalization markedly reduced the uptake, while intracellular acidification increased it, suggesting that the uptake is driven by an oppositely directed proton gradient. The C/M ratio was significantly decreased by amantadine, verapamil, pyrilamine and diphenhydramine (substrates or inhibitors of proton-coupled organic cation antiporter), while tetraethylammonium (substrate of organic cation transporters (OCTs)) and carnitine (substrate of carnitine/organic cation transporter 2; (OCTN2)) had no effect. R(-)-Apomorphine uptake was competitively inhibited by diphenhydramine. Our results indicate that R(-)-apomorphine transport in human blood-brain barrier (BBB) model cells is similar to S(+)-apomorphine uptake. The transport was dependent on an oppositely directed proton gradient, but was sodium- or membrane potential-independent. The transport characteristics were consistent with involvement of the previously reported proton-coupled organic cation antiporter.

  11. In vitro characterization of pralidoxime transport and acetylcholinesterase reactivation across MDCK cells and stem cell-derived human brain microvascular endothelial cells (BC1-hBMECs).

    PubMed

    Gallagher, Erin; Minn, Il; Chambers, Janice E; Searson, Peter C

    2016-07-11

    Current therapies for organophosphate poisoning involve administration of oximes, such as pralidoxime (2-PAM), that reactivate the enzyme acetylcholinesterase. Studies in animal models have shown a low concentration in the brain following systemic injection. To assess 2-PAM transport, we studied transwell permeability in three Madin-Darby canine kidney (MDCKII) cell lines and stem cell-derived human brain microvascular endothelial cells (BC1-hBMECs). To determine whether 2-PAM is a substrate for common brain efflux pumps, experiments were performed in the MDCKII-MDR1 cell line, transfected to overexpress the P-gp efflux pump, and the MDCKII-FLuc-ABCG2 cell line, transfected to overexpress the BCRP efflux pump. To determine how transcellular transport influences enzyme reactivation, we developed a modified transwell assay where the inhibited acetylcholinesterase enzyme, substrate, and reporter are introduced into the basolateral chamber. Enzymatic activity was inhibited using paraoxon and parathion. The permeability of 2-PAM is about 2 × 10(-6) cm s(-1) in MDCK cells and about 1 × 10(-6) cm s(-1) in BC1-hBMECs. Permeability is not influenced by pre-treatment with atropine. In addition, 2-PAM is not a substrate for the P-gp or BCRP efflux pumps. The low permeability explains poor brain penetration of 2-PAM and therefore the slow enzyme reactivation. This elucidates one of the reasons for the necessity of sustained intravascular (IV) infusion in response to organophosphate poisoning.

  12. Overexpression of B7-H3 augments anti-apoptosis of colorectal cancer cells by Jak2-STAT3.

    PubMed

    Zhang, Ting; Jiang, Bo; Zou, Shi-Tao; Liu, Fen; Hua, Dong

    2015-02-14

    To investigate the role of the overexpression of B7-H3 in apoptosis in colorectal cancer cell lines and the underlying molecular mechanisms. SW620 cells that highly overexpressed B7-H3 (SW620-B7-H3-EGFP) and HCT8 cells stably transfected with B7-H3 shRNA (HCT8-shB7-H3) were previously constructed in our laboratory. Cells transfected with pIRES2-EGFP were used as negative controls (SW620-NC and HCT8-NC). Real-time PCR and western blotting analysis were used to detect the mRNA and protein expressions of the apoptosis regulator proteins Bcl-2, Bcl-xl and Bax. A cell proliferation assay was used to evaluate the survival rate and drug sensitivity of the cells. The effect of drug resistance was detected by a cell cycle assay. Active caspase-3 western blotting was used to reflect the anti-apoptotic ability of cells. Western blotting was also performed to determine the expression of proteins associated with the Jak2-STAT3 signaling pathway and the apoptosis regulator proteins after the treatment with AG490, a Jak2 specific inhibitor, in B7-H3 overexpressing cells. The data were analyzed by GraphPad Prism 6 using a non-paired t-test. Whether by overexpression in SW620 cells or downregulation in HCT8, B7-H3 significantly affected the expression of anti- and pro-apoptotic proteins, at both the transcriptional and translational levels, compared with the negative control (P < 0.05). A cell proliferation assay revealed that B7-H3 overexpression increased the drug resistance of cells and resulted in a higher survival rate (P < 0.05). In addition, the results of cell cycle and active caspase-3 western blotting proved that B7-H3 overexpression inhibited apoptosis in colorectal cancer cell lines (P < 0.05). B7-H3 overexpression improved Jak2 and STAT3 phosphorylation and, in turn, increased the expression of the downstream anti-apoptotic proteins B-cell CLL/lymphoma 2 (Bcl-2) and Bcl-xl, based on western blotting (P < 0.05). After treating B7-H3 overexpressing cells with the Jak2

  13. In vitro culture of human osteosarcoma cell lines: a comparison of functional characteristics for cell lines cultured in medium without and with fetal calf serum.

    PubMed

    Bruserud, Oystein; Tronstad, Karl Johan; Berge, Rolf

    2005-06-01

    Experimental in vitro models including well-characterised cell lines can be used to identify possible new therapeutic targets for the treatment of osteosarcoma. Culture media including inactivated serum is often recommended for in vitro culture of osteosarcoma cells, but the serum component then represents a nonstandardised parameter including a wide range of unidentified mediators. To improve the standardisation we have investigated whether serum-free culture media can be used in experimental in vitro studies of osteosarcoma cell lines. The seven osteosarcoma cell lines Cal72, SJSA-1, Saos-2, SK-ES-1, U2OS, 143.98.2, and KHOS-32IH were cultured in vitro in various serum-free media and media supplemented with 10% heat-inactivated fetal calf serum (FCS). Although proliferation often was relatively low in serum-free media (X-vivo 10, X-vivo 15, X-vivo 20, Stem Span SFEM), some cell lines (Cal72, KHOS-32IH, Saos-2) showed proliferation comparable with the recommended FCS-containing media even when using serum-free conditions. The optimal serum-free medium then varied between cell lines. We also compared 6 different FCS-containing media (including Stem Span with 10% FCS) and the optimal FCS-containing medium varied between cell lines. However, all cell lines proliferated well in Stem Span with FCS, and this medium was regarded as optimal for four of the lines. FCS could not be replaced by fatty acids or low density lipoprotein when testing the Stem Span medium. The release of a wide range of soluble mediators showed only minor differences when using serum-free and FCS-containing media (including Stem Span with and without FCS), and serum-free Stem Span could also be used for in vitro studies of mitogen-stimulated T cell activation in the presence of accessory osteosarcoma cells. The use of Stem Span with 10% FCS allowed the release of a wide range of chemokines by osteosarcoma cell lines (Cal72, SJSA-1), and the chemokine release profile was very similar to the

  14. X-shooter spectroscopy of young stellar objects. VI. H I line decrements

    NASA Astrophysics Data System (ADS)

    Antoniucci, S.; Nisini, B.; Giannini, T.; Rigliaco, E.; Alcalá, J. M.; Natta, A.; Stelzer, B.

    2017-03-01

    Context. Hydrogen recombination emission lines commonly observed in accreting young stellar objects represent a powerful tracer for the gas conditions in the circumstellar structures (accretion columns, and winds or jets). Aims: Here we perform a study of the H I decrements and line profiles, from the Balmer and Paschen H I lines detected in the X-shooter spectra of a homogeneous sample of 36 T Tauri objects in Lupus, the accretion and stellar properties of which were already derived in a previous work. We aim to obtain information on the H I gas physical conditions to delineate a consistent picture of the H I emission mechanisms in pre-main sequence low-mass stars (M∗< 2 M⊙). Methods: We have empirically classified the sources based on their H I line profiles and decrements. We identified four Balmer decrement types (which we classified as 1, 2, 3, and 4) and three Paschen decrement types (A, B, and C), characterised by different shapes. We first discussed the connection between the decrement types and the source properties and then compared the observed decrements with predictions from recently published local line excitation models. Results: We identify a few groups of sources that display similar H I properties. One third of the objects show lines with narrow symmetric profiles, and present similar Balmer and Paschen decrements (straight decrements, types 2 and A). Lines in these sources are consistent with optically thin emission from gas with hydrogen densities of order 109 cm-3 and 5000 < T < 15 000 K. These objects are associated with low mass accretion rates. Type 4 (L-shaped) Balmer and type B Paschen decrements are found in conjunction with very wide line profiles and are characteristic of strong accretors, with optically thick emission from high-density gas (log nH > 11 cm-3). Type 1 (curved) Balmer decrements are observed only in three sub-luminous sources viewed edge-on, so we speculate that these are actually type 2 decrements that are reddened

  15. Cytometric analysis, genetic manipulation and antibiotic selection of the snail embryonic cell line Bge from Biomphalaria glabrata, the intermediate host of Schistosoma mansoni.

    PubMed

    Rinaldi, Gabriel; Yan, Hongbin; Nacif-Pimenta, Rafael; Matchimakul, Pitchaya; Bridger, Joanna; Mann, Victoria H; Smout, Michael J; Brindley, Paul J; Knight, Matty

    2015-07-01

    The invertebrate cell line, Bge, from embryos of the snail Biomphalaria glabrata, remains to date the only established cell line from any species of the Phylum Mollusca. Since its establishment in 1976 by Eder Hansen, few studies have focused on profiling its cytometrics, growth characteristics or sensitivity to xenobiotics. Bge cells are reputed to be challenging to propagate and maintain. Therefore, even though this cell line is a noteworthy resource, it has not been studied widely. With growing interest in functional genomics, including genetic transformation, to elucidate molecular aspects of the snail intermediate hosts responsible for transmission of schistosomiasis, and aiming to enhance the convenience of maintenance of this molluscan cell line, we deployed the xCELLigene real time approach to study Bge cells. Doubling times for three isolates of Bge, termed CB, SL and UK, were longer than for mammalian cell lines - longer than 40 h in complete Bge medium supplemented with 7% fetal bovine serum at 25°C, ranging from ∼42 h to ∼157 h when 40,000 cells were seeded. To assess the potential of the cells for genetic transformation, antibiotic selection was explored. Bge cells were sensitive to the aminonucleoside antibiotic puromycin (from Streptomyces alboniger) from 5 μg/ml to 200 ng/ml, displaying a half maximal inhibitory concentration (IC50) of ∼1.91 μg/ml. Sensitivity to puromycin, and a relatively quick kill time (<48 h in 5 μg/ml) facilitated use of this antibiotic, together with the cognate resistance gene (puromycin N-acetyl-transferase) for selection of Bge cells transformed with the PAC gene (puroR). Bge cells transfected with a plasmid encoding puroR were partially rescued when cultured in the presence of 5 μg/ml of puromycin. These findings pave the way for the development of functional genomic tools applied to the host-parasite interaction during schistosomiasis and neglected tropical trematodiases at large. Copyright © 2015 Australian

  16. MicroRNA-140-3p inhibits proliferation, migration and invasion of lung cancer cells by targeting ATP6AP2.

    PubMed

    Kong, Xiao-Mei; Zhang, Ge-Hong; Huo, Yun-Kui; Zhao, Xiao-Hong; Cao, Da-Wei; Guo, Shu-Fang; Li, Ai-Min; Zhang, Xin-Ri

    2015-01-01

    MicroRNAs are small noncoding RNA molecules that regulate gene expression at the post-transcriptional level. Compelling evidence reveals that there is a causative link between microRNAs deregulation and lung cancer development and metastasis. The aim of present study was to explore the function of miR-140-3p in the development and metastasis of lung cancer cell. Using real-time PCR, we detected the miR-140-3p expression of lung cancer tissues and its pared non-lung cancer tissue. Then, we evaluated the role of miR-140-3p in cell proliferation, invasion and migration using MTT, colony formation assay, Transwell invasion and Transwell migration assay in lung cancer cell lines. As a result, miR-140-3p expression level was lower in lung cancer tissues compared to adjacent normal lung cancer tissue. After miR-140-3p was upregulated in A549 or H1299 cells, cell proliferation, invasion and migration was notably attenuated. Furthermore, we identified ATP6AP2, which is associated with adenosine triphosphatases (ATPases), was a directly target of miR-140-3p in lung cancer cells. In conclusion, our data suggest miR-140-3p/ATP6AP2 axis might act as a potential therapeutic biomarker for lung cancer.

  17. MicroRNA-140-3p inhibits proliferation, migration and invasion of lung cancer cells by targeting ATP6AP2

    PubMed Central

    Kong, Xiao-Mei; Zhang, Ge-Hong; Huo, Yun-Kui; Zhao, Xiao-Hong; Cao, Da-Wei; Guo, Shu-Fang; Li, Ai-Min; Zhang, Xin-Ri

    2015-01-01

    MicroRNAs are small noncoding RNA molecules that regulate gene expression at the post-transcriptional level. Compelling evidence reveals that there is a causative link between microRNAs deregulation and lung cancer development and metastasis. The aim of present study was to explore the function of miR-140-3p in the development and metastasis of lung cancer cell. Using real-time PCR, we detected the miR-140-3p expression of lung cancer tissues and its pared non-lung cancer tissue. Then, we evaluated the role of miR-140-3p in cell proliferation, invasion and migration using MTT, colony formation assay, Transwell invasion and Transwell migration assay in lung cancer cell lines. As a result, miR-140-3p expression level was lower in lung cancer tissues compared to adjacent normal lung cancer tissue. After miR-140-3p was upregulated in A549 or H1299 cells, cell proliferation, invasion and migration was notably attenuated. Furthermore, we identified ATP6AP2, which is associated with adenosine triphosphatases (ATPases), was a directly target of miR-140-3p in lung cancer cells. In conclusion, our data suggest miR-140-3p/ATP6AP2 axis might act as a potential therapeutic biomarker for lung cancer. PMID:26722475

  18. The effect of ultraviolet radiation on choroidal melanocytes and melanoma cell lines: cell survival and matrix metalloproteinase production.

    PubMed

    Lai, Kenneth; Di Girolamo, Nick; Conway, Robert M; Jager, Martine J; Madigan, Michele C

    2007-05-01

    Ultraviolet radiation (UVR) can induce DNA damage and regulate the expression of factors important for tumour growth and metastasis, including matrix metalloproteinases (MMPs). Epidemiological studies suggest that chronic UVR exposure, especially during early adulthood, may be a risk factor in patients with choroidal melanoma. However, the effects of UV(R)-B on human choroidal melanocyte survival and growth are unknown. In this study, we investigated if UV(R)-B affected the in vitro survival, growth and MMP production of choroidal melanocytes and melanoma cells. Cultures of primary choroidal melanocytes and melanoma cell lines (OCM-1 and OCM-8) were exposed to UV(R)-B (0-30 mJ/cm(2)). The cell morphology and growth were examined, and cell viability was assessed using an MTT assay. Gelatin zymography was used to assess the enzymatic activity for MMP-2 and -9 in conditioned media following UV(R)-B treatment. UV(R)-B > or =20 mJ/cm(2) was cytotoxic for choroidal melanocytes. Cytotoxic doses of 5 to 10 mJ/cm(2) were found for OCM-8 and OCM-1 melanoma cell lines. Low levels of UV(R)-B (2.5 and 3.5 mJ/cm(2)) significantly reduced melanoma cell viability after 48 h, although melanocyte viability was not affected by doses of UV(R)-B <10 mJ/cm(2). Conditioned media from melanoma cells and melanocytes displayed pro-MMP-2 activity independent of UV(R)-B. Control and UV(R)-B-treated OCM-1 cells secreted active MMP-2 up to 72 h. Pro-MMP-9 activity was seen from 36 h for control and UV(R)-B-treated OCM-1 and OCM-8 cells. Melanocytes appeared more resistant to physiological doses of UV(R)-B than melanoma cells; the potential of melanocytes to initially survive DNA damage following UV(R)-B exposure may be relevant to the subsequent transformation of melanocytes to melanomas. Although UV(R)-B did not induce the production and/or activation of MMP-2 and -9 in melanocytes or melanoma cells, we are currently investigating whether DNA damage-response genes such as p53 and p21 can be

  19. Decellularized extracellular matrices produced from immortal cell lines derived from different parts of the placenta support primary mesenchymal stem cell expansion

    PubMed Central

    Kusuma, Gina D.; Brennecke, Shaun P.; O’Connor, Andrea J.; Kalionis, Bill

    2017-01-01

    Mesenchymal stem/stromal cells (MSCs) exhibit undesired phenotypic changes during ex vivo expansion, limiting production of the large quantities of high quality primary MSCs needed for both basic research and cell therapies. Primary MSCs retain many desired MSC properties including proliferative capacity and differentiation potential when expanded on decellularized extracellular matrix (dECM) prepared from primary MSCs. However, the need to use low passage number primary MSCs (passage 3 or lower) to produce the dECM drastically limits the utility and impact of this technology. Here, we report that primary MSCs expanded on dECM prepared from high passage number (passage 25) human telomerase reverse transcriptase (hTERT) transduced immortal MSC cell lines also exhibit increased proliferation and osteogenic differentiation. Two hTERT-transduced placenta-derived MSC cell lines, CMSC29 and DMSC23 [derived from placental chorionic villi (CMSCs) and decidua basalis (DMSCs), respectively], were used to prepare dECM-coated substrates. These dECM substrates showed structural and biochemical differences. Primary DMSCs cultured on dECM-DMSC23 showed a three-fold increase in cell number after 14 days expansion in culture and increased osteogenic differentiation compared with controls. Primary CMSCs cultured on the dECM-DMSC23 exhibited a two-fold increase in cell number and increased osteogenic differentiation. We conclude that immortal MSC cell lines derived from different parts of the placenta produce dECM with varying abilities for supporting increased primary MSC expansion while maintaining important primary MSC properties. Additionally, this is the first demonstration of using high passage number cells to produce dECM that can promote primary MSC expansion, and this advancement greatly increases the feasibility and applicability of dECM-based technologies. PMID:28152107

  20. Decellularized extracellular matrices produced from immortal cell lines derived from different parts of the placenta support primary mesenchymal stem cell expansion.

    PubMed

    Kusuma, Gina D; Brennecke, Shaun P; O'Connor, Andrea J; Kalionis, Bill; Heath, Daniel E

    2017-01-01

    Mesenchymal stem/stromal cells (MSCs) exhibit undesired phenotypic changes during ex vivo expansion, limiting production of the large quantities of high quality primary MSCs needed for both basic research and cell therapies. Primary MSCs retain many desired MSC properties including proliferative capacity and differentiation potential when expanded on decellularized extracellular matrix (dECM) prepared from primary MSCs. However, the need to use low passage number primary MSCs (passage 3 or lower) to produce the dECM drastically limits the utility and impact of this technology. Here, we report that primary MSCs expanded on dECM prepared from high passage number (passage 25) human telomerase reverse transcriptase (hTERT) transduced immortal MSC cell lines also exhibit increased proliferation and osteogenic differentiation. Two hTERT-transduced placenta-derived MSC cell lines, CMSC29 and DMSC23 [derived from placental chorionic villi (CMSCs) and decidua basalis (DMSCs), respectively], were used to prepare dECM-coated substrates. These dECM substrates showed structural and biochemical differences. Primary DMSCs cultured on dECM-DMSC23 showed a three-fold increase in cell number after 14 days expansion in culture and increased osteogenic differentiation compared with controls. Primary CMSCs cultured on the dECM-DMSC23 exhibited a two-fold increase in cell number and increased osteogenic differentiation. We conclude that immortal MSC cell lines derived from different parts of the placenta produce dECM with varying abilities for supporting increased primary MSC expansion while maintaining important primary MSC properties. Additionally, this is the first demonstration of using high passage number cells to produce dECM that can promote primary MSC expansion, and this advancement greatly increases the feasibility and applicability of dECM-based technologies.