Sample records for h13 tool steel

  1. Thermomechanical modelling of laser surface glazing for H13 tool steel

    NASA Astrophysics Data System (ADS)

    Kabir, I. R.; Yin, D.; Tamanna, N.; Naher, S.

    2018-03-01

    A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress-strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.

  2. Laser Cladding of CPM Tool Steels on Hardened H13 Hot-Work Steel for Low-Cost High-Performance Automotive Tooling

    NASA Astrophysics Data System (ADS)

    Chen, J.; Xue, L.

    2012-06-01

    This paper summarizes our research on laser cladding of high-vanadium CPM® tool steels (3V, 9V, and 15V) onto the surfaces of low-cost hardened H13 hot-work tool steel to substantially enhance resistance against abrasive wear. The results provide great potential for fabricating high-performance automotive tooling (including molds and dies) at affordable cost. The microstructure and hardness development of the laser-clad tool steels so obtained are presented as well.

  3. Hardness of H13 Tool Steel After Non-isothermal Tempering

    NASA Astrophysics Data System (ADS)

    Nelson, E.; Kohli, A.; Poirier, D. R.

    2018-04-01

    A direct method to calculate the tempering response of a tool steel (H13) that exhibits secondary hardening is presented. Based on the traditional method of presenting tempering response in terms of isothermal tempering, we show that the tempering response for a steel undergoing a non-isothermal tempering schedule can be predicted. Experiments comprised (1) isothermal tempering, (2) non-isothermal tempering pertaining to a relatively slow heating to process-temperature and (3) fast-heating cycles that are relevant to tempering by induction heating. After establishing the tempering response of the steel under simple isothermal conditions, the tempering response can be applied to non-isothermal tempering by using a numerical method to calculate the tempering parameter. Calculated results are verified by the experiments.

  4. Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania

    2007-05-01

    Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.

  5. Toolpath strategy for cutter life improvement in plunge milling of AISI H13 tool steel

    NASA Astrophysics Data System (ADS)

    Adesta, E. Y. T.; Avicenna; hilmy, I.; Daud, M. R. H. C.

    2018-01-01

    Machinability of AISI H13 tool steel is a prominent issue since the material has the characteristics of high hardenability, excellent wear resistance, and hot toughness. A method of improving cutter life of AISI H13 tool steel plunge milling by alternating the toolpath and cutting conditions is proposed. Taguchi orthogonal array with L9 (3^4) resolution will be employed with one categorical factor of toolpath strategy (TS) and three numeric factors of cutting speed (Vc), radial depth of cut (ae ), and chip load (fz ). It is expected that there are significant differences for each application of toolpath strategy and each cutting condition factor toward the cutting force and tool wear mechanism of the machining process, and medial axis transform toolpath could provide a better tool life improvement by a reduction of cutting force during machining.

  6. Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil

    2015-05-01

    This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.

  7. Modeling the Spray Forming of H13 Steel Tooling

    NASA Astrophysics Data System (ADS)

    Lin, Yaojun; McHugh, Kevin M.; Zhou, Yizhang; Lavernia, Enrique J.

    2007-07-01

    On the basis of a numerical model, the temperature and liquid fraction of spray-formed H13 tool steel are calculated as a function of time. Results show that a preheated substrate at the appropriate temperature can lead to very low porosity by increasing the liquid fraction in the deposited steel. The calculated cooling rate can lead to a microstructure consisting of martensite, lower bainite, retained austenite, and proeutectoid carbides in as-spray-formed material. In the temperature range between the solidus and liquidus temperatures, the calculated temperature of the spray-formed material increases with increasing substrate preheat temperature, resulting in a very low porosity by increasing the liquid fraction of the deposited steel. In the temperature region where austenite decomposition occurs, the substrate preheat temperature has a negligible influence on the cooling rate of the spray-formed material. On the basis of the calculated results, it is possible to generate sufficient liquid fraction during spray forming by using a high growth rate of the deposit without preheating the substrate, and the growth rate of the deposit has almost no influence on the cooling rate in the temperature region of austenite decomposition.

  8. Influence of Powder Bed Preheating on Microstructure and Mechanical Properties of H13 Tool Steel SLM Parts

    NASA Astrophysics Data System (ADS)

    Mertens, R.; Vrancken, B.; Holmstock, N.; Kinds, Y.; Kruth, J.-P.; Van Humbeeck, J.

    Powder bed preheating is a promising development in selective laser melting (SLM), mainly applied to avoid large thermal stresses in the material. This study analyses the effect of in-process preheating on microstructure, mechanical properties and residual stresses during SLM of H13 tool steel. Sample parts are produced without any preheating and are compared to the corresponding parts made with preheating at 100°, 200°, 300°, and 400°C. Interestingly, internal stresses at the top surface of the parts evolve from compressive (-324MPa) without preheating to tensile stresses (371MPa) with preheating at 400°C. Nevertheless, application of powder bed preheating results in a more homogeneous microstructure with better mechanical properties compared to H13 SLM parts produced without preheating. The fine bainitic microstructure leads to hardness values of 650-700Hv and ultimate tensile strength of 1965MPa, which are comparable to or even better than those of conventionally made and heat treated H13 tool steel.

  9. Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel

    NASA Astrophysics Data System (ADS)

    Koneshlou, Mahdi; Meshinchi Asl, Kaveh; Khomamizadeh, Farzad

    2011-01-01

    This paper focuses on the effects of low temperature (subzero) treatments on microstructure and mechanical properties of H13 hot work tool steel. Cryogenic treatment at -72 °C and deep cryogenic treatment at -196 °C were applied and it was found that by applying the subzero treatments, the retained austenite was transformed to martensite. As the temperature was decreased more retained austenite was transformed to martensite and it also led to smaller and more uniform martensite laths distributed in the microstructure. The deep cryogenic treatment also resulted in precipitation of more uniform and very fine carbide particles. The microstructural modification resulted in a significant improvement on the mechanical properties of the H13 tool steel.

  10. Surface modification of AISI H13 tool steel by laser cladding with NiTi powder

    NASA Astrophysics Data System (ADS)

    Norhafzan, B.; Aqida, S. N.; Chikarakara, E.; Brabazon, D.

    2016-04-01

    This paper presents laser cladding of NiTi powder on AISI H13 tool steel surface for surface properties enhancement. The cladding process was conducted using Rofin DC-015 diffusion-cooled CO2 laser system with wavelength of 10.6 µm. NiTi powder was pre-placed on H13 tool steel surface. The laser beam was focused with a spot size of 90 µm on the sample surface. Laser parameters were set to 1515 and 1138 W peak power, 18 and 24 % duty cycle and 2300-3500 Hz laser pulse repetition frequency. Hardness properties of the modified layer were characterized by Wilson Hardness tester. Metallographic study and chemical composition were conducted using field emission scanning electron microscope and energy-dispersive X-ray spectrometer (EDXS) analysis. Results showed that hardness of NiTi clad layer increased three times that of the substrate material. The EDXS analysis detected NiTi phase presence in the modified layer up to 9.8 wt%. The metallographic study shows high metallurgical bonding between substrate and modified layer. These findings are significant to both increased hardness and erosion resistance of high-wear-resistant components and elongating their lifetime.

  11. Two dimensional finite element thermal model of laser surface glazing for H13 tool steel

    NASA Astrophysics Data System (ADS)

    Kabir, I. R.; Yin, D.; Naher, S.

    2016-10-01

    A two dimensional (2D) transient thermal model with line-heat-source was developed by Finite Element Method (FEM) for laser surface glazing of H13 tool steel using commercial software-ANSYS 15. The geometry of the model was taken as a transverse circular cross-section of cylindrical specimen. Two different power levels (300W, 200W) were used with 0.2mm width of laser beam and 0.15ms exposure time. Temperature distribution, heating and cooling rates, and the dimensions of modified surface were analysed. The maximum temperatures achieved were 2532K (2259°C) and 1592K (1319°C) for laser power 300W and 200W respectively. The maximum cooling rates were 4.2×107 K/s for 300W and 2×107 K/s for 200W. Depths of modified zone increased with increasing laser power. From this analysis, it can be predicted that for 0.2mm beam width and 0.15ms time exposer melting temperature of H13 tool steel is achieved within 200-300W power range of laser beam in laser surface glazing.

  12. Conversion electron Mössbauer spectroscopy of plasma immersion ion implanted H13 tool steel

    NASA Astrophysics Data System (ADS)

    Terwagne, G.; Collins, G. A.; Hutchings, R.

    1994-12-01

    Conversion electron Mössbauer spectroscopy (CEMS) has been used to investigate nitride formation in AISI-H13 tool steel after treatment by plasma immersion ion implantation (PI3) at 350 °C. With only slight variation in the plasma conditions, it is possible to influence the kinetics of nitride precipitation so as to obtain nitrogen concentrations that range from those associated with ɛ-Fe2N through ɛ-Fe3N to γ'-Fe4N. The CEMS results enable a more definite identification of the nitrides than that obtained by glancing-angle X-ray diffraction and nuclear reaction analysis alone.

  13. Effects of Deep Cryogenic Treatment on the Wear Resistance and Mechanical Properties of AISI H13 Hot-Work Tool Steel

    NASA Astrophysics Data System (ADS)

    Çiçek, Adem; Kara, Fuat; Kıvak, Turgay; Ekici, Ergün; Uygur, İlyas

    2015-11-01

    In this study, a number of wear and tensile tests were performed to elucidate the effects of deep cryogenic treatment on the wear behavior and mechanical properties (hardness and tensile strength) of AISI H13 tool steel. In accordance with this purpose, three different heat treatments (conventional heat treatment (CHT), deep cryogenic treatment (DCT), and deep cryogenic treatment and tempering (DCTT)) were applied to tool steel samples. DCT and DCTT samples were held in nitrogen gas at -145 °C for 24 h. Wear tests were conducted on a dry pin-on-disk device using two loads of 60 and 80 N, two sliding velocities of 0.8 and 1 m/s, and a wear distance of 1000 m. All test results showed that DCT improved the adhesive wear resistance and mechanical properties of AISI H13 steel. The formation of small-sized and uniformly distributed carbide particles and the transformation of retained austenite to martensite played an important role in the improvements in the wear resistance and mechanical properties. After cleavage fracture, the surfaces of all samples were characterized by the cracking of primary carbides, while the DCT and DCTT samples displayed microvoid formation by decohesion of the fine carbides precipitated during the cryo-tempering process.

  14. Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate

    NASA Astrophysics Data System (ADS)

    Amanov, Auezhan; Pyun, Young-Sik

    2016-07-01

    In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.

  15. Effects of heat treatment on mechanical properties of h13 steel

    NASA Astrophysics Data System (ADS)

    Guanghua, Yan; Xinmin, Huang; Yanqing, Wang; Xingguo, Qin; Ming, Yang; Zuoming, Chu; Kang, Jin

    2010-12-01

    Heat treatment on the mechanical properties of H13 hot working die steel for die casting is discussed. The H13 steel for die casting was treated by different temperatures of vacuum quenching, tempering, and secondary tempering to investigate its mechanical properties. Strength, plasticity, hardness, and impact toughness of the H13 hot working die steel for die casting were measured. Microstructure, grain size, and carbide particle size after heat treatment have a great impact on the mechanical properties of H13 hot working die steel for die casting. The microstructure of the H13 was analyzed by scanning electron microscopy (SEM) and by a metallographic microscope. It is found that H13 exhibits excellent mechanical properties after vacuum quenching at 1050°C and twice tempering at 600°C.

  16. Optimization and Simulation of SLM Process for High Density H13 Tool Steel Parts

    NASA Astrophysics Data System (ADS)

    Laakso, Petri; Riipinen, Tuomas; Laukkanen, Anssi; Andersson, Tom; Jokinen, Antero; Revuelta, Alejandro; Ruusuvuori, Kimmo

    This paper demonstrates the successful printing and optimization of processing parameters of high-strength H13 tool steel by Selective Laser Melting (SLM). D-Optimal Design of Experiments (DOE) approach is used for parameter optimization of laser power, scanning speed and hatch width. With 50 test samples (1×1×1cm) we establish parameter windows for these three parameters in relation to part density. The calculated numerical model is found to be in good agreement with the density data obtained from the samples using image analysis. A thermomechanical finite element simulation model is constructed of the SLM process and validated by comparing the calculated densities retrieved from the model with the experimentally determined densities. With the simulation tool one can explore the effect of different parameters on density before making any printed samples. Establishing a parameter window provides the user with freedom for parameter selection such as choosing parameters that result in fastest print speed.

  17. Laser Surface Modification of H13 Die Steel using Different Laser Spot Sizes

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Naher, S.; Brabazon, D.

    2011-05-01

    This paper presents a laser surface modification process of AISI H13 tool steel using three sizes of laser spot with an aim to achieve reduced grain size and surface roughness. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). Metallographic study and image analysis were done to measure the grain size and the modified surface roughness was measured using two-dimensional surface profilometer. From metallographic study, the smallest grain sizes measured by laser modified surface were between 0.51 μm and 2.54 μm. The minimum surface roughness, Ra, recorded was 3.0 μm. This surface roughness of the modified die steel is similar to the surface quality of cast products. The grain size correlation with hardness followed the findings correlate with Hall-Petch relationship. The potential found for increase in surface hardness represents an important method to sustain tooling life.

  18. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    NASA Astrophysics Data System (ADS)

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, José C.; Shivpuri, Rajiv

    2007-04-01

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.

  19. Effect of biomimetic non-smooth unit morphology on thermal fatigue behavior of H13 hot-work tool steel

    NASA Astrophysics Data System (ADS)

    Meng, Chao; Zhou, Hong; Cong, Dalong; Wang, Chuanwei; Zhang, Peng; Zhang, Zhihui; Ren, Luquan

    2012-06-01

    The thermal fatigue behavior of hot-work tool steel processed by a biomimetic coupled laser remelting process gets a remarkable improvement compared to untreated sample. The 'dowel pin effect', the 'dam effect' and the 'fence effect' of non-smooth units are the main reason of the conspicuous improvement of the thermal fatigue behavior. In order to get a further enhancement of the 'dowel pin effect', the 'dam effect' and the 'fence effect', this study investigated the effect of different unit morphologies (including 'prolate', 'U' and 'V' morphology) and the same unit morphology in different sizes on the thermal fatigue behavior of H13 hot-work tool steel. The results showed that the 'U' morphology unit had the optimum thermal fatigue behavior, then the 'V' morphology which was better than the 'prolate' morphology unit; when the unit morphology was identical, the thermal fatigue behavior of the sample with large unit sizes was better than that of the small sizes.

  20. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  1. Structural properties of H13 tool steel parts produced with use of selective laser melting technology

    NASA Astrophysics Data System (ADS)

    Šafka, J.; Ackermann, M.; Voleský, L.

    2016-04-01

    This paper deals with establishing of building parameters for 1.2344 (H13) tool steel processed using Selective Laser Melting (SLM) technology with layer thickness of 50 µm. In the first part of the work, testing matrix of models in the form of a cube with chamfered edge were built under various building parameters such as laser scanning speed and laser power. Resulting models were subjected to set of tests including measurement of surface roughness, inspection of inner structure with aid of Light Optical Microscopy and Scanning Electron Microscopy and evaluation of micro-hardness. These tests helped us to evaluate an influence of changes in building strategy to the properties of the resulting model. In the second part of the work, mechanical properties of the H13 steel were examined. For this purpose, the set of samples in the form of “dog bone” were printed under three different alignments towards the building plate and tested on universal testing machine. Mechanical testing of the samples should then reveal if the different orientation and thus different layering of the material somehow influence its mechanical properties. For this type of material, the producer provides the parameters for layer thickness of 30 µm only. Thus, our 50 µm building strategy brings shortening of the building time which is valuable especially for large models. Results of mechanical tests show slight variation in mechanical properties for various alignment of the sample.

  2. High Power Picosecond Laser Surface Micro-texturing of H13 Tool Steel and Pattern Replication onto ABS Plastics via Injection Moulding

    NASA Astrophysics Data System (ADS)

    Otanocha, Omonigho B.; Li, Lin; Zhong, Shan; Liu, Zhu

    2016-03-01

    H13 tool steels are often used as dies and moulds for injection moulding of plastic components. Certain injection moulded components require micro-patterns on their surfaces in order to modify the physical properties of the components or for better mould release to reduce mould contamination. With these applications it is necessary to study micro-patterning to moulds and to ensure effective pattern transfer and replication onto the plastic component during moulding. In this paper, we report an investigation into high average powered (100 W) picosecond laser interactions with H13 tool steel during surface micro-patterning (texturing) and the subsequent pattern replication on ABS plastic material through injection moulding. Design of experiments and statistical modelling were used to understand the influences of laser pulse repetition rate, laser fluence, scanning velocity, and number of scans on the depth of cut, kerf width and heat affected zones (HAZ) size. The characteristics of the surface patterns are analysed. The process parameter interactions and significance of process parameters on the processing quality and efficiency are characterised. An optimum operating window is recommended. The transferred geometry is compared with the patterns generated on the dies. A discussion is made to explain the characteristics of laser texturing and pattern replication on plastics.

  3. Direct Metal Deposition of H13 Tool Steel on Copper Alloy Substrate: Parametric Investigation

    NASA Astrophysics Data System (ADS)

    Imran, M. Khalid; Masood, S. H.; Brandt, Milan

    2015-12-01

    Over the past decade, researchers have demonstrated interest in tribology and prototyping by the laser aided material deposition process. Laser aided direct metal deposition (DMD) enables the formation of a uniform clad by melting the powder to form desired component from metal powder materials. In this research H13 tool steel has been used to clad on a copper alloy substrate using DMD. The effects of laser parameters on the quality of DMD deposited clad have been investigated and acceptable processing parameters have been determined largely through trial-and-error approaches. The relationships between DMD process parameters and the product characteristics such as porosity, micro-cracks and microhardness have been analysed using scanning electron microscope (SEM), image analysis software (ImageJ) and microhardness tester. It has been found that DMD parameters such as laser power, powder mass flow rate, feed rate and focus size have an important role in clad quality and crack formation.

  4. Atomic diffusion in laser surface modified AISI H13 steel

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-07-01

    This paper presents a laser surface modification process of AISI H13 steel using 0.09 and 0.4 mm of laser spot sizes with an aim to increase surface hardness and investigate elements diffusion in laser modified surface. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, pulse repetition frequency (PRF), and overlap percentage. The hardness properties were tested at 981 mN force. Metallographic study and energy dispersive X-ray spectroscopy (EDXS) were performed to observe presence of elements and their distribution in the sample surface. Maximum hardness achieved in the modified surface was 1017 HV0.1. Change of elements composition in the modified layer region was detected in the laser modified samples. Diffusion possibly occurred for C, Cr, Cu, Ni, and S elements. The potential found for increase in surface hardness represents an important method to sustain tooling life. The EDXS findings signify understanding of processing parameters effect on the modified surface composition.

  5. Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process

    NASA Astrophysics Data System (ADS)

    Park, Jun Seok; Park, Joo Hyun; Lee, Min-Gyu; Sung, Ji Hyun; Cha, Kyoung Je; Kim, Da Hye

    2016-05-01

    Among the many additive manufacturing technologies, the directed energy deposition (DED) process has attracted significant attention because of the application of metal products. Metal deposited by the DED process has different properties than wrought metal because of the rapid solidification rate, the high thermal gradient between the deposited metal and substrate, etc. Additionally, many operating parameters, such as laser power, beam diameter, traverse speed, and powder mass flow rate, must be considered since the characteristics of the deposited metal are affected by the operating parameters. In the present study, the effect of energy input on the characteristics of H13 and D2 steels deposited by a direct metal tooling process based on the DED process was investigated. In particular, we report that the hardness of the deposited H13 and D2 steels decreased with increasing energy input, which we discuss by considering microstructural observations and thermodynamics.

  6. Temperature and composition profile during double-track laser cladding of H13 tool steel

    NASA Astrophysics Data System (ADS)

    He, X.; Yu, G.; Mazumder, J.

    2010-01-01

    Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.

  7. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders

    PubMed Central

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-01-01

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles. PMID:28773603

  8. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders.

    PubMed

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-06-16

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  9. Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2011-01-01

    This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 μm and 150 μm. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 μm. The maximum hardness achieved was between 728 and 905 HV0.1. These findings are significant to modern development of hard coatings for wear resistant applications.

  10. Superplasticity of Annealed H13 Steel

    PubMed Central

    Duan, Zhenxin; Pei, Wen; Gong, Xuebo; Chen, Hua

    2017-01-01

    H13 steel is a widely used hot work die material. A new type of hot working method is imperative to develop complex and precise dies. In this paper, the heat treatment of H13 steel (AISI) was carried out by annealing, the final structure is a point or spherical pearlite, and the grain size is about 30–40 μm. The tensile properties of the annealed microstructure were investigated at 650, 750, and 850 °C with the strain rates of 1 × 10−3 s−1, 5 × 10−4 s−1, and 1 × 10−4 s−1. The tensile fracture and microstructure were analyzed by SEM and HREM. The results show that the tensile samples reach superplasticity at the strain rate of 1 × 10−4 s−1 in the temperature range of 750–850 °C. When the temperature is 850 °C, the maximum elongation rate reaches 112.5%. This demonstrates the possibility of making superplastic forming molds. During the tensile process, the refined M23C6 and other high hardness carbides which are dispersed uniformly in the matrix, effectively inhibits grain growth and hinders dislocation movement, leading to the improvement of plasticity. PMID:28773231

  11. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  12. An investigation of phase transformation and crystallinity in laser surface modified H13 steel

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-03-01

    This paper presents a laser surface modification process of AISI H13 tool steel using 0.09, 0.2 and 0.4 mm size of laser spot with an aim to increase hardness properties. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). X-ray diffraction analysis (XRD) was conducted to measure crystallinity of the laser-modified surface. X-ray diffraction patterns of the samples were recorded using a Bruker D8 XRD system with Cu K α ( λ=1.5405 Å) radiation. The diffraction patterns were recorded in the 2 θ range of 20 to 80°. The hardness properties were tested at 981 mN force. The laser-modified surface exhibited reduced crystallinity compared to the un-processed samples. The presence of martensitic phase was detected in the samples processed using 0.4 mm spot size. Though there was reduced crystallinity, a high hardness was measured in the laser-modified surface. Hardness was increased more than 2.5 times compared to the as-received samples. These findings reveal the phase source of the hardening mechanism and grain composition in the laser-modified surface.

  13. Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process

    NASA Astrophysics Data System (ADS)

    Park, Jun Seok; Lee, Min-Gyu; Cho, Yong-Jae; Sung, Ji Hyun; Jeong, Myeong-Sik; Lee, Sang-Kon; Choi, Yong-Jin; Kim, Da Hye

    2016-01-01

    The directed energy deposition process has been mainly applied to re-work and the restoration of damaged steel. Differences in material properties between the base and the newly deposited materials are unavoidable, which may affect the mechanical properties and durability of the part. We investigated the effect of heat treatment on the characteristics of tool steel deposited by the DED process. We prepared general tool steel materials of H13 and D2 that were deposited onto heat-treated substrates of H13 and D2, respectively, using a direct metal tooling process. The hardness and microstructure of the deposited steel before and after heat treatment were investigated. The hardness of the deposited H13 steel was higher than that of wrought H13 steel substrate, while that of the deposited D2 was lower than that of wrought D2. The evolution of the microstructures by deposition and heat treatment varied depending on the materials. In particular, the microstructure of the deposited D2 steel after heat treatment consisted of fine carbides in tempered martensite and it is expected that the deposited D2 steel will have isotropic properties and high hardness after heat treatment.

  14. Study of the Effect of Trace Mg Additions on Carbides in Die Steel H13

    NASA Astrophysics Data System (ADS)

    Li, Ji; Li, Jing; Wang, Liang-liang; Zhu, Qin-tian

    2016-09-01

    Carbides in annealed steel H13 without magnesium and with a micro-addition of magnesium (0.0010%) are studied. Trace amounts of magnesium strengthen carbide segregation and reduce their size. Carbides phases M7C3, M6 C, and M(C, N) are detected in steel H13, and this agrees with results of thermodynamic calculations.

  15. The thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The effects of welding, five selected surface coatings, and stress relieving on the thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies were studied using eleven thermal fatigue specimens. Stress relieving was conducted after each 5,000 cycle interval at 1050 F for three hours. Four thermal fatigue specimens were welded with H-13 or maraging steel welding rods at ambient and elevated temperatures and subsequently, subjected to different post-weld heat treatments. Crack patterns were examined at 5,000, 10,000, and 15,000 cycles. The thermal fatigue resistance is expressed by two crack parameters which are the average maximum crack and the average cracked area. The results indicate that a significant improvement in thermal fatigue resistance over the control was obtained from the stress-relieving treatment. Small improvements were obtained from the H-13 welded specimens and from a salt bath nitrogen and carbon-surface treatment. The other surface treatments and welded specimens either did not affect or had a detrimental influence on the thermal fatigue properties of the H-13 die steel.

  16. 13. Building H9; view of stainless steel probes and vacuum ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Building H-9; view of stainless steel probes and vacuum line, looking W. (Ryan and Harms) - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  17. The Characteristics and Generating Mechanism of Large Precipitates in Ti-Containing H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Xie, You; Cheng, Guoguang; Chen, Lie; Zhang, Yandong; Yan, Qingzhong

    2017-02-01

    The characteristics of large precipitates in H13 tool steel with 0.015wt% Ti were studied. The result shows that three types of phases larger than 1 μm exist in the as-cast ingot, that is, (Ti, V) (C, N) type phase, (V, Mo, Cr)C type phase and sulfide. (Ti, V) (C, N) type phase could be further classified as the homogeneous Ti-rich one and the Ti-V-rich one in which Ti/V ratio gradually changes. (V, Mo, Cr)C type phase contains the V-rich one and the Mo-Cr-rich one. The compositional characteristics in all of them have little relation with the cutting position or cooling rate. The precipitating process could be well described through calculation by Thermo-Calc software. During solidification, the primary phase (Ti, V)(C, N) first starts to precipitate in the form of Ti-rich carbonitride. With the development of solidification, the ratio of Ti decreases and that of V increases. Then the primary phase Ti-V-rich (Ti, V)(C, N) and V-rich (V, Mo, Cr)C appears successively. Mo-Cr-rich (V, Mo, Cr)C phase does not precipitate until the solidification process reaches to the end. Sulfide precipitates before (V, Mo, Cr)C type phase and it could act as the nucleus of (V, Mo, Cr)C.

  18. Mechanical characteristics of a tool steel layer deposited by using direct energy deposition

    NASA Astrophysics Data System (ADS)

    Baek, Gyeong Yun; Shin, Gwang Yong; Lee, Eun Mi; Shim, Do Sik; Lee, Ki Yong; Yoon, Hi-Seak; Kim, Myoung Ho

    2017-07-01

    This study focuses on the mechanical characteristics of layered tool steel deposited using direct energy deposition (DED) technology. In the DED technique, a laser beam bonds injected metal powder and a thin layer of substrate via melting. In this study, AISI D2 substrate was hardfaced with AISI H13 and M2 metal powders for mechanical testing. The mechanical and metallurgical characteristics of each specimen were investigated via microstructure observation and hardness, wear, and impact tests. The obtained characteristics were compared with those of heat-treated tool steel. The microstructures of the H13- and M2-deposited specimens show fine cellular-dendrite solidification structures due to melting and subsequent rapid cooling. Moreover, the cellular grains of the deposited M2 layer were smaller than those of the H13 structure. The hardness and wear resistance were most improved in the M2-deposited specimen, yet the H13-deposited specimen had higher fracture toughness than the M2-deposited specimen and heat-treated D2.

  19. Effect of Heat Treatment on Microstructure and Mechanical Properties of Laser Additively Manufactured AISI H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Chen, ChangJun; Yan, Kai; Qin, Lanlan; Zhang, Min; Wang, Xiaonan; Zou, Tao; Hu, Zengrong

    2017-11-01

    The effect of heat treatment on microstructure and mechanical properties (microhardness, wear resistance and impact toughness) of laser additively manufactured AISI H13 tool steel was systemically investigated. To understand the variation of microstructure and mechanical properties under different heat treatments, the as-deposited samples were treated at 350, 450, 550, 600 and 650 °C/2 h, respectively. Microstructure and phase transformation were investigated through optical microscopy, scanning electron microscope and transmission electron microscope. The mechanical properties were characterized by nanoindentation tests, Charpy tests and high-temperature wear tests. The microstructure of as-deposited samples consisted of martensite, ultrafine carbides and retained austenite. After the tempering treatment, the martensite was converted into tempered martensite and some fine alloy carbides which precipitated in the matrix. When treated at 550 °C, the greatest hardness and nanohardness were 600 HV0.3 and 6119.4 MPa due to many needle-like carbides precipitation. The value of hardness increased firstly and then decreased when increasing the temperature. When tempered temperatures exceeded 550 °C, the carbides became coarse, and martensitic matrix recrystallized at the temperature of 650 °C. The least impact energy was 6.0 J at a temperature of 550 °C. Samples tempered at 550 °C had larger wear volume loss than that of others. Wear resistances of all samples under atmospheric condition at 400 °C showed an oxidation mechanism.

  20. Wear Characteristics and Mechanisms of H13 Steel with Various Tempered Structures

    NASA Astrophysics Data System (ADS)

    Cui, X. H.; Wang, S. Q.; Wei, M. X.; Yang, Z. R.

    2011-08-01

    Wear tests of H13 steel with various tempering microstructures were performed under atmospheric conditions at room temperature (RT), 200 °C, and 400 °C. The wear characteristics and wear mechanisms of various tempered microstructures of the steel were focused by investigating the structure, morphology, and composition of the worn surfaces. Under atmospheric conditions at RT, 200 °C, and 400 °C, adhesive wear, mild oxidation wear, and oxidation wear prevailed, respectively. The wear rate at 200 °C was substantially lower than those at RT and 400 °C due to the protection of tribo-oxides. In mild oxidation wear, the tempered microstructures of the steel presented almost no obvious influence on the wear resistance. However, in adhesive wear and oxidation wear, the wear resistance strongly depended on the tempered microstructures of the steel. The steel tempered at 600-650 °C presented pronouncedly lower wear rates than the one tempered at 200-550 or 700 °C. It can be suggested that the wear resistance of the steel was closely related with its fracture resistance.

  1. Heat Treatment Optimization and Properties Correlation for H11-Type Hot-Work Tool Steel

    NASA Astrophysics Data System (ADS)

    Podgornik, B.; Puš, G.; Žužek, B.; Leskovšek, V.; Godec, M.

    2018-02-01

    The aim of this research was to determine the effect of vacuum-heat-treatment process parameters on the material properties and their correlations for low-Si-content AISI H11-type hot-work tool steel using a single Circumferentially Notched and fatigue Pre-cracked Tensile Bar (CNPTB) test specimen. The work was also focused on the potential of the proposed approach for designing advanced tempering diagrams and optimizing the vacuum heat treatment and design of forming tools. The results show that the CNPTB specimen allows a simultaneous determination and correlation of multiple properties for hot-work tool steels, with the compression and bending strength both increasing with hardness, and the strain-hardening exponent and bending strain increasing with the fracture toughness. On the other hand, the best machinability and surface quality of the hardened hot-work tool steel are obtained for hardness values between 46 and 50 HRC and a fracture toughness below 60 MPa√m.

  2. Heat Treatment Optimization and Properties Correlation for H11-Type Hot-Work Tool Steel

    NASA Astrophysics Data System (ADS)

    Podgornik, B.; Puš, G.; Žužek, B.; Leskovšek, V.; Godec, M.

    2017-12-01

    The aim of this research was to determine the effect of vacuum-heat-treatment process parameters on the material properties and their correlations for low-Si-content AISI H11-type hot-work tool steel using a single Circumferentially Notched and fatigue Pre-cracked Tensile Bar (CNPTB) test specimen. The work was also focused on the potential of the proposed approach for designing advanced tempering diagrams and optimizing the vacuum heat treatment and design of forming tools. The results show that the CNPTB specimen allows a simultaneous determination and correlation of multiple properties for hot-work tool steels, with the compression and bending strength both increasing with hardness, and the strain-hardening exponent and bending strain increasing with the fracture toughness. On the other hand, the best machinability and surface quality of the hardened hot-work tool steel are obtained for hardness values between 46 and 50 HRC and a fracture toughness below 60 MPa√m.

  3. Fatigue crack growth at elevated temperature 316 stainless steel and H-13 steel

    NASA Technical Reports Server (NTRS)

    Chen, W. C.; Liu, H. W.

    1976-01-01

    Crack growths were measured at elevated temperatures under four types of loading: pp, pc, cp, and cc. In H-13 steel, all these four types of loading gave nearly the same crack growth rates, and the length of hold time had negligible effects. In AISI 316 stainless steel, the hold time effects on crack growth rate were negligible if the loading was tension-tension type; however, these effects were significant in reversed bending load, and the crack growth rates under these four types of loading varied considerably. Both tensile and compressive hold times caused increased crack growth rate, but the compressive hold period was more deleterious than the tensile one. Metallographic examination showed that all the crack paths under different types of loading were largely transgranular for both CTS tension-tension specimens and SEN reversed cantilever bending specimens. In addition, an electric potential technique was used to monitor crack growth at elevated temperature.

  4. Comparison of surface roughness and chip characteristics obtained under different modes of lubrication during hard turning of AISI H13 tool work steel.

    NASA Astrophysics Data System (ADS)

    Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.

    2016-09-01

    Surface roughness is one of the important parameters, which not only affects the service life of a component but also serves as a good index of machinability. Near Dry Machining, methods (NDM) are considered as sustainable alternative for workshops trying to bring down their dependence on cutting fluids and the hazards associated with their indiscriminate usage. The present work presents a comparison of the surface roughness and chip characteristics during hard turning of AISI H13 tool work steel using hard metal inserts under two popular NDM techniques namely the minimal fluid application and the Minimum Quantity Lubrication technique(MQL) using an experiment designed based on Taguchi's techniques. The statistical method of analysis of variance (ANOVA) was used to determine the relative significance of input parameters consisting of cutting speed, feed and depth of cut on the attainable surface finish and the chip characteristics. It was observed that the performance during minimal fluid application was better than that during MQL application.

  5. Effect of laser absorption on picosecond laser ablation of Cr12MoV mold steel, 9Cr18 stainless steel and H13A cemented carbide

    NASA Astrophysics Data System (ADS)

    Wu, Baoye; Liu, Peng; Wang, Xizhao; Zhang, Fei; Deng, Leimin; Duan, Jun; Zeng, Xiaoyan

    2018-05-01

    Due to excellent properties, Cr12MoV mold steel, 9Cr18 stainless steel and H13A cemented carbide are widely used in industry. In this paper, the effect of absorption of laser light on ablation efficiency and roughness have been studied using a picosecond pulse Nd:YVO4 laser. The experimental results reveal that laser wavelength, original surface roughness and chemical composition play an important role in controlling ablation efficiency and roughness. Firstly, higher ablation efficiency with lower surface roughness is achieved on the ablation of 9Cr18 at 532, comparing with 1064 nm. Secondly, the ablation efficiency increases while the Ra of the ablated region decreases with the decrease of original surface roughness on ablation of Cr12MoV mold steel at 532 nm. Thirdly, the ablation efficiency of H13A cemented carbide is much higher than 9Cr18 stainless steel and Cr12MoV mold steel at 1064 nm. Scanning electron microscopy images reveals the formation of pores on the surface of 9Cr18 stainless steel and Cr12MoV mold steel at 532 nm while no pores are formed at 1064 nm. As to H13A cemented carbide, worm-like structure is formed at 1064 nm. The synergetic effects of the heat accumulation, plasma shielding and ablation threshold on laser ablation efficiency and machining quality were analyzed and discussed systematically in this paper.

  6. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  7. Improvement of Tribological Performance of AISI H13 Steel by Means of a Self-Lubricated Oxide-Containing Tribo-layer

    NASA Astrophysics Data System (ADS)

    Cui, Xianghong; Jin, Yunxue; Chen, Wei; Zhang, Qiuyang; Wang, Shuqi

    2018-03-01

    A self-lubricated oxide-containing tribo-layer was induced to form by continuously adding particles of MoS2, Fe2O3 or their mixtures onto sliding interfaces of AISI H13 and 52100 steels. The artificial tribo-layer was always noticed to form continuously and cover the worn surface (termed as cover-type), whereas the original tribo-layer spontaneously formed with no additive was usually discontinuous and inserted into the substrate (termed as insert-type). Clearly, the cover-type and insert-type tribo-layers exactly corresponded to low and high wear rates, respectively. For the mixed additives of Fe2O3 + MoS2, the protective tribo-layers presented a load-carrying capability and lubricative function, which are attributed to the existence of Fe2O3 and MoS2. Hence, the wear rates and friction coefficients of H13 steel were markedly reduced.

  8. Investigation of plume dynamics during picosecond laser ablation of H13 steel using high-speed digital holography

    NASA Astrophysics Data System (ADS)

    Pangovski, Krste; Otanocha, Omonigho B.; Zhong, Shan; Sparkes, Martin; Liu, Zhu; O'Neill, William; Li, Lin

    2017-02-01

    Ablation of H13 tool steel using pulse packets with repetition rates of 400 and 1000 kHz and pulse energies of 75 and 44 μ {J}, respectively, is investigated. A drop in ablation efficiency (defined here as the depth per pulse or μ {m}{/}μ {J}) is shown to occur when using pulse energies of E_{{pulse}} > 44 μ {J}, accompanied by a marked difference in crater morphology. A pulsed digital holographic system is applied to image the resulting plumes, showing a persistent plume in both cases. Holographic data are used to calculate the plume absorption and subsequently the fraction of pulse energy arriving at the surface after traversing the plume for different pulse arrival times. A significant proportion of the pulse energy is shown to be absorbed in the plume for E_{{pulse}} > 44 μ {J} for pulse arrival times corresponding to {>}1 MHz pulse repetition rate, shifting the interaction to a vapour-dominated ablation regime, an energetically costlier ablation mechanism.

  9. Experimental investigation and modelling of surface roughness and resultant cutting force in hard turning of AISI H13 Steel

    NASA Astrophysics Data System (ADS)

    Boy, M.; Yaşar, N.; Çiftçi, İ.

    2016-11-01

    In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.

  10. Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13

    NASA Astrophysics Data System (ADS)

    Zeng, Yan; Zuo, Peng-peng; Wu, Xiao-chun; Xia, Shu-wen

    2017-09-01

    Isothermal fatigue (IF) tests were performed on H13 tool steel subjected to three different mechanical strain amplitudes at a constant temperature to determine the effects of mechanical strain amplitude on the microstructure of the steel samples. The samples' extent of damage after IF tests was compared by observation of their cracks and calculation of their damage parameters. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to observe the microstructure of the samples. Cracks were observed to initiate at the surface because the strains and stresses there were the largest during thermal cycling. Mechanical strain accelerated the damage and softening of the steel. A larger mechanical strain caused greater deformation of the steel, which made the precipitated carbides easier to gather and grow along the deformation direction, possibly resulting in softening of the material or the initiation of cracks.

  11. An experimental analysis of process parameters to manufacture micro-channels in AISI H13 tempered steel by laser micro-milling

    NASA Astrophysics Data System (ADS)

    Teixidor, D.; Ferrer, I.; Ciurana, J.

    2012-04-01

    This paper reports the characterization of laser machining (milling) process to manufacture micro-channels in order to understand the incidence of process parameters on the final features. Selection of process operational parameters is highly critical for successful laser micromachining. A set of designed experiments is carried out in a pulsed Nd:YAG laser system using AISI H13 hardened tool steel as work material. Several micro-channels have been manufactured as micro-mold cavities varying parameters such as scanning speed (SS), pulse intensity (PI) and pulse frequency (PF). Results are obtained by evaluating the dimensions and the surface finish of the micro-channel. The dimensions and shape of the micro-channels produced with laser-micro-milling process exhibit variations. In general the use of low scanning speeds increases the quality of the feature in both surface finishing and dimensional.

  12. Mechanism of generation of large (Ti,Nb,V)(C,N)-type precipitates in H13 + Nb tool steel

    NASA Astrophysics Data System (ADS)

    Xie, You; Cheng, Guo-guang; Chen, Lie; Zhang, Yan-dong; Yan, Qing-zhong

    2016-11-01

    The characteristics and generation mechanism of (Ti,Nb,V)(C,N) precipitates larger than 2 μm in Nb-containing H13 bar steel were studied. The results show that two types of (Ti,Nb,V)(C,N) phases exist—a Ti-V-rich one and an Nb-rich one—in the form of single or complex precipitates. The sizes of the single Ti-V-rich (Ti,Nb,V)(C,N) precipitates are mostly within 5 to 10 μm, whereas the sizes of the single Nb-rich precipitates are mostly 2-5 μm. The complex precipitates are larger and contain an inner Ti-V-rich layer and an outer Nb-rich layer. The compositional distribution of (Ti,Nb,V)(C,N) is concentrated. The average composition of the single Ti-V-rich phase is (Ti0.511V0.356Nb0.133)(C x N y ), whereas that for the single Nb-rich phase is (Ti0.061V0.263Nb0.676)(C x N y ). The calculation results based on the Scheil-Gulliver model in the Thermo-Calc software combining with the thermal stability experiments show that the large phases precipitate during the solidification process. With the development of solidification, the Ti-V-rich phase precipitates first and becomes homogeneous during the subsequent temperature reduction and heat treatment processes. The Nb-rich phase appears later.

  13. Effect of laser parameters on surface roughness of laser modified tool steel after thermal cyclic loading

    NASA Astrophysics Data System (ADS)

    Lau Sheng, Annie; Ismail, Izwan; Nur Aqida, Syarifah

    2018-03-01

    This study presents the effects of laser parameters on the surface roughness of laser modified tool steel after thermal cyclic loading. Pulse mode Nd:YAG laser was used to perform the laser surface modification process on AISI H13 tool steel samples. Samples were then treated with thermal cyclic loading experiments which involved alternate immersion in molten aluminium (800°C) and water (27°C) for 553 cycles. A full factorial design of experiment (DOE) was developed to perform the investigation. Factors for the DOE are the laser parameter namely overlap rate (η), pulse repetition frequency (f PRF) and peak power (Ppeak ) while the response is the surface roughness after thermal cyclic loading. Results indicate the surface roughness of the laser modified surface after thermal cyclic loading is significantly affected by laser parameter settings.

  14. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  15. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  16. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  17. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  18. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  19. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  20. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  1. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  2. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  3. The fracture toughness of borides formed on boronized cold work tool steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Ugur; Sen, Saduman

    2003-06-15

    In this study, the fracture toughness of boride layers of two borided cold work tool steels have been investigated. Boriding was carried out in a salt bath consisting of borax, boric acid, ferro-silicon and aluminum. Boriding was performed at 850 and 950 deg. C for 2 to 7 h. The presence of boride phases were determined by X-ray diffraction (XRD) analysis. Hardness and fracture toughness of borides were measured via Vickers indenter. Increasing of boriding time and temperature leads to reduction of fracture toughness of borides. Metallographic examination showed that boride layer formed on cold work tool steels was compactmore » and smooth.« less

  4. PHOTOCOPY OF STANDARD USDA/USFS PLAN FOR 13' X 13' STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PHOTOCOPY OF STANDARD USDA/USFS PLAN FOR 13' X 13' STEEL LOOKOUT HOUSE (CAB); ELEVATIONS, SECTIONS, MISC. DETAILS; DATED 1961 - North Mountain Lookout, Stanislaus National Forest, Groveland, Tuolumne County, CA

  5. Dimensional and material characteristics of direct deposited tool steel by CO II laser

    NASA Astrophysics Data System (ADS)

    Choi, J.

    2006-01-01

    Laser aided direct metalimaterial deposition (DMD) process builds metallic parts layer-by-layer directly from the CAD representation. In general, the process uses powdered metaUmaterials fed into a melt pool, creating fully dense parts. Success of this technology in the die and tool industry depends on the parts quality to be achieved. To obtain designed geometric dimensions and material properties, delicate control of the parameters such as laser power, spot diameter, traverse speed and powder mass flow rate is critical. In this paper, the dimensional and material characteristics of directed deposited H13 tool steel by CO II laser are investigated for the DMD process with a feedback height control system. The relationships between DMD process variables and the product characteristics are analyzed using statistical techniques. The performance of the DMD process is examined with the material characteristics of hardness, porosity, microstructure, and composition.

  6. An investigation into the effects of conventional heat treatments on mechanical characteristics of new hot working tool steel

    NASA Astrophysics Data System (ADS)

    Fares, M. L.; Athmani, M.; Khelfaoui, Y.; Khettache, A.

    2012-02-01

    The effects of conventional heat treatments, i.e. quenching and tempering, on the mechanical characteristics of non standard hot work tool steel, close to either AISI-H11/H13 are investigated. The major elemental composition differences are in carbon, silicon and vanadium. The objective of the carried heat treatments is to obtain an efficient tool performance in terms of hardness, wear resistance and mechanical strength. Experimental results allow an explanation of the surface properties depending mainly on both chemical composition and optimised preheating parameters. After austenitizing at 1050 °C for 15 min, the as-quenched steel in oil bath exhibited the fully martensitic structure (without bainite) connected to a small fraction of retained austenite and complex carbides mainly of M23C6 type. Twice tempering at 500 °C and 600 °C resulted in initiating the precipitation processes and the secondary hardness effect. As a result, carbide content amounted to 3% while the retained austenite content decreased to 0%. Accordingly, the required mechanical properties in terms of hardness and wear are fulfilled and are adequately favourable in handling both shocks and pressures for the expected tool life. Induced microstructures are revealed using optical and scanning electron microscopes. Phase compositions are assessed by means of X-ray diffraction technique while mechanical characteristics are investigated based on hardness and abrasive wear standard tests.

  7. Tool Steel Heat Treatment Optimization Using Neural Network Modeling

    NASA Astrophysics Data System (ADS)

    Podgornik, Bojan; Belič, Igor; Leskovšek, Vojteh; Godec, Matjaz

    2016-11-01

    Optimization of tool steel properties and corresponding heat treatment is mainly based on trial and error approach, which requires tremendous experimental work and resources. Therefore, there is a huge need for tools allowing prediction of mechanical properties of tool steels as a function of composition and heat treatment process variables. The aim of the present work was to explore the potential and possibilities of artificial neural network-based modeling to select and optimize vacuum heat treatment conditions depending on the hot work tool steel composition and required properties. In the current case training of the feedforward neural network with error backpropagation training scheme and four layers of neurons (8-20-20-2) scheme was based on the experimentally obtained tempering diagrams for ten different hot work tool steel compositions and at least two austenitizing temperatures. Results show that this type of modeling can be successfully used for detailed and multifunctional analysis of different influential parameters as well as to optimize heat treatment process of hot work tool steels depending on the composition. In terms of composition, V was found as the most beneficial alloying element increasing hardness and fracture toughness of hot work tool steel; Si, Mn, and Cr increase hardness but lead to reduced fracture toughness, while Mo has the opposite effect. Optimum concentration providing high KIc/HRC ratios would include 0.75 pct Si, 0.4 pct Mn, 5.1 pct Cr, 1.5 pct Mo, and 0.5 pct V, with the optimum heat treatment performed at lower austenitizing and intermediate tempering temperatures.

  8. Comparative Investigation on Tool Wear during End Milling of AISI H13 Steel with Different Tool Path Strategies

    NASA Astrophysics Data System (ADS)

    Adesta, Erry Yulian T.; Riza, Muhammad; Avicena

    2018-03-01

    Tool wear prediction plays a significant role in machining industry for proper planning and control machining parameters and optimization of cutting conditions. This paper aims to investigate the effect of tool path strategies that are contour-in and zigzag tool path strategies applied on tool wear during pocket milling process. The experiments were carried out on CNC vertical machining centre by involving PVD coated carbide inserts. Cutting speed, feed rate and depth of cut were set to vary. In an experiment with three factors at three levels, Response Surface Method (RSM) design of experiment with a standard called Central Composite Design (CCD) was employed. Results obtained indicate that tool wear increases significantly at higher range of feed per tooth compared to cutting speed and depth of cut. This result of this experimental work is then proven statistically by developing empirical model. The prediction model for the response variable of tool wear for contour-in strategy developed in this research shows a good agreement with experimental work.

  9. A comprehensive review on cold work of AISI D2 tool steel

    NASA Astrophysics Data System (ADS)

    Abdul Rahim, Mohd Aidil Shah bin; Minhat, Mohamad bin; Hussein, Nur Izan Syahriah Binti; Salleh, Mohd Shukor bin

    2017-11-01

    As a common material in mould and die application, AISI D2 cold work tool steel has proven to be a promising chosen material in the industries. However, challenges remain in using AISI D2 through a modified version with a considerable progress having been made in recent years. This paper provides a critical review of the original as-cast AISI D2 cold work tool steel up to the modified version. The main purpose is to develop an understanding of current modified tool steel trend; the machinability of AISI D2 (drilling, milling, turning, grinding and EDM/WEDM; and the microstructure evolution and mechanical properties of these cold work tool steels due to the presence of alloy materials in the steel matrix. The doping of rare earth alloy element, new steel fabrication processes, significant process parameter in machinability and surface treatment shows that there have been few empirical investigations into these cold work tool steel alloys. This study has discovered that cold work tool steel will remain to be explored in order to survive in the steel industries.

  10. Aircraft Steels

    DTIC Science & Technology

    2009-02-19

    component usage. PH 13-8Mo is a precipitation-hardenable martensitic stainless steel combining excellent corrosion resistance with strength. Custom 465 is...a martensitic , age-hardenable stainless steel capable of about 1,724 MPa (250 ksi) UTS when peak-aged (H900 condition). Especially, this steel can...NOTES 14. ABSTRACT Five high strength steels (4340, 300M, AerMet 100, Ferrium S53, and Hy-Tuf) and four stainless steels (High Nitrogen, 13

  11. Gaseous hydrogen embrittlement of PH 13-8 Mo steel

    NASA Astrophysics Data System (ADS)

    Ding, Y. S.; Tsay, L. W.; Chiang, M. F.; Chen, C.

    2009-04-01

    In this study, notched tensile and fatigue crack growth tests in gaseous hydrogen were performed on PH 13-8 Mo stainless steel specimens at room temperature. These specimens were susceptible to hydrogen embrittlement (HE), but at different degrees, depending on the aging conditions or the microstructures of the alloys. In hydrogen, the accelerated fatigue crack growth rate (FCGR) usually accompanied a reduced notched tensile strength (NTS) of the specimens, i.e., the faster the FCGR the lower the NTS. It was proposed that the same fracture mechanism could be applied to these two different types of specimens, regardless of the loading conditions. Rapid fatigue crack growth and high NTS loss were found in the H800 (426 °C under-aged) and H900 (482 °C peak-aged) specimens. The HE susceptibility of the steel was reduced by increasing the aging temperature above 593 °C, which was attributed to the increased amount of austenite in the structure. Extensive quasi-cleavage fracture was observed for the specimens that were deteriorated severely by HE.

  12. Vacuum investment cast PH13-8Mo corrosion resistant steel. (SAE standard)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-07-01

    An industry-wide interest has arisen with regards to the properties and capabilities of investment cast PH 13-8Mo corrosion resistant steel. Specifically of interest are the structural applications in the aerospace industry for this product heat treated to the H1000 condition. The objective of this AMEC cooperative test program was to generate and compile useful data for aerospace structural evaluation of investment cast PH 13-8Mo heat treated to H1000. The determination was made of overall mechanical properties, fatigue, fracture toughness, and crack growth data along with basic microstructural evaluation of the investment cast material. The evaluation of mechanical property variations betweenmore » cast and machined tensile specimens and evaluation of microstructural constituents. PH 13-8Mo, H1000 investment castings for use in the aerospace industry is included.« less

  13. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 56.7050 Section 56.7050 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for...

  14. A Fundamental Study of Tool Steels Processed from Rapidly Solidified Powders.

    DTIC Science & Technology

    1981-12-01

    structures, HIP or HIP and hot-worked high speed tool steels and powder forgings of low and medium alloy steels for load- bearing automotive...M7, M7S, M41, M42, M43S, T15 and M50 . These P/M tool steels exhibit a degree of alloy homogeneity and a fineness/uniformity of carbide dispersion...AD-AIl2 758 DREXEL UNIV PHILADEL.PH IA PA DEPT OF MATERIALS ENGINEERING F/6 11/6 A FUNDAMENTAL STUDY OF TOOL STEELS PROCESSED FROM L DEC 81 A

  15. Effect of Low Nickel Dopant on Torque Transducer Response Function in High-Chromium Content ESR Stainless Tool Steels

    NASA Astrophysics Data System (ADS)

    Wiewel, Joseph L.; Hecox, Bryan G.; Orris, Jason T.; Boley, Mark S.

    2007-03-01

    The change in magnetoelastic torque transducer response was investigated as a low nickel content (up to 0.2%) is alloyed into an ESR (Electro-Slag-Refining) stainless tool steel with a chromium content of around 13%, which our previous studies have proven to be the ideal level of chromium content for optimal transducer performance. Two separate hollow steel 3/4-inch diameter shafts were prepared from ESR 416 and ESR 420 steel, respectively, the first having no nickel content and the second having 0.2% nickel content. The heat treatment of these steels consisted of a hardening process conducted in a helium atmosphere at 1038^oC, followed by an annealing at 871^oC for 5h and a 15^oC cool down rate. Prior and subsequent to the heat treatment processes, the circumferential and axial magnetic hysteresis properties of the samples were measured and their external field signals were mapped over the magnetically polarized regions both with and without applied shear stress up to 2500 psi on the samples. It was found that the effect of the low nickel dopant was to improve torque transducer sensitivity and linearity, but heat treatment worsened the performance of both samples.

  16. Steel slag raises pH of greenhouse substrates

    USDA-ARS?s Scientific Manuscript database

    Dolomitic lime (DL) is the primary liming agent used for increasing pH in peatmoss-based substrates. Steel slag (SS) is a byproduct of the steel manufacturing industry that has been used to elevate field soil pH. The objective of this research was to determine the pH response of a peatmoss-based g...

  17. Surface enhancement of cold work tool steels by friction stir processing with a pinless tool

    NASA Astrophysics Data System (ADS)

    Costa, M. I.; Verdera, D.; Vieira, M. T.; Rodrigues, D. M.

    2014-03-01

    The microstructure and mechanical properties of enhanced tool steel (AISI D2) surfaces produced using a friction stir welding (FSW) related procedure, called friction stir processing (FSP), are analysed in this work. The surface of the tool steel samples was processed using a WC-Co pinless tool and varying processing conditions. Microstructural analysis revealed that meanwhile the original substrate structure consisted of a heterogeneous distribution of coarse carbides in a ferritic matrix, the transformed surfaces consisted of very small carbides, homogenously distributed in a ferrite- bainite- martensite matrix. The morphology of the surfaces, as well as its mechanical properties, evaluated by hardness and tensile testing, were found to vary with increasing tool rotation speed. Surface hardness was drastically increased, relative to the initial hardness of bulk steel. This was attributed to ferrite and carbide refinement, as well as to martensite formation during solid state processing. At the highest rotation rates, tool sliding during processing deeply compromised the characteristics of the processed surfaces.

  18. Relationship Between pH and Electrochemical Corrosion Behavior of Thermal-Sprayed Ni-Al-Coated Q235 Steel in Simulated Soil Solutions

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Wu, Xin-qiang; Ke, Wei; Xu, Song; Feng, Bing; Hu, Bo-tao

    2017-09-01

    Electrochemical corrosion behavior of a thermal-sprayed Ni-Al-coated Q235 steel was investigated in the simulated soil solutions at different pH values using measurements of potentiodynamic polarization curves and electrochemical impedance spectroscopy as well as surface analyses including x-ray diffraction analysis, scanning electron microscope equipped with an energy-dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. The results showed that the corrosion resistance of the Ni-Al-coated Q235 steel was dependent on the pH of the test solution. From pH = 3.53 to pH = 4.79, the corrosion resistance of the coated steel increased rapidly. In the pH range from 4.79 to 12.26, the corrosion resistance exhibited no significant change. At pH 13.25, the corrosion resistance of the sample was found to decrease. The calculated corrosion rate of Ni-Al-coated Q235 steel was lower than that of the uncoated Q235 steel and galvanized steel in all the test solutions. Over a wide range of pH values, the Ni-Al-coated Q235 steel exhibited extremely good corrosion resistance. The experimental data together with the potential-pH diagrams provided a basis for a detailed discussion of the related corrosion mechanisms of the coated steel.

  19. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution.

    PubMed

    Assis, S L; Rogero, S O; Antunes, R A; Padilha, A F; Costa, I

    2005-04-01

    In this study, the in vitro corrosion resistance of a superferritic stainless steel in naturally aerated Hank's solution at 37 degrees C has been determined to evaluate the steel for use as a biomaterial. The potentiodynamic polarization method and electrochemical impedance spectroscopy (EIS) were used to determine the corrosion resistance. The polarization results showed very low current densities at the corrosion potential and electrochemical behavior typical of passive metals. At potentials above 0.75 V (SCE), and up to that of the oxygen evolution reaction, the superferritic steel exhibited transpassive behavior followed by secondary passivation. The superferritic stainless steel exhibited high pitting resistance in Hank's solution. This steel did not reveal pits even after polarization to 3000 mV (SCE). The EIS results indicated high impedance values at low frequencies, supporting the results obtained from the polarization measurements. The results obtained for the superferritic steel have been compared with those of the Ti-13Nb-13Zr alloy and an austenitic stainless steel, as Ti alloys are well known for their high corrosion resistance and biocompatibility, and the austenitic stainless steel is widely used as an implant material. The cytotoxicity tests indicated that the superferritic steel, the austenitic steel, and the Ti-13Nb-13Zr alloy were not toxic. Based on corrosion resistance and cytotoxicity results, the superferritic stainless steel can be considered as a potential biomaterial. (c) 2005 Wiley Periodicals, Inc.

  20. Recent developments in turning hardened steels - A review

    NASA Astrophysics Data System (ADS)

    Sivaraman, V.; Prakash, S.

    2017-05-01

    Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.

  1. Method for machining steel with diamond tools

    DOEpatents

    Casstevens, J.M.

    1984-01-01

    The present invention is directed to a method for machine optical quality finishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  2. Method for machining steel with diamond tools

    DOEpatents

    Casstevens, John M.

    1986-01-01

    The present invention is directed to a method for machining optical quality inishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  3. Microstructure and hardness of carbon and tool steel quenched with high-frequency currents

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Fedoseev, Maksim E.; Palkanov, Pavel A.; Voyko, Aleksey V.; Fomina, Marina A.; Koshuro, Vladimir A.; Zakharevich, Andrey M.; Kalganova, Svetlana G.; Rodionov, Igor V.

    2018-04-01

    In the course of high-temperature treatment with high-frequency currents (HFC) in the range from 600 to 1300 °C, carbon and tool steels are strengthened. After the heat treatment the hardness reaches 64-70 HRC for carbon steel (carbon content 0.4-0.5%) and 68-71 HRC for tool steel 1.3343 (R6M5 steel analogue with 0.9-1.0% C content, W - 5-6 wt%, Mo - 3.5-5.3 wt%, V - 1.3-1.8 wt%, Cr - 3.8-4.3 wt%, Mn+Si - 0.5-1 wt%, Fe - balance). The resulting structure is a carbide network, and in the case of tool steel - complex carbides around a high-strength martensitic phase.

  4. Anti-Corrosion Performance of 1,3-BENZOTHIAZOLE on 410 Martensitic Stainless Steel in H2SO4

    NASA Astrophysics Data System (ADS)

    Loto, Roland Tolulope

    The corrosion inhibition effect of synthesized 1,3-benzothiazole at very low concentrations on 410 martensitic stainless steel in 3MH2SO4 solution was studied through potentiodynamic polarization and weight loss measurements. The observation showed that the organic compound performed effectively with average inhibition efficiencies of 94% and 98% at the concentrations studied from both electrochemical methods due to the inhibition action of protonated inhibitor molecules in the acid solution. The amine and aromatics functional groups of the molecules active in the corrosion inhibition reaction were exposed from Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopic analysis. Thermodynamic calculations showed cationic adsorption to be chemisorption adsorption, obeying the Langmuir adsorption isotherm. Images from optical microscopy showed an improved morphology in comparison to images from corroded stainless steel. Severe surface deterioration and macro-pits were observed in the uninhibited samples.

  5. Passivation Characteristics of Alloy Corrosion-Resistant Steel Cr10Mo1 in Simulating Concrete Pore Solutions: Combination Effects of pH and Chloride

    PubMed Central

    Ai, Zhiyong; Sun, Wei; Jiang, Jinyang; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-01-01

    The electrochemical behaviour for passivation of new alloy corrosion-resistant steel Cr10Mo1 immersed in alkaline solutions with different pH values (13.3, 12.0, 10.5, and 9.0) and chloride contents (0.2 M and 1.0 M), was investigated by various electrochemical techniques: linear polarization resistance, electrochemical impedance spectroscopy and capacitance measurements. The chemical composition and structure of passive films were determined by XPS. The morphological features and surface composition of the immersed steel were evaluated by SEM together with EDS chemical analysis. The results evidence that pH plays an important role in the passivation of the corrosion-resistant steel and the effect is highly dependent upon the chloride contents. In solutions with low chloride (0.2 M), the corrosion-resistant steel has notably enhanced passivity with pH falling from 13.3 to 9.0, but does conversely when in presence of high chloride (1.0 M). The passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer enriched in Fe oxides and hydroxides, and an inner layer, rich in Cr species. The film composition varies with pH values and chloride contents. As the pH drops, more Cr oxides are enriched in the film while Fe oxides gradually decompose. Increasing chloride promotes Cr oxides and Fe oxides to transform into their hydroxides with little protection, and this is more significant at lower pH (10.5 and 9.0). These changes annotate passivation characteristics of the corrosion-resistant steel in the solutions of different electrolyte. PMID:28773867

  6. Passivation Characteristics of Alloy Corrosion-Resistant Steel Cr10Mo1 in Simulating Concrete Pore Solutions: Combination Effects of pH and Chloride.

    PubMed

    Ai, Zhiyong; Sun, Wei; Jiang, Jinyang; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-09-01

    The electrochemical behaviour for passivation of new alloy corrosion-resistant steel Cr10Mo1 immersed in alkaline solutions with different pH values (13.3, 12.0, 10.5, and 9.0) and chloride contents (0.2 M and 1.0 M), was investigated by various electrochemical techniques: linear polarization resistance, electrochemical impedance spectroscopy and capacitance measurements. The chemical composition and structure of passive films were determined by XPS. The morphological features and surface composition of the immersed steel were evaluated by SEM together with EDS chemical analysis. The results evidence that pH plays an important role in the passivation of the corrosion-resistant steel and the effect is highly dependent upon the chloride contents. In solutions with low chloride (0.2 M), the corrosion-resistant steel has notably enhanced passivity with pH falling from 13.3 to 9.0, but does conversely when in presence of high chloride (1.0 M). The passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer enriched in Fe oxides and hydroxides, and an inner layer, rich in Cr species. The film composition varies with pH values and chloride contents. As the pH drops, more Cr oxides are enriched in the film while Fe oxides gradually decompose. Increasing chloride promotes Cr oxides and Fe oxides to transform into their hydroxides with little protection, and this is more significant at lower pH (10.5 and 9.0). These changes annotate passivation characteristics of the corrosion-resistant steel in the solutions of different electrolyte.

  7. Optimizing Heat Treatment Process of Fe-13Cr-3Mo-3Ni Martensitic Stainless of Steel

    NASA Astrophysics Data System (ADS)

    Anwar, M. S.; Prifiharni, S.; Mabruri, E.

    2017-05-01

    The Fe-13Cr-3Mo-3Ni stainless steels are modified into martensitic stainless steels for steam turbine blades application. The working temperature of steam turbine was around 600 - 700 °C. The improvement properties of turbine blade material is necessary to maintain steam turbine work. The previous research revealed that it has corrosion resistance of Fe-13Cr-3Mo-3Ni which is better than 13Cr stainless steels in the chloride environment. In this work, the effect of heat treatment on microstructure and hardness of Fe-13Cr-3Mo-3Ni stainless steels has been studied. The steel was prepared by induction melting followed by hot forging. The steels were austenitized at 1000, 1050, and 1100 °C for 1 hour and were tempered at 600, 650, and 700 °C for 1 hour. The steels were then subjected to metallographic observation and hardness test of Rockwell C. The optimal heat treatment of Fe-13Cr-3Mo-3Ni was carried out austenitized in 1050 °C and tempered in 600 - 700 °C.

  8. Boride Formation Induced by pcBN Tool Wear in Friction-Stir-Welded Stainless Steels

    NASA Astrophysics Data System (ADS)

    Park, Seung Hwan C.; Sato, Yutaka S.; Kokawa, Hiroyuki; Okamoto, Kazutaka; Hirano, Satoshi; Inagaki, Masahisa

    2009-03-01

    The wear of polycrystalline cubic boron nitride (pcBN) tool and its effect on second phase formation were investigated in stainless steel friction-stir (FS) welds. The nitrogen content and the flow stress were analyzed in these welds to examine pcBN tool wear. The nitrogen content in stir zone (SZ) was found to be higher in the austenitic stainless steel FS welds than in the ferritic and duplex stainless steel welds. The flow stress of austenitic stainless steels was almost 1.5 times larger than that of ferritic and duplex stainless steels. These results suggest that the higher flow stress causes the severe tool wear in austenitic stainless steels, which results in greater nitrogen pickup in austenitic stainless steel FS welds. From the microstructural observation, a possibility was suggested that Cr-rich borides with a crystallographic structure of Cr2B and Cr5B3 formed through the reaction between the increased boron and nitrogen and the matrix during FS welding (FSW).

  9. Rapid Prototyping: State of the Art Review

    DTIC Science & Technology

    2003-10-23

    Steel H13 Tool Steel CP Ti, Ti-6Al-4V Titanium Tungsten Copper Aluminum Nickel...The company’s LENS 750 and LENS 850 machines (both $440,000 to $640,000) are capable of producing parts in 16 stainless steel , H13 tool steel ...machining. 20 The Arcam EBM S12 model sells for $500,000 and is capable of processing two materials. One is H13 tool steel , while the other

  10. Comparison of tool life and surface roughness with MQL, flood cooling, and dry cutting conditions with P20 and D2 steel

    NASA Astrophysics Data System (ADS)

    Senevirathne, S. W. M. A. I.; Punchihewa, H. K. G.

    2017-09-01

    Minimum quantity lubrication (MQL) is a cutting fluid (CF) application method that has given promising results in improving machining performances. It has shown that, the performance of cutting systems, depends on the work and tool materials used. AISI P20, and D2 are popular in tool making industry. However, the applicability of MQL in machining these two steels has not been studied previously. This experimental study is focused on evaluating performances of MQL compared to dry cutting, and conventional flood cooling method. Trials were carried out with P20, and D2 steels, using coated carbides as tool material, emulsion cutting oil as the CF. Tool nose wear, and arithmetic average surface roughness (Ra) were taken as response variables. Results were statistically analysed for differences in response variables. Although many past literature has suggested that MQL causes improvements in tool wear, and surface finish, this study has found contradicting results. MQL has caused nearly 200% increase in tool nose wear, and nearly 11-13% increase in surface roughness compared flood cooling method with both P20 and D2. Therefore, this study concludes that MQL affects adversely in machining P20, and D2 steels.

  11. Precipitation of Carbides in Early Aging Stages and Their Crystallographic Orientations in Hadfield Steel Mn13

    NASA Astrophysics Data System (ADS)

    Ding, Zhimin; Liang, Bo; Zhao, Ruirong; Chen, Chunhuan

    2015-05-01

    The methods of transmission electron microscopy (TEM) and electron diffraction are used to study the carbides precipitated in Hadfield steel Mn13 during 2-h aging at 475°C. It is shown that carbides of types (Fe, Mn, Cr)23C6 and mixed (Fe, Mn, Cr)7C3 + (Fe, Mn, Cr)3C precipitate simultaneously over austenite grain boundaries. The data on precipitation of M23C- and M7C3-type carbides in a Hadfield steel after water quenching and aging are pioneer ones. Strict orientation relations of the M23C6 carbides and of the austenite matrix are determined.

  12. Surface Nb-ALLOYING on 0.4C-13Cr Stainless Steel: Microstructure and Tribological Behavior

    NASA Astrophysics Data System (ADS)

    Yu, Shengwang; You, Kai; Liu, Xiaozhen; Zhang, Yihui; Wang, Zhenxia; Liu, Xiaoping

    2016-02-01

    0.4C-13Cr stainless steel was alloyed with niobium using double glow plasma surface alloying and tribological properties of Nb-alloyed steel such as hardness, friction and wear were measured. Effects of the alloying temperature on microstructure and the tribological behavior of the alloyed steel were investigated compared with untreated steel. Formation mechanisms of Nb-alloyed layers and increased wear resistance were also studied. The result shows that after surface Nb-alloying treatment, the 0.4C-13Cr steel exhibits a diffusion adhesion at the alloyed layer/substrate interface and improved tribological property. The friction coefficient of Nb-alloyed steel is decreased by about 0.3-0.45 and the wear rate after Nb-alloying is only 2-5% of untreated steel.

  13. Stress corrosion study of PH13-8Mo stainless steel using the Slow Strain Rate Technique

    NASA Technical Reports Server (NTRS)

    Torres, Pablo D.

    1989-01-01

    The need for a fast and reliable method to study stress corrosion in metals has caused increased interest in the Slow Strain Rate Technique (SSRT) during the last few decades. PH13-8MoH950 and H1000 round tensile specimens were studied by this method. Percent reduction-in-area, time-to-failure, elongation at fracture, and fracture energy were used to express the loss in ductility, which has been used to indicate susceptibility to stress corrosion cracking (SCC). Results from a 3.5 percent salt solution (corrosive medium) were compared to those in air (inert medium). A tendency to early failure was found when testing in the vicinity of 1.0 x 10(-6) mm/mm/sec in the 3.5 percent salt solution. PH13-8Mo H1000 was found to be less likely to suffer SCC than PH13-8Mo H950. This program showed that the SSRT is promising for the SCC characterization of metals and results can be obtained in much shorter times (18 hr for PH steels) than those required using conventional techniques.

  14. High-Power Diode Laser-Treated 13Cr4Ni Stainless Steel for Hydro Turbines

    NASA Astrophysics Data System (ADS)

    Mann, B. S.

    2014-06-01

    The cast martensitic chromium nickel stainless steels such as 13Cr4Ni, 16Cr5Ni, and 17Cr4Ni PH have found wide application in hydro turbines. These steels have adequate corrosion resistance with good mechanical properties because of chromium content of more than 12%. The 13Cr4Ni stainless steel is most widely used among these steels; however, lacks silt, cavitation, and water impingement erosion resistances (SER, CER, and WIER). This article deals with characterizing 13Cr4Ni stainless steel for silt, cavitation, and water impingement erosion; and studying its improved SER, CER, and WIER behavior after high-power diode laser (HPDL) surface treatment. The WIER and CER have improved significantly after laser treatment, whereas there is a marginal improvement in SER. The main reason for improved WIER and CER is due to its increased surface hardness and formation of fine-grained microstructure after HPDL surface treatment. CER and WIER of HPDL-treated 13Cr4Ni stainless steel samples have been evaluated as per ASTM G32-2003 and ASTM G73-1978, respectively; and these were correlated with microstructure and mechanical properties such as ultimate tensile strength, modified ultimate resilience, and microhardness. The erosion damage mechanism, compared on the basis of scanning electron micrographs and mechanical properties, is discussed and reported in this article.

  15. 50 ksi steel h-pile capacity.

    DOT National Transportation Integrated Search

    2015-06-01

    The objective of this study is to re-evaluate the adoption, with the objective of potentially extending the utilization of Fy = 50 ksi for : the structural capacity of steel H-piles (AISC HP sections) for bridge foundations. Specific consideration is...

  16. Studies on Stress Corrosion Cracking of Super 304H Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Prabha, B.; Sundaramoorthy, P.; Suresh, S.; Manimozhi, S.; Ravishankar, B.

    2009-12-01

    Stress corrosion cracking (SCC) is a common mode of failure encountered in boiler components especially in austenitic stainless steel tubes at high temperature and in chloride-rich water environment. Recently, a new type of austenitic stainless steels called Super304H stainless steel, containing 3% copper is being adopted for super critical boiler applications. The SCC behavior of this Super 304H stainless steel has not been widely reported in the literature. Many researchers have studied the SCC behavior of steels as per various standards. Among them, the ASTM standard G36 has been widely used for evaluation of SCC behavior of stainless steels. In this present work, the SCC behavior of austenitic Fe-Cr-Mn-Cu-N stainless steel, subjected to chloride environments at varying strain conditions as per ASTM standard G36 has been studied. The environments employed boiling solution of 45 wt.% of MgCl2 at 155 °C, for various strain conditions. The study reveals that the crack width increases with increase in strain level in Super 304H stainless steels.

  17. High Thermal Conductivity and High Wear Resistance Tool Steels for cost-effective Hot Stamping Tools

    NASA Astrophysics Data System (ADS)

    Valls, I.; Hamasaiid, A.; Padré, A.

    2017-09-01

    In hot stamping/press hardening, in addition to its shaping function, the tool controls the cycle time, the quality of the stamped components through determining the cooling rate of the stamped blank, the production costs and the feasibility frontier for stamping a given component. During the stamping, heat is extracted from the stamped blank and transported through the tool to the cooling medium in the cooling lines. Hence, the tools’ thermal properties determine the cooling rate of the blank, the heat transport mechanism, stamping times and temperature distribution. The tool’s surface resistance to adhesive and abrasive wear is also an important cost factor, as it determines the tool durability and maintenance costs. Wear is influenced by many tool material parameters, such as the microstructure, composition, hardness level and distribution of strengthening phases, as well as the tool’s working temperature. A decade ago, Rovalma developed a hot work tool steel for hot stamping that features a thermal conductivity of more than double that of any conventional hot work tool steel. Since that time, many complimentary grades have been developed in order to provide tailored material solutions as a function of the production volume, degree of blank cooling and wear resistance requirements, tool geometries, tool manufacturing method, type and thickness of the blank material, etc. Recently, Rovalma has developed a new generation of high thermal conductivity, high wear resistance tool steel grades that enable the manufacture of cost effective tools for hot stamping to increase process productivity and reduce tool manufacturing costs and lead times. Both of these novel grades feature high wear resistance and high thermal conductivity to enhance tool durability and cut cycle times in the production process of hot stamped components. Furthermore, one of these new grades reduces tool manufacturing costs through low tool material cost and hardening through readily

  18. 13. TOP OF STATIC TEST TOWER VIEW OF STEEL TRUSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. TOP OF STATIC TEST TOWER VIEW OF STEEL TRUSS STRUCTURE AND OVERHEAD CRANE. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  19. Microstructural investigation of D2 tool steel during rapid solidification

    NASA Astrophysics Data System (ADS)

    Delshad Khatibi, Pooya

    Solidification is considered as a key processing step in developing the microstructure of most metallic materials. It is, therefore, important that the solidification process can be designed and controlled in such a way so as to obtain the desirable properties in the final product. Rapid solidification refers to the system's high undercooling and high cooling rate, which can yield a microstructure with unique chemical composition and mechanical properties. An area of interest in rapid solidification application is high-chromium, high-carbon tool steels which experience considerable segregation of alloying elements during their solidification in a casting process. In this dissertation, the effect of rapid solidification (undercooling and cooling rate) of D2 tool steel on the microstructure and carbide precipitation during annealing was explored. A methodology is described to estimate the eutectic and primary phase undercooling of solidifying droplets. The estimate of primary phase undercooling was confirmed using an online measurement device that measured the radiation energy of the droplets. The results showed that with increasing primary phase and eutectic undercooling and higher cooling rate, the amount of supersaturation of alloying element in metastable retained austenite phase also increases. In the case of powders, the optimum hardness after heat treatment is achieved at different temperatures for constant periods of time. Higher supersaturation of austenite results in obtaining secondary hardness at higher annealing temperature. D2 steel ingots generated using spray deposition have high eutectic undercooling and, as a result, high supersaturation of alloying elements. This can yield near net shape D2 tool steel components with good mechanical properties (specifically hardness). The data developed in this work would assist in better understanding and development of near net shape D2 steel spray deposit products with good mechanical properties.

  20. Flank wears Simulation by using back propagation neural network when cutting hardened H-13 steel in CNC End Milling

    NASA Astrophysics Data System (ADS)

    Hazza, Muataz Hazza F. Al; Adesta, Erry Y. T.; Riza, Muhammad

    2013-12-01

    High speed milling has many advantages such as higher removal rate and high productivity. However, higher cutting speed increase the flank wear rate and thus reducing the cutting tool life. Therefore estimating and predicting the flank wear length in early stages reduces the risk of unaccepted tooling cost. This research presents a neural network model for predicting and simulating the flank wear in the CNC end milling process. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the flank wear length. Then the measured data have been used to train the developed neural network model. Artificial neural network (ANN) was applied to predict the flank wear length. The neural network contains twenty hidden layer with feed forward back propagation hierarchical. The neural network has been designed with MATLAB Neural Network Toolbox. The results show a high correlation between the predicted and the observed flank wear which indicates the validity of the models.

  1. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  2. Temperature Effects on Stainless Steel 316L Corrosion in the Environment of Sulphuric Acid (H2SO4)

    NASA Astrophysics Data System (ADS)

    Ayu Arwati, I. G.; Herianto Majlan, Edy; Daud, Wan Ramli Wan; Shyuan, Loh Kee; Arifin, Khuzaimah Binti; Husaini, Teuku; Alfa, Sagir; Ashidiq, Fakhruddien

    2018-03-01

    In its application, metal is always in contact with its environment whether air, vapor, water, and other chemicals. During contact, chemical interactions emerge between metals and their respective environments such that the metal surface corrodes. This study aims to determine the corrosion rate of 316L stainless steel sulphuric acid environment (H2SO4) with weight loss and electrochemical methods. The corrosion rate (CR) is value of 316L stainless steel by weight loss method with sulfuric acid (H2SO4) with concentration of 0.5 M. The result obtained in conjunction with the increase of temperature the rate of erosion obtained appears to be larger, with a consecutive 3 hour the temperature of 50°C is 0.27 mg/cm2h, temperature 70°C 0.38 mg/cm2h, and temperature 90 °C 0.52 mg/cm2h. With the electrochemical method, the current value increases by using a C350 potentiostal tool. The higher the current, the longer the time the corrosion rate increases, where the current is at 90 °C with a 10-minute treatment time of 0.0014736 A. The 316L stainless steel in surface metal morphology is shown by using a Scanning Electron Microscope (SEM).

  3. Prediction of Thermal Fatigue in Tooling for Die-casting Copper via Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-06-01

    Recent research by the Copper Development Association (CDA) has demonstrated the feasibility of die-casting electric motor rotors using copper. Electric motors using copper rotors are significantly more energy efficient relative to motors using aluminum rotors. However, one of the challenges in copper rotor die-casting is low tool life. Experiments have shown that the higher molten metal temperature of copper (1085 °C), as compared to aluminum (660 °C) accelerates the onset of thermal fatigue or heat checking in traditional H-13 tool steel. This happens primarily because the mechanical properties of H-13 tool steel decrease significantly above 650 °C. Potential approaches to mitigate the heat checking problem include: 1) identification of potential tool materials having better high temperature mechanical properties than H-13, and 2) reduction of the magnitude of cyclic thermal excursions experienced by the tooling by increasing the bulk die temperature. A preliminary assessment of alternative tool materials has led to the selection of nickel-based alloys Haynes 230 and Inconel 617 as potential candidates. These alloys were selected based on their elevated temperature physical and mechanical properties. Therefore, the overall objective of this research work was to predict the number of copper rotor die-casting cycles to the onset of heat checking (tool life) as a function of bulk die temperature (up to 650 °C) for Haynes 230 and Inconel 617 alloys. To achieve these goals, a 2D thermo-mechanical FEA was performed to evaluate strain ranges on selected die surfaces. The method of Universal Slopes (Strain Life Method) was then employed for thermal fatigue life predictions.

  4. 13. VIEW TO SOUTHEAST, BRICK SKINNER SALT ROASTER AND STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW TO SOUTHEAST, BRICK SKINNER SALT ROASTER AND STEEL SKINNER SALT ROASTER. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  5. Microstructure, Mechanical and Corrosion Properties of Friction Stir-Processed AISI D2 Tool Steel

    NASA Astrophysics Data System (ADS)

    Yasavol, Noushin; Jafari, Hassan

    2015-05-01

    In this study, AISI D2 tool steel underwent friction stir processing (FSP). The microstructure, mechanical properties, and corrosion resistance of the FSPed materials were then evaluated. A flat WC-Co tool was used; the rotation rate of the tool varied from 400 to 800 rpm, and the travel speed was maintained constant at 385 mm/s during the process. FSP improved mechanical properties and produced ultrafine-grained surface layers in the tool steel. Mechanical properties improvement is attributed to the homogenous distribution of two types of fine (0.2-0.3 μm) and coarse (1.6 μm) carbides in duplex ferrite-martensite matrix. In addition to the refinement of the carbides, the homogenous dispersion of the particles was found to be more effective in enhancing mechanical properties at 500 rpm tool rotation rate. The improved corrosion resistance was observed and is attributed to the volume fraction of low-angle grain boundaries produced after friction stir process of the AISI D2 steel.

  6. A Novel Method to Calculate the Carbides Fraction from Dilatometric Measurements During Cooling in Hot-Work Tool Steel

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoli; Li, Chuanwei; Han, Lizhan; Gu, Jianfeng

    2018-06-01

    Dilatometry is a useful technique to obtain experimental data concerning transformation. In this paper, a dilation conversional model was established to calculate carbides fraction in AISI H13 hot-work tool steel based on the measured length changes. After carbides precipitation, the alloy contents in the matrix changed. In the usual models, the content of carbon atoms after precipitation is considered as the only element that affects the lattice constant and the content of the alloy elements such as Cr, Mo, Mn, V are often ignored. In the model introduced in this paper, the alloying elements (Cr, Mo, Mn, V) changes caused by carbides precipitation are incorporated. The carbides were identified using scanning electron microscope and transmission electron microscope. The relationship between lattice constant of carbides and temperature are measured by high-temperature X-ray diffraction. The results indicate that the carbides observed in all specimens cooled at different rates are V-rich MC and Cr-rich M23C6, and most of them are V-rich MC, only very few are Cr-rich M23C6. The model including the effects of substitutional alloying elements shows a good improvement on carbides fraction predictions. In addition, lower cooling rate advances the carbides precipitation for AISI H13 specimens. The results between experiments and mathematical model agree well.

  7. Effect of Surface Modification on Corrosion Resistance of Uncoated and DLC Coated Stainless Steel Surface

    NASA Astrophysics Data System (ADS)

    Scendo, Mieczyslaw; Staszewska-Samson, Katarzyna

    2017-08-01

    Corrosion resistance of 4H13 stainless steel (EN-X46Cr13) surface uncoated and coated with an amorphous hydrogenated carbon (a-C:H) film [diamond-like carbon (DLC)] in acidic chloride solution was investigated. The DLC films were deposited on steel surface by a plasma deposition, direct current discharge (PDCD) method. The Fourier transform infrared (FTIR) was used to determine the chemical groups existing on DLC films. The surface of the specimens was observed by a scanning electron microscope (SEM). The tribological properties of the both materials were examined using a ball-on disk tribometer. The microhardness (HV) of diamond-like carbon film increased over five times in relation to the 4H13 stainless steel without of DLC coating. Oxidation kinetic parameters were determined by gravimetric and electrochemical methods. The high value of polarization resistance indicates that the DLC film on substrate was characterized by low electrical conductivity. The corrosion rate of 4H13 stainless steel with of DLC film decreased about eight times in relation to uncoated surface of 4H13 stainless steel.

  8. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  9. Oriented microtexturing on the surface of high-speed steel cutting tool

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Tarasov, S. Yu.; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2016-11-01

    Microtexturing the metal cutting tool surfaces is a novel technique intended for enhancing the workability of these tools. The microtexturing is used in machining the titanium alloys for air-space applications for reducing the adhesion wear of metal cutting blades. This paper is focused on forming the microtextured dotted, banded and overlapped areas on the surfaces of high-speed steel samples. The treated areas have been examined using laser scanning microscopy for the microtexture pattern and roughness. It has been shown that the microtextured surfaces obtained on the high-speed steel samples were free of cracks. Surface pattern and roughness of all three microtextured areas have been examined and analyzed.

  10. Comprehensive surface treatment of high-speed steel tool

    NASA Astrophysics Data System (ADS)

    Fedorov, Sergey V.; Aleshin, Sergey V.; Swe, Min Htet; Abdirova, Raushan D.; Kapitanov, Alexey V.; Egorov, Sergey B.

    2018-03-01

    One of the promising directions of hardening of high-speed steel tool is the creation on their surface of the layered structures with the gradient of physic-chemical properties between the wear-resistant coatings to the base material. Among the methods of such surface modification, a special process takes place based on the use of pulsed high-intensity charged particle beams. The high speed of heating and cooling allows structural-phase transformations in the surface layer, which cannot be realized in a stationary mode. The treatment was conducted in a RITM-SP unit, which constitutes a combination of a source of low-energy high-current electron beams "RITM" and two magnetron spraying systems on a single vacuum chamber. The unit enables deposition of films on the surface of the desired product and subsequent liquid-phase mixing of materials of the film and the substrate by an intense pulse electron beam. The article discusses features of the structure of the subsurface layer of high-speed steel M2, modified by surface alloying of a low-energy high-current electron beam, and its effect on the wear resistance of the tool when dry cutting hard to machine Nickel alloy. A significant decrease of intensity of wear of high-speed steel with combined treatment happens due to the displacement of the zone of wear and decrease the radius of rounding of the cutting edge because of changes in conditions of interaction with the material being treated.

  11. Tribological performances of new steel grades for hot stamping tools

    NASA Astrophysics Data System (ADS)

    Medea, F.; Venturato, G.; Ghiotti, A.; Bruschi, S.

    2017-09-01

    In the last years, the use of High Strength Steels (HSS) as structural parts in car body-in-white manufacturing has rapidly increased thanks to their favourable strength-to-weight ratio and stiffness, which allow a reduction of the fuel consumption to accommodate the new restricted regulations for CO2 emissions control. The survey of the technical and scientific literature shows a large interest in the development of different coatings for the blanks from the traditional Al-Si up to new Zn-based coatings and on the analysis of hard PVD, CVD coatings and plasma nitriding applied on the tools. By contrast, fewer investigations have been focused on the development and test of new tools steels grades capable to improve the wear resistance and the thermal properties that are required for the in-die quenching during forming. On this base, the paper deals with the analysis and comparison the tribological performances in terms of wear, friction and heat transfer of new tool steel grades for high-temperature applications, characterized by a higher thermal conductivity than the commonly used tools. Testing equipment, procedures as well as measurements analyses to evaluate the friction coefficient, the wear and heat transfer phenomena are presented. Emphasis is given on the physical simulation techniques that were specifically developed to reproduce the thermal and mechanical cycles on the metal sheets and dies as in the industrial practice. The reference industrial process is the direct hot stamping of the 22MnB5 HSS coated with the common Al-Si coating for automotive applications.

  12. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    DTIC Science & Technology

    2011-01-01

    tool material (AISI H13 tool steel ) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process...threads/m; (b) tool 598 material = AISI H13 tool steel ; (c) workpiece material = 599 AA5059; (d) tool rotation speed = 500 rpm; (e) tool travel 600 speed...the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13

  13. A temperature dependent cyclic plasticity model for hot work tool steel including particle coarsening

    NASA Astrophysics Data System (ADS)

    Jilg, Andreas; Seifert, Thomas

    2018-05-01

    Hot work tools are subjected to complex thermal and mechanical loads during hot forming processes. Locally, the stresses can exceed the material's yield strength in highly loaded areas as e.g. in small radii in die cavities. To sustain the high loads, the hot forming tools are typically made of martensitic hot work steels. While temperatures for annealing of the tool steels usually lie in the range between 400 and 600 °C, the steels may experience even higher temperatures during hot forming, resulting in softening of the material due to coarsening of strengthening particles. In this paper, a temperature dependent cyclic plasticity model for the martensitic hot work tool steel 1.2367 (X38CrMoV5-3) is presented that includes softening due to particle coarsening and that can be applied in finite-element calculations to assess the effect of softening on the thermomechanical fatigue life of hot work tools. To this end, a kinetic model for the evolution of the mean size of secondary carbides based on Ostwald ripening is coupled with a cyclic plasticity model with kinematic hardening. Mechanism-based relations are developed to describe the dependency of the mechanical properties on carbide size and temperature. The material properties of the mechanical and kinetic model are determined on the basis of tempering hardness curves as well as monotonic and cyclic tests.

  14. Materials Processing Research and Development

    DTIC Science & Technology

    2001-11-01

    interface between a Ti-6Al-4V workpiece and H13 tool steel die for various combinations of lubricants and workpiece-die temperatures. The ring test was...attaching a type-K thermocouple to the sample. The samples at 400 °C were heated using band heaters attached to H13 tool steel dies, with the...Ring Tests The ring tests were performed on a 200 kip servo-hydraulic press between H13 tool steel dies heated to the prescribed die temperatures of

  15. Study of wettability and cell viability of H implanted stainless steel

    NASA Astrophysics Data System (ADS)

    Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur

    2018-03-01

    In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.

  16. Adhesion Strength of TiN Coatings at Various Ion Etching Deposited on Tool Steels Using Cathodic Arc Pvd Technique

    NASA Astrophysics Data System (ADS)

    Ali, Mubarak; Hamzah, Esah; Ali, Nouman

    Titanium nitride (TiN) widely used as hard coating material was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The goal of this study was to examine the effect of ion etching with and without titanium (Ti) and chromium (Cr) on the adhesion strength of TiN coatings deposited on tool steels. From the scratch tester, it was observed that by increasing Ti ion etching showed an increase in adhesion strength of the deposited coatings. The coatings deposited with Cr ion etching showed poor adhesion compared with the coatings deposited with Ti ion etching. Scratch test measurements showed that the coating deposited with titanium ion etching for 16 min is the most stable coating and maintained even at the critical load of 66 N. The curve obtained via penetration depth along the scratch trace is linear in the case of HSS, whereas is slightly flexible in the case of D2 tool steel. The coatings deposited on HSS exhibit better adhesion compared with those on D2 tool steel.

  17. Tool wear analysis during duplex stainless steel trochoidal milling

    NASA Astrophysics Data System (ADS)

    Amaro, Paulo; Ferreira, Pedro; Simões, Fernando

    2018-05-01

    In this study a tool with interchangeable inserts of sintered carbides coated with AlTiN were used to mill a duplex stainless steel with trochoidal strategies. Cutting speed range from 120 to 300 m/min were used and t he evaluation of tool deterioration and tool life was made according international standard ISO 8688-1. It was observed a progressive development of a flank wear and a cumulative cyclic process of localized adhesion of the chip to the cutting edge, followed by chipping, loss of the coating and substrate exposure. The tool life reached a maximum of 35 min. for cutting speed of 120 m/min. However, it was possible to maintain a tool life of 20-25 minutes when the cutting speed was increased up to 240 m/min.

  18. Toughness characterization by small specimen test technique for HIPed joints of F82H steel aiming at first wall fabrication in fusion

    NASA Astrophysics Data System (ADS)

    Kishimoto, H.; Ono, T.; Sakasegawa, H.; Tanigawa, H.; Kohno, Y.; Kohyama, A.

    2013-09-01

    Reduced activation ferritic/martensitic steels (RAFMs), such as F82H steels, have been developed as candidates of structural materials for fusion. In the design of a fusion reactor, cooling channels are built in the first wall of the blanket. One large issue is to determine how to join rectangular tubes to thin panels to fabricate the first wall. Hot Isostatic Pressing (HIPing) is a solution to solve the issue. Because of the thin HIPed walls of the channels, the specimen size for inspection of HIPed interface is limited. In the present research, Small Specimen Test Techniques (SSTT) are screened for the destructive toughness investigation technique of HIPed F82H joints. 1/3 size Charpy V-notch impact (1/3 CVN) and small punch (SP) tests are employed for the present research. The toughness of the HIPed joints is strongly affected by various surface finishing of specimens treated previous to the HIPing. In the present research, several kinds of HIPed joints were surface finished by different methods and investigated by 1/3 CVN impact test. The HIPed F82H joints had different toughness ranging from 20% to 70% of the toughness of the F82H base metal. The SP test is also available for the investigation of toughness change by the HIPing. The sensitivity of 1/3 CVN impact test against toughness change was better than the SP test, it revealed that the SP test has some limitations.

  19. Frictional conditions between alloy AA6060 aluminium and tool steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wideroee, Fredrik; Welo, Torgeir

    The frictional conditions in the new process of screw extrusion of aluminium have been investigated. The contact behaviour between the aluminum alloy and the tool steel in the extruder is vital for understanding the extrusion process. Using a compressive-rotational method for frictional measurements the conditions for unlubricated sticking friction between aluminum alloy AA6060 and tool steel at different combinations of temperatures and pressures have been investigated. In this method the samples in the form of disks are put under hydrostatic pressure while simultaneously being rotated at one end. Pins made from contrast material have been inserted into the samples tomore » measure the deformation introduced. This approach along with 3D simulations form a method for determining the frictional conditions. The paper describes the test method and the results. It was found that the necessary pressure for sticking to occur between the aluminum AA6060 and the different parts of the extruder is heavily influenced by the temperature.« less

  20. Selective laser sintering of single-phase powder Cr-V tool steel

    NASA Astrophysics Data System (ADS)

    Kovalev, A. I.; Mishina, V. P.; Wainstein, D. L.; Titov, V. I.; Moiseev, V. F.; Tolochko, N. K.

    2002-10-01

    Presented is positive experience from selective laser sintering (SLS) of cylindrical steel specimens (3.0% C, 3.0% Cr, 1.0% Si, 12.0% V, Fe balance) 30 mm long and 5 mm in diameter by rapid prototyping. It was demonstrated that monolithic steel material could be successfully fabricated by this technology. Differential thermal analysis (DTA), scanning electron microscopy (SEM), and x-ray diffractometry (XRD) were used to study the microstructure, phase, and chemical composition of the source material and obtained specimens. Low-melting cementite-based eutectic was found to provide the liquid phase sintering of powder tool steel. The porosity of the green sintered specimens did not exceed 5%. The mean hardness value of sintered specimens was 825 HV.

  1. Estimation of gastric pH in cynomolgus monkeys, rats, and dogs using [(13)C]-calcium carbonate breath test.

    PubMed

    Tobita, Kazuki; Inada, Makoto; Sato, Asuka; Sudoh, Kimiyoshi; Sato, Hitoshi

    2016-09-01

    The determination of gastric pH is important for the confirmation of efficacy of anti-secretory drugs. However, current methods for measurement of gastric pH provide significant stress to animals and humans. The objective of this study is to establish an easy and reliable gastric pH measurement method by determining (13)CO2 concentration in expired air of monkeys, dogs, and rats after oral administration of Ca(13)CO3. A correlation of (13)CO2 concentration determined by a Ca(13)CO3 breath test with gastric pH just before Ca(13)CO3 administration was analyzed in the 3 animal species. The equations and contribution ratios of regression line were calculated from logarithmic (13)CO2 concentrations at 15min after administration of Ca(13)CO3 using the linear regression analysis. The (13)CO2 concentration in the Ca(13)CO3 breath test was well correlated with the gastric pH just before Ca(13)CO3 administration in the 3 animal species (r=-0.977 to -0.952). The equations of regression line between the (13)CO2 concentration and the gastric pH in each animal species showed good contribution ratios (R(2)≥0.89). The Ca(13)CO3 breath test is an informative tool to estimate gastric pH in animals and will be applicable as a new noninvasive tool for patients with GERD/PPI-resistant symptoms. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  2. Precipitation Kinetics of M23C6 Carbides in the Super304H Austenitic Heat-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Zhou, Qingwen; Ping, Shaobo; Meng, Xiaobo; Wang, Ruikun; Gao, Yan

    2017-12-01

    The precipitation kinetics of M23C6 carbides in Super304H and TP304H steels were investigated using the selective-etching method, SEM backscattered electron images and Image-Pro-Plus 6.0 software. Precipitation-temperature-time (PTT) diagrams of M23C6 carbides in the as-received Super304H (fine grains), coarsened Super304H (coarse grains) and TP304H (coarse grains) steels all show the typical C-shaped character with nose temperature range from 800 to 850 °C. Compared with the TP304H steel, the same trend is found of the PTT curve of M23C6 carbides for both kinds of Super304H steels, but their start lines move to the right and finish lines to the left. The preferential formation of Nb(C,N) phase at grain boundaries in the Super304H steels inhibited the nucleation of M23C6 carbides in the early stage of precipitation, causing the right shift of the start line of PTT curve. The main reason for the left shift of the finish line of the two Super304H steels was the quicker growing and coarsening rate of M23C6 in the later precipitation stage due to their higher C content than in TP304H. For the difference in PPT curves between the two grain sizes of the Super304H steel, the lower diffusion rate of atoms in the coarse-grained Super304H steel may explain its righter finish line than the fine-grained counterpart, while the reason for its lefter start line is due to the higher solute segregation along coarse-grained boundaries.

  3. Experimental investigation into effect of cutting parameters on surface integrity of hardened tool steel

    NASA Astrophysics Data System (ADS)

    Bashir, K.; Alkali, A. U.; Elmunafi, M. H. S.; Yusof, N. M.

    2018-04-01

    Recent trend in turning hardened materials have gained popularity because of its immense machinability benefits. However, several machining processes like thermal assisted machining and cryogenic machining have reveal superior machinability benefits over conventional dry turning of hardened materials. Various engineering materials have been studied. However, investigations on AISI O1 tool steel have not been widely reported. In this paper, surface finish and surface integrity dominant when hard turning AISI O1 tool steel is analysed. The study is focused on the performance of wiper coated ceramic tool with respect to surface roughness and surface integrity of hardened tool steel. Hard turned tool steel was machined at varying cutting speed of 100, 155 and 210 m/min and feed rate of 0.05, 0.125 and 0.20mm/rev. The depth of cut of 0.2mm was maintained constant throughout the machining trials. Machining was conducted using dry turning on 200E-axis CNC lathe. The experimental study revealed that the surface finish is relatively superior at higher cutting speed of 210m/min. The surface finish increases when cutting speed increases whereas surface finish is generally better at lower feed rate of 0.05mm/rev. The experimental study conducted have revealed that phenomena such as work piece vibration due to poor or improper mounting on the spindle also contributed to higher surface roughness value of 0.66Ra during turning at 0.2mm/rev. Traces of white layer was observed when viewed with optical microscope which shows evidence of cutting effects on the turned work material at feed rate of 0.2 rev/min

  4. Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB{sub 2} particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedrizzi, A., E-mail: anna.fedrizzi@ing.unitn.it; Pellizzari, M.; Zadra, M.

    2013-12-15

    Hot work tool steels are characterized by good toughness and high hot hardness but are less wear resistant than other tooling materials, such as high speed steel. Metal matrix composites show improved tribological behavior, but not much work has been done in the field of hot work tool steels. In this paper TiB{sub 2}-reinforced hot work tool steel matrix composites were produced by spark plasma sintering (SPS). Mechanical alloying (MA) was proposed as a suited process to improve the composite microstructure. Density measurements and microstructure confirmed that MA promotes sintering and produces a fine and homogeneous dispersion of reinforcing particles.more » X-ray diffraction patterns of the sintered composites highlighted the formation of equilibrium Fe{sub 2}B and TiC, as predicted by thermodynamic calculations using Thermo-Calc® software. Scanning electron microscopy as well as scanning Kelvin probe force microscopy highlighted the reaction of the steel matrix with TiB{sub 2} particles, showing the formation of a reaction layer at the TiB{sub 2}-steel interface. Phase investigations pointed out that TiB{sub 2} is not chemically stable in steel matrix because of the presence of carbon even during short time SPS. - Highlights: • TiB{sub 2} reinforced steel matrix composites were produced by spark plasma sintering. • TiB{sub 2} was successfully dispersed in the steel matrix by mechanical alloying. • Steel and TiB{sub 2} react during sintering forming equilibrium Fe{sub 2}B and TiC. • The new phases were investigated by means of AFM, Volta potential and XRD analyses.« less

  5. Prediction Of Tensile And Shear Strength Of Friction Surfaced Tool Steel Deposit By Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Manzoor Hussain, M.; Pitchi Raju, V.; Kandasamy, J.; Govardhan, D.

    2018-04-01

    Friction surface treatment is well-established solid technology and is used for deposition, abrasion and corrosion protection coatings on rigid materials. This novel process has wide range of industrial applications, particularly in the field of reclamation and repair of damaged and worn engineering components. In this paper, we present the prediction of tensile and shear strength of friction surface treated tool steel using ANN for simulated results of friction surface treatment. This experiment was carried out to obtain tool steel coatings of low carbon steel parts by changing contribution process parameters essentially friction pressure, rotational speed and welding speed. The simulation is performed by a 33-factor design that takes into account the maximum and least limits of the experimental work performed with the 23-factor design. Neural network structures, such as the Feed Forward Neural Network (FFNN), were used to predict tensile and shear strength of tool steel sediments caused by friction.

  6. Prediction of ttt curves of cold working tool steels using support vector machine model

    NASA Astrophysics Data System (ADS)

    Pillai, Nandakumar; Karthikeyan, R., Dr.

    2018-04-01

    The cold working tool steels are of high carbon steels with metallic alloy additions which impart higher hardenability, abrasion resistance and less distortion in quenching. The microstructure changes occurring in tool steel during heat treatment is of very much importance as the final properties of the steel depends upon these changes occurred during the process. In order to obtain the desired performance the alloy constituents and its ratio plays a vital role as the steel transformation itself is complex in nature and depends very much upon the time and temperature. The proper treatment can deliver satisfactory results, at the same time process deviation can completely spoil the results. So knowing time temperature transformation (TTT) of phases is very critical which varies for each type depending upon its constituents and proportion range. To obtain adequate post heat treatment properties the percentage of retained austenite should be lower and metallic carbides obtained should be fine in nature. Support vector machine is a computational model which can learn from the observed data and use these to predict or solve using mathematical model. Back propagation feedback network will be created and trained for further solutions. The points on the TTT curve for the known transformations curves are used to plot the curves for different materials. These data will be trained to predict TTT curves for other steels having similar alloying constituents but with different proportion range. The proposed methodology can be used for prediction of TTT curves for cold working steels and can be used for prediction of phases for different heat treatment methods.

  7. Influence of intermetallic coatings of system Ti-Al on durability of slotting tool from high speed steel

    NASA Astrophysics Data System (ADS)

    Vardanyan, E. L.; Budilov, V. V.; Ramazanov, K. N.; Khusnimardanov, R. N.; Nagimov, R. Sh

    2017-05-01

    The operation conditions and mechanism of wear of slotting tools from high-speed steel was researched. The analysis of methods increasing durability was carried out. The effect of intermetallic coatings deposited from vacuum-arc discharge plasma on the physical-mechanical high-speed steel EP657MP was discovered. The pilot batch of the slotting tool and production tests were carried out.

  8. Carbon and metal-carbon implantations into tool steels for improved tribological performance

    NASA Astrophysics Data System (ADS)

    Hirvonen, J.-P.; Harskamp, F.; Torri, P.; Willers, H.; Fusari, A.; Gibson, N.; Haupt, J.

    1997-05-01

    The high-fluence implantation of carbon and dual implantations of metal-metalloid pairs into steels with different microstructures are briefly reviewed. A previously unexamined system, the implantation of Si and C into two kinds of tool steels, M3 and D2, have been studied in terms of microstructure and tribological performance. In both cases ion implantation transfers a surface into an amorphous layer. However, the tribological behavior of these two materials differs remarkably: in the case of ion-implanted M3 a reduction of wear in a steel pin is observed even at high pin loads, whereas in the case of ion-implanted D2 the beneficial effects of ion implantation were limited to the lowest pin load. The importance of an initial phase at the onset of sliding is emphasized and a number of peculiarities observed in ion-implanted M3 steel are discussed.

  9. Feasibility study tool for semi-rigid joints design of high-rise buildings steel structures

    NASA Astrophysics Data System (ADS)

    Bagautdinov, Ruslan; Monastireva, Daria; Bodak, Irina; Potapova, Irina

    2018-03-01

    There are many ways to consider the final cost of the high-rise building structures and to define, which of their different variations are the most effective from different points of view. The research of Jaakko Haapio is conducted in Tampere University of Technology, which aims to develop a method that allows determining the manufacturing and installation costs of steel structures already at the tender phase while taking into account their details. This paper is aimed to make the analysis of the Feature-Based Costing Method for skeletal steel structures proposed by Jaakko Haapio. The most appropriate ways to improve the tool and to implement it in the Russian circumstances for high-rise building design are derived. Presented tool can be useful not only for the designers but, also, for the steel structures manufacturing organizations, which can help to utilize BIM technologies in the organization process and controlling on the factory.

  10. Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel

    NASA Astrophysics Data System (ADS)

    Mostafavi, Sajad; Fotouhi, Mohamad; Motasemi, Abed; Ahmadi, Mehdi; Sindi, Cevat Teymuri

    2012-10-01

    In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness ( K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575 °C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.

  11. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  12. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    NASA Astrophysics Data System (ADS)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-05-01

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ɛ carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes.

  13. Optimization of Composition and Heat Treating of Die Steels for Extended Lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam; John F. Wallace; Quanyou Zhou

    2002-01-30

    An ''average'' die casting die costs fifty thousand dollars. A die used in making die cast aluminum engine blocks can cost well over one million dollars. These costs provide a strong incentive for extension of die life. While vacuum quenched Premium Grade H13 dies have become the most widely used in the United States, tool makers and die casters are constantly searching for new steels and heat treating procedures to extend die life. This project was undertaken to investigate the effects of composition and heat treating on die life and optimize these parameters.

  14. European Scientific Notes. Volume 36, Number 3,

    DTIC Science & Technology

    1982-03-31

    lectures), applications on metal-forminig tools where the engineering applications (18 lectures), high substrate is typically H13 steel hardened to power...gas flow is inter- mittent. layered metal and compound coatings can be produced. This not only gives materials H13 steel was severely scored after...usually applied to Medicine, the Czechoslovak Biological Society, high-speed tool steels . Brno, and the House of Technology, Prague. For the most

  15. Implementation of straight and curved steel girder erection design tools construction : summary.

    DOT National Transportation Integrated Search

    2010-11-05

    Project 0-5574 Curved Plate Girder Design for Safe and Economical Construction, resulted in the : development of two design tools, UT Lift and UT Bridge. UT Lift is a spreadsheet-based program for analyzing : steel girders during lifting while ...

  16. Microanalysis of tool steel and glass with laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Loebe, Klaus; Uhl, Arnold; Lucht, Hartmut

    2003-10-01

    A laser microscope system for the microanalytical characterization of complex materials is described. The universal measuring principle of laser-induced breakdown spectroscopy (LIBS) in combination with echelle optics permits a fast simultaneous multielement analysis with a possible spatial resolution below 10 pm. The developed system features completely UV-transparent optics for the laser-microscope coupling and the emission beam path and enables parallel signal detection within the wavelength range of 200-800 nm with a spectral resolution of a few picometers. Investigations of glass defects and tool steels were performed. The characterization of a glass defect in a tumbler by a micro-LIBS line scan, with use of a 266-nm diode-pumped Nd:YAG laser for excitation, is possible by simple comparison of plasma spectra of the defect and the surrounding area. Variations in the main elemental composition as well as impurities by trace elements are detected at the same time. Through measurement of the calibration samples with the known concentration of the corresponding element, a correlation between the intensity of spectral lines and the element concentration was also achieved. The change of elemental composition at the transient stellite solder of tool steels has been determined by an area scan. The two-dimensional pictures show abrupt changes of the element distribution along the solder edge and allow fundamental researches of dynamic modifications (e.g., diffusion) in steel.

  17. Tool wear of (Ti, Al) N-coated polycrystalline cubic boron nitride compact in cutting of hardened steel

    NASA Astrophysics Data System (ADS)

    Wada, Tadahiro; Hanyu, Hiroyuki

    2017-11-01

    Polycrystalline cubic boron nitride compact (cBN) is effective tool material for cutting hardened steel. In addition to coated high speed steel and coated cemented carbide that has long been used for cutting materials, more recently, coated cBN has also been used. In this study, to verify the effectiveness of the (Ti,Al)N-coated cBN, which is formed on the substrate of cBN by the physical vapor deposition method, the hardened steel was turned with the (Ti,Al)N-coated cBN tool at a cutting speed of 3.33, 5.00 m/s, a feed rate of 0.3 mm/rev and a depth of cut of 0.1 mm. Furthermore, the uncoated cBN, which was the substrate of the (Ti,Al)N-coated, was also used. The tool wear of the cBN tools was experimentally investigated. The following results were obtained: (1) The contact area between the rake face and the chip of the (Ti,.Al)N-coated cBN tool was smaller than that of the uncoated cBN tool. (2) The tool wear of the (Ti,Al)N-coated cBN was smaller than that of uncoated cBN. (3) The wear progress of the (Ti,Al)N-coated cBN with the main element phase of the TiCN-Al, was slower than that of the (Ti,Al)N-coated cBN with the main element phase of the TiN-Al. (4) In the case of the high cutting speed of 5.00 m/s, the tool wear of the (Ti,Al)N-coated cBN was also smaller than that of uncoated cBN. The above results clarify that the (Ti,Al)N-coated cBN can be used as a tool material in high feed cutting of hardened steel.

  18. 15. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; PLAN & DETAILS." Specifications No. ENG 04-353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/34, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. A, no change; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  19. 16. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; ELEVATIONS AND SECTIONS." Specifications No. ENG 04353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/35, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. A; Date: 29 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  20. Correlation of microstructure and low cycle fatigue properties for 13.5Cr1.1W0.3Ti ODS steel

    NASA Astrophysics Data System (ADS)

    He, P.; Klimenkov, M.; Möslang, A.; Lindau, R.; Seifert, H. J.

    2014-12-01

    Reduced activation oxide dispersion strengthened (ODS) steels are prospective structural materials for the blanket system and first wall components in Tokamak-type fusion reactors. Under the pulsed operation, these components will be predominantly subjected to cyclic thermal-mechanical loading which leads to inevitable fatigue damage. In this work, strain controlled isothermal fatigue tests were conducted for 13.5Cr1.1W0.3Ti ODS steel at 550 °C. The total strain range varied from 0.54% to 0.9%. After thermomechanical processing, 13.5CrWTi-ODS steel exhibits a remarkable lifetime extension with a factor of 10-20 for strain ranges Δε ⩽ 0.7%. 13.5Cr ODS steel shows no cyclic softening at all during the whole testing process irrespective of the strain range. TEM observations reveal ultrastable grain structure and constant dislocation densities around 1014 m-2, independent of the number of cycles or the applied strain amplitude. The presence of the stabilized ultrafine Y-Ti-O dispersoids enhances the microstructural stability and therefore leads to outstanding fatigue resistance for 13.5Cr1.1W0.3Ti-ODS steel.

  1. An ALMA Survey of DCN/H13CN and DCO+/H13CO+ in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Huang, Jane; Öberg, Karin I.; Qi, Chunhua; Aikawa, Yuri; Andrews, Sean M.; Furuya, Kenji; Guzmán, Viviana V.; Loomis, Ryan A.; van Dishoeck, Ewine F.; Wilner, David J.

    2017-02-01

    The deuterium enrichment of molecules is sensitive to their formation environment. Constraining patterns of deuterium chemistry in protoplanetary disks is therefore useful for probing how material is inherited or reprocessed throughout the stages of star and planet formation. We present ALMA observations at ˜0.″6 resolution of DCO+, H13CO+, DCN, and H13CN in the full disks around T Tauri stars AS 209 and IM Lup, in the transition disks around T Tauri stars V4046 Sgr and LkCa 15, and in the full disks around Herbig Ae stars MWC 480 and HD 163296. We also present ALMA observations of HCN in the IM Lup disk. DCN, DCO+, and H13CO+ are detected in all disks, and H13CN in all but the IM Lup disk. We find efficient deuterium fractionation for the sample, with estimates of disk-averaged DCO+/HCO+ and DCN/HCN abundance ratios ranging from ˜0.02-0.06 and ˜0.005-0.08, respectively, which is comparable to values reported for other interstellar environments. The relative distributions of DCN and DCO+ vary between disks, suggesting that multiple formation pathways may be needed to explain the diverse emission morphologies. In addition, gaps and rings observed in both H13CO+ and DCO+ emission provide new evidence that DCO+ bears a complex relationship with the location of the midplane CO snowline.

  2. Stress Corrosion Cracking Behavior of Hardening-Treated 13Cr Stainless Steel

    NASA Astrophysics Data System (ADS)

    Niu, Li-Bin; Ishitake, Hisamitsu; Izumi, Sakae; Shiokawa, Kunio; Yamashita, Mitsuo; Sakai, Yoshihiro

    2018-03-01

    Stress corrosion cracking (SCC) behavior of the hardening-treated materials of 13Cr stainless steel was examined with SSRT tests and constant load tests. In the simulated geothermal water and even in the test water without addition of impurities, the hardening-treated materials showed a brittle intergranular fracture due to the sensitization, which was caused by the present hardening-treatments.

  3. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    NASA Astrophysics Data System (ADS)

    Guu, Y. H.

    2005-04-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.

  4. Experimental evaluation of tool wear throughout a continuous stroke blanking process of quenched 22MnB5 ultra-high-strength steel

    NASA Astrophysics Data System (ADS)

    Vogt, S.; Neumayer, F. F.; Serkyov, I.; Jesner, G.; Kelsch, R.; Geile, M.; Sommer, A.; Golle, R.; Volk, W.

    2017-09-01

    Steel is the most common material used in vehicles’ chassis, which makes its research an important topic for the automotive industry. Recently developed ultra-high-strength steels (UHSS) provide extreme tensile strength up to 1,500 MPa and combine great crashworthiness with good weight reduction potential. However, in order to reach the final shape of sheet metal parts additional cutting steps such as trimming and piercing are often required. The final trimming of quenched metal sheets presents a huge challenge to a conventional process, mainly because of the required extreme cutting force. The high cutting impact, due to the materials’ brittleness, causes excessive tool wear or even sudden tool failure. Therefore, a laser is commonly used for the cutting process, which is time and energy consuming. The purpose of this paper is to demonstrate the capability of a conventional blanking tool design in a continuous stroke piercing process using boron steel 22MnB5 sheets. Two different types of tool steel were tested for their suitability as active cutting elements: electro-slag remelted (ESR) cold work tool steel Bohler K340 ISODUR and powder-metallurgic (PM) high speed steel Bohler S390 MICROCLEAN. A FEM study provided information about an optimized punch design, which withstands buckling under high cutting forces. The wear behaviour of the process was assessed by the tool wear of the active cutting elements as well as the quality of cut surfaces.

  5. Slurry Erosion Studies on Surface Modified 13Cr-4Ni Steels: Effect of Angle of Impingement and Particle Size

    NASA Astrophysics Data System (ADS)

    Manisekaran, T.; Kamaraj, M.; Sharrif, S. M.; Joshi, S. V.

    2007-10-01

    Hydroturbine steels, such as 13Cr-4Ni martensitic steels, are generally subjected to heavy-erosive wear and loss of efficiency due to solid particulate entrainment in the water. Surface-modified steels have proven to give better performance in terms of erosive wear resistance. In the present study, an attempt is made to investigate the effect of angle of impingement and particle size on slurry-jet erosion behavior of pulsed plasma nitrided and laser hardened 13Cr-4Ni steels. Laser hardening process has shown good performance at all angles of impingement due to martensitic transformation of retained austenite. Plastic deformation mode of material removal was also an evident feature of all laser-hardened surface damage locations. However, pulsed-plasma nitrided steels have exhibited chip formation and micro-cutting mode of erosive wear. Erosion with 150-300 μm size was twice compared to 150 μm size slurry particulates.

  6. Experimental investigation and optimization of welding process parameters for various steel grades using NN tool and Taguchi method

    NASA Astrophysics Data System (ADS)

    Soni, Sourabh Kumar; Thomas, Benedict

    2018-04-01

    The term "weldability" has been used to describe a wide variety of characteristics when a material is subjected to welding. In our analysis we perform experimental investigation to estimate the tensile strength of welded joint strength and then optimization of welding process parameters by using taguchi method and Artificial Neural Network (ANN) tool in MINITAB and MATLAB software respectively. The study reveals the influence on weldability of steel by varying composition of steel by mechanical characterization. At first we prepare the samples of different grades of steel (EN8, EN 19, EN 24). The samples were welded together by metal inert gas welding process and then tensile testing on Universal testing machine (UTM) was conducted for the same to evaluate the tensile strength of the welded steel specimens. Further comparative study was performed to find the effects of welding parameter on quality of weld strength by employing Taguchi method and Neural Network tool. Finally we concluded that taguchi method and Neural Network Tool is much efficient technique for optimization.

  7. Investigation of fatigue strength of tool steels in sheet-bulk metal forming

    NASA Astrophysics Data System (ADS)

    Pilz, F.; Gröbel, D.; Merklein, M.

    2018-05-01

    To encounter trends regarding an efficient production of complex functional components in forming technology, the process class of sheet-bulk metal forming (SBMF) can be applied. SBMF is characterized by the application of bulk forming operations on sheet metal, often in combination with sheet forming operations [1]. The combination of these conventional process classes leads to locally varying load conditions. The resulting load conditions cause high tool loads, which lead to a reduced tool life, and an uncontrolled material flow. Several studies have shown that locally modified tool surfaces, so-called tailored surfaces, have the potential to control the material flow and thus to increase the die filling of functional elements [2]. A combination of these modified tool surfaces and high tool loads in SBMF is furthermore critical for the tool life and leads to fatigue. Tool fatigue is hardly predictable and due to a lack of data [3], a challenge in tool design. Thus, it is necessary to provide such data for tool steels used in SBMF. The aim of this study is the investigation of the influence of tailored surfaces on the fatigue strength of the powder metallurgical tool steel ASP2023 (1.3344, AISI M3:2), which is typically used in cold forging applications, with a hardness 60 HRC ± 1 HRC. To conduct this investigation, the rotating bending test is chosen. As tailored surfaces, a DLC-coating and a surface manufactured by a high-feed-milling process are chosen. As reference a polished surface which is typical for cold forging tools is used. Before the rotating bending test, the surface integrity is characterized by measuring topography and residual stresses. After testing, the determined values of the surface integrity are correlated with the reached fracture load cycle to derive functional relations. Based on the gained results the investigated tailored surfaces are evaluated regarding their feasibility to modify tool surfaces within SBMF.

  8. Boriding of high carbon high chromium cold work tool steel

    NASA Astrophysics Data System (ADS)

    Muhammad, W.

    2014-06-01

    High-carbon high-chromium cold work tool steels are widely used for blanking and cold forming of punches and dies. It is always advantageous to obtain an increased wear resistant surface to improve life and performance of these steels. In this connection boriding of a high-carbon high-chromium cold work die steel, D3, was conducted in a mixture of 30% B4C, 70% borax at 950 °C for two, four and six hours. Case depth of the borided layer obtained was between 40 to 80 μm. After boriding, the surface hardness achieved was between 1430 to 1544 HV depending upon the process time. X-ray diffraction studies confirmed the formation of a duplex compound layer consisting of FeB and Fe2B. It is generally considered that FeB is undesirable because of its inherent brittleness. Post boriding treatment (homogenization) transformed the compound layer into single-phase layer of Fe2B, while surface hardness decreased to 1345-1430 HV. Pin-on-disc wer test showed that wear resistance of the borided samples was superior as compared to non-borided material and increased with boriding time.

  9. Optimization of Processing Parameters in ECM of Die Tool Steel Using Nanofluid by Multiobjective Genetic Algorithm.

    PubMed

    Sathiyamoorthy, V; Sekar, T; Elango, N

    2015-01-01

    Formation of spikes prevents achievement of the better material removal rate (MRR) and surface finish while using plain NaNO3 aqueous electrolyte in electrochemical machining (ECM) of die tool steel. Hence this research work attempts to minimize the formation of spikes in the selected workpiece of high carbon high chromium die tool steel using copper nanoparticles suspended in NaNO3 aqueous electrolyte, that is, nanofluid. The selected influencing parameters are applied voltage and electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty-six experiments were designed using Design Expert 7.0 software and optimization was done using multiobjective genetic algorithm (MOGA). This tool identified the best possible combination for achieving the better MRR and surface roughness. The results reveal that voltage of 18 V, tool feed rate of 0.54 mm/min, and nanofluid discharge rate of 12 lit/min would be the optimum values in ECM of HCHCr die tool steel. For checking the optimality obtained from the MOGA in MATLAB software, the maximum MRR of 375.78277 mm(3)/min and respective surface roughness Ra of 2.339779 μm were predicted at applied voltage of 17.688986 V, tool feed rate of 0.5399705 mm/min, and nanofluid discharge rate of 11.998816 lit/min. Confirmatory tests showed that the actual performance at the optimum conditions was 361.214 mm(3)/min and 2.41 μm; the deviation from the predicted performance is less than 4% which proves the composite desirability of the developed models.

  10. Laser: a tool for light weight steel solutions for the automotive industry

    NASA Astrophysics Data System (ADS)

    Prange, Wilfried; Wonneberger, Ingo

    2003-03-01

    Mid 80th the steel industry discovered the laser as a tool to develop new products made from steel -- the tailored blanks. That means welding single blanks together, which are of different gauge or grades and coating. In the meantime this product is one of the key solutions for light weight vehicles with increasing performances. The market development world wide confirms this statement. But the development of this product is still going on. New high power lasers and new laser generations as Nd:YAG lasers are the basis. Today welded blanks with almost any seam/blank configuration are in high volume production. These blanks offer an additional potential for the optimization of the final product. To produce flat blank is only one possibility. New developments are the tailored tubes as a prematerial for the hydroforming process. This product becomes more and more important for optimized body in white solutions. But this design elements need new solutions in the assembly shops. So the laser is going to get more importance in the 3D welding process as well. This was shown for example in the ULSAB(-AVC)-project. Future vehicles more and more contain different materials. For example the joining of steel and aluminum to Hybrid Blanks can be done successfully by the use of laser. So the laser is one of the most important tools in the future.

  11. Substrate pH and butterfly bush response to dolomitic lime or steel slag amendment

    USDA-ARS?s Scientific Manuscript database

    Steel slag is a fertilizer amendment with a high concentration of calcium oxide, and thus capable of raising substrate pH similar to dolomitic lime. Steel slag, however, contains higher concentrations of some nutrients, such as iron, manganese, and silicon, compared to dolomitic lime. The objectiv...

  12. Effects of Mo Content on Microstructure and Mechanical Property of PH13-8Mo Martensitic Precipitation-Hardened Stainless Steel

    NASA Astrophysics Data System (ADS)

    Yubing, Pei; Tianjian, Wang; Zhenhuan, Gao; Hua, Fan; Gongxian, Yang

    This paper introduces the effects of Mo content on microstructure and mechanical property of PH13-8Mo martensitic precipitation-hardened stainless steel which is used for LP last stage blade in steam turbine. Thermodynamic software Thermo-Calc has been used to calculate precipitation temperature and the mass fraction of precipitated phases in PH13-8Mo steel with different Mo content. The result shows that when the mass of Mo is below 0.6wt.%, chi-phase mu-phase and sigma-phase could disappear. The microstructure and mechanical property of high Mo PH13-8Mo (Mo=0.57wt.%) and low Mo PH13-8Mo (Mo=2.15wt.%)have been investigated in different heat treatments. The investigations reveal that austenitizing temperature decrease with the reduce of Mo content, so the optimum solution temperature for low Mo PH13-8Mo is lower than that for high Mo PH13-8Mo.The influence of solution temperature on grain size is weakened with the increase of Mo content, Mo rich carbides could retard coarsening of grain. An enormous amount of nano-size uniformly distributed β-NiAl particles are found in both kinds of steels using transmission electron microscopy, they are the most important strengthening phase in PH13-8Mo.

  13. Static Recrystallization Behavior of Z12CN13 Martensite Stainless Steel

    NASA Astrophysics Data System (ADS)

    Luo, Min; Zhou, Bing; Li, Rong-bin; Xu, Chun; Guo, Yan-hui

    2017-09-01

    In order to increase the hot workability and provide proper hot forming parameters of forging Z12CN13 martensite stainless steel for the simulation and production, the static recrystallization behavior has been studied by double-pass hot compression tests. The effects of deformation temperature, strain rate and inter-pass time on the static recrystallization fraction by the 2% offset method are extensively studied. The results indicate that increasing the inter-pass time and the deformation temperature as well as strain rate appropriately can increase the fraction of static recrystallization. At the temperature of 1050-1150 °C, inter-pass time of 30-100 s and strain rate of 0.1-5 s-1, the static recrystallization behavior is obvious. In addition, the kinetics of static recrystallization behavior of Z12CN13 steel has been established and the activation energy of static recrystallization is 173.030 kJ/mol. The substructure and precipitates have been studied by TEM. The results reveal that the nucleation mode is bulging at grain boundary. Undissolved precipitates such as MoNi3 and Fe3C have a retarding effect on the recrystallization kinetics. The effect is weaker than the accelerating effect of deformation temperature.

  14. Resistance to Corrosion of Zirconia Coatings Deposited by Spray Pyrolysis in Nitrided Steel

    NASA Astrophysics Data System (ADS)

    Cubillos, G. I.; Olaya, J. J.; Bethencourt, M.; Cifredo, G.; Blanco, G.

    2013-10-01

    Coatings of zirconium oxide were deposited onto three types of stainless steel, AISI 316L, 2205, and tool steel AISI D2, using the ultrasonic spray pyrolysis method. The effect of the flux ratio on the process and its influence on the structure and morphology of the coatings were investigated. The coatings obtained, 600 nm thick, were characterized using x-ray diffraction, scanning electron microscopy, confocal microscopy, and atomic force microscopy. The resistance to corrosion of the coatings deposited over steel (not nitrided) and stainless steel nitrided (for 2 h at 823 K) in an ammonia atmosphere was evaluated. The zirconia coating enhances the stainless steel's resistance to corrosion, with the greatest increase in corrosion resistance being observed for tool steel. When the deposition is performed on previously nitrided stainless steel, the morphology of the surface improves and the coating is more homogeneous, which leads to an improved corrosion resistance.

  15. Corrosion of 310 stainless steel in H2-H2O-H2S gas mixtures: Studies at constant temperature and fixed oxygen potential

    NASA Technical Reports Server (NTRS)

    Rao, D. B.; Jacob, K. T.; Nelson, H. G.

    1981-01-01

    Corrosion of SAE 310 stainless steel in H2-H2O-H2S gas mixtures was studied at a constant temperature of 1150 K. Reactive gas mixtures were chosen to yield a constant oxygen potential of approximately 6 x 10 to the minus 13th power/cu Nm and sulfur potentials ranging from 0.19 x 10 to the minus 2nd power/cu Nm to 33 x 10 to the minus 2nd power/cu Nm. The kinetics of corrosion were determined using a thermobalance, and the scales were analyzed using metallography, scanning electron microscopy, and energy dispersive X-ray analysis. Two corrosion regimes, which were dependent on sulfur potential, were identified. At high sulfur potentials (p sub S sub 2 less than or equal to 2.7 x 10 to the minus 2nd power/cu Nm) the corrosion rates were high, the kinetics obeyed a linear rate equation, and the scales consisted mainly of sulfide phases similar to those observed from pure sulfication. At low sulfur potentials (P sub S sub 2 less than or equal to 0.19 x 10 to the minus 2nd power/cu Nm) the corrosion rates were low, the kinetics obeyed a parabolic rate equation, and scales consisted mainly of oxide phases.

  16. Corrosion inhibition of mild steel in 1M HCl by D-glucose derivatives of dihydropyrido [2,3-d:6,5-d′] dipyrimidine-2, 4, 6, 8(1H,3H, 5H,7H)-tetraone

    PubMed Central

    Verma, Chandrabhan; Quraishi, M. A.; Kluza, K.; Makowska-Janusik, M.; Olasunkanmi, Lukman O.; Ebenso, Eno E.

    2017-01-01

    D-glucose derivatives of dihydropyrido-[2,3-d:6,5-d′]-dipyrimidine-2, 4, 6, 8(1H,3H, 5H,7H)-tetraone (GPHs) have been synthesized and investigated as corrosion inhibitors for mild steel in 1M HCl solution using gravimetric, electrochemical, surface, quantum chemical calculations and Monte Carlo simulations methods. The order of inhibition efficiencies is GPH-3 > GPH-2 > GPH-1. The results further showed that the inhibitor molecules with electron releasing (-OH, -OCH3) substituents exhibit higher efficiency than the parent molecule without any substituents. Polarization study suggests that the studied compounds are mixed-type but exhibited predominantly cathodic inhibitive effect. The adsorption of these compounds on mild steel surface obeyed the Langmuir adsorption isotherm. SEM, EDX and AFM analyses were used to confirm the inhibitive actions of the molecules on mild steel surface. Quantum chemical (QC) calculations and Monte Carlo (MC) simulations studies were undertaken to further corroborate the experimental results. PMID:28317849

  17. Inhibition of Escherichia coli O157:H7 on stainless steel using Pseudomonas veronii biofilms.

    PubMed

    Kim, Y; Kim, H; Beuchat, L R; Ryu, J-H

    2018-05-01

    We produced a Pseudomonas veronii biofilm on the surface of a stainless steel that is inhibitory to Escherichia coli O157:H7. Pseudomonas veronii strain KACC 81051BP, isolated from lettuce, readily formed biofilm on the surface of stainless steel coupons (SSCs) immersed in tryptic soy broth at 25°C. Cells showed significantly (P ≤ 0·05) enhanced tolerance to desiccation stress (43% relative humidity (RH)) and retained antimicrobial activity against E. coli O157:H7. The number of E. coli O157:H7 (control; 4·1 ± 0·1 log CFU per coupon) on sterile SSCs decreased to 2·7 ± 0·2 log CFU per coupon after exposure to 43% RH at 25°C for 48 h, while the population of E. coli O157:H7 (4·1 ± 0·0 log CFU per coupon) on SSCs containing P. veronii biofilm decreased to below the theoretical detection limit (1·5 log CFU per coupon) within 24 h. The antimicrobial biofilm produced on stainless steel may have application in preventing cross-contamination by E. coli O157:H7 on other abiotic surfaces in food-contact environments. The presence of Escherichia coli O157:H7 on environmental surfaces of food manufacturing, transportation and storage facilities is a significant food safety concern because it can result in cross-contamination of food products. In this study, we developed a Pseudomonas veronii biofilm on the surface of a stainless steel that inhibits the growth of E. coli O157:H7. Since P. veronii in biofilm resists desiccation, it provides persistent antimicrobial activity. Information presented here provides novel and practical insights to developing biological strategies to inactivate E. coli O157:H7 on diverse surfaces in food processing and handling environments. © 2018 The Society for Applied Microbiology.

  18. Effect of Coating Thickness on the Properties of TiN Coatings Deposited on Tool Steels Using Cathodic Arc Pvd Technique

    NASA Astrophysics Data System (ADS)

    Mubarak, A.; Akhter, Parvez; Hamzah, Esah; Mohd Toff, Mohd Radzi Hj.; Qazi, Ishtiaq A.

    Titanium nitride (TiN) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The study concentrated on cathodic arc physical vapor deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MDs) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester, and pin-on-disc machine, were used to analyze and quantify the following properties and parameters: surface morphology, thickness, hardness, adhesion, and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MDs produced during the etching stage, protruded through the TiN film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 μm showed the most stable trend of COF versus sliding distance.

  19. Friction Stir Spot Welding (FSSW) of Advanced High Strength Steel (AHSS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santella, M. L.; Hovanski, Yuri; Pan, Tsung-Yu

    Friction stir spot welding (FSSW) is applied to join advanced high strength steels (AHSS): galvannealed dual phase 780 MPa steel (DP780GA), transformation induced plasticity 780 MPa steel (TRIP780), and hot-stamped boron steel (HSBS). A low-cost Si3N4 ceramic tool was developed and used for making welds in this study instead of polycrystalline cubic boron nitride (PCBN) material used in earlier studies. FSSW has the advantages of solid-state, low-temperature process, and the ability of joining dissimilar grade of steels and thicknesses. Two different tool shoulder geometries, concave with smooth surface and convex with spiral pattern, were used in the study. Welds weremore » made by a 2-step displacement control process with weld time of 4, 6, and 10 seconds. Static tensile lap-shear strength achieved 16.4 kN for DP780GA-HSBS and 13.2kN for TRIP780-HSBS, above the spot weld strength requirements by AWS. Nugget pull-out was the failure mode of the joint. The joining mechanism was illustrated from the cross-section micrographs. Microhardness measurement showed hardening in the upper sheet steel (DP780GA or TRIP780) in the weld, but softening of HSBS in the heat-affect zone (HAZ). The study demonstrated the feasibility of making high-strength AHSS spot welds with low-cost tools.« less

  20. Influence of cryogenic treatment on microstructure and mechanical properties of high strength AISI D2 tool steel =

    NASA Astrophysics Data System (ADS)

    Ghasemi Nanesa, Hadi

    Cryogenic treatment, known as treating materials at sub-zero temperatures, has been added to conventional heat treatment cycle of high alloyed steels where martensitic transformation is incomplete after quenching to room temperature. Incomplete martensitic transformation occurs due to the effect of high content of alloying elements on pushing down martensite start and finish temperatures to very low values, specifically, on tool steels. In spite of obtaining significant improvements in mechanical and wear properties after cryogenic treatment, there is no cohesive picture about what exactly modifies the microstructure of tool steels during cryogenic treatment and therefore divergent opinions on the influence of process parameters are still reported. For example, the suggested time length for cryogenic treatment starts from few seconds to several days indicating the lack of understanding about micromechanisms responsible for microstructural evolution while holding at cryogenic temperatures. In this regard, the main objective of this project is to develop a better understanding on the fundamental micromechanisms operating during cryogenic treatment. To attain this objective, the following milestones are pursued. - To study the conventional cryogenic treatment and finding challenges. - To identify and characterize the optimum starting microstructure before cryogenic treatment. - To determine the important processing parameters those control the evolution of microstructure and hardness. - To investigate the interaction between carbide precipitation and martensitic transformation in the AISI D2 steel. - To propose an optimal cryogenic treatment for AISI D2 steel.

  1. Study of Carbide Evolution During Thermo-Mechanical Processing of AISI D2 Tool Steel

    NASA Astrophysics Data System (ADS)

    Bombac, D.; Fazarinc, M.; Podder, A. Saha; Kugler, G.

    2013-03-01

    The microstructure of a cold-worked tool steel (AISI D2) with various thermo-mechanical treatments was examined in the current study to identify the effects of these treatments on phases. X-ray diffraction was used to identify phases. Microstructural changes such as spheroidization and coarsening of carbides were studied. Thermodynamic calculations were used to verify the results of the differential thermal analysis. It was found that soaking temperature and time have a large influence on dissolution, precipitation, spheroidization, and coalescence of carbides present in the steel. This consequently influences the hot workability and final properties.

  2. Effect of Tooling Material on the Internal Surface Quality of Ti6Al4V Parts Fabricated by Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Cai, Chao; Song, Bo; Wei, Qingsong; Yan, Wu; Xue, Pengju; Shi, Yusheng

    2017-01-01

    For the net-shape hot isostatic pressing (HIP) process, control of the internal surface roughness of as-HIPped parts remains a challenge for practical engineering. To reveal the evolution mechanism of the internal surface of the parts during the HIP process, the effect of different tooling materials (H13, T8, Cr12 steel, and graphite) as internal cores on the interfacial diffusion and surface roughness was systematically studied.

  3. An analytical method on the surface residual stress for the cutting tool orientation

    NASA Astrophysics Data System (ADS)

    Li, Yueen; Zhao, Jun; Wang, Wei

    2010-03-01

    The residual stress is measured by choosing 8 kinds orientations on cutting the H13 dies steel on the HSM in the experiment of this paper. The measured data shows on that the residual stress exists periodicity for the different rake angle (β) and side rake angle (θ) parameters, further study find that the cutting tool orientations have closed relationship with the residual stresses, and for the original of the machined residual stress on the surface from the cutting force and the axial force, it can be gained the simply model of tool-workpiece force, using the model it can be deduced the residual stress model, which is feasible to calculate the size of residual stress. And for almost all the measured residual stresses are compressed stress, the compressed stress size and the direction could be confirmed by the input data for the H13 on HSM. As the result, the residual stress model is the key for optimization of rake angle (β) and side rake angle (θ) in theory, using the theory the more cutting mechanism can be expressed.

  4. Mechanical properties of friction stir welded butt joint of steel/aluminium alloys: effect of tool geometry

    NASA Astrophysics Data System (ADS)

    Syafiq, W. M.; Afendi, M.; Daud, R.; Mazlee, M. N.; Majid, M. S. Abdul; Lee, Y. S.

    2017-10-01

    This paper described the mechanical properties from hardness testing and tensile testing of Friction Stir Welded (FSW) materials. In this project, two materials of aluminium and steel are welded using conventional milling machine and tool designed with different profile and shoulder size. During welding the temperature along the weld line is collected using thermocouples. Threaded pins was found to produce stronger joints than cylindrical pins. 20 mm diameter shoulder tool welded a slightly stronger joint than 18 mm diameter one, as well as softer nugget zone due to higher heat input. Threaded pins also contributed to higher weld temperature than cylindrical pins due to increase in pin contact surface. Generally, higher temperatures were recorded in aluminium side due to pin offset away from steel.

  5. Berberine as a natural source inhibitor for mild steel in 1 M H 2SO 4

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhao, Peng; Liang, Qiang; Hou, Baorong

    2005-12-01

    Berberine was abstracted from coptis chinensis and its inhibition efficiency on corrosion of mild steel in 1 M H 2SO 4 was investigated through weight loss experiment, electrochemical techniques and scanning electronic microscope (SEM) with energy disperse spectrometer (EDS). The weight loss results showed that berberine is an excellent corrosion inhibitor for mild steel immersed in 1 M H 2SO 4. Potentiodynamic curves suggested that berberine suppressed both cathodic and anodic processes for its concentrations higher than 1.0 × 10 -4 M and mainly cathodic reaction was suppressed for lower concentrations. The Nyquist diagrams of impedance for mild steel in 1 M H 2SO 4 containing berberine with different concentrations showed one capacitive loop, and the polarization resistance increased with the inhibitor concentration rising. A good fit to Flory-Huggins isotherm was obtained between surface coverage degree and inhibitor concentration. The surface morphology and EDS analysis for mild steel specimens in sulfuric acid in the absence and presence of the inhibitor also proved the results obtained by the weight loss and electrochemical experiments. The correlation of inhibition effect and molecular structure of berberine was then discussed by quantum chemistry study.

  6. Microstructural characterization of dissimilar welds between Incoloy 800H and 321 Austenitic Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayiram, G., E-mail: sayiram.g@vit.ac.in; Arivazhagan, N.

    2015-04-15

    In this work, the microstructural character of dissimilar welds between Incoloy 800H and 321 Stainless Steel has been discussed. The microscopic examination of the base metals, fusion zones and interfaces was characterized using an optical microscope and scanning electron microscopy. The results revealed precipitates of Ti (C, N) in the austenitic matrix along the grain boundaries of the base metals. Migration of grain boundaries in the Inconel 82 weld metal was very extensive when compared to Inconel 617 weldment. Epitaxial growth was observed in the 617 weldment which increases the strength and ductility of the weld metal. Unmixed zone nearmore » the fusion line between 321 Stainless Steel and Inconel 82 weld metal was identified. From the results, it has been concluded that Inconel 617 filler metal is a preferable choice for the joint between Incoloy 800H and 321 Stainless Steel. - Highlights: • Failure mechanisms produced by dissimilar welding of Incoloy 800H to AISI 321SS • Influence of filler wire on microstructure properties • Contemplative comparisons of metallurgical aspects of these weldments • Microstructure and chemical studies including metallography, SEM–EDS • EDS-line scan study at interface.« less

  7. Forward impact extrusion of surface textured steel blanks using coated tooling

    NASA Astrophysics Data System (ADS)

    Hild, Rafael; Feuerhack, Andreas; Trauth, Daniel; Arghavani, Mostafa; Kruppe, Nathan C.; Brögelmann, Tobias; Bobzin, Kirsten; Klocke, Fritz

    2017-10-01

    A method to enable dry metal forming by the means of a self-lubricating coating and surface textures was researched using an innovative Pin-On-Cylinder-Tribometer. The experimental analysis was complemented by a numerical model of the complex contact conditions between coated tools and the surface textured specimen at the micro-level. Based on the results, the explanation of the tribological interactions between surface textured specimens and the tool in dry full forward extrusion is the objective of this work. Therefore, experimental dry extrusion tests were performed using a tool system. The extruded specimens were evaluated regarding their geometry as well as by the required punch force. Thereby, the effectiveness and the feasibility of dry metal forming on the example of full forward extrusion was evaluated. Thus, one more step towards the technical realization of dry metal forming of low alloy steels under industrial conditions was realized.

  8. C3H7NO2S effect on concrete steel-rebar corrosion in 0.5 M H2SO4 simulating industrial/microbial environment

    NASA Astrophysics Data System (ADS)

    Okeniyi, Joshua Olusegun; Nwadialo, Christopher Chukwuweike; Olu-Steven, Folusho Emmanuel; Ebinne, Samaru Smart; Coker, Taiwo Ebenezer; Okeniyi, Elizabeth Toyin; Ogbiye, Adebanji Samuel; Durotoye, Taiwo Omowunmi; Badmus, Emmanuel Omotunde Oluwasogo

    2017-02-01

    This paper investigates C3H7NO2S (Cysteine) effect on the inhibition of reinforcing steel corrosion in concrete immersed in 0.5 M H2SO4, for simulating industrial/microbial environment. Different C3H7NO2S concentrations were admixed, in duplicates, in steel-reinforced concrete samples that were partially immersed in the acidic sulphate environment. Electrochemical monitoring techniques of open circuit potential, as per ASTM C876-91 R99, and corrosion rate, by linear polarization resistance, were then employed for studying anticorrosion effect in steel-reinforced concrete samples by the organic hydrocarbon admixture. Analyses of electrochemical test-data followed ASTM G16-95 R04 prescriptions including probability distribution modeling with significant testing by Kolmogorov-Smirnov and student's t-tests statistics. Results established that all datasets of corrosion potential distributed like the Normal, the Gumbel and the Weibull distributions but that only the Weibull model described all the corrosion rate datasets in the study, as per the Kolmogorov-Smirnov test-statistics. Results of the student's t-test showed that differences of corrosion test-data between duplicated samples with the same C3H7NO2S concentrations were not statistically significant. These results indicated that 0.06878 M C3H7NO2S exhibited optimal inhibition efficiency η = 90.52±1.29% on reinforcing steel corrosion in the concrete samples immersed in 0.5 M H2SO4, simulating industrial/microbial service-environment.

  9. Experimental investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Pradeep Kumar, M.

    2011-09-01

    Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool-chip interface using liquid nitrogen (LN 2). This paper presents results on the effect of LN 2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75-125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN 2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN 2 cooling, it has been found that the cutting temperature was reduced by 57-60% and 37-42%; the tool flank wear was reduced by 29-34% and 10-12%; the surface roughness was decreased by 33-40% and 25-29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN 2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.

  10. Hydrogen Financial Analysis Scenario Tool (H2FAST) Documentation

    Science.gov Websites

    for the web and spreadsheet versions of H2FAST. H2FAST Web Tool User's Manual H2FAST Spreadsheet Tool User's Manual (DRAFT) Technical Support Send questions or feedback about H2FAST to H2FAST@nrel.gov. Home

  11. Tool life and cutting speed for the maximum productivity at the drilling of the stainless steel X22CrMoV12-1

    NASA Astrophysics Data System (ADS)

    Vlase, A.; Blăjină, O.; Iacob, M.; Darie, V.

    2015-11-01

    Two addressed issues in the research regarding the cutting machinability, establishing of the optimum cutting processing conditions and the optimum cutting regime, do not yet have sufficient data for solving. For this reason, in the paper it is proposed the optimization of the tool life and the cutting speed at the drilling of a certain stainless steel in terms of the maximum productivity. For this purpose, a nonlinear programming mathematical model to maximize the productivity at the drilling of the steel is developed in the paper. The optimum cutting tool life and the associated cutting tool speed are obtained by solving the numerical mathematical model. Using this proposed model allows increasing the accuracy in the prediction of the productivity for the drilling of a certain stainless steel and getting the optimum tool life and the optimum cutting speed for the maximum productivity. The results presented in this paper can be used in the production activity, in order to increase the productivity of the stainless steels machining. Also new research directions for the specialists in this interested field may come off from this paper.

  12. H12CN and H13CN excitation analysis in the circumstellar outflow of R Sculptoris

    NASA Astrophysics Data System (ADS)

    Saberi, M.; Maercker, M.; De Beck, E.; Vlemmings, W. H. T.; Olofsson, H.; Danilovich, T.

    2017-03-01

    Context. The 12CO/13CO isotopologue ratio in the circumstellar envelope (CSE) of asymptotic giant branch (AGB) stars has been extensively used as the tracer of the photospheric 12C/13C ratio. However, spatially-resolved ALMA observations of R Scl, a carbon rich AGB star, have shown that the 12CO/13CO ratio is not consistent over the entire CSE. Hence, it can not necessarily be used as a tracer of the 12C/13C ratio. The most likely hypothesis to explain the observed discrepancy between the 12CO/13CO and 12C/13C ratios is CO isotopologue selective photodissociation by UV radiation. Unlike the CO isotopologue ratio, the HCN isotopologue ratio is not affected by UV radiation. Therefore, HCN isotopologue ratios can be used as the tracer of the atomic C ratio in UV irradiated regions. Aims: We aim to present ALMA observations of H13CN(4-3) and APEX observations of H12CN(2-1), H13CN(2-1, 3-2) towards R Scl. These new data, combined with previously published observations, are used to determine abundances, ratio, and the sizes of line-emitting regions of the aforementioned HCN isotopologues. Methods: We have performed a detailed non-LTE excitation analysis of circumstellar H12CN(J = 1-0, 2-1, 3-2, 4-3) and H13CN(J = 2-1, 3-2, 4-3) line emission around R Scl using a radiative transfer code based on the accelerated lambda iteration (ALI) method. The spatial extent of the molecular distribution for both isotopologues is constrained based on the spatially resolved H13CN(4-3) ALMA observations. Results: We find fractional abundances of H12CN/H2 = (5.0 ± 2.0) × 10-5 and H13CN/H2 = (1.9 ± 0.4) × 10-6 in the inner wind (r ≤ (2.0 ± 0.25) ×1015 cm) of R Scl. The derived circumstellar isotopologue ratio of H12CN/H13CN = 26.3 ± 11.9 is consistent with the photospheric ratio of 12C/13C 19 ± 6. Conclusions: We show that the circumstellar H12CN/H13CN ratio traces the photospheric 12C/13C ratio. Hence, contrary to the 12CO/13CO ratio, the H12CN/H13CN ratio is not affected by UV

  13. Heat treatment of investment cast PH 13-8 Mo stainless steel: Part II. Isothermal aging kinetics

    NASA Astrophysics Data System (ADS)

    Robino, C. V.; Cieslak, M. J.; Hochanadel, P. W.; Edwards, G. R.

    1994-04-01

    The hardening response of investment cast PH 13-8 Mo stainless steel has been evaluated by hardness measurements following aging in the temperature range normally specified for this alloy (510 °C to 593 °C). A new relationship between fraction transformed and hardness was developed, and analysis of the data in terms of the kinetics of precipitation, in a manner similar to that frequently applied to other precipitation-hardenable martensitic steels, yielded low time exponents and a low value for the apparent activation energy. The values of the time exponents were 0.49, 0.37, 0.56, and 0.53 at 510 °C, 538 °C, 566 °C, and 593 °C, respectively, and that for the apparent activation energy was 139 kJ/mole. As has been proposed for other maraging type steels, these estimates suggest that Β-NiAl precipitates along or near dislocations and that growth of the precipitates is dominated by dislocation pipe diffusion. However, these predictions were neither supported nor refuted by transmission electron microscopy (TEM) because of difficulties in imaging the Β-NiAl precipitates at the aging times and temperatures used. Further, analysis of the data using the formalism of Wert and Zener for the growth of precipitates with interfering diffusion fields indicated that the estimates of fraction transformed from hardness data are not fully appropriate for maraging type steels. Consideration of the nature of the Avrami analysis and the electron microscopy results suggests that other phenomena, including dislocation recovery and reversion of martensite to austenite, occur at rates sufficient to convolute the Avrami analysis. It is further suggested that these results cast doubt on the fundamental implications of previous analyses of precipitation kinetics in age-hardening martensitic steels. Although the Avrami analysis was found not to provide a tenable description of the precipitation kinetics, it does provide a reasonable methodology for portrayal of the hardening response

  14. Structural and phase transformations in Hadfield steel upon frictional loading in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Sagaradze, V. V.; Chernenko, N. L.

    2016-08-01

    Structural transformations that occur in 110G13 steel (Hadfield) upon sliding friction in liquid nitrogen (-196°C) have been investigated by metallographic, electron-microscopic, and X-ray diffraction methods. The frictional action was performed through the reciprocating sliding of a cylindrical indenter of quenched 110G13 steel over a plate of the studied steel. A like friction pair was immersed into a bath with liquid nitrogen. It has been shown that the Hadfield steel quenched from 1100°C under the given temperature conditions of frictional loading retains the austenitic structure completely. The frictional action forms in a surface layer up to 10 μm thick the nanocrystalline structure with austenite grains 10-50 nm in size and a hardness 6 GPa. Upon subsequent low-temperature friction, the tempering of steel at 400°C (3 h) and at 600°C (5 min and 5 h) brings about the formation of a large amount (tens of vol %) of ɛ (hcp) martensite in steel. The formation of this phase under friction is supposedly a consequence of the reduction in the stacking fault energy of Hadfield steel, which is achieved due to the combined action of the following factors: low-temperature cooling, a decrease in the carbon content in the austenite upon tempering, and the presence of high compressive stresses in the friction-contact zone.

  15. Cooxidation of 13-cis-retinoic acid by prostaglandin H synthase.

    PubMed

    Samokyszyn, V M; Sloane, B F; Honn, K V; Marnett, L J

    1984-10-30

    Cooxidative metabolism of 13-cis-retinoic acid (13-CIS) via prostaglandin H synthase was investigated employing ram seminal vesicle microsomes. Oxidation of 13-CIS utilizing H2O2, 13-hydroperoxy-9-cis-11-trans-octadecadienoic acid (13-OOH-18:2), or 1-hydroperoxy-5-phenyl-4-pentene was detected by measurement of O2 incorporation. UV spectroscopy and HPLC of extracted incubation mixtures demonstrated that 13-CIS was metabolized to oxidized derivatives. Similar spectral changes and HPLC profiles were obtained with H2O2, 13-OOH-18:2, or arachidonic acid as substrates. 4-Hydroxy-13-cis-retinoic acid and all trans-retinoic acid were products of cooxidation as well as other polar metabolites. Oxidation was inhibited by the antioxidant butylated hydroxyanisole and the spin trap, nitrosobenzene. These results indicate that 13-cis-retinoic acid is cooxidized by prostaglandin H synthase and suggest a free radical mechanism resembling that of lipid peroxidation.

  16. Structure A, steel shelving. Drawing no. H3300. Original drawing by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Structure A, steel shelving. Drawing no. H3-300. Original drawing by Black & Veatch, Consulting Engineers, Kansas City, Missouri, prepared for the U.S. Department of the Army, Office of Engineers, Military Construction Division, Washington D.C. dated November 5, 1951. - Travis Air Force Base, Building No. 925, W Street, Fairfield, Solano County, CA

  17. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO₂ Composite Coatings on Stainless Steel (316L) Substrates.

    PubMed

    Raddaha, Namir S; Cordero-Arias, Luis; Cabanas-Polo, Sandra; Virtanen, Sannakaisa; Roether, Judith A; Boccaccini, Aldo R

    2014-03-04

    This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN) and chitosan/h-BN/titania (TiO₂) composites on SS316L substrates using electrophoretic deposition (EPD) for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time) and relative concentrations of chitosan, h-BN and TiO₂ in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO₂ particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO₂ and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF) for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO₂ and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings.

  18. Hydrogen Financial Analysis Scenario Tool (H2FAST). Web Tool User's Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, B.; Penev, M.; Melaina, M.

    The Hydrogen Financial Analysis Scenario Tool (H2FAST) provides a quick and convenient indepth financial analysis for hydrogen fueling stations. This manual describes how to use the H2FAST web tool, which is one of three H2FAST formats developed by the National Renewable Energy Laboratory (NREL). Although all of the formats are based on the same financial computations and conform to generally accepted accounting principles (FASAB 2014, Investopedia 2014), each format provides a different level of complexity and user interactivity.

  19. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin

    PubMed Central

    Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Hammed, Leiqaa A.; Al-Amiery, Ahmed A.; San, Ng Hooi; Musa, Ahmed Y.

    2014-01-01

    A new coumarin derivative, N,N′-((2E,2′E)-2,2′-(1,4-phenylenebis(methanylylidene))bis(hydrazinecarbonothioyl))bis(2-oxo-2H-chromene-3-carboxamide) PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear magnetic resonance, 1H-NMR and carbon-13 nuclear magnetic resonance 13C-NMR). The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM) was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH. PMID:28788680

  20. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin.

    PubMed

    Kadhum, Abdul Amir H; Mohamad, Abu Bakar; Hammed, Leiqaa A; Al-Amiery, Ahmed A; San, Ng Hooi; Musa, Ahmed Y

    2014-06-05

    A new coumarin derivative, N , N '-((2E,2'E)-2,2'-(1,4-phenylenebis (methanylylidene))bis(hydrazinecarbonothioyl))bis(2-oxo-2H-chromene-3-carboxamide) PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear magnetic resonance, 1 H-NMR and carbon-13 nuclear magnetic resonance 13 C-NMR). The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential ( E CORR ), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM) was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH.

  1. Structure and mechanical and corrosion properties of new high-nitrogen Cr-Mn steels containing molybdenum

    NASA Astrophysics Data System (ADS)

    Berezovskaya, V. V.; Savrai, R. A.; Merkushkin, E. A.; Makarov, A. V.

    2012-05-01

    The structure, mechanical properties, and pitting corrosion of nickel-free high-nitrogen (0.8% N) austenitic 06Kh18AG19M2 and 07Kh16AG13M3 steels have been studied in various structural states obtained after hot deformation, quenching, and tempering at 300 and 500°C. Both steels are shown to be resistant to the γ → α and γ → ɛ martensite transformations irrespective of the decomposition of a γ solid solution (06Kh18AG19M2 steel). Austenite of the steel with 19 wt % Mn shows lower resistance to recrystallization, which provides its higher plasticity (δ5) and fracture toughness at a lower strength as compared to the steel with 13 wt % Mn. Electrochemical studies of the steels tempered at 300 and 500°C show that they are in a stable passive state during tests in a 3.5% NaCl solution and have high pitting resistance up to a potential E pf = 1.3-1.4 V, which is higher than that in 12Kh18N10T steel. In the quenched state, the passive state is instable but pitting formation potentials E pf retain their values. In all steels under study, pitting is shown to form predominantly along the grain boundaries of nonrecrystallized austenite. The lowest pitting resistance is demonstrated by the structure with a double grain boundary network that results from incomplete recrystallization at 1100°C and from the existence of initial and recrystallized austenite in the 07Kh16AG13M3 steel. To obtain a set of high mechanical and corrosion properties under given rolling conditions (1200-1150°C), annealing of the steels at temperatures no less than 1150°C (for 1 h) with water quenching and tempering at 500°C for 2 h are recommended.

  2. Effects of H content on the tensile properties and fracture behavior of SA508-III steel

    NASA Astrophysics Data System (ADS)

    Liu, Jia-hua; Wang, Lei; Liu, Yang; Song, Xiu; Luo, Jiong; Yuan, Dan

    2015-08-01

    SA508-III steel was charged with different hydrogen (H) contents using a high-pressure thermal charging method to study the effects of H content on the tensile properties and evaluate the H embrittlement behavior of the steel. The results indicate that the ultimate tensile strength remains nearly unchanged with the addition of H. In contrast, the yielding strength slightly increases, and the elongation significantly decreases with increasing H content, especially at concentrations exceeding 5.6 × 10-6. On the basis of fractographic analysis, it is clear that the addition of H changes the fracture mode from microvoid coalescence to a mixture of river patterns and dimples. Carbides are strong traps for H; thus, the H atoms easily migrate in the form of Cottrell atmosphere toward the carbides following moving dislocations during tensile deformation. In addition, stress-induced H atoms accumulate at the interface between carbides and the matrix after necking under three-dimensional stress, which weakens the interfacial bonding force. Consequently, when the local H concentration reaches a critical value, microcracks occur at the interface, resulting in fracture.

  3. Virtual Steel Connection Sculpture--Student Learning Assessment

    ERIC Educational Resources Information Center

    Chou, Karen C.; Moaveni, Saeed; Drane, Denise

    2016-01-01

    A Virtual Steel Connection Sculpture was developed through a grant from the National Science Foundation. The Virtual Sculpture is an interactive tool that shows students and anyone interested in connections how steel members are connected. This tool is created to complement students' steel design courses. The features of this educational tool,…

  4. Crystalline gamma-Al2O3 physical vapour deposition-coating for steel thixoforging tools.

    PubMed

    Bobzin, K; Hirt, G; Bagcivan, N; Khizhnyakova, L; Ewering, M

    2011-10-01

    The process of thixoforming, which has been part of many researches during the last decades, combines the advantages of forging and casting for the shaping of metallic components. But due to the high temperatures of semi-solid steel alloys high demands on the tools are requested. To resists the thermal and mechanical loads (wear, friction, thermal and thermomechanical fatigue) protecting thin films are necessary. In this regard crystalline gamma-Al2O3 deposited via Physical Vapour Deposition (PVD) is a promising candidate: It exhibits high thermal stability, high oxidation resistance and high hot hardness. In the present work the application of a (Ti, Al)N/gamma-Al2O3 coating deposited by means of Magnetron Sputter Ion Plating in an industrial coating unit is presented. The coating was analysed by means of Rockwell test, nanoindentation, and Scanning Electron Microscopy (SEM). The coated tool was tested in thixoforging experiments with steel grade X210CrW12 (AlSI D6). The surface of the coated dies was examined with Scanning Electron Microscope (SEM) after 22, 42, 90 and 170 forging cycles.

  5. The effect of boriding on wear resistance of cold work tool steel

    NASA Astrophysics Data System (ADS)

    Anzawa, Y.; Koyama, S.; Shohji, I.

    2017-05-01

    Recently, boriding has attracted extensive attention as surface stiffening processing of plain steel. In this research, the influence of processing time on the formation layer of cold work tool steel (KD11MAX) by Al added fused salt bath was examined. In addition, in order to improve the abrasion resistance of KD11MAX, the effect of the treatment of boronization on the formation layer has been investigated. Boriding were performed in molten borax which contained about 10 mass% Al at processing time of 1.8 ~ 7.2 ks (processing temperature of 1303 K). As a result of the examination, the hardness of the boriding layer becomes about 1900 HV when the processing time of 3.6 ks. Also the abrasion resistance has improved remarkably. Furthermore, it was revealed that the formation layer was boronized iron from the Vickers hardness and analysis of the X-ray diffraction measurement.

  6. Effect of milling time and annealing temperature on nanoparticles evolution for 13.5% Cr ODS ferritic steel powders by joint application of XAFS and TEM

    NASA Astrophysics Data System (ADS)

    He, P.; Hoffmann, J.; Möslang, A.

    2018-04-01

    The characteristics of strengthening nanoparticles have a major influence on the mechanical property and irradiation resistance of oxide dispersion strengthened (ODS) steels. To determine how to control nanoparticles evolution, 0.3% Ti with 0.3% Y2O3 were added in 13.5%Cr pre-alloyed steel powders via different milling and consolidation conditions, then characterized by transmission electron microscopy (TEM) and X-ray absorption fine structure (XAFS) at synchrotron irradiation facility. The dissolution of Y2O3 is greatly dependent on the milling time at fixed milling speeds. After 24 h of milling, only minor amounts of the initially added Y2O3 dissolve into the steel matrix whereas TEM results reveal nearly complete dissolution of Y2O3 in 80-h-milled powder. The annealed powder FT-A800 (at 800 °C for 1 h) exhibits a structure near to the initially added Y2O3. The slightly deviation may be accounted for considerable lattice distortion related to the presence of atomic vacancies or formation of Y-Ti-O nucleus. The annealed powders FT-A1000 and FT-A1100 contain complex mixtures of Y-O/Y-Ti-O oxides, which cannot be fitted by any single thermally stable compounds. The coordination numbers of these first two shells in the annealed powders significantly raise as a function of the annealing temperature, indicating the formation of more ordered Y-O or Y-Ti-O particles. The extended X-ray absorption fine structure (EXAFS) spectrum could not necessarily distinguish the dominant oxide species.

  7. UV/vis, 1H, and 13C NMR spectroscopic studies to determine mangiferin p Ka values

    NASA Astrophysics Data System (ADS)

    Gómez-Zaleta, Berenice; Ramírez-Silva, María Teresa; Gutiérrez, Atilano; González-Vergara, Enrique; Güizado-Rodríguez, Marisol; Rojas-Hernández, Alberto

    2006-07-01

    The acid constants of mangiferin (a natural xanthonoid) in aqueous solution were determined through an UV/vis spectroscopic study employing the SQUAD program as a computational tool. A NMR study complements the p Ka values assignment and evidences a H-bridge presence on 1-C. The chemical model used was consistent with the experimental data obtained. The p Ka values determined with this procedure were as follows: H 4(MGF) = H 3(MGF) - + H +, pK(6-H) = 6.52 ± 0.06; H 3(MGF) - = H 2(MGF) 2- + H +, pK(3-H) = 7.97 ± 0.06; H 2(MGF) 2- = H(MGF) 3- + H +, pK(7-H) = 9.44 ± 0.04; H(MGF) 3- = (MGF) 4- + H +, pK(1-H) = 12.10 ± 0.01; where it has been considered mangiferin C 19H 18O 11 as H 4(MGF). Mangiferin UV/vis spectral behavior, stability study in aqueous solution as well as NMR spectroscopy studies: one-dimensional 1H, 13C, 2D correlated 1H/ 13C performed by (g)-HSQC and (g)-HMBC methods; are also presented. p Ka values determination of H 4(MGF) in aqueous solution is a necessary contribution to subsequent pharmacokinetic study, and a step towards the understanding of its biological effects.

  8. Effects of machining parameters on tool life and its optimization in turning mild steel with brazed carbide cutting tool

    NASA Astrophysics Data System (ADS)

    Dasgupta, S.; Mukherjee, S.

    2016-09-01

    One of the most significant factors in metal cutting is tool life. In this research work, the effects of machining parameters on tool under wet machining environment were studied. Tool life characteristics of brazed carbide cutting tool machined against mild steel and optimization of machining parameters based on Taguchi design of experiments were examined. The experiments were conducted using three factors, spindle speed, feed rate and depth of cut each having three levels. Nine experiments were performed on a high speed semi-automatic precision central lathe. ANOVA was used to determine the level of importance of the machining parameters on tool life. The optimum machining parameter combination was obtained by the analysis of S/N ratio. A mathematical model based on multiple regression analysis was developed to predict the tool life. Taguchi's orthogonal array analysis revealed the optimal combination of parameters at lower levels of spindle speed, feed rate and depth of cut which are 550 rpm, 0.2 mm/rev and 0.5mm respectively. The Main Effects plot reiterated the same. The variation of tool life with different process parameters has been plotted. Feed rate has the most significant effect on tool life followed by spindle speed and depth of cut.

  9. 3D thermal model of laser surface glazing for H13 tool steel

    NASA Astrophysics Data System (ADS)

    Kabir, I. R.; Yin, D.; Naher, S.

    2017-10-01

    In this work a three dimensional (3D) finite element model of laser surface glazing (LSG) process has been developed. The purpose of the 3D thermal model of LSG was to achieve maximum accuracy towards the predicted outcome for optimizing the process. A cylindrical geometry of 10mm diameter and 1mm length was used in ANSYS 15 software. Temperature distribution, depth of modified zone and cooling rates were analysed from the thermal model. Parametric study was carried out varying the laser power from 200W-300W with constant beam diameter and residence time which were 0.2mm and 0.15ms respectively. The maximum surface temperature 2554°K was obtained for power 300W and minimum surface temperature 1668°K for power 200W. Heating and cooling rates increased with increasing laser power. The depth of the laser modified zone attained for 300W power was 37.5µm and for 200W power was 30µm. No molten zone was observed at 200W power. Maximum surface temperatures obtained from 3D model increased 4% than 2D model presented in author's previous work. In order to verify simulation results an analytical solution of temperature distribution for laser surface modification was used. The surface temperature after heating was calculated for similar laser parameters which is 1689°K. The difference in maximum surface temperature is around 20.7°K between analytical and numerical analysis of LSG for power 200W.

  10. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO2 Composite Coatings on Stainless Steel (316L) Substrates

    PubMed Central

    Raddaha, Namir S.; Cordero-Arias, Luis; Cabanas-Polo, Sandra; Virtanen, Sannakaisa; Roether, Judith A.; Boccaccini, Aldo R.

    2014-01-01

    This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN) and chitosan/h-BN/titania (TiO2) composites on SS316L substrates using electrophoretic deposition (EPD) for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time) and relative concentrations of chitosan, h-BN and TiO2 in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO2 particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO2 and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF) for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO2 and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings. PMID:28788541

  11. Software engineering techniques and CASE tools in RD13

    NASA Astrophysics Data System (ADS)

    Buono, S.; Gaponenko, I.; Jones, R.; Khodabandeh, A.; Mapelli, L.; Mornacchi, G.; Prigent, D.; Sanchez-Corral, E.; Skiadelli, M.; Toppers, A.; Duval, P. Y.; Ferrato, D.; Le Van Suu, A.; Qian, Z.; Rondot, C.; Ambrosini, G.; Fumagalli, G.; Polesello, G.; Aguer, M.; Huet, M.

    1994-12-01

    The RD13 project was approved in April 1991 for the development of a scalable data-taking system suitable for hosting various LHC studies. One of its goals is the exploitation of software engineering techniques, in order to indicate their overall suitability for data acquisition (DAQ), software design and implementation. This paper describes how such techniques have been applied to the development of components of the RD13 DAQ used in test-beam runs at CERN. We describe our experience with the Artifex CASE tool and its associated methodology. The issues raised when code generated by a CASE tool has to be integrated into an existing environment are also discussed.

  12. Surface modification of hydroturbine steel using friction stir processing

    NASA Astrophysics Data System (ADS)

    Grewal, H. S.; Arora, H. S.; Singh, H.; Agrawal, A.

    2013-03-01

    Friction stir processing (FSP) has proved to be a viable tool for enhancing the mechanical properties of materials, however, the major focus has been upon improving the bulk properties of light metals and their alloys. Hydroturbines are susceptible to damage owing to slurry and cavitation erosion. In this study, FSP of a commonly employed hydroturbine steel, 13Cr4Ni was undertaken. Microstructural characterization of the processed steel was conducted using optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) techniques. Mechanical characterization of the steel was undertaken in terms of microhardness and resistance to cavitation erosion (CE). FSP resulted in the refinement of the microstructure with reduction in grain size by a factor of 10. EBSD results confirmed the existence of submicron and ultrafine grained microstructure. The microhardness of the steel was found to enhance by 2.6 times after processing. The processed steel also showed 2.4 times higher resistance against cavitation erosion in comparison to unprocessed steel. The primary erosion mechanism for both the steels was identical in nature, with plastic deformation responsible for the loss of material.

  13. 1H,1H,5H-Perfluoropentyl-1,1,2,2-tetrafluoroethylether as a co-solvent for high voltage LiNi1/3Co1/3Mn1/3O2/graphite cells

    NASA Astrophysics Data System (ADS)

    Wang, Chengyun; Zuo, Xiaoxi; Zhao, Minkai; Xiao, Xin; Yu, Le; Nan, Junmin

    2016-03-01

    1H,1H,5H-Perfluoropentyl-1,1,2,2-tetrafluoroethylether (F-EAE) mixed with ethylene carbonate (EC), diethyl carbonate (DEC), and lithium hexafluorophosphate (LiPF6) is evaluated as a co-solvent high-potential electrolyte of LiNi1/3Co1/3Mn1/3O2/graphite batteries. Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) indicate that the EC/DEC-based electrolyte with F-EAE possesses a high oxidation potential (>5.2 V vs. Li/Li+) and excellent film-forming characteristics. With 40 wt% F-EAE in the electrolyte, the capacity retention of the LiNi1/3Co1/3Mn1/3O2/graphite pouch cells that are cycled between 3.0 and 4.5 V is significantly improved from 28.8% to 86.8% after 100 cycles. In addition, electrochemical impedance spectroscopy (EIS) of three-electrode pouch cells, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) are used to characterize the effects of F-EAE on the enhanced capacity retention. It is demonstrated that F-EAE facilitates the formation of a stable surface electrolyte interface (SEI) layer with low impedance on the anode and effectively suppresses an increase in the charge-transfer resistance on the cathode. These results suggest that F-EAE can serve as an alternative electrolyte solvent for 4.5 V high voltage rechargeable lithium-ion batteries.

  14. Influence of different temperatures on the thermal fatigue behavior and thermal stability of hot-work tool steel processed by a biomimetic couple laser technique

    NASA Astrophysics Data System (ADS)

    Meng, Chao; Zhou, Hong; Zhou, Ying; Gao, Ming; Tong, Xin; Cong, Dalong; Wang, Chuanwei; Chang, Fang; Ren, Luquan

    2014-04-01

    Three kinds of biomimetic non-smooth shapes (spot-shape, striation-shape and reticulation-shape) were fabricated on the surface of H13 hot-work tool steel by laser. We investigated the thermal fatigue behavior of biomimetic non-smooth samples with three kinds of shapes at different thermal cycle temperature. Moreover, the evolution of microstructure, as well as the variations of hardness of laser affected area and matrix were studied and compared. The results showed that biomimetic non-smooth samples had better thermal fatigue behavior compared to the untreated samples at different thermal cycle temperatures. For a given maximal temperature, the biomimetic non-smooth sample with reticulation-shape had the optimum thermal fatigue behavior, than with striation-shape which was better than that with the spot-shape. The microstructure observations indicated that at different thermal cycle temperatures the coarsening degrees of microstructures of laser affected area were different and the microstructures of laser affected area were still finer than that of the untreated samples. Although the resistance to thermal cycling softening of laser affected area was lower than that of the untreated sample, laser affected area had higher microhardness than the untreated sample at different thermal cycle temperature.

  15. Phyllanthus muellerianus and C6H15NO3 synergistic effects on 0.5 M H2SO4-immersed steel-reinforced concrete: Implication for clean corrosion-protection of wind energy structures in industrial environment

    NASA Astrophysics Data System (ADS)

    Okeniyi, Joshua Olusegun; Omotosho, Olugbenga Adeshola; Popoola, Abimbola Patricia Idowu; Loto, Cleophas Akintoye

    2016-07-01

    This paper investigates Phyllanthus muellerianus leaf-extract and C6H15NO3 (triethanolamine: TEA) synergistic effects on reinforcing-steel corrosion-inhibition and the compressive-strength of steel-reinforced concrete immersed in 0.5 M H2SO4. This is to assess suitability of the synergistic admixture usage for wind-energy steel-reinforced concrete structures designed for industrial environments. Steel-reinforced concrete specimens were admixed with individual and synergistic designs of Phyllanthus muellerianus leaf-extract and C6H15NO3 admixtures and immersed in the 0.5 M H2SO4. Electrochemical monitoring of corrosion potential, as per ASTM C876-91 R99, and corrosion current were obtained and statistically analysed, as per ASTM G16-95 R04, for modelling noise resistance. Post-immersion compressive-strength testing then followed, as per ASTM C39/C39M-03, for detailing the admixture effect on load-bearing strength of the steel-reinforced concrete specimens. Results showed that while individual Phyllanthus muellerianus leaf-extract concentrations exhibited better inhibition-efficiency performance than C6H15NO3, synergistic additions of C6H15NO3 to Phyllanthus muellerianus leaf-extract improved steel-rebar corrosion-inhibition. Thus, 6 g Phyllanthus muellerianus + 2 g C6H15NO3 synergistically improved inhibition-efficiency to η = 84.17%, from η = 55.28% by the optimal chemical or from η = 74.72% by the optimal plant-extract admixtures. The study also established that improved compressive strength of steel-reinforced concrete with acceptable inhibition of the steel-rebar corrosion could be attained through optimal combination of the Phyllanthus muellerianus leaf-extract and C6H15NO3 admixtures.

  16. Quantified pH imaging with hyperpolarized (13) C-bicarbonate.

    PubMed

    Scholz, David Johannes; Janich, Martin A; Köllisch, Ulrich; Schulte, Rolf F; Ardenkjaer-Larsen, Jan H; Frank, Annette; Haase, Axel; Schwaiger, Markus; Menzel, Marion I

    2015-06-01

    Because pH plays a crucial role in several diseases, it is desirable to measure pH in vivo noninvasively and in a spatially localized manner. Spatial maps of pH were quantified in vitro, with a focus on method-based errors, and applied in vivo. In vitro and in vivo (13) C mapping were performed for various flip angles for bicarbonate (BiC) and CO2 with spectral-spatial excitation and spiral readout in healthy Lewis rats in five slices. Acute subcutaneous sterile inflammation was induced with Concanavalin A in the right leg of Buffalo rats. pH and proton images were measured 2 h after induction. After optimizing the signal to noise ratio of the hyperpolarized (13) C-bicarbonate, error estimation of the spectral-spatial excited spectrum reveals that the method covers the biologically relevant pH range of 6 to 8 with low pH error (< 0.2). Quantification of pH maps shows negligible impact of the residual bicarbonate signal. pH maps reflect the induction of acute metabolic alkalosis. Inflamed, infected regions exhibit lower pH. Hyperpolarized (13) C-bicarbonate pH mapping was shown to be sensitive in the biologically relevant pH range. The mapping of pH was applied to healthy in vivo organs and interpreted within inflammation and acute metabolic alkalosis models. © 2014 Wiley Periodicals, Inc.

  17. Influence of traps on the deuterium behaviour in the low activation martensitic steels F82H and Batman

    NASA Astrophysics Data System (ADS)

    Serra, E.; Perujo, A.; Benamati, G.

    1997-06-01

    A time dependent permeation method is used to measure the permeability, diffusivity and solubility of deuterium in the low activation martensitic steels F82H and Batman. The measurements cover the temperature range from 373 to 743 K which includes the onset of deuterium trapping effects on diffusivity and solubility. The results are interpreted using a trapping model. The number of trap sites and their average energies for deuterium in F82H and Batman steels are determined.

  18. Machining of AISI D2 Tool Steel with Multiple Hole Electrodes by EDM Process

    NASA Astrophysics Data System (ADS)

    Prasad Prathipati, R.; Devuri, Venkateswarlu; Cheepu, Muralimohan; Gudimetla, Kondaiah; Uzwal Kiran, R.

    2018-03-01

    In recent years, with the increasing of technology the demand for machining processes is increasing for the newly developed materials. The conventional machining processes are not adequate to meet the accuracy of the machining of these materials. The non-conventional machining processes of electrical discharge machining is one of the most efficient machining processes is being widely used to machining of high accuracy products of various industries. The optimum selection of process parameters is very important in machining processes as that of an electrical discharge machining as they determine surface quality and dimensional precision of the obtained parts, even though time consumption rate is higher for machining of large dimension features. In this work, D2 high carbon and chromium tool steel has been machined using electrical discharge machining with the multiple hole electrode technique. The D2 steel has several applications such as forming dies, extrusion dies and thread rolling. But the machining of this tool steel is very hard because of it shard alloyed elements of V, Cr and Mo which enhance its strength and wear properties. However, the machining is possible by using electrical discharge machining process and the present study implemented a new technique to reduce the machining time using a multiple hole copper electrode. In this technique, while machining with multiple holes electrode, fin like projections are obtained, which can be removed easily by chipping. Then the finishing is done by using solid electrode. The machining time is reduced to around 50% while using multiple hole electrode technique for electrical discharge machining.

  19. Effect of 0.2 and 0.5% Ti on the microstructure and mechanical properties of 13Cr supermartensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Lian, Yong; Huang, Jinfeng; Zhang, Jin; Zhang, Cheng; Gao, Wen; Zhao, Chao

    2015-11-01

    The effect that a 0, 0.2, and 0.5 wt.% titanium content has on the microstructure and mechanical properties of 13Cr supermartensitic stainless steel was investigated using an optical microscope, transmission electron microscope, and X-ray diffraction. The resultant microstructures of the three steels were tempered martensite with a reversed austenite dispersed throughout the matrix. Additionally, the formation of Cr-rich carbides was suppressed by stable Ti(C, N), which improved the strength without severely decreasing in the Ti-microalloyed steel toughness. Nano-precipitation of Ni3Ti was found for the 0.5 wt.% Ti steel during tempering, which significantly increased the strength, but decreased the toughness. The reversed austenite volume fraction also significantly influenced the mechanical properties.

  20. Wear of Cutting Tool with Excel Geometry in Turning Process of Hardened Steel

    NASA Astrophysics Data System (ADS)

    Samardžiová, Michaela

    2016-09-01

    This paper deals with hard turning using a cutting tool with Xcel geometry. This is one of the new geometries, and there is not any information about Xcel wear in comparison to the conventional geometry. It is already known from cutting tools producers that using the Xcel geometry leads to higher quality of machined surface, perticularly surface roughness. It is possible to achieve more than 4 times lower Ra and Rz values after turning than after using conventional geometry with radius. The workpiece material was 100Cr6 hardened steel with hardness of 60 ± 1 HRC. The machine used for the experiment was a lathe with counter spindle DMG CTX alpha 500, which is located in the Centre of Excellence of 5-axis Machining at the Faculty of Materials Science and Technology in Trnava. The cutting tools made by CBN were obtained from Sandvik COROMANT Company. The aim of this paper is to investigate the cutting tool wear in hard turning process by the Xcel cutting tool geometry.

  1. A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium

    NASA Astrophysics Data System (ADS)

    Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng

    2018-05-01

    NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness ( R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.

  2. A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium

    NASA Astrophysics Data System (ADS)

    Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng

    2018-04-01

    NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness (R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.

  3. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    NASA Astrophysics Data System (ADS)

    Bellanger, G.; Rameau, J. J.

    1996-02-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive -transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique.

  4. Wear-Induced Changes in FSW Tool Pin Profile: Effect of Process Parameters

    NASA Astrophysics Data System (ADS)

    Sahlot, Pankaj; Jha, Kaushal; Dey, G. K.; Arora, Amit

    2018-06-01

    Friction stir welding (FSW) of high melting point metallic (HMPM) materials has limited application due to tool wear and relatively short tool life. Tool wear changes the profile of the tool pin and adversely affects weld properties. A quantitative understanding of tool wear and tool pin profile is crucial to develop the process for joining of HMPM materials. Here we present a quantitative wear study of H13 steel tool pin profile for FSW of CuCrZr alloy. The tool pin profile is analyzed at multiple traverse distances for welding with various tool rotational and traverse speeds. The results indicate that measured wear depth is small near the pin root and significantly increases towards the tip. Near the pin tip, wear depth increases with increase in tool rotational speed. However, change in wear depth near the pin root is minimal. Wear depth also increases with decrease in tool traverse speeds. Tool pin wear from the bottom results in pin length reduction, which is greater for higher tool rotational speeds, and longer traverse distances. The pin profile changes due to wear and result in root defect for long traverse distance. This quantitative understanding of tool wear would be helpful to estimate tool wear, optimize process parameters, and tool pin shape during FSW of HMPM materials.

  5. Acoustic emission detection of macro-cracks on engraving tool steel inserts during the injection molding cycle using PZT sensors.

    PubMed

    Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez

    2013-05-14

    This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process.

  6. Acoustic Emission Detection of Macro-Cracks on Engraving Tool Steel Inserts during the Injection Molding Cycle Using PZT Sensors

    PubMed Central

    Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez

    2013-01-01

    This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process. PMID:23673677

  7. H(2)- and H(infinity)-design tools for linear time-invariant systems

    NASA Technical Reports Server (NTRS)

    Ly, Uy-Loi

    1989-01-01

    Recent advances in optimal control have brought design techniques based on optimization of H(2) and H(infinity) norm criteria, closer to be attractive alternatives to single-loop design methods for linear time-variant systems. Significant steps forward in this technology are the deeper understanding of performance and robustness issues of these design procedures and means to perform design trade-offs. However acceptance of the technology is hindered by the lack of convenient design tools to exercise these powerful multivariable techniques, while still allowing single-loop design formulation. Presented is a unique computer tool for designing arbitrary low-order linear time-invarient controllers than encompasses both performance and robustness issues via the familiar H(2) and H(infinity) norm optimization. Application to disturbance rejection design for a commercial transport is demonstrated.

  8. Effect of Chromium on Corrosion Behavior of P110 Steels in CO2-H2S Environment with High Pressure and High Temperature

    PubMed Central

    Sun, Jianbo; Sun, Chong; Lin, Xueqiang; Cheng, Xiangkun; Liu, Huifeng

    2016-01-01

    The novel Cr-containing low alloy steels have exhibited good corrosion resistance in CO2 environment, mainly owing to the formation of Cr-enriched corrosion film. In order to evaluate whether it is applicable to the CO2 and H2S coexistence conditions, the corrosion behavior of low-chromium steels in CO2-H2S environment with high pressure and high temperature was investigated using weight loss measurement and surface characterization. The results showed that P110 steel suffered localized corrosion and both 3Cr-P110 and 5Cr-P110 steels exhibited general corrosion. However, the corrosion rate of 5Cr-P110 was the highest among them. The corrosion process of the steels was simultaneously governed by CO2 and H2S. The outer scales on the three steels mainly consisted of FeS1−x crystals, whereas the inner scales on Cr-containing steels comprised of amorphous FeS1−x, Cr(OH)3 and FeCO3, in contrast with the amorphous FeS1−x and FeCO3 mixture film of P110 steel. The more chromium the steel contains, the more chromium compounds the corrosion products contain. The addition of chromium in steels increases the uniformity of the Cr-enriched corrosion scales, eliminates the localized corrosion, but cannot decrease the general corrosion rates. The formation of FeS1−x may interfere with Cr-enriched corrosion scales and lowering the corrosion performance of 3Cr-P110 and 5Cr-P110 steels. PMID:28773328

  9. Absence of External Electric-Field Effects on Transformations in Steels

    DTIC Science & Technology

    1991-10-01

    12 2. Approximate CCT diagram for the high nickel composition used in the present measurements ...................................... 13 3...Main features of CCT diagram for 02 tool steel ........................ 14 4. DTA and THA data for the 3569C isothermal bainite transformation with...on the continuous-cooling-transformation ( CCT ) diagram obtained by examining transfor- mations in a 3.0 weight percent (wt.%) nickel specimen at

  10. Application of carbide cutting tools with nano-structured multilayer composite coatings for turning austenitic steels, type 16Cr-10NI

    NASA Astrophysics Data System (ADS)

    Vereschaka, Alexey; Migranov, Mars; Oganyan, Gaik; Sotova, Catherine S.; Batako, Andre

    2018-03-01

    This paper addresses the challenges of increasing the efficiency of the machining of austenitic stainless steels AISI 321 and S31600 by application of cutting tools with multilayer composite nano-structured coatings. The main mechanical properties and internal structures of the coatings under study (hardness, adhesion strength in the "coating-substrate" system) were investigated, and their chemical compositions were analyzed. The conducted research of tool life and nature of wear of carbide tools with the investigated coatings during turning of the above mentioned steels showed that the application of those coatings increases the tool life by up to 2.5 times. In addition, the use of a cutting tool with coatings allows machining at higher cutting speeds. It was also found that the use of a tool with multilayer composite nano-structured coating (Zr,Nb)N-(Zr,Al,Nb)N ensures better results compared with not only monolithic coating TiN, but also with nano-structured coatings Ti-TiN-(Ti,Al)N and (Zr,Nb)N-(Cr,Zr,Nb,Al)N. The mechanism of failure of the coatings under study was also investigated.

  11. Performance of Ti-multilayer coated tool during machining of MDN431 alloyed steel

    NASA Astrophysics Data System (ADS)

    Badiger, Pradeep V.; Desai, Vijay; Ramesh, M. R.

    2018-04-01

    Turbine forgings and other components are required to be high resistance to corrosion and oxidation because which they are highly alloyed with Ni and Cr. Midhani manufactures one of such material MDN431. It's a hard-to-machine steel with high hardness and strength. PVD coated insert provide an answer to problem with its state of art technique on the WC tool. Machinability studies is carried out on MDN431 steel using uncoated and Ti-multilayer coated WC tool insert using Taguchi optimisation technique. During the present investigation, speed (398-625rpm), feed (0.093-0.175mm/rev), and depth of cut (0.2-0.4mm) varied according to Taguchi L9 orthogonal array, subsequently cutting forces and surface roughness (Ra) were measured. Optimizations of the obtained results are done using Taguchi technique for cutting forces and surface roughness. Using Taguchi technique linear fit model regression analysis carried out for the combination of each input variable. Experimented results are compared and found the developed model is adequate which supported by proof trials. Speed, feed and depth of cut are linearly dependent on the cutting force and surface roughness for uncoated insert whereas Speed and depth of cut feed is inversely dependent in coated insert for both cutting force and surface roughness. Machined surface for coated and uncoated inserts during machining of MDN431 is studied using optical profilometer.

  12. Evaluation of rolling contact fatigue of induction heated 13Cr-2Ni-2Mo Stainless steel bar with Si3N4-ball

    NASA Astrophysics Data System (ADS)

    Yadoiwa, Ariyasu; Mizobe, Koshiro; Kida, Katsuyuki

    2018-03-01

    13Cr % martensitic stainless steels were used in various industry, because they have excellent corrosion resistance and high hardness among other stainless steels. They are also expected as a bearing material, however, the research on rolling contact fatigue (RCF) is not enough. In this study, 13Cr-2Ni-2Mo stainless steels were quenched by induction heating and their RCF lives were evaluated. A Si3N4-ball was used in order to apply higher stress (Pmax = 5.6 GPa) than our previous tests (Pmax=5.3 GPa), in a single-ball RCF testing machine. It was found that the basic life (L10) was 2.20×106 cycles and Median life (L50) was 6.04×106 cycles. In addition, Weibull modulus became higher than the previous tests.

  13. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Use of Laser Engineered Net Shaping for Rapid Manufacturing of Dies with Protective Coatings and Improved Thermal Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, Jerald R.

    2014-06-13

    In the high pressure die casting process, molten metal is introduced into a die cavity at high pressure and velocity, enabling castings of thin wall section and complex geometry to be obtained. Traditional die materials have been hot work die steels, commonly H13. Manufacture of the dies involves machining the desired geometry from monolithic blocks of annealed tool steel, heat treating to desired hardness and toughness, and final machining, grinding and polishing. The die is fabricated with internal water cooling passages created by drilling. These materials and fabrication methods have been used for many years, however, there are limitations. Toolmore » steels have relatively low thermal conductivity, and as a result, it takes time to remove the heat from the tool steel via the drilled internal water cooling passages. Furthermore, the low thermal conductivity generates large thermal gradients at the die cavity surfaces, which ultimately leads to thermal fatigue cracking on the surfaces of the die steel. The high die surface temperatures also promote the metallurgical bonding of the aluminum casting alloy to the surface of the die steel (soldering). In terms of process efficiency, these tooling limitations reduce the number of die castings that can be made per unit time by increasing cycle time required for cooling, and increasing downtime and cost to replace tooling which has failed either by soldering or by thermal fatigue cracking (heat checking). The objective of this research was to evaluate the feasibility of designing, fabricating, and testing high pressure die casting tooling having properties equivalent to H13 on the surface in contact with molten casting alloy - for high temperature and high velocity molten metal erosion resistance – but with the ability to conduct heat rapidly to interior water cooling passages. A layered bimetallic tool design was selected, and the design evaluated for thermal and mechanical performance via finite element analysis

  14. Performance evaluation of Titanium nitride coated tool in turning of mild steel

    NASA Astrophysics Data System (ADS)

    Srinivas, B.; Pramod Kumar, G.; Cheepu, Muralimohan; Jagadeesh, N.; kumar, K. Ravi; Haribabu, S.

    2018-03-01

    The growth in demand for bio-gradable materials is opened as a venue for using vegetable oils, coconut oils etc., as alternate to the conventional coolants for machining operations. At present in manufacturing industries the demand for surface quality is increasing rapidly along with dimensional accuracy and geometric tolerances. The present study is influence of cutting parameters on the surface roughness during the turning of mild steel with TiN coated carbide tool using groundnut oil and soluble oil as coolants. The results showed vegetable gave closer surface finish compares with soluble oil. Cutting parameters has been optimized with Taguchi technique. In this paper, the main objective is to optimize the cutting parameters and reduce surface roughness analogous to increase the tool life by apply the coating on the carbide inserts. The cost of the coating is more, but economically efficient than changing the tools frequently. The plots were generated and analysed to find the relationship between them which are confirmed by performing a comparison study between the predicted results and theoretical results.

  15. Effect of Substrate Bias on Friction Coefficient, Adhesion Strength and Hardness of TiN-COATED Tool Steel

    NASA Astrophysics Data System (ADS)

    Hamzah, Esah; Ali, Mubarak; Toff, Mohd Radzi Hj. Mohd

    In the present study, TiN coatings have been deposited on D2 tool steel substrates by using cathodic arc physical vapor deposition technique. The objective of this research work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness and friction coefficient of TiN coating deposited on D2 tool steel, which is widely used in tooling applications. A Pin-on-Disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating deposited at various substrate biases. The standard deviation parameter during tribo-test result showed that the coating deposited at substrate bias of -75 V was the most stable coating. A significant increase in micro-Vickers hardness was recorded, when substrate bias was reduced from -150 V to zero. Scratch tester was used to compare the critical loads for coatings deposited at different bias voltages and the adhesion achievable was demonstrated with relevance to the various modes, scratch macroscopic analysis, critical load, acoustic emission and penetration depth. A considerable improvement in TiN coatings was observed as a function of various substrate bias voltages.

  16. Structural features and properties of the laser-deposited nickel alloy layer on a KhV4F tool steel after heat treatment

    NASA Astrophysics Data System (ADS)

    Shcherbakov, V. S.; Dikova, Ts. D.; Stavrev, D. S.

    2017-07-01

    The study and application of the materials that are stable in the temperature range up to 1000°C are necessary to repair forming dies operating in this range. Nickel-based alloys can be used for this purpose. The structural state of a nickel alloy layer deposited onto a KhV4F tool steel and then heat treated is investigated. KhV4F tool steel (RF GOST) samples are subjected to laser deposition using a pulsed Nd:YAG laser. A nickel-based material (0.02C-73.8Ni-2.5Nb-19.5Cr-1.9Fe-2.8Mn) is employed for laser deposition. After laser deposition, the samples are subjected to heat treatment at 400°C for 5 h, 600°C for 1 h, 800°C for 1 h, and 1000°C for 1 h. The microstructure, the phase composition, and the microhardness of the deposited layer are studied. The structure of the initial deposited layer has relatively large grains (20-40 μm in size). The morphology is characterized by a cellular-dendritic structure in the transition zone. The following two structural constituents with a characteristic dendritic structure are revealed: a supersaturated nickel-based γ solid solution and a chromium-based bcc α solid solution. In the initial state and after heat treatment, the hardness of the deposited material (210-240 HV 0.1) is lower than the hardness of the base material (400-440 HV 0.1). Only after heat treatment at 600°C for 1 h, the hardness increases to 240-250 HV0.1. Structure heredity in the form of a dendritic morphology is observed at temperatures of 400, 600, and 800°C. The following sharp change in the structural state is detected upon heat treatment at 1000°C for 1 h: the dendritic morphology changes into a typical α + γ crystalline structure. The hardness of the base material decreases significantly to 160-180 HV 0.1. The low hardness of the deposited layer implies the use of the layer material in limited volume to repair the forming surfaces of dies and molds for die casting. However, the high ductility of the deposited layer of the nickel

  17. Spatial Control of Crystal Texture by Laser DMD Process

    DTIC Science & Technology

    2009-02-01

    Parallel to rolling direction 1120 827 31 205 24 Matweb In718 filler material 1140 414 Charpy Impact Energy (J) Hardness (HRC) Tensile strength (Mpa...J. Choi, K. Nagarathnam, J. Koch, and D. Hetzner, “The direct metal deposition of H13 tool steel for 3-D components,” JOM, 49(5), 1997, 55-60. 4. M...Transactions A, 36A, 2005, 3397-3406. 6. Y. Hua and J. Choi, “Feedback control effects on dimensions and defects of H13 tool steel by DMD process,” J. of Laser Applications, 17(2), 2005, 117-125. 412

  18. Castings, Steel, Homogenization of Steel Castings

    DTIC Science & Technology

    1942-12-05

    concerninr.. the ef- fe~ct of homogenizing herat-- treAment u-non the ballistic prop- erties -%f cLast steel armo--iercinr nrro jectilt:s. .arden.YD- 1 t...of hLmogenizing- treAments upon the3 corrosi;.A -.f quenched- Lr(- t c,-.rnered. c-.st steel. Harich, Riffin, -ri Bolotsk-2 .. ade two-bec-d weldahtil

  19. Synergistic effect of wire bending and salivary pH on surface properties and mechanical properties of orthodontic stainless steel archwires.

    PubMed

    Hobbelink, Marieke G; He, Yan; Xu, Jia; Xie, Huixu; Stoll, Richard; Ye, Qingsong

    2015-01-01

    The aim of this study was to investigate the corrosive behaviour of stainless steel archwires in a more clinically relevant way by bending and exposing to various pH. One hundred and twenty pieces of rectangular stainless steel wires (0.43 × 0.64 mm) were randomly assigned into four groups. In each group, there were 15 pieces of bent wires and 15 straight ones. Prior to measurements of the wires, as individual experimental groups (group 1, 2, and 3), the wires were exposed to artificial saliva for 4 weeks at pH 5.6, 6.6, and 7.6, respectively. A control group of wires (group 4) remained in air for the same period of time before sent for measurements. Surface roughness (Ra-value) was measured by a profilometer. Young's modulus and maximum force were determined by a four-point flexural test apparatus. Scanning electron microscopy was used to observe the surface morphology of straight wire. Differences between groups were examined using a two-way analysis of variance (ANOVA). Mean surface roughness values, flexural Young's moduli, and maximum force values of bent wires are significantly different from those of the straight wires, which was the main effect of wire bending, ignoring the influence of pH. A significant effect was found between Ra-values regarding the main effect of pH, ignoring the influence of shape. There was a significant interaction effect of bending and pH on flexural Young's moduli of stainless steel archwires, while pH did not show much impact on the maximum force values of those stainless steel wires. Bigger surface irregularities were seen on SEM images of straight wires immersed in artificial saliva at pH 5.6 compared to artificial saliva at other pH values. Surface depth (Rz) was more sensitive than Ra in revealing surface roughness, both measured from 3D reconstructed SEM images. Ra showed a comparable result of surface roughness to Ra-value measured by the profilometer. Bending has a significant influence on surface roughness and mechanical

  20. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A [Santa Fe, NM; Martinez, Rodolfo A [Santa Fe, NM; Unkefer, Clifford J [Los Alamos, NM

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  1. Effect of Deep Cryogenic treatment on AISI A8 Tool steel & Development of Wear Mechanism maps using Fuzzy Clustering

    NASA Astrophysics Data System (ADS)

    Pillai, Nandakumar; Karthikeyan, R., Dr.

    2018-04-01

    Tool steels are widely classified according to their constituents and type of thermal treatments carried out to obtain its properties. Viking a special purpose tool steel coming under AISI A8 cold working steel classification is widely used for heavy duty blanking and forming operations. The optimum combination of wear resistance and toughness as well as ease of machinability in pre-treated condition makes this material accepted in heavy cutting and non cutting tool manufacture. Air or vacuum hardening is recommended as the normal treatment procedure to obtain the desired mechanical and tribological properties for steels under this category. In this study, we are incorporating a deep cryogenic phase within the conventional treatment cycle both before and after tempering. The thermal treatments at sub zero temperatures up to -195°C using cryogenic chamber with liquid nitrogen as medium was conducted. Micro structural changes in its microstructure and the corresponding improvement in the tribological and physical properties are analyzed. The cryogenic treatment leads to more conversion of retained austenite to martensite and also formation of fine secondary carbides. The microstructure is studied using the micrographs taken using optical microscopy. The wear tests are conducted on DUCOM tribometer for different combinations of speed and load under normal temperature. The wear rates and coefficient of friction obtained from these experiments are used to developed wear mechanism maps with the help of fuzzy c means clustering and probabilistic neural network models. Fuzzy C means clustering is an effective algorithm to group data of similar patterns. The wear mechanisms obtained from the computationally developed maps are then compared with the SEM photographs taken and the improvement in properties due to this additional cryogenic treatment is validated.

  2. Improvement of Strength-Toughness-Hardness Balance in Large Cross-Section 718H Pre-Hardened Mold Steel

    PubMed Central

    Liu, Hanghang; Fu, Paixian; Liu, Hongwei; Li, Dianzhong

    2018-01-01

    The strength-toughness combination and hardness uniformity in large cross-section 718H pre-hardened mold steel from a 20 ton ingot were investigated with three different heat treatments for industrial applications. The different microstructures, including tempered martensite, lower bainite, and retained austenite, were obtained at equivalent hardness. The microstructures were characterized by using metallographic observations, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electron back-scattered diffraction (EBSD). The mechanical properties were compared by tensile, Charpy U-notch impact and hardness uniformity tests at room temperature. The results showed that the test steels after normalizing-quenching-tempering (N-QT) possessed the best strength-toughness combination and hardness uniformity compared with the conventional quenched-tempered (QT) steel. In addition, the test steel after austempering-tempering (A-T) demonstrated the worse hardness uniformity and lower yield strength while possessing relatively higher elongation (17%) compared with the samples after N-QT (14.5%) treatments. The better ductility of A-T steel mainly depended on the amount and morphology of retained austenite and thermal/deformation-induced twined martensite. This work elucidates the mechanisms of microstructure evolution during heat treatments and will highly improve the strength-toughness-hardness trade-off in large cross-section steels. PMID:29642642

  3. Experimental research results of solid particle erosion resistance of blade steel with protective coating

    NASA Astrophysics Data System (ADS)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Seleznev, L. I.

    2017-11-01

    The paper presents the results of metallographic studies and solid particle erosion tests of uncoated blade steel 20kH13 samples and samples with a protective coating based on chromium carbide (Cr-CrC) at a flow (air) velocity CA = 180 m/s, flow temperature tA = 25 °C, attack angle α = 30° and consumption of solid abrasive particles GP = 5·10-4 kg/s. It was found that the coating has a granular structure, a thickness is about 11 μm, the microhardness of the surface is 1520 ± 50 HV0.05. Processing of the obtained data by statistical analysis methods showed that the protective coating based on Cr-CrC increases the solid particle erosion resistance of the blade steel 20kH13 by the incubation-transitional period duration more than 2.5 times.

  4. Behaviour of F82H mod. stainless steel in lead-bismuth under temperature gradient

    NASA Astrophysics Data System (ADS)

    Gómez Briceño, D.; Martín Muñoz, F. J.; Soler Crespo, L.; Esteban, F.; Torres, C.

    2001-07-01

    Austenitic steels can be used in a hybrid system in contact with liquid lead-bismuth eutectic if the region of operating temperatures is not beyond 400°C. For higher temperatures, martensitic steels are recommended. However, at long times, the interaction between the structural material and the eutectic leads to the dissolution of some elements of the steel (Ni, Cr and Fe, mainly) in the liquid metal. In a non-isothermal lead-bismuth loop, the material dissolution takes place at the hot leg of the circuit and, due to the mass transfer, deposition occurs at the cold leg. One of the possible ways to improve the performance of structural materials in lead-bismuth is the creation of an oxide layer. Tests have been performed in a small natural convection loop built of austenitic steel (316L) that has been operating for 3000 h. This loop contains a test area in which several samples of F82Hmod. martensitic steel have been tested at different times. A gas with an oxygen content of 10 ppm was bubbled in the hot area of the circuit during the operation time. The obtained results show that an oxide layer is formed on the samples introduced in the loop at the beginning of the operation and this layer increases with time. However, the samples introduced at different times during the loop operation, are not protected by oxide layers and present material dissolution in some cases.

  5. H13 influenza viruses in wild birds have undergone genetic and antigenic diversification in nature.

    PubMed

    Wang, Zu-Jyun; Kikutani, Yuto; Nguyen, Lam Thanh; Hiono, Takahiro; Matsuno, Keita; Okamatsu, Masatoshi; Krauss, Scott; Webby, Richard; Lee, Youn-Jeong; Kida, Hiroshi; Sakoda, Yoshihiro

    2018-05-23

    Among 16 haemagglutinin (HA) subtypes of avian influenza viruses (AIVs), H13 AIVs have rarely been isolated in wild waterfowl. H13 AIVs cause asymptomatic infection and are maintained mainly in gull and tern populations; however, the recorded antigenic information relating to the viruses has been limited. In this study, 2 H13 AIVs, A/duck/Hokkaido/W345/2012 (H13N2) and A/duck/Hokkaido/WZ68/2012 (H13N2), isolated from the same area in the same year in our surveillance, were genetically and antigenically analyzed with 10 representative H13 strains including a prototype strain, A/gull/Maryland/704/1977 (H13N6). The HA genes of H13 AIVs were phylogenetically divided into 3 groups (I, II, and III). A/duck/Hokkaido/W345/2012 (H13N2) was genetically classified into Group III. This virus was distinct from a prototype strain, A/gull/Maryland/704/1977 (H13N6), and the virus, A/duck/Hokkaido/WZ68/2012 (H13N2), both belonging to Group I. Antigenic analysis indicated that the viruses of Group I were antigenically closely related to those of Group II, but distinct from those of Group III, including A/duck/Hokkaido/W345/2012 (H13N2). In summary, our study indicates that H13 AIVs have undergone antigenic diversification in nature.

  6. Effect of Niobium on Phase Transformations, Mechanical Properties and Corrosion of Supermartensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    de Oliveira, Mariana Perez; Calderón-Hernández, José Wilmar; Magnabosco, Rodrigo; Hincapie-Ladino, Duberney; Alonso-Falleiros, Neusa

    2017-04-01

    The influence of niobium addition in a supermartensitic stainless steel with 13Cr-5Ni-2Mo has been studied. The steel with Nb tempered at 600 °C for 2 h showed improved mechanical resistance properties and lower degree of sensitization, without compromising elongation and pitting corrosion resistance, when compared to the reference steel. In order to understand the Nb effect in such steel, mainly regarding phase transformation, different tempering time intervals have been studied. The better performance of the SM2MoNb is attributed to the hindering effect that Nb has in the kinetics of the phase transformations during tempering, delaying the precipitation start and coarsening stages of the present phases.

  7. Effect of elastic excitations on the surface structure of hadfield steel under friction

    NASA Astrophysics Data System (ADS)

    Kolubaev, A. V.; Ivanov, Yu. F.; Sizova, O. V.; Kolubaev, E. A.; Aleshina, E. A.; Gromov, V. E.

    2008-02-01

    The structure of the Hadfield steel (H13) surface layer forming under dry friction is examined. The deformation of the material under the friction surface is studied at a low slip velocity and a low pressure (much smaller than the yields stress of H13 steel). The phase composition and defect substructure on the friction surface are studied using scanning, optical, and diffraction electron microscopy methods. It is shown that a thin highly deformed nanocrystalline layer arises near the friction surface that transforms into a polycrystalline layer containing deformation twins and dislocations. The nanocrystalline structure and the presence of oxides in the surface layer and friction zone indicate a high temperature and high plastic strains responsible for the formation of the layer. It is suggested that the deformation of the material observed far from the surface is due to elastic wave generation at friction.

  8. Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, Marc

    This presentation describes the Hydrogen Financial Analysis Scenario Tool, H2FAST, and provides an overview of each of the three H2FAST formats: the H2FAST web tool, the H2FAST Excel spreadsheet, and the H2FAST Business Case Scenario (BCS) tool. Examples are presented to illustrate the types of questions that H2FAST can help answer.

  9. Assessment of Retained Austenite in AISI D2 Tool Steel Using Magnetic Hysteresis and Barkhausen Noise Parameters

    NASA Astrophysics Data System (ADS)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-03-01

    Inaccurate heat treatment process could result in excessive amount of retained austenite, which degrades the mechanical properties, like strength, wear resistance, and hardness of cold work tool steel parts. Thus, to control the mechanical properties, quantitative measurement of the retained austenite is a critical step in optimizing the heat-treating parameters. X-ray diffraction method is the most frequently used technique for this purpose. This technique is, however, destructive and time consuming. Furthermore, it is not applicable to 100% quality inspection of industrial parts. In the present paper, the influence of austenitizing temperature on the retained austenite content and hardness of AISI D2 tool steel has been studied. Additionally, nondestructive magnetic hysteresis parameters of the samples including coercivity, magnetic saturation, and maximum differential permeability as well as their magnetic Barkhausen noise features (RMS peak voltage and peak position) have been investigated. The results revealed direct relations between magnetic saturation, differential permeability, and MBN peak amplitude with increasing austenitizing temperature due to the retained austenite formation. Besides, both parameters of coercivity and peak position had an inverse correlation with the retained austenite fraction.

  10. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  11. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  12. Effects of Cryogenic Treatment on the Strength Properties of Heat Resistant Stainless Steel (07X16H6)

    NASA Astrophysics Data System (ADS)

    Nadig, D. S.; Bhat, M. R.; Pavan, V. K.; Mahishi, Chandan

    2017-09-01

    Cryogenic treatment on metals is a well known technology where the materials are exposed to cryogenic temperature for prolonged time duration. The process involves three stages viz. slow cooling, holding at cryogenic temperature and warming to room temperature. During this process, hard and micro sized carbide particles are released within the steel material. In addition, soft and unconverted austenite of steel changes to strong martensite structure. These combined effects increase the strength and hardness of the cryotreated steel. In this experimental study, the effects of cryogenic treatment, austenitising and tempering on the mechanical properties of stainless steel (07X16H6) have been carried. After determining the strength properties of the original material, the specimens were cryotreated at 98K for 24 hours in a specially developed cryotreatment system. The effects of austenitising prior to cryogenic treatment and tempering post cryotreatment on the mechanical properties of steel samples have been experimentally determined and analysed.

  13. Iridium Oxide pH Sensor Based on Stainless Steel Wire for pH Mapping on Metal Surface

    NASA Astrophysics Data System (ADS)

    Shahrestani, S.; Ismail, M. C.; Kakooei, S.; Beheshti, M.; Zabihiazadboni, M.; Zavareh, M. A.

    2018-03-01

    A simple technique to fabricate the iridium oxide pH sensor is useful in several applications such as medical, food processing and engineering material where it is able to detect the changes of pH. Generally, the fabrication technique can be classified into three types: electro-deposition iridium oxide film (EIrOF), activated iridium oxide film (AIROF) and sputtering iridium oxide film (SIROF). This study focuses on fabricating electrode, calibration and test. Electro-deposition iridium oxide film is a simple and effective method of fabricating this kind of sensor via cyclic voltammetry process. The iridium oxide thick film was successfully electrodeposited on the surface of stainless steel wire with 500 cycles of sweep potential. A further analysis under FESEM shows detailed image of iridium oxide film which has cauliflower-liked microstructure. EDX analysis shows the highest element present are iridium and oxygen which concluded that the process is successful. The iridium oxide based pH sensor has shown a good performance in comparison to conventional glass pH sensor when it is being calibrated in buffer solutions with 2, 4, 7 and 9 pH values. The iridium oxide pH sensor is specifically designed to measure the pH on the surface of metal plate.

  14. The Influence of Temperature on the Frictional Behavior of Duplex-Coated Die Steel Rubbing Against Forging Brass

    NASA Astrophysics Data System (ADS)

    Ebrahimzadeh, I.; Ashrafizadeh, F.

    2015-01-01

    Improvement of die life under hot forging of brass alloys is considered vital from both economical and technical points of view. One of the best methods for improving die life is duplex coatings. In this research, the influence of temperature on the tribological behavior of duplex-coated die steel rubbing against forging brass was investigated. The wear tests were performed on a pin-on-disk machine from room temperature to 700 °C; the pins were made in H13 hot work tool steel treated by plasma nitriding and by PVD coatings of TiN-TiAlN-CrAlN. The disks were machined from a two-phase brass alloy too. The results revealed that the friction coefficient of this tribosystem went through a maximum at 550 °C and decreased largely at 700 °C. Furthermore, the formation of Cr2O3 caused the reduction of friction coefficient at 700 °C. PVD coatings proved their wear resistance up to 550 °C, well above the working temperature of the brass forging dies.

  15. 40 CFR 721.10321 - Bis[phenyl, 2H-1,3-benzoxazine]derivative (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Specific Chemical Substances § 721.10321 Bis[phenyl, 2H-1,3-benzoxazine]derivative (generic). (a) Chemical... as bis[phenyl, 2H-1,3-benzoxazine]derivative (PMN P-03-194) is subject to reporting under this... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Bis[phenyl, 2H-1,3-benzoxazine...

  16. 40 CFR 721.10321 - Bis[phenyl, 2H-1,3-benzoxazine]derivative (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Specific Chemical Substances § 721.10321 Bis[phenyl, 2H-1,3-benzoxazine]derivative (generic). (a) Chemical... as bis[phenyl, 2H-1,3-benzoxazine]derivative (PMN P-03-194) is subject to reporting under this... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Bis[phenyl, 2H-1,3-benzoxazine...

  17. 40 CFR 721.10321 - Bis[phenyl, 2H-1,3-benzoxazine]derivative (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Specific Chemical Substances § 721.10321 Bis[phenyl, 2H-1,3-benzoxazine]derivative (generic). (a) Chemical... as bis[phenyl, 2H-1,3-benzoxazine]derivative (PMN P-03-194) is subject to reporting under this... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Bis[phenyl, 2H-1,3-benzoxazine...

  18. 40 CFR 721.10539 - Bis[phenyl-2H-1,3-benzoxazine]derivative (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Specific Chemical Substances § 721.10539 Bis[phenyl-2H-1,3-benzoxazine]derivative (generic). (a) Chemical... as bis[phenyl-2H-1,3-benzoxazine]derivative (PMN P-02-653) is subject to reporting under this section... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Bis[phenyl-2H-1,3-benzoxazine...

  19. 40 CFR 721.10539 - Bis[phenyl-2H-1,3-benzoxazine]derivative (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Specific Chemical Substances § 721.10539 Bis[phenyl-2H-1,3-benzoxazine]derivative (generic). (a) Chemical... as bis[phenyl-2H-1,3-benzoxazine]derivative (PMN P-02-653) is subject to reporting under this section... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Bis[phenyl-2H-1,3-benzoxazine...

  20. Analysis of the application of poly-nanocrystalline diamond tools for ultra precision machining of steel with ultrasonic assistance

    NASA Astrophysics Data System (ADS)

    Doetz, M.; Dambon, O.; Klocke, F.; Bulla, B.; Schottka, K.; Robertson, D. J.

    2017-10-01

    Ultra-precision diamond turning enables the manufacturing of parts with mirror-like surfaces and highest form accuracies out of non-ferrous, a few crystalline and plastic materials. Furthermore, an ultrasonic assistance has the ability to push these boundaries and enables the machining of materials like steel, which is not possible in a conventional way due to the excessive tool wear caused by the affinity of carbon to iron. Usually monocrystalline diamonds tools are applied due to their unsurpassed cutting edge properties. New cutting tool material developments have shown that it is possible to produce tools made of nano-polycrystalline diamonds with cutting edges equivalent to monocrystalline diamonds. In nano-polycrystalline diamonds ultra-fine grains of a few tens of nanometers are firmly and directly bonded together creating an unisotropic structure. The properties of this material are described to be isotropic, harder and tougher than those of the monocrystalline diamonds, which are unisotropic. This publication will present machining results from the newest investigations of the process potential of this new polycrystalline cutting material. In order to provide a baseline with which to characterize the cutting material cutting experiments on different conventional machinable materials like Cooper or Aluminum are performed. The results provide information on the roughness and the topography of the surface focusing on the comparison to the results while machining with monocrystalline diamond. Furthermore, the cutting material is tested in machining steel with ultrasonic assistance with a focus on tool life time and surface roughness. An outlook on the machinability of other materials will be given.

  1. Identification of delamination failure of boride layer on common Cr-based steels

    NASA Astrophysics Data System (ADS)

    Taktak, Sukru; Tasgetiren, Suleyman

    2006-10-01

    Adhesion is an important aspect in the reliability of coated components. With low-adhesion of interfaces, different crack paths may develop depending on the local stress field at the interface and the fracture toughness of the coating, substrate, and interface. In the current study, an attempt has been made to identify the delamination failure of coated Cr-based steels by boronizing. For this reason, two commonly used steels (AISI H13, AISI 304) are considered. The steels contain 5.3 and 18.3 wt.% Cr, respectively. Boriding treatment is carried out in a slurry salt bath consisting of borax, boric acid, and ferrosilicon at a temperature range of 800 950 °C for 3, 5, and 7 h. The general properties of the boron coating are obtained by mechanical and metallographic characterization tests. For identification of coating layer failure, some fracture toughness tests and the Daimler-Benz Rockwell-C adhesion test are used.

  2. Oxidation Behavior of Carbon Steel: Effect of Formation Temperature and pH of the Environment

    NASA Astrophysics Data System (ADS)

    Dubey, Vivekanand; Kain, Vivekanand

    2017-11-01

    The nature of surface oxide formed on carbon steel piping used in nuclear power plants affects flow-accelerated corrosion. In this investigation, carbon steel specimens were oxidized in an autoclave using demineralized water at various temperatures (150-300 °C) and at pH levels (neutral, 9.5). At low temperatures (< 240 °C), weight loss of specimens due to dissolution of iron in water occurred to a greater extent than weight gain due to oxide formation. With the increase in temperature, the extent of iron dissolution reduced and weight gain due to oxide formation increased. A similar trend was observed with the increase in pH as was observed with the increase in temperature. XRD and Raman spectroscopy confirmed the formation of magnetite. The oxide film formed by precipitation process was negligible at temperatures from 150 to 240 °C compared to that at higher temperatures (> 240 °C) as confirmed by scanning electron microscopy. Electrochemical impedance measurement followed by Mott-Schottky analysis indicated an increase in defect density with exposure duration at 150 °C at neutral pH but a low and stable defect density in alkaline environment. The defect density of the oxide formed at neutral pH at 150-300 °C was always higher than that formed in alkaline environment as reported in the literature.

  3. Machining-induced deformation in stepped specimens of PH 13-8 Mo, 18 nickel maraging steel grade 200T1 and grain-refined HP 9-4-20

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1985-01-01

    The results of a study to evaluate the dimensional changes created during machining and subsequent cycling to cryogenic temperatures for three different metallic alloys are presented. Experimental techniques are described and results presented for 18 Ni Grade 200 maraging steel, PH-13-8 Mo stainless steel, and Grain-refined HP 9-4-20.

  4. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    NASA Astrophysics Data System (ADS)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  5. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raab, A. E.; Berger, E.; Freudenthaler, J.

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesivemore » and abrasive tool wear.First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test.All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.« less

  6. Mechanical stability, corrosion resistance of superhydrophobic steel and repairable durability of its slippery surface.

    PubMed

    Gao, Xiaoyu; Guo, Zhiguang

    2018-02-15

    A simple way of chemical etching with H 2 SO 4 and H 2 O 2 was employed to prepare a superhydrophobic steel surface with a water contact angle of 163.5° and a sliding angle of about 0°, in addition to modification with 1H,1H,2H,2H-perfluoroalkyltriethoxysilane (FAS-13). On the basis of perfluropolyethers (PFPE) infusion, a slippery liquid-infused porous surface (SLIPS) was fabricated that had a water contact angle of 115.6° and a sliding angle of 2.27°. The prepared sample can still maintain superhydrophobicity after moving 100 cm on 1000 # sandpaper under 100 g loading via an abrasion test, while its corrosion resistance was exhibited via more positive corrosion potentials (E corr ) and lower corrosion current densities (I corr ) in electrochemical corrosion tests with various solutions. Even if superhydrophobic and slippery properties were lost in the process of long-time soaking in salt solution, the superhydrophobic steel could regain its ability and slippery surfaces also exhibited the repairable durability through retreatment. Such stable, corrosion resistant and superhydrophobic bearing steel and repairable slippery surface have potential for application in practical production and life. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effect of electroslag remelting on carbides in 8Cr13MoV martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao

    2015-11-01

    The effect of electroslag remelting (ESR) on carbides in 8Cr13MoV martensitic stainless steel was experimentally studied. Phases precipitated from liquid steel during solidification were calculated using the Thermo-Calc software. The carbon segregation was analyzed by original position analysis (OPA), and the carbides were analyzed by optical microscopy (OM), scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that more uniform carbon distribution and less segregation were obtained in the case of samples subjected to the ESR process. After ESR, the amount of netty carbides decreased significantly, and the chromium and vanadium contents in the grain-boundary carbides was reduced. The total area and average size of carbides were obviously smaller after the ESR process. In the sample subjected to ESR, the morphology of carbides changed from lamellar and angular to globular or lump, whereas the types of carbides did not change; both M23C6 and M7C3 were present before and after the ESR process.

  8. Microstructure and Mechanical Properties of Dissimilar Friction Stir Spot Welding Between St37 Steel and 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Khodadadi, Ali; Shamanian, Morteza; Karimzadeh, Fathallah

    2017-05-01

    In the present study, St37 low-carbon steel and 304 stainless steel were welded successfully, with the thickness of 2 mm, by a friction stir spot welding process carried out at the tool dwell time of 6 s and two different tool rotational speeds of 630 and 1250 rpm. Metallographic examinations revealed four different zones including SZ and HAZ areas of St37 steel and SZ and TMAZ regions of 304 stainless steel in the weld nugget, except the base metals. X-ray diffraction and energy-dispersive x-ray spectroscopy experiments were used to investigate the possible formation of such phases as chromium carbide. Based on these experiments, no chromium carbide precipitation was found. The recrystallization of the weld nugget in the 304 steel and the phase transformations of the weld regions in the St37 steel enhanced the hardness of the weld joint. Hardness changes of joint were acceptable and approximately uniform, as compared to the resistance spot weld. In this research, it was also observed that the tensile/shear strength, as a crucial factor, was increased with the rise in the tool rotational speed. The bond length along the interface between metals, as an effective parameter to increase the tensile/shear strength, was also determined. At higher tool rotational speeds, the bond length was found to be improved, resulting in the tensile/shear strength of 6682 N. Finally, two fracture modes were specified through the fracture mode analysis of samples obtained from the tensile/shear test consisting of the shear fracture mode and the mixed shear/tensile fracture mode.

  9. Lubricating coating prepared by PIIID on a forming tool

    NASA Astrophysics Data System (ADS)

    Martinatti, J. F.; Santos, L. V.; Durrant, S. F.; Cruz, N. C.; Rangel, E. C.

    2012-06-01

    In this work, the performance of a-C:H films produced by the hybrid Plasma Immersion Ion Implantation and Deposition technique as lubricating layers for a steel forming tool has been investigated. Hardened steel (AISI M2, 64 HRC) plates coated with a commercial TiN layer were used as substrates and the films were deposited in a vacuum chamber fitted with two parallel-plate electrodes. The discharges were generated in atmospheres composed of 91% C2H2 and 9% Ar by the application of radiofrequency power (13.56 MHz, 100 W) to the upper electrode while the lower one, also used as the sample holder, was biased with high voltage negative pulses (3.6 kV, 30 μs, 300 Hz). A deposition time of 840 s was used. The effects of the gas pressure, p, on thickness, molecular structure, wettability, surface morphology and topography, hardness and friction coefficient of the films were investigated. Film thickness increased from 0.3 to 0.5 μm when p was increased from 2.7 to 16.5 Pa. Generally, the films were slightly hydrophilic, with contact angles of around 84°, and the deposition decreased the roughness of the steel. A polymer-like structure was detected in high pressure depositions and an amorphous carbon structure derived from the low pressure procedures. Hardness decreased from 8.2 to 7.0 GPa with increasing p. Improvement in tribological performance was indicated by the fall in the friction coefficient from 0.5 to 0.2 as the deposition pressure was reduced. Operating at the latter value (of μ) would lead to a significant reduction in wear and hence to significant economy in diverse industrial applications.

  10. Electro-Chemical Behavior of Low Carbon Steel Under H2S Influence

    NASA Astrophysics Data System (ADS)

    Zaharia, M. G.; Stanciu, S.; Cimpoesu, R.; Nejneru, C.; Savin, C.; Manole, V.; Cimpoeșu, N.

    2017-06-01

    Abstract A commercial low carbon steel material (P265GH) with application at industrial scale for natural gas delivery and transportation systems was analyzed in H2S atmosphere. The article proposed a new experimental cell in order to establish the behavior of the material in sulfur contaminated environment. In most of the industrial processes for gas purification the corrosion rate is speed up by the presence of S (sulfur) especially as ions or species like H2S. The H2S (hydrogen sulfide) is, beside a very toxic compound, a very active element in the acceleration of metallic materials deterioration especially in complex solicitations like pressure and temperature in the same time. For experiments we used a three electrodes cell with Na2SO4 + Na2S solution at pH 3 at room temperature (∼ 25 °C) to realize EIS (electrochemical impedance spectroscopy) and potentio-dynamic polarization experiments. Scanning electron microscopy and X-ray dispersive energy spectroscopy were used to characterize the metallic material surface exposed to experimental environment.

  11. Catenanes: A molecular mechanics analysis of the (C13H26)2 Structure 13-13 D2.

    PubMed

    Lii, Jenn-Huei; Allinger, Norman L; Hu, Ching-Han; Schaefer, Henry F

    2016-01-05

    Molecular mechanics (MM4) studies have been carried out on the catenane (C13H26)2, specifically 13-13D2. The structure obtained is in general agreement with second-order perturbation theory. More importantly, the MM4 structure allows a breakdown of the energy of the molecule into its component classical parts. This allows an understanding of why the structure is so distorted, in terms of C-C bonding and nonbonding interactions, van der Waals repulsion, C-C-C and C-C-H angle bending, torsional energies, stretch-bend, torsion-stretch, and bend-torsion-bend interactions. Clearly, the hole in 113-membered ring is too small for the other ring to fit through comfortably. There are too many atoms trying to fit into the limited space at the same time, leading to large van der Waals repulsions. The rings distort in such a way as to enlarge this available space, and lower the total energy of the molecule. While the distortions are spread around the rings, one of the nominally tetrahedral C-C-C bond angles in each ring is opened to 147.9° by MM4 (146.8° by MP2). The stability of the compound is discussed in terms of the strain energy. © 2015 Wiley Periodicals, Inc.

  12. The development and production of thermo-mechanically forged tool steel spur gears

    NASA Technical Reports Server (NTRS)

    Bamberger, E. N.

    1973-01-01

    A development program to establish the feasibility and applicability of high energy rate forging procedures to tool steel spur gears was performed. Included in the study were relatively standard forging procedures as well as a thermo-mechanical process termed ausforming. The subject gear configuration utilized was essentially a standard spur gear having 28 teeth, a pitch diameter of 3.5 inches and a diametral pitch of 8. Initially it had been planned to use a high contact ratio gear design, however, a comprehensive evaluation indicated that severe forging problems would be encountered as a result of the extremely small teeth required by this type of design. The forging studies were successful in achieving gear blanks having integrally formed teeth using both standard and thermo-mechanical forging procedures.

  13. Imaging the water snowline in a protostellar envelope with H13CO+

    NASA Astrophysics Data System (ADS)

    van 't Hoff, Merel L. R.; Persson, Magnus V.; Harsono, Daniel; Taquet, Vianney; Jørgensen, Jes K.; Visser, Ruud; Bergin, Edwin A.; van Dishoeck, Ewine F.

    2018-05-01

    Context. Snowlines are key ingredients for planet formation. Providing observational constraints on the locations of the major snowlines is therefore crucial for fully connecting planet compositions to their formation mechanism. Unfortunately, the most important snowline, that of water, is very difficult to observe directly in protoplanetary disks because of the close proximity of this snowline to the central star. Aims: Based on chemical considerations, HCO+ is predicted to be a good chemical tracer of the water snowline because it is particularly abundant in dense clouds when water is frozen out. This work aims to map the optically thin isotopolog H13CO+ toward the envelope of the low-mass protostar NGC 1333-IRAS2A, where the snowline is at a greater distance from the star than in disks. Comparison with previous observations of H218O show whether H13CO+ is indeed a good tracer of the water snowline. Methods: NGC 1333-IRAS2A was observed using the NOrthern Extended Millimeter Array (NOEMA) at 0.''9 resolution, targeting the H13CO+ J = 3 - 2 transition at 260.255 GHz. The integrated emission profile was analyzed using 1D radiative transfer modeling of a spherical envelope with a parametrized abundance profile for H13CO+. This profile was validated with a full chemical model. Results: The H13CO+ emission peaks 2'' northeast of the continuum peak, whereas H218O shows compact emission on source. Quantitative modeling shows that a decrease in H13CO+ abundance by at least a factor of six is needed in the inner 360 AU to reproduce the observed emission profile. Chemical modeling indeed predicts a steep increase in HCO+ just outside the water snowline; the 50% decrease in gaseous H2O at the snowline is not enough to allow HCO+ to be abundant. This places the water snowline at 225 AU, further away from the star than expected based on the 1D envelope temperature structure for NGC 1333-IRAS2A. In contrast, DCO+ observations show that the CO snowline is at the expected

  14. What's new in the Atmospheric Model Evaluation Tool (AMET) version 1.3

    EPA Science Inventory

    A new version of the Atmospheric Model Evaluation Tool (AMET) has been released. The new version of AMET, version 1.3 (AMETv1.3), contains a number of updates and changes from the previous of version of AMET (v1.2) released in 2012. First, the Perl scripts used in the previous ve...

  15. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    NASA Astrophysics Data System (ADS)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  16. Calibration of mass spectrometric measurements of gas phase reactions on steel surfaces

    NASA Astrophysics Data System (ADS)

    Falk, H.; Falk, M.; Wuttke, T.

    2015-03-01

    The sampling of the surface-near gas composition using a mass spectrometer (MS-Probe) is a valuable tool within a hot dip process simulator. Since reference samples with well characterized surface coverage are usually not available, steel samples can deliver quantifiable amounts of the process relevant species H2O, CO and H2 using the decarburization reaction with water vapor. Such "artificial calibration samples" (ACS) can be used for the calibration of the MS-Probe measurements. The carbon release rate, which is governed by the diffusion law, was determined by GDOES, since the diffusion coefficients of carbon in steel samples are usually not known. The measured carbon concentration profiles in the ACS after the thermal treatment confirmed the validity of the diffusion model described in this paper. The carbon bulk concentration > 100 ppm is sufficient for the use of a steel material as ACS. The experimental results reported in this paper reveal, that with the MS-Probe the LOQ of less than one monolayer of iron oxide can be achieved.

  17. Prediction of Continuous Cooling Transformation Diagrams for Dual-Phase Steels from the Intercritical Region

    NASA Astrophysics Data System (ADS)

    Colla, V.; Desanctis, M.; Dimatteo, A.; Lovicu, G.; Valentini, R.

    2011-09-01

    The purpose of the present work is the implementation and validation of a model able to predict the microstructure changes and the mechanical properties in the modern high-strength dual-phase steels after the continuous annealing process line (CAPL) and galvanizing (Galv) process. Experimental continuous cooling transformation (CCT) diagrams for 13 differently alloying dual-phase steels were measured by dilatometry from the intercritical range and were used to tune the parameters of the microstructural prediction module of the model. Mechanical properties and microstructural features were measured for more than 400 dual-phase steels simulating the CAPL and Galv industrial process, and the results were used to construct the mechanical model that predicts mechanical properties from microstructural features, chemistry, and process parameters. The model was validated and proved its efficiency in reproducing the transformation kinetic and mechanical properties of dual-phase steels produced by typical industrial process. Although it is limited to the dual-phase grades and chemical compositions explored, this model will constitute a useful tool for the steel industry.

  18. The influence of machining condition and cutting tool wear on surface roughness of AISI 4340 steel

    NASA Astrophysics Data System (ADS)

    Natasha, A. R.; Ghani, J. A.; Che Haron, C. H.; Syarif, J.

    2018-01-01

    Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.

  19. Photoassisted Synthesis of Mixed-Metal Clusters;(PPN)(CoOs3(CO)13), H2RuOs3(CO13, and H2FeOs3(CO)13.

    DTIC Science & Technology

    1980-05-30

    8 -1 Photoassisted Synthesis of Mixed-Metal Clusters: Interim echnicalfe 0M [PPN][ Cofs (CO) H OP]CC andF F ’ " 13 2 136. PERFORMING ORG. REPORT NUMBER...the reaction conditions.2 A low yield of the unstable protonated derivative HCoOs3 (CO)13 was obtained in a single experiment in which K[Co(CO)4] was...data.1 Apparently [V(CO)6]" is a sufficiently strong reducing agent to reduce both of these trimers to their respective anions, although the 6 proton

  20. Nanoscale precipitation in a maraging steel studied by APFIM.

    PubMed

    Stiller, Krystyna; Hättestrand, Mats

    2004-06-01

    This article summarizes findings from our previous investigations and recent studies concerning precipitation in a maraging steel of type 13Cr-9Ni-2Mo-2Cu (at.%) with small additions of Ti (1 at.%) and Al (0.7 at.%). The material was investigated after aging at 475 degrees C up to 400 h using both conventional and three-dimensional atom-probe analyses. The process of phase decomposition in the steel proved to be complicated. It consisted of precipitation of several phases with different chemistry. A Cu-rich phase was first to precipitate and Mo was last in the precipitation sequence. The influence of the complex precipitation path on the material properties is discussed. The investigation clearly demonstrated the usefulness of the applied techniques for investigation of nanoscale precipitation. It is also shown that, complementary methods (such as TEM and EFTEM) giving structural and chemical information on a larger scale must be applied to explain the good properties of the steel after prolonged aging.

  1. Transdifferentiated rat pancreatic progenitor cells (AR42J-B13/H) respond to phenobarbital in a rat hepatocyte-specific manner.

    PubMed

    Osborne, M; Haltalli, M; Currie, R; Wright, J; Gooderham, N J

    2016-07-01

    Phenobarbital (PB) is known to produce species-specific effects in the rat and mouse, being carcinogenic in certain mouse strains, but only in rats if treated after a DNA damaging event. PB treatment in the rat and mouse also produces disparate effects on cell signalling and miRNA expression profiles. These responses are induced by short term and prolonged PB exposure, respectively, with the latter treatments being difficult to examine mechanistically in primary hepatocytes due to rapid loss of the original hepatic phenotype and limited sustainability in culture. Here we explore the rat hepatocyte-like B13/H cell line as a model for hepatic response to PB exposure in both short-term and longer duration treatments. We demonstrate that PB with Egf treatment in the B13/H cells resulted in a significant increase in Erk activation, as determined by the ratio of phospho-Erk to total Erk, compared to Egf alone. We also show that an extended treatment with PB in the B13/H cells produces a miRNA response similar to that seen in the rat in vivo, via the time-dependent induction of miR-182/96. Additionally, we confirm that B13/H cells respond to Car activators in a typical rat-specific manner. These data suggest that the B13/H cells produce temporal responses to PB that are comparable to those reported in short-term primary rat hepatocyte cultures and in the longer term are similar to those in the rat in vivo. Finally, we also show that Car-associated miR-122 expression is decreased by PB treatment in B13/H cells, a PB-induced response that is common to the rat, mouse and human. We conclude that the B13/H cell system produces a qualitative response comparable to the rat, which is different to the response in the mouse, and that this model could be a useful tool for exploring the functional consequences of PB-sensitive miRNA changes and resistance to PB-mediated tumours in the rat. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Development of a robust modeling tool for radiation-induced segregation in austenitic stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Field, Kevin G; Allen, Todd R.

    2015-09-01

    Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels in Light Water Reactor (LWR) components has been linked to changes in grain boundary composition due to irradiation induced segregation (RIS). This work developed a robust RIS modeling tool to account for thermodynamics and kinetics of the atom and defect transportation under combined thermal and radiation conditions. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. Both cross and non-cross phenomenological diffusion coefficients in the flux equations were considered and correlated to tracer diffusion coefficients through Manning’s relation. Themore » preferential atomvacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. Detailed analysis on the diffusion fluxes near and at grain boundaries of irradiated austenitic stainless steels suggested the dominant diffusion mechanism for chromium and iron is via vacancy, while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly influenced by the composition gradient formed from the transient state, leading to the oscillatory behavior of alloy compositions in this region. This work confirms that both vacancy and interstitial diffusion, and segregation itself, have important roles in determining the microchemistry of Fe, Cr, and Ni at irradiated grain boundaries in austenitic stainless steels.« less

  3. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    NASA Astrophysics Data System (ADS)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  4. 3D-atom probe characterization of nano-precipitates in a PM processed tool steels

    NASA Astrophysics Data System (ADS)

    Niederkofler, M.; Leisch, M.

    2004-07-01

    The microstructure of a powder metallurgical processed high speed steel (nom. composition (wt.%): 1.6 C, 4.8 Cr, 2.0 Mo, 5.0 V, 105 W, 8.0 Co and balance Fe) has been examined using 3D-atom probe technique. By the depth profiling of the time to flight mass spectrometer and position sensitive recording, cylindrical volumes of 10-15 nm in diameter and up to 40 nm in depth have been probed and characterized. The depth profiling measurements of the samples show generally a very homogeneous structure which was expected by the powder metallurgical processing of the material. Different morphologies of the precipitates were recorded. Besides the needle shaped precipitates with an extend up to 20 nm and thickness of few atomic layers, platelets and spherical particles are observed as well. The species which can be assigned to the precipitates appear to some extend as MC molecules in the mass histogram, while the leading constituents in this MC are Mo, V and Cr. Beside distinct particles agglomerations like one-dimensional atomic chains of the alloy components are also observed in the 3D reconstructions of the tool steel matrix.

  5. Inactivation of Escherichia coli O157:H7 on stainless steel upon exposure to Paenibacillus polymyxa biofilms.

    PubMed

    Kim, Seonhwa; Bang, Jihyun; Kim, Hoikyung; Beuchat, Larry R; Ryu, Jee-Hoon

    2013-11-01

    We investigated the potential use of biofilm formed by a competitive-exclusion (CE) microorganism to inactivate Escherichia coli O157:H7 on a stainless steel surface. Five microorganisms showing inhibitory activities against E. coli O157:H7 were isolated from vegetable seeds and sprouts. The microorganism with the greatest antimicrobial activity was identified as Paenibacillus polymyxa (strain T5). In tryptic soy broth (TSB), strain T5 reached a higher population at 25 °C than at 12 or 37 °C without losing inhibitory activity against E. coli O157:H7. When P. polymyxa (6 log CFU/mL) was co-cultured with E. coli O157:H7 (2, 3, 4, or 5 log CFU/mL) in TSB at 25 °C, the number of E. coli O157:H7 decreased significantly within 24h. P. polymyxa formed a biofilm on stainless steel coupons (SSCs) in TSB at 25 °C within 24h, and cells in biofilms, compared to attached cells without biofilm formation, showed significantly increased resistance to a dry environment (43% relative humidity [RH]). With the exception of an inoculum of 4 log CFU/coupon at 100% RH, upon exposure to biofilm formed by P. polymyxa on SSCs, populations of E. coli O157:H7 (2, 4, or 6 log CFU/coupon) were significantly reduced within 48 h. Most notably, when E. coli O157:H7 at 2 log CFU/coupon was applied to SSCs on which P. polymyxa biofilm had formed, it was inactivated within 1h, regardless of RH. These results will be useful when developing strategies using biofilms produced by competitive exclusion microorganisms to inactivate foodborne pathogens in food processing environments. © 2013.

  6. Mechanical properties of 8Cr-2WVTa steel aged for 30 000 h

    NASA Astrophysics Data System (ADS)

    Tamura, M.; Shinozuka, K.; Esaka, H.; Sugimoto, S.; Ishizawa, K.; Masamura, K.

    2000-12-01

    A mill production plate of a reduced activation ferritic steel was thermally aged for up to 30 000 h at 400-650°C. Charpy impact tests, creep rupture tests and hardness tests were conducted. Both Vickers hardness number and creep strength decrease with aging at 650°C. The ductile-brittle transition temperature (DBTT) increases with both aging time and aging temperature. However, the DBTT does not exceed +20°C even after aging at 650°C for 30 000 h. Extracted residues and extraction replicas were analyzed metallurgically. The increase in DBTT is related mainly to the precipitation of Laves phase on the prior austenite grain boundaries. The rather low DBTT after aging is caused by the fine prior austenitic grain size.

  7. 13 CFR 400.207 - Application evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Application evaluation. 400.207 Section 400.207 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.207 Application evaluation. (a) Eligibility screening...

  8. 13 CFR 400.207 - Application evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Application evaluation. 400.207 Section 400.207 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.207 Application evaluation. (a) Eligibility screening...

  9. 13 CFR 400.207 - Application evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Application evaluation. 400.207 Section 400.207 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.207 Application evaluation. (a) Eligibility screening...

  10. 13 CFR 400.207 - Application evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Application evaluation. 400.207 Section 400.207 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.207 Application evaluation. (a) Eligibility screening...

  11. 13 CFR 400.207 - Application evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Application evaluation. 400.207 Section 400.207 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.207 Application evaluation. (a) Eligibility screening...

  12. Semi-solid processing of high-chromium tool steel to obtain microstructures without carbide network

    NASA Astrophysics Data System (ADS)

    Jirková, H.; Aišman, D.; Rubešová, K.; Opatová, K.; Mašek, B.

    2017-02-01

    Treatment of high-alloy tool steels that involves transition to the semi-solid state can transform the sharp-edged primary carbides which usually form during solidification. These carbides severely impair toughness and are virtually impossible to eliminate by conventional treatment routes. Upon classical semi-solid processing which dissolves these carbides, the resulting microstructure consists of polyhedral and super-saturated austenite embedded in lamellar austenite-carbide network. This type of microstructure reflects in the mechanical properties, predominantly in material behaviour under tensile loading. Such a network, however, can be removed by appropriate thermomechanical treatment. In the present experiment, various procedures involving heating to the semi-solid state were tested on X210Cr12 tool steel. The feedstock was heated to the temperature range of 1220 - 1280 °C. The heating was followed by procedures involving either water quenching to the forming temperature, room temperature or temperature from the range from 500 °C to 1000 °C followed by reheating to the forming temperature. It was found that the development of the lamellar network strongly depends on the temperature of heating to semi-solid state. Thermomechanical treatment produced microstructures in which the matrix consisted of a mixture of polyhedral austenite grains and the M-A constituent. In addition, the initial lamellar eutectic network was partially or even completely melted and substituted with a mixture of very fine recrystallized austenite grains and precipitates of chromium carbides. Some fine M7C3 carbides were present in the austenitic-martensitic matrix as well. When appropriate processing parameters were chosen, very good mechanical properties were obtained, among them a hardness of 860 HV10.

  13. Coherent to incoherent transition of precipitates during rupture test in TP347H austenitic stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Chang-Whan; Heo, Yoon-Uk, E-mail: yunuk01@postech.ac.kr; Heo, Nam-Hoe

    2016-05-15

    Precipitation of various particles and their growth during rupture test have been investigated in TP347H austenitic stainless steels using a transmission electron microscopy. Various precipitates of MnS, Nb-rich MC, and MnS + MC and MnS + M{sub 2}P complexes are observed in the γ matrix after rupture test at 750 °C. The MnS particles formed independently in the γ matrix show a coherency or semi-coherency with the γ matrix. The Nb-rich MC carbides show also a coherency with the γ matrix. The Nb-rich MC carbides showing a semi-coherency with the MnS also form on the surface of the coherent ormore » semi-coherent MnS particles, and they show a cube-cube orientation relationship with the MnS particles. The MnS + MC complex loses the initial coherency with the γ matrix, as the MC in the complex grows. The Nb-rich M{sub 2}P precipitates formed on the surface of the MnS particles do not show an orientation relationship with the MnS particles or the γ matrix. The MnS particles in the MnS + M{sub 2}P complex hold the initial coherency with the γ matrix. Effects of MnS precipitation followed by the formation of the complexes on rupture life of the TP347H austenitic stainless steels are discussed from the viewpoint of MnS precipitates acting as sinks of free sulfur segregating to the grain boundaries. - Highlights: • Coherent to incoherent transition of precipitates during rupture test in TP347H steels is clarified. • MnS precipitation actively retards the time to intergranular fracture. • Effect of the coherency of secondary precipitates on the coherency loss of the complex particle is compared.« less

  14. Preliminary evaluation of a constructed wetland for treating extremely alkaline (pH 12) steel slag drainage.

    PubMed

    Mayes, W M; Aumônier, J; Jarvis, A P

    2009-01-01

    High pH (> 12) leachates are an environmental problem associated with drainage from lime (CaO)-rich industrial residues such as steel slags, lime spoil and coal combustion residues. Recent research has highlighted the potential for natural ('volunteer') wetlands to buffer extremely alkaline influent waters. This appears ascribable to high CO(2) partial pressures in the wetland waters from microbial respiration, which accelerates precipitation of calcium carbonate (CaCO(3)), and the high specific surface area for mineral precipitation offered by macrophytes. The research presented here builds on this and provides preliminary evaluation of a constructed wetland built in March 2008 to buffer drainage from steel slag heaps in north-east England. The drainage water from the slag mounds is characterised by a mean pH of 11.9, high concentrations of Ca (up to 700 mg/L), total alkalinity (up to 800 mg/L as CaCO(3)) and are slightly brackish (Na = 300 mg/L; Cl = 400 mg/L) reflecting native groundwaters at this coastal setting. Documented calcite precipitation rates (mean of 5 g CaCO(3)/m(2)/day) from nearby volunteer sites receiving steel slag drainage were used to scale the constructed wetland planted with Phragmites australis; a species found to spontaneously grow in the vicinity of the discharge. Improved performance of the wetland during summer months may at least in part be due to biological activity which enhances rates of calcite precipitation and thus lowering of pH. Secondary Ca-rich precipitates also serve as a sink for some trace elements present at low concentrations in the slag leachate such as Ni and V. The implications for scaling and applying constructed wetlands for highly alkaline drainage are discussed.

  15. Antibody αPEP13h Reacts With Lymphangioleiomyomatosis Cells in Lung Nodules

    PubMed Central

    Valencia, Julio C.; Steagall, Wendy K.; Zhang, Yi; Fetsch, Patricia; Abati, Andrea; Tsukada, Katsuya; Billings, Eric; Hearing, Vincent J.; Yu, Zu-Xi; Pacheco-Rodriguez, Gustavo

    2015-01-01

    BACKGROUND: Lymphangioleiomyomatosis (LAM) is characterized by the proliferation in the lung, axial lymphatics (eg, lymphangioleiomyomas), and kidney (eg, angiomyolipomas) of abnormal smooth muscle-like LAM cells, which express melanoma antigens such as Pmel17/gp100 and have dysfunctional tumor suppressor tuberous sclerosis complex (TSC) genes TSC2 or TSC1. Histopathologic diagnosis of LAM in lung specimens is based on identification of the Pmel17 protein with the monoclonal antibody HMB-45. METHODS: We compared the sensitivity of HMB-45 to that of antipeptide antibody αPEP13h, which reacts with a C-terminal peptide of Pmel17. LAM lung nodules were laser-capture microdissected to identify proteins by Western blotting. RESULTS: HMB-45 recognized approximately 25% of LAM cells within the LAM lung nodules, whereas αPEP13h identified > 82% of LAM cells within these structures in approximately 90% of patients. Whereas HMB-45 reacted with epithelioid but not with spindle-shaped LAM cells, αPEP13h identified both spindle-shaped and epithelioid LAM cells, providing greater sensitivity for detection of all types of LAM cells. HMB-45 recognized Pmel17 in premelanosomal organelles; αPEP13h recognized proteins in the cytoplasm as well as in premelanosomal organelles. Both antibodies recognized a Pmel17 variant of approximately 50 kDa. CONCLUSIONS: Based on its sensitivity and specificity, αPEP13h may be useful in the diagnosis of LAM and more sensitive than HMB-45. PMID:25411763

  16. Chromium release from new stainless steel, recycled and nickel-free orthodontic brackets.

    PubMed

    Sfondrini, Maria Francesca; Cacciafesta, Vittorio; Maffia, Elena; Massironi, Sarah; Scribante, Andrea; Alberti, Giancarla; Biesuz, Raffaela; Klersy, Catherine

    2009-03-01

    To test the hypothesis that there is no difference in the amounts of chromium released from new stainless steel brackets, recycled stainless steel brackets, and nickel-free (Ni-free) orthodontic brackets. This in vitro study was performed using a classic batch procedure by immersion of the samples in artificial saliva at various acidities (pH 4.2, 6.5, and 7.6) over an extended time interval (t(1) = 0.25 h, t(2) = 1 h, t(3) = 24 h, t(4) = 48 h, t(5) = 120 h). The amount of chromium release was determined using an atomic absorption spectrophotometer and an inductively coupled plasma atomic emission spectrometer. Statistical analysis included a linear regression model for repeated measures, with calculation of Huber-White robust standard errors to account for intrabracket correlation of data. For post hoc comparisons the Bonferroni correction was applied. The greatest amount of chromium was released from new stainless steel brackets (0.52 +/- 1.083 microg/g), whereas the recycled brackets released 0.27 +/- 0.38 microg/g. The smallest release was measured with Ni-free brackets (0.21 +/- 0.51 microg/g). The difference between recycled brackets and Ni-free brackets was not statistically significant (P = .13). For all brackets, the greatest release (P = .000) was measured at pH 4.2, and a significant increase was reported between all time intervals (P < .002). The hypothesis is rejected, but the amount of chromium released in all test solutions was well below the daily dietary intake level.

  17. Molybdate adsorption from steel slag eluates by subsoils.

    PubMed

    Matern, K; Rennert, T; Mansfeldt, T

    2013-11-01

    Steel slags are industrial by-products which are generated in large amounts worldwide, e.g. 150-230×10(6) Mg in 2012, and which are partly used for construction. Molybdenum (Mo) can be added during steel processing in order to harden the steel. The objective of this study was to evaluate the adsorption behaviour of molybdate (MoO4(2-)) from slag eluates in subsoils. Molybdate batch adsorption experiments were carried out with eluates obtained from two different kinds of steel slags (i) LD slag (Linz-Donawitz operation, LDS) and (ii) electric arc furnace slag (EAF) to assess the risk that may arise from the contamination of groundwater by the leaching of molybdate. Six different subsoils were chosen in order to provide a wide range of chemical properties (pH 4.0-7.6; dithionite-extractable Fe 0.73-14.7 g kg(-1)). Molybdate adsorption experiments were carried out at the pH of the steel slag eluates (pH 11-12) as well as at pH values adjusted to the soil pH. The data were evaluated with the Freundlich equation. Molybdate adsorption exhibited a maximum near pH 4 for steel slag eluates adjusted to the soil pH, and decreased rapidly with increasing pH until adsorption was virtually zero at pH>11. Adsorption was greater for soils with high amounts of dithionite-extractable Fe oxides. The extent and behaviour of molybdate adsorption from both eluates was similar. After a reaction time of 24h, the pH of the EAF slag eluate was lower than that of the LD steel slag eluate, which was caused by different acid buffer capacities. Some soils were able to decrease the pH of the EAF slag eluates by about 4 pH units, enhancing the adsorption of molybdate. Transport simulations indicated that molybdate discharge is low in acidic soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A Comparative Study on Formability of the Third-Generation Automotive Medium-Mn Steel and 22MnB5 Steel

    NASA Astrophysics Data System (ADS)

    Zheng, Guojun; Li, Xiaodong; Chang, Ying; Wang, Cunyu; Dong, Han

    2018-02-01

    Third-generation advanced automotive medium-Mn steel, which can replace 22MnB5 steel, was newly developed to improve the lightweight and crashworthiness of automobile. Studies on the formability and simulation method of medium-Mn steel have just been initiated. In this study, finite element simulation models of square-cup deep drawing were established based on various material property experiments and validated by experiments. The effects of blank holder force (BHF), fillet radii of tools (die and punch) on the maximum drawing depth (MDD), thickness distribution of the formed products, and the microstructure before and after forming were investigated and compared with those on 22MnB5 steel. Results show that the MDD of the two steels decreased with increased BHF but increased with the fillet radius of punch; however, the fillet radius of die showed no significant effect on the MDD for both steels. Compared with hot-formed 22MnB5 steel, the martensitic transformation of the hot-formed medium-Mn steel is rarely influenced by the process parameters; thus, it holds the complete, fine-grained, and uniform martensitic microstructure. Moreover, the medium-Mn has better formability, lower initial blank temperature, and smaller impact of BHF and fillet radius of tools on the hot-formed product. Thus, a theoretical basis for the replacement of 22MnB5 steel by medium-Mn steel in hot forming process is provided.

  19. In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bojack, A., E-mail: a.bojack@tudelft.nl; Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft; Zhao, L.

    2012-09-15

    In-situ analysis of the phase transformations in a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) was carried out using a thermo-magnetic technique, dilatometry and high temperature X-ray diffractometry (HT-XRD). A combination of the results obtained by the three applied techniques gives a valuable insight in the phase transformations during the austenitization treatment, including subsequent cooling, of the 13Cr6Ni2Mo supermartensitic stainless steel, where the magnetic technique offers a high accuracy in monitoring the austenite fraction. It was found by dilatometry that the austenite formation during heating takes place in two stages, most likely caused by partitioning of Ni into austenite. The in-situ evolutionmore » of the austenite fraction is monitored by high-temperature XRD and dilatometry. The progress of martensite formation during cooling was described with a Koistinen-Marburger relation for the results obtained from the magnetic and dilatometer experiments. Enhanced martensite formation at the sample surface was detected by X-ray diffraction, which is assumed to be due to relaxation of transformation stresses at the sample surface. Due to the high alloy content and high thermodynamic stability of austenite at room temperature, 4 vol.% of austenite was found to be stable at room temperature after the austenitization treatment. - Highlights: Black-Right-Pointing-Pointer We in-situ analyzed phase transformations and fractions of a 13Cr6Ni2Mo SMSS. Black-Right-Pointing-Pointer Higher accuracy of the austenite fraction was obtained from magnetic technique. Black-Right-Pointing-Pointer Austenite formation during heating takes place in two stages. Black-Right-Pointing-Pointer Enhanced martensite formation at the sample surface detected by X-ray diffraction.« less

  20. Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding

    DTIC Science & Technology

    2010-07-01

    a rigid material. Its density and thermal properties are set to that of AISI- H13 , the hot-worked tool steel which is often used as a FSW- tool ...joining process (Ref 1-3). Within FSW, a (typically) cylindrical tool - pin (threaded at the bottom and terminated with a circular-plate shape shoulder...applied to the shoulder and owing to frictional sliding and plastic deforma- tion, substantial amount of heat is generated at the tool /work- piece

  1. Imaging of pH in vivo using hyperpolarized 13C-labelled zymonic acid

    PubMed Central

    Düwel, Stephan; Hundshammer, Christian; Gersch, Malte; Feuerecker, Benedikt; Steiger, Katja; Buck, Achim; Walch, Axel; Haase, Axel; Glaser, Steffen J.; Schwaiger, Markus; Schilling, Franz

    2017-01-01

    Natural pH regulatory mechanisms can be overruled during several pathologies such as cancer, inflammation and ischaemia, leading to local pH changes in the human body. Here we demonstrate that 13C-labelled zymonic acid (ZA) can be used as hyperpolarized magnetic resonance pH imaging sensor. ZA is synthesized from [1-13C]pyruvic acid and its 13C resonance frequencies shift up to 3.0 p.p.m. per pH unit in the physiological pH range. The long lifetime of the hyperpolarized signal enhancement enables monitoring of pH, independent of concentration, temperature, ionic strength and protein concentration. We show in vivo pH maps within rat kidneys and subcutaneously inoculated tumours derived from a mammary adenocarcinoma cell line and characterize ZA as non-toxic compound predominantly present in the extracellular space. We suggest that ZA represents a reliable and non-invasive extracellular imaging sensor to localize and quantify pH, with the potential to improve understanding, diagnosis and therapy of diseases characterized by aberrant acid-base balance. PMID:28492229

  2. Struvite recovery from swine waste biogas digester effluent through a stainless steel device under constant pH conditions.

    PubMed

    Perera, P W Anton; Wu, Wei-Xiang; Chen, Ying-Xu; Han, Zhi-Ying

    2009-06-01

    To investigate the struvite precipitation under constant and non-constant pH conditions and to test a stainless steel device under different operating regimes to maximize the recovery of struvite. The molar ratio of NH4+: Mg2+: PO4(3-) was adjusted to 1: 1.2: 1.2 and pH was elevated to 9.0. The absorbance measurement was used to trace the process of struvite crystallization. Wastewater and precipitate analysis was done by standard analytical methods. The pH constant experiment reported a significantly higher struvite precipitation (24.6 +/- 0.86 g) than the non-constant pH experiment (19.8 +/- 1.86 g). The SAR ranged from 5.6 to 8.2 g m(-2) h(-1) to 3.6-4.8 g m(-2) h(-1) in pH constant and non-constant experiments, respectively. The highest struvite deposit on the device was found in regime 3 followed by in regimes 2 and 4. The highest PO4(3-) (97.2%) and NH4+ (71%) removal was reported in the R1 regime. None of the influent Cu2+ or Zn2+ was precipitated on the device. A higher struvite yield is evident in pH constant experiments. Moreover, the stainless steel device facilitates the isolation of heavy metal free pure (around 96%) struvite from swine waste biogas digester effluent contaminated with cu2+ and Zn2+ and the highest yield is attainable with the device operating at 50 rpm with agitation by a magnetic stirrer.

  3. Mechanical properties and microstructural evolution of modified 9Cr-1Mo steel after long-term aging for 50,000 h

    NASA Astrophysics Data System (ADS)

    Baek, Jong-Hyuk; Kim, Sung-Ho; Lee, Chan-Bock; Hahn, Do-Hee

    2009-08-01

    The mechanical properties and microstructural evolution of modified 9Cr-1Mo steel have been studied to investigate steel property changes after long-term isothermal aging at 600 °C for 50,000 h. The microhardness and strength were maintained constantly after aging but the impact energy was dramatically reduced by 62 % during the aging period. From the viewpoint of microstructural evolution after the aging process, Cr-enrichment and Fe-depletion took place within the M23C6-type precipitates in the as-aged steel and V-depletion also happened within the VX-type precipitates after aging. In addition, the precipitates of the M2Mo-type Laves phase and the segregation of the impurity atoms would be formed during the long-term aging period. It was considered that the sharp reduction of the impact energy could be related to the formation of the Laves phases and the impurity segregation after aging at 600 °C. The phase stability was also verified by the specific heat results up to 950 °C from a DSC test. It was concluded from this study that the modified 9Cr-1Mo steel would keep its microstructural stability at 600 °C during the long-term aging period of 50,000 h, which was equivalent to the in-service life of the SFR fuel cladding.

  4. On electrical resistivity of AISI D2 steel during various stages of cryogenic treatment

    NASA Astrophysics Data System (ADS)

    Lomte, Sachin Vijay; Gogte, Chandrashekhar Laxman; Peshwe, Dilip

    2012-06-01

    The effect of dislocation densities and residual stresses is well known in tool steels. Measurement of electrical resistivity in order to monitor dislocation densities or residual stresses has seldom been used in investigating the effect of cryogenic treatment on tool steels. Monitoring residual stresses during cryogenic treatment becomes important as it is directly related to changes due to cryogenic treatment of tool steels. For high carbon high chromium (HCHC- AISI D2) steels, not only wear resistance but dimensional stability is an important issue as the steels are extensively used in dies, precision measuring instruments. This work comprises of study of measurement of electrical resistivity of AISI D2 steel at various stages of cryogenic treatment. Use of these measurements in order to assess the dimensional stability of these steels is discussed in this paper.

  5. Thermomechanical conditions and stresses on the friction stir welding tool

    NASA Astrophysics Data System (ADS)

    Atthipalli, Gowtam

    Friction stir welding has been commercially used as a joining process for aluminum and other soft materials. However, the use of this process in joining of hard alloys is still developing primarily because of the lack of cost effective, long lasting tools. Here I have developed numerical models to understand the thermo mechanical conditions experienced by the FSW tool and to improve its reusability. A heat transfer and visco-plastic flow model is used to calculate the torque, and traverse force on the tool during FSW. The computed values of torque and traverse force are validated using the experimental results for FSW of AA7075, AA2524, AA6061 and Ti-6Al-4V alloys. The computed torque components are used to determine the optimum tool shoulder diameter based on the maximum use of torque and maximum grip of the tool on the plasticized workpiece material. The estimation of the optimum tool shoulder diameter for FSW of AA6061 and AA7075 was verified with experimental results. The computed values of traverse force and torque are used to calculate the maximum shear stress on the tool pin to determine the load bearing ability of the tool pin. The load bearing ability calculations are used to explain the failure of H13 steel tool during welding of AA7075 and commercially pure tungsten during welding of L80 steel. Artificial neural network (ANN) models are developed to predict the important FSW output parameters as function of selected input parameters. These ANN consider tool shoulder radius, pin radius, pin length, welding velocity, tool rotational speed and axial pressure as input parameters. The total torque, sliding torque, sticking torque, peak temperature, traverse force, maximum shear stress and bending stress are considered as the output for ANN models. These output parameters are selected since they define the thermomechanical conditions around the tool during FSW. The developed ANN models are used to understand the effect of various input parameters on the total

  6. 13 CFR 400.204 - Loan terms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Loan terms. 400.204 Section 400.204 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.204 Loan terms. (a) All loans guaranteed under the Program shall be...

  7. 13 CFR 400.204 - Loan terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Loan terms. 400.204 Section 400.204 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.204 Loan terms. (a) All loans guaranteed under the Program shall be...

  8. 13 CFR 400.204 - Loan terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Loan terms. 400.204 Section 400.204 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.204 Loan terms. (a) All loans guaranteed under the Program shall be...

  9. 13 CFR 400.204 - Loan terms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Loan terms. 400.204 Section 400.204 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.204 Loan terms. (a) All loans guaranteed under the Program shall be...

  10. 13 CFR 400.204 - Loan terms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Loan terms. 400.204 Section 400.204 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.204 Loan terms. (a) All loans guaranteed under the Program shall be...

  11. Stress Corrosion Cracking of High Strength Steels

    DTIC Science & Technology

    1995-06-01

    R. Brown, J. H. Graves, E. U. Lee, C. E. Neu and J. Kozol, " Corrosion Behavior of High Strength Steels for Aerospace Applications," Proceedings of...h fit Stress Corrosion Cracking of High Strength Steels Eun U. Lee, Henry Sanders and Bhaskar Sarkar Naval Air Warfare Center Aircraft Division...Patuxent River, Maryland 20670 ABSTRACT The stress corrosion cracking (SCC) was investigated for AerMet 100 and 300M steels in four aqueous NaCl

  12. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement

    NASA Astrophysics Data System (ADS)

    Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc

    2017-02-01

    Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.

  13. The electron affinity of Al13H cluster: high level ab initio study

    NASA Astrophysics Data System (ADS)

    Moc, Jerzy

    2014-11-01

    Al13H clusters have been considered candidates for cluster assembled materials. Here we have carried out benchmark calculations for the Al13H cluster, both neutral and anionic, with the aim of verifying the nature of stationary points on the potential energy surface, studying dynamics of H atom and determining an adiabatic electron affinity. A range of correlated methods applied include second-order perturbation theory (MP2), spin-component-scaled MP2, coupled electron pair (CEPA) and coupled cluster singles and doubles with perturbative triple corrections (CCSD(T)). These methods are used in combination with the correlation consistent basis sets through aug-cc-pVTZ including extrapolation to the complete basis set (CBS) limit. Performance of several different flavours of density functional theory (DFT) such as generalised gradient approximation (GGA), hybrid GGA, meta-GGA and hybrid-meta-GGA is assessed with respect to the ab initio correlated reference data. The harmonic force constant analysis is systematically performed with the MP2 and DFT methods. The MP2 results show that for neutral Al13H only the hollow structure is a potential energy minimum, with the bridged structure being a transition state for the H shift from the hollow site to the adjacent hollow site. The CCSD(T)/aug-cc-pVTZ (CCSD(T)/CBS) estimate of the energy barrier to this H shift is 2.6 (2.9) kcal/mol, implying that the H atom movement over the Al13H cluster surface is facile. By contrast, the DFT force constant analysis results suggest additional terminal and bridged minima structures. For the anion Al13H-, exhibiting 'stiffer' potential energy surface compared to the neutral, the existence of the hollow and terminal isomers is consistent with the earlier photoelectron spectroscopy assignment. The adiabatic electron affinity of Al13H is determined to be 2.00 and 1.95 eV (the latter including the ΔZPE correction) based on the CCSD(T) energies extrapolated to the CBS limit, whereas the

  14. Thermal fatigue behavior of H-13 die steel for aluminum die casting with various ion sputtered coatings

    NASA Technical Reports Server (NTRS)

    Nieh, C. Y.; Wallace, J. F.

    1981-01-01

    Sputtered coatings of Mo, W, Pt, Ag, Au, Co, Cr, Ni, Ag + Cu, Mo + Pt, Si3N4, A1N, Cr3C2, Ta5Si3, and ZrO2 were applied to a 2-inch-square, 7-inch-long thermal fatigue test specimen which was then internally water cooled and alternately immersed in molten aluminum and cooled in air. After 15,000 cycles the thermal fatigue cracks at the specimen corners were measured. Results indicate that a significant improvement in thermal fatigue resistance was obtained with platinum, molybdenum, and tungsten coatings. Metallographic examination indicates that the improvement in thermal fatigue resistance resulted from protection of the surface of the die steel from oxidation. The high yield strength and ductility of molybdenum and tungsten contributed to the better thermal fatigue resistance.

  15. The FAQUIRE Approach: FAst, QUantitative, hIghly Resolved and sEnsitivity Enhanced 1H, 13C Data.

    PubMed

    Farjon, Jonathan; Milande, Clément; Martineau, Estelle; Akoka, Serge; Giraudeau, Patrick

    2018-02-06

    The targeted analysis of metabolites in complex mixtures is a challenging issue. NMR is one of the major tools in this field, but there is a strong need for more sensitive, better-resolved, and faster quantitative methods. In this framework, we introduce the concept of FAst, QUantitative, hIghly Resolved and sEnsitivity enhanced (FAQUIRE) NMR to push forward the limits of metabolite NMR analysis. 2D 1 H, 13 C 2D quantitative maps are promising alternatives for enhancing the spectral resolution but are highly time-consuming because of (i) the intrinsic nature of 2D, (ii) the longer recycling times required for quantitative conditions, and (iii) the higher number of scans needed to reduce the level of detection/quantification to access low concentrated metabolites. To reach this aim, speeding up the recently developed QUantItative Perfected and pUre shifted HSQC (QUIPU HSQC) is an interesting attempt to develop the FAQUIRE concept. Thanks to the combination of spectral aliasing, nonuniform sampling, and variable repetition time, the acquisition time of 2D quantitative maps is reduced by a factor 6 to 9, while conserving a high spectral resolution thanks to a pure shift approach. The analytical potential of the new Quick QUIPU HSQC (Q QUIPU HSQC) is evaluated on a model metabolite sample, and its potential is shown on breast-cell extracts embedding metabolites at millimolar to submillimolar concentrations.

  16. Responder analysis of a randomized comparison of the 13.3 mg/24 h and 9.5 mg/24 h rivastigmine patch.

    PubMed

    Molinuevo, José L; Frölich, Lutz; Grossberg, George T; Galvin, James E; Cummings, Jeffrey L; Krahnke, Tillmann; Strohmaier, Christine

    2015-01-01

    OPtimizing Transdermal Exelon In Mild-to-moderate Alzheimer's disease (OPTIMA) was a randomized, double-blind comparison of 13.3 mg/24 h versus 9.5 mg/24 h rivastigmine patch in patients with mild-to-moderate Alzheimer's disease who declined despite open-label treatment with 9.5 mg/24 h patch. Over 48 weeks of double-blind treatment, high-dose patch produced greater functional and cognitive benefits compared with 9.5 mg/24 h patch. Using OPTIMA data, a post-hoc responder analysis was performed to firstly, compare the proportion of patients demonstrating improvement or absence of decline with 13.3 mg/24 h versus 9.5 mg/24 h patch; and secondly, identify predictors of improvement or absence of decline. 'Improvers' were patients who improved on the Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) by ≥4 points from baseline, and did not decline on the instrumental domain of the Alzheimer's Disease Cooperative Study-Activities of Daily Living scale (ADCS-IADL). 'Non-decliners' were patients who did not decline on either scale. Overall, 265 patients randomized to 13.3 mg/24 h and 271 to 9.5 mg/24 h patch met the criteria for inclusion in the intention-to-treat population and were included in the analyses. Significantly more patients were 'improvers' with 13.3 mg/24 h compared with 9.5 mg/24 h patch at Weeks 24 (44 (16.6%) versus 19 (7.0%); P < 0.001) and 48 (21 (7.9%) versus 10 (3.7%); P = 0.023). A significantly greater proportion of patients were 'non-decliners' with 13.3 mg/24 h compared with 9.5 mg/24 h patch at Week 24 (71 (26.8%) versus 44 (16.2%); P = 0.002). At Week 48, there was a trend in favor of 13.3 mg/24 h patch. Functional and cognitive assessment scores at double-blind baseline did not consistently predict effects at Weeks 24 or 48. More patients with mild-to-moderate Alzheimer's disease who are titrated to 13.3 mg/24 h rivastigmine patch at time of decline are 'improvers' or 'non-decliners' i

  17. Investigation of machinability characteristics on EN47 steel for cutting force and tool wear using optimization technique

    NASA Astrophysics Data System (ADS)

    M, Vasu; Shivananda Nayaka, H.

    2018-06-01

    In this experimental work dry turning process carried out on EN47 spring steel with coated tungsten carbide tool insert with 0.8 mm nose radius are optimized by using statistical technique. Experiments were conducted at three different cutting speeds (625, 796 and 1250 rpm) with three different feed rates (0.046, 0.062 and 0.093 mm/rev) and depth of cuts (0.2, 0.3 and 0.4 mm). Experiments are conducted based on full factorial design (FFD) 33 three factors and three levels. Analysis of variance is used to identify significant factor for each output response. The result reveals that feed rate is the most significant factor influencing on cutting force followed by depth of cut and cutting speed having less significance. Optimum machining condition for cutting force obtained from the statistical technique. Tool wear measurements are performed with optimum condition of Vc = 796 rpm, ap = 0.2 mm, f = 0.046 mm/rev. The minimum tool wear observed as 0.086 mm with 5 min machining. Analysis of tool wear was done by confocal microscope it was observed that tool wear increases with increasing cutting time.

  18. Study of the performances of nano-case treatment cutting tools on carbon steel work material during turning operation

    NASA Astrophysics Data System (ADS)

    Afolalu, S. A.; Okokpujie, I. P.; Salawu, E. Y.; Abioye, A. A.; Abioye, O. P.; Ikumapayi, O. M.

    2018-04-01

    The degree of holding temperature and time play a major role in nano-case treatment of cutting tools which immensely contributed to its performance during machining operation. The objective of this research work is to carryout comparative study of performance of nano-case treatment tools developed using low and medium carbon steel as work piece. Turning operation was carried out under two different categories with specific work piece on universal lathe machine using HSS cutting tools 100 mm × 12mm × 12mm that has been nano-case treated under varying conditions of temperatures and timeof 800,850, 900, 950°C and 60, 90, 120 mins respectively. The turning parameters used in evaluating this experiment were cutting speed of 270, 380 and 560mm/min, feed rate of 0.15, 0.20 and 0.25 mm/min, depth of cut of 2mm, work piece diameter of 25mm and rake angle of 7° each at three levels. The results of comparative study of their performances revealed that the timespent in the machining of low carbon steel material at a minimum temperature and time of 800°C, 60 mins were1.50, 2.17 mins while at maximum temperature and time of 950°C, 120 mins were 1.19, 2.02 mins. It was also observed that at a corresponding constant speed of 270,380 and 560mm/min at higher temperature and time, a relative increased in the length of cut were observed. Critical observation of the result showed that at higher case hardening temperature and time (950°C/120mins), the HSS cutting tool gave a better performance as lesser time was consumed during the turning operation.

  19. [Circulation of the influenza A virus of H13 serosubtype among seagulls in the Northern Caspian (1979-1985)].

    PubMed

    Iamnikova, S S; Kovtun, T O; Dmitriev, G A; Aristova, V A; Krivonosov, G A; Rusanov, G M; Konechnyĭ, A G; L'vov, D K

    1989-01-01

    The results of seven-year ecologo-virological studies (1979-1985) of Laridae colonies on the island Zhemchuzhnyi, northern Kaspian Sea, showed annual isolation of influenza A viruses. Altogether, 95 hemagglutinating agent have been isolated. Strains with 4 different combinations of surface antigens were identified: H5N2, H13N2, H13N3, H13N6. The possibility of transovarial transmission is confirmed by the fact of isolation of an influenza virus strain A/black-headed herring gull/Astrakhan/458/85 (H13N6) from a nestling having no contacts with the environment. Simultaneous circulation of influenza A viruses (in 1983--H13N2 and H13N6, in 1985.--H13N3 and H13N6) and the presence in the virion of neuraminidase of human influenza virus (N2) allow to consider the isolates to be natural recombinants.

  20. Effects of H2 Atmospheres on Sintering of Low Alloy Steels Containing Oxygen-Sensitive Masteralloys

    NASA Astrophysics Data System (ADS)

    de Oro Calderon, Raquel; Jaliliziyaeian, Maryam; Gierl-Mayer, Christian; Danninger, Herbert

    2017-04-01

    Processing of novel sintered steels with compositions including oxygen-sensitive elements requires deep understanding of the chemistry of sintering. The use of H2 atmospheres alleviates the oxygen transference from the base powder to the oxygen-sensitive particles. However, in H2, methane formation at 700-1200°C causes dramatic homogeneous decarburization of the part that affects both mechanical behavior and dimensional stability. The intensity and the critical temperatures of this effect depend strongly on the alloying elements, being significantly enhanced in presence of Si. When combining the alloying elements as Fe-Mn-Si masteralloys, methane formation is enhanced around 760°C due to the high Mn content (40 wt.%) in the masteralloys. Nevertheless, the benefits of H2 towards oxide reduction can still be advantageously used if diluting it in the form of N2-H2 atmospheres, or if limiting the use of H2 to temperatures below 500°C. Thus, decarburization due to methane formation can be successfully controlled.

  1. 13C and 1H NMR (Nuclear Magnetic Resonance) studies of solid polyolefines

    NASA Technical Reports Server (NTRS)

    Cudby, M. E. A.; Harris, R. K.; Metcalfe, K.; Packer, K. J.; Smith, P. W. R.

    1983-01-01

    The basis of H-1 and C-13 high-resolution NMR investigations of solid polymers is outlined. The C-13 NMR spectra of solid syndiotactic and isotactic polypropene are discussed and their interpretation in terms of conformation and chain-packing effects are reviewed. The effects of decreasing temperature on the C-13 high-resolution spectrum of an annealed sample of isotactic polypropene is described and interpreted in terms of the crystal structure. The question of the proportion of the sample giving rise to C-13 signals is addressed and some results reported. The main cause for observing only part of the total sample is shown to be the H-1 rotating frame spin-lattice relaxation behavior. The H-1 spin-lattice relaxation and spectral characteristics of a number of polyolefin samples are summarized and the role of spin-diffusion discussed.

  2. Influence of Thermal Ageing on Microstructure and Tensile Properties of P92 Steel

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Selvi, S. Panneer; Parameswaran, P.; Laha, K.

    2018-04-01

    Microstructure and tensile properties of P92 steel in the normalized and tempered, and thermal aged at 923 K for 5000 h and 10,000 h conditions have been investigated. Laves phase precipitate was observed in the thermal-aged steels. The size of Laves phase precipitate increased with increase in thermal exposure. This was also confirmed from the observation that the area fraction of Laves phase precipitate was higher in the 5000 h aged condition which decreased with further increase in thermal exposure. On the other hand, the size and area fraction of M23C6 precipitate were found increased in the 5000 h aged steel, further continued to enhanced precipitation of fine M23C6 in the 10,000 h aged steel. This resulted in significant increase in area fraction and comparable size with the steel aged for 5000 h. Hardness of the steel was decreased with increase in the duration of ageing. Thermal-aged steels exhibited lower yield stress, ultimate tensile strength and relatively higher ductility in comparison with steel in the normalized and tempered condition. The increase in lath width and recovery of dislocation structure under thermal-aged condition resulted in lower tensile strength and hardness. An extensive Laves phase formation and coarsening by loss of tungsten in the matrix led to decrease in the tensile strength predominantly in the 5000 h aged steel. The tensile strength of 10,000 h aged steel was comparable with that of 5000 h aged steel due to enhanced precipitation of fine M23C6 in the steel due to enhanced mobility of carbon in the absence of tungsten in the matrix.

  3. Characterization of the interfacial heat transfer coefficient for hot stamping processes

    NASA Astrophysics Data System (ADS)

    Luan, Xi; Liu, Xiaochuan; Fang, Haomiao; Ji, Kang; El Fakir, Omer; Wang, LiLiang

    2016-08-01

    In hot stamping processes, the interfacial heat transfer coefficient (IHTC) between the forming tools and hot blank is an essential parameter which determines the quenching rate of the process and hence the resulting material microstructure. The present work focuses on the characterization of the IHTC between an aluminium alloy 7075-T6 blank and two different die materials, cast iron (G3500) and H13 die steel, at various contact pressures. It was found that the IHTC between AA7075 and cast iron had values 78.6% higher than that obtained between AA7075 and H13 die steel. Die materials and contact pressures had pronounced effects on the IHTC, suggesting that the IHTC can be used to guide the selection of stamping tool materials and the precise control of processing parameters.

  4. Experimental Characterization of Electron Beam Welded SAE 5137H Thick Steel Plate

    NASA Astrophysics Data System (ADS)

    Kattire, Prakash; Bhawar, Valmik; Thakare, Sandeep; Patil, Sachin; Mane, Santosh; Singh, Rajkumar, Dr.

    2017-09-01

    Electron beam welding is known for its narrow weld zone with high depth to width ratio, less heat affected zone, less distortion and contamination. Electron beam welding is fusion welding process, where high velocity electrons impinge on material joint to be welded and kinetic energy of this electron is transformed into heat upon impact to fuse the material. In the present work electron beam welding of 60 mm thick SAE 5137H steel is studied. Mechanical and metallurgical properties of electron beam welded joint of SAE 5137H were evaluated. Mechanical properties are analysed by tensile, impact and hardness test. Metallurgical properties are investigated through optical and scanning electron microscope. The hardness traverse across weld zone shows HV 370-380, about 18% increase in the tensile strength and very low toughness of weld joint compared to parent metal. Microstructural observation shows equiaxed dendrite in the fusion zone and partial grain refinement was found in the HAZ.

  5. Ab initio/GIAO-CCSD(T) (13)C NMR study of the rearrangement and dynamic aspects of rapidly equilibrating tertiary carbocations, C6H13(+) and C7H15(+).

    PubMed

    Olah, George A; Prakash, G K Surya; Rasul, Golam

    2016-01-05

    The rearrangement pathways of the equilibrating tertiary carbocations, 2,3-dimethyl-2-butyl cation (C6H13(+), 1), 2,3,3-trimethyl-2-butyl cation (C7H15(+), 5) and 2,3-dimethyl-2-pentyl cation (C7H15(+), 8 and 9) were investigated using the ab initio/GIAO-CCSD(T) (13)C NMR method. Comparing the calculated and experimental (13)C NMR chemical shifts of a series of carbocations indicates that excellent prediction of δ(13)C could be achieved through scaling. In the case of symmetrical equilibrating cations (1 and 5) the Wagner-Meerwein 1,2-hydride and 1,2-methide shifts, respectively, produce the same structure. This indicates that the overall (13)C NMR chemical shifts are conserved and independent of temperature. However, in the case of unsymmetrical equilibrating cations (8 and 9) the Wagner-Meerwein shift produces different tertiary structures, which have slightly different thermodynamic stabilities and, thus, different spectra. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level structure 8 is only 90 calories/mol more stable than structure 9. Based on computed (13)C NMR chemical shift calculations, mole fractions of these isomers were determined by assuming the observed chemical shifts are due to the weighted average of the chemical shifts of the static ions. © 2015 Wiley Periodicals, Inc.

  6. Long-Term Effect of Serial Infections with H13 and H16 Low-Pathogenic Avian Influenza Viruses in Black-Headed Gulls

    PubMed Central

    Verhagen, Josanne H.; van Amerongen, Geert; van de Bildt, Marco; Majoor, Frank; Fouchier, Ron A. M.

    2015-01-01

    ABSTRACT Infections of domestic and wild birds with low-pathogenic avian influenza viruses (LPAIVs) have been associated with protective immunity to subsequent infection. However, the degree and duration of immunity in wild birds from previous LPAIV infection, by the same or a different subtype, are poorly understood. Therefore, we inoculated H13N2 (A/black-headed gull/Netherlands/7/2009) and H16N3 (A/black-headed gull/Netherlands/26/2009) LPAIVs into black-headed gulls (Chroicocephalus ridibundus), their natural host species, and measured the long-term immune response and protection against one or two reinfections over a period of >1 year. This is the typical interval between LPAIV epizootics in wild birds. Reinfection with the same virus resulted in progressively less virus excretion, with complete abrogation of virus excretion after two infections for H13 but not H16. However, reinfection with the other virus affected neither the level nor duration of virus excretion. Virus excretion by immunologically naive birds did not differ in total levels of excreted H13 or H16 virus between first- and second-year birds, but the duration of H13 excretion was shorter for second-year birds. Furthermore, serum antibody levels did not correlate with protection against LPAIV infection. LPAIV-infected gulls showed no clinical signs of disease. These results imply that the epidemiological cycles of H13 and H16 in black-headed gulls are relatively independent from each other and depend mainly on infection of first-year birds. IMPORTANCE Low-pathogenic avian influenza viruses (LPAIVs) circulate mainly in wild water birds but are occasionally transmitted to other species, including humans, where they cause subclinical to fatal disease. To date, the effect of LPAIV-specific immunity on the epidemiology of LPAIV in wild birds is poorly understood. In this study, we investigated the effect of H13 and H16 LPAIV infection in black-headed gulls on susceptibility and virus excretion of

  7. Friction stir processing on carbon steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Sergei Yu., E-mail: tsy@ispms.ru; Melnikov, Alexander G., E-mail: melnikov-ag@tpu.ru; Rubtsov, Valery E., E-mail: rvy@ispms.ru

    2014-11-14

    Friction stir processing of medium carbon steel samples has been carried out using a milling machine and tools made of cemented tungsten carbide. Samples have been machined from 40 and 40X steels. The tools have been made in the shape of 5×5×1.5 mm and 3×3×1.5 mm tetrahedrons. The microstructure of stirred zone has been obtained using the smaller tool and consists of fine recrystallized 2-3 μm grains, whereas the larger tool has produced the 'onion-like' structures comprising hard quenched 'white' 500-600 MPa layers with 300-350 MPa interlayers of bainite needles. The mean values of wear intensity obtained after measuring themore » wear scar width were 0.02 mm/m and 0.001 mm/m for non-processed and processed samples, respectively.« less

  8. Direct quantitative 13 C-filtered 1 H magnetic resonance imaging of PEGylated biomacromolecules in vivo.

    PubMed

    Alvares, Rohan D A; Lau, Justin Y C; Macdonald, Peter M; Cunningham, Charles H; Prosser, R Scott

    2017-04-01

    1 H MRI is an established diagnostic method that generally relies on detection of water. Imaging specific macromolecules is normally accomplished only indirectly through the use of paramagnetic tags, which alter the water signal in their vicinity. We demonstrate a new approach in which macromolecular constituents, such as proteins and drug delivery systems, are observed directly and quantitatively in vivo using 1 H MRI of 13 C-labeled poly(ethylene glycol) ( 13 C-PEG) tags. Molecular imaging of 13 C-PEG-labeled species was accomplished by incorporating a modified heteronuclear multiple quantum coherence filter into a gradient echo imaging sequence. We demonstrate the approach by monitoring the real-time distribution of 13 C-PEG and 13 C-PEGylated albumin injected into the hind leg of a mouse. Filtering the 1 H PEG signal through the directly coupled 13 C nuclei largely eliminates background water and fat signals, thus enabling the imaging of molecules using 1 H MRI. PEGylation is widely employed to enhance the performance of a multitude of macromolecular therapeutics and drug delivery systems, and 13 C-filtered 1 H MRI of 13 C-PEG thus offers the possibility of imaging and quantitating their distribution in living systems in real time. Magn Reson Med 77:1553-1561, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Effect of pH on Semiconducting Property of Passive Film Formed on Ultra-High-Strength Corrosion-Resistant Steel in Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Sun, Min; Xiao, Kui; Dong, Chaofang; Li, Xiaogang; Zhong, Ping

    2013-10-01

    Because Cr9Ni5MoCo14 is a new ultra-high-strength corrosion-resistant steel, it is important to study its corrosion behavior in sulfuric acid solution, which is used to simulate the aggressive environment. The effect of pH on the electrochemical and semiconducting properties of passive films formed on ultra-high-strength corrosion-resistant steel in sulfuric acid solution was investigated by means of the potentiodynamic polarization technique, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis, and X-ray photoelectron spectroscopy (XPS). The results indicated that Cr9Ni5MoCo14 steel showed a passive state in acid solutions. The corrosion behavior of this Cr9Ni5MoCo14 alloy was influenced by the passive film formed on the surface, including thickness, stability, and partitioning of elements of the passive film. The passive current density decreases with increasing pH, and the corrosion resistance was enhanced by the increasing thickness and depletion of the defects within the passive film. Moreover, an enrichment of chromium (primarily the oxides of Cr) and depletion of iron in the passive film led to improved corrosion resistance. These results can provide a theoretical basis for use of this alloy and further development of ultra-high-strength corrosion-resistant steel in today's society.

  10. Comparative study of coated and uncoated tool inserts with dry machining of EN47 steel using Taguchi L9 optimization technique

    NASA Astrophysics Data System (ADS)

    Vasu, M.; Shivananda, Nayaka H.

    2018-04-01

    EN47 steel samples are machined on a self-centered lathe using Chemical Vapor Deposition of coated TiCN/Al2O3/TiN and uncoated tungsten carbide tool inserts, with nose radius 0.8mm. Results are compared with each other and optimized using statistical tool. Input (cutting) parameters that are considered in this work are feed rate (f), cutting speed (Vc), and depth of cut (ap), the optimization criteria are based on the Taguchi (L9) orthogonal array. ANOVA method is adopted to evaluate the statistical significance and also percentage contribution for each model. Multiple response characteristics namely cutting force (Fz), tool tip temperature (T) and surface roughness (Ra) are evaluated. The results discovered that coated tool insert (TiCN/Al2O3/TiN) exhibits 1.27 and 1.29 times better than the uncoated tool insert for tool tip temperature and surface roughness respectively. A slight increase in cutting force was observed for coated tools.

  11. Structure of thin diamond films: A 1H and 13C nuclear-magnetic-resonance study

    NASA Astrophysics Data System (ADS)

    Pruski, M.; Lang, D. P.; Hwang, Son-Jong; Jia, H.; Shinar, J.

    1994-04-01

    The 1H and 13C nuclear magnetic resonance (NMR) of thin diamond films deposited from naturally abundant (1.1 at. %) as well as 50% and 100% 13enriched CH4 heavily diluted in H2 is described and discussed. Less than 0.6 at. % of hydrogen is found in the films which contain crystallites up to ~15 μm across. The 1H NMR consists of a broad 50-65-kHz-wide Gaussian line attributed to H atoms bonded to carbon and covering the crystallite surfaces. A narrow Lorentzian line was only occasionally observed and is found not to be intrinsic to the diamond structure. The 13C NMR demonstrates that >99.5% of the C atoms reside in a quaternary diamondlike configuration. 1-13C cross-polarization measurement indicates that, at the very least, the majority of 13C nuclei cross polarized by 1H, i.e., within three bond distances from a 1H at a crystallite surface, reside in sp3 diamondlike coordinated sites. The 13C relaxation rates of the films are four orders of magnitude faster than that of natural diamond and believed to be due to 13C spin diffusion to paramagnetic centers, presumably carbon dangling bonds. Analysis of the measured relaxation rates indicates that within the 13C spin-diffusion length of √DTc1 ~0.05 μm, these centers are uniformly distributed in the diamond crystallites. The possibility that the dangling bonds are located at internal nanovoid surfaces is discussed.

  12. Seismic response analysis of a 13-story steel moment-framed building in Alhambra, California

    USGS Publications Warehouse

    Rodgers, Janise E.; Sanli, Ahmet K.; Çelebi, Mehmet

    2004-01-01

    The seismic performance of steel moment-framed buildings has been of particular interest since brittle fractures were discovered at the beam-column connections of some frames following the M6.7 1994 Northridge earthquake. This report presents an investigation of the seismic behavior of an instrumented 13-story steel moment frame building located in the greater Los Angeles area of California. An extensive strong motion dataset, ambient vibration data, engineering drawings and earthquake damage reports are available for this building. The data are described and subsequently analyzed. The results of the analyses show that the building response is more complex than would be expected from its highly symmetrical geometry. The building's response is characterized by low damping in the fundamental mode, larger peak accelerations in the intermediate stories than at the roof, extended periods of vibration after the cessation of strong input shaking, beating in the response, and significant torsion during strong shaking at the top of the concrete piers which extend from the basement to the second floor. The analyses of the data and all damage detection methods employed except one method based on system identification indicate that the response of the structure was elastic in all recorded earthquakes. These findings are in general agreement with the results of intrusive inspections (meaning fireproofing and architectural finishes were removed) conducted on approximately 5 percent of the moment connections following the Northridge earthquake, which found no earthquake damage.

  13. Effect of temperature, pH, and water activity on biofilm formation by Salmonella enterica enteritidis PT4 on stainless steel surfaces as indicated by the bead vortexing method and conductance measurements.

    PubMed

    Giaouris, E; Chorianopoulos, N; Nychas, G J E

    2005-10-01

    An assay was developed in an effort to elucidate the effect of important environmental parameters (temperature, pH, and water activity [aw]) on Salmonella Enteritidis biofilm formation on stainless steel surfaces. To achieve this, a modified microbiological technique used for biofilm studying (the bead vortexing method) and a rapid method based on conductivity measurements were used. The ability of the microorganism to generate biofilm on the stainless surfaces was studied at three temperatures (5, 20, and 37 degrees C), four pH values (4.5, 5.5, 6.5, and 7.4), and four aw values (0.5, 1.5, 5.5, and 10.5% NaCl). Results obtained by the bead vortexing method show that maximum numbers of adherent bacteria per square centimeter (106 CFU/cm2) were attained in 6 days at 20 degrees C. Biofilm formation after 7 days of incubation at 20 degrees C was found to be independent of the pH value. In addition, the high concentration of sodium chloride (10.5% NaCl, aw = 0.94) clearly inhibited the adherence of cells to the coupons. Conductance measurements were used as a supplementary tool to measure indirectly the attachment and biofilm formation of bacterial cells on stainless steel surfaces via their metabolic activity (i.e., changes in the conductance of the growth medium due to microbial growth or metabolism). Results obtained by conductance measurements corresponded well to those of the bead vortexing method. Furthermore, we were able to detect cells that remained attached on the metal surfaces even after vortexing via their metabolic activity. The results, except for demonstrating environmental-dependent Salmonella Enteritidis biofilm formation, indicated that traditional vortexing with beads did not remove completely biofilm cells from stainless steel; hence, conductance measurements seem to provide a more sensitive test capable to detect down to one single viable organism.

  14. A New Continuous Cooling Transformation Diagram for AISI M4 High-Speed Tool Steel

    NASA Astrophysics Data System (ADS)

    Briki, Jalel; Ben Slima, Souad

    2008-12-01

    The increasing evolution of dilatometric techniques now allows for the identification of structural transformations with very low signal. The use of dilatometric techniques coupled with more common techniques, such as metallographic, hardness testing, and x-ray diffraction allows to plot a new CCT diagram for AISI M4 high-speed tool steel. This diagram is useful for a better selection of alternate solutions, hardening, and tempering heat treatments. More accurate determination of the various fields of transformation of austenite during its cooling was made. The precipitation of carbides highlighted at high temperature is at the origin of the martrensitic transformation into two stages (splitting phenomena). For slow cooling rates, it was possible to highlight the ferritic, pearlitic, and bainitic transformation.

  15. Influence of hydrogen on the corrosion behavior of stainless steels in lithium

    NASA Astrophysics Data System (ADS)

    Shulga, A. V.

    2008-02-01

    Corrosion behavior of several stainless steels in lithium and lithium with 0.05%H has been examined. Corrosion tests were performed under static conditions at 600 and 700 °C in the austenitic stainless steel of the type AISI 304 containers. Intensive formation of σ-phase of the composition Fe 50Cr 43Mo 3Ni 4 on the surface of austenitic stainless steels of the type AISI 316 at 700 °C for 1000 h was established as a result of isothermal mass transfer. Addition of 0.05%H in the form of LiH to lithium resulted in an increase in the quantity of the σ-phase. After corrosion tests of ferritic/martensitic steel in lithium at 700 °C for 1000 h the formation of the γ-phase was observed. In Li + 0.05%H besides the γ-phase was also formed the σ-phase. The features of decarburization of investigated stainless steels were examined using the direct method of activation autoradiography on carbon. Addition of 0.05%H in lithium significantly decreased the carbon content in the decarburization zone of austenitic stainless steel Fe-18Cr-15Ni-0.15C-0.23B without a noticeable change in the thickness of the decarburization zone. Decarburization of ferritic/martensitic stainless steel was less than of austenitic stainless steel using the same corrosion tests.

  16. Simultaneous quantification and identification of individual chemicals in metabolite mixtures by two-dimensional extrapolated time-zero (1)H-(13)C HSQC (HSQC(0)).

    PubMed

    Hu, Kaifeng; Westler, William M; Markley, John L

    2011-02-16

    Quantitative one-dimensional (1D) (1)H NMR spectroscopy is a useful tool for determining metabolite concentrations because of the direct proportionality of signal intensity to the quantity of analyte. However, severe signal overlap in 1D (1)H NMR spectra of complex metabolite mixtures hinders accurate quantification. Extension of 1D (1)H to 2D (1)H-(13)C HSQC leads to the dispersion of peaks along the (13)C dimension and greatly alleviates peak overlapping. Although peaks are better resolved in 2D (1)H-(13)C HSQC than in 1D (1)H NMR spectra, the simple proportionality of cross peaks to the quantity of individual metabolites is lost by resonance-specific signal attenuation during the coherence transfer periods. As a result, peaks for individual metabolites usually are quantified by reference to calibration data collected from samples of known concentration. We show here that data from a series of HSQC spectra acquired with incremented repetition times (the time between the end of the first (1)H excitation pulse to the beginning of data acquisition) can be extrapolated back to zero time to yield a time-zero 2D (1)H-(13)C HSQC spectrum (HSQC(0)) in which signal intensities are proportional to concentrations of individual metabolites. Relative concentrations determined from cross peak intensities can be converted to absolute concentrations by reference to an internal standard of known concentration. Clustering of the HSQC(0) cross peaks by their normalized intensities identifies those corresponding to metabolites present at a given concentration, and this information can assist in assigning these peaks to specific compounds. The concentration measurement for an individual metabolite can be improved by averaging the intensities of multiple, nonoverlapping cross peaks assigned to that metabolite.

  17. Overview of the Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, Marc; Bush, Brian; Penev, Michael

    This presentation provides an introduction to the Hydrogen Financial Analysis Scenario Tool (H2FAST) and includes an overview of each of the three versions of H2FAST: the Web tool, the Excel spreadsheet version, and the beta version of the H2FAST Business Case Scenario tool.

  18. Mössbauer studies of a martensitic transformation and of cryogenic treatments of a D2 tool steel

    NASA Astrophysics Data System (ADS)

    Costa, B. F. O.; Blumers, M.; Kortmann, A.; Theisen, W.; Batista, A. C.; Klingelhöfer, G.

    2013-04-01

    A D2 tool steel X153CrVMo12 with composition C1.53 Cr12 V0.95 Mo0.80 Mn0.40(wt% Fe balanced) was studied by use of Mössbauer spectroscopy and X-ray diffraction. It was observed that the study of carbides by X-ray diffraction was difficult while Mössbauer spectroscopy gives some light on the process occurring during cryogenic treatment. With the increase of the martensitic phase the carbides decrease and are dissolved in solid solution of martensite as well as the chromium element.

  19. Modern trends in increasing the quality of the steels intended for cutting and metal-working tools: I. Improvement of granule metallurgy processes

    NASA Astrophysics Data System (ADS)

    Belyanchikov, L. N.

    2008-12-01

    The following new technological processes for producing fine gas-atomized powders of tool and high-speed steels with a low content of nonmetallic inclusions are considered: the process designed by Böhler Uddeholm Powder Technology (Austria) and processes involving a heated gas. In the former process, a metal is poured from a ladle with electroslag heating, and the atomizing unit consists of three injectors. A new process of producing tools from fine powders by three-dimensional printing, i.e., so-called 3D-printing, is described.

  20. Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses

    DTIC Science & Technology

    2011-12-30

    which reduces the need for expensive post-weld machining; and (g) low environmental impact . However, some disadvantages of the FSW process have also...next set to that of AISI- H13 , a hot-worked tool steel, frequently used as the FSW-tool material (Ref 16). The work-piece material is assumed to be

  1. Effect of Temperature on the Corrosion Behavior of API X120 Pipeline Steel in H2S Environment

    NASA Astrophysics Data System (ADS)

    Okonkwo, Paul C.; Sliem, Mostafa H.; Shakoor, R. A.; Mohamed, A. M. A.; Abdullah, Aboubakr M.

    2017-08-01

    The corrosion behavior of newly developed API X120 C-steel that is commenced to be used for oil pipelines was studied in a H2S saturated 3.5 wt.% NaCl solution between 20 and 60 °C using potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The corrosion products formed on the surface of the alloy were characterized using x-ray diffraction and scanning electron microscopy. It has been noticed that the formation of corrosion product layer takes place at both lower and higher temperatures which is mainly comprised of iron oxides and sulfides. The electrochemical results confirmed that the corrosion rate decreases with increasing temperature up to 60 °C. This decrease in corrosion rate with increasing temperature can be attributed to the formation of a protective layer of mackinawite layer. However, cracking in the formed mackinawite layer may not be responsible for the increase in the corrosion rate. More specifically, developed pourbaix diagrams at different temperatures showed that the formed protective layer belongs to mackinawite (FeS), a group of classified polymorphous iron sulfide, which is in good agreement with the experimental results. It is also noticed that the thickness of corrosion products layer increases significantly with decrease in the corrosion rate of API X120 steel exposed to H2S environment. These findings indicate that API X120 C-steel is susceptible to sour corrosion under the above stated experimental conditions.

  2. Friction Stir Spot Welding of Advanced High Strength Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

    Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spotmore » welding in advanced high strength steels.« less

  3. Spectroscopic investigations (FT-IR, UV, 1H and 13C NMR) and DFT/TD-DFT calculations of potential analgesic drug 2-[2-(dimethylamino)ethyl]-6-methoxy-4-(pyridin-2-yl)-1(2H)-phthalazinone

    NASA Astrophysics Data System (ADS)

    Sroczyński, Dariusz; Malinowski, Zbigniew

    2017-12-01

    The theoretical molecular geometry and the IR, UV, 1H and 13C NMR spectroscopic properties of 2-[2-(dimethylamino)ethyl]-6-methoxy-4-(pyridin-2-yl)-1(2H)-phthalazinone with the previously demonstrated in vivo analgesic activity were characterized. The conformational analysis, performed using the molecular mechanics method with the General AMBER Force Field (GAFF) and the Density Functional Theory (DFT) approach with the B3LYP hybrid functional and the 6-31 + g(d) basis sets, allowed to determine the most stable rotamer. The theoretical molecular geometry of this conformer was then calculated at the B3LYP/6-311++g(d,p) level of theory, and its phthalazinone core was compared with the experimental geometry of 1(2H)-phthalazinone. The calculated vibrational frequencies and the potential energy distribution enabled to assign the theoretical vibrational modes to the experimental FT-IR bands. The UV spectrum calculated with the Time-Dependent Density Functional Theory (TD-DFT) method in methanol identified the main electronic transitions and their character. 1H and 13C NMR chemical shifts simulated by the Gauge-Independent Atomic Orbital (GIAO) method in chloroform confirmed the previous assignment of the experimental resonance signals. The stability of the molecule was considered taking into account the hyperconjugation and electron density delocalization effects evaluated by the Natural Bond Orbital (NBO) method. The calculated spatial distribution of molecular electrostatic potential made possible to estimate the regions with nucleophilic and electrophilic properties. The results of the potentiodynamic polarization measurements were also indicated the corrosion inhibition activity of the title compound on 100Cr6 bearing steel in 1 mol dm-3 HCl solution.

  4. Analysis of Tank 13H (HTF-13-14-156, 157) Surface and Subsurface Supernatant Samples in Support of Enrichment Control, Corrosion Control and Sodium Aluminosilicate Formation Potential Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.

    2015-02-18

    The 2H Evaporator system includes mainly Tank 43H (feed tank) and Tank 38H (drop tank) with Tank 22H acting as the DWPF recycle receipt tank. The Tank 13H is being characterized to ensure that it can be transferred to the 2H evaporator. This report provides the results of analyses on Tanks 13H surface and subsurface supernatant liquid samples to ensure compliance with the Enrichment Control Program (ECP), the Corrosion Control Program and Sodium Aluminosilicate Formation Potential in the Evaporator. The U-235 mass divided by the total uranium averaged 0.00799 (0.799 % uranium enrichment) for both the surface and subsurface Tankmore » 13H samples. This enrichment is slightly above the enrichment for Tanks 38H and 43H, where the enrichment normally ranges from 0.59 to 0.7 wt%. The U-235 concentration in Tank 13H samples ranged from 2.01E-02 to 2.63E-02 mg/L, while the U-238 concentration in Tank 13H ranged from 2.47E+00 to 3.21E+00 mg/L. Thus, the U-235/total uranium ratio is in line with the prior 2H-evaporator ECP samples. Measured sodium and silicon concentrations averaged, respectively, 2.46 M and 1.42E-04 M (3.98 mg/L) in the Tank 13H subsurface sample. The measured aluminum concentration in Tanks 13H subsurface samples averaged 2.01E-01 M.« less

  5. Study of wear performance of deep drawing tooling

    NASA Astrophysics Data System (ADS)

    Naranje, Vishal G.; Karthikeyan, Ram; Nair, Vipin

    2017-09-01

    One of the most common challenges for many of the mechanical engineers and also in the field of materials science is the issue of occurrences of wear of the material parts which is used in certain applications that involves such surface interactions. In this paper, wear behaviour of particular grade High Carbon High Chromium Steel and many most famously D2, H13, O1 known as the Viking steel has been studied, evaluated and analyzed under certain processing parameters such as speed, load, track diameter and time required for deep drawing process to know it’s the wear rate and coefficient of friction. Also, the significance of the processing parameters which is used for wear testing analysis is also examined.

  6. Phase transition behavior of novel pH-sensitive polyaspartamide derivatives grafted with 1-(3-aminopropyl)imidazole.

    PubMed

    Seo, Kwangwon; Kim, Dukjoon

    2006-09-15

    New pH-sensitive polyaspartamide derivatives were synthesized by grafting 1-(3-aminopropyl)imidazole and/or O-(2-aminoethyl)-O'-methylpoly(ethylene glycol) 5000 on polysuccinimide for application in intracellular drug delivery systems. The DS of 1-(3-aminopropyl)imidazole was adjusted by the feed molar ratio, and the structure of the prepared polymer was confirmed using FT-IR and 1H NMR spectroscopy. Their pH-sensitive properties were characterized by light transmittance measurements, and the particle size and its distribution were investigated by dynamic light scattering measurements at varying pH values. The pH-sensitive phase transition was clearly observed in polymer solutions with a high substitution of 1-(3-aminopropyl)imidazole. The prepared polymers showed a high buffering capacity between pH 5 and 7, and this increased with the DS of 1-(3-aminopropyl)imidazole. The pH dependence of the aggregation and de-aggregation behavior was examined using a fluorescence spectrometer. For MPEG/imidazole-g-polyaspartamides with a DS of 1-(3-aminopropyl)imidazole over 82%, self aggregates associated with the hydrophobic interactions of the unprotonated imidazole groups were observed at pH values above 7, and their mean size was over 200 nm, while the aggregates of polymers were dissociated at pH values below 7 by the protonation of imidazole groups. These pH-sensitive polyaspartamide derivatives are potential basic candidates for intracellular drug delivery carriers triggered by small pH changes.

  7. 13 CFR 400.103 - Offices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Offices. 400.103 Section 400.103 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Board Procedures § 400.103 Offices. The principal offices of the Board are in the U.S. Department of...

  8. Utilization of FEM model for steel microstructure determination

    NASA Astrophysics Data System (ADS)

    Kešner, A.; Chotěborský, R.; Linda, M.; Hromasová, M.

    2018-02-01

    Agricultural tools which are used in soil processing, they are worn by abrasive wear mechanism cases by hard minerals particles in the soil. The wear rate is influenced by mechanical characterization of tools material and wear rate is influenced also by soil mineral particle contents. Mechanical properties of steel can be affected by a technology of heat treatment that it leads to a different microstructures. Experimental work how to do it is very expensive and thanks to numerical methods like FEM we can assumed microstructure at low cost but each of numerical model is necessary to be verified. The aim of this work has shown a procedure of prediction microstructure of steel for agricultural tools. The material characterizations of 51CrV4 grade steel were used for numerical simulation like TTT diagram, heat capacity, heat conduction and other physical properties of material. A relationship between predicted microstructure by FEM and real microstructure after heat treatment shows a good correlation.

  9. Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys

    DTIC Science & Technology

    2011-01-01

    expensive post-weld machining; and (g) low 102 environmental impact . However, some disadvantages of the 103 FSW process have also been identified such as (a...material. Its 443 density and thermal properties are next set to that of AISI- H13 , 444 a hot-worked tool steel, frequently used as the FSW-tool 445

  10. [Stainless steels for medical instruments].

    PubMed

    Feofilov, R N

    1981-01-01

    Both in the USSR and abroad similar types of martensitic and austenitic stainless steel are used for the manufacture of medical instruments. Martensitic steel, the cheapest and most economically alloyed, has the best combination of properties necessary for medical instruments. The analysis of the Soviet and foreign experience in using different grades of steel for the production of medical instruments demonstrates the expediency and possibility of improving the quality of martensitic steel and rolled stock, as well as that of medical instruments manufactured from these materials, by improving, the operations of the metallurgical and technological processes and by specifying more precisely the requirements for medical instruments. The possibility and expediency of using, in some technically justified cases, lower grades of alloyed steel instead of grade 12X18H9T for clamps and other instruments made of stainless steel, as well as highly corrosive grades of steel for microinstruments, have been established.

  11. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study

    PubMed Central

    Jiang, Jin-yang; Wang, Danqian; Chu, Hong-yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei

    2017-01-01

    An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed. PMID:28772772

  12. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study.

    PubMed

    Jiang, Jin-Yang; Wang, Danqian; Chu, Hong-Yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei

    2017-04-14

    An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed.

  13. Effect of convection on the dendrite growth kinetics in undercooled melts of D2 tool steels

    NASA Astrophysics Data System (ADS)

    Valloton, J.; Herlach, D. M.; Henein, H.

    2016-03-01

    Rapid solidification of D2 tool steel is investigated experimentally using the electromagnetic levitation technique under terrestrial and reduced gravity conditions. The microstructures of samples covering a broad range of undercoolings (40 K ≤ ΔT ≤ 280 K) are analysed. At low undercooling coarse grained dendritic microstructure is observed, while at higher undercoolings this dendritic feature disappears in favour of a grain refined equiaxed structure. In the latter case, the eutectic carbides are more evenly dispersed throughout the microstructure. The sample solidified in microgravity during parabolic flight experiment exhibits only a few very large grains with twinning relationship. This highlights the effect of convection on grain refinement in this system.

  14. Effect of Spheroidizing Annealing on Microstructure and Mechanical Properties of High-Carbon Martensitic Stainless Steel 8Cr13MoV

    NASA Astrophysics Data System (ADS)

    Yu, Wen-Tao; Li, Jing; Shi, Cheng-Bin; Zhu, Qin-Tian

    2017-02-01

    The effects of holding time during both austenitizing and spheroidizing on microstructure and mechanical properties of high-carbon martensitic stainless steel 8Cr13MoV were experimentally studied. The results showed that the amount of carbides and the proportion of fine carbides decrease first and then increase with the increase in austenitizing time ( t 1) in the case of short spheroidizing time ( t 2), whereas the amount of the lamellar carbides increases. In the case of long t 2, both the amount of carbides and the proportion of fine carbides decrease, and the amount of the lamellar carbides did not increase. The hardness of the steel decreases first and then increases with the increase of t 1. Under the conditions of different t 1, the change in the size of carbides and hardness of the steel show a same trend with the variation of t 2. The size of spheroidized carbides increases, whereas the hardness of the steel decreases with increasing t 2. The longer the holding time of austenitizing, the higher is the spheroidizing rate at the earlier stage. However, the spheroidizing rate shows an opposite trend with t 1 at the later stage of spheroidizing. The effect of cooling rate on microstructure is similar with t 2. With increasing cooling rate, the dimension of carbides became smaller, and the amount of lamellar carbides increased. The elongation of the sample fracture exhibits no corresponding relationship with holding time, whereas it is closely related to the precipitation of secondary carbides caused by the alloying elements segregation.

  15. 13 CFR 400.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Purpose. 400.1 Section 400.1 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM..., Chapter 1 of Public Law 106-51, 113 Stat. 252, as amended by section 734 of Public Law 106-102, 113 Stat...

  16. Real-Time in Vivo Detection of H2O2 Using Hyperpolarized 13C-Thiourea.

    PubMed

    Wibowo, Arif; Park, Jae Mo; Liu, Shie-Chau; Khosla, Chaitan; Spielman, Daniel M

    2017-07-21

    Reactive oxygen species (ROS) are essential cellular metabolites widely implicated in many diseases including cancer, inflammation, and cardiovascular and neurodegenerative disorders. Yet, ROS signaling remains poorly understood, and their measurements are a challenge due to high reactivity and instability. Here, we report the development of 13 C-thiourea as a probe to detect and measure H 2 O 2 dynamics with high sensitivity and spatiotemporal resolution using hyperpolarized 13 C magnetic resonance spectroscopic imaging. In particular, we show 13 C-thiourea to be highly polarizable and to possess a long spin-lattice relaxation time (T 1 ), which enables real-time monitoring of ROS-mediated transformation. We also demonstrate that 13 C-thiourea reacts readily with H 2 O 2 to give chemically distinguishable products in vitro and validate their detection in vivo in a mouse liver. This study suggests that 13 C-thiourea is a promising agent for noninvasive detection of H 2 O 2 in vivo. More broadly, our findings outline a viable clinical application for H 2 O 2 detection in patients with a range of diseases.

  17. An optimized 13C-urea breath test for the diagnosis of H pylori infection

    PubMed Central

    Campuzano-Maya, Germán

    2007-01-01

    AIM: To validate an optimized 13C-urea breath test (13C-UBT) protocol for the diagnosis of H pylori infection that is cost-efficient and maintains excellent diagnostic accuracy. METHODS: 70 healthy volunteers were tested with two simplified 13C-UBT protocols, with test meal (Protocol 2) and without test meal (Protocol 1). Breath samples were collected at 10, 20 and 30 min after ingestion of 50 mg 13C-urea dissolved in 10 mL of water, taken as a single swallow, followed by 200 mL of water (pH 6.0) and a circular motion around the waistline to homogenize the urea solution. Performance of both protocols was analyzed at various cut-off values. Results were validated against the European protocol. RESULTS: According to the reference protocol, 65.7% individuals were positive for H pylori infection and 34.3% were negative. There were no significant differences in the ability of both protocols to correctly identify positive and negative H pylori individuals. However, only Protocol 1 with no test meal achieved accuracy, sensitivity, specificity, positive and negative predictive values of 100%. The highest values achieved by Protocol 2 were 98.57%, 97.83%, 100%, 100% and 100%, respectively. CONCLUSION: A 10 min, 50 mg 13C-UBT with no test meal using a cut-off value of 2-2.5 is a highly accurate test for the diagnosis of H pylori infection at a reduced cost. PMID:17907288

  18. Sensitivity-enhanced IPAP experiments for measuring one-bond 13C '- 13C α and 13C α- 1H α residual dipolar couplings in proteins

    NASA Astrophysics Data System (ADS)

    Ding, Keyang; Gronenborn, Angela M.

    2004-04-01

    Sensitivity-enhanced 2D IPAP experiments using the accordion principle for measuring one-bond 13C '- 13C α and 1H α- 13C α dipolar couplings in proteins are presented. The resolution of the resulting spectra is identical to that of the decoupled HSQC spectra and the sensitivity of the corresponding 1D acquisitions are only slightly lower than those obtained with 3D HNCO and 3D HN(COCA)HA pulse sequences due to an additional delay 2 Δ. For cases of limited resolution in the 2D 15N- 1H N HSQC spectrum the current pulse sequences can easily be modified into 3D versions by introducing a poorly digitized third dimension, if so desired. The experiments described here are a valuable addition to the suites available for determination of residual dipolar couplings in biological systems.

  19. 13 CFR 400.209 - Funding for the Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Funding for the Program. 400.209 Section 400.209 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.209 Funding for the Program. The Act provides funding for...

  20. 13 CFR 400.209 - Funding for the Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Funding for the Program. 400.209 Section 400.209 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.209 Funding for the Program. The Act provides funding for...

  1. 13 CFR 400.209 - Funding for the Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Funding for the Program. 400.209 Section 400.209 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.209 Funding for the Program. The Act provides funding for...

  2. 13 CFR 400.208 - Issuance of the Guarantee.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Issuance of the Guarantee. 400.208 Section 400.208 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.208 Issuance of the Guarantee. (a) The Board's decisions...

  3. 13 CFR 400.209 - Funding for the Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Funding for the Program. 400.209 Section 400.209 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.209 Funding for the Program. The Act provides funding for...

  4. 13 CFR 400.208 - Issuance of the Guarantee.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Issuance of the Guarantee. 400.208 Section 400.208 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.208 Issuance of the Guarantee. (a) The Board's decisions...

  5. 13 CFR 400.208 - Issuance of the Guarantee.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Issuance of the Guarantee. 400.208 Section 400.208 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.208 Issuance of the Guarantee. (a) The Board's decisions...

  6. 13 CFR 400.208 - Issuance of the Guarantee.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Issuance of the Guarantee. 400.208 Section 400.208 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.208 Issuance of the Guarantee. (a) The Board's decisions...

  7. 13 CFR 400.209 - Funding for the Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Funding for the Program. 400.209 Section 400.209 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.209 Funding for the Program. The Act provides funding for...

  8. 13 CFR 400.208 - Issuance of the Guarantee.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Issuance of the Guarantee. 400.208 Section 400.208 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.208 Issuance of the Guarantee. (a) The Board's decisions...

  9. Proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu; Nishiyama, Yusuke

    2015-10-28

    A proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of {sup 13}C-{sup 1}H connectivities, and proximities of {sup 13}C-{sup 1}H and {sup 1}H-{sup 1}H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including {sup 1}H-{sup 1}H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protonsmore » and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) {sup 1}H/{sup 1}H and 2D {sup 13}C/{sup 1}H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of {sup 1}H-{sup 1}H proximity and {sup 13}C-{sup 1}H connectivity. In addition, the 2D (F1/F2) {sup 1}H/{sup 13}C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of {sup 1}H-{sup 1}H dipolar couplings, enables the measurement of proximities between {sup 13}C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of {sup 1}H-{sup 1}H-{sup 13}C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H{sub 2}O ⋅ HCl demonstrate the efficiency of the 3D experiment.« less

  10. Effect of temperature on anodic behavior of 13Cr martensitic steel in CO2 environment

    NASA Astrophysics Data System (ADS)

    Zhao, G. X.; Zheng, M.; Lv, X. H.; Dong, X. H.; Li, H. L.

    2005-04-01

    The corrosion behavior of 13Cr martensitic stainless steel in a CO2 environment in a stimulated oilfield was studied with potentiodynamic polarization and the impedance spectra technique. The results showed that the microstructure of the surface scale clearly changed with temperature. This decreased the sensitivity of pitting corrosion and increased the tendency toward general (or uniform) corrosion. The capacitance, the charge transfer resistance, and the polarization resistance of the corrosion product scale decrease with increasing temperature from 90 to 120 °C, and thus the corrosion is a thermal activation controlled process. Charge transfer through the scale is difficult and the corrosion is controlled by a diffusion process at a temperature of 150 °C. Resistance charge transfer through the corrosion product layer is higher than that in the passive film.

  11. Automated Slicing for a Multi-Axis Metal Deposition System (Preprint)

    DTIC Science & Technology

    2006-09-01

    experimented with different materials like H13 tool steel to build the part. Following the same slicing and scanning toolpath result, there is a geometric...and analysis tool -centroidal axis. Similar to medial axis, it contains geometry and topological information but is significantly computationally...geometry reasoning and analysis tool -centroidal axis. Similar to medial axis, it contains geometry and topological information but is significantly

  12. Feed rate affecting surface roughness and tool wear in dry hard turning of AISI 4140 steel automotive parts using TiN+AlCrN coated inserts

    NASA Astrophysics Data System (ADS)

    Paengchit, Phacharadit; Saikaew, Charnnarong

    2018-02-01

    This work aims to investigate the effects of feed rate on surface roughness (Ra) and tool wear (VB) and to obtain the optimal operating condition of the feed rate in dry hard turning of AISI 4140 chromium molybdenum steel for automotive industry applications using TiN+AlCrN coated inserts. AISI 4140 steel bars were employed in order to carry out the dry hard turning experiments by varying the feed rates of 0.06, 0.08 and 0.1 mm/rev based on experimental design technique that can be analyzed by analysis of variance (ANOVA). In addition, the cutting tool inserts were examined after machining experiments by SEM to evaluate the effect of turning operations on tool wear. The results showed that averages Ra and VB were significantly affected by the feed rate at the level of significance of 0.05. Averages Ra and VB values at the feed rate of 0.06 mm/rev were lowest compared to average values at the feed rates of 0.08 and 0.1 mm/rev, based on the main effect plot.

  13. Effect of heat treatment On Microstructure of steel AISI 01 Tools

    NASA Astrophysics Data System (ADS)

    Dyanasari Sebayang, Melya; Yudo, Sesmaro Max; Silitonga, Charlie

    2018-03-01

    This study discusses the influence of quenching, normalizing, and annealing to changes in hardness, tensile, and microstructure of materials tool steel AISI 01 after the material undergo heat treatment process. This heat treatment process includes an initial warming of 600° C and a 5-minute detention time, followed by heating to an austenisation temperature of 850°C. After that a different cooling process, including annealing process, normalizing and quenching oil SAE 40. Tests performed include tensile, hard, and microstructure with shooting using SEM (Scanning Electron Microscope). This is done to see the effect of different heat treatment and cooling process. The result of this research is difference of tensile test value, hard, and micro structure from influence of difference of each process. The quenching process obtains the highest tensile and hard values followed by the normalizing process, annealing, and the lowest is in the starting material, this is because the initial material does not undergo heat treatment process. The resulting microstructure is pearlit and cementite, the difference seen from the shape and size of the grains. The larger the grain size, the greater the hardness.

  14. Irradiation creep-fatigue interaction of type 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Mueller, R.

    1996-10-01

    Type 316L stainless steel samples in both, 20% cold-worked (cw) and recrystallised (rc) conditions were exposed to strain controlled fatigue cycling in torsion at 400°C during an irradiation with 19 MeV deuterons. The effect of irradiation creep induced stress relaxation on the fatigue life was studied by imposing a hold time at the minimum strain value in the loading cycle. For the cw material at strain ranges of 1.13% and 1.3%, the absolute stress values, τ H, maintained during the hold time decreased with the number of cycles due to the irradiation creep induced stress relaxation. A mean stress was built up. The number of cycles to failure was considerably reduced in comparison to continuous cycling tests under thermal conditions. For the rc material at strain ranges of 1.03% and 1.4%, the values of τ H increased with the number of cycles, despite the hold time imposed, due to irradiation and/or cyclic hardening.

  15. Friction Stir Welding of Steel Alloys

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.

  16. Acoustic emission from single point machining: Part 2, Signal changes with tool wear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Carpenter, S.H.; Armentrout, D.L.

    1989-01-01

    Changes in acoustic emission signal characteristics with tool wear were monitored during single point machining of 4340 steel and Ti-6Al-4V heat treated to several strength levels, 606l-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, 410 stainless steel, lead, and teflon. No signal characteristic changed in the same way with tool wear for all materials tested. A single change in a particular AE signal characteristic with tool wear valid for all materials probably does not exist. Nevertheless, changes in various signal characteristic with wear for a given material may be sufficient to be used to monitor tool wear.

  17. 13 CFR 400.210 - Assignment or transfer of loans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Assignment or transfer of loans. 400.210 Section 400.210 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.210 Assignment or transfer of loans. (a...

  18. 13 CFR 400.210 - Assignment or transfer of loans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Assignment or transfer of loans. 400.210 Section 400.210 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.210 Assignment or transfer of loans. (a...

  19. 13 CFR 400.210 - Assignment or transfer of loans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Assignment or transfer of loans. 400.210 Section 400.210 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.210 Assignment or transfer of loans. (a...

  20. Experimental and Numerical Investigations of Applying Tip-bottomed Tool for Bending Advanced Ultra-high Strength Steel Sheet

    NASA Astrophysics Data System (ADS)

    Mitsomwang, Pusit; Borrisutthekul, Rattana; Klaiw-awoot, Ken; Pattalung, Aran

    2017-09-01

    This research was carried out aiming to investigate the application of a tip-bottomed tool for bending an advanced ultra-high strength steel sheet. The V-die bending experiment of a dual phase steel (DP980) sheet which had a thickness of 1.6 mm was executed using a conventional bending and a tip-bottomed punches. Experimental results revealed that the springback of the bent worksheet in the case of the tip-bottomed punch was less than that of the conventional punch case. To further discuss bending characteristics, a finite element (FE) model was developed and used to simulate the bending of the worksheet. From the FE analysis, it was found that the application of the tip-bottomed punch contributed the plastic deformation to occur at the bending region. Consequently, the springback of the worksheet reduced. In addition, the width of the punch tip was found to affect the deformation at the bending region and determined the springback of the bent worksheet. Moreover, the use of the tip-bottomed punch resulted in the apparent increase of the surface hardness of the bent worksheet, compared to the bending with the conventional punch.

  1. Microstructural characteristics of Hadfield steel solidified under high pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzi; Li, Yanguo; Han, Bo; Zhang, Fucheng; Qian, Lihe

    2011-12-01

    Samples of Hadfield steel, high manganese austenite steel with 13 wt% manganese and 1.2 wt% carbon, were solidified under a pressure of 6 GPa. The microstructures of the samples were analyzed by metallography and X-ray diffraction. The results indicate that the solidification microstructure of the Hadfield steel was remarkably refined under high pressure. Additionally, the carbide of M23C6 was obtained in the Hadfield steel solidified under high pressure was different from the carbide of M3C obtained by solidification under normal pressure. Furthermore, high pressure promoted the formation of orientational solidified microstructure of the Hadfield steel.

  2. Steel Foil Improves Performance Of Blasting Caps

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Perry, Ronnie; Schimmel, Morry L.

    1990-01-01

    Blasting caps, which commonly include deep-drawn aluminum cups, give significantly higher initiation performance by application of steel foils on output faces. Steel closures 0.005 in. (0.13 mm) thick more effective than aluminum. Caps with directly bonded steel foil produce fragment velocities of 9,300 ft/s (2.8 km/s) with large craters and unpredictable patterns to such degree that no attempts made to initiate explosions. Useful in military and aerospace applications and in specialized industries as mining and exploration for oil.

  3. Nucleation and microstructure development in Cr-Mo-V tool steel during gas atomization

    NASA Astrophysics Data System (ADS)

    Behúlová, M.; Grgač, P.; Čička, R.

    2017-11-01

    Nucleation studies of undercooled metallic melts are of essential interest for the understanding of phase selection, growth kinetics and microstructure development during their rapid non-equilibrium solidification. The paper deals with the modelling of nucleation processes and microstructure development in the hypoeutectic tool steel Ch12MF4 with the chemical composition of 2.37% C, 12.06 % Cr, 1.2% Mo, 4.0% V and balance Fe [wt. %] in the process of nitrogen gas atomization. Based on the classical theory of homogeneous nucleation, the nucleation temperature of molten rapidly cooled spherical particles from this alloy with diameter from 40 μm to 600 μm in the gas atomization process is calculated using various estimations of parameters influencing the nucleation process - the Gibbs free energy difference between solid and liquid phases and the solid/liquid interfacial energy. Results of numerical calculations are compared with experimentally measured nucleation temperatures during levitation experiments and microstructures developed in rapidly solidified powder particles from the investigated alloy.

  4. Friction-induced structural transformations of the carbide phase in Hadfield steel

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Sagaradze, V. V.; Chernenko, N. L.; Shabashov, V. A.

    2015-08-01

    Structural transformations of the carbide phase in Hadfield steel (110G13) that occur upon plastic deformation by dry sliding friction have been studied by methods of optical metallography, X-ray diffraction, and transmission electron microscopy. Deformation is shown to lead to the refinement of the particles of the carbide phase (Fe, Mn)3C to a nanosized level. The effect of the deformation-induced dissolution of (Fe, Mn)3C carbides in austenite of 110G13 (Hadfield) steel has been revealed, which manifests in the appearance of new lines belonging to austenite with an unusually large lattice parameter ( a = 0.3660-0.3680 nm) in the X-ray diffraction patterns of steel tempered to obtain a fine-lamellar carbide phase after deformation. This austenite is the result of the deformation-induced dissolution of disperse (Fe, Mn)3C particles, which leads to the local enrichment of austenite with carbon and manganese. The tempering that leads to the formation of carbide particles in 110G13 steel exerts a negative influence on the strain hardening of the steel, despite the increase in the hardness of steel upon tempering and the development of the processes of the deformation-induced dissolution of the carbide phase, which leads to the strengthening of the γ solid solution.

  5. Localized CO2 corrosion of carbon steel with different microstructures in brine solutions with an imidazoline-based inhibitor

    NASA Astrophysics Data System (ADS)

    Zhang, Huan-huan; Pang, Xiaolu; Gao, Kewei

    2018-06-01

    CO2 corrosion behavior of carbon steel with different microstructures (H steel: coarse laminar pearlite; T steel: globular and shot rod shaped pearlite) was analyzed in 3 wt.% NaCl solution at 60 °C with imidazoline-based inhibitor by electrochemical and weight loss methods. Electrochemical measurements showed that, compared to H steel, the inhibitor film adsorbed on T steel had a higher pitting corrosion resistance and the inhibition efficiency for T steel was larger at each concentration of inhibitor. Weight loss results exhibited that both steels suffered general corrosion in absence of inhibitor; however, localized corrosion was observed on the samples with insufficient concentration of inhibitor. H steel suffered more severe localized corrosion than T steel, it was related to that H steel had a higher density of dislocations in the pearlite area and the larger driving force for galvanic corrosion. The localized corrosion on H steel mainly distributed on the laminar pearlite area.

  6. Effect of microstructural anisotropy on fracture toughness of hot rolled 13Cr ODS steel - The role of primary and secondary cracking

    NASA Astrophysics Data System (ADS)

    Das, A.; Viehrig, H. W.; Bergner, F.; Heintze, C.; Altstadt, E.; Hoffmann, J.

    2017-08-01

    ODS steels have been known to exhibit anisotropic fracture behaviour and form secondary cracks. In this work, the factors responsible for the anisotropic fracture behaviour have been investigated using scanning electron microscopy and electron backscatter microscopy. Fracture toughness of hot rolled 13Cr ODS steel was determined using unloading compliance method for L-T and T-L orientations at various temperatures. L-T orientation had higher fracture toughness than T-L orientation and also contained more pronounced secondary cracking. Secondary cracks appeared at lower loads than primary cracks in both orientations. Primary crack propagation was found to be preferentially through fine grains in a bimodal microstructure. Grains were aligned and elongated the most towards rolling direction followed by T and S directions resulting in fracture anisotropy. Crystallographic texture and preferential alignment of Ti enriched particles parallel to rolling direction also contributed towards fracture anisotropy.

  7. Hydrogen effects on materials for CNG/H2 blends.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farese, David; Keller, Jay O.; Somerday, Brian P.

    2010-09-01

    No concerns for Hydrogen-Enriched Compressed Natural gas (HCNG) in steel storage tanks if material strength is < 950 MPa. Recommend evaluating H{sub 2}-assisted fatigue cracking in higher strength steels at H{sub 2} partial pressure in blend. Limited fatigue testing on higher strength steel cylinders in H{sub 2} shows promising results. Impurities in Compressed Natural Gas (CNG) (e.g., CO) may provide extrinsic mechanism for mitigating H{sub 2}-assisted fatigue cracking in steel tanks.

  8. Corrosion of carbon steels, stainless steels, and titanium in aqueous lithium bromide solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guinon, J.L.; Garcia-Anton, J.; Perez-Herranz, V.

    1994-03-01

    Effects of lithium bromide (LiBr) concentration, pH, temperature, exposure time, and the action of some inhibitors on corrosion of several carbon (C) steels, stainless steels (SS), and a titanium (Ti) alloy were studied. Corrosion rates were determined by the polarization resistance method and compared to rates determined by weight-loss measurements. Pitting potentials (E[sub p]) were evaluated in neutral LiBr solution and with different inhibitors. Pit density and average pit depth depended on the metal tested, with lowest values for Ti, the next lowest values for type 316 SS (UNS S31600), and the highest values for UNS G41350 tempered steel.

  9. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarzadegan, M.; State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin; Feng, A.H.

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure withmore » some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.« less

  10. Thermal conductivity, electrical resistivity, and thermopower of aerospace alloys from 4 to 300 K. 6: Fe-22Cr-13Ni-5Mn stainless steel

    NASA Technical Reports Server (NTRS)

    Hust, J. G.; Sparks, L. L.

    1971-01-01

    The equipment and techniques for determining the thermal conductivity, electrical resistivity Lorenz ratio, and thermopower characteristics of Fe-22Cr-13Ni-5Mn stainless steel are discussed. The dimensions of the specimen and its preparation are described. The experimental data are represented by arbitrary functions over the entire range and smooth tables are generated from these functions.

  11. 1H, 13C and 19F NMR studies on fluorinated ethers

    NASA Astrophysics Data System (ADS)

    Balonga, P. E.; Kowalewski, V. J.; Contreras, R. H.

    The enflurane and ethoxyflurane 1H, 13C and 19F NMR spectra are examined—including sign determination of FF and FH couplings—and considered in the light of previously reported results for methoxyflurane. Conformational differences between methoxyflurane and the former two molecules are indicated by through space FH coupling constants and by the nonequivalence of geminal fluorine nuclei. Populations of conformers about the CC bond are estimated.

  12. Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames

    NASA Astrophysics Data System (ADS)

    Kamanli, Mehmet; Unal, Alptug

    2017-10-01

    After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.

  13. GENETIC CHARACTERIZATION OF H13 AND H16 INFLUENZA A VIRUSES IN GULLS (LARUS SPP.) WITH CLINICALLY SEVERE DISEASE AND CONCURRENT CIRCOVIRUS INFECTION.

    PubMed

    Lindh, Erika; Ek-Kommonen, Christine; Isomursu, Marja; Alasaari, Jukka; Vaheri, Antti; Vapalahti, Olli; Huovilainen, Anita

    2017-07-01

    Influenza A viruses (IAVs) of the subtypes H13 and H16 are primarily found in gulls ( Larus spp., order Charadriiformes). Although the gull-adapted subtypes replicate efficiently during infection, gulls usually remain apparently healthy during infection. Avian influenza virus isolates are generally separated into two distinct populations, North American and Eurasian, because of the limited gene flow between the continents. Reassortment between these lineages does occur occasionally; however, direct intercontinental transmission of all eight gene segments is rare. Extensive research has been done to understand the ecology of IAV subtypes that naturally circulate in ducks (order Anseriformes), but the ecology of H13 and H16 IAVs in gulls remains far less studied. In Finland, gulls were screened for IAVs for passive (dead and diseased gulls) and active (clinically healthy gulls) surveillance purposes during the years 2005-10. During that period, 11 H13, two H16 viruses, and one H3N8 IAV were detected. We sequenced partial and full-length hemagglutinin genes of these gull-origin IAVs for phylogenetic assessments. All but one of the H13 genes clustered together with northern European and northeastern Asian viruses, whereas one virus clustered with North American viruses. Interestingly, a high rate (10/14) of these low-pathogenic IAVs was detected in dead or diseased gulls. The atypical clinical status of the IAV-positive gulls and previous observations of circovirus-like inclusion bodies in diseased gulls during autopsies, led us to screen for concurrent circovirus infections in our samples. The DNA of circovirus, an immunosuppressive pathogen of both birds and mammals, was detected in 54% (7/13) of the tested IAV-positive gulls, whereas only 25% (14/56) of our panel of IAV-negative gulls tested positive by circovirus PCR.

  14. Parametric Optimization of Wire Electrical Discharge Machining of Powder Metallurgical Cold Worked Tool Steel using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Sudhakara, Dara; Prasanthi, Guvvala

    2017-04-01

    Wire Cut EDM is an unconventional machining process used to build components of complex shape. The current work mainly deals with optimization of surface roughness while machining P/M CW TOOL STEEL by Wire cut EDM using Taguchi method. The process parameters of the Wire Cut EDM is ON, OFF, IP, SV, WT, and WP. L27 OA is used for to design of the experiments for conducting experimentation. In order to find out the effecting parameters on the surface roughness, ANOVA analysis is engaged. The optimum levels for getting minimum surface roughness is ON = 108 µs, OFF = 63 µs, IP = 11 A, SV = 68 V and WT = 8 g.

  15. Chapter 13: Tools for analysis

    Treesearch

    William Elliot; Kevin Hyde; Lee MacDonald; James McKean

    2007-01-01

    This chapter presents a synthesis of current computer modeling tools that are, or could be, adopted for use in evaluating the cumulative watershed effects of fuel management. The chapter focuses on runoff, soil erosion and slope stability predictive tools. Readers should refer to chapters on soil erosion and stability for more detailed information on the physical...

  16. Application of dynamic milling in stainless steel processing

    NASA Astrophysics Data System (ADS)

    Shan, Wenju

    2017-09-01

    This paper mainly introduces the method of parameter setting for NC programming of stainless steel parts by dynamic milling. Stainless steel is of high plasticity and toughness, serious hard working, large cutting force, high temperature in cutting area and easy wear of tool. It is difficult to process material. Dynamic motion technology is the newest NC programming technology of Mastercam software. It is an advanced machining idea. The tool path generated by the dynamic motion technology is more smooth, more efficient and more stable in the machining process. Dynamic motion technology is very suitable for cutting hard machining materials.

  17. Effect of bond coat and preheat on the microstructure, hardness, and porosity of flame sprayed tungsten carbide coatings

    NASA Astrophysics Data System (ADS)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermally sprayed coatings are used to improve the surface properties of tool steel materials. Bond coatings are commonly used as intermediate layers deposited on steel substrates (i.e. H13 tool steel) before the top coat is applied in order to enhance a number of critical performance criteria including adhesion of a barrier coating, limiting atomic migration of the base metal, and corrosion resistance. This paper presents the experimental results regarding the effect of nickel bond coat and preheats temperatures (i.e. 200°C, 300°C and 400°C) on microstructure, hardness, and porosity of tungsten carbide coatings sprayed by flame thermal coating. Micro-hardness, porosity and microstructure of tungsten carbide coatings are evaluated by using micro-hardness testing, optical microscopy, scanning electron microscopy, and X-ray diffraction. The results show that nickel bond coatings reduce the susceptibility of micro crack formation at the bonding area interfaces. The percentage of porosity level on the tungsten carbide coatings with nickel bond coat decreases from 5.36 % to 2.78% with the increase of preheat temperature of the steel substrate of H13 from 200°C to 400°C. The optimum hardness of tungsten carbide coatings is 1717 HVN in average resulted from the preheat temperature of 300°C.

  18. Hydroperoxide-dependent cooxidation of 13-cis-retinoic acid by prostaglandin H synthase.

    PubMed

    Samokyszyn, V M; Marnett, L J

    1987-10-15

    Reverse phase high pressure liquid chromatography was employed to separate the major products resulting from the hydroperoxide-dependent cooxidation of 13-cis-retinoic acid by microsomal and purified prostaglandin H (PGH) synthase. Several major oxygenated metabolites including 4-hydroxy-, 5,6-epoxy-, and 5,8-oxy-13-cis-retinoic acid were unambiguously identified on the basis of cochromatography with authentic standards, uv spectra, and mass spectral analysis. Identical product profiles were generated regardless of the type of oxidizing substrate employed, and heat-denatured microsomes or enzyme did not support oxidation. In addition, several geometric isomers including all trans-retinoic acid were identified. Isomerization to all trans-retinoic acid in microsomes occurred in the absence of exogenous hydroperoxide, was insensitive to inhibition by antioxidant, and was eliminated when heat-denatured preparations were substituted for intact microsomes. Conversely, isomerization to at least one other isomer required the addition of hydroperoxide and was sensitive to antioxidant inhibition. Addition of antioxidant to microsomal incubation mixtures inhibited the hydroperoxide-dependent generation of 5,6-epoxy- and 5,8-oxy-13-cis-retinoic acid and other oxygenated metabolites but stimulated the formation of 4-hydroxy-13-cis-retinoic acid. Under standard conditions, 77% of the original retinoid was metabolized resulting in products containing 1.25 oxygen atoms/oxygenated metabolite, and two dioxygen molecules were consumed per hydroperoxide reduced. Purified PGH synthase also supported O2 uptake during cooxidation of 13-cis-retinoic acid by H2O2 or 5-phenyl-4-pentenyl-1-hydroperoxide, and the initial velocities of O2 uptake were directly proportional to enzyme concentration. 13-cis-Retinoic acid effectively inhibited peroxidase-dependent cooxidation of guaiacol indicating a direct interaction of retinoid with peroxidase iron-oxo intermediates, and EPR spin trapping

  19. 13 CFR 400.106 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Ex parte communications. 400.106 Section 400.106 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Board Procedures § 400.106 Ex parte communications. Oral or written communication...

  20. Acoustic emission from single point machining: Part 2, Signal changes with tool wear. Revised

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Carpenter, S.H.; Armentrout, D.L.

    1989-12-31

    Changes in acoustic emission signal characteristics with tool wear were monitored during single point machining of 4340 steel and Ti-6Al-4V heat treated to several strength levels, 606l-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, 410 stainless steel, lead, and teflon. No signal characteristic changed in the same way with tool wear for all materials tested. A single change in a particular AE signal characteristic with tool wear valid for all materials probably does not exist. Nevertheless, changes in various signal characteristic with wear for a given material may be sufficient to be used to monitor tool wear.

  1. Embedded micro-sensor for monitoring pH in concrete structures

    NASA Astrophysics Data System (ADS)

    Srinivasan, Rengaswamy; Phillips, Terry E.; Bargeron, C. Brent; Carlson, Micah A.; Schemm, Elizabeth R.; Saffarian, Hassan M.

    2000-04-01

    Three major causes of corrosion of steel in concrete are chloride ions (Cl-), temperature (T) and acidity (pH). Under normal operating temperatures and with pH above 13, steel does not undergo pitting corrosion. In presence of Cl-, if the pH decreases below 12, the probability of pitting increases. Acid rain and atmospheric carbon dioxide cause the pH to drop in concrete, often leading to corrosion of the structure with the concomitant cost of repair or replacement. Currently, the pH level in concrete is estimated through destructive testing of the structures. Glass ISFET, and other pH sensors that need maintenance and calibration cannot be embedded in concrete. In this paper, we describe an inexpensive solid state pH sensor that can be embedded in concrete, to detect pH changes at the early stages. It employs a chemical reagent, trinitrobenzenesulfonic acid (TNBS) that exhibits changes in optical properties in the 12 - 14 pH range, and is held in a film of a sol-gel/TNBS composite on an optically transparent surface. A simple LED/filter/photodiode transducer monitors pH-induced changes in TNBS. Such a device needs no periodic calibration or maintenance. The optical window, the light-source and sensor can be easily housed and encapsulated in a chemically inert structure, and embedded in concrete.

  2. Waste activated sludge hydrolysis and acidification: A comparison between sodium hydroxide and steel slag addition.

    PubMed

    Zhang, Ying; Zhang, Chaojie; Zhang, Xuan; Feng, Leiyu; Li, Yongmei; Zhou, Qi

    2016-10-01

    Alkaline treatment with steel slag and NaOH addition were investigated under different pH conditions for the fermentation of waste activated sludge. Better performance was achieved in steel slag addition scenarios for both sludge hydrolysis and acidification. More solubilization of organic matters and much production of higher VFA (volatile fatty acid) in a shorter time can be achieved at pH10 when adjusted by steel slag. Higher enzyme activities were also observed in steel slag addition scenarios under the same pH conditions. Phosphorus concentration in the supernatant increased with fermentation time and pH in NaOH addition scenarios, while in contrast most phosphorus was released and captured by steel slag simultaneously in steel slag addition scenarios. These results suggest that steel slag can be used as a substitute for NaOH in sludge alkaline treatment. Copyright © 2016. Published by Elsevier B.V.

  3. Impact of saline aquifer water on surface and shallow pit corrosion of martensitic stainless steels during exposure to CO2 environment (CCS)

    NASA Astrophysics Data System (ADS)

    Pfennig, Anja; Kranzmann, Axel

    2018-05-01

    Pipe steels suitable for carbon capture and storage technology (CCS) require resistance against the corrosive environment of a potential CCS-site, e.g. heat, pressure, salinity of the aquifer, CO2-partial pressure. Samples of different mild and high alloyed stainless injection-pipe steels partially heat treated: 42CrMo4, X20Cr13, X46Cr13, X35CrMo4 as well as X5CrNiCuNb16-4 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CO2-saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. Main corrosion products are FeCO3 and FeOOH. Corrosion rates obtained at 100 bar are generally much lower than those measured at ambient pressure. Highest surface corrosion rates are 0.8 mm/year for 42CrMo4 and lowest 0.01 mm/year for X5CrNiCuNb16-4 in the vapour phase at ambient pressure. At 100 bar the highest corrosion rates are 0.01 mm/year for 42CrMo4, X20Cr13 (liquid phase), X46Cr13 and less than 0.01 mm/year for X35CrMo4 and X5CrNiCuNb16-4 after 8000 h of exposure with no regard to atmosphere. Martensitic microstructure offers good corrosion resistance.

  4. 13 CFR 400.100 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Purpose and scope. 400.100 Section 400.100 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE... authorities and organizational structure, the means and rules by which the Board takes actions, and procedures...

  5. 13 CFR 400.100 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Purpose and scope. 400.100 Section 400.100 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE... authorities and organizational structure, the means and rules by which the Board takes actions, and procedures...

  6. 13 CFR 400.100 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Purpose and scope. 400.100 Section 400.100 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE... authorities and organizational structure, the means and rules by which the Board takes actions, and procedures...

  7. 13 CFR 400.100 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Purpose and scope. 400.100 Section 400.100 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE... authorities and organizational structure, the means and rules by which the Board takes actions, and procedures...

  8. 13 CFR 400.100 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Purpose and scope. 400.100 Section 400.100 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE... authorities and organizational structure, the means and rules by which the Board takes actions, and procedures...

  9. Sensitivity enhancement for detection of hyperpolarized 13 C MRI probes with 1 H spin coupling introduced by enzymatic transformation in vivo.

    PubMed

    von Morze, Cornelius; Tropp, James; Chen, Albert P; Marco-Rius, Irene; Van Criekinge, Mark; Skloss, Timothy W; Mammoli, Daniele; Kurhanewicz, John; Vigneron, Daniel B; Ohliger, Michael A; Merritt, Matthew E

    2018-07-01

    Although 1 H spin coupling is generally avoided in probes for hyperpolarized (HP) 13 C MRI, enzymatic transformations of biological interest can introduce large 13 C- 1 H couplings in vivo. The purpose of this study was to develop and investigate the application of 1 H decoupling for enhancing the sensitivity for detection of affected HP 13 C metabolic products. A standalone 1 H decoupler system and custom concentric 13 C/ 1 H paddle coil setup were integrated with a clinical 3T MRI scanner for in vivo 13 C MR studies using HP [2- 13 C]dihydroxyacetone, a novel sensor of hepatic energy status. Major 13 C- 1 H coupling J CH  = ∼150 Hz) is introduced after adenosine triphosphate-dependent enzymatic transformation of HP [2- 13 C]dihydroxyacetone to [2- 13 C]glycerol-3-phosphate in vivo. Application of WALTZ-16 1 H decoupling for elimination of large 13 C- 1 H couplings was first tested in thermally polarized glycerol phantoms and then for in vivo HP MR studies in three rats, scanned both with and without decoupling. As configured, 1 H-decoupled 13 C MR of thermally polarized glycerol and the HP metabolic product [2- 13 C]glycerol-3-phosphate was achieved at forward power of approximately 15 W. High-quality 3-s dynamic in vivo HP 13 C MR scans were acquired with decoupling duty cycle of 5%. Application of 1 H decoupling resulted in sensitivity enhancement of 1.7-fold for detection of metabolic conversion of [2- 13 C]dihydroxyacetone to HP [2- 13 C]glycerol-3-phosphate in vivo. Application of 1 H decoupling provides significant sensitivity enhancement for detection of HP 13 C metabolic products with large 1 H spin couplings, and is therefore expected to be useful for preclinical and potentially clinical HP 13 C MR studies. Magn Reson Med 80:36-41, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Elucidating proline dynamics in spider dragline silk fibre using 2H-13C HETCOR MAS NMR.

    PubMed

    Shi, Xiangyan; Yarger, Jeffery L; Holland, Gregory P

    2014-05-14

    (2)H-(13)C HETCOR MAS NMR is performed on (2)H/(13)C/(15)N-Pro enriched A. aurantia dragline silk. Proline dynamics are extracted from (2)H NMR line shapes and T1 in a site-specific manner to elucidate the backbone and side chain molecular dynamics for the MaSp2 GPGXX β-turn regions for spider dragline silk in the dry and wet, supercontracted states.

  11. X-ray photoelectron spectroscopy and electrochemical studies of mild steel FeE500 passivation in concrete simulated water

    NASA Astrophysics Data System (ADS)

    Miserque, F.; Huet, B.; Azou, G.; Bendjaballah, D.; L'Hostis, V.

    2006-11-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of steels have to be assessed. When mild steel rebars are embedded in concrete, the chemical environment of the reinforcement is progressively modified, due to the carbonation of the concrete matrix. This modification leads to the variation of iron oxides properties formed at the steel/concrete interface, and the active corrosion can be initiated. The aim of this study is to evaluate the passivation behaviour and to provide insights into the depassivation of mild steel in concrete pore solution. In a young concrete, due to the alkalinity of the interstitial solution, steel reinforcement remains passive. Immersion tests of mild steel substrate in various alkaline solutions (from pH 13 to 10) have been performed. Due to the low thickness of the corrosion layers formed, X-ray photoelectron spectroscopy has been used to characterize them. In the passive domain, the corrosion products are similar for the various solutions. The corrosion layer is composed of a mixture of Fe3+ and Fe2+. A similar approach is used to determine the depassivation mechanism. The effect of various components such as carbonates, sulfates and silicates resulting from the dissolution of minerals of cement during the carbonation process is investigated. In addition to the surface analysis, the evolution of the electrochemical behaviour as function of the solution nature (pH) is evaluated with the help of electrochemical measurements (free corrosion potential, cyclic voltamperometry).

  12. AC-Induced Bias Potential Effect on Corrosion of Steels

    DTIC Science & Technology

    2009-02-05

    induction, variable conduction Experimental Setup Super- martensitic stainless steel composition Analysis: C Mn Si Cr Ni Mo Cu N Typical 13 Cr ɘ.01 0.6... stainless steel used in pipelines. •Low carbon (ɘ.01): allows the formation of a “soft” martensite that is more resistant than standard martensitic ...Proposed AC Corrosion Models  AC Simulated Corrosion testing  Stainless steel pipe and coating  Cathodic protection  Experimental Setup  Preliminary

  13. Effect of the carbide phase on the tribological properties of high-manganese antiferromagnetic austenitic steels alloyed with vanadium and molybdenum

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Kositsina, I. I.; Sagaradze, V. V.; Chernenko, N. L.

    2011-07-01

    Effect of special carbides (VC, M 6C, Mo2C) on the wear resistance and friction coefficient of austenitic stable ( M s below -196°C) antiferromagnetic ( T N = 40-60°C) steels 80G20F2, 80G20M2, and 80G20F2M2 has been studied. The structure and the effective strength (microhardness H surf, shear resistance τ) of the surface layer of these steels have been studied using optical and electron microscopy. It has been shown that the presence of coarse particles of primary special carbides in the steels 80G20F2, 80G20M2, and 80G20F2M2 quenched from 1150°C decreases the effective strength and the resistance to adhesive and abrasive wear of these materials. This is caused by the negative effect of carbide particles on the toughness of steels and by a decrease in the carbon content in austenite due to a partial binding of carbon into the above-mentioned carbides. The aging of quenched steels under conditions providing the maximum hardness (650°C for 10 h) exerts a substantial positive effect on the parameters of the effective strength ( H surf, τ) of the surface layer and, correspondingly, on the resistance of steels to various types of wear (abrasive, adhesive, and caused by the boundary friction). The maximum positive effect of aging on the wear resistance is observed upon adhesive wear of the steels under consideration. Upon friction with enhanced sliding velocities (to 4 m/s) under conditions of intense (to 500-600°C) friction-induced heating, the 80G20F2, 80G20M2, and, especially, 80G20F2M2 steels subjected to quenching and aging substantially exceed the 110G13 (Hadfield) steel in their tribological properties. This is due to the presence in these steels of a favorable combination of high effective strength and friction heat resistance of the surface layer, which result from the presence of a large amount of special carbides in these steels and from a high degree of alloying of the matrix of these steels by vanadium and molybdenum. In the process of friction

  14. Optimization of cutting parameters in CNC turning of stainless steel 304 with TiAlN nano coated carbide cutting tool

    NASA Astrophysics Data System (ADS)

    Durga Prasada Rao, V.; Harsha, N.; Raghu Ram, N. S.; Navya Geethika, V.

    2018-02-01

    In this work, turning was performed to optimize the surface finish or roughness (Ra) of stainless steel 304 with uncoated and coated carbide tools under dry conditions. The carbide tools were coated with Titanium Aluminium Nitride (TiAlN) nano coating using Physical Vapour Deposition (PVD) method. The machining parameters, viz., cutting speed, depth of cut and feed rate which show major impact on Ra are considered during turning. The experiments are designed as per Taguchi orthogonal array and machining process is done accordingly. Then second-order regression equations have been developed on the basis of experimental results for Ra in terms of machining parameters used. Regarding the effect of machining parameters, an upward trend is observed in Ra with respect to feed rate, and as cutting speed increases the Ra value increased slightly due to chatter and vibrations. The adequacy of response variable (Ra) is tested by conducting additional experiments. The predicted Ra values are found to be a close match of their corresponding experimental values of uncoated and coated tools. The corresponding average % errors are found to be within the acceptable limits. Then the surface roughness equations of uncoated and coated tools are set as the objectives of optimization problem and are solved by using Differential Evolution (DE) algorithm. Also the tool lives of uncoated and coated tools are predicted by using Taylor’s tool life equation.

  15. Air-broadened Lorentz halfwidths and pressure-induced line shifts in the nu(4) band of C-13H4

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Rinsland, Curtis P.; Smith, Mary Ann H.

    1988-01-01

    Air-broadened halfwidths and pressure-induced line shifts in the nu(4) fundamental of C-13H4 were determined from spectra recorded at room temperature and at 0.01/cm resolution using a Fourier transform spectrometer. Halfwidths and pressure shifts were determined for over 180 transitions belonging to J-double prime values of less than or = to 16. Comparisons of air-broadened halfwidths and pressure-induced line shifts made for identical transitions in the nu(4) bands of C-12H4 and C-13H4 have shown that C-13H4 air-broadened halfwidths are about 5 percent smaller than the corresponding C-12H4 halfwidths, and the pressure shifts for C-13H4 lines are about 5-15 percent larger than those for C-12H4.

  16. Short-term hot-hardness characteristics of five case hardened steels

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Zaretsky, E. V.

    1975-01-01

    Short-term hot-hardness studies were performed with carburized and hardened AISI 8620, CBS 1000, CBS 1000M, CBS 600, and Vasco X-2 steels. Case and core hardness measurements were made at temperatures from 294 to 811 K (70 to 1000 F). The data were compared with data for high-speed tool steels and AISI 52100. The materials tested can be ranked as follows in order of decreasing hot-hardness retention: (1) Vasco X-2; equivalent to through-hardened tool steels up to 644 K (700 F) above which Vasco X-2 is inferior; (2) CBS 1000, (3) CBS 1000M; (4) CBS 6000; better hardness retention at elevated temperatures than through-hardened AISI 52100; and (5) AISI 8620. For the carburized steels, the change in hardness with temperature of the case and core are similar for a given material. The short-term hot hardness of these materials can be predicted with + or - 1 point Rockwell C.

  17. Microstructural Evolution during DPRM Process of Semisolid Ledeburitic D2 Tool Steel

    PubMed Central

    Mohammed, M. N.; Omar, M. Z.; Syarif, J.; Sajuri, Z.; Salleh, M. S.; Alhawari, K. S.

    2013-01-01

    Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μm), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network. PMID:24223510

  18. Microstructural evolution during DPRM process of semisolid ledeburitic D2 tool steel.

    PubMed

    Mohammed, M N; Omar, M Z; Syarif, J; Sajuri, Z; Salleh, M S; Alhawari, K S

    2013-01-01

    Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μ m), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network.

  19. Carbonic Anhydrase Activity Monitored In Vivo by Hyperpolarized 13C-Magnetic Resonance Spectroscopy Demonstrates Its Importance for pH Regulation in Tumors.

    PubMed

    Gallagher, Ferdia A; Sladen, Helen; Kettunen, Mikko I; Serrao, Eva M; Rodrigues, Tiago B; Wright, Alan; Gill, Andrew B; McGuire, Sarah; Booth, Thomas C; Boren, Joan; McIntyre, Alan; Miller, Jodi L; Lee, Shen-Han; Honess, Davina; Day, Sam E; Hu, De-En; Howat, William J; Harris, Adrian L; Brindle, Kevin M

    2015-10-01

    Carbonic anhydrase buffers tissue pH by catalyzing the rapid interconversion of carbon dioxide (CO2) and bicarbonate (HCO3 (-)). We assessed the functional activity of CAIX in two colorectal tumor models, expressing different levels of the enzyme, by measuring the rate of exchange of hyperpolarized (13)C label between bicarbonate (H(13)CO3(-)) and carbon dioxide ((13)CO2), following injection of hyperpolarized H(13)CO3(-), using (13)C-magnetic resonance spectroscopy ((13)C-MRS) magnetization transfer measurements. (31)P-MRS measurements of the chemical shift of the pH probe, 3-aminopropylphosphonate, and (13)C-MRS measurements of the H(13)CO3(-)/(13)CO2 peak intensity ratio showed that CAIX overexpression lowered extracellular pH in these tumors. However, the (13)C measurements overestimated pH due to incomplete equilibration of the hyperpolarized (13)C label between the H(13)CO3(-) and (13)CO2 pools. Paradoxically, tumors overexpressing CAIX showed lower enzyme activity using magnetization transfer measurements, which can be explained by the more acidic extracellular pH in these tumors and the decreased activity of the enzyme at low pH. This explanation was confirmed by administration of bicarbonate in the drinking water, which elevated tumor extracellular pH and restored enzyme activity to control levels. These results suggest that CAIX expression is increased in hypoxia to compensate for the decrease in its activity produced by a low extracellular pH and supports the hypothesis that a major function of CAIX is to lower the extracellular pH. ©2015 American Association for Cancer Research.

  20. The effect of microstructure on abrasive wear of steel

    NASA Astrophysics Data System (ADS)

    Kešner, A.; Chotëborský, R.; Linda, M.

    2017-09-01

    Abrasive wear of agricultural tools is one of the biggest problems in currently being. The amount of abrasive wear, depending on the microstructure, has been investigated in this work. Steels 25CrMo4 and 51CrV4 were used in this work to determine the effect of the microstructure on the abrasive wear. These steels are commonly used for components that have to withstand abrasive wear.SEM analysis was used to detect the microstructure. The standardized ASTM G65 method was used to compare the abrasive wear of steels. The results show that the abrasive wear depends on the microstructure of steels.

  1. Multi-purpose tool mitten

    NASA Technical Reports Server (NTRS)

    Wilcomb, E. F.

    1969-01-01

    Tool mitten provides a low reaction torque source of power for wrench, screwdriver, or drill activities. The technique employed prevents the attachments from drifting away from the operator. While the tools are specifically designed for space environments, they can be used on steel scaffolding, in high building maintenance, or underwater environments.

  2. Development of materials for the rapid manufacture of die cast tooling

    NASA Astrophysics Data System (ADS)

    Hardro, Peter Jason

    The focus of this research is to develop a material composition that can be processed by rapid prototyping (RP) in order to produce tooling for the die casting process. Where these rapidly produced tools will be superior to traditional tooling production methods by offering one or more of the following advantages: reduced tooling cost, shortened tooling creation time, reduced man-hours for tool creation, increased tool life, and shortened die casting cycle time. By utilizing RP's additive build process and vast material selection, there was a prospect that die cast tooling may be produced quicker and with superior material properties. To this end, the material properties that influence die life and cycle time were determined, and a list of materials that fulfill these "optimal" properties were highlighted. Physical testing was conducted in order to grade the processability of each of the material systems and to optimize the manufacturing process for the downselected material system. Sample specimens were produced and microscopy techniques were utilized to determine a number of physical properties of the material system. Additionally, a benchmark geometry was selected and die casting dies were produced from traditional tool materials (H13 steel) and techniques (machining) and from the newly developed materials and RP techniques (selective laser sintering (SLS) and laser engineered net shaping (LENS)). Once the tools were created, a die cast alloy was selected and a preset number of parts were shot into each tool. During tool creation, the manufacturing time and cost was closely monitored and an economic model was developed to compare traditional tooling to RP tooling. This model allows one to determine, in the early design stages, when it is advantageous to implement RP tooling and when traditional tooling would be best. The results of the physical testing and economic analysis has shown that RP tooling is able to achieve a number of the research objectives, namely

  3. High strength, high ductility low carbon steel

    DOEpatents

    Koo, Jayoung; Thomas, Gareth

    1978-01-01

    A high strength, high ductility low carbon steel consisting essentially of iron, 0.05-0.15 wt% carbon, and 1-3 wt% silicon. Minor amounts of other constituents may be present. The steel is characterized by a duplex ferrite-martensite microstructure in a fibrous morphology. The microstructure is developed by heat treatment consisting of initial austenitizing treatment followed by annealing in the (.alpha. + .gamma.) range with intermediate quenching.

  4. Tribological properties of CrN coatings deposited by nitro-chromizing treatment on AISI D2 steel

    NASA Astrophysics Data System (ADS)

    Durmaz, M.; Kilinc, B.; Abakay, E.; Sen, U.; Sen, S.

    2015-03-01

    In this work, the wear test of uncoated and chromium nitride coated AISI D2 cold work tool steel against alumina ball realized at 0.1 m/s sliding speeds and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575°C for 8 h in the first step of the coating process, and then chromium nitride coating was performed thermo-reactive deposition technique (TRD) in a powder mixture consisting of ferro-chromium, ammonium chloride and alumina at 1000°C for 2 h. Nitro-chromized samples were characterized by X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), micro-hardness and ball on disk wear tests. The coating layer formed on the AISI D2 steel was compact and homogeneous. X-ray studies showed that the phase formed in the coated layer is Cr2N. The depth of the layer was 8.15 µm. The average hardness of the layer was 2160±15 HV0.025. For uncoated and chromium nitride materials, wear rate increased with increasing load. The results of friction coefficient and wear rate of the tested materials showed that the CrN coating presents the lowest results.

  5. Tribological properties of CrN coatings deposited by nitro-chromizing treatment on AISI D2 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durmaz, M., E-mail: mdurmaz@sakarya.edu.tr; Abakay, E.; Sen, U.

    2015-03-30

    In this work, the wear test of uncoated and chromium nitride coated AISI D2 cold work tool steel against alumina ball realized at 0.1 m/s sliding speeds and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575°C for 8 h in the first step of the coating process, and then chromium nitride coating was performed thermo-reactive deposition technique (TRD) in a powder mixture consisting of ferro-chromium, ammonium chloride and alumina at 1000°C for 2 h. Nitro-chromized samples were characterized by X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), micro-hardness and ball on disk wear tests. The coating layermore » formed on the AISI D2 steel was compact and homogeneous. X-ray studies showed that the phase formed in the coated layer is Cr{sub 2}N. The depth of the layer was 8.15 µm. The average hardness of the layer was 2160±15 HV{sub 0.025}. For uncoated and chromium nitride materials, wear rate increased with increasing load. The results of friction coefficient and wear rate of the tested materials showed that the CrN coating presents the lowest results.« less

  6. Electroless Plated Nanodiamond Coating for Stainless Steel Passivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, D.; Korinko, P.; Spencer, W.

    Tritium gas sample bottles and manifold components require passivation surface treatments to minimize the interaction of the hydrogen isotopes with surface contamination on the stainless steel containment materials. This document summarizes the effort to evaluate electroless plated nanodiamond coatings as a passivation layer for stainless steel. In this work, we developed an electroless nanodiamond (ND)-copper (Cu) coating process to deposit ND on stainless steel parts with the diamond loadings of 0%, 25% and 50% v/v in a Cu matrix. The coated Conflat Flanged Vessel Assemblies (CFVAs) were evaluated on surface morphology, composition, ND distribution, residual hydrogen release, and surface reactivitymore » with deuterium. For as-received Cu and ND-Cu coated CFVAs, hydrogen off-gassing is rapid, and the off-gas rates of H 2 was one to two orders of magnitude higher than that for both untreated and electropolished stainless steel CFVAs, and hydrogen and deuterium reacted to form HD as well. These results indicated that residual H 2 was entrapped in the Cu and ND-Cu coated CFVAs during the coating process, and moisture was adsorbed on the surface, and ND and/or Cu might facilitate catalytic isotope exchange reaction for HD formation. However, hydrocarbons (i.e., CH 3) did not form, and did not appear to be an issue for the Cu and ND-Cu coated CFVAs. After vacuum heating, residual H 2 and adsorbed H 2O in the Cu and ND-Cu coated CFVAs were dramatically reduced. The H 2 off-gassing rate after the vacuum treatment of Cu and 50% ND-Cu coated CFVAs was on the level of 10 -14 l mbar/s cm 2, while H 2O off-gas rate was on the level of 10 -15 l mbar/s cm 2, consistent with the untreated or electropolished stainless steel CFVA, but the HD formation remained. The Restek EP bottle was used as a reference for this work. The Restek Electro-Polished (EP) bottle and their SilTek coated bottles tested under a different research project exhibited very little hydrogen off-gassing and

  7. One pot synthesis of some new substituted hexahydro 2H-1,3-benzoxazine derivatives.

    PubMed

    Safak, C; Simsek, R; Altas, Y; Erol, K; Boydag, S

    1996-09-01

    In this paper, we synthesized nineteen new compounds having 2,4-diaryl-5-oxohexahydro-2H-1,3-benzoxazine structure by the reaction of 1,3-cyclohexanedione, aromatic aldehyde and ammonium acetate. In addition, we evaluated calcium antagonistic activity of these compounds versus nicardipine.

  8. Development of Advanced 9Cr Ferritic-Martensitic Steels and Austenitic Stainless Steels for Sodium-Cooled Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori

    2013-01-01

    Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for themore » advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.« less

  9. 1H-NMR and Hyperpolarized 13C-NMR Assays of Pyruvate-Lactate Exhange: a comparative study

    PubMed Central

    Orton, Matthew R.; Tardif, Nicolas; Parkes, Harold G.; Robinson, Simon P.; Leach, Martin O.; Chung, Yuen-Li; Eykyn, Thomas R.

    2015-01-01

    Pyruvate-lactate exchange is mediated by the enzyme lactate dehydrogenase (LDH) and is central to the altered energy metabolism in cancer cells. Measurement of exchange kinetics using hyperpolarized 13C NMR has provided a biomarker of response to novel therapeutics. In this study we investigated an alternative in vitro 1H assay, using [3-13C]pyruvate, and compared the measured kinetics with a hyperpolarized 13C-NMR assay, using [1-13C]pyruvate, under the same conditions in human colorectal carcinoma SW1222 cells. The apparent forward reaction rate constants (kPL) derived from the two assays showed no significant difference, and both assays had similar reproducibility (kPL = 0.506 ± 0.054 and kPL = 0.441 ± 0.090 nmol/s/106 cells, (mean ± standard deviation, n = 3); 1H, 13C assays respectively). The apparent backward reaction rate constant (kLP) could only be measured with good reproducibility using the 1H-NMR assay (kLP = 0.376 ± 0.091 nmol/s/106 cells, (mean ± standard deviation, n = 3)). The 1H-NMR assay has adequate sensitivity to measure real-time pyruvate-lactate exchange kinetics in vitro, offering a complementary and accessible assay of apparent LDH activity. PMID:23712817

  10. Automated data processing of { 1H-decoupled} 13C MR spectra acquired from human brain in vivo

    NASA Astrophysics Data System (ADS)

    Shic, Frederick; Ross, Brian

    2003-06-01

    In clinical 13C infusion studies, broadband excitation of 200 ppm of the human brain yields 13C MR spectra with a time resolution of 2-5 min and generates up to 2000 metabolite peaks over 2 h. We describe a fast, automated, observer-independent technique for processing { 1H-decoupled} 13C spectra. Quantified 13C spectroscopic signals, before and after the administration of [1- 13C]glucose and/or [1- 13C]acetate in human subjects are determined. Stepwise improvements of data processing are illustrated by examples of normal and pathological results. Variation in analysis of individual 13C resonances ranged between 2 and 14%. Using this method it is possible to reliably identify subtle metabolic effects of brain disease including Alzheimer's disease and epilepsy.

  11. Electrochemical Study on Newly Synthesized Chlorocurcumin as an Inhibitor for Mild Steel Corrosion in Hydrochloric Acid.

    PubMed

    Al-Amiery, Ahmed A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar; Musa, Ahmed Y; Li, Cheong Jiun

    2013-11-27

    A new curcumin derivative, i.e. , (1E,4Z,6E)-5-chloro-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one (chlorocurcumin), was prepared starting with the natural compound curcumin. The newly synthesized compound was characterized by elemental analysis and spectral studies (IR, ¹H-NMR and 13 C-NMR). The corrosion inhibition of mild steel in 1 M HCl by chlorocurcumin has been studied using potentiodynamic polarization (PDP) measurements and electrochemical impedance spectroscopy (EIS). The inhibition efficiency increases with the concentration of the inhibitor but decreases with increases in temperature. The potentiodynamic polarization reveals that chlorocurcumin is a mixed-type inhibitor. The kinetic parameters for mild steel corrosion were determined and discussed.

  12. Electrochemical Study on Newly Synthesized Chlorocurcumin as an Inhibitor for Mild Steel Corrosion in Hydrochloric Acid

    PubMed Central

    Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Musa, Ahmed Y.; Li, Cheong Jiun

    2013-01-01

    A new curcumin derivative, i.e., (1E,4Z,6E)-5-chloro-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one (chlorocurcumin), was prepared starting with the natural compound curcumin. The newly synthesized compound was characterized by elemental analysis and spectral studies (IR, 1H-NMR and 13C-NMR). The corrosion inhibition of mild steel in 1 M HCl by chlorocurcumin has been studied using potentiodynamic polarization (PDP) measurements and electrochemical impedance spectroscopy (EIS). The inhibition efficiency increases with the concentration of the inhibitor but decreases with increases in temperature. The potentiodynamic polarization reveals that chlorocurcumin is a mixed-type inhibitor. The kinetic parameters for mild steel corrosion were determined and discussed. PMID:28788402

  13. The class characteristic mark of the H&M Mul-T-Lock picking tool in toolmarks examination.

    PubMed

    Volkov, Nikolai; Finkelstein, Nir; Novoselsky, Yehuda; Tsach, Tsadok

    2014-07-01

    Mul-T-Lock is a high security lock cylinder distinguished by the use of a telescoping "pin-in-pin"-tumbler design. Picking the Mul-T-Lock cylinder with a traditional picking tool is highly complicated because it can get stuck between the inner and outer pins. The H&M Mul-T-Lock picking tool was designed to overcome this problem and facilitate the picking of the "pin-in-pin" cylinder. The purpose of this research is to determine whether H&M Mul-T-Lock picking tool leaves class characteristic mark and whether it can be distinguished from traditional picking tools marks and from regular key marks. It also describes and determines the class characteristic mark left on telescopic pins, its origin, recurrence, and its benefit to the toolmarks examiner. When receiving a Mul-T-Lock from a crime scene, a toolmarks examiner can quickly determine whether or not it was picked by an H&M Mul-T-Lock picking tool by noticing the class characteristic mark which this typical tool leaves. © 2014 American Academy of Forensic Sciences.

  14. Influence of 6-phenyl-3(2H)-pyridazinone and 3-chloro-6-phenylpyrazine on mild steel corrosion in 0.5 M HCl medium: Experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Olasunkanmi, Lukman O.; Sebona, Mabina Frans; Ebenso, Eno E.

    2017-12-01

    Two pyridazine derivatives, namely, 6-phenyl-3(2H)-pyridazinone (P1) and 3-chloro-6-phenylpyrazine (P2) were investigated for their influence on mild steel corrosion in 0.5 M HCl, using Tafel polarization, electrochemical impedance spectroscopy (EIS), surface morphology, FTIR and UV-vis techniques. Quantum chemical calculations were also conducted to corroborate experimental findings. P1 was found to accelerate corrosion at low concentrations but exhibits inhibitive action at higher concentrations, attaining 61% inhibition efficiency at 1.25 mM. The inhibitive action of P2 increases with increasing concentration from 88% at 0.1 mM to 96% at 1.25 mM as deduced from EIS measurements. Both compounds are mixed type inhibitors. P2 seems to display chiefly anodic inhibitive effects. The adsorption of P2 on mild steel surface obeys the Langmuir adsorption isotherm and involved competitive physisorption and chemisorption mechanisms. Scanning electron microscopy analyses of steel surfaces in acid-inhibitor solutions showed that both compounds protect mild steel surface effectively at 1.25 mM. FTIR and UV-vis spectroscopic analyses revealed that Nsbnd H, Cdbnd O, and Csbnd N functional groups of the pyridazine derivatives are actively involved in adsorption of the molecules onto steel surface. Quantum chemical parameters showed that the higher inhibition efficiency of P2 compared to P1 might be related to better electron acceptance ability of P2.

  15. Microstructure and mechanical behavior of pulsed laser surface melted AISI D2 cold work tool steel

    NASA Astrophysics Data System (ADS)

    Yasavol, N.; Abdollah-zadeh, A.; Ganjali, M.; Alidokht, S. A.

    2013-01-01

    D2 cold work tool steel (CWTS) was subjected to pulse laser surface melting (PLSM) at constant frequency of 20 Hz Nd: YAG laser with different energies, scanning rate and pulse durations radiated to the surface. Characterizing the PLSM, with optical and field emission scanning electron microscopy, electron backscattered diffraction and surface hardness mapping technique was used to evaluate the microhardness and mechanical behavior of different regions of melting pool. Increasing laser energy and reducing the laser scanning rate results in deeper melt pool formation. Moreover, PLSM has led to entirely dissolution of the carbides and re-solidification of cellular/dendritic structure of a fine scale surrounded by a continuous interdendritic network. This caused an increase in surface microhardness, 2-4 times over that of the base metal.

  16. Stainless-steel elbows formed by spin forging

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Large seamless austenitic stainless steel elbows are fabricated by spin forging /rotary shear forming/. A specially designed spin forging tool for mounting on a hydrospin machine has been built for this purpose.

  17. Vibration characteristics of teak wood filled steel tubes

    NASA Astrophysics Data System (ADS)

    Danawade, Bharatesh Adappa; Malagi, Ravindra Rachappa

    2018-05-01

    The objective of this paper is to determine fundamental frequency and damping ratio of teak wood filled steel tubes. Mechanically bonded teak wood filled steel tubes have been evaluated by experimental impact hammer test using modal analysis. The results of impact hammer test were verified and validated by finite element tool ANSYS using harmonic analysis. The error between the two methods was observed to be within acceptable limit.

  18. Isotope (δ13C, δ15N, δ2H) diet-tissue discrimination in African grey parrot Psittacus erithacus: implications for forensic studies.

    PubMed

    Symes, Craig; Skhosana, Felix; Butler, Mike; Gardner, Brett; Woodborne, Stephan

    2017-12-01

    Diet-tissue isotopic relationships established under controlled conditions are informative for determining the dietary sources and geographic provenance of organisms. We analysed δ 13 C, δ 15 N, and non-exchangeable δ 2 H values of captive African grey parrot Psittacus erithacus feathers grown on a fixed mixed-diet and borehole water. Diet-feather Δ 13 C and Δ 15 N discrimination values were +3.8 ± 0.3 ‰ and +6.3 ± 0.7 ‰ respectively; significantly greater than expected. Non-exchangeable δ 2 H feather values (-62.4 ± 6.4 ‰) were more negative than water (-26.1 ± 2.5 ‰) offered during feather growth. There was no positive relationship between the δ 13 C and δ 15 N values of the samples along each feather with the associated samples of food offered, or the feather non-exchangeable hydrogen isotope values with δ 2 H values of water, emphasising the complex processes involved in carbohydrate, protein, and income water routing to feather growth. Understanding the isotopic relationship between diet and feathers may provide greater clarity in the use of stable isotopes in feathers as a tool in determining origins of captive and wild-caught African grey parrots, a species that is widespread in aviculture and faces significant threats to wild populations. We suggest that these isotopic results, determined even in controlled laboratory conditions, be used with caution.

  19. Reduction Kinetics of Wüstite Scale on Pure Iron and Steel Sheets in Ar and H2 Gas Mixture

    NASA Astrophysics Data System (ADS)

    Mao, Weichen; Sloof, Willem G.

    2017-10-01

    A dense and closed Wüstite scale is formed on pure iron and Mn alloyed steel after oxidation in Ar + 33 vol pct CO2 + 17 vol pct CO gas mixture. Reducing the Wüstite scale in Ar + H2 gas mixture forms a dense and uniform iron layer on top of the remaining Wüstite scale, which separates the unreduced scale from the gas mixture. The reduction of Wüstite is controlled by the bulk diffusion of dissolved oxygen in the formed iron layer and follows parabolic growth rate law. The reduction kinetics of Wüstite formed on pure iron and on Mn alloyed steel are the same. The parabolic rate constant of Wüstite reduction obeys an Arrhenius relation with an activation energy of 104 kJ/mol if the formed iron layer is in the ferrite phase. However, at 1223 K (950 °C) the parabolic rate constant of Wüstite reduction drops due to the phase transformation of the iron layer from ferrite to austenite. The effect of oxygen partial pressure on the parabolic rate constant of Wüstite reduction is negligible when reducing in a gas mixture with a dew point below 283 K (10 °C). During oxidation of the Mn alloyed steel, Mn is dissolved in the Wüstite scale. Subsequently, during reduction of the Wüstite layer, Mn diffuses into the unreduced Wüstite. Ultimately, an oxide-free iron layer is obtained at the surface of the Mn alloyed steel, which is beneficial for coating application.

  20. A 24-Week, Randomized, Controlled Trial of Rivastigmine Patch 13.3 mg/24 h Versus 4.6 mg/24 h in Severe Alzheimer's Dementia

    PubMed Central

    Farlow, Martin R; Grossberg, George T; Sadowsky, Carl H; Meng, Xiangyi; Somogyi, Monique

    2013-01-01

    Aims The 24-week, prospective, randomized, double-blind ACTION study investigated the efficacy, safety, and tolerability of 13.3 versus 4.6 mg/24 h rivastigmine patch in patients with severe Alzheimer's disease (AD). Methods Patients had probable AD and Mini–Mental State Examination scores ≥3–≤12. Primary outcome measures were as follows: Severe Impairment Battery (SIB) and AD Cooperative Study–Activities of Daily Living scale–Severe Impairment Version (ADCS-ADL-SIV). Secondary outcomes were as follows: ADCS-Clinical Global Impression of Change (ADCS-CGIC), 12-item Neuropsychiatric Inventory (NPI-12), and safety/tolerability. Results Of 1014 patients screened, 716 were randomized to 13.3 mg/24 h (N = 356) or 4.6 mg/24 h (N = 360) patch. Baseline characteristics/demographics were comparable. Completion rates were as follows: 64.3% (N = 229) with 13.3 mg/24 h and 65.0% (N = 234) with 4.6 mg/24 h patch. The 13.3 mg/24 h patch was significantly superior to 4.6 mg/24 h patch on cognition (SIB) and function (ADCS-ADL-SIV) at Week 16 (P < 0.0001 and P = 0.049, respectively) and 24 (primary endpoint; P < 0.0001 and P = 0.025). Significant between-group differences (Week 24) were observed on the ADCS-CGIC (P = 0.0023), not NPI-12 (P = 0.1437). A similar proportion of the 13.3 mg/24 h and 4.6 mg/24 h patch groups reported adverse events (AEs; 74.6% and 73.3%, respectively) and serious AEs (14.9% and 13.6%). Conclusions The 13.3 mg/24 h patch demonstrated superior efficacy to 4.6 mg/24 h patch on SIB and ADCS-ADL-SIV, without marked increase in AEs, suggesting higher-dose patch has a favorable benefit-to-risk profile in severe AD. PMID:23924050

  1. Follow-up of coeliac disease with the novel one-hour 13C-sorbitol breath test versus the H2-sorbitol breath test.

    PubMed

    Tveito, Kari; Hetta, Anne Kristine; Askedal, Mia; Brunborg, Cathrine; Sandvik, Leiv; Løberg, Else Marit; Skar, Viggo

    2011-07-01

    We recently developed a (13)C-sorbitol breath test ((13)C-SBT) as an alternative to the H(2)-sorbitol breath test (H(2)-SBT) for coeliac disease. In this study we compared the diagnostic properties of the H(2)-SBT and the (13)C-SBT in follow-up of coeliac disease. Twenty-seven coeliac patients on a gluten-free diet (GFD) performed the breath tests. All had been tested before treatment in the initial study of the (13)C-SBT, in which 39 untreated coeliac patients, 40 patient controls, and 26 healthy volunteers participated. Five gram sorbitol and 100 mg (13)C-sorbitol were dissolved in 250 ml tap water and given orally. H(2), CH(4) and (13)CO(2) were measured in end-expiratory breath samples every 30 min for 4 h. Increased H(2) concentration ≥20 ppm from basal values was used as cut-off for the H(2)-SBT. Sixty minutes values were used as diagnostic index in the (13)C-SBT. (13)CO(2) levels at 60 min increased in 20/26 treated coeliac patients (77%) after GFD, but were significantly lower than in control groups. Out of 20 patients who had a positive H(2)-SBT before GFD, 12 had a negative H(2)-SBT after GFD. Peak H(2) concentrations were not correlated with (13)C-SBT results. The study confirms the sensitivity of a one-hour (13)C-SBT for small intestinal malabsorption. The (13)C-SBT has superior diagnostic properties compared with the H(2)-SBT in follow-up of coeliac disease.

  2. Calcium Treatment for FeSi-killed Fe-13 Pct Cr Stainless Steel with Various Top Slag Compositions

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wang, Lijun; Zhai, Jun; Li, Jianmin; Chou, Kuochih

    2018-02-01

    Calcium treatment of Fe-13 pct Cr stainless steel, with inclusion modification as its main purpose, was evaluated on a laboratory scale. The stability diagram of Ca-Al was obtained using the FactSage software and could be divided into three parts based on the [Al] content: the ultra-low-Al region, the low-Al region, and the medium-high-Al region. Each of these regions required different amounts of calcium for inclusion modification. The ferrosilicon deoxidation product could be modified into low melting temperature inclusions by a CaO-SiO2 top slag in the ultra-low-Al region ([Al] content less than 40 ppm). Calcium treatment was necessary to modify the ferrosilicon deoxidation product into low melting temperature inclusions in the low-Al region ([Al] content from 40 to 100 ppm) for the CaO-SiO2-Al2O3 top slag. Calcium addition has a "liquid window" where adding calcium can accelerate inclusion modification. Adding calcium for 15 and 30 minutes resulted in complete modification times of 45 and 60 minutes, respectively, which indicates that early calcium treatment can produce plastic inclusions sooner. The relationship between the steel and inclusion content was determined by fitting the experimental data in the low-Al region. An appropriate range of T.Ca/T.O (total calcium content/total oxygen content) for inclusion modification is 0.99 to 1.44.

  3. Study on accumulation ability of two lichen species Hypogymnia physodes and Usnea hirta at iron-steel factory site, Turkey.

    PubMed

    Cansaran-Duman, Demet

    2011-11-01

    The use of biological responses to contaminant exposure by lichen species has become a useful tool in environmental quality evaluation and risk assesment. Lichen Hypogymnia physodes and Usnea hirta samples were collected in 2006 from 10 sites around iron-steel factory in Karabük, Turkey. H. physodes and U. hirta samples from Yenice forest were used as a control. The aim of present study was to evaluate the bioaccumulation ability and to determine the environmental impact of an iron-steel factory in Karabük. Seven elements (Zn, Cu, Mn, Fe, Pb, Ni, Cr and Cd) were analysed by atomic absorption spectrometry (AAS). The analytical results were compared statistically by using SPSS. As expected, the study area (Yenice forest, Karabük) chosen as control site (site no 11) showed significantly lower impact in comparison to other site (site no 1-10). Compared with the two lichen species, H. physodes showed highest metal accumulating capacity while U. hirta showed lowest. These criteria attested the best suitability for H. physodes, followed by U. hirta.

  4. Effect of fluid flow, pH and tobacco extracts concentration as organic inhibitors to corrosion characteristics of AISI 1045 steel in 3.5% NaCl environment containing CO2 gas

    NASA Astrophysics Data System (ADS)

    Kurniawan, Budi Agung; Pratiwi, Vania Mitha; Ahmadi, Nafi'ul Fikri

    2018-04-01

    Corrosion become major problem in most industries. In the oil and gas company, corrosion occurs because of reaction between steel and chemical species inside crude oil. Crude oil or nature gas provide corrosive species, such as CO2, O2, H2S and so on. Fluid containing CO2 gas causes CO2 corrosion which attack steel as well as other corrosion phenomena. This CO2 corrosion commonly called as sweet environment and produce FeCO3 as corrosion products. Fluid flow factor in pipelines during the oil and gas transportation might increase the rate of corrosion itself. Inhibitor commonly use used as corrosion protection because its simplicity in usage. Nowadays, organic inhibitor become main issue in corrosion protection because of biodegradable, low cost, and environmental friendly. This research tried to use tobacco leaf extract as organic inhibitor to control corrosion in CO2 environment. The electrolyte solution used was 3.5% NaCl at pH 4 and pH 7. Weight loss test results showed that the lowest corrosion rate was reach at 132.5 ppm inhibitor, pH 7 and rotational speed of 150 rpm with corrosion rate of 0.091 mm/y. While at pH 4, the lowest corrosion rate was found at rotational speed of 150 rpm with inhibitor concentration of 265 ppm and corrosion rate of 0.327 mm/y. FTIR results indicate the presence of nicotine functional groups on the steel surface. However, based on corrosion rate, it is believed that corrosion occurs, and FeCO3 was soluble in electrolyte. Tobacco leaf extract inhibitors worked by a physisorption mechanism, where tobacco inhibitors formed thin layer on the steel surface.

  5. Enantiomeric resolution of methylamphetamine and ephedrine: does this affect the δ13 C, δ15 N and δ2 H stable isotope ratios of the product?

    PubMed

    Grzechnik, Alexandra K; George, Adrian V; Mitchell, Linda; Collins, Michael; Salouros, Helen

    2018-05-22

    The use of stable isotope ratio mass spectrometry as a profiling tool for methylamphetamine has evolved over the last decade. Stable isotope ratios of carbon (δ 13 C), nitrogen (δ 15 N) and hydrogen (δ 2 H) of methylamphetamine are useful in determining the precursor used to manufacture methylamphetamine, and in many cases the synthetic origin of the methylamphetamine precursor. More recently samples of seized methylamphetamine show that a resolution step is being employed in the manufacturing process. We sought to determine whether the δ 13 C, δ 15 N and δ 2 H values were affected by either a resolution performed on racemic methylamphetamine or a resolution on racemic ephedrine, a commonly used precursor to methylamphetamine. We found that for the types of resolution studied, IRMS is still able to provide useful information on the provenance of a methylamphetamine sample. This article is protected by copyright. All rights reserved.

  6. Microstructural Quantification of Rapidly Solidified Undercooled D2 Tool Steel

    NASA Astrophysics Data System (ADS)

    Valloton, J.; Herlach, D. M.; Henein, H.; Sediako, D.

    2017-10-01

    Rapid solidification of D2 tool steel is investigated experimentally using electromagnetic levitation (EML) under terrestrial and reduced gravity conditions and impulse atomization (IA), a drop tube type of apparatus. IA produces powders 300 to 1400 μm in size. This allows the investigation of a large range of cooling rates ( 100 to 10,000 K/s) with a single experiment. On the other hand, EML allows direct measurements of the thermal history, including primary and eutectic nucleation undercoolings, for samples 6 to 7 mm in diameter. The final microstructures at room temperature consist of retained supersaturated austenite surrounded by eutectic of austenite and M7C3 carbides. Rapid solidification effectively suppresses the formation of ferrite in IA, while a small amount of ferrite is detected in EML samples. High primary phase undercoolings and high cooling rates tend to refine the microstructure, which results in a better dispersion of the eutectic carbides. Evaluation of the cell spacing in EML and IA samples shows that the scale of the final microstructure is mainly governed by coarsening. Electron backscattered diffraction (EBSD) analysis of IA samples reveals that IA powders are polycrystalline, regardless of the solidification conditions. EBSD on EML samples reveals strong differences between the microstructure of droplets solidified on the ground and in microgravity conditions. While the former ones are polycrystalline with many different grains, the EML sample solidified in microgravity shows a strong texture with few much larger grains having twinning relationships. This indicates that fluid flow has a strong influence on grain refinement in this system.

  7. Shock synthesized and static sintered boron nitride cutting tool

    NASA Astrophysics Data System (ADS)

    Araki, M.; Kuroyama, Y.

    1986-05-01

    Shock synthesis of wBN (wurtzite phase boron nitride) on an industrial scale was achieved by Nippon Oil & Fats and Showa Denko in 1971. It seemed that the resultant wBN powder might display excellent qualities as a cutting tool material when it was sintered under very high static pressure and temperature because of its polycrystalline nature. Attempts to produce a wBN cutting tool material were commenced by the Tokyo Institute of Technology and Nippon Oil & Fats in 1976 and commercially available wBN cutting tools were first sold in 1980. Meanwhile, a new type of explosion chamber designed to eliminate explosion sound and earth vibration problems, novel high pressure vessels and other peripheral apparatuses have been developed. Now, WURZIN (trademark for the wBN cutting tool) is used in many aspects of the steel cutting field because it is durable when cutting various steels from mild steels to superalloys under high speed, interrupt and precision cutting conditions.

  8. Ab initio correlated study of the Al13H- anion: Isomers, their kinetic stability and vertical detachment energies

    NASA Astrophysics Data System (ADS)

    Moc, Jerzy

    2012-01-01

    We report correlated ab initio calculations for the Al13H- cluster anion isomers, their kinetic stability and vertical detachment energies (VDEs). Of the two most energetically favored anion structures involving H atom in terminal and threefold bridged sites of the icosahedral Al13-, the higher energy ‘threefold bridged' isomer is shown to be of low kinetic stability. Our results are consistent with the recent photoelectron spectroscopy (PE) study of Grubisic et al. who observed two distinct Al13H- isomers, one of them identified as ‘metastable'. The VDE energies computed at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVDZ level for the ‘terminal' and ‘threefold bridged' Al13H- isomers of 3.21 and 2.32 eV are in good agreement with those determined in the PE study.

  9. Tribological investigation of diamond nanoparticles for steel/steel contacts in boundary lubrication regime

    NASA Astrophysics Data System (ADS)

    Raina, Ankush; Anand, Ankush

    2017-10-01

    This paper presents an investigation of nanodiamond additives (ND) in combination with copper oxide (CuO) and hexagonal boron nitride (h-BN) particles mixed in PAO (poly-alpha-olefin) oil. The experimentation was performed for a ball on disc configuration using steel/steel contacts in the boundary lubrication regime. The loads were varied from 20 to 100 N and sliding velocity was kept constant at 0.58 m/s. The wear behavior was evaluated using SEM images of the worn-out disc surfaces. EDS analysis of the samples was performed to find out the chemical content of the worn surfaces. Results obtained therein demonstrated that oil containing CuO/ND and h-BN/ND exhibited better frictional and wear characteristics. For CuO/ND containing lubricant, the maximum decrease in friction coefficient is 15.45% in comparison to the CuO oil, whereas for h-BN/ND containing additives the overall decrease is 25.45%. It was observed that the combined effect of CuO/ND and h-BN/ND due to their intrinsic characteristics led to the overall improvement in lubrication properties of the base oil.

  10. Complete (1)H resonance assignment of beta-maltose from (1)H-(1)H DQ-SQ CRAMPS and (1)H (DQ-DUMBO)-(13)C SQ refocused INEPT 2D solid-state NMR spectra and first principles GIPAW calculations.

    PubMed

    Webber, Amy L; Elena, Bénédicte; Griffin, John M; Yates, Jonathan R; Pham, Tran N; Mauri, Francesco; Pickard, Chris J; Gil, Ana M; Stein, Robin; Lesage, Anne; Emsley, Lyndon; Brown, Steven P

    2010-07-14

    A disaccharide is a challenging case for high-resolution (1)H solid-state NMR because of the 24 distinct protons (14 aliphatic and 10 OH) having (1)H chemical shifts that all fall within a narrow range of approximately 3 to 7 ppm. High-resolution (1)H (500 MHz) double-quantum (DQ) combined rotation and multiple pulse sequence (CRAMPS) solid-state NMR spectra of beta-maltose monohydrate are presented. (1)H-(1)H DQ-SQ CRAMPS spectra are presented together with (1)H (DQ)-(13)C correlation spectra obtained with a new pulse sequence that correlates a high-resolution (1)H DQ dimension with a (13)C single quantum (SQ) dimension using the refocused INEPT pulse-sequence element to transfer magnetization via one-bond (13)C-(1)H J couplings. Compared to the observation of only a single broad peak in a (1)H DQ spectrum recorded at 30 kHz magic-angle spinning (MAS), the use of DUMBO (1)H homonuclear decoupling in the (1)H DQ CRAMPS experiment allows the resolution of distinct DQ correlation peaks which, in combination with first-principles chemical shift calculations based on the GIPAW (Gauge Including Projector Augmented Waves) plane-wave pseudopotential approach, enables the assignment of the (1)H resonances to the 24 distinct protons. We believe this to be the first experimental solid-state NMR determination of the hydroxyl OH (1)H chemical shifts for a simple sugar. Variable-temperature (1)H-(1)H DQ CRAMPS spectra reveal small increases in the (1)H chemical shifts of the OH resonances upon decreasing the temperature from 348 K to 248 K.

  11. More About Cutting Tool For Shaving Weld Beads

    NASA Technical Reports Server (NTRS)

    Oelgoetz, Peter A.; Davis, William M.

    1996-01-01

    Report describes modification and testing of proposed tool discussed in "Cutting Tool For Shaving Weld Beads" (MFS-30056). Modified version of commercial pneumatically driven rotary cutting tool removes such hard metals as nickel alloys, titanium, and stainless steels.

  12. Long-term hot-hardness characteristics of five through-hardened bearing steels

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.

    1978-01-01

    Five vacuum-melted bearing steels tempered to various room temperature hardnesses: AISI 52100 and the tool steels AISI M-1, AISI M-50, Halmo, and WB-49 were studied. Hardness measurements were taken on AISI 52100 at room temperature and at elevated temperatures after soaking it at temperatures to 478 K (400 F) for as long as 1000 hours. Hardness measurements were also taken on the tool steels after soaking them at temperatures to 700 K (800 F) for as long at 1000 hours. None of the tool steel tempered during soaking and AISI 52100 did not temper when soaked at 366 K (200 F) for 1000 hours. However, AISI 52100 that was initially hardened to room temperature hardness of 62.5 or 64.5 lost hardness during the first 500 hours of the 1000-hour soak tests at temperatures greater than 394 K (250 F), but it maintained its hardness during the final 500 hours of soaking. Similarly, AISI 52100 initially hardened to room temperature hardness of 60.5 lost hardness during the first 500 hours of the 1000-hour soaking at temperatures greater than 422 K (300 F), but it maintained its hardness during the final 500 hours of soaking.

  13. Heat Treatment and Properties of Iron and Steel

    DTIC Science & Technology

    1966-11-01

    requirements for quenching media are met satisfactorily by water or aqueous solu- tions of inorganic salts such as table salt or caustic soda, or by...organic chemicals and dyestuffs, and a wide variety of inorganic chemicals. Typical applications are for out- door trim, kitchen equipment, dairy...Steel Co., Reading, Pa. (1948) 564 pages. G. A. Roberts, J. C. Hamaker Jr. and A. R. Johnson, Tool steels, 3rd edition, Am. Soc. Metals, Metals Park

  14. PHF13 is a molecular reader and transcriptional co-regulator of H3K4me2/3

    PubMed Central

    Chung, Ho-Ryun; Xu, Chao; Fuchs, Alisa; Mund, Andreas; Lange, Martin; Staege, Hannah; Schubert, Tobias; Bian, Chuanbing; Dunkel, Ilona; Eberharter, Anton; Regnard, Catherine; Klinker, Henrike; Meierhofer, David; Cozzuto, Luca; Winterpacht, Andreas; Di Croce, Luciano; Min, Jinrong; Will, Hans; Kinkley, Sarah

    2016-01-01

    PHF13 is a chromatin affiliated protein with a functional role in differentiation, cell division, DNA damage response and higher chromatin order. To gain insight into PHF13's ability to modulate these processes, we elucidate the mechanisms targeting PHF13 to chromatin, its genome wide localization and its molecular chromatin context. Size exclusion chromatography, mass spectrometry, X-ray crystallography and ChIP sequencing demonstrate that PHF13 binds chromatin in a multivalent fashion via direct interactions with H3K4me2/3 and DNA, and indirectly via interactions with PRC2 and RNA PolII. Furthermore, PHF13 depletion disrupted the interactions between PRC2, RNA PolII S5P, H3K4me3 and H3K27me3 and resulted in the up and down regulation of genes functionally enriched in transcriptional regulation, DNA binding, cell cycle, differentiation and chromatin organization. Together our findings argue that PHF13 is an H3K4me2/3 molecular reader and transcriptional co-regulator, affording it the ability to impact different chromatin processes. DOI: http://dx.doi.org/10.7554/eLife.10607.001 PMID:27223324

  15. Study of the Microstructure Evolution of Low-pH Cements Based on Ordinary Portland Cement (OPC) by Mid- and Near-Infrared Spectroscopy, and Their Influence on Corrosion of Steel Reinforcement.

    PubMed

    García Calvo, José Luis; Sánchez Moreno, Mercedes; Alonso Alonso, María Cruz; Hidalgo López, Ana; García Olmo, Juan

    2013-06-18

    Low-pH cements are designed to be used in underground repositories for high level waste. When they are based on Ordinary Portland Cements (OPC), high mineral admixture contents must be used which significantly modify their microstructure properties and performance. This paper evaluates the microstructure evolution of low-pH cement pastes based on OPC plus silica fume and/or fly ashes, using Mid-Infrared and Near-Infrared spectroscopy to detect cement pastes mainly composed of high polymerized C-A-S-H gels with low C/S ratios. In addition, the lower pore solution pH of these special cementitious materials have been monitored with embedded metallic sensors. Besides, as the use of reinforced concrete can be required in underground repositories, the influence of low-pH cementitious materials on steel reinforcement corrosion was analysed. Due to their lower pore solution pH and their different pore solution chemical composition a clear influence on steel reinforcement corrosion was detected.

  16. Experimental and DFT evaluation of the 1H and 13C NMR chemical shifts for calix[4]arenes

    NASA Astrophysics Data System (ADS)

    Guzzo, Rodrigo N.; Rezende, Michelle Jakeline Cunha; Kartnaller, Vinicius; Carneiro, José Walkimar de M.; Stoyanov, Stanislav R.; Costa, Leonardo Moreira da

    2018-04-01

    The density functional theory is employed to determine the efficiency of 11 exchange-correlation (XC) functionals to compute the 1H and 13C NMR chemical shifts of p-tert-butylcalix[4]arene (ptcx4, R1 = C(CH3)3) and congeners using the 6-31G(d,p) basis set. The statistical analysis shows that B3LYP, B3PW91 and PBE1PBE are the best XC functionals for the calculation of 1H chemical shifts. Moreover, the best results for the 13C chemical shifts are obtained using the LC-WPBE, M06-2X and wB97X-D functionals. The performance of these XC functionals is tested for three other calix[4]arenes: p-sulfonic acid calix[4]arene (sfxcx4 - R1 = SO3H), p-nitro-calix[4]arene (ncx4, R1 = NO2) and calix[4]arene (cx4 - R1 = H). For 1H chemical shifts B3LYP, B3PW91 and PBE1PBE yield similar results, although B3PW91 shows more consistency in the calculated error for the different structures. For 13C NMR chemical shifts, the XC functional that stood out as best is LC-WPBE. Indeed, the three functionals selected for each of 1H and 13C show good accuracy and can be used in future studies involving the prediction of 1H and 13C chemical shifts for this type of compounds.

  17. Effect of Various Heat Treatment Processes on Fatigue Behavior of Tool Steel for Cold Forging Die

    NASA Astrophysics Data System (ADS)

    Jin, S. U.; Kim, S. S.; Lee, Y. S.; Kwon, Y. N.; Lee, J. H.

    Effects of various heat treatment processes, including "Q/T (quenching and tempering)", "Q/CT/T (Quenching, cryogenic treatment and tempering)", "Q/T (quenching and tempering) + Ti-nitriding" and "Q/CT/T (Cryogenic treatment and tempering) + Ti-nitriding", on S-N fatigue behavior of AISI D2 tool steel were investigated. The optical micrographs and Vicker's hardness values at near surface and core area were examined for each specimen. Uniaxial fatigue tests were performed by using an electro-magnetic resonance fatigue testing machine at a frequency of 80 Hz and an R ratio of -1. The overall resistance to fatigue tends to decrease significantly with Ti-nitriding treatment compared to those for the general Q/T and Q/CT/T specimens. The reduced resistance to fatigue with Ti-nitriding is discussed based on the microstructural and fractographic analyses.

  18. Constitutive behavior and fracture toughness properties of the F82H ferritic/martensitic steel

    NASA Astrophysics Data System (ADS)

    Spätig, P.; Odette, G. R.; Donahue, E.; Lucas, G. E.

    2000-12-01

    A detailed investigation of the constitutive behavior of the International Energy Agency (IEA) program heat of 8 Cr unirradiated F82H ferritic-martensitic steel has been undertaken in the temperature range of 80-723 K. The overall tensile flow stress is decomposed into temperature-dependent and athermal yield stress contributions plus a mildly temperature-dependent strain-hardening component. The fitting forms are based on a phenomenological dislocation mechanics model. This formulation provides a more accurate and physically based representation of the flow stress as a function of the key variables of test temperature, strain and stain rate compared to simple power law treatments. Fracture toughness measurements from small compact tension specimens are also reported and analyzed in terms of a critical stress-critical area local fracture model.

  19. Effect of deep cryogenic treatment on the formation of nano-sized carbides and the wear behavior of D2 tool steel

    NASA Astrophysics Data System (ADS)

    Amini, Kamran; Akhbarizadeh, Amin; Javadpour, Sirus

    2012-09-01

    The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), hardness test, pin-on-disk wear test, and the reciprocating pin-on-flat wear test. The results show that deep cryogenic treatment eliminates retained austenite, makes a better carbide distribution, and increases the carbide content. Furthermore, some new nano-sized carbides form during the deep cryogenic treatment, thereby increasing the hardness and improving the wear behavior of the samples.

  20. Retractor Tool for Brain Surgery

    NASA Technical Reports Server (NTRS)

    Helms, R.; Hayes, T.

    1982-01-01

    Proposed brain-surgery tool has an octogonal fixture for positioning latex tube over incision. Eight stainless-steel wires embedded in latex extend to hold positioning fixture. Another eight are also embedded in the latex. Concentric sleeves are successively inserted into expandable latex tube. The first sleeve is placed over a solid rod. Last sleeve is a stainless-steel tube 1 inch in diameter. It is overcoated with Teflon (or equivalent) material.

  1. Impact of steel slag on the ammonium adsorption by zeolite and a new configuration of zeolite-steel slag substrate for constructed wetlands.

    PubMed

    Shi, Pengbo; Jiang, Yingbo; Zhu, Hongtao; Sun, Dezhi

    2017-07-01

    The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca 2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied in this paper. Modeling results of Ca 2+ and OH - release from slag indicated that pseudo-second-order reaction had a better fitness than pseudo-first-order reaction. Changing pH value from 7 to 12 resulted in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak adsorption capacity at pH 7. High Ca 2+ concentration in solution also inhibited the adsorption of ammonium onto zeolite. There are two proposed mechanisms for steel slag inhibiting the ammonium adsorption capacity of zeolite. On the one hand, OH - released from steel slag can react with ammonium ions to produce the molecular form of ammonia (NH 3 ·H 2 O), which would cause the dissociation of NH 4 + from zeolite. On the other hand, Ca 2+ could replace the NH 4 + ions to adhere onto the surface of zeolite. An innovative substrate filling configuration with zeolite placed upstream of the steel slag was then proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that this novel filling configuration was superior to two other filling configurations in terms of ammonium removal.

  2. Investigation of the Microstructural Changes and Hardness Variations of Sub-Zero Treated Cr-V Ledeburitic Tool Steel Due to the Tempering Treatment

    NASA Astrophysics Data System (ADS)

    Jurči, Peter; Dománková, Mária; Ptačinová, Jana; Pašák, Matej; Kusý, Martin; Priknerová, Petra

    2018-03-01

    The microstructure and tempering response of Cr-V ledeburitic steel Vanadis 6 subjected to sub-zero treatment at - 196 °C for 4 h have been examined with reference to the same steel after conventional heat treatment. The obtained experimental results infer that sub-zero treatment significantly reduces the retained austenite amount, makes an overall refinement of microstructure, and induces a significant increase in the number and population density of small globular carbides with a size 100-500 nm. At low tempering temperatures, the transient M3C-carbides precipitated, whereas their number was enhanced by sub-zero treatment. The presence of chromium-based M7C3 precipitates was evidenced after tempering at the temperature of normal secondary hardening; this phase was detected along with the M3C. Tempering above 470 °C converts almost all the retained austenite in conventionally quenched specimens while the transformation of retained austenite is rather accelerated in sub-zero treated material. As a result of tempering, a decrease in the population density of small globular carbides was recorded; however, the number of these particles retained much higher in sub-zero treated steel. Elevated hardness of sub-zero treated steel can be referred to more completed martensitic transformation and enhanced number of small globular carbides; this state is retained up to a tempering temperature of around 500 °C in certain extent. Correspondingly, lower as-tempered hardness of sub-zero treated steel tempered above 500 °C is referred to much lower contribution of the transformation of retained austenite, and to an expectedly lower amount of precipitated alloy carbides.

  3. Assessing the acidity of high silica chabazite H-SSZ-13 by FTIR using CO as molecular probe: Comparison with H-SAPO-34.

    PubMed

    Bordiga, Silvia; Regli, Laura; Cocina, Donato; Lamberti, Carlo; Bjørgen, Morten; Lillerud, Karl Petter

    2005-02-24

    Zeolitic materials based on the chabazite topology, such as H-SAPO-34, possess unique shape-selectivity properties for converting methanol into light olefins. In addition to the topology, zeolite acidity is inherently linked to catalyst activity and selectivity. The acidic properties of high silica chabazite (H-SSZ-13) have attracted much attention in the past decade because the material represents an idealized model system having one acidic site per cage. Conclusions drawn so far have essentially been founded on quantum chemical methods. An experimentally based benchmark of the acidity of H-SSZ-13 has hitherto not been available. In this work, transmission FTIR spectroscopy provides a description of the different acidic sites of H-SSZ-13 by using CO as molecular probe at 70 K. The results demonstrate that H-SSZ-13 is a strongly Brønsted acidic material, essentially having two distinct families of acidic sites. In contrast to numerous preceding reports, we find it fundamental to consider proton distributions among all four possible sites, and do not delimit the interpretations to only two sites. The present data consistently suggest the most abundant family of protons to have three members being located on different crystalline positions on the eight-membered-ring window giving access to the chabazite cage. Consequently, these protons are exposed to two neighboring cages. The second, and less abundant family, is constituted by only one site that is situated on the six-membered ring defining the top/bottom of the barrel-shaped chabazite cage. This proton is therefore only exposed to one cage and requires a higher CO pressure to form adducts. Toward CO, both families of sites possess the same acidity. Parallel experiments were also carried out for the isostructural and commercially important H-SAPO-34 having an equal density of acidic sites. This is the first attempt to directly compare, on an experimental basis, the acidity of these two materials.

  4. Additional Value of CH4 Measurement in a Combined 13C/H2 Lactose Malabsorption Breath Test: A Retrospective Analysis

    PubMed Central

    Houben, Els; De Preter, Vicky; Billen, Jaak; Van Ranst, Marc; Verbeke, Kristin

    2015-01-01

    The lactose hydrogen breath test is a commonly used, non-invasive method for the detection of lactose malabsorption and is based on an abnormal increase in breath hydrogen (H2) excretion after an oral dose of lactose. We use a combined 13C/H2 lactose breath test that measures breath 13CO2 as a measure of lactose digestion in addition to H2 and that has a better sensitivity and specificity than the standard test. The present retrospective study evaluated the results of 1051 13C/H2 lactose breath tests to assess the impact on the diagnostic accuracy of measuring breath CH4 in addition to H2 and 13CO2. Based on the 13C/H2 breath test, 314 patients were diagnosed with lactase deficiency, 138 with lactose malabsorption or small bowel bacterial overgrowth (SIBO), and 599 with normal lactose digestion. Additional measurement of CH4 further improved the accuracy of the test as 16% subjects with normal lactose digestion and no H2-excretion were found to excrete CH4. These subjects should have been classified as subjects with lactose malabsorption or SIBO. In conclusion, measuring CH4-concentrations has an added value to the 13C/H2 breath test to identify methanogenic subjects with lactose malabsorption or SIBO. PMID:26371034

  5. Stainless steel leaches nickel and chromium into foods during cooking.

    PubMed

    Kamerud, Kristin L; Hobbie, Kevin A; Anderson, Kim A

    2013-10-02

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel saucepan, cooking times of 2-20 h, 10 consecutive cooking cycles, and four commercial tomato sauces. After a simulated cooking process, samples were analyzed by ICP-MS for Ni and Cr. After 6 h of cooking, Ni and Cr concentrations in tomato sauce increased up to 26- and 7-fold, respectively, depending on the grade of stainless steel. Longer cooking durations resulted in additional increases in metal leaching, where Ni concentrations increased 34-fold and Cr increased approximately 35-fold from sauces cooked without stainless steel. Cooking with new stainless steel resulted in the largest increases. Metal leaching decreases with sequential cooking cycles and stabilized after the sixth cooking cycle, although significant metal contributions to foods were still observed. The tenth cooking cycle resulted in an average of 88 μg of Ni and 86 μg of Cr leached per 126 g serving of tomato sauce. Stainless steel cookware can be an overlooked source of nickel and chromium, where the contribution is dependent on stainless steel grade, cooking time, and cookware usage.

  6. Semen quality and sex hormones among mild steel and stainless steel welders: a cross sectional study.

    PubMed Central

    Bonde, J P

    1990-01-01

    Welding may be detrimental to the male reproductive system. To test this hypothesis, semen quality was examined in 35 stainless steel welders, 46 mild steel welders, and 54 non-welding metal workers and electricians. These figures represent a participation rate of 37.1% in welders and 36.7% in non-welding subjects. The mean exposure to welding fume particulates was 1.3 mg/m3 (SD 0.8) in stainless steel welders using tungsten inert gas, 3.2 mg/m3 (SD 1.0) in low exposed mild steel welders using manual metal arc or metal active gas (n = 31), and 4.7 mg/m3 (SD 2.1) in high exposed mild steel welders (n = 15). The semen quality of each participant was defined in terms of the mean values of the particular semen parameters in three semen samples delivered at monthly intervals in a period with occupational exposure in a steady state. The sperm concentration was not reduced in either mild steel or stainless steel welders. The sperm count per ejaculate, the proportion of normal sperm forms, the degree of sperm motility, and the linear penetration rate of the sperm were significantly decreased and the sperm concentration of follicle stimulating hormone (FSH) was non-significantly increased in mild steel welders. A dose response relation between exposure to welding fumes and these semen parameters (sperm count excepted) was found. Semen quality decreased and FSH concentrations increased with increasing exposure. Significant deteriorations in some semen parameters were also observed in stainless steel welders. An analysis of information from questionnaires obtained from the whole population including subjects who declined to participate indicated an underestimation of effects due to selection bias. Potential confounding was treated by restriction and statistical analysis. The results support the hypothesis that mild steel welding and to a lesser extent stainless steel welding with tungsten inert gas is associated with reduced semen quality at exposure in the range of the

  7. Semen quality and sex hormones among mild steel and stainless steel welders: a cross sectional study.

    PubMed

    Bonde, J P

    1990-08-01

    Welding may be detrimental to the male reproductive system. To test this hypothesis, semen quality was examined in 35 stainless steel welders, 46 mild steel welders, and 54 non-welding metal workers and electricians. These figures represent a participation rate of 37.1% in welders and 36.7% in non-welding subjects. The mean exposure to welding fume particulates was 1.3 mg/m3 (SD 0.8) in stainless steel welders using tungsten inert gas, 3.2 mg/m3 (SD 1.0) in low exposed mild steel welders using manual metal arc or metal active gas (n = 31), and 4.7 mg/m3 (SD 2.1) in high exposed mild steel welders (n = 15). The semen quality of each participant was defined in terms of the mean values of the particular semen parameters in three semen samples delivered at monthly intervals in a period with occupational exposure in a steady state. The sperm concentration was not reduced in either mild steel or stainless steel welders. The sperm count per ejaculate, the proportion of normal sperm forms, the degree of sperm motility, and the linear penetration rate of the sperm were significantly decreased and the sperm concentration of follicle stimulating hormone (FSH) was non-significantly increased in mild steel welders. A dose response relation between exposure to welding fumes and these semen parameters (sperm count excepted) was found. Semen quality decreased and FSH concentrations increased with increasing exposure. Significant deteriorations in some semen parameters were also observed in stainless steel welders. An analysis of information from questionnaires obtained from the whole population including subjects who declined to participate indicated an underestimation of effects due to selection bias. Potential confounding was treated by restriction and statistical analysis. The results support the hypothesis that mild steel welding and to a lesser extent stainless steel welding with tungsten inert gas is associated with reduced semen quality at exposure in the range of the

  8. Attachment of Salmonella serovars and Listeria monocytogenes to stainless steel and plastic conveyor belts.

    PubMed

    Veluz, G A; Pitchiah, S; Alvarado, C Z

    2012-08-01

    In poultry industry, cross-contamination due to processing equipment and contact surfaces is very common. This study examined the extent of bacterial attachment to 6 different types and design of conveyor belts: stainless steel-single loop, stainless steel-balance weave, polyurethane with mono-polyester fabric, acetal, polypropylene mesh top, and polypropylene. Clean conveyor belts were immersed separately in either a cocktail of Salmonella serovars (Salmonella Typhimurium and Salmonella Enteritidis) or Listeria monocytogenes strains (Scott A, Brie 1, ATCC 6744) for 1 h at room temperature. Soiled conveyor chips were dipped in poultry rinses contaminated with Salmonella or Listeria cocktail and incubated at 10°C for 48 h. The polyurethane with mono-polyester fabric conveyor belt and chip exhibited a higher (P<0.05) mean number of attached Salmonella serovars (clean: 1.6 to 3.6 cfu/cm2; soiled: 0.8 to 2.4 cfu/cm2) and L. monocytogenes (clean: 4.0 to 4.3 cfu/cm2; soiled: 0.3 to 2.1 cfu/cm2) in both clean and soiled conditions. The stainless steel conveyor belt attached a lower (P<0.05) number of Salmonella serovars (clean: 0 to 2.6 cfu/cm2; soiled: 0.4 to 1.3 cfu/cm2) and L. monocytogenes (clean: 0.4 to 2.9 cfu/cm2; soiled: 0 to 0.7 cfu/cm2) than the polymeric materials, indicating weaker adhesion properties. Plastic conveyor belts exhibited stronger bacterial adhesion compared with stainless steel. The result suggests the importance of selecting the design and finishes of conveyor belt materials that are most resistant to bacterial attachment.

  9. Evaluation of epoxy-coated reinforcing steel.

    DOT National Transportation Integrated Search

    1993-01-01

    Virginia's first installation of epoxy-coated reinforcing steel, which was opened to traffic in 1977, was evaluated during construction and through 13 years of service. It was apparent at the time of construction that the integrity of the coating app...

  10. Analysis of acoustic emission signals at austempering of steels using neural networks

    NASA Astrophysics Data System (ADS)

    Łazarska, Malgorzata; Wozniak, Tadeusz Z.; Ranachowski, Zbigniew; Trafarski, Andrzej; Domek, Grzegorz

    2017-05-01

    Bearing steel 100CrMnSi6-4 and tool steel C105U were used to carry out this research with the steels being austempered to obtain a martensitic-bainitic structure. During the process quite a large number of acoustic emissions (AE) were observed. These signals were then analysed using neural networks resulting in the identification of three groups of events of: high, medium and low energy and in addition their spectral characteristics were plotted. The results were presented in the form of diagrams of AE incidence as a function of time. It was demonstrated that complex transformations of austenite into martensite and bainite occurred when austempering bearing steel at 160 °C and tool steel at 130 °C respectively. The selected temperatures of isothermal quenching of the tested steels were within the area near to MS temperature, which affected the complex course of phase transition. The high activity of AE is a typical occurrence for martensitic transformation and this is the transformation mechanism that induces the generation of AE signals of higher energy in the first stage of transition. In the second stage of transformation, the initially nucleated martensite accelerates the occurrence of the next bainitic transformation.

  11. The structure of the exopolysaccharide of Pseudomonas fluorescens strain H13.

    PubMed

    Osman, S F; Fett, W F; Irwin, P; Cescutti, P; Brouillette, J N; O'Connor, J V

    1997-05-19

    An acidic exopolysaccharide was isolated from P. fluorescens strain H13. The structure of the polysaccharide repeating unit was determined using chemical methods and 1D and 2D NMR techniques. The repeating unit was characterized as a trisaccharide composed of D-glucose, 2-acetamido-2-deoxy-D-glucose and 4-O-acetyl-2-acetamido-2-deoxy-D-mannuronic acid.

  12. Steel selection for UBC steel bridge

    NASA Astrophysics Data System (ADS)

    Liu, Haoyu

    2018-03-01

    This report conducts a material selection of different types of steel for UBC Steel Bridge Team. I am a third-year material engineering student, so the result from this material selection can only be taken into consideration but not fully adopted. As part of my academic journey, it is possible for technical mistakes in this material selection process. The mechanic properties are the most effective category of properties, making it necessary to be justified from the steel bridge design and chosen in accordance with the objective of the team. An introduction for currently-used steel properties and the expected steel properties is provided. The examination focus on how different alloy compositions of steel changes its properties. The properties of the steel are examined in three main aspects: hardness, strength, and toughness. The results suggest that more nickel, manganese, and chromium in the steel provide better steel for the team to use. Further research is needed if a more precise material selection is required.

  13. Solidification Sequence of Spray-Formed Steels

    NASA Astrophysics Data System (ADS)

    Zepon, Guilherme; Ellendt, Nils; Uhlenwinkel, Volker; Bolfarini, Claudemiro

    2016-02-01

    Solidification in spray-forming is still an open discussion in the atomization and deposition area. This paper proposes a solidification model based on the equilibrium solidification path of alloys. The main assumptions of the model are that the deposition zone temperature must be above the alloy's solidus temperature and that the equilibrium liquid fraction at this temperature is reached, which involves partial remelting and/or redissolution of completely solidified droplets. When the deposition zone is cooled, solidification of the remaining liquid takes place under near equilibrium conditions. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to analyze the microstructures of two different spray-formed steel grades: (1) boron modified supermartensitic stainless steel (SMSS) and (2) D2 tool steel. The microstructures were analyzed to determine the sequence of phase formation during solidification. In both cases, the solidification model proposed was validated.

  14. Special features of the technology of boronizing steel in a calcium chloride melt

    NASA Astrophysics Data System (ADS)

    Chernov, Ya. B.; Anfinogenov, A. I.; Veselov, I. N.

    1999-12-01

    A technology for hardening machine parts and tools by boronizing in molten calcium chloride with amorphous-boron powder in electrode salt baths has been developed with the aim of creating a closed cycle of utilizing the raw materials and the washing water. A process of boronizing that includes quenching and tempering of the boronized articles is described. The quenching medium is an ecologically safe and readily available aqueous solution of calcium chloride. The process envisages return of the melt components to the boronizing bath. Boronizing by the suggested method was tested for different classes of steel, namely, structural and tool steels for cold and hot deformation. The wear resistance of the boronized steels was studied.

  15. Corrosion behavior of sensitized duplex stainless steel.

    PubMed

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures.

  16. Detection of intracellular lactate with localized diffusion { 1H- 13C}-spectroscopy in rat glioma in vivo

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Lin, Joseph C.; DelaBarre, Lance; Ugurbil, Kamil; Garwood, Michael

    2005-11-01

    The aim of this study was to compare the diffusion characteristic of lactate and alanine in a brain tumor model to that of normal brain metabolites known to be mainly intracellular such as N-acetylaspartate or creatine. The diffusion of 13C-labeled metabolites was measured in vivo with localized NMR spectroscopy at 9.4 T (400 MHz) using a previously described localization and editing pulse sequence known as ACED-STEAM ('adiabatic carbon editing and decoupling'). 13C-labeled glucose was administered and the apparent diffusion coefficients of the glycolytic products, { 1H- 13C}-lactate and { 1H- 13C}-alanine, were determined in rat intracerebral 9L glioma. To obtain insights into { 1H- 13C}-lactate compartmentation (intra- versus extracellular), the pulse sequence used very large diffusion weighting (50 ms/μm 2). Multi-exponential diffusion attenuation of the lactate metabolite signals was observed. The persistence of a lactate signal at very large diffusion weighting provided direct experimental evidence of significant intracellular lactate concentration. To investigate the spatial distribution of lactate and other metabolites, 1H spectroscopic images were also acquired. Lactate and choline-containing compounds were consistently elevated in tumor tissue, but not in necrotic regions and surrounding normal-appearing brain. Overall, these findings suggest that lactate is mainly associated with tumor tissue and that within the time-frame of these experiments at least some of the glycolytic product ([ 13C] lactate) originates from an intracellular compartment.

  17. Accumulation of radioactive corrosion products on steel surfaces of VVER type nuclear reactors. I. 110mAg

    NASA Astrophysics Data System (ADS)

    Hirschberg, Gábor; Baradlai, Pál; Varga, Kálmán; Myburg, Gerrit; Schunk, János; Tilky, Péter; Stoddart, Paul

    Formation, presence and deposition of corrosion product radionuclides (such as 60Co, 51Cr, 54Mn, 59Fe and/or 110mAg) in the primary circuits of water-cooled nuclear reactors (PWRs) throw many obstacles in the way of normal operation. During the course of the work presented in this series, accumulations of such radionuclides have been studied at austenitic stainless steel type 08X18H10T (GOST 5632-61) surfaces (this austenitic stainless steel corresponds to AISI 321). Comparative experiments have been performed on magnetite-covered carbon steel (both materials are frequently used in some Soviet VVER type PWRs). For these laboratory-scale investigations a combination of the in situ radiotracer `thin gap' method and voltammetry is considered to be a powerful tool due to its high sensitivity towards the detection of the submonolayer coverages of corrosion product radionuclides. An independent technique (XPS) is also used to characterize the depth distribution and chemical state of various contaminants in the passive layer formed on austenitic stainless steel. In the first part of the series the accumulation of 110mAg has been investigated. Potential dependent sorption of Ag + ions (cementation) is found to be the predominant process on austenitic steel, while in the case of magnetite-covered carbon steel the silver species are mainly depleted in the form of Ag 2O. The XPS depth profile of Ag gives an evidence about the embedding of metallic silver into the entire passive layer of the austenitic stainless steel studied.

  18. SABRE hyperpolarization enables high-sensitivity 1H and 13C benchtop NMR spectroscopy.

    PubMed

    Richardson, Peter M; Parrott, Andrew J; Semenova, Olga; Nordon, Alison; Duckett, Simon B; Halse, Meghan E

    2018-06-19

    Benchtop NMR spectrometers operating with low magnetic fields of 1-2 T at sub-ppm resolution show great promise as analytical platforms that can be used outside the traditional laboratory environment for industrial process monitoring. One current limitation that reduces the uptake of benchtop NMR is associated with the detection fields' reduced sensitivity. Here we demonstrate how para-hydrogen (p-H2) based signal amplification by reversible exchange (SABRE), a simple to achieve hyperpolarization technique, enhances agent detectability within the environment of a benchtop (1 T) NMR spectrometer so that informative 1H and 13C NMR spectra can be readily recorded for low-concentration analytes. SABRE-derived 1H NMR signal enhancements of up to 17 000-fold, corresponding to 1H polarization levels of P = 5.9%, were achieved for 26 mM pyridine in d4-methanol in a matter of seconds. Comparable enhancement levels can be achieved in both deuterated and protio solvents but now the SABRE-enhanced analyte signals dominate due to the comparatively weak thermally-polarized solvent response. The SABRE approach also enables the acquisition of 13C NMR spectra of analytes at natural isotopic abundance in a single scan as evidenced by hyperpolarized 13C NMR spectra of tens of millimolar concentrations of 4-methylpyridine. Now the associated signal enhancement factors are up to 45 500 fold (P = 4.0%) and achieved in just 15 s. Integration of an automated SABRE polarization system with the benchtop NMR spectrometer framework produces renewable and reproducible NMR signal enhancements that can be exploited for the collection of multi-dimensional NMR spectra, exemplified here by a SABRE-enhanced 2D COSY NMR spectrum.

  19. Nanocomposites for Machining Tools

    PubMed Central

    Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny

    2017-01-01

    Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance. PMID:29027926

  20. The molecular core in G34.3 + 0.2 - Millimeter interferometric observations of HCO(+), H(C-13)N, H(C-15)N, and SO

    NASA Technical Reports Server (NTRS)

    Carral, Patricia; Welch, William J.

    1992-01-01

    This study presents high-resolution observations of the molecular core in the star-forming region G34.3 + 0.2. Maps at 6-arcsec resolution of emission and absorption of the J = 1 - 0 transitions of HCO(+), H (C-13)N, H(C-15)N, and of the 2(2) - 1(1) transition of SO were obtained in addition to a map of the 3.4-mm continuum emission from the compact H II component. The HCL(+) emission toward G34.3 + 0.2 traces a warm molecular core about 0.9 pc in size. Emission from H (C-13)N is detected over about 0.3 pc. The cometary H II region lies near the edge of the molecular core. The blueshift of the radio recombination lines with respect to the molecular emission suggests that gas from the H II region is accelerated in a champagne flow caused by a steep gradient in the ambient gas density.

  1. Thermal desorption of CO and H2 from degassed 304 and 347 stainless steel

    NASA Technical Reports Server (NTRS)

    Rezaie-Serej, S.; Outlaw, R. A.

    1994-01-01

    Thermal desorption spectroscopy (TDS), along with Auger electron spectroscopy, was used to study the desorption of H2 and CO from baked 304 and 347 stainless-steel samples exposed only to residual gases. Both 347 and 304 samples gave identical TDS spectra. The spectra for CO contained a sharp leading peak centered in the temperature range 410-440C and an exponentially increasing part for temperatures higher than 500C, with a small peak around 600C appearing as a shoulder. The leading peak followed a second-order desorption behavior with an activation energy of 28+/-2 kcal/mol, suggesting that the rate-limiting step for this peak is most likely a surface reaction that produces the CO molecules in the surface layer. The amount of desorbed CO corresponding to this peak was approximately 0.5X10(exp 14) molecules/cm(exp 2) . The exponentially rising part of the CO spectrum appeared to originate from a bulk diffusion process. The TDS spectrum for H2 consisted of a main peak centered also in the temperature range 410-440C, with two small peaks appearing as shoulders at approximately 500 and 650C. The main peak in this case also displayed a second-order behavior with an activation energy of 14+/-2 kcal/mol. The amount of desorbed H2, approximately 1.9X 10(exp 15) molecules/cm(exp 2) , appeared to be independent of the concentration of hydrogen in the bulk, indicating that the majority of the desorbed H2 originated from the surface layer.

  2. Effect of rolling on phase composition and microhardness of austenitic steels with different stacking-fault energies

    NASA Astrophysics Data System (ADS)

    Melnikov, Eugene; Astafurova, Elena; Maier, Galina; Moskvina, Valentina

    2017-12-01

    The influence of multi-pass cold rolling on the phase composition and microhardness of austenitic Fe-18Cr-9Ni-0.21C, Fe-18Cr-9Ni-0.5Ti-0.08C, Fe-17Cr-13Ni-3Mo-0.01C (in wt %) steels with different stacking fault energies was studied. The metastable Fe-18Cr-9Ni-0.5Ti-0.08C steel undergoes γ → α' phase transformations during rolling, the volume fraction of strain-induced α'-martensite in steel structure is increased with increasing strain. Metastable austenite Fe-18Cr-9Ni-0.21C steel does not undergo the formation of an appreciable amount of strain-induced α'-martensite under rolling, but the magnetophase analysis reveals a small amount of ferrite phase in the structure of steel after rolling. The structure of stable Fe-17Cr-13Ni-3Mo-0.01C steel remains austenitic independently under strain. Investigations of microhardness of the steels show that their values are increased with strain and are dependent on propensity of steels to strain-induced martensitic transformation.

  3. The use of steel slag in concrete

    NASA Astrophysics Data System (ADS)

    Martauz, P.; Vaclavik, V.; Cvopa, B.

    2017-10-01

    This paper presents the results of a research dealing with the use of unstable steel slag as a 100% substitute for natural aggregate in the production of concrete. Portland cement CEM I 42.5N and alkali activated hybrid cement H-CEMENT were used as the binder. The test results confirm the possibility to use steel slag as the filler in the production of concrete.

  4. Bactericidal behavior of Cu-containing stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyu; Huang, Xiaobo; Ma, Yong; Lin, Naiming; Fan, Ailan; Tang, Bin

    2012-10-01

    Stainless steels are one of the most common materials used in health care environments. However, the lack of antibacterial advantage has limited their use in practical application. In this paper, antibacterial stainless steel surfaces with different Cu contents have been prepared by plasma surface alloying technology (PSAT). The steel surface with Cu content 90 wt.% (Cu-SS) exhibits strong bactericidal activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 3 h. Although the Cu-containing surface with Cu content 2.5 wt.% (CuNi-SS) can also kill all tested bacteria, this process needs 12 h. SEM observation of the bacterial morphology and an agarose gel electrophoresis were performed to study the antibacterial mechanism of Cu-containing stainless steel surfaces against E. coli. The results indicated that Cu ions are released when the Cu-containing surfaces are in contact with bacterial and disrupt the cell membranes, killing the bacteria. The toxicity of Cu-alloyed surfaces does not cause damage to the bacterial DNA. These results provide a scientific explanation for the antimicrobial applications of Cu-containing stainless steel. The surfaces with different antibacterial abilities could be used as hygienic surfaces in healthcare-associated settings according to the diverse requirement of bactericidal activities.

  5. Corrosion behavior of steels in liquid lead bismuth with low oxygen concentrations

    NASA Astrophysics Data System (ADS)

    Kurata, Yuji; Futakawa, Masatoshi; Saito, Shigeru

    2008-02-01

    Corrosion tests in pots were conducted to elucidate corrosion behavior of various steels in liquid lead-bismuth for 3000 h under the condition of an oxygen concentration of 5 × 10 -8 wt% at 450 °C and an oxygen concentration of 3 × 10 -9 wt% at 550 °C, respectively. Significant corrosion was not observed at 450 °C for ferritic/martensitic steels, F82H, Mod.9Cr-1Mo steel, 410SS, 430SS except 2.25Cr-1Mo steel. Pb-Bi penetration into steels and dissolution of elements into Pb-Bi were severe at 550 °C even for ferritic/martensitic steels. Typical dissolution attack occurred for pure iron both at 550 °C without surface Fe 3O 4 and at 450 °C with a thin Fe 3O 4 film. Ferritization due to dissolution of Ni and Cr, and Pb-Bi penetration were recognized for austenitic stainless steels, 316SS and 14Cr-16Ni-2Mo steel at both temperatures of 450 °C and 550 °C. The phenomena were mitigated for 18Cr-20Ni-5Si steel. In some cases oxide films could not be a corrosion barrier in liquid lead-bismuth.

  6. Fracture toughness of the IEA heat of F82H ferritic/martensitic stainless steel as a function of loading mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huaxin; Gelles, D.S.; Hirth, J.P.

    1997-04-01

    Mode I and mixed-mode I/III fracture toughness tests were performed for the IEA heat of the reduced activation ferritic/martensitic stainless steel F82H at ambient temperature in order to provide comparison with previous measurements on a small heat given a different heat treatment. The results showed that heat to heat variations and heat treatment had negligible consequences on Mode I fracture toughness, but behavior during mixed-mode testing showed unexpected instabilities.

  7. G2H--graphics-to-haptic virtual environment development tool for PC's.

    PubMed

    Acosta, E; Temkin, B; Krummel, T M; Heinrichs, W L

    2000-01-01

    For surgical training and preparations, the existing surgical virtual environments have shown great improvement. However, these improvements are more in the visual aspect. The incorporation of haptics into virtual reality base surgical simulations would enhance the sense of realism greatly. To aid in the development of the haptic surgical virtual environment we have created a graphics to haptic, G2H, virtual environment developer tool. G2H transforms graphical virtual environments (created or imported) to haptic virtual environments without programming. The G2H capability has been demonstrated using the complex 3D pelvic model of Lucy 2.0, the Stanford Visible Female. The pelvis was made haptic using G2H without any further programming effort.

  8. Corrosion of Pipeline and Wellbore Steel by Liquid CO2 Containing Trace Amounts of Water and SO2

    NASA Astrophysics Data System (ADS)

    McGrail, P.; Schaef, H. T.; Owen, A. T.

    2009-12-01

    Carbon dioxide capture and storage in deep saline formations is currently considered the most attractive option to reduce greenhouse gas emissions with continued use of fossil fuels for energy production. Transporting captured CO2 and injection into suitable formations for storage will necessarily involve pipeline systems and wellbores constructed of carbon steels. Industry standards currently require nearly complete dehydration of liquid CO2 to reduce corrosion in the pipeline transport system. However, it may be possible to establish a corrosion threshold based on H2O content in the CO2 that could allow for minor amounts of H2O to remain in the liquid CO2 and thereby eliminate a costly dehydration step. Similarly, trace amounts of sulfur and nitrogen compounds common in flue gas streams are currently removed through expensive desulfurization and catalytic reduction processes. Provided these contaminants could be safely and permanently transported and stored in the geologic reservoir, retrofits of existing fossil-fuel plants could address comprehensive emissions reductions, including CO2 at perhaps nearly the same capital and operating cost. Because CO2-SO2 mixtures have never been commercially transported or injected, both experimental and theoretical work is needed to understand corrosion mechanisms of various steels in these gas mixtures containing varying amounts of water. Experiments were conducted with common tool steel (AISI-01) and pipeline steel (X65) immersed in liquid CO2 at room temperature containing ~1% SO2 and varying amounts of H2O (0 to 2500 ppmw). A threshold concentration of H2O in the liquid CO2-SO2 mixture was established based on the absence of visible surface corrosion. For example, experiments exposing steel to liquid CO2-SO2 containing ~300 ppmw H2O showed a delay in onset of visible corrosion products and minimal surface corrosion was visible after five days of testing. However increasing the water content to 760 ppmw produced extensive

  9. Water Powered Tools

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space Spin-Offs, Inc. under a contract with Lewis Research Center and Marshall Space Flight Center produced a new water-powered saw that cuts through concrete and steel plate reducing danger of explosion or electric shock in rescue and other operations. In prototype unit efficient water-powered turbine drives an 8 inch diameter grinding disk at 6,600 rpm. Exhaust water cools disk and workpiece quenching any sparks produced by cutting head. At maximum power, tool easily cuts through quarter inch steel plate. Adapter heads for chain saws, impact wrenches, heavy duty drills, and power hack saws can be fitted.

  10. Metabolism of D-[1-3H]glucose, D-[2-3H]glucose, D-[5-3H]glucose, D-[6-3H]glucose and D-[U-14C]glucose by rat and human erythrocytes incubated in the presence of H2O or D2O.

    PubMed

    Conget, I; Malaisse, W J

    1995-02-01

    The present study investigates whether heavy water affects the efficiency of 3HOH production from D-[1-3H]glucose, D-[2-3H]glucose, D-[5-3H]glucose and D-[6-3H]glucose relative to the total generation of tritiated metabolites produced by either rat or human erythrocytes. The relative 3HOH yield was close to 95% with D-[5-3H]glucose, 72% with D-[2-3H]glucose, 22-32% with D-[1-3H]glucose, and only 12% with D-[6-3H]glucose. In the latter case, the comparison of the specific radioactivity of intracellular and extracellular acidic metabolites, expressed relative to that of 14C-labelled metabolites produced from D-[U-14C]glucose, indicated that the generation of 3HOH from D-[6-3H]glucose occurs at distal metabolic steps, such as the partial reversion of the pyruvate kinase reaction or the interconversion of pyruvate and L-alanine in the reaction catalysed by glutamate-pyruvate transaminase. As a rule, the substitution of H2O by D2O only caused minor to negligible changes in the relative 3HOH yield. This implies that the unexpectedly high deuteration of 13C-labelled D-glucose metabolites recently documented in erythrocytes exposed to D2O cannot be attributed to any major interference of heavy water with factors regulating both the deuteration and detritiation efficiency, such as the enzyme-to-enzyme tunnelling of specific glycolytic intermediates.

  11. Investigation of the Effect of Alloying Elements and Water Vapor Contents on the Oxidation and Decarburization of Transformation-Induced Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Sohn, I. R.; Pettit, F. S.; Meier, G. H.; Sridhar, S.

    2009-08-01

    The present research deals with an investigation of the effect of alloying element additions (Si, P, and Sb) and water vapor content ({{{{{P}}_{{{{H}}_{ 2} {{O}}}} } {{{P}}_{{{{H}}_{ 2} }} }}} = 0.01{{ to }}0.13}) on the oxidation and decarburization behavior of transformation-induced plasticity (TRIP) steels in a gas mixture of 95 vol pct argon and 5 vol pct hydrogen/steam, by thermogravimetry (TG). The oxidation proceeds primarily as an internal oxidation front in the TRIP steels, but a thin external scale on the order of a micrometer thickness exists and is comprised primarily of fayalite ((Mn,Fe)2SiO4) and ((MnO) x (FeO)1- x . The oxidation products are distributed near the surface and along grain boundaries. A comparison between calculated and measured oxidation curves indicated that the oxidation and decarburization are independent. The results for TRIP steels, both with and without an Sb addition, indicate that increasing Si and P contents accelerate, whereas Sb addition suppresses, both decarburization and oxidation rates. Water vapor content has no obvious effect on decarburization but has a pronounced effect on oxidation, and decreasing water vapor content decreases the oxidation rates.

  12. The molecular structure and vibrational, 1H and 13C NMR spectra of lidocaine hydrochloride monohydrate

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2016-01-01

    The structure, vibrational and NMR spectra of the local anesthetic drug lidocaine hydrochloride monohydrate salt were investigated by B3LYP/6-311G∗∗ calculations. The lidocaine·HCl·H2O salt is predicted to have the gauche structure as the predominant form at ambient temperature with NCCN and CNCC torsional angles of 110° and -123° as compared to 10° and -64°, respectively in the base lidocaine. The repulsive interaction between the two N-H bonds destabilized the gauche structure of lidocaine·HCl·H2O salt. The analysis of the observed vibrational spectra is consistent with the presence of the lidocaine salt in only one gauche conformation at room temperature. The 1H and 13C NMR spectra of lidocaine·HCl·H2O were interpreted by experimental and DFT calculated chemical shifts of the lidocaine salt. The RMSD between experimental and theoretical 1H and 13C chemical shifts for lidocaine·HCl·H2O is 2.32 and 8.21 ppm, respectively.

  13. The H+n-C5H12/n-C6H14→H2(v',j')+C5H11/C6H13 reactions: State-to-state dynamics and models of energy disposal

    NASA Astrophysics Data System (ADS)

    Picconatto, Carl A.; Srivastava, Abneesh; Valentini, James J.

    2001-03-01

    The rovibrational state distributions for the H2 product of the H+n-C5H12/n-C6H14→H2+C5H11/C6H13 reactions at 1.6 eV collision energy are reported. The results are compared to measurements made on the kinematically and energetically similar H+RH→H2+R (RH=CH4, C2H6, and C3H8) reactions as well as the atom-diatom reactions H+HX→H2+X(HX=HCl, HBr). For the title reactions, as for all the comparison reactions, the product appears in few of the energetically accessible states. This is interpreted as the result of a kinematic constraint on the product translational energy. Characteristic of the H+RH reactions we have previously studied, the title reactions show increasing rotational excitation of the H2 product with increasing vibrational excitation of it, a correlation that gets stronger as the size of the alkane increases. Trends and variations in the product energy disposal are analyzed and explained by a localized reaction model. This model predicates a truncation of the opacity function due to competing reactive sites in the polyatomic alkane reactant, and a relaxation of the otherwise tight coupling of energy and angular momentum conservation, because the polyatomic alkyl radical product is a sink for angular momentum.

  14. Isothermal Treatment Effects on Precipitates and Tensile Properties of an HSLA Steel

    NASA Astrophysics Data System (ADS)

    Kim, J.-E.; Seol, J.-B.; Choi, W.-M.; Lee, B.-J.; Park, C.-G.

    2018-05-01

    The relationships between tensile properties and precipitates of a high-strength low-alloy steel depending on the isothermal conditions were investigated. While the isothermally treated steel at 300-500 °C for 1 and 24 h had no significant difference, the steel treated at 500 for 336 h, denoted as 500-336 h, not only showed a decrease in tensile stress but also exhibited a highly increased elongation. Transmission electron microscopy and atom probe tomography were utilized to evaluate the precipitates distribution. The results showed that, in the case of 500-336 h sample, the fraction of precipitates with a radius over 10 nm is the highest and that of a few nano-sized precipitates is the lowest among all samples. It can be explained that the coarsening of originally nano-sized precipitates, occurred by diffusion of dissolved carbon in 500-336 h, mainly affects the tensile behavior.

  15. Hydrogen Environment Assisted Cracking of Ultra-High Strength AetMet(Trademark) 100 Steel

    DTIC Science & Technology

    2006-01-01

    landing gear. LV.B. Effect of Steel Composition on Intergranular HEAC Instances of intergranular HEAC and IiHAC in AerMetTm 100 were rarely observed in the...fit the H concentration effect with that of the other elements. While the Maraging and Custom 465TM steels are relatively pure, the H concentration...to -0.9 VsCE and increased cracking at more anodic and more cathodic potentials 471 . Similar effects were noted for HEAC of 18Ni Maraging steel , with

  16. Hyperpolarized carbon-13 magnetic resonance spectroscopic imaging: a clinical tool for studying tumour metabolism.

    PubMed

    Zaccagna, Fulvio; Grist, James T; Deen, Surrin S; Woitek, Ramona; Lechermann, Laura Mt; McLean, Mary A; Basu, Bristi; Gallagher, Ferdia A

    2018-05-01

    Glucose metabolism in tumours is reprogrammed away from oxidative metabolism, even in the presence of oxygen. Non-invasive imaging techniques can probe these alterations in cancer metabolism providing tools to detect tumours and their response to therapy. Although Positron Emission Tomography with ( 18 F)2-fluoro-2-deoxy-D-glucose ( 18 F-FDG PET) is an established clinical tool to probe cancer metabolism, it has poor spatial resolution and soft tissue contrast, utilizes ionizing radiation and only probes glucose uptake and phosphorylation and not further downstream metabolism. Magnetic Resonance Spectroscopy (MRS) has the capability to non-invasively detect and distinguish molecules within tissue but has low sensitivity and can only detect selected nuclei. Dynamic Nuclear Polarization (DNP) is a technique which greatly increases the signal-to-noise ratio (SNR) achieved with MR by significantly increasing nuclear spin polarization and this method has now been translated into human imaging. This review provides a brief overview of this process, also termed Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopic Imaging (HP 13 C-MRSI), its applications in preclinical imaging, an outline of the current human trials that are ongoing, as well as future potential applications in oncology.

  17. Heat treatment stabilizes welded aluminum jigs and tool structures

    NASA Technical Reports Server (NTRS)

    Mehnert, R. S.

    1966-01-01

    Heat treatment processes, applied after welding but before machining, imparts above normal stability to welded aluminum jigs and tool structures. Weight saving will not be realized in these tools if rigidity equal to that of a comparable steel tool is required.

  18. The interaction between nitride uranium and stainless steel

    NASA Astrophysics Data System (ADS)

    Shornikov, D. P.; Nikitin, S. N.; Tarasov, B. A.; Baranov, V. G.; Yurlova, M. S.

    2016-04-01

    Uranium nitride is most popular nuclear fuel for Fast Breeder Reactor New Generation. In-pile experiments at reactor BOR-60 was shown an interaction between nitride fuel and stainless steel in the range of 8-11% burn up (HA). In order to investigate this interaction has been done diffusion tests of 200 h and has been shown that the reaction occurs in the temperature range 1000-1100 ° C. UN interacted with steel in case of high pollution oxygen (1000-2000 ppm). Also has been shown to increase interaction UN with EP-823 steel in the presence of cesium. In this case the interaction layer had a thickness about 2-3 μm. Has been shown minimal interaction with new ODS steel EP-450. The interaction layer had a thickness less then 2 μm. Did not reveal the influence of tellurium and iodine increased interaction. It was show compatibility at 1000 °C between UN and EP-450 ODS steel, chrome steel, alloying aluminium and silicium.

  19. 40 CFR 721.10091 - 2(1H)-Pyrimidinone, tetrahydro-1,3-dimethyl-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 2(1H)-Pyrimidinone, tetrahydro-1,3-dimethyl-. 721.10091 Section 721.10091 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... new uses are: (i) Protection in the workplace. Requirements as specified in § 721.63 (a)(1), (a)(2)(i...

  20. Smartphone tool to collect repeated 24 h dietary recall data in Nepal.

    PubMed

    Harris-Fry, Helen; Beard, B James; Harrisson, Tom; Paudel, Puskar; Shrestha, Niva; Jha, Sonali; Shrestha, Bhim P; Manandhar, Dharma S; Costello, Anthony; Saville, Naomi M

    2018-02-01

    To outline the development of a smartphone-based tool to collect thrice-repeated 24 h dietary recall data in rural Nepal, and to describe energy intakes, common errors and researchers' experiences using the tool. We designed a novel tool to collect multi-pass 24 h dietary recalls in rural Nepal by combining the use of a CommCare questionnaire on smartphones, a paper form, a QR (quick response)-coded list of foods and a photographic atlas of portion sizes. Twenty interviewers collected dietary data on three non-consecutive days per respondent, with three respondents per household. Intakes were converted into nutrients using databases on nutritional composition of foods, recipes and portion sizes. Dhanusha and Mahottari districts, Nepal. Pregnant women, their mothers-in-law and male household heads. Energy intakes assessed in 150 households; data corrections and our experiences reported from 805 households and 6765 individual recalls. Dietary intake estimates gave plausible values, with male household heads appearing to have higher energy intakes (median (25th-75th centile): 12 079 (9293-14 108) kJ/d) than female members (8979 (7234-11 042) kJ/d for pregnant women). Manual editing of data was required when interviewers mistook portions for food codes and for coding items not on the food list. Smartphones enabled quick monitoring of data and interviewer performance, but we initially faced technical challenges with CommCare forms crashing. With sufficient time dedicated to development and pre-testing, this novel smartphone-based tool provides a useful method to collect data. Future work is needed to further validate this tool and adapt it for other contexts.

  1. Machine Tool Software

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  2. Compatibility tests of steels in flowing liquid lead-bismuth

    NASA Astrophysics Data System (ADS)

    Barbier, F.; Benamati, G.; Fazio, C.; Rusanov, A.

    2001-06-01

    The behaviour of steels exposed to flowing Pb-55Bi was evaluated. The materials tested are the two austenitic steels AISI 316L and 1.4970, and the six martensitic steels Optifer IVc, T91, Batman 27, Batman 28, EP823 and EM10 which were exposed to flowing Pb-55Bi for 1000, 2000 and 3000 h and at two temperatures (573 and 743 K). The corrosion tests were conducted in the non-isothermal loop of IPPE-Obninsk under a controlled oxygen level (10 -6 wt%). The compatibility study showed that at a lower temperature, a very thin oxide layer (<1 μm) was formed on the steels. At higher temperature, austenitic steels also exhibited a thin oxide layer sufficient to prevent their dissolution in the melt. A thicker oxide, which grew according to a parabolic law, was observed on the surface of the martensitic steels. The oxidation resistance behaviour of the martensitic steels was correlated with their alloying elements.

  3. Phase-sensitive detection of acoustically stimulated electromagnetic response in steel

    NASA Astrophysics Data System (ADS)

    Yamada, Hisato; Yotsuji, Junichi; Ikushima, Kenji

    2018-07-01

    The signal amplitude and the phase of acoustically stimulated electromagnetic (ASEM) response have been investigated in steel. In the ASEM method, magnetization is temporally modulated with the radio frequency (rf) of irradiated ultrasonic waves through magnetomechanical coupling. The first-harmonic components of the induced rf dipolar magnetic fields are detected using a resonant loop antenna. The signal amplitude of ASEM waves is determined by the magnitude of local piezomagnetic coefficients on an acoustically excited spot. Here, we divided the ASEM waves into the “in-phase” and “quadrature” components by phase-sensitive detection (PSD). On the basis of the linear response theory, we provided the theoretical formalism of ASEM response by introducing local complex piezomagnetic coefficients, d loc = d‧ + id‧‧. We investigated the magnetic field (H) dependence of the individual components on the different surface conditions of steel plates. The in-phase component [∝ d‧(H)] shows a hysteresis loop on the machined surface of a steel plate, in which d‧(H) switches sign at two finite field values, ±H 0. The inversion of magnetization associated with the applied static fields is thus definitely observed in the PSD measurements. In addition, we measured the hysteresis behaviors on a steel surface with a thin mill scale (iron oxide layers). The hysteresis loop broadens and a significant contribution of the quadrature component [∝ d‧‧(H)] is found. We discuss the origin of the hysteresis behaviors of d‧ and d‧‧ using the Debye relaxation model.

  4. Effect of Plasma Nitriding and Nitrocarburizing on HVOF-Sprayed Stainless Steel Coatings

    NASA Astrophysics Data System (ADS)

    Park, Gayoung; Bae, Gyuyeol; Moon, Kyungil; Lee, Changhee

    2013-12-01

    In this work, the effects of plasma nitriding (PN) and nitrocarburizing on HVOF-sprayed stainless steel nitride layers were investigated. 316 (austenitic), 17-4PH (precipitation hardening), and 410 (martensitic) stainless steels were plasma-nitrided and nitrocarburized using a N2 + H2 gas mixture and the gas mixture containing C2H2, respectively, at 550 °C. The results showed that the PN and nitrocarburizing produced a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer depending on the crystal structures of the HVOF-sprayed stainless steel coatings. Also, the diffusion depth of nitrogen increased when a small amount of C2H2 (plasma nitrocarburizing process) was added. The PN and nitrocarburizing resulted in not only an increase of the surface hardness, but also improvement of the load bearing capacity of the HVOF-sprayed stainless steel coatings because of the formation of CrN, Fe3N, and Fe4N phases. Also, the plasma-nitrocarburized HVOF-sprayed 410 stainless steel had a superior surface microhardness and load bearing capacity due to the formation of Cr23C6 on the surface.

  5. A Novel Schiff Base of 3-acetyl-4-hydroxy-6-methyl-(2H)pyran-2-one and 2,2'-(ethylenedioxy)diethylamine as Potential Corrosion Inhibitor for Mild Steel in Acidic Medium

    PubMed Central

    Asegbeloyin, Jonnie N.; Ejikeme, Paul M.; Olasunkanmi, Lukman O.; Adekunle, Abolanle S.; Ebenso, Eno E.

    2015-01-01

    The corrosion inhibition activity of a newly synthesized Schiff base (SB) from 3-acetyl-4-hydroxy-6-methyl-(2H)-pyran-2-one and 2,2'-(ethylenedioxy)diethylamine was investigated on the corrosion of mild steel in 1 M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopic techniques. Ultraviolet-visible (UV-vis) and Raman spectroscopic techniques were used to study the chemical interactions between SB and mild steel surface. SB was found to be a relatively good inhibitor of mild steel corrosion in 1 M HCl. The inhibition efficiency increases with increase in concentration of SB. The inhibition activity of SB was ascribed to its adsorption onto mild steel surface, through physisorption and chemisorption, and described by the Langmuir adsorption model. Quantum chemical calculations indicated the presence of atomic sites with potential nucleophilic and electrophilic characteristics with which SB can establish electronic interactions with the charged mild steel surface.

  6. Redemption of asthma pharmaceuticals among stainless steel and mild steel welders: a nationwide follow-up study.

    PubMed

    Kristiansen, Pernille; Jørgensen, Kristian Tore; Hansen, Johnni; Bonde, Jens Peter

    2015-08-01

    The purpose was to examine bronchial asthma according to cumulative exposure to fume particulates conferred by stainless steel and mild steel welding through a proxy of redeemed prescribed asthma pharmaceuticals. A Danish national company-based historical cohort of 5,303 male ever-welders was followed from 1995 to 2011 in the Danish Medicinal Product Registry to identify the first-time redemption of asthma pharmaceuticals including beta-2-adrenoreceptor agonists, adrenergic drugs for obstructive airway diseases and inhalable glucocorticoids. Lifetime exposure to welding fume particulates was estimated by combining questionnaire data on welding work with a welding exposure matrix. The estimated exposure accounted for calendar time, welding intermittence, type of steel, welding methods, local exhaustion and welding in confined spaces. Hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated using a Cox proportional hazards model adjusting for potential confounders and taking modifying effects of smoking into account. The average incidence of redemption of asthma pharmaceuticals in the cohort was 16 per 1,000 person year (95% CI 10-23 per 1,000 person year). A moderate nonsignificant increased rate of redemption of asthma medicine was observed among high-level exposed stainless steel welders in comparison with low-level exposed welders (HR 1.54, 95% CI 0.76-3.13). This risk increase was driven by an increase risk among non-smoking stainless steel welders (HR 1.46, 95% CI 1.06-2.02). Mild steel welding was not associated with increased risk of use asthma pharmaceuticals. The present study indicates that long-term exposure to stainless steel welding is related to increased risk of asthma in non-smokers.

  7. Microsolvation effect and hydrogen-bonding pattern of taurine-water TA-(H2O)n (n = 1-3) complexes.

    PubMed

    Dai, Yumei; Wang, Yuhua; Huang, Zhengguo; Wang, Hongke; Yu, Lei

    2012-01-01

    The microsolvation of taurine (TA) with one, two or three water molecules was investigated by a density functional theory (DFT) approach. Quantum theory of atoms in molecules (QTAIM) analyses were employed to elucidate the hydrogen bond (H-bond) interaction characteristics in TA-(H(2)O)(n) (n = 1-3) complexes. The results showed that the intramolecular H-bond formed between the hydroxyl and the N atom of TA are retained in most TA-(H(2)O)(n) (n = 1-3) complexes, and are strengthened via cooperative effects among multiple H-bonds from n = 1-3. A trend of proton transformation exists from the hydroxyl to the N atom, which finally results in the cleavage of the origin intramolecular H-bond and the formation of a new intramolecular H-bond between the amino and the O atom of TA. Therefore, the most stable TA-(H(2)O)(3) complex becomes a zwitterionic complex rather than a neutral type. A many-body interaction analysis showed that the major contributors to the binding energies for complexes are the two-body energies, while three-body energies and relaxation energies make significant contributions to the binding energies for some complexes, whereas the four-body energies are too small to be significant.

  8. Fracture behavior of neutron-irradiated high-manganese austenitic steels

    NASA Astrophysics Data System (ADS)

    Yoshida, H.; Miyata, K.; Narui, M.; Kayano, H.

    1991-03-01

    The instrumented Charpy impact test was applied to study the fracture behavior of high-manganese austenitic steels before and after neutron irradiations. Quarter-size specimens of a commercial high-manganese steel (18% Mn-5% Ni-16% Cr), three reference steels (21% Mn-1% Ni-9% Cr, 20% Mn-1% Ni-11% Cr, 15% Mn-1% Ni-13% Cr) and two model steels (17% Mn-4.5% Si-6.5% Cr, 22% Mn-4.5% Si-6.5% Cr-0.2% N) were used for the impact tests at temperatures between 77 and 523 K. The load-deflection curves showed typical features corresponding to characteristics of the fracture properties. The temperature dependences of fracture energy and failure deflection obtained from the curves clearly demonstrate only small effects up to 2 × 10 23 n/m 2 ( E > 0.1 MeV) and brittleness at room temperature in 17% Mn-Si-Cr steel at 1.6 × 10 25 n/m 2 ( E > 0.1 MeV), while ductility still remains in 22%Mn-Si-Cr steel.

  9. Casein-specific IL-4- and IL-13-secreting T cells: a tool to implement diagnosis of cow's milk allergy.

    PubMed

    Michaud, B; Aroulandom, J; Baiz, N; Amat, F; Gouvis-Echraghi, R; Candon, S; Foray, A-P; Couderc, R; Bach, J-F; Chatenoud, L; Just, J

    2014-11-01

    Cow's milk allergy (CMA) is a frequent food allergy in young children. The oral food challenge is the gold standard for diagnosis, and there is currently no reliable biological test. Our aim was to evaluate the diagnostic potential of a functional assay quantifying allergen-specific Th2 cells in CMA children. A total of 29 children aged 2.8-10.5 years underwent a double-blind, placebo-controlled food challenge (DBPCFC) to cow's milk. Blood was collected before performing the DBPCFC, and peripheral mononuclear cells were cultured in an 18-h ELISpot assay with casein, α-lactalbumin, or β-lactoglobulin. Numbers of antigen-specific IL-4- and IL-13-secreting lymphocytes and serum-specific IgE, IgG4, and total IgE levels were assessed. Receiver operating characteristic (ROC) curves were generated. A total of 17 (59%) children reacted to cow's milk and were therefore considered as allergic to cow's milk (CMA). The mean number of casein-specific IL-4- and IL-13-secreting T cells was higher in CMA than in non-CMA children (P = 0.009, 0.004, respectively). Moreover, it was inversely correlated with the cumulative dose of cow's milk tolerated (P = 0.003, 0.0009, respectively). ROC curve of combined IL-4 and IL-13 analysis showed an area under the curve of 0.98 (95% CI 0.90-1.06). For a cutoff of 10 IL-4- and 12 IL-13-secreting T cells, sensitivity and negative predictive value were 100%. Enumeration of casein-specific IL-4- and IL-13-secreting T cells appears a promising tool to improve diagnosis and, if confirmed in larger studies, could permit less frequent use of the oral food challenge. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Effect of Explosion Bulge Test Parameters on the Measurement of Deformation Resistance for Steel

    DTIC Science & Technology

    2014-02-01

    UNCLASSIFIED UNCLASSIFIED Effect of Explosion Bulge Test Parameters on the Measurement of Deformation Resistance for Steel C...Measurement of Deformation Resistance for Steel Executive Summary The Explosion Bulge Test has been used for over 60 years as a standard test for...the assessment of steel toughness and deformation resistance under blast loading conditions [1-3]. However, details of the test conditions vary

  11. Hydrogen vibrations in austenitic fcc Fe-Cr-Mn-Ni steels

    NASA Astrophysics Data System (ADS)

    Danilkin, S. A.; Fuess, H.; Wipf, H.; Ivanov, A.; Gavriljuk, V. G.; Delafosse, D.; Magnin, T.

    2003-07-01

    By neutron spectroscopy, we studied vibrations of H interstitials in two austenitic fcc steels (Fe0.55Cr0.20Mn0.10Ni0.15 and Fe0.54Cr0.27Ni0.19) doped with 0.37 and 0.33 at% H. The band modes, in which H vibrates with its metal neighbours, cause a weak intensity in the energy range of the acoustic vibrations of the H-free steels. The energies of the fundamental and the twofold local-mode excitations, in which H vibrates against its metal neighbours, were ~ 130 and ~ 260 meV, respectively. The respective peaks in the spectra were broadened because the metal neighbours of H, and thus its vibrational energies, vary from interstitial site to interstitial site. The above energy values support an H occupation of octahedral interstitial sites.

  12. Effect of Sintering Atmosphere and Solution Treatment on Density, Microstructure and Tensile Properties of Duplex Stainless Steels Developed from Pre-alloyed Powders

    NASA Astrophysics Data System (ADS)

    Murali, Arun Prasad; Mahendran, Sudhahar; Ramajayam, Mariappan; Ganesan, Dharmalingam; Chinnaraj, Raj Kumar

    2017-10-01

    In this research, Powder Metallurgy (P/M) of Duplex Stainless Steels (DSS) of different compositions were prepared through pre-alloyed powders and elemental powders with and without addition of copper. The powder mix was developed by pot mill for 12 h to obtain the homogeneous mixture of pre-alloyed powder with elemental compositions. Cylindrical green compacts with the dimensions of 30 mm diameter and 12 mm height were compacted through universal testing machine at a pressure level of 560 ± 10 MPa. These green compacts were sintered at 1350 °C for 2 h in hydrogen and argon atmospheres. Some of the sintered stainless steel preforms were solution treated at 1050 °C followed by water quenching. The sintered as well as solution treated samples were analysed by metallography examination, Scanning Electron Microscopy and evaluation of mechanical properties. Ferrite content of sintered and solution treated DSS were measured by Fischer Ferritoscope. It is inferred that the hydrogen sintered DSS depicted better density (94% theoretical density) and tensile strength (695 MPa) than the argon sintered steels. Similarly the microstructure of solution treated DSS revealed existence of more volume of ferrite grains than its sintered condition. Solution treated hydrogen sintered DSS A (50 wt% 316L + 50 wt% 430L) exhibited higher tensile strength of 716 MPa and elongation of 17%, which are 10-13% increment than the sintered stainless steels.

  13. Corrosion and stress corrosion cracking of ferritic/martensitic steel in super critical pressurized water

    NASA Astrophysics Data System (ADS)

    Hirose, T.; Shiba, K.; Enoeda, M.; Akiba, M.

    2007-08-01

    A water-cooled solid breeder (WCSB) blanket cooled by high temperature SCPW (super critical pressurized water) is a practical option of DEMO reactor. Therefore, it is necessary to check the compatibility of the steel with SCPW. In this work, reduced activation ferritic/martensitic steel, F82H has been tested through slow strain rate tests (SSRT) in 23.5 MPa SCPW. And weight change behavior was measured up to 1000 h. F82H did not demonstrated stress corrosion cracking and its weight simply increased with surface oxidation. The weight change of F82H was almost same as commercial 9%-Cr steels. According to a cross-sectional analysis and weight change behavior, corrosion rate of F82H in the 823 K SCPW is estimated to be 0.04 mm/yr.

  14. Interfacial Microstructure and Mechanical Properties of Friction Stir Welded Joints of Commercially Pure Aluminum and 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Murugan, Balamagendiravarman; Thirunavukarasu, Gopinath; Kundu, Sukumar; Kailas, Satish V.; Chatterjee, Subrata

    2018-05-01

    In the present investigation, friction stir welding of commercially pure aluminum and 304 stainless steel was carried out at varying tool rotational speeds from 200 to 1000 rpm in steps of 200 rpm using 60 mm/min traverse speed at 2 (degree) tool tilt angle. Microstructural characterization of the interfacial zone was carried out using optical microscope and scanning electron microscope. Energy-dispersive spectroscopy indicated the presence of FeAl3 intermetallic phase. Thickness of the intermetallic layer increased with the increase in tool rotational speed. X-ray diffraction studies indicated the formation of intermetallic phases like FeAl2, Fe4Al13, Fe2Al5, and FeAl3. A maximum tensile strength of 90% that of aluminum along with 4.5% elongation was achieved with the welded sample at tool rotational speed of 400 rpm. The stir zone showed higher hardness as compared to base metals, heat affected zone, and thermo-mechanically affected zone due to the presence of intermetallics. The maximum hardness value at the stir zone was achieved at 1000 rpm tool rotational speed.

  15. Optimized postweld heat treatment procedures for 17-4 PH stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaduri, A.K.; Sujith, S.; Srinivasan, G.

    1995-05-01

    The postweld heat treatment (PWHT) procedures for 17-4 PH stainless steel weldments of matching chemistry was optimized vis-a-vis its microstructure prior to welding based on microstructural studies and room-temperature mechanical properties. The 17-4 PH stainless steel was welded in two different prior microstructural conditions (condition A and condition H 1150) and then postweld heat treated to condition H900 or condition H1150, using different heat treatment procedures. Microstructural investigations and room-temperature tensile properties were determined to study the combined effects of prior microstructural and PWHT procedures.

  16. 77 FR 64483 - Circular Welded Carbon-Quality Steel Pipe from the Socialist Republic of Vietnam: Notice of Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... Pipe from the Socialist Republic of Vietnam;'' ``Verification of the Sales Response of Midwest Air... Steel Joint Stock Company.... Sun Steel Joint Stock 4.57 Company. Huu Lien Asia Corporation........ Huu Lien Asia 4.57 Corporation. Hoa Phat Steel Pipe Co Hoa Phat Steel Pipe Co.. 4.57 Vietnam-Wide Rate \\13...

  17. Laboratory and test-site testing of moisture-cured urethanes on steel in salt-rich environment.

    DOT National Transportation Integrated Search

    2000-11-01

    Three 3-coat moisture-cured (MC) urethane commercial products formulated for protecting new steel (SSPC-SP 10) and power : tool-cleaned steel (SSPC-SP 3) surfaces against corrosion were evaluated; the total coating film thickness was about 75 : micro...

  18. Laboratory and test-site testing of moisture-cured urethanes on steel in salt-rich environment

    DOT National Transportation Integrated Search

    2000-12-01

    Three 3-coat moisture-cured (MC) urethane commercial products formulated for protecting new steel (SSPC-SP 10) and power tool-cleaned steel (SSPC-SP 3) surfaces against corrosion were evaluated; the total coating film thickness was about 75 microns. ...

  19. The Effect of Different Non-Metallic Inclusions on the Machinability of Steels

    PubMed Central

    Ånmark, Niclas; Karasev, Andrey; Jönsson, Pär Göran

    2015-01-01

    Considerable research has been conducted over recent decades on the role of non-metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, etc.) are discussed and summarized. Finally, some methods for modification of non-metallic inclusions in the liquid steel are considered to obtain a desired balance between mechanical properties and machinability of various steel grades. PMID:28787969

  20. The Effect of Different Non-Metallic Inclusions on the Machinability of Steels.

    PubMed

    Ånmark, Niclas; Karasev, Andrey; Jönsson, Pär Göran

    2015-02-16

    Considerable research has been conducted over recent decades on the role of non‑metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, etc .) are discussed and summarized. Finally, some methods for modification of non-metallic inclusions in the liquid steel are considered to obtain a desired balance between mechanical properties and machinability of various steel grades.