Sample records for h1n1 influenza outbreak

  1. H5N1 influenza viruses: outbreaks and biological properties

    PubMed Central

    Neumann, Gabriele; Chen, Hualan; Gao, George F; Shu, Yuelong; Kawaoka, Yoshihiro

    2010-01-01

    All known subtypes of influenza A viruses are maintained in wild waterfowl, the natural reservoir of these viruses. Influenza A viruses are isolated from a variety of animal species with varying morbidity and mortality rates. More importantly, influenza A viruses cause respiratory disease in humans with potentially fatal outcome. Local or global outbreaks in humans are typically characterized by excess hospitalizations and deaths. In 1997, highly pathogenic avian influenza viruses of the H5N1 subtype emerged in Hong Kong that transmitted to humans, resulting in the first documented cases of human death by avian influenza virus infection. A new outbreak started in July 2003 in poultry in Vietnam, Indonesia, and Thailand, and highly pathogenic avian H5N1 influenza viruses have since spread throughout Asia and into Europe and Africa. These viruses continue to infect humans with a high mortality rate and cause worldwide concern of a looming pandemic. Moreover, H5N1 virus outbreaks have had devastating effects on the poultry industries throughout Asia. Since H5N1 virus outbreaks appear to originate from Southern China, we here examine H5N1 influenza viruses in China, with an emphasis on their biological properties. PMID:19884910

  2. Outbreak of pandemic influenza A/H1N1 2009 in Nepal.

    PubMed

    Adhikari, Bal Ram; Shakya, Geeta; Upadhyay, Bishnu Prasad; Prakash Kc, Khagendra; Shrestha, Sirjana Devi; Dhungana, Guna Raj

    2011-03-23

    The 2009 flu pandemic is a global outbreak of a new strain of H1N1 influenza virus. Pandemic influenza A (H1N1) 2009 has posed a serious public health challenge world-wide. Nepal has started Laboratory diagnosis of Pandemic influenza A/H1N1 from mid June 2009 though active screening of febrile travellers with respiratory symptoms was started from April 27, 2009. Out of 609 collected samples, 302 (49.6%) were Universal Influenza A positive. Among the influenza A positive samples, 172(28.3%) were positive for Pandemic influenza A/H1N1 and 130 (21.3%) were Seasonal influenza A. Most of the pandemic cases (53%) were found among young people with ≤ 20 years. Case Fatality Ratio for Pandemic influenza A/H1N1 in Nepal was 1.74%. Upon Molecular characterization, all the isolated pandemic influenza A/H1N1 2009 virus found in Nepal were antigenically and genetically related to the novel influenza A/CALIFORNIA/07/2009-LIKE (H1N1)v type. The Pandemic 2009 influenza virus found in Nepal were antigenically and genetically related to the novel A/CALIFORNIA/07/2009-LIKE (H1N1)v type.

  3. Outbreaks of pandemic (H1N1) 2009 and seasonal influenza A (H3N2) on cruise ship.

    PubMed

    Ward, Kate A; Armstrong, Paul; McAnulty, Jeremy M; Iwasenko, Jenna M; Dwyer, Dominic E

    2010-11-01

    To determine the extent and pattern of influenza transmission and effectiveness of containment measures, we investigated dual outbreaks of pandemic (H1N1) 2009 and influenza A (H3N2) that had occurred on a cruise ship in May 2009. Of 1,970 passengers and 734 crew members, 82 (3.0%) were infected with pandemic (H1N1) 2009 virus, 98 (3.6%) with influenza A (H3N2) virus, and 2 (0.1%) with both. Among 45 children who visited the ship's childcare center, infection rate for pandemic (H1N1) 2009 was higher than that for influenza A (H3N2) viruses. Disembarked passengers reported a high level of compliance with isolation and quarantine recommendations. We found 4 subsequent cases epidemiologically linked to passengers but no evidence of sustained transmission to the community or passengers on the next cruise. Among this population of generally healthy passengers, children seemed more susceptible to pandemic (H1N1) 2009 than to influenza (H3N2) viruses. Intensive disease control measures successfully contained these outbreaks.

  4. Outbreaks of Pandemic (H1N1) 2009 and Seasonal Influenza A (H3N2) on Cruise Ship

    PubMed Central

    Ward, Kate A.; Armstrong, Paul; Iwasenko, Jenna M.; Dwyer, Dominic E.

    2010-01-01

    To determine the extent and pattern of influenza transmission and effectiveness of containment measures, we investigated dual outbreaks of pandemic (H1N1) 2009 and influenza A (H3N2) that had occurred on a cruise ship in May 2009. Of 1,970 passengers and 734 crew members, 82 (3.0%) were infected with pandemic (H1N1) 2009 virus, 98 (3.6%) with influenza A (H3N2) virus, and 2 (0.1%) with both. Among 45 children who visited the ship’s childcare center, infection rate for pandemic (H1N1) 2009 was higher than that for influenza A (H3N2) viruses. Disembarked passengers reported a high level of compliance with isolation and quarantine recommendations. We found 4 subsequent cases epidemiologically linked to passengers but no evidence of sustained transmission to the community or passengers on the next cruise. Among this population of generally healthy passengers, children seemed more susceptible to pandemic (H1N1) 2009 than to influenza (H3N2) viruses. Intensive disease control measures successfully contained these outbreaks. PMID:21029531

  5. Clinical efficacy of seasonal influenza vaccination: characteristics of two outbreaks of influenza A(H1N1) in immunocompromised patients.

    PubMed

    Helanterä, I; Janes, R; Anttila, V-J

    2018-06-01

    Influenza A(H1N1) causes serious complications in immunocompromised patients. The efficacy of seasonal vaccination in these patients has been questioned. To describe two outbreaks of influenza A(H1N1) in immunocompromised patients. Two outbreaks of influenza A(H1N1) occurred in our institution: on the kidney transplant ward in 2014 including patients early after kidney or simultaneous pancreas-kidney transplantation, and on the oncology ward in 2016 including patients receiving chemotherapy for malignant tumours. Factors leading to these outbreaks and the clinical efficacy of seasonal influenza vaccination were analysed. Altogether 86 patients were exposed to influenza A(H1N1) during the outbreaks, among whom the seasonal influenza vaccination status was unknown in 10. Only three out of 38 vaccinated patients were infected with influenza A(H1N1), compared with 20 out of 38 unvaccinated patients (P = 0.02). The death of one out of 38 vaccinated patients was associated with influenza, compared with seven out of 38 unvaccinated patients (P = 0.06). Shared factors behind the two outbreaks included outdated facilities not designed for the treatment of immunosuppressed patients. Vaccination coverage among patients was low, between 40% and 70% despite vaccination being offered to all patients free of charge. Vaccination coverage of healthcare workers on the transplant ward was low (46%), but, despite high coverage on the oncology ward (92%), the outbreak occurred. Seasonal influenza vaccination was clinically effective with both a reduced risk of influenza infection and a trend towards reduced mortality in these immunocompromised patients. Several possible causes were identified behind these two outbreaks, requiring continuous awareness in healthcare professionals to prevent further outbreaks. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  6. An outbreak of influenza A(H1N1)pdm09 virus in a primary school in Vietnam.

    PubMed

    Duong, Tran Nhu; Tho, Nguyen Thi Thi; Hien, Nguyen Tran; Olowokure, Babatunde

    2015-10-15

    Despite school pupils being at greatest risk during the 2009 influenza pandemic there are limited data on outbreaks of influenza A(H1N1)pdm09 in primary schools in South-East Asia. This prospective cohort study describes an outbreak of influenza A(H1N1)pdm09 in a primary school in rural Vietnam. In total 103 cases of influenza-like illness were found among the 407 pupils in the primary school. Ten of these were laboratory confirmed cases of influenza A(H1N1)pdm09 virus. The overall attack rate (AR) was 25% (103/407), and was highest (41%) in grade 4 pupils, where the outbreak started. All cases in the outbreak presented with a mild and self-limiting illness, acute respiratory symptoms and fever. Public health interventions to contain the outbreak could explain the lower attack rates in other grades. Ill pupils were asked to stay at home. Oseltamivir was not given to pupils and the school did not close during the outbreak. The last detected case occurred 12 days following identification of the first case. This is the first report of an outbreak of influenza A(H1N1)pdm09 among pupils in a primary school in Vietnam. High attack rates in Grade 4 pupils suggest shared activities contributed to transmission. The public health response using non-pharmaceutical measures may have played a role in ending the outbreak.

  7. Outbreak of H3N2 influenza at a US military base in Djibouti during the H1N1 pandemic of 2009.

    PubMed

    Cosby, Michael T; Pimentel, Guillermo; Nevin, Remington L; Fouad Ahmed, Salwa; Klena, John D; Amir, Ehab; Younan, Mary; Browning, Robert; Sebeny, Peter J

    2013-01-01

    Influenza pandemics have significant operational impact on deployed military personnel working in areas throughout the world. The US Department of Defense global influenza-like illness (ILI) surveillance network serves an important role in establishing baseline trends and can be leveraged to respond to outbreaks of respiratory illness. We identified and characterized an operationally unique outbreak of H3N2 influenza at Camp Lemonnier, Djibouti occurring simultaneously with the H1N1 pandemic of 2009 [A(H1N1)pdm09]. Enhanced surveillance for ILI was conducted at Camp Lemonnier in response to local reports of a possible outbreak during the A(H1N1)pdm09 pandemic. Samples were collected from consenting patients presenting with ILI (utilizing a modified case definition) and who completed a case report form. Samples were cultured and analyzed using standard real-time reverse transcriptase PCR (rt-RT-PCR) methodology and sequenced genetic material was phylogenetically compared to other published strains. rt-RT-PCR and DNA sequencing revealed that 25 (78%) of the 32 clinical samples collected were seasonal H3N2 and only 2 (6%) were A(H1N1)pdm09 influenza. The highest incidence of H3N2 occurred during the month of May and 80% of these were active duty military personnel. Phylogenetic analysis revealed that sequenced H3N2 strains were genetically similar to 2009 strains from the United States of America, Australia, and South east Asia. This outbreak highlights challenges in the investigation of influenza among deployed military populations and corroborates the public health importance of maintaining surveillance systems for ILI that can be enhanced locally when needed.

  8. Outbreak of novel influenza A (H1N1-2009) linked to a dance club.

    PubMed

    Chan, Pei Pei; Subramony, Hariharan; Lai, Florence Y L; Tien, Wee Siong; Tan, Boon Hian; Solhan, Suhana; Han, Hwi Kwang; Foong, Bok Huay; James, Lyn; Ooi, Peng Lim

    2010-04-01

    This paper describes the epidemiology and control of a community outbreak of novel influenza A (H1N1-2009) originating from a dance club in Singapore between June and July 2009. Cases of novel influenza A (H1N1-2009) were confirmed using in-house probe-based real-time polymerase chain reaction (PCR). Contact tracing teams from the Singapore Ministry of Health obtained epidemiological information from all cases via telephone. A total of 48 cases were identified in this outbreak, of which 36 (75%) cases were patrons and dance club staff, and 12 (25%) cases were household members and social contacts. Mathematical modelling showed that this outbreak had a reproductive number of 1.9 to 2.1, which was similar to values calculated from outbreaks in naïve populations in other countries. This transmission risk occurred within an enclosed space with patrons engaged in intimate social activities, suggesting that dance clubs are places conducive for the spread of the virus.

  9. Identification of influenza A pandemic (H1N1) 2009 variants during the first 2009 influenza outbreak in Mexico City.

    PubMed

    Zepeda, Hector M; Perea-Araujo, Lizbeth; Zarate-Segura, Paola B; Vázquez-Pérez, Joel A; Miliar-García, Angel; Garibay-Orijel, Claudio; Domínguez-López, Aarón; Badillo-Corona, Jesús A; López-Orduña, Eduardo; García-González, Octavio P; Villaseñor-Ruíz, Ignacio; Ahued-Ortega, Armando; Aguilar-Faisal, Leopoldo; Bravo, Jorge; Lara-Padilla, Eleazar; García-Cavazos, Ricardo J

    2010-05-01

    In March 2009, public health surveillance detected increased numbers of influenza-like illness presenting to hospitals in Mexico City. The aetiological agent was subsequently determined to be a novel influenza A (H1N1) triple reassortant, which has spread worldwide. As a consequence the World Health Organisation has declared the first Influenza pandemic of the 21st century. To describe clinically and molecularly the first outbreak of influenza A pH1N1 (2009) during 1-5 May to establish a baseline of epidemiological data for pH1N1. Also, to monitor for the emergence of antiviral resistance, and mutations affecting virulence and transmissibility. Samples were collected from 751 patients with influenza-like symptoms throughout Mexico City and were tested for influenza A pH1N1 (2009) using real-time PCR. In the samples that were positive for influenza A pH1N1 (2009) fragments from the haemagglutinin (H1) and neuraminidase (N1) genes were sequenced. A total of 203/751 (27%) patients were positive for the pandemic H1N1 (2009) virus (53% male and 47% female). The 0-12-year-old group was the most affected 85/751 (42%). Sequence analysis showed five new variants of the pandemic H1N1 (2009) virus for NA: G249E (GQ292900), M269I (GQ292892), Y274H (GQ292913), T332A (GQ292933), N344K (GQ292882), and four variants for HA: N461K (GQ293006), K505R (GQ292989), I435V (GQ292995), I527N (GQ292997). We have provided a baseline of epidemiological data from the first outbreak of influenza A pH1N1 (2009) during 1-5 May in Mexico City. The sequencing of partial fragments of the HA and NA genes did not show the presence of previously described mutations affecting known sites of antiviral resistance in seasonal influenza A such as the H275Y (oseltamivir resistance), R293 or N295 etc. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Outbreak of H3N2 Influenza at a US Military Base in Djibouti during the H1N1 Pandemic of 2009

    PubMed Central

    Cosby, Michael T.; Pimentel, Guillermo; Nevin, Remington L.; Fouad Ahmed, Salwa; Klena, John D.; Amir, Ehab; Younan, Mary; Browning, Robert; Sebeny, Peter J.

    2013-01-01

    Background Influenza pandemics have significant operational impact on deployed military personnel working in areas throughout the world. The US Department of Defense global influenza-like illness (ILI) surveillance network serves an important role in establishing baseline trends and can be leveraged to respond to outbreaks of respiratory illness. Objective We identified and characterized an operationally unique outbreak of H3N2 influenza at Camp Lemonnier, Djibouti occurring simultaneously with the H1N1 pandemic of 2009 [A(H1N1)pdm09]. Methods Enhanced surveillance for ILI was conducted at Camp Lemonnier in response to local reports of a possible outbreak during the A(H1N1)pdm09 pandemic. Samples were collected from consenting patients presenting with ILI (utilizing a modified case definition) and who completed a case report form. Samples were cultured and analyzed using standard real-time reverse transcriptase PCR (rt-RT-PCR) methodology and sequenced genetic material was phylogenetically compared to other published strains. Results rt-RT-PCR and DNA sequencing revealed that 25 (78%) of the 32 clinical samples collected were seasonal H3N2 and only 2 (6%) were A(H1N1)pdm09 influenza. The highest incidence of H3N2 occurred during the month of May and 80% of these were active duty military personnel. Phylogenetic analysis revealed that sequenced H3N2 strains were genetically similar to 2009 strains from the United States of America, Australia, and South east Asia. Conclusions This outbreak highlights challenges in the investigation of influenza among deployed military populations and corroborates the public health importance of maintaining surveillance systems for ILI that can be enhanced locally when needed. PMID:24339995

  11. Outbreak of Influenza A(H1N1) in a Kidney Transplant Unit-Protective Effect of Vaccination.

    PubMed

    Helanterä, I; Anttila, V-J; Lappalainen, M; Lempinen, M; Isoniemi, H

    2015-09-01

    Seasonal influenza vaccination is recommended for patients with end-stage renal disease (ESRD), despite suggested inferior efficacy among these patients. We characterize an outbreak of influenza A(H1N1) in a kidney transplant unit. Altogether 23 patients were treated on the ward for postoperative care after kidney transplantation during the outbreak. After the first positive case, all patients were tested with nasopharyngeal swab tests and 7 patients were diagnosed with influenza A(H1N1). Altogether 17/23 patients had received adequate seasonal influenza vaccination, of whom 2/17 tested positive for influenza (one asymptomatic, one with mild cough). Five of six unvaccinated patients were diagnosed with influenza A(H1N1); 3/5 suffered from severe respiratory failure and were treated with ventilator support in the ICU, but all died due to acute respiratory distress syndrome, whereas 2/5 suffered from mild viral pneumonitis and recovered fully. The risk of influenza infection and mortality was significantly increased in unvaccinated patients (odds ratio 37.5 [95% CI 2.7-507.5, p = 0.01] and 6.7 [95% CI 2.3-18.9, p = 0.003], respectively). Influenza A(H1N1) had a high mortality in our cohort of nonvaccinated immunosuppressed patients early after kidney transplantation. None of the vaccinated patients developed serious disease, supporting the role of vaccination also for ESRD patients. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  12. Novel influenza A(H1N1) outbreak among French armed forces in 2009: results of Military Influenza Surveillance System.

    PubMed

    Mayet, A; Duron, S; Nivoix, P; Haus-Cheymol, R; Ligier, C; Gache, K; Dia, A; Manet, G; Verret, C; Pommier de Santi, V; Bigaillon, C; Martinaud, C; Piarroux, M; Faure, N; Hupin, C; Decam, C; Chaudet, H; Meynard, J B; Nicand, E; Deparis, X; Migliani, R

    2011-08-01

    An outbreak of novel A(H1N1) virus influenza, detected in Mexico in April 2009, spread worldwide in 9 weeks. The aim of this paper is to present the monitoring results of this influenza outbreak among French armed forces. The period of monitoring by the Military Influenza Surveillance System (MISS) was 9 months, from May 2009 to April 2010. The main monitored events were acute respiratory infection (ARI), defined by oral temperature ≥38.5 °C and cough, and laboratory-confirmed influenza. Weekly incidence rates were calculated by relating cases to the number of servicepersons monitored. In continental France, the incidence of ARI increased from September 2009, with a weekly maxima of 401 cases per 100,000 in early December 2009 according to MISS. Estimations of the incidence of consultations which could be related to novel A(H1N1) influenza ranged from 48 to 57 cases per 100,000. The trends observed by MISS are compatible with French national estimations. The incidence of consultations which could be related to A(H1N1) influenza at the peak of the epidemic (194 cases per 100,000) was much lower than the national estimate (1321 cases per 100,000). This may be due to servicepersons who consulted in civilian facilities and were not monitored. Other explanations are the healthy worker effect and the younger age of the military population. Copyright © 2011 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  13. Reassortant H1N1 influenza virus vaccines protect pigs against pandemic H1N1 influenza virus and H1N2 swine influenza virus challenge.

    PubMed

    Yang, Huanliang; Chen, Yan; Shi, Jianzhong; Guo, Jing; Xin, Xiaoguang; Zhang, Jian; Wang, Dayan; Shu, Yuelong; Qiao, Chuanling; Chen, Hualan

    2011-09-28

    Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Adult Influenza A (H1N1) Related Encephalitis: A Case Report.

    PubMed

    Midha, Devinder; Kumar, Arun; Vasudev, Pratibha; Iqbal, Zafar Ahmad; Mandal, Amit Kumar

    2018-05-01

    The year 2009-2010 saw H1N1 influenza outbreaks occurring in almost all countries of the world, causing the WHO to declare it a pandemic of an alert level of 6. In India, H1N1 influenza outbreaks were again reported in late 2014 and early 2015. Since then, sporadic cases of H1N1 influenza have been reported. H1N1 influenza usually presents itself with respiratory tract symptoms. In a minority of patients, abdominal symptoms may occur as well. Acute influenza-associated encephalopathy/encephalitis mostly occurs in the pediatric population, whereas in adults, it is a rare complication. The incidence of neurological complications appears to have increased after the 2009 H1N1 influenza A virus pandemic. We would like to draw attention to an adult patient case who initially presented with respiratory symptoms but then deteriorated and developed encephalitis, which is rarely reported. As per literature reviewed by Victoria Bangualid and Judith Berger on PubMed, only 21 cases of neurological complications were found in adult influenza A patients, out of whom 8 had encephalopathy.

  15. Early Outbreak of 2009 Influenza A (H1N1) in Mexico Prior to Identification of pH1N1 Virus

    PubMed Central

    Hsieh, Ying-Hen; Ma, Stefan; Velasco Hernandez, Jorge X.; Lee, Vernon J.; Lim, Wei Yen

    2011-01-01

    Background In the aftermath of the global spread of 2009 influenza A (pH1N1) virus, still very little is known of the early stages of the outbreak in Mexico during the early months of the year, before the virus was identified. Methodology/Main Findings We fit a simple mathematical model, the Richards model, to the number of excess laboratory-confirmed influenza cases in Mexico and Mexico City during the first 15 weeks in 2009 over the average influenza case number of the previous five baseline years of 2004-2008 during the same period to ascertain the turning point (or the peak incidence) of a wave of early influenza infections, and to estimate the transmissibility of the virus during these early months in terms of its basic reproduction number. The results indicate that there may have been an early epidemic in Mexico City as well as in all of Mexico during February/March. Based on excess influenza cases, the estimated basic reproduction number R0 for the early outbreak was 1.59 (0.55 to 2.62) for Mexico City during weeks 5–9, and 1.25 (0.76, 1.74) for all of Mexico during weeks 5–14. Conclusions We established the existence of an early epidemic in Mexico City and in all of Mexico during February/March utilizing the routine influenza surveillance data, although the location of seeding is unknown. Moreover, estimates of R0 as well as the time of peak incidence (the turning point) for Mexico City and all of Mexico indicate that the early epidemic in Mexico City in February/March had been more transmissible (larger R0) and peaked earlier than the rest of the country. Our conclusion lends support to the possibility that the virus could have already spread to other continents prior to the identification of the virus and the reporting of lab-confirmed pH1N1 cases in North America in April. PMID:21909366

  16. [Investigation on a seasonal influenza accompanying with the first locale novel A/H1N1 influenza outbreak in China].

    PubMed

    Yuan, Jun; Li, Mei-xia; Liu, Yu-fei; Di, Biao; Xiao, Xiao-ling; Mao, Xin-wu; Wu, Ye-jian; Xie, Hua-ping; Xie, Zhao-jun; Zhang, Hao; Liu, Jian-ping; Li, Hai-lin; Shen, Ji-chuan; Yang, Zhi-cong; Wang, Ming

    2009-10-01

    To timely summarize past experience and to provide more pertinent reference for control and prevention in A/H1N1 cases in influenza season. During May 25 to 31, 2009, 2 secondary community cases caused by a influenza A/H1N1 imported case. In the close contacts of 3 A/H1N1 cases, 14 had some aspirator symptoms onset, such as fever (> or = 37.5 degrees C), cough, sore throat and etc. Laboratory tests excluded the infection of A/H1N1 influenza. For throat swab test for the 14 cases, 7 were tested for seasonal influenza virus. A face-to-face or telephone interview was conducted by CDC staff to collect information of 62 close contacts. Of 14 fever cases, there was no significant by differences by age[15-age group: 19.2% (5/26), over 25-age group: 25.0% (9/36); chi(2) = 0.287, P = 0.592]; by sex group [24.0% (6/25) for male and 21.6% (8/37) for female; chi(2) = 0.048, P = 0.826], by working units [dressing and design, photograph, saleroom and others, consumer group: 42.1% (8/19), 27.3% (3/11), 12.5% (2/16) and 6.3% (1/16); chi(2) = 7.653, P = 0.054], by dormitory style [dormitory style = 33.3% (4/12), non-dormitory style = 29.4% (10/34); chi(2) = 0.699, P = 0.403]. All the cases had fever (37.5 - 37.9 degrees C), no case had diarrhea. One in 3 A/H1N1 cases had diarrhea. All the 14 cases were negative result for A/H1N1 RNA. Six from 7 cases were positive for seasonal influenza test. This was a seasonal influenza outbreak happened in the close contacts of first confirmed A/H1N1 cases in community in mainland China. It showed that we should exclude the seasonal influenza in the investigation of A/H1N1 cases in the seasonal influenza period in some time. It is necessary to take effective measure to strengthen the control and prevention of seasonal influenza.

  17. Inside the Outbreak of the 2009 Influenza A (H1N1)v Virus in Mexico

    PubMed Central

    Zepeda-Lopez, Hector M.; Perea-Araujo, Lizbeth; Miliar-García, Angel; Dominguez-López, Aarón; Xoconostle-Cázarez, Beatriz; Lara-Padilla, Eleazar; Ramírez Hernandez, Jorge A.; Sevilla-Reyes, Edgar; Orozco, Maria Esther; Ahued-Ortega, Armando; Villaseñor-Ruiz, Ignacio; Garcia-Cavazos, Ricardo J.; Teran, Luis M.

    2010-01-01

    Background Influenza viruses pose a threat to human health because of their potential to cause global disease. Between mid March and mid April a pandemic influenza A virus emerged in Mexico. This report details 202 cases of infection of humans with the 2009 influenza A virus (H1N1)v which occurred in Mexico City as well as the spread of the virus throughout the entire country. Methodology and Findings From May 1st to May 5th nasopharyngeal swabs, derived from 751 patients, were collected at 220 outpatient clinics and 28 hospitals distributed throughout Mexico City. Analysis of samples using real time RT-PCR revealed that 202 patients out of the 751 subjects (26.9%) were confirmed to be infected with the new virus. All confirmed cases of human infection with the strain influenza (H1N1)v suffered respiratory symptoms. The greatest number of confirmed cases during the outbreak of the 2009 influenza A (H1N1)v were seen in neighbourhoods on the northeast side of Mexico City including Iztapalapa, Gustavo A. Madero, Iztacalco, and Tlahuac which are the most populated areas in Mexico City. Using these data, together with data reported by the Mexican Secretariat of Health (MSH) to date, we plot the course of influenza (H1N1)v activity throughout Mexico. Conclusions Our data, which is backed up by MSH data, show that the greatest numbers of the 2009 influenza A (H1N1) cases were seen in the most populated areas. We speculate on conditions in Mexico which may have sparked this flu pandemic, the first in 41 years. We accept the hypothesis that high population density and a mass gathering which took in Iztapalapa contributed to the rapid spread of the disease which developed in three peaks of activity throughout the Country. PMID:20949040

  18. An Outbreak of 2009 Pandemic Influenza A (H1N1) Virus Infection in an Elementary School in Pennsylvania

    PubMed Central

    Bhattarai, Achuyt; Fagan, Ryan P.; Ostroff, Stephen; Sodha, Samir V.; Moll, Mària E.; Lee, Bruce Y.; Chang, Chung-Chou H.; Ennis, Brent; Britz, Phyllis; Fiore, Anthony; Nguyen, Michael; Palekar, Rakhee; Archer, W. Roodly; Gift, Thomas L.; Leap, Rebecca; Nygren, Benjamin L.; Cauchemez, Simon; Angulo, Frederick J.; Swerdlow, David

    2011-01-01

    In May 2009, one of the earliest outbreaks of 2009 pandemic influenza A virus (pH1N1) infection resulted in the closure of a semi-rural Pennsylvania elementary school. Two sequential telephone surveys were administered to 1345 students (85% of the students enrolled in the school) and household members in 313 households to collect data on influenza-like illness (ILI). A total of 167 persons (12.4%) among those in the surveyed households, including 93 (24.0%) of the School A students, reported ILI. Students were 3.1 times more likely than were other household members to develop ILI (95% confidence interval [CI], 2.3–4.1). Fourth-grade students were more likely to be affected than were students in other grades (relative risk, 2.2; 95% CI, 1.2–3.9). pH1N1 was confirmed in 26 (72.2%) of the individuals tested by real-time reverse-transcriptase polymerase chain reaction. The outbreak did not resume upon the reopening of the school after the 7-day closure. This investigation found that pH1N1 outbreaks at schools can have substantial attack rates; however, grades and classrooms are affected variably. Additioanl study is warranted to determine the effectiveness of school closure during outbreaks. PMID:21342888

  19. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies.

    PubMed

    Kashyap, Arun K; Steel, John; Oner, Ahmet F; Dillon, Michael A; Swale, Ryann E; Wall, Katherine M; Perry, Kimberly J; Faynboym, Aleksandr; Ilhan, Mahmut; Horowitz, Michael; Horowitz, Lawrence; Palese, Peter; Bhatt, Ramesh R; Lerner, Richard A

    2008-04-22

    The widespread incidence of H5N1 influenza viruses in bird populations poses risks to human health. Although the virus has not yet adapted for facile transmission between humans, it can cause severe disease and often death. Here we report the generation of combinatorial antibody libraries from the bone marrow of five survivors of the recent H5N1 avian influenza outbreak in Turkey. To date, these libraries have yielded >300 unique antibodies against H5N1 viral antigens. Among these antibodies, we have identified several broadly reactive neutralizing antibodies that could be used for passive immunization against H5N1 virus or as guides for vaccine design. The large number of antibodies obtained from these survivors provide a detailed immunochemical analysis of individual human solutions to virus neutralization in the setting of an actual virulent influenza outbreak. Remarkably, three of these antibodies neutralized both H1 and H5 subtype influenza viruses.

  20. An Infection Control Program for a 2009 Influenza A H1N1 Outbreak in a University-Based Summer Camp

    ERIC Educational Resources Information Center

    Tsalik, Ephraim L.; Cunningham, Coleen K.; Cunningham, Hannah M.; Lopez-Marti, Maria G.; Sangvai, Devdutta G.; Purdy, William K.; Anderson, Deverick J.; Thompson, Jessica R.; Brown, Monte; Woods, Christopher W.; Jaggers, L. Brett; Hendershot, Edward F.

    2011-01-01

    Objectives: Describe two 2009-H1N1 influenza outbreaks in university-based summer camps and the implementation of an infection control program. Participants: 7,906 campers across 73 residential camps from May 21-August 2, 2009. Methods: Influenza-like-illness (ILI) was defined as fever with cough and/or sore throat. Influenza A was identified…

  1. Transmission characteristics of different students during a school outbreak of (H1N1) pdm09 influenza in China, 2009.

    PubMed

    Wang, Ligui; Chu, Chenyi; Yang, Guang; Hao, Rongzhang; Li, Zhenjun; Cao, Zhidong; Qiu, Shaofu; Li, Peng; Wu, Zhihao; Yuan, Zhengquan; Xu, Yuanyong; Zeng, Dajun; Wang, Yong; Song, Hongbin

    2014-08-07

    Many outbreaks of A(H1N1)pdm09 influenza have occurred in schools with a high population density. Containment of school outbreaks is predicted to help mitigate pandemic influenza. Understanding disease transmission characteristics within the school setting is critical to implementing effective control measures. Based on a school outbreak survey, we found almost all (93.7%) disease transmission occurred within a single grade, only 6.3% crossed grades. Transmissions originating from freshmen exhibited a star-shaped network; other grades exhibited branch- or line-shaped networks, indicating freshmen have higher activity and are more likely to cause infection. R0 for freshmen, calculated as 2.04, estimated as 2.76, was greater than for other grades (P < 0.01). Without intervention, the estimated number of cases was much greater when the outbreak was initiated by freshmen than by other grades. Furthermore, the estimated number of cases required to be under quarantine and isolation for freshmen was less than that of equivalent other grades. So we concluded that different grades have different transmission mode. Freshmen were the main facilitators of the spread of A(H1N1)pdm09 influenza during this school outbreak, so control measures (e.g. close contact isolation) priority used for freshmen would likely have effectively reduced spread of influenza in school settings.

  2. Pandemic influenza A(H1N1) outbreak among a group of medical students who traveled to the Dominican Republic.

    PubMed

    Vilella, Anna; Serrano, Beatriz; Marcos, Maria A; Serradesanferm, Anna; Mensa, Josep; Hayes, Edward; Anton, Andres; Rios, Jose; Pumarola, Tomas; Trilla, Antoni

    2012-01-01

    From the beginning of the influenza pandemic until the time the outbreak described here was detected, 77,201 cases of pandemic influenza A(H1N1) with 332 deaths had been reported worldwide, mostly in the United States and Mexico. All of the cases reported in Spain until then had a recent history of travel to Mexico, the Dominican Republic, or Chile. We describe an outbreak of influenza among medical students who traveled from Spain to the Dominican Republic in June 2009. We collected diagnostic samples and clinical histories from consenting medical students who had traveled to the Dominican Republic and from their household contacts after their return to Spain. Of 113 students on the trip, 62 (55%) developed symptoms; 39 (45%) of 86 students tested had laboratory evidence of influenza A(H1N1) infection. Most students developed symptoms either just before departure from the Dominican Republic or within days of returning to Spain. The estimated secondary attack rate of influenza-like illness among residential contacts of ill students after return to Spain was 2.1%. The attack rate of influenza A(H1N1) can vary widely depending on the circumstances of exposure. We report a high attack rate among a group of traveling medical students but a much lower secondary attack rate among their contacts after return from the trip. These findings may aid the development of recommendations to prevent influenza. © 2011 International Society of Travel Medicine.

  3. Clinical and epidemiologic characteristics of an outbreak of novel H1N1 (swine origin) influenza A virus among United States military beneficiaries.

    PubMed

    Crum-Cianflone, Nancy F; Blair, Patrick J; Faix, Dennis; Arnold, John; Echols, Sara; Sherman, Sterling S; Tueller, John E; Warkentien, Tyler; Sanguineti, Gabriela; Bavaro, Mary; Hale, Braden R

    2009-12-15

    A novel swine-origin influenza A (H1N1) virus was identified in March 2009 and subsequently caused worldwide outbreaks. The San Diego region was an early focal point of the emerging pandemic. We describe the clinical and epidemiologic characteristics of this novel strain in a military population to assist in future outbreak prevention and control efforts. We performed an epidemiologic evaluation of novel H1N1 virus infections diagnosed in San Diego County among 96,258 local US military beneficiaries. The structured military medical system afforded the ability to obtain precise epidemiologic information on the impact on H1N1 virus infection in a population. The novel H1N1 virus was confirmed using real-time reverse transcriptase polymerase chain reaction (rRT-PCR). From 21 April through 8 May 2009, 761 patients presented with influenza-like illness and underwent rRT-PCR testing. Of these patients, 97 had confirmed novel H1N1 virus infection, with an incidence rate of 101 cases per 100,000 persons. The median age of H1N1 patients with H1N1 virus infection was 21 years (interquartile range, 15-25 years). Fever was a universal symptom in patients with H1N1 virus infection; other symptoms included cough (present in 96% of patients), myalgia or arthralgia (57%), and sore throat (51%). Sixty-eight (70%) of our patients had an identifiable epidemiologic link to another confirmed patient. The largest cluster of cases of H1N1 virus infection occurred on a Navy ship and involved 32 (8%) of 402 crew members; the secondary attack rate was 6%-14%. The rapid influenza testing that was used during this outbreak had a sensitivity of 51% and specificity of 98%, compared with rRT-PCR. Only 1 patient was hospitalized, and there were no deaths. A novel H1N1 influenza A virus caused a significant outbreak among military beneficiaries in San Diego County, including a significant cluster of cases onboard a Navy ship. The outbreak described here primarily affected adolescents and young

  4. Seroepidemiologic investigation of an outbreak of pandemic influenza A H1N1 2009 aboard a US Navy vessel--San Diego, 2009.

    PubMed

    Khaokham, Christina B; Selent, Monica; Loustalot, Fleetwood V; Zarecki, Shauna Mettee; Harrington, Douglas; Hoke, Eileen; Faix, Dennis J; Ortiguerra, Ryan; Alvarez, Bryan; Almond, Nathaniel; McMullen, Kellie; Cadwell, Betsy; Uyeki, Timothy M; Blair, Patrick J; Waterman, Stephen H

    2013-09-01

    During summer 2009, a US Navy ship experienced an influenza-like illness outbreak with 126 laboratory-confirmed cases of pandemic influenza A (H1N1) 2009 virus among the approximately 2000-person crew. During September 24-October 9, 2009, a retrospective seroepidemiologic investigation was conducted to characterize the outbreak. We administered questionnaires, reviewed medical records, and collected post-outbreak sera from systematically sampled crewmembers. We used real-time reverse transcription-PCR or microneutralization assays to detect evidence of H1N1 virus infection. Retrospective serologic data demonstrated that the overall H1N1 virus infection attack rate was 32%. Weighted H1N1 virus attack rates were higher among marines (37%), junior-ranking personnel (34%), and persons aged 19-24 years (36%). In multivariable analysis, a higher risk of illness was found for women versus men (odds ratio [OR] = 2.2; 95% confidence interval [CI]: 1.1-4.4), marines versus navy personnel (OR = 1.7; 95% CI, 1.0-2.9), and those aged 19-24 versus ≥ 35 years (OR = 3.9; 95% CI, 1.2-12.8). Fifty-three percent of infected persons did not recall respiratory illness symptoms. Among infected persons, only 35% met criteria for acute respiratory illness and 11% for influenza-like illness. Approximately half of H1N1 infections were asymptomatic, and thus, the attack rate was higher than estimated by clinical illness alone. Enhanced infection control measures including pre-embarkation illness screening, improved self-reporting of illness, isolation of ill and quarantine of exposed contacts, and prompt antiviral chemoprophylaxis and treatment might be useful in controlling shipboard influenza outbreaks. Published 2013. This article is U.S. Government work and in the public domain in the USA.

  5. Control of an H1N1 outbreak in a correctional facility in central Taiwan.

    PubMed

    Chao, Wen-Cheng; Liu, Po-Yu; Wu, Chieh-Liang

    2017-04-01

    Controlling the outbreak of H1N1 in correctional facilities is difficult due to the inevitable close and prolonged contact between inmates. The current study reports an H1N1 outbreak in a correction facility and investigates the effectiveness of oseltamivir to control the spread of H1N1. All 2690 inmates at the prison received medical service from a single hospital. A list of patients with a diagnosis of influenza was compiled based on medical diagnoses with respiratory symptoms during the outbreak period. The outbreak was then investigated using both chart review and questionnaires. In the 4-week outbreak period, 24.6% (663/2690) of inmates experienced influenza-associated symptoms, 50.5% (335/663) fulfilled the criteria for influenza-like illness (ILI) with fever, and the overall attack rate of ILI was 12.8%. Twelve inmates were admitted for complicated influenza, and three of them experienced respiratory failure. Oseltamivir was provided at the end of the 2nd week, and the effectiveness of oseltamivir in the 1004 inmates from seven major sections in the prison was analyzed. The ILI incidence rate reduced from 12.6 ± 4.1% between the 1st and 2nd weeks to 4.8 ± 2.4% between the 3rd and 4th weeks (p = 0.018) after the oseltamivir intervention. In the 878 uninfected inmates 47.0% (413/878) of inmates received prophylactic oseltamivir at the end of the 2nd week, the incidence of ILI was lower than those without prophylaxis (6.2% versus 2.4%; p = 0.013). H1N1 influenza spread rapidly in the correctional facility. The use of oseltamivir may be a practical intervention to control an H1N1 outbreak an enclosed environment such as this. Copyright © 2015. Published by Elsevier B.V.

  6. Characterization of influenza A(H1N1)pdm09 viruses isolated from Nepalese and Indian outbreak patients in early 2015.

    PubMed

    Nakamura, Kazuya; Shirakura, Masayuki; Fujisaki, Seiichiro; Kishida, Noriko; Burke, David F; Smith, Derek J; Kuwahara, Tomoko; Takashita, Emi; Takayama, Ikuyo; Nakauchi, Mina; Chadha, Mandeep; Potdar, Varsha; Bhushan, Arvind; Upadhyay, Bishnu Prasad; Shakya, Geeta; Odagiri, Takato; Kageyama, Tsutomu; Watanabe, Shinji

    2017-09-01

    We characterized influenza A(H1N1)pdm09 isolates from large-scale outbreaks that occurred in Nepal and India in early 2015. Although no specific viral features, which may have caused the outbreaks, were identified, an S84N substitution in hemagglutinin was frequently observed. Chronological phylogenetic analysis revealed that these Nepalese and Indian viruses possessing the S84N substitution constitute potential ancestors of the novel genetic subclade 6B.1 virus that spread globally in the following (2015/16) influenza season. Thus, active surveillance of circulating influenza viruses in the Southern Asia region, including Nepal and India, would be beneficial for detecting novel variant viruses prior to their worldwide spread. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  7. Combined interventions for mitigation of an influenza A (H1N1) 2009 outbreak in a physical training camp in Beijing, China.

    PubMed

    Chu, Chen-Yi; de Silva, U Chandimal; Guo, Jin-Peng; Wang, Yong; Wen, Liang; Lee, Vernon J; Li, Shen-Long; Huang, Liu-Yu

    2017-07-01

    Many studies have suggested the effectiveness of single control measures in the containment and mitigation of pandemic influenza A (H1N1) 2009. The effects of combined interventions by multiple control measures in reducing the impact of an influenza A (H1N1) 2009 outbreak in a closed physical training camp in Beijing, China were evaluated. Oseltamivir was prescribed for the treatment of confirmed cases and possible cases and as prophylaxis for all other participants in this training camp. Public health control measures were applied simultaneously, including the isolation of patients and possible cases, personal protection and hygiene, and social distancing measures. Symptom surveillance of all participants was initiated, and the actual attack rate was calculated. For comparison, the theoretical attack rate for this outbreak was projected using the Newton-Raphson numerical method. A total of 3256 persons were present at the physical training camp. During the outbreak, 405 (68.3%) possible cases and 26 (4.4%) confirmed cases were reported before the intervention and completed oseltamivir treatment; 162 (27.3%) possible cases were reported after the intervention and received part treatment and part prophylaxis. The other 2663 participants completed oseltamivir prophylaxis. Of the possible cases, 181 with fever ≥38.5°C were isolated. The actual attack rate for this outbreak of pandemic influenza A (H1N1) 2009 was 18.2%, which is much lower than the theoretical attack rate of 80% projected. Combined interventions of large-scale antiviral ring prophylaxis and treatment and public health control measures could be applied to reduce the magnitude of influenza A (H1N1) 2009 outbreaks in closed settings. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Influenza Risk Management: Lessons Learned from an A(H1N1) pdm09 Outbreak Investigation in an Operational Military Setting

    DTIC Science & Technology

    2013-07-10

    of the virus in Spain was detected during an outbreak investigation of influenza -like illness (ILI) in soldiers from an engineering military academy...SwInfA primer and probe set) and specific A(H1N1) pdm09 influenza A viruses using SwH1 primer and probe set developed by CDC, Atlanta (WHO...CY062374, CY062375 and CY062376. Viral culture Influenza viruses were isolated from clinical samples by infecting Madin Darby Canine Kidney (MDCK

  9. Timing of Influenza A(H5N1) in Poultry and Humans and Seasonal Influenza Activity Worldwide, 2004–2013

    PubMed Central

    Durand, Lizette O.; Glew, Patrick; Gross, Diane; Kasper, Matthew; Trock, Susan; Kim, Inkyu K.; Bresee, Joseph S.; Donis, Ruben; Uyeki, Timothy M.; Widdowson, Marc-Alain

    2015-01-01

    Co-circulation of influenza A(H5N1) and seasonal influenza viruses among humans and animals could lead to co-infections, reassortment, and emergence of novel viruses with pandemic potential. We assessed the timing of subtype H5N1 outbreaks among poultry, human H5N1 cases, and human seasonal influenza in 8 countries that reported 97% of all human H5N1 cases and 90% of all poultry H5N1 outbreaks. In these countries, most outbreaks among poultry (7,001/11,331, 62%) and half of human cases (313/625, 50%) occurred during January–March. Human H5N1 cases occurred in 167 (45%) of 372 months during which outbreaks among poultry occurred, compared with 59 (10%) of 574 months that had no outbreaks among poultry. Human H5N1 cases also occurred in 59 (22%) of 267 months during seasonal influenza periods. To reduce risk for co-infection, surveillance and control of H5N1 should be enhanced during January–March, when H5N1 outbreaks typically occur and overlap with seasonal influenza virus circulation. PMID:25625302

  10. Mortality attributable to pandemic influenza A (H1N1) 2009 in San Luis Potosí, Mexico

    PubMed Central

    Comas‐García, Andreu; García‐Sepúlveda, Christian A.; Méndez‐de Lira, José J.; Aranda‐Romo, Saray; Hernández‐Salinas, Alba E.; Noyola, Daniel E.

    2010-01-01

    Please cite this paper as: Comas‐García et al. (2011) Mortality attributable to pandemic influenza A (H1N1) 2009 in San Luis Potosí, Mexico. Influenza and Other Respiratory Viruses 5(2), 76–82. Background  Acute respiratory infections are a leading cause of morbidity and mortality worldwide. Starting in 2009, pandemic influenza A(H1N1) 2009 virus has become one of the leading respiratory pathogens worldwide. However, the overall impact of this virus as a cause of mortality has not been clearly defined. Objectives  To determine the impact of pandemic influenza A(H1N1) 2009 on mortality in a Mexican population. Methods  We assessed the impact of pandemic influenza virus on mortality during the first and second outbreaks in San Luis Potosí, Mexico, and compared it to mortality associated with seasonal influenza and respiratory syncytial virus (RSV) during the previous winter seasons. Results  We estimated that, on average, 8·1% of all deaths that occurred during the 2003–2009 seasons were attributable to influenza and RSV. During the first pandemic influenza A(H1N1) 2009 outbreak, there was an increase in mortality in persons 5–59 years of age, but not during the second outbreak (Fall of 2009). Overall, pandemic influenza A (H1N1) 2009 outbreaks had similar effects on mortality to those associated with seasonal influenza virus epidemics. Conclusions  The impact of influenza A(H1N1) 2009 virus on mortality during the first year of the pandemic was similar to that observed for seasonal influenza. The establishment of real‐time surveillance systems capable of integrating virological, morbidity, and mortality data may result in the timely identification of outbreaks so as to allow for the institution of appropriate control measures to reduce the impact of emerging pathogens on the population. PMID:21306570

  11. A human-like H1N2 influenza virus detected during an outbreak of acute respiratory disease in swine in Brazil.

    PubMed

    Schaefer, Rejane; Rech, Raquel Rubia; Gava, Danielle; Cantão, Mauricio Egídio; da Silva, Marcia Cristina; Silveira, Simone; Zanella, Janice Reis Ciacci

    2015-01-01

    Passive monitoring for detection of influenza A viruses (IAVs) in pigs has been carried out in Brazil since 2009, detecting mostly the A(H1N1)pdm09 influenza virus. Since then, outbreaks of acute respiratory disease suggestive of influenza A virus infection have been observed frequently in Brazilian pig herds. During a 2010-2011 influenza monitoring, a novel H1N2 influenza virus was detected in nursery pigs showing respiratory signs. The pathologic changes were cranioventral acute necrotizing bronchiolitis to subacute proliferative and purulent bronchointerstitial pneumonia. Lung tissue samples were positive for both influenza A virus and A(H1N1)pdm09 influenza virus based on RT-qPCR of the matrix gene. Two IAVs were isolated in SPF chicken eggs. HI analysis of both swine H1N2 influenza viruses showed reactivity to the H1δ cluster. DNA sequencing was performed for all eight viral gene segments of two virus isolates. According to the phylogenetic analysis, the HA and NA genes clustered with influenza viruses of the human lineage (H1-δ cluster, N2), whereas the six internal gene segments clustered with the A(H1N1)pdm09 group. This is the first report of a reassortant human-like H1N2 influenza virus derived from pandemic H1N1 virus causing an outbreak of respiratory disease in pigs in Brazil. The emergence of a reassortant IAV demands the close monitoring of pigs through the full-genome sequencing of virus isolates in order to enhance genetic information about IAVs circulating in pigs.

  12. The Influenza Virus and the 2009 H1N1 Outbreak

    DTIC Science & Technology

    2016-04-08

    Envelope L’ol • Sequencing Figure 1 Influenza Virus Anatomy -Neuramlnldase (Sialldase) ’ Hemagglutlnln 9 Key laboratory techniques...discover the 2009 H1 N1 influenza virus Phylogenetic Tree Out of the over 400 human H1 ’s USAFSAM sequenced this season no specimen has had less than a...surveillance/vaccine contents • Shot Versus Flu Mist • How does Tamiflu work • Sequencing HA - Culture, HAI, PCR, Serology ••• • t.tt

  13. Influenza A(H1N1)pdm09 outbreak detected in inter-seasonal months during the surveillance of influenza-like illness in Pune, India, 2012-2015.

    PubMed

    Gurav, Y K; Chadha, M S; Tandale, B V; Potdar, V A; Pawar, S D; Shil, P; Deoshatwar, A R; Aarthy, R; Bhushan, A

    2017-07-01

    An outbreak of influenza A(H1N1)pdm09 was detected during the ongoing community-based surveillance of influenza-like illness (ILI). Among reported 119 influenza A(H1N1)pdm09 cases (59 cases in the year 2012 and 60 cases in 2015) in summer months, common clinical features were fever (100%), cough (90·7%), sore throat (85·7%), nasal discharge (48·7%), headache (55·5%), fatigue (18·5%), breathlessness (3·4%), and ear discharge (1·7%). Rise in ILI cases were negatively correlated with the seasonal factors such as relative humidity (Karl Pearson's correlation coefficient, i.e. r = -0·71 in the year 2012 and r = -0·44 in the year 2015), while rise in ILI cases were positively correlated with the temperature difference (r = 0·44 in the year 2012 and r = 0·77 in the year 2015). The effective reproduction number R, was estimated to be 1·30 in 2012 and 1·64 in 2015. The study highlights the rise in unusual influenza activity in summer month with high attack rate of ILI among children aged ⩽9 years. Children in this age group may need special attention for influenza vaccination. Influenza A(H1N1)pdm09 outbreak was confirmed in inter-seasonal months during the surveillance of ILI in Pune, India, 2012-2015.

  14. Towards a sane and rational approach to management of Influenza H1N1 2009.

    PubMed

    Gallaher, William R

    2009-05-07

    Beginning in March 2009, an outbreak of influenza in North America was found to be caused by a new strain of influenza virus, designated Influenza H1N1 2009, which is a reassortant of swine, avian and human influenza viruses. Over a thousand total cases were identified with the first month, chiefly in the United States and Mexico, but also involving several European countries. Actions concerning Influenza H1N1 2009 need to be based on fact and science, following recommendations of public health officials, and not fueled by political, legal or other interests. Every influenza outbreak or pandemic is unique, so the facts of each one must be studied before an appropriate response can be developed. While reports are preliminary, through the first 4 weeks of the outbreak it does not appear to be severe either in terms of the attack rate in communities or in the virulence of the virus itself. However, there are significant changes in both the hemagglutinin and neuraminidase proteins of the new virus, 27.2% and 18.2% of the amino acid sequence, from prior H1N1 isolates in 2008 and the current vaccine. Such a degree of change qualifies as an "antigenic shift", even while the virus remains in the H1N1 family of influenza viruses, and may give influenza H1N1 2009 significant pandemic potential. Perhaps balancing this shift, the novel virus retains more of the core influenza proteins from animal strains than successful human influenza viruses, and may be inhibited from its maximum potential until further reassortment or mutation better adapts it to multiplication in humans. While contact and respiratory precautions such as frequent handwashing will slow the virus through the human population, it is likely that development of a new influenza vaccine tailored to this novel Influenza H1N1 2009 strain will be essential to blunt its ultimate pandemic impact.

  15. Towards a sane and rational approach to management of Influenza H1N1 2009

    PubMed Central

    Gallaher, William R

    2009-01-01

    Beginning in March 2009, an outbreak of influenza in North America was found to be caused by a new strain of influenza virus, designated Influenza H1N1 2009, which is a reassortant of swine, avian and human influenza viruses. Over a thousand total cases were identified with the first month, chiefly in the United States and Mexico, but also involving several European countries. Actions concerning Influenza H1N1 2009 need to be based on fact and science, following recommendations of public health officials, and not fueled by political, legal or other interests. Every influenza outbreak or pandemic is unique, so the facts of each one must be studied before an appropriate response can be developed. While reports are preliminary, through the first 4 weeks of the outbreak it does not appear to be severe either in terms of the attack rate in communities or in the virulence of the virus itself. However, there are significant changes in both the hemagglutinin and neuraminidase proteins of the new virus, 27.2% and 18.2% of the amino acid sequence, from prior H1N1 isolates in 2008 and the current vaccine. Such a degree of change qualifies as an "antigenic shift", even while the virus remains in the H1N1 family of influenza viruses, and may give influenza H1N1 2009 significant pandemic potential. Perhaps balancing this shift, the novel virus retains more of the core influenza proteins from animal strains than successful human influenza viruses, and may be inhibited from its maximum potential until further reassortment or mutation better adapts it to multiplication in humans. While contact and respiratory precautions such as frequent handwashing will slow the virus through the human population, it is likely that development of a new influenza vaccine tailored to this novel Influenza H1N1 2009 strain will be essential to blunt its ultimate pandemic impact. PMID:19422701

  16. Reassortant Avian Influenza A(H5N1) Viruses with H9N2-PB1 Gene in Poultry, Bangladesh

    PubMed Central

    Yamage, Mat; Dauphin, Gwenaëlle; Claes, Filip; Ahmed, Garba; Giasuddin, Mohammed; Salviato, Annalisa; Ormelli, Silvia; Bonfante, Francesco; Schivo, Alessia; Cattoli, Giovanni

    2013-01-01

    Bangladesh has reported a high number of outbreaks of highly pathogenic avian influenza (HPAI) (H5N1) in poultry. We identified a natural reassortant HPAI (H5N1) virus containing a H9N2-PB1 gene in poultry in Bangladesh. Our findings highlight the risks for prolonged co-circulation of avian influenza viruses and the need to monitor their evolution. PMID:24047513

  17. Retrospective Investigation of an Influenza A/H1N1pdm Outbreak in an Italian Military Ship Cruising in the Mediterranean Sea, May-September 2009

    PubMed Central

    Tarabbo, Mario; Lapa, Daniele; Castilletti, Concetta; Tommaselli, Pietro; Guarducci, Riccardo; Lucà, Giuditta; Emanuele, Alessandro; Zaccaria, Onofrio; La Gioia, Vincenzo F. P.; Girardi, Enrico; Capobianchi, Maria R.; Ippolito, Giuseppe

    2011-01-01

    Background Clinical surveillance may have underestimated the real extent of the spread of the new strain of influenza A/H1N1, which surfaced in April 2009 originating the first influenza pandemic of the 21st century. Here we report a serological investigation on an influenza A/H1N1pdm outbreak in an Italian military ship while cruising in the Mediterranean Sea (May 24-September 6, 2009). Methods The contemporary presence of HAI and CF antibodies was used to retrospectively estimate the extent of influenza A/H1N1pdm spread across the crew members (median age: 29 years). Findings During the cruise, 2 crew members fulfilled the surveillance case definition for influenza, but only one was laboratory confirmed by influenza A/H1N1pdm-specific RT-PCR; 52 reported acute respiratory illness (ARI) episodes, and 183 reported no ARI episodes. Overall, among the 211 crew member for whom a valid serological result was available, 39.3% tested seropositive for influenza A/H1N1pdm. The proportion of seropositives was significantly associated with more crowded living quarters and tended to be higher in those aged <40 and in those reporting ARI or suspected/confirmed influenza A/H1N1pdm compared to the asymptomatic individuals. No association was found with previous seasonal influenza vaccination. Conclusions These findings underline the risk for rapid spread of novel strains of influenza A in confined environment, such as military ships, where crowding, rigorous working environment, physiologic stress occur. The high proportion of asymptomatic infections in this ship-borne outbreak supports the concept that serological surveillance in such semi-closed communities is essential to appreciate the real extent of influenza A/H1N1pdm spread and can constitute, since the early stage of a pandemic, an useful model to predict the public health impact of pandemic influenza and to establish proportionate and effective countermeasures. PMID:21283749

  18. Modeling and roles of meteorological factors in outbreaks of highly pathogenic avian influenza H5N1.

    PubMed

    Biswas, Paritosh K; Islam, Md Zohorul; Debnath, Nitish C; Yamage, Mat

    2014-01-01

    The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1) is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA) and multiplicative seasonal autoregressive integrated moving average (SARIMA) to assess the roles of different meteorological factors in outbreaks of HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological variable(s) as inputs did not improve the performance of any multivariable models, but relative humidity (RH) was a significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a predictor when moving average (MA) order at lag 1 month is considered.

  19. Ecological Determinants of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Bangladesh

    PubMed Central

    Ahmed, Syed S. U.; Ersbøll, Annette K.; Biswas, Paritosh K.; Christensen, Jens P.; Hannan, Abu S. M. A.; Toft, Nils

    2012-01-01

    Background The agro-ecology and poultry husbandry of the south Asian and south-east Asian countries share common features, however, with noticeable differences. Hence, the ecological determinants associated with risk of highly pathogenic avian influenza (HPAI-H5N1) outbreaks are expected to differ between Bangladesh and e.g., Thailand and Vietnam. The primary aim of the current study was to establish ecological determinants associated with the risk of HPAI-H5N1 outbreaks at subdistrict level in Bangladesh. The secondary aim was to explore the performance of two different statistical modeling approaches for unmeasured spatially correlated variation. Methodology/Principal Findings An ecological study at subdistrict level in Bangladesh was performed with 138 subdistricts with HPAI-H5N1 outbreaks during 2007–2008, and 326 subdistricts with no outbreaks. The association between ecological determinants and HPAI-H5N1 outbreaks was examined using a generalized linear mixed model. Spatial clustering of the ecological data was modeled using 1) an intrinsic conditional autoregressive (ICAR) model at subdistrict level considering their first order neighbors, and 2) a multilevel (ML) model with subdistricts nested within districts. Ecological determinants significantly associated with risk of HPAI-H5N1 outbreaks at subdistrict level were migratory birds' staging areas, river network, household density, literacy rate, poultry density, live bird markets, and highway network. Predictive risk maps were derived based on the resulting models. The resulting models indicate that the ML model absorbed some of the covariate effect of the ICAR model because of the neighbor structure implied in the two different models. Conclusions/Significance The study identified a new set of ecological determinants related to river networks, migratory birds' staging areas and literacy rate in addition to already known risk factors, and clarified that the generalized concept of free grazing duck and

  20. After-action review of the 2009-10 H1N1 Influenza Outbreak Response: Ohio's Public Health System's performance.

    PubMed

    Mase, William A; Bickford, Beth; Thomas, Casey L; Jones, Shamika D; Bisesi, Michael

    In early 2009, H1N1 influenza was identified within the human population. Centers for Disease Control and Prevention (CDC) officials responded with focused assessment, policy development, and assurances. The response was mobilized through efforts including procurement of adequate vaccine supply, local area span of control, materials acquisition, and facilities and resource identification. Qualitative evaluation of the assurance functions specific to the system's ability to assure safe and healthy conditions are reported. The methodology mirrors the Homeland Security Exercise and Evaluation Program used to assess system capability. Findings demonstrate the effectiveness of community responsive disease prevention efforts in partnership with the public health systems mission to unify traditional public sector systems, for-profit systems, and local area systems was accomplished. As a result of this response pharmaceutical industries, healthcare providers, healthcare agencies, police/safety, colleges, and health and human service agencies were united. Findings demonstrate the effectiveness of community response strategies utilizing feedback from system stakeholders. After-action review processes are critical in all-hazards preparedness. This analysis of local health district response to the H1N1 influenza outbreak informs future public health service delivery. Results provide a synthesis of local health department's emergency response strategies, challenges encountered, and future-focused emergency response strategy implementation. A synthesis is provided as to policy and practice developments which have emerged over the past seven years with regard to lessons learned from the 2009-10 H1N1 influenza outbreak and response.

  1. Domestic Ducks and H5N1 Influenza Epidemic, Thailand

    PubMed Central

    Songserm, Thaweesak; Jam-on, Rungroj; Sae-Heng, Numdee; Meemak, Noppadol; Hulse-Post, Diane J.; Sturm-Ramirez, Katharine M.

    2006-01-01

    In addition to causing 12 human deaths and 17 cases of human infection, the 2004 outbreak of H5N1 influenza virus in Thailand resulted in the death or slaughter of 60 million domestic fowl and the disruption of poultry production and trade. After domestic ducks were recognized as silent carriers of H5N1 influenza virus, government teams went into every village to cull flocks in which virus was detected; these team efforts markedly reduced H5N1 infection. Here we examine the pathobiology and epidemiology of H5N1 influenza virus in the 4 systems of duck raising used in Thailand in 2004. No influenza viruses were detected in ducks raised in "closed" houses with high biosecurity. However, H5N1 influenza virus was prevalent among ducks raised in "open" houses, free-ranging (grazing) ducks, and backyard ducks. PMID:16704804

  2. Molecular characterization of a novel reassortant H1N2 influenza virus containing genes from the 2009 pandemic human H1N1 virus in swine from eastern China.

    PubMed

    Peng, Xiuming; Wu, Haibo; Xu, Lihua; Peng, Xiaorong; Cheng, Linfang; Jin, Changzhong; Xie, Tiansheng; Lu, Xiangyun; Wu, Nanping

    2016-06-01

    Pandemic outbreaks of H1N1 swine influenza virus have been reported since 2009. Reassortant H1N2 viruses that contain genes from the pandemic H1N1 virus have been isolated in Italy and the United States. However, there is limited information regarding the molecular characteristics of reassortant H1N2 swine influenza viruses in eastern China. Active influenza surveillance programs in Zhejiang Province identified a novel H1N2 influenza virus isolated from pigs displaying clinical signs of influenza virus infection. Whole-genome sequencing was performed and this strain was compared with other influenza viruses available in GenBank. Phylogenetic analysis suggested that the novel strain contained genes from the 2009 pandemic human H1N1 and swine H3N2 viruses. BALB/c mice were infected with the isolated virus to assess its virulence in mice. While the novel H1N2 isolate replicated well in mice, it was found to be less virulent. These results provide additional evidence that swine serve as intermediate hosts or 'mixing vessels' for novel influenza viruses. They also emphasize the importance of surveillance in the swine population for use as an early warning system for influenza outbreaks in swine and human populations.

  3. Measures against transmission of pandemic H1N1 influenza in Japan in 2009: simulation model.

    PubMed

    Yasuda, H; Suzuki, K

    2009-11-05

    The first outbreak of pandemic H1N1 influenza in Japan was contained in the Kansai region in May 2009 by social distancing measures. Modelling methods are needed to estimate the validity of these measures before their implementation on a large scale. We estimated the transmission coefficient from outbreaks of pandemic H1N1 influenza among school children in Japan in summer 2009; using this transmission coefficient, we simulated the spread of pandemic H1N1 influenza in a virtual community called the virtual Chuo Line which models an area to the west of metropolitan Tokyo. Measures evaluated in our simulation included: isolation at home, school closure, post-exposure prophylaxis and mass vaccinations of school children. We showed that post-exposure prophylaxis combined with isolation at home and school closure significantly decreases the total number of cases in the community and can mitigate the spread of pandemic H1N1 influenza, even when there is a delay in the availability of vaccine.

  4. Influenza A(H1N1)pdm09 during air travel

    PubMed Central

    Neatherlin, John; Cramer, Elaine H.; Dubray, Christine; Marienau, Karen J.; Russell, Michelle; Sun, Hong; Whaley, Melissa; Hancock, Kathy; Duong, Krista K.; Kirking, Hannah L.; Schembri, Christopher; Katz, Jacqueline M.; Cohen, Nicole J.; Fishbein, Daniel B.

    2015-01-01

    Summary The global spread of the influenza A(H1N1)pdm09 virus (pH1N1) associated with travelers from North America during the onset of the 2009 pandemic demonstrates the central role of international air travel in virus migration. To characterize risk factors for pH1N1 transmission during air travel, we investigated travelers and airline employees from four North American flights carrying ill travelers with confirmed pH1N1 infection. Of 392 passengers and crew identified, information was available for 290 (74%) passengers were interviewed. Overall attack rates for acute respiratory infection and influenza-like illness 1–7 days after travel were 5.2% and 2.4% respectively. Of 43 individuals that provided sera, 4 (9.3%) tested positive for pH1N1 antibodies, including 3 with serologic evidence of asymptomatic infection. Investigation of novel influenza aboard aircraft may be instructive. However, beyond the initial outbreak phase, it may compete with community-based mitigation activities, and interpretation of findings will be difficult in the context of established community transmission. PMID:23523241

  5. Oseltamivir-resistant influenza A(H1N1)pdm09 virus associated with high case fatality, India 2015.

    PubMed

    Tandel, Kundan; Sharma, Shashi; Dash, Paban Kumar; Parida, ManMohan

    2018-05-01

    Influenza A viruses has been associated with severe global pandemics of high morbidity and mortality with devastating impact on human health and global economy. India witnessed a major outbreak of influenza A(H1N1)pdm09 in 2015. This study comprises detailed investigation of cases died of influenza A(H1N1)pdm09 virus infection during explosive outbreak of 2015, in central part of India. To find out presence of drug resistant virus among patients who died of influenza A(H1N1)pdm09 virus infection and to find out presence of other mutations contributing to the morbidity and mortality. Twenty-two patients having confirmed influenza A(H1N1)pdm09 infection and subsequently died of this infection along with 20 non fatal cases with influenza A(H1N1)pdm09 infection were included in the study. Samples were investigated through RT-PCR/RFLP analysis, followed by nucleotide cycle sequencing of whole NA gene for detection of H275Y amino acid substitution in NA gene responsible for oseltamivir drug resistance. Out of 22 fatal cases, 6 (27.27%) were found to harbor oseltamivir resistant virus strains, whereas the H275Y mutation was not observed among the 20 non fatal cases. Amino acid substitution analysis of complete NA gene revealed V241I, N369K, N386K substitution in all strains playing synergistic role in oseltamivir drug resistance. High morbidity and mortality associated with influenza A(H1N1)pdm09 viruses can be explained by presence of drug resistant strains circulating in this outbreak. Presence of Oseltamivir resistant influenza A(H1N1)pdm09 viruses is a cause of great concern and warrants continuous screening for the circulation of drug resistant strains. © 2017 Wiley Periodicals, Inc.

  6. Lack of evidence for pre‐symptomatic transmission of pandemic influenza virus A(H1N1) 2009 in an outbreak among teenagers; Germany, 2009

    PubMed Central

    Hermes, Julia; Bernard, Helen; Buchholz, Udo; Spackova, Michaela; Löw, Johann; Loytved, Gunther; Suess, Thorsten; Hautmann, Wolfgang; Werber, Dirk

    2011-01-01

    Please cite this paper as: Hermes et al. (2011) Lack of evidence for pre‐symptomatic transmission of pandemic influenza virus A(H1N1) 2009 in an outbreak among teenagers; Germany, 2009. Influenza and Other Respiratory Viruses 5(6), e499–e503. Background  Observations on the role of pre‐symptomatic transmission in the spread of influenza virus are scanty. In June 2009, an outbreak of pandemic A(H1N1) 2009 infection occurred at a teenager’s party in Germany. The objective of this study was to identify risk factors for pandemic A(H1N1) 2009 infection. Methods  We performed a retrospective cohort study among party guests. A case was defined as pandemic A(H1N1) 2009 infection confirmed by rRT‐PCR who developed influenza‐like illness between 1 and 5 June 2009. Contact patterns among party guests were evaluated. Results  In eight (36%) of 27 party guests, the outcome was ascertained. A travel returnee from a country with endemic pandemic A(H1N1) 2009 who fell ill toward the end of the party was identified as the source case. Party guests with pandemic A(H1N1) 2009 infection had talked significantly longer to the source case than non‐infected persons (P‐value: 0·001). Importantly, none (0/9) of those who had left the party prior to the source case’s symptom onset became infected compared to 7 (41%) of 17 who stayed overnight (P = 0·06), and these persons all had transmission‐prone contacts to the source case. Conclusions  In this outbreak with one index case, there was no evidence to support pre‐symptomatic transmission of pandemic A(H1N1) 2009. Further evidence is required, ideally from larger studies with multiple index cases, to more accurately characterize the potential for pre‐symptomatic transmission of influenza virus. PMID:21668675

  7. Sequential Seasonal H1N1 Influenza Virus Infections Protect Ferrets against Novel 2009 H1N1 Influenza Virus

    PubMed Central

    Carter, Donald M.; Bloom, Chalise E.; Nascimento, Eduardo J. M.; Marques, Ernesto T. A.; Craigo, Jodi K.; Cherry, Joshua L.; Lipman, David J.

    2013-01-01

    Individuals <60 years of age had the lowest incidence of infection, with ∼25% of these people having preexisting, cross-reactive antibodies to novel 2009 H1N1 influenza. Many people >60 years old also had preexisting antibodies to novel H1N1. These observations are puzzling because the seasonal H1N1 viruses circulating during the last 60 years were not antigenically similar to novel H1N1. We therefore hypothesized that a sequence of exposures to antigenically different seasonal H1N1 viruses can elicit an antibody response that protects against novel 2009 H1N1. Ferrets were preinfected with seasonal H1N1 viruses and assessed for cross-reactive antibodies to novel H1N1. Serum from infected ferrets was assayed for cross-reactivity to both seasonal and novel 2009 H1N1 strains. These results were compared to those of ferrets that were sequentially infected with H1N1 viruses isolated prior to 1957 or more-recently isolated viruses. Following seroconversion, ferrets were challenged with novel H1N1 influenza virus and assessed for viral titers in the nasal wash, morbidity, and mortality. There was no hemagglutination inhibition (HAI) cross-reactivity in ferrets infected with any single seasonal H1N1 influenza viruses, with limited protection to challenge. However, sequential H1N1 influenza infections reduced the incidence of disease and elicited cross-reactive antibodies to novel H1N1 isolates. The amount and duration of virus shedding and the frequency of transmission following novel H1N1 challenge were reduced. Exposure to multiple seasonal H1N1 influenza viruses, and not to any single H1N1 influenza virus, elicits a breadth of antibodies that neutralize novel H1N1 even though the host was never exposed to the novel H1N1 influenza viruses. PMID:23115287

  8. Risk of Human Infections With Highly Pathogenic H5N2 and Low Pathogenic H7N1 Avian Influenza Strains During Outbreaks in Ostriches in South Africa

    PubMed Central

    Venter, Marietjie; Treurnicht, Florette K.; Buys, Amelia; Tempia, Stefano; Samudzi, Rudo; McAnerney, Johanna; Jacobs, Charlene A.; Thomas, Juno; Blumberg, Lucille

    2017-01-01

    Background Risk factors for human infection with highly pathogenic (HP) and low-pathogenic (LP) avian influenza (AI) H5N2 and H7N1 were investigated during outbreaks in ostriches in the Western Cape province, South Africa. Methods Serum surveys were conducted for veterinarians, farmworkers, and laboratory and abattoir workers involved in 2 AI outbreaks in the Western Cape province: (1) controlling and culling of 42 000 ostriches during (HPAI)H5N2 outbreaks in ostriches (2011) (n = 207); (2) movement control during (LPAI)H7N1 outbreaks in 2012 (n = 66). A third serosurvey was conducted on state veterinarians from across the country in 2012 tasked with disease control in general (n = 37). Antibodies to H5 and H7 were measured by means of hemagglutination inhibition and microneutralization assays, with microneutralization assay titers >40 considered positive. Results Two of 207 (1%) participants were seropositive for H5 and 4 of 207 (2%) for H7 in 2011, compared with 1 of 66 (1.5%) and 8 of 66 (13%) in 2012. Although individuals in all professions tested seropositive, abattoir workers (10 of 97; 10.3%) were significantly more at risk of influenza A(H7N1) infection (P = .001) than those in other professions (2 of 171;1.2%). Among state veterinarians, 4 of 37(11%) were seropositive for H7 and 1 of 37 (2.7%) for H5. Investigations of (LP)H7N1-associated fatalities in wild birds and quarantined exotic birds in Gauteng, AI outbreaks in poultry in KwaZulu-Natal, and ostriches in Western Cape province provide possible exposure events. Conclusion (LPAI)H7N1 strains pose a greater infection-risk than (HPAI)H5N2 strains to persons involved in control of outbreaks in infected birds, with ostrich abattoir workers at highest risk. PMID:28934458

  9. Global alert to avian influenza virus infection: From H5N1 to H7N9

    PubMed Central

    Poovorawan, Yong; Pyungporn, Sunchai; Prachayangprecha, Slinporn; Makkoch, Jarika

    2013-01-01

    Outbreak of a novel influenza virus is usually triggered by mutational change due to the process known as ‘antigenic shift’ or re-assortment process that allows animal-to-human or avian-to-human transmission. Birds are a natural reservoir for the influenza virus, and subtypes H5, H7, and H9 have all caused outbreaks of avian influenza in human populations. An especially notorious strain is the HPAI influenza virus H5N1, which has a mortality rate of approximately 60% and which has resulted in numerous hospitalizations, deaths, and significant economic loss. In March 2013, in Eastern China, there was an outbreak of the novel H7N9 influenza virus, which although less pathogenic in avian species, resulted in 131 confirmed cases and 36 deaths in humans over a two-month span. The rapid outbreak of this virus caused global concern but resulted in international cooperation to control the outbreak. Furthermore, cooperation led to valuable research-sharing including genome sequencing of the virus, the development of rapid and specific diagnosis, specimen sharing for future studies, and vaccine development. Although a H7N9 pandemic in the human population is possible due to its rapid transmissibility and extensive surveillance, the closure of the live-bird market will help mitigate the possibility of another H7N9 outbreak. In addition, further research into the source of the outbreak, pathogenicity of the virus, and the development of specific and sensitive detection assays will be essential for controlling and preparing for future H7N9 outbreaks. PMID:23916331

  10. Influenza risk management: lessons learned from an A(H1N1) pdm09 outbreak investigation in an operational military setting.

    PubMed

    Farrell, Margaret; Sebeny, Peter; Klena, John D; Demattos, Cecilia; Pimentel, Guillermo; Turner, Mark; Joseph, Antony; Espiritu, Jennifer; Zumwalt, John; Dueger, Erica

    2013-01-01

    At the onset of an influenza pandemic, when the severity of a novel strain is still undetermined and there is a threat of introduction into a new environment, e.g., via the deployment of military troops, sensitive screening criteria and conservative isolation practices are generally recommended. In response to elevated rates of influenza-like illness among U.S. military base camps in Kuwait, U.S. Naval Medical Research Unit No. 3 partnered with local U.S. Army medical units to conduct an A(H1N1) pdm09 outbreak investigation. Initial clinical data and nasal specimens were collected via the existent passive surveillance system and active surveillance was conducted using a modified version of the World Health Organization/U.S. Centers for Disease Control and Prevention influenza-like illness case definition [fever (T > 100.5˚F/38˚C) in addition to cough and/or sore throat in the previous 72 hours] as the screening criteria. Samples were tested via real-time reverse-transcription PCR and sequenced for comparison to global A(H1N1) pdm09 viruses from the same time period. The screening criteria used in Kuwait proved insensitive, capturing only 16% of A(H1N1) pdm09-positive individuals. While still not ideal, using cough as the sole screening criteria would have increased sensitivity to 73%. The results of and lessons learned from this outbreak investigation suggest that pandemic influenza risk management should be a dynamic process (as information becomes available regarding true attack rates and associated mortality, screening and isolation criteria should be re-evaluated and revised as appropriate), and that military operational environments present unique challenges to influenza surveillance.

  11. Evaluating the effects of common control measures for influenza A (H1N1) outbreak at school in China: A modeling study

    PubMed Central

    Liu, Ruchun; Xie, Zhi; Chen, Shuilian; Hu, Guoqing

    2017-01-01

    Background Influenza A (H1N1) outbreaks have become common at schools in China since 2009. However, the effects of common countermeasures for school influenza outbreak have not been quantified so far, including isolation, vaccination, antivirus and school closure. We conducted a mathematically modeling study to address this unsolved issue. Methods We collected data of all small-scale school outbreaks caused by influenza A that occurred in Changsha city between January 2009 and December 2013. Two outbreaks (one was in 2009 and the other one was in 2013) were used for simulating the effects of single and combined use of common measures, including isolation (Iso), therapeutics (T), prophylactics (P), vaccinating 70% of susceptible individuals prior to the outbreak (VP70), vaccinating 70% of susceptible individuals every day during the outbreak (VD70) and school closure of one week (S1w). A susceptible—exposed—infectious/asymptomatic—recovered (SEIR) model was developed to implement the simulations based on the natural history of influenza A. Results When no control measures are taken, the influenza is expected to spread quickly at school for the selected outbreak in 2013; the outbreak would last 56 days, and the total attack rate (TAR) would reach up to 46.32% (95% CI: 46.12–46.52). Of all single control measures, VP70 is most effective to control the epidemic (TAR = 8.68%), followed by VP50, VD70, VD50 and Iso. The use of VP70 with any other measure can reduce TAR to 3.37–14.04% and showed better effects than any other combination of two kinds of measures. The best two-measure combination is ‘S1w+VP70’ (TAR = 3.37%, DO = 41 days). All combinations of three kinds of measures were not satisfactory when Vp70 and VD70 were excluded. The most effective three-intervention combination was ‘Iso+S1w+VP70’ (with TAR = 3.23%). When VP70 or VD70 is included, the combinations of four or five kinds of interventions are very effective, reducing TAR to lower than 5

  12. Evaluating the effects of common control measures for influenza A (H1N1) outbreak at school in China: A modeling study.

    PubMed

    Chen, Tianmu; Huang, Yuanxiu; Liu, Ruchun; Xie, Zhi; Chen, Shuilian; Hu, Guoqing

    2017-01-01

    Influenza A (H1N1) outbreaks have become common at schools in China since 2009. However, the effects of common countermeasures for school influenza outbreak have not been quantified so far, including isolation, vaccination, antivirus and school closure. We conducted a mathematically modeling study to address this unsolved issue. We collected data of all small-scale school outbreaks caused by influenza A that occurred in Changsha city between January 2009 and December 2013. Two outbreaks (one was in 2009 and the other one was in 2013) were used for simulating the effects of single and combined use of common measures, including isolation (Iso), therapeutics (T), prophylactics (P), vaccinating 70% of susceptible individuals prior to the outbreak (VP70), vaccinating 70% of susceptible individuals every day during the outbreak (VD70) and school closure of one week (S1w). A susceptible-exposed-infectious/asymptomatic-recovered (SEIR) model was developed to implement the simulations based on the natural history of influenza A. When no control measures are taken, the influenza is expected to spread quickly at school for the selected outbreak in 2013; the outbreak would last 56 days, and the total attack rate (TAR) would reach up to 46.32% (95% CI: 46.12-46.52). Of all single control measures, VP70 is most effective to control the epidemic (TAR = 8.68%), followed by VP50, VD70, VD50 and Iso. The use of VP70 with any other measure can reduce TAR to 3.37-14.04% and showed better effects than any other combination of two kinds of measures. The best two-measure combination is 'S1w+VP70' (TAR = 3.37%, DO = 41 days). All combinations of three kinds of measures were not satisfactory when Vp70 and VD70 were excluded. The most effective three-intervention combination was 'Iso+S1w+VP70' (with TAR = 3.23%). When VP70 or VD70 is included, the combinations of four or five kinds of interventions are very effective, reducing TAR to lower than 5%. But the TAR of combination of 'T+P+Iso+S1w

  13. Epidemiology of pandemic influenza A/H1N1 virus during 2009-2010 in Taiwan.

    PubMed

    Lan, Yu-Ching; Su, Mei-Chi; Chen, Chao-Hsien; Huang, Su-Hua; Chen, Wan-Li; Tien, Ni; Lin, Cheng-Wen

    2013-10-01

    Outbreak of swine-origin influenza A/H1N1 virus (pdmH1N1) occurred in 2009. Taiwanese authorities implemented nationwide vaccinations with pdmH1N1-specific inactivated vaccine as of November 2009. This study evaluates prevalence, HA phylogenetic relationship, and transmission dynamic of influenza A and B viruses in Taiwan in 2009-2010. Respiratory tract specimens were analyzed for influenza A and B viruses. The pdmH1N1 peaked in November 2009, was predominant from August 2009 to January 2010, then sharply dropped in February 2010. Significant prevalence peaks of influenza B in April-June of 2010 and H3N2 virus in July and August were observed. Highest percentage of pdmH1N1- and H3N2-positive cases appeared among 11-15-year-olds; influenza B-positive cases were dominant among those 6-10 years old. Maximum likelihood phylogenetic trees showed 11 unique clusters of pdmH1N1, seasonal H3N2 influenza A and B viruses, as well as transmission clusters and mixed infections of influenza strains in Taiwan. The 2009 pdmH1N1 virus was predominant in Taiwan from August 2009 to January 2010; seasonal H3N2 influenza A and B viruses exhibited small prevalence peaks after nationwide vaccinations. Phylogenetic evidence indicated transmission clusters and multiple independent clades of co-circulating influenza A and B strains in Taiwan. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Risk factors and clusters of Highly Pathogenic Avian Influenza H5N1 outbreaks in Bangladesh

    PubMed Central

    Loth, Leo; Gilbert, Marius; Osmani, Mozaffar G.; Kalam, Abul M.; Xiao, Xiangming

    2016-01-01

    Between March 2007 and July 2009, 325 Highly Pathogenic Avian Influenza (HPAI, subtype H5N1) outbreaks in poultry were reported in 154 out of a total of 486 sub-districts in Bangladesh. This study analyzed the temporal and spatial patterns of HPAI H5N1 outbreaks and quantified the relationship between several spatial risk factors and HPAI outbreaks in sub-districts in Bangladesh. We assessed spatial autocorrelation and spatial dependence, and identified clustering sub-districts with disease statistically similar to or dissimilar from their neighbors. Three significant risk factors associated to HPAI H5N1 virus outbreaks were identified; the quadratic log-transformation of human population density [humans per square kilometer, P = 0.01, OR 1.15 (95% CI: 1.03–1.28)], the log-transformation of the total commercial poultry population [number of commercial poultry per sub-district, P < 0.002, OR 1.40 (95% CI: 1.12–1.74)], and the number of roads per sub-district [P = 0.02, OR 1.07 (95% CI: 1.01–1.14)]. The distinct clusters of HPAI outbreaks and risk factors identified could assist the Government of Bangladesh to target surveillance and to concentrate response efforts in areas where disease is likely to occur. Concentrating response efforts may help to combat HPAI more effectively, reducing the environmental viral load and so reducing the number of disease incidents. PMID:20554337

  15. Safety and efficacy of a novel live attenuated influenza vaccine against pandemic H1N1 in swine

    USDA-ARS?s Scientific Manuscript database

    On June 11, 2009 the World Health Organization (WHO) declared that the outbreaks caused by novel swine-origin influenza A (H1N1) virus had reached pandemic proportions. The pandemic H1N1 (H1N1pdm) is the predominant influenza strain in the human population. It has also crossed the species barriers a...

  16. Influenza Risk Management: Lessons Learned from an A(H1N1) pdm09 Outbreak Investigation in an Operational Military Setting

    PubMed Central

    Farrell, Margaret; Sebeny, Peter; Klena, John D.; DeMattos, Cecilia; Pimentel, Guillermo; Turner, Mark; Joseph, Antony; Espiritu, Jennifer; Zumwalt, John; Dueger, Erica

    2013-01-01

    Background At the onset of an influenza pandemic, when the severity of a novel strain is still undetermined and there is a threat of introduction into a new environment, e.g., via the deployment of military troops, sensitive screening criteria and conservative isolation practices are generally recommended. Objectives In response to elevated rates of influenza-like illness among U.S. military base camps in Kuwait, U.S. Naval Medical Research Unit No. 3 partnered with local U.S. Army medical units to conduct an A(H1N1) pdm09 outbreak investigation. Patients/Methods Initial clinical data and nasal specimens were collected via the existent passive surveillance system and active surveillance was conducted using a modified version of the World Health Organization/U.S. Centers for Disease Control and Prevention influenza-like illness case definition [fever (T > 100.5˚F/38˚C) in addition to cough and/or sore throat in the previous 72 hours] as the screening criteria. Samples were tested via real-time reverse-transcription PCR and sequenced for comparison to global A(H1N1) pdm09 viruses from the same time period. Results The screening criteria used in Kuwait proved insensitive, capturing only 16% of A(H1N1) pdm09-positive individuals. While still not ideal, using cough as the sole screening criteria would have increased sensitivity to 73%. Conclusions The results of and lessons learned from this outbreak investigation suggest that pandemic influenza risk management should be a dynamic process (as information becomes available regarding true attack rates and associated mortality, screening and isolation criteria should be re-evaluated and revised as appropriate), and that military operational environments present unique challenges to influenza surveillance. PMID:23874699

  17. The Effect of School Dismissal on Rates of Influenza-Like Illness in New York City Schools during the Spring 2009 Novel H1N1 Outbreak

    ERIC Educational Resources Information Center

    Egger, Joseph R.; Konty, Kevin J.; Wilson, Elisha; Karpati, Adam; Matte, Thomas; Weiss, Don; Barbot, Oxiris

    2012-01-01

    Background: The effects of individual school dismissal on influenza transmission have not been well studied. During the spring 2009 novel H1N1 outbreak, New York City implemented an individual school dismissal policy intended to limit influenza transmission at schools with high rates of influenza-like illness (ILI). Methods: Active disease…

  18. Influenza A(H3N2) Outbreak at Transit Center at Manas, Kyrgyzstan, 2014

    DTIC Science & Technology

    2015-01-01

    influenza-like illness symptoms from 3 December 2013 through 28 February 2014. There were 85 specimens positive for influenza (18 influenza A( H1N1 ...February 2014. Th ere were 85 specimens positive for infl uenza (18 infl uenza A( H1N1 )pdm09, 65 infl uenza A(H3N2), one infl uenza A/not subtyped, and one...Health Organization reports, both infl uenza A( H1N1 )pdm09 and A(H3N2) viruses were circulating during the time of this outbreak.9 Th is is

  19. Risk of Human Infections With Highly Pathogenic H5N2 and Low Pathogenic H7N1 Avian Influenza Strains During Outbreaks in Ostriches in South Africa.

    PubMed

    Venter, Marietjie; Treurnicht, Florette K; Buys, Amelia; Tempia, Stefano; Samudzi, Rudo; McAnerney, Johanna; Jacobs, Charlene A; Thomas, Juno; Blumberg, Lucille

    2017-09-15

    Risk factors for human infection with highly pathogenic (HP) and low-pathogenic (LP) avian influenza (AI) H5N2 and H7N1 were investigated during outbreaks in ostriches in the Western Cape province, South Africa. Serum surveys were conducted for veterinarians, farmworkers, and laboratory and abattoir workers involved in 2 AI outbreaks in the Western Cape province: (1) controlling and culling of 42000 ostriches during (HPAI)H5N2 outbreaks in ostriches (2011) (n = 207); (2) movement control during (LPAI)H7N1 outbreaks in 2012 (n = 66). A third serosurvey was conducted on state veterinarians from across the country in 2012 tasked with disease control in general (n = 37). Antibodies to H5 and H7 were measured by means of hemagglutination inhibition and microneutralization assays, with microneutralization assay titers >40 considered positive. Two of 207 (1%) participants were seropositive for H5 and 4 of 207 (2%) for H7 in 2011, compared with 1 of 66 (1.5%) and 8 of 66 (13%) in 2012. Although individuals in all professions tested seropositive, abattoir workers (10 of 97; 10.3%) were significantly more at risk of influenza A(H7N1) infection (P = .001) than those in other professions (2 of 171;1.2%). Among state veterinarians, 4 of 37(11%) were seropositive for H7 and 1 of 37 (2.7%) for H5. Investigations of (LP)H7N1-associated fatalities in wild birds and quarantined exotic birds in Gauteng, AI outbreaks in poultry in KwaZulu-Natal, and ostriches in Western Cape province provide possible exposure events. (LPAI)H7N1 strains pose a greater infection-risk than (HPAI)H5N2 strains to persons involved in control of outbreaks in infected birds, with ostrich abattoir workers at highest risk. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  20. Lack of evidence for pre-symptomatic transmission of pandemic influenza virus A(H1N1) 2009 in an outbreak among teenagers; Germany, 2009.

    PubMed

    Hermes, Julia; Bernard, Helen; Buchholz, Udo; Spackova, Michaela; Löw, Johann; Loytved, Gunther; Suess, Thorsten; Hautmann, Wolfgang; Werber, Dirk

    2011-11-01

    Observations on the role of pre-symptomatic transmission in the spread of influenza virus are scanty. In June 2009, an outbreak of pandemic A(H1N1) 2009 infection occurred at a teenager's party in Germany. The objective of this study was to identify risk factors for pandemic A(H1N1) 2009 infection. We performed a retrospective cohort study among party guests. A case was defined as pandemic A(H1N1) 2009 infection confirmed by rRT-PCR who developed influenza-like illness between 1 and 5 June 2009. Contact patterns among party guests were evaluated. In eight (36%) of 27 party guests, the outcome was ascertained. A travel returnee from a country with endemic pandemic A(H1N1) 2009 who fell ill toward the end of the party was identified as the source case. Party guests with pandemic A(H1N1) 2009 infection had talked significantly longer to the source case than non-infected persons (P-value: 0·001). Importantly, none (0/9) of those who had left the party prior to the source case's symptom onset became infected compared to 7 (41%) of 17 who stayed overnight (P = 0·06), and these persons all had transmission-prone contacts to the source case. In this outbreak with one index case, there was no evidence to support pre-symptomatic transmission of pandemic A(H1N1) 2009. Further evidence is required, ideally from larger studies with multiple index cases, to more accurately characterize the potential for pre-symptomatic transmission of influenza virus. © 2011 Blackwell Publishing Ltd.

  1. H7N9 Influenza Virus Is More Virulent in Ferrets than 2009 Pandemic H1N1 Influenza Virus.

    PubMed

    Yum, Jung; Ku, Keun Bon; Kim, Hyun Soo; Seo, Sang Heui

    2015-12-01

    The novel H7N9 influenza virus has been infecting humans in China since February 2013 and with a mortality rate of about 40%. This study compared the pathogenicity of the H7N9 and 2009 pandemic H1N1 influenza viruses in a ferret model, which shows similar symptoms to those of humans infected with influenza viruses. The H7N9 influenza virus caused a more severe disease than did the 2009 pandemic H1N1 influenza virus. All of the ferrets infected with the H7N9 influenza virus had died by 6 days after infection, while none of those infected with the 2009 pandemic H1N1 influenza virus died. Ferrets infected with the H7N9 influenza virus had higher viral titers in their lungs than did those infected with the 2009 pandemic H1N1 influenza virus. Histological findings indicated that hemorrhagic pneumonia was caused by infection with the H7N9 influenza virus, but not with the 2009 pandemic H1N1 influenza virus. In addition, the lung tissues of ferrets infected with the H7N9 influenza virus contained higher levels of chemokines than did those of ferrets infected with the 2009 pandemic H1N1 influenza virus. This study suggests that close monitoring is needed to prevent human infection by the lethal H7N9 influenza virus.

  2. Duck migration and past influenza A (H5N1) outbreak areas

    USGS Publications Warehouse

    Gaidet, Nicolas; Newman, Scott H.; Hagemeijer, Ward; Dodman, Tim; Cappelle, Julien; Hammoumi, Saliha; De Simone, Lorenzo; Takekawa, John Y.

    2008-01-01

    In 2005 and 2006, the highly pathogenic avian influenza (HPAI) virus subtype H5N1 rapidly spread from Asia through Europe, the Middle East, and Africa. Waterbirds are considered the natural reservoir of low pathogenic avian influenza viruses (1), but their potential role in the spread of HPAI (H5N1), along with legal and illegal poultry and wildlife trade (2), is yet to be clarified.

  3. Estimated impact of aggressive empirical antiviral treatment in containing an outbreak of pandemic influenza H1N1 in an isolated First Nations community.

    PubMed

    Xiao, Yanyu; Patel, Zeenat; Fiddler, Adam; Yuan, Lilian; Delvin, Marie-Elaine; Fisman, David N

    2013-11-01

    The 2009 influenza A (H1N1) pandemic was mild by historical standards, but was more severe in isolated Canadian Indigenous communities. Oseltamivir was used aggressively for outbreak control in an isolated northern Ontario First Nations community. We used mathematical modeling to quantify the impact of antiviral therapy on the course of this outbreak. We used both a Richards growth model and a compartmental model to evaluate the characteristics of the outbreak based on both respiratory visits and influenza-like illness counts. Estimates of best-fit model parameters, including basic reproductive number (R0 ) and antiviral efficacy, and simulations, were used to estimate the impact of antiviral drugs compared to social distancing interventions alone. Using both approaches, we found that a rapidly growing outbreak slowed markedly with aggressive antiviral therapy. Richards model turning points occurred within 24 hours of antiviral implementation. Compartmental models estimated antiviral efficacy at 70-95%. Plausible estimates of R from both modeling approaches ranged from 4·0 to 15·8, higher than published estimates for southern Canada; utilization of aggressive antiviral therapy in this community prevented 962-1757 cases of symptomatic influenza and as many as 114 medical evacuations in this community. Although not advocated in other settings in Canada, aggressive antiviral therapy markedly reduced the impact of a pandemic-related influenza A (H1N1) outbreak in an isolated Canadian First Nations community in northern Ontario, Canada. The differential risk experienced by such communities makes tailored interventions that consider risk and lack of access to medical services, appropriate. © 2013 John Wiley & Sons Ltd.

  4. Spatio-Temporal Data Comparisons for Global Highly Pathogenic Avian Influenza (HPAI) H5N1 Outbreaks

    PubMed Central

    Chen, Dongmei; Chen, Yue; Wang, Lei; Zhao, Fei; Yao, Baodong

    2010-01-01

    Highly pathogenic avian influenza subtype H5N1 is a zoonotic disease and control of the disease is one of the highest priority in global health. Disease surveillance systems are valuable data sources for various researches and management projects, but the data quality has not been paid much attention in previous studies. Based on data from two commonly used databases (Office International des Epizooties (OIE) and Food and Agriculture Organization of the United Nations (FAO)) of global HPAI H5N1 outbreaks during the period of 2003–2009, we examined and compared their patterns of temporal, spatial and spatio-temporal distributions for the first time. OIE and FAO data showed similar trends in temporal and spatial distributions if they were considered separately. However, more advanced approaches detected a significant difference in joint spatio-temporal distribution. Because of incompleteness for both OIE and FAO data, an integrated dataset would provide a more complete picture of global HPAI H5N1 outbreaks. We also displayed a mismatching profile of global HPAI H5N1 outbreaks and found that the degree of mismatching was related to the epidemic severity. The ideas and approaches used here to assess spatio-temporal data on the same disease from different sources are useful for other similar studies. PMID:21187964

  5. Pandemic Paradox: Early Life H2N2 Pandemic Influenza Infection Enhanced Susceptibility to Death during the 2009 H1N1 Pandemic.

    PubMed

    Gagnon, Alain; Acosta, Enrique; Hallman, Stacey; Bourbeau, Robert; Dillon, Lisa Y; Ouellette, Nadine; Earn, David J D; Herring, D Ann; Inwood, Kris; Madrenas, Joaquin; Miller, Matthew S

    2018-01-16

    Recent outbreaks of H5, H7, and H9 influenza A viruses in humans have served as a vivid reminder of the potentially devastating effects that a novel pandemic could exert on the modern world. Those who have survived infections with influenza viruses in the past have been protected from subsequent antigenically similar pandemics through adaptive immunity. For example, during the 2009 H1N1 "swine flu" pandemic, those exposed to H1N1 viruses that circulated between 1918 and the 1940s were at a decreased risk for mortality as a result of their previous immunity. It is also generally thought that past exposures to antigenically dissimilar strains of influenza virus may also be beneficial due to cross-reactive cellular immunity. However, cohorts born during prior heterosubtypic pandemics have previously experienced elevated risk of death relative to surrounding cohorts of the same population. Indeed, individuals born during the 1890 H3Nx pandemic experienced the highest levels of excess mortality during the 1918 "Spanish flu." Applying Serfling models to monthly mortality and influenza circulation data between October 1997 and July 2014 in the United States and Mexico, we show corresponding peaks in excess mortality during the 2009 H1N1 "swine flu" pandemic and during the resurgent 2013-2014 H1N1 outbreak for those born at the time of the 1957 H2N2 "Asian flu" pandemic. We suggest that the phenomenon observed in 1918 is not unique and points to exposure to pandemic influenza early in life as a risk factor for mortality during subsequent heterosubtypic pandemics. IMPORTANCE The relatively low mortality experienced by older individuals during the 2009 H1N1 influenza virus pandemic has been well documented. However, reported situations in which previous influenza virus exposures have enhanced susceptibility are rare and poorly understood. One such instance occurred in 1918-when those born during the heterosubtypic 1890 H3Nx influenza virus pandemic experienced the highest

  6. Presence of serum antibodies to influenza A subtypes H5 and N1 in swans and ibises in French wetlands, irrespective of highly pathogenic H5N1 natural infection.

    PubMed

    Niqueux, Eric; Guionie, Olivier; Schmitz, Audrey; Hars, Jean; Jestin, Véronique

    2010-03-01

    Highly pathogenic (HP) avian influenza A viruses (AIVs) subtype H5N1 (subclade 2.2) were detected in wild birds during outbreaks in France during winter 2006 and summer 2007 in la Dombes wetlands (eastern France) and in Moselle wetlands (northeastern France), respectively. Blood samples from apparently healthy wild birds were collected in 2006 and 2007 from the end of the outbreak to several weeks after the influenza A outbreak inside and outside the contaminated areas, and in 2008 outside the contaminated areas. The samples were tested for the presence and/or quantitation of serum antibodies to influenza A subtypes H5 and N1 using hemagglutination inhibition tests (HITs), a commercial N1-specific enzyme-linked immunosorbent assay kit, and virus neutralization assay. In the HIT, low pathogenicity (LP) and HP H5 AIVs (belonging to H5N1, H5N2, and H5N3 subtypes) were used as antigens. One hundred mute swans were bled in the la Dombes outbreak area in 2006. During 2007, 46 mallards, 69 common pochards, and 59 mute swans were sampled in the Moselle outbreak area. For comparison, blood samples were also collected in 2007 from 60 mute swans from the Marne department where no HP H5N1 influenza A cases have been reported, and in 2008 from 111 sacred ibises in western France where no HP H5N1 influenza A infections in wild birds have been reported either. Mute swans (irrespective of their origin and time of sampling) and sacred ibises (from an area with no known outbreaks) had the highest prevalence of positive sera in the H5 HIT (49-69% and 64%, respectively). The prevalence of anti-H5 antibodies in mallards and common pochards was lower (28% and 27%, respectively). Positive H5- and N1-antibody responses were also significantly associated in swans (irrespective of their origin and time of sampling) and in sacred ibises. However, in swans from the area without outbreaks, the HIT titer against an H5N1 LPAIV was significantly higher than against an H5N1 2.2.1 HPAIV, whereas no

  7. Genetic Characterization of Influenza A (H1N1) Pandemic 2009 Virus Isolates from Mumbai.

    PubMed

    Gohil, Devanshi; Kothari, Sweta; Shinde, Pramod; Meharunkar, Rhuta; Warke, Rajas; Chowdhary, Abhay; Deshmukh, Ranjana

    2017-08-01

    Pandemic influenza A (H1N1) 2009 virus was first detected in India in May 2009 which subsequently became endemic in many parts of the country. Influenza A viruses have the ability to evade the immune response through its ability of antigenic variations. The study aims to characterize influenza A (H1N1) pdm 09 viruses circulating in Mumbai during the pandemic and post-pandemic period. Nasopharyngeal swabs positive for influenza A (H1N1) pdm 09 viruses were inoculated on Madin-Darby canine kidney cell line for virus isolation. Molecular and phylogenetic analysis of influenza A (H1N1) pdm 09 isolates was conducted to understand the evolution and genetic diversity of the strains. Nucleotide and amino acid sequences of the HA gene of Mumbai isolates when compared to A/California/07/2009-vaccine strain revealed 14 specific amino acid differences located at the antigenic sites. Amino acid variations in HA and NA gene resulted in changes in the N-linked glycosylation motif which may lead to immune evasion. Phylogenetic analysis of the isolates revealed their evolutionary position with vaccine strain A/California/07/2009 but had undergone changes gradually. The findings in the present study confirm genetic variability of influenza viruses and highlight the importance of continuous surveillance during influenza outbreaks.

  8. [Outbreak of influenza A(H1N1)/2009: description of cases and crisis management in a ICU in Reunion Island].

    PubMed

    Parcevaux, M; Boisson, V; Lemant, J; Antok, E; Thibault, L; Garcia, C; Bugnon, O; Tixier, F; Belin, N; André, H; Michaud, A; Braunberger, E; Vandroux, D; Ocquidant, P; Rouanet, J F; Ingles, M; Filleul, L; Winer, A

    2010-12-01

    to describe the characteristics, treatment and outcome of critically ill patients with influenza A(H1N1) infection at St Pierre Hospital in Reunion Island during the 2009 outbreak, as well as the measures of care reorganization implemented to face them. prospective observational study of probable and confirmed cases of influenza A (H1N1)/2009 infection concerning hospitalized patients in a polyvalent intensive care unit (ICU). thirteen patients have been included between August and September 2009. Three (23 %) didn't have any medical history. The median age was 42 [22-69]. Eleven have required pulmonary ventilation for 10.3 days (± 8). Three (23 %) have developed an ARDS. Three patients (23 %) died. To cope with the influx of cases and considering our situation of geographic isolation, it has been needed to totally rework the organization of care: set-up of a specific welcoming channel, division into sectors of the department, opening of additional beds, new on-duty assignment, inter and intra hospital cooperation. reunion Island has been an experimental lab of crisis management during the H1N1/2009 epidemic, several months ahead of the mother country. To anticipate the reorganization of care in intensive care units during an outbreak period, particularly in small units or units isolated like ours, looks to us a must so to quietly face a sharp influx of patients. 2010 Elsevier Masson SAS. All rights reserved.

  9. H1N1 influenza (Swine flu)

    MedlinePlus

    Swine flu; H1N1 type A influenza ... The H1N1 virus is now considered a regular flu virus. It is one of the three viruses included in the regular (seasonal) flu vaccine . You cannot get H1N1 flu virus from ...

  10. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in Eastern Asia

    USGS Publications Warehouse

    Newman, Scott H.; Iverson, Samuel A.; Takekawa, John Y.; Gilbert, Martin; Prosser, Diann J.; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C.

    2009-01-01

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  11. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern Asia.

    PubMed

    Newman, Scott H; Iverson, Samuel A; Takekawa, John Y; Gilbert, Martin; Prosser, Diann J; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C

    2009-05-28

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  12. Yeast Surface-Displayed H5N1 Avian Influenza Vaccines

    PubMed Central

    Lei, Han; Jin, Sha; Karlsson, Erik; Schultz-Cherry, Stacey

    2016-01-01

    Highly pathogenic H5N1 avian influenza viruses pose a pandemic threat to human health. A rapid vaccine production against fast outbreak is desired. We report, herein, a paradigm-shift influenza vaccine technology by presenting H5N1 hemagglutinin (HA) to the surface of yeast. We demonstrated, for the first time, that the HA surface-presented yeast can be used as influenza vaccines to elicit both humoral and cell-mediated immunity in mice. The HI titer of antisera reached up to 128 in vaccinated mice. A high level of H5N1 HA-specific IgG1 and IgG2a antibody production was detected after boost immunization. Furthermore, we demonstrated that the yeast surface-displayed HA preserves its antigenic sites. It preferentially binds to both avian- and human-type receptors. In addition, the vaccine exhibited high cross-reactivity to both homologous and heterologous H5N1 viruses. A high level production of anti-HA antibodies was detected in the mice five months after vaccination. Finally, our animal experimental results indicated that the yeast vaccine offered complete protection of mice from lethal H5N1 virus challenge. No severe side effect of yeast vaccines was noted in animal studies. This new technology allows for rapid and large-scale production of influenza vaccines for prepandemic preparation. PMID:28078309

  13. The response of medical virology laboratories to the influenza A(H1N1)pdm09 outbreak in Paris Île-de-France region.

    PubMed

    Seringe, E; Agut, H

    2013-10-01

    The outbreak of influenza A(H1N1)pdm09 was a challenge for the laboratories of Paris Île-de-France region in charge of virological diagnosis. In order to evaluate the quality of their response to this challenge, a retrospective survey based on a self-administered standardized questionnaire was undertaken among the 18 hospital laboratories involved in A(H1N1)pdm09 virus detection over a period of 10 months from April 2009 to January 2010. All concerned laboratories responded to the survey. Due to imposed initial biosafety constraints and indications, virological diagnosis was performed in only two laboratories at the start of the studied period. Step by step, it was further settled in the other laboratories starting from June to November 2009. From the beginning, A(H1N1)pdm09-specific RT-PCR was considered the reference method while the use of rapid influenza detection tests remained temporary and concerned a minority of these laboratories. Among the overall 21,656 specimens received, a positive diagnosis of influenza A(H1N1)pdm09 was obtained in 5,390 cases (25%), the positivity range being significantly higher among women as compared to men (P<0.0001) and subjects below 45 years of age as compared to those over 65 years (P<0.0001). Two peaks in positivity frequency were observed at weeks 24 (30%, 8-12 June 2009) and 44 (50%, 26-30 October 2009) respectively, the latter one occurring 2 weeks earlier than the peak of epidemic at the national level. In contrast, a low positivity rate was detected at weeks 38-40 in relationship with other respiratory virus infections which were clinically misinterpreted as a peak of influenza epidemic. These data demonstrate the ability of medical virology laboratories of Paris Île-de-France region to provide in real time a valuable diagnosis of A(H1N1)pdm09 virus infection and a relevant view of outbreak evolution, suggesting they will be a crucial component in the management of future influenza epidemics. Copyright © 2012

  14. From containment to community: Trigger points from the London pandemic (H1N1) 2009 influenza incident response.

    PubMed

    Balasegaram, S; Glasswell, A; Cleary, V; Turbitt, D; McCloskey, B

    2011-02-01

    In the UK, during the first wave of pandemic (H1N1) 2009 influenza, a national 'containment' strategy was employed from 25 April to 2 July 2009, with case finding, treatment of cases, contact tracing and prophylaxis of close contacts. The aim of the strategy was to delay the introduction and spread of pandemic flu in the UK, provide a better understanding of the course of the novel disease, and thereby allow more time for the development of treatment and vaccination options. Descriptive study of the management of the containment phase of pandemic (H1N1) 2009 influenza. Analysis of data reported to the London Flu Response Centre (LFRC). The average number of telephone calls and faxes per day from health professionals before 15 June 2009 was 188, but this started to rise from 363 on 12 June, to 674 on 15 June, and peaked on 22 June at 2206 calls. The number of cases confirmed [by pandemic (H1N1) 2009 influenza specific H1 and N1 polymerase chain reaction] in London rose to a peak of 200 cases per day. There were widespread school outbreaks reporting large numbers of absences with influenza-like illnesses. Activity in the LFRC intensified to a point where London was declared a 'hot spot' for pandemic (H1N1) 2009 influenza on 19 June 2009 because of sustained community transmission. The local incident response was modified to the 'outbreak management phase' of the containment phase. The sharp rise in the number of telephone calls and the rise in school outbreaks appeared to be trigger points for community transmission. These indicators should inform decisions on modifying public health strategy in pandemic situations. Copyright © 2010 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  15. Spatio-Temporal Magnitude and Direction of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Bangladesh

    PubMed Central

    Ahmed, Syed S. U.; Ersbøll, Annette K.; Biswas, Paritosh K.; Christensen, Jens P.; Toft, Nils

    2011-01-01

    Background The number of outbreaks of HPAI-H5N1 reported by Bangladesh from 2007 through 2011 placed the country among the highest reported numbers worldwide. However, so far, the understanding of the epidemic progression, direction, intensity, persistence and risk variation of HPAI-H5N1 outbreaks over space and time in Bangladesh remains limited. Methodology/Principal Findings To determine the magnitude and spatial pattern of the highly pathogenic avian influenza A subtype H5N1 virus outbreaks over space and time in poultry from 2007 to 2009 in Bangladesh, we applied descriptive and analytical spatial statistics. Temporal distribution of the outbreaks revealed three independent waves of outbreaks that were clustered during winter and spring. The descriptive analyses revealed that the magnitude of the second wave was the highest as compared to the first and third waves. Exploratory mapping of the infected flocks revealed that the highest intensity and magnitude of the outbreaks was systematic and persistent in an oblique line that connects south-east to north-west through the central part of the country. The line follows the Brahmaputra-Meghna river system, the junction between Central Asian and East Asian flyways, and the major poultry trading route in Bangladesh. Moreover, several important migratory bird areas were identified along the line. Geostatistical analysis revealed significant latitudinal directions of outbreak progressions that have similarity to the detected line of intensity and magnitude. Conclusion/Significance The line of magnitude and direction indicate the necessity of mobilizing maximum resources on this line to strengthen the existing surveillance. PMID:21931683

  16. H1N1 seasonal influenza virus evolutionary rate changed over time.

    PubMed

    Suptawiwat, Ornpreya; Kongchanagul, Alita; Boonarkart, Chompunuch; Auewarakul, Prasert

    2018-05-02

    It was previously shown that the seasonal H1N1 influenza virus antigenic drift occurred at a slower rate than the seasonal H3N2 virus during the first decade of the 21th century. It was hypothesized that the slower antigenic evolution led to a decrease in average ages of infection, which in turn resulted in lower level of global viral circulation. It is unclear what caused the difference between the two viruses, but a plausible explanation may be related to the fact that the H1N1 virus had been in human population for much longer than the H3N2 virus. This would suggest that H1N1 antigenic drift in an earlier period may have been different from a more recent period. To test this hypothesis, we analyzed seasonal H1N1 influenza sequences during various time periods. In comparison to more recent H1N1 virus, the older H1N1 virus during the first half of the 20th century showed evidences of higher nonsynnonymous/synonymous ration (dN/dS) in its hemagglutinin (HA) gene. We compared amino acid sequence changes in the HA epitopes for each outbreak season and found that there were less changes in later years. Amino acid sequence diversity in the epitopes as measured by sequence entropy became smaller for each passing decade. These suggest that there might be some limit to the antigenic drift. The longer an influenza virus has drifted in human population, the less flexibility it may become. With less flexibility to adapt and escape the host immunity, the virus may have to rely more on younger naïve population. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Movements of wild ruddy shelducks in the Central Asian Flyway and their spatial relationship to outbreaks of highly pathogenic avian influenza H5N1

    USGS Publications Warehouse

    Takekawa, John Y.; Prosser, Diann J.; Collins, Bridget M.; Douglas, David C.; Perry, William M.; Baoping, Yan; Luo, Ze; Hou, Yuansheng; Lei, Fumin; Li, Tianxian; Li, Yongdong; Newman, Scott H.

    2013-01-01

    Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea), a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease.

  18. Movements of Wild Ruddy Shelducks in the Central Asian Flyway and Their Spatial Relationship to Outbreaks of Highly Pathogenic Avian Influenza H5N1

    PubMed Central

    Takekawa, John Y.; Prosser, Diann J.; Collins, Bridget M.; Douglas, David C.; Perry, William M.; Yan, Baoping; Ze, Luo; Hou, Yuansheng; Lei, Fumin; Li, Tianxian; Li, Yongdong; Newman, Scott H.

    2013-01-01

    Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea), a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease. PMID:24022072

  19. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012.

    PubMed

    Grgić, Helena; Costa, Marcio; Friendship, Robert M; Carman, Susy; Nagy, Éva; Poljak, Zvonimir

    2015-01-01

    The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors.

  20. Influenza A (H5N1) Viruses from Pigs, Indonesia

    PubMed Central

    Nidom, Chairul A.; Takano, Ryo; Yamada, Shinya; Sakai-Tagawa, Yuko; Daulay, Syafril; Aswadi, Didi; Suzuki, Takashi; Suzuki, Yasuo; Shinya, Kyoko; Iwatsuki-Horimoto, Kiyoko; Muramoto, Yukiko

    2010-01-01

    Pigs have long been considered potential intermediate hosts in which avian influenza viruses can adapt to humans. To determine whether this potential exists for pigs in Indonesia, we conducted surveillance during 2005–2009. We found that 52 pigs in 4 provinces were infected during 2005–2007 but not 2008–2009. Phylogenetic analysis showed that the viruses had been introduced into the pig population in Indonesia on at least 3 occasions. One isolate had acquired the ability to recognize a human-type receptor. No infected pig had influenza-like symptoms, indicating that influenza A (H5N1) viruses can replicate undetected for prolonged periods, facilitating avian virus adaptation to mammalian hosts. Our data suggest that pigs are at risk for infection during outbreaks of influenza virus A (H5N1) and can serve as intermediate hosts in which this avian virus can adapt to mammals. PMID:20875275

  1. Treatment and Prevention of Pandemic H1N1 Influenza.

    PubMed

    Rewar, Suresh; Mirdha, Dashrath; Rewar, Prahlad

    2015-01-01

    Swine influenza is a respiratory infection common to pigs worldwide caused by type A influenza viruses, principally subtypes H1N1, H1N2, H2N1, H3N1, H3N2, and H2N3. Swine influenza viruses also can cause moderate to severe illness in humans and affect persons of all age groups. People in close contact with swine are at especially high risk. Until recently, epidemiological study of influenza was limited to resource-rich countries. The World Health Organization declared an H1N1 pandemic on June 11, 2009, after more than 70 countries reported 30,000 cases of H1N1 infection. In 2015, incidence of swine influenza increased substantially to reach a 5-year high. In India in 2015, 10,000 cases of swine influenza were reported with 774 deaths. The Centers for Disease Control and Prevention recommend real-time polymerase chain reaction as the method of choice for diagnosing H1N1. Antiviral drugs are the mainstay of clinical treatment of swine influenza and can make the illness milder and enable the patient to feel better faster. Antiviral drugs are most effective when they are started within the first 48 hours after the clinical signs begin, although they also may be used in severe or high-risk cases first seen after this time. The Centers for Disease Control and Prevention recommends use of oseltamivir (Tamiflu, Genentech) or zanamivir (Relenza, GlaxoSmithKline). Prevention of swine influenza has 3 components: prevention in swine, prevention of transmission to humans, and prevention of its spread among humans. Because of limited treatment options, high risk for secondary infection, and frequent need for intensive care of individuals with H1N1 pneumonia, environmental control, including vaccination of high-risk populations and public education are critical to control of swine influenza out breaks. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. [Swine-origin influenza H1N1/California--passions and facts].

    PubMed

    Gendon, Iu Z

    2010-01-01

    Analysis of pandemic caused by swine influenza virus H1N1/California showed moderate virulence of this virus compared to pandemic viruses, which caused pandemics in 1918, 1957, and 1968. During seasonal influenza epidemic in countries of southern hemisphere (June-August 2009) despite on circulation of H1N1/California strain, epidemics was caused by human influenza viruses H3N2 and H1N1. It was concluded that strain H1N1/California could not be attributed to pandemic strains of influenza viruses.

  3. Characteristics of atopic children with pandemic H1N1 influenza viral infection: pandemic H1N1 influenza reveals 'occult' asthma of childhood.

    PubMed

    Hasegawa, Shunji; Hirano, Reiji; Hashimoto, Kunio; Haneda, Yasuhiro; Shirabe, Komei; Ichiyama, Takashi

    2011-02-01

    The number of human cases of pandemic H1N1 influenza viral infection has increased in Japan since April 2009, as it has worldwide. This virus is widespread in the Yamaguchi prefecture in western Japan, where most infected children exhibited respiratory symptoms. Bronchial asthma is thought to be one of the risk factors that exacerbate respiratory symptoms of pandemic H1N1-infected patients, but the pathogenesis remains unclear. We retrospectively investigated the records of 33 children with pandemic H1N1 influenza viral infection who were admitted to our hospital between October and December 2009 and analyzed their clinical features. The percentage of children with asthma attack, with or without abnormal findings on chest radiographs (pneumonia, atelectasis, etc.), caused by pandemic H1N1 influenza infection was significantly higher than that of children with asthma attack and 2008-2009 seasonal influenza infection. Of the 33 children in our study, 22 (66.7%) experienced an asthma attack. Among these children, 20 (90.9%) did not receive long-term management for bronchial asthma, whereas 7 (31.8%) were not diagnosed with bronchial asthma and had experienced their first asthma attack. However, the severity of the attack did not correlate with the severity of the pulmonary complications of pandemic H1N1 influenza viral infection. The pandemic H1N1 influenza virus greatly increases the risk of lower respiratory tract complications such as asthma attack, pneumonia, and atelectasis, when compared to the seasonal influenza virus. Furthermore, our results suggest that pandemic H1N1 influenza viral infection can easily induce a severe asthma attack, pneumonia, and atelectasis in atopic children without any history of either an asthma attack or asthma treatment. © 2011 John Wiley & Sons A/S.

  4. Migration of Whooper Swans and Outbreaks of Highly Pathogenic Avian Influenza H5N1 Virus in Eastern Asia

    PubMed Central

    Newman, Scott H.; Iverson, Samuel A.; Takekawa, John Y.; Gilbert, Martin; Prosser, Diann J.; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C.

    2009-01-01

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003–2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds. PMID:19479053

  5. Complex patterns of human antisera reactivity to novel 2009 H1N1 and historical H1N1 influenza strains.

    PubMed

    Carter, Donald M; Lu, Hai-Rong; Bloom, Chalise E; Crevar, Corey J; Cherry, Joshua L; Lipman, David J; Ross, Ted M

    2012-01-01

    During the 2009 influenza pandemic, individuals over the age of 60 had the lowest incidence of infection with approximately 25% of these people having pre-existing, cross-reactive antibodies to novel 2009 H1N1 influenza isolates. It was proposed that older people had pre-existing antibodies induced by previous 1918-like virus infection(s) that cross-reacted to novel H1N1 strains. Using antisera collected from a cohort of individuals collected before the second wave of novel H1N1 infections, only a minority of individuals with 1918 influenza specific antibodies also demonstrated hemagglutination-inhibition activity against the novel H1N1 influenza. In this study, we examined human antisera collected from individuals that ranged between the ages of 1 month and 90 years to determine the profile of seropositive influenza immunity to viruses representing H1N1 antigenic eras over the past 100 years. Even though HAI titers to novel 2009 H1N1 and the 1918 H1N1 influenza viruses were positively associated, the association was far from perfect, particularly for the older and younger age groups. Therefore, there may be a complex set of immune responses that are retained in people infected with seasonal H1N1 that can contribute to the reduced rates of H1N1 influenza infection in older populations.

  6. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012

    PubMed Central

    Grgić, Helena; Costa, Marcio; Friendship, Robert M.; Carman, Susy; Nagy, Éva; Poljak, Zvonimir

    2015-01-01

    The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors. PMID:26030614

  7. Critical illness in children with influenza A/pH1N1 2009 infection in Canada.

    PubMed

    Jouvet, Philippe; Hutchison, Jamie; Pinto, Ruxandra; Menon, Kusum; Rodin, Rachel; Choong, Karen; Kesselman, Murray; Veroukis, Stasa; André Dugas, Marc; Santschi, Miriam; Guerguerian, Anne-Marie; Withington, Davinia; Alsaati, Basem; Joffe, Ari R; Drews, Tanya; Skippen, Peter; Rolland, Elizabeth; Kumar, Anand; Fowler, Robert

    2010-09-01

    To describe characteristics, treatment, and outcomes of critically ill children with influenza A/pandemic influenza A virus (pH1N1) infection in Canada. An observational study of critically ill children with influenza A/pH1N1 infection in pediatric intensive care units (PICUs). Nine Canadian PICUs. A total of 57 patients admitted to PICUs between April 16, 2009 and August 15, 2009. None. Characteristics of critically ill children with influenza A/pH1N1 infection were recorded. Confirmed intensive care unit cases were compared with a national surveillance database containing all hospitalized pediatric patients with influenza A/pH1N1 infection. Risk factors were assessed with a Cox proportional hazard model. The PICU cohort and national surveillance data were compared, using chi-square tests. Fifty-seven children were admitted to the PICU for community-acquired influenza A/pH1N1 infection. One or more chronic comorbid illnesses were observed in 70.2% of patients, and 24.6% of patients were aboriginal. Mechanical ventilation was used in 68% of children, 20 children (35.1%) had acute lung injury on the first day of admission, and the median duration of ventilation was 6 days (range, 0-67 days). The PICU mortality rate was 7% (4 of 57 patients). When compared with nonintensive care unit hospitalized children, PICU children were more likely to have a chronic medical condition (relative risk, 1.73); aboriginal ethnicity was not a risk factor of intensive care unit admission. During the first outbreak of influenza A/pH1N1 infection, when the population was naïve to this novel virus, severe illness was common among children with underlying chronic conditions and aboriginal children. Influenza A/pH1N1-related critical illness in children was associated with severe hypoxemic respiratory failure and prolonged mechanical ventilation. However, this higher rate and severity of respiratory illness did not result in an increased mortality when compared with seasonal influenza.

  8. The transmissibility and control of pandemic influenza A (H1N1) virus.

    PubMed

    Yang, Yang; Sugimoto, Jonathan D; Halloran, M Elizabeth; Basta, Nicole E; Chao, Dennis L; Matrajt, Laura; Potter, Gail; Kenah, Eben; Longini, Ira M

    2009-10-30

    Pandemic influenza A (H1N1) 2009 (pandemic H1N1) is spreading throughout the planet. It has become the dominant strain in the Southern Hemisphere, where the influenza season has now ended. Here, on the basis of reported case clusters in the United States, we estimated the household secondary attack rate for pandemic H1N1 to be 27.3% [95% confidence interval (CI) from 12.2% to 50.5%]. From a school outbreak, we estimated that a typical schoolchild infects 2.4 (95% CI from 1.8 to 3.2) other children within the school. We estimated the basic reproductive number, R0, to range from 1.3 to 1.7 and the generation interval to range from 2.6 to 3.2 days. We used a simulation model to evaluate the effectiveness of vaccination strategies in the United States for fall 2009. If a vaccine were available soon enough, vaccination of children, followed by adults, reaching 70% overall coverage, in addition to high-risk and essential workforce groups, could mitigate a severe epidemic.

  9. Coinfection with influenza A(H1N1)pdm09 and dengue virus in fatal cases.

    PubMed

    Perdigão, Anne Carolinne Bezerra; Ramalho, Izabel Letícia Cavalcante; Guedes, Maria Izabel Florindo; Braga, Deborah Nunes Melo; Cavalcanti, Luciano Pamplona Góes; Melo, Maria Elisabeth Lisboa de; Araújo, Rafael Montenegro de Carvalho; Lima, Elza Gadelha; Silva, Luciene Alexandre Bié da; Araújo, Lia de Carvalho; Araújo, Fernanda Montenegro de Carvalho

    2016-09-01

    We report on four patients with fatal influenza A(H1N1)pdm09 and dengue virus coinfections. Clinical, necropsy and histopathologic findings presented in all cases were characteristic of influenza-dengue coinfections, and all were laboratory-confirmed for both infections. The possibility of influenza and dengue coinfection should be considered in locations where these two viruses' epidemic periods coincide to avoid fatal outcomes. Dengue is a mosquito-borne viral infection caused by one of the four dengue viruses (DENV-1 to 4). Each of these viruses is capable of causing nonspecific febrile illnesses, classic dengue fever and dengue haemorrhagic fever (Gubler 1998). As a result, dengue is often difficult to diagnose clinically, especially because peak dengue season often coincides with that of other common febrile illnesses in tropical regions (Chacon et al. 2015). In April 2009, a new virus, influenza A/H1N1/pandemic (FluA/H1N1/09pdm), caused a severe outbreak in Mexico. The virus quickly spread throughout the world, and in June 2009, the World Health Organization declared a pandemic (WHO 2010). In Brazil, the first laboratory confirmed case of FluA/H1N1/09pdm was in July 2009 (Pires Neto et al. 2013). The state of Ceará, in Northeast Brazil, is a dengue endemic area. In this state, the virus influenza A(H1N1)pdm09 has circulated since 2009, and through the first half of 2012, 11 deaths caused by the virus were confirmed (Pires Neto et al. 2013). The influenza and dengue seasons in Ceará overlap, which led to diagnostic difficulties. We report four cases of laboratory-confirmed coinfection of deadly influenza A(H1N1)pdm09 with DENV, which occurred during the dengue and influenza season in 2012 and 2013 in Ceará.

  10. Coinfection with influenza A(H1N1)pdm09 and dengue virus in fatal cases

    PubMed Central

    Perdigão, Anne Carolinne Bezerra; Ramalho, Izabel Letícia Cavalcante; Guedes, Maria Izabel Florindo; Braga, Deborah Nunes Melo; Cavalcanti, Luciano Pamplona Góes; de Melo, Maria Elisabeth Lisboa; Araújo, Rafael Montenegro de Carvalho; Lima, Elza Gadelha; da Silva, Luciene Alexandre Bié; Araújo, Lia de Carvalho; Araújo, Fernanda Montenegro de Carvalho

    2016-01-01

    Abstract We report on four patients with fatal influenza A(H1N1)pdm09 and dengue virus coinfections. Clinical, necropsy and histopathologic findings presented in all cases were characteristic of influenza-dengue coinfections, and all were laboratory-confirmed for both infections. The possibility of influenza and dengue coinfection should be considered in locations where these two viruses’ epidemic periods coincide to avoid fatal outcomes. Dengue is a mosquito-borne viral infection caused by one of the four dengue viruses (DENV-1 to 4). Each of these viruses is capable of causing nonspecific febrile illnesses, classic dengue fever and dengue haemorrhagic fever (Gubler 1998). As a result, dengue is often difficult to diagnose clinically, especially because peak dengue season often coincides with that of other common febrile illnesses in tropical regions (Chacon et al. 2015). In April 2009, a new virus, influenza A/H1N1/pandemic (FluA/H1N1/09pdm), caused a severe outbreak in Mexico. The virus quickly spread throughout the world, and in June 2009, the World Health Organization declared a pandemic (WHO 2010). In Brazil, the first laboratory confirmed case of FluA/H1N1/09pdm was in July 2009 (Pires Neto et al. 2013). The state of Ceará, in Northeast Brazil, is a dengue endemic area. In this state, the virus influenza A(H1N1)pdm09 has circulated since 2009, and through the first half of 2012, 11 deaths caused by the virus were confirmed (Pires Neto et al. 2013). The influenza and dengue seasons in Ceará overlap, which led to diagnostic difficulties. We report four cases of laboratory-confirmed coinfection of deadly influenza A(H1N1)pdm09 with DENV, which occurred during the dengue and influenza season in 2012 and 2013 in Ceará. PMID:27598244

  11. Genetic characterization of H5N1 influenza A viruses isolated from zoo tigers in Thailand.

    PubMed

    Amonsin, Alongkorn; Payungporn, Sunchai; Theamboonlers, Apiradee; Thanawongnuwech, Roongroje; Suradhat, Sanipa; Pariyothorn, Nuananong; Tantilertcharoen, Rachod; Damrongwantanapokin, Sudarat; Buranathai, Chantanee; Chaisingh, Arunee; Songserm, Thaweesak; Poovorawan, Yong

    2006-01-20

    The H5N1 avian influenza virus outbreak among zoo tigers in mid-October 2004, with 45 animals dead, indicated that the avian influenza virus could cause lethal infection in a large mammalian species apart from humans. In this outbreak investigation, six H5N1 isolates were identified and two isolates (A/Tiger/Thailand/CU-T3/04 and A/Tiger/Thailand/CU-T7/04) were selected for whole genome analysis. Phylogenetic analysis of the 8 gene segments showed that the viruses clustered within the lineage of H5N1 avian isolates from Thailand and Vietnam. The hemagglutinin (HA) gene of the viruses displayed polybasic amino acids at the cleavage site, identical to those of the 2004 H5N1 isolates, which by definition are highly pathogenic avian influenza (HPAI). In addition, sequence analyses revealed that the viruses isolated from tigers harbored few genetic changes compared with the viruses having infected chicken, humans, tigers and a leopard isolated from the early 2004 H5N1 outbreaks. Sequence analyses also showed that the tiger H5N1 isolated in October 2004 was more closely related to the chicken H5N1 isolated in July than that from January. Interestingly, all the 6 tiger H5N1 isolates contained a lysine substitution at position 627 of the PB2 protein similar to the human, but distinct from the original avian isolates.

  12. Probable Tiger-to-Tiger Transmission of Avian Influenza H5N1

    PubMed Central

    Thanawongnuwech, Roongroje; Amonsin, Alongkorn; Tantilertcharoen, Rachod; Damrongwatanapokin, Sudarat; Theamboonlers, Apiradee; Payungporn, Sunchai; Nanthapornphiphat, Kamonchart; Ratanamungklanon, Somchuan; Tunak, Eakchai; Songserm, Thaweesak; Vivatthanavanich, Veravit; Lekdumrongsak, Thawat; Kesdangsakonwut, Sawang; Tunhikorn, Schwann

    2005-01-01

    During the second outbreak of avian influenza H5N1 in Thailand, probable horizontal transmission among tigers was demonstrated in the tiger zoo. Sequencing and phylogenetic analysis of those viruses showed no differences from the first isolate obtained in January 2004. This finding has implications for influenza virus epidemiology and pathogenicity in mammals. PMID:15890122

  13. Multiplex RT-PCR assay for differentiating European swine influenza virus subtypes H1N1, H1N2 and H3N2.

    PubMed

    Chiapponi, Chiara; Moreno, Ana; Barbieri, Ilaria; Merenda, Marianna; Foni, Emanuela

    2012-09-01

    In Europe, three major swine influenza viral (SIV) subtypes (H1N1, H1N2 and H3N2) have been isolated in pigs. Developing a test that is able to detect and identify the subtype of the circulating strain rapidly during an outbreak of respiratory disease in the pig population is of essential importance. This study describes two multiplex RT-PCRs which distinguish the haemagglutinin (HA) gene and the neuraminidase (NA) gene of the three major subtypes of SIV circulating in Europe. The HA PCR was able to identify the lineage (avian or human) of the HA of H1 subtypes. The analytical sensitivity of the test, considered to be unique, was assessed using three reference viruses. The detection limit corresponded to 1×10(-1) TCID(50)/200μl for avian-like H1N1, 1×10(0) TCID(50)/200μl for human-like H1N2 and 1×10(1) TCID(50)/200μl for H3N2 SIV. The multiplex RT-PCR was first carried out on a collection of 70 isolated viruses showing 100% specificity and then on clinical samples, from which viruses had previously been isolated, resulting in an 89% positive specificity of the viral subtype. Finally, the test was able to identify the viral subtype correctly in 56% of influenza A positive samples, from which SIV had not been isolated previously. It was also possible to identify mixed viral infections and the circulation of a reassortant strain before performing genomic studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Meteorological Influence on the 2009 Influenza A (H1N1) Pandemic in Mainland China.

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Cai, J.; Feng, D.; Bai, Y.; Xu, B.

    2015-12-01

    Since May 2009, a novel influenza A (H1N1) pandemic has spread rapidly in mainland China from Mexico. Although there has been substantial analysis of this influenza, reliable work estimating its spatial dynamics and determinants remain scarce. The survival and transmission of this pandemic virus not only depends on its biological properties, but also a correlation with external environmental factors. In this study, we collected daily influenza A (H1N1) cases and corresponding annual meteorological factors in mainland China from May 2009 to April 2010. By analyzing these data at county-level, a similarity index, which considered the spatio-temporal characteristics of the disease, was proposed to evaluate the role and lag time of meteorological factors in the influenza transmission. The results indicated that the influenza spanned a large geographical area, following an overall trend from east to west across the country. The spatio-temporal transmission of the disease was affected by a series of meteorological variables, especially absolute humidity with a 3-week lag. These findings confirmed that the absolute humidity and other meteorological variables contributed to the local occurrence and dispersal of influenza A (H1N1). The impact of meteorological variables and their lag effects could be involved in the improvement of effective strategies to control and prevent disease outbreaks.

  15. 2.1 Natural History of Highly Pathogenic Avian Influenza H5N1

    PubMed Central

    Sonnberg, Stephanie; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    The ecology of highly pathogenic avian influenza (HPAI) H5N1 has significantly changed from sporadic outbreaks in terrestrial poultry to persistent circulation in terrestrial and aquatic poultry and potentially in wild waterfowl. A novel genotype of HPAI H5N1 arose in 1996 in southern China and through ongoing mutation, reassortment, and natural selection, has diverged into distinct lineages and expanded into multiple reservoir hosts. The evolution of Goose/Guangdong-lineage highly pathogenic H5N1 viruses is ongoing: while stable interactions exist with some reservoir hosts, these viruses are continuing to evolve and adapt to others, and pose an un-calculable risk to sporadic hosts, including humans. PMID:23735535

  16. Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus.

    PubMed

    Busquets, Núria; Segalés, Joaquim; Córdoba, Lorena; Mussá, Tufaria; Crisci, Elisa; Martín-Valls, Gerard E; Simon-Grifé, Meritxell; Pérez-Simó, Marta; Pérez-Maíllo, Monica; Núñez, Jose I; Abad, Francesc X; Fraile, Lorenzo; Pina, Sonia; Majó, Natalia; Bensaid, Albert; Domingo, Mariano; Montoya, María

    2010-01-01

    The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains. © INRA, EDP Sciences, 2010.

  17. Two Years after Pandemic Influenza A/2009/H1N1: What Have We Learned?

    PubMed Central

    Cheng, Vincent C. C.; To, Kelvin K. W.; Tse, Herman; Hung, Ivan F. N.

    2012-01-01

    Summary: The world had been anticipating another influenza pandemic since the last one in 1968. The pandemic influenza A H1N1 2009 virus (A/2009/H1N1) finally arrived, causing the first pandemic influenza of the new millennium, which has affected over 214 countries and caused over 18,449 deaths. Because of the persistent threat from the A/H5N1 virus since 1997 and the outbreak of the severe acute respiratory syndrome (SARS) coronavirus in 2003, medical and scientific communities have been more prepared in mindset and infrastructure. This preparedness has allowed for rapid and effective research on the epidemiological, clinical, pathological, immunological, virological, and other basic scientific aspects of the disease, with impacts on its control. A PubMed search using the keywords “pandemic influenza virus H1N1 2009” yielded over 2,500 publications, which markedly exceeded the number published on previous pandemics. Only representative works with relevance to clinical microbiology and infectious diseases are reviewed in this article. A significant increase in the understanding of this virus and the disease within such a short amount of time has allowed for the timely development of diagnostic tests, treatments, and preventive measures. These findings could prove useful for future randomized controlled clinical trials and the epidemiological control of future pandemics. PMID:22491771

  18. Chicken faeces garden fertilizer: possible source of human avian influenza H5N1 infection.

    PubMed

    Kandun, I N; Samaan, G; Harun, S; Purba, W H; Sariwati, E; Septiawati, C; Silitonga, M; Dharmayanti, N P I; Kelly, P M; Wandra, T

    2010-06-01

    Avian influenza H5N1 infection in humans is typically associated with close contact with infected poultry or other infected avian species. We report on human cases of H5N1 infection in Indonesia where exposure to H5N1-infected animals could not be established, but where the investigation found chicken faeces contaminated with viable H5N1 virus in the garden fertilizer. Human cases of avian influenza H5N1 warrant extensive investigations to determine likely sources of illness and to minimize risk to others. Authorities should regulate the sale and transportation of chicken faeces as fertilizer from areas where H5N1 outbreaks are reported.

  19. Sensitivity of influenza rapid diagnostic tests to H5N1 and 2009 pandemic H1N1 viruses.

    PubMed

    Sakai-Tagawa, Yuko; Ozawa, Makoto; Tamura, Daisuke; Le, Mai thi Quynh; Nidom, Chairul A; Sugaya, Norio; Kawaoka, Yoshihiro

    2010-08-01

    Simple and rapid diagnosis of influenza is useful for making treatment decisions in the clinical setting. Although many influenza rapid diagnostic tests (IRDTs) are available for the detection of seasonal influenza virus infections, their sensitivity for other viruses, such as H5N1 viruses and the recently emerged swine origin pandemic (H1N1) 2009 virus, remains largely unknown. Here, we examined the sensitivity of 20 IRDTs to various influenza virus strains, including H5N1 and 2009 pandemic H1N1 viruses. Our results indicate that the detection sensitivity to swine origin H1N1 viruses varies widely among IRDTs, with some tests lacking sufficient sensitivity to detect the early stages of infection when the virus load is low.

  20. Highly Pathogenic Avian Influenza H5N1 Clade 2.3.2.1c Virus in Lebanon, 2016.

    PubMed

    El Romeh, Ali; Zecchin, Bianca; Fusaro, Alice; Ibrahim, Elias; El Bazzal, Bassel; El Hage, Jeanne; Milani, Adelaide; Zamperin, Gianpiero; Monne, Isabella

    2017-06-01

    We report the phylogenetic analysis of the first outbreak of H5N1 highly pathogenic avian influenza virus detected in Lebanon from poultry in April 2016. Our whole-genome sequencing analysis revealed that the Lebanese H5N1 virus belongs to genetic clade 2.3.2.1c and clusters with viruses from Europe and West Africa.

  1. Puzzling inefficiency of H5N1 influenza vaccines in Egyptian poultry

    PubMed Central

    Kim, Jeong-Ki; Kayali, Ghazi; Walker, David; Forrest, Heather L.; Ellebedy, Ali H.; Griffin, Yolanda S.; Rubrum, Adam; Bahgat, Mahmoud M.; Kutkat, M. A.; Ali, M. A. A.; Aldridge, Jerry R.; Negovetich, Nicholas J.; Krauss, Scott; Webby, Richard J.; Webster, Robert G.

    2010-01-01

    In Egypt, efforts to control highly pathogenic H5N1 avian influenza virus in poultry and in humans have failed despite increased biosecurity, quarantine, and vaccination at poultry farms. The ongoing circulation of HP H5N1 avian influenza in Egypt has caused >100 human infections and remains an unresolved threat to veterinary and public health. Here, we describe that the failure of commercially available H5 poultry vaccines in Egypt may be caused in part by the passive transfer of maternal H5N1 antibodies to chicks, inhibiting their immune response to vaccination. We propose that the induction of a protective immune response to H5N1 is suppressed for an extended period in young chickens. This issue, among others, must be resolved and additional steps must be taken before the outbreaks in Egypt can be controlled. PMID:20534457

  2. Predictors of fatality in pandemic influenza A (H1N1) virus infection among adults

    PubMed Central

    2014-01-01

    Background The fatality attributed to pandemic influenza A H1N1 was not clear in the literature. We described the predictors for fatality related to pandemic influenza A H1N1 infection among hospitalized adult patients. Methods This is a multicenter study performed during the pandemic influenza A H1N1 [A(H1N1)pdm09] outbreak which occurred in 2009 and 2010. Analysis was performed among laboratory confirmed patients. Multivariate analysis was performed for the predictors of fatality. Results In the second wave of the pandemic, 848 adult patients were hospitalized because of suspected influenza, 45 out of 848 (5.3%) died, with 75% of fatalities occurring within the first 2 weeks of hospitalization. Among the 241 laboratory confirmed A(H1N1)pdm09 patients, the case fatality rate was 9%. In a multivariate logistic regression model that was performed for the fatalities within 14 days after admission, early use of neuraminidase inhibitors was found to be protective (Odds ratio: 0.17, confidence interval: 0.03-0.77, p = 0.022), nosocomial infections (OR: 5.7, CI: 1.84-18, p = 0.013), presence of malignant disease (OR: 3.8, CI: 0.66-22.01, p = 0.133) significantly increased the likelihood of fatality. Conclusions Early detection of the infection, allowing opportunity for the early use of neuraminidase inhibitors, was found to be important for prevention of fatality. Nosocomial bacterial infections and underlying malignant diseases increased the rate of fatality. PMID:24916566

  3. Assessing Google Flu Trends Performance in the United States during the 2009 Influenza Virus A (H1N1) Pandemic

    PubMed Central

    Cook, Samantha; Conrad, Corrie; Fowlkes, Ashley L.; Mohebbi, Matthew H.

    2011-01-01

    Background Google Flu Trends (GFT) uses anonymized, aggregated internet search activity to provide near-real time estimates of influenza activity. GFT estimates have shown a strong correlation with official influenza surveillance data. The 2009 influenza virus A (H1N1) pandemic [pH1N1] provided the first opportunity to evaluate GFT during a non-seasonal influenza outbreak. In September 2009, an updated United States GFT model was developed using data from the beginning of pH1N1. Methodology/Principal Findings We evaluated the accuracy of each U.S. GFT model by comparing weekly estimates of ILI (influenza-like illness) activity with the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). For each GFT model we calculated the correlation and RMSE (root mean square error) between model estimates and ILINet for four time periods: pre-H1N1, Summer H1N1, Winter H1N1, and H1N1 overall (Mar 2009–Dec 2009). We also compared the number of queries, query volume, and types of queries (e.g., influenza symptoms, influenza complications) in each model. Both models' estimates were highly correlated with ILINet pre-H1N1 and over the entire surveillance period, although the original model underestimated the magnitude of ILI activity during pH1N1. The updated model was more correlated with ILINet than the original model during Summer H1N1 (r = 0.95 and 0.29, respectively). The updated model included more search query terms than the original model, with more queries directly related to influenza infection, whereas the original model contained more queries related to influenza complications. Conclusions Internet search behavior changed during pH1N1, particularly in the categories “influenza complications” and “term for influenza.” The complications associated with pH1N1, the fact that pH1N1 began in the summer rather than winter, and changes in health-seeking behavior each may have played a part. Both GFT models performed well prior to and during pH1N1

  4. Emergence of influenza A (H1N1) PDM09 in the remote Islands of India--a molecular approach.

    PubMed

    Muruganandam, N; Bhattacharya, D; Chaaithanya, I K; Bhattacharya, H; Reesu, R; Maile, A; Bharathi, G S J; Sugunan, A P; Vijayachari, P

    2015-01-01

    A disease outbreak of A (H1N1) PDM09 was reported in Andaman and Nicobar islands in 2009 with an attack rate of 33.5% among settler population and 26.3% among the aboriginal Nicobarese tribe. During the ongoing outbreak of A (H1N1) PDM09 disease in different parts of the world, a subject working in Dubai city of Saudi Arabia, came to Port Blair, following which the pandemic triggered for the first time in these Islands. During the period August 2009 to January 2011, 30 confirmed cases of Influenza A (H1N1) PDM09 virus infection was detected. To understand the genetic relationship, the NA gene sequences of the viruses were phylogenetically analysed together along with the virus sequence isolated from other parts of the world. Formation of multiple clusters were observed, with the sequences of Andaman Islands, mainland India, Mexico, Saudi Arabia and few other counties clustering together. The sequence analysis data revealed that there was no specific mutation conferring resistance to oseltamivir among the Andaman A (H1N1) PDM09 virus isolates. The result of phylogenetic analysis have also revealed that the A (H1N1) PDM09 virus might have spread in these remote Islands of India via the subject from Saudi Arabia/Dubai. A (H1N1) PDM09 Influenza outbreak have highlighted the need to strengthen the region-specific pandemic preparedness plans and surveillance strategies.

  5. Pandemic (H1N1) 2009 Outbreak at Camp for Children with Hematologic and Oncologic Conditions

    PubMed Central

    Morrison, Cori; Maurtua-Neumann, Paola; Myint, Myo Thwin; Drury, Stacy S.

    2011-01-01

    An outbreak of influenza A pandemic (H1N1) 2009 occurred among campers and staff at a summer camp attended by children with hematologic and oncologic conditions. The overall attack rate was 36% and was highest among children and adolescents (43%), persons with cancer (48%), and persons with sickle cell disease (82%). PMID:21192861

  6. Evaluation of Wondfo influenza A&B fast test based on immunochromatography assay for rapid diagnosis of influenza A H1N1.

    PubMed

    Peng, Yunping; Wu, Junlin; Liu, Xiaoyun; Wang, Jihua; Li, Wenmei

    2013-01-01

    Influenza viruses cause significant morbidity and mortality in both children and adults during local outbreaks or epidemics. Therefore, a rapid test for influenza A&B would be useful. This study was conducted to evaluate the clinical performance of the Wondfo influenza A&B test for rapid diagnosis of influenza A H1N1 Infection. The rapid testing assay could distinguish infection of influenza A and B virus. The reference viral strains were cultured in MDCK cells while TCID50 if the viruses were determined. The analytical sensitivity of the Wondfo kit was 100TCID50/ml. The Wondfo kit did not show cross reactivity with other common viruses. 1928 suspected cases of influenza A (H1N1) virus infection were analyzed in the Wondfo influenza A&B test and other commercially available products. Inconsistent results were further confirmed by virus isolation in cell culture. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were 100%, 98.23%, 92.45%, and 100% for flu A, and 96.39%, 99.95%, 98.77%, and 99.84% for flu B respectively. 766 suspected cases of influenza A (H1N1) virus infection were analyzed in the Wondfo influenza A&B test and RT-PCR. The sensitivity, specificity, PPV and NPV were 56.5%, 99.75%, 99.52% and 71.04% for flu A, 25.45%, 99.86%, 93.33% and 94.54% for flu B respectively. These results indicate that the Wondfo influenza A&B test has high positive and negative detection rates. One hundred fifty-six specimens of influenza A (H1N1) confirmed by RT-PCR were analyzed by the Wondfo influenza A&B test and 66.67% were positive while only 18.59% were positive by the reference kit. These results indicate that our rapid diagnostic assay may be useful for analyzing influenza A H1N1 infections in patient specimen. Copyright © 2013 Elsevier Editora Ltda. All rights reserved.

  7. Origins of the 2009 H1N1 influenza pandemic in swine in Mexico

    PubMed Central

    Mena, Ignacio; Nelson, Martha I; Quezada-Monroy, Francisco; Dutta, Jayeeta; Cortes-Fernández, Refugio; Lara-Puente, J Horacio; Castro-Peralta, Felipa; Cunha, Luis F; Trovão, Nídia S; Lozano-Dubernard, Bernardo; Rambaut, Andrew; van Bakel, Harm; García-Sastre, Adolfo

    2016-01-01

    Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the zoonotic origins of the 2009 A/H1N1 influenza pandemic virus (pdmH1N1) remain unclear, due to conflicting evidence from swine and humans. There is strong evidence that the first human outbreak of pdmH1N1 occurred in Mexico in early 2009. However, no related swine viruses have been detected in Mexico or any part of the Americas, and to date the most closely related ancestor viruses were identified in Asian swine. Here, we use 58 new whole-genome sequences from IAVs collected in Mexican swine to establish that the swine virus responsible for the 2009 pandemic evolved in central Mexico. This finding highlights how the 2009 pandemic arose from a region not considered a pandemic risk, owing to an expansion of IAV diversity in swine resulting from long-distance live swine trade. DOI: http://dx.doi.org/10.7554/eLife.16777.001 PMID:27350259

  8. Calculating the potential for within-flight transmission of influenza A (H1N1)

    PubMed Central

    2009-01-01

    Background Clearly air travel, by transporting infectious individuals from one geographic location to another, significantly affects the rate of spread of influenza A (H1N1). However, the possibility of within-flight transmission of H1N1 has not been evaluated; although it is known that smallpox, measles, tuberculosis, SARS and seasonal influenza can be transmitted during commercial flights. Here we present the first quantitative risk assessment to assess the potential for within-flight transmission of H1N1. Methods We model airborne transmission of infectious viral particles of H1N1 within a Boeing 747 using methodology from the field of quantitative microbial risk assessment. Results The risk of catching H1N1 will essentially be confined to passengers travelling in the same cabin as the source case. Not surprisingly, we find that the longer the flight the greater the number of infections that can be expected. We calculate that H1N1, even during long flights, poses a low to moderate within-flight transmission risk if the source case travels First Class. Specifically, 0-1 infections could occur during a 5 hour flight, 1-3 during an 11 hour flight and 2-5 during a 17 hour flight. However, within-flight transmission could be significant, particularly during long flights, if the source case travels in Economy Class. Specifically, two to five infections could occur during a 5 hour flight, 5-10 during an 11 hour flight and 7-17 during a 17 hour flight. If the aircraft is only partially loaded, under certain conditions more infections could occur in First Class than in Economy Class. During a 17 hour flight, a greater number of infections would occur in First Class than in Economy if the First Class Cabin is fully occupied, but Economy class is less than 30% full. Conclusions Our results provide insights into the potential utility of air travel restrictions on controlling influenza pandemics in the winter of 2009/2010. They show travel by one infectious individual

  9. Calculating the potential for within-flight transmission of influenza A (H1N1).

    PubMed

    Wagner, Bradley G; Coburn, Brian J; Blower, Sally

    2009-12-24

    Clearly air travel, by transporting infectious individuals from one geographic location to another, significantly affects the rate of spread of influenza A (H1N1). However, the possibility of within-flight transmission of H1N1 has not been evaluated; although it is known that smallpox, measles, tuberculosis, SARS and seasonal influenza can be transmitted during commercial flights. Here we present the first quantitative risk assessment to assess the potential for within-flight transmission of H1N1. We model airborne transmission of infectious viral particles of H1N1 within a Boeing 747 using methodology from the field of quantitative microbial risk assessment. The risk of catching H1N1 will essentially be confined to passengers travelling in the same cabin as the source case. Not surprisingly, we find that the longer the flight the greater the number of infections that can be expected. We calculate that H1N1, even during long flights, poses a low to moderate within-flight transmission risk if the source case travels First Class. Specifically, 0-1 infections could occur during a 5 hour flight, 1-3 during an 11 hour flight and 2-5 during a 17 hour flight. However, within-flight transmission could be significant, particularly during long flights, if the source case travels in Economy Class. Specifically, two to five infections could occur during a 5 hour flight, 5-10 during an 11 hour flight and 7-17 during a 17 hour flight. If the aircraft is only partially loaded, under certain conditions more infections could occur in First Class than in Economy Class. During a 17 hour flight, a greater number of infections would occur in First Class than in Economy if the First Class Cabin is fully occupied, but Economy class is less than 30% full. Our results provide insights into the potential utility of air travel restrictions on controlling influenza pandemics in the winter of 2009/2010. They show travel by one infectious individual, rather than causing a single outbreak of H1N

  10. Computer-aided assessment of pulmonary disease in novel swine-origin H1N1 influenza on CT

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Dwyer, Andrew J.; Summers, Ronald M.; Mollura, Daniel J.

    2011-03-01

    The 2009 pandemic is a global outbreak of novel H1N1 influenza. Radiologic images can be used to assess the presence and severity of pulmonary infection. We develop a computer-aided assessment system to analyze the CT images from Swine-Origin Influenza A virus (S-OIV) novel H1N1 cases. The technique is based on the analysis of lung texture patterns and classification using a support vector machine (SVM). Pixel-wise tissue classification is computed from the SVM value. The method was validated on four H1N1 cases and ten normal cases. We demonstrated that the technique can detect regions of pulmonary abnormality in novel H1N1 patients and differentiate these regions from visually normal lung (area under the ROC curve is 0.993). This technique can also be applied to differentiate regions infected by different pulmonary diseases.

  11. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    PubMed

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  12. Fitness of Pandemic H1N1 and Seasonal influenza A viruses during Co-infection: Evidence of competitive advantage of pandemic H1N1 influenza versus seasonal influenza.

    PubMed

    Perez, Daniel Roberto; Sorrell, Erin; Angel, Matthew; Ye, Jianqiang; Hickman, Danielle; Pena, Lindomar; Ramirez-Nieto, Gloria; Kimble, Brian; Araya, Yonas

    2009-08-24

    On June 11, 2009 the World Health Organization (WHO) declared a new H1N1 influenza pandemic. This pandemic strain is as transmissible as seasonal H1N1 and H3N2 influenza A viruses. Major concerns facing this pandemic are whether the new virus will replace, co-circulate and/or reassort with seasonal H1N1 and/or H3N2 human strains. Using the ferret model, we investigated which of these three possibilities were most likely favored. Our studies showed that the current pandemic virus is more transmissible than, and has a biological advantage over, prototypical seasonal H1 or H3 strains.

  13. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice.

    PubMed

    Sui, Jinyu; Yang, Dawei; Qiao, Chuanling; Xu, Huiyang; Xu, Bangfeng; Wu, Yunpu; Yang, Huanliang; Chen, Yan; Chen, Hualan

    2016-07-19

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus.

    PubMed

    Kang, Xiao-ping; Jiang, Tao; Li, Yong-qiang; Lin, Fang; Liu, Hong; Chang, Guo-hui; Zhu, Qing-yu; Qin, E-de; Qin, Cheng-feng; Yang, Yin-hui

    2010-06-02

    A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009) influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose) for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same as that of each single-target RT-PCR for pandemic H1N1 and even more sensitive for H5N1 with the same primers and probes. No cross reactivity of detecting other subtype influenza viruses or respiratory tract viruses was observed. Two hundred and thirty-six clinical specimens were tested by comparing with single real-time RT-PCR and result from the duplex assay was 100% consistent with the results of single real-time RT-PCR and sequence analysis.

  15. A(H1N1)pdm09 influenza infection: vaccine inefficiency.

    PubMed

    Friedman, Nehemya; Drori, Yaron; Pando, Rakefet; Glatman-Freedman, Aharona; Sefty, Hanna; Bassal, Ravit; Stein, Yaniv; Shohat, Tamy; Mendelson, Ella; Hindiyeh, Musa; Mandelboim, Michal

    2017-05-16

    The last influenza pandemic, caused by the swine A(H1N1)pdm09 influenza virus, began in North America at 2009. Since then, the World Health Organization (WHO) recommended integration of the swine-based virus A/California/07/2009 strain in yearly vaccinations. Yet, infections with A(H1N1)pdm09 have continued in subsequent years. The reasons for this are currently unknown. During the 2015-2016 influenza season, we noted an increased prevalence of A(H1N1)pdm09 influenza virus infection in Israel. Our phylogenetic analysis indicated that the circulating A(H1N1)pdm09 strains belonged to 6B.1 and 6B.2 clades and differed from the vaccinating strain, with approximately 18 amino acid differences found between the circulating strains and the immunizing A/California/07/2009 strain. Hemmaglutination inhibition (HI) assays demonstrated higher antibodies titer against the A/California/07/2009 vaccinating strain as compared to the circulating Israeli strains. We thus suggest that the current vaccination was not sufficiently effective and propose inclusion of the current circulating A(H1N1)pdm09 influenza viruses in the annual vaccine composition.

  16. Higher titers of some H5N1 and recent human H1N1 and H3N2 influenza viruses in Mv1 Lu vs. MDCK cells

    PubMed Central

    2011-01-01

    Background The infectivity of influenza A viruses can differ among the various primary cells and continuous cell lines used for such measurements. Over many years, we observed that all things equal, the cytopathic effects caused by influenza A subtype H1N1, H3N2, and H5N1 viruses were often detected earlier in a mink lung epithelial cell line (Mv1 Lu) than in MDCK cells. We asked whether virus yields as measured by the 50% tissue culture infectious dose and plaque forming titer also differed in MDCK and Mv1 Lu cells infected by the same influenza virus subtypes. Results The 50% tissue culture infectious dose and plaque forming titer of many influenza A subtype H1N1, H3N2, and H5N1 viruses was higher in Mv1 Lu than in MDCK cells. Conclusions The yields of influenza subtype H1N1, H3N2, and H5N1 viruses can be higher in Mv1 Lu cells than in MDCK cells. PMID:21314955

  17. Novel (pandemic) influenza A H1N1 in healthcare facilities: implications for prevention and control.

    PubMed

    Maltezou, Helena C

    2010-07-01

    In April 2009 a novel (pandemic) influenza A H1N1 virus was identified in Mexico and the USA and spread throughout the world over a short period of time. Although the virulence of novel influenza was no greater than that of seasonal influenza, a major patient load and wave of admissions were faced. There are few evidence-based data available to guide infection control measures for novel influenza, however what is clear is that the novel virus is a very efficient agent for rapid spread and onset of outbreaks in healthcare settings. There are few reports on the nosocomial transmission of novel influenza, however outbreaks with severe morbidity and mortality may occur among high-risk groups. Last y efforts were made in several countries to build infection control capacity in healthcare facilities and to improve employee and patient safety. Adherence of healthcare workers to recommendations for vaccination against novel influenza and the use of personal protective equipment are emerging as major obstacles in achieving this goal. The use of N95 respirators instead of surgical masks for all close contacts, as recommended by the Centers for Disease Control and Prevention and in contrast with recommendations for seasonal influenza, is a major shift in everyday practice.

  18. Understanding newsworthiness of an emerging pandemic: international newspaper coverage of the H1N1 outbreak.

    PubMed

    Smith, Katherine C; Rimal, Rajiv N; Sandberg, Helena; Storey, John D; Lagasse, Lisa; Maulsby, Catherine; Rhoades, Elizabeth; Barnett, Daniel J; Omer, Saad B; Links, Jonathan M

    2013-09-01

    During an evolving public health crisis, news organizations disseminate information rapidly, much of which is uncertain, dynamic, and difficult to verify. We examine factors related to international news coverage of H1N1 during the first month after the outbreak in late April 2009 and consider the news media's role as an information source during an emerging pandemic. Data on H1N1 news were compiled in real time from newspaper websites across twelve countries between April 29, 2009 and May 28, 2009. A news sample was purposively constructed to capture variation in countries' prior experience with avian influenza outbreaks and pandemic preparation efforts. We analyzed the association between H1N1 news volume and four predictor variables: geographic region, prior experience of a novel flu strain (H5N1), existence of a national pandemic plan, and existence of a localized H1N1 outbreak. H1N1 news was initially extensive but declined rapidly (OR = 0.85, P < .001). Pandemic planning did not predict newsworthiness. However, countries with prior avian flu experience had higher news volume (OR = 1.411, P < .05), suggesting that H1N1 newsworthiness was bolstered by past experiences. The proportion of H1N1 news was significantly lower in Europe than elsewhere (OR = 0.388, P < 0.05). Finally, coverage of H1N1 increased after a first in-country case (OR = 1.415, P < .01), interrupting the pattern of coverage decline. Findings demonstrate the enhanced newsworthiness of localized threats, even during an emerging pandemic. We discuss implications for news media's role in effective public health communication throughout an epidemic given the demonstrated precipitous decline in news interest. © 2012 John Wiley & Sons Ltd.

  19. Concurrent 2009 pandemic influenza A (H1N1) virus infection in ferrets and in a community in Pennsylvania.

    PubMed

    Campagnolo, E R; Moll, M E; Tuhacek, K; Simeone, A J; Miller, W S; Waller, K O; Simwale, O; Rankin, J T; Ostroff, S M

    2013-03-01

    We report a fall 2010 cluster of pandemic influenza A/H1N1 (pH1N1) infections in pet ferrets in Lehigh Valley region of Pennsylvania. The ferrets were associated with one pet shop. The influenza cluster occurred during a period when the existing human surveillance systems had identified little to no pH1N1 in humans in the Lehigh Valley, and there were no routine influenza surveillance systems for exotic pets. The index case was a 2.5-month-old neutered male ferret that was presented to a veterinary clinic with severe influenza-like illness (ILI). In response to laboratory notification of a positive influenza test result, and upon request from the Pennsylvania Department of Health (PADOH), the Pennsylvania Department of Agriculture (PDA) conducted an investigation to identify other ill ferrets and to identify the source and extent of infection. PDA notified the PADOH of the pH1N1 infection in the ferrets, leading to enhanced human surveillance and the detection of pH1N1 human infections in the surrounding community. Five additional ferrets with ILI linked to the pet shop were identified. This simultaneous outbreak of ferret and human pH1N1 demonstrates the important link between animal health and public health and highlights the potential use of veterinary clinics for sentinel surveillance of diseases shared between animals and humans. © 2012 Blackwell Verlag GmbH.

  20. Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus.

    PubMed

    Kreijtz, J H C M; Bodewes, R; van den Brand, J M A; de Mutsert, G; Baas, C; van Amerongen, G; Fouchier, R A M; Osterhaus, A D M E; Rimmelzwaan, G F

    2009-08-06

    The transmission of highly pathogenic avian influenza (HPAI) A viruses of the H5N1 subtype from poultry to man and the high case fatality rate fuels the fear for a pandemic outbreak caused by these viruses. However, prior infections with seasonal influenza A/H1N1 and A/H3N2 viruses induce heterosubtypic immunity that could afford a certain degree of protection against infection with the HPAI A/H5N1 viruses, which are distantly related to the human influenza A viruses. To assess the protective efficacy of such heterosubtypic immunity mice were infected with human influenza virus A/Hong Kong/2/68 (H3N2) 4 weeks prior to a lethal infection with HPAI virus A/Indonesia/5/05 (H5N1). Prior infection with influenza virus A/Hong Kong/2/68 reduced clinical signs, body weight loss, mortality and virus replication in the lungs as compared to naive mice infected with HPAI virus A/Indonesia/5/05. Priming by infection with respiratory syncytial virus, a non-related virus did not have a beneficial effect on the outcome of A/H5N1 infections, indicating that adaptive immune responses were responsible for the protective effect. In mice primed by infection with influenza A/H3N2 virus cytotoxic T lymphocytes (CTL) specific for NP(366-374) epitope ASNENMDAM and PA(224-232) SCLENFRAYV were observed. A small proportion of these CTL was cross-reactive with the peptide variant derived from the influenza A/H5N1 virus (ASNENMEVM and SSLENFRAYV respectively) and upon challenge infection with the influenza A/H5N1 virus cross-reactive CTL were selectively expanded. These CTL, in addition to those directed to conserved epitopes, shared by the influenza A/H3N2 and A/H5N1 viruses, most likely contributed to accelerated clearance of the influenza A/H5N1 virus infection. Although also other arms of the adaptive immune response may contribute to heterosubtypic immunity, the induction of virus-specific CTL may be an attractive target for development of broad protective vaccines. Furthermore the

  1. Intranasal administration of poly-gamma glutamate induced antiviral activity and protective immune responses against H1N1 influenza A virus infection.

    PubMed

    Kim, Eun-Ha; Choi, Young-Ki; Kim, Chul-Joong; Sung, Moon-Hee; Poo, Haryoung

    2015-10-06

    The global outbreak of a novel swine-origin strain of the 2009 H1N1 influenza A virus and the sudden, worldwide increase in oseltamivir-resistant H1N1 influenza A viruses highlight the urgent need for novel antiviral therapy. Here, we investigated the antiviral efficacy of poly-gamma glutamate (γ-PGA), a safe and edible biomaterial that is naturally synthesized by Bacillus subtilis, against A/Puerto Rico/8/1934 (PR8) and A/California/04/2009 (CA04) H1N1 influenza A virus infections in C57BL/6 mice. Intranasal administration of γ-PGA for 5 days post-infection improved survival, increased production of antiviral cytokines including interferon-beta (IFN-β) and interleukin-12 (IL-12), and enhanced activation of natural killer (NK) cells and influenza antigen-specific cytotoxic T lymphocytes (CTL) activity. These results suggest that γ-PGA protects mice against H1N1 influenza A virus by enhancing antiviral immune responses.

  2. Identification and characterization of a highly pathogenic H5N1 avian influenza A virus during an outbreak in vaccinated chickens in Egypt.

    PubMed

    Amen, O; Vemula, S V; Zhao, J; Ibrahim, R; Hussein, A; Hewlett, I K; Moussa, S; Mittal, S K

    2015-12-02

    Highly pathogenic avian influenza A (HPAI) H5N1 viruses continue to be a major veterinary and public health problem in Egypt. Continued surveillance of these viruses is necessary to devise strategies to control the spread of the virus and to monitor its evolutionary patterns. This is a report of the identification of a variant strain of HPAI H5N1 virus during an outbreak in 2010 in vaccinated chicken flocks in a poultry farm in Assiut, Egypt. Vaccination of chickens with an oil-emulsified inactivated A/chicken/Mexico/232/94 (H5N2) vaccine induced high levels of hemagglutination inhibition (HI) antibody titers reaching up to 9 log2. However, all flocks irrespective of the number of vaccine doses and the resultant HI titer levels came down with severe influenza infections. The qRT-PCR and rapid antigen test confirmed the influenza virus to be from H5N1 subtype. Sequencing of the hemagglutinin (HA) gene fragment from ten independent samples demonstrated that a single H5N1 strain was involved. This strain belonged to clade 2.2.1 and had several mutations in the receptor-binding site of the HA protein, thereby producing a variant strain of HPAI H5N1 virus which was antigenically different from the parent clade 2.2.1 virus circulating in Egypt at that time. In order to define the variability in HPAI H5N1 viruses over time in Egypt, we sequenced another H5N1 virus that was causing infections in chickens in 2014. Phylogenetic analysis revealed that both viruses had further distanced from the parent virus circulating during 2010. This study highlights that the antigenic mutations in HPAI H5N1 viruses represent a definitive challenge for the development of an effective vaccine for poultry. Overall, the results emphasize the need for continued surveillance of H5N1 outbreaks and extensive characterization of virus isolates from vaccinated and non-vaccinated poultry populations to better understand genetic changes and their implications. Copyright © 2015 Elsevier B.V. All

  3. Selecting Nonpharmaceutical Strategies to Minimize Influenza Spread: The 2009 Influenza A (H1N1) Pandemic and Beyond

    PubMed Central

    Koonin, Lisa M.; Kohl, Katrin S.; Cetron, Martin

    2012-01-01

    Shortly after the influenza A (H1N1) 2009 pandemic began, the U.S. government provided guidance to state and local authorities to assist decision-making for the use of nonpharmaceutical strategies to minimize influenza spread. This guidance included recommendations for flexible decision-making based on outbreak severity, and it allowed for uncertainty and course correction as the pandemic progressed. These recommendations build on a foundation of local, collaborative planning and posit a series of questions regarding epidemiology, the impact on the health-care system, and locally determined feasibility and acceptability of nonpharmaceutical strategies. This article describes -recommendations and key questions for decision makers. PMID:23115381

  4. Avian influenza A (H5N1).

    PubMed

    de Jong, Menno D; Hien, Tran Tinh

    2006-01-01

    Since their reemergence in 2003, highly pathogenic avian influenza A (H5N1) viruses have reached endemic levels among poultry in several southeast Asian countries and have caused a still increasing number of more than 100 reported human infections with high mortality. These developments have ignited global fears of an imminent influenza pandemic. The current knowledge of the virology, clinical spectrum, diagnosis and treatment of human influenza H5N1 virus infections is reviewed herein.

  5. Highly Pathogenic Avian Influenza Virus (H5N1) in Frozen Duck Carcasses, Germany, 2007

    PubMed Central

    Harder, Timm C.; Teuffert, Jürgen; Starick, Elke; Gethmann, Jörn; Grund, Christian; Fereidouni, Sasan; Durban, Markus; Bogner, Karl-Heinz; Neubauer-Juric, Antonie; Repper, Reinhard; Hlinak, Andreas; Engelhardt, Andreas; Nöckler, Axel; Smietanka, Krzysztof; Minta, Zenon; Kramer, Matthias; Globig, Anja; Mettenleiter, Thomas C.; Conraths, Franz J.

    2009-01-01

    We conducted phylogenetic and epidemiologic analyses to determine sources of outbreaks of highly pathogenic avian influenza virus (HPAIV), subtype H5N1, in poultry holdings in 2007 in Germany, and a suspected incursion of HPAIV into the food chain through contaminated deep-frozen duck carcasses. In summer 2007, HPAIV (H5N1) outbreaks in 3 poultry holdings in Germany were temporally, spatially, and phylogenetically linked to outbreaks in wild aquatic birds. Detection of HPAIV (H5N1) in frozen duck carcass samples of retained slaughter batches of 1 farm indicated that silent infection had occurred for some time before the incidental detection. Phylogenetic analysis established a direct epidemiologic link between HPAIV isolated from duck meat and strains isolated from 3 further outbreaks in December 2007 in backyard chickens that had access to uncooked offal from commercial deep-frozen duck carcasses. Measures that will prevent such undetected introduction of HPAIV (H5N1) into the food chain are urgently required. PMID:19193272

  6. Using Knowledge Fusion to Analyze Avian Influenza H5N1 in East and Southeast Asia

    PubMed Central

    Ge, Erjia; Haining, Robert; Li, Chi Pang; Yu, Zuguo; Waye, Miu Yee; Chu, Ka Hou; Leung, Yee

    2012-01-01

    Highly pathogenic avian influenza (HPAI) H5N1, a disease associated with high rates of mortality in infected human populations, poses a serious threat to public health in many parts of the world. This article reports findings from a study aimed at improving our understanding of the spatial pattern of the highly pathogenic avian influenza, H5N1, risk in East-Southeast Asia where the disease is both persistent and devastating. Though many disciplines have made important contributions to our understanding of H5N1, it remains a challenge to integrate knowledge from different disciplines. This study applies genetic analysis that identifies the evolution of the H5N1 virus in space and time, epidemiological analysis that determines socio-ecological factors associated with H5N1 occurrence, and statistical analysis that identifies outbreak clusters, and then applies a methodology to formally integrate the findings of the three sets of methodologies. The present study is novel in two respects. First it makes the initiative attempt to use genetic sequences and space-time data to create a space-time phylogenetic tree to estimate and map the virus' ability to spread. Second, by integrating the results we are able to generate insights into the space-time occurrence and spread of H5N1 that we believe have a higher level of corroboration than is possible when analysis is based on only one methodology. Our research identifies links between the occurrence of H5N1 by area and a set of socio-ecological factors including altitude, population density, poultry density, and the shortest path distances to inland water, coastlines, migrating routes, railways, and roads. This study seeks to lay a solid foundation for the interdisciplinary study of this and other influenza outbreaks. It will provide substantive information for containing H5N1 outbreaks. PMID:22615729

  7. Using knowledge fusion to analyze avian influenza H5N1 in East and Southeast Asia.

    PubMed

    Ge, Erjia; Haining, Robert; Li, Chi Pang; Yu, Zuguo; Waye, Miu Yee; Chu, Ka Hou; Leung, Yee

    2012-01-01

    Highly pathogenic avian influenza (HPAI) H5N1, a disease associated with high rates of mortality in infected human populations, poses a serious threat to public health in many parts of the world. This article reports findings from a study aimed at improving our understanding of the spatial pattern of the highly pathogenic avian influenza, H5N1, risk in East-Southeast Asia where the disease is both persistent and devastating. Though many disciplines have made important contributions to our understanding of H5N1, it remains a challenge to integrate knowledge from different disciplines. This study applies genetic analysis that identifies the evolution of the H5N1 virus in space and time, epidemiological analysis that determines socio-ecological factors associated with H5N1 occurrence, and statistical analysis that identifies outbreak clusters, and then applies a methodology to formally integrate the findings of the three sets of methodologies. The present study is novel in two respects. First it makes the initiative attempt to use genetic sequences and space-time data to create a space-time phylogenetic tree to estimate and map the virus' ability to spread. Second, by integrating the results we are able to generate insights into the space-time occurrence and spread of H5N1 that we believe have a higher level of corroboration than is possible when analysis is based on only one methodology. Our research identifies links between the occurrence of H5N1 by area and a set of socio-ecological factors including altitude, population density, poultry density, and the shortest path distances to inland water, coastlines, migrating routes, railways, and roads. This study seeks to lay a solid foundation for the interdisciplinary study of this and other influenza outbreaks. It will provide substantive information for containing H5N1 outbreaks.

  8. Predictors of H1N1 influenza in the emergency department: proposition for a modified H1N1 case definition.

    PubMed

    Flick, H; Drescher, M; Prattes, J; Tovilo, K; Kessler, H H; Vander, K; Seeber, K; Palfner, M; Raggam, R B; Avian, A; Krause, R; Hoenigl, M

    2014-02-01

    Reliable and rapid diagnosis of influenza A H1N1 is essential to initiate appropriate antiviral therapy and preventive measures. We analysed the differences in clinical presentation and laboratory parameters between emergency department patients with PCR-confirmed H1N1 influenza infection (n = 199) and those with PCR-negative influenza-like illness (ILI; n = 252). Cough, wheezing, leucopenia, eosinopenia and a lower C-reactive protein remained significant predictors of H1N1 influenza. Proposed combinations of clinical symptoms with simple laboratory parameters (e.g. reported or measured fever and either cough or leucocytes <8.5 × 10(9) /L) were clearly superior to currently used official ILI case definitions that use clinical criteria alone. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  9. The Role of Radiology in Influenza: Novel H1N1 and Lessons Learned From the 1918 Pandemic

    PubMed Central

    Mollura, Daniel J.; Morens, David M.; Taubenberger, Jeffery K.; Bray, Mike

    2012-01-01

    The pandemic of swine-origin H1N1 influenza that began in early 2009 has provided evidence that radiology can assist in the early diagnosis of severe cases, raising new opportunities for the further development of infectious disease imaging. To help define radiology’s role in present and future influenza outbreaks, it is important to understand how radiologists have responded to past epidemics and how these outbreaks influenced the development of imaging science. The authors review the role of radiology in the most severe influenza outbreak in history, the “great pandemic” of 1918, which arrived only 23 years after the discovery of x-rays. In large part because of the coincidental increase in the radiologic capacity of military hospitals for World War I, the 1918 pandemic firmly reinforced the role of radiologists as collaborators with clinicians and pathologists at an early stage in radiology’s development, in addition to producing a radical expansion of radiologic research on pulmonary infections. Radiology’s solid foundation from the 1918 experience in medical practice and research now affords significant opportunities to respond to the current H1N1 pandemic and future epidemics through similar interdisciplinary strategies that integrate imaging science with pathology, virology, and clinical studies. The broad range of current imaging capabilities will make it possible to study influenza at the cellular level, in animal models, and in human clinical trials to elucidate the pathogenesis of severe illness and improve clinical outcomes. PMID:20816630

  10. Co-circulation of pandemic 2009 H1N1, classical swine H1N1 and avian-like swine H1N1 influenza viruses in pigs in China.

    PubMed

    Chen, Yan; Zhang, Jian; Qiao, Chuanling; Yang, Huanliang; Zhang, Ying; Xin, Xiaoguang; Chen, Hualan

    2013-01-01

    The pandemic A/H1N1 influenza viruses emerged in both Mexico and the United States in March 2009, and were transmitted efficiently in the human population. They were transmitted occasionally from humans to other mammals including pigs, dogs and cats. In this study, we report the isolation and genetic analysis of novel viruses in pigs in China. These viruses were related phylogenetically to the pandemic 2009 H1N1 influenza viruses isolated from humans and pigs, which indicates that the pandemic virus is currently circulating in swine populations, and this hypothesis was further supported by serological surveillance of pig sera collected within the same period. Furthermore, we isolated another two H1N1 viruses belonging to the lineages of classical swine H1N1 virus and avian-like swine H1N1 virus, respectively. Multiple genetic lineages of H1N1 viruses are co-circulating in the swine population, which highlights the importance of intensive surveillance for swine influenza in China. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Novel influenza a (H1N1) infection in a Pediatric Hematology Oncology Clinic during the 2009-2010 pandemia.

    PubMed

    Ozdemir, Nihal; Celkan, Tiraje; Midilli, Kenan; Aygün, Gökhan; Sinekbasan, Serhat; Kılıç, Omer; Apak, Hilmi; Camcıoğlu, Yıldız; Yıldız, Inci

    2011-05-01

    Pandemic influenza A infection (2009 H1N1) was associated with a worldwide outbreak of febrile respiratory infection. Although usually it results in a mild illness, certain patient groups are at increased risk for complications. The authors reviewed their experience in a pediatric hematology-oncology unit to determine the outcome of this disease in children with hematological conditions and solid tumors. During the second outbreak (1 November 2009 to 14 January 2010), a total of 187 children from pediatric clinic were tested for H1N1 influenza A by multiplex polymerase chain reaction (PCR), 63 of them were positive. Patients' signs and symptoms were recorded prospectively. Ten (35.7%) (5 children with solid tumors, 4 with leukemia, 1 with hereditary spherocytosis) of 28 tested children with hematological conditions were diagnosed with 2009 H1N1 influenza infection. Fever (100%) and cough (90%) were the most common symptoms. Five were neutropenic (neutrophil count <1000/mm(3)), 4 had severe neutropenia (neutrophil count <500/mm(3)). Systemic antibiotics were given in 5 patients with the diagnosis of febrile neutropenia. Four were inpatients, others were hospitalized after the diagnosis. One patient required mechanical ventilation; however, he had concomitant invasive fungal infection. Eight patients were treated by oseltamivir, all tolerated the drug well. A total of 4 cases from 9 cancer patients had a delay in their planned chemotherapy for 7 to 15 days. Pandemic H1N1 influenza caused mild symptoms in children with cancer and/or hematological conditions but resulted in delay in anticancer therapy and increase in hospitalization and antibiotic usage.

  12. Live Bird Markets of Bangladesh: H9N2 Viruses and the Near Absence of Highly Pathogenic H5N1 Influenza

    PubMed Central

    Negovetich, Nicholas J.; Feeroz, Mohammed M.; Jones-Engel, Lisa; Walker, David; Alam, S. M. Rabiul; Hasan, Kamrul; Seiler, Patrick; Ferguson, Angie; Friedman, Kim; Barman, Subrata; Franks, John; Turner, Jasmine; Krauss, Scott; Webby, Richard J.; Webster, Robert G.

    2011-01-01

    Avian influenza surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the live-bird markets are presented. Prevalence of influenza infection in the birds of the live bird markets is 23.0%, which is similar to that in poultry markets in other countries. Nearly all of the isolates (94%) were of the non-pathogenic H9N2 subtype, but viruses of the H1N2, H1N3, H3N6, H4N2, H5N1, and H10N7 subtypes were also observed. The highly pathogenic H5N1-subtype virus was observed at extremely low prevalence in the surveillance samples (0.08%), and we suggest that the current risk of infection for humans in the retail poultry markets in Bangladesh is negligible. However, the high prevalence of the H9 subtype and its potential for interaction with the highly pathogenic H5N1-subtype, i.e., reassortment and attenuation of host morbidity, highlight the importance of active surveillance of the poultry markets. PMID:21541296

  13. Emergence of novel clade 2.3.4 influenza A (H5N1) virus subgroups in Yunnan Province, China.

    PubMed

    Hu, Tingsong; Song, Jianling; Zhang, Wendong; Zhao, Huanyun; Duan, Bofang; Liu, Qingliang; Zeng, Wei; Qiu, Wei; Chen, Gang; Zhang, Yingguo; Fan, Quanshui; Zhang, Fuqiang

    2015-07-01

    From December 2013 to March 2014, a major wave of highly pathogenic avian influenza outbreak occurred in poultry in Yunnan Province, China. We isolated and characterized eight highly pathogenic avian influenza A (H5N1) viruses from poultry. Full genome influenza sequences and analyses have been performed. Sequence analyses revealed that they belonged to clade 2.3.4 but did not fit within the three defined subclades. The isolated viruses were provisional subclade 2.3.4.4e. The provisional subclade 2.3.4.4e viruses with six internal genes from avian influenza A (H5N2) viruses in 2013 were the novel reassortant influenza A (H5N1) viruses which were associated with the outbreak of H5N1 occurred in egg chicken farms in Yunnan Province. The HA genes were similar to subtype H5 viruses isolated from January to March of 2014 in Asia including H5N6 and H5N8. The NA genes were most closely related to A/chicken/Vietnam/NCVD-KA423/2013 (H5N1) from the subclade 2.3.2. The HI assay demonstrated a lack of antigenic relatedness between clades 2.3.4.4e and 2.3.4.1 (RE-5 vaccine strain) or 2.3.2.2 (RE-6 vaccine strain). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Extreme Evolutionary Conservation of Functionally Important Regions in H1N1 Influenza Proteome

    PubMed Central

    Warren, Samantha; Wan, Xiu-Feng; Conant, Gavin; Korkin, Dmitry

    2013-01-01

    The H1N1 subtype of influenza A virus has caused two of the four documented pandemics and is responsible for seasonal epidemic outbreaks, presenting a continuous threat to public health. Co-circulating antigenically divergent influenza strains significantly complicates vaccine development and use. Here, by combining evolutionary, structural, functional, and population information about the H1N1 proteome, we seek to answer two questions: (1) do residues on the protein surfaces evolve faster than the protein core residues consistently across all proteins that constitute the influenza proteome? and (2) in spite of the rapid evolution of surface residues in influenza proteins, are there any protein regions on the protein surface that do not evolve? To answer these questions, we first built phylogenetically-aware models of the patterns of surface and interior substitutions. Employing these models, we found a single coherent pattern of faster evolution on the protein surfaces that characterizes all influenza proteins. The pattern is consistent with the events of inter-species reassortment, the worldwide introduction of the flu vaccine in the early 80’s, as well as the differences caused by the geographic origins of the virus. Next, we developed an automated computational pipeline to comprehensively detect regions of the protein surface residues that were 100% conserved over multiple years and in multiple host species. We identified conserved regions on the surface of 10 influenza proteins spread across all avian, swine, and human strains; with the exception of a small group of isolated strains that affected the conservation of three proteins. Surprisingly, these regions were also unaffected by genetic variation in the pandemic 2009 H1N1 viral population data obtained from deep sequencing experiments. Finally, the conserved regions were intrinsically related to the intra-viral macromolecular interaction interfaces. Our study may provide further insights towards the

  15. Fulminant fatal swine influenza (H1N1): Myocarditis, myocardial infarction, or severe influenza pneumonia?

    PubMed

    Cunha, Burke A; Syed, Uzma; Mickail, Nardeen

    2010-01-01

    The swine influenza (H1N1) pandemic began in Mexico and rapidly spread worldwide. As is the case with pandemic influenza A, the majority of early deaths have been in young healthy adults. The complications of pandemic H1N1 have been reported from several centers. Noteworthy has been the relative rarity of bacterial coinfection in bacterial pneumonia in hospitalized adults with H1N1 pneumonia. Simultaneous bacterial community-acquired pneumonia due to methicillin-sensitive Staphylococcus aureus or community-acquired methicillin resistant S. aureus and subsequent bacterial community-acquired pneumonia due to S. pneumoniae or Haemophilus influenzae have been reportedly rare (0.4%-4% of well-documented cases). Cardiac complications of H1N1 infection have been uncommon. Young healthy adults without a cardiac history who have H1N1 and chest pain usually have either acute myocardial infarction or acute myocarditis. Cardiac symptomatology with H1N1 often overshadows pulmonary manifestations, that is, influenza pneumonia. With H1N1 pneumonia, clinicians should be alert for otherwise unexplained tachycardia or chest pain that may represent acute myocardial infarction or myocarditis. We present a case of rapidly fatal H1N1 in a young adult treated with oseltamivir and peramivir. He was initially tachycardic, thought to represent myocarditis. He subsequently became hypotensive and expired. At autopsy there was cardiomegaly present but there were no signs of acute myocardial infarction or myocarditis. Pathologically, he died of severe H1N1 pneumonia and not bacterial pneumonia. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Detection of influenza A(H1N1)v virus by real-time RT-PCR.

    PubMed

    Panning, M; Eickmann, M; Landt, O; Monazahian, M; Olschläger, S; Baumgarte, S; Reischl, U; Wenzel, J J; Niller, H H; Günther, S; Hollmann, B; Huzly, D; Drexler, J F; Helmer, A; Becker, S; Matz, B; Eis-Hübinger, Am; Drosten, C

    2009-09-10

    Influenza A(H1N1)v virus was first identified in April 2009. A novel real-time RT-PCR for influenza A(H1N1)v virus was set up ad hoc and validated following industry-standard criteria. The lower limit of detection of the assay was 384 copies of viral RNA per ml of viral transport medium (95% confidence interval: 273-876 RNA copies/ml). Specificity was 100% as assessed on a panel of reference samples including seasonal human influenza A virus H1N1 and H3N2, highly pathogenic avian influenza A virus H5N1 and porcine influenza A virus H1N1, H1N2 and H3N2 samples. The real-time RT-PCR assay for the influenza A matrix gene recommended in 2007 by the World Health Organization was modified to work under the same reaction conditions as the influenza A(H1N1)v virus-specific test. Both assays were equally sensitive. Clinical applicability of both assays was demonstrated by screening of almost 2,000 suspected influenza (H1N1)v specimens, which included samples from the first cases of pandemic H1N1 influenza imported to Germany. Measuring influenza A(H1N1)v virus concentrations in 144 laboratory-confirmed samples yielded a median of 4.6 log RNA copies/ml. The new methodology proved its principle and might assist public health laboratories in the upcoming influenza pandemic.

  17. Assessing the impact of public health interventions on the transmission of pandemic H1N1 influenza a virus aboard a Peruvian navy ship

    PubMed Central

    Vera, Delphis M; Hora, Ricardo A; Murillo, Anarina; Wong, Juan F; Torre, Armando J; Wang, David; Boulay, Darbi; Hancock, Kathy; Katz, Jacqueline M; Ramos, Mariana; Loayza, Luis; Quispe, Jose; Reaves, Erik J; Bausch, Daniel G; Chowell, Gerardo; Montgomery, Joel M

    2014-01-01

    Background Limited data exist on transmission dynamics and effectiveness of control measures for influenza in confined settings. Objectives To investigate the transmission dynamics of a 2009 pandemic H1N1 influenza A outbreak aboard a Peruvian Navy ship and quantify the effectiveness of the implemented control measures. Methods We used surveillance data and a simple stochastic epidemic model to characterize and evaluate the effectiveness of control interventions implemented during an outbreak of 2009 pandemic H1N1 influenza A aboard a Peruvian Navy ship. Results The serological attack rate for the outbreak was 49·1%, with younger cadets and low-ranking officers at greater risk of infection than older, higher-ranking officers. Our transmission model yielded a good fit to the daily time series of new influenza cases by date of symptom onset. We estimated a reduction of 54·4% in the reproduction number during the period of intense control interventions. Conclusion Our results indicate that the patient isolation strategy and other control measures put in place during the outbreak reduced the infectiousness of isolated individuals by 86·7%. Our findings support that early implementation of control interventions can limit the spread of influenza epidemics in confined settings. PMID:24506160

  18. Avian influenza H5N1 viral and bird migration networks in Asia

    USGS Publications Warehouse

    Tian, Huaivu; Zhou, Sen; Dong, Lu; Van Boeckel, Thomas P.; Cui, Yujun; Newman, Scott H.; Takekawa, John Y.; Prosser, Diann J.; Xiao, Xiangming; Wu, Yarong; Cazelles, Bernard; Huang, Shanqian; Yang, Ruifu; Grenfell, Bryan T.; Xu, Bing

    2015-01-01

    The spatial spread of the highly pathogenic avian influenza virus H5N1 and its long-term persistence in Asia have resulted in avian influenza panzootics and enormous economic losses in the poultry sector. However, an understanding of the regional long-distance transmission and seasonal patterns of the virus is still lacking. In this study, we present a phylogeographic approach to reconstruct the viral migration network. We show that within each wild fowl migratory flyway, the timing of H5N1 outbreaks and viral migrations are closely associated, but little viral transmission was observed between the flyways. The bird migration network is shown to better reflect the observed viral gene sequence data than other networks and contributes to seasonal H5N1 epidemics in local regions and its large-scale transmission along flyways. These findings have potentially far-reaching consequences, improving our understanding of how bird migration drives the periodic reemergence of H5N1 in Asia.

  19. Avian influenza H5N1 viral and bird migration networks in Asia

    PubMed Central

    Tian, Huaiyu; Zhou, Sen; Dong, Lu; Van Boeckel, Thomas P.; Cui, Yujun; Newman, Scott H.; Takekawa, John Y.; Prosser, Diann J.; Xiao, Xiangming; Wu, Yarong; Cazelles, Bernard; Huang, Shanqian; Yang, Ruifu; Grenfell, Bryan T.; Xu, Bing

    2015-01-01

    The spatial spread of the highly pathogenic avian influenza virus H5N1 and its long-term persistence in Asia have resulted in avian influenza panzootics and enormous economic losses in the poultry sector. However, an understanding of the regional long-distance transmission and seasonal patterns of the virus is still lacking. In this study, we present a phylogeographic approach to reconstruct the viral migration network. We show that within each wild fowl migratory flyway, the timing of H5N1 outbreaks and viral migrations are closely associated, but little viral transmission was observed between the flyways. The bird migration network is shown to better reflect the observed viral gene sequence data than other networks and contributes to seasonal H5N1 epidemics in local regions and its large-scale transmission along flyways. These findings have potentially far-reaching consequences, improving our understanding of how bird migration drives the periodic reemergence of H5N1 in Asia. PMID:25535385

  20. Two aircraft carriers’ perspectives: a comparative of control measures in shipboard H1N1 outbreaks.

    PubMed

    Harwood, Jared L; LaVan, Joseph T; Brand, George J

    2013-02-01

    The USS George Washington (GW) and the USS Ronald Reagan (RR), 2 US Navy aircraft carriers, experienced almost simultaneous outbreaks of novel H1N1 influenza A in the summer of 2009. We compared the respective epidemic control measures taken and subsequent lessons learned. Data were collated from both outbreaks to assess various elements including attack rate, isolation/quarantine protocols, and treatment methods. The respective duration of each outbreak was compared with survival curve analysis. The number of personnel affected in each outbreak was compared using χ2 analysis. Differences were found in the protocols used on the 2 ships. The GW treated about two-thirds of the patients with oseltamivir through day 14 and quarantined all patients meeting case definition throughout the outbreak. Face masks were used throughout. The RR used oseltamivir and quarantined many fewer patients (through days 5 and 3, respectively). No face masks were used after day 5. The outbreaks were similar in duration (GW = 25 days, RR = 27 days, P = .38), but the RR had significantly more cases (n = 253 vs 142, P < .0001). A portion of each group had samples that were confirmed H1N1 by polymerase chain reaction. GW's protocol, including aggressive oseltamivir treatment of two-thirds of the cases and quarantine throughout the duration decreased the overall number of personnel affected, likely reducing the overall control reproduction number. Both outbreaks were similar in duration. Even though the GW expended significantly more resources than the RR, if the 2009 pandemic H1N1 strain had been as clinically severe as the 1918 pandemic, a more stringent treatment protocol may have been the only way to prevent significant operational impact.

  1. Identification of reassortant pandemic H1N1 influenza virus in Korean pigs.

    PubMed

    Han, Jae Yeon; Park, Sung Jun; Kim, Hye Kwon; Rho, Semi; Nguyen, Giap Van; Song, Daesub; Kang, Bo Kyu; Moon, Hyung Jun; Yeom, Min Joo; Park, Bong Kyun

    2012-05-01

    Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin- Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.

  2. A Simple Restriction Fragment Length Polymorphism-Based Strategy That Can Distinguish the Internal Genes of Human H1N1, H3N2, and H5N1 Influenza A Viruses

    PubMed Central

    Cooper, Lynn A.; Subbarao, Kanta

    2000-01-01

    A simple molecular technique for rapid genotyping was developed to monitor the internal gene composition of currently circulating influenza A viruses. Sequence information from recent H1N1, H3N2, and H5N1 human virus isolates was used to identify conserved regions within each internal gene, and gene-specific PCR primers capable of amplifying all three virus subtypes were designed. Subtyping was based on subtype-specific restriction fragment length polymorphism (RFLP) patterns within the amplified regions. The strategy was tested in a blinded fashion using 10 control viruses of each subtype (total, 30) and was found to be very effective. Once standardized, the genotyping method was used to identify the origin of the internal genes of 51 influenza A viruses isolated from humans in Hong Kong during and immediately following the 1997–1998 H5N1 outbreak. No avian-human or H1-H3 reassortants were detected. Less than 2% (6 of 486) of the RFLP analyses were inconclusive; all were due to point mutations within a restriction site. The technique was also used to characterize the internal genes of two avian H9N2 viruses isolated from children in Hong Kong during 1999. PMID:10878047

  3. Oseltamivir-resistant pandemic influenza a (H1N1) 2009 viruses in Spain.

    PubMed

    Ledesma, Juan; Vicente, Diego; Pozo, Francisco; Cilla, Gustavo; Castro, Sonia Pérez; Fernández, Jonathan Suárez; Ruiz, Mercedes Pérez; Navarro, José María; Galán, Juan Carlos; Fernández, Mirian; Reina, Jordi; Larrauri, Amparo; Cuevas, María Teresa; Casas, Inmaculada; Breña, Pilar Pérez

    2011-07-01

    Pandemic influenza A (H1N1) 2009 virus appeared in Spain on April 25, 2009 for the first time. This new virus was adamantane-resistant but it was sensitive to neuraminidase (NA) inhibitors oseltamivir and zanamivir. To detect oseltamivir-resistant pandemic influenza A (H1N1) 2009 viruses by the Spanish Influenza Surveillance System (SISS) and a possible spread of oseltamivir-resistant viruses in Spain since starting of the pandemic situation. A total of 1229 respiratory samples taken from 413 severe and 766 non-severe patients with confirmed viral detection of pandemic influenza A (H1N1) 2009 viruses from different Spanish regions were analyzed for the specific detection of the H275Y mutation in NA between April 2009 and May 2010. H275Y NA substitution was found in 8 patients infected with pandemic influenza A (H1N1) 2009 viruses collected in November and December 2009 and in January 2010. All oseltamivir-resistant viruses were detected in severe patients (8/413, 1.93%) who previously received treatment with oseltamivir. Six of these patients were immunocompromised. In Spain, the number of oseltamivir-resistant pandemic influenza A (H1N1) 2009 viruses is until now very low. No evidence for any spread of oseltamivir-resistant H1N1 viruses is achieved in our Country. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Canine susceptibility to human influenza viruses (A/pdm 09H1N1, A/H3N2 and B).

    PubMed

    Song, Daesub; Kim, Hyekwon; Na, Woonsung; Hong, Minki; Park, Seong-Jun; Moon, Hyoungjoon; Kang, Bokyu; Lyoo, Kwang-Soo; Yeom, Minjoo; Jeong, Dae Gwin; An, Dong-Jun; Kim, Jeong-Ki

    2015-02-01

    We investigated the infectivity and transmissibility of the human seasonal H3N2, pandemic (pdm) H1N1 (2009) and B influenza viruses in dogs. Dogs inoculated with human seasonal H3N2 and pdm H1N1 influenza viruses exhibited nasal shedding and were seroconverted against the viruses; this did not occur in the influenza B virus-inoculated dogs. Transmission of human H3N2 virus between dogs was demonstrated by observing nasal shedding and seroconversion in naïve dogs after contact with inoculated dogs. The seroprevalence study offered evidence of human H3N2 infection occurring in dogs since 2008. Furthermore, serological evidence of pdm H1N1 influenza virus infection alone and in combination with canine H3N2 virus was found in the serum samples collected from field dogs during 2010 and 2011. Our results suggest that dogs may be hosts for human seasonal H3N2 and pdm H1N1 influenza viruses. © 2015 The Authors.

  5. Prior infection of chickens with H1N1 or H1N2 avian influenza elicits partial heterologous protection against highly pathogenic H5N1.

    PubMed

    Nfon, Charles; Berhane, Yohannes; Pasick, John; Embury-Hyatt, Carissa; Kobinger, Gary; Kobasa, Darwyn; Babiuk, Shawn

    2012-01-01

    There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70-80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.

  6. Prior Infection of Chickens with H1N1 or H1N2 Avian Influenza Elicits Partial Heterologous Protection against Highly Pathogenic H5N1

    PubMed Central

    Nfon, Charles; Berhane, Yohannes; Pasick, John; Embury-Hyatt, Carissa; Kobinger, Gary; Kobasa, Darwyn; Babiuk, Shawn

    2012-01-01

    There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70–80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody. PMID:23240067

  7. Isolation and genetic characterization of avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China.

    PubMed

    Yu, Hai; Zhang, Peng-Chao; Zhou, Yan-Jun; Li, Guo-Xin; Pan, Jie; Yan, Li-Ping; Shi, Xiao-Xiao; Liu, Hui-Li; Tong, Guang-Zhi

    2009-08-21

    As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or "mixing vessels", and swine influenza virus surveillance in China should be given a high priority.

  8. Antigenic Patterns and Evolution of the Human Influenza A (H1N1) Virus.

    PubMed

    Liu, Mi; Zhao, Xiang; Hua, Sha; Du, Xiangjun; Peng, Yousong; Li, Xiyan; Lan, Yu; Wang, Dayan; Wu, Aiping; Shu, Yuelong; Jiang, Taijiao

    2015-09-28

    The influenza A (H1N1) virus causes seasonal epidemics that result in severe illnesses and deaths almost every year. A deep understanding of the antigenic patterns and evolution of human influenza A (H1N1) virus is extremely important for its effective surveillance and prevention. Through development of antigenicity inference method for human influenza A (H1N1), named PREDAC-H1, we systematically mapped the antigenic patterns and evolution of the human influenza A (H1N1) virus. Eight dominant antigenic clusters have been inferred for seasonal H1N1 viruses since 1977, which demonstrated sequential replacements over time with a similar pattern in Asia, Europe and North America. Among them, six clusters emerged first in Asia. As for China, three of the eight antigenic clusters were detected in South China earlier than in North China, indicating the leading role of South China in H1N1 transmission. The comprehensive view of the antigenic evolution of human influenza A (H1N1) virus can help formulate better strategy for its prevention and control.

  9. Challenge of N95 Filtering Facepiece Respirators with Viable H1N1 Influenza Aerosols

    PubMed Central

    Harnish, Delbert A.; Heimbuch, Brian K.; Husband, Michael; Lumley, April E.; Kinney, Kimberly; Shaffer, Ronald E.; Wander, Joseph D.

    2015-01-01

    OBJECTIVE Specification of appropriate personal protective equipment for respiratory protection against influenza is somewhat controversial. In a clinical environment, N95 filtering facepiece respirators (FFRs) are often recommended for respiratory protection against infectious aerosols. This study evaluates the ability of N95 FFRs to capture viable H1N1 influenza aerosols. METHODS Five N95 FFR models were challenged with aerosolized viable H1N1 influenza and inert polystyrene latex particles at continuous flow rates of 85 and 170 liters per minute. Virus was assayed using Madin-Darby canine kidney cells to determine the median tissue culture infective dose (TCID50). Aerosols were generated using a Collison nebulizer containing H1N1 influenza virus at 1 × 108 TCID50/mL. To determine filtration efficiency, viable sampling was performed upstream and downstream of the FFR. RESULTS N95 FFRs filtered 0.8-µm particles of both H1N1 influenza and inert origins with more than 95% efficiency. With the exception of 1 model, no statistically significant difference in filtration performance was observed between influenza and inert particles of similar size. Although statistically significant differences were observed for 2 models when comparing the 2 flow rates, the differences have no significance to protection. CONCLUSIONS This study empirically demonstrates that a National Institute for Occupational Safety and Health–approved N95 FFR captures viable H1N1 influenza aerosols as well as or better than its N95 rating, suggesting that a properly fitted FFR reduces inhalation exposure to airborne influenza virus. This study also provides evidence that filtration efficiency is based primarily on particle size rather than the nature of the particle’s origin. PMID:23571366

  10. [Outbreak of pandemic virus (H1N1) 2009 in a residence for mentally disabled persons in Balearic Island, Spain].

    PubMed

    Giménez Duran, Jaume; Galmés Truyols, Antònia; Nicolau Riutort, Antonio; Reina Prieto, Jorge; Gallegos Álvarez, Maria de Carmen; Pareja Bezares, Antonio; Vanrell Berga, Juana María

    2010-01-01

    The flu season 2009-2010 has been shorter and less severe than expected. Since January 2010, influenza surveillance systems indicated rates of very low incidence of influenza without detection of virus circulation. In this context, a hospital reported a suspected outbreak of severe respiratory disease, the aetiology proved influenza A(H1N1)v. We describe the outbreak and public health measures for their control. Descriptive study of an outbreak of pandemic influenza virus in a residency home for mentally disabled. Establishment of active surveillance. The case definition of influenza was very sensitive to detect new cases early, treated early and minimize transmission. Steps were taken to contain the influenza virus infection. Among 38 cases detected 7 had serious complications(all of them with risk factors). There were no deaths. The overall attack rate was 35.2%. The first cases were workers. The residents were ill at the peak of the outbreak, and among workers the presentation was more dispersed. None of the workers and only three of residents had been vaccinated. Workers possibly have initiated and contributed to the maintenance of transmission. We emphasize the need to comply with vaccination recommendations, not just those with risk factors, but particularly for workers in contact with those.

  11. Pre-Existing Cross-Reactive Antibodies to Avian Influenza H5N1 and 2009 Pandemic H1N1 in US Military Personnel

    PubMed Central

    Pichyangkul, Sathit; Krasaesub, Somporn; Jongkaewwattana, Anan; Thitithanyanont, Arunee; Wiboon-ut, Suwimon; Yongvanitchit, Kosol; Limsalakpetch, Amporn; Kum-Arb, Utaiwan; Mongkolsirichaikul, Duangrat; Khemnu, Nuanpan; Mahanonda, Rangsini; Garcia, Jean-Michel; Mason, Carl J.; Walsh, Douglas S.; Saunders, David L.

    2014-01-01

    We studied cross-reactive antibodies against avian influenza H5N1 and 2009 pandemic (p) H1N1 in 200 serum samples from US military personnel collected before the H1N1 pandemic. Assays used to measure antibodies against viral proteins involved in protection included a hemagglutination inhibition (HI) assay and a neuraminidase inhibition (NI) assay. Viral neutralization by antibodies against avian influenza H5N1 and 2009 pH1N1 was assessed by influenza (H5) pseudotyped lentiviral particle-based and H1N1 microneutralization assays. Some US military personnel had cross-neutralizing antibodies against H5N1 (14%) and 2009 pH1N1 (16.5%). The odds of having cross-neutralizing antibodies against 2009 pH1N1 were 4.4 times higher in subjects receiving more than five inactivated whole influenza virus vaccinations than those subjects with no record of vaccination. Although unclear if the result of prior vaccination or disease exposure, these pre-existing antibodies may prevent or reduce disease severity. PMID:24277784

  12. New Influenza A/H1N1 (“Swine Flu”): information needs of airport passengers and staff

    PubMed Central

    Dickmann, P.; Rubin, G. J.; Gaber, W.; Wessely, S.; Wicker, S.; Serve, H.; Gottschalk, R.

    2010-01-01

    Please cite this paper as: Dickmann et al. (2010) New Influenza A/H1N1 (“Swine Flu”): information needs of airport passengers and staff. . Influenza and Other Respiratory Viruses 5(1), 39–46. Background  Airports are the entrances of infectious diseases. Particularly at the beginning of an outbreak, information and communication play an important role to enable the early detection of signs or symptoms and to encourage passengers to adopt appropriate preventive behaviour to limit the spread of the disease. Objectives  To determine the adequacy of the information provided to airport passengers and staff in meeting their information needs in relation to their concerns. Methods  At the start of the influenza A/H1N1 epidemic (29–30 April 2009), qualitative semi‐structured interviews (N = 101) were conducted at Frankfurt International Airport with passengers who were either returning from or going to Mexico and with airport staff who had close contact with these passengers. Interviews focused on knowledge about swine flu, information needs and fear or concern about the outbreak. Results  The results showed that a desire for more information was associated with higher concern – the least concerned participants did not want any additional information, while the most concerned participants reported a range of information needs. Airport staff in contact with passengers travelling from the epicentre of the outbreak showed the highest levels of fear or concern, coupled with a desire to be adequately briefed by their employer. Conclusions  Our results suggest that information strategies should address not only the exposed or potentially exposed but also groups that feel at risk. Identifying what information these different passenger and staff groups wish to receive will be an important task in any future infectious disease outbreak. PMID:21138539

  13. Cross-protective immunity against influenza A/H1N1 virus challenge in mice immunized with recombinant vaccine expressing HA gene of influenza A/H5N1 virus

    PubMed Central

    2013-01-01

    Background Influenza virus undergoes constant antigenic evolution, and therefore influenza vaccines must be reformulated each year. Time is necessary to produce a vaccine that is antigenically matched to a pandemic strain. A goal of many research works is to produce universal vaccines that can induce protective immunity to influenza A viruses of various subtypes. Despite intensive studies, the precise mechanisms of heterosubtypic immunity (HSI) remain ambiguous. Method In this study, mice were vaccinated with recombinant virus vaccine (rL H5), in which the hemagglutinin (HA) gene of influenza A/H5N1 virus was inserted into the LaSota Newcastle disease virus (NDV) vaccine strain. Following a challenge with influenza A/H1N1 virus, survival rates and lung index of mice were observed. The antibodies to influenza virus were detected using hemagglutination inhibition (HI). The lung viral loads, lung cytokine levels and the percentages of both IFN-γ+CD4+ and IFN-γ+CD8+ T cells in spleen were detected using real-time RT-PCR, ELISA and flow cytometry respectively. Results In comparison with the group of mice given phosphate-buffered saline (PBS), the mice vaccinated with rL H5 showed reductions in lung index and viral replication in the lungs after a challenge with influenza A/H1N1 virus. The antibody titer in group 3 (H1N1-H1N1) was significantly higher than that in other groups which only low levels of antibody were detected. IFN-γ levels increased in both group 1 (rL H5-H1N1) and group 2 (rL H5 + IL-2-H1N1). And the IFN-γ level of group 2 was significantly higher than that of group 1. The percentages of both IFN-γ+CD4+ and IFN-γ+CD8+ T cells in group 1 (rL H5-H1N1) and group 2 (rL H5 + IL-2-H1N1) increased significantly, as measured by flow cytometry. Conclusion After the mice were vaccinated with rL H5, cross-protective immune response was induced, which was against heterosubtypic influenza A/H1N1 virus. To some extent, cross-protective immune response can

  14. Association of age and comorbidity on 2009 influenza A pandemic H1N1-related intensive care unit stay in Massachusetts.

    PubMed

    Placzek, Hilary E D; Madoff, Lawrence C

    2014-11-01

    We compared comorbidity measures by age group and risk factors for influenza-like illness (ILI)-related intensive care unit (ICU) stay during the 2009 seasonal influenza and influenza A (pH1N1) pandemic. We identified all patients discharged from Massachusetts hospitals with ILI-related diagnoses between October 1, 2008, and April 25, 2009, and pH1N1-related diagnoses between April 26 and September 30, 2009. We calculated the Diagnostic Cost Group (DxCG) risk score as a measure of comorbidity. We used logistic regression predictive models to compare ICU stay predictors. Mean DxCG scores were similar for pH1N1 and seasonal influenza time periods (0.69 and 0.70). Compared with those aged 45 to 64 years, patients younger than 5, 5 to 12, and 13 to 18 years had an increased risk of pH1N1-related ICU stay. Within the pH1N1 cohort, an asthma diagnosis was highly predictive of ICU admission among those younger than 5, 5 to 12, and 13 to 18 years, and pregnancy among those aged 26 to 44 years. High-risk groups, including children with asthma or pregnant women, would benefit from improved surveillance and resource allocation during influenza outbreaks to prevent serious ILI-related complications.

  15. Novel triple reassortant H1N2 influenza viruses bearing six internal genes of the pandemic 2009/H1N1 influenza virus were detected in pigs in China.

    PubMed

    Qiao, Chuanling; Liu, Liping; Yang, Huanliang; Chen, Yan; Xu, Huiyang; Chen, Hualan

    2014-12-01

    The pandemic A/H1N1 influenza viruses emerged in both Mexico and the United States in March 2009, and were transmitted efficiently in the human population. Transmissions of the pandemic 2009/H1N1 virus from humans to poultry and other species of mammals were reported from several continents during the course of the 2009 H1N1 pandemic. Reassortant H1N1, H1N2, and H3N2 viruses containing genes of the pandemic 2009/H1N1 viruses appeared in pigs in some countries. In winter of 2012, a total of 2600 nasal swabs were collected from healthy pigs in slaughterhouses located throughout 10 provinces in China. The isolated viruses were subjected to genetic and antigenic analysis. Two novel triple-reassortant H1N2 influenza viruses were isolated from swine in China in 2012, with the HA gene derived from Eurasian avian-like swine H1N1, the NA gene from North American swine H1N2, and the six internal genes from the pandemic 2009/H1N1 viruses. The two viruses had similar antigenic features and some significant changes in antigenic characteristics emerged when compared to the previously identified isolates. We inferred that the novel reassortant viruses in China may have arisen from the accumulation of the three types of influenza viruses, which further indicates that swine herds serve as "mixing vessels" for influenza viruses. Influenza virus reassortment is an ongoing process, and our findings highlight the urgent need for continued influenza surveillance among swine herds. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Characterization of duck H5N1 influenza viruses with differing pathogenicity in mallard (Anas platyrhynchos) ducks.

    PubMed

    Tang, Yinghua; Wu, Peipei; Peng, Daxin; Wang, Xiaobo; Wan, Hongquan; Zhang, Pinghu; Long, Jinxue; Zhang, Wenjun; Li, Yanfang; Wang, Wenbin; Zhang, Xiaorong; Liu, Xiufan

    2009-12-01

    A number of H5N1 influenza outbreaks have occurred in aquatic birds in Asia. As aquatic birds are the natural reservoir of influenza A viruses and do not usually show clinical disease upon infection, the repeated H5N1 outbreaks have highlighted the importance of continuous surveillance on H5N1 viruses in aquatic birds. In the present study we characterized the biological properties of four H5N1 avian influenza viruses, which had been isolated from ducks, in different animal models. In specific pathogen free (SPF) chickens, all four isolates were highly pathogenic. In SPF mice, the S and Y isolates were moderately pathogenic. However, in mallard ducks, two isolates had low pathogenicity, while the other two were highly pathogenic and caused lethal infection. A representative isolate with high pathogenicity in ducks caused systemic infection and replicated effectively in all 10 organs tested in challenged ducks, whereas a representative isolate with low pathogenicity in ducks was only detected in some organs in a few challenged ducks. Comparison of complete genomic sequences from the four isolates showed that the same amino acid residues that have been reported to be associated with virulence and host adaption/restriction of influenza viruses were present in the PB2, HA, NA, M and NS genes, while the amino acid residues at the HA cleavage site were diverse. From these results it appeared that the virulence of H5N1 avian influenza viruses was increased for ducks and that amino acid substitutions at the HA cleavage site might have contributed to the differing pathogenicity of these isolates in mallards. A procedure for the intravenous pathogenicity index test in a mallard model for assessing the virulence of H5/H7 subtype avian influenza viruses in waterfowl is described.

  17. [Influenza A/H5N1 virus outbreaks and prepardness to avert flu pandemic].

    PubMed

    Haque, A; Lucas, B; Hober, D

    2007-01-01

    This review emphasizes the need to improve the knowledge of the biology of H5N1 virus, a candidate for causing the next influenza pandemic. In-depth knowledge of mode of infection, mechanisms of pathogenesis and immune response will help in devising an efficient and practical control strategy against this flu virus. We have discussed limitations of currently available vaccines and proposed novel approaches for making better vaccines against H5N1 influenza virus. They include cell-culture system, reverse genetics, adjuvant development. Our review has also underscored the concept of therapeutic vaccine (anti-disease vaccine), which is aimed at diminishing 'cytokine storm' seen in acute respiratory distress syndrome and/or hemophagocytosis.

  18. Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005.

    PubMed

    Adlhoch, C; Gossner, C; Koch, G; Brown, I; Bouwstra, R; Verdonck, F; Penttinen, P; Harder, T

    2014-12-18

    Since the beginning of November 2014, nine outbreaks of highly pathogenic avian influenza virus (HPAIV) A(H5N8) in poultry have been detected in four European countries. In this report, similarities and differences between the modes of introduction of HPAIV A(H5N1) and A(H5N8) into Europe are described. Experiences from outbreaks of A(H5N1) in Europe demonstrated that early detection to control HPAIV in poultry has proven pivotal to minimise the risk of zoonotic transmission and prevention of human cases.

  19. Highly Pathogenic Avian Influenza H5N1, Thailand, 2004

    PubMed Central

    Chaitaweesub, Prasit; Songserm, Thaweesak; Chaisingh, Arunee; Hoonsuwan, Wirongrong; Buranathai, Chantanee; Parakamawongsa, Tippawon; Premashthira, Sith; Amonsin, Alongkorn; Gilbert, Marius; Nielen, Mirjam; Stegeman, Arjan

    2005-01-01

    In January 2004, highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first confirmed in poultry and humans in Thailand. Control measures, e.g., culling poultry flocks, restricting poultry movement, and improving hygiene, were implemented. Poultry populations in 1,417 villages in 60 of 76 provinces were affected in 2004. A total of 83% of infected flocks confirmed by laboratories were backyard chickens (56%) or ducks (27%). Outbreaks were concentrated in the Central, the southern part of the Northern, and Eastern Regions of Thailand, which are wetlands, water reservoirs, and dense poultry areas. More than 62 million birds were either killed by HPAI viruses or culled. H5N1 virus from poultry caused 17 human cases and 12 deaths in Thailand; a number of domestic cats, captive tigers, and leopards also died of the H5N1 virus. In 2005, the epidemic is ongoing in Thailand. PMID:16318716

  20. Highly Pathogenic Avian Influenza Virus (H5N1) Outbreak in Captive Wild Birds and Cats, Cambodia

    PubMed Central

    Marx, Nick; Ong, Sivuth; Gaidet, Nicolas; Hunt, Matt; Manuguerra, Jean-Claude; Sorn, San; Peiris, Malik; Van der Werf, Sylvie; Reynes, Jean-Marc

    2009-01-01

    From December 2003 through January 2004, the Phnom Tamao Wildlife Rescue Centre, Cambodia, was affected by the highly pathogenic influenza virus (H5N1). Birds from 26 species died. Influenza virus subtype H5N1 was detected in 6 of 7 species tested. Cats from 5 of 7 species were probably infected; none died. PMID:19239769

  1. Antigenic Patterns and Evolution of the Human Influenza A (H1N1) Virus

    PubMed Central

    Liu, Mi; Zhao, Xiang; Hua, Sha; Du, Xiangjun; Peng, Yousong; Li, Xiyan; Lan, Yu; Wang, Dayan; Wu, Aiping; Shu, Yuelong; Jiang, Taijiao

    2015-01-01

    The influenza A (H1N1) virus causes seasonal epidemics that result in severe illnesses and deaths almost every year. A deep understanding of the antigenic patterns and evolution of human influenza A (H1N1) virus is extremely important for its effective surveillance and prevention. Through development of antigenicity inference method for human influenza A (H1N1), named PREDAC-H1, we systematically mapped the antigenic patterns and evolution of the human influenza A (H1N1) virus. Eight dominant antigenic clusters have been inferred for seasonal H1N1 viruses since 1977, which demonstrated sequential replacements over time with a similar pattern in Asia, Europe and North America. Among them, six clusters emerged first in Asia. As for China, three of the eight antigenic clusters were detected in South China earlier than in North China, indicating the leading role of South China in H1N1 transmission. The comprehensive view of the antigenic evolution of human influenza A (H1N1) virus can help formulate better strategy for its prevention and control. PMID:26412348

  2. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities.

    PubMed

    To, Kelvin K W; Chan, Jasper F W; Chen, Honglin; Li, Lanjuan; Yuen, Kwok-Yung

    2013-09-01

    Infection with either influenza A H5N1 virus in 1997 or avian influenza A H7N9 virus in 2013 caused severe pneumonia that did not respond to typical or atypical antimicrobial treatment, and resulted in high mortality. Both viruses are reassortants with internal genes derived from avian influenza A H9N2 viruses that circulate in Asian poultry. Both viruses have genetic markers of mammalian adaptation in their haemagglutinin and polymerase PB2 subunits, which enhanced binding to human-type receptors and improved replication in mammals, respectively. Hong Kong (affected by H5N1 in 1997) and Shanghai (affected by H7N9 in 2013) are two rapidly flourishing cosmopolitan megacities that were increasing in human population and poultry consumption before the outbreaks. Both cities are located along the avian migratory route at the Pearl River delta and Yangtze River delta. Whether the widespread use of the H5N1 vaccine in east Asia-with suboptimum biosecurity measures in live poultry markets and farms-predisposed to the emergence of H7N9 or other virus subtypes needs further investigation. Why H7N9 seems to be more readily transmitted from poultry to people than H5N1 is still unclear. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Two Outbreak Sources of Influenza A (H7N9) Viruses Have Been Established in China.

    PubMed

    Wang, Dayan; Yang, Lei; Zhu, Wenfei; Zhang, Ye; Zou, Shumei; Bo, Hong; Gao, Rongbao; Dong, Jie; Huang, Weijuan; Guo, Junfeng; Li, Zi; Zhao, Xiang; Li, Xiaodan; Xin, Li; Zhou, Jianfang; Chen, Tao; Dong, Libo; Wei, Hejiang; Li, Xiyan; Liu, Liqi; Tang, Jing; Lan, Yu; Yang, Jing; Shu, Yuelong

    2016-06-15

    Due to enzootic infections in poultry and persistent human infections in China, influenza A (H7N9) virus has remained a public health threat. The Yangtze River Delta region, which is located in eastern China, is well recognized as the original source for H7N9 outbreaks. Based on the evolutionary analysis of H7N9 viruses from all three outbreak waves since 2013, we identified the Pearl River Delta region as an additional H7N9 outbreak source. H7N9 viruses are repeatedly introduced from these two sources to the other areas, and the persistent circulation of H7N9 viruses occurs in poultry, causing continuous outbreak waves. Poultry movements may contribute to the geographic expansion of the virus. In addition, the AnH1 genotype, which was predominant during wave 1, was replaced by JS537, JS18828, and AnH1887 genotypes during waves 2 and 3. The establishment of a new source and the continuous evolution of the virus hamper the elimination of H7N9 viruses, thus posing a long-term threat of H7N9 infection in humans. Therefore, both surveillance of H7N9 viruses in humans and poultry and supervision of poultry movements should be strengthened. Since its occurrence in humans in eastern China in spring 2013, the avian H7N9 viruses have been demonstrating the continuing pandemic threat posed by the current influenza ecosystem in China. As the viruses are silently circulated in poultry, with potentially severe outcomes in humans, H7N9 virus activity in humans in China is very important to understand. In this study, we identified a newly emerged H7N9 outbreak source in the Pearl River Delta region. Both sources in the Yangtze River Delta region and the Pearl River Delta region have been established and found to be responsible for the H7N9 outbreaks in mainland China. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Two Outbreak Sources of Influenza A (H7N9) Viruses Have Been Established in China

    PubMed Central

    Wang, Dayan; Yang, Lei; Zhu, Wenfei; Zhang, Ye; Zou, Shumei; Bo, Hong; Gao, Rongbao; Dong, Jie; Huang, Weijuan; Guo, Junfeng; Li, Zi; Zhao, Xiang; Li, Xiaodan; Xin, Li; Zhou, Jianfang; Chen, Tao; Dong, Libo; Wei, Hejiang; Li, Xiyan; Liu, Liqi; Tang, Jing; Lan, Yu; Yang, Jing

    2016-01-01

    ABSTRACT Due to enzootic infections in poultry and persistent human infections in China, influenza A (H7N9) virus has remained a public health threat. The Yangtze River Delta region, which is located in eastern China, is well recognized as the original source for H7N9 outbreaks. Based on the evolutionary analysis of H7N9 viruses from all three outbreak waves since 2013, we identified the Pearl River Delta region as an additional H7N9 outbreak source. H7N9 viruses are repeatedly introduced from these two sources to the other areas, and the persistent circulation of H7N9 viruses occurs in poultry, causing continuous outbreak waves. Poultry movements may contribute to the geographic expansion of the virus. In addition, the AnH1 genotype, which was predominant during wave 1, was replaced by JS537, JS18828, and AnH1887 genotypes during waves 2 and 3. The establishment of a new source and the continuous evolution of the virus hamper the elimination of H7N9 viruses, thus posing a long-term threat of H7N9 infection in humans. Therefore, both surveillance of H7N9 viruses in humans and poultry and supervision of poultry movements should be strengthened. IMPORTANCE Since its occurrence in humans in eastern China in spring 2013, the avian H7N9 viruses have been demonstrating the continuing pandemic threat posed by the current influenza ecosystem in China. As the viruses are silently circulated in poultry, with potentially severe outcomes in humans, H7N9 virus activity in humans in China is very important to understand. In this study, we identified a newly emerged H7N9 outbreak source in the Pearl River Delta region. Both sources in the Yangtze River Delta region and the Pearl River Delta region have been established and found to be responsible for the H7N9 outbreaks in mainland China. PMID:27030268

  5. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015.

    PubMed

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F; Shi, Weifeng; Lei, Fumin

    2015-08-11

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health.

  6. Mathematical Modeling of the Effectiveness of Facemasks in Reducing the Spread of Novel Influenza A (H1N1)

    PubMed Central

    Tracht, Samantha M.; Del Valle, Sara Y.; Hyman, James M.

    2010-01-01

    On June 11, 2009, the World Health Organization declared the outbreak of novel influenza A (H1N1) a pandemic. With limited supplies of antivirals and vaccines, countries and individuals are looking at other ways to reduce the spread of pandemic (H1N1) 2009, particularly options that are cost effective and relatively easy to implement. Recent experiences with the 2003 SARS and 2009 H1N1 epidemics have shown that people are willing to wear facemasks to protect themselves against infection; however, little research has been done to quantify the impact of using facemasks in reducing the spread of disease. We construct and analyze a mathematical model for a population in which some people wear facemasks during the pandemic and quantify impact of these masks on the spread of influenza. To estimate the parameter values used for the effectiveness of facemasks, we used available data from studies on N95 respirators and surgical facemasks. The results show that if N95 respirators are only 20% effective in reducing susceptibility and infectivity, only 10% of the population would have to wear them to reduce the number of influenza A (H1N1) cases by 20%. We can conclude from our model that, if worn properly, facemasks are an effective intervention strategy in reducing the spread of pandemic (H1N1) 2009. PMID:20161764

  7. Absenteeism in schools during the 2009 influenza A(H1N1) pandemic: a useful tool for early detection of influenza activity in the community?

    PubMed

    Kara, E O; Elliot, A J; Bagnall, H; Foord, D G F; Pnaiser, R; Osman, H; Smith, G E; Olowokure, B

    2012-07-01

    Certain influenza outbreaks, including the 2009 influenza A(H1N1) pandemic, can predominantly affect school-age children. Therefore the use of school absenteeism data has been considered as a potential tool for providing early warning of increasing influenza activity in the community. This study retrospectively evaluates the usefulness of these data by comparing them with existing syndromic surveillance systems and laboratory data. Weekly mean percentages of absenteeism in 373 state schools (children aged 4-18 years) in Birmingham, UK, from September 2006 to September 2009, were compared with established syndromic surveillance systems including a telephone health helpline, a general practitioner sentinel network and laboratory data for influenza. Correlation coefficients were used to examine the relationship between each syndromic system. In June 2009, school absenteeism generally peaked concomitantly with the existing influenza surveillance systems in England. Weekly school absenteeism surveillance would not have detected pandemic influenza A(H1N1) earlier but daily absenteeism data and the development of baselines could improve the timeliness of the system.

  8. The effect of school dismissal on rates of influenza-like illness in New York City schools during the spring 2009 novel H1N1 outbreak.

    PubMed

    Egger, Joseph R; Konty, Kevin J; Wilson, Elisha; Karpati, Adam; Matte, Thomas; Weiss, Don; Barbot, Oxiris

    2012-03-01

    The effects of individual school dismissal on influenza transmission have not been well studied. During the spring 2009 novel H1N1 outbreak, New York City implemented an individual school dismissal policy intended to limit influenza transmission at schools with high rates of influenza-like illness (ILI). Active disease surveillance data collected by the New York City Health Department on rates of ILI in schools were used to evaluate the impact. Sixty-four schools that met the Health Department's criteria for considering dismissal were included in the analysis. Twenty-four schools that met criteria subsequently dismissed all classes for approximately 1 school week. A regression model was fit to these data, estimating the effect of school dismissal on rates of in-school ILI following reconvening, adjusting for potential confounders. The model estimated that, on average, school dismissal reduced the rate of ILI by 7.1% over the entire average outbreak period. However, a large proportion of in-school ILI occurred before dismissal criteria were met. A separate model estimated that school absenteeism rates were not significantly affected by dismissal. Results suggest that individual school dismissal could be considered in situations where schools have a disproportionate number of high-risk students or may be unable to implement recommended preventive or infection control measures. Future work should focus on developing more sensitive indicators of early outbreak detection in schools and evaluating the impact of school dismissal on community transmission. © 2012, American School Health Association.

  9. Neurologic complications of influenza A(H1N1)pdm09

    PubMed Central

    Khandaker, Gulam; Zurynski, Yvonne; Buttery, Jim; Marshall, Helen; Richmond, Peter C.; Dale, Russell C.; Royle, Jenny; Gold, Michael; Snelling, Tom; Whitehead, Bruce; Jones, Cheryl; Heron, Leon; McCaskill, Mary; Macartney, Kristine; Elliott, Elizabeth J.

    2012-01-01

    Objective: We sought to determine the range and extent of neurologic complications due to pandemic influenza A (H1N1) 2009 infection (pH1N1′09) in children hospitalized with influenza. Methods: Active hospital-based surveillance in 6 Australian tertiary pediatric referral centers between June 1 and September 30, 2009, for children aged <15 years with laboratory-confirmed pH1N1′09. Results: A total of 506 children with pH1N1′09 were hospitalized, of whom 49 (9.7%) had neurologic complications; median age 4.8 years (range 0.5–12.6 years) compared with 3.7 years (0.01–14.9 years) in those without complications. Approximately one-half (55.1%) of the children with neurologic complications had preexisting medical conditions, and 42.8% had preexisting neurologic conditions. On presentation, only 36.7% had the triad of cough, fever, and coryza/runny nose, whereas 38.7% had only 1 or no respiratory symptoms. Seizure was the most common neurologic complication (7.5%). Others included encephalitis/encephalopathy (1.4%), confusion/disorientation (1.0%), loss of consciousness (1.0%), and paralysis/Guillain-Barré syndrome (0.4%). A total of 30.6% needed intensive care unit (ICU) admission, 24.5% required mechanical ventilation, and 2 (4.1%) died. The mean length of stay in hospital was 6.5 days (median 3 days) and mean ICU stay was 4.4 days (median 1.5 days). Conclusions: Neurologic complications are relatively common among children admitted with influenza, and can be life-threatening. The lack of specific treatment for influenza-related neurologic complications underlines the importance of early diagnosis, use of antivirals, and universal influenza vaccination in children. Clinicians should consider influenza in children with neurologic symptoms even with a paucity of respiratory symptoms. PMID:22993280

  10. Influenza A (H1N1) virus pneumonia in intensive care unit.

    PubMed

    Adıgüzel, Nalan; Karakurt, Zuhal; Kalamanoğlu Balcı, Merih; Acartürk, Eylem; Güngör, Gökay; Yazıcıoğlu Moçin, Ozlem; Batı Kutlu, Semra; Yılmaz, Adnan

    2010-01-01

    Patients with influenza A (H1N1) virus infection have been admitted to intensive care units (ICU) due to development of severe respiratory failure. We described the clinical and epidemiologic characteristics of the 19 patients admitted to ICU due to influenza A (H1N1) virus infection. Study design is a descriptive case series in a third level-20 bed respiratory ICU at training hospital in Istanbul/Turkey. Influenza A (H1N1) virus infection was laboratory confirmed in specimens using real-time reverse transcriptase-polymerase-chain-reaction (RT-PCR). We collected data concerning demographic, epidemiologic and clinical characteristics of the patients, treatment mortality and outcome. From November 10 to December 31 2009, a total of 19 patients; 7 laboratory confirmed, 12 with high clinical suspicion were treated at ICU. Among 12 patients with high clinical suspicion; 3 patients had negative RT-PCR testing for influenza A (H1N1) virus, 9 patients had no tests. Mean age was 41.6 ± 11.9 (range 21 to 61). Median number of lung zone involvement was 4 (IQR= 3-4). Median PaO2/FiO2 was 105 (IQR= 85-165). Mean severity (APACHE II) and organ failure score (SOFA) were 13 ± 4 and 4.0 ± 1.3 respectively. Non-invasive mechanical ventilation (68.4%, n= 13), invasive mechanical ventilation (21.1%, n= 4) and nasal cannula oxygen (31.5%, n= 6) were implicated. The median length of ICU stay was 6 (IQR= 4-8). Oseltamivir therapy was given as 75 mg bid to 12 patients and 150 mg bid to 7 obese patients. ICU mortality rate was 21.1%. Presenting patients with pneumonia and acute respiratory failure due to influenza A (H1N1) virus infection were treated predominantly and successfully with non invasive mechanical ventilation. Clinicians should be aware of pulmonary complications of influenza A (H1N1) virus infection and that patients can be treated with non invasive mechanical ventilation paying attention to protective measures for health care providers.

  11. Epidemiology of influenza in West Africa after the 2009 influenza A(H1N1) pandemic, 2010-2012.

    PubMed

    Talla Nzussouo, Ndahwouh; Duque, Jazmin; Adedeji, Adebayo Abel; Coulibaly, Daouda; Sow, Samba; Tarnagda, Zekiba; Maman, Issaka; Lagare, Adamou; Makaya, Sonia; Elkory, Mohamed Brahim; Kadjo Adje, Herve; Shilo, Paul Alhassan; Tamboura, Boubou; Cisse, Assana; Badziklou, Kossi; Maïnassara, Halima Boubacar; Bara, Ahmed Ould; Keita, Adama Mamby; Williams, Thelma; Moen, Ann; Widdowson, Marc-Alain; McMorrow, Meredith

    2017-12-04

    Over the last decade, capacity for influenza surveillance and research in West Africa has strengthened. Data from these surveillance systems showed influenza A(H1N1)pdm09 circulated in West Africa later than in other regions of the continent. We contacted 11 West African countries to collect information about their influenza surveillance systems (number of sites, type of surveillance, sampling strategy, populations sampled, case definitions used, number of specimens collected and number of specimens positive for influenza viruses) for the time period January 2010 through December 2012. Of the 11 countries contacted, 8 responded: Burkina Faso, Cote d'Ivoire, Mali, Mauritania, Niger, Nigeria, Sierra Leone and Togo. Countries used standard World Health Organization (WHO) case definitions for influenza-like illness (ILI) and severe acute respiratory illness (SARI) or slight variations thereof. There were 70 surveillance sites: 26 SARI and 44 ILI. Seven countries conducted SARI surveillance and collected 3114 specimens of which 209 (7%) were positive for influenza viruses. Among influenza-positive SARI patients, 132 (63%) were influenza A [68 influenza A(H1N1)pdm09, 64 influenza A(H3N2)] and 77 (37%) were influenza B. All eight countries conducted ILI surveillance and collected 20,375 specimens, of which 2278 (11%) were positive for influenza viruses. Among influenza-positive ILI patients, 1431 (63%) were influenza A [820 influenza A(H1N1)pdm09, 611 influenza A(H3N2)] and 847 (37%) were influenza B. A majority of SARI and ILI case-patients who tested positive for influenza (72% SARI and 59% ILI) were children aged 0-4 years, as were a majority of those enrolled in surveillance. The seasonality of influenza and the predominant influenza type or subtype varied by country and year. Influenza A(H1N1)pdm09 continued to circulate in West Africa along with influenza A(H3N2) and influenza B during 2010-2012. Although ILI surveillance systems produced a robust number of samples

  12. Characterization of a Human H5N1 Influenza A Virus Isolated in 2003

    PubMed Central

    Shinya, Kyoko; Hatta, Masato; Yamada, Shinya; Takada, Ayato; Watanabe, Shinji; Halfmann, Peter; Horimoto, Taisuke; Neumann, Gabriele; Kim, Jin Hyun; Lim, Wilina; Guan, Yi; Peiris, Malik; Kiso, Makoto; Suzuki, Takashi; Suzuki, Yasuo; Kawaoka, Yoshihiro

    2005-01-01

    In 2003, H5N1 avian influenza virus infections were diagnosed in two Hong Kong residents who had visited the Fujian province in mainland China, affording us the opportunity to characterize one of the viral isolates, A/Hong Kong/213/03 (HK213; H5N1). In contrast to H5N1 viruses isolated from humans during the 1997 outbreak in Hong Kong, HK213 retained several features of aquatic bird viruses, including the lack of a deletion in the neuraminidase stalk and the absence of additional oligosaccharide chains at the globular head of the hemagglutinin molecule. It demonstrated weak pathogenicity in mice and ferrets but caused lethal infection in chickens. The original isolate failed to produce disease in ducks but became more pathogenic after five passages. Taken together, these findings portray the HK213 isolate as an aquatic avian influenza A virus without the molecular changes associated with the replication of H5N1 avian viruses in land-based poultry such as chickens. This case challenges the view that adaptation to land-based poultry is a prerequisite for the replication of aquatic avian influenza A viruses in humans. PMID:16014953

  13. Inactivation and removal of influenza A virus H1N1 during the manufacture of plasma derivatives.

    PubMed

    Jeong, Eun Kyo; Sung, Hark Mo; Kim, In Seop

    2010-11-01

    Although transmission of pandemic influenza A virus H1N1 2009 is still occurring globally, little has been reported about how this outbreak has affected the safety of plasma derivatives. To evaluate the safety of plasma derivatives, dedicated virus clearance processes used during their production were investigated for their effectiveness in eliminating this virus of recent concern. In this study, influenza A virus H1N1 strain A/NWS/33 (H1N1) was chosen as a surrogate. H1N1 was completely inactivated by fraction IV fractionation as well as pasteurization during the manufacture of albumin. H1N1 was also effectively removed into the precipitate by fraction III fractionation and completely inactivated by low pH incubation as well as pasteurization during the manufacture of intravenous immunoglobulin. H1N1 was completely inactivated within 1 min of solvent/detergent treatment using 0.3% tri (n-butyl) phosphate and 1.0% Triton X-100 and also completely inactivated within 10 min of dry-heat treatment at 98 °C during the manufacture of factor VIII. H1N1 was completely removed by virus filtration process using Viresolve NFP filter and also completely inactivated by pasteurization during the manufacture of anti-thrombin III. These results indicate that all the virus clearance processes commonly used have sufficient H1N1 reducing capacity to achieve a high margin of safety. Copyright © 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

  14. Rapid Emergence of Highly Pathogenic Avian Influenza Subtypes from a Subtype H5N1 Hemagglutinin Variant.

    PubMed

    de Vries, Erik; Guo, Hongbo; Dai, Meiling; Rottier, Peter J M; van Kuppeveld, Frank J M; de Haan, Cornelis A M

    2015-05-01

    In 2014, novel highly pathogenic avian influenza A H5N2, H5N5, H5N6, and H5N8 viruses caused outbreaks in Asia, Europe, and North America. The H5 genes of these viruses form a monophyletic group that evolved from a clade 2.3.4 H5N1 variant. This rapid emergence of new H5Nx combinations is unprecedented in the H5N1 evolutionary history.

  15. Thromboembolic events in patients with severe pandemic influenza A/H1N1.

    PubMed

    Avnon, Lone Sølling; Munteanu, Daniela; Smoliakov, Alexander; Jotkowitz, Alan; Barski, Leonid

    2015-10-01

    The 2009 pandemic influenza A/H1N1 developed as a novel swine influenza which caused more diseases among younger age groups than in the elderly. Severe hypoxemic respiratory failure from A/H1N1 pneumonia resulted in an increased need for ICU beds. Several risk groups were identified that were at a higher risk for adverse outcomes. Pregnant women were a particularly vulnerable group of patients The CDC reported on the first ten patients with severe illness and acute hypoxemic respiratory failure associated with A/H1N1 infection, none of whom were pregnant, but they noticed that half of the patients had a pulmonary embolism. During a four-month period from September to December 2009, 252 patients were admitted to our hospital with confirmed pandemic influenza H1N1 by real-time reverse transcriptase-polymerase chain reaction test (rRT-PCR). We cared for twenty patients (7.9%) admitted to MICU with severe A/H1N1. Results on Thrombotic events were identified in five (25%) of our critically ill patients. We recommend that patients with severe influenza A/H1N1 pneumonitis and respiratory failure be administered DVT prophylaxis in particular if there are additional risk factors for TVE. Further prospective studies on the relationship of influenza A/H1N1 and VTE are needed. Copyright © 2015 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  16. Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.

    PubMed

    Takemae, Nobuhiro; Nguyen, Tung; Ngo, Long Thanh; Hiromoto, Yasuaki; Uchida, Yuko; Pham, Vu Phong; Kageyama, Tsutomu; Kasuo, Shizuko; Shimada, Shinichi; Yamashita, Yasutaka; Goto, Kaoru; Kubo, Hideyuki; Le, Vu Tri; Van Vo, Hung; Do, Hoa Thi; Nguyen, Dang Hoang; Hayashi, Tsuyoshi; Matsuu, Aya; Saito, Takehiko

    2013-04-01

    The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.

  17. Clinical course of asthma patients with H1N1 influenza infection and oseltamivir.

    PubMed

    Kim, Min-Hye; Song, Woo-Jung; Yang, Min-Suk; Lee, So-Hee; Kwon, Jae-Woo; Kim, Sae-Hoon; Kang, Hye-Ryun; Park, Heung-Woo; Cho, Young-Joo; Cho, Sang-Heon; Min, Kyung-Up; Kim, You-Young; Chang, Yoon-Seok

    2018-02-01

    H1N1 influenza virus prevailed throughout the world in 2009. However, there are few reports on the clinical features of H1N1 influenza infection in adult asthma patients. We evaluated the clinical features in asthma patients with H1N1 influenza infection who took oseltamivir and compared them to those with other upper respiratory infections. We reviewed asthma patients over 15 years of age who had visited Seoul National University Hospital and Seoul National University Bundang Hospital for suspected H1N1 influenza infection from August 2009 to March 2010. Various clinical features such as hospital admission days, respiratory symptoms, basal lung function, and past history was compared between H1N1 influenza PCR positive and negative groups. A total of 111 asthmatics were enrolled. All patients took oseltamivir. H1N1 RT-PCR was positive in 62 patients (55.9%), negative in 49 patients (44.1%). Wheezing developed more frequently in the H1N1 positive group. (43.5 vs. 16.7%, P=0.044). The rate of acute asthma exacerbations and pneumonia development were higher in the H1N1 positive group (59.7 vs. 51%, P=0.015, 25.0% vs. 0%, P<0.001). The rates for emergency room visit, hospital admissions, intensive care unit admissions, hospital days were not different between the groups. Underlying medical conditions were accompanied more frequently in the H1N1 negative patients (21.6% vs. 30.6%, P=0.002), especially cardiac disease (7.2% vs. 15.3%, P=0.011). H1N1 influenza infection may affect the clinical course of asthma combined with more severe manifestations; however, Oseltamivir could have affected the clinical course of H1N1 infected patients and made it milder than expected.

  18. Outbreak of variant influenza A(H3N2) virus in the United States.

    PubMed

    Jhung, Michael A; Epperson, Scott; Biggerstaff, Matthew; Allen, Donna; Balish, Amanda; Barnes, Nathelia; Beaudoin, Amanda; Berman, Lashondra; Bidol, Sally; Blanton, Lenee; Blythe, David; Brammer, Lynnette; D'Mello, Tiffany; Danila, Richard; Davis, William; de Fijter, Sietske; Diorio, Mary; Durand, Lizette O; Emery, Shannon; Fowler, Brian; Garten, Rebecca; Grant, Yoran; Greenbaum, Adena; Gubareva, Larisa; Havers, Fiona; Haupt, Thomas; House, Jennifer; Ibrahim, Sherif; Jiang, Victoria; Jain, Seema; Jernigan, Daniel; Kazmierczak, James; Klimov, Alexander; Lindstrom, Stephen; Longenberger, Allison; Lucas, Paul; Lynfield, Ruth; McMorrow, Meredith; Moll, Maria; Morin, Craig; Ostroff, Stephen; Page, Shannon L; Park, Sarah Y; Peters, Susan; Quinn, Celia; Reed, Carrie; Richards, Shawn; Scheftel, Joni; Simwale, Owen; Shu, Bo; Soyemi, Kenneth; Stauffer, Jill; Steffens, Craig; Su, Su; Torso, Lauren; Uyeki, Timothy M; Vetter, Sara; Villanueva, Julie; Wong, Karen K; Shaw, Michael; Bresee, Joseph S; Cox, Nancy; Finelli, Lyn

    2013-12-01

    Variant influenza virus infections are rare but may have pandemic potential if person-to-person transmission is efficient. We describe the epidemiology of a multistate outbreak of an influenza A(H3N2) variant virus (H3N2v) first identified in 2011. We identified laboratory-confirmed cases of H3N2v and used a standard case report form to characterize illness and exposures. We considered illness to result from person-to-person H3N2v transmission if swine contact was not identified within 4 days prior to illness onset. From 9 July to 7 September 2012, we identified 306 cases of H3N2v in 10 states. The median age of all patients was 7 years. Commonly reported signs and symptoms included fever (98%), cough (85%), and fatigue (83%). Sixteen patients (5.2%) were hospitalized, and 1 fatal case was identified. The majority of those infected reported agricultural fair attendance (93%) and/or contact with swine (95%) prior to illness. We identified 15 cases of possible person-to-person transmission of H3N2v. Viruses recovered from patients were 93%-100% identical and similar to viruses recovered from previous cases of H3N2v. All H3N2v viruses examined were susceptible to oseltamivir and zanamivir and resistant to adamantane antiviral medications. In a large outbreak of variant influenza, the majority of infected persons reported exposures, suggesting that swine contact at an agricultural fair was a risk for H3N2v infection. We identified limited person-to-person H3N2v virus transmission, but found no evidence of efficient or sustained person-to-person transmission. Fair managers and attendees should be aware of the risk of swine-to-human transmission of influenza viruses in these settings.

  19. Novel reassortant of swine influenza H1N2 virus in Germany.

    PubMed

    Zell, Roland; Motzke, Susann; Krumbholz, Andi; Wutzler, Peter; Herwig, Volker; Dürrwald, Ralf

    2008-01-01

    European porcine H1N2 influenza viruses arose after multiple reassortment steps involving a porcine influenza virus with avian-influenza-like internal segments and human H1N1 and H3N2 viruses in 1994. In Germany, H1N2 swine influenza viruses first appeared in 2000. Two German H1N2 swine influenza virus strains isolated from pigs with clinical symptoms of influenza are described. They were characterized by the neutralization test, haemagglutination inhibition (HI) test and complete sequencing of the viral genomes. The data demonstrate that these viruses represent a novel H1N2 reassortant. The viruses showed limited neutralization by sera raised against heterologous A/sw/Bakum/1,832/00-like H1N2 viruses. Sera pools from recovered pigs showed a considerably lower HI reaction, indicative of diagnostic difficulties in using the HI test to detect these viruses with A/sw/Bakum/1,832/00-like H1N2 antigens. Genome sequencing revealed the novel combination of the human-like HAH1 gene of European porcine H1N2 influenza viruses and the NAN2 gene of European porcine H3N2 viruses.

  20. [Epidemiological characteristics of influenza outbreaks in China, 2005-2013].

    PubMed

    Li, Ming; Feng, Luzhao; Cao, Yu; Peng, Zhibin; Yu, Hongjie

    2015-07-01

    To understand the epidemiological characteristics of influenza outbreaks in China from 2005 to 2013. The data of influenza-like illness outbreaks involving 10 or more cases were collected through Public Health Emergency Management Information System and National Influenza Surveillance Information System in China, and the influenza outbreaks were identified according to the laboratory detection results. Descriptive epidemiological analysis was conducted to understand the type/subtype of influenza virus and outbreak time, area, place and extent. From 2005 to 2013, a total of 3 252 influenza-like illness outbreaks were reported in the mainland of China, in which 2 915 influenza outbreaks were laboratory confirmed, and influenza A (H1N1) pdm09 virus and influenza B virus were predominant. More influenza outbreaks were reported in the influenza A (H1N1) pandemic during 2009-2010. Influenza outbreaks mainly occurred during winter-spring, and less influenza outbreaks occurred in winter and summer vacations of schools. More influenza outbreaks were reported in southern provinces, accounting for 79% of the total. Influenza outbreaks mainly occurred in primary and middle schools, where 2 763 outbreaks were reported, accounting for 85% of the total. Average 30-99 people were involved in an outbreak. A large number of influenza outbreaks occur during influenza season every year in China, the predominant virus type or subtype varies with season. Primary and middle schools are mainly affected by influenza outbreaks.

  1. Avian Influenza A(H5N1) Virus Outbreak Investigation: Application of the FAO-OIE-WHO Four-way Linking Framework in Indonesia.

    PubMed

    Setiawaty, V; Dharmayanti, N L P I; Misriyah; Pawestri, H A; Azhar, M; Tallis, G; Schoonman, L; Samaan, G

    2015-08-01

    WHO, FAO and OIE developed a 'four-way linking' framework to enhance the cross-sectoral sharing of epidemiological and virological information in responding to zoonotic disease outbreaks. In Indonesia, outbreak response challenges include completeness of data shared between human and animal health authorities. The four-way linking framework (human health laboratory/epidemiology and animal health laboratory/epidemiology) was applied in the investigation of the 193 rd human case of avian influenza A(H5N1) virus infection. As recommended by the framework, outbreak investigation and risk assessment findings were shared. On 18 June 2013, a hospital in West Java Province reported a suspect H5N1 case in a 2-year-old male. The case was laboratory-confirmed that evening, and the information was immediately shared with the Ministry of Agriculture. The human health epidemiology/laboratory team investigated the outbreak and conducted an initial risk assessment on 19 June. The likelihood of secondary cases was deemed low as none of the case contacts were sick. By 3 July, no secondary cases associated with the outbreak were identified. The animal health epidemiology/laboratory investigation was conducted on 19-25 June and found that a live bird market visited by the case was positive for H5N1 virus. Once both human and market virus isolates were sequenced, a second risk assessment was conducted jointly by the human health and animal health epidemiology/laboratory teams. This assessment concluded that the likelihood of additional human cases associated with this outbreak was low but that future sporadic human infections could not be ruled out because of challenges in controlling H5N1 virus contamination in markets. Findings from the outbreak investigation and risk assessments were shared with stakeholders at both Ministries. The four-way linking framework clarified the type of data to be shared. Both human health and animal health teams made ample data available, and there was

  2. Public risk perceptions and preventive behaviors during the 2009 H1N1 influenza pandemic.

    PubMed

    Kim, Yushim; Zhong, Wei; Jehn, Megan; Walsh, Lauren

    2015-04-01

    This study examines the public perception of the 2009 H1N1 influenza risk and its association with flu-related knowledge, social contexts, and preventive behaviors during the second wave of the influenza outbreak in Arizona. Statistical analyses were conducted on survey data, which were collected from a random-digit telephone survey of the general public in Arizona in October 2009. The public perceived different levels of risk regarding the likelihood and their concern about contracting the 2009 H1N1 flu. These measures of risk perception were primarily correlated with people of Hispanic ethnicity, having children in the household, and recent seasonal flu experience in the previous year. The perceived likelihood was not strongly associated with preventive behaviors, whereas the perceived concern was significantly associated with precautionary and preparatory behaviors. The association between perceived concern and precautionary behavior persisted after controlling for demographic characteristics. Pandemic preparedness and response efforts need to incorporate these findings to help develop effective risk communication strategies that properly induce preventive behaviors among the public.

  3. Reintroduction of H5N1 highly pathogenic avian influenza virus by migratory water birds, causing poultry outbreaks in the 2010-2011 winter season in Japan.

    PubMed

    Sakoda, Yoshihiro; Ito, Hiroshi; Uchida, Yuko; Okamatsu, Masatoshi; Yamamoto, Naoki; Soda, Kosuke; Nomura, Naoki; Kuribayashi, Saya; Shichinohe, Shintaro; Sunden, Yuji; Umemura, Takashi; Usui, Tatsufumi; Ozaki, Hiroichi; Yamaguchi, Tsuyoshi; Murase, Toshiyuki; Ito, Toshihiro; Saito, Takehiko; Takada, Ayato; Kida, Hiroshi

    2012-03-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) was reintroduced and caused outbreaks in chickens in the 2010-2011 winter season in Japan, which had been free from highly pathogenic avian influenza (HPAI) since 2007 when HPAI outbreaks occurred and were controlled. On 14 October 2010 at Lake Ohnuma, Wakkanai, the northernmost part of Hokkaido, Japan, H5N1 HPAIVs were isolated from faecal samples of ducks flying from their nesting lakes in Siberia. Since then, in Japan, H5N1 HPAIVs have been isolated from 63 wild birds in 17 prefectures and caused HPAI outbreaks in 24 chicken farms in nine prefectures by the end of March in 2011. Each of these isolates was genetically closely related to the HPAIV isolates at Lake Ohnuma, and those in China, Mongolia, Russia and Korea, belonging to genetic clade 2.3.2.1. In addition, these isolates were genetically classified into three groups, suggesting that the viruses were transmitted by migratory water birds through at least three different routes from their northern territory to Japan. These isolates were antigenic variants, which is consistent with selection in poultry under the immunological pressure induced by vaccination. To prevent the perpetuation of viruses in the lakes where water birds nest in summer in Siberia, prompt eradication of HPAIVs in poultry is urgently needed in Asian countries where HPAI has not been controlled.

  4. Migration of Waterfowl in the East Asian Flyway and Spatial Relationship to HPAI H5N1 Outbreaks

    PubMed Central

    Takekawa, John Y.; Newman, Scott H.; Xiao, Xiangming; Prosser, Diann J.; Spragens, Kyle A.; Palm, Eric C.; Yan, Baoping; Li, Tianxian; Lei, Fumin; Zhao, Delong; Douglas, David C.; Muzaffar, Sabir Bin; Ji, Weitao

    2016-01-01

    SUMMARY Poyang Lake is situated within the East Asian Flyway, a migratory corridor for waterfowl that also encompasses Guangdong Province, China, the epicenter of highly pathogenic avian influenza (HPAI) H5N1. The lake is the largest freshwater body in China and a significant congregation site for waterfowl; however, surrounding rice fields and poultry grazing have created an overlap with wild waterbirds, a situation conducive to avian influenza transmission. Reports of HPAI H5N1 in healthy wild ducks at Poyang Lake have raised concerns about the potential of resilient free-ranging birds to disseminate the virus. Yet the role wild ducks play in connecting regions of HPAI H5N1 outbreak in Asia is hindered by a lack of information about their migratory ecology. During 2007–08 we marked wild ducks at Poyang Lake with satellite transmitters to examine the location and timing of spring migration and identify any spatiotemporal relationship with HPAI H5N1 outbreaks. Species included the Eurasian wigeon (Anas penelope), northern pintail (Anas acuta), common teal (Anas crecca), falcated teal (Anas falcata), Baikal teal (Anas formosa), mallard (Anas platyrhynchos), garganey (Anas querquedula), and Chinese spotbill (Anas poecilohyncha). These wild ducks (excluding the resident mallard and Chinese spotbill ducks) followed the East Asian Flyway along the coast to breeding areas in northern China, eastern Mongolia, and eastern Russia. None migrated west toward Qinghai Lake (site of the largest wild bird epizootic), thus failing to demonstrate any migratory connection to the Central Asian Flyway. A newly developed Brownian bridge spatial analysis indicated that HPAI H5N1 outbreaks reported in the flyway were related to latitude and poultry density but not to the core migration corridor or to wetland habitats. Also, we found a temporal mismatch between timing of outbreaks and wild duck movements. These analyses depend on complete or representative reporting of outbreaks, but by

  5. Migration of waterfowl in the East Asian flyway and spatial relationship to HPAI H5N1 outbreaks.

    PubMed

    Takekawa, John Y; Newman, Scott H; Xiao, Xiangming; Prosser, Diann J; Spragens, Kyle A; Palm, Eric C; Yan, Baoping; Li, Tianxian; Lei, Fumin; Zhao, Delong; Douglas, David C; Muzaffar, Sabir Bin; Ji, Weitao

    2010-03-01

    Poyang Lake is situated within the East Asian Flyway, a migratory corridor for waterfowl that also encompasses Guangdong Province, China, the epicenter of highly pathogenic avian influenza (HPAI) H5N1. The lake is the largest freshwater body in China and a significant congregation site for waterfowl; however, surrounding rice fields and poultry grazing have created an overlap with wild waterbirds, a situation conducive to avian influenza transmission. Reports of HPAI H5N1 in healthy wild ducks at Poyang Lake have raised concerns about the potential of resilient free-ranging birds to disseminate the virus. Yet the role wild ducks play in connecting regions of HPAI H5N1 outbreak in Asia is hindered by a lack of information about their migratory ecology. During 2007-08 we marked wild ducks at Poyang Lake with satellite transmitters to examine the location and timing of spring migration and identify any spatiotemporal relationship with HPAI H5N1 outbreaks. Species included the Eurasian wigeon (Anas penelope), northern pintail (Anas acuta), common teal (Anas crecca), falcated teal (Anas falcata), Baikal teal (Anas formosa), mallard (Anas platyrhynchos), garganey (Anas querquedula), and Chinese spotbill (Anas poecilohyncha). These wild ducks (excluding the resident mallard and Chinese spotbill ducks) followed the East Asian Flyway along the coast to breeding areas in northern China, eastern Mongolia, and eastern Russia. None migrated west toward Qinghai Lake (site of the largest wild bird epizootic), thus failing to demonstrate any migratory connection to the Central Asian Flyway. A newly developed Brownian bridge spatial analysis indicated that HPAI H5N1 outbreaks reported in the flyway were related to latitude and poultry density but not to the core migration corridor or to wetland habitats. Also, we found a temporal mismatch between timing of outbreaks and wild duck movements. These analyses depend on complete or representative reporting of outbreaks, but by

  6. Highly pathogenic avian influenza virus subtype H5N1 in Mute swans in the Czech Republic.

    PubMed

    Nagy, Alexander; Machova, Jirina; Hornickova, Jitka; Tomci, Miroslav; Nagl, Ivan; Horyna, Bedrich; Holko, Ivan

    2007-02-25

    In order to determine the actual prevalence of avian influenza viruses (AIV) in wild birds in the Czech Republic extensive surveillance was carried out between January and April 2006. A total of 2101 samples representing 61 bird species were examined for the presence of influenza A by using PCR, sequencing and cultivation on chicken embryos. AIV subtype H5N1 was detected in 12 Mute swans (Cygnus olor). The viruses were determined as HPAI (highly pathogenic avian influenza) and the hemagglutinin sequence was closely similar to A/mallard/Italy/835/06 and A/turkey/Turkey/1194/05. Following the first H5N1 case, about 300 wild birds representing 33 species were collected from the outbreak region and tested for the presence of AIV without any positive result. This is the first report of highly pathogenic avian influenza subtype H5N1 in the Czech Republic. The potential role of swan as an effective vector of avian influenza virus is also discussed.

  7. [Pulmonary pathology in fatal human influenza A (H1N1) infection].

    PubMed

    Duan, Xue-jing; Li, Yong; Gong, En-cong; Wang, Jue; Lü, Fu-dong; Zhang, He-qiu; Sun, Lin; Yue, Zhu-jun; Song, Chen-chao; Zhang, Shi-Jie; Li, Ning; Dai, Jie

    2011-12-01

    To study the pulmonary pathology in patients died of fatal human influenza A(H1N1) infection. Eight cases of fatal human influenza A (H1N1) infection, including 2 autopsy cases and 6 paramortem needle puncture biopsies, were enrolled into the study. Histologic examination, immunohistochemitry, flow cytometry and Western blotting were carried out. The major pathologic changes included necrotizing bronchiolitis with surrounding inflammation, diffuse alveolar damage and pulmonary hemorrhage. Influenza viral antigen expression was detected in the lung tissue by Western blotting. Immunohistochemical study demonstrated the presence of nuclear protein and hemagglutinin virus antigens in parts of trachea, bronchial epithelium and glands, alveolar epithelium, macrophages and endothelium. Flow cytometry showed that the apoptotic rate of type II pneumocytes (32.15%, 78.15%) was significantly higher than that of the controls (1.93%, 3.77%). Necrotizing bronchiolitis, diffuse alveolar damage and pulmonary hemorrhage followed by pulmonary fibrosis in late stage are the major pathologic changes in fatal human influenza A (H1N1) infection.

  8. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015

    PubMed Central

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F.; Shi, Weifeng; Lei, Fumin

    2015-01-01

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health. PMID:26259704

  9. Sensitization with vaccinia virus encoding H5N1 hemagglutinin restores immune potential against H5N1 influenza virus.

    PubMed

    Yasui, Fumihiko; Itoh, Yasushi; Ikejiri, Ai; Kitabatake, Masahiro; Sakaguchi, Nobuo; Munekata, Keisuke; Shichinohe, Shintaro; Hayashi, Yukiko; Ishigaki, Hirohito; Nakayama, Misako; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa; Kohara, Michinori

    2016-11-28

    H5N1 highly pathogenic avian influenza (H5N1 HPAI) virus causes elevated mortality compared with seasonal influenza viruses like H1N1 pandemic influenza (H1N1 pdm) virus. We identified a mechanism associated with the severe symptoms seen with H5N1 HPAI virus infection. H5N1 HPAI virus infection induced a decrease of dendritic cell number in the splenic extrafollicular T-cell zone and impaired formation of the outer layers of B-cell follicles, resulting in insufficient levels of antibody production after infection. However, in animals vaccinated with a live recombinant vaccinia virus expressing the H5 hemagglutinin, infection with H5N1 HPAI virus induced parafollicular dendritic cell accumulation and efficient antibody production. These results indicate that a recombinant vaccinia encoding H5 hemagglutinin gene does not impair dendritic cell recruitment and can be a useful vaccine candidate.

  10. Outbreaks of avian influenza A (H5N2), (H5N8), and (H5N1) among birds--United States, December 2014-January 2015.

    PubMed

    Jhung, Michael A; Nelson, Deborah I

    2015-02-06

    During December 15, 2014-January 16, 2015, the U.S. Department of Agriculture received 14 reports of birds infected with Asian-origin, highly pathogenic avian influenza A (HPAI) (H5N2), (H5N8), and (H5N1) viruses. These reports represent the first reported infections with these viruses in U.S. wild or domestic birds. Although these viruses are not known to have caused disease in humans, their appearance in North America might increase the likelihood of human infection in the United States. Human infection with other avian influenza viruses, such as HPAI (H5N1) and (H5N6) viruses and (H7N9) virus, has been associated with severe, sometimes fatal, disease, usually following contact with poultry.

  11. Mammalian-transmissible H5N1 influenza: facts and perspective.

    PubMed

    Osterholm, Michael T; Kelley, Nicholas S

    2012-01-01

    Two recently submitted (but as yet unpublished) studies describe success in creating mutant isolates of H5N1 influenza A virus that can be transmitted via the respiratory route between ferrets; concern has been raised regarding human-to-human transmissibility of these or similar laboratory-generated influenza viruses. Furthermore, the potential release of methods used in these studies has engendered a great deal of controversy around publishing potential dual-use data and also has served as a catalyst for debates around the true case-fatality rate of H5N1 influenza and the capability of influenza vaccines and antivirals to impact any future unintentional or intentional release of H5N1 virus. In this report, we review available seroepidemiology data for H5N1 infection and discuss how case-finding strategies may influence the overall case-fatality rate reported by the WHO. We also provide information supporting the position that if an H5N1 influenza pandemic occurred, available medical countermeasures would have limited impact on the associated morbidity and mortality. Copyright © 2012 Osterholm et al.

  12. Distribution and dynamics of risk factors associated with highly pathogenic avian influenza H5N1.

    PubMed

    Zhang, L; Guo, Z W; Bridge, E S; Li, Y M; Xiao, X M

    2013-11-01

    Within China's Poyang Lake region, close interactions between wild migratory birds and domestic poultry are common and provide an opportunity for the transmission and subsequent outbreaks of highly pathogenic avian influenza (HPAI) virus. We overlaid a series of ecological factors associated with HPAI to map the risk of HPAI in relation to natural and anthropogenic variables, and we identified two hotspots for potential HPAI outbreaks in the Poyang Lake region as well as three corridors connecting the two hotspot areas. In hotspot I, there is potential for migratory birds to bring new avian influenza (AI) strains that can reassort with existing strains to form new AI viruses. Hotspot II features high-density poultry production where outbreaks of endemic AI viruses are likely. The three communication corridors that link the two hotspots further promote HPAI H5N1 transmission and outbreaks and lead to the persistence of AI viruses in the Poyang Lake region. We speculate that the region's unevenly distributed poultry supply-and-demand system might be a key factor inducing HPAI H5N1 transmission and outbreaks in the Poyang Lake region.

  13. Molecular and epidemiological analysis of pandemic and post-pandemic influenza A(H1N1)pdm09 virus from central India.

    PubMed

    Sahu, Mahima; Singh, Neeru; Shukla, Mohan K; Potdar, Varhsa A; Sharma, Ravendra K; Sahare, Lalit Kumar; Ukey, Mahendra J; Barde, Pradip V

    2018-03-01

    Influenza A(H1N1)pdm09 virus pandemic struck India in 2009 and continues to cause outbreaks in its post-pandemic phase. Diminutive information is available about influenza A(H1N1)pdm09 from central India. This observational study presents epidemiological and molecular findings for the period of 6 years. Throat swab samples referred from districts of Madhya Pradesh were subjected to diagnosis of influenza A(H1N1)pdm09 following WHO guidelines. Clinical and epidemiological data were recorded and analyzed. Hemagglutinin (HA) gene sequencing and phylogenetic analysis were performed. The H275Y mutation responsible for antiviral resistance was tested using allelic real-time RT-PCR. Out of 7365 tested samples, 2406 (32.7%) were positive for influenza A(H1N1)pdm09, of which 363 (15.08%) succumbed to infection. Significant trends were observed in positivity (χ 2  = 50.8; P < 0.001) and mortality (χ 2  = 24.4; P < 0.001) with increasing age. Mutations having clinical and epidemiological importance were detected. Phylogenetic analysis of HA gene sequences revealed that clade 7, 6A, and 6B viruses were in circulation. Oseltamivir resistance was detected in three fatal cases. Influenza A(H1N1)pdm09 viruses having genetic diversity were detected from central India and continues to be a concern for public health. This study highlights the need of year-round monitoring by establishment of strong molecular and clinical surveillance program. © 2017 Wiley Periodicals, Inc.

  14. Boosting heterosubtypic neutralization antibodies in recipients of 2009 pandemic H1N1 influenza vaccine.

    PubMed

    Qiu, Chao; Huang, Yang; Wang, Qian; Tian, Di; Zhang, Wanju; Hu, Yunwen; Yuan, Zhenghong; Zhang, Xiaoyan; Xu, Jianqing

    2012-01-01

    A mass vaccination has been implemented to prevent the spread of 2009 pandemic influenza virus in China. Highly limited information is available on whether this vaccine induces cross-reactive neutralization antibodies against other subtypes of influenza viruses. We employed pseudovirus-based assays to analyze heterosubtypic neutralization responses in serum samples of 23 recipients of 2009 pandemic influenza vaccine. One dose of pandemic vaccine not only stimulated good neutralization antibodies against cognate influenza virus 2009 influenza A (H1N1), but also raised broad cross-reactive neutralization activities against seasonal H3N2 and highly pathogenic avian influenza virus H5N1 and lesser to H2N2. The cross-reactive neutralization activities were completely abolished after the removal of immunoglobin G (IgG). In contrast, H1N1 vaccination alone in influenza-naive mice elicited only vigorous homologous neutralizing activities but not cross-reactive neutralization activities. Our data suggest that the cross-reactive neutralization epitopes do exist in this vaccine and could elicit significant cross-reactive neutralizing IgG antibodies in the presence of preexisting responses. The exposure to H1N1 vaccine is likely to modify the hierarchical order of preexisting immune responses to influenza viruses. These findings provide insights into the evolution of human immunity to influenza viruses after experiencing multiple influenza virus infections and vaccinations.

  15. Characterization of cross protection of Swine-Origin Influenza Virus (S-OIV) H1N1 and reassortant H5N1 influenza vaccine in BALB/c mice given a single-dose vaccination

    PubMed Central

    2013-01-01

    Background Influenza virus has antigen drift and antigen shift effect, vaccination with some influenza vaccine might not induce sufficient immunity for host to the threat of other influenza virus strains. S-OIV H1N1 and H5N1 influenza vaccines in single-dose immunization were evaluated in mice for cross protection to the challenge of A/California/7/2009 H1N1 or NIBRG-14 H5N1 virus. Results Both H1N1 and H5N1 induced significant homologous IgG, HAI, and microneutralization antibody responses in the mice, while only vaccines plus adjuvant produced significant heterogeneous IgG and HAI antibody responses. Both alum and MPLA adjuvants significantly reduced the S-OIV H1N1 vaccine dose required to elicit protective HAI antibody titers from 0.05 μg to 0.001 μg. Vaccines alone did not protect mice from challenge with heterogeneous influenza virus, while H5N1 vaccine plus alum and MPLA adjuvants did. Mouse body weight loss was also less significant in the presence of adjuvant than in the vaccine without adjuvant. Furthermore, both H1N1 and H5N1 lung viral titers of immunized mice were significantly reduced post challenge with homologous viruses. Conclusion Only in the presence of MPLA adjuvant could the H5N1 vaccine significantly reduce mouse lung viral titers post H1N1 virus challenge, and not vice versa. MPLA adjuvant induced cross protection with a single dose vaccination to the challenge of heterogeneous influenza virus in mice. Lung viral titer seemed to be a better indicator compared to IgG, neutralization antibody, and HAI titer to predict survival of mice infected with influenza virus. PMID:23517052

  16. Quantifying Transmission of Highly Pathogenic and Low Pathogenicity H7N1 Avian Influenza in Turkeys

    PubMed Central

    Saenz, Roberto A.; Essen, Steve C.; Brookes, Sharon M.; Iqbal, Munir; Wood, James L. N.; Grenfell, Bryan T.; McCauley, John W.; Brown, Ian H.; Gog, Julia R.

    2012-01-01

    Outbreaks of avian influenza in poultry can be devastating, yet many of the basic epidemiological parameters have not been accurately characterised. In 1999–2000 in Northern Italy, outbreaks of H7N1 low pathogenicity avian influenza virus (LPAI) were followed by the emergence of H7N1 highly pathogenic avian influenza virus (HPAI). This study investigates the transmission dynamics in turkeys of representative HPAI and LPAI H7N1 virus strains from this outbreak in an experimental setting, allowing direct comparison of the two strains. The fitted transmission rates for the two strains are similar: 2.04 (1.5–2.7) per day for HPAI, 2.01 (1.6–2.5) per day for LPAI. However, the mean infectious period is far shorter for HPAI (1.47 (1.3–1.7) days) than for LPAI (7.65 (7.0–8.3) days), due to the rapid death of infected turkeys. Hence the basic reproductive ratio, is significantly lower for HPAI (3.01 (2.2–4.0)) than for LPAI (15.3 (11.8–19.7)). The comparison of transmission rates and are critically important in relation to understanding how HPAI might emerge from LPAI. Two competing hypotheses for how transmission rates vary with population size are tested by fitting competing models to experiments with differing numbers of turkeys. A model with frequency-dependent transmission gives a significantly better fit to experimental data than density-dependent transmission. This has important implications for extrapolating experimental results from relatively small numbers of birds to the commercial poultry flock size, and for how control, including vaccination, might scale with flock size. PMID:23028760

  17. Antigen-specific H1N1 influenza antibody responses in acute respiratory tract infections and their relation to influenza infection and disease course.

    PubMed

    Haran, John Patrick; Hoaglin, David C; Chen, Huaiqing; Boyer, Edward W; Lu, Shan

    2014-08-01

    Early antibody responses to influenza infection are important in both clearance of virus and fighting the disease. Acute influenza antibody titers directed toward H1-antigens and their relation to infection type and patient outcomes have not been well investigated. Using hemagglutination inhibition (HI) assays, we aimed to characterize the H1-specific antibody titers in patients with influenza infection or another respiratory infection before and after the H1N1-pandemic influenza outbreak. Among patients with acute influenza infection we related duration of illness, severity of symptoms, and need for hospitalization to antibody titers. There were 134 adult patients (average age 34.7) who presented to an urban academic emergency department (ED) from October through March during the 2008-2011 influenza seasons with symptoms of fever and a cough. Nasal aspirates were tested by viral culture, and peripheral blood serum was run in seven H1-subtype HI assays. Acutely infected influenza patients had markedly lower antibody titers for six of the seven pseudotype viruses. For the average over the seven titers (log units, base 2) their mean was 7.24 (95% CI 6.88, 7.61) compared with 8.60 (95% CI 8.27, 8.92) among patients who had a non-influenza respiratory illness, p<0.0001. Among patients with seasonal influenza infection, titers of some antibodies correlated with severity of symptoms and with total duration of illness (p<0.02). In patients with acute respiratory infections, lower concentrations of H1-influenza-specific antibodies were associated with influenza infection. Among influenza-infected patients, higher antibody titers were present in patients with a longer duration of illness and with higher severity-of-symptom scores. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Satellite-marked waterfowl reveal migratory connection between H5N1 outbreak areas in China and Mongolia

    USGS Publications Warehouse

    Prosser, D.J.; Takekawa, John Y.; Newman, S.H.; Yan, B.; Douglas, David C.; Hou, Y.; Xing, Z.; Zhang, Dongxiao; Li, T.; Li, Y.; Zhao, D.; Perry, W.M.; Palm, E.C.

    2009-01-01

    The role of wild birds in the spread of highly pathogenic avian influenza H5N1 has been greatly debated and remains an unresolved question. However, analyses to determine involvement of wild birds have been hindered by the lack of basic information on their movements in central Asia. Thus, we initiated a programme to document migrations of waterfowl in Asian flyways to inform hypotheses of H5N1 transmission. As part of this work, we studied migration of waterfowl from Qinghai Lake, China, site of the 2005 H5N1 outbreak in wild birds. We examined the null hypothesis that no direct migratory connection existed between Qinghai Lake and H5N1 outbreak areas in central Mongolia, as suggested by some H5N1 phylogeny studies. We captured individuals in 2007 from two of the species that died in the Qinghai Lake outbreaks and marked them with GPS satellite transmitters: Bar-headed Geese Anser indicus (n = 14) and Ruddy Shelduck Tadorna ferruginea (n = 11). Three of 25 marked birds (one Goose and two Shelducks) migrated to breeding grounds near H5N1 outbreak areas in Mongolia. Our results describe a previously unknown migratory link between the two regions and offer new critical information on migratory movements in the region. ?? 2009 British Ornithologists' Union.

  19. Pandemic 2009 influenza A (H1N1) infection among 2009 Hajj Pilgrims from Southern Iran: a real-time RT-PCR-based study.

    PubMed

    Ziyaeyan, Mazyar; Alborzi, Abdolvahab; Jamalidoust, Marziyeh; Moeini, Mahsa; Pouladfar, Gholam R; Pourabbas, Bahman; Namayandeh, Mandana; Moghadami, Mohsen; Bagheri-Lankarani, Kamran; Mokhtari-Azad, Talat

    2012-11-01

    Hajj is a mass gathering undertaken annually in Mecca, Saudi Arabia. The 2009 Hajj coincided with both the pandemic influenza A/H1N1 2009 (A(H1N1)pdm09) and seasonal types of influenza A viruses. The interaction between pandemic influenza and Hajj could cause both a high level of mortality among the pilgrims and the spread of infection in their respective countries upon their return home. The present study attempted to determine the point prevalence of A(H1N1)pdm09 among returning Iranian pilgrims, most of whom had been vaccinated for seasonal influenza but not A(H1N1)pdm09. Pharyngeal swabs were collected from 305 pilgrims arriving at the airport in Shiraz, Iran. RNA was extracted from the samples and A(H1N1)pdm09 and other seasonal influenza A viruses were detected using TaqMan real-time PCR. For A(H1N1)pdm09-positive samples, the sensitivity to oseltamivir was also evaluated. Subjects included 132 (43.3%) men and 173 (56.7%) women, ranging in age from 24 to 65 years. The A(H1N1)pdm09 virus was detected in five (1.6%) pilgrims and other influenza A viruses in eight (2.6%). All the A(H1N1)pdm09 were sensitive to oseltamivir. Only five cases were found to be positive for A(H1N1)pdm09, and it seems unlikely that the arrival of infected pilgrims to their homelands would cause an outbreak of a new wave of infection there. Thus, the low morbidity and mortality rates among the pilgrims could be attributed to the characteristics of A(H1N1)pdm09, which causes morbidity and mortality in a way similar to the seasonal influenza infections, absence of high-risk individuals among the Iranian pilgrims, and the instructions given to them about contact and hand hygiene, and respiratory etiquette. © 2012 Blackwell Publishing Ltd.

  20. Pandemic influenza A (H1N1) 2009 vaccine: an update.

    PubMed

    Goel, M K; Goel, M; Khanna, P; Mittal, K

    2011-01-01

    The world witnessed a the first influenza pandemic in this century and fourth overall since first flu pandemic was reported during the World War I. The past experiences with influenza viruses and this pandemic of H1N1 place a consider-able strain on health services and resulted in serious illnesses and a large number of deaths. Develop-ing countries were declared more likely to be at risk from the pandemic effects, as they faced the dual problem of highly vulnerable populations and limited resources to respond H1N1. The public health experts agreed that vaccination is the most effective ways to mitigate the negative effects of the pandemic. The vaccines for H1N1 virus have been used in over 40 countries and administered to over 200 million people helped in a great way and on August 10, 2010, World Health Organization (WHO) announced H1N1 to be in postpandemic period. But based on knowledge about past pandemics, the H1N1 (2009) virus is expected to continue to circulate as a seasonal virus and may undergo some agenic-variation. As WHO strongly recommends vaccination, vigilance for regular updating of the composition of influenza vaccines, based on an assessment of the future impact of circulating viruses along with safety surveillance of the vaccines is necessary. This review has been done to take a stock of the currently available H1N1 vaccines and their possible use as public health intervention in the postpandemic period.

  1. 'Presenting CXR phenotype of H1N1' flu compared with contemporaneous non-H1N1, community acquired pneumonia, during pandemic and post-pandemic outbreaks'.

    PubMed

    Minns, F C; Mhuineachain, A Ni; van Beek, E J R; Ritchie, G; Hill, A; Murchison, J T

    2015-09-01

    To review, phenotype and assess potential prognostic value of initial chest X-ray findings in patients with H1N1 influenza during seasonal outbreaks of 2009 and 2010, in comparison with non-H1N1, community acquired pneumonia (CAP). We retrospectively identified 72 patients admitted to hospital with pneumonia during the seasons of 2009 and 2010. H1N1 cases were confirmed by virology PCR. Presenting chest X-rays were jointly read by 2 radiologists, who were 'blinded' to further patient details and divided into 6 zones. Total number of opacified zones, the pattern and distribution of changes and length of hospital stay were recorded. Patients with H1N1 demonstrated more opacified zones (mean of 2.9 compared with 2.0; p=0.006), which were bilateral in two-thirds compared with a quarter of those with non-H1N1 CAP (p=0.001). H1N1 radiographs were more likely to be 'patchy' versus 'confluent' changes of non-H1N1 CAP (p=0.03) and more often demonstrated peripheral distribution (p=0.01). H1N1 patients tended to stay in hospital longer (not significant; p=0.08). A positive correlation existed between number of affected zones and length of inpatient stay, which was statistically significant for the cohorts combined (p=0.02). The findings were the same for the two evaluated seasons. H1N1 patients demonstrated more extensive disease, which was more likely bilateral, 'patchy', and peripheral in distribution. With increasing global cases of H1N1, knowledge of the typical findings of the H1N1 presenting chest X-ray may assist with early triage of patients, particularly where rapid viral testing is not available. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Anti-pandemic influenza A (H1N1) virus potential of catechin and gallic acid.

    PubMed

    You, Huey-Ling; Huang, Chao-Chun; Chen, Chung-Jen; Chang, Cheng-Chin; Liao, Pei-Lin; Huang, Sheng-Teng

    2018-05-01

    The pandemic influenza A (H1N1) virus has spread worldwide and infected a large proportion of the human population. Discovery of new and effective drugs for the treatment of influenza is a crucial issue for the global medical community. According to our previous study, TSL-1, a fraction of the aqueous extract from the tender leaf of Toonasinensis, has demonstrated antiviral activities against pandemic influenza A (H1N1) through the down-regulation of adhesion molecules and chemokine to prevent viral attachment. The aim of the present study was to identify the active compounds in TSL-1 which exert anti-influenza A (H1N1) virus effects. XTT assay was used to detect the cell viability. Meanwhile, the inhibitory effect on the pandemic influenza A (H1N1) virus was analyzed by observing plaque formation, qRT-PCR, neuraminidase activity, and immunofluorescence staining of influenza A-specific glycoprotein. Both catechin and gallic acid were found to be potent inhibitors in terms of influenza virus mRNA replication and MDCK plaque formation. Additionally, both compounds inhibited neuraminidase activities and viral glycoprotein. The 50% effective inhibition concentration (EC 50 ) of catechin and gallic acid for the influenza A (H1N1) virus were 18.4 μg/mL and 2.6 μg/mL, respectively; whereas the 50% cytotoxic concentrations (CC 50 ) of catechin and gallic acid were >100 μg/mL and 22.1 μg/mL, respectively. Thus, the selectivity indexes (SI) of catechin and gallic acid were >5.6 and 22.1, respectively. The present study demonstrates that catechin might be a safe reagent for long-term use to prevent influenza A (H1N1) virus infection; whereas gallic acid might be a sensitive reagent to inhibit influenza virus infection. We conclude that these two phyto-chemicals in TSL-1 are responsible for exerting anti-pandemic influenza A (H1N1) virus effects. Copyright © 2017. Published by Elsevier Taiwan LLC.

  3. Influenza A(H1N1)v in Germany: the first 10,000 cases.

    PubMed

    Gilsdorf, Andreas; Poggensee, Gabriele

    2009-08-27

    The analysis of the first 10,000 cases of influenza A(H1N1)v in Germany confirms findings from other sources that the virus is currently mainly causing mild diseases, affecting mostly adolescents and young adults. Overall hospitalisation rate for influenza A(H1N1)v was low (7%). Only 3% of the cases had underlying conditions and pneumonia was rare (0.4%). Both reporting and testing requirements have been adapted recently, taking into consideration the additional information available on influenza A(H1N1)v infections.

  4. Inactivation of influenza A virus H1N1 by disinfection process.

    PubMed

    Jeong, Eun Kyo; Bae, Jung Eun; Kim, In Seop

    2010-06-01

    Because any patient, health care worker, or visitor is capable of transmitting influenza to susceptible persons within hospitals, hospital-acquired influenza has been a clinical concern. Disinfection and cleaning of medical equipment, surgical instruments, and hospital environment are important measures to prevent transmission of influenza virus from hospitals to individuals. This study was conducted to evaluate the efficacy of disinfection processes, which can be easily operated at hospitals, in inactivating influenza A virus H1N1 (H1N1). The effects of 0.1 mol/L NaOH, 70% ethanol, 70% 1-propanol, solvent/detergent (S/D) using 0.3% tri (n-butyl)-phosphate and 1.0% Triton X-100, heat, and ethylene oxide (EO) treatments in inactivating H1N1 were determined. Inactivation of H1N1 was kinetically determined by the treatment of disinfectants to virus solution. Also, a surface test method, which involved drying an amount of virus on a surface and then applying the inactivation methods for 1 minute of contact time, was used to determine the virucidal activity. H1N1 was completely inactivated to undetectable levels in 1 minute of 70% ethanol, 70% 1-propanol, and solvent/detergent treatments in the surface tests as well as in the suspension tests. H1N1 was completely inactivated in 1 minute of 0.1 mol/L NaOH treatment in the suspension tests and also effectively inactivated in the surface tests with the log reduction factor of 3.7. H1N1 was inactivated to undetectable levels within 5 minutes, 2.5 minutes, and 1 minute of heat treatment at 70, 80, and 90 degrees C, respectively in the suspension tests. Also, H1N1 was completely inactivated by EO treatment in the surface tests. Common disinfectants, heat, and EO tested in this study were effective at inactivating H1N1. These results would be helpful in implementing effective disinfecting measures to prevent hospital-acquired infections. Copyright 2010 Association for Professionals in Infection Control and Epidemiology, Inc

  5. Vaccination with Killed but Metabolically Active E. coli Over-expressing Hemagglutinin Elicits Neutralizing Antibodies to H1N1 Swine Origin Influenza A Virus

    PubMed Central

    Liu, Pei-Feng; Wang, Yanhan; Liu, Yu-Tsueng; Huang, Chun-Ming

    2017-01-01

    There is a need for a fast and simple method for vaccine production to keep up with the pace of a rapidly spreading virus in the early phases of the influenza pandemic. The use of whole viruses produced in chicken eggs or recombinant antigens purified from various expression systems has presented considerable challenges, especially with lengthy processing times. Here, we use the killed but metabolically active (KBMA) Escherichia coli (E. coli) to harbor the hemagglutinin (HA) of swine origin influenza A (H1N1) virus (S-OIV) San Diego/01/09 (SD/H1N1-S-OIV). Intranasal vaccination of mice with KBMA E. coli SD/H1N1-S-OIV HA without adding exogenous adjuvants provoked detectable neutralizing antibodies against the virus-induced hemagglutination within three weeks. Boosting vaccination enhanced the titers of neutralizing antibodies, which can decrease viral infectivity in Madin-Darby canine kidney (MDCK) cells. The antibodies were found to specifically neutralize the SD/H1N1-S-OIV-, but not seasonal influenza viruses (H1N1 and H3N2), -induced hemagglutination. The use of KBMA E. coli as an egg-free system to produce anti-influenza vaccines makes unnecessary the rigorous purification of an antigen prior to immunization, providing an alternative modality to combat influenza virus in future outbreaks. PMID:28492063

  6. Human infection with highly pathogenic H5N1 influenza virus.

    PubMed

    Gambotto, Andrea; Barratt-Boyes, Simon M; de Jong, Menno D; Neumann, Gabriele; Kawaoka, Yoshihiro

    2008-04-26

    Highly pathogenic H5N1 influenza A viruses have spread relentlessly across the globe since 2003, and they are associated with widespread death in poultry, substantial economic loss to farmers, and reported infections of more than 300 people with a mortality rate of 60%. The high pathogenicity of H5N1 influenza viruses and their capacity for transmission from birds to human beings has raised worldwide concern about an impending human influenza pandemic similar to the notorious H1N1 Spanish influenza of 1918. Since many aspects of H5N1 influenza research are rapidly evolving, we aim in this Seminar to provide an up-to-date discussion on select topics of interest to influenza clinicians and researchers. We summarise the clinical features and diagnosis of infection and present therapeutic options for H5N1 infection of people. We also discuss ideas relating to virus transmission, host restriction, and pathogenesis. Finally, we discuss vaccine development in view of the probable importance of vaccination in pandemic control.

  7. Comparison of patients with avian influenza A (H7N9) and influenza A (H1N1) complicated by acute respiratory distress syndrome.

    PubMed

    Li, Hongyan; Weng, Heng; Lan, Changqing; Zhang, Hongying; Wang, Xinhang; Pan, Jianguang; Chen, Lulu; Huang, Jinbao

    2018-03-01

    The aim of this study was to compare the clinical features of patients with avian influenza A (H7N9) and influenza A (H1N1) complicated by acute respiratory distress syndrome (ARDS).The clinical data of 18 cases of H7N9 and 26 cases of H1N1 with ARDS were collected and compared in the respiratory intensive care unit (RICU) of Fuzhou Pulmonary Hospital of Fujian from March 2014 to December 2016.Patients with H7N9 had a higher acute physiology and chronic health evaluation-II score (P < .05) and lung injury score (P < .05). The rates of coexisting diabetes mellitus, hyperpyrexia, and bloody sputum production were significantly higher in the H7N9 group than in the H1N1 group (P < .05). The H7N9 group had a longer duration of viral shedding from the onset of illness (P < .05) and from the initiation of antiviral therapy (P < .05) to a negative viral test result than the H1N1 group. Patients with H7N9 had higher rates of invasive mechanical ventilation; serious complications, including alimentary tract hemorrhage, pneumothorax or septum emphysema, hospital-acquired pneumonia (HAP) and multiple organ dysfunction syndrome (MODS); and hospital mortality (P < .05). At the 6th month of follow-up, the rates of bronchiectasia, reticular opacities, fibrous stripes, and patchy opacities on chest computed tomography (CT) were significantly higher in the H7N9 group than in the H1N1 group (P < .05). Based on multiple logistic regression analysis, H7N9 influenza viral infection was associated with a higher risk of the presence of severe ARDS than H1N1 influenza viral infection (odds ratio 8.29, 95% confidence interval [CI] 1.53-44.94; P < .05).Compared to patients with H1N1, patients with H7N9 complicated by ARDS had much more severe disease. During long-term follow-up, more changes in pulmonary fibrosis were observed in patients with H7N9 than in patients with H1N1 during the convalescent stage.

  8. An H5N1-based matrix protein 2 ectodomain tetrameric peptide vaccine provides cross-protection against lethal infection with H7N9 influenza virus.

    PubMed

    Leung, Ho-Chuen; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Zhao, Han-Jun; Cheung, Chung-Yan; Ng, Fai; Huang, Jian-Dong; Zheng, Bo-Jian

    2015-04-01

    In March 2013, a patient infected with a novel avian influenza A H7N9 virus was reported in China. Since then, there have been 458 confirmed infection cases and 177 deaths. The virus contains several human-adapted markers, indicating that H7N9 has pandemic potential. The outbreak of this new influenza virus highlighted the need for the development of universal influenza vaccines. Previously, we demonstrated that a tetrameric peptide vaccine based on the matrix protein 2 ectodomain (M2e) of the H5N1 virus (H5N1-M2e) could protect mice from lethal infection with different clades of H5N1 and 2009 pandemic H1N1 influenza viruses. In this study, we investigated the cross-protection of H5N1-M2e against lethal infection with the new H7N9 virus. Although five amino acid differences existed at positions 13, 14, 18, 20, and 21 between M2e of H5N1 and H7N9, H5N1-M2e vaccination with either Freund's adjuvant or the Sigma adjuvant system (SAS) induced a high level of anti-M2e antibody, which cross-reacted with H7N9-M2e peptide. A mouse-adapted H7N9 strain, A/Anhui/01/2013m, was used for lethal challenge in animal experiments. H5N1-M2e vaccination provided potent cross-protection against lethal challenge of the H7N9 virus. Reduced viral replication and histopathological damage of mouse lungs were also observed in the vaccinated mice. Our results suggest that the tetrameric H5N1-M2e peptide vaccine could protect against different subtypes of influenza virus infections. Therefore, this vaccine may be an ideal candidate for developing a universal vaccine to prevent the reemergence of avian influenza A H7N9 virus and the emergence of potential novel reassortants of influenza virus.

  9. Oseltamivir-Resistant Influenza Virus A (H1N1), Europe, 2007–08 Season

    PubMed Central

    Lackenby, Angie; Hungnes, Olav; Lina, Bruno; van der Werf, Sylvie; Schweiger, Brunhilde; Opp, Matthias; Paget, John; van de Kassteele, Jan; Hay, Alan; Zambon, Maria

    2009-01-01

    In Europe, the 2007–08 winter season was dominated by influenza virus A (H1N1) circulation through week 7, followed by influenza B virus from week 8 onward. Oseltamivir-resistant influenza viruses A (H1N1) (ORVs) with H275Y mutation in the neuraminidase emerged independently of drug use. By country, the proportion of ORVs ranged from 0% to 68%, with the highest proportion in Norway. The average weighted prevalence of ORVs across Europe increased gradually over time, from near 0 in week 40 of 2007 to 56% in week 19 of 2008 (mean 20%). Neuraminidase genes of ORVs possessing the H275Y substitution formed a homogeneous subgroup closely related to, but distinguishable from, those of oseltamivir-sensitive influenza viruses A (H1N1). Minor variants of ORVs emerged independently, indicating multiclonal ORVs. Overall, the clinical effect of ORVs in Europe, measured by influenza-like illness or acute respiratory infection, was unremarkable and consistent with normal seasonal activity. PMID:19331731

  10. Knowledge of avian influenza (H5N1) among poultry workers, Hong Kong, China.

    PubMed

    Kim, Jean H; Lo, Fung Kuk; Cheuk, Ka Kin; Kwong, Ming Sum; Goggins, William B; Cai, Yan Shan; Lee, Shui Shan; Griffiths, Sian

    2011-12-01

    In 2009, a cross-sectional survey of 360 poultry workers in Hong Kong, China, showed that workers had inadequate levels of avian influenza (H5N1) risk knowledge, preventive behavior, and outbreak preparedness. The main barriers to preventive practices were low perceived benefits and interference with work. Poultry workers require occupation-specific health promotion.

  11. Outbreak of Variant Influenza A(H3N2) Virus in the United States

    PubMed Central

    Jhung, Michael A.; Epperson, Scott; Biggerstaff, Matthew; Allen, Donna; Balish, Amanda; Barnes, Nathelia; Beaudoin, Amanda; Berman, LaShondra; Bidol, Sally; Blanton, Lenee; Blythe, David; Brammer, Lynnette; D’Mello, Tiffany; Danila, Richard; Davis, William; de Fijter, Sietske; DiOrio, Mary; Durand, Lizette O.; Emery, Shannon; Fowler, Brian; Garten, Rebecca; Grant, Yoran; Greenbaum, Adena; Gubareva, Larisa; Havers, Fiona; Haupt, Thomas; House, Jennifer; Ibrahim, Sherif; Jiang, Victoria; Jain, Seema; Jernigan, Daniel; Kazmierczak, James; Klimov, Alexander; Lindstrom, Stephen; Longenberger, Allison; Lucas, Paul; Lynfield, Ruth; McMorrow, Meredith; Moll, Maria; Morin, Craig; Ostroff, Stephen; Page, Shannon L.; Park, Sarah Y.; Peters, Susan; Quinn, Celia; Reed, Carrie; Richards, Shawn; Scheftel, Joni; Simwale, Owen; Shu, Bo; Soyemi, Kenneth; Stauffer, Jill; Steffens, Craig; Su, Su; Torso, Lauren; Uyeki, Timothy M.; Vetter, Sara; Villanueva, Julie; Wong, Karen K.; Shaw, Michael; Bresee, Joseph S.; Cox, Nancy; Finelli, Lyn

    2017-01-01

    Background Variant influenza virus infections are rare but may have pandemic potential if person-to-person transmission is efficient. We describe the epidemiology of a multistate outbreak of an influenza A(H3N2) variant virus (H3N2v) first identified in 2011. Methods We identified laboratory-confirmed cases of H3N2v and used a standard case report form to characterize illness and exposures. We considered illness to result from person-to-person H3N2v transmission if swine contact was not identified within 4 days prior to illness onset. Results From 9 July to 7 September 2012, we identified 306 cases of H3N2v in 10 states. The median age of all patients was 7 years. Commonly reported signs and symptoms included fever (98%), cough (85%), and fatigue (83%). Sixteen patients (5.2%) were hospitalized, and 1 fatal case was identified. The majority of those infected reported agricultural fair attendance (93%) and/or contact with swine (95%) prior to illness. We identified 15 cases of possible person-to-person transmission of H3N2v. Viruses recovered from patients were 93%–100% identical and similar to viruses recovered from previous cases of H3N2v. All H3N2v viruses examined were susceptible to oseltamivir and zanamivir and resistant to adamantane antiviral medications. Conclusions In a large outbreak of variant influenza, the majority of infected persons reported exposures, suggesting that swine contact at an agricultural fair was a risk for H3N2v infection. We identified limited person-to-person H3N2v virus transmission, but found no evidence of efficient or sustained person-to-person transmission. Fair managers and attendees should be aware of the risk of swine-to-human transmission of influenza viruses in these settings. PMID:24065322

  12. Clinical presentations of pandemic 2009 influenza A (H1N1) virus infection in hospitalized Thai children.

    PubMed

    Lochindarat, Sorasak; Bunnag, Thanyanat

    2011-08-01

    A novel influenza A (H1N1) virus of swine origin caused human infection and acute respiratory illness in Mexico during the spring of 2009. After that, the virus spread globally, resulting in the influenza pandemic. To observe the clinical manifestations of the 2009 pandemic influenza A (H1N1) and the epidemic waves of hospitalized children for a period of one year. A prospective observational study of children under eighteen years old, confirmed having the 2009 pandemic influenza (H1N1) infection by real-time reverse-transcription-polymerase-chain-reaction (RT-PCR), admitted at Queen Sirikit National Institute of Child Health, Bangkok, Thailand during one year, from 1st June 2009 to 31st May 2010. A total of 83 pandemic influenza infected children were admitted during a one-year period. There were two waves of epidemic outbreak, the first wave from June to August 2009 and the second wave from January to February 2010. There were 47 cases of males (56.6%), with the highest attack rates among children 1-5 years of age (48.2%). The youngest case was a 29-day old girl. The correct provisional diagnosis of pandemic influenza infection are 39.5%, the other initial diagnosis are pneumonia, bronchiolitis, tonsillitis, encephalitis, and dengue infection. Most patients coming for care had typical, influenza-like symptoms with fever (98.8%), cough (92.6%) and rhinorrhea (74.1%). Systemic symptoms are frequent. Gastrointestinal symptoms (including vomiting (46.9%) and diarrhea (24.7%)) occur more commonly than seasonal influenza. Pneumonia is the most common complication (43.2%); other complications include bronchiolitis, hemoptysis, acute respiratory distress syndrome (ARDS) and encephalitis. In one case, a seven year old girl suffered from ARDS, sepsis, multi-organ dysfunction syndrome and ventilator associated pneumonia, but survived with some neurological sequelae. Radiographic findings included diffuse interstitial, alveolar infiltrates and some in lobar distributions

  13. Avian influenza virus (H5N1); effects of physico-chemical factors on its survival

    PubMed Central

    Shahid, Muhammad Akbar; Abubakar, Muhammad; Hameed, Sajid; Hassan, Shamsul

    2009-01-01

    Present study was performed to determine the effects of physical and chemical agents on infective potential of highly pathogenic avian influenza (HPAI) H5N1 (local strain) virus recently isolated in Pakistan during 2006 outbreak. H5N1 virus having titer 108.3 ELD50/ml was mixed with sterilized peptone water to get final dilution of 4HA units and then exposed to physical (temperature, pH and ultraviolet light) and chemical (formalin, phenol crystals, iodine crystals, CID 20, virkon®-S, zeptin 10%, KEPCIDE 300, KEPCIDE 400, lifebuoy, surf excel and caustic soda) agents. Harvested amnio-allantoic fluid (AAF) from embryonated chicken eggs inoculated with H5N1 treated virus (0.2 ml/egg) was subjected to haemagglutination (HA) and haemagglutination inhibition (HI) tests. H5N1 virus lost infectivity after 30 min at 56°C, after 1 day at 28°C but remained viable for more than 100 days at 4°C. Acidic pH (1, 3) and basic pH (11, 13) were virucidal after 6 h contact time; however virus retained infectivity at pH 5 (18 h), 7 and 9 (more than 24 h). UV light was proved ineffectual in inactivating virus completely even after 60 min. Soap (lifebuoy®), detergent (surf excel®) and alkali (caustic soda) destroyed infectivity after 5 min at 0.1, 0.2 and 0.3% dilution. All commercially available disinfectants inactivated virus at recommended concentrations. Results of present study would be helpful in implementing bio-security measures at farms/hatcheries levels in the wake of avian influenza virus (AIV) outbreak. PMID:19327163

  14. Human T-cells directed to seasonal influenza A virus cross-react with 2009 pandemic influenza A (H1N1) and swine-origin triple-reassortant H3N2 influenza viruses.

    PubMed

    Hillaire, Marine L B; Vogelzang-van Trierum, Stella E; Kreijtz, Joost H C M; de Mutsert, Gerrie; Fouchier, Ron A M; Osterhaus, Albert D M E; Rimmelzwaan, Guus F

    2013-03-01

    Virus-specific CD8(+) T-cells contribute to protective immunity against influenza A virus (IAV) infections. As the majority of these cells are directed to conserved viral proteins, they may afford protection against IAVs of various subtypes. The present study assessed the cross-reactivity of human CD8(+) T-lymphocytes, induced by infection with seasonal A (H1N1) or A (H3N2) influenza virus, with 2009 pandemic influenza A (H1N1) virus [A(H1N1)pdm09] and swine-origin triple-reassortant A (H3N2) [A(H3N2)v] viruses that are currently causing an increasing number of human cases in the USA. It was demonstrated that CD8(+) T-cells induced after seasonal IAV infections exerted lytic activity and produced gamma interferon upon in vitro restimulation with A(H1N1)pdm09 and A(H3N2)v influenza A viruses. Furthermore, CD8(+) T-cells directed to A(H1N1)pdm09 virus displayed a high degree of cross-reactivity with A(H3N2)v viruses. It was concluded that cross-reacting T-cells had the potential to afford protective immunity against A(H1N1)pdm09 viruses during the pandemic and offer some degree of protection against infection with A(H3N2)v viruses.

  15. Pandemic 2009 influenza A (H1N1) infection among 2009 Hajj Pilgrims from Southern Iran: a real‐time RT‐PCR‐based study

    PubMed Central

    Ziyaeyan, Mazyar; Alborzi, Abdolvahab; Jamalidoust, Marziyeh; Moeini, Mahsa; Pouladfar, Gholam R.; Pourabbas, Bahman; Namayandeh, Mandana; Moghadami, Mohsen; Bagheri‐Lankarani, Kamran; Mokhtari‐Azad, Talat

    2012-01-01

    Please cite this paper as: Ziyaeyan et al. (2012) Pandemic 2009 influenza A H1N1 infection among 2009 Hajj Pilgrims from Southern Iran: a real‐time RT‐PCR‐based study. Influenza and Other Respiratory Viruses 6(601), e80–e84. Background  Hajj is a mass gathering undertaken annually in Mecca, Saudi Arabia. The 2009 Hajj coincided with both the pandemic influenza A/H1N1 2009 (A(H1N1)pdm09) and seasonal types of influenza A viruses. The interaction between pandemic influenza and Hajj could cause both a high level of mortality among the pilgrims and the spread of infection in their respective countries upon their return home. Objective  The present study attempted to determine the point prevalence of A(H1N1)pdm09 among returning Iranian pilgrims, most of whom had been vaccinated for seasonal influenza but not A(H1N1)pdm09. Methods  Pharyngeal swabs were collected from 305 pilgrims arriving at the airport in Shiraz, Iran. RNA was extracted from the samples and A(H1N1)pdm09 and other seasonal influenza A viruses were detected using TaqMan real‐time PCR. For A(H1N1)pdm09‐positive samples, the sensitivity to oseltamivir was also evaluated. Results  Subjects included 132 (43·3%) men and 173 (56·7%) women, ranging in age from 24 to 65 years. The A(H1N1)pdm09 virus was detected in five (1·6%) pilgrims and other influenza A viruses in eight (2·6%). All the A(H1N1)pdm09 were sensitive to oseltamivir. Conclusions  Only five cases were found to be positive for A(H1N1)pdm09, and it seems unlikely that the arrival of infected pilgrims to their homelands would cause an outbreak of a new wave of infection there. Thus, the low morbidity and mortality rates among the pilgrims could be attributed to the characteristics of A(H1N1)pdm09, which causes morbidity and mortality in a way similar to the seasonal influenza infections, absence of high‐risk individuals among the Iranian pilgrims, and the instructions given to them about contact and hand hygiene, and

  16. Elicitation of Protective Antibodies against a Broad Panel of H1N1 Viruses in Ferrets Preimmune to Historical H1N1 Influenza Viruses.

    PubMed

    Carter, Donald M; Darby, Christopher A; Johnson, Scott K; Carlock, Michael A; Kirchenbaum, Greg A; Allen, James D; Vogel, Thorsten U; Delagrave, Simon; DiNapoli, Joshua; Kleanthous, Harold; Ross, Ted M

    2017-12-15

    Most preclinical animal studies test influenza vaccines in immunologically naive animal models, even though the results of vaccination may not accurately reflect the effectiveness of vaccine candidates in humans that have preexisting immunity to influenza. In this study, novel, broadly reactive influenza vaccine candidates were assessed in preimmune ferrets. These animals were infected with different H1N1 isolates before being vaccinated or infected with another influenza virus. Previously, our group has described the design and characterization of computationally optimized broadly reactive hemagglutinin (HA) antigens (COBRA) for H1N1 isolates. Vaccinating ferrets with virus-like particle (VLP) vaccines expressing COBRA HA proteins elicited antibodies with hemagglutination inhibition (HAI) activity against more H1N1 viruses in the panel than VLP vaccines expressing wild-type HA proteins. Specifically, ferrets infected with the 1986 virus and vaccinated with a single dose of the COBRA HA VLP vaccines elicited antibodies with HAI activity against 11 to 14 of the 15 H1N1 viruses isolated between 1934 and 2013. A subset of ferrets was infected with influenza viruses expressing the COBRA HA antigens. These COBRA preimmune ferrets had superior breadth of HAI activity after vaccination with COBRA HA VLP vaccines than COBRA preimmune ferrets vaccinated with VLP vaccines expressing wild-type HA proteins. Overall, priming naive ferrets with COBRA HA based viruses or using COBRA HA based vaccines to boost preexisting antibodies induced by wild-type H1N1 viruses, COBRA HA antigens elicited sera with the broadest HAI reactivity against multiple antigenic H1N1 viral variants. This is the first report demonstrating the effectiveness of a broadly reactive or universal influenza vaccine in a preimmune ferret model. IMPORTANCE Currently, many groups are testing influenza vaccine candidates to meet the challenge of developing a vaccine that elicits broadly reactive and long

  17. Elicitation of Protective Antibodies against a Broad Panel of H1N1 Viruses in Ferrets Preimmune to Historical H1N1 Influenza Viruses

    PubMed Central

    Carter, Donald M.; Darby, Christopher A.; Johnson, Scott K.; Carlock, Michael A.; Kirchenbaum, Greg A.; Allen, James D.; Vogel, Thorsten U.; Delagrave, Simon; DiNapoli, Joshua; Kleanthous, Harold

    2017-01-01

    ABSTRACT Most preclinical animal studies test influenza vaccines in immunologically naive animal models, even though the results of vaccination may not accurately reflect the effectiveness of vaccine candidates in humans that have preexisting immunity to influenza. In this study, novel, broadly reactive influenza vaccine candidates were assessed in preimmune ferrets. These animals were infected with different H1N1 isolates before being vaccinated or infected with another influenza virus. Previously, our group has described the design and characterization of computationally optimized broadly reactive hemagglutinin (HA) antigens (COBRA) for H1N1 isolates. Vaccinating ferrets with virus-like particle (VLP) vaccines expressing COBRA HA proteins elicited antibodies with hemagglutination inhibition (HAI) activity against more H1N1 viruses in the panel than VLP vaccines expressing wild-type HA proteins. Specifically, ferrets infected with the 1986 virus and vaccinated with a single dose of the COBRA HA VLP vaccines elicited antibodies with HAI activity against 11 to 14 of the 15 H1N1 viruses isolated between 1934 and 2013. A subset of ferrets was infected with influenza viruses expressing the COBRA HA antigens. These COBRA preimmune ferrets had superior breadth of HAI activity after vaccination with COBRA HA VLP vaccines than COBRA preimmune ferrets vaccinated with VLP vaccines expressing wild-type HA proteins. Overall, priming naive ferrets with COBRA HA based viruses or using COBRA HA based vaccines to boost preexisting antibodies induced by wild-type H1N1 viruses, COBRA HA antigens elicited sera with the broadest HAI reactivity against multiple antigenic H1N1 viral variants. This is the first report demonstrating the effectiveness of a broadly reactive or universal influenza vaccine in a preimmune ferret model. IMPORTANCE Currently, many groups are testing influenza vaccine candidates to meet the challenge of developing a vaccine that elicits broadly reactive and long

  18. Restored PB1-F2 in the 2009 Pandemic H1N1 Influenza Virus Has Minimal Effects in Swine

    PubMed Central

    Pena, Lindomar; Loving, Crystal L.; Henningson, Jamie N.; Lager, Kelly M.; Lorusso, Alessio

    2012-01-01

    PB1-F2 is an 87- to 90-amino-acid-long protein expressed by certain influenza A viruses. Previous studies have shown that PB1-F2 contributes to virulence in the mouse model; however, its role in natural hosts—pigs, humans, or birds—remains largely unknown. Outbreaks of domestic pigs infected with the 2009 pandemic H1N1 influenza virus (pH1N1) have been detected worldwide. Unlike previous pandemic strains, pH1N1 viruses do not encode a functional PB1-F2 due to the presence of three stop codons resulting in premature truncation after codon 11. However, pH1N1s have the potential to acquire the full-length form of PB1-F2 through mutation or reassortment. In this study, we assessed whether restoring the full-length PB1-F2 open reading frame (ORF) in the pH1N1 background would have an effect on virus replication and virulence in pigs. Restoring the PB1-F2 ORF resulted in upregulation of viral polymerase activity at early time points in vitro and enhanced virus yields in porcine respiratory explants and in the lungs of infected pigs. There was an increase in the severity of pneumonia in pigs infected with isogenic virus expressing PB1-F2 compared to the wild-type (WT) pH1N1. The extent of microscopic pneumonia correlated with increased pulmonary levels of alpha interferon and interleukin-1β in pigs infected with pH1N1 encoding a functional PB1-F2 but only early in the infection. Together, our results indicate that PB1-F2 in the context of pH1N1 moderately modulates viral replication, lung histopathology, and local cytokine response in pigs. PMID:22379102

  19. Genetic characterization of H5N1 influenza viruses isolated from chickens in Indonesia in 2010.

    PubMed

    Nidom, Chairul A; Yamada, Shinya; Nidom, Reviany V; Rahmawati, Kadek; Alamudi, Muhamad Y; Kholik; Indrasari, Setyarina; Hayati, Ratnani S; Iwatsuki Horimoto, Kiyoko; Kawaoka, Yoshihiro

    2012-06-01

    Since 2003, highly pathogenic H5N1 avian influenza viruses have caused outbreaks among poultry in Indonesia every year, producing the highest number of human victims worldwide. However, little is known about the H5N1 influenza viruses that have been circulating there in recent years. We therefore conducted surveillance studies and isolated eight H5N1 viruses from chickens. Phylogenic analysis of their hemagglutinin and neuraminidase genes revealed that all eight viruses belonged to clade 2.1.3. However, on the basis of nucleotide differences, these viruses could be divided into two groups. Other viruses genetically closely related to these two groups of viruses were all Indonesian isolates, suggesting that these new isolates have been evolving within Indonesia. Among these viruses, two distinct viruses circulated in the Kalimantan islands during the same season in 2010. Our data reveal the continued evolution of H5N1 viruses in Indonesia.

  20. Intense Co-Circulation of Non-Influenza Respiratory Viruses during the First Wave of Pandemic Influenza pH1N1/2009: A Cohort Study in Reunion Island

    PubMed Central

    Turpin, Magali; Rollot, Olivier; Flahault, Antoine; Carrat, Fabrice; de Lamballerie, Xavier; Gérardin, Patrick; Dellagi, Koussay

    2012-01-01

    Objective The aim of the present study was to weigh up, at the community level, the respective roles played by pandemic Influenza (pH1N1) virus and co-circulating human Non-Influenza Respiratory Viruses (NIRVs) during the first wave of the 2009 pH1N1 pandemic. Methods A population-based prospective cohort study was conducted in Reunion Island during the austral winter 2009 (weeks 30–44) that allowed identification of 125 households with at least one member who developed symptoms of Influenza-like illness (ILI). Three consecutive nasal swabs were collected from each household member (443 individuals) on day 0, 3 and 8 post-ILI report and tested for pH1N1 and 15 NIRVs by RT-PCR. Results Two successive waves of viral infections were identified: a first wave (W33–37) when pH1N1 was dominant and co-circulated with NIRVs, sharply interrupted by a second wave (W38–44), almost exclusively composed of NIRVs, mainly human Rhinoviruses (hRV) and Coronaviruses (hCoV). Data suggest that some interference may occur between NIRVs and pH1N1 when they co-circulate within the same household, where NIRVs were more likely to infect pH1N1 negative individuals than pH1N1 positive peers (relative risk: 3.13, 95% CI: 1.80–5.46, P<0.001). Viral shedding was significantly shorter (P = 0.035) in patients who were co-infected by pH1N1 and NIRV or by two different NIRVs compared to those who were infected with only one virus, whatever this virus was (pH1N1 or NIRVs). Although intense co-circulation of NIRVs (especially hRV) likely brought pH1N1 under the detection threshold, it did not prevent spread of the pandemic Influenza virus within the susceptible population nor induction of an extensive herd immunity to it. Conclusion Our results suggest that NIRV co-infections during Influenza epidemics may act as cofactors that contribute to shape an outbreak and modulate the attack rate. They further warrant broad spectrum studies to fully understand viral epidemics. PMID:22984554

  1. Effect of Priming with H1N1 Influenza Viruses of Variable Antigenic Distances on Challenge with 2009 Pandemic H1N1 Virus

    PubMed Central

    O'Donnell, Christopher D.; Wright, Amber; Vogel, Leatrice N.; Wei, Chih-Jen; Nabel, Gary J.

    2012-01-01

    Compared to seasonal influenza viruses, the 2009 pandemic H1N1 (pH1N1) virus caused greater morbidity and mortality in children and young adults. People over 60 years of age showed a higher prevalence of cross-reactive pH1N1 antibodies, suggesting that they were previously exposed to an influenza virus or vaccine that was antigenically related to the pH1N1 virus. To define the basis for this cross-reactivity, ferrets were infected with H1N1 viruses of variable antigenic distance that circulated during different decades from the 1930s (Alaska/35), 1940s (Fort Monmouth/47), 1950s (Fort Warren/50), and 1990s (New Caledonia/99) and challenged with 2009 pH1N1 virus 6 weeks later. Ferrets primed with the homologous CA/09 or New Jersey/76 (NJ/76) virus served as a positive control, while the negative control was an influenza B virus that should not cross-protect against influenza A virus infection. Significant protection against challenge virus replication in the respiratory tract was observed in ferrets primed with AK/35, FM/47, and NJ/76; FW/50-primed ferrets showed reduced protection, and NC/99-primed ferrets were not protected. The hemagglutinins (HAs) of AK/35, FM/47, and FW/50 differ in the presence of glycosylation sites. We found that the loss of protective efficacy observed with FW/50 was associated with the presence of a specific glycosylation site. Our results suggest that changes in the HA occurred between 1947 and 1950, such that prior infection could no longer protect against 2009 pH1N1 infection. This provides a mechanistic understanding of the nature of serological cross-protection observed in people over 60 years of age during the 2009 H1N1 pandemic. PMID:22674976

  2. Effect of priming with H1N1 influenza viruses of variable antigenic distances on challenge with 2009 pandemic H1N1 virus.

    PubMed

    O'Donnell, Christopher D; Wright, Amber; Vogel, Leatrice N; Wei, Chih-Jen; Nabel, Gary J; Subbarao, Kanta

    2012-08-01

    Compared to seasonal influenza viruses, the 2009 pandemic H1N1 (pH1N1) virus caused greater morbidity and mortality in children and young adults. People over 60 years of age showed a higher prevalence of cross-reactive pH1N1 antibodies, suggesting that they were previously exposed to an influenza virus or vaccine that was antigenically related to the pH1N1 virus. To define the basis for this cross-reactivity, ferrets were infected with H1N1 viruses of variable antigenic distance that circulated during different decades from the 1930s (Alaska/35), 1940s (Fort Monmouth/47), 1950s (Fort Warren/50), and 1990s (New Caledonia/99) and challenged with 2009 pH1N1 virus 6 weeks later. Ferrets primed with the homologous CA/09 or New Jersey/76 (NJ/76) virus served as a positive control, while the negative control was an influenza B virus that should not cross-protect against influenza A virus infection. Significant protection against challenge virus replication in the respiratory tract was observed in ferrets primed with AK/35, FM/47, and NJ/76; FW/50-primed ferrets showed reduced protection, and NC/99-primed ferrets were not protected. The hemagglutinins (HAs) of AK/35, FM/47, and FW/50 differ in the presence of glycosylation sites. We found that the loss of protective efficacy observed with FW/50 was associated with the presence of a specific glycosylation site. Our results suggest that changes in the HA occurred between 1947 and 1950, such that prior infection could no longer protect against 2009 pH1N1 infection. This provides a mechanistic understanding of the nature of serological cross-protection observed in people over 60 years of age during the 2009 H1N1 pandemic.

  3. Novel triple-reassortant H1N1 swine influenza viruses in pigs in Tianjin, Northern China.

    PubMed

    Sun, Ying-Feng; Wang, Xiu-Hui; Li, Xiu-Li; Zhang, Li; Li, Hai-Hua; Lu, Chao; Yang, Chun-Lei; Feng, Jing; Han, Wei; Ren, Wei-Ke; Tian, Xiang-Xue; Tong, Guang-Zhi; Wen, Feng; Li, Ze-Jun; Gong, Xiao-Qian; Liu, Xiao-Min; Ruan, Bao-Yang; Yan, Ming-Hua; Yu, Hai

    2016-02-01

    Pigs are susceptible to both human and avian influenza viruses and therefore have been proposed to be mixing vessels for the generation of pandemic influenza viruses through reassortment. In this study, for the first time, we report the isolation and genetic analyses of three novel triple-reassortant H1N1 swine influenza viruses from pigs in Tianjin, Northern China. Phylogenetic analysis showed that these novel viruses contained genes from the 2009 pandemic H1N1 (PB2, PB1, PA and NP), Eurasian swine (HA, NA and M) and triple-reassortant swine (NS) lineages. This indicated that the reassortment among the 2009 pandemic H1N1, Eurasian swine and triple-reassortant swine influenza viruses had taken place in pigs in Tianjin and resulted in the generation of new viruses. Furthermore, three human-like H1N1, two classical swine H1N1 and two Eurasian swine H1N1 viruses were also isolated during the swine influenza virus surveillance from 2009 to 2013, which indicated that multiple genetic lineages of swine H1N1 viruses were co-circulating in the swine population in Tianjin, China. The emergence of novel triple-reassortant H1N1 swine influenza viruses may be a potential threat to human health and emphasizes the importance of further continuous surveillance. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Avian influenza A (H5N1) outbreaks in different poultry farm types in Egypt: the effect of vaccination, closing status and farm size.

    PubMed

    Artois, Jean; Ippoliti, Carla; Conte, Annamaria; Dhingra, Madhur S; Alfonso, Pastor; Tahawy, Abdelgawad El; Elbestawy, Ahmed; Ellakany, Hany F; Gilbert, Marius

    2018-06-18

    The Avian Influenza A (H5N1) virus is endemic in poultry in Egypt. The winter of 2014/2015 was particularly worrying as new clusters of HPAI A (H5N1) virus emerged, leading to an important number of AI A (H5N1) outbreaks in poultry farms and sporadic human cases. To date, few studies have investigated the distribution of HPAI A (H5N1) outbreaks in Egypt in relation to protective / risk factors at the farm level, a gap we intend to fill. The aim of the study was to analyse passive surveillance data that were based on observation of sudden and high mortality of poultry or drop in duck or chicken egg production, as a basis to better understand and discuss the risk of HPAI A (H5N1) presence at the farm level in large parts of the Nile Delta. The probability of HPAI A (H5N1) presence was associated with several characteristics of the farms. Vaccination status, absence of windows/openings in the farm and the number of birds per cycle of production were found to be protective factors, whereas the presence of a duck farm with significant mortality or drop in egg production in the village was found to be a risk factor. Results demonstrate the key role of several prevention and biosecurity measures to reduce HPAI A (H5N1) virus circulation, which could promote better poultry farm biosecurity in Egypt.

  5. Migration of waterfowl in the east asian flyway and spatial relationship to HPAI H5N1 outbreaks

    USGS Publications Warehouse

    Takekawa, John Y.; Newman, S.H.; Xiao, X.; Prosser, D.J.; Spragens, K.A.; Palm, E.C.; Yan, B.; Li, T.; Lei, F.; Zhao, D.; Douglas, David C.; Muzaffar, S.B.; Ji, W.

    2010-01-01

    Poyang Lake is situated within the East Asian Flyway, a migratory corridor for waterfowl that also encompasses Guangdong Province, China, the epicenter of highly pathogenic avian influenza (HPAI) H5N1. The lake is the largest freshwater body in China and a significant congregation site for waterfowl; however, surrounding rice fields and poultry grazing have created an overlap with wild waterbirds, a situation conducive to avian influenza transmission. Reports of HPAI H5N1 in healthy wild ducks at Poyang Lake have raised concerns about the potential of resilient free-ranging birds to disseminate the virus. Yet the role wild ducks play in connecting regions of HPAI H5N1 outbreak in Asia is hindered by a lack of information about their migratory ecology. During 2007-08 we marked wild ducks at Poyang Lake with satellite transmitters to examine the location and timing of spring migration and identify any spatiotemporal relationship with HPAI H5N1 outbreaks. Species included the Eurasian wigeon (Anas penelope), northern pintail (Anas acuta), common teal (Anas crecca), falcated teal (Anas falcata), Baikal teal (Anas formosa), mallard (Anas platyrhynchos), garganey (Anas querquedula), and Chinese spotbill (Anas poecilohyncha). These wild ducks (excluding the resident mallard and Chinese spotbill ducks) followed the East Asian Flyway along the coast to breeding areas in northern China, eastern Mongolia, and eastern Russia. None migrated west toward Qinghai Lake (site of the largest wild bird epizootic), thus failing to demonstrate any migratory connection to the Central Asian Flyway. A newly developed Brownian bridge spatial analysis indicated that HPAI H5N1 outbreaks reported in the flyway were related to latitude and poultry density but not to the core migration corridor or to wetland habitats. Also, we found a temporal mismatch between timing of outbreaks and wild duck movements. These analyses depend on complete or representative reporting of outbreaks, but by

  6. Risk of influenza A (H5N1) infection among poultry workers, Hong Kong, 1997-1998.

    PubMed

    Bridges, Carolyn Buxton; Lim, Wilina; Hu-Primmer, Jean; Sims, Les; Fukuda, Keiji; Mak, K H; Rowe, Thomas; Thompson, William W; Conn, Laura; Lu, Xiuhua; Cox, Nancy J; Katz, Jacqueline M

    2002-04-15

    In 1997, outbreaks of highly pathogenic influenza A (H5N1) among poultry coincided with 18 documented human cases of H5N1 illness. Although exposure to live poultry was associated with human illness, no cases were documented among poultry workers (PWs). To evaluate the potential for avian-to-human transmission of H5N1, a cohort study was conducted among 293 Hong Kong government workers (GWs) who participated in a poultry culling operation and among 1525 PWs. Paired serum samples collected from GWs and single serum samples collected from PWs were considered to be anti-H5 antibody positive if they were positive by both microneutralization and Western blot testing. Among GWs, 3% were seropositive, and 1 seroconversion was documented. Among PWs, approximately 10% had anti-H5 antibody. More-intensive poultry exposure, such as butchering and exposure to ill poultry, was associated with having anti-H5 antibody. These findings suggest an increased risk for avian influenza infection from occupational exposure.

  7. Virological characterization of influenza H1N1pdm09 in Vietnam, 2010-2013.

    PubMed

    Nguyen, Hang K L; Nguyen, Phuong T K; Nguyen, Thach C; Hoang, Phuong V M; Le, Thanh T; Vuong, Cuong D; Nguyen, Anh P; Tran, Loan T T; Nguyen, Binh G; Lê, Mai Q

    2015-07-01

    Influenza A/H1N1pdm09 virus was first detected in Vietnam on May 31, 2009, and continues to circulate in Vietnam as a seasonal influenza virus. This study has monitored genotypic and phenotypic changes in this group of viruses during 2010-2013 period. We sequenced hemagglutinin (HA) and neuraminidase (NA) genes from representative influenza A/H1N1pdm09 and compared with vaccine strain A/California/07/09 and other contemporary isolates from neighboring countries. Hemagglutination inhibition (HI) and neuraminidase inhibition (NAI) assays also were performed on these isolates. Representative influenza A/H1N1pdm09 isolates (n = 61) from ILI and SARI surveillances in northern Vietnam between 2010 and 2013. The HA and NA phylogenies revealed six and seven groups, respectively. Five isolates (8·2%) had substitutions G155E and N156K in the HA, which were associated with reduced HI titers by antiserum raised against the vaccine virus A/California/07/2009. One isolate from 2011 and one isolate from 2013 had a predicted H275Y substitution in the neuraminidase molecule, which was associated with reduced susceptibility to oseltamivir in a NAI assay. We also identified a D222N change in the HA of a virus isolated from a fatal case in 2013. Significant genotypic and phenotypic changes in A/ H1N1pdm09 influenza viruses were detected by the National Influenza Surveillance System (NISS) in Vietnam between 2010 and 2013 highlighting the value of this system to Vietnam and to the region. Sustained NISS and continued virological monitoring of seasonal influenza viruses are required for vaccine policy development in Vietnam. 3. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  8. The spread of highly pathogenic avian influenza (subtype H5N1) clades in Bangladesh, 2010 and 2011.

    PubMed

    Osmani, Muzaffar G; Ward, Michael P; Giasuddin, Md; Islam, Md Rafiqul; Kalam, Abul

    2014-04-01

    Since the global spread of highly pathogenic avian influenza H5N1 during 2005-2006, control programs have been successfully implemented in most affected countries. HPAI H5N1 was first reported in Bangladesh in 2007, and since then 546 outbreaks have been reported to the OIE. The disease has apparently become endemic in Bangladesh. Spatio-temporal information on 177 outbreaks of HPAI H5N1 occurring between February 2010 and April 2011 in Bangladesh, and 37 of these outbreaks in which isolated H5N1 viruses were phylogenetically characterized to clade, were analyzed. Three clades were identified, 2.2 (21 cases), 2.3.4 (2 cases) and 2.3.2.1 (14 cases). Clade 2.2 was identified throughout the time period and was widely distributed in a southeast-northwest orientation. Clade 2.3.2.1 appeared later and was generally confined to central Bangladesh in a north-south orientation. Based on a direction test, clade 2.2 viruses spread in a southeast-to-northwest direction, whereas clade 2.3.2.1 spread west-to-east. The magnitude of spread of clade 2.3.2.1 was greater relative to clade 2.2 (angular concentration 0.2765 versus 0.1860). In both cases, the first outbreak(s) were identified as early outliers, but in addition, early outbreaks (one each) of clade 2.2 were also identified in central Bangladesh and in northwest Bangladesh, a considerable distance apart. The spread of highly pathogenic avian influenza H5N1 in Bangladesh is characterized by reported long-distance translocation events. This poses a challenge to disease control efforts. Increased enforcement of biosecurity and stronger control of movements between affected farms and susceptible farms, and better surveillance and reporting, is needed. Although the movement of poultry and equipment appears to be a more likely explanation for the patterns identified, the relative contribution of trade and the market chain versus wild birds in spreading the disease needs further investigation. Copyright © 2014 Elsevier B.V. All

  9. Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002-2003.

    PubMed

    Van Reeth, Kristien; Brown, Ian H; Dürrwald, Ralf; Foni, Emanuela; Labarque, Geoffrey; Lenihan, Patrick; Maldonado, Jaime; Markowska-Daniel, Iwona; Pensaert, Maurice; Pospisil, Zdenek; Koch, Guus

    2008-05-01

    Avian-like H1N1 and human-like H3N2 swine influenza viruses (SIV) have been considered widespread among pigs in Western Europe since the 1980s, and a novel H1N2 reassortant with a human-like H1 emerged in the mid 1990s. This study, which was part of the EC-funded 'European Surveillance Network for Influenza in Pigs 1', aimed to determine the seroprevalence of the H1N2 virus in different European regions and to compare the relative prevalences of each SIV between regions. Laboratories from Belgium, the Czech Republic, Germany, Italy, Ireland, Poland and Spain participated in an international serosurvey. A total of 4190 sow sera from 651 farms were collected in 2002-2003 and examined in haemagglutination inhibition tests against H1N1, H3N2 and H1N2. In Belgium, Germany, Italy and Spain seroprevalence rates to each of the three SIV subtypes were high (> or =30% of the sows seropositive) to very high (> or =50%), except for a lower H1N2 seroprevalence rate in Italy (13.8%). Most sows in these countries with high pig populations had antibodies to two or three subtypes. In Ireland, the Czech Republic and Poland, where swine farming is less intensive, H1N1 was the dominant subtype (8.0-11.7% seropositives) and H1N2 and H3N2 antibodies were rare (0-4.2% seropositives). Thus, SIV of H1N1, H3N2 and H1N2 subtype are enzootic in swine producing regions of Western Europe. In Central Europe, SIV activity is low and the circulation of H3N2 and H1N2 remains to be confirmed. The evolution and epidemiology of SIV throughout Europe is being further monitored through a second 'European Surveillance Network for Influenza in Pigs'.

  10. Novel reassortant influenza A(H1N2) virus derived from A(H1N1)pdm09 virus isolated from swine, Japan, 2012.

    PubMed

    Kobayashi, Miho; Takayama, Ikuyo; Kageyama, Tsutomu; Tsukagoshi, Hiroyuki; Saitoh, Mika; Ishioka, Taisei; Yokota, Yoko; Kimura, Hirokazu; Tashiro, Masato; Kozawa, Kunihisa

    2013-12-01

    We isolated a novel influenza virus A(H1N2) strain from a pig on January 13, 2012, in Gunma Prefecture, Japan. Phylogenetic analysis showed that the strain was a novel type of double-reassortant virus derived from the swine influenza virus strains H1N1pdm09 and H1N2, which were prevalent in Gunma at that time.

  11. Antibodies Against the Current Influenza A(H1N1) Vaccine Strain Do Not Protect Some Individuals From Infection With Contemporary Circulating Influenza A(H1N1) Virus Strains.

    PubMed

    Petrie, Joshua G; Parkhouse, Kaela; Ohmit, Suzanne E; Malosh, Ryan E; Monto, Arnold S; Hensley, Scott E

    2016-12-15

    During the 2013-2014 influenza season, nearly all circulating 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) strains possessed an antigenically important mutation in hemagglutinin (K166Q). Here, we performed hemagglutination-inhibition (HAI) assays, using sera collected from 382 individuals prior to the 2013-2014 season, and we determined whether HAI titers were associated with protection from A(H1N1)pdm09 infection. Protection was associated with HAI titers against an A(H1N1)pdm09 strain possessing the K166Q mutation but not with HAI titers against the current A(H1N1)pdm09 vaccine strain, which lacks this mutation. These data indicate that contemporary A(H1N1)pdm09 strains are antigenically distinct from the current A(H1N1)pdm09 vaccine strain. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  12. Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses

    PubMed Central

    Nang, Nguyen Tai; Song, Byung Min; Kang, Young Myong; Kim, Heui Man; Kim, Hyun Soo; Seo, Sang Heui

    2012-01-01

    Please cite this paper as: Nang et al. (2013) Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses. Influenza and Other Respiratory Viruses 7(2) 120–131. Background  The highly pathogenic H5N1 and H9N2 influenza viruses are endemic in many countries around the world and have caused considerable economic loss to the poultry industry. Objectives  We aimed to study whether a live attenuated H5N1 vaccine comprising internal genes from a cold‐adapted H9N2 influenza virus could protect chickens from infection by both H5N1 and H9N2 viruses. Methods  We developed a cold‐adapted H9N2 vaccine virus expressing hemagglutinin and neuraminidase derived from the highly pathogenic H5N1 influenza virus using reverse genetics. Results and Conclusions  Chickens immunized with the vaccine were protected from lethal infections with homologous and heterologous H5N1 or H9N2 influenza viruses. Specific antibody against H5N1 virus was detected up to 11 weeks after vaccination (the endpoint of this study). In vaccinated chickens, IgA and IgG antibody subtypes were induced in lung and intestinal tissue, and CD4+ and CD8+ T lymphocytes expressing interferon‐gamma were induced in the splenocytes. These data suggest that a live attenuated H5N1 vaccine with cold‐adapted H9N2 internal genes can protect chickens from infection with H5N1 and H9N2 influenza viruses by eliciting humoral and cellular immunity. PMID:22487301

  13. Incidence and Epidemiology of Hospitalized Influenza Cases in Rural Thailand during the Influenza A (H1N1)pdm09 Pandemic, 2009–2010

    PubMed Central

    Baggett, Henry C.; Chittaganpitch, Malinee; Thamthitiwat, Somsak; Prapasiri, Prabda; Naorat, Sathapana; Sawatwong, Pongpun; Ditsungnoen, Darunee; Olsen, Sonja J.; Simmerman, James M.; Srisaengchai, Prasong; Chantra, Somrak; Peruski, Leonard F.; Sawanpanyalert, Pathom; Maloney, Susan A.; Akarasewi, Pasakorn

    2012-01-01

    Background Data on the burden of the 2009 influenza pandemic in Asia are limited. Influenza A(H1N1)pdm09 was first reported in Thailand in May 2009. We assessed incidence and epidemiology of influenza-associated hospitalizations during 2009–2010. Methods We conducted active, population-based surveillance for hospitalized cases of acute lower respiratory infection (ALRI) in all 20 hospitals in two rural provinces. ALRI patients were sampled 1∶2 for participation in an etiology study in which nasopharyngeal swabs were collected for influenza virus testing by PCR. Results Of 7,207 patients tested, 902 (12.5%) were influenza-positive, including 190 (7.8%) of 2,436 children aged <5 years; 86% were influenza A virus (46% A(H1N1)pdm09, 30% H3N2, 6.5% H1N1, 3.5% not subtyped) and 13% were influenza B virus. Cases of influenza A(H1N1)pdm09 first peaked in August 2009 when 17% of tested patients were positive. Subsequent peaks during 2009 and 2010 represented a mix of influenza A(H1N1)pdm09, H3N2, and influenza B viruses. The estimated annual incidence of hospitalized influenza cases was 136 per 100,000, highest in ages <5 years (477 per 100,000) and >75 years (407 per 100,000). The incidence of influenza A(H1N1)pdm09 was 62 per 100,000 (214 per 100,000 in children <5 years). Eleven influenza-infected patients required mechanical ventilation, and four patients died, all adults with influenza A(H1N1)pdm09 (1) or H3N2 (3). Conclusions Influenza-associated hospitalization rates in Thailand during 2009–10 were substantial and exceeded rates described in western countries. Influenza A(H1N1)pdm09 predominated, but H3N2 also caused notable morbidity. Expanded influenza vaccination coverage could have considerable public health impact, especially in young children. PMID:23139802

  14. Highly Pathogenic Avian Influenza H5N8 in Germany: Outbreak Investigations.

    PubMed

    Conraths, F J; Sauter-Louis, C; Globig, A; Dietze, K; Pannwitz, G; Albrecht, K; Höreth-Böntgen, D; Beer, M; Staubach, C; Homeier-Bachmann, T

    2016-02-01

    Epidemiological outbreak investigations were conducted in highly pathogenic avian influenza virus of the subtype H5N8 (HPAIV H5N8)-affected poultry holdings and a zoo to identify potential routes of entry of the pathogen via water, feedstuffs, animals, people, bedding material, other fomites (equipment, vehicles etc.) and the presence of wild birds near affected holdings. Indirect introduction of HPAIV H5N8 via material contaminated by infected wild bird seems the most reasonable explanation for the observed outbreak series in three commercial holdings in Mecklenburg-Western Pomerania and Lower Saxony, while direct contact to infected wild birds may have led to outbreaks in a zoo in Rostock and in two small free-range holdings in Anklam, Mecklenburg-Western Pomerania. © 2015 Blackwell Verlag GmbH.

  15. Acceptance of a vaccine against novel influenza A (H1N1) virus among health care workers in two major cities in Mexico.

    PubMed

    Esteves-Jaramillo, Alejandra; Omer, Saad B; Gonzalez-Diaz, Esteban; Salmon, Daniel A; Hixson, Brooke; Navarro, Francisco; Kawa-Karasik, Simon; Frew, Paula; Morfin-Otero, Rayo; Rodriguez-Noriega, Eduardo; Ramirez, Ylean; Rosas, Araceli; Acosta, Edgar; Varela-Badillo, Vianey; Del Rio, Carlos

    2009-11-01

    Further cases of novel influenza A (H1N1) outbreak are expected in the coming months. Vaccination has been proven to be essential to control a pandemic of influenza; therefore, considerable efforts and resources have been devoted to develop a vaccine against the influenza A (H1N1) virus. With the current availability of the vaccine, it will be important to immunize as many people as possible. However, previous data with seasonal influenza vaccines have shown that there are multiple barriers related to perceptions and attitudes of the population that influence vaccine use. The aim of the study was to evaluate the acceptance of a newly developed vaccine against pandemic (H1N1) 2009 influenza A among healthcare workers (HCW) in Mexico. We conducted a cross-sectional study among HCW in three hospitals in the two largest cities in Mexico-Mexico City and Guadalajara-between June and September 2009. A total of 1097 HCW participated in the survey. Overall, 80% (n = 880) intended to accept the H1N1 pandemic vaccine and 71.6% (n = 786) reported they would recommend the vaccine to their patients. Doctors were more likely to accept and recommend the vaccine than nurses. HCWs who intend to be immunized will be more likely to do so if they know that the vaccine is safe and effective. Knowledge of the willingness to accept the vaccine can be used to plan strategies that will effectively respond to the needs of the population studied, reducing the health and economic impact of novel influenza A (H1N1) virus.

  16. 2009 H1N1 influenza and experience in three critical care units.

    PubMed

    Teke, Turgut; Coskun, Ramazan; Sungur, Murat; Guven, Muhammed; Bekci, Taha T; Maden, Emin; Alp, Emine; Doganay, Mehmet; Erayman, Ibrahim; Uzun, Kursat

    2011-04-07

    We describe futures of ICU admission, demographic characteristics, treatment and outcome for critically ill patients with laboratory-confirmed and suspected infection with the H1N1 virus admitted to the three different critical care departments in Turkey. Retrospective study of critically ill patients with 2009 influenza A(H1N1) at ICU. Demographic data, symptoms, comorbid conditions, and clinical outcomes were collected using a case report form. Critical illness occurred in 61 patients admitted to an ICU with confirmed (n=45) or probable and suspected 2009 influenza A(H1N1). Patients were young (mean, 41.5 years), were female (54%). Fifty-six patients, required mechanical ventilation (14 invasive, 27 noninvasive, 15 both) during the course of ICU. On admission, mean APACHE II score was 18.7±6.3 and median PaO(2)/FIO(2) was 127.9±70.4. 31 patients (50.8%) was die. There were no significant differences in baseline PaO(2)/FIO(2 )and ventilation strategies between survivors and nonsurvivors. Patients who survived were more likely to have NIMV use at the time of admission to the ICU. Critical illness from 2009 influenza A(H1N1) in ICU predominantly affects young patients with little major comorbidity and had a high case-fatality rate. NIMV could be used in 2009 influenza A (H1N1) infection-related hypoxemic respiratory failure.

  17. Novel Reassortant Influenza A(H1N2) Virus Derived from A(H1N1)pdm09 Virus Isolated from Swine, Japan, 2012

    PubMed Central

    Kobayashi, Miho; Takayama, Ikuyo; Kageyama, Tsutomu; Tsukagoshi, Hiroyuki; Saitoh, Mika; Ishioka, Taisei; Yokota, Yoko; Kimura, Hirokazu; Tashiro, Masato

    2013-01-01

    We isolated a novel influenza virus A(H1N2) strain from a pig on January 13, 2012, in Gunma Prefecture, Japan. Phylogenetic analysis showed that the strain was a novel type of double-reassortant virus derived from the swine influenza virus strains H1N1pdm09 and H1N2, which were prevalent in Gunma at that time. PMID:24274745

  18. Adaptation of Pandemic H1N1 Influenza Viruses in Mice▿

    PubMed Central

    Ilyushina, Natalia A.; Khalenkov, Alexey M.; Seiler, Jon P.; Forrest, Heather L.; Bovin, Nicolai V.; Marjuki, Henju; Barman, Subrata; Webster, Robert G.; Webby, Richard J.

    2010-01-01

    The molecular mechanism by which pandemic 2009 influenza A viruses were able to sufficiently adapt to humans is largely unknown. Subsequent human infections with novel H1N1 influenza viruses prompted an investigation of the molecular determinants of the host range and pathogenicity of pandemic influenza viruses in mammals. To address this problem, we assessed the genetic basis for increased virulence of A/CA/04/09 (H1N1) and A/TN/1-560/09 (H1N1) isolates, which are not lethal for mice, in a new mammalian host by promoting their mouse adaptation. The resulting mouse lung-adapted variants showed significantly enhanced growth characteristics in eggs, extended extrapulmonary tissue tropism, and pathogenicity in mice. All mouse-adapted viruses except A/TN/1-560/09-MA2 grew faster and to higher titers in cells than the original strains. We found that 10 amino acid changes in the ribonucleoprotein (RNP) complex (PB2 E158G/A, PA L295P, NP D101G, and NP H289Y) and hemagglutinin (HA) glycoprotein (K119N, G155E, S183P, R221K, and D222G) controlled enhanced mouse virulence of pandemic isolates. HA mutations acquired during adaptation affected viral receptor specificity by enhancing binding to α2,3 together with decreasing binding to α2,6 sialyl receptors. PB2 E158G/A and PA L295P amino acid substitutions were responsible for the significant enhancement of transcription and replication activity of the mouse-adapted H1N1 variants. Taken together, our findings suggest that changes optimizing receptor specificity and interaction of viral polymerase components with host cellular factors are the major mechanisms that contribute to the optimal competitive advantage of pandemic influenza viruses in mice. These modulators of virulence, therefore, may have been the driving components of early evolution, which paved the way for novel 2009 viruses in mammals. PMID:20592084

  19. Spatiotemporal structure of molecular evolution of H5N1 highly pathogenic avian influenza viruses in Vietnam.

    PubMed

    Carrel, Margaret A; Emch, Michael; Jobe, R Todd; Moody, Aaron; Wan, Xiu-Feng

    2010-01-08

    Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10): e3462) demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear. In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets) isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City. The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space. This correlation varies by scale, time, and gene, though a classic isolation by

  20. Neurologic manifestations and complications of pandemic influenza A H1N1 in Malaysian children: what have we learnt from the ordeal?

    PubMed

    Muhammad Ismail, Hussain Imam; Teh, Chee Ming; Lee, Yin Leng

    2015-01-01

    In 2009, pandemic influenza A H1N1 emerged in Mexico and subsequently spread worldwide. In Malaysia, there were more than a thousand of confirmed cases among children. The general clinical characteristics of these children have been well-published. However, the description of neurologic complications is scarce. This study aims to describe the characteristics of neurologic manifestations and complications in a national paediatric cohort with pandemic influenza A H1N1. During the pandemic, children (12 years or less) admitted for novel influenza A H1N1 in 68 Malaysian public hospitals, were prospectively enrolled into national database. The clinical, laboratory and neuro-imaging data for children with neurologic manifestations, hospitalized from 15th June 2009 till 30th November 2009, was reviewed. Of 1244 children with influenza A H1N1 during the study period, 103 (8.3%) presented with influenza-related neurological manifestations. The mean age of our study cohort was 4.2 years (SD: 3.3 years). Sixty percent of them were males. Sixty-nine (66.9%) were diagnosed as febrile seizures, 16 (15.5%) as breakthrough seizures with underlying epilepsy, 14 (13.6%) as influenza-associated encephalopathy or encephalitis (IAE) and 4 (3.9%) as acute necrotizing encephalopathy of childhood (ANEC). All 4 available CSF specimens were negative for influenza viral PCR. Among 14 children with brain-imaging done, 9 were abnormal (2: cerebral oedema, 4: ANEC and 3: other findings). There were four deaths and three cases with permanent neurological sequelae. About one-tenth of children with pandemic influenza A H1N1 presented with neurologic complications. The most common diagnosis was febrile seizures. One-fifth of those children with neurologic presentation had IAE or ANEC, which carried higher mortality and morbidity. This large national study provides us useful data to better manage children with neurologic complications in the future pandemic influenza outbreaks. Copyright © 2014 The

  1. [Measures taken by a university hospital for the prevention and control of the 2009 H1N1 influenza].

    PubMed

    Hayashi, Jun; Murata, Masayuki; Furusyo, Norihiro; Hoshina, Takayuki; Shimono, Nobuyuki

    2010-09-01

    After extensive discussion with the Fukuoka City government of measures for the prevention and control of the 2009 H1N1 influenza pandemic, Kyushu University Hospital organized the infection control teams of 39 hospitals in the Fukuoka City area in preparation for a possible outbreak. A facility was set up at Kyushu University Hospital for the screening of outpatients with fever, and those with influenza and an underlying disease or severe symptoms were admitted to the hospital. 37 (22%) of the 171 outpatients with fever were infected with the new strain of influenza, confirmed by rapid influenza antigen test and PCR: Of these 37 patients, 17 (45.9%) were negative by influenza antigen test. Other 37 patients (5 adults, 32 children) were admitted, all of whom were successfully treated with neuraminidase inhibitors and discharged with no aftereffects.

  2. Novel reassortant influenza viruses between pandemic (H1N1) 2009 and other influenza viruses pose a risk to public health.

    PubMed

    Kong, Weili; Wang, Feibing; Dong, Bin; Ou, Changbo; Meng, Demei; Liu, Jinhua; Fan, Zhen-Chuan

    2015-12-01

    Influenza A virus (IAV) is characterized by eight single-stranded, negative sense RNA segments, which allows for gene reassortment among different IAV subtypes when they co-infect a single host cell simultaneously. Genetic reassortment is an important way to favor the evolution of influenza virus. Novel reassortant virus may pose a pandemic among humans. In history, three human pandemic influenza viruses were caused by genetic reassortment between avian, human and swine influenza viruses. Since 2009, pandemic (H1N1) 2009 (pdm/09 H1N1) influenza virus composed of two swine influenza virus genes highlighted the genetic reassortment again. Due to wide host species and high transmission of the pdm/09 H1N1 influenza virus, many different avian, human or swine influenza virus subtypes may reassert with it to generate novel reassortant viruses, which may result in a next pandemic among humans. So, it is necessary to understand the potential threat of current reassortant viruses between the pdm/09 H1N1 and other influenza viruses to public health. This study summarized the status of the reassortant viruses between the pdm/09 H1N1 and other influenza viruses of different species origins in natural and experimental conditions. The aim of this summarization is to facilitate us to further understand the potential threats of novel reassortant influenza viruses to public health and to make effective prevention and control strategies for these pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The influence of social-cognitive factors on personal hygiene practices to protect against influenzas: using modelling to compare avian A/H5N1 and 2009 pandemic A/H1N1 influenzas in Hong Kong.

    PubMed

    Liao, Qiuyan; Cowling, Benjamin J; Lam, Wendy Wing Tak; Fielding, Richard

    2011-06-01

    Understanding population responses to influenza helps optimize public health interventions. Relevant theoretical frameworks remain nascent. To model associations between trust in information, perceived hygiene effectiveness, knowledge about the causes of influenza, perceived susceptibility and worry, and personal hygiene practices (PHPs) associated with influenza. Cross-sectional household telephone surveys on avian influenza A/H5N1 (2006) and pandemic influenza A/H1N1 (2009) gathered comparable data on trust in formal and informal sources of influenza information, influenza-related knowledge, perceived hygiene effectiveness, worry, perceived susceptibility, and PHPs. Exploratory factor analysis confirmed domain content while confirmatory factor analysis was used to evaluate the extracted factors. The hypothesized model, compiled from different theoretical frameworks, was optimized with structural equation modelling using the A/H5N1 data. The optimized model was then tested against the A/H1N1 dataset. The model was robust across datasets though corresponding path weights differed. Trust in formal information was positively associated with perceived hygiene effectiveness which was positively associated with PHPs in both datasets. Trust in formal information was positively associated with influenza worry in A/H5N1 data, and with knowledge of influenza cause in A/H1N1 data, both variables being positively associated with PHPs. Trust in informal information was positively associated with influenza worry in both datasets. Independent of information trust, perceived influenza susceptibility associated with influenza worry. Worry associated with PHPs in A/H5N1 data only. Knowledge of influenza cause and perceived PHP effectiveness were associated with PHPs. Improving trust in formal information should increase PHPs. Worry was significantly associated with PHPs in A/H5N1.

  4. Reassortant Eurasian Avian-Like Influenza A(H1N1) Virus from a Severely Ill Child, Hunan Province, China, 2015.

    PubMed

    Zhu, Wenfei; Zhang, Hong; Xiang, Xingyu; Zhong, Lili; Yang, Lei; Guo, Junfeng; Xie, Yiran; Li, Fangcai; Deng, Zhihong; Feng, Hong; Huang, Yiwei; Hu, Shixiong; Xu, Xin; Zou, Xiaohui; Li, Xiaodan; Bai, Tian; Chen, Yongkun; Li, Zi; Li, Junhua; Shu, Yuelong

    2016-11-01

    In 2015, a novel influenza A(H1N1) virus was isolated from a boy in China who had severe pneumonia. The virus was a genetic reassortant of Eurasian avian-like influenza A(H1N1) (EA-H1N1) virus. The hemagglutinin, neuraminidase, and matrix genes of the reassortant virus were highly similar to genes in EA-H1N1 swine influenza viruses, the polybasic 1 and 2, polymerase acidic, and nucleoprotein genes originated from influenza A(H1N1)pdm09 virus, and the nonstructural protein gene derived from classical swine influenza A(H1N1) (CS H1N1) virus. In a mouse model, the reassortant virus, termed influenza A/Hunan/42443/2015(H1N1) virus, showed higher infectivity and virulence than another human EA-H1N1 isolate, influenza A/Jiangsu/1/2011(H1N1) virus. In the respiratory tract of mice, virus replication by influenza A/Hunan/42443/2015(H1N1) virus was substantially higher than that by influenza A/Jiangsu/1/2011(H1N1) virus. Human-to-human transmission of influenza A/Hunan/42443/2015(H1N1) virus has not been detected; however, given the circulation of novel EA-H1N1 viruses in pigs, enhanced surveillance should be instituted among swine and humans.

  5. Reassortant Eurasian Avian-Like Influenza A(H1N1) Virus from a Severely Ill Child, Hunan Province, China, 2015

    PubMed Central

    Zhu, Wenfei; Zhang, Hong; Xiang, Xingyu; Zhong, Lili; Yang, Lei; Guo, Junfeng; Xie, Yiran; Li, Fangcai; Deng, Zhihong; Feng, Hong; Huang, Yiwei; Hu, Shixiong; Xu, Xin; Zou, Xiaohui; Li, Xiaodan; Bai, Tian; Chen, Yongkun; Li, Zi

    2016-01-01

    In 2015, a novel influenza A(H1N1) virus was isolated from a boy in China who had severe pneumonia. The virus was a genetic reassortant of Eurasian avian-like influenza A(H1N1) (EA-H1N1) virus. The hemagglutinin, neuraminidase, and matrix genes of the reassortant virus were highly similar to genes in EA-H1N1 swine influenza viruses, the polybasic 1 and 2, polymerase acidic, and nucleoprotein genes originated from influenza A(H1N1)pdm09 virus, and the nonstructural protein gene derived from classical swine influenza A(H1N1) (CS H1N1) virus. In a mouse model, the reassortant virus, termed influenza A/Hunan/42443/2015(H1N1) virus, showed higher infectivity and virulence than another human EA-H1N1 isolate, influenza A/Jiangsu/1/2011(H1N1) virus. In the respiratory tract of mice, virus replication by influenza A/Hunan/42443/2015(H1N1) virus was substantially higher than that by influenza A/Jiangsu/1/2011(H1N1) virus. Human-to-human transmission of influenza A/Hunan/42443/2015(H1N1) virus has not been detected; however, given the circulation of novel EA-H1N1 viruses in pigs, enhanced surveillance should be instituted among swine and humans. PMID:27767007

  6. Seasonal H3N2 and 2009 Pandemic H1N1 Influenza A Viruses Reassort Efficiently but Produce Attenuated Progeny

    PubMed Central

    Phipps, Kara L.; Marshall, Nicolle; Tao, Hui; Danzy, Shamika; Onuoha, Nina; Steel, John

    2017-01-01

    ABSTRACT Reassortment of gene segments between coinfecting influenza A viruses (IAVs) facilitates viral diversification and has a significant epidemiological impact on seasonal and pandemic influenza. Since 1977, human IAVs of H1N1 and H3N2 subtypes have cocirculated with relatively few documented cases of reassortment. We evaluated the potential for viruses of the 2009 pandemic H1N1 (pH1N1) and seasonal H3N2 lineages to reassort under experimental conditions. Results of heterologous coinfections with pH1N1 and H3N2 viruses were compared to those obtained following coinfection with homologous, genetically tagged, pH1N1 viruses as a control. High genotype diversity was observed among progeny of both coinfections; however, diversity was more limited following heterologous coinfection. Pairwise analysis of genotype patterns revealed that homologous reassortment was random while heterologous reassortment was characterized by specific biases. pH1N1/H3N2 reassortant genotypes produced under single-cycle coinfection conditions showed a strong preference for homologous PB2-PA combinations and general preferences for the H3N2 NA, pH1N1 M, and H3N2 PB2 except when paired with the pH1N1 PA or NP. Multicycle coinfection results corroborated these findings and revealed an additional preference for the H3N2 HA. Segment compatibility was further investigated by measuring chimeric polymerase activity and growth of selected reassortants in human tracheobronchial epithelial cells. In guinea pigs inoculated with a mixture of viruses, parental H3N2 viruses dominated but reassortants also infected and transmitted to cage mates. Taken together, our results indicate that strong intrinsic barriers to reassortment between seasonal H3N2 and pH1N1 viruses are few but that the reassortants formed are attenuated relative to parental strains. IMPORTANCE The genome of IAV is relatively simple, comprising eight RNA segments, each of which typically encodes one or two proteins. Each viral protein

  7. The hemagglutinin structure of an avian H1N1 influenza A virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Tianwei; Wang, Gengyan; Li, Anzhang

    2009-09-15

    The interaction between hemagglutinin (HA) and receptors is a kernel in the study of evolution and host adaptation of H1N1 influenza A viruses. The notion that the avian HA is associated with preferential specificity for receptors with Sia{alpha}2,3Gal glycosidic linkage over those with Sia{alpha}2,6Gal linkage is not all consistent with the available data on H1N1 viruses. By x-ray crystallography, the HA structure of an avian H1N1 influenza A virus, as well as its complexes with the receptor analogs, was determined. The structures revealed no preferential binding of avian receptor analogs over that of the human analog, suggesting that the HA/receptormore » binding might not be as stringent as is commonly believed in determining the host receptor preference for some subtypes of influenza viruses, such as the H1N1 viruses. The structure also showed difference in glycosylation despite the preservation of related sequences, which may partly contribute to the difference between structures of human and avian origin.« less

  8. In situ molecular identification of the Influenza A (H1N1) 2009 Neuraminidase in patients with severe and fatal infections during a pandemic in Mexico City

    PubMed Central

    2013-01-01

    Background In April 2009, public health surveillance detected an increased number of influenza-like illnesses in Mexico City’s hospitals. The etiological agent was subsequently determined to be a spread of a worldwide novel influenza A (H1N1) triple reassortant. The purpose of the present study was to demonstrate that molecular detection of pandemic influenza A (H1N1) 2009 strains is possible in archival material such as paraffin-embedded lung samples. Methods In order to detect A (H1N1) virus sequences in archived biological samples, eight paraffin-embedded lung samples from patients who died of pneumonia and respiratory failure were tested for influenza A (H1N1) Neuraminidase (NA) RNA using in situ RT-PCR. Results We detected NA transcripts in 100% of the previously diagnosed A (H1N1)-positive samples as a cytoplasmic signal. No expression was detected by in situ RT-PCR in two Influenza-like Illness A (H1N1)-negative patients using standard protocols nor in a non-related cervical cell line. In situ relative transcription levels correlated with those obtained when in vitro RT-PCR assays were performed. Partial sequences of the NA gene from A (H1N1)-positive patients were obtained by the in situ RT-PCR-sequencing method. Sequence analysis showed 98% similarity with influenza viruses reported previously in other places. Conclusions We have successfully amplified specific influenza A (H1N1) NA sequences using stored clinical material; results suggest that this strategy could be useful when clinical RNA samples are quantity limited, or when poor quality is obtained. Here, we provide a very sensitive method that specifically detects the neuraminidase viral RNA in lung samples from patients who died from pneumonia caused by Influenza A (H1N1) outbreak in Mexico City. PMID:23327529

  9. Illinois department of public health H1N1/A pandemic communications evaluation survey.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, D.; Decision and Information Sciences

    Because of heightened media coverage, a 24-hour news cycle and the potential miscommunication of health messages across all levels of government during the onset of the H1N1 influenza outbreak in spring 2009, the Illinois Department of Public Health (IDPH) decided to evaluate its H1N1 influenza A communications system. IDPH wanted to confirm its disease information and instructions were helping stakeholders prepare for and respond to a novel influenza outbreak. In addition, the time commitment involved in preparing, issuing, monitoring, updating, and responding to H1N1 federal guidelines/updates and media stories became a heavy burden for IDPH staff. The process and resultsmore » of the H1N1 messaging survey represent a best practice that other health departments and emergency management agencies can replicate to improve coordination efforts with stakeholder groups during both emergency preparedness and response phases. Importantly, the H1N1 survey confirmed IDPH's messages were influencing stakeholders decisions to activate their pandemic plans and initiate response operations. While there was some dissatisfaction with IDPH's delivery of information and communication tools, such as the fax system, this report should demonstrate to IDPH that its core partners believe it has the ability and expertise to issue timely and accurate instructions that can help them respond to a large-scale disease outbreak in Illinois. The conclusion will focus on three main areas: (1) the survey development process, (2) survey results: best practices and areas for improvement and (3) recommendations: next steps.« less

  10. Avian Influenza A(H5N1) Virus in Egypt.

    PubMed

    Kayali, Ghazi; Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S; Maatouq, Asmaa M; Cai, Zhipeng; McKenzie, Pamela P; Webby, Richard J; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A

    2016-03-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt.

  11. Avian Influenza A(H5N1) Virus in Egypt

    PubMed Central

    Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S.; Maatouq, Asmaa M.; Cai, Zhipeng; McKenzie, Pamela P.; Webby, Richard J.; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A.

    2016-01-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt. PMID:26886164

  12. Epidemic outbreaks, diagnostics, and control measures of the H5N1 highly pathogenic avian influenza in the Kingdom of Saudi Arabia, 2007-08.

    PubMed

    Lu, Huaguang; Ismail, Mahmoud Moussa; Khan, Owais Ahmed; Al Hammad, Yousef; Abdel Rhman, Salah Shaban; Al-Blowi, Mohamed Hamad

    2010-03-01

    The first outbreak of H5N1 highly pathogenic avian influenza (HPAI) in the Kingdom of Saudi Arabia (KSA) occurred in two "backyard" flocks of Houbara bustards and falcons in February 2007. Subsequent outbreaks were seen through the end of 2007 in "backyard" birds including native chickens, ostriches, turkeys, ducks, and peacocks. From November 2007 through January 2008, H5N1 HPAI outbreaks occurred in 19 commercial poultry premises, including two broiler breeder farms, one layer breeder farm, one ostrich farm, and 15 commercial layer farms, with approximately 4.75 million birds affected. Laboratory diagnosis of all H5N1-positive cases was conducted at the Central Veterinary Diagnostic Laboratory (CVDL) in Riyadh, Saudi Arabia. A combination of diagnostic tests was used to confirm the laboratory diagnosis. A rapid antigen-capture test and real-time reverse transcriptase-PCR (rtRT-PCR) assay on clinical and field specimens were conducted initially. Meanwhile, virus isolation in specific-pathogen-free embryonating chicken eggs was performed and was followed by hemagglutinin (HA) and hemagglutination inhibition tests, then rapid antigen-capture and rtRT-PCR tests on HA-positive allantoic fluid samples. In most HPAI cases, a complete laboratory diagnosis was made within 24-48 hr at the CVDL. Saudi Arabian government officials made immediate decisions to depopulate all H5N1-affected and nonaffected flocks within a 5-km radius area and applied quarantine zones to prevent the virus from spreading to other areas. Other control measures, such as closure of live bird markets and intensive surveillance tests on all poultry species within quarantine zones, were in place during the outbreaks. As a result, the HPAI outbreaks were quickly controlled, and no positive cases were detected after January 29, 2008. The KSA was declared free of HPAI on April 30, 2008, by the World Animal Health Organization.

  13. Emergence of a novel swine-origin influenza A (H1N1) virus in humans.

    PubMed

    Dawood, Fatimah S; Jain, Seema; Finelli, Lyn; Shaw, Michael W; Lindstrom, Stephen; Garten, Rebecca J; Gubareva, Larisa V; Xu, Xiyan; Bridges, Carolyn B; Uyeki, Timothy M

    2009-06-18

    On April 15 and April 17, 2009, novel swine-origin influenza A (H1N1) virus (S-OIV) was identified in specimens obtained from two epidemiologically unlinked patients in the United States. The same strain of the virus was identified in Mexico, Canada, and elsewhere. We describe 642 confirmed cases of human S-OIV infection identified from the rapidly evolving U.S. outbreak. Enhanced surveillance was implemented in the United States for human infection with influenza A viruses that could not be subtyped. Specimens were sent to the Centers for Disease Control and Prevention for real-time reverse-transcriptase-polymerase-chain-reaction confirmatory testing for S-OIV. From April 15 through May 5, a total of 642 confirmed cases of S-OIV infection were identified in 41 states. The ages of patients ranged from 3 months to 81 years; 60% of patients were 18 years of age or younger. Of patients with available data, 18% had recently traveled to Mexico, and 16% were identified from school outbreaks of S-OIV infection. The most common presenting symptoms were fever (94% of patients), cough (92%), and sore throat (66%); 25% of patients had diarrhea, and 25% had vomiting. Of the 399 patients for whom hospitalization status was known, 36 (9%) required hospitalization. Of 22 hospitalized patients with available data, 12 had characteristics that conferred an increased risk of severe seasonal influenza, 11 had pneumonia, 8 required admission to an intensive care unit, 4 had respiratory failure, and 2 died. The S-OIV was determined to have a unique genome composition that had not been identified previously. A novel swine-origin influenza A virus was identified as the cause of outbreaks of febrile respiratory infection ranging from self-limited to severe illness. It is likely that the number of confirmed cases underestimates the number of cases that have occurred. 2009 Massachusetts Medical Society

  14. Supply of neuraminidase inhibitors related to reduced influenza A (H1N1) mortality during the 2009-2010 H1N1 pandemic: an ecological study.

    PubMed

    Miller, Paula E; Rambachan, Aksharananda; Hubbard, Roderick J; Li, Jiabai; Meyer, Alison E; Stephens, Peter; Mounts, Anthony W; Rolfes, Melissa A; Penn, Charles R

    2012-01-01

    The influenza A (H1N1) pandemic swept across the globe from April 2009 to August 2010 affecting millions. Many WHO Member States relied on antiviral drugs, specifically neuraminidase inhibitors (NAIs) oseltamivir and zanamivir, to treat influenza patients in critical condition. Such drugs have been found to be effective in reducing severity and duration of influenza illness, and likely reduced morbidity during the pandemic. However, it is less clear whether NAIs used during the pandemic reduced H1N1 mortality. Country-level data on supply of oseltamivir and zanamivir were used to predict H1N1 mortality (per 100,000 people) from July 2009 to August 2010 in forty-two WHO Member States. Poisson regression was used to model the association between NAI supply and H1N1 mortality, with adjustment for economic, demographic, and health-related confounders. After adjustment for potential confounders, each 10% increase in kilograms of oseltamivir, per 100,000 people, was associated with a 1.6% reduction in H1N1 mortality over the pandemic period (relative rate (RR) = 0.84 per log increase in oseltamivir supply). While the supply of zanamivir was considerably less than that of oseltamivir in each Member State, each 10% increase in kilogram of active zanamivir, per 100,000, was associated with a 0.3% reduction in H1N1 mortality (RR = 0.97 per log increase). While there are limitations to the ecologic nature of these data, this analysis offers evidence of a protective relationship between antiviral drug supply and influenza mortality and supports a role for influenza antiviral use in future pandemics.

  15. Influenza A (H1N1) in Rome, Italy in family: three case reports.

    PubMed

    Lisena, Francesco; Bordi, Licia; Carletti, Fabrizio; Castilletti, Concetta; Ferraro, Federica; Lalle, Eleonora; Lanini, Simone; Ruscitti, Luca Enrico; Fusco, Francesco Maria

    2009-12-01

    A new Influenza A virus H1N1 appeared in March-April 2009, and thousands of cases are being reported worldwide. In the initial months, several imported cases were reported in many European countries, while some countries reported local chains of transmission. We describe the first cluster of in-country transmission of the new Influenza A H1N1 which occurred in Italy, involving 3 patients. Patient 1, a 11-year-old male child developed fever, cough, and general malaise 4 days after returning from a travel to Mexico. Some days later, the 69-year-old grandfather (patient 2), who did not travel to Mexico, and the 33-month-old brother (patient 3) of patient 1 developed mild influenza symptoms. PCR tests resulted positive for Influenza A, and sequence analysis confirmed infection with the Influenza A (H1N1) strain for all three patients. Some problems were experienced in the administration of chemoprophylaxis and therapy in the patient 3. The chemoprophylaxis policies in other family members are described, too. Some interesting facts emerge from the analysis of this cluster. The transmission of Influenza A H1N1 virus seems to be dependent on strict contacts. Patient 2 and patient 3 did not take the chemoprophylaxis properly. The problems in the administration of chemoprophylaxis and therapy to patient 3 suggest that in infants specific individual-based strategies for assuring the correct administration are advisable.

  16. Emerging infectious disease (EID) communication during the 2009 H1N1 influenza outbreak: literature review (2009-2013) of the methodology used for EID communication analysis.

    PubMed

    Gesser-Edelsburg, Anat; Stolero, Nathan; Mordini, Emilio; Billingsley, Matthew; James, James J; Green, Manfred S

    2015-04-01

    This year alone has seen outbreaks of epidemics such as Ebola, Chikungunya, and many other emerging infectious diseases (EIDs). We must look to the responses of recent outbreaks to help guide our strategies in current and future outbreaks or we risk repeating the same mistakes. The objective of this paper was to conduct a systematic literature review of the methodology used by studies that examined EID communication during the 2009 H1N1 pandemic outbreak through different communication channels or by analyzing contents and strategies. This was a systematic review of the literature (n=61) studying risk communication strategies of H1N1 influenza, published between 2009 and 2013, and retrieved from searches of computerized databases, hand searches, and authoritative texts by use of specific search criteria. Searches were followed by review, categorization, and mixed qualitative and quantitative content analysis. Of 41 articles that used quantitative methods, most used surveys (n=35); some employed content analyses (n=4) and controlled trials (n=2). The 16 articles that employed qualitative methods relied on content analyses (n=10), semi-structured interviews (n=2) and focus groups (n=4). Four more articles used mixed-methods or nonstandard methods. Seven different topic categories were found: risk perception and effects on behaviors, framing the risk in the media, public concerns, trust, optimistic bias, uncertainty, and evaluating risk communication. Up until 2013, studies tended to be descriptive and quantitative rather than discursive and qualitative and to focus on the role of the media as representing information and not as a medium for actual communication with the public. Several studies from 2012, and increasingly more in 2013, addressed issues of discourse and framing and the complexity of risk communication with the public. Formative evaluations that use recommendations from past research when designing communication campaigns from the first stages of crises

  17. Avian influenza virus (H5N1): a threat to human health.

    PubMed

    Peiris, J S Malik; de Jong, Menno D; Guan, Yi

    2007-04-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, and the next pandemic may well arise from a low-pathogenicity virus. The rationale for particular concern about an H5N1 pandemic is not its inevitability but its potential severity. An H5N1 pandemic is an event of low probability but one of high human health impact and poses a predicament for public health. Here, we review the ecology and evolution of highly pathogenic avian influenza H5N1 viruses, assess the pandemic risk, and address aspects of human H5N1 disease in relation to its epidemiology, clinical presentation, pathogenesis, diagnosis, and management.

  18. [Trends in and challenges for highly pathogenic avian influenza A (H5N1)].

    PubMed

    Kudo, Koichiro; Manabe, Toshie; Izumi, Shinyu; Takasaki, Jin

    2010-09-01

    A new pandemic influenza A (H1N1) virus had emerged and rapidly spread throughout the world. The clinical pathological observations associated with severe cases of pandemic (H1N1) 2009 are similar to that of high pathogenic avian influenza (H5N1). In order to find the most effective treatment methods for this pandemic influenza (H1N1), we describe our experiences, investigations and collaboration studies of avian influenza (H5N1) in Vietnam in association of our cooperative study of pandemic (H1N1) 2009 in Mexico. Effective treatment methods for critical illness due to influenza will be discussed from medical, regional and global points of view, which may be applied for the treatment of any type of influenza virus.

  19. Structural Characterization of the 1918 Influenza H1N1 Neuraminidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X.; Zhu, X.; Dwek, R.A.

    2009-05-28

    Influenza virus neuraminidase (NA) plays a crucial role in facilitating the spread of newly synthesized virus in the host and is an important target for controlling disease progression. The NA crystal structure from the 1918 'Spanish flu' (A/Brevig Mission/1/18 H1N1) and that of its complex with zanamivir (Relenza) at 1.65-{angstrom} and 1.45-{angstrom} resolutions, respectively, corroborated the successful expression of correctly folded NA tetramers in a baculovirus expression system. An additional cavity adjacent to the substrate-binding site is observed in N1, compared to N2 and N9 NAs, including H5N1. This cavity arises from an open conformation of the 150 loop (Gly147more » to Asp151) and appears to be conserved among group 1 NAs (N1, N4, N5, and N8). It closes upon zanamivir binding. Three calcium sites were identified, including a novel site that may be conserved in N1 and N4. Thus, these high-resolution structures, combined with our recombinant expression system, provide new opportunities to augment the limited arsenal of therapeutics against influenza.« less

  20. Possible Increased Pathogenicity of Pandemic (H1N1) 2009 Influenza Virus upon Reassortment

    PubMed Central

    Schrauwen, Eefje J.A.; Herfst, Sander; Chutinimitkul, Salin; Bestebroer, Theo M.; Rimmelzwaan, Guus F.; Osterhaus, Albert D.M.E.; Kuiken, Thijs

    2011-01-01

    Since emergence of the pandemic (H1N1) 2009 virus in April 2009, three influenza A viruses—seasonal (H3N2), seasonal (H1N1), and pandemic (H1N1) 2009—have circulated in humans. Genetic reassortment between these viruses could result in enhanced pathogenicity. We compared 4 reassortant viruses with favorable in vitro replication properties with the wild-type pandemic (H1N1) 2009 virus with respect to replication kinetics in vitro and pathogenicity and transmission in ferrets. Pandemic (H1N1) 2009 viruses containing basic polymerase 2 alone or in combination with acidic polymerase of seasonal (H1N1) virus were attenuated in ferrets. In contrast, pandemic (H1N1) 2009 with neuraminidase of seasonal (H3N2) virus resulted in increased virus replication and more severe pulmonary lesions. The data show that pandemic (H1N1) 2009 virus has the potential to reassort with seasonal influenza viruses, which may result in increased pathogenicity while it maintains the capacity of transmission through aerosols or respiratory droplets. PMID:21291589

  1. Natural co-infection of influenza A/H3N2 and A/H1N1pdm09 viruses resulting in a reassortant A/H3N2 virus.

    PubMed

    Rith, Sareth; Chin, Savuth; Sar, Borann; Y, Phalla; Horm, Srey Viseth; Ly, Sovann; Buchy, Philippe; Dussart, Philippe; Horwood, Paul F

    2015-12-01

    Despite annual co-circulation of different subtypes of seasonal influenza, co-infections between different viruses are rarely detected. These co-infections can result in the emergence of reassortant progeny. We document the detection of an influenza co-infection, between influenza A/H3N2 with A/H1N1pdm09 viruses, which occurred in a 3 year old male in Cambodia during April 2014. Both viruses were detected in the patient at relatively high viral loads (as determined by real-time RT-PCR CT values), which is unusual for influenza co-infections. As reassortment can occur between co-infected influenza A strains we isolated plaque purified clonal viral populations from the clinical material of the patient infected with A/H3N2 and A/H1N1pdm09. Complete genome sequences were completed for 7 clonal viruses to determine if any reassorted viruses were generated during the influenza virus co-infection. Although most of the viral sequences were consistent with wild-type A/H3N2 or A/H1N1pdm09, one reassortant A/H3N2 virus was isolated which contained an A/H1N1pdm09 NS1 gene fragment. The reassortant virus was viable and able to infect cells, as judged by successful passage in MDCK cells, achieving a TCID50 of 10(4)/ml at passage number two. There is no evidence that the reassortant virus was transmitted further. The co-infection occurred during a period when co-circulation of A/H3N2 and A/H1N1pdm09 was detected in Cambodia. It is unclear how often influenza co-infections occur, but laboratories should consider influenza co-infections during routine surveillance activities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Characterization of a newly emerged genetic cluster of H1N1 and H1N2 swine influenza virus in the United States.

    PubMed

    Vincent, Amy L; Ma, Wenjun; Lager, Kelly M; Gramer, Marie R; Richt, Juergen A; Janke, Bruce H

    2009-10-01

    H1 influenza A viruses that were distinct from the classical swine H1 lineage were identified in pigs in Canada in 2003–2004; antigenic and genetic characterization identified the hemagglutinin (HA) as human H1 lineage. The viruses identified in Canadian pigs were human lineage in entirety or double (human–swine) reassortants. Here, we report the whole genome sequence analysis of four human-like H1 viruses isolated from U.S. swine in 2005 and 2007. All four isolates were characterized as triple reassortants with an internal gene constellation similar to contemporary U.S. swine influenza virus (SIV), with HA and neuraminidase (NA) most similar to human influenza virus lineages. A 2007 human-like H1N1 was evaluated in a pathogenesis and transmission model and compared to a 2004 reassortant H1N1 SIV isolate with swine lineage HA and NA. The 2007 isolate induced disease typical of influenza virus and was transmitted to contact pigs; however, the kinetics and magnitude differed from the 2004 H1N1 SIV. This study indicates that the human-like H1 SIV can efficiently replicate and transmit in the swine host and now co-circulates with contemporary SIVs as a distinct genetic cluster of H1 SIV.

  3. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs.

    PubMed

    Lyoo, K S; Na, W; Phan, L V; Yoon, S W; Yeom, M; Song, D; Jeong, D G

    2017-12-01

    Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)-, 2.3.2.1c (H5N1)- and 2.3.4.4 (H5N6)-infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a "mixing vessel" for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian-human influenza virus reassortment if they are also co-infected with human influenza viruses. © 2017 Blackwell Verlag GmbH.

  4. Antibody Persistence in Adults Two Years after Vaccination with an H1N1 2009 Pandemic Influenza Virus-Like Particle Vaccine

    PubMed Central

    Villasís-Keever, Miguel Ángel; Núñez-Valencia, Adriana; Boscó-Gárate, Ilka; Lozano-Dubernard, Bernardo; Lara-Puente, Horacio; Espitia, Clara; Alpuche-Aranda, Celia; Bonifaz, Laura C.; Arriaga-Pizano, Lourdes; Pastelin-Palacios, Rodolfo; Isibasi, Armando; López-Macías, Constantino

    2016-01-01

    The influenza virus is a human pathogen that causes epidemics every year, as well as potential pandemic outbreaks, as occurred in 2009. Vaccination has proven to be sufficient in the prevention and containment of viral spreading. In addition to the current egg-based vaccines, new and promising vaccine platforms, such as cell culture-derived vaccines that include virus-like particles (VLPs), have been developed. VLPs have been shown to be both safe and immunogenic against influenza infections. Although antibody persistence has been studied in traditional egg-based influenza vaccines, studies on antibody response durations induced by VLP influenza vaccines in humans are scarce. Here, we show that subjects vaccinated with an insect cell-derived VLP vaccine, in the midst of the 2009 H1N1 influenza pandemic outbreak in Mexico City, showed antibody persistence up to 24 months post-vaccination. Additionally, we found that subjects that reported being revaccinated with a subsequent inactivated influenza virus vaccine showed higher antibody titres to the pandemic influenza virus than those who were not revaccinated. These findings provide insights into the duration of the antibody responses elicited by an insect cell-derived pandemic influenza VLP vaccine and the possible effects of subsequent influenza vaccination on antibody persistence induced by this VLP vaccine in humans. PMID:26919288

  5. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses.

    PubMed

    Li, Qiaoli; Zhao, Zhenhuan; Zhou, Dihan; Chen, Yaoqing; Hong, Wei; Cao, Luyang; Yang, Jingyi; Zhang, Yan; Shi, Wei; Cao, Zhijian; Wu, Yingliang; Yan, Huimin; Li, Wenxin

    2011-07-01

    Outbreaks of SARS-CoV, influenza A (H5N1, H1N1) and measles viruses in recent years have raised serious concerns about the measures available to control emerging and re-emerging infectious viral diseases. Effective antiviral agents are lacking that specifically target RNA viruses such as measles, SARS-CoV and influenza H5N1 viruses, and available vaccinations have demonstrated variable efficacy. Therefore, the development of novel antiviral agents is needed to close the vaccination gap and silence outbreaks. We previously identified mucroporin, a cationic host defense peptide from scorpion venom, which can effectively inhibit standard bacteria. The optimized mucroporin-M1 can inhibit gram-positive bacteria at low concentrations and antibiotic-resistant pathogens. In this investigation, we further tested mucroporin and the optimized mucroporin-M1 for their antiviral activity. Surprisingly, we found that the antiviral activities of mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses were notably increased with an EC₅₀ of 7.15 μg/ml (3.52 μM) and a CC₅₀ of 70.46 μg/ml (34.70 μM) against measles virus, an EC₅₀ of 14.46 μg/ml (7.12 μM) against SARS-CoV and an EC₅₀ of 2.10 μg/ml (1.03 μM) against H5N1, while the original peptide mucroporin showed no antiviral activity against any of these three viruses. The inhibition model could be via a direct interaction with the virus envelope, thereby decreasing the infectivity of virus. This report provides evidence that host defense peptides from scorpion venom can be modified for antiviral activity by rational design and represents a practical approach for developing broad-spectrum antiviral agents, especially against RNA viruses. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Environmental Levels of the Antiviral Oseltamivir Induce Development of Resistance Mutation H274Y in Influenza A/H1N1 Virus in Mallards

    PubMed Central

    Järhult, Josef D.; Söderström, Hanna; Orozovic, Goran; Gunnarsson, Gunnar; Bröjer, Caroline; Latorre-Margalef, Neus; Fick, Jerker; Grabic, Roman; Lennerstrand, Johan; Waldenström, Jonas; Lundkvist, Åke; Olsen, Björn

    2011-01-01

    Oseltamivir (Tamiflu®) is the most widely used drug against influenza infections and is extensively stockpiled worldwide as part of pandemic preparedness plans. However, resistance is a growing problem and in 2008–2009, seasonal human influenza A/H1N1 virus strains in most parts of the world carried the mutation H274Y in the neuraminidase gene which causes resistance to the drug. The active metabolite of oseltamivir, oseltamivir carboxylate (OC), is poorly degraded in sewage treatment plants and surface water and has been detected in aquatic environments where the natural influenza reservoir, dabbling ducks, can be exposed to the substance. To assess if resistance can develop under these circumstances, we infected mallards with influenza A/H1N1 virus and exposed the birds to 80 ng/L, 1 µg/L and 80 µg/L of OC through their sole water source. By sequencing the neuraminidase gene from fecal samples, we found that H274Y occurred at 1 µg/L of OC and rapidly dominated the viral population at 80 µg/L. IC50 for OC was increased from 2–4 nM in wild-type viruses to 400–700 nM in H274Y mutants as measured by a neuraminidase inhibition assay. This is consistent with the decrease in sensitivity to OC that has been noted among human clinical isolates carrying H274Y. Environmental OC levels have been measured to 58–293 ng/L during seasonal outbreaks and are expected to reach µg/L-levels during pandemics. Thus, resistance could be induced in influenza viruses circulating among wild ducks. As influenza viruses can cross species barriers, oseltamivir resistance could spread to human-adapted strains with pandemic potential disabling oseltamivir, a cornerstone in pandemic preparedness planning. We propose surveillance in wild birds as a measure to understand the resistance situation in nature and to monitor it over time. Strategies to lower environmental levels of OC include improved sewage treatment and, more importantly, a prudent use of antivirals. PMID:21931841

  7. Recombinant Parainfluenza Virus 5 Expressing Hemagglutinin of Influenza A Virus H5N1 Protected Mice against Lethal Highly Pathogenic Avian Influenza Virus H5N1 Challenge

    PubMed Central

    Li, Zhuo; Mooney, Alaina J.; Gabbard, Jon D.; Gao, Xiudan; Xu, Pei; Place, Ryan J.; Hogan, Robert J.; Tompkins, S. Mark

    2013-01-01

    A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine. PMID:23077314

  8. Pandemic and post-pandemic Influenza A (H1N1) infection in critically ill patients

    PubMed Central

    2011-01-01

    Background There is a vast amount of information published regarding the impact of 2009 pandemic Influenza A (pH1N1) virus infection. However, a comparison of risk factors and outcome during the 2010-2011 post-pandemic period has not been described. Methods A prospective, observational, multi-center study was carried out to evaluate the clinical characteristics and demographics of patients with positive RT-PCR for H1N1 admitted to 148 Spanish intensive care units (ICUs). Data were obtained from the 2009 pandemic and compared to the 2010-2011 post-pandemic period. Results Nine hundred and ninety-seven patients with confirmed An/H1N1 infection were included. Six hundred and forty-eight patients affected by 2009 (pH1N1) virus infection and 349 patients affected by the post-pandemic Influenza (H1N1)v infection period were analyzed. Patients during the post-pandemic period were older, had more chronic comorbid conditions and presented with higher severity scores (Acute Physiology And Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment (SOFA)) on ICU admission. Patients from the post-pandemic Influenza (H1N1)v infection period received empiric antiviral treatment less frequently and with delayed administration. Mortality was significantly higher in the post-pandemic period. Multivariate analysis confirmed that haematological disease, invasive mechanical ventilation and continuous renal replacement therapy were factors independently associated with worse outcome in the two periods. HIV was the only new variable independently associated with higher ICU mortality during the post-pandemic Influenza (H1N1)v infection period. Conclusion Patients from the post-pandemic Influenza (H1N1)v infection period had an unexpectedly higher mortality rate and showed a trend towards affecting a more vulnerable population, in keeping with more typical seasonal viral infection. PMID:22126648

  9. Pandemic and post-pandemic influenza A (H1N1) infection in critically ill patients.

    PubMed

    Martin-Loeches, Ignacio; Díaz, Emili; Vidaur, Loreto; Torres, Antoni; Laborda, Cesar; Granada, Rosa; Bonastre, Juan; Martín, Mar; Insausti, Josu; Arenzana, Angel; Guerrero, Jose Eugenio; Navarrete, Ines; Bermejo-Martin, Jesus; Suarez, David; Rodriguez, Alejandro

    2011-01-01

    There is a vast amount of information published regarding the impact of 2009 pandemic Influenza A (pH1N1) virus infection. However, a comparison of risk factors and outcome during the 2010-2011 post-pandemic period has not been described. A prospective, observational, multi-center study was carried out to evaluate the clinical characteristics and demographics of patients with positive RT-PCR for H1N1 admitted to 148 Spanish intensive care units (ICUs). Data were obtained from the 2009 pandemic and compared to the 2010-2011 post-pandemic period. Nine hundred and ninety-seven patients with confirmed An/H1N1 infection were included. Six hundred and forty-eight patients affected by 2009 (pH1N1) virus infection and 349 patients affected by the post-pandemic Influenza (H1N1)v infection period were analyzed. Patients during the post-pandemic period were older, had more chronic comorbid conditions and presented with higher severity scores (Acute Physiology And Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment (SOFA)) on ICU admission. Patients from the post-pandemic Influenza (H1N1)v infection period received empiric antiviral treatment less frequently and with delayed administration. Mortality was significantly higher in the post-pandemic period. Multivariate analysis confirmed that haematological disease, invasive mechanical ventilation and continuous renal replacement therapy were factors independently associated with worse outcome in the two periods. HIV was the only new variable independently associated with higher ICU mortality during the post-pandemic Influenza (H1N1)v infection period. Patients from the post-pandemic Influenza (H1N1)v infection period had an unexpectedly higher mortality rate and showed a trend towards affecting a more vulnerable population, in keeping with more typical seasonal viral infection.

  10. Supply of neuraminidase inhibitors related to reduced influenza A (H1N1) mortality during the 2009-2010 H1N1 pandemic: summary of an ecological study.

    PubMed

    Miller, Paula E; Rambachan, Aksharananda; Hubbard, Roderick J; Li, Jiabai; Meyer, Alison E; Stephens, Peter; Mounts, Anthony W; Rolfes, Melissa A; Penn, Charles R

    2013-09-01

    When the influenza A (H1N1) pandemic spread across the globe from April 2009 to August 2010, many WHO Member States used antiviral drugs, specifically neuraminidase inhibitors (NAIs) oseltamivir and zanamivir, to treat influenza patients in critical condition. Antivirals have been found to be effective in reducing severity and duration of influenza illness, and likely reduce morbidity; however, it is unclear whether NAIs used during the pandemic reduced H1N1 mortality. To assess the association between antivirals and influenza mortality, at an ecologic level, country-level data on supply of oseltamivir and zanamivir were compared to laboratory-confirmed H1N1 deaths (per 100 000 people) from July 2009 to August 2010 in 42 WHO Member States. From this analysis, it was found that each 10% increase in kilograms of oseltamivir, per 100 000 people, was associated with a 1·6% reduction in H1N1 mortality over the pandemic period [relative rate (RR) = 0·84 per log increase in oseltamivir supply]. Each 10% increase in kilogram of active zanamivir, per 100 000, was associated with a 0·3% reduction in H1N1 mortality (RR = 0·97 per log increase). While limitations exist in the inference that can be drawn from an ecologic evaluation, this analysis offers evidence of a protective relationship between antiviral drug supply and influenza mortality and supports a role for influenza antiviral use in future pandemics. This article summarises the original study described previously, which can be accessed through the following citation: Miller PE, Rambachan A, Hubbard RJ, Li J, Meyer AE, et al. (2012) Supply of Neuraminidase Inhibitors Related to Reduced Influenza A (H1N1) Mortality during the 2009-2010 H1N1 Pandemic: An Ecological Study. PLoS ONE 7(9): e43491. © 2013 Blackwell Publishing Ltd.

  11. [Experience in the management of the severe form of human influenza A H1N1 pneumonia in an intensive care unit].

    PubMed

    Carrillo-Esper, Raúl; Sosa-García, Jesús Ojino; Arch-Tirado, Emilio

    2011-01-01

    At the beginning of the second trimester of 2009 there was an influenza A (H1N1) outbreak. The aim of this study is to describe the clinical presentation and mortality of the severe form of pneumonia in patients with human influenza A H1N1. We conducted a retrospective review of all files of confirmed and suspected patients with severe human influenza A (H1N1) pneumonia. We studied 26 patients admitted to the ICU from April 1 to December 31, 2009, among which 16 were males (61.54%) and 10 females (38.46%) with an average age of 52.26 ± 15.48 years. The time of onset of symptoms to admission to the ICU was 6.3 ± 3.19 days. The most frequent symptoms and signs were salmonated sputum (47%), chills (45%), dry cough (44%) and myalgia (42%). The mortality rate was 19.23%. The treatment was based on antiviral therapy, modulating inflammation and ventilatory techniques to optimize oxygenation. There was an association between combined therapy based on methylprednisolone, activated protein C and statins with a better survival (p = 0.05). Pneumonia virus of human influenza A (H1N1) is associated with high morbidity and mortality. According to our results, it is recommended to make an early diagnosis and to initiate a treatment regimen based on treatment bundles designed to optimize oxygenation, reduce viral load and modulate inflammation.

  12. Association of swine influenza H1N1 pandemic virus (SIV-H1N1p) with porcine respiratory disease complex in sows from commercial pig farms in Colombia.

    PubMed

    Jiménez, Luisa Fernanda Mancipe; Ramírez Nieto, Gloria; Alfonso, Victor Vera; Correa, Jairo Jaime

    2014-08-01

    Porcine respiratory disease complex (PRDC) is a serious health problem that mainly affects growing and finishing pigs. PRDC is caused by a combination of viral and bacterial agents, such as porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), Mycoplasma hyopneumoniae (Myh), Actinobacillus pleuropneumoniae (APP), Pasteurella multocida and Porcine circovirus 2 (PCV2). To characterize the specific role of swine influenza virus in PRDC presentation in Colombia, 11 farms from three major production regions in Colombia were examined in this study. Nasal swabs, bronchial lavage and lung tissue samples were obtained from animals displaying symptoms compatible with SIV. Isolation of SIV was performed in 9-day embryonated chicken eggs or Madin-Darby Canine Kidney (MDCK) cells. Positive isolates, identified via the hemagglutination inhibition test, were further analyzed using PCR. Overall, 7 of the 11 farms were positive for SIV. Notably, sequencing of the gene encoding the hemagglutinin (HA) protein led to grouping of strains into circulating viruses identified during the human outbreak of 2009, classified as pandemic H1N1-2009. Serum samples from 198 gilts and multiparous sows between 2008 and 2009 were obtained to determine antibody presence of APP, Myh, PCV2 and PRRSV in both SIV-H1N1p-negative and -positive farms, but higher levels were recorded for SIV-H1N1p-positive farms. Odds ratio (OR) and P values revealed statistically significant differences (p<0.05) in PRDC presentation in gilts and multiparous sows of farms positive for SIV-H1N1p. Our findings indicate that positive farms have increased risk of PRDC presentation, in particular, PCV2, APP and Myh.

  13. Cardiac complications associated with the influenza viruses A subtype H7N9 or pandemic H1N1 in critically ill patients under intensive care.

    PubMed

    Wang, Jiajia; Xu, Hua; Yang, Xinjing; Zhao, Daguo; Liu, Shenglan; Sun, Xue; Huang, Jian-An; Guo, Qiang

    The clinical presentations and disease courses of patients hospitalized with either influenza A virus subtype H7N9 (H7N9) or 2009 pandemic H1N1 influenza virus were compared in a recent report, but associated cardiac complications remain unclear. The present retrospective study investigated whether cardiac complications in critically ill patients with H7N9 infections differed from those infected with the pandemic H1N1 influenza virus strain. Suspect cases were confirmed by reverse transcription polymerase chain reaction assays with specific confirmation of the pandemic H1N1 strain at the Centers for Disease Control and Prevention. Comparisons were conducted at the individual-level data of critically ill patients hospitalized with H7N9 (n=24) or pandemic H1N1 influenza virus (n=22) infections in Suzhou, China. Changes in cardiac biochemical markers, echocardiography, and electrocardiography during hospitalization in the intensive care unit were considered signs of cardiac complications. The following findings were more common among the H7N9 group relative to the pandemic H1N1 influenza virus group: greater tricuspid regurgitation pressure gradient, sinus tachycardia (heartbeat≥130bpm), ST segment depression, right ventricular dysfunction, and elevated cardiac biochemical markers. Pericardial effusion was more often found among pandemic H1N1 influenza virus patients than in the H7N9 group. In both groups, most of the cardiac complications were detected from day 6 to 14 after the onset of influenza symptoms. Those who developed cardiac complications were especially vulnerable during the first four days after initiation of mechanical ventilation. Cardiac complications were reversible in the vast majority of discharged H7N9 patients. Critically ill hospitalized H7N9 patients experienced a higher rate of cardiac complications than did patients with 2009 pandemic H1N1 influenza virus infections, with the exception of pericardial effusion. This study may help in the

  14. [Non-airborne transmission during outbreak of pandemic (H1N1) 2009 among tour group members, China, June 2009].

    PubMed

    Han, Ke; Zhu, Xiao-ping; He, Fan; Liu, Lun-guang; Zhang, Li-jie; Ma, Hui-lai; Tang, Xin-yu; Huang, Ting; Zhu, Bao-ping; Zeng, Guang

    2010-09-01

    During June 2 - 8, 2009, 11 cases of the novel influenza A (H1N1) occurred in Sichuan Province, China. We investigated this outbreak to identify the source of infection, mode of transmission and risk factors for infection. The primary case, a U.S. citizen, developed disease on June 2. From June 3 to 5, she joined Tour Group A for a trip to Jiuzhaigou. We telephoned passengers of the three flights on which the primary case had traveled in China, and members of Tour Group A. We asked whether they had any influenza-like symptoms during May 27 to June 12. Health authorities placed passengers whose seats were within three rows of the primary case on flights and members of Tour Group A on medical observation, and isolated individuals if they developed symptoms. We used real-time RT-PCR to test the throat swabs from symptomatic persons for the novel influenza virus and defined a confirmed case as one with influenza-like symptoms and laboratory confirmation. A retrospective cohort investigation to identify the risk factors for infection was conducted. We interviewed all members of Tour Group A about their detailed contact history with the primary case. During June 5 to 6, 9 (30%) of the primary case's 30 fellow tour group members developed disease, compared with none of her 87 fellow passengers to Jiuzhaigou and 1 of her 87 fellow passengers on the returning trip (when several of the members of Tour Group A were symptomatic). 56% of the tourists who had talked with the primary case in close range (< 2 m) for ≥ 2 minutes developed disease, whereas none of the 14 other tour group members developed disease (RR = ∞;exact 95%CI: 2.0 - ∞). Having conversed with the primary case for ≥ 10 minutes (vs. 2 - 9 minutes) increased the risk by almost five fold (RR = 4.8, exact 95%CI: 1.3 - 180). Conversely, other kinds of contact, such as dining at the same table, receiving chewing gum from the primary case and sharing bus rides or planes with the primary case played no roles

  15. Humans and Ferrets with Prior H1N1 Influenza Virus Infections Do Not Exhibit Evidence of Original Antigenic Sin after Infection or Vaccination with the 2009 Pandemic H1N1 Influenza Virus

    PubMed Central

    O'Donnell, Christopher D.; Wright, Amber; Vogel, Leatrice; Boonnak, Kobporn; Treanor, John J.

    2014-01-01

    The hypothesis of original antigenic sin (OAS) states that the imprint established by an individual's first influenza virus infection governs the antibody response thereafter. Subsequent influenza virus infection results in an antibody response against the original infecting virus and an impaired immune response against the newer influenza virus. The purpose of our study was to seek evidence of OAS after infection or vaccination with the 2009 pandemic H1N1 (2009 pH1N1) virus in ferrets and humans previously infected with H1N1 viruses with various antigenic distances from the 2009 pH1N1 virus, including viruses from 1935 through 1999. In ferrets, seasonal H1N1 priming did not diminish the antibody response to infection or vaccination with the 2009 pH1N1 virus, nor did it diminish the T-cell response, indicating the absence of OAS in seasonal H1N1 virus-primed ferrets. Analysis of paired samples of human serum taken before and after vaccination with a monovalent inactivated 2009 pH1N1 vaccine showed a significantly greater-fold rise in the titer of antibody against the 2009 pH1N1 virus than against H1N1 viruses that circulated during the childhood of each subject. Thus, prior experience with H1N1 viruses did not result in an impairment of the antibody response against the 2009 pH1N1 vaccine. Our data from ferrets and humans suggest that prior exposure to H1N1 viruses did not impair the immune response against the 2009 pH1N1 virus. PMID:24648486

  16. Humans and ferrets with prior H1N1 influenza virus infections do not exhibit evidence of original antigenic sin after infection or vaccination with the 2009 pandemic H1N1 influenza virus.

    PubMed

    O'Donnell, Christopher D; Wright, Amber; Vogel, Leatrice; Boonnak, Kobporn; Treanor, John J; Subbarao, Kanta

    2014-05-01

    The hypothesis of original antigenic sin (OAS) states that the imprint established by an individual's first influenza virus infection governs the antibody response thereafter. Subsequent influenza virus infection results in an antibody response against the original infecting virus and an impaired immune response against the newer influenza virus. The purpose of our study was to seek evidence of OAS after infection or vaccination with the 2009 pandemic H1N1 (2009 pH1N1) virus in ferrets and humans previously infected with H1N1 viruses with various antigenic distances from the 2009 pH1N1 virus, including viruses from 1935 through 1999. In ferrets, seasonal H1N1 priming did not diminish the antibody response to infection or vaccination with the 2009 pH1N1 virus, nor did it diminish the T-cell response, indicating the absence of OAS in seasonal H1N1 virus-primed ferrets. Analysis of paired samples of human serum taken before and after vaccination with a monovalent inactivated 2009 pH1N1 vaccine showed a significantly greater-fold rise in the titer of antibody against the 2009 pH1N1 virus than against H1N1 viruses that circulated during the childhood of each subject. Thus, prior experience with H1N1 viruses did not result in an impairment of the antibody response against the 2009 pH1N1 vaccine. Our data from ferrets and humans suggest that prior exposure to H1N1 viruses did not impair the immune response against the 2009 pH1N1 virus.

  17. Liver Biochemistry During the Course of Influenza A/H1N1 Infection.

    PubMed

    Seretis, Charalampos; Lagoudianakis, Emmanuel; Salemis, Nikolaos; Pappas, Apostolos; Gemenetzis, George; Seretis, Fotios; Gourgiotis, Stavros

    2013-06-01

    Despite the multi-systemic effects of influenza A/H1N1 virus, the occurrence of hepatic injury during the natural course of the infection remains a matter of debate. We performed a review of the published clinical studies which assess the above mentioned relationship, reviewing the studies published in PubMed database (English literature), using the key words "H1N1", "influenza A" and "liver". We excluded case reports and clinical studies that referred to pediatric and transplanted patients, pregnants and patients with known history of chronic liver diseases. From a total of 96 results, a total of 78 papers met one or more of the exclusion criteria set. Evaluating the remaining 18 published papers, 14 more were excluded as they did not provide any sufficient data, relevant to the subject of our review. Although the analysis of the remaining studies revealed the existence of conflicting results concerning the exact degree and the potential mechanisms of liver injury in H1N1 positive patients, it can be assumed that influenza A/H1N1 virus is -or at least could be- a hepatotropic virus.

  18. Liver Biochemistry During the Course of Influenza A/H1N1 Infection

    PubMed Central

    Seretis, Charalampos; Lagoudianakis, Emmanuel; Salemis, Nikolaos; Pappas, Apostolos; Gemenetzis, George; Seretis, Fotios; Gourgiotis, Stavros

    2013-01-01

    Despite the multi-systemic effects of influenza A/H1N1 virus, the occurrence of hepatic injury during the natural course of the infection remains a matter of debate. We performed a review of the published clinical studies which assess the above mentioned relationship, reviewing the studies published in PubMed database (English literature), using the key words “H1N1”, “influenza A” and “liver”. We excluded case reports and clinical studies that referred to pediatric and transplanted patients, pregnants and patients with known history of chronic liver diseases. From a total of 96 results, a total of 78 papers met one or more of the exclusion criteria set. Evaluating the remaining 18 published papers, 14 more were excluded as they did not provide any sufficient data, relevant to the subject of our review. Although the analysis of the remaining studies revealed the existence of conflicting results concerning the exact degree and the potential mechanisms of liver injury in H1N1 positive patients, it can be assumed that influenza A/H1N1 virus is -or at least could be- a hepatotropic virus. PMID:27785237

  19. Impact of influenza in the post-pandemic phase: Clinical features in hospitalized patients with influenza A (H1N1) pdm09 and H3N2 viruses, during 2013 in Santa Fe, Argentina.

    PubMed

    Kusznierz, Gabriela; Carolina, Cudós; Manuel, Rudi Juan; Sergio, Lejona; Lucila, Ortellao; Julio, Befani; Mirta, Villani; Pedro, Morana; Graciana, Morera; Andrea, Uboldi; Elsa, Zerbini

    2017-07-01

    It is important to characterize the clinical and epidemiological pattern of the influenza A (H1N1) pdm09 virus and compare it with influenza A (H3N2) virus, as surveyed in just a few studies, in order to contribute to the implementation and strengthening of influenza control and prevention strategies. The aims in this study were to describe influenza clinical and epidemiological characteristics in hospitalized patients, caused by influenza A (H1N1)pdm09 and influenza A (H3N2) viruses during 2013, in Santa Fe, Argentina. A retrospective study was conducted over 2013 among hospitalized patients with laboratory-confirmed influenza diagnosis. In contrast to patients with influenza A (H3N2) (20.5%), a higher proportion of hospitalizations associated with influenza H1N1pdm were reported among adults aged 35-65 years (42.8%). Of all patients, 73.6% had an underlying medical condition. Hospitalized patients with H1N1pdm were subject to 2.6 (95%CI, 1.0-6.8) times higher risk of severity, than those hospitalized with influenza A (H3N2). This results demonstrate the impact in the post-pandemic era of H1N1pdm virus, with increased risk of severe disease, in relation to H3N2 virus, both viruses co-circulating during 2013. © 2017 Wiley Periodicals, Inc.

  20. Satellite‐tracking of Northern Pintail Anas acuta during outbreaks of the H5N1 virus in Japan: Implications for virus spread

    USGS Publications Warehouse

    Yamaguchi, Noriyuki; Hupp, Jerry W.; Higuchi, Hiroyoshi; Flint, Paul L.; Pearce, John M.

    2010-01-01

    We fitted Northern Pintail Anas acuta in Japan with satellite transmitters and monitored their spring migration movements relative to locations where the highly pathogenic H5N1 avian influenza virus was detected in Whooper Swans Cygnus cygnus in 2008. Pintails were assumed not to be infected with the H5N1 virus at the time they were marked because capture occurred between 2 and 5 months before reported outbreaks of the virus in Japan. We assessed spatial and temporal overlap between marked birds and occurrence of the virus and tracked Pintails after they departed outbreak locations. Eight of 66 (12.1%) Northern Pintails marked with satellite transmitters used wetlands in Japan where the H5N1 virus was detected in Whooper Swans. Apparent survival did not differ between Pintails that used H5N1 sites and those that did not. However, the proportion of Pintails that migrated from Japan was significantly lower among birds that used H5N1 sites compared with those that did not (0.50 vs. 0.79). Northern Pintails were present at the H5N1 sites from 1 to 88 days, with five birds present at the sites from 0 to 7 days prior to detection of the virus in Swans. The six Pintails observed to depart H5N1 sites did so within 2–77 days of the reported outbreaks and moved between 6 and 1200 km within 4 days of departure. Four Pintails migrated to eastern Russia. After their departure from outbreak sites, Northern Pintails made long‐distance migrations within the period when newly infected ducks would shed the H5N1 virus. This supports a hypothesized mechanism by which a highly pathogenic avian influenza virus could be spread by migratory birds.

  1. Continued dominance of pandemic A(H1N1) 2009 influenza in Victoria, Australia in 2010

    PubMed Central

    Grant, Kristina; Franklin, Lucinda; Kaczmarek, Marlena; Hurt, Aeron; Kostecki, Renata; Kelly, Heath

    2011-01-01

    The 2010 Victorian influenza season was characterized by normal seasonal influenza activity and the dominance of the pandemic A(H1N1) 2009 strain. General Practice Sentinel Surveillance rates peaked at 9.4 ILI cases per 1000 consultations in week 36 for metropolitan practices, and at 10.5 ILI cases per 1000 in the following week for rural practices. Of the 678 ILI cases, 23% were vaccinated, a significantly higher percentage than in previous years. A significantly higher percentage of ILI patients were swabbed in 2010 compared to 2003–2008, but similar to 2009, with a similar percentage being positive for influenza as in previous years. Vaccination rates increased with patient age. Melbourne Medical Deputising Service rates peaked in week 35 at 19.1 ILI cases per 1000 consultations. Of the 1914 cases of influenza notified to the Department of Health, Victoria, 1812 (95%) were influenza A infections – 1001 (55%) pandemic A(H1N1) 2009, 4 (< 1%) A(H3N2) and 807 (45%) not subtyped; 88 (5%) were influenza B; and 14 (< 1%) were influenza A and B co-infections. The World Health Organization Collaborating Centre for Reference and Research on Influenza tested 403 isolates of which 261 were positive for influenza, 250 of which were influenza A and 11 were influenza B. Ninety-two per cent of the influenza A viruses were pandemic A(H1N1) 2009, and following antigenic analysis all of these were found to be similar to the current vaccine strain. Three viruses (0.9%) were found to be oseltamivir resistant due to an H275Y mutation in the neuraminidase gene. PMID:23908889

  2. Susceptibility of wild passerines to subtype H5N1 highly pathogenic avian influenza viruses.

    PubMed

    Fujimoto, Yoshikazu; Usui, Tatsufumi; Ito, Hiroshi; Ono, Etsuro; Ito, Toshihiro

    2015-01-01

    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype have spread throughout many areas of Asia, Europe and Africa, and numerous cases of HPAI outbreaks in domestic and wild birds have been reported. Although recent studies suggest that the dissemination of H5N1 viruses is closely linked to the migration of wild birds, information on the potential for viral infection in species other than poultry and waterfowl is relatively limited. To investigate the susceptibility of terrestrial wild birds to infection with H5N1 HPAI viruses, common reed buntings (Emberiza schoeniclus), pale thrushes (Turdus pallidus) and brown-eared bulbuls (Hypsipetes amaurotis) were infected with A/mountain hawk-eagle/Kumamoto/1/07(H5N1) and A/whooper swan/Aomori/1/08(H5N1). The results showed that common reed buntings and brown-eared bulbuls were severely affected by both virus strains (100% mortality). While pale thrushes did not exhibit any clinical signs, seroconversion was confirmed. In common reed buntings, intraspecies-transmission of A/whooper swan/Aomori/1/08 to contact birds was also confirmed. The findings show that three passerine species; common reed buntings, brown-eared bulbuls and pale thrushes are susceptible to infection by H5N1 HPAI viruses, which emphasizes that continued surveillance of species other than waterfowl is crucial for effective monitoring of H5N1 HPAI virus outbreaks.

  3. H1N1 Flu & U.S. Schools: Answers to Frequently Asked Questions

    ERIC Educational Resources Information Center

    US Department of Education, 2009

    2009-01-01

    A severe form of influenza known as H1N1, commonly being called swine flu, has health officials around the world concerned. In the United States, the outbreak of H1N1 has prompted school closures and cancellation of school-related events. As the flu spreads, the Department of Education encourages school leaders, parents and students to know how to…

  4. Isolation and quarantine during pandemic (H1N1) 2009 influenza in NSW: the operational experience of public health units.

    PubMed

    Binns, Philippa L; Sheppeard, Vicky; Staff, Michael P

    2010-01-01

    During the DELAY and CONTAIN phases of pandemic (H1N1) 2009 influenza in NSW, public health units needed to rapidly surge operations to manage the 3070 potential cases and 1894 contacts notified to them. The Incident Control System, NetEpi (the web-based multi-user access database), training to up-skill surge staff, and electronic communication were all integral to the outbreak response. Ongoing identification and training of surge staff would assist a timely and effective response to future large scale outbreaks. Investing and incorporating information technology tools into routine public health unit business to assist with communication, outbreak management and reporting will improve familiarity and capability within the network to respond to public health emergencies.

  5. Fitness of Pandemic H1N1 and Seasonal influenza A viruses during Co-infection

    PubMed Central

    Perez, Daniel Roberto; Sorrell, Erin; Angel, Matthew; Ye, Jianqiang; Hickman, Danielle; Pena, Lindomar; Ramirez-Nieto, Gloria; Kimble, Brian; Araya, Yonas

    2009-01-01

    On June 11, 2009 the World Health Organization (WHO) declared a new H1N1 influenza pandemic. This pandemic strain is as transmissible as seasonal H1N1 and H3N2 influenza A viruses. Major concerns facing this pandemic are whether the new virus will replace, co-circulate and/or reassort with seasonal H1N1 and/or H3N2 human strains. Using the ferret model, we investigated which of these three possibilities were most likely favored. Our studies showed that the current pandemic virus is more transmissible than, and has a biological advantage over, prototypical seasonal H1 or H3 strains. PMID:20029606

  6. A Candidate H1N1 Pandemic Influenza Vaccine Elicits Protective Immunity in Mice

    PubMed Central

    Steitz, Julia; Barlow, Peter G.; Hossain, Jaber; Kim, Eun; Okada, Kaori; Kenniston, Tom; Rea, Sheri; Donis, Ruben O.; Gambotto, Andrea

    2010-01-01

    Background In 2009 a new pandemic disease appeared and spread globally. The recent emergence of the pandemic influenza virus H1N1 first isolated in Mexico and USA raised concerns about vaccine availability. We here report our development of an adenovirus-based influenza H1N1 vaccine tested for immunogenicity and efficacy to confer protection in animal model. Methods We generated two adenovirus(Ad5)-based influenza vaccine candidates encoding the wildtype or a codon-optimized hemagglutinin antigen (HA) from the recently emerged swine influenza isolate A/California/04/2009 (H1N1)pdm. After verification of antigen expression, immunogenicity of the vaccine candidates were tested in a mouse model using dose escalations for subcutaneous immunization. Sera of immunized animals were tested in microneutalization and hemagglutination inhibition assays for the presence of HA-specific antibodies. HA-specific T-cells were measured in IFNγ Elispot assays. The efficiency of the influenza vaccine candidates were evaluated in a challenge model by measuring viral titer in lung and nasal turbinate 3 days after inoculation of a homologous H1N1 virus. Conclusions/Significance A single immunization resulted in robust cellular and humoral immune response. Remarkably, the intensity of the immune response was substantially enhanced with codon-optimized antigen, indicating the benefit of manipulating the genetic code of HA antigens in the context of recombinant influenza vaccine design. These results highlight the value of advanced technologies in vaccine development and deployment in response to infections with pandemic potential. Our study emphasizes the potential of an adenoviral-based influenza vaccine platform with the benefits of speed of manufacture and efficacy of a single dose immunization. PMID:20463955

  7. Outbreak patterns of the novel avian influenza (H7N9)

    NASA Astrophysics Data System (ADS)

    Pan, Ya-Nan; Lou, Jing-Jing; Han, Xiao-Pu

    2014-05-01

    The attack of novel avian influenza (H7N9) in East China caused a serious health crisis and public panic. In this paper, we empirically analyze the onset patterns of human cases of the novel avian influenza and observe several spatial and temporal properties that are similar to other infectious diseases. More specifically, using the empirical analysis and modeling studies, we find that the spatio-temporal network that connects the cities with human cases along the order of outbreak timing emerges two-regime-power-law edge-length distribution, indicating the picture that several islands with higher and heterogeneous risk straggle in East China. The proposed method is applicable to the analysis of the spreading situation in the early stage of disease outbreak using quite limited dataset.

  8. H7N9 and H5N1 avian influenza suitability models for China: accounting for new poultry and live-poultry markets distribution data.

    PubMed

    Artois, Jean; Lai, Shengjie; Feng, Luzhao; Jiang, Hui; Zhou, Hang; Li, Xiangping; Dhingra, Madhur S; Linard, Catherine; Nicolas, Gaëlle; Xiao, Xiangming; Robinson, Timothy P; Yu, Hongjie; Gilbert, Marius

    2017-01-01

    In the last two decades, two important avian influenza viruses infecting humans emerged in China, the highly pathogenic avian influenza (HPAI) H5N1 virus in the late nineties, and the low pathogenic avian influenza (LPAI) H7N9 virus in 2013. China is home to the largest population of chickens (4.83 billion) and ducks (0.694 billion), representing, respectively 23.1 and 58.6% of the 2013 world stock, with a significant part of poultry sold through live-poultry markets potentially contributing to the spread of avian influenza viruses. Previous models have looked at factors associated with HPAI H5N1 in poultry and LPAI H7N9 in markets. However, these have not been studied and compared with a consistent set of predictor variables. Significant progress was recently made in the collection of poultry census and live-poultry market data, which are key potential factors in the distribution of both diseases. Here we compiled and reprocessed a new set of poultry census data and used these to analyse HPAI H5N1 and LPAI H7N9 distributions with boosted regression trees models. We found a limited impact of the improved poultry layers compared to models based on previous poultry census data, and a positive and previously unreported association between HPAI H5N1 outbreaks and the density of live-poultry markets. In addition, the models fitted for the HPAI H5N1 and LPAI H7N9 viruses predict a high risk of disease presence for the area around Shanghai and Hong Kong. The main difference in prediction between the two viruses concerned the suitability of HPAI H5N1 in north-China around the Yellow sea (outlined with Tianjin, Beijing, and Shenyang city) where LPAI H7N9 has not spread intensely.

  9. Infants hospitalized in intensive care units with 2009 H1N1 influenza infection, California, 2009-2010.

    PubMed

    Yen, Cynthia J; Louie, Janice K; Schechter, Robert

    2012-03-01

    The 2009 H1N1 influenza virus emerged in April 2009 and primarily affected children and young adults. Few reports describe 2009 H1N1 influenza infection in infants. This report describes the clinical and epidemiologic features of 2009 H1N1 influenza in critically ill infants younger than 1 year of age. Laboratory-confirmed cases were reported to the California Department of Public Health as part of public health surveillance for 2009 H1N1 influenza. Data were collected using standardized report forms and medical-chart abstractions. From April 23, 2009 through May 1, 2010, 82 cases of infants hospitalized in the intensive care unit with 2009 H1N1 influenza were reported in California. Medical charts were available for 77 of the infants, whose median age was 109 days (range: 1-361 days). Twenty-seven (35%) infants had a gestational age of 36 weeks or less. More than half (46; 60%) of the infants had at least 1 reported chronic medical condition. Thirty-five (45%) infants required mechanical ventilation; 7 (9%) died. Five infants were hospitalized since birth and acquired influenza infection during their admission; 2 (40%) of these infants died. Infants who are premature or with chronic conditions seem to be at increased risk for developing severe 2009 H1N1 influenza infection. We encourage clinicians to maintain high suspicion for influenza in infants when influenza viruses are circulating. Vaccination should be encouraged among contacts of infants <6 months of age, who are too young to be immunized or treated with licensed antivirals. Infection control measures should also be implemented in hospital settings to reduce nosocomial transmission.

  10. Systemic lupus erythematosus (SLE) pneumonitis mimicking swine influenza pneumonia during the swine influenza (H1N1) pandemic.

    PubMed

    Cunha, Burke A; Syed, Uzma; Mickail, Nardeen

    2011-01-01

    We present a young woman with a negative medical history who presented with acute systemic lupus erythematosus (SLE) pneumonitis mimicking swine influenza (H1N1) pneumonia. Because this case occurred during the H1N1 pandemic, the initial diagnostic impression was of H1N1 pneumonia. Although her clinical and laboratory findings were consistent with the diagnosis of H1N1 pneumonia, e.g., fever, sore throat, dry cough, arthralgias, myalgias, thrombocytopenia, relative lymphopenia, and elevated serum transaminases, some findings suggested an alternate diagnosis, e.g., leukopenia, a highly elevated erythrocyte sedimentation rate, highly elevated serum ferritin levels, elevated antinuclear antibody (ANA) levels, and double-stranded (DS) DNA titers. Her chest x-ray showed an accentuation of basilar lung markings, with a small pleural effusion similar to the chest x-ray findings of early H1N1 pneumonia. Initially, her headaches were thought to be related to central nervous system manifestations of H1N1. After laboratory test results demonstrated elevated ANA and anti-DS DNA titers, she was diagnosed with acute SLE pneumonitis. The take-home lesson for clinicians is that other infectious diseases, e.g., human parainfluenza virus or Legionnaires' disease, can mimic H1N1 pneumonia during an influenza pandemic. Excluding asthma, congestive heart failure, exacerbations of acute bronchitis, chronic obstructive pulmonary disorder, and pulmonary interstitial disease, noninfectious mimics of H1N1 are extremely rare. To the best of our knowledge, this is the first reported case of de novo SLE pneumonitis mimicking H1N1 pneumonia during the swine influenza pandemic. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China

    USGS Publications Warehouse

    Martin, Vincent; Pfeiffer, Dirk U.; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J.; Guo, Fusheng; Gilbert, Marius

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004–2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  12. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China.

    PubMed

    Martin, Vincent; Pfeiffer, Dirk U; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J; Guo, Fusheng; Gilbert, Marius

    2011-03-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004-2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  13. Spatial Distribution and Risk Factors of Highly Pathogenic Avian Influenza (HPAI) H5N1 in China

    PubMed Central

    Martin, Vincent; Pfeiffer, Dirk U.; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J.; Guo, Fusheng; Gilbert, Marius

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004–2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  14. Anti-neuraminidase antibodies against pandemic A/H1N1 influenza viruses in healthy and influenza-infected individuals.

    PubMed

    Desheva, Yulia; Sychev, Ivan; Smolonogina, Tatiana; Rekstin, Andrey; Ilyushina, Natalia; Lugovtsev, Vladimir; Samsonova, Anastasia; Go, Aleksey; Lerner, Anna

    2018-01-01

    The main objective of the study was to evaluate neuraminidase inhibiting (NI) antibodies against A/H1N1pdm09 influenza viruses in the community as a whole and after infection. We evaluated NI serum antibodies against A/California/07/09(H1N1)pdm and A/South Africa/3626/2013(H1N1)pdm in 134 blood donors of different ages using enzyme-linked lectin assay and in 15 paired sera from convalescents with laboratory confirmed influenza. The neuraminidase (NA) proteins of both A/H1N1pdm09 viruses had minimal genetic divergence, but demonstrated different enzymatic and antigenic properties. 5.2% of individuals had NI antibody titers ≥1:20 against A/South Africa/3626/2013(H1N1)pdm compared to 53% of those who were positive to A/California/07/2009(H1N1)pdm NA. 2% of individuals had detectable NI titers against A/South Africa/3626/13(H1N1)pdm and 47.3% were positive to A/California/07/2009(H1N1)pdm NA among participants negative to hemagglutinin (HA) of A/H1N1pdm09 but positive to seasonal A/H1N1. The lowest NI antibody levels to both A/H1N1pdm09 viruses were detected in individuals born between 1956 and 1968. Our data suggest that NI antibodies against A/South Africa/3626/13 (H1N1)pdm found in the blood donors could have resulted from direct infection with a new antigenic A/H1N1pdm09 variant rather than from cross-reaction as a result of contact with previously circulating seasonal A/H1N1 variants. The immune responses against HA and NA were formed simultaneously right after natural infection with A/H1N1pdm09. NI antibodies correlated with virus-neutralizing antibodies when acquired shortly after influenza infection. A group of middle-aged patients with the lowest level of anti-NA antibodies against A/California/07/2009 (H1N1)pdm was identified, indicating the highest-priority vaccination against A/H1N1pdm09 viruses.

  15. Anti-neuraminidase antibodies against pandemic A/H1N1 influenza viruses in healthy and influenza-infected individuals

    PubMed Central

    Sychev, Ivan; Smolonogina, Tatiana; Rekstin, Andrey; Ilyushina, Natalia; Lugovtsev, Vladimir; Samsonova, Anastasia; Go, Aleksey; Lerner, Anna

    2018-01-01

    The main objective of the study was to evaluate neuraminidase inhibiting (NI) antibodies against A/H1N1pdm09 influenza viruses in the community as a whole and after infection. We evaluated NI serum antibodies against A/California/07/09(H1N1)pdm and A/South Africa/3626/2013(H1N1)pdm in 134 blood donors of different ages using enzyme-linked lectin assay and in 15 paired sera from convalescents with laboratory confirmed influenza. The neuraminidase (NA) proteins of both A/H1N1pdm09 viruses had minimal genetic divergence, but demonstrated different enzymatic and antigenic properties. 5.2% of individuals had NI antibody titers ≥1:20 against A/South Africa/3626/2013(H1N1)pdm compared to 53% of those who were positive to A/California/07/2009(H1N1)pdm NA. 2% of individuals had detectable NI titers against A/South Africa/3626/13(H1N1)pdm and 47.3% were positive to A/California/07/2009(H1N1)pdm NA among participants negative to hemagglutinin (HA) of A/H1N1pdm09 but positive to seasonal A/H1N1. The lowest NI antibody levels to both A/H1N1pdm09 viruses were detected in individuals born between 1956 and 1968. Our data suggest that NI antibodies against A/South Africa/3626/13 (H1N1)pdm found in the blood donors could have resulted from direct infection with a new antigenic A/H1N1pdm09 variant rather than from cross-reaction as a result of contact with previously circulating seasonal A/H1N1 variants. The immune responses against HA and NA were formed simultaneously right after natural infection with A/H1N1pdm09. NI antibodies correlated with virus-neutralizing antibodies when acquired shortly after influenza infection. A group of middle-aged patients with the lowest level of anti-NA antibodies against A/California/07/2009 (H1N1)pdm was identified, indicating the highest-priority vaccination against A/H1N1pdm09 viruses. PMID:29742168

  16. Corticosteroid therapy in intensive care unit patients with PCR-confirmed influenza A(H1N1) infection in Finland.

    PubMed

    Linko, R; Pettilä, V; Ruokonen, E; Varpula, T; Karlsson, S; Tenhunen, J; Reinikainen, M; Saarinen, K; Perttilä, J; Parviainen, I; Ala-Kokko, T

    2011-09-01

    To evaluate the incidence, treatment, and outcome of influenza A(H1N1) in Finnish intensive care units (ICUs) with special reference to corticosteroid treatment. During the H1N1 outbreak in Finland between 11 October and 31 December 2009, we prospectively evaluated all consecutive ICU patients with high suspicion of or confirmed pandemic influenza A(H1N1) infection. We assessed severity of acute disease and daily organ dysfunction. Ventilatory support and other concomitant treatments were evaluated and recorded daily throughout the ICU stay. The primary outcome was hospital mortality. During the 3-month period altogether 132 ICU patients were tested polymerase chain reaction-positive for influenza A(H1N1). Of these patients, 78% needed non-invasive or invasive ventilatory support. The median (interquartile) length of ICU stay was 4 [2-12] days. Hospital mortality was 10 of 132 [8%, 95% confidence interval (CI) 3-12%]. Corticosteroids were administered to 72 (55%) patients, but rescue therapies except prone positioning were infrequently used. Simplified Acute Physiology Score II and Sequential Organ Failure Assessment scores in patients with and without corticosteroid treatment were 31 [24-36] and 6 [2-8] vs. 22 [5-30] and 3 [2-6], respectively. The crude hospital mortality was not different in patients with corticosteroid treatment compared to those without: 8 of 72 (11%, 95% CI 4-19%) vs. 2 of 60 (3%, 95% CI 0-8%) (P = 0.11). The majority of H1N1 patients in ICUs received ventilatory support. Corticosteroids were administered to more than half of the patients. Despite being more severely ill, patients given corticosteroids had comparable hospital outcome with patients not given corticosteroids. © 2011 The Authors Acta Anaesthesiologica Scandinavica © 2011 The Acta Anaesthesiologica Scandinavica Foundation.

  17. Impact on Pregnancies in South Brazil from the Influenza A (H1N1) Pandemic: Cohort Study

    PubMed Central

    da Silva, André Anjos; Ranieri, Tani Maria Schilling; Torres, Fernanda Duarte; Vianna, Fernanda Sales Luiz; Paniz, Graziella Rangel; Sanseverino, Paula Baptista; Picon, Paulo Dornelles; de Azevedo, Pietro Baptista; Costa, Marta Haas; Schuler-Faccini, Lavinia; Sanseverino, Maria Teresa Vieira

    2014-01-01

    Introduction The emergence of a new subtype of the influenza virus in 2009 generated interest in the international medical community, the media, and the general population. Pregnant women are considered to be a group at risk of serious complications related to the H1N1 influenza virus. The aim of this study was to evaluate the outcomes and teratogenic effects of pregnancies exposed to the H1N1 virus during the Influenza A epidemic that occurred in the state of Rio Grande do Sul in 2009. Methods This is an uncontrolled prospective cohort study of pregnant women with suspected symptoms of Influenza A who were reported in the Information System for Notifiable Diseases – Influenza (SINAN-Influenza) during the epidemic of 2009 (database from the state of Rio Grande do Sul, Brazil). There were 589 cases of pregnant women with suspected infection. Among these, 243 were tested by PCR and included in the analysis. The main outcome measures were: maternal deaths, pregnancy outcome, stillbirths, premature births, low birth weight, congenital malformations, and odds ratios for H1N1+ and non-H1N1 pregnant women. Results There were one hundred and sixty-three (67%) confirmed cases of H1N1, 34 cases (14%) of seasonal Influenza A and 46 (19%) who were negative for Influenza A. There was no difference between the three groups in clinical parameters of the disease. There were 24 maternal deaths — 18 of them had H1N1. There were 8 stillbirths — 5 were children of H1N1 infected mothers. There were no differences in perinatal outcomes. Conclusions The present data do not indicate an increase in teratogenic risk from exposure to the influenza A (H1N1) virus. These results will help to strengthen the data and clarify the health issues that arose after the pandemic. PMID:24558404

  18. Spatiotemporal Structure of Molecular Evolution of H5N1 Highly Pathogenic Avian Influenza Viruses in Vietnam

    PubMed Central

    Emch, Michael; Jobe, R. Todd; Moody, Aaron

    2010-01-01

    Background Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10): e3462) demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear. Methodology/Principal Findings In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets) isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City. Conclusions/Significance The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space. This correlation

  19. Pandemic A/H1N1 influenza: transmission of the first cases in Spain.

    PubMed

    Català, Laura; Rius, Cristina; García de Olalla, Patricia; Nelson, Jeanne L; Alvarez, Josep; Minguell, Sofía; Camps, Neus; Sala, María Rosa; Arias, Carlos; Barrabeig, Irene; Carol, Mónica; Torra, Roser; Cardeñosa, Neus; Pumarola, Tomas; Caylà, Joan A

    2012-02-01

    Pandemic A/H1N1 influenza emerged in Mexico at the end of March 2009. Since then, it is still important to provide evidences that contributed to the international spread of the virus and to ascertain the attack rate of this new strain of influenza among the first cases in Spain that led to identify the first transmission in Europe. Three pandemic A/H1N1 influenza groups related to an overseas flight were studied: 71 student group, 94 remaining passengers, and 68 contacts of confirmed cases. The attack rate with their 95% confidence interval (CI) among the student group and contacts was calculated. On April 26th, when the first cases were notified, strong preventive measures were implemented among the student group and the contacts of the confirmed cases. On 27th April, the first pandemic A/H1N1 influenza cases confirmed in Spain were three students that came back from Mexico by airplane. A student generated the first native case in Spain and one of the first cases in Europe. Similar attack rates were found between the student group (14.1%; CI: 12.1-16.1) and their contacts (13.2%; CI: 4.4-22.0), but no cases among remaining passengers were detected, suggesting low transmission risk during air travel. The first cases of pandemic A/H1N1 influenza in Spain were imported by airplane from Mexico. Preventive efforts to reduce the impact of the influenza influenced that primary and secondary rates were lower than first estimations by WHO. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  20. Knowledge, attitudes and anxiety towards influenza A/H1N1 vaccination of healthcare workers in Turkey.

    PubMed

    Savas, Esen; Tanriverdi, Derya

    2010-09-23

    This study aimed to analyze the factors associated with knowledge and attitudes about influenza A (H1N1) and vaccination, and possible relations of these factors with anxiety among healthcare workers (HCW). The study used a cross-sectional descriptive design, and it was carried out between 23 November and 4 December 2009. A total of 300 HCW from two hospitals completed a questionnaire. Data collection tools comprised a questionnaire and the State-Trait Anxiety Inventory (STAI). Vaccination rate for 2009 pandemic influenza A(H1N1) among HCW was low (12.7%). Most of the respondents believed the vaccine was not safe and protective. Vaccination refusal was mostly related to the vaccine's side effects, disbelief to vaccine's protectiveness, negative news about the vaccine and the perceived negative attitude of the Prime Minister to the vaccine. State anxiety was found to be high in respondents who felt the vaccine was unsafe. HCW considered the seriousness of the outbreak, their vaccination rate was low. In vaccination campaigns, governments have to aim at providing trust, and media campaigns should be used to reinforce this trust as well. Accurate reporting by the media of the safety and efficacy of influenza vaccines and the importance of vaccines for the public health would likely have a positive influence on vaccine uptake. Uncertain or negative reporting about the vaccine is detrimental to vaccination efforts.

  1. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    PubMed

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.

  2. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany.

    PubMed

    van den Brand, Judith Ma; Krone, Oliver; Wolf, Peter U; van de Bildt, Marco W G; van Amerongen, Geert; Osterhaus, Albert D M E; Kuiken, Thijs

    2015-03-05

    Raptors may contract highly pathogenic avian influenza virus H5N1 by hunting or scavenging infected prey. However, natural H5N1 infection in raptors is rarely reported. Therefore, we tested raptors found dead during an H5N1 outbreak in wild waterbirds in Mecklenburg-Western Pomerania, Germany, in 2006 for H5N1-associated disease. We tested 624 raptors of nine species-common buzzard (385), Eurasian sparrowhawk (111), common kestrel (38), undetermined species of buzzard (36), white-tailed sea eagle (19), undetermined species of raptor (12), northern goshawk (10), peregrine falcon (6), red kite (3), rough-legged buzzard (3), and western marsh-harrier (1)-for H5N1 infection in tracheal or combined tracheal/cloacal swabs of all birds, and on major tissues of all white-tailed sea eagles. H5N1 infection was detected in two species: common buzzard (12 positive, 3.1%) and peregrine falcon (2 positive, 33.3%). In all necropsied birds (both peregrine falcons and the six freshest common buzzards), H5N1 was found most consistently and at the highest concentration in the brain, and the main H5N1-associated lesion was marked non-suppurative encephalitis. Other H5N1-associated lesions occurred in air sac, lung, oviduct, heart, pancreas, coelomic ganglion, and adrenal gland. Our results show that the main cause of death in H5N1-positive raptors was encephalitis. Our results imply that H5N1 outbreaks in wild waterbirds are more likely to lead to exposure to and mortality from H5N1 in raptors that hunt or scavenge medium-sized birds, such as common buzzards and peregrine falcons, than in raptors that hunt small birds and do not scavenge, such as Eurasian sparrowhawks and common kestrels.

  3. Willingness to accept H1N1 pandemic influenza vaccine: a cross-sectional study of Hong Kong community nurses.

    PubMed

    Wong, Samuel Y S; Wong, Eliza L Y; Chor, Josette; Kung, Kenny; Chan, Paul K S; Wong, Carmen; Griffiths, Sian M

    2010-10-29

    The 2009 pandemic of influenza A (H1N1) infection has alerted many governments to make preparedness plan to control the spread of influenza A (H1N1) infection. Vaccination for influenza is one of the most important primary preventative measures to reduce the disease burden. Our study aims to assess the willingness of nurses who work for the community nursing service (CNS) in Hong Kong on their acceptance of influenza A (H1N1) influenza vaccination. 401 questionnaires were posted from June 24, 2009 to June 30, 2009 to community nurses with 67% response rate. Results of the 267 respondents on their willingness to accept influenza A (H1N1) vaccine were analyzed. Twenty-seven percent of respondents were willing to accept influenza vaccination if vaccines were available. Having been vaccinated for seasonable influenza in the previous 12 months were significantly independently associated with their willingness to accept influenza A (H1N1) vaccination (OR = 4.03; 95% CI: 2.03-7.98). Similar to previous findings conducted in hospital healthcare workers and nurses, we confirmed that the willingness of community nurses to accept influenza A (H1N1) vaccination is low. Future studies that evaluate interventions to address nurses' specific concerns or interventions that aim to raise the awareness among nurses on the importance of influenza A (H1N1) vaccination to protect vulnerable patient populations is needed.

  4. Development and characterization of a panel of cross-reactive monoclonal antibodies generated using H1N1 influenza virus.

    PubMed

    Guo, Chun-yan; Tang, Yi-gui; Qi, Zong-li; Liu, Yang; Zhao, Xiang-rong; Huo, Xue-ping; Li, Yan; Feng, Qing; Zhao, Peng-hua; Wang, Xin; Li, Yuan; Wang, Hai-fang; Hu, Jun; Zhang, Xin-jian

    2015-08-01

    To characterize the antigenic epitopes of the hemagglutinin (HA) protein of H1N1 influenza virus, a panel consisting of 84 clones of murine monoclonal antibodies (mAbs) were generated using the HA proteins from the 2009 pandemic H1N1 vaccine lysate and the seasonal influenza H1N1(A1) vaccines. Thirty-three (39%) of the 84 mAbs were found to be strain-specific, and 6 (7%) of the 84 mAbs were subtype-specific. Twenty (24%) of the 84 mAbs recognized the common HA epitopes shared by 2009 pandemic H1N1, seasonal A1 (H1N1), and A3 (H3N2) influenza viruses. Twenty-five of the 84 clones recognized the common HA epitopes shared by the 2009 pandemic H1N1, seasonal A1 (H1N1) and A3 (H3N2) human influenza viruses, and H5N1 and H9N2 avian influenza viruses. We found that of the 16 (19%) clones of the 84 mAbs panel that were cross-reactive with human respiratory pathogens, 15 were made using the HA of the seasonal A1 (H1N1) virus and 1 was made using the HA of the 2009 pandemic H1N1 influenza virus. Immunohistochemical analysis of the tissue microarray (TMA) showed that 4 of the 84 mAb clones cross-reacted with human tissue (brain and pancreas). Our results indicated that the influenza virus HA antigenic epitopes not only induce type-, subtype-, and strain-specific monoclonal antibodies against influenza A virus but also cross-reactive monoclonal antibodies against human tissues. Further investigations of these cross-reactive (heterophilic) epitopes may significantly improve our understanding of viral antigenic variation, epidemics, pathophysiologic mechanisms, and adverse effects of influenza vaccines. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Live, Attenuated Influenza A H5N1 Candidate Vaccines Provide Broad Cross-Protection in Mice and Ferrets

    PubMed Central

    Mills, Kimberly L; Jin, Hong; Duke, Greg; Lu, Bin; Luke, Catherine J; Murphy, Brian; Swayne, David E; Kemble, George; Subbarao, Kanta

    2006-01-01

    Background Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic. Methods and Findings Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA) and a wild-type (wt) N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca) influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2), were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 106 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3) that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses. Conclusions The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans. PMID:16968127

  6. Serological Response in RT-PCR Confirmed H1N1-2009 Influenza A by Hemagglutination Inhibition and Virus Neutralization Assays: An Observational Study

    PubMed Central

    Chen, Mark I.; Barr, Ian G.; Koh, Gerald C. H.; Lee, Vernon J.; Lee, Caroline P. S.; Shaw, Robert; Lin, Cui; Yap, Jonathan; Cook, Alex R.; Tan, Boon Huan; Loh, Jin Phang; Barkham, Timothy; Chow, Vincent T. K.; Lin, Raymond T. P.; Leo, Yee-Sin

    2010-01-01

    Background We describe the serological response following H1N1-2009 influenza A infections confirmed by reverse-transcriptase polymerase chain reaction (RT-PCR). Methodology and Principal Findings The study included patients admitted to hospital, subjects of a seroepidemiologic cohort study, and participants identified from outbreak studies in Singapore. Baseline (first available blood sample) and follow-up blood samples were analyzed for antibody titers to H1N1-2009 and recently circulating seasonal influenza A virus strains by hemagglutination inhibition (HI) and virus micro-neutralization (VM) assays. 267 samples from 118 cases of H1N1-2009 were analyzed. Geometric mean titers by HI peaked at 123 (95% confidence interval, CI 43-356) between days 30 to 39. The chance of observing seroconversion (four-fold or greater increase of antibodies) was maximized when restricting analysis to 45 participants with baseline sera collected within 5 days of onset and follow-up sera collected 15 or more days after onset; for these participants, 82% and 89% seroconverted to A/California/7/2009 H1N1 by HI and VM respectively. A four-fold or greater increase in cross-reactive antibody titers to seasonal A/Brisbane/59/2007 H1N1, A/Brisbane/10/2007 H3N2 and A/Wisconsin/15/2009 H3N2 occurred in 20%, 18% and 16% of participants respectively. Conclusions and Significance Appropriately timed paired serology detects 80–90% RT-PCR confirmed H1N1-2009; Antibodies from infection with H1N1-2009 cross-reacted with seasonal influenza viruses. PMID:20814575

  7. Knowledge, attitudes, and practices of school personnel regarding influenza, vaccinations, and school outbreaks.

    PubMed

    Ha, Chrysanthy; Rios, Lenoa M; Pannaraj, Pia S

    2013-08-01

    School personnel are important for communicating with parents about school vaccination programs and recognizing influenza outbreaks. This study examined knowledge, attitudes, and practices of school personnel regarding seasonal and 2009 H1N1 influenza, vaccinations, and school outbreak investigations. Data were analyzed from survey interviews of 58 elementary and middle school personnel in 2010. Principals, assistant principals, and nurses have higher knowledge than front office clerks regarding seasonal (odds ratio [OR]: 2.50, 95% confidence interval [CI]: 1.15-5.42) and 2009 H1N1 influenza (OR: 2.04, 95% CI: 1.19-3.71). During 2009-2010, 63.8 and 19.0% of school personnel received seasonal and 2009 H1N1 influenza vaccine, respectively. Personnel were more likely to be vaccinated against seasonal influenza if they believed the vaccine was safe (OR: 2.26, 95% CI: 1.21-4.19). Of those unvaccinated against 2009 H1N1, 48.9% also cited safety concerns. While every principal, assistant principal, and nurse received both infectious diseases and outbreak trainings, only 42.5 and 27.5% of clerks received these trainings, respectively (p < .001), and 30% of clerks believed outbreak recognition was not their responsibility. The level of knowledge regarding influenza illness, vaccination, and outbreaks among subjects was low overall. Education of school personnel may improve school vaccination programs and control of influenza outbreaks. © 2013, American School Health Association.

  8. Acceptance of 2009 H1N1 influenza vaccine among pregnant women in Delaware.

    PubMed

    Drees, Marci; Johnson, Oluwakemi; Wong, Esther; Stewart, Ashley; Ferisin, Stephanie; Silverman, Paul R; Ehrenthal, Deborah B

    2012-04-01

    Due to disproportionately high mortality from 2009 H1N1 influenza, pregnant women were given highest priority for H1N1 vaccination. We surveyed postpartum women to determine vaccine uptake and reasons for lack of vaccination. We performed a cross-sectional survey of postpartum women delivering at our institution from February 1 to April 15, 2010. The 12-question survey ascertained maternal characteristics and vaccination concerns. Among 307 postpartum women, 191 (62%) had received H1N1 vaccination and 98 (32%) had declined. Factors associated with H1N1 vaccination included older age (relative risk [RR] 1.3, 95% confidence interval [CI] 1.1 to 1.5 for age ≥35 years compared with 20 to 34 years), at least college education (RR 1.5, 95% CI 1.3 to 1.8), prior influenza vaccination (RR 1.6, 95% CI 1.3 to 2.0), provider recommendation (RR 3.9, 95% CI 2.1 to 7.4), vaccination of family members (RR 1.6, 95% CI 1.3 to 1.9), and receipt of seasonal influenza vaccination (RR 2.2, 95% CI 1.7 to 2.9). Non-Hispanic black women were less likely to have been vaccinated (RR 0.6, 95% CI 0.5 to 0.8) than non-Hispanic white women. Safety concerns were cited by the majority (66%) of nonvaccinated women. H1N1 vaccine uptake among pregnant women was substantially higher than reported influenza vaccination rates during previous seasons. Safety concerns were the major barrier to vaccination. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Routes of transmission of influenza A H1N1, SARS CoV, and norovirus in air cabin: Comparative analyses.

    PubMed

    Lei, H; Li, Y; Xiao, S; Lin, C-H; Norris, S L; Wei, D; Hu, Z; Ji, S

    2018-05-01

    Identifying the exact transmission route(s) of infectious diseases in indoor environments is a crucial step in developing effective intervention strategies. In this study, we proposed a comparative analysis approach and built a model to simulate outbreaks of 3 different in-flight infections in a similar cabin environment, that is, influenza A H1N1, severe acute respiratory syndrome (SARS) coronavirus (CoV), and norovirus. The simulation results seemed to suggest that the close contact route was probably the most significant route (contributes 70%, 95% confidence interval [CI]: 67%-72%) in the in-flight transmission of influenza A H1N1 transmission; as a result, passengers within 2 rows of the index case had a significantly higher infection risk than others in the outbreak (relative risk [RR]: 13.4, 95% CI: 1.5-121.2, P = .019). For SARS CoV, the airborne, close contact, and fomite routes contributed 21% (95% CI: 19%-23%), 29% (95% CI: 27%-31%), and 50% (95% CI: 48%-53%), respectively. For norovirus, the simulation results suggested that the fomite route played the dominant role (contributes 85%, 95% CI: 83%-87%) in most cases; as a result, passengers in aisle seats had a significantly higher infection risk than others (RR: 9.5, 95% CI: 1.2-77.4, P = .022). This work highlighted a method for using observed outbreak data to analyze the roles of different infection transmission routes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. [Differences in oligomerization of nucleocapsid protein of epidemic human influenza A(H1N1), A(H1N2) and B viruses].

    PubMed

    Prokudina, E N; Semenova, N P; Chumakov, V M; Burtseva, E I; Slepushkin, A N

    2003-01-01

    A comparative analysis of involving the nucleocapsid protein (NP) into shaping-up of SDS-resistant oligomers was carried out presently in circulating epidemic strains of human influenza, viruses A and B. The study results of viral isolates obtained from clinical samples and recent standard strains revealed that the involvement of NP in the SDS-resistant oligomers, which are different in various subtypes of influenza A viruses. According to this sign, the human viruses A(9H3N2) are close to the avian ones, in which, as proved by us previously, virtually the entire NP transforms itself into the oligomers resistant to SDS. About 10-20% of NP are involved in shaping-up the virus influenza A(H1N1) of SDS-resistant oligomers. No SDS-resistant NP-oligomers were detected in influenza of type B. It is suggested that the prevalence of human viruses A(H3N2) in NP-oligomers are the peculiarities of NP structure and of the presence of the PB1 protein from avian influenza virus.

  11. Pandemic influenza A(H1N1)pdm09: An unrecognized cause of mortality in children in Pakistan

    PubMed Central

    ALI, SYED ASAD; AZIZ, FATIMA; AKHTAR, NIDA; QURESHI, SHAHIDA; EDWARDS, KATHRYN; ZAIDI, ANITA

    2016-01-01

    The role of influenza virus as a cause of child mortality in South Asia is under-recognized. We aimed to determine the incidence and case fatality rate of influenza A(H1N1)pdm09 infections in hospitalized children in Karachi, Pakistan. Children less than 5 y old admitted with respiratory illnesses to the Aga Khan University Hospital, Karachi, from 17 August 2009 to 16 September 2011, were tested for influenza A(H1N1)pdm09 using a real-time reverse transcriptase polymerase chain reaction. Out of 2650 children less than 5 y old admitted with a respiratory illness during the study period, 812 (31%) were enrolled. Influenza A(H1N1)pdm09 virus was detected in 27 (3.3%) children. There were 4 deaths in children who tested positive for influenza A(H1N1)pdm09 (case fatality rate of 15%). Children with influenza A(H1N1)pdm09 were 5 times more likely to be admitted or transferred to the intensive care unit, 5.5 times more likely to be intubated, and 12.9 times more likely to die as compared to children testing negative for influenza A(H1N1)pdm09. PMID:23826795

  12. Infection control measures on ships and in ports during the early stage of pandemic influenza A (H1N1) 2009.

    PubMed

    Schlaich, Clara; Gau, Bettina; Cohen, Nicole J; Kojima, Kazunobu; Marano, Nina; Menucci, Daniel

    2012-01-01

    Shipping companies were surveyed to evaluate the effect of public health measures during the influenza A (H1N1) pandemic of 2009 on ship and port operations. Of 31 companies that operated 960 cruise, cargo, and other ships, 32% experienced health-screening measures by port health authorities. Approximately a quarter of ports (26%) performed screening at embarkation and 77% of shipping companies changed procedures during the early stage of the pandemic. Four companies reported outbreaks of pandemic influenza A (H1N1) 2009 on ships, which were ultimately stopped through infection control practices. Public health measures did not interfere substantially with port and ship operations with the exception of some port authorities that delayed embarking and disembarking procedures in a few ships. However, in the shipping companies' experience, measures were inconsistent between port health authorities. Access to antiviral drugs and pandemic vaccine was not provided in all ports. Current guidelines on medical care, hygiene, and emergency procedures on ships need to address pandemic influenza preparedness in future revisions.

  13. Clinical Profile and Outcome of Influenza A/H1N1 in Pediatric Oncology Patients During the 2015 Outbreak: A Single Center Experience from Northern India.

    PubMed

    Verma, Nishant; Pooniya, Vishal; Kumar, Archana

    2017-10-01

    Owing to their immunocompromised status, childhood cancer patients on chemotherapy are at a greater risk for Influenza infection and its associated complications. There is limited data available on the clinical profile and outcome of Influenza A/H1N1 in this subset of patients. A retrospective study was performed of Influenza A/H1N1 cases diagnosed between January 2015 to December 2015 in the in-patients of Pediatric Oncology unit of a tertiary care hospital from Northern India. In total, 16 children were diagnosed with laboratory confirmed H1N1. Most frequent symptoms were fever and cough. Oseltamivir was administered to all patients. Complications encountered were delay/interruption of antineoplastic therapy (9), need for respiratory support (5), and air leaks (1). Prolonged viral shedding was encountered in 50% of patients who were retested for H1N1 in their throat swabs. There were 2 deaths, 1 in a child of Acute Lymphoblastic Leukemia on induction therapy and another in a child with anaplastic Wilms tumor. Childhood cancer patients infected with Influenza A/H1N1 are at risk of serious illness and higher mortality. Delay of anticancer treatment is a concern in these infected children. Prompt initiation of antivirals and an optimum duration of treatment are warranted to reduce the morbidity and mortality.

  14. Adaptive evolution during the establishment of European avian-like H1N1 influenza A virus in swine.

    PubMed

    Joseph, Udayan; Vijaykrishna, Dhanasekaran; Smith, Gavin J D; Su, Yvonne C F

    2018-04-01

    An H1N1 subtype influenza A virus with all eight gene segments derived from wild birds (including mallards), ducks and chickens, caused severe disease outbreaks in swine populations in Europe beginning in 1979 and successfully adapted to form the European avian-like swine (EA-swine) influenza lineage. Genes of the EA-swine lineage that are clearly segregated from its closest avian relatives continue to circulate in swine populations globally and represent a unique opportunity to study the adaptive process of an avian-to-mammalian cross-species transmission. Here, we used a relaxed molecular clock model to test whether the EA-swine virus originated through the introduction of a single avian ancestor as an entire genome, followed by an analysis of host-specific selection pressures among different gene segments. Our data indicated independent introduction of gene segments via transmission of avian viruses into swine followed by reassortment events that occurred at least 1-4 years prior to the EA-swine outbreak. All EA-swine gene segments exhibit greater selection pressure than avian viruses, reflecting both adaptive pressures and relaxed selective constraints that are associated with host switching. Notably, we identified key amino acid mutations in the viral surface proteins (H1 and N1) that play a role in adaptation to new hosts. Following the establishment of EA-swine lineage, we observed an increased frequency of intrasubtype reassortment of segments compared to the earlier strains that has been associated with adaptive amino acid replacements, disease severity and vaccine escape. Taken together, our study provides key insights into the adaptive changes in viral genomes following the transmission of avian influenza viruses to swine and the early establishment of the EA-swine lineage.

  15. Are Ducks Contributing to the Endemicity of Highly Pathogenic H5N1 Influenza Virus in Asia?†

    PubMed Central

    Sturm-Ramirez, K. M.; Hulse-Post, D. J.; Govorkova, E. A.; Humberd, J.; Seiler, P.; Puthavathana, P.; Buranathai, C.; Nguyen, T. D.; Chaisingh, A.; Long, H. T.; Naipospos, T. S. P.; Chen, H.; Ellis, T. M.; Guan, Y.; Peiris, J. S. M.; Webster, R. G.

    2005-01-01

    Wild waterfowl are the natural reservoir of all influenza A viruses, and these viruses are usually nonpathogenic in these birds. However, since late 2002, H5N1 outbreaks in Asia have resulted in mortality among waterfowl in recreational parks, domestic flocks, and wild migratory birds. The evolutionary stasis between influenza virus and its natural host may have been disrupted, prompting us to ask whether waterfowl are resistant to H5N1 influenza virus disease and whether they can still act as a reservoir for these viruses. To better understand the biology of H5N1 viruses in ducks and attempt to answer this question, we inoculated juvenile mallards with 23 different H5N1 influenza viruses isolated in Asia between 2003 and 2004. All virus isolates replicated efficiently in inoculated ducks, and 22 were transmitted to susceptible contacts. Viruses replicated to higher levels in the trachea than in the cloaca of both inoculated and contact birds, suggesting that the digestive tract is not the main site of H5N1 influenza virus replication in ducks and that the fecal-oral route may no longer be the main transmission path. The virus isolates' pathogenicities varied from completely nonpathogenic to highly lethal and were positively correlated with tracheal virus titers. Nevertheless, the eight virus isolates that were nonpathogenic in ducks replicated and transmitted efficiently to naïve contacts, suggesting that highly pathogenic H5N1 viruses causing minimal signs of disease in ducks can propagate silently and efficiently among domestic and wild ducks in Asia and that they represent a serious threat to human and veterinary public health. PMID:16103179

  16. Overview of H5N8 avian influenza virus outbreaks – SEPRL research activities

    USDA-ARS?s Scientific Manuscript database

    In 2014, outbreaks of highly pathogenic avian influenza (HPAI) H5N8 in poultry farms have been reported in Korea, Japan, China, Germany, United Kingdom, and the Netherlands. The first outbreak report of this virus was in domestic ducks in the Republic of Korea in January 2014. In Europe, the first...

  17. Multiple introductions of highly pathogenic avian influenza H5N1 viruses into Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Feeroz, Mohammed M; Rabiul Alam, SM; Kamrul Hasan, M; Akhtar, Sharmin; Jones-Engel, Lisa; Walker, David; McClenaghan, Laura; Rubrum, Adam; Franks, John; Seiler, Patrick; Jeevan, Trushar; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-01-01

    Highly pathogenic H5N1 and low pathogenic H9N2 influenza viruses are endemic to poultry markets in Bangladesh and have cocirculated since 2008. H9N2 influenza viruses circulated constantly in the poultry markets, whereas highly pathogenic H5N1 viruses occurred sporadically, with peaks of activity in cooler months. Thirty highly pathogenic H5N1 influenza viruses isolated from poultry were characterized by antigenic, molecular, and phylogenetic analyses. Highly pathogenic H5N1 influenza viruses from clades 2.2.2 and 2.3.2.1 were isolated from live bird markets only. Phylogenetic analysis of the 30 H5N1 isolates revealed multiple introductions of H5N1 influenza viruses in Bangladesh. There was no reassortment between the local H9N2 influenza viruses and H5N1 genotype, despite their prolonged cocirculation. However, we detected two reassortant H5N1 viruses, carrying the M gene from the Chinese H9N2 lineage, which briefly circulated in the Bangladesh poultry markets and then disappeared. On the other hand, interclade reassortment occurred within H5N1 lineages and played a role in the genesis of the currently dominant H5N1 viruses in Bangladesh. Few ‘human-like' mutations in H5N1 may account for the limited number of human cases. Antigenically, clade 2.3.2.1 H5N1 viruses in Bangladesh have evolved since their introduction and are currently mainly homogenous, and show evidence of recent antigenic drift. Although reassortants containing H9N2 genes were detected in live poultry markets in Bangladesh, these reassortants failed to supplant the dominant H5N1 lineage. PMID:26038508

  18. A systematic review and meta-analysis of fetal outcomes following the administration of influenza A/H1N1 vaccination during pregnancy.

    PubMed

    Zhang, Chuan; Wang, Xiaodong; Liu, Dan; Zhang, Lingli; Sun, Xin

    2018-05-01

    Pregnant women were identified as a population of priority for vaccination during the H1N1 influenza pandemic outbreak in 2009. To assess adverse fetal outcomes following the administration of H1N1 pandemic vaccination during pregnancy. PubMed, Embase, and Cochrane Library were searched up to January 2017. Cohort studies investigating fetal outcomes after H1N1 influenza vaccination during pregnancy were eligible. The language was limited to English. Pairs of reviewers independently screened studies for eligibility, assessed the risk of bias, and extracted data from the included studies. A total of 19 cohort studies were eligible. The use of vaccines during any period of pregnancy was associated with lower risk of stillbirth (adjusted hazard ratio 0.80, 95% confidence interval 0.69-0.92). No significant differences were found between the vaccinated versus unvaccinated groups in terms of the risks of spontaneous abortion, premature birth, and small for gestational age. The administration of H1N1 vaccines during pregnancy might reduce the risk of stillbirth, a complication associated with H1N1 infection. The quality of evidence was, however, not adequate to reach a definitive conclusion. © 2017 International Federation of Gynecology and Obstetrics.

  19. In vitro and in vivo efficacy of fluorodeoxycytidine analogs against highly pathogenic avian influenza H5N1, seasonal, and pandemic H1N1 virus infections

    PubMed Central

    Kumaki, Yohichi; Day, Craig W.; Smee, Donald F.; Morrey, John D.; Barnard, Dale L.

    2011-01-01

    Various fluorodeoxyribonucleosides were evaluated for their antiviral activities against influenza virus infections in vitro and in vivo. Among the most potent inhibitors was 2'-deoxy-2'-fluorocytidine (2'-FdC). It inhibited various strains of low and highly pathogenic avian influenza H5N1 viruses, pandemic H1N1 viruses, an oseltamivir-resistant pandemic H1N1 virus, and seasonal influenza viruses (H3N2, H1N1, influenza B) in MDCK cells, with the 90% inhibitory concentrations ranging from 0.13 µM to 4.6 µM, as determined by a virus yield reduction assay. 2'-FdC was then tested for efficacy in BALB/c mice infected with a lethal dose of highly pathogenic influenza A/Vietnam/1203/2004 H5N1 virus. 2’FdC (60 mg/kg/d) administered intraperitoneally (i.p.) twice a day beginning 24 h after virus exposure significantly promoted survival (80% survival) of infected mice (p=0.0001). Equally efficacious were the treatment regimens in which mice were treated with 2'-FdC at 30 or 60 mg/kg/day (bid × 8) beginning 24 h before virus exposure. At these doses, 70–80% of the mice were protected from death due to virus infection (p=0.0005, p=0.0001; respectively). The lungs harvested from treated mice at day four of the infection displayed little surface pathology or histopathology, lung weights were lower, and the 60 mg/kg dose reduced lung virus titers, although not significantly compared to the placebo controls. All doses were well tolerated in uninfected mice. 2'-FdC could also be administered as late as 72 h post virus exposure and still significantly protect 60% mice from the lethal effects of the H5N1 virus infection (p=0.019). Other fluorodeoxyribonucleosides tested in the H5N1 mouse model, 2’-deoxy-5-fluorocytidine and 2'-deoxy-2', 2'-difluorocytidine, were very toxic at higher doses and not inhibitory at lower doses. Finally, 2'-FdC, which was active in the H5N1 mouse model, was also active in a pandemic H1N1 influenza A infection model in mice. When given at 30 mg

  20. Comparative Characteristics of the 2009 Pandemic Influenza A (H1N1) Virus and 2010-2011 Seasonal Influenza in Pediatric Patients.

    PubMed

    Nasrallah, Najwan; Shachor-Meyouhas, Yael; Kra-Oz, Zipi; Mashiach, Tania; Szwarcwort-Cohen, Moran; Shafran, Eynat; Kassis, Imad

    2016-12-01

    In March 2009 the pandemic influenza A (H1N1) strain was identified. The disease initially appeared to be accompanied by complications and high mortality rates. It became an endemic virus during the influenza season in our region, along with the classical seasonal H3N2. To identify the burden of pandemic influenza, its effect in pediatric patients, and complicated hospitalizations, compared to seasonal influenza years after the pandemic. A retrospective observational study was conducted at a tertiary hospital. Data were collected from the medical records of all children who were hospitalized from April 2009 to 2011 with laboratory-confirmed influenza. Of 191 patients with influenza, 100 had the 2009 pandemic influenza, 62 had seasonal influenza, and 29 had H1N1 in 2010-2011. Patients with the 2009 H1N1 were characterized by older age, more co-morbidity conditions and more symptoms including fever, cough and rhinitis on admission. No significant differences in outcomes between the groups were recorded. Of patients hospitalized with pandemic influenza in 2009, 28% had complicated hospitalizations, compared with 17.7% of patients hospitalized with seasonal influenza in 2010-11. Children with pandemic influenza received more oseltamivir (Tamiflu®) (94% vs. 19.4%, P < 0.001) and more antibiotics than the other groups. The type of influenza had no effect on outcome. There were no significant differences between groups in the percentages of in-hospital mortality, admission to intensive care units, prolonged hospitalization (> 9 days), or the development of complications during hospitalization.

  1. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh

    PubMed Central

    Haider, N.; Sturm-Ramirez, K.; Khan, S. U.; Rahman, M. Z.; Sarkar, S.; Poh, M. K.; Shivaprasad, H. L.; Kalam, M. A.; Paul, S. K.; Karmakar, P. C.; Balish, A.; Chakraborty, A.; Mamun, A. A.; Mikolon, A. B.; Davis, C. T.; Rahman, M.; Donis, R. O.; Heffelfinger, J. D.; Luby, S. P.; Zeidner, N.

    2015-01-01

    Summary Mortality in ducks and geese caused by highly pathogenic avian influenza A (H5N1) infection had not been previously identified in Bangladesh. In June–July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide

  2. A highly pathogenic avian influenza virus H5N1 with 2009 pandemic H1N1 internal genes demonstrated increased replication and transmission in pigs

    USDA-ARS?s Scientific Manuscript database

    This study investigated the pathogenicity and transmissibility of a reverse-genetics derived highly pathogenic avian influenza (HPAI) H5N1 influenza A virus (IAV), A/Iraq/775/06, and a reassortant virus comprised of the HA and NA from A/Iraq/775/06 and the internal genes of a 2009 pandemic H1N1, A/N...

  3. An outbreak of influenza A/H3N2 in a Zambian school dormitory.

    PubMed

    Mizuta, K; Oshitani, H; Mpabalwani, E M; Kasolo, F C; Luo, N P; Suzuki, H; Numazaki, Y

    1995-03-01

    There was an outbreak of "a mysterious disease" at a Zambian school dormitory in September, 1993. Investigation with questionnaire and collection of throat swab specimens for virus isolation were carried out on 46 patients to identify the causative agent. In this outbreak, most of the patients showed similar symptoms such as fever, headache, sore throat, cough, etc. The disease had spread to all dormitories within a couple of days after the onset of the first cases. From these patients, 13 influenza viruses A/H3N2 were isolated on MDCK cell line. This was a first ever confirmed outbreak of influenza virus infection in Zambia.

  4. Single-Domain Antibodies Targeting Neuraminidase Protect against an H5N1 Influenza Virus Challenge

    PubMed Central

    Cardoso, Francisco Miguel; Ibañez, Lorena Itatí; Van den Hoecke, Silvie; De Baets, Sarah; Smet, Anouk; Roose, Kenny; Schepens, Bert; Descamps, Francis J.; Fiers, Walter; Muyldermans, Serge

    2014-01-01

    ABSTRACT Influenza virus neuraminidase (NA) is an interesting target of small-molecule antiviral drugs. We isolated a set of H5N1 NA-specific single-domain antibodies (N1-VHHm) and evaluated their in vitro and in vivo antiviral potential. Two of them inhibited the NA activity and in vitro replication of clade 1 and 2 H5N1 viruses. We then generated bivalent derivatives of N1-VHHm by two methods. First, we made N1-VHHb by genetically joining two N1-VHHm moieties with a flexible linker. Second, bivalent N1-VHH-Fc proteins were obtained by genetic fusion of the N1-VHHm moiety with the crystallizable region of mouse IgG2a (Fc). The in vitro antiviral potency against H5N1 of both bivalent N1-VHHb formats was 30- to 240-fold higher than that of their monovalent counterparts, with 50% inhibitory concentrations in the low nanomolar range. Moreover, single-dose prophylactic treatment with bivalent N1-VHHb or N1-VHH-Fc protected BALB/c mice against a lethal challenge with H5N1 virus, including an oseltamivir-resistant H5N1 variant. Surprisingly, an N1-VHH-Fc fusion without in vitro NA-inhibitory or antiviral activity also protected mice against an H5N1 challenge. Virus escape selection experiments indicated that one amino acid residue close to the catalytic site is required for N1-VHHm binding. We conclude that single-domain antibodies directed against influenza virus NA protect against H5N1 virus infection, and when engineered with a conventional Fc domain, they can do so in the absence of detectable NA-inhibitory activity. IMPORTANCE Highly pathogenic H5N1 viruses are a zoonotic threat. Outbreaks of avian influenza caused by these viruses occur in many parts of the world and are associated with tremendous economic loss, and these viruses can cause very severe disease in humans. In such cases, small-molecule inhibitors of the viral NA are among the few treatment options for patients. However, treatment with such drugs often results in the emergence of resistant viruses

  5. Influenza Transmission in a Community during a Seasonal Influenza A(H3N2) Outbreak (2010–2011) in Mongolia: A Community-Based Prospective Cohort Study

    PubMed Central

    Nukiwa-Souma, Nao; Burmaa, Alexanderyn; Kamigaki, Taro; Od, Ishiin; Bayasgalan, Namuutsetsegiin; Darmaa, Badarchiin; Suzuki, Akira; Nymadawa, Pagbajabyn; Oshitani, Hitoshi

    2012-01-01

    Background Knowledge of how influenza viruses spread in a community is important for planning and implementation of effective interventions, including social distancing measures. Households and schools are implicated as the major sites for influenza virus transmission. However, the overall picture of community transmission is not well defined during actual outbreaks. We conducted a community-based prospective cohort study to describe the transmission characteristics of influenza in Mongolia. Methods and Findings A total of 5,655 residents in 1,343 households were included in this cohort study. An active search for cases of influenza-like illness (ILI) was performed between October 2010 and April 2011. Data collected during a community outbreak of influenza A(H3N2) were analyzed. Total 282 ILI cases occurred during this period, and 73% of the subjects were aged <15 years. The highest attack rate (20.4%) was in those aged 1–4 years, whereas the attack rate in those aged 5–9 years was 10.8%. Fifty-one secondary cases occurred among 900 household contacts from 43 households (43 index cases), giving an overall crude household secondary attack rate (SAR) of 5.7%. SAR was significantly higher in younger household contacts (relative risk for those aged <1 year: 9.90, 1–4 years: 5.59, and 5–9 years: 6.43). We analyzed the transmission patterns among households and a community and repeated transmissions were detected between households, preschools, and schools. Children aged 1–4 years played an important role in influenza transmission in households and in the community at large. Working-age adults were also a source of influenza in households, whereas elderly cases (aged ≥65 years) had no link with household transmission. Conclusions Repeated transmissions between households, preschools, and schools were observed during an influenza A(H3N2) outbreak period in Mongolia, where subjects aged 1–4 years played an important role in influenza transmission. PMID

  6. Asymptomatic ratio for seasonal H1N1 influenza infection among schoolchildren in Taiwan.

    PubMed

    Hsieh, Ying-Hen; Tsai, Chen-An; Lin, Chien-Yu; Chen, Jin-Hua; King, Chwan-Chuen; Chao, Day-Yu; Cheng, Kuang-Fu

    2014-02-12

    Studies indicate that asymptomatic infections do indeed occur frequently for both seasonal and pandemic influenza, accounting for about one-third of influenza infections. Studies carried out during the 2009 pH1N1 pandemic have found significant antibody response against seasonal H1N1 and H3N2 vaccine strains in schoolchildren receiving only pandemic H1N1 monovalent vaccine, yet reported either no symptoms or only mild symptoms. Serum samples of 255 schoolchildren, who had not received vaccination and had pre-season HI Ab serotiters <40, were collected from urban, rural areas and an isolated island in Taiwan during the 2005-2006 influenza season. Their hemagglutination inhibition antibody (HI Ab) serotiters against the 2005 A/New Caledonia/20/99 (H1N1) vaccine strain at pre-season and post-season were measured to determine the symptoms with the highest correlation with infection, as defined by 4-fold rise in HI titer. We estimate the asymptomatic ratio, or the proportion of asymptomatic infections, for schoolchildren during the 2005-6 influenza season when this vaccine strain was found to be antigenically related to the circulating H1N1 strain. Fever has the highest correlation with the 2005-06 seasonal influenza A(H1N1) infection, followed by headache, cough, vomiting, and sore throat. Asymptomatic ratio for the schoolchildren is found to range between 55.6% (95% CI: 44.7-66.4)-77.9% (68.8-87.0) using different sets of predictive symptoms. Moreover, the asymptomatic ratio was 66.9% (56.6-77.2) when using US-CDC criterion of fever + (cough/sore throat), and 73.0 (63.3-82.8) when under Taiwan CDC definition of Fever + (cough or sore throat or nose) + ( headache or pain or fatigue). Asymptomatic ratio for children is found to be substantially higher than that of the general population in literature. In providing reasonable quantification of the asymptomatic infected children spreading pathogens to others in a seasonal epidemic or a pandemic, our estimates

  7. Identification of swine H1N2/pandemic H1N1 reassortant influenza virus in pigs, United States.

    PubMed

    Ali, Ahmed; Khatri, Mahesh; Wang, Leyi; Saif, Yehia M; Lee, Chang-Won

    2012-07-06

    In October and November 2010, novel H1N2 reassortant influenza viruses were identified from pigs showing mild respiratory signs that included cough and depression. Sequence and phylogenetic analysis showed that the novel H1N2 reassortants possesses HA and NA genes derived from recent H1N2 swine isolates similar to those isolated from Midwest. Compared to the majority of reported reassortants, both viruses preserved human-like host restrictive and putative antigenic sites in their HA and NA genes. The four internal genes, PB2, PB1, PA, and NS were similar to the contemporary swine triple reassortant viruses' internal genes (TRIG). Interestingly, NP and M genes of the novel reassortants were derived from the 2009 pandemic H1N1. The NP and M proteins of the two isolates demonstrated one (E16G) and four (G34A, D53E, I109T, and V313I) amino acid changes in the M2 and NP proteins, respectively. Similar amino acid changes were also noticed upon incorporation of the 2009 pandemic H1N1 NP in other reassortant viruses reported in the U.S. Thus the role of those amino acids in relation to host adaptation need to be further investigated. The reassortments of pandemic H1N1 with swine influenza viruses and the potential of interspecies transmission of these reassortants from swine to other species including human indicate the importance of systematic surveillance of swine population to determine the origin, the prevalence of similar reassortants in the U.S. and their impact on both swine production and public health. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Vaccination with virus-like particles containing H5 antigens from three H5N1 clades protects chickens from H5N1 and H5N8 influenza viruses

    PubMed Central

    Kapczynski, Darrell R.; Tumpey, Terrence M.; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tretyakova, Irina; Pushko, Peter

    2016-01-01

    Highly pathogenic avian influenza (HPAI) viruses, especially H5N1 strains, represent a public health threat and cause widespread morbidity and mortality in domestic poultry. Recombinant virus-like particles (VLPs) represent a promising novel vaccine approach to control avian influenza including HPAI strains. Influenza VLPs contain viral hemagglutinin (HA), which can be expressed in cell culture within highly immunogenic VLPs that morphologically and antigenically resemble influenza virions, except VLPs are non-infectious. Here we describe a recombinant VLP containing HA proteins derived from three distinct clades of H5N1 viruses as an experimental, broadly protective H5 avian influenza vaccine. A baculovirus vector was configured to co-express the H5 genes from recent H5N1 HPAI isolates A/chicken/Germany/2014 (clade 2.3.4.4), A/chicken/West Java/Subang/29/2007 (clade 2.1.3) and A/chicken/Egypt/121/2012 (clade 2.2.1). Co-expression of these genes in Sf9 cells along with influenza neuraminidase (NA) and retrovirus gag genes resulted in production of triple-clade H555 VLPs that exhibited hemagglutination activity and morphologically resembled influenza virions. Vaccination of chickens with these VLPs resulted in induction of serum antibody responses and efficient protection against experimental challenges with three different viruses including the recent U.S. H5N8 HPAI isolate. We conclude that these novel triple-clade VLPs represent a feasible strategy for simultaneously evoking protective antibodies against multiple variants of H5 influenza virus. PMID:26868083

  9. Protection of human influenza vaccines against a reassortant swine influenza virus of pandemic H1N1 origin using a pig model.

    PubMed

    Arunorat, Jirapat; Charoenvisal, Nataya; Woonwong, Yonlayong; Kedkovid, Roongtham; Jittimanee, Supattra; Sitthicharoenchai, Panchan; Kesdangsakonwut, Sawang; Poolperm, Pariwat; Thanawongnuwech, Roongroje

    2017-10-01

    Since the pandemic H1N1 emergence in 2009 (pdmH1N1), many reassortant pdmH1N1 viruses emerged and found circulating in the pig population worldwide. Currently, commercial human subunit vaccines are used commonly to prevent the influenza symptom based on the WHO recommendation. In case of current reassortant swine influenza viruses transmitting from pigs to humans, the efficacy of current human influenza vaccines is of interest. In this study, influenza A negative pigs were vaccinated with selected commercial human subunit vaccines and challenged with rH3N2. All sera were tested with both HI and SN assays using four representative viruses from the surveillance data in 2012 (enH1N1, pdmH1N1, rH1N2 and rH3N2). The results showed no significant differences in clinical signs and macroscopic and microscopic findings among groups. However, all pig sera from vaccinated groups had protective HI titers to the enH1N1, pdmH1N1 and rH1N2 at 21DPV onward and had protective SN titers only to pdmH1N1and rH1N2 at 21DPV onward. SN test results appeared more specific than those of HI tests. All tested sera had no cross-reactivity against the rH3N2. Both studied human subunit vaccines failed to protect and to stop viral shedding with no evidence of serological reaction against rH3N2. SIV surveillance is essential for monitoring a novel SIV emergence potentially for zoonosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Personal protective equipment and risk for avian influenza (H7N3).

    PubMed

    Morgan, Oliver; Kuhne, Mirjam; Nair, Pat; Verlander, Neville Q; Preece, Richard; McDougal, Marianne; Zambon, Maria; Reacher, Mark

    2009-01-01

    An outbreak of avian influenza (H7N3) among poultry resulted in laboratory-confirmed disease in 1 of 103 exposed persons. Incomplete use of personal protective equipment (PPE) was associated with conjunctivitis and influenza-like symptoms. Rigorous use of PPE by persons managing avian influenza outbreaks may reduce exposure to potentially hazardous infected poultry materials.

  11. Personal Protective Equipment and Risk for Avian Influenza (H7N3)

    PubMed Central

    Kuhne, Mirjam; Nair, Pat; Verlander, Neville Q.; Preece, Richard; McDougal, Marianne; Zambon, Maria; Reacher, Mark

    2009-01-01

    An outbreak of avian influenza (H7N3) among poultry resulted in laboratory-confirmed disease in 1 of 103 exposed persons. Incomplete use of personal protective equipment (PPE) was associated with conjunctivitis and influenza-like symptoms. Rigorous use of PPE by persons managing avian influenza outbreaks may reduce exposure to potentially hazardous infected poultry materials. PMID:19116052

  12. Detection and isolation of 2009 pandemic influenza A/H1N1 virus in commercial piggery, Lagos Nigeria.

    PubMed

    Meseko, C A; Odaibo, G N; Olaleye, D O

    2014-01-10

    WHO declared pandemic of A/H1N1 influenza in 2009 following global spread of the newly emerged strain of the virus from swine. Presently there is a dearth of data on the ecology of pandemic influenza H1N1 required for planning of intervention measures in sub Saharan Africa. Herein we report isolation of 2009 pandemic influenza A/H1N1 in an intensive mega piggery farms operation in South West Nigeria. Sentinel surveillance was carried out in a cohort of intensively reared pigs over a period of two years. Nasal swab specimens were collected at monthly interval from observed clinical cases of influenza like illness in pigs and pig handlers. Samples were analyzed by real time RT-PCR and isolation in chicken embryonated eggs. A total of 227 clinical cases of influenza like illness were observed among pigs out of which 31 (13.7%) were positive for influenza A matrix gene by real time RT-PCR. Virus isolation yielded 29 (12%) isolates out of which 18 (18%) were identified as influenza A/H1N1 by Heamaglutination Inhibition test using H1 antisera. RT-PCR positive samples were subtyped as 2009 pandemic A/H1N1 with subtype specific primers and probes. This is the first report of detection and isolation of pandemic influenza H1N1 from pigs in Nigeria. Continuous circulation of this virus in pigs may cause reassortments with seasonal influenza or mutations and substitutions in the gene that may result in the emergence of novel or pandemic influenza virus of economic and public health importance. Nigeria is considered a geographical hotspot of zoonotic diseases, which necessitate active surveillance and monitoring of emerging pandemic threats. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Critically ill patients with 2009 influenza A(H1N1) infection in Canada.

    PubMed

    Kumar, Anand; Zarychanski, Ryan; Pinto, Ruxandra; Cook, Deborah J; Marshall, John; Lacroix, Jacques; Stelfox, Tom; Bagshaw, Sean; Choong, Karen; Lamontagne, Francois; Turgeon, Alexis F; Lapinsky, Stephen; Ahern, Stéphane P; Smith, Orla; Siddiqui, Faisal; Jouvet, Philippe; Khwaja, Kosar; McIntyre, Lauralyn; Menon, Kusum; Hutchison, Jamie; Hornstein, David; Joffe, Ari; Lauzier, Francois; Singh, Jeffrey; Karachi, Tim; Wiebe, Kim; Olafson, Kendiss; Ramsey, Clare; Sharma, Sat; Dodek, Peter; Meade, Maureen; Hall, Richard; Fowler, Robert A

    2009-11-04

    Between March and July 2009, the largest number of confirmed cases of 2009 influenza A(H1N1) infection occurred in North America. To describe characteristics, treatment, and outcomes of critically ill patients in Canada with 2009 influenza A(H1N1) infection. A prospective observational study of 168 critically ill patients with 2009 influenza A(H1N1) infection in 38 adult and pediatric intensive care units (ICUs) in Canada between April 16 and August 12, 2009. The primary outcome measures were 28-day and 90-day mortality. Secondary outcomes included frequency and duration of mechanical ventilation and duration of ICU stay. Critical illness occurred in 215 patients with confirmed (n = 162), probable (n = 6), or suspected (n = 47) community-acquired 2009 influenza A(H1N1) infection. Among the 168 patients with confirmed or probable 2009 influenza A(H1N1), the mean (SD) age was 32.3 (21.4) years; 113 were female (67.3%) and 50 were children (29.8%). Overall mortality among critically ill patients at 28 days was 14.3% (95% confidence interval, 9.5%-20.7%). There were 43 patients who were aboriginal Canadians (25.6%). The median time from symptom onset to hospital admission was 4 days (interquartile range [IQR], 2-7 days) and from hospitalization to ICU admission was 1 day (IQR, 0-2 days). Shock and nonpulmonary acute organ dysfunction was common (Sequential Organ Failure Assessment mean [SD] score of 6.8 [3.6] on day 1). Neuraminidase inhibitors were administered to 152 patients (90.5%). All patients were severely hypoxemic (mean [SD] ratio of Pao(2) to fraction of inspired oxygen [Fio(2)] of 147 [128] mm Hg) at ICU admission. Mechanical ventilation was received by 136 patients (81.0%). The median duration of ventilation was 12 days (IQR, 6-20 days) and ICU stay was 12 days (IQR, 5-20 days). Lung rescue therapies included neuromuscular blockade (28% of patients), inhaled nitric oxide (13.7%), high-frequency oscillatory ventilation (11.9%), extracorporeal membrane

  14. Parasite-mediated upregulation of NK cell-derived gamma interferon protects against severe highly pathogenic H5N1 influenza virus infection.

    PubMed

    O'Brien, Kevin B; Schultz-Cherry, Stacey; Knoll, Laura J

    2011-09-01

    Outbreaks of influenza A viruses are associated with significant human morbidity worldwide. Given the increasing resistance to the available influenza drugs, new therapies for the treatment of influenza virus infection are needed. An alternative approach is to identify products that enhance a protective immune response. In these studies, we demonstrate that infecting mice with the Th1-inducing parasite Toxoplasma gondii prior to highly pathogenic avian H5N1 influenza virus infection led to decreased lung viral titers and enhanced survival. A noninfectious fraction of T. gondii soluble antigens (STAg) elicited an immune response similar to that elicited by live parasites, and administration of STAg 2 days after H5N1 influenza virus infection enhanced survival, lowered viral titers, and reduced clinical disease. STAg administration protected H5N1 virus-infected mice lacking lymphocytes, suggesting that while the adaptive immune response was not required for enhanced survival, it was necessary for STAg-mediated viral clearance. Mechanistically, we found that administration of STAg led to increased production of gamma interferon (IFN-γ) from natural killer (NK) cells, which were both necessary and sufficient for survival. Further, administration of exogenous IFN-γ alone enhanced survival from H5N1 influenza virus infection, although not to the same level as STAg treatment. These studies demonstrate that a noninfectious T. gondii extract enhances the protective immune response against severe H5N1 influenza virus infections even when a single dose is administered 2 days postinfection.

  15. Pathogenicity and Transmissibility of Novel Reassortant H3N2 Influenza Viruses with 2009 Pandemic H1N1 Genes in Pigs

    PubMed Central

    Ma, Jingjiao; Shen, Huigang; Liu, Qinfang; Bawa, Bhupinder; Qi, Wenbao; Duff, Michael; Lang, Yuekun; Lee, Jinhwa; Yu, Hai; Bai, Jianfa; Tong, Guangzhi; Hesse, Richard A.; Richt, Jürgen A.

    2014-01-01

    ABSTRACT At least 10 different genotypes of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 [A(H1N1)pdm09] gene(s) have been identified in U.S. pigs, including the H3N2 variant with a single A(H1N1)pdm09 M gene, which has infected more than 300 people. To date, only three genotypes of these viruses have been evaluated in animal models, and the pathogenicity and transmissibility of the other seven genotype viruses remain unknown. Here, we show that three H3N2 reassortant viruses that contain 3 (NP, M, and NS) or 5 (PA, PB2, NP, M, and NS) genes from A(H1N1)pdm09 were pathogenic in pigs, similar to the endemic H3N2 swine virus. However, the reassortant H3N2 virus with 3 A(H1N1)pdm09 genes and a recent human influenza virus N2 gene was transmitted most efficiently among pigs, whereas the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes was transmitted less efficiently than the endemic H3N2 virus. Interestingly, the polymerase complex of reassortant H3N2 virus with 5 A(H1N1)pdm09 genes showed significantly higher polymerase activity than those of endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies showed that an avian-like glycine at position 228 at the hemagglutinin (HA) receptor binding site is responsible for inefficient transmission of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes. Taken together, our results provide insights into the pathogenicity and transmissibility of novel reassortant H3N2 viruses in pigs and suggest that a mammalian-like serine at position 228 in the HA is critical for the transmissibility of these reassortant H3N2 viruses. IMPORTANCE Swine influenza is a highly contagious zoonotic disease that threatens animal and public health. Introduction of 2009 pandemic H1N1 virus [A(H1N1)pdm09] into swine herds has resulted in novel reassortant influenza viruses in swine, including H3N2 and H1N2 variants that have caused human infections in the United States. We showed that reassortant H3N2 influenza

  16. Impact of mass media on public behavior and physicians: an ecological study of the H1N1 influenza pandemic.

    PubMed

    Codish, Shlomi; Novack, Lena; Dreiher, Jacob; Barski, Leonid; Jotkowitz, Alan; Zeller, Lior; Novack, Victor

    2014-06-01

    The mass media plays an important role in public health behavior. The objective of the present study was to investigate the effect of mass media coverage of the H1N1 pandemic on the number of emergency department (ED) visits and hospital admission rates. An ecological study of ED visits to 8 general Israeli hospitals due to influenza-like illness during the period June-October 2009 was performed. Data on the number of visits per day for children and adults and daily hospitalization rates were analyzed. Associations with the estimated value of H1N1-related publications and weekly reports from nationwide sentinel clinics were assessed. The analysis was performed in 2012-2013. There were 55,070 ED visits due to influenza-like illness during the study period. The overall number of media reports was 1,812 (14.3% radio broadcasts, 9.8% television broadcasts, 27.5% newspaper articles, and 48.5% major website reports). The overall estimated value of advertising of publications was $16,399,000, excluding the Internet. While H1N1 incidence recorded by Israeli sentinel clinics showed no association with mass media publications, peaks of media reports were followed by an increase in the number of ED visits, usually with a delay of 3 days (P = .005). This association was noted in children (P < .001) but not in adults (P > .1), with a corresponding decrease in hospital admission rates. Publications' framing had no association with ED visits. During the 2009 H1N1 influenza outbreak in Israel, an increase in mass media coverage was associated with an increase in pediatric ED visits.

  17. Influenza A(H1N1)pdm09 virus infection in giant pandas, China.

    PubMed

    Li, Desheng; Zhu, Ling; Cui, Hengmin; Ling, Shanshan; Fan, Shengtao; Yu, Zhijun; Zhou, Yuancheng; Wang, Tiecheng; Qian, Jun; Xia, Xianzhu; Xu, Zhiwen; Gao, Yuwei; Wang, Chengdong

    2014-03-01

    We confirmed infection with influenza A(H1N1)pdm09 in giant pandas in China during 2009 by using virus isolation and serologic analysis methods. This finding extends the host range of influenza viruses and indicates a need for increased surveillance for and control of influenza viruses among giant pandas.

  18. Initial psychological responses to Influenza A, H1N1 ("Swine flu").

    PubMed

    Goodwin, Robin; Haque, Shamsul; Neto, Felix; Myers, Lynn B

    2009-10-06

    The outbreak of the pandemic flu, Influenza A H1N1 (Swine Flu) in early 2009, provided a major challenge to health services around the world. Previous pandemics have led to stockpiling of goods, the victimisation of particular population groups, and the cancellation of travel and the boycotting of particular foods (e.g. pork). We examined initial behavioural and attitudinal responses towards Influenza A, H1N1 ("Swine flu") in the six days following the WHO pandemic alert level 5, and regional differences in these responses. 328 respondents completed a cross-sectional Internet or paper-based questionnaire study in Malaysia (N = 180) or Europe (N = 148). Measures assessed changes in transport usage, purchase of preparatory goods for a pandemic, perceived risk groups, indicators of anxiety, assessed estimated mortality rates for seasonal flu, effectiveness of seasonal flu vaccination, and changes in pork consumption 26% of the respondents were 'very concerned' about being a flu victim (42% Malaysians, 5% Europeans, p < .001). 36% reported reduced public transport use (48% Malaysia, 22% Europe, p < .001), 39% flight cancellations (56% Malaysia, 17% Europe, p < .001). 8% had purchased preparatory materials (e.g. face masks: 8% Malaysia, 7% Europe), 41% Malaysia (15% Europe) intended to do so (p < .001). 63% of Europeans, 19% of Malaysians had discussed the pandemic with friends (p < .001). Groups seen as at 'high risk' of infection included the immune compromised (mentioned by 87% respondents), pig farmers (70%), elderly (57%), prostitutes/highly sexually active (53%), and the homeless (53%). In data collected only in Europe, 64% greatly underestimated the mortality rates of seasonal flu, 26% believed seasonal flu vaccination gave protection against swine flu. 7% had reduced/stopped eating pork. 3% had purchased anti-viral drugs for use at home, while 32% intended to do so if the pandemic worsened. Initial responses to Influenza A show large regional differences in

  19. Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes

    PubMed Central

    Monsalvo, Ana Clara; Batalle, Juan P.; Lopez, M. Florencia; Krause, Jens C.; Klemenc, Jennifer; Zea, Johanna; Maskin, Bernardo; Bugna, Jimena; Rubinstein, Carlos; Aguilar, Leandro; Dalurzo, Liliana; Libster, Romina; Savy, Vilma; Baumeister, Elsa; Aguilar, Liliana; Cabral, Graciela; Font, Julia; Solari, Liliana; Weller, Kevin P.; Johnson, Joyce; Echavarria, Marcela; Edwards, Kathryn M.; Chappell, James D.; Crowe, James E.; Williams, John V.; Melendi, Guillermina A.; Polack, Fernando P.

    2010-01-01

    Pandemic influenza viruses often cause severe disease in middle-aged adults without preexistent co-morbidities. The mechanism of illness associated with severe disease in this age group is not well understood1–10. Here, we demonstrate preexisting serum antibody that cross-reacts with, but does not protect against 2009 H1N1 influenza virus in middle-aged adults. Non-protective antibody is associated with immune complex(IC)-mediated disease after infection. High titers of serum antibody of low avidity for H1-2009 antigen, and low avidity pulmonary ICs against the same protein were detected in severely ill patients. Moreover, C4d deposition - a sensitive marker of complement activation mediated by ICs- was present in lung sections of fatal cases. Archived lung sections from adults with confirmed fatal influenza 1957 H2N2 infection revealed a similar mechanism of illness. These observations provide a novel biological mechanism for the unusual age distribution of severe cases during influenza pandemics. PMID:21131958

  20. [Digestive system manifestations in children infected with novel influenza A (H1N1) virus].

    PubMed

    Wei, Ju-Rong; Lu, Zhi-Wei; Tang, Zheng-Zhen; Wang, He-Ping; Zheng, Yue-Jie

    2010-10-01

    To study the digestive system manifestations in children infected with novel influenza A (H1N1) virus. A prospective study of 153 children infected with novel influenza A (H1N1) virus in Shenzhen Children's Hospital from November 2009 to January 2010 was conducted. The clinical features and outcomes of 69 children with digestive system manifestations were analyzed. The children presenting with digestive system manifestations accounted for 45% (69 cases) in the 153 hospitalized children with novel influenza A (H1N1) infection. Gastrointestinal manifestations were observed in 50 cases (33%) and liver function abnormality in 19 cases (12%). The incidence rate of coma, neurological complications, increase in creative kinase level, ICU admission, and death in the patients with digestive system manifestations were significantly higher than those without digestive system manifestations (P<0.05). In the 69 patients with digestive system manifestations, 5 died from severe complications and 64 recovered fully. Gastrointestinal manifestations disappeared through 1 to 3 days and abnormal liver function recovered through 4 to 7 days. Digestive system manifestations are common in children infected with novel influenza A (H1N1) virus. Neurological system involvements are more common in the patients with digestive system manifestations than those without.

  1. Isolation and molecular characterization of an H5N1 swine influenza virus in China in 2015.

    PubMed

    Wu, Haibo; Yang, Fan; Lu, Rufeng; Xu, Lihua; Liu, Fumin; Peng, Xiuming; Wu, Nanping

    2018-03-01

    In 2015, an H5N1 influenza virus was isolated from a pig in Zhejiang Province, Eastern China. This strain was characterized by whole-genome sequencing with subsequent phylogenetic analysis. Phylogenetic analysis showed that all segments from this strain belonged to clade 2.3.2 and that it had received its genes from poultry influenza viruses in China. A Glu627Lys mutation associated with pathogenicity was observed in the PB2 protein. This strain was moderately pathogenic in mice and was able to replicate without prior adaptation. These results suggest that active surveillance of swine influenza should be used as an early warning system for influenza outbreaks in mammals.

  2. The influence of meteorology on the spread of influenza: survival analysis of an equine influenza (A/H3N8) outbreak.

    PubMed

    Firestone, Simon M; Cogger, Naomi; Ward, Michael P; Toribio, Jenny-Ann L M L; Moloney, Barbara J; Dhand, Navneet K

    2012-01-01

    The influences of relative humidity and ambient temperature on the transmission of influenza A viruses have recently been established under controlled laboratory conditions. The interplay of meteorological factors during an actual influenza epidemic is less clear, and research into the contribution of wind to epidemic spread is scarce. By applying geostatistics and survival analysis to data from a large outbreak of equine influenza (A/H3N8), we quantified the association between hazard of infection and air temperature, relative humidity, rainfall, and wind velocity, whilst controlling for premises-level covariates. The pattern of disease spread in space and time was described using extraction mapping and instantaneous hazard curves. Meteorological conditions at each premises location were estimated by kriging daily meteorological data and analysed as time-lagged time-varying predictors using generalised Cox regression. Meteorological covariates time-lagged by three days were strongly associated with hazard of influenza infection, corresponding closely with the incubation period of equine influenza. Hazard of equine influenza infection was higher when relative humidity was <60% and lowest on days when daily maximum air temperature was 20-25°C. Wind speeds >30 km hour(-1) from the direction of nearby infected premises were associated with increased hazard of infection. Through combining detailed influenza outbreak and meteorological data, we provide empirical evidence for the underlying environmental mechanisms that influenced the local spread of an outbreak of influenza A. Our analysis supports, and extends, the findings of studies into influenza A transmission conducted under laboratory conditions. The relationships described are of direct importance for managing disease risk during influenza outbreaks in horses, and more generally, advance our understanding of the transmission of influenza A viruses under field conditions.

  3. The Influence of Meteorology on the Spread of Influenza: Survival Analysis of an Equine Influenza (A/H3N8) Outbreak

    PubMed Central

    Firestone, Simon M.; Cogger, Naomi; Ward, Michael P.; Toribio, Jenny-Ann L. M. L.; Moloney, Barbara J.; Dhand, Navneet K.

    2012-01-01

    The influences of relative humidity and ambient temperature on the transmission of influenza A viruses have recently been established under controlled laboratory conditions. The interplay of meteorological factors during an actual influenza epidemic is less clear, and research into the contribution of wind to epidemic spread is scarce. By applying geostatistics and survival analysis to data from a large outbreak of equine influenza (A/H3N8), we quantified the association between hazard of infection and air temperature, relative humidity, rainfall, and wind velocity, whilst controlling for premises-level covariates. The pattern of disease spread in space and time was described using extraction mapping and instantaneous hazard curves. Meteorological conditions at each premises location were estimated by kriging daily meteorological data and analysed as time-lagged time-varying predictors using generalised Cox regression. Meteorological covariates time-lagged by three days were strongly associated with hazard of influenza infection, corresponding closely with the incubation period of equine influenza. Hazard of equine influenza infection was higher when relative humidity was <60% and lowest on days when daily maximum air temperature was 20–25°C. Wind speeds >30 km hour−1 from the direction of nearby infected premises were associated with increased hazard of infection. Through combining detailed influenza outbreak and meteorological data, we provide empirical evidence for the underlying environmental mechanisms that influenced the local spread of an outbreak of influenza A. Our analysis supports, and extends, the findings of studies into influenza A transmission conducted under laboratory conditions. The relationships described are of direct importance for managing disease risk during influenza outbreaks in horses, and more generally, advance our understanding of the transmission of influenza A viruses under field conditions. PMID:22536366

  4. Illness representation on H1N1 influenza and preventive behaviors in the Hong Kong general population.

    PubMed

    Mo, Phoenix K H; Lau, Joseph T F

    2015-12-01

    This study examined illness representations of new influenza Human Swine Influenza A (H1N1) and association with H1N1 preventive behaviors among 300 Chinese adults using a population-based randomized telephone survey. Results showed that relatively few participants thought H1N1 would have serious consequences (12%-15.7%) and few showed negative emotional responses toward H1N1 (9%-24.7%). The majority of the participants thought H1N1 could be controlled by treatment (70.4%-72.7%). Multiple logistic regression analyses showed that treatment control (odds ratio = 1.78) and psychological attribution (odds ratio = .75) were associated with intention to take up influenza vaccination. Emotional representations were associated with lower likelihood of wearing face mask (odds ratio = .77) and hand washing (odds ratio = .67). Results confirm that illness representation variables are associated with H1N1 preventive behaviors. © The Author(s) 2014.

  5. Development of a real-time RT-PCR assay for a novel influenza A (H1N1) virus.

    PubMed

    Jiang, Tao; Kang, Xiaoping; Deng, Yongqiang; Zhao, Hui; Li, Xiaofeng; Yu, Xuedong; Yu, Man; Qin, Ede; Zhu, Qingyu; Yang, Yinhui; Qin, Chengfeng

    2010-02-01

    A pandemic caused by a novel influenza A virus (H1N1) poses a serious public health threat. In this study, a real-time reverse transcriptase PCR (RT-PCR) assay based on the hemagglutinin gene was developed that discriminates the novel H1N1 from swine influenza virus, seasonal H1N1/H3N2 virus and the highly pathogenic H5N1 avian influenza virus. The sensitivity of this assay was 0.2 50% tissue culture infective dose of virus and 200 copies of in vitro-transcribed target RNA. Three hundred and forty-eight clinical specimens from suspected H1N1 patients were tested using this assay, and forty-two (12.07%) were found to be positive. Tests using the real-time PCR assay recommended by WHO and virus isolation gave identical results. This sensitive and specific real-time RT-PCR assay will contribute to the early diagnosis and control of the emerging H1N1 influenza pandemic. 2009 Elsevier B.V. All rights reserved.

  6. Clinical and microbiological evaluation of travel-associated respiratory tract infections in travelers returning from countries affected by pandemic A(H1N1) 2009 influenza.

    PubMed

    Jauréguiberry, Stéphane; Boutolleau, David; Grandsire, Eric; Kofman, Tomek; Deback, Claire; Aït-Arkoub, Zaïna; Bricaire, François; Agut, Henri; Caumes, Eric

    2012-01-01

    Although acute respiratory tract infections (RTI) have been recognized as a significant cause of illness in returning travelers, few studies have specifically evaluated the etiologies of RTI in this population. This prospective investigation evaluated travelers returning from countries with endemic influenza A(H1N1) 2009, and who were seen in our department at the onset of the outbreak (April-July 2009). Patients were included if they presented with signs of RTI that occurred during travel or less than 7 days after return from overseas travel. Patients were evaluated for microbial agents with RespiFinder plus assay, and throat culture according to clinical presentation. A total of 113 travelers (M/F ratio 1.2:1; mean age 39 y) were included. They were mainly tourists (n = 50; 44.2%) mostly returning from North America (n = 65; 58%) and Mexico (n = 21; 18.5%). The median duration of travel was 23 days (range 2-540 d). The median lag time between return and onset of illness was 0.2 days (range 10 d prior to 7 d after). The main clinical presentation of RTI was influenza-like illness (n = 76; 67.3%). Among the 99 microbiologically evaluated patients, a pathogen was found by polymerase chain reaction (PCR) or throat culture in 65 patients (65.6%). The main etiological agents were influenza A(H1N1) 2009 (18%), influenza viruses (14%), and rhinovirus (20%). A univariate analysis was unable to show variables associated with influenza A(H1N1) 2009, whereas rhinorrhea was associated with viruses other than influenza (p = 0.04). Despite the A(H1N1) 2009 influenza pandemic, rhinovirus and other influenza viruses were also frequent causes of RTI in overseas travelers. Real-time reverse transcription-PCR and nasopharyngeal swab cultures are useful diagnostic tools for evaluating travelers with RTI. © 2011 International Society of Travel Medicine.

  7. Thoracic computerized tomographic (CT) findings in 2009 influenza A (H1N1) virus infection in Isfahan, Iran

    PubMed Central

    Rostami, Mojtaba; Javadi, Abbas-Ali; Khorvash, Farzin; Mostafavizadeh, Kamyar; Adibi, Atoosa; Babak, Anahita; Ataei, Behrooz; Meidani, Mohsen; Naeini, Alireza Emami; Salehi, Hasan; Avijgan, Majid; Yazdani, Mohammad Reza; Rezaei, Farshid

    2011-01-01

    BACKGROUND: Pandemic 2009 H1N1 influenza A virus arrived at Isfahan in August 2009. The virus is still circulating in the world. The abnormal thoracic computerized tomographic (CT) scan findings vary widely among the studies of 2009 H1N1 influenza. We evaluated the thoracic CT findings in patients with 2009 H1N1 virus infection to describe findings compared to previously reported findings, and to suggest patterns that may be suggestive for 2009 influenza A (H1N1) in an appropriate clinical setting. METHODS: Retrospectively, the archive of all patients with a diagnosis of 2009 H1N1 influenza A were reviewed, in Al-Zahra Hospital in Isfahan, central Iran, between September 23rd 2009 to February 20th 2010. Out of 216 patients with confirmed 2009 influenza A (H1N1) virus, 26 cases with abnormal CT were enrolled in the study. Radiologic findings were characterized by the type and pattern of opacities and zonal distribution. RESULTS: Patchy infiltration (34.6%), lobar consolidation (30.8%), and interstitial infiltration (26.9%) with airbronchogram (38.5%) were the predominant findings in our patients. Bilateral distribution was seen in 80.8% of the patients. Only one patient (3.8%) showed ground-glass opacity, predominant radiographic finding in the previous reports and severe acute respiratory syndrome (SARS). CONCLUSIONS: The most common thoracic CT findings in pandemic H1N1 were patchy infiltration, lobar consolidation, and interstitial infiltration with airbronchogram and bilateral distribution. While these findings can be associated with other infections; they may be suggestive to 2009 influenza A (H1N1) in the appropriate clinical setting. Various radiographic patterns can be seen in thoracic CT scans of the influenza patients. Imaging findings are nonspecific. PMID:22091280

  8. Adoption of Preventive Measures and Attitudes toward the H1N1 Influenza Pandemic in Schools

    ERIC Educational Resources Information Center

    Pérez, Anna; Rodríguez, Tània; López, Maria José; Continente, Xavier; Nebot, Manel

    2016-01-01

    Background: This study describes the perceived impact of H1N1 influenza and the adoption of the recommended measures to address the pandemic in schools. Methods: A cross-sectional self-reported survey was conducted in 433 schools in Barcelona addressed to the school principal or the H1N1 influenza designated person. A descriptive analysis was…

  9. Attempted early detection of influenza A (H1N1) pandemic with surveillance data of influenza‐like illness and unexplained pneumonia

    PubMed Central

    Qian, Yan‐Hua; Su, Jing; Shi, Ping; He, En‐Qi; Shao, Jie; Sun, Na; Zu, Rong‐Qiang; Yu, Rong‐Bin

    2011-01-01

    Please cite this paper as: Qian et al. (2011) Attempted early detection of influenza A (H1N1) pandemic with surveillance data of influenza‐like illness and unexplained pneumonia. Influenza and Other Respiratory Viruses 5(6), e479–e486. Background  To collect disease information and provide data for early detection of epidemics, two surveillance systems were established for influenza‐like illness (ILI) and unexplained pneumonia (UP) in Wuxi, People’s Republic of China. Objectives  The current study aims to describe the performance of these surveillance systems during 2004–2009 and to evaluate the value of surveillance data in detection of influenza epidemics. Methods  Two national ILI sentinel hospitals and three UP sentinel hospitals provided data to the surveillance systems. The surveillance data from hospital‐based outpatient clinics and emergency rooms were compared by year. The ILI data of 2009 were further modeled based on previous data using both a control chart method and a moving average regression method. Alarms of potential epidemics would be raised when the input surveillance data surpassed a threshold. Results  In 2009, the proportions of ILI and respiratory illness with fever (one surveillance syndrome of the UP system) to total patient visits (3·40% and 11·76%, respectively) were higher than the previous years. The surveillance data of both systems also showed developing trends similar to the influenza A (H1N1) pandemic in 2009. When the surveillance data of 2009 were fitted in the two detection models, alarms were produced on the occurrence of the first local case of influenza A (H1N1), outbreaks in schools and in general populations. Conclusions  The results indicated the potential for using ILI and UP surveillance data as syndromic indicators to detect and provide an early warning for influenza epidemics. PMID:21668678

  10. [Analysis of risk factors of fatal outcome in pregnant and puerperant patients with severe H1N1 influenza].

    PubMed

    Zabolotskikh, I B; Penzhoian, G A; Musaeva, T S; Goncharenko, S I

    2010-01-01

    As well as previous epidemics and pandemias of influenza, the 2009 H1N1 influenza pandemia increases the risk of severe illness in pregnant. Data were reported for 28 pregnant and 2 postpartum women who have been hospitalized in ICUs of Krasnodar Region with H1N1 influenza diagnosis. The laboratory tests for H1N1 were negative in 53.3% of suspected cases of H1N1 influenza (16 of 30). The major lethal risk factor in pregnant with H1N1 influenza is a development of septic shock with low PaO2\\FiO2 ratio (less than 140) and high Murray's Acute Lung Injury Score (higher than 2.5). High Apache II, Apache III, SAPS 2, SAPS 3 and SOFA scores are the additional lethal risk factors. Lethal outcomes were more frequent in the end of the second trimester of pregnancy.

  11. Avian influenza A H5N1 infections in Bali Province, Indonesia: a behavioral, virological and seroepidemiological study.

    PubMed

    Santhia, Ketut; Ramy, Ayu; Jayaningsih, Putri; Samaan, Gina; Putra, Anak Agung Gde; Dibia, Nyoman; Sulaimin, Cynthia; Joni, Gusti; Leung, Connie Y H; Sriyal, Joseph; Peiris, Malik; Wandra, Toni; Kandun, Nyoman

    2009-05-01

    Bali Province was affected by avian influenza H5N1 outbreaks in birds in October 2003. Despite ongoing circulation of the virus, no human infection had been identified by December 2005. To assess behavioral patterns associated with poultry rearing in Bali, and to identify potential risk factors for H5N1 infection in humans and in household chickens, ducks and pigs. A behavioral, virological and seroepidemiologic survey in 38 villages and three live bird markets was completed in December 2005. A multi-stage cluster design was used to select 291 households with 841 participants from all nine districts in Bali. Specimens were collected from participants as well as a maximum of three pigs, chickens and ducks from each household. Eighty-seven market vendors participated, where specimens were collected from participants as well as chickens and ducks. Twenty out of the 38 villages sampled had H5N1 outbreaks. Despite exposure to H5N1 outbreaks, none of the participants from villages or markets were seropositive for H5N1. None of the pigs tested were positive for H5N1. Virus isolation rate in ducks and chicken in markets was higher than in households. Transport of poultry in or out of villages was a risk factor for outbreaks in household chickens and ducks. The study highlighted that the market chain and associated behaviors may play a role in maintaining the virus in household flocks. The study adds evidence that transmission of H5N1 to humans remains a rare event despite high level handling of both healthy and sick birds.

  12. Lack of H5N1 Avian Influenza Transmission to Hospital Employees, Hanoi, 2004

    PubMed Central

    Liem, Nguyen Thanh; Lim, Wilina

    2005-01-01

    To establish whether human-to-human transmission of influenza A H5N1 occurred in the healthcare setting in Vietnam, we conducted a cross-sectional seroprevalence survey among hospital employees exposed to 4 confirmed and 1 probable H5N1 case-patients or their clinical specimens. Eighty-three (95.4%) of 87 eligible employees completed a questionnaire and provided a serum sample, which was tested for antibodies to influenza A H5N1. Ninety-five percent reported exposure to >1 H5N1 case-patients; 59 (72.0%) reported symptoms, and 2 (2.4%) fulfilled the definition for a possible H5N1 secondary case-patient. No study participants had detectable antibodies to influenza A H5N1. The data suggest that the H5N1 viruses responsible for human cases in Vietnam in January 2004 are not readily transmitted from person to person. However, influenza viruses are genetically variable, and transmissibility is difficult to predict. Therefore, persons providing care for H5N1 patients should continue to take measures to protect themselves. PMID:15752437

  13. Avian flu school: a training approach to prepare for H5N1 highly pathogenic avian influenza.

    PubMed

    Beltran-Alcrudo, Daniel; Bunn, David A; Sandrock, Christian E; Cardona, Carol J

    2008-01-01

    Since the reemergence of highly pathogenic avian influenza (H5N1 HPAI) in 2003, a panzootic that is historically unprecedented in the number of infected flocks, geographic spread, and economic consequences for agriculture has developed. The epidemic has affected a wide range of birds and mammals, including humans. The ineffective management of outbreaks, mainly due to a lack of knowledge among those involved in detection, prevention, and response, points to the need for training on H5N1 HPAI. The main challenges are the multidisciplinary approach required, the lack of experts, the need to train at all levels, and the diversity of outbreak scenarios. Avian Flu School addresses these challenges through a three-level train-the-trainer program intended to minimize the health and economic impacts of H5N1 HPAI by improving a community's ability to prevent and respond, while protecting themselves and others. The course teaches need-to-know facts using highly flexible, interactive, and relevant materials.

  14. Hospitalized children with 2009 pandemic influenza A (H1N1): comparison to seasonal influenza and risk factors for admission to the ICU.

    PubMed

    Bagdure, Dayanand; Curtis, Donna J; Dobyns, Emily; Glodé, Mary P; Dominguez, Samuel R

    2010-12-15

    Limited data are available describing the clinical presentation and risk factors for admission to the intensive care unit for children with 2009 H1N1 infection. We conducted a retrospective chart review of all hospitalized children with 2009 influenza A (H1N1) and 2008-09 seasonal influenza at The Children's Hospital, Denver, Colorado. Of the 307 children identified with 2009 H1N1 infections, the median age was 6 years, 61% were male, and 66% had underlying medical conditions. Eighty children (26%) were admitted to the ICU. Thirty-two (40%) of the ICU patients required intubation and 17 (53%) of the intubated patients developed acute respiratory distress syndrome (ARDS). Four patients required extracorporeal membrane oxygenation. Eight (3%) of the hospitalized children died. Admission to the ICU was significantly associated with older age and underlying neurological condition. Compared to the 90 children admitted during the 2008-09 season, children admitted with 2009 H1N1 influenza were significantly older, had a shorter length of hospitalization, more use of antivirals, and a higher incidence of ARDS. Compared to the 2008-09 season, hospitalized children with 2009 H1N1 influenza were much older and had more severe respiratory disease. Among children hospitalized with 2009 H1N1 influenza, risk factors for admission to the ICU included older age and having an underlying neurological condition. Children under the age of 2 hospitalized with 2009 H1N1 influenza were significantly less likely to require ICU care compared to older hospitalized children.

  15. Swine Influenza Virus (H1N2) Characterization and Transmission in Ferrets, Chile.

    PubMed

    Bravo-Vasquez, Nicolás; Karlsson, Erik A; Jimenez-Bluhm, Pedro; Meliopoulos, Victoria; Kaplan, Bryan; Marvin, Shauna; Cortez, Valerie; Freiden, Pamela; Beck, Melinda A; Hamilton-West, Christopher; Schultz-Cherry, Stacey

    2017-02-01

    Phylogenetic analysis of the influenza hemagglutinin gene (HA) has suggested that commercial pigs in Chile harbor unique human seasonal H1-like influenza viruses, but further information, including characterization of these viruses, was unavailable. We isolated influenza virus (H1N2) from a swine in a backyard production farm in Central Chile and demonstrated that the HA gene was identical to that in a previous report. Its HA and neuraminidase genes were most similar to human H1 and N2 viruses from the early 1990s and internal segments were similar to influenza A(H1N1)pdm09 virus. The virus replicated efficiently in vitro and in vivo and transmitted in ferrets by respiratory droplet. Antigenically, it was distinct from other swine viruses. Hemagglutination inhibition analysis suggested that antibody titers to the swine Chilean H1N2 virus were decreased in persons born after 1990. Further studies are needed to characterize the potential risk to humans, as well as the ecology of influenza in swine in South America.

  16. Swine Influenza Virus (H1N2) Characterization and Transmission in Ferrets, Chile

    PubMed Central

    Bravo-Vasquez, Nicolás; Karlsson, Erik A.; Jimenez-Bluhm, Pedro; Meliopoulos, Victoria; Kaplan, Bryan; Marvin, Shauna; Cortez, Valerie; Freiden, Pamela; Beck, Melinda A.

    2017-01-01

    Phylogenetic analysis of the influenza hemagglutinin gene (HA) has suggested that commercial pigs in Chile harbor unique human seasonal H1-like influenza viruses, but further information, including characterization of these viruses, was unavailable. We isolated influenza virus (H1N2) from a swine in a backyard production farm in Central Chile and demonstrated that the HA gene was identical to that in a previous report. Its HA and neuraminidase genes were most similar to human H1 and N2 viruses from the early 1990s and internal segments were similar to influenza A(H1N1)pdm09 virus. The virus replicated efficiently in vitro and in vivo and transmitted in ferrets by respiratory droplet. Antigenically, it was distinct from other swine viruses. Hemagglutination inhibition analysis suggested that antibody titers to the swine Chilean H1N2 virus were decreased in persons born after 1990. Further studies are needed to characterize the potential risk to humans, as well as the ecology of influenza in swine in South America. PMID:28098524

  17. Outbreak of swine influenza in Argentina reveals a non-contemporary human H3N2 virus highly transmissible among pigs.

    PubMed

    Cappuccio, Javier A; Pena, Lindomar; Dibárbora, Marina; Rimondi, Agustina; Piñeyro, Pablo; Insarralde, Lucas; Quiroga, María A; Machuca, Mariana; Craig, Maria I; Olivera, Valeria; Chockalingam, Ashok; Perfumo, Carlos J; Perez, Daniel R; Pereda, Ariel

    2011-12-01

    Sporadic outbreaks of human H3N2 influenza A virus (IAV) infections in swine populations have been reported in Asia, Europe and North America since 1970. In South America, serological surveys in pigs indicate that IAVs of the H3 and H1 subtypes are currently in circulation; however, neither virus isolation nor characterization has been reported. In November 2008, an outbreak of respiratory disease in pigs consistent with swine influenza virus (SIV) infection was detected in Argentina. The current study describes the clinical epidemiology, pathology, and molecular and biological characteristics of the virus. Phylogenetic analysis revealed that the virus isolate shared nucleotide identities of 96-98 % with H3N2 IAVs that circulated in humans from 2000 to 2003. Antigenically, sera from experimentally inoculated animals cross-reacted mainly with non-contemporary human-origin H3N2 influenza viruses. In an experimental infection in a commercial swine breed, the virus was of low virulence but was transmitted efficiently to contact pigs and caused severe disease when an infected animal acquired a secondary bacterial infection. This is the first report of a wholly human H3N2 IAV associated with clinical disease in pigs in South America. These studies highlight the importance of two-way transmission of IAVs and SIVs between pigs and humans, and call for enhanced influenza surveillance in the pig population worldwide.

  18. A Historical Perspective of Influenza A(H1N2) Virus

    PubMed Central

    McVernon, Jodie; Hall, Robert; Leder, Karin

    2014-01-01

    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase with limited person-to-person transmission. During 2012 in the United States, an A(H1N2)v virus was transmitted to humans from swine. During the same year, Australia recorded its first H1N2 subtype infection among swine. The A(H3N2)v and A(H1N2)v viruses contained the matrix protein from the A(H1N1)pdm09 virus, raising the possibility of increased transmissibility among humans and underscoring the potential for influenza pandemics of novel swine-origin viruses. We report on the differing histories of A(H1N2) viruses among humans and animals. PMID:24377419

  19. A historical perspective of influenza A(H1N2) virus.

    PubMed

    Komadina, Naomi; McVernon, Jodie; Hall, Robert; Leder, Karin

    2014-01-01

    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase with limited person-to-person transmission. During 2012 in the United States, an A(H1N2)v virus was transmitted to humans from swine. During the same year, Australia recorded its first H1N2 subtype infection among swine. The A(H3N2)v and A(H1N2)v viruses contained the matrix protein from the A(H1N1)pdm09 virus, raising the possibility of increased transmissibility among humans and underscoring the potential for influenza pandemics of novel swine-origin viruses. We report on the differing histories of A(H1N2) viruses among humans and animals.

  20. Serological Evidence of Pandemic H1N1 Influenza Virus Infections in Greek Swine.

    PubMed

    Kyriakis, C S; Papatsiros, V G; Athanasiou, L V; Valiakos, G; Brown, I H; Simon, G; Van Reeth, K; Tsiodras, S; Spyrou, V; Billinis, C

    2016-08-01

    The introduction of the 2009 pandemic H1N1 (pH1N1) influenza virus in pigs changed the epidemiology of influenza A viruses (IAVs) in swine in Europe and the rest of the world. Previously, three IAV subtypes were found in the European pig population: an avian-like H1N1 and two reassortant H1N2 and H3N2 viruses with human-origin haemagglutinin (HA) and neuraminidase proteins and internal genes of avian decent. These viruses pose antigenically distinct HAs, which allow the retrospective diagnosis of infection in serological investigations. However, cross-reactions between the HA of pH1N1 and the HAs of the other circulating H1 IAVs complicate serological diagnosis. The prevalence of IAVs in Greek swine has been poorly investigated. In this study, we examined and compared haemagglutination inhibition (HI) antibody titres against previously established IAVs and pH1N1 in 908 swine sera from 88 herds, collected before and after the 2009 pandemic. While we confirmed the historic presence of the three IAVs established in European swine, we also found that 4% of the pig sera examined after 2009 had HI antibodies only against the pH1N1 virus. Our results indicate that pH1N1 is circulating in Greek pigs and stress out the importance of a vigorous virological surveillance programme. © 2015 Blackwell Verlag GmbH.

  1. Structural Basis of Preexisting Immunity to the 2009 H1N1 Pandemic Influenza Virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Rui; Ekiert, Damian C.; Krause, Jens C.

    The 2009 H1N1 swine flu is the first influenza pandemic in decades. The crystal structure of the hemagglutinin from the A/California/04/2009 H1N1 virus shows that its antigenic structure, particularly within the Sa antigenic site, is extremely similar to those of human H1N1 viruses circulating early in the 20th century. The cocrystal structure of the 1918 hemagglutinin with 2D1, an antibody from a survivor of the 1918 Spanish flu that neutralizes both 1918 and 2009 H1N1 viruses, reveals an epitope that is conserved in both pandemic viruses. Thus, antigenic similarity between the 2009 and 1918-like viruses provides an explanation for themore » age-related immunity to the current influenza pandemic.« less

  2. Diversity of the murine antibody response targeting influenza A(H1N1pdm09) hemagglutinin

    PubMed Central

    Wilson, Jason R.; Tzeng, Wen-Pin; Spesock, April; Music, Nedzad; Guo, Zhu; Barrington, Robert; Stevens, James; Donis, Ruben O.; Katz, Jacqueline M.; York, Ian A.

    2016-01-01

    We infected mice with the 2009 influenza A pandemic virus (H1N1pdm09), boosted with an inactivated vaccine, and cloned immunoglobulins (Igs) from HA-specific B cells. Based on the redundancy in germline gene utilization, we inferred that between 72–130 unique IgH VDJ and 35 different IgL VJ combinations comprised the anti-HA recall response. The IgH VH1 and IgL VK14 variable gene families were employed most frequently. A representative panel of antibodies were cloned and expressed to confirm reactivity with H1N1pdm09 HA. The majority of the recombinant antibodies were of high avidity and capable of inhibiting H1N1pdm09 hemagglutination. Three of these antibodies were subtype-specific cross-reactive, binding to the HA of A/South Carolina/1/1918(H1N1), and one further reacted with A/swine/Iowa/15/1930(H1N1). These results help define the genetic diversity of the influenza anti-HA antibody repertoire profile induced following infection and vaccination, which may facilitate the development of influenza vaccines that are more protective and broadly neutralizing. Importance Protection against influenza viruses is mediated mainly by antibodies, and in most cases this antibody response is narrow, only providing protection against closely-related viruses. In spite of this limited range of protection, recent findings indicate individuals immune to one influenza virus may contain antibodies (generally a minority of the overall response) that are more broadly reactive. These findings have raised the possibility that influenza vaccines could induce a more broadly protective response, reducing the need for frequent vaccine strain changes. However, interpretation of these observations is hampered by the lack of quantitative characterization of the antibody repertoire. In this study, we used single-cell cloning of influenza HA-specific B cells to assess the diversity and nature of the antibody response to influenza hemagglutinin in mice. Our findings help put bounds on the

  3. Diversity of the murine antibody response targeting influenza A(H1N1pdm09) hemagglutinin.

    PubMed

    Wilson, Jason R; Tzeng, Wen-Pin; Spesock, April; Music, Nedzad; Guo, Zhu; Barrington, Robert; Stevens, James; Donis, Ruben O; Katz, Jacqueline M; York, Ian A

    2014-06-01

    We infected mice with the 2009 influenza A pandemic virus (H1N1pdm09), boosted with an inactivated vaccine, and cloned immunoglobulins (Igs) from HA-specific B cells. Based on the redundancy in germline gene utilization, we inferred that between 72-130 unique IgH VDJ and 35 different IgL VJ combinations comprised the anti-HA recall response. The IgH VH1 and IgL VK14 variable gene families were employed most frequently. A representative panel of antibodies were cloned and expressed to confirm reactivity with H1N1pdm09 HA. The majority of the recombinant antibodies were of high avidity and capable of inhibiting H1N1pdm09 hemagglutination. Three of these antibodies were subtype-specific cross-reactive, binding to the HA of A/South Carolina/1/1918(H1N1), and one further reacted with A/swine/Iowa/15/1930(H1N1). These results help to define the genetic diversity of the influenza anti-HA antibody repertoire profile induced following infection and vaccination, which may facilitate the development of influenza vaccines that are more protective and broadly neutralizing. Protection against influenza viruses is mediated mainly by antibodies, and in most cases this antibody response is narrow, only providing protection against closely related viruses. In spite of this limited range of protection, recent findings indicate that individuals immune to one influenza virus may contain antibodies (generally a minority of the overall response) that are more broadly reactive. These findings have raised the possibility that influenza vaccines could induce a more broadly protective response, reducing the need for frequent vaccine strain changes. However, interpretation of these observations is hampered by the lack of quantitative characterization of the antibody repertoire. In this study, we used single-cell cloning of influenza HA-specific B cells to assess the diversity and nature of the antibody response to influenza hemagglutinin in mice. Our findings help to put bounds on the

  4. Bacillus Calmette-Guérin-Induced Trained Immunity Is Not Protective for Experimental Influenza A/Anhui/1/2013 (H7N9) Infection in Mice.

    PubMed

    de Bree, Charlotte L C J; Marijnissen, Renoud J; Kel, Junda M; Rosendahl Huber, Sietske K; Aaby, Peter; Benn, Christine Stabell; Wijnands, Marcel V W; Diavatopoulos, Dimitri A; van Crevel, Reinout; Joosten, Leo A B; Netea, Mihai G; Dulos, John

    2018-01-01

    Avian influenza A of the subtype H7N9 has been responsible for almost 1,600 confirmed human infections and more than 600 deaths since its first outbreak in 2013. Although sustained human-to-human transmission has not been reported yet, further adaptations to humans in the viral genome could potentially lead to an influenza pandemic, which may have severe consequences due to the absence of pre-existent immunity to this strain at population level. Currently there is no influenza A (H7N9) vaccine available. Therefore, in case of a pandemic outbreak, alternative preventive approaches are needed, ideally even independent of the type of influenza virus outbreak. Bacillus Calmette-Guérin (BCG) is known to induce strong heterologous immunological effects, and it has been shown that BCG protects against non-related infection challenges in several mouse models. BCG immunization of mice as well as human induces trained innate immune responses, resulting in increased cytokine responses upon subsequent ex vivo peripheral blood mononuclear cell restimulation. We investigated whether BCG (Statens Serum Institut-Denmark)-induced trained immunity may protect against a lethal avian influenza A/Anhui/1/2013 (H7N9) challenge. Here, we show that isolated splenocytes as well as peritoneal macrophages of BCG-immunized BALB/c mice displayed a trained immunity phenotype resulting in increased innate cytokine responses upon ex vivo restimulation. However, after H7N9 infection, no significant differences were found between the BCG immunized and the vehicle control group at the level of survival, weight loss, pulmonary influenza A nucleoprotein staining, or histopathology. In conclusion, BCG-induced trained immunity did not result in protection in an oseltamivir-sensitive influenza A/Anhui/1/2013 (H7N9) challenge mouse model.

  5. The Continuing Evolution of H5N1 and H9N2 Influenza Viruses in Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Shanmuganatham, Karthik; Feeroz, Mohammed M.; Jones-Engel, Lisa; Hassan, M. Kamrul; Akhtar, Sharmin; Turner, Jasmine; Walker, David; Seiler, Patrick; Franks, John; McKenzie, Pamela; Krauss, Scott; Webby, Richard J.; Webster, Robert G.

    2017-01-01

    Summary In 2011, avian influenza surveillance at the Bangladesh live bird markets (LBMs) showed complete replacement of the highly pathogenic avian influenza (HPAI) H5N1 virus of clade 2.2.2 (Qinghai-like H5N1 lineage) by the HPAI H5N1 clade 2.3.2.1. This clade, which continues to circulate in Bangladesh and neighboring countries, is an intra- and inter-clade reassortant; its HA, PB1, PA and NS genes come from subclade 2.3.2.1a; PB2 from subclade 2.3.2.1c; and NA, NP, and M from clade 2.3.4.2. The H9N2 influenza viruses co-circulating in the Bangladesh LBMs are also reassortants, possessing five genes (NS, M, NP, PA, and PB1) from a HPAI H7N3 virus previously isolated in Pakistan. Despite frequent co-infection of chickens and ducks, reassortment between these H5N1 and H9N2 viruses has been rare. However, all such reassortants detected in 2011 through 2013 have carried 7 genes from HPAI H5N1 clade 2.3.2.1a and the PB1 gene from the Bangladeshi H9N2 clade G1 Mideast, itself derived from HPAI H7N3 virus. Although, the live birds which we sampled in Bangladesh showed no clinical signs of morbidity, the emergence of this reassortant HPAI H5N1 lineage further complicates endemic circulation of H5N1 viruses in Bangladesh, posing a threat to both poultry and humans. PMID:27309046

  6. Seroprevalence of Antibodies against Highly Pathogenic Avian Influenza A (H5N1) Virus among Poultry Workers in Bangladesh, 2009

    PubMed Central

    Nasreen, Sharifa; Uddin Khan, Salah; Azziz-Baumgartner, Eduardo; Hancock, Kathy; Veguilla, Vic; Wang, David; Rahman, Mahmudur; Alamgir, A. S. M.; Sturm-Ramirez, Katharine; Gurley, Emily S.; Luby, Stephen P.; Katz, Jacqueline M.; Uyeki, Timothy M.

    2013-01-01

    We conducted a cross-sectional study in 2009 to determine the seroprevalence and risk factors for highly pathogenic avian influenza A (H5N1) [HPAI H5N1] virus antibodies among poultry workers at farms and live bird markets with confirmed/suspected poultry outbreaks during 2009 in Bangladesh. We tested sera by microneutralization assay using A/Bangladesh/207095/2008 (H5N1; clade 2.2.2) virus with confirmation by horse red blood cell hemagglutination inhibition and H5-specific Western blot assays. We enrolled 212 workers from 87 farms and 210 workers from three live bird markets. One hundred and two farm workers (48%) culled poultry. One hundred and ninety-three farm workers (91%) and 178 market workers (85%) reported direct contact with poultry that died during a laboratory confirmed HPAI H5N1 poultry farm outbreak or market poultry die-offs from suspected HPAI H5N1. Despite exposure to sick poultry, no farm or market poultry workers were seropositive for HPAI H5N1 virus antibodies (95% confidence interval 0–1%). PMID:24039887

  7. In-Flight Transmission of Novel Influenza A (H1N1)

    PubMed Central

    Kim, Joon Hyung; Lee, Dong-Han; Shin, Sang-Sook; Kang, Chun; Kim, Jin Seok; Jun, Byung Yool

    2010-01-01

    The Korea Centers for Disease Control and Prevention confirmed two patients, who had taken the same plane from Los Angeles to Seoul, with novel influenza A (H1N1). Through contact tracing, we concluded that the second patient was infected during the flight. PMID:21191459

  8. The survival of influenza A(H1N1)pdm09 virus on 4 household surfaces.

    PubMed

    Oxford, John; Berezin, Eitan N; Courvalin, Patrice; Dwyer, Dominic E; Exner, Martin; Jana, Laura A; Kaku, Mitsuo; Lee, Christopher; Letlape, Kgosi; Low, Donald E; Madani, Tariq Ahmed; Rubino, Joseph R; Saini, Narendra; Schoub, Barry D; Signorelli, Carlo; Tierno, Philip M; Zhong, Xuhui

    2014-04-01

    We investigated the survival of a pandemic strain of influenza A H1N1 on a variety of common household surfaces where multiple samples were taken from 4 types of common household fomite at 7 time points. Results showed that influenza A H1N1sw virus particles remained infectious for 48 hours on a wooden surface, for 24 hours on stainless steel and plastic surfaces, and for 8 hours on a cloth surface, although virus recovery from the cloth may have been suboptimal. Our results suggest that pandemic influenza A H1N1 can survive on common household fomites for extended periods of time, and that good hand hygiene and regular disinfection of commonly touched surfaces should be practiced during the influenza season to help reduce transmission. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  9. Laboratory Surge Response to Pandemic (H1N1) 2009 Outbreak, New York City Metropolitan Area, USA

    PubMed Central

    Crawford, James M.; Stallone, Robert; Zhang, Fan; Gerolimatos, Mary; Korologos, Diamanto D.; Sweetapple, Carolyn; de Geronimo, Marcella; Dlugacz, Yosef; Armellino, Donna M.

    2010-01-01

    The North Shore–Long Island Jewish Health System Laboratories serve 15 hospitals and affiliated regional physician practices in the New York City metropolitan area, with virus testing performed at a central reference laboratory. The influenza A pandemic (H1N1) 2009 outbreak began in this area on April 24, 2009, and within weeks respiratory virus testing increased 7.5 times. In response, laboratory and client service workforces were increased, physical plant build-out was completed, testing paradigms were converted from routine screening tests and viral culture to a high-capacity molecular assay for respiratory viruses, laboratory information system interfaces were built, and same-day epidemiologic reports were produced. Daily review by leadership of data from emergency rooms, hospital facilities, and the Health System Laboratories enabled real-time management of unfolding events. The ability of System laboratories to rapidly increase to high-volume comprehensive diagnostics, including influenza A subtyping, provided key epidemiologic information for local and state public health departments. PMID:20031036

  10. Laboratory surge response to pandemic (H1N1) 2009 outbreak, New York City metropolitan area, USA.

    PubMed

    Crawford, James M; Stallone, Robert; Zhang, Fan; Gerolimatos, Mary; Korologos, Diamanto D; Sweetapple, Carolyn; de Geronimo, Marcella; Dlugacz, Yosef; Armellino, Donna M; Ginocchio, Christine C

    2010-01-01

    The North Shore-Long Island Jewish Health System Laboratories serve 15 hospitals and affiliated regional physician practices in the New York City metropolitan area, with virus testing performed at a central reference laboratory. The influenza A pandemic (H1N1) 2009 outbreak began in this area on April 24, 2009, and within weeks respiratory virus testing increased 7.5 times. In response, laboratory and client service workforces were increased, physical plant build-out was completed, testing paradigms were converted from routine screening tests and viral culture to a high-capacity molecular assay for respiratory viruses, laboratory information system interfaces were built, and same-day epidemiologic reports were produced. Daily review by leadership of data from emergency rooms, hospital facilities, and the Health System Laboratories enabled real-time management of unfolding events. The ability of System laboratories to rapidly increase to high-volume comprehensive diagnostics, including influenza A subtyping, provided key epidemiologic information for local and state public health departments.

  11. International travelers as sentinels for sustained influenza transmission during the 2009 influenza A(H1N1)pdm09 pandemic.

    PubMed

    Davis, Xiaohong M; Hay, Kelly A; Plier, D Adam; Chaves, Sandra S; Lim, Poh Lian; Caumes, Eric; Castelli, Francesco; Kozarsky, Phyllis E; Cetron, Martin S; Freedman, David O

    2013-01-01

    International travelers were at risk of acquiring influenza A(H1N1)pdm09 (H1N1pdm09) virus infection during travel and importing the virus to their home or other countries. Characteristics of travelers reported to the GeoSentinel Surveillance Network who carried H1N1pdm09 influenza virus across international borders into a receiving country from April 1, 2009, through October 24, 2009, are described. The relationship between the detection of H1N1pdm09 in travelers and the level of H1N1pdm09 transmission in the exposure country as defined by pandemic intervals was examined using analysis of variance (anova). Among the 203 (189 confirmed; 14 probable) H1N1pdm09 case-travelers identified, 56% were male; a majority, 60%, traveled for tourism; and 20% traveled for business. Paralleling age profiles in population-based studies only 13% of H1N1pdm09 case-travelers were older than 45 years. H1N1pdm09 case-travelers sought pre-travel medical advice less often (8%) than travelers with non-H1N1pdm09 unspecified respiratory illnesses (24%), and less often than travelers with nonrespiratory illnesses (43%; p < 0.0001). The number of days from first official H1N1pdm09 case reported by a country to WHO and the first GeoSentinel site report of a H1N1pdm09-exported case in a traveler originated from that country was inversely associated with each country's assigned pandemic interval, or local level of transmission intensity. Detection of travel-related cases appeared to be a reliable indicator of sustained influenza transmission within the exposure country and may aid planning for targeted surveillance, interventions, and quarantine protocols. © 2013 International Society of Travel Medicine.

  12. Reassortment process after co-infection of pigs with avian H1N1 and swine H3N2 influenza viruses.

    PubMed

    Urbaniak, Kinga; Markowska-Daniel, Iwona; Kowalczyk, Andrzej; Kwit, Krzysztof; Pomorska-Mól, Małgorzata; Frącek, Barbara; Pejsak, Zygmunt

    2017-07-08

    The influenza A virus is highly variable, which, to some degree, is caused by the reassortment of viral genetic material. This process plays a major role in the generation of novel influenza virus strains that can emerge in a new host population. Due to the susceptibility of pigs to infections with avian, swine and human influenza viruses, they are considered intermediate hosts for the adaptation of the avian influenza virus to humans. In order to test the reassortment process in pigs, they were co-infected with H3N2 A/swine/Gent/172/2008 (Gent/08) and H1N1 A/duck/Italy/1447/2005 (Italy/05) and co-housed with a group of naïve piglets. The Gent/08 strains dominated over Italy/05, but reassortment occurred. The reassortant strains of the H1N1 subtype (12.5%) with one gene (NP or M) of swine-origin were identified in the nasal discharge of the contact-exposed piglets. These results demonstrate that despite their low efficiency, genotypically and phenotypically different influenza A viruses can undergo genetic exchange during co-infection of pigs.

  13. Genetic characterization of low pathogenic H5N1 and co-circulating avian influenza viruses in wild mallards (Anas platyrhynchos) in Belgium, 2008.

    PubMed

    Van Borm, S; Vangeluwe, D; Steensels, M; Poncin, O; van den Berg, T; Lambrecht, B

    2011-12-01

    As part of a long-term wild bird monitoring programme, five different low pathogenic (LP) avian influenza viruses (AIVs) were isolated from wild mallards (subtypes H1N1, H4N6, H5N1, H5N3, and H10N7). A LP H5N1 and two co-circulating (same location, same time period) viruses were selected for full genome sequencing. An H1N1 (A/Anas platyrhynchos/Belgium/09-762/2008) and an H5N1 virus (A/Anas platyrhynchos/Belgium/09-762-P1/2008) were isolated on the same day in November 2008, then an H5N3 virus (A/Anas platyrhynchos/09-884/2008) 5 days later in December 2008. All genes of these co-circulating viruses shared common ancestors with recent (2001 to 2007) European wild waterfowl influenza viruses. The H5N1 virus shares genome segments with both the H1N1 (PB1, NA, M) and the H5N3 (PB2, HA) viruses, and all three viruses share the same NS sequence. A double infection with two different PA segments from H5N1 and from H5N3 could be observed for the H1N1 sample. The observed gene constellations resulted from multiple reassortment events between viruses circulating in wild birds in Eurasia. Several internal gene segments from these 2008 viruses and the N3 sequence from the H5N3 show homology with sequences from 2003 H7 outbreaks in Italy (LP) and the Netherlands (highly pathogenic). These data contribute to the growing sequence evidence of the dynamic nature of the avian influenza natural reservoir in Eurasia, and underline the importance of monitoring AIV in wild birds. Genetic information of potential hazard to commercial poultry continues to circulate in this reservoir, including H5 and H7 subtype viruses and genes related to previous AIV outbreaks.

  14. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh.

    PubMed

    Haider, N; Sturm-Ramirez, K; Khan, S U; Rahman, M Z; Sarkar, S; Poh, M K; Shivaprasad, H L; Kalam, M A; Paul, S K; Karmakar, P C; Balish, A; Chakraborty, A; Mamun, A A; Mikolon, A B; Davis, C T; Rahman, M; Donis, R O; Heffelfinger, J D; Luby, S P; Zeidner, N

    2017-02-01

    Mortality in ducks and geese caused by highly pathogenic avian influenza A(H5N1) infection had not been previously identified in Bangladesh. In June-July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide appropriate

  15. North American triple reassortant and Eurasian H1N1 swine influenza viruses do not readily reassort to generate a 2009 pandemic H1N1-like virus.

    PubMed

    Ma, Wenjun; Liu, Qinfang; Qiao, Chuanling; del Real, Gustavo; García-Sastre, Adolfo; Webby, Richard J; Richt, Jürgen A

    2014-03-11

    The 2009 pandemic H1N1 virus (pH1N1) was derived through reassortment of North American triple reassortant and Eurasian avian-like swine influenza viruses (SIVs). To date, when, how and where the pH1N1 arose is not understood. To investigate viral reassortment, we coinfected cell cultures and a group of pigs with or without preexisting immunity with a Eurasian H1N1 virus, A/Swine/Spain/53207/2004 (SP04), and a North American triple reassortant H1N1 virus, A/Swine/Kansas/77778/2007 (KS07). The infected pigs were cohoused with one or two groups of contact animals to investigate viral transmission. In coinfected MDCK or PK15 continuous cell lines with KS07 and SP04 viruses, more than 20 different reassortant viruses were found. In pigs without or with preexisting immunity (immunized with commercial inactivated swine influenza vaccines) and coinfected with both viruses, six or seven reassortant viruses, as well as the parental viruses, were identified in bronchoalveolar lavage fluid samples from the lungs. Interestingly, only one or two viruses transmitted to and were detected in contact animals. No reassortant containing a gene constellation similar to that of pH1N1 virus was found in either coinfected cells or pigs, indicating that the reassortment event that resulted in the generation of this virus is a rare event that likely involved specific viral strains and/or a favorable, not-yet-understood environment. IMPORTANCE The 2009 pandemic-like H1N1 virus could not be reproduced either in cell cultures or in pigs coinfected with North American triple reassortant H1N1 and Eurasian H1N1 swine influenza viruses. This finding suggests that the generation of the 2009 pandemic H1N1 virus by reassortment was a rare event that likely involved specific viral strains and unknown factors. Different reassortant viruses were detected in coinfected pigs with and without preexisting immunity, indicating that host immunity plays a relevant role in driving viral reassortment of

  16. Outbreak of Influenza A (H3N2) Variant Virus Infection among Attendees of an Agricultural Fair, Pennsylvania, USA, 2011

    PubMed Central

    Greenbaum, Adena; Moll, Maria E.; Lando, James; Moore, Erin L.; Ganatra, Rahul; Biggerstaff, Matthew; Lam, Eugene; Smith, Erica E.; Storms, Aaron D.; Miller, Jeffrey R.; Dato, Virginia; Nalluswami, Kumar; Nambiar, Atmaram; Silvestri, Sharon A.; Lute, James R.; Ostroff, Stephen; Hancock, Kathy; Branch, Alicia; Trock, Susan C.; Klimov, Alexander; Shu, Bo; Brammer, Lynnette; Epperson, Scott; Finelli, Lyn; Jhung, Michael A.

    2012-01-01

    During August 2011, influenza A (H3N2) variant [A(H3N2)v] virus infection developed in a child who attended an agricultural fair in Pennsylvania, USA; the virus resulted from reassortment of a swine influenza virus with influenza A(H1N1)pdm09. We interviewed fair attendees and conducted a retrospective cohort study among members of an agricultural club who attended the fair. Probable and confirmed cases of A(H3N2)v virus infection were defined by serology and genomic sequencing results, respectively. We identified 82 suspected, 4 probable, and 3 confirmed case-patients who attended the fair. Among 127 cohort study members, the risk for suspected case status increased as swine exposure increased from none (4%; referent) to visiting swine exhibits (8%; relative risk 2.1; 95% CI 0.2–53.4) to touching swine (16%; relative risk 4.4; 95% CI 0.8–116.3). Fairs may be venues for zoonotic transmission of viruses with epidemic potential; thus, health officials should investigate respiratory illness outbreaks associated with agricultural events. PMID:23171635

  17. School illness absenteeism during 2009 influenza A (H1N1) pandemic--South Dakota, 2009-2010.

    PubMed

    Kightlinger, Lon; Horan, Vickie

    2013-05-01

    Schools are important amplification settings of influenza virus transmission. We demonstrated correlation of school absenteeism (due to any illness) with other influenza A (H1N1) activity surveillance data during the 2009 pandemic. We collected nonspecific illness student absenteeism data from August 17, 2009 through April 3, 2010 from 187 voluntarily participating South Dakota schools using weekly online surveys. Relative risks (RR) were calculated as the ratio of the probability of absenteeism during elevated weeks versus the probability of absenteeism during the baseline weeks (RR = 1.89). We used Pearson correlation to associate absenteeism with laboratory-confirmed influenza cases, influenza cases diagnosed by rapid tests, influenza-associated hospitalizations and deaths reported in South Dakota during the 2009 H1N1 pandemic period. School-absenteeism data correlated strongly with data from these other influenza surveillance sources.

  18. Population‐based surveillance for 2009 pandemic influenza A (H1N1) virus in Guatemala, 2009

    PubMed Central

    Reyes, Lissette; Arvelo, Wences; Estevez, Alejandra; Gray, Jennifer; Moir, Juan C.; Gordillo, Betty; Frenkel, Gal; Ardón, Francisco; Moscoso, Fabiola; Olsen, Sonja J.; Fry, Alicia M.; Lindstrom, Steve; Lindblade, Kim A.

    2010-01-01

    Please cite this paper as: Reyes et al. (2010) Population‐based surveillance for 2009 pandemic influenza A (H1N1) virus in Guatemala, 2009. Influenza and Other Respiratory Viruses 4(3), 129–140. Background  In April 2009, 2009 pandemic influenza A H1N1 (2009 H1N1) was first identified in Mexico but did not cause widespread transmission in neighboring Guatemala until several weeks later. Methodology and principle findings  Using a population‐based surveillance system for hospitalized pneumonia and influenza‐like illness ongoing before the 2009 H1N1 pandemic began, we tracked the onset of 2009 H1N1 infection in Guatemala. We identified 239 individuals infected with influenza A (2009 H1N1) between May and December 2009, of whom 76 were hospitalized with pneumonia and 11 died (case fatality proportion: 4·6%, 95% confidence interval [CI] 2·3–8·1%). The median age of patients infected with 2009 H1N1 was 8·8 years, the median age of those hospitalized with pneumonia was 4·2 years, and five (45·5%) deaths occurred in children <5 years old. Crude rates of hospitalization between May and December 2009 were highest for children <5 years old. Twenty‐one (27·6%) of the patients hospitalized with 2009 H1N1 were admitted to the intensive care unit and eight (10·5%) required mechanical ventilation. Underlying chronic conditions were noted in 14 (18·4%) of patients with pneumonia hospitalized with 2009 H1N1 infection. Conclusions and significance  Chronic illnesses may be underdiagnosed in Guatemala, making it difficult to identify this risk group for vaccination. Children 6 months to 5 years old should be among priority groups for vaccination to prevent serious consequences because of 2009 H1N1 infection. PMID:20409209

  19. Rapid detection of avian influenza virus a and subtype H5N1 by single step multiplex reverse transcription-polymerase chain reaction.

    PubMed

    Wei, Hui-Ling; Bai, Gui-Rong; Mweene, Aaron S; Zhou, Ying-Chun; Cong, Yan-Long; Pu, Juan; Wang, Shuai; Kida, Hiroshi; Liu, Jin-Hua

    2006-06-01

    Outbreaks of H5N1 highly pathogenic avian influenza (HPAI) virus caused great economic losses to the poultry industry and resulted in human deaths in Thailand and Viet Nam in 2004. Rapid typing and subtyping of H5N1 viruses, especially from clinical specimens, are desirable for taking prompt control measures to prevent the spread of the disease. Here, we developed a set of oligonucleotide primers able to detect, type and subtype H5 and N1 influenza viruses in a single step multiplex reverse transcription-polymerase chain reaction (RT-PCR). RNA was extracted from allantoic fluid or from specimens with guanidinium isothiocyanate reagent. Reverse transcription and PCR were carried out with a mixture of primers specific for influenza viruses of type A, subtype H5 and N1 in a single reaction system under identical conditions. The amplified DNA fragments were analyzed by agarose gel electrophoresis. All the H5N1 viruses tested in the study and the experimental specimens presented three specific bands by the method established here. The results presented here suggest that the method described below is rapid and specific and, therefore, could be valuable in the rapid detection of H5N1 influenza viruses in clinics.

  20. Victims and vectors: highly pathogenic avian influenza H5N1 and the ecology of wild birds

    USGS Publications Warehouse

    Takekawa, John Y.; Prosser, Diann J.; Newman, Scott H.; Muzaffar, Sabir Bin; Hill, Nichola J.; Yan, Baoping; Xiao, Xiangming; Lei, Fumin; Li, Tianxian; Schwarzbach, Steven E.; Howell, Judd A.

    2010-01-01

    The emergence of highly pathogenic avian influenza (HPAI) viruses has raised concerns about the role of wild birds in the spread and persistence of the disease. In 2005, an outbreak of the highly pathogenic subtype H5N1 killed more than 6,000 wild waterbirds at Qinghai Lake, China. Outbreaks have continued to periodically occur in wild birds at Qinghai Lake and elsewhere in Central China and Mongolia. This region has few poultry but is a major migration and breeding area for waterbirds in the Central Asian Flyway, although relatively little is known about migratory movements of different species and connectivity of their wetland habitats. The scientific debate has focused on the role of waterbirds in the epidemiology, maintenance and spread of HPAI H5N1: to what extent are they victims affected by the disease, or vectors that have a role in disease transmission? In this review, we summarise the current knowledge of wild bird involvement in the ecology of HPAI H5N1. Specifically, we present details on: (1) origin of HPAI H5N1; (2) waterbirds as LPAI reservoirs and evolution into HPAI; (3) the role of waterbirds in virus spread and persistence; (4) key biogeographic regions of outbreak; and (5) applying an ecological research perspective to studying AIVs in wild waterbirds and their ecosystems.

  1. A comparison of H1N1 influenza among pediatric inpatients in the pandemic and post pandemic era.

    PubMed

    Rao, Suchitra; Torok, Michelle R; Bagdure, Dayanand; Cunningham, Maureen A; Williams, Joshua T B; Curtis, Donna J; Wilson, Karen; Dominguez, Samuel R

    2015-10-01

    The novel influenza A H1N1 (A[H1N1]pdm09) strain emerged in 2009, contributing to significant morbidity and mortality. It is not known whether illness associated with A(H1N1) pdm09 in the post-pandemic era exhibits a similar disease profile. The objectives of this study were to compare the burden of disease of A(H1N1) pdm09 influenza from the 2009 pandemic year to the post-pandemic years (2010-2014), and to explore potential reasons for any differences. We conducted a retrospective cohort study of inpatients admitted to Children's Hospital Colorado with a positive respiratory specimen for influenza from May-December, 2009 and December, 2010-April, 2014. Univariate and multivariate analyses were conducted to compare the demographics and clinical characteristics of patients with H1N1 during the two periods. There were 388 inpatients with influenza A(H1N1) pdm09 in 2009, and 117 during the post-pandemic years. Ninety-four percent of all H1N1 during the post-pandemic era was observed during the 2013-2014 influenza season. Patients with A(H1N1) pdm09 during the post-pandemic year were less likely to have an underlying medical condition (P<0.01). Patients admitted to the ICU during the post-pandemic year had a lower median age (5 vs 8 years, P=0.01) and a lower proportion of patients were intubated, had mental status changes, and ARDS compared with the pandemic years, (P<0.01 for all), with decreased mortality (P=0.02). Patients with influenza A(H1N1) pdm09 during the post-pandemic years appeared to have less severe disease than patients with A(H1N1) pdm09 during the pandemic year. The reasons for this difference are likely multifactorial. Published by Elsevier B.V.

  2. Prevalence of Influenza A(H1N1)pdm09 Virus Resistant to Oseltamivir in Shiraz, Iran, During 2012 - 2013.

    PubMed

    Khodadad, Nastaran; Moattari, Afagh; Shamsi Shahr Abadi, Mahmoud; Kadivar, Mohammad Rahim; Sarvari, Jamal; Tavakoli, Forough; Pirbonyeh, Neda; Emami, Amir

    2015-08-01

    Oseltamivir has been used as a drug of choice for the prophylaxis and treatment of human influenza A(H1N1)pdm09 infection across the world. However, the most frequently identified oseltamivir resistant virus, influenza A(H1N1)pdm09, exhibit the H275Y substitution in NA gene. This study aimed to determine the prevalence and phylogenetic relationships of oseltamivir resistance in influenza A(H1N1)pdm09 viruses isolated in Shiraz, Iran. Throat swab samples were collected from 200 patients with influenza-like disease from December 2012 until February 2013. A total of 77 influenza A(H1N1)pdm09 positive strains were identified by real-time polymerase chain reaction (PCR). Oseltamivir resistance was detected using quantal assay and nested-PCR method. The NA gene sequencing was conducted to detect oseltamivir-resistant mutants and establish the phylogeny of the prevalent influenza variants. Our results revealed that A(H1N1)pdm09 viruses present in these samples were susceptible to oseltamivir, and contained 5 site specific mutations (V13G, V106I, V241I, N248D, and N369K) in NA gene. These mutations correlated with increasing expression and enzymatic activity of NA protein in the influenza A(H1N1)pdm09 viruses, which were closely related to a main influenza A(H1N1)pdm09 cluster isolated around the world. A(H1N1)pdm09 viruses, identified in this study in Shiraz, Iran, contained 5 site specific mutations and were susceptible to oseltamivir.

  3. H5N1 influenza vaccine induces a less robust neutralizing antibody response than seasonal trivalent and H7N9 influenza vaccines.

    PubMed

    Wong, Sook-San; DeBeauchamp, Jennifer; Zanin, Mark; Sun, Yilun; Tang, Li; Webby, Richard

    2017-01-01

    Conventional inactivated avian influenza vaccines have performed poorly in past vaccine trials, leading to the hypothesis that they are less immunogenic than seasonal influenza vaccines. We tested this hypothesis by comparing the immunogenicity of the H5N1 and H7N9 vaccines (avian influenza vaccines) to a seasonal trivalent inactivated influenza vaccine in naïve ferrets, administered with or without the adjuvants MF59 or AS03. Vaccine immunogenicity was assessed by measuring neutralizing antibody titers against hemagglutinin and neuraminidase and by hemagglutinin -specific IgG levels. Two doses of unadjuvanted vaccines induced low or no HA-specific IgG responses and hemagglutination-inhibiting titers. Adjuvanted vaccines induced comparable IgG-titers, but poorer neutralizing antibody titers for the H5 vaccine. All adjuvanted vaccines elicited detectable anti- neuraminidase -antibodies with the exception of the H5N1 vaccine, likely due to the low amounts of neuraminidase in the vaccine. Overall, the H5N1 vaccine had poorer capacity to induce neutralizing antibodies, but not HA-specific IgG, compared to H7N9 or trivalent inactivated influenza vaccine.

  4. Serological Cross-Reactions Between the Hemagglutinin Subunits of H0N1 and H1N1 Influenza Viruses Detected with “Monospecific” Antisera

    PubMed Central

    Baker, Nicola; Stone, H. O.; Webster, R. G.

    1973-01-01

    “Monospecific” antisera to the “fragile” hemaglutinnis of H0N1 (PR8) and H1N1 (FM1) influenza viruses detected an asymmetrical cross-reaction between these two strains that could not be explained by a common neuraminidase. Images PMID:4630797

  5. Sequential Infection in Ferrets with Antigenically Distinct Seasonal H1N1 Influenza Viruses Boosts Hemagglutinin Stalk-Specific Antibodies

    PubMed Central

    Kirchenbaum, Greg A.; Carter, Donald M.

    2015-01-01

    ABSTRACT Broadly reactive antibodies targeting the conserved hemagglutinin (HA) stalk region are elicited following sequential infection or vaccination with influenza viruses belonging to divergent subtypes and/or expressing antigenically distinct HA globular head domains. Here, we demonstrate, through the use of novel chimeric HA proteins and competitive binding assays, that sequential infection of ferrets with antigenically distinct seasonal H1N1 (sH1N1) influenza virus isolates induced an HA stalk-specific antibody response. Additionally, stalk-specific antibody titers were boosted following sequential infection with antigenically distinct sH1N1 isolates in spite of preexisting, cross-reactive, HA-specific antibody titers. Despite a decline in stalk-specific serum antibody titers, sequential sH1N1 influenza virus-infected ferrets were protected from challenge with a novel H1N1 influenza virus (A/California/07/2009), and these ferrets poorly transmitted the virus to naive contacts. Collectively, these findings indicate that HA stalk-specific antibodies are commonly elicited in ferrets following sequential infection with antigenically distinct sH1N1 influenza virus isolates lacking HA receptor-binding site cross-reactivity and can protect ferrets against a pathogenic novel H1N1 virus. IMPORTANCE The influenza virus hemagglutinin (HA) is a major target of the humoral immune response following infection and/or seasonal vaccination. While antibodies targeting the receptor-binding pocket of HA possess strong neutralization capacities, these antibodies are largely strain specific and do not confer protection against antigenic drift variant or novel HA subtype-expressing viruses. In contrast, antibodies targeting the conserved stalk region of HA exhibit broader reactivity among viruses within and among influenza virus subtypes. Here, we show that sequential infection of ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts the antibody responses

  6. Global Variability in Reported Mortality for Critical Illness during the 2009-10 Influenza A(H1N1) Pandemic: A Systematic Review and Meta-Regression to Guide Reporting of Outcomes during Disease Outbreaks.

    PubMed

    Duggal, Abhijit; Pinto, Ruxandra; Rubenfeld, Gordon; Fowler, Robert A

    2016-01-01

    To determine how patient, healthcare system and study-specific factors influence reported mortality associated with critical illness during the 2009-2010 Influenza A (H1N1) pandemic. Systematic review with meta-regression of studies reporting on mortality associated with critical illness during the 2009-2010 Influenza A (H1N1) pandemic. Medline, Embase, LiLACs and African Index Medicus to June 2009-March 2016. 226 studies from 50 countries met our inclusion criteria. Mortality associated with H1N1-related critical illness was 31% (95% CI 28-34). Reported mortality was highest in South Asia (61% [95% CI 50-71]) and Sub-Saharan Africa (53% [95% CI 29-75]), in comparison to Western Europe (25% [95% CI 22-30]), North America (25% [95% CI 22-27]) and Australia (15% [95% CI 13-18]) (P<0.0001). High income economies had significantly lower reported mortality compared to upper middle income economies and lower middle income economies respectively (P<0.0001). Mortality for the first wave was non-significantly higher than wave two (P = 0.66). There was substantial variability in reported mortality among the specific subgroups of patients: unselected critically ill adults (27% [95% CI 24-30]), acute respiratory distress syndrome (37% [95% CI 32-44]), acute kidney injury (44% [95% CI 26-64]), and critically ill pregnant patients (10% [95% CI 5-19]). Reported mortality for outbreaks and pandemics may vary substantially depending upon selected patient characteristics, the number of patients described, and the region and economic status of the outbreak location. Outcomes from a relatively small number of patients from specific regions may lead to biased estimates of outcomes on a global scale.

  7. Usefulness of CURB-65 and pneumonia severity index for influenza A H1N1v pneumonia.

    PubMed

    Estella, A

    2012-01-01

    Usefulness of CURB-65 and pneumonia severity index for influenza A H1N1v pneumonia. A. Estella. Different prognostic scales have been documented to assess the severity and indications for hospitalization and ICU admissions of community acquired pneumonia. During the past two years Influenza A H1N1v infections have been commonly attended to in emergency departments. The aim of the study was to analyse the usefulness of the application of the Pneumonia Severity Index (PSI) and CURB-65 prognostic scales in patients with primary viral pneumonia caused by influenza A H1N1v. A retrospective study was performed at a community hospital with a 17 bed-intensive care unit. Patients admitted in hospital with influenza A H1N1v pneumonia over a two year period were analysed. CURB 65 and PSI scales were applied in the emergency department and outcome and destination of admission were analysed. 24 patients were registered, 19 required ICU admission and 5 patients were admitted in medical wards. Most of the patients admitted to the intensive care unit (78.9%) required mechanical ventilation. Mortality was 21.1%. Most patients admitted to the ICU had CURB 65 scale of 1 (60%), 13.3% obtained 0 and 26.7% 2. PSI scale resulted class I in a 20%, class II 40%, 26.7% class IV and 13.3% class V. The scales CURB 65 and PSI showed no differences in scores according to the destination of admission and mortality. Use of CURB-65 and PSI in the emergency department may underestimate the risk of patients with Influenza A H1N1v pneumonia. Based in our results, the ability of these scales to predict ICU admissions for Influenza A H1N1v pneumonia is questioned.

  8. Efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the classical swine H1N1 subtype influenza virus in mice and pigs.

    PubMed

    Wen, Feng; Yu, Hai; Yang, Fu-Ru; Huang, Meng; Yang, Sheng; Zhou, Yan-Jun; Li, Ze-Jun; Tong, Guang-Zhi

    2014-11-01

    Swine influenza (SI) is an acute, highly contagious respiratory disease caused by swine influenza A viruses (SwIVs), and it poses a potential global threat to human health. Classical H1N1 (cH1N1) SwIVs are still circulating and remain the predominant subtype in the swine population in China. In this study, a high-growth reassortant virus (GD/PR8) harboring the hemagglutinin (HA) and neuraminidase (NA) genes from a novel cH1N1 isolate in China, A/Swine/Guangdong/1/2011 (GD/11) and six internal genes from the high-growth A/Puerto Rico/8/34(PR8) virus was generated by plasmid-based reverse genetics and tested as a candidate seed virus for the preparation of an inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice and pigs challenged with GD/11 virus. Prime and boost inoculation of GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting (HI) antibodies and IgG antibodies for GD/11 in both mice and pigs. Complete protection of mice and pigs against cH1N1 SIV challenge was observed, with significantly fewer lung lesions and reduced viral shedding in vaccine-inoculated animals compared with unvaccinated control animals. Our data demonstrated that the GD/PR8 may serve as the seed virus for a promising SwIVs vaccine to protect the swine population.

  9. Interleukin-6 Is a Potential Biomarker for Severe Pandemic H1N1 Influenza A Infection

    PubMed Central

    Paquette, Stéphane G.; Banner, David; Zhao, Zhen; Fang, Yuan; Huang, Stephen S. H.; Leόn, Alberto J.; Ng, Derek C. K.; Almansa, Raquel; Martin-Loeches, Ignacio; Ramirez, Paula; Socias, Lorenzo; Loza, Ana; Blanco, Jesus; Sansonetti, Paola; Rello, Jordi; Andaluz, David; Shum, Bianche; Rubino, Salvatore; de Lejarazu, Raul Ortiz; Tran, Dat; Delogu, Giovanni; Fadda, Giovanni; Krajden, Sigmund; Rubin, Barry B.; Bermejo-Martin, Jesús F.; Kelvin, Alyson A.; Kelvin, David J.

    2012-01-01

    Pandemic H1N1 influenza A (H1N1pdm) is currently a dominant circulating influenza strain worldwide. Severe cases of H1N1pdm infection are characterized by prolonged activation of the immune response, yet the specific role of inflammatory mediators in disease is poorly understood. The inflammatory cytokine IL-6 has been implicated in both seasonal and severe pandemic H1N1 influenza A (H1N1pdm) infection. Here, we investigated the role of IL-6 in severe H1N1pdm infection. We found IL-6 to be an important feature of the host response in both humans and mice infected with H1N1pdm. Elevated levels of IL-6 were associated with severe disease in patients hospitalized with H1N1pdm infection. Notably, serum IL-6 levels associated strongly with the requirement of critical care admission and were predictive of fatal outcome. In C57BL/6J, BALB/cJ, and B6129SF2/J mice, infection with A/Mexico/4108/2009 (H1N1pdm) consistently triggered severe disease and increased IL-6 levels in both lung and serum. Furthermore, in our lethal C57BL/6J mouse model of H1N1pdm infection, global gene expression analysis indicated a pronounced IL-6 associated inflammatory response. Subsequently, we examined disease and outcome in IL-6 deficient mice infected with H1N1pdm. No significant differences in survival, weight loss, viral load, or pathology were observed between IL-6 deficient and wild-type mice following infection. Taken together, our findings suggest IL-6 may be a potential disease severity biomarker, but may not be a suitable therapeutic target in cases of severe H1N1pdm infection due to our mouse data. PMID:22679491

  10. Continual re-introduction of human pandemic H1N1 influenza A viruses into US swine, 2009-2014

    USDA-ARS?s Scientific Manuscript database

    Human-to-swine transmission of pandemic H1N1 influenza viruses (pH1N1) increased the genetic diversity of influenza A viruses in swine (swIAVs) globally and is linked to the emergence of new pandemic threats, including H3N2v variants. Through phylogenetic analysis of contemporary swIAVs in the Unit...

  11. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses.

    PubMed

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-09-24

    The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decreased. Both the H1N1 and H1N2 infected pigs lacked gross lesions at PID 2, but they showed moderate to severe pneumonia on PID 4, 7 and 14. The pigs infected with H1N1 had significant scores of gross and histopathological lesions when compared with the other pigs infected with H1N2, H3N2, and mock at PID 14. Mean SIV antigen-positive scores were rarely detected for pigs infected with H1N2 and H3N2 from PID 7, whereas a significantly increased amount of viral antigens were found in the bronchioles and alveolar epithelium of the H1N1infected pigs at PID 14. We demonstrated that Korean SIV subtypes had different pulmonary pathologic patterns. The Korean H3N2 rapidly induced acute lung lesions such as broncho-interstitial pneumonia, while the Korean H1N1 showed longer course of infection as compared to other strains.

  12. Divergent genetic evolution of hemagglutinin in influenza A H1N1 and A H1N2 subtypes isolated in the south-France since the winter of 2001-2002.

    PubMed

    Al Faress, Shaker; Cartet, Gaëlle; Ferraris, Olivier; Norder, Helene; Valette, Martine; Lina, Bruno

    2005-07-01

    Influenza A viruses are divided into subtypes based on their hemagglutinin (H1 to H15) and neuraminidase (N1 to N9) glycoproteins. Of these, three A subtypes H1N1, H3N2 and H1N2 circulate in the human population. Influenza A viruses display a high antigenic variability called "antigenic drift" which allows the virus to escape antibody neutralization. Evaluate the mutations apparition that might predict a divergent antigenic evolution of hemagglutinin in influenza A H1N1 and A H1N2 viruses. During the three winters of 2001-2002 to 2003-2004, 58 A H1N1 and 23 A H1N2 subtypes have been isolated from patients with influenza-like illness in the south of France. The HA1 region was analyzed by RT-PCR and subsequently sequenced to compare the HA1 genetic evolution of influenza A H1N1 and A H1N2 subtypes. Our results showed that 28 amino acid substitutions have accumulated in the HA1 region since the circulation of A/New Caledonia/20/99-like viruses in France. Of these, fifteen were located in four antigenic sites (B, C, D and E). Six of them were observed only in the A H1N2 isolates, six only in the A H1N1 isolates and three in both subtypes. Furthermore, nine of twenty two A H1N2 isolates from the winter of 2002-2003 shared a T90A amino acid change which has not been observed in any A H1N1 isolate; resulting in the introduction of a new glycosylation site close to the antigenic site E. This might mask some antigenic E determinants and therefore, modify the A H1N2 antigenicity. The divergent genetic evolution of hemagglutinin may ultimately lead to a significant different antigenicity between A H1N1 and A H1N2 subtypes that would require the introduction of a new subtype in the vaccine batches.

  13. Influenza preparedness and the bureaucratic reflex: anticipating and generating the 2009 H1N1 event.

    PubMed

    Barker, Kezia

    2012-07-01

    This paper draws together work on the event to problematise the generative implications of anticipatory governance in the management of emerging infectious disease. Through concerns for preparedness, the need to anticipate outbreaks of disease has taken on a new urgency. With the identification of the H1N1 virus circulating amongst human populations in 2009, public health measures and security practices at regional, national and international levels were rapidly put into play. However, as the ensuing event demonstrated, the social, political and economic disruptions of emerging infectious diseases can be matched by those of anticipatory actions. I argue that the event-making potential of surveillance practices and the pre-determined arrangements of influenza preparedness planning, when triggered by the H1N1 virus, caused an event acceleration through the hyper-sensitised global health security architecture. In the UK, this led to a bureaucratic reflex, a security response event that overtook the present actualities of the disease. This raises questions about the production of forms of insecurity by the security apparatus itself. Copyright © 2012. Published by Elsevier Ltd.

  14. Two genotypes of H1N2 swine influenza viruses appeared among pigs in China.

    PubMed

    Xu, Chuantian; Zhu, Qiyun; Yang, Huanliang; Zhang, Xiumei; Qiao, Chuanling; Chen, Yan; Xin, Xiaoguang; Chen, Hualan

    2009-10-01

    H1N2 is one of the main subtypes of influenza, which circulates in swine all over the world. To investigate the prevalence and genetic of H1N2 in swine of China. Two H1N2 swine influenza viruses were isolated from Tianjin and Guangdong province of China in 2004 and 2006, respectively. The molecular evolution of eight gene segments was analyzed. A/Swine/Tianjin/1/2004 has low identity with A/Swine/Guangdong/2006; in the phylogenetic tree of PA gene, A/Swine/Guangdong/1/2006 and A/Swine/Guangxi/1/2006 along with the H1N2 swine isolates of North America formed a cluster; and A/Swine/Tianjin/2004 and A/Swine/Zhejiang/2004, along with the classical H1N1 swine isolates formed another cluster; except that NA gene of A/Swine/Tianjin/1/2004 fell into the cluster of the H3N2 human influenza virus, indicating the reassortment between H3N2 human and H1N1 swine influenza viruses. Two different genotypes of H1N2 appeared among pigs in China. A/swine/Guangdong/1/06 was probably from H1N2 swine influenza viruses of North America; while A/swine/Tianjin/1/04 maybe come from reassortments of classical H1N1 swine and H3N2 human viruses prevalent in North America.

  15. Effectiveness of monovalent 2009 pandemic influenza A virus subtype H1N1 and 2010-2011 trivalent inactivated influenza vaccines in Wisconsin during the 2010-2011 influenza season.

    PubMed

    Bateman, Allen C; Kieke, Burney A; Irving, Stephanie A; Meece, Jennifer K; Shay, David K; Belongia, Edward A

    2013-04-15

    The 2009 influenza A virus subtype H1N1 (A[H1N1]pdm09) did not exhibit antigenic drift during the 2010-2011 influenza season, providing an opportunity to investigate the duration of protection after vaccination. We estimated the independent effects of 2010-2011 seasonal trivalent inactivated influenza vaccine (TIV) and A(H1N1)pdm09 vaccine for preventing medically attended influenza A virus infection during the 2010-2011 season. Individuals were tested for influenza A virus by real-time reverse transcription polymerase chain reaction (rRT-PCR) after a clinical encounter for acute respiratory illness. Case-control analyses compared participants with rRT-PCR-confirmed influenza A virus infection and test-negative controls. Vaccine effectiveness was estimated separately for monovalent pandemic vaccine and TIV and was calculated as 100 × [1 - adjusted odds ratio], where the odds ratio was adjusted for potential confounders. The effectiveness of TIV against influenza A virus infection was 63% (95% confidence interval [CI], 37%-78%). The effectiveness of TIV against A(H1N1)pdm09 infection was 77% (95% CI, 44%-90%). Monovalent vaccine administered between October 2009 and April 2010 was not protective during the 2010-2011 season, with an effectiveness of -1% (95% CI, -146% to 59%) against A(H1N1)pdm09 infection.  Monovalent vaccine provided no sustained protection against A(H1N1)pdm09 infection during the 2010-2011 season. This waning effectiveness supports the need for annual revaccination, even in the absence of antigenic drift in A(H1N1)pdm09.

  16. A novel monoclonal antibody effective against lethal challenge with swine-lineage and 2009 pandemic H1N1 influenza viruses in mice

    USDA-ARS?s Scientific Manuscript database

    The HA protein of the 2009 pandemic H1N1viruses (14 H1N1pdm) is antigenically closely related to the HA of classical North American swine H1N1 influenza viruses (cH1N1). Since 1998, through reassortment and incorporation of HA genes from human H3N2 and H1N1 influenza viruses, swine influenza strains...

  17. Absence of cross‐reactive antibodies to influenza A (H1N1) 2009 before and after vaccination with 2009 Southern Hemisphere seasonal trivalent influenza vaccine in children aged 6 months–9 years: a prospective study

    PubMed Central

    McVernon, Jodie; Laurie, Karen; Barr, Ian; Kelso, Anne; Skeljo, Maryanne; Nolan, Terry

    2010-01-01

    Please cite this paper as: McVernon et al. (2010) Absence of cross‐reactive antibodies to influenza A (H1N1) 2009 before and after vaccination with 2009 Southern Hemisphere seasonal trivalent influenza vaccine in children aged 6 months–9 years: a prospective study. Influenza and Other Respiratory Viruses 5(1), 7–11. Background  Early outbreaks of the pandemic influenza A (H1N1) 2009 virus predominantly involved young children, who fuelled transmission through spread in homes and schools. Seroprevalence studies conducted on stored serum collections indicated low levels of antibody to the novel strain in this age group, leading many to recommend priority immunisation of paediatric populations. Objectives  In a prospective study, we sought evidence of cross‐reactive antibodies to the pandemic virus in children who were naïve to seasonal influenza vaccines, at baseline and following two doses of the 2009 Southern Hemisphere trivalent influenza vaccine (TIV). Patients/Methods  Twenty children were recruited, with a median age of 4 years (interquartile range 3–5 years); all received two age appropriate doses of TIV. Paired sera were collected pre‐ and post‐vaccination for the assessment of vaccine immunogenicity, using haemagglutination inhibition and microneutralisation assays against vaccine‐related viruses and influenza A (H1N1) 2009. Results  Robust responses to H3N2 were observed regardless of age or pre‐vaccination titre, with 100% seroconversion. Fewer seroconverted to the seasonal H1N1 component. Only two children were weakly seropositive (HI titre 40) to the pandemic H1N1 strain at study entry, and none showed evidence of seroconversion by HI assay following TIV administration. Conclusions  Administration of 2009 Southern Hemisphere TIV did little to elicit cross‐reactive antibodies to the pandemic H1N1 virus in children, in keeping with assay results on stored sera from studies of previous seasonal vaccines. Our findings

  18. Signal Immune Reactions of Macrophages Differentiated from THP-1 Monocytes to Infection with Pandemic H1N1PDM09 Virus and H5N2 and H9N2 Avian Influenza A Virus.

    PubMed

    Sokolova, T M; Poloskov, V V; Shuvalov, A N; Rudneva, I A; Timofeeva, T A

    2018-03-01

    In culture of THP-1 cells differentiated into macrophages with PMA (THP-PMA macrophages) infected with influenza viruses of subtypes H1, H5 and H9, we measured the expression of TLR7 and RIG1 receptor genes, sensors of viral RNA and ribonucleoprotein, and the levels of production of inflammatory cytokines IL-1β, TNFα, IL-10, and IFNα. The sensitivity and inflammatory response of THP-PMA macrophages to pandemic influenza A virus H1N1pdm09 and avian influenza H5N2 and H9N2 viruses correlate with the intracellular level of their viral RNA and activation of the RIG1 gene. Abortive infection is accompanied by intensive macrophage secretion of TNFα, IL-1β, and toxic factors inducing cell death. Activity of endosomal TLR7 receptor gene changed insignificantly in 24 h after infection and significantly decreased in 48 and 72 h under the action of H5N2 and H9N2, which correlated with manifestation of the cytopathogenic effect of these viruses. H5N2 and H9N2 avian viruses in THP-PMA macrophages are strong activators of the expression of the gene of the cytoplasmic RIG1 receptor 24 and 48 h after infection, and the pandemic virus H1N1pdm09 is a weak stimulator of RIG1 gene. Avian influenza H5N2 and H9N2 viruses are released by rapid induction of the inflammatory response in macrophages. At the late stages of infection, we observed a minor increase in IL-10 secretion in macrophages and, probably, the polarization of a part of the population in type M2. The studied influenza A viruses are weak inductors of IFN in THP-PMA macrophages. In the culture medium of THP-PMA macrophages infected with H9N2 and H5N2 viruses, MTT test revealed high levels of toxic factors causing the death of Caco-2 cells. In contrast to avian viruses, pandemic virus H1N1pdm09 did not induce production of toxic factors.

  19. Clinical and Virological Factors Associated with Viremia in Pandemic Influenza A/H1N1/2009 Virus Infection

    PubMed Central

    Tse, Herman; To, Kelvin K. W.; Wen, Xi; Chen, Honglin; Chan, Kwok-Hung; Tsoi, Hoi-Wah; Li, Iris W. S.; Yuen, Kwok-Yung

    2011-01-01

    Background Positive detection of viral RNA in blood and other non-respiratory specimens occurs in severe human influenza A/H5N1 viral infection but is not known to occur commonly in seasonal human influenza infection. Recently, viral RNA was detected in the blood of patients suffering from severe pandemic influenza A/H1N1/2009 viral infection, although the significance of viremia had not been previously studied. Our study aims to explore the clinical and virological factors associated with pandemic influenza A/H1N1/2009 viremia and to determine its clinical significance. Methodology/Principal Findings Clinical data of patients admitted to hospitals in Hong Kong between May 2009 and April 2010 and tested positive for pandemic influenza A/H1N1/2009 was collected. Viral RNA was detected by reverse-transcription polymerase chain reactions (RT-PCR) targeting the matrix (M) and HA genes of pandemic influenza A/H1N1/2009 virus from the following specimens: nasopharyngeal aspirate (NPA), endotracheal aspirate (ETA), blood, stool and rectal swab. Stool and/ or rectal swab was obtained only if the patient complained of any gastrointestinal symptoms. A total of 139 patients were included in the study, with viral RNA being detected in the blood of 14 patients by RT-PCR. The occurrence of viremia was strongly associated with a severe clinical presentation and a higher mortality rate, although the latter association was not statistically significant. D222G/N quasispecies were observed in 90% of the blood samples. Conclusion Presence of pandemic influenza A/H1N1/2009 viremia is an indicator of disease severity and strongly associated with D222G/N mutation in the viral hemagglutinin protein. PMID:21980333

  20. Winthrop-University Hospital Infectious Disease Division's swine influenza (H1N1) pneumonia diagnostic weighted point score system for hospitalized adults with influenza-like illnesses (ILIs) and negative rapid influenza diagnostic tests (RIDTs).

    PubMed

    Cunha, Burke A; Syed, Uzma; Stroll, Stephanie; Mickail, Nardeen; Laguerre, Marianne

    2009-01-01

    In spring 2009, a novel strain of influenza A originating in Veracruz, Mexico, quickly spread to the United States and throughout the world. This influenza A virus was the product of gene reassortment of 4 different genetic elements: human influenza, swine influenza, avian influenza, and Eurasian swine influenza. In the United States, New York was the epicenter of the swine influenza (H1N1) pandemic. Hospital emergency departments (EDs) were inundated with patients with influenza-like illnesses (ILIs) requesting screening for H1N1. Our ED screening, as well as many others, used a rapid screening test for influenza A (QuickVue A/B) because H1N1 was a variant of influenza A. The definitive laboratory test i.e., RT-PCR for H1N1 was developed by the Centers for Disease Control (Atlanta, GA) and subsequently distributed to health departments. Because of the extraordinary volume of test requests, health authorities restricted reverse transcription polymerase chain reaction (RT-PCR) testing. Hence most EDs, including our own, were dependent on rapid influenza diagnostic tests (RIDTs) for swine influenza. A positive rapid influenza A test was usually predictive of RT-PCR H1N1 positivity, but the rapid influenza A screening test (QuickVue A/B) was associated with 30% false negatives. The inability to rely on RIDTs for H1N1 diagnosis resulted in underdiagnosing H1N1. Confronted with adults admitted with ILIs, negative RIDTs, and restricted RT-PCR testing, there was a critical need to develop clinical criteria to diagnose probable swine influenza H1N1 pneumonia. During the pandemic, the Infectious Disease Division at Winthrop-University Hospital developed clinical criteria for adult admitted patients with ILIs and negative RIDTs. Similar to the one developed for the clinical diagnosis of legionnaire's disease. The Winthrop-University Hospital Infectious Disease Division's diagnostic weighted point score system for swine influenza H1N1 pneumonia is based on key clinical and

  1. Infant Respiratory Outcomes Associated with Prenatal Exposure to Maternal 2009 A/H1N1 Influenza Vaccination.

    PubMed

    Fell, Deshayne B; Wilson, Kumanan; Ducharme, Robin; Hawken, Steven; Sprague, Ann E; Kwong, Jeffrey C; Smith, Graeme; Wen, Shi Wu; Walker, Mark C

    2016-01-01

    Infants are at high risk for influenza illness, but are ineligible for vaccination before 6 months. Transfer of maternal antibodies to the fetus has been demonstrated for 2009 A/H1N1 pandemic vaccines; however, clinical effectiveness is unknown. Our objective was to evaluate the association between 2009 A/H1N1 pandemic vaccination during pregnancy and rates of infant influenza and pneumonia. We linked a population-based birth cohort to administrative databases to measure rates of influenza and pneumonia diagnosed during ambulatory physician visits, hospitalizations and emergency department visits during one year of follow-up. We estimated incidence rate ratios and 95% confidence intervals (95% CI) using Poisson regression, comparing infants born to A/H1N1-vaccinated women (vaccine-exposed infants) with unexposed infants, adjusted for confounding using high-dimensional propensity scores. Among 117,335 infants in the study, 36,033 (31%) were born to A/H1N1-vaccinated women. Crude rates of influenza during the pandemic (per 100,000 infant-days) for vaccine-exposed and unexposed infants were similar (2.19, 95% CI: 1.27-3.76 and 3.60, 95% CI: 2.51-5.14, respectively), as were crude rates of influenza and pneumonia combined. We did not observe any significant differences in rates of study outcomes between study groups during the second wave of the 2009 A/H1N1 pandemic, nor during any post-pandemic time period. We observed no difference in rates of study outcomes among infants born to A/H1N1-vaccinated mothers relative to unexposed infants born during the second A/H1N1 pandemic wave; however, due to late availability of the pandemic vaccine, the available follow-up time during the pandemic time period was very limited.

  2. Efficacy of Live-Attenuated H9N2 Influenza Vaccine Candidates Containing NS1 Truncations against H9N2 Avian Influenza Viruses.

    PubMed

    Chen, Sujuan; Zhu, Yinbiao; Yang, Da; Yang, Yang; Shi, Shaohua; Qin, Tao; Peng, Daxin; Liu, Xiufan

    2017-01-01

    H9N2 avian influenza virus is a zoonotic agent with a broad host range that can contribute genetic information to H5 or H7N9 subtype viruses, which are significant threats to both humans and birds. Thus, there is a great need for a vaccine to control H9N2 avian influenza. Three mutant viruses of an H9N2 virus A/chicken/Taixing/10/2010 (rTX-NS1-73, rTX-NS1-100, and rTX-NS1-128) were constructed with different NS1 gene truncations and confirmed by western blot analysis. The genetic stability, pathogenicity, transmissibility, and host immune responses toward these mutants were evaluated. The mutant virus rTX-NS1-128 exhibited the most attenuated phenotype and lost transmissibility. The expression levels of interleukin 12 in the nasal and tracheal tissues from chickens immunized with rTX-NS1-128 were significantly upregulated on day 3 post-immunization and the IgA and IgG antibody levels were significantly increased on days 7, 14, and 21 post-immunization when compared to chickens that received an inactivated vaccine. rTX-NS1-128 also protected chickens from challenge by homologous and heterologous H9N2 avian influenza viruses. The results indicate that rTX-NS1-128 can be used as a potential live-attenuated vaccine against H9N2 avian influenza.

  3. The role of rapid testing and clinical decision in the diagnosis of human influenza A H1N1 infection.

    PubMed

    BinSaeed, Abdulaziz A; Siddiqui, Amna R; Mandil, Ahmed M; Torchyan, Armen A; Tayel, Salwa A; Shaikh, Shaffi A; Habib, Hanan A; Al-Khattaf, Abdulaziz S

    2014-03-01

    To evaluate the role of the rapid influenza diagnostic test (RIDT) and clinical decision in the diagnosis of H1N1. In November 2009, 290 suspected influenza patients were examined for H1N1 during an outbreak in Riyadh, Saudi Arabia. Nasopharyngeal swabs were analyzed using Directigen EZ Flu A+B kit. Monoclonal anti-human influenza A/B and reverse transcription- polymerase chain reaction (RT-PCR) were used. Positive and negative controls were used in each run of specimens. Validity indices were calculated for RIDT and clinical diagnostic criteria. The sensitivity and specificity of RIDT were 40.5% (95% confidence interval [CI]: 33.0-48.5), and 94.5% (95% CI: 88.6-97.6). The sensitivity of clinical decision was 66.3% (95% CI: 58.4-73.4), and the specificity was 65.4% (95% CI: 56.3-73.4). The sensitivity of clinical decision was higher in early presenters (79.2%; 95% CI: 57.3-92.1). The RIDT sensitivity was higher in younger patients (48.4%; 95% CI: 35.7-61.3). The positive predictive value (PPV) was 90.4% (95% CI: 80.7-95.7) for RIDT, and 71.1% (95% CI: 63.1-78.0) for clinical decision. The PPV for RIDT was greater for older (94.7%; 95% CI: 80.9-99.1) and late (90.7%; 95% CI: 76.9-97.0) presenters. The adjusted odds ratio for clinical decision was significant for cough, headache, and fatigue. The RIDT can be useful in epidemics and high prevalence areas, whereas clinical decision, and RT-PCR complement the diagnosis of H1N1 in any setting.

  4. The first Swedish H1N2 swine influenza virus isolate represents an uncommon reassortant.

    PubMed

    Bálint, Adám; Metreveli, Giorgi; Widén, Frederik; Zohari, Siamak; Berg, Mikael; Isaksson, Mats; Renström, Lena Hm; Wallgren, Per; Belák, Sándor; Segall, Thomas; Kiss, István

    2009-10-28

    The European swine influenza viruses (SIVs) show considerable diversity comprising different types of H1N1, H3N2, and H1N2 strains. The intensifying full genome sequencing efforts reveal further reassortants within these subtypes. Here we report the identification of an uncommon reassortant variant of H1N2 subtype influenza virus isolated from a pig in a multisite herd where H1N2 swine influenza was diagnosed for the first time in Sweden during the winter of 2008-2009. The majority of the European H1N2 swine influenza viruses described so far possess haemagglutinin (HA) of the human-like H1N2 SIV viruses and the neuraminidase (NA) of either the European H1N2 or H3N2 SIV-like viruses. The Swedish isolate has an avian-like SIV HA and a H3N2 SIV-like NA, which is phylogenetically more closely related to H3N2 SIV NAs from isolates collected in the early '80s than to the NA of H3N2 origin of the H1N2 viruses isolated during the last decade, as depicted by some German strains, indicative of independent acquisition of the NA genes for these two types of reassortants. The internal genes proved to be entirely of avian-like SIV H1N1 origin. The prevalence of this SIV variant in pig populations needs to be determined, as well as the suitability of the routinely used laboratory reagents to analyze this strain.The description of this H1N2 SIV adds further information to influenza epidemiology and supports the necessity of surveillance for influenza viruses in pigs.

  5. Factors Influencing School Closure and Dismissal Decisions: Influenza A (H1N1), Michigan 2009

    ERIC Educational Resources Information Center

    Dooyema, Carrie A.; Copeland, Daphne; Sinclair, Julie R.; Shi, Jianrong; Wilkins, Melinda; Wells, Eden; Collins, Jim

    2014-01-01

    Background: In fall 2009, many US communities experienced school closures during the influenza A H1N1 pandemic (pH1N1) and the state of Michigan reported 567 closures. We conducted an investigation in Michigan to describe pH1N1-related school policies, practices, and identify factors related to school closures. Methods: We distributed an online…

  6. Virological and pathological characterization of an avian H1N1 influenza A virus.

    PubMed

    Koo, Bon-Sang; Kim, Hye Kwon; Song, Daesub; Na, Woonsung; Song, Min-Suk; Kwon, Jin Jung; Wong, Sook-San; Noh, Ji Yeong; Ahn, Min-Ju; Kim, Doo-Jin; Webby, Richard J; Yoon, Sun-Woo; Jeong, Dae Gwin

    2018-05-01

    Gene segments from avian H1N1 influenza A viruses have reassorted with other influenza viruses to generate pandemic strains over the past century. Nevertheless, little effort has been invested in understanding the characteristics of avian H1N1 influenza viruses. Here, we present the genome sequence and a molecular and virological characterization of an avian influenza A virus, A/wild bird/Korea/SK14/2014 (A/SK14, H1N1), isolated from migratory birds in South Korea during the winter season of 2014-2015. Full-genome sequencing and phylogenetic analysis revealed that the virus belongs to the Eurasian avian lineage. Although it retained avian-receptor binding preference, A/SK14 virus also exhibited detectable human-like receptor binding and was able to replicate in differentiated primary normal human bronchial epithelial cells. In animal models, A/SK14 virus was moderately pathogenic in mice, and virus was detected in nasal washes from inoculated guinea pigs, but not in direct-contact guinea pigs. Although A/SK14 showed moderate pathogenicity and no evidence of transmission in a mammalian model, our results suggest that the dual receptor specificity of A/SK14-like virus might allow for a more rapid adaptation to mammals, emphasizing the importance of further continuous surveillance and risk-assessment activities.

  7. Broadly-reactive human monoclonal antibodies elicited following pandemic H1N1 influenza virus exposure protect mice from highly pathogenic H5N1 challenge.

    PubMed

    Nachbagauer, Raffael; Shore, David; Yang, Hua; Johnson, Scott K; Gabbard, Jon D; Tompkins, S Mark; Wrammert, Jens; Wilson, Patrick C; Stevens, James; Ahmed, Rafi; Krammer, Florian; Ellebedy, Ali H

    2018-06-13

    Broadly cross-reactive antibodies that recognize conserved epitopes within the influenza virus hemagglutinin (HA) stalk domain are of particular interest for their potential use as therapeutic and prophylactic agents against multiple influenza virus subtypes including zoonotic virus strains. Here, we characterized four human HA stalk-reactive monoclonal antibodies (mAbs) for their binding breadth and affinity, in vitro neutralization capacity, and in vivo protective potential against an highly pathogenic avian influenza virus. The monoclonal antibodies were isolated from individuals shortly following infection with (70-1F02 and 1009-3B05) or vaccination against (05-2G02 and 09-3A01) A(H1N1)pdm09. Three of the mAbs bound HAs from multiple strains of group 1 viruses, and one mAb, 05-2G02, bound to both group 1 and group 2 influenza A HAs. All four antibodies prophylactically protected mice against a lethal challenge with the highly pathogenic A/Vietnam/1203/04 (H5N1) strain. Two mAbs, 70-1F02 and 09-3A01, were further tested for their therapeutic efficacy against the same strain and showed good efficacy in this setting as well. One mAb, 70-1F02, was co-crystallized with H5 HA and showed similar heavy chain only interactions as a the previously described anti-stalk antibody CR6261. Finally, we showed that antibodies that compete with these mAbs are prevalent in serum from an individual recently infected with A(H1N1)pdm09 virus. The antibodies described here can be developed into broad-spectrum antiviral therapeutics that could be used to combat infections with zoonotic or emerging pandemic influenza viruses. IMPORTANCE The rise in zoonotic infections of humans with emerging influenza viruses is a worldwide public health concern. The majority of recent zoonotic human influenza cases were caused by H7N9 and H5Nx viruses and were associated with high morbidity and mortality. In addition, seasonal influenza viruses are estimated to cause up to 650,000 deaths annually

  8. HA222 polymorphism in Influenza A(H1N1) 2009 isolates from Intensive Care Units and ambulatory patients during three influenza seasons.

    PubMed

    Corcioli, F; Arvia, R; Pierucci, F; Clausi, V; Bonizzoli, M; Peris, A; Azzi, A

    2014-02-13

    Amino acid substitutions which can affect the receptor binding specificity of the influenza virus, like the substitution of aspartic acid with glycine in position 222 of the haemagglutinin (HA) of influenza virus A(H1N1) 2009, have been associated with increased viral pathogenicity and increased tropism for the lower respiratory tract. In this paper, the polymorphic site 222 and the site 223 of the HA1 polypeptide of H1N1 2009 viruses were analyzed in order to better clarify the role of these substitutions in H1N1 2009 virus virulence. Viral strains included in this study were collected in Tuscany during 3 different influenza seasons from patients with severe as well as with mild forms of influenza caused by A(H1N1) 2009 virus. In addition, the oseltamivir resistance of the H1N1 2009 strains circulating during the same seasons was monitored with the aim to evaluate whether these changes in the HA and in neuraminidase (NA) tend to be linked and to influence each other. Altogether, the results indicate that in severe forms of influenza viral population is more variable than in mild influenza, as regards the site 222. The frequency of such substitutions varied among the three seasons, it was highest in the season 2010-2011 and very low in the season 2012-2013. However these differences were not significant. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. International Laboratory Comparison of Influenza Microneutralization Assays for A(H1N1)pdm09, A(H3N2), and A(H5N1) Influenza Viruses by CONSISE

    PubMed Central

    Engelhardt, Othmar G.; Wood, John; Heath, Alan; Katz, Jacqueline M.; Peiris, Malik; Hoschler, Katja; Hungnes, Olav; Zhang, Wenqing; Van Kerkhove, Maria D.

    2015-01-01

    The microneutralization assay is commonly used to detect antibodies to influenza virus, and multiple protocols are used worldwide. These protocols differ in the incubation time of the assay as well as in the order of specific steps, and even within protocols there are often further adjustments in individual laboratories. The impact these protocol variations have on influenza serology data is unclear. Thus, a laboratory comparison of the 2-day enzyme-linked immunosorbent assay (ELISA) and 3-day hemagglutination (HA) microneutralization (MN) protocols, using A(H1N1)pdm09, A(H3N2), and A(H5N1) viruses, was performed by the CONSISE Laboratory Working Group. Individual laboratories performed both assay protocols, on multiple occasions, using different serum panels. Thirteen laboratories from around the world participated. Within each laboratory, serum sample titers for the different assay protocols were compared between assays to determine the sensitivity of each assay and were compared between replicates to assess the reproducibility of each protocol for each laboratory. There was good correlation of the results obtained using the two assay protocols in most laboratories, indicating that these assays may be interchangeable for detecting antibodies to the influenza A viruses included in this study. Importantly, participating laboratories have aligned their methodologies to the CONSISE consensus 2-day ELISA and 3-day HA MN assay protocols to enable better correlation of these assays in the future. PMID:26108286

  10. US school morbidity and mortality, mandatory vaccination, institution closure, and interventions implemented during the 2009 influenza A H1N1 pandemic.

    PubMed

    Rebmann, Terri; Elliott, Michael B; Swick, Zachary; Reddick, David

    2013-03-01

    The 2009 H1N1 pandemic disproportionately affected school-aged children, but only school-based outbreak case studies have been conducted. The purposes of this study were to evaluate US academic institutions' experiences during the 2009 H1N1 pandemic in terms of infection prevention interventions implemented and to examine factors associated with school closure during the pandemic. An online survey was sent to school nurses in May through July 2011. Hierarchical logistic regressions were used to determine predictive models for having a mandatory H1N1 vaccination policy for school nurses and school closure. In all, 1,997 nurses from 26 states participated. Very few nurses (3.3%, n=65) reported having a mandatory H1N1 influenza vaccination policy; nurses were more likely than all other school employees (p<.001) to be mandated to receive vaccine. Determinants of having a mandatory H1N1 vaccination policy were being employed by a hospital or public health agency, and the school being located in a western or northeastern state. Factors related to school closure included being in a western or northeastern state, having higher H1N1-related morbidity/mortality, being a school nurse employed by a public health agency or hospital, and being a private school. The most commonly implemented interventions included encouraging staff and students to exercise hand hygiene and increasing classroom cleaning; least commonly implemented interventions included discouraging face-to-face meetings, training staff on H1N1 influenza and/or respiratory hygiene, and discouraging handshaking. Schools should develop and continue to improve their pandemic plans, including collaborating with community response agencies.

  11. Outbreak of swine influenza in Argentina reveals a non-contemporary human H3N2 virus highly transmissible among pigs

    PubMed Central

    Cappuccio, Javier A.; Pena, Lindomar; Dibárbora, Marina; Rimondi, Agustina; Piñeyro, Pablo; Insarralde, Lucas; Quiroga, María A.; Machuca, Mariana; Craig, Maria I.; Olivera, Valeria; Chockalingam, Ashok; Perfumo, Carlos J.

    2011-01-01

    Sporadic outbreaks of human H3N2 influenza A virus (IAV) infections in swine populations have been reported in Asia, Europe and North America since 1970. In South America, serological surveys in pigs indicate that IAVs of the H3 and H1 subtypes are currently in circulation; however, neither virus isolation nor characterization has been reported. In November 2008, an outbreak of respiratory disease in pigs consistent with swine influenza virus (SIV) infection was detected in Argentina. The current study describes the clinical epidemiology, pathology, and molecular and biological characteristics of the virus. Phylogenetic analysis revealed that the virus isolate shared nucleotide identities of 96–98 % with H3N2 IAVs that circulated in humans from 2000 to 2003. Antigenically, sera from experimentally inoculated animals cross-reacted mainly with non-contemporary human-origin H3N2 influenza viruses. In an experimental infection in a commercial swine breed, the virus was of low virulence but was transmitted efficiently to contact pigs and caused severe disease when an infected animal acquired a secondary bacterial infection. This is the first report of a wholly human H3N2 IAV associated with clinical disease in pigs in South America. These studies highlight the importance of two-way transmission of IAVs and SIVs between pigs and humans, and call for enhanced influenza surveillance in the pig population worldwide. PMID:21849519

  12. Genome Sequence of a Monoreassortant H1N1 Swine Influenza Virus Isolated from a Pig in Hungary

    PubMed Central

    Bányai, Krisztián; Kovács, Eszter; Tóth, Ádám György; Biksi, Imre; Szentpáli-Gavallér, Katalin; Bálint, Ádám; Dencső, László

    2012-01-01

    The genome of a porcine H1N1 influenza A strain is reported in this study. The strain proved to be a monoreassortant strain with a typical porcine N1 gene on the genetic backbone of the pandemic H1N1 influenza A virus strain. Monitoring of descendants of the pandemic 2009 H1N1 strain is needed because of concerns that more-virulent strains may emerge in forthcoming epidemic seasons. PMID:23118459

  13. Deep sequencing of H7N8 avian influenza viruses from surveillance zone supports H7N8 high pathogenicity avian influenza was limited to a single outbreak farm in Indiana during 2016

    USDA-ARS?s Scientific Manuscript database

    In mid-January 2016, an outbreak of H7N8 high pathogenicity avian influenza (HPAI) virus in commercial turkeys occurred in Indiana. The outbreak was first detected by an increase in mortality followed by laboratory confirmation of H7N8 HPAI virus. Surveillance within the 10 km Control Zone detected...

  14. Airport arrivals screening during pandemic (H1N1) 2009 influenza in New South Wales, Australia.

    PubMed

    Gunaratnam, Praveena J; Tobin, Sean; Seale, Holly; Marich, Andrew; McAnulty, Jeremy

    2014-03-17

    To examine the effectiveness of airport screening in New South Wales during pandemic (H1N1) 2009 influenza. Analysis of data collected at clinics held at Sydney Airport, and of all notified cases of influenza A(H1N1)pdm09, between 28 April 2009 and 18 June 2009. Case detection rate per 100,000 passengers screened, sensitivity, positive predictive value and specificity of airport screening. The proportion of all cases in the period detected at airport clinics was compared with the proportion detected in emergency departments and general practice. Of an estimated 625,147 passenger arrivals at Sydney Airport during the period, 5845 (0.93%) were identified as being symptomatic or febrile, and three of 5845 were subsequently confirmed to have influenza A(H1N1)pdm09, resulting in a detection rate of 0.05 per 10,000 screened (95% CI, 0.02-1.14 per 10,000). Forty-five patients with overseas-acquired influenza A(H1N1)pdm09 in NSW would have probably passed through the airport during this time, giving airport screening a sensitivity of 6.67% (95% CI, 1.40%-18.27%). Positive predictive value was 0.05% (95% CI, 0.02%-0.15%) and specificity 99.10% (95% CI, 99.00%-100.00%). Of the 557 confirmed cases across NSW during the period, 290 (52.1%) were detected at emergency departments and 135 (24.2%) at general practices, compared with three (0.5%) detected at the airport. Airport screening was ineffective in detecting cases of influenza A(H1N1)pdm09 in NSW. Its future use should be carefully considered against potentially more effective interventions, such as contact tracing in the community.

  15. Intercontinental circulation of human influenza A(H1N2) reassortant viruses during the 2001-2002 influenza season.

    PubMed

    Xu, Xiyan; Smith, Catherine B; Mungall, Bruce A; Lindstrom, Stephen E; Hall, Henrietta E; Subbarao, Kanta; Cox, Nancy J; Klimov, Alexander

    2002-11-15

    Reassortant influenza A viruses bearing the H1 subtype of hemagglutinin (HA) and the N2 subtype of neuraminidase (NA) were isolated from humans in the United States, Canada, Singapore, Malaysia, India, Oman, Egypt, and several countries in Europe during the 2001-2002 influenza season. The HAs of these H1N2 viruses were similar to that of the A/New Caledonia/20/99(H1N1) vaccine strain both antigenically and genetically, and the NAs were antigenically and genetically related to those of recent human H3N2 reference strains, such as A/Moscow/10/99(H3N2). All 6 internal genes of the H1N2 reassortants examined originated from an H3N2 virus. This article documents the first widespread circulation of H1N2 reassortants on 4 continents. The current influenza vaccine is expected to provide good protection against H1N2 viruses, because it contains the A/New Caledonia/20/99(H1N1) and A/Moscow/10/99(H3N2)-like viruses, which have H1 and N2 antigens that are similar to those of recent H1N2 viruses.

  16. Genetic Characterization of Circulating 2015 A(H1N1)pdm09 Influenza Viruses from Eastern India

    PubMed Central

    Mukherjee, Anupam; Nayak, Mukti Kant; Dutta, Shanta; Panda, Samiran; Satpathi, Biswa Ranjan; Chawla-Sarkar, Mamta

    2016-01-01

    In 2015, the swine derived A(H1N1)pdm09 pandemic strain outbreak became widespread throughout the different states of India. The reported cases and deaths in 2015 surpassed the previous years with more than 39000 laboratory confirmed cases and a death toll of more than 2500 people. There are relatively limited complete genetic sequences available for this virus from Asian countries. In this study, we describe the full genome analysis of influenza 2015 A(H1N1)pdm09 viruses isolated from West Bengal between January through December 2015. The phylogenetic analysis of the haemagglutinin sequence revealed clustering with globally circulating strains of genogroup 6B. This was further confirmed by the constructed concatenated tree using all eight complete gene segments of Kolkata A(H1N1)pdm09 isolates with the other strains from different timeline and lineages. A study from Massachusetts Institute of Technology (MIT) in 2015 reported novel mutations T200A and D225N in haemagglutinin gene of a 2014 Indian strain (A/India/6427/2014). However, in all the pandemic strains of 2014–2015 reported from India, so far including A(H1N1)pdm09 strains from Kolkata, D225N mutation was not observed, though the T200A mutation was found to be conserved. Neuraminidase gene of the analyzed strains did not show any oseltamivir resistant mutation H275Y suggesting continuation of Tamiflu® as drug of choice. The amino acid sequences of the all gene segments from 2015 A(H1N1)pdm09 isolates identified several new mutations compared to the 2009 A(H1N1)pdm09 strains, which may have contributed towards enhanced virulence, compared to 2009 A(H1N1)pdm09 strains. PMID:27997573

  17. Genetic Characterization of Circulating 2015 A(H1N1)pdm09 Influenza Viruses from Eastern India.

    PubMed

    Mukherjee, Anupam; Nayak, Mukti Kant; Dutta, Shanta; Panda, Samiran; Satpathi, Biswa Ranjan; Chawla-Sarkar, Mamta

    2016-01-01

    In 2015, the swine derived A(H1N1)pdm09 pandemic strain outbreak became widespread throughout the different states of India. The reported cases and deaths in 2015 surpassed the previous years with more than 39000 laboratory confirmed cases and a death toll of more than 2500 people. There are relatively limited complete genetic sequences available for this virus from Asian countries. In this study, we describe the full genome analysis of influenza 2015 A(H1N1)pdm09 viruses isolated from West Bengal between January through December 2015. The phylogenetic analysis of the haemagglutinin sequence revealed clustering with globally circulating strains of genogroup 6B. This was further confirmed by the constructed concatenated tree using all eight complete gene segments of Kolkata A(H1N1)pdm09 isolates with the other strains from different timeline and lineages. A study from Massachusetts Institute of Technology (MIT) in 2015 reported novel mutations T200A and D225N in haemagglutinin gene of a 2014 Indian strain (A/India/6427/2014). However, in all the pandemic strains of 2014-2015 reported from India, so far including A(H1N1)pdm09 strains from Kolkata, D225N mutation was not observed, though the T200A mutation was found to be conserved. Neuraminidase gene of the analyzed strains did not show any oseltamivir resistant mutation H275Y suggesting continuation of Tamiflu® as drug of choice. The amino acid sequences of the all gene segments from 2015 A(H1N1)pdm09 isolates identified several new mutations compared to the 2009 A(H1N1)pdm09 strains, which may have contributed towards enhanced virulence, compared to 2009 A(H1N1)pdm09 strains.

  18. Role of poultry in the H7N9 influenza outbreaks in China

    USDA-ARS?s Scientific Manuscript database

    The outbreaks of H7N9 influenza in China in spring 2013 resulted in many human cases with a high fatality rate. Poultry were suspected as the source of infection based on sequence analysis and virus isolations from live poultry markets (LPM). The original source of the virus from poultry farms is ...

  19. Molecular epidemiology of influenza A(H1N1)PDM09 hemagglutinin gene circulating in São Paulo State , Brazil: 2016 anticipated influenza season.

    PubMed

    Santos, Katia Corrêa de Oliveira; Silva, Daniela Bernardes Borges da; Sasaki, Norio Augusto; Benega, Margarete Aparecida; Garten, Rebecca; Paiva, Terezinha Maria de

    2017-04-03

    Compared to previous years, seasonal influenza activity commenced early in São Paulo State, Brazil, Southern hemisphere during the 2016 year. In order to investigate the genetic pattern of influenza A(H1N1)pdm09 in the State of Sao Paulo a total of 479 respiratory samples, collected in January by Sentinel Surveillance Units, were screened by real-time RT-PCR. A total of 6 Influenza viruses A(H1N1)pdm09 presenting ct values ≤ 30 were sequenced following phylogenetic analysis. The present study identified the circulation of the new 6B.1 subgroup (A/Sao Paulo/10-118/2016 and A/Sao Paulo/3032/2016). In addition, influenza A(H1N1)pdm09 group 6B has also been identified during January in the State of Sao Paulo. Despite amino acid changes and changes in potential glycosylation motifs, 6B.1 viruses were well inhibited by the reference ferret antiserum against A/California/07/2009 virus, the A(H1N1)pdm09 component of the vaccine for the 2016 influenza season.

  20. An effective quarantine measure reduced the total incidence of influenza A H1N1 in the workplace: another way to control the H1N1 flu pandemic.

    PubMed

    Miyaki, Koichi; Sakurazawa, Hirofumi; Mikurube, Hajime; Nishizaka, Mika; Ando, Hidehiko; Song, Yixuan; Shimbo, Takuro

    2011-01-01

    To evaluate the effectiveness of a non-vaccine quarantine measure against pandemic influenza A H1N1 in workplaces. Design was quasi-cluster randomized controlled trial in two sibling companies (Cohort 1 n=6,634, Cohort 2 n=8,500). The follow-up period was from July 1st, 2009 to February 19th, 2010 (233 days). Intervention was voluntary waiting at home on full pay if the family became Influenza like Illness (ILI). The incidences of influenza A H1N1 and those of the subgroups whose families got ILI in both cohorts were compared by a Cox regression model and log-rank test. There were 189 and 270 workers who got H1N1 infection during the follow-up period in each cohort. In this period 317 workers in Cohort 1 were asked to wait at home for several days (100% obeyed). The intervention group (Cohort 1) showed a statistically significant lower risk (p for log-rank test=0.033) compared with the control (Cohort 2), and the hazard ratio of the intervention was 0.799 [0.658-0.970] after adjusting for age, sex, BMI and smoking status. The workers who were asked to wait at home showed H1N1 infection more frequently (49 out of 317) compared with the workers whose family got ILI but were not asked to wait and work regularly (77 out of 990, RR=2.17 [1.48-3.18]). The waiting on full pay policy in the workplace reduced the overall risk of influenza A H1N1 by about 20% in one flu season in Japan. This kind of non-vaccine measure will be a promising option in workplaces to control the next flu pandemic.

  1. Evidence of reassortment of pandemic H1N1 influenza virus in swine in Argentina: are we facing the expansion of potential epicenters of influenza emergence?

    PubMed Central

    Pereda, Ariel; Rimondi, Agustina; Cappuccio, Javier; Sanguinetti, Ramon; Angel, Matthew; Ye, Jianqiang; Sutton, Troy; Dibárbora, Marina; Olivera, Valeria; Craig, Maria I.; Quiroga, Maria; Machuca, Mariana; Ferrero, Andrea; Perfumo, Carlos; Perez, Daniel R.

    2011-01-01

    Please cite this paper as: Pereda et al. (2011) Evidence of reassortment of pandemic H1N1 influenza virus in swine in Argentina: are we facing the expansion of potential epicenters of influenza emergence? Influenza and Other Respiratory Viruses 5(6), 409–412. In this report, we describe the occurrence of two novel swine influenza viruses (SIVs) in pigs in Argentina. These viruses are the result of two independent reassortment events between the H1N1 pandemic influenza virus (H1N1pdm) and human‐like SIVs, showing the constant evolution of influenza viruses at the human–swine interface and the potential health risk of H1N1pdm as it appears to be maintained in the swine population. It must be noted that because of the lack of information regarding the circulation of SIVs in South America, we cannot discard the possibility that ancestors of the H1N1pdm or other SIVs have been present in this part of the world. More importantly, these findings suggest an ever‐expanding geographic range of potential epicenters of influenza emergence with public health risks. PMID:21668680

  2. A Meta-Analysis of the Prevalence of Influenza A H5N1 and H7N9 Infection in Birds.

    PubMed

    Bui, C; Rahman, B; Heywood, A E; MacIntyre, C R

    2017-06-01

    Despite a much higher rate of human influenza A (H7N9) infection compared to influenza A (H5N1), and the assumption that birds are the source of human infection, detection rates of H7N9 in birds are lower than those of H5N1. This raises a question about the role of birds in the spread and transmission of H7N9 to humans. We conducted a meta-analysis of overall prevalence of H5N1 and H7N9 in different bird populations (domestic poultry, wild birds) and different environments (live bird markets, commercial poultry farms, wild habitats). The electronic database, Scopus, was searched for published papers, and Google was searched for country surveillance reports. A random effect meta-analysis model was used to produce pooled estimates of the prevalence of H5N1 and H7N9 for various subcategories. A random effects logistic regression model was used to compare prevalence rates between H5N1 and H7N9. Both viruses have low prevalence across all bird populations. Significant differences in prevalence rates were observed in domestic birds, farm settings, for pathogen and antibody testing, and during routine surveillance. Random effects logistic regression analyses show that among domestic birds, the prevalence of H5N1 is 47.48 (95% CI: 17.15-133.13, P < 0.001) times higher than H7N9. In routine surveillance (where surveillance was not conducted in response to human infections or bird outbreaks), the prevalence of H5N1 is still higher than H7N9 with an OR of 43.02 (95% CI: 16.60-111.53, P < 0.001). H7N9 in humans has occurred at a rate approximately four times higher than H5N1, and for both infections, birds are postulated to be the source. Much lower rates of H7N9 in birds compared to H5N1 raise doubts about birds as the sole source of high rates of human H7N9 infection. Other sources of transmission of H7N9 need to be considered and explored. © 2016 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  3. Influenza Virus Vaccines: Lessons from the 2009 H1N1 pandemic

    PubMed Central

    Broadbent, Andrew J.; Subbarao, Kanta

    2011-01-01

    Reflecting on the 2009 H1N1 pandemic, we summarize lessons regarding influenza vaccines that can be applied in the future. The two major challenges to vaccination during the 2009 H1N1 pandemic were timing and availability of vaccine. Vaccines were, however, well-tolerated and immunogenic, with inactivated vaccines containing 15μg of HA generally inducing antibody titers ≥1:40 in adults within 2 weeks of the administration of a single dose. Moreover, the use of oil-in-water adjuvants in Europe permitted dose- reduction, with vaccines containing as little as 3.75 or 7.5μg HA being immunogenic. Case-control studies demonstrated that monovalent 2009 H1N1 vaccines were effective in preventing infection with the 2009 H1N1 virus, but preliminary data suggests that it is important for individuals to be re-immunized annually. PMID:22125588

  4. Proinflammatory chemokines are major mediators of exuberant immune response associated with Influenza A (H1N1) pdm09 virus infection.

    PubMed

    Thomas, Maria; Mani, Reeta Subramaniam; Philip, Mariamma; Adhikary, Ranjeeta; Joshi, Sangeeta; Revadi, Srigiri S; Buggi, Shashidhar; Desai, Anita; Vasanthapuram, Ravi

    2017-08-01

    In India, the case fatality ratio of the pandemic A (H1N1) pdm09 influenza was relatively higher when compared to seasonal Influenza A infection. Hypercytokinemia or "cytokine storm" has been previously implicated in the pathogenesis of other influenza viruses. The present study was undertaken to compare the cytokine profiles of A (H1N1) pdm09 influenza and seasonal H3 infection in Indian population and to correlate the findings with disease severity. Plasma levels of 18 cytokines/chemokines were measured by flow-cytometry using a bead based assay in patients infected with A (H1N1) pdm09 virus (n = 96) and Influenza A seasonal H3 virus (n = 30) categorised into mild, moderate, and severe groups along with healthy controls (n = 36). There was an overall trend indicating an exuberant cytokine/chemokine response in A (H1N1) pdm09 as compared to seasonal H3 influenza, which was more evident in severe cases, suggesting a role for these cytokines/chemokines in the pathogenesis of A(H1N1) pdm09. Increased levels of CXCL-8/IL-8, IL-10, IL-6, and IL-17A were seen in both A(H1N1) pdm09 influenza and seasonal H3 cases when compared to healthy controls. However, dysregulated production of proinflammatory chemokines was seen more pronounced in A (H1N1) pdm09 influenza cases as compared to seasonal H3 cases. This study has brought forth the potential role of chemokines as prognostic indicators of disease severity and outcome. Further research on modulating the host immune response to limit severity of the disease could help in the treatment and management of influenza. © 2017 Wiley Periodicals, Inc.

  5. Heterovariant Cross-Reactive B-Cell Responses Induced by the 2009 Pandemic Influenza Virus A Subtype H1N1 Vaccine

    PubMed Central

    He, Xiao-Song; Sasaki, Sanae; Baer, Jane; Khurana, Surender; Golding, Hana; Treanor, John J.; Topham, David J.; Sangster, Mark Y.; Jin, Hong; Dekker, Cornelia L.; Subbarao, Kanta; Greenberg, Harry B.

    2013-01-01

    Background. The generation of heterovariant immunity is a highly desirable feature of influenza vaccines. The goal of this study was to compare the heterovariant B-cell response induced by the monovalent inactivated 2009 pandemic influenza A virus subtype H1N1 (A[H1N1]pdm09) vaccine with that induced by the 2009 seasonal trivalent influenza vaccine (sTIV) containing a seasonal influenza A virus subtype H1N1 (A[H1N1]) component in young and elderly adults. Methods. Plasmablast-derived polyclonal antibodies (PPAb) from young and elderly recipients of A(H1N1)pdm09 vaccine or sTIV were tested for binding activity to various influenza antigens. Results. In A(H1N1)pdm09 recipients, the PPAb titers against homotypic A(H1N1)pdm09 vaccine were similar to those against the heterovariant seasonal A(H1N1) vaccine and were similar between young and elderly subjects. The PPAb avidity was higher among elderly individuals, compared with young individuals. In contrast, the young sTIV recipients had 10-fold lower heterovariant PPAb titers against the A(H1N1)pdm09 vaccine than against the homotypic seasonal A(H1N1) vaccine. In binding assays with recombinant head and stalk domains of hemagglutinin, PPAb from the A(H1N1)pdm09 recipients but not PPAb from the sTIV recipients bound to the conserved stalk domain. Conclusion. The A(H1N1)pdm09 vaccine induced production of PPAb with heterovariant reactivity, including antibodies targeting the conserved hemagglutinin stalk domain. PMID:23107783

  6. Global Variability in Reported Mortality for Critical Illness during the 2009-10 Influenza A(H1N1) Pandemic: A Systematic Review and Meta-Regression to Guide Reporting of Outcomes during Disease Outbreaks

    PubMed Central

    Pinto, Ruxandra; Rubenfeld, Gordon; Fowler, Robert A.

    2016-01-01

    Purpose To determine how patient, healthcare system and study-specific factors influence reported mortality associated with critical illness during the 2009–2010 Influenza A (H1N1) pandemic. Methods Systematic review with meta-regression of studies reporting on mortality associated with critical illness during the 2009–2010 Influenza A (H1N1) pandemic. Data Sources Medline, Embase, LiLACs and African Index Medicus to June 2009-March 2016. Results 226 studies from 50 countries met our inclusion criteria. Mortality associated with H1N1-related critical illness was 31% (95% CI 28–34). Reported mortality was highest in South Asia (61% [95% CI 50–71]) and Sub-Saharan Africa (53% [95% CI 29–75]), in comparison to Western Europe (25% [95% CI 22–30]), North America (25% [95% CI 22–27]) and Australia (15% [95% CI 13–18]) (P<0.0001). High income economies had significantly lower reported mortality compared to upper middle income economies and lower middle income economies respectively (P<0.0001). Mortality for the first wave was non-significantly higher than wave two (P = 0.66). There was substantial variability in reported mortality among the specific subgroups of patients: unselected critically ill adults (27% [95% CI 24–30]), acute respiratory distress syndrome (37% [95% CI 32–44]), acute kidney injury (44% [95% CI 26–64]), and critically ill pregnant patients (10% [95% CI 5–19]). Conclusion Reported mortality for outbreaks and pandemics may vary substantially depending upon selected patient characteristics, the number of patients described, and the region and economic status of the outbreak location. Outcomes from a relatively small number of patients from specific regions may lead to biased estimates of outcomes on a global scale. PMID:27170999

  7. Role of poultry in the H7N9 influenza outbreaks in China

    USDA-ARS?s Scientific Manuscript database

    The outbreaks of avian influenza A (H7N9) occurring in China in 2013 and 2014 have resulted in more than 370 human cases with a 30% fatality rate. Most of these infections are believed to result from exposure to infected poultry or contaminated environments as the viruses have been detected in avia...

  8. HIV-1 and Its gp120 Inhibits the Influenza A(H1N1)pdm09 Life Cycle in an IFITM3-Dependent Fashion

    PubMed Central

    Mesquita, Milene; Fintelman-Rodrigues, Natalia; Sacramento, Carolina Q.; Abrantes, Juliana L.; Costa, Eduardo; Temerozo, Jairo R.; Siqueira, Marilda M.; Bou-Habib, Dumith Chequer; Souza, Thiago Moreno L.

    2014-01-01

    HIV-1-infected patients co-infected with A(H1N1)pdm09 surprisingly presented benign clinical outcome. The knowledge that HIV-1 changes the host homeostatic equilibrium, which may favor the patient resistance to some co-pathogens, prompted us to investigate whether HIV-1 infection could influence A(H1N1)pdm09 life cycle in vitro. We show here that exposure of A(H1N1)pdm09-infected epithelial cells to HIV-1 viral particles or its gp120 enhanced by 25% the IFITM3 content, resulting in a decrease in influenza replication. This event was dependent on toll-like receptor 2 and 4. Moreover, knockdown of IFITM3 prevented HIV-1 ability to inhibit A(H1N1)pdm09 replication. HIV-1 infection also increased IFITM3 levels in human primary macrophages by almost 100%. Consequently, the arrival of influenza ribonucleoproteins (RNPs) to nucleus of macrophages was inhibited, as evaluated by different approaches. Reduction of influenza RNPs entry into the nucleus tolled A(H1N1)pdm09 life cycle in macrophages earlier than usual, limiting influenza's ability to induce TNF-α. As judged by analysis of the influenza hemagglutin (HA) gene from in vitro experiments and from samples of HIV-1/A(H1N1)pdm09 co-infected individuals, the HIV-1-induced reduction of influenza replication resulted in delayed viral evolution. Our results may provide insights on the mechanisms that may have attenuated the clinical course of Influenza in HIV-1/A(H1N1)pdm09 co-infected patients during the recent influenza form 2009/2010. PMID:24978204

  9. HIV-1 and its gp120 inhibits the influenza A(H1N1)pdm09 life cycle in an IFITM3-dependent fashion.

    PubMed

    Mesquita, Milene; Fintelman-Rodrigues, Natalia; Sacramento, Carolina Q; Abrantes, Juliana L; Costa, Eduardo; Temerozo, Jairo R; Siqueira, Marilda M; Bou-Habib, Dumith Chequer; Souza, Thiago Moreno L

    2014-01-01

    HIV-1-infected patients co-infected with A(H1N1)pdm09 surprisingly presented benign clinical outcome. The knowledge that HIV-1 changes the host homeostatic equilibrium, which may favor the patient resistance to some co-pathogens, prompted us to investigate whether HIV-1 infection could influence A(H1N1)pdm09 life cycle in vitro. We show here that exposure of A(H1N1)pdm09-infected epithelial cells to HIV-1 viral particles or its gp120 enhanced by 25% the IFITM3 content, resulting in a decrease in influenza replication. This event was dependent on toll-like receptor 2 and 4. Moreover, knockdown of IFITM3 prevented HIV-1 ability to inhibit A(H1N1)pdm09 replication. HIV-1 infection also increased IFITM3 levels in human primary macrophages by almost 100%. Consequently, the arrival of influenza ribonucleoproteins (RNPs) to nucleus of macrophages was inhibited, as evaluated by different approaches. Reduction of influenza RNPs entry into the nucleus tolled A(H1N1)pdm09 life cycle in macrophages earlier than usual, limiting influenza's ability to induce TNF-α. As judged by analysis of the influenza hemagglutin (HA) gene from in vitro experiments and from samples of HIV-1/A(H1N1)pdm09 co-infected individuals, the HIV-1-induced reduction of influenza replication resulted in delayed viral evolution. Our results may provide insights on the mechanisms that may have attenuated the clinical course of Influenza in HIV-1/A(H1N1)pdm09 co-infected patients during the recent influenza form 2009/2010.

  10. Computational 3D structures of drug-targeting proteins in the 2009-H1N1 influenza A virus

    NASA Astrophysics Data System (ADS)

    Du, Qi-Shi; Wang, Shu-Qing; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-01-01

    The neuraminidase (NA) and M2 proton channel of influenza virus are the drug-targeting proteins, based on which several drugs were developed. However these once powerful drugs encountered drug-resistant problem to the H5N1 and H1N1 flu. To address this problem, the computational 3D structures of NA and M2 proteins of 2009-H1N1 influenza virus were built using the molecular modeling technique and computational chemistry method. Based on the models the structure features of NA and M2 proteins were analyzed, the docking structures of drug-protein complexes were computed, and the residue mutations were annotated. The results may help to solve the drug-resistant problem and stimulate designing more effective drugs against 2009-H1N1 influenza pandemic.

  11. Isolation and identification of highly pathogenic avian influenza virus subtype H5N1 in peafowl (Pavo cristatus).

    PubMed

    Ismail, Mahmoud Moussa; Khan, Owais Ahmed; Cattoli, Giovanni; Lu, Huaguang

    2010-03-01

    An outbreak of highly pathogenic avian influenza (HPAI) virus subtype H5N1 was first diagnosed in a "backyard" flock of peafowl (Pavo cristatus) raised on palace premises in the Kingdom of Saudi Arabia in December 3, 2007. The flock consisted of 40 peafowl, and their ages ranged from 3 to 5 years old. Affected birds suffered from depression, anorexia, and white diarrhea. Four dead birds were submitted for HPAI diagnosis at the Central Veterinary Diagnostic Laboratory in Riyadh. Brain and liver tissues and tracheal and cloacal swabs were taken from the dead birds and processed for a real-time reverse transcriptase (RT)-PCR test and virus isolation in specific-pathogen-free embryonating chicken eggs. The H5N1 subtype of avian influenza virus was isolated from the four dead birds and identified by a real-time RT-PCR before and after egg inoculation. The virus isolates were characterized as HPAI H5N1 virus by sequencing analysis. Phylogenetic comparisons revealed that the H5N1 viruses isolated from peafowl belong to the genetic clade 2.2 according to the World Health Organization nomenclature. The peafowl H5N1 virus falls into 2.2.2 sublineage II and clusters with the H5N1 viruses isolated from poultry in Saudi Arabia in 2007-08.

  12. Clinical, laboratory and radiologic characteristics of 2009 pandemic influenza A/H1N1 pneumonia: primary influenza pneumonia versus concomitant/secondary bacterial pneumonia

    PubMed Central

    Song, Joon Y.; Cheong, Hee J.; Heo, Jung Y.; Noh, Ji Y.; Yong, Hwan S.; Kim, Yoon K.; Kang, Eun Y.; Choi, Won S.; Jo, Yu M.; Kim, Woo J.

    2011-01-01

    Please cite this paper as: Song et al. (2011). Clinical, laboratory and radiologic characteristics of 2009 pandemic influenza A/H1N1 pneumonia: primary influenza pneumonia versus concomitant/secondary bacterial pneumonia. Influenza and Other Respiratory Viruses 5(6), e535–e543. Background  Although influenza virus usually involves the upper respiratory tract, pneumonia was seen more frequently with the 2009 pandemic influenza A/H1N1 than with seasonal influenza. Methods  From September 1, 2009, to January 31, 2010, a specialized clinic for patients (aged ≥15 years) with ILI was operated in Korea University Guro Hospital. RT‐PCR assay was performed to diagnose 2009 pandemic influenza A/H1N1. A retrospective case–case–control study was performed to determine the predictive factors for influenza pneumonia and to discriminate concomitant/secondary bacterial pneumonia from primary influenza pneumonia during the 2009–2010 pandemic. Results  During the study period, the proportions of fatal cases and pneumonia development were 0·12% and 1·59%, respectively. Patients with pneumonic influenza were less likely to have nasal symptoms and extra‐pulmonary symptoms (myalgia, headache, and diarrhea) compared to patients with non‐pneumonic influenza. Crackle was audible in just about half of the patients with pneumonic influenza (38·5% of patients with primary influenza pneumonia and 53·3% of patients with concomitant/secondary bacterial pneumonia). Procalcitonin, C‐reactive protein (CRP), and lactate dehydrogenase were markedly increased in patients with influenza pneumonia. Furthermore, procalcitonin (cutoff value 0·35 ng/ml, sensitivity 81·8%, and specificity 66·7%) and CRP (cutoff value 86·5 mg/IU, sensitivity 81·8%, and specificity 59·3%) were discriminative between patients with concomitant/secondary bacterial pneumonia and patients with primary influenza pneumonia. Conclusions  Considering the subtle manifestations of 2009 pandemic

  13. Contemporary avian influenza A virus subtype H1, H6, H7, H10, and H15 hemagglutinin genes encode a mammalian virulence factor similar to the 1918 pandemic virus H1 hemagglutinin.

    PubMed

    Qi, Li; Pujanauski, Lindsey M; Davis, A Sally; Schwartzman, Louis M; Chertow, Daniel S; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L; Slemons, Richard D; Walters, Kathie-Anne; Kash, John C; Taubenberger, Jeffery K

    2014-11-18

    Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. Influenza viruses from birds can cause outbreaks in humans and may contribute to the development of pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its main surface protein, an H1 subtype hemagglutinin, was identified as a key mammalian virulence factor. In a previous study, a 1918 virus expressing an avian H1 gene was as virulent in mice as the reconstructed 1918 virus. Here, a set of avian influenza viruses was constructed, differing only by hemagglutinin subtype. Viruses with the avian H1, H6, H7, H10, and H15 subtypes caused severe disease in mice and damaged human lung cells. Consequently, infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals, and therefore surveillance for human infections

  14. Student behavior during a school closure caused by pandemic influenza A/H1N1.

    PubMed

    Miller, Joel C; Danon, Leon; O'Hagan, Justin J; Goldstein, Edward; Lajous, Martin; Lipsitch, Marc

    2010-05-05

    Many schools were temporarily closed in response to outbreaks of the recently emerged pandemic influenza A/H1N1 virus. The effectiveness of closing schools to reduce transmission depends largely on student/family behavior during the closure. We sought to improve our understanding of these behaviors. To characterize this behavior, we surveyed students in grades 9-12 and parents of students in grades 5-8 about student activities during a week long closure of a school during the first months after the disease emerged. We found significant interaction with the community and other students-though less interaction with other students than during school-with the level of interaction increasing with grade. Our results are useful for the future design of social distancing policies and to improving the ability of modeling studies to accurately predict their impact.

  15. Adaptation of influenza A(H1N1)pdm09 virus in experimental mouse models.

    PubMed

    Prokopyeva, E A; Sobolev, I A; Prokopyev, M V; Shestopalov, A M

    2016-04-01

    In the present study, three mouse-adapted variants of influenza A(H1N1)pdm09 virus were obtained by lung-to-lung passages of BALB/c, C57BL/6z and CD1 mice. The significantly increased virulence and pathogenicity of all of the mouse-adapted variants induced 100% mortality in the adapted mice. Genetic analysis indicated that the increased virulence of all of the mouse-adapted variants reflected the incremental acquisition of several mutations in PB2, PB1, HA, NP, NA, and NS2 proteins. Identical amino acid substitutions were also detected in all of the mouse-adapted variants of A(H1N1)pdm09 virus, including PB2 (K251R), PB1 (V652A), NP (I353V), NA (I106V, N248D) and NS1 (G159E). Apparently, influenza A(H1N1)pdm09 virus easily adapted to the host after serial passages in the lungs, inducing 100% lethality in the last experimental group. However, cross-challenge revealed that not all adapted variants are pathogenic for different laboratory mice. Such important results should be considered when using the influenza mice model. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Genetic makeup of amantadine-resistant and oseltamivir-resistant human influenza A/H1N1 viruses.

    PubMed

    Zaraket, Hassan; Saito, Reiko; Suzuki, Yasushi; Baranovich, Tatiana; Dapat, Clyde; Caperig-Dapat, Isolde; Suzuki, Hiroshi

    2010-04-01

    The emergence and widespread occurrence of antiviral drug-resistant seasonal human influenza A viruses, especially oseltamivir-resistant A/H1N1 virus, are major concerns. To understand the genetic background of antiviral drug-resistant A/H1N1 viruses, we performed full genome sequencing of prepandemic A/H1N1 strains. Seasonal influenza A/H1N1 viruses, including antiviral-susceptible viruses, amantadine-resistant viruses, and oseltamivir-resistant viruses, obtained from several areas in Japan during the 2007-2008 and 2008-2009 influenza seasons were analyzed. Sequencing of the full genomes of these viruses was performed, and the phylogenetic relationships among the sequences of each individual genome segment were inferred. Reference genome sequences from the Influenza Virus Resource database were included to determine the closest ancestor for each segment. Phylogenetic analysis revealed that the oseltamivir-resistant strain evolved from a reassortant oseltamivir-susceptible strain (clade 2B) which circulated in the 2007-2008 season by acquiring the H275Y resistance-conferring mutation in the NA gene. The oseltamivir-resistant lineage (corresponding to the Northern European resistant lineage) represented 100% of the H1N1 isolates from the 2008-2009 season and further acquired at least one mutation in each of the polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), hemagglutinin (HA), and neuraminidase (NA) genes. Therefore, a reassortment event involving two distinct oseltamivir-susceptible lineages, followed by the H275Y substitution in the NA gene and other mutations elsewhere in the genome, contributed to the emergence of the oseltamivir-resistant lineage. In contrast, amantadine-resistant viruses from the 2007-2008 season distinctly clustered in clade 2C and were characterized by extensive amino acid substitutions across their genomes, suggesting that a fitness gap among its genetic components might have driven these mutations to maintain it in the

  17. Virological and serological study of human infection with swine influenza A H1N1 virus in China.

    PubMed

    Zu, Rongqiang; Dong, Libo; Qi, Xian; Wang, Dayan; Zou, Shumei; Bai, Tian; Li, Ming; Li, Xiaodan; Zhao, Xiang; Xu, Cuiling; Huo, Xiang; Xiang, Nijuan; Yang, Shuai; Li, Zi; Xu, Zhen; Wang, Hua; Shu, Yuelong

    2013-11-01

    Pigs are considered to be "mixing vessels" for the emergence of influenza viruses with pandemic potential. 2009 Pandemic Influenza H1N1 further proved this hypothesis, and raised the needs for risk assessment of human cases caused by swine influenza virus. A field investigation was conducted after a case identified with infection of European avian-like swine influenza H1N1 virus. The diagnosis was confirmed by real-time PCR, virus isolation, whole genome sequencing and serological assays. Samples from local pigs and close contacts were tested to identify the source of infection and route of transmission. The virus from the index case was similar to viruses circulating in the local pigs. The case's grandfather was asymptomatic with sero-conversion. A total of 42.8% of swine sera were positive for European avian-like swine H1N1. This study highlighted the importance of performing surveillance on swine influenza to monitor new virus emergence in humans. © 2013 Elsevier Inc. All rights reserved.

  18. Infection by rhinovirus: similarity of clinical signs included in the case definition of influenza IAn/H1N1.

    PubMed

    de Oña Navarro, Maria; Melón García, Santiago; Alvarez-Argüelles, Marta; Fernández-Verdugo, Ana; Boga Riveiro, Jose Antonio

    2012-08-01

    Although new influenza virus (IAn/H1N1) infections are mild and indistinguishable from any other seasonal influenza virus infections, there are few data on comparisons of the clinical features of infection with (IAn/H1N1) and with other respiratory viruses. The incidence, clinical aspects and temporal distribution of those respiratory viruses circulating during flu pandemic period were studied. Respiratory samples from patients with acute influenza-like symptoms were collected from May 2009 to December 2009. Respiratory viruses were detected by conventional culture methods and genome amplification techniques. Although IAn/H1N1 was the virus most frequently detected, several other respiratory viruses co-circulated with IAn/H1N1 during the pandemic period, especially rhinovirus. The similarity between clinical signs included in the clinical case definition for influenza and those caused by other respiratory viruses, particularly rhinovirus, suggest that a high percentage of viral infections were clinically diagnosed as case of influenza. Our study offers useful information to face future pandemics caused by influenza virus, indicating that differential diagnoses are required in order to not overestimate the importance of the pandemic. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  19. Multiple introductions of a reassortant H5N1 avian influenza virus of clade 2.3.2.1c with PB2 gene of H9N2 subtype into Indian poultry.

    PubMed

    Tosh, Chakradhar; Nagarajan, Shanmugasundaram; Kumar, Manoj; Murugkar, Harshad V; Venkatesh, Govindarajulu; Shukla, Shweta; Mishra, Amit; Mishra, Pranav; Agarwal, Sonam; Singh, Bharati; Dubey, Prashant; Tripathi, Sushil; Kulkarni, Diwakar D

    2016-09-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are a threat to poultry in Asia, Europe, Africa and North America. Here, we report isolation and characterization of H5N1 viruses isolated from ducks and turkeys in Kerala, Chandigarh and Uttar Pradesh, India between November 2014 and March 2015. Genetic and phylogenetic analyses of haemagglutinin gene identified that the virus belonged to a new clade 2.3.2.1c which has not been detected earlier in Indian poultry. The virus possessed molecular signature for high pathogenicity to chickens, which was corroborated by intravenous pathogenicity index of 2.96. The virus was a reassortant which derives its PB2 gene from H9N2 virus isolated in China during 2007-2013. However, the neuraminidase and internal genes are of H5N1 subtype. Phylogenetic and network analysis revealed that after detection in China in 2013/2014, the virus moved to Europe, West Africa and other Asian countries including India. The analyses further indicated multiple introductions of H5N1 virus in Indian poultry and internal spread in Kerala. One of the outbreaks in ducks in Kerala is linked to the H5N1 virus isolated from wild birds in Dubai suggesting movement of virus probably through migration of wild birds. However, the outbreaks in ducks in Chandigarh and Uttar Pradesh were from an unknown source in Asia which also contributed gene pools to the outbreaks in Europe and West Africa. The widespread incidence of the novel H5N1 HPAI is similar to the spread of clade 2.2 ("Qinghai-like") virus in 2005, and should be monitored to avoid threat to animal and public health. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. In Vivo Selection of H1N2 Influenza Virus Reassortants in the Ferret Model

    PubMed Central

    Angel, Matthew; Kimble, J. Brian; Pena, Lindomar; Wan, Hongquan

    2013-01-01

    Although the ferret model has been extensively used to study pathogenesis and transmission of influenza viruses, little has been done to determine whether ferrets are a good surrogate animal model to study influenza virus reassortment. It has been previously shown that the pandemic 2009 H1N1 (H1N1pdm) virus was able to transmit efficiently in ferrets. In coinfection studies with either seasonal H1N1 or H3N2 strains (H1N1s or H3N2s, respectively), the H1N1pdm virus was able to outcompete these strains and become the dominant transmissible virus. However, lack of reassortment could have been the result of differences in the cell or tissue tropism of these viruses in the ferret. To address this issue, we performed coinfection studies with recombinant influenza viruses carrying the surface genes of a seasonal H3N2 strain in the background of an H1N1pdm strain and vice versa. After serial passages in ferrets, a dominant H1N2 virus population was obtained with a constellation of gene segments, most of which, except for the neuraminidase (NA) and PB1 segments, were from the H1N1pdm strain. Our studies suggest that ferrets recapitulate influenza virus reassortment events. The H1N2 virus generated through this process resembles similar viruses that are emerging in nature, particularly in pigs. PMID:23302886

  1. Cost-Effectiveness of 2009 Pandemic Influenza A(H1N1) Vaccination in the United States

    PubMed Central

    Prosser, Lisa A.; Lavelle, Tara A.; Fiore, Anthony E.; Bridges, Carolyn B.; Reed, Carrie; Jain, Seema; Dunham, Kelly M.; Meltzer, Martin I.

    2011-01-01

    Background Pandemic influenza A(H1N1) (pH1N1) was first identified in North America in April 2009. Vaccination against pH1N1 commenced in the U.S. in October 2009 and continued through January 2010. The objective of this study was to evaluate the cost-effectiveness of pH1N1 vaccination. Methodology A computer simulation model was developed to predict costs and health outcomes for a pH1N1 vaccination program using inactivated vaccine compared to no vaccination. Probabilities, costs and quality-of-life weights were derived from emerging primary data on pH1N1 infections in the US, published and unpublished data for seasonal and pH1N1 illnesses, supplemented by expert opinion. The modeled target population included hypothetical cohorts of persons aged 6 months and older stratified by age and risk. The analysis used a one-year time horizon for most endpoints but also includes longer-term costs and consequences of long-term sequelae deaths. A societal perspective was used. Indirect effects (i.e., herd effects) were not included in the primary analysis. The main endpoint was the incremental cost-effectiveness ratio in dollars per quality-adjusted life year (QALY) gained. Sensitivity analyses were conducted. Results For vaccination initiated prior to the outbreak, pH1N1 vaccination was cost-saving for persons 6 months to 64 years under many assumptions. For those without high risk conditions, incremental cost-effectiveness ratios ranged from $8,000–$52,000/QALY depending on age and risk status. Results were sensitive to the number of vaccine doses needed, costs of vaccination, illness rates, and timing of vaccine delivery. Conclusions Vaccination for pH1N1 for children and working-age adults is cost-effective compared to other preventive health interventions under a wide range of scenarios. The economic evidence was consistent with target recommendations that were in place for pH1N1 vaccination. We also found that the delays in vaccine availability had a substantial

  2. Predominance and geo-mapping of avian influenza H5N1 in poultry sectors in Egypt.

    PubMed

    Arafa, Abdelsatar; El-Masry, Ihab; Khoulosy, Shereen; Hassan, Mohammed K; Soliman, Moussa; Fasanmi, Olubunmi G; Fasina, Folorunso O; Dauphin, Gwenaelle; Lubroth, Juan; Jobre, Yilma M

    2016-11-28

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype has been enzootic in the Egyptian poultry with significant human infections since 2008. This work evaluates the epidemiological and virological information from February 2006 to May 2015 in spatial and temporal terms. Only data with confirmed HPAI H5N1 sub-type were collected, and matched with the epidemiological data from various spatially and temporally-dispersed surveillances implemented between 2006 and 2015. Spatio-temporal analysis was conducted on a total of 3338 confirmed H5N1 HPAI poultry disease outbreaks and outputs described based on transmission patterns, poultry species, production types affected, trade, geographic and temporal distributions in Egypt. The H5N1 virus persists in the Egyptian poultry displaying a seasonal pattern with peak prevalence between January and March. There was no specific geographic pattern, but chickens and ducks were more affected. However, relatively higher disease incidences were recorded in the Nile Delta. Phylogenetic studies of the haemagglutinin gene sequences of H5N1 viruses indicated that multiple clusters circulated between 2006 and 2015, with significant deviations in circulation. Epidemiological dynamics of HPAI has changed with the origins of majority of outbreaks shifted to household poultry. The persistence of HPAI H5N1 in poultry with recurrent and sporadic infections in humans can influence virus evolution spatio-temporally. Household poultry plays significant roles in the H5N1 virus transmission to poultry and humans, but the role of commercial poultry needs further clarifications. While poultry trading supports the persistence and transmission of H5N1, the role of individual species may warrant further investigation. Surveillance activities, applying a multi-sectoral approach, are recommended.

  3. Influenza A (H1N1) was not associated with obesity in pregnant women living in Toluca, México.

    PubMed

    Mendieta-Zerón, Hugo; Santillán-Benítez, Jonnathan G; Colín-Ferreira, María del Carmen; Montenegro-Cárdenas, Angela; Núñez-Delira, Cynthia N; Huitrón-Bravo, Gabriel G

    2011-12-01

    The aim was to verify whether being overweight could have played a critical role in cases of mortality caused by influenza A (H1N1) in pregnant women. This virus' prevalence was also analyzed among people suffering from acute respiratory disease being attended at the state of Mexico's Autonomous University's medical research centre. The clinical files of women having influenza A (H1N1) attending the Monica Pretelini maternal-perinatal hospital's (HMPMP) intensive care unit in Toluca, Mexico, were reviewed. According to international recommendations, clinical detection of possible new cases of this disease was kept an open as a second step. Five women suffering influenza A (H1N1) was attended at HMPMP's intensive care unit during 2009; only one survived. No differences in body mass index were found when comparing the anthropometric characteristics to another group of women affected by acute respiratory diseases; in fact, this parameter was below the limits for being overweight in both cases. No new case of influenza A (H1N1) was found after the first eight months of 2010. It could not be verified whether being overweight was a factor of higher mortality due to influenza A (H1N1) amongst pregnant women in the state of Mexico. The key to better survival for pregnant women hospitalized with influenza A (H1N1) seemed to be early treatment with oseltamivir. The cases decreased dramatically after the severe wave of the new pandemic due to unknown reasons.

  4. Molecular epidemiology of influenza A(H1N1)PDM09 hemagglutinin gene circulating in São Paulo State , Brazil: 2016 anticipated influenza season

    PubMed Central

    Santos, Katia Corrêa de Oliveira; da Silva, Daniela Bernardes Borges; Sasaki, Norio Augusto; Benega, Margarete Aparecida; Garten, Rebecca; de Paiva, Terezinha Maria

    2017-01-01

    ABSTRACT Compared to previous years, seasonal influenza activity commenced early in São Paulo State, Brazil, Southern hemisphere during the 2016 year. In order to investigate the genetic pattern of influenza A(H1N1)pdm09 in the State of Sao Paulo a total of 479 respiratory samples, collected in January by Sentinel Surveillance Units, were screened by real-time RT-PCR. A total of 6 Influenza viruses A(H1N1)pdm09 presenting ct values ≤ 30 were sequenced following phylogenetic analysis. The present study identified the circulation of the new 6B.1 subgroup (A/Sao Paulo/10-118/2016 and A/Sao Paulo/3032/2016). In addition, influenza A(H1N1)pdm09 group 6B has also been identified during January in the State of Sao Paulo. Despite amino acid changes and changes in potential glycosylation motifs, 6B.1 viruses were well inhibited by the reference ferret antiserum against A/California/07/2009 virus, the A(H1N1)pdm09 component of the vaccine for the 2016 influenza season. PMID:28380120

  5. Investigation of an Influenza A (H3N2) outbreak in evacuation centres following the Great East Japan earthquake, 2011.

    PubMed

    Kamigaki, Taro; Seino, Jin; Tohma, Kentaro; Nukiwa-Soma, Nao; Otani, Kanako; Oshitani, Hitoshi

    2014-01-14

    The Great East Japan Earthquake of magnitude 9.0 that struck on 11 March 2011 resulted in more than 18000 deaths or cases of missing persons. The large-scale tsunami that followed the earthquake devastated many coastal areas of the Tohoku region, including Miyagi Prefecture, and many residents of the tsunami-affected areas were compelled to reside in evacuation centres (ECs). In Japan, seasonal influenza epidemics usually occur between December and March. At the time of the Great East Japan Earthquake on 11 March 2011, influenza A (H3N2) was still circulating and there was a heightened concern regarding severe outbreaks due to influenza A (H3N2). After local hospital staff and public health nurses detected influenza cases among the evacuees, an outbreak investigation was conducted in five ECs that had reported at least one influenza case from 23 March to 11 April 2011. Cases were confirmed by point-of-care tests and those residues were obtained and subjected to reverse transcription PCR and/or real time RT-PCR for sub-typing of influenza. There were 105 confirmed cases detected during the study period with a mean attack rate of 5.3% (range, 0.8%-11.1%). An epidemiological tree for two ECs demonstrated same-room and familial links that accounted for 88.5% of cases. The majority of cases occurred in those aged 15-64 years, who were likely to have engaged in search and rescue activities. No deaths were reported in this outbreak. Familial link accounted for on average 40.5% of influenza cases in two ECs and rooms where two or more cases were reported accounted for on average 85% in those ECs. A combination of preventative measures, including case cohorting, personal hygiene, wearing masks, and early detection and treatment, were implemented during the outbreak period. Influenza can cause outbreaks in a disaster setting when the disaster occurs during an epidemic influenza season. The transmission route is more likely to be associated with sharing room and space and

  6. X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornholdt, Zachary A.; Prasad, B.V. Venkataram

    2009-04-08

    The recent emergence of highly pathogenic avian (H5N1) influenza viruses, their epizootic and panzootic nature, and their association with lethal human infections have raised significant global health concerns. Several studies have underlined the importance of non-structural protein NS1 in the increased pathogenicity and virulence of these strains. NS1, which consists of two domains - a double-stranded RNA (dsRNA) binding domain and the effector domain, separated through a linker - is an antagonist of antiviral type-I interferon response in the host. Here we report the X-ray structure of the full-length NS1 from an H5N1 strain (A/Vietnam/1203/2004) that was associated with 60%more » of human deaths in an outbreak in Vietnam. Compared to the individually determined structures of the RNA binding domain and the effector domain from non-H5N1 strains, the RNA binding domain within H5N1 NS1 exhibits modest structural changes, while the H5N1 effector domain shows significant alteration, particularly in the dimeric interface. Although both domains in the full-length NS1 individually participate in dimeric interactions, an unexpected finding is that these interactions result in the formation of a chain of NS1 molecules instead of distinct dimeric units. Three such chains in the crystal interact with one another extensively to form a tubular organization of similar dimensions to that observed in the cryo-electron microscopy images of NS1 in the presence of dsRNA. The tubular oligomeric organization of NS1, in which residues implicated in dsRNA binding face a 20-{angstrom}-wide central tunnel, provides a plausible mechanism for how NS1 sequesters varying lengths of dsRNA, to counter cellular antiviral dsRNA response pathways, while simultaneously interacting with other cellular ligands during an infection.« less

  7. Pre-Existing Immunity with High Neutralizing Activity to 2009 Pandemic H1N1 Influenza Virus in Shanghai Population

    PubMed Central

    Chen, Zhihui; Tang, Ziwei; Xu, Qingqiang; Wang, Yue; Zhao, Ping; Qi, Zhongtian

    2013-01-01

    Pre-existing immunity is an important factor countering the pandemic potential of an emerging influenza virus strain. Thus, studying of pre-existing immunity to the 2009 pandemic H1N1 virus (2009 H1N1) will advance our understanding of the pathogenesis and epidemiology of this emerging pathogen. In the present study, sera were collected from 486 individuals in a hospital in Shanghai, China, before the 2009 H1N1 influenza pandemic. The serum anti-hemagglutinins (HA) antibody, hemagglutination inhibition (HI) antibody and neutralizing antibody against the 2009 H1N1 were assayed. Among this population, 84.2%, 14.61% and 26.5% subjects possessed anti-HA antibody, HI antibody and neutralizing antibody, respectively. Although neutralizing antibody only existed in those sera with detectable anti-HA antibody, there was no obvious correlation between the titers of anti-HA and neutralizing antibody. However, the titers of anti-HA and neutralizing antibody against seasonal H1N1 virus were highly correlated. In the same population, there was no correlation between titers of neutralizing antibody against 2009 H1N1 and seasonal H1N1. DNA immunization performed on mice demonstrated that antibodies to the HA of 2009 pandemic and seasonal H1N1 influenza viruses were strain-specific and had no cross-neutralizing activity. In addition, the predicted conserved epitope in the HA of 2009 H1N1 and recently circulating seasonal H1N1 virus, GLFGAIAGFIE, was not an immunologically valid B-cell epitope. The data in this report are valuable for advancing our understanding of 2009 H1N1 influenza virus infection. PMID:23527030

  8. Chinese social media reaction to the MERS-CoV and avian influenza A(H7N9) outbreaks

    PubMed Central

    2013-01-01

    Background As internet and social media use have skyrocketed, epidemiologists have begun to use online data such as Google query data and Twitter trends to track the activity levels of influenza and other infectious diseases. In China, Weibo is an extremely popular microblogging site that is equivalent to Twitter. Capitalizing on the wealth of public opinion data contained in posts on Weibo, this study used Weibo as a measure of the Chinese people’s reactions to two different outbreaks: the 2012 Middle East Respiratory Syndrome Coronavirus (MERS-CoV) outbreak, and the 2013 outbreak of human infection of avian influenza A(H7N9) in China. Methods Keyword searches were performed in Weibo data collected by The University of Hong Kong’s Weiboscope project. Baseline values were determined for each keyword and reaction values per million posts in the days after outbreak information was released to the public. Results The results show that the Chinese people reacted significantly to both outbreaks online, where their social media reaction was two orders of magnitude stronger to the H7N9 influenza outbreak that happened in China than the MERS-CoV outbreak that was far away from China. Conclusions These results demonstrate that social media could be a useful measure of public awareness and reaction to disease outbreak information released by health authorities. PMID:24359669

  9. Characterization of the 2009 Pandemic A/Beijing/501/2009 H1N1 Influenza Strain in Human Airway Epithelial Cells and Ferrets

    PubMed Central

    Xing, Li; Li, Zhiwei; Wang, Wei; Zhao, Yan; Yan, Yiwu; Gu, Hongjing; Liu, Xin; Zhao, Zhongpeng; Zhang, Shaogeng; Wang, Xiliang; Jiang, Chengyu

    2012-01-01

    Background A novel 2009 swine-origin influenza A H1N1 virus (S-OIV H1N1) has been transmitted among humans worldwide. However, the pathogenesis of this virus in human airway epithelial cells and mammals is not well understood. Methodology/Principal Finding In this study, we showed that a 2009 A (H1N1) influenza virus strain, A/Beijing/501/2009, isolated from a human patient, caused typical influenza-like symptoms including weight loss, fluctuations in body temperature, and pulmonary pathological changes in ferrets. We demonstrated that the human lung adenocarcinoma epithelial cell line A549 was susceptible to infection and that the infected cells underwent apoptosis at 24 h post-infection. In contrast to the seasonal H1N1 influenza virus, the 2009 A (H1N1) influenza virus strain A/Beijing/501/2009 induced more cell death involving caspase-3-dependent apoptosis in A549 cells. Additionally, ferrets infected with the A/Beijing/501/2009 H1N1 virus strain exhibited increased body temperature, greater weight loss, and higher viral titers in the lungs. Therefore, the A/Beijing/501/2009 H1N1 isolate successfully infected the lungs of ferrets and caused more pathological lesions than the seasonal influenza virus. Our findings demonstrate that the difference in virulence of the 2009 pandemic H1N1 influenza virus and the seasonal H1N1 influenza virus in vitro and in vivo may have been mediated by different mechanisms. Conclusion/Significance Our understanding of the pathogenesis of the 2009 A (H1N1) influenza virus infection in both humans and animals is broadened by our findings that apoptotic cell death is involved in the cytopathic effect observed in vitro and that the pathological alterations in the lungs of S-OIV H1N1-infected ferrets are much more severe. PMID:23049974

  10. Estimating disease burden of a potential A(H7N9) pandemic influenza outbreak in the United States.

    PubMed

    Silva, Walter; Das, Tapas K; Izurieta, Ricardo

    2017-11-25

    Since spring 2013, periodic emergence of avian influenza A(H7N9) virus in China has heightened the concern for a possible pandemic outbreak among humans, though it is believed that the virus is not yet human-to-human transmittable. Till June 2017, A(H7N9) has resulted in 1533 laboratory-confirmed cases of human infections causing 592 deaths. The aim of this paper is to present disease burden estimates (measured by infection attack rates (IAR) and number of deaths) in the event of a possible pandemic outbreak caused by human-to-human transmission capability acquired by A(H7N9) virus. Even though such a pandemic will likely spread worldwide, our focus in this paper is to estimate the impact on the United States alone. The method first uses a data clustering technique to divide 50 states in the U.S. into a small number of clusters. Thereafter, for a few selected states in each cluster, the method employs an agent-based (AB) model to simulate human A(H7N9) influenza pandemic outbreaks. The model uses demographic and epidemiological data. A few selected non-pharmaceutical intervention (NPI) measures are applied to mitigate the outbreaks. Disease burden for the U.S. is estimated by combining results from the clusters applying a method used in stratified sampling. Two possible pandemic scenarios with R 0  = 1.5 and 1.8 are examined. Infection attack rates with 95% C.I. (Confidence Interval) for R 0  = 1.5 and 1.8 are estimated to be 18.78% (17.3-20.27) and 25.05% (23.11-26.99), respectively. The corresponding number of deaths (95% C.I.), per 100,000, are 7252.3 (6598.45-7907.33) and 9670.99 (8953.66-10,389.95). The results reflect a possible worst-case scenario where the outbreak extends over all states of the U.S. and antivirals and vaccines are not administered. Our disease burden estimations are also likely to be somewhat high due to the fact that only dense urban regions covering approximately 3% of the geographic area and 81% of the population are used for

  11. Genetic diversity of influenza A(H1N1)2009 virus circulating during the season 2010-2011 in Spain.

    PubMed

    Ledesma, Juan; Pozo, Francisco; Reina, Gabriel; Blasco, Miriam; Rodríguez, Guadalupe; Montes, Milagrosa; López-Miragaya, Isabel; Salvador, Carmen; Reina, Jordi; Ortíz de Lejarazu, Raúl; Egido, Pilar; López Barba, José; Delgado, Concepción; Cuevas, María Teresa; Casas, Inmaculada

    2012-01-01

    Genetic diversity of influenza A(H1N1)2009 viruses has been reported since the pandemic virus emerged in April 2009. Different genetic clades have been identified and defined based on amino acid substitutions found in the haemagglutinin (HA) protein sequences. In Spain, circulating influenza viruses are monitored each season by the regional laboratories enrolled in the Spanish Influenza Surveillance System (SISS). The analysis of the HA gene sequence helps to detect the genetic diversity and viral evolution. To perform an analysis of the genetic diversity of influenza A(H1N1)2009 viruses circulating in Spain during the season 2010-2011 based on analysis of the HA sequence gene. Phylogenetic analysis based on the HA1 subunit of the haemagglutinin gene was carried out on 220 influenza A(H1N1)2009 viruses circulating during the season 2010-2011. Six different genetic groups were identified among circulating A(H1N1)2009 viruses, five of them were previously reported during season 2010-2011. A new group, characterized by E172K and K308E changes and a proline at position 83, was observed in 12.27% of the Spanish viruses. Co-circulation of six different genetic groups of influenza A(H1N1)2009 viruses was identified in Spain during the season 2010-2011. Nevertheless, at this stage, none of the groups identified to date have resulted in significant antigenic changes according to data collected by World Health Organization Collaborating Centres for influenza surveillance. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Influence of Birth Cohort on Effectiveness of 2015-2016 Influenza Vaccine Against Medically Attended Illness Due to 2009 Pandemic Influenza A(H1N1) Virus in the United States.

    PubMed

    Flannery, Brendan; Smith, Catherine; Garten, Rebecca J; Levine, Min Z; Chung, Jessie R; Jackson, Michael L; Jackson, Lisa A; Monto, Arnold S; Martin, Emily T; Belongia, Edward A; McLean, Huong Q; Gaglani, Manjusha; Murthy, Kempapura; Zimmerman, Richard; Nowalk, Mary Patricia; Griffin, Marie R; Keipp Talbot, H; Treanor, John J; Wentworth, David E; Fry, Alicia M

    2018-06-20

    The effectiveness of influenza vaccine during 2015-2016 was reduced in some age groups as compared to that in previous 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09 virus)-predominant seasons. We hypothesized that the age at first exposure to specific influenza A(H1N1) viruses could influence vaccine effectiveness (VE). We estimated the effectiveness of influenza vaccine against polymerase chain reaction-confirmed influenza A(H1N1)pdm09-associated medically attended illness from the 2010-2011 season through the 2015-2016 season, according to patient birth cohort using data from the Influenza Vaccine Effectiveness Network. Birth cohorts were defined a priori on the basis of likely immunologic priming with groups of influenza A(H1N1) viruses that circulated during 1918-2015. VE was calculated as 100 × [1 - adjusted odds ratio] from logistic regression models comparing the odds of vaccination among influenza virus-positive versus influenza test-negative patients. A total of 2115 A(H1N1)pdm09 virus-positive and 14 696 influenza virus-negative patients aged ≥6 months were included. VE was 61% (95% confidence interval [CI], 56%-66%) against A(H1N1)pdm09-associated illness during the 2010-2011 through 2013-2014 seasons, compared with 47% (95% CI, 36%-56%) during 2015-2016. During 2015-2016, A(H1N1)pdm09-specific VE was 22% (95% CI, -7%-43%) among adults born during 1958-1979 versus 61% (95% CI, 54%-66%) for all other birth cohorts combined. Findings suggest an association between reduced VE against influenza A(H1N1)pdm09-related illness during 2015-2016 and early exposure to specific influenza A(H1N1) viruses.

  13. Modelling the progression of pandemic influenza A (H1N1) in Vietnam and the opportunities for reassortment with other influenza viruses

    PubMed Central

    Boni, Maciej F; Manh, Bui Huu; Thai, Pham Quang; Farrar, Jeremy; Hien, Tran Tinh; Hien, Nguyen Tran; Van Kinh, Nguyen; Horby, Peter

    2009-01-01

    Background A novel variant of influenza A (H1N1) is causing a pandemic and, although the illness is usually mild, there are concerns that its virulence could change through reassortment with other influenza viruses. This is of greater concern in parts of Southeast Asia, where the population density is high, influenza is less seasonal, human-animal contact is common and avian influenza is still endemic. Methods We developed an age- and spatially-structured mathematical model in order to estimate the potential impact of pandemic H1N1 in Vietnam and the opportunities for reassortment with animal influenza viruses. The model tracks human infection among domestic animal owners and non-owners and also estimates the numbers of animals may be exposed to infected humans. Results In the absence of effective interventions, the model predicts that the introduction of pandemic H1N1 will result in an epidemic that spreads to half of Vietnam's provinces within 57 days (interquartile range (IQR): 45-86.5) and peaks 81 days after introduction (IQR: 62.5-121 days). For the current published range of the 2009 H1N1 influenza's basic reproductive number (1.2-3.1), we estimate a median of 410,000 cases among swine owners (IQR: 220,000-670,000) with 460,000 exposed swine (IQR: 260,000-740,000), 350,000 cases among chicken owners (IQR: 170,000-630,000) with 3.7 million exposed chickens (IQR: 1.9 M-6.4 M), and 51,000 cases among duck owners (IQR: 24,000 - 96,000), with 1.2 million exposed ducks (IQR: 0.6 M-2.1 M). The median number of overall human infections in Vietnam for this range of the basic reproductive number is 6.4 million (IQR: 4.4 M-8.0 M). Conclusion It is likely that, in the absence of effective interventions, the introduction of a novel H1N1 into a densely populated country such as Vietnam will result in a widespread epidemic. A large epidemic in a country with intense human-animal interaction and continued co-circulation of other seasonal and avian viruses would provide

  14. The Potential of Avian H1N1 Influenza A Viruses to Replicate and Cause Disease in Mammalian Models

    PubMed Central

    Koçer, Zeynep A.; Krauss, Scott; Stallknecht, David E.; Rehg, Jerold E.; Webster, Robert G.

    2012-01-01

    H1N1 viruses in which all gene segments are of avian origin are the most frequent cause of influenza pandemics in humans; therefore, we examined the disease-causing potential of 31 avian H1N1 isolates of American lineage in DBA/2J mice. Thirty of 31 isolates were very virulent, causing respiratory tract infection; 22 of 31 resulted in fecal shedding; and 10 of 31 were as pathogenic as the pandemic 2009 H1N1 viruses. Preliminary studies in BALB/cJ mice and ferrets showed that 1 of 4 isolates tested was more pathogenic than the pandemic 2009 H1N1 viruses in BALB/cJ mice, and 1 of 2 strains transmitted both by direct and respiratory-droplet contact in ferrets. Preliminary studies of other avian subtypes (H2, H3, H4, H6, H10, H12) in DBA/2J mice showed lower pathogenicity than the avian H1N1 viruses. These findings suggest that avian H1N1 influenza viruses are unique among influenza A viruses in their potential to infect mammals. PMID:22848544

  15. Comparative virulence of wild-type H1N1pdm09 influenza A isolates in swine

    USDA-ARS?s Scientific Manuscript database

    In 2009, a novel swine-origin H1N1 (H1N1pdm09) influenza A virus (IAV) reached pandemic status and was soon after detected in pigs worldwide. The objective of this study was to evaluate whether differences in the HA protein can affect pathogenicity and antigenicity of H1N1pdm09 in swine. We compared...

  16. Key points in evaluating immunogenicity of pandemic influenza vaccines: A lesson from immunogenicity studies of influenza A(H1N1)pdm09 vaccine.

    PubMed

    Ohfuji, Satoko; Kobayashi, Masayuki; Ide, Yuichiro; Egawa, Yumi; Saito, Tomoko; Kondo, Kyoko; Ito, Kazuya; Kase, Tetsuo; Maeda, Akiko; Fukushima, Wakaba; Hirota, Yoshio

    2017-09-18

    Immunogenicity studies on pandemic influenza vaccine are necessary to inform rapid development and implementation of a vaccine during a pandemic. Thus, strategies for immunogenicity assessment are required. To identify essential factors to consider when evaluating the immunogenicity of pandemic influenza vaccines using the experience in Japan with the influenza A(H1N1)pdm09 vaccine. We conducted a search of observational studies using PubMed and IchushiWeb. Search terms included "influenza vaccine AND (immunogenicity OR immune response) AND Japan AND (2009 OR pdm09) NOT review," and was limited to studies conducted in humans. A total of 33 articles were identified, of which 16 articles met the inclusion criteria. Immunogenicity of the commercially available influenza A(H1N1)pdm09 vaccine satisfied the international criteria for influenza vaccine immunogenicity in all study populations. The most remarkable immune response was observed in junior high school students, while the lowest immune response was observed in hematological malignancy patients. Similar to immunogenicity studies on seasonal influenza vaccines, factors such as patient background (e.g., age, underlying condition, pre-vaccination titer, body mass index, etc.) and study procedure (e.g., concurrent measurement of pre- and post-vaccination antibody titer, effects of infection during the study period) may have affected the assessment of immunogenicity to the influenza A(H1N1)pdm09 vaccine. In addition, prior vaccination with the seasonal influenza vaccine may inhibit antibody induction by the influenza A(H1N1)pdm09 vaccine. This review discusses factors and strategies that must be considered and addressed during immunogenicity assessments of pandemic influenza vaccines, which may provide useful information for future influenza pandemics. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Humoral and cellular responses to a non-adjuvanted monovalent H1N1 pandemic influenza vaccine in hospital employees

    PubMed Central

    2013-01-01

    Background The efficacy of the H1N1 influenza vaccine relies on the induction of both humoral and cellular responses. This study evaluated the humoral and cellular responses to a monovalent non-adjuvanted pandemic influenza A/H1N1 vaccine in occupationally exposed subjects who were previously vaccinated with a seasonal vaccine. Methods Sixty healthy workers from a respiratory disease hospital were recruited. Sera and peripheral blood mononuclear cells (PBMCs) were obtained prior to and 1 month after vaccination with a non-adjuvanted monovalent 2009 H1N1 vaccine (Influenza A (H1N1) 2009 Monovalent Vaccine Panenza, Sanofi Pasteur). Antibody titers against the pandemic A/H1N1 influenza virus were measured via hemagglutination inhibition (HI) and microneutralization assays. Antibodies against the seasonal HA1 were assessed by ELISA. The frequency of IFN-γ-producing cells as well as CD4+ and CD8+ T cell proliferation specific to the pandemic virus A/H1N peptides, seasonal H1N1 peptides and seasonal H3N2 peptides were assessed using ELISPOT and flow cytometry. Results At baseline, 6.7% of the subjects had seroprotective antibody titers. The seroconversion rate was 48.3%, and the seroprotection rate was 66.7%. The geometric mean titers (GMTs) were significantly increased (from 6.8 to 64.9, p < 0.05). Forty-nine percent of the subjects had basal levels of specific IFN-γ-producing T cells to the pandemic A/H1N1 peptides that were unchanged post-vaccination. CD4+ T cell proliferation in response to specific pandemic A/H1N1 virus peptides was also unchanged; in contrast, the antigen-specific proliferation of CD8+ T cells significantly increased post-vaccination. Conclusion Our results indicate that a cellular immune response that is cross-reactive to pandemic influenza antigens may be present in populations exposed to the circulating seasonal influenza virus prior to pandemic or seasonal vaccination. Additionally, we found that the pandemic vaccine induced a

  18. An Analysis of 332 Fatalities Infected with Pandemic 2009 Influenza A (H1N1) in Argentina

    PubMed Central

    Balanzat, Ana M.; Hertlein, Christian; Apezteguia, Carlos; Bonvehi, Pablo; Cámera, Luis; Gentile, Angela; Rizzo, Oscar; Gómez-Carrillo, Manuel; Coronado, Fatima; Azziz-Baumgartner, Eduardo; Chávez, Pollyanna R.; Widdowson, Marc-Alain

    2012-01-01

    Background The apparent high number of deaths in Argentina during the 2009 pandemic led to concern that the influenza A H1N1pdm disease was different there. We report the characteristics and risk factors for influenza A H1N1pdm fatalities. Methods We identified laboratory-confirmed influenza A H1N1pdm fatalities occurring during June-July 2009. Physicians abstracted data on age, sex, time of onset of illness, medical history, clinical presentation at admission, laboratory, treatment, and outcomes using standardize questionnaires. We explored the characteristics of fatalities according to their age and risk group. Results Of 332 influenza A H1N1pdm fatalities, 226 (68%) were among persons aged <50 years. Acute respiratory failure was the leading cause of death. Of all cases, 249 (75%) had at least one comorbidity as defined by Advisory Committee on Immunization Practices. Obesity was reported in 32% with data and chronic pulmonary disease in 28%. Among the 40 deaths in children aged <5 years, chronic pulmonary disease (42%) and neonatal pathologies (35%) were the most common co-morbidities. Twenty (6%) fatalities were among pregnant or postpartum women of which only 47% had diagnosed co-morbidities. Only 13% of patients received antiviral treatment within 48 hours of symptom onset. None of children aged <5 years or the pregnant women received antivirals within 48 h of symptom onset. As the pandemic progressed, the time from symptom-onset to medical care and to antiviral treatment decreased significantly among case-patients who subsequently died (p<0.001). Conclusion Persons with co-morbidities, pregnant and who received antivirals late were over-represented among influenza A H1N1pdm deaths in Argentina, though timeliness of antiviral treatment improved during the pandemic. PMID:22506006

  19. Antibody responses to influenza a H1N1 vaccine compared to the circulating strain in influenza vaccine recipients during the 2013/2014 season in North America.

    PubMed

    Barron, Michelle A; Frank, Daniel N; Claypool, David; Ir, Diana; Ning, Mariangeli F; Curtis, Donna; Weinberg, Adriana

    2016-10-01

    Influenza strain A/California/07/2009 H1N1 (H1N1-09) reemerged in 2013/2014 as the predominant cause of illness. We sought to determine if antigenic drift may have contributed to the decreased responses to influenza vaccine. Fifty adults who received trivalent inactivated influenza vaccine (IIV3) and 56 children who received live attenuated quadrivalent influenza vaccine (LAIV4) had hemagglutination inhibition (HAI) and microneutralizing (MN) antibodies measured in plasma against H1N1-09 and H1N1 2013/2014 (H1N1-14) influenza. Partial sequencing of the hemagglutinin gene (nt 280-780) was performed on 38 clinical isolates and the vaccine prototype. In IIV3 recipients, HAI and MN titers against H1N1-14 were significantly lower than against H1N1-09 (p<0.0001 and 0.04, respectively). In LAIV4 recipients, only MN titers were significantly lower (p=0.02) for H1N1-09 compared with H1N1-14. A combined analysis showed significantly lower HAI and MN titers for H1N1-14 compared with H1N1-09 (p=0. 016 and 0.008, respectively). All 38 clinical isolates encoded the HA gene K166Q non-synonymous substitution; other non-synonymous substitutions were observed in <10% of the clinical isolates. 2013/2014 IIV3 and LAIV4 recipients had consistently lower MN antibody titers against H1N1-14 compared with H1N1-09. The HA K166Q mutation, located in a neutralizing epitope, probably contributed to these findings. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Design and Characterization of a Computationally Optimized Broadly Reactive Hemagglutinin Vaccine for H1N1 Influenza Viruses

    PubMed Central

    Carter, Donald M.; Darby, Christopher A.; Lefoley, Bradford C.; Crevar, Corey J.; Alefantis, Timothy; Oomen, Raymond; Anderson, Stephen F.; Strugnell, Tod; Cortés-Garcia, Guadalupe; Vogel, Thorsten U.; Parrington, Mark; Kleanthous, Harold

    2016-01-01

    ABSTRACT One of the challenges of developing influenza A vaccines is the diversity of antigenically distinct isolates. Previously, a novel hemagglutinin (HA) for H5N1 influenza was derived from a methodology termed computationally optimized broadly reactive antigen (COBRA). This COBRA HA elicited a broad antibody response against H5N1 isolates from different clades. We now report the development and characterization of a COBRA-based vaccine for both seasonal and pandemic H1N1 influenza virus isolates. Nine prototype H1N1 COBRA HA proteins were developed and tested in mice using a virus-like particle (VLP) format for the elicitation of broadly reactive, functional antibody responses and protection against viral challenge. These candidates were designed to recognize H1N1 viruses isolated within the last 30 years. In addition, several COBRA candidates were designed based on sequences of H1N1 viruses spanning the past 100 years, including modern pandemic H1N1 isolates. Four of the 9 H1N1 COBRA HA proteins (X1, X3, X6, and P1) had the broadest hemagglutination inhibition (HAI) activity against a panel of 17 H1N1 viruses. These vaccines were used in cocktails or prime-boost combinations. The most effective regimens that both elicited the broadest HAI response and protected mice against a pandemic H1N1 challenge were vaccines that contained the P1 COBRA VLP and either the X3 or X6 COBRA VLP vaccine. These mice had little or no detectable viral replication, comparable to that observed with a matched licensed vaccine. This is the first report describing a COBRA-based HA vaccine strategy that elicits a universal, broadly reactive, protective response against seasonal and pandemic H1N1 isolates. IMPORTANCE Universal influenza vaccine approaches have the potential to be paradigm shifting for the influenza vaccine field, with the goal of replacing the current standard of care with broadly cross-protective vaccines. We have used COBRA technology to develop an HA head

  1. Differential Immune Profiles in Two Pandemic Influenza A(H1N1)pdm09 Virus Waves at Pandemic Epicenter.

    PubMed

    Arriaga-Pizano, Lourdes; Ferat-Osorio, Eduardo; Rodríguez-Abrego, Gabriela; Mancilla-Herrera, Ismael; Domínguez-Cerezo, Esteban; Valero-Pacheco, Nuriban; Pérez-Toledo, Marisol; Lozano-Patiño, Fernando; Laredo-Sánchez, Fernando; Malagón-Rangel, José; Nellen-Hummel, Haiko; González-Bonilla, César; Arteaga-Troncoso, Gabriel; Cérbulo-Vázquez, Arturo; Pastelin-Palacios, Rodolfo; Klenerman, Paul; Isibasi, Armando; López-Macías, Constantino

    2015-11-01

    Severe influenza A(H1N1)pdm2009 virus infection cases are characterized by sustained immune activation during influenza pandemics. Seasonal flu data suggest that immune mediators could be modified by wave-related changes. Our aim was to determine the behavior of soluble and cell-related mediators in two waves at the epicenter of the 2009 influenza pandemic. Leukocyte surface activation markers were studied in serum from peripheral blood samples, collected from the 1(st) (April-May, 2009) and 2(nd) (October 2009-February 2010) pandemic waves. Patients with confirmed influenza A(H1N1)pdm2009 virus infection (H1N1), influenza-like illness (ILI) or healthy donors (H) were analyzed. Serum IL-6, IL-4 and IL-10 levels were elevated in H1N1 patients from the 2(nd) pandemic wave. Additionally, the frequency of helper and cytotoxic T cells was reduced during the 1(st) wave, whereas CD69 expression in helper T cells was increased in the 2(nd) wave for both H1N1 and ILI patients. In contrast, CD62L expression in granulocytes from the ILI group was increased in both waves but in monocytes only in the 2(nd) wave. Triggering Receptor Expressed on Myeloid cells (TREM)-1 expression was elevated only in H1N1 patients at the 1(st) wave. Our results show that during the 2009 influenza pandemic a T cell activation phenotype is observed in a wave-dependent fashion, with an expanded activation in the 2(nd) wave, compared to the 1(st) wave. Conversely, granulocyte and monocyte activation is infection-dependent. This evidence collected at the pandemic epicenter in 2009 could help us understand the differences in the underlying cellular mechanisms that drive the wave-related immune profile behaviors that occur against influenza viruses during pandemics. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  2. Prediction of biological functions on glycosylation site migrations in human influenza H1N1 viruses.

    PubMed

    Sun, Shisheng; Wang, Qinzhe; Zhao, Fei; Chen, Wentian; Li, Zheng

    2012-01-01

    Protein glycosylation alteration is typically employed by various viruses for escaping immune pressures from their hosts. Our previous work had shown that not only the increase of glycosylation sites (glycosites) numbers, but also glycosite migration might be involved in the evolution of human seasonal influenza H1N1 viruses. More importantly, glycosite migration was likely a more effectively alteration way for the host adaption of human influenza H1N1 viruses. In this study, we provided more bioinformatics and statistic evidences for further predicting the significant biological functions of glycosite migration in the host adaptation of human influenza H1N1 viruses, by employing homology modeling and in silico protein glycosylation of representative HA and NA proteins as well as amino acid variability analysis at antigenic sites of HA and NA. The results showed that glycosite migrations in human influenza viruses have at least five possible functions: to more effectively mask the antigenic sites, to more effectively protect the enzymatic cleavage sites of neuraminidase (NA), to stabilize the polymeric structures, to regulate the receptor binding and catalytic activities and to balance the binding activity of hemagglutinin (HA) with the release activity of NA. The information here can provide some constructive suggestions for the function research related to protein glycosylation of influenza viruses, although these predictions still need to be supported by experimental data.

  3. Correlations between A/H1N1 influenza and acute cellular rejection in liver transplantation patients.

    PubMed

    Stucchi, R S B; Boin, I F S F; Angerami, R Nogueira; Sinckoc, V; Sa, F Cesar; Seva-Pereira, T; Escanhoela, C A Fazzio

    2010-12-01

    Influenza is a common cause of respiratory infection in transplant recipients. It is expected that A/H1N1 influenza virus causes more severe disease in solid-organ recipients. Our goal was to describe two A/H1N1 infections that occurred after Orthotopic liver transplantation followed by acute allograft rejection episodes. From March 2009 to March 2010 we observe two liver transplant patients with symptoms suggestive of A/H1N1 infection. The diagnosis was out based on a temperature of 37.8°C (100°F) or higher and the presence of a cough or using materials from anasopharyngeal and oropharyngeal swabs a sore throat. The diagnosis was confirmed by viral RNA detection by real-time reverse-transcriptase-polymerase-chain-reaction assay (RT-PCR) using materials from nasopharyngeal and oropharyngeal swabs. We performed the RT-PCR assay for A/H1N1 detection in a liver biopsy from one patient. Both patients were treated with usual doses of oseltamivir (75 mg twice daily for 5 days). One patient developed acute bacterial sinusitis requiring antibiotic therapy. Thereafter the liver enzymes increased and transplant biopsies showed moderate-to-severe acute cellular rejection. They were treated with corticosteroids. The liver enzymes normalized after 3 months. A/H1N1 influenza can lead to a severe acute cellular rejection episode with corticosteroid resistant treatment in liver transplant patients. Transplant centers should be aware of a possible relationship between A/H1N1 infections and acute allograft rejection episodes. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Spatial and Temporal Characteristics of the 2009 A/H1N1 Influenza Pandemic in Peru

    PubMed Central

    Chowell, Gerardo; Viboud, Cécile; Munayco, Cesar V.; Gómez, Jorge; Simonsen, Lone; Miller, Mark A.; Tamerius, James; Fiestas, Victor; Halsey, Eric S.; Laguna-Torres, Victor A.

    2011-01-01

    Background Highly refined surveillance data on the 2009 A/H1N1 influenza pandemic are crucial to quantify the spatial and temporal characteristics of the pandemic. There is little information about the spatial-temporal dynamics of pandemic influenza in South America. Here we provide a quantitative description of the age-specific morbidity pandemic patterns across administrative areas of Peru. Methods We used daily cases of influenza-like-illness, tests for A/H1N1 influenza virus infections, and laboratory-confirmed A/H1N1 influenza cases reported to the epidemiological surveillance system of Peru's Ministry of Health from May 1 to December 31, 2009. We analyzed the geographic spread of the pandemic waves and their association with the winter school vacation period, demographic factors, and absolute humidity. We also estimated the reproduction number and quantified the association between the winter school vacation period and the age distribution of cases. Results The national pandemic curve revealed a bimodal winter pandemic wave, with the first peak limited to school age children in the Lima metropolitan area, and the second peak more geographically widespread. The reproduction number was estimated at 1.6–2.2 for the Lima metropolitan area and 1.3–1.5 in the rest of Peru. We found a significant association between the timing of the school vacation period and changes in the age distribution of cases, while earlier pandemic onset was correlated with large population size. By contrast there was no association between pandemic dynamics and absolute humidity. Conclusions Our results indicate substantial spatial variation in pandemic patterns across Peru, with two pandemic waves of varying timing and impact by age and region. Moreover, the Peru data suggest a hierarchical transmission pattern of pandemic influenza A/H1N1 driven by large population centers. The higher reproduction number of the first pandemic wave could be explained by high contact rates among school

  5. Effect of Repeated Vaccination With the Same Vaccine Component Against 2009 Pandemic Influenza A(H1N1) Virus.

    PubMed

    Martínez-Baz, Iván; Casado, Itziar; Navascués, Ana; Díaz-González, Jorge; Aguinaga, Aitziber; Barrado, Laura; Delfrade, Josu; Ezpeleta, Carmen; Castilla, Jesús

    2017-03-15

    The 2009 pandemic influenza A(H1N1) (A[H1N1]pdm09) vaccine component has remained unchanged from 2009. We estimate the effectiveness of current and prior inactivated influenza A(H1N1)pdm09 vaccination from influenza seasons 2010-2011 to 2015-2016. Patients attended with influenza-like illness were tested for influenza. Four periods with continued A(H1N1)pdm09 circulation were included in a test-negative design. We enrolled 1278 cases and 2343 controls. As compared to individuals never vaccinated against influenza A(H1N1)pdm09, the highest effectiveness (66%; 95% confidence interval, 49%-78%) was observed in those vaccinated in the current season who had received 1-2 prior doses. The effectiveness was not statistically lower in individuals vaccinated in the current season only (52%) or in those without current vaccination and >2 prior doses (47%). However, the protection was lower in individuals vaccinated in the current season after >2 prior doses (38%; P = .009) or those currently unvaccinated with 1-2 prior doses (10%; P < .001). Current-season vaccination improved the effect in individuals with 1-2 prior doses and did not modify significantly the risk of influenza in individuals with >2 prior doses. Current vaccination or several prior doses were needed for high protection. Despite the decreasing effect of repeated vaccination, current-season vaccination was not inferior to no current-season vaccination. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  6. Epidemiological consequences of an incursion of highly pathogenic H5N1 avian influenza into the British poultry flock

    PubMed Central

    Sharkey, Kieran J; Bowers, Roger G; Morgan, Kenton L; Robinson, Susan E; Christley, Robert M

    2007-01-01

    Highly pathogenic avian influenza and in particular the H5N1 strain has resulted in the culling of millions of birds and continues to pose a threat to poultry industries worldwide. The recent outbreak of H5N1 in the UK highlights the need for detailed assessment of the consequences of an incursion and of the efficacy of control strategies. Here, we present results from a model of H5N1 propagation within the British poultry industry. We find that although the majority of randomly seeded incursions do not spread beyond the initial infected premises, there is significant potential for widespread infection. The efficacy of the European Union strategy for disease control is evaluated and our simulations emphasize the pivotal role of duck farms in spreading H5N1. PMID:17956849

  7. Pandemic vaccination strategies and influenza severe outcomes during the influenza A(H1N1)pdm09 pandemic and the post-pandemic influenza season: the Nordic experience.

    PubMed

    Gil Cuesta, Julita; Aavitsland, Preben; Englund, Hélène; Gudlaugsson, Ólafur; Hauge, Siri Helene; Lyytikäinen, Outi; Sigmundsdóttir, Guðrún; Tegnell, Anders; Virtanen, Mikko; Krause, Tyra Grove

    2016-04-21

    During the 2009/10 influenza A(H1N1)pdm09 pandemic, the five Nordic countries adopted different approaches to pandemic vaccination. We compared pandemic vaccination strategies and severe influenza outcomes, in seasons 2009/10 and 2010/11 in these countries with similar influenza surveillance systems. We calculated the cumulative pandemic vaccination coverage in 2009/10 and cumulative incidence rates of laboratory confirmed A(H1N1)pdm09 infections, intensive care unit (ICU) admissions and deaths in 2009/10 and 2010/11. We estimated incidence risk ratios (IRR) in a Poisson regression model to compare those indicators between Denmark and the other countries. The vaccination coverage was lower in Denmark (6.1%) compared with Finland (48.2%), Iceland (44.1%), Norway (41.3%) and Sweden (60.0%). In 2009/10 Denmark had a similar cumulative incidence of A(H1N1)pdm09 ICU admissions and deaths compared with the other countries. In 2010/11 Denmark had a significantly higher cumulative incidence of A(H1N1)pdm09 ICU admissions (IRR: 2.4; 95% confidence interval (CI): 1.9-3.0) and deaths (IRR: 8.3; 95% CI: 5.1-13.5). Compared with Denmark, the other countries had higher pandemic vaccination coverage and experienced less A(H1N1)pdm09-related severe outcomes in 2010/11. Pandemic vaccination may have had an impact on severe influenza outcomes in the post-pandemic season. Surveillance of severe outcomes may be used to compare the impact of influenza between seasons and support different vaccination strategies.

  8. Heterologous Humoral Response against H5N1, H7N3, and H9N2 Avian Influenza Viruses after Seasonal Vaccination in a European Elderly Population

    PubMed Central

    Sanz, Ivan; Rojo, Silvia; Tamames, Sonia; Eiros, José María; Ortiz de Lejarazu, Raúl

    2017-01-01

    Avian influenza viruses are currently one of the main threats to human health in the world. Although there are some screening reports of antibodies against these viruses in humans from Western countries, most of these types of studies are conducted in poultry and market workers of Asian populations. The presence of antibodies against avian influenza viruses was evaluated in an elderly European population. An experimental study was conducted, including pre- and post-vaccine serum samples obtained from 174 elderly people vaccinated with seasonal influenza vaccines of 2006–2007, 2008–2009, 2009–2010, and 2010–2011 Northern Hemisphere vaccine campaigns. The presence of antibodies against A/H5N1, A/H7N3, and A/H9N2 avian influenza viruses were tested by using haemaglutination inhibition assays. Globally, heterotypic antibodies were found before vaccination in 2.9% of individuals against A/H5N1, 1.2% against A/H7N3, and 25.9% against A/H9N2. These pre-vaccination antibodies were present at titers ≥1/40 in 1.1% of individuals against A/H5N1, in 1.1% against H7N3, and in 0.6% against the A/H9N2 subtype. One 76 year-old male showed pre-vaccine antibodies (Abs) against those three avian influenza viruses, and another three individuals presented Abs against two different viruses. Seasonal influenza vaccination induced a significant number of heterotypic seroconversions against A/H5N1 (14.4%) and A/H9N2 (10.9%) viruses, but only one seroconversion was observed against the A/H7N3 subtype. After vaccination, four individuals showed Abs titers ≥1/40 against those three avian viruses, and 55 individuals against both A/H5N1 and A/H9N2. Seasonal vaccination is able to induce some weak heterotypic responses to viruses of avian origin in elderly individuals with no previous exposure to them. However, this response did not accomplish the European Medicament Agency criteria for influenza vaccine efficacy. The results of this study show that seasonal vaccines induce a broad

  9. Global dynamic analysis of a H7N9 avian-human influenza model in an outbreak region.

    PubMed

    Chen, Yongxue; Wen, Yongxian

    2015-02-21

    In 2013 in China a new type of avian influenza virus, H7N9, began to infect humans and had aroused severe fatality in the infected humans. We know that the spread is from poultry to humans, and the H7N9 avian influenza is low pathogenic in the poultry world but highly pathogenic in the human world, but the transmission mechanism is unclear. Since it has no signs of human-to-human transmission and outbreaks are isolated in some cities in China, in order to investigate the transmission mechanism of human infection with H7N9 avian influenza, an eco-epidemiological model in an outbreak region is proposed and analyzed dynamically. Researches and reports show that gene mutation makes the new virus be capable of infecting humans, therefore the mutation factor is taken into account in the model. The global dynamic analysis is conducted, different thresholds are identified, persistence and global qualitative behaviors are obtained. The impact of H7N9 avian influenza on the people population is concerned. Finally, the numerical simulations are carried out to support the theoretical analysis and to investigate the disease control measures. It seems that we may take people׳s hygiene and prevention awareness factor as a significant policy to achieve the aim of both the disease control and the economic returns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Student Behavior during a School Closure Caused by Pandemic Influenza A/H1N1

    PubMed Central

    Miller, Joel C.; Danon, Leon; O'Hagan, Justin J.; Goldstein, Edward; Lajous, Martin; Lipsitch, Marc

    2010-01-01

    Background Many schools were temporarily closed in response to outbreaks of the recently emerged pandemic influenza A/H1N1 virus. The effectiveness of closing schools to reduce transmission depends largely on student/family behavior during the closure. We sought to improve our understanding of these behaviors. Methodology/Principal Findings To characterize this behavior, we surveyed students in grades 9–12 and parents of students in grades 5–8 about student activities during a weeklong closure of a school during the first months after the disease emerged. We found significant interaction with the community and other students–though less interaction with other students than during school–with the level of interaction increasing with grade. Conclusions Our results are useful for the future design of social distancing policies and to improving the ability of modeling studies to accurately predict their impact. PMID:20463960

  11. Pathogenic analysis of the pandemic 2009 H1N1 influenza A viruses in ferrets.

    PubMed

    Tsuda, Yoshimi; Weisend, Carla; Martellaro, Cynthia; Feldmann, Friederike; Haddock, Elaine

    2017-08-18

    The pandemic 2009 H1N1 influenza A virus emerged in humans and caused the first influenza pandemic of the 21st century. Mexican isolates, A/Mexico/4108/2009 (H1N1) (Mex4108) and A/Mexico/InDRE4478/2009 (H1N1) (Mex4487) derived from a mild case and from a cluster of severe cases, showed heterogeneity in virulence in a cynomolgus macaque model. To compare the more pathogenic differences, we generated recombinant viruses and compared their virulence in ferrets. Ferrets infected with recombinant Mex4487 displayed a slightly higher rate of viral replication and severe pneumonia in the early stage of infection. In contrast, prolonged lower virus shedding of recombinant Mex4108 than that of recombinant Mex4487 was detected in throat swabs. Thus, Mex4487 induces severe pneumonia in infected individuals, whereas Mex4108 might have wide-spreading potential with mild disease.

  12. Influenza Vaccine Effectiveness Against 2009 Pandemic Influenza A(H1N1) Virus Differed by Vaccine Type During 2013–2014 in the United States

    PubMed Central

    Gaglani, Manjusha; Pruszynski, Jessica; Murthy, Kempapura; Clipper, Lydia; Robertson, Anne; Reis, Michael; Chung, Jessie R.; Piedra, Pedro A.; Avadhanula, Vasanthi; Nowalk, Mary Patricia; Zimmerman, Richard K.; Jackson, Michael L.; Jackson, Lisa A.; Petrie, Joshua G.; Ohmit, Suzanne E.; Monto, Arnold S.; McLean, Huong Q.; Belongia, Edward A.; Fry, Alicia M.; Flannery, Brendan

    2016-01-01

    Background. The predominant strain during the 2013–2014 influenza season was 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09). This vaccine-component has remained unchanged from 2009. Methods. The US Flu Vaccine Effectiveness Network enrolled subjects aged ≥6 months with medically attended acute respiratory illness (MAARI), including cough, with illness onset ≤7 days before enrollment. Influenza was confirmed by reverse-transcription polymerase chain reaction (RT-PCR). We determined the effectiveness of trivalent or quadrivalent inactivated influenza vaccine (IIV) among subjects ages ≥6 months and the effectiveness of quadrivalent live attenuated influenza vaccine (LAIV4) among children aged 2–17 years, using a test-negative design. The effect of prior receipt of any A(H1N1)pdm09-containing vaccine since 2009 on the effectiveness of current-season vaccine was assessed. Results. We enrolled 5999 subjects; 5637 (94%) were analyzed; 18% had RT-PCR–confirmed A(H1N1)pdm09-related MAARI. Overall, the effectiveness of vaccine against A(H1N1)pdm09-related MAARI was 54% (95% confidence interval [CI], 46%–61%). Among fully vaccinated children aged 2–17 years, the effectiveness of LAIV4 was 17% (95% CI, −39% to 51%) and the effectiveness of IIV was 60% (95% CI, 36%–74%). Subjects aged ≥9 years showed significant residual protection of any prior A(H1N1)pdm09-containing vaccine dose(s) received since 2009, as did children <9 years old considered fully vaccinated by prior season. Conclusions. During 2013–2014, IIV was significantly effective against A(H1N1)pdm09. Lack of LAIV4 effectiveness in children highlights the importance of continued annual monitoring of effectiveness of influenza vaccines in the United States. PMID:26743842

  13. Impact of Educational Intervention Concerning Awareness and Behaviors Relating to Avian Influenza (H5N1) in a High-Risk Population in Vietnam

    PubMed Central

    Manabe, Toshie; Thuy, Pham Thi Phuong; Can, Vu Van; Takasaki, Jin; Huyen, Dinh Thi Thanh; Chau, Nguyen Thi My; Shimbo, Takuro; Ha, Bui Thi Thu; Izumi, Shinyu; Hanh, Tran Thuy; Chau, Ngo Quy; Kudo, Koichiro

    2011-01-01

    Background Early initiation of treatment is essential for treatment of avian influenza A/H5N1 viral infection in humans, as the disease can lead to rapid development of severe pneumonia which can result in death. Contact with infected poultry is known to be a significant risk factor for contraction of H5N1 infection. However, handling and encountering poultry are a part of most peoples' daily lives, especially in rural communities in Vietnam where epidemic outbreaks among poultry have been continuously reported. Enhancing proper knowledge relating to H5N1 and to the importance of early initiation of treatment are crucial. The aim of this study was to develop an effective educational program to enhance awareness of H5N1 and motivate people to access to health care earlier when H5N1 infection is suspected or likely. Methodology and Principal Findings A study was conducted in two agricultural communities (intervention and control groups) in the Ninh Binh province in Vietnam, where epidemic outbreaks of avian influenza have recently occurred in birds. A unique educational intervention was developed and provided to the intervention group, and no intervention was provided to the control group. A knowledge, attitude and practice (KAP) survey was conducted in both groups with a face-to-face interview by trained local healthcare workers at time points before and after the educational intervention. KAP scores were compared between the different time points and between the groups. How educational intervention influenced awareness relating to H5N1 and accessibility of healthcare in the population was analyzed. The study indicated an increased awareness of H5N1 and increased reliance on local health care workers. Conclusions The novel educational program which was developed for this study impacted awareness of H5N1, and resulted in more people seeking early access to healthcare, and also resulted in earlier medical intervention for patients with H5N1 avian influenza infection

  14. Lack of airborne transmission during outbreak of pandemic (H1N1) 2009 among tour group members, China, June 2009.

    PubMed

    Han, Ke; Zhu, Xiaoping; He, Fan; Liu, Lunguang; Zhang, Lijie; Ma, Huilai; Tang, Xinyu; Huang, Ting; Zeng, Guang; Zhu, Bao Ping

    2009-10-01

    During June 2-8, 2009, an outbreak of influenza A pandemic (H1N1) 2009 occurred among 31 members of a tour group in China. To identify the mode of transmission and risk factors, we conducted a retrospective cohort investigation. The index case-patient was a female tourist from the United States. Secondary cases developed in 9 (30%) tour group members who had talked with the index case-patient and in 1 airline passenger (not a tour group member) who had sat within 2 rows of her. None of the 14 tour group members who had not talked with the index case-patient became ill. This outbreak was apparently caused by droplet transmission during coughing or talking. That airborne transmission was not a factor is supported by lack of secondary cases among fellow bus and air travelers. Our findings highlight the need to prevent transmission by droplets and fomites during a pandemic.

  15. Lack of Airborne Transmission during Outbreak of Pandemic (H1N1) 2009 among Tour Group Members, China, June 2009

    PubMed Central

    Han, Ke; Zhu, Xiaoping; He, Fan; Liu, Lunguang; Zhang, Lijie; Ma, Huilai; Tang, Xinyu; Huang, Ting; Zhu, Bao-Ping

    2009-01-01

    During June 2–8, 2009, an outbreak of influenza A pandemic (H1N1) 2009 occurred among 31 members of a tour group in China. To identify the mode of transmission and risk factors, we conducted a retrospective cohort investigation. The index case-patient was a female tourist from the United States. Secondary cases developed in 9 (30%) tour group members who had talked with the index case-patient and in 1 airline passenger (not a tour group member) who had sat within 2 rows of her. None of the 14 tour group members who had not talked with the index case-patient became ill. This outbreak was apparently caused by droplet transmission during coughing or talking. That airborne transmission was not a factor is supported by lack of secondary cases among fellow bus and air travelers. Our findings highlight the need to prevent transmission by droplets and fomites during a pandemic. PMID:19861048

  16. Fatal influenza A (H5N1) virus Infection in zoo-housed Tigers in Yunnan Province, China

    PubMed Central

    Hu, Tingsong; Zhao, Huanyun; Zhang, Yan; Zhang, Wendong; Kong, Qiang; Zhang, Zhixiao; Cui, Qinghua; Qiu, Wei; Deng, Bo; Fan, Quanshui; Zhang, Fuqiang

    2016-01-01

    From 2014 to 2015, three cases of highly pathogenic avian influenza infection occurred in zoo-housed north-east China tigers (Panthera tigris ssp.altaica) and four tigers died of respiratory distress in succession in Yunnan Province, China. We isolated and characterized three highly pathogenic avian influenza A(H5N1) viruses from these tigers. Phylogenetic analysis indicated that A/tiger /Yunnan /tig1404 /2014(H5N1) belongs to the provisional subclade 2.3.4.4e which were novel reassortant influenza A (H5N1) viruses with six internal genes from avian influenza A (H5N2) viruses. The HA gene of the isolated A/tiger /Yunnan /tig1412 /2014(H5N1) virus belongs to the subclade 2.3.2.1b. The isolated A/tiger /Yunnan /tig1508/2015 (H5N1) virus was a novel reassortant influenza A (H5N1) virus with three internal genes (PB2, PB1 and M) from H9N2 virus and belongs to the subclade 2.3.2.1c. PMID:27162026

  17. Fatal influenza A (H5N1) virus Infection in zoo-housed Tigers in Yunnan Province, China.

    PubMed

    Hu, Tingsong; Zhao, Huanyun; Zhang, Yan; Zhang, Wendong; Kong, Qiang; Zhang, Zhixiao; Cui, Qinghua; Qiu, Wei; Deng, Bo; Fan, Quanshui; Zhang, Fuqiang

    2016-05-10

    From 2014 to 2015, three cases of highly pathogenic avian influenza infection occurred in zoo-housed north-east China tigers (Panthera tigris ssp.altaica) and four tigers died of respiratory distress in succession in Yunnan Province, China. We isolated and characterized three highly pathogenic avian influenza A(H5N1) viruses from these tigers. Phylogenetic analysis indicated that A/tiger /Yunnan /tig1404 /2014(H5N1) belongs to the provisional subclade 2.3.4.4e which were novel reassortant influenza A (H5N1) viruses with six internal genes from avian influenza A (H5N2) viruses. The HA gene of the isolated A/tiger /Yunnan /tig1412 /2014(H5N1) virus belongs to the subclade 2.3.2.1b. The isolated A/tiger /Yunnan /tig1508/2015 (H5N1) virus was a novel reassortant influenza A (H5N1) virus with three internal genes (PB2, PB1 and M) from H9N2 virus and belongs to the subclade 2.3.2.1c.

  18. The Landscape Epidemiology of Seasonal Clustering of Highly Pathogenic Avian Influenza (H5N1) in Domestic Poultry in Africa, Europe and Asia.

    PubMed

    Walsh, M G; Amstislavski, P; Greene, A; Haseeb, M A

    2017-10-01

    Highly pathogenic avian influenza subtype H5N1 (H5N1) has contributed to substantial economic loss for backyard and large-scale poultry farmers each year since 1997. While the distribution of domestic H5N1 outbreaks across Africa, Europe and Asia is extensive, those features of the landscape conferring greatest risk remain uncertain. Furthermore, the extent to which influential landscape features may vary by season has been inadequately described. The current investigation used World Organization for Animal Health surveillance data to (i) delineate areas at greatest risk of H5N1 epizootics among domestic poultry, (ii) identify those abiotic and biotic features of the landscape associated with outbreak risk and (iii) examine patterns of epizootic clustering by season. Inhomogeneous point process models were used to predict the intensity of H5N1 outbreaks and describe the spatial dependencies between them. During October through March, decreasing precipitation, increasing isothermality and the presence of H5N1 in wild birds were significantly associated with the increased risk of domestic H5N1 epizootics. Conversely, increasing precipitation and decreasing isothermality were associated with the increased risk during April through September. Increasing temperature during the coldest quarter, domestic poultry density and proximity to surface water were associated with the increased risk of domestic outbreaks throughout the year. Spatial dependencies between outbreaks appeared to vary seasonally, with substantial clustering at small and large scales identified during October through March even after accounting for inhomogeneity due to landscape factors. In contrast, during April to September, H5N1 outbreaks exhibited no clustering at small scale once accounting for landscape factors. This investigation has identified seasonal differences in risk and clustering patterns of H5N1 outbreaks in domestic poultry and may suggest strategies in high-risk areas with features

  19. Persistent oseltamivir-resistant pandemic influenza A/H1N1 infection in an adult with cystic fibrosis

    PubMed Central

    Flight, William George; Bright-Thomas, Rowland; Mutton, Kenneth; Webb, Kevin; Jones, Andrew

    2011-01-01

    The authors report the case of a 25-year-old patient with cystic fibrosis (CF) who developed pandemic influenza A/H1N1 during a visit to the USA in August 2010. The patient has severe CF lung disease and takes maintenance oral corticosteroids. The influenza virus was positive for the H275Y oseltamivir-resistance mutation despite the patient never having received oseltamivir. The patient has remained sputum-positive for over 4 months despite inhaled zanamivir therapy. This is the first reported case of transmission of oseltamivir-resistant H1N1 influenza to a patient with CF. The frequency of prolonged sputum carriage of pandemic influenza and transmission of oseltamivir-resistant strains are unknown on a population level. However, if our observations are replicated in other CF patients, they are potentially of considerable importance to clinical and infection-control practices in this patient group. PMID:22696672

  20. Routes of transmission during a nosocomial influenza A(H3N2) outbreak among geriatric patients and healthcare workers.

    PubMed

    Eibach, D; Casalegno, J-S; Bouscambert, M; Bénet, T; Regis, C; Comte, B; Kim, B-A; Vanhems, P; Lina, B

    2014-03-01

    Influenza presents a life-threatening infection for hospitalized geriatric patients, who might be nosocomially infected via healthcare workers (HCWs), other patients or visitors. In the 2011/2012 influenza season an influenza A(H3N2) outbreak occurred in the geriatric department at the Hôpital Edouard Herriot, Lyon. To clarify the transmission chain for this influenza A(H3N2) outbreak by sequence analysis and to identify preventive measures. Laboratory testing of patients with influenza-like illness in the acute care geriatric department revealed 22 cases of influenza between 19th February and 15th March 2012. Incidences for patients and HCWs were calculated and possible epidemiological links were analysed using a questionnaire. Neuraminidase and haemagglutinin genes of culture-positive samples and community influenza samples were sequenced and clustered to detect patients with identical viral strains. Sixteen patients and six HCWs were affected, resulting in an attack rate of 24% and 11% respectively. Six nosocomial infections were recorded. The sequence analysis confirmed three independent influenza clusters on three different sections of the geriatric ward. For at least two clusters, an HCW source was determined. Epidemiological and microbiological results confirm influenza transmission from HCWs to patients. A higher vaccination rate, isolation measures and better hand hygiene are recommended in order to prevent outbreaks in future influenza seasons. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  1. Fatal pandemic (H1N1) 2009 influenza A virus infection in a Pennsylvania domestic cat.

    PubMed

    Campagnolo, E R; Rankin, J T; Daverio, S A; Hunt, E A; Lute, J R; Tewari, D; Acland, H M; Ostrowski, S R; Moll, M E; Urdaneta, V V; Ostroff, S M

    2011-11-01

    We report the earliest recognized fatality associated with laboratory-confirmed pandemic H1N1 (pH1N1) influenza in a domestic cat in the United States. The 12-year old, indoor cat died on 6 November 2009 after exposure to multiple family members who had been ill with influenza-like illness during the peak period of the fall wave of pH1N1 in Pennsylvania during late October 2009. The clinical presentation, history, radiographic, laboratory and necropsy findings are presented to assist veterinary care providers in understanding the features of this disease in cats and the potential for transmission of infection to pets from infected humans. Published 2011. This article is a US Government work and is in the public domain in the USA.

  2. Neurology of the H1N1 pandemic in Singapore: a nationwide case series of children and adults.

    PubMed

    Prerna, Asha; Lim, Jocelyn Y X; Tan, Natalie W H; Isa, Mas Suhaila; Oh, Helen May-Lin; Yassin, Norazieda; Low, Chian-Yong; Chan, Derrick W S; Chong, Chia-Yin; Leo, Yee-Sin; Chow, Angela Li-Ping; Tambyah, Paul Ananth; Tan, Kevin

    2015-10-01

    Neurologic complications have long been associated with influenza. A novel strain of influenza A (H1N1) first described in humans to have outbreak potential in 2009 in Mexico went on to become the first influenza pandemic of this century. We evaluated the neurologic complications of the novel influenza A (H1N1) 2009 in children and adults admitted to all public hospitals in Singapore during the influenza A (H1N1) 2009 pandemic between May 2009 and March 2010. All patients were positive for novel H1N1 infection and presented with neurologic symptoms prior to oseltamivir treatment. Ninety-eight patients (median age 6.6 years, range 0.4-62.6) were identified; 90 % were younger than 18 years; 32 % suffered from preexisting neurological, respiratory, or cardiac disease; and 66 % presented with seizures. Of those presenting with seizures, new onset seizures were the most common manifestation (n = 40, 61.5 %), followed by breakthrough seizures (n = 18, 27.7 %) and status epilepticus (n = 7, 10.8 %). Influenza-associated encephalopathy occurred in 20 %. The majority of children (n = 88) presented with seizures (n = 63, 71.6 %), encephalopathy (n = 19, 21.6 %), and syncope (n = 4, 4.5 %). Among adults, a wider range of neurological conditions were seen, with half of them presenting with an exacerbation of their underlying neurological disease. The neurological symptoms developed at a median of 2 days after the onset of systemic symptoms. The median length of hospital stay was 3 days, and 79 % were monitored in general wards. Neurologic complications associated with the novel influenza A (H1N1) 2009 strain were generally mild and had a good outcome. They occurred more frequently in patients with underlying neurological disorders. Seizures and encephalopathy were the most common manifestations, similar to other influenza virus strains.

  3. Efficacy of a pandemic (H1N1) 2009 virus vaccine in pigs against the pandemic influenza virus is superior to commercially available swine influenza vaccines.

    PubMed

    Loeffen, W L A; Stockhofe, N; Weesendorp, E; van Zoelen-Bos, D; Heutink, R; Quak, S; Goovaerts, D; Heldens, J G M; Maas, R; Moormann, R J; Koch, G

    2011-09-28

    In April 2009 a new influenza A/H1N1 strain, currently named "pandemic (H1N1) influenza 2009" (H1N1v), started the first official pandemic in humans since 1968. Several incursions of this virus in pig herds have also been reported from all over the world. Vaccination of pigs may be an option to reduce exposure of human contacts with infected pigs, thereby preventing cross-species transfer, but also to protect pigs themselves, should this virus cause damage in the pig population. Three swine influenza vaccines, two of them commercially available and one experimental, were therefore tested and compared for their efficacy against an H1N1v challenge. One of the commercial vaccines is based on an American classical H1N1 influenza strain, the other is based on a European avian H1N1 influenza strain. The experimental vaccine is based on reassortant virus NYMC X179A (containing the hemagglutinin (HA) and neuraminidase (NA) genes of A/California/7/2009 (H1N1v) and the internal genes of A/Puerto Rico/8/34 (H1N1)). Excretion of infectious virus was reduced by 0.5-3 log(10) by the commercial vaccines, depending on vaccine and sample type. Both vaccines were able to reduce virus replication especially in the lower respiratory tract, with less pathological lesions in vaccinated and subsequently challenged pigs than in unvaccinated controls. In pigs vaccinated with the experimental vaccine, excretion levels of infectious virus in nasal and oropharyngeal swabs, were at or below 1 log(10)TCID(50) per swab and lasted for only 1 or 2 days. An inactivated vaccine containing the HA and NA of an H1N1v is able to protect pigs from an infection with H1N1v, whereas swine influenza vaccines that are currently available are of limited efficaciousness. Whether vaccination of pigs against H1N1v will become opportune remains to be seen and will depend on future evolution of this strain in the pig population. Close monitoring of the pig population, focussing on presence and evolution of

  4. Influenza virus A(H1N1)2009 antibody-dependent cellular cytotoxicity in young children prior to the H1N1 pandemic.

    PubMed

    Mesman, Annelies W; Westerhuis, Brenda M; Ten Hulscher, Hinke I; Jacobi, Ronald H; de Bruin, Erwin; van Beek, Josine; Buisman, Annemarie M; Koopmans, Marion P; van Binnendijk, Robert S

    2016-09-01

    Pre-existing immunity played a significant role in protection during the latest influenza A virus H1N1 pandemic, especially in older age groups. Structural similarities were found between A(H1N1)2009 and older H1N1 virus strains to which humans had already been exposed. Broadly cross-reactive antibodies capable of neutralizing the A(H1N1)2009 virus have been implicated in this immune protection in adults. We investigated the serological profile of a group of young children aged 9 years (n=55), from whom paired blood samples were available, just prior to the pandemic wave (March 2009) and shortly thereafter (March 2010). On the basis of A(H1N1)2009 seroconversion, 27 of the 55 children (49 %) were confirmed to be infected between these two time points. Within the non-infected group of 28 children (51 %), high levels of seasonal antibodies to H1 and H3 HA1 antigens were detected prior to pandemic exposure, reflecting past infection with H1N1 and H3N2, both of which had circulated in The Netherlands prior to the pandemic. In some children, this reactivity coincided with specific antibody reactivity against A(H1N1)2009. While these antibodies were not able to neutralize the A(H1N1)2009 virus, they were able to mediate antibody-dependent cellular cytotoxicity (ADCC) in vitro upon interaction with the A(H1N1)2009 virus. This finding suggests that cross-reactive antibodies could contribute to immune protection in children via ADCC.

  5. Reassortment of influenza A viruses in wild birds in Alaska before H5 Clade 2.3.4.4 Outbreaks

    USGS Publications Warehouse

    Hill, Nichola J.; Hussein, Islam T. M.; Davis, Kimberly R.; Ma, Eric J.; Spivey, Timothy; Ramey, Andy M.; Puryear, Wendy Blay; Das, Suman R.; Halpin, Rebecca A.; Lin, Xudong; Federova, Nadia B.; Suarez, David L.; Boyce, Walter M.; Runstadler, Jonathan A.

    2017-01-01

    Sampling of mallards in Alaska during September 2014–April 2015 identified low pathogenic avian influenza A virus (subtypes H5N2 and H1N1) that shared ancestry with highly pathogenic reassortant H5N2 and H5N1 viruses. Molecular dating indicated reassortment soon after interhemispheric movement of H5N8 clade 2.3.4.4, suggesting genetic exchange in Alaska or surrounds before outbreaks.

  6. Knowledge, Attitudes, and Practices of School Personnel Regarding Influenza, Vaccinations, and School Outbreaks

    ERIC Educational Resources Information Center

    Ha, Chrysanthy; Rios, Lenoa M.; Pannaraj, Pia S.

    2013-01-01

    Background: School personnel are important for communicating with parents about school vaccination programs and recognizing influenza outbreaks. This study examined knowledge, attitudes, and practices of school personnel regarding seasonal and 2009 H1N1 influenza, vaccinations, and school outbreak investigations. Methods: Data were analyzed from…

  7. Influenza A(H1N1)pdm09 Virus among Healthy Show Pigs, United States

    PubMed Central

    Bender, Jeffrey B.; Bridges, Carolyn B.; Daly, Russell F.; Krueger, Whitney S.; Male, Michael J.; Heil, Gary L.; Friary, John A.; Derby, Robin B.; Cox, Nancy J.

    2012-01-01

    Within 5 months after the earliest detection of human influenza A(H1N1)pdm09 virus, we found molecular and culture evidence of the virus in healthy US show pigs. The mixing of humans and pigs at swine shows possibly could further the geographic and cross-species spread of influenza A viruses. PMID:22932697

  8. Temperature sensitivity on growth and/or replication of H1N1, H1N2 and H3N2 influenza A viruses isolated from pigs and birds in mammalian cells.

    PubMed

    Massin, Pascale; Kuntz-Simon, Gaëlle; Barbezange, Cyril; Deblanc, Céline; Oger, Aurélie; Marquet-Blouin, Estelle; Bougeard, Stéphanie; van der Werf, Sylvie; Jestin, Véronique

    2010-05-19

    Influenza A viruses have been isolated from a wide range of animal species, aquatic birds being the reservoir for their genetic diversity. Avian influenza viruses can be transmitted to humans, directly or indirectly through an intermediate host like pig. This study aimed to define in vitro conditions that could prove useful to evaluate the potential of influenza viruses to adapt to a different host. Growth of H1N1, H1N2 and H3N2 influenza viruses belonging to different lineages isolated from birds or pigs prior to 2005 was tested on MDCK or NPTr cell lines in the presence or absence of exogenous trypsin. Virus multiplication was compared at 33, 37 and 40 degrees C, the infection site temperatures in human, swine and avian hosts, respectively. Temperature sensitivity of PB2-, NP- and M-RNA replication was also tested by quantitative real-time PCR. Multiplication of avian viruses was cold-sensitive, whatever cell type. By contrast, temperature sensitivity of swine viruses was found to depend on the virus and the host cell: for an H1N1 swine isolate from 1982, multiplication was cold-sensitive on NPTr cells and undetectable at 40 degrees C. From genetic analyses, it appears that temperature sensitivity could involve other residues than PB2 residue 627 and could affect other steps of the replication cycle than replication. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Prevalence of antibodies against avian influenza A (H5N1) virus among Cullers and poultry workers in Ho Chi Minh City, 2005.

    PubMed

    Schultsz, Constance; Nguyen, Van Dung; Hai, Le Thanh; Do, Quang Ha; Peiris, J S Malik; Lim, Wilina; Garcia, Jean-Michel; Nguyen, Dac Tho; Nguyen, Thi Hoang Lan; Huynh, Huu Tho; Phan, Xuan Thao; van Doorn, H Rogier; Nguyen, Van Vinh Chau; Farrar, Jeremy; de Jong, Menno D

    2009-11-23

    Between 2003 and 2005, highly pathogenic avian influenza A (H5N1) viruses caused large scale outbreaks in poultry in the Ho Chi Minh City area in Vietnam. We studied the prevalence of antibodies against H5N1 in poultry workers and cullers who were active in the program in Ho Chi Minh City in 2004 and 2005. Single sera from 500 poultry workers and poultry cullers exposed to infected birds were tested for antibodies to avian influenza H5N1, using microneutralization assays and hemagglutination inhibition assay with horse blood. All sera tested negative using microneutralization tests. Three samples showed a 1ratio80 titer in the hemagglutination inhibition assay. This study provides additional support for the low transmissibility of clade 1 H5N1 to humans, but limited transmission to highly exposed persons cannot be excluded given the presence of low antibody titers in some individuals.

  10. Swine flu. Mexico's handling of A/H1N1 in comparative perspective.

    PubMed

    Ear, Sophal

    2012-01-01

    Emerging infectious diseases (EIDs) pose international security threats because of their potential to inflict harm upon humans, crops, livestock, health infrastructure, and economies. Despite the scale of this threat, there are inherent limitations in preventing and controlling EIDs, including the scope of current disease surveillance efforts. All of this leads to the following questions in the context of Mexico's recent swine flu experience: What were the cultural, political, and economic challenges to Influenza A/H1N1 virus response in Mexico? By way of comparison, what can we learn from the U.S. experience in 1976 with A/New Jersey/76 (Hsw1N1), later referred to as H1N1? This article explores the comparative political economy of Mexico's handling of influenza virus A/H1N1 outbreak in 2009. Research provides notable observations-based on the strengths and weaknesses of each country's response--that can be used as a starting point of discussion for the design of effective EIDs surveillance programs in developing and middle-income countries. In the U.S., the speed and efficiency of the 1976 U.S. mobilization against H1N1 was laudable. Although the U.S. response to the outbreak is seldom praised, the unity of the scientific and political communities demonstrated the national ability to respond to the situation. Mexico's strongest characteristics were its transparency, as well as the cooperation the country exhibited with other nations, particularly the U.S. and Canada. While Mexico showed savvy in its effective management of public and media relations, as the article details, political, economic, and cultural problems persisted.

  11. Continual Reintroduction of Human Pandemic H1N1 Influenza A Viruses into Swine in the United States, 2009 to 2014

    PubMed Central

    Stratton, Jered; Killian, Mary Lea; Janas-Martindale, Alicia; Vincent, Amy L.

    2015-01-01

    ABSTRACT The diversity of influenza A viruses in swine (swIAVs) presents an important pandemic threat. Knowledge of the human-swine interface is particularly important for understanding how viruses with pandemic potential evolve in swine hosts. Through phylogenetic analysis of contemporary swIAVs in the United States, we demonstrate that human-to-swine transmission of pandemic H1N1 (pH1N1) viruses has occurred continuously in the years following the 2009 H1N1 pandemic and has been an important contributor to the genetic diversity of U.S. swIAVs. Although pandemic H1 and N1 segments had been largely removed from the U.S. swine population by 2013 via reassortment with other swIAVs, these antigens reemerged following multiple human-to-swine transmission events during the 2013-2014 seasonal epidemic. These findings indicate that the six internal gene segments from pH1N1 viruses are likely to be sustained long term in the U.S. swine population, with periodic reemergence of pandemic hemagglutinin (HA) and neuraminidase (NA) segments in association with seasonal pH1N1 epidemics in humans. Vaccinating U.S. swine workers may reduce infection of both humans and swine and in turn limit the role of humans as sources of influenza virus diversity in pigs. IMPORTANCE Swine are important hosts in the evolution of influenza A viruses with pandemic potential. Here, we analyze influenza virus sequence data generated by the U.S. Department of Agriculture's national surveillance system to identify the central role of humans in the reemergence of pandemic H1N1 (pH1N1) influenza viruses in U.S. swine herds in 2014. These findings emphasize the important role of humans as continuous sources of influenza virus diversity in swine and indicate that influenza viruses with pandemic HA and NA segments are likely to continue to reemerge in U.S. swine in association with seasonal pH1N1 epidemics in humans. PMID:25833052

  12. Continual Reintroduction of Human Pandemic H1N1 Influenza A Viruses into Swine in the United States, 2009 to 2014.

    PubMed

    Nelson, Martha I; Stratton, Jered; Killian, Mary Lea; Janas-Martindale, Alicia; Vincent, Amy L

    2015-06-01

    The diversity of influenza A viruses in swine (swIAVs) presents an important pandemic threat. Knowledge of the human-swine interface is particularly important for understanding how viruses with pandemic potential evolve in swine hosts. Through phylogenetic analysis of contemporary swIAVs in the United States, we demonstrate that human-to-swine transmission of pandemic H1N1 (pH1N1) viruses has occurred continuously in the years following the 2009 H1N1 pandemic and has been an important contributor to the genetic diversity of U.S. swIAVs. Although pandemic H1 and N1 segments had been largely removed from the U.S. swine population by 2013 via reassortment with other swIAVs, these antigens reemerged following multiple human-to-swine transmission events during the 2013-2014 seasonal epidemic. These findings indicate that the six internal gene segments from pH1N1 viruses are likely to be sustained long term in the U.S. swine population, with periodic reemergence of pandemic hemagglutinin (HA) and neuraminidase (NA) segments in association with seasonal pH1N1 epidemics in humans. Vaccinating U.S. swine workers may reduce infection of both humans and swine and in turn limit the role of humans as sources of influenza virus diversity in pigs. Swine are important hosts in the evolution of influenza A viruses with pandemic potential. Here, we analyze influenza virus sequence data generated by the U.S. Department of Agriculture's national surveillance system to identify the central role of humans in the reemergence of pandemic H1N1 (pH1N1) influenza viruses in U.S. swine herds in 2014. These findings emphasize the important role of humans as continuous sources of influenza virus diversity in swine and indicate that influenza viruses with pandemic HA and NA segments are likely to continue to reemerge in U.S. swine in association with seasonal pH1N1 epidemics in humans. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Socioeconomic Factors Influencing Hospitalized Patients with Pneumonia Due to Influenza A(H1N1)pdm09 in Mexico

    PubMed Central

    Manabe, Toshie; Higuera Iglesias, Anjarath Lorena; Vazquez Manriquez, Maria Eugenia; Martinez Valadez, Eduarda Leticia; Ramos, Leticia Alfaro; Izumi, Shinyu; Takasaki, Jin; Kudo, Koichiro

    2012-01-01

    Background In addition to clinical aspects and pathogen characteristics, people's health-related behavior and socioeconomic conditions can affect the occurrence and severity of diseases including influenza A(H1N1)pdm09. Methodology and Principal Findings A face-to-face interview survey was conducted in a hospital in Mexico City at the time of follow-up consultation for hospitalized patients with pneumonia due to influenza virus infection. In all, 302 subjects were enrolled and divided into two groups based on the period of hospitalization. Among them, 211 tested positive for influenza A(H1N1)pdm09 virus by real-time reverse-transcriptase-polymerase-chain-reaction during the pandemic period (Group-pdm) and 91 tested positive for influenza A virus in the post-pandemic period (Group-post). All subjects were treated with oseltamivir. Data on the demographic characteristics, socioeconomic status, living environment, and information relating to A(H1N1)pdm09, and related clinical data were compared between subjects in Group-pdm and those in Group-post. The ability of household income to pay for utilities, food, and health care services as well as housing quality in terms of construction materials and number of rooms revealed a significant difference: Group-post had lower socioeconomic status than Group-pdm. Group-post had lower availability of information regarding H1N1 influenza than Group-pdm. These results indicate that subjects in Group-post had difficulty receiving necessary information relating to influenza and were more likely to be impoverished than those in Group-pdm. Possible factors influencing time to seeking health care were number of household rooms, having received information on the necessity of quick access to health care, and house construction materials. Conclusions Health-care-seeking behavior, poverty level, and the distribution of information affect the occurrence and severity of pneumonia due to H1N1 virus from a socioeconomic point of view. These

  14. Influenza A (H1N1pdm09)-Related Critical Illness and Mortality in Mexico and Canada, 2014.

    PubMed

    Dominguez-Cherit, Guillermo; De la Torre, Alethse; Rishu, Asgar; Pinto, Ruxandra; Ñamendys-Silva, Silvio A; Camacho-Ortiz, Adrián; Silva-Medina, Marco Antonio; Hernández-Cárdenas, Carmen; Martínez-Franco, Michel; Quesada-Sánchez, Alejandro; López-Gallegos, Guadalupe Celia; Mosqueda-Gómez, Juan L; Rivera-Martinez, Norma E; Campos-Calderón, Fernando; Rivero-Sigarroa, Eduardo; Hernández-Gilsoul, Thierry; Espinosa-Pérez, Lourdes; Macías, Alejandro E; Lue-Martínez, Dolores M; Buelna-Cano, Christian; Ramírez-García Luna, Ana-Sofía; Cruz-Ruiz, Nestor G; Poblano-Morales, Manuel; Molinar-Ramos, Fernando; Hernandez-Torre, Martin; León-Gutiérrez, Marco Antonio; Rosaldo-Abundis, Oscar; Baltazar-Torres, José Ángel; Stelfox, Henry T; Light, Bruce; Jouvet, Philippe; Reynolds, Steve; Hall, Richard; Shindo, Nikki; Daneman, Nick; Fowler, Robert A

    2016-10-01

    The 2009-2010 influenza A (H1N1pdm09) pandemic caused substantial morbidity and mortality among young patients; however, mortality estimates have been confounded by regional differences in eligibility criteria and inclusion of selected populations. In 2013-2014, H1N1pdm09 became North America's dominant seasonal influenza strain. Our objective was to compare the baseline characteristics, resources, and treatments with outcomes among critically ill patients with influenza A (H1N1pdm09) in Mexican and Canadian hospitals in 2014 using consistent eligibility criteria. Observational study and a survey of available healthcare setting resources. Twenty-one hospitals, 13 in Mexico and eight in Canada. Critically ill patients with confirmed H1N1pdm09 during 2013-2014 influenza season. None. The main outcome measures were 90-day mortality and independent predictors of mortality. Among 165 adult patients with H1N1pdm09-related critical illness between September 2013 and March 2014, mean age was 48.3 years, 64% were males, and nearly all influenza was community acquired. Patients were severely hypoxic (median PaO2-to-FIO2 ratio, 83 mm Hg), 97% received mechanical ventilation, with mean positive end-expiratory pressure of 14 cm H2O at the onset of critical illness and 26.7% received rescue oxygenation therapy with prone ventilation, extracorporeal life support, high-frequency oscillatory ventilation, or inhaled nitric oxide. At 90 days, mortality was 34.6% (13.9% in Canada vs 50.5% in Mexico, p < 0.0001). Independent predictors of mortality included lower presenting PaO2-to-FIO2 ratio (odds ratio, 0.89 per 10-point increase [95% CI, 0.80-0.99]), age (odds ratio, 1.49 per 10 yr increment [95% CI, 1.10-2.02]), and requiring critical care in Mexico (odds ratio, 7.76 [95% CI, 2.02-27.35]). ICUs in Canada generally had more beds, ventilators, healthcare personnel, and rescue oxygenation therapies. Influenza A (H1N1pdm09)-related critical illness still predominantly affects

  15. Genome-Wide Analysis of Evolutionary Markers of Human Influenza A(H1N1)pdm09 and A(H3N2) Viruses May Guide Selection of Vaccine Strain Candidates.

    PubMed

    Belanov, Sergei S; Bychkov, Dmitrii; Benner, Christian; Ripatti, Samuli; Ojala, Teija; Kankainen, Matti; Kai Lee, Hong; Wei-Tze Tang, Julian; Kainov, Denis E

    2015-11-27

    Here we analyzed whole-genome sequences of 3,969 influenza A(H1N1)pdm09 and 4,774 A(H3N2) strains that circulated during 2009-2015 in the world. The analysis revealed changes at 481 and 533 amino acid sites in proteins of influenza A(H1N1)pdm09 and A(H3N2) strains, respectively. Many of these changes were introduced as a result of random drift. However, there were 61 and 68 changes that were present in relatively large number of A(H1N1)pdm09 and A(H3N2) strains, respectively, that circulated during relatively long time. We named these amino acid substitutions evolutionary markers, as they seemed to contain valuable information regarding the viral evolution. Interestingly, influenza A(H1N1)pdm09 and A(H3N2) viruses acquired non-overlapping sets of evolutionary markers. We next analyzed these characteristic markers in vaccine strains recommended by the World Health Organization for the past five years. Our analysis revealed that vaccine strains carried only few evolutionary markers at antigenic sites of viral hemagglutinin (HA) and neuraminidase (NA). The absence of these markers at antigenic sites could affect the recognition of HA and NA by human antibodies generated in response to vaccinations. This could, in part, explain moderate efficacy of influenza vaccines during 2009-2014. Finally, we identified influenza A(H1N1)pdm09 and A(H3N2) strains, which contain all the evolutionary markers of influenza A strains circulated in 2015, and which could be used as vaccine candidates for the 2015/2016 season. Thus, genome-wide analysis of evolutionary markers of influenza A(H1N1)pdm09 and A(H3N2) viruses may guide selection of vaccine strain candidates. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Will the community nurse continue to function during H1N1 influenza pandemic: a cross-sectional study of Hong Kong community nurses?

    PubMed

    Wong, Eliza L Y; Wong, Samuel Y S; Kung, Kenny; Cheung, Annie W L; Gao, Tiffany T; Griffiths, Sian

    2010-04-30

    Healthcare workers have been identified as one of the high risk groups for being infected with influenza during influenza pandemic. Potential levels of absenteeism among healthcare workers in hospital settings are high. However, there was no study to explore the attitudes of healthcare workers in community setting towards the preparedness to the novel H1N1 influenza pandemic. The aim of this study was to explore the willingness of community nurses in Hong Kong to work during H1N1 influenza pandemic. A cross-sectional survey was conducted among all 401 community nurses employed by the Hospital Authority in Hong Kong when the WHO pandemic alert level was 6. The response rate of this study was 66.6%. 76.9% participants reported being "not willing" (33.3%) or "not sure" (43.6%) to take care of patients during H1N1 influenza pandemic. The self-reported reasons for being unwilling to report to duty during H1N1 influenza pandemic were psychological stress (55.0%) and fear of being infected H1N1 influenza (29.2%). The reported unwillingness to report to duty was marginally significantly associated with the request for further training of using infection control clinical guideline (OR: 0.057; CI: 0.25-1.02). Those who reported unwillingness or not being sure about taking care of the patients during H1N1 influenza pandemic were more depressed (p < 0.001) and found work more emotionally stressful (p < 0.001). Interventions to provide infection control training and address community nurses' psychological needs might increase their willingness to provide care to patients in the community during H1N1 influenza pandemic. This would help to ensure an effective and appropriate health system response during the H1N1 influenza pandemic.

  17. Will the community nurse continue to function during H1N1 influenza pandemic: a cross-sectional study of Hong Kong community nurses?

    PubMed Central

    2010-01-01

    Background Healthcare workers have been identified as one of the high risk groups for being infected with influenza during influenza pandemic. Potential levels of absenteeism among healthcare workers in hospital settings are high. However, there was no study to explore the attitudes of healthcare workers in community setting towards the preparedness to the novel H1N1 influenza pandemic. The aim of this study was to explore the willingness of community nurses in Hong Kong to work during H1N1 influenza pandemic. Methods A cross-sectional survey was conducted among all 401 community nurses employed by the Hospital Authority in Hong Kong when the WHO pandemic alert level was 6. Results The response rate of this study was 66.6%. 76.9% participants reported being "not willing" (33.3%) or "not sure" (43.6%) to take care of patients during H1N1 influenza pandemic. The self-reported reasons for being unwilling to report to duty during H1N1 influenza pandemic were psychological stress (55.0%) and fear of being infected H1N1 influenza (29.2%). The reported unwillingness to report to duty was marginally significantly associated with the request for further training of using infection control clinical guideline (OR: 0.057; CI: 0.25-1.02). Those who reported unwillingness or not being sure about taking care of the patients during H1N1 influenza pandemic were more depressed (p < 0.001) and found work more emotionally stressful (p < 0.001). Conclusions Interventions to provide infection control training and address community nurses' psychological needs might increase their willingness to provide care to patients in the community during H1N1 influenza pandemic. This would help to ensure an effective and appropriate health system response during the H1N1 influenza pandemic. PMID:20433691

  18. Evaluation of the Cepheid Xpert Flu Assay for rapid identification and differentiation of influenza A, influenza A 2009 H1N1, and influenza B viruses.

    PubMed

    Novak-Weekley, S M; Marlowe, E M; Poulter, M; Dwyer, D; Speers, D; Rawlinson, W; Baleriola, C; Robinson, C C

    2012-05-01

    The Xpert Flu Assay cartridge is a next-generation nucleic acid amplification system that provides multiplexed PCR detection of the influenza A, influenza A 2009 H1N1, and influenza B viruses in approximately 70 min with minimal hands-on time. Six laboratories participated in a clinical trial comparing the results of the new Cepheid Xpert Flu Assay to those of culture or real-time PCR with archived and prospectively collected nasal aspirate-wash (NA-W) specimens and nasopharyngeal (NP) swabs from children and adults. Discrepant results were resolved by DNA sequence analysis. After discrepant-result analysis, the sensitivities of the Xpert Flu Assay for prospective NA-W specimens containing the influenza A, influenza A 2009 H1N1, and influenza B viruses compared to those of culture were 90.0%, 100%, and 100%, respectively, while the sensitivities of the assay for prospective NP swabs compared to those of culture were 100%, 100%, and 100%, respectively. The sensitivities of the Xpert Flu Assay for archived NA-W specimens compared to those of Gen-Probe ProFlu+ PCR for the influenza A, influenza A 2009 H1N1, and influenza B viruses were 99.4%, 98.4%, and 100%, respectively, while the sensitivities of the Xpert Flu Assay for archived NP swabs compared to those of ProFlu+ were 98.1%, 100%, and 93.8%, respectively. The sensitivities of the Xpert Flu Assay with archived NP specimens compared to those of culture for the three targets were 97.5%, 100%, and 93.8%, respectively. We conclude that the Cepheid Xpert Flu Assay is an accurate and rapid method that is suitable for on-demand testing for influenza viral infection.

  19. Pediatric neurological complications associated with the A(H1N1)pdm09 influenza infection.

    PubMed

    Frobert, E; Sarret, C; Billaud, G; Gillet, Y; Escuret, V; Floret, D; Casalegno, J S; Bouscambert, M; Morfin, F; Javouhey, E; Lina, B

    2011-12-01

    Influenza-related neurological complications (INC) have been reported during seasonal flu in children. To investigate the types, outcomes and incidence of INC occurring during the 2009 A(H1N1) pandemic, a retrospective analyze was conducted in the single French pediatric hospital of Lyon from October 2009 to February 2010. All children presenting with fever, influenza-like illness, respiratory distress or neurological symptoms were tested for influenza A(H1N1)pdm09 infection from respiratory specimens using real time RT-PCR. INC occurred in 14 A(H1N1)pdm09 positive children (7.7% of A(H1N1)pdm09 positive children admitted to hospital) with a median age of 5.1 years. Admission to the intensive care unit (ICU) was required for nine children (64.3%). Half of the children with INC had comorbidity and three had coinfection, both characteristics mainly found in children requiring the ICU. All children received oral oseltamivir treatment. Febrile seizures were observed in eight children, half of them having a chronic comorbidity (2 epilepsy, 1 nonketotic hyperglycinemia, 1 anoxic encephalopathy). Other INC, less commonly reported, included 2 cases of encephalitis, 1 encephalopathy, 1 basilar artery thrombosis, 1 myasthenic crisis and 1 coma. Eleven of the 14 children (78.6%) recovered, one had a minor disability, one child developed a locked-in syndrome and one died from complications of an acute necrotizing encephalopathy. INC can be observed even in children with no underlying disorder. It may lead to dramatic issue in a significant number of cases. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. First outbreaks and phylogenetic analyses of avian influenza H9N2 viruses isolated from poultry flocks in Morocco.

    PubMed

    El Houadfi, Mohammed; Fellahi, Siham; Nassik, Saadia; Guérin, Jean-Luc; Ducatez, Mariette F

    2016-08-15

    H9N2 avian influenza viruses continue to spread in poultry and wild birds worldwide. Morocco just faced its first H9N2 influenza virus outbreaks early 2016 affecting different types of poultry production. After its introduction, the virus spread very rapidly throughout the country. Samples were collected from 11 chicken flocks with high morbidity and mortality rates. Four viruses were successfully isolated from broiler chickens and one from broiler breeders and fully sequenced. Phylogenetic and molecular markers analyses showed the Moroccan viruses belonged to the G1 lineage and likely originated from the Middle East. As known for H9N2 viruses, the Moroccanisolates possess several genetic markers that enhance virulence in poultry and transmission to humans. The present study demonstrated that under field conditions H9N2 could have a devastating effect on egg production and mortalities and highlighted a lack of surveillance data on the pathogen in the region.