Sample records for h1n1 viral encephalitis

  1. Adult Influenza A (H1N1) Related Encephalitis: A Case Report.

    PubMed

    Midha, Devinder; Kumar, Arun; Vasudev, Pratibha; Iqbal, Zafar Ahmad; Mandal, Amit Kumar

    2018-05-01

    The year 2009-2010 saw H1N1 influenza outbreaks occurring in almost all countries of the world, causing the WHO to declare it a pandemic of an alert level of 6. In India, H1N1 influenza outbreaks were again reported in late 2014 and early 2015. Since then, sporadic cases of H1N1 influenza have been reported. H1N1 influenza usually presents itself with respiratory tract symptoms. In a minority of patients, abdominal symptoms may occur as well. Acute influenza-associated encephalopathy/encephalitis mostly occurs in the pediatric population, whereas in adults, it is a rare complication. The incidence of neurological complications appears to have increased after the 2009 H1N1 influenza A virus pandemic. We would like to draw attention to an adult patient case who initially presented with respiratory symptoms but then deteriorated and developed encephalitis, which is rarely reported. As per literature reviewed by Victoria Bangualid and Judith Berger on PubMed, only 21 cases of neurological complications were found in adult influenza A patients, out of whom 8 had encephalopathy.

  2. Characteristics of atopic children with pandemic H1N1 influenza viral infection: pandemic H1N1 influenza reveals 'occult' asthma of childhood.

    PubMed

    Hasegawa, Shunji; Hirano, Reiji; Hashimoto, Kunio; Haneda, Yasuhiro; Shirabe, Komei; Ichiyama, Takashi

    2011-02-01

    The number of human cases of pandemic H1N1 influenza viral infection has increased in Japan since April 2009, as it has worldwide. This virus is widespread in the Yamaguchi prefecture in western Japan, where most infected children exhibited respiratory symptoms. Bronchial asthma is thought to be one of the risk factors that exacerbate respiratory symptoms of pandemic H1N1-infected patients, but the pathogenesis remains unclear. We retrospectively investigated the records of 33 children with pandemic H1N1 influenza viral infection who were admitted to our hospital between October and December 2009 and analyzed their clinical features. The percentage of children with asthma attack, with or without abnormal findings on chest radiographs (pneumonia, atelectasis, etc.), caused by pandemic H1N1 influenza infection was significantly higher than that of children with asthma attack and 2008-2009 seasonal influenza infection. Of the 33 children in our study, 22 (66.7%) experienced an asthma attack. Among these children, 20 (90.9%) did not receive long-term management for bronchial asthma, whereas 7 (31.8%) were not diagnosed with bronchial asthma and had experienced their first asthma attack. However, the severity of the attack did not correlate with the severity of the pulmonary complications of pandemic H1N1 influenza viral infection. The pandemic H1N1 influenza virus greatly increases the risk of lower respiratory tract complications such as asthma attack, pneumonia, and atelectasis, when compared to the seasonal influenza virus. Furthermore, our results suggest that pandemic H1N1 influenza viral infection can easily induce a severe asthma attack, pneumonia, and atelectasis in atopic children without any history of either an asthma attack or asthma treatment. © 2011 John Wiley & Sons A/S.

  3. Characterization of encephalitis in wild birds naturally infected by highly pathogenic avian influenza H5N1.

    PubMed

    Bröjer, Caroline; Agren, Erik O; Uhlhorn, Henrik; Bernodt, Karin; Jansson, Désirée S; Gavier-Widén, Dolores

    2012-03-01

    During the outbreak of highly pathogenic avian influenza (HPAI) H5N1 in Sweden in 2006, disease and mortality were observed in a number of wild bird species. Encephalitis was one of the most consistent and severe findings in birds submitted for postmortem examination. However, the distribution and severity of the inflammation varied among individuals. This study characterized the encephalitis and the phenotype of the cellular infiltrate in brains of 40 birds of various species naturally infected with HPAI H5N1. Brain sections stained with hematoxylin and eosin and immunostained for influenza A viral antigen were evaluated in parallel to brain sections immunostained with antibodies against T lymphocytes (CD3+), B lymphocytes (CD79a+), macrophages (Lectin RCA-1+), and astrocytes expressing glial fibrillary acidic protein. The virus showed marked neurotropism, and the neuropathology included multifocal to diffuse areas of gliosis and inflammation in the gray matter, neuronal degeneration, neuronophagia, vacuolation of the neuropil, focal necrosis, perivascular cuffing, and meningitis. Broad ranges in severity, neuroanatomical distribution, and type of cellular infiltrate were observed among the different bird species. Since neurotropism is a key feature of HPAI H5N1 infection in birds and other species and because the clinical presentation can vary, the characterization of the inflammation in the brain is important in understanding the pathogenesis of the disease and also has important diagnostic implications for sample selection.

  4. Viral shedding of 2009 pandemic H1N1 and evaluation of quarantine recommendations.

    PubMed

    Chin, Bum Sik; Chae, Yun Tae; Choi, Hee Kyung; Baek, Ji-Hyeon; Jin, Sung Joon; Shin, So Youn; Han, Sang Hoon; Choi, Jun Yong; Kim, Chang Oh; Song, Young Goo; Jeong, Seok Hoon; Kim, June Myung

    2012-01-01

    Public health authorities recommend that isolation precautions for influenza should be continued for 7 days after illness onset or until 24 h after the resolution of symptoms, whichever event lasts longer. However, little data are available regarding the duration of isolation for patients with 2009 pandemic H1N1 (pH1N1). We recruited patients with confirmed pH1N1 virus infection at a 2,000-bed tertiary care center. Influenza viral loads from oropharyngeal swab specimens were serially determined by reverse transcriptase quantitative polymerase chain reaction every other day, and the risk factors for prolonged viral shedding were investigated. To evaluate the current recommendations for isolation precautions, we measured the intervals between symptom onset and the last viral RNA detection, and that between the last viral RNA detection and the point at which the patient was symptom-free for 24 h. From November 2009 to January 2010, 26 patients were enrolled, and viral RNA was detected in more than half of the eligible patients (10 of 19, 52.6%) for ≥7 days after symptom onset. While evaluating the policy for lifting quarantine, we found that viral RNA was detected in 4 of 15 patients (26.7%) beyond the recommended duration of isolation. In conclusion, viral RNA was detected in a substantial proportion of hospitalized patients even when they fulfilled the recommended conditions for lifting quarantine, and we believe that more prudence is required in this aspect.

  5. Avian influenza H5N1 viral and bird migration networks in Asia

    USGS Publications Warehouse

    Tian, Huaivu; Zhou, Sen; Dong, Lu; Van Boeckel, Thomas P.; Cui, Yujun; Newman, Scott H.; Takekawa, John Y.; Prosser, Diann J.; Xiao, Xiangming; Wu, Yarong; Cazelles, Bernard; Huang, Shanqian; Yang, Ruifu; Grenfell, Bryan T.; Xu, Bing

    2015-01-01

    The spatial spread of the highly pathogenic avian influenza virus H5N1 and its long-term persistence in Asia have resulted in avian influenza panzootics and enormous economic losses in the poultry sector. However, an understanding of the regional long-distance transmission and seasonal patterns of the virus is still lacking. In this study, we present a phylogeographic approach to reconstruct the viral migration network. We show that within each wild fowl migratory flyway, the timing of H5N1 outbreaks and viral migrations are closely associated, but little viral transmission was observed between the flyways. The bird migration network is shown to better reflect the observed viral gene sequence data than other networks and contributes to seasonal H5N1 epidemics in local regions and its large-scale transmission along flyways. These findings have potentially far-reaching consequences, improving our understanding of how bird migration drives the periodic reemergence of H5N1 in Asia.

  6. Avian influenza H5N1 viral and bird migration networks in Asia

    PubMed Central

    Tian, Huaiyu; Zhou, Sen; Dong, Lu; Van Boeckel, Thomas P.; Cui, Yujun; Newman, Scott H.; Takekawa, John Y.; Prosser, Diann J.; Xiao, Xiangming; Wu, Yarong; Cazelles, Bernard; Huang, Shanqian; Yang, Ruifu; Grenfell, Bryan T.; Xu, Bing

    2015-01-01

    The spatial spread of the highly pathogenic avian influenza virus H5N1 and its long-term persistence in Asia have resulted in avian influenza panzootics and enormous economic losses in the poultry sector. However, an understanding of the regional long-distance transmission and seasonal patterns of the virus is still lacking. In this study, we present a phylogeographic approach to reconstruct the viral migration network. We show that within each wild fowl migratory flyway, the timing of H5N1 outbreaks and viral migrations are closely associated, but little viral transmission was observed between the flyways. The bird migration network is shown to better reflect the observed viral gene sequence data than other networks and contributes to seasonal H5N1 epidemics in local regions and its large-scale transmission along flyways. These findings have potentially far-reaching consequences, improving our understanding of how bird migration drives the periodic reemergence of H5N1 in Asia. PMID:25535385

  7. The Frequency of Autoimmune N-Methyl-D-Aspartate Receptor Encephalitis Surpasses That of Individual Viral Etiologies in Young Individuals Enrolled in the California Encephalitis Project

    PubMed Central

    Sheriff, Heather; Dalmau, Josep; Tilley, Drake H.; Glaser, Carol A.

    2012-01-01

    Background. In 2007, the California Encephalitis Project (CEP), which was established to study the epidemiology of encephalitis, began identifying cases of anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis. Increasing numbers of anti-NMDAR encephalitis cases have been identified at the CEP, and this form rivals commonly known viral etiologies as a causal agent. We report here the relative frequency and differences among encephalitides caused by anti-NMDAR and viral etiologies within the CEP experience. Methods. Demographic, frequency, and clinical data from patients with anti-NMDAR encephalitis are compared with those with viral encephalitic agents: enterovirus, herpes simplex virus type 1 (HSV-1), varicella-zoster virus (VZV), and West Nile virus (WNV). All examined cases presented to the CEP between September 2007 and February 2011 and are limited to individuals aged ≤30 years because of the predominance of anti-NMDAR encephalitis in this group. The diagnostic costs incurred in a single case are also included. Results. Anti-NMDAR encephalitis was identified >4 times as frequently as HSV-1, WNV, or VZV and was the leading entity identified in our cohort. We found that 65% of anti-NMDAR encephalitis occurred in patients aged ≤18 years. This disorder demonstrated a predilection, which was not observed with viral etiologies, for females (P < .01). Seizures, language dysfunction, psychosis, and electroencephalographic abnormalities were significantly more frequent in patients with anti-NMDAR encephalitis (P < .05), and autonomic instability occurred exclusively in this group. Discussion. Anti-NMDAR encephalitis rivals viral etiologies as a cause of encephalitis within the CEP cohort. This entity deserves a prominent place on the encephalitic differential diagnosis to avoid unnecessary diagnostic and treatment costs, and to permit a more timely treatment. PMID:22281844

  8. Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis.

    PubMed

    Koyanagi, Naoto; Imai, Takahiko; Shindo, Keiko; Sato, Ayuko; Fujii, Wataru; Ichinohe, Takeshi; Takemura, Naoki; Kakuta, Shigeru; Uematsu, Satoshi; Kiyono, Hiroshi; Maruzuru, Yuhei; Arii, Jun; Kato, Akihisa; Kawaguchi, Yasushi

    2017-10-02

    Herpes simplex virus-1 (HSV-1) is the most common cause of sporadic viral encephalitis, which can be lethal or result in severe neurological defects even with antiviral therapy. While HSV-1 causes encephalitis in spite of HSV-1-specific humoral and cellular immunity, the mechanism by which HSV-1 evades the immune system in the central nervous system (CNS) remains unknown. Here we describe a strategy by which HSV-1 avoids immune targeting in the CNS. The HSV-1 UL13 kinase promotes evasion of HSV-1-specific CD8+ T cell accumulation in infection sites by downregulating expression of the CD8+ T cell attractant chemokine CXCL9 in the CNS of infected mice, leading to increased HSV-1 mortality due to encephalitis. Direct injection of CXCL9 into the CNS infection site enhanced HSV-1-specific CD8+ T cell accumulation, leading to marked improvements in the survival of infected mice. This previously uncharacterized strategy for HSV-1 evasion of CD8+ T cell accumulation in the CNS has important implications for understanding the pathogenesis and clinical treatment of HSV-1 encephalitis.

  9. Multiplex RT-PCR assay for differentiating European swine influenza virus subtypes H1N1, H1N2 and H3N2.

    PubMed

    Chiapponi, Chiara; Moreno, Ana; Barbieri, Ilaria; Merenda, Marianna; Foni, Emanuela

    2012-09-01

    In Europe, three major swine influenza viral (SIV) subtypes (H1N1, H1N2 and H3N2) have been isolated in pigs. Developing a test that is able to detect and identify the subtype of the circulating strain rapidly during an outbreak of respiratory disease in the pig population is of essential importance. This study describes two multiplex RT-PCRs which distinguish the haemagglutinin (HA) gene and the neuraminidase (NA) gene of the three major subtypes of SIV circulating in Europe. The HA PCR was able to identify the lineage (avian or human) of the HA of H1 subtypes. The analytical sensitivity of the test, considered to be unique, was assessed using three reference viruses. The detection limit corresponded to 1×10(-1) TCID(50)/200μl for avian-like H1N1, 1×10(0) TCID(50)/200μl for human-like H1N2 and 1×10(1) TCID(50)/200μl for H3N2 SIV. The multiplex RT-PCR was first carried out on a collection of 70 isolated viruses showing 100% specificity and then on clinical samples, from which viruses had previously been isolated, resulting in an 89% positive specificity of the viral subtype. Finally, the test was able to identify the viral subtype correctly in 56% of influenza A positive samples, from which SIV had not been isolated previously. It was also possible to identify mixed viral infections and the circulation of a reassortant strain before performing genomic studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. H1N1 was not all that scary: uncertainty and stressor appraisals predict anxiety related to a coming viral threat.

    PubMed

    Taha, Sheena Aislinn; Matheson, Kimberly; Anisman, Hymie

    2014-04-01

    H1N1 reached pandemic proportions in 2009, yet considerable ambivalence was apparent concerning the threat presented and the inclination to be vaccinated. The present investigation assessed several factors, notably appraisals of the threat, intolerance of uncertainty, and familiarity with the virus, that might contribute to reactions to a potential future viral threat. Canadian adults (N = 316) provided with several scenarios regarding viral threats reported moderate feelings of anxiety, irrespective of whether the viral threat was one that was familiar versus one that was entirely unfamiliar to them (H1N1 recurrence, H5N1, a fictitious virus: D3N4). Participants appraised the stressfulness of the threats to be moderate and believed that they would have control in this situation. However, among individuals with high intolerance of uncertainty, the viral threat was accompanied by high levels of anxiety, which was mediated by aspects of appraisals, particularly control and stressfulness. In addition, among those individuals that generally appraised ambiguous life events as being stressful, the viral threat appraisals were accompanied by still greater anxiety. Given the limited response to potential viral threats, these results raise concerns that the public may be hesitant to heed recommendations should another pandemic occur. © 2013 John Wiley & Sons, Ltd.

  11. A Protective Role for Interleukin-1 Signaling during Mouse Adenovirus Type 1-Induced Encephalitis.

    PubMed

    Castro-Jorge, Luiza A; Pretto, Carla D; Smith, Asa B; Foreman, Oded; Carnahan, Kelly E; Spindler, Katherine R

    2017-02-15

    Interleukin-1β (IL-1β), an inflammatory cytokine and IL-1 receptor ligand, has diverse activities in the brain. We examined whether IL-1 signaling contributes to the encephalitis observed in mouse adenovirus type 1 (MAV-1) infection, using mice lacking the IL-1 receptor (Il1r1 -/- mice). Il1r1 -/- mice demonstrated reduced survival, greater disruption of the blood-brain barrier (BBB), higher brain viral loads, and higher brain inflammatory cytokine and chemokine levels than control C57BL/6J mice. We also examined infections of mice defective in IL-1β production (Pycard -/- mice) and mice defective in trafficking of Toll-like receptors to the endosome (Unc93b1 -/- mice). Pycard -/- and Unc93b1 -/- mice showed lower survival (similar to Il1r1 -/- mice) than control mice but, unlike Il1r1 -/- mice, did not have increased brain viral loads or BBB disruption. Based on the brain cytokine levels, MAV-1-infected Unc93b1 -/- mice had a very different inflammatory profile from infected Il1r1 -/- and Pycard -/- mice. Histological examination demonstrated pathological findings consistent with encephalitis in control and knockout mice; however, intranuclear viral inclusions were seen only in Il1r1 -/- mice. A time course of infection of control and Il1r1 -/- mice evaluating the kinetics of viral replication and cytokine production revealed differences between the mouse strains primarily at 7 to 8 days after infection, when mice began succumbing to MAV-1 infection. In the absence of IL-1 signaling, we noted an increase in the transcription of type I interferon (IFN)-stimulated genes. Together, these results indicate that IL-1 signaling is important during MAV-1 infection and suggest that, in its absence, increased IFN-β signaling may result in increased neuroinflammation. The investigation of encephalitis pathogenesis produced by different viruses is needed to characterize virus and host-specific factors that contribute to disease. MAV-1 produces viral encephalitis in its

  12. Substitution of D701N in the PB2 protein could enhance the viral replication and pathogenicity of Eurasian avian-like H1N1 swine influenza viruses.

    PubMed

    Liu, Suli; Zhu, Wenfei; Feng, Zhaomin; Gao, Rongbao; Guo, Junfeng; Li, Xiyan; Liu, Jia; Wang, Dayan; Shu, Yuelong

    2018-05-02

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses (SIVs) have become predominant in pig populations in China and have recently been reported to have the most potential to raise the next pandemic in humans. The mutation D701N in the PB2 protein, which accounts for 31% of H1N1 SIVs, has previously been shown to contribute to the adaptation of the highly pathogenic H5N1 or H7N7 avian influenza viruses in mammals. However, little is known of the effects of this substitution on the EA H1N1 viruses. Herein, we investigated the contributions of 701N in the PB2 protein to an EA H1N1 SIV (A/Hunan/42443/2015(H1N1), HuN EA-H1N1), which had 701D in the PB2 protein. Our results found that viral polymerase activity, viral replication, and pathogenicity in mice were indeed enhanced due to the introduction of 701N into the PB2 protein, and the increased viral growth was partly mediated by the host factor importin-α7. Thus, substantial attention should be paid to the D701N mutation in pig populations.

  13. Corticosteroid therapy in patients with primary viral pneumonia due to pandemic (H1N1) 2009 influenza.

    PubMed

    Diaz, Emili; Martin-Loeches, Ignacio; Canadell, Laura; Vidaur, Loreto; Suarez, David; Socias, Lorenzo; Estella, Angel; Gil Rueda, Bernardo; Guerrero, José Eugenio; Valverdú-Vidal, Montserrat; Vergara, Juan Carlos; López-Pueyo, María Jesús; Magret, Mónica; Recio, Teresa; López, Diego; Rello, Jordi; Rodriguez, Alejandro

    2012-03-01

    During the first pandemic, some patients with pandemic (H1N1) 2009 influenza were treated with corticosteroids. The objective of this study was to assess the effect on survival of corticosteroid therapy in patients with pandemic (H1N1) 2009 influenza. Prospective, observational, multicenter study performed in 148 ICU. Data were recorded in the GTEI/SEMICYUC registry. Adult patients with pandemic (H1N1) 2009 influenza confirmed by rt-PCR were included in the analysis. Database records specified corticosteroid type and reason for corticosteroid treatment. 372 patients with the diagnosis of primary viral pneumonia and completed outcomes treated in an ICU were included in the database. Mechanical ventilation was used in 70.2% of the patients. 136 (36.6%) patients received corticosteroids after a diagnosis of primary viral pneumonia. Obesity (35.6% vs 47.8% p = 0.021) and asthma (7.6% vs 15.4% p = 0.018), were more frequent in the group treated with corticosteroids. A Cox regression analysis adjusted for severity and potential confounding factors found that the use of corticosteroid therapy was not significantly associated with mortality (HR = 1.06, 95% CI 0.626-1.801; p = 0.825). Corticosteroid therapy in a selected group of patients with primary viral pneumonia due to pandemic (H1N1) 2009 influenza does not improve survival. Copyright © 2012 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  14. Diagnosis and treatment of viral encephalitis

    PubMed Central

    Chaudhuri, A; Kennedy, P

    2002-01-01

    Acute encephalitis constitutes a medical emergency. In most cases, the presence of focal neurological signs and focal seizures will distinguish encephalitis from encephalopathy. Acute disseminated encephalomyelitis is a non-infective inflammatory encephalitis that may require to be treated with steroids. Acute infective encephalitis is usually viral. Herpes simplex encephalitis (HSE) is the commonest sporadic acute viral encephalitis in the Western world. Magnetic resonance imaging of brain is the investigation of choice in HSE and the diagnosis may be confirmed by the polymerase chain reaction test for the virus in the cerebrospinal fluid. In this article, we review the diagnosis, investigations, and management of acute encephalitis. With few exceptions (for example, aciclovir for HSE), no specific therapy is available for most forms of viral encephalitis. Mortality and morbidity may be high and long term sequelae are known among survivors. The emergence of unusual forms of zoonotic encephalitis has posed an important public health problem. Vaccination and vector control measures are useful preventive strategies in certain arboviral and zoonotic encephalitis. However, we need better antiviral therapy to meet the challenge of acute viral encephalitis more effectively. PMID:12415078

  15. Altered Viral Replication and Cell Responses by Inserting MicroRNA Recognition Element into PB1 in Pandemic Influenza A Virus (H1N1) 2009

    PubMed Central

    Shen, Xiaoyue; Sun, Wenkui; Shi, Yi; Xing, Zheng; Su, Xin

    2015-01-01

    Objective. MicroRNAs (miRNAs) are endogenous noncoding RNAs that spatiotemporally modulate mRNAs in a posttranscriptional manner. Engineering mutant viruses by inserting cell-specific miRNA recognition element (MRE) into viral genome may alter viral infectivity and host responses in vital tissues and organs infected with pandemic influenza A virus (H1N1) 2009 (H1N1pdm). Methods. In this study, we employed reverse genetics approach to generate a recombinant H1N1pdm with a cell-specific miRNA target sequence inserted into its PB1 genomic segment to investigate whether miRNAs are able to suppress H1N1pdm replication. We inserted an MRE of microRNA-let-7b (miR-let-7b) into the open reading frame of PB1 to test the feasibility of creating a cell-restricted H1N1pdm virus since let-7b is abundant in human bronchial epithelial cells. Results. miR-let-7b is rich in human bronchial epithelial cells (HBE). Incorporation of the miR-let-7b-MRE confers upon the recombinant H1N1pdm virus susceptibility to miR-let-7b targeting, suggesting that the H1N1pdm and influenza A viruses can be engineered to exert the desired replication restrictive effect and decrease infectivity in vital tissues and organs. Conclusions. This approach provides an additional layer of biosafety and thus has great potential for the application in the rational development of safer and more effective influenza viral vaccines. PMID:25788763

  16. Evolution of 2009 H1N1 influenza viruses during the pandemic correlates with increased viral pathogenicity and transmissibility in the ferret model.

    PubMed

    Otte, Anna; Marriott, Anthony C; Dreier, Carola; Dove, Brian; Mooren, Kyra; Klingen, Thorsten R; Sauter, Martina; Thompson, Katy-Anne; Bennett, Allan; Klingel, Karin; van Riel, Debby; McHardy, Alice C; Carroll, Miles W; Gabriel, Gülsah

    2016-06-24

    There is increasing evidence that 2009 pandemic H1N1 influenza viruses have evolved after pandemic onset giving rise to severe epidemics in subsequent waves. However, it still remains unclear which viral determinants might have contributed to disease severity after pandemic initiation. Here, we show that distinct mutations in the 2009 pandemic H1N1 virus genome have occurred with increased frequency after pandemic declaration. Among those, a mutation in the viral hemagglutinin was identified that increases 2009 pandemic H1N1 virus binding to human-like α2,6-linked sialic acids. Moreover, these mutations conferred increased viral replication in the respiratory tract and elevated respiratory droplet transmission between ferrets. Thus, our data show that 2009 H1N1 influenza viruses have evolved after pandemic onset giving rise to novel virus variants that enhance viral replicative fitness and respiratory droplet transmission in a mammalian animal model. These findings might help to improve surveillance efforts to assess the pandemic risk by emerging influenza viruses.

  17. Viral meningitis and encephalitis.

    PubMed

    Tuppeny, Misti

    2013-09-01

    Meningitis is an inflammation of the meninges, whereas encephalitis is inflammation of the parenchymal brain tissue. The single distinguishing element between the 2 diagnoses is the altered state of consciousness, focal deficits, and seizures found in encephalitis. Consequently meningoencephalitis is a term used when both findings are present in the patient. Viral meningitis is not necessarily reported as it is often underdiagnosed, whereas encephalitis cases are on the increase in various areas of North America. Improved imaging and viral diagnostics, as well as enhanced neurocritical care management, have improved patient outcomes to date. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Pre-Existing Cross-Reactive Antibodies to Avian Influenza H5N1 and 2009 Pandemic H1N1 in US Military Personnel

    PubMed Central

    Pichyangkul, Sathit; Krasaesub, Somporn; Jongkaewwattana, Anan; Thitithanyanont, Arunee; Wiboon-ut, Suwimon; Yongvanitchit, Kosol; Limsalakpetch, Amporn; Kum-Arb, Utaiwan; Mongkolsirichaikul, Duangrat; Khemnu, Nuanpan; Mahanonda, Rangsini; Garcia, Jean-Michel; Mason, Carl J.; Walsh, Douglas S.; Saunders, David L.

    2014-01-01

    We studied cross-reactive antibodies against avian influenza H5N1 and 2009 pandemic (p) H1N1 in 200 serum samples from US military personnel collected before the H1N1 pandemic. Assays used to measure antibodies against viral proteins involved in protection included a hemagglutination inhibition (HI) assay and a neuraminidase inhibition (NI) assay. Viral neutralization by antibodies against avian influenza H5N1 and 2009 pH1N1 was assessed by influenza (H5) pseudotyped lentiviral particle-based and H1N1 microneutralization assays. Some US military personnel had cross-neutralizing antibodies against H5N1 (14%) and 2009 pH1N1 (16.5%). The odds of having cross-neutralizing antibodies against 2009 pH1N1 were 4.4 times higher in subjects receiving more than five inactivated whole influenza virus vaccinations than those subjects with no record of vaccination. Although unclear if the result of prior vaccination or disease exposure, these pre-existing antibodies may prevent or reduce disease severity. PMID:24277784

  19. Paraneoplastic limbic encephalitis presenting as acute viral encephalitis.

    PubMed

    Kararizou, E; Markou, I; Zalonis, I; Gkiatas, K; Triantafyllou, N; Kararizos, G; Likomanos, D; Zambelis, T; Vassilopoulos, D

    2005-11-01

    To describe a case of limbic encephalitis which initially presented as viral limbic encephalitis and during the clinical evaluation a renal carcinoma was diagnosed. Patient with history of peripheral paresis of right facial nerve, 1 month after symptoms appearance and treatment, developed fever, vomiting, grand mal seizure, decreased level of consciousness, confusion, hallucinations and agitation. The patient initially presented a clinical picture of viral LE. which confirmed by CSF. MRI brain showed areas with pathological intensity signal in the region of limbic system unilateral. During the clinical evaluation a renal carcinoma was discovered and a nephrectomy has been performed. Although PLE typically presents as a chronic or subacute disease, it may be fulminant and clinically indistinguishable from an acute HSVE. This association pose the problem of a possible relation between this two syndromes and the correct diagnosis is very important, because there are effective treatments.

  20. Enhanced Viral Replication and Modulated Innate Immune Responses in Infant Airway Epithelium following H1N1 Infection

    PubMed Central

    Clay, Candice C.; Reader, J. Rachel; Gerriets, Joan E.; Wang, Theodore T.; Harrod, Kevin S.

    2014-01-01

    ABSTRACT Influenza is the cause of significant morbidity and mortality in pediatric populations. The contribution of pulmonary host defense mechanisms to viral respiratory infection susceptibility in very young children is poorly understood. As a surrogate to compare mucosal immune responses of infant and adult lungs, rhesus monkey primary airway epithelial cell cultures were infected with pandemic influenza A/H1N1 virus in vitro. Virus replication, cytokine secretion, cell viability, and type I interferon (IFN) pathway PCR array profiles were evaluated for both infant and adult cultures. In comparison with adult cultures, infant cultures showed significantly increased levels of H1N1 replication, reduced alpha interferon (IFN-α) protein synthesis, and no difference in cell death following infection. Age-dependent differences in expression levels of multiple genes associated with the type I IFN pathway were observed in H1N1-infected cultures. To investigate the pulmonary and systemic responses to H1N1 infection in early life, infant monkeys were inoculated with H1N1 by upper airway administration. Animals were monitored for virus and parameters of inflammation over a 14-day period. High H1N1 titers were recovered from airways at day 1, with viral RNA remaining detectable until day 9 postinfection. Despite viral clearance, bronchiolitis and alveolitis persisted at day 14 postinfection; histopathological analysis revealed alveolar septal thickening and intermittent type II pneumocyte hyperplasia. Our overall findings are consistent with the known susceptibility of pediatric populations to respiratory virus infection and suggest that intrinsic developmental differences in airway epithelial cell immune function may contribute to the limited efficacy of host defense during early childhood. IMPORTANCE To the best of our knowledge, this study represents the first report of intrinsic developmental differences in infant airway epithelial cells that may contribute to the

  1. HLA and killer cell immunoglobulin-like receptor (KIRs) genotyping in patients with acute viral encephalitis

    PubMed Central

    Tuttolomondo, Antonino; Colomba, Claudia; Di Bona, Danilo; Casuccio, Alessandra; Di Raimondo, Domenico; Clemente, Giuseppe; Arnao, Valentina; Pecoraro, Rosaria; Ragonese, Paolo; Aiello, Anna; Accardi, Giulia; Maugeri, Rosario; Maida, Carlo; Simonetta, Irene; Della Corte, Vittoriano; Iacopino, Domenico Gerardo; Caruso, Calogero; Cascio, Antonio; Pinto, Antonio

    2018-01-01

    Introduction The HLA genes, as well as the innate immune KIR genes, are considered relevant determinants of viral outcomes but no study, to our knowledge, has evaluated their role in the clinical setting of acute viral encephalitis. Results Subjects with acute viral encephalitis in comparison to subjects without acute viral encephalitis showed a significantly higher frequency of 2DL1 KIR gene and AA KIR haplotypes and of HLA-C2 and HLA-A-Bw4 alleles. Subjects without acute viral encephalitis showed a higher frequency of interaction between KIR2DL2 and HLAC1. Multiple logistic regression analysis showed the detrimental effect of HLA-A haplotype and HLA-C1, HLA-A-BW4 HLA-B-BW4T alleles, whereas multiple logistic regression showed a protective effect of AB+BB KIR haplotype and a detrimental effect of interaction between KIR3DL1 and HLA-A-Bw4. Discussion Our findings of a lower frequency of activating receptors in patients with acute encephalitis compared to controls could result in a less efficient response of NK cells. This finding could represent a possible pathogenetic explanation of susceptibility to acute symptomatic encephalitis in patients with viral infection from potentially responsible viruses such as Herpes virus. Materials and Methods 30 Consecutive patients with symptomatic acute viral encephalitis and as controls, 36 consecutive subjects without acute encephalitis were analyzed. The following KIR genes were analyzed, KIR2DL1, 2DL2, 2DL3, 2DL5, 3DL1, 3DL2, 3DL3, 2DL4, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 3DS1, 2 pseudogenes (2DP1 and 3DP1) and the common variants of KIR2DL5 (KIR2DL5A, KIR2DL5B). PMID:29707126

  2. North American triple reassortant and Eurasian H1N1 swine influenza viruses do not readily reassort to generate a 2009 pandemic H1N1-like virus.

    PubMed

    Ma, Wenjun; Liu, Qinfang; Qiao, Chuanling; del Real, Gustavo; García-Sastre, Adolfo; Webby, Richard J; Richt, Jürgen A

    2014-03-11

    The 2009 pandemic H1N1 virus (pH1N1) was derived through reassortment of North American triple reassortant and Eurasian avian-like swine influenza viruses (SIVs). To date, when, how and where the pH1N1 arose is not understood. To investigate viral reassortment, we coinfected cell cultures and a group of pigs with or without preexisting immunity with a Eurasian H1N1 virus, A/Swine/Spain/53207/2004 (SP04), and a North American triple reassortant H1N1 virus, A/Swine/Kansas/77778/2007 (KS07). The infected pigs were cohoused with one or two groups of contact animals to investigate viral transmission. In coinfected MDCK or PK15 continuous cell lines with KS07 and SP04 viruses, more than 20 different reassortant viruses were found. In pigs without or with preexisting immunity (immunized with commercial inactivated swine influenza vaccines) and coinfected with both viruses, six or seven reassortant viruses, as well as the parental viruses, were identified in bronchoalveolar lavage fluid samples from the lungs. Interestingly, only one or two viruses transmitted to and were detected in contact animals. No reassortant containing a gene constellation similar to that of pH1N1 virus was found in either coinfected cells or pigs, indicating that the reassortment event that resulted in the generation of this virus is a rare event that likely involved specific viral strains and/or a favorable, not-yet-understood environment. IMPORTANCE The 2009 pandemic-like H1N1 virus could not be reproduced either in cell cultures or in pigs coinfected with North American triple reassortant H1N1 and Eurasian H1N1 swine influenza viruses. This finding suggests that the generation of the 2009 pandemic H1N1 virus by reassortment was a rare event that likely involved specific viral strains and unknown factors. Different reassortant viruses were detected in coinfected pigs with and without preexisting immunity, indicating that host immunity plays a relevant role in driving viral reassortment of

  3. The Stress Granule Component TIA-1 Binds Tick-Borne Encephalitis Virus RNA and Is Recruited to Perinuclear Sites of Viral Replication To Inhibit Viral Translation

    PubMed Central

    Albornoz, Amelina; Carletti, Tea; Corazza, Gianmarco

    2014-01-01

    ABSTRACT Flaviviruses are a major cause of disease in humans and animals worldwide. Tick-borne encephalitis virus (TBEV) is the most important arthropod-borne flavivirus endemic in Europe and is the etiological agent of tick-borne encephalitis, a potentially fatal infection of the central nervous system. However, the contributions of host proteins during TBEV infection are poorly understood. In this work, we investigate the cellular protein TIA-1 and its cognate factor TIAR, which are stress-induced RNA-binding proteins involved in the repression of initiation of translation of cellular mRNAs and in the formation of stress granules. We show that TIA-1 and TIAR interact with viral RNA in TBEV-infected cells. During TBEV infection, cytoplasmic TIA-1 and TIAR are recruited at sites of viral replication with concomitant depletion from stress granules. This effect is specific, since G3BP1, another component of these cytoplasmic structures, remains localized to stress granules. Moreover, heat shock induction of stress granules containing TIA-1, but not G3BP1, is inhibited in TBEV-infected cells. Infection of cells depleted of TIA-1 or TIAR by small interfering RNA (siRNA) or TIA-1−/− mouse fibroblasts, leads to a significant increase in TBEV extracellular infectivity. Interestingly, TIAR−/− fibroblasts show the opposite effect on TBEV infection, and this phenotype appears to be related to an excess of TIA-1 in these cells. Taking advantage of a TBE-luciferase replicon system, we also observed increased luciferase activity in TIA-1−/− mouse fibroblasts at early time points, consistent with TIA-1-mediated inhibition at the level of the first round of viral translation. These results indicate that, in response to TBEV infection, TIA-1 is recruited to sites of virus replication to bind TBEV RNA and modulate viral translation independently of stress granule (SG) formation. IMPORTANCE This study (i) extends previous work that showed TIA-1/TIAR recruitment at sites

  4. The stress granule component TIA-1 binds tick-borne encephalitis virus RNA and is recruited to perinuclear sites of viral replication to inhibit viral translation.

    PubMed

    Albornoz, Amelina; Carletti, Tea; Corazza, Gianmarco; Marcello, Alessandro

    2014-06-01

    Flaviviruses are a major cause of disease in humans and animals worldwide. Tick-borne encephalitis virus (TBEV) is the most important arthropod-borne flavivirus endemic in Europe and is the etiological agent of tick-borne encephalitis, a potentially fatal infection of the central nervous system. However, the contributions of host proteins during TBEV infection are poorly understood. In this work, we investigate the cellular protein TIA-1 and its cognate factor TIAR, which are stress-induced RNA-binding proteins involved in the repression of initiation of translation of cellular mRNAs and in the formation of stress granules. We show that TIA-1 and TIAR interact with viral RNA in TBEV-infected cells. During TBEV infection, cytoplasmic TIA-1 and TIAR are recruited at sites of viral replication with concomitant depletion from stress granules. This effect is specific, since G3BP1, another component of these cytoplasmic structures, remains localized to stress granules. Moreover, heat shock induction of stress granules containing TIA-1, but not G3BP1, is inhibited in TBEV-infected cells. Infection of cells depleted of TIA-1 or TIAR by small interfering RNA (siRNA) or TIA-1(-/-) mouse fibroblasts, leads to a significant increase in TBEV extracellular infectivity. Interestingly, TIAR(-/-) fibroblasts show the opposite effect on TBEV infection, and this phenotype appears to be related to an excess of TIA-1 in these cells. Taking advantage of a TBE-luciferase replicon system, we also observed increased luciferase activity in TIA-1(-/-) mouse fibroblasts at early time points, consistent with TIA-1-mediated inhibition at the level of the first round of viral translation. These results indicate that, in response to TBEV infection, TIA-1 is recruited to sites of virus replication to bind TBEV RNA and modulate viral translation independently of stress granule (SG) formation. This study (i) extends previous work that showed TIA-1/TIAR recruitment at sites of flavivirus replication

  5. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses.

    PubMed

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-09-24

    The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decreased. Both the H1N1 and H1N2 infected pigs lacked gross lesions at PID 2, but they showed moderate to severe pneumonia on PID 4, 7 and 14. The pigs infected with H1N1 had significant scores of gross and histopathological lesions when compared with the other pigs infected with H1N2, H3N2, and mock at PID 14. Mean SIV antigen-positive scores were rarely detected for pigs infected with H1N2 and H3N2 from PID 7, whereas a significantly increased amount of viral antigens were found in the bronchioles and alveolar epithelium of the H1N1infected pigs at PID 14. We demonstrated that Korean SIV subtypes had different pulmonary pathologic patterns. The Korean H3N2 rapidly induced acute lung lesions such as broncho-interstitial pneumonia, while the Korean H1N1 showed longer course of infection as compared to other strains.

  6. Macrolide-based regimens in absence of bacterial co-infection in critically ill H1N1 patients with primary viral pneumonia.

    PubMed

    Martín-Loeches, I; Bermejo-Martin, J F; Vallés, J; Granada, R; Vidaur, L; Vergara-Serrano, J C; Martín, M; Figueira, J C; Sirvent, J M; Blanquer, J; Suarez, D; Artigas, A; Torres, A; Diaz, E; Rodriguez, A

    2013-04-01

    To determine whether macrolide-based treatment is associated with mortality in critically ill H1N1 patients with primary viral pneumonia. Secondary analysis of a prospective, observational, multicenter study conducted across 148 Intensive Care Units (ICU) in Spain. Primary viral pneumonia was present in 733 ICU patients with pandemic influenza A (H1N1) virus infection with severe respiratory failure. Macrolide-based treatment was administered to 190 (25.9 %) patients. Patients who received macrolides had chronic obstructive pulmonary disease more often, lower severity on admission (APACHE II score on ICU admission (13.1 ± 6.8 vs. 14.4 ± 7.4 points, p < 0.05), and multiple organ dysfunction syndrome less often (23.4 vs. 30.1 %, p < 0.05). Length of ICU stay in survivors was not significantly different in patients who received macrolides compared to patients who did not (10 (IQR 4-20) vs. 10 (IQR 5-20), p = 0.9). ICU mortality was 24.1 % (n = 177). Patients with macrolide-based treatment had lower ICU mortality in the univariate analysis (19.2 vs. 28.1 %, p = 0.02); however, a propensity score analysis showed no effect of macrolide-based treatment on ICU mortality (OR = 0.87; 95 % CI 0.55-1.37, p = 0.5). Moreover, the sensitivity analysis revealed very similar results (OR = 0.91; 95 % CI 0.58-1.44, p = 0.7). A separate analysis of patients under mechanical ventilation yielded similar results (OR = 0.77; 95 % CI 0.44-1.35, p = 0.4). Our results suggest that macrolide-based treatment was not associated with improved survival in critically ill H1N1 patients with primary viral pneumonia.

  7. Sequential Seasonal H1N1 Influenza Virus Infections Protect Ferrets against Novel 2009 H1N1 Influenza Virus

    PubMed Central

    Carter, Donald M.; Bloom, Chalise E.; Nascimento, Eduardo J. M.; Marques, Ernesto T. A.; Craigo, Jodi K.; Cherry, Joshua L.; Lipman, David J.

    2013-01-01

    Individuals <60 years of age had the lowest incidence of infection, with ∼25% of these people having preexisting, cross-reactive antibodies to novel 2009 H1N1 influenza. Many people >60 years old also had preexisting antibodies to novel H1N1. These observations are puzzling because the seasonal H1N1 viruses circulating during the last 60 years were not antigenically similar to novel H1N1. We therefore hypothesized that a sequence of exposures to antigenically different seasonal H1N1 viruses can elicit an antibody response that protects against novel 2009 H1N1. Ferrets were preinfected with seasonal H1N1 viruses and assessed for cross-reactive antibodies to novel H1N1. Serum from infected ferrets was assayed for cross-reactivity to both seasonal and novel 2009 H1N1 strains. These results were compared to those of ferrets that were sequentially infected with H1N1 viruses isolated prior to 1957 or more-recently isolated viruses. Following seroconversion, ferrets were challenged with novel H1N1 influenza virus and assessed for viral titers in the nasal wash, morbidity, and mortality. There was no hemagglutination inhibition (HAI) cross-reactivity in ferrets infected with any single seasonal H1N1 influenza viruses, with limited protection to challenge. However, sequential H1N1 influenza infections reduced the incidence of disease and elicited cross-reactive antibodies to novel H1N1 isolates. The amount and duration of virus shedding and the frequency of transmission following novel H1N1 challenge were reduced. Exposure to multiple seasonal H1N1 influenza viruses, and not to any single H1N1 influenza virus, elicits a breadth of antibodies that neutralize novel H1N1 even though the host was never exposed to the novel H1N1 influenza viruses. PMID:23115287

  8. Sus scrofa miR-204 and miR-4331 Negatively Regulate Swine H1N1/2009 Influenza A Virus Replication by Targeting Viral HA and NS, Respectively.

    PubMed

    Zhang, Shishuo; Wang, Ruifang; Su, Huijuan; Wang, Biaoxiong; Sizhu, Suolang; Lei, Zhixin; Jin, Meilin; Chen, Huanchun; Cao, Jiyue; Zhou, Hongbo

    2017-04-03

    The prevalence of swine pandemic H1N1/2009 influenza A virus (SIV-H1N1/2009) in pigs has the potential to generate novel reassortant viruses, posing a great threat to human health. Cellular microRNAs (miRNAs) have been proven as promising small molecules for regulating influenza A virus replication by directly targeting viral genomic RNA. In this study, we predicted potential Sus scrofa (ssc-, swine) miRNAs targeting the genomic RNA of SIV-H1N1/2009 by RegRNA 2.0, and identified ssc-miR-204 and ssc-miR-4331 to target viral HA and NS respectively through dual-luciferase reporter assays. The messenger RNA (mRNA) levels of viral HA and NS were significantly suppressed when newborn pig trachea (NPTr) cells respectively overexpressed ssc-miR-204 and ssc-miR-4331 and were infected with SIV-H1N1/2009, whereas the suppression effect could be restored when respectively decreasing endogenous ssc-miR-204 and ssc-miR-4331 with inhibitors. Because of the importance of viral HA and NS in the life cycle of influenza A virus, ssc-miR-204 and ssc-miR-4331 exhibited an inhibition effect on SIV-H1N1/2009 replication. The antiviral effect was sequence-specific of SIV-H1N1/2009, for the target sites in HA and NS of H5N1 or H9N2 influenza A virus were not conserved. Furthermore, SIV-H1N1/2009 infection reversely downregulated the expression of ssc-miR-204 and ssc-miR-4331, which might facilitate the virus replication in the host. In summary, this work will provide us some important clues for controlling the prevalence of SIV-H1N1/2009 in pig populations.

  9. Protective immunity to Japanese encephalitis virus associated with anti-NS1 antibodies in a mouse model.

    PubMed

    Li, Yize; Counor, Dorian; Lu, Peng; Duong, Veasna; Yu, Yongxin; Deubel, Vincent

    2012-07-24

    Japanese encephalitis virus (JEV) is a major mosquito-borne pathogen that causes viral encephalitis throughout Asia. Vaccination with an inactive JEV particle or attenuated virus is an efficient preventative measure for controlling infection. Flavivirus NS1 protein is a glycoprotein secreted during viral replication that plays multiple roles in the viral life cycle and pathogenesis. Utilizing JEV NS1 as an antigen in viral vectors induces a limited protective immune response against infection. Previous studies using E. coli-expressed JEV NS1 to immunize mice induced protection against lethal challenge; however, the protection mechanism through cellular and humoral immune responses was not described. JEV NS1 was expressed in and purified from Drosophila S2 cells in a native glycosylated multimeric form, which induced T-cell and antibody responses in immunized C3H/HeN mice. Mice vaccinated with 1 μg NS1 with or without water-in-oil adjuvant were partially protected against viral challenge and higher protection was observed in mice with higher antibody titers. IgG1 was preferentially elicited by an adjuvanted NS1 protein, whereas a larger load of IFN-γ was produced in splenocytes from mice immunized with aqueous NS1. Mice that passively received anti-NS1 mouse polyclonal immune sera were protected, and this phenomenon was dose-dependent, whereas protection was low or delayed after the passive transfer of anti-NS1 MAbs. The purified NS1 subunit induced protective immunity in relation with anti-NS1 IgG1 antibodies. NS1 protein efficiently stimulated Th1-cell proliferation and IFN-γ production. Protection against lethal challenge was elicited by passive transfer of anti-NS1 antisera, suggesting that anti-NS1 antibodies play a substantial role in anti-viral immunity.

  10. Review of the etiologies of viral meningitis and encephalitis in a dengue endemic region.

    PubMed

    Soares, Cristiane N; Cabral-Castro, Mauro J; Peralta, José M; de Freitas, Marcos R G; Zalis, Mariano; Puccioni-Sohler, Marzia

    2011-04-15

    To evaluate the etiology of viral meningitis and encephalitis in adults and adolescents living in areas affected by dengue. Over two years, adults and adolescents with diagnoses of viral encephalitis or meningitis were selected for study in Brazil. PCRs for dengue, enterovirus, HSV1 and 2 and cytomegalovirus were performed in CSF samples. Serum and CSF samples were tested for the presence of anti-dengue IgM antibodies. The etiologies of encephalitis and meningitis were determined in 70% of cases (30/47). Dengue was the leading cause of encephalitis (47%) with normal CSF cellularity in 75% of these patients. HSV1 was found in 17.6% of the cases, two of which had mild encephalitis. Enterovirus was the most common cause of meningitis (50%), followed by HSV1 (15%), cytomegalovirus and dengue (10%, each). We identified the viral agents causing encephalitis and meningitis in a higher proportion of cases than has been reported in other studies. Dengue was the most frequent cause of encephalitis, which surpassed HSV. In endemic areas, dengue should be investigated as an important cause of encephalitis. Normal CSF cellularity should not exclude dengue encephalitis. Enterovirus is known to be the leading cause of meningitis in children, but here we found it was also the main cause of the disease in adults. HSV1 should be investigated in patients with mild forms of encephalitis and meningitis. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Seasonal H3N2 and 2009 Pandemic H1N1 Influenza A Viruses Reassort Efficiently but Produce Attenuated Progeny

    PubMed Central

    Phipps, Kara L.; Marshall, Nicolle; Tao, Hui; Danzy, Shamika; Onuoha, Nina; Steel, John

    2017-01-01

    ABSTRACT Reassortment of gene segments between coinfecting influenza A viruses (IAVs) facilitates viral diversification and has a significant epidemiological impact on seasonal and pandemic influenza. Since 1977, human IAVs of H1N1 and H3N2 subtypes have cocirculated with relatively few documented cases of reassortment. We evaluated the potential for viruses of the 2009 pandemic H1N1 (pH1N1) and seasonal H3N2 lineages to reassort under experimental conditions. Results of heterologous coinfections with pH1N1 and H3N2 viruses were compared to those obtained following coinfection with homologous, genetically tagged, pH1N1 viruses as a control. High genotype diversity was observed among progeny of both coinfections; however, diversity was more limited following heterologous coinfection. Pairwise analysis of genotype patterns revealed that homologous reassortment was random while heterologous reassortment was characterized by specific biases. pH1N1/H3N2 reassortant genotypes produced under single-cycle coinfection conditions showed a strong preference for homologous PB2-PA combinations and general preferences for the H3N2 NA, pH1N1 M, and H3N2 PB2 except when paired with the pH1N1 PA or NP. Multicycle coinfection results corroborated these findings and revealed an additional preference for the H3N2 HA. Segment compatibility was further investigated by measuring chimeric polymerase activity and growth of selected reassortants in human tracheobronchial epithelial cells. In guinea pigs inoculated with a mixture of viruses, parental H3N2 viruses dominated but reassortants also infected and transmitted to cage mates. Taken together, our results indicate that strong intrinsic barriers to reassortment between seasonal H3N2 and pH1N1 viruses are few but that the reassortants formed are attenuated relative to parental strains. IMPORTANCE The genome of IAV is relatively simple, comprising eight RNA segments, each of which typically encodes one or two proteins. Each viral protein

  12. [Post-herpes simplex encephalitis chorea: Viral replication or immunological mechanism?].

    PubMed

    Benrhouma, H; Nasri, A; Kraoua, I; Klaa, H; Turki, I; Gouider-Khouja, N

    2015-09-01

    Herpes simplex encephalitis is a severe neurological condition, whose outcome is improved if treated early with acyclovir. Post-herpes simplex encephalitis with acute chorea has rarely been reported. We report on two observations of children presenting with post-herpes simplex encephalitis with acute chorea, related to two different pathophysiological mechanisms. The first one is an 11-month-old girl developing relapsing herpes simplex encephalitis with chorea due to resumption of viral replication. The second one is a 2-year-old boy with relapsing post-herpes simplex encephalitis acute chorea caused by an immunoinflammatory mechanism. We discuss the different neurological presentations of herpetic relapses, notably those presenting with movement disorders, as well as their clinical, paraclinical, physiopathological, and therapeutic aspects. Post-herpes simplex encephalitis with acute chorea may involve two mechanisms: resumption of viral replication or an immunoinflammatory mechanism. Treatment of post-herpes simplex encephalitis with acute chorea depends on the underlying mechanism, while prevention is based on antiviral treatment of herpes simplex encephalitis with acyclovir at the dose of 20mg/kg/8h for 21 days. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Reassortant H1N1 influenza virus vaccines protect pigs against pandemic H1N1 influenza virus and H1N2 swine influenza virus challenge.

    PubMed

    Yang, Huanliang; Chen, Yan; Shi, Jianzhong; Guo, Jing; Xin, Xiaoguang; Zhang, Jian; Wang, Dayan; Shu, Yuelong; Qiao, Chuanling; Chen, Hualan

    2011-09-28

    Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. H1N1 Influenza Viral Infection in a Postpartum Young Woman Causes Respiratory Failure: What the Care Providers Ought to Know?

    PubMed Central

    Aloizos, Stavros; Aravosita, Paraskevi; Mystakelli, Christina; Kanna, Efthymia; Gourgiotis, Stavros

    2012-01-01

    Pregnant and postpartum women are considered a population at increased risk of hospitalization of H1N1 infection. We report the case of a young postpartum woman, who developed evidence of respiratory failure reaching the point of requiring intubation due to an H1N1 influenza virus infection two days after a caesarean delivery. We emphasize the diagnosis, management, and the outcome focusing on the question “what the care providers, including obstetric health care workers, ought to know?” Diagnostic and management strategy for pregnant or postpartum women with novel influenza A (H1N1) viral infection and increased awareness amongst patients and health care professionals may result in improved survival. PMID:23150842

  15. Comparison of patients with avian influenza A (H7N9) and influenza A (H1N1) complicated by acute respiratory distress syndrome.

    PubMed

    Li, Hongyan; Weng, Heng; Lan, Changqing; Zhang, Hongying; Wang, Xinhang; Pan, Jianguang; Chen, Lulu; Huang, Jinbao

    2018-03-01

    The aim of this study was to compare the clinical features of patients with avian influenza A (H7N9) and influenza A (H1N1) complicated by acute respiratory distress syndrome (ARDS).The clinical data of 18 cases of H7N9 and 26 cases of H1N1 with ARDS were collected and compared in the respiratory intensive care unit (RICU) of Fuzhou Pulmonary Hospital of Fujian from March 2014 to December 2016.Patients with H7N9 had a higher acute physiology and chronic health evaluation-II score (P < .05) and lung injury score (P < .05). The rates of coexisting diabetes mellitus, hyperpyrexia, and bloody sputum production were significantly higher in the H7N9 group than in the H1N1 group (P < .05). The H7N9 group had a longer duration of viral shedding from the onset of illness (P < .05) and from the initiation of antiviral therapy (P < .05) to a negative viral test result than the H1N1 group. Patients with H7N9 had higher rates of invasive mechanical ventilation; serious complications, including alimentary tract hemorrhage, pneumothorax or septum emphysema, hospital-acquired pneumonia (HAP) and multiple organ dysfunction syndrome (MODS); and hospital mortality (P < .05). At the 6th month of follow-up, the rates of bronchiectasia, reticular opacities, fibrous stripes, and patchy opacities on chest computed tomography (CT) were significantly higher in the H7N9 group than in the H1N1 group (P < .05). Based on multiple logistic regression analysis, H7N9 influenza viral infection was associated with a higher risk of the presence of severe ARDS than H1N1 influenza viral infection (odds ratio 8.29, 95% confidence interval [CI] 1.53-44.94; P < .05).Compared to patients with H1N1, patients with H7N9 complicated by ARDS had much more severe disease. During long-term follow-up, more changes in pulmonary fibrosis were observed in patients with H7N9 than in patients with H1N1 during the convalescent stage.

  16. Absent anti-N-methyl-D-aspartate receptor NR1a antibodies in herpes simplex virus encephalitis and varicella zoster virus infections.

    PubMed

    Berger, Benjamin; Pytlik, Maximilian; Hottenrott, Tilman; Stich, Oliver

    2017-02-01

    A 2012 report and subsequent case series described anti-N-methyl-D-aspartate receptor (NMDAR) antibodies in patients during the acute phase and relapse of herpes simplex virus 1 (HSV1) encephalitis (HSV1E). However, the prevalence of this phenomenon is unknown and systematic studies on other viral infections of the nervous system are missing. We retrospectively analyzed serial cerebrospinal fluid (CSF) and serum samples of consecutive patients treated for neurological HSV1, HSV2 and varicella zoster virus (VZV) infections in our tertiary care university hospital between 2003 and 2013 for the presence of antibodies directed against the NR1a subunit of the NMDAR using indirect immunofluorescence. In total, 88 patients with the following infections were identified through an electronic database search: HSV1 (24 with encephalitis), HSV2 (6 with meningitis, 3 with encephalitis and 1 with myelitis), or VZV (3 with meningitis, 33 with encephalitis, 17 with radiculitis and 1 with myelitis). Two patients with HSV1E and HSV2E, respectively, experienced a clinical relapse. Clinical follow-up was for up to 85 months, and repetitive serum and CSF analyses for up to 43 months. However, at no time did any of the 88 patients exhibit anti-NMDAR NR1a antibodies. In this study, we did not detect anti-NMDAR NR1a antibodies in serial CSF and serum samples of HSV1E patients or patients with other viral infections (HSV2 and VZV). However, the presence of antibodies directed against other epitopes of the NMDAR and other neuronal cell surface antigens cannot be excluded, necessitating further studies.

  17. Aerosol Delivery of a Candidate Universal Influenza Vaccine Reduces Viral Load in Pigs Challenged with Pandemic H1N1 Virus

    PubMed Central

    Morgan, Sophie B.; Hemmink, Johanneke D.; Porter, Emily; Harley, Ross; Shelton, Holly; Aramouni, Mario; Everett, Helen E.; Brookes, Sharon M.; Bailey, Michael; Townsend, Alain M.; Charleston, Bryan

    2016-01-01

    Influenza A viruses are a major health threat to livestock and humans, causing considerable mortality, morbidity, and economic loss. Current inactivated influenza vaccines are strain specific and new vaccines need to be produced at frequent intervals to combat newly arising influenza virus strains, so that a universal vaccine is highly desirable. We show that pandemic H1N1 influenza virus in which the hemagglutinin signal sequence has been suppressed (S-FLU), when administered to pigs by aerosol can induce CD4 and CD8 T cell immune responses in blood, bronchoalveolar lavage (BAL), and tracheobronchial lymph nodes. Neutralizing Ab was not produced. Detection of a BAL response correlated with a reduction in viral titer in nasal swabs and lungs, following challenge with H1N1 pandemic virus. Intratracheal immunization with a higher dose of a heterologous H5N1 S-FLU vaccine induced weaker BAL and stronger tracheobronchial lymph node responses and a lesser reduction in viral titer. We conclude that local cellular immune responses are important for protection against influenza A virus infection, that these can be most efficiently induced by aerosol immunization targeting the lower respiratory tract, and that S-FLU is a promising universal influenza vaccine candidate. PMID:27183611

  18. Prevention of influenza virus shedding and protection from lethal H1N1 challenge using a consensus 2009 H1N1 HA and NA adenovirus vector vaccine

    PubMed Central

    Jones, Frank R.; Gabitzsch, Elizabeth S.; Xu, Younong; Balint, Joseph P.; Borisevich, Viktoriya; Smith, Jennifer; Smith, Jeanon; Peng, Bi-Hung; Walker, Aida; Salazar, Magda; Paessler, Slobodan

    2013-01-01

    Vaccines against emerging pathogens such as the 2009 H1N1 pandemic virus can benefit from current technologies such as rapid genomic sequencing to construct the most biologically relevant vaccine. A novel platform (Ad5 [E1-, E2b-]) has been utilized to induce immune responses to various antigenic targets. We employed this vector platform to express hemagglutinin (HA) and neuraminidase (NA) genes from 2009 H1N1 pandemic viruses. Inserts were consensuses sequences designed from viral isolate sequences and the vaccine was rapidly constructed and produced. Vaccination induced H1N1 immune responses in mice, which afforded protection from lethal virus challenge. In ferrets, vaccination protected from disease development and significantly reduced viral titers in nasal washes. H1N1 cell mediated immunity as well as antibody induction correlated with the prevention of disease symptoms and reduction of virus replication. The Ad5 [E1-, E2b-] should be evaluated for the rapid development of effective vaccines against infectious diseases. PMID:21821082

  19. Natural co-infection of influenza A/H3N2 and A/H1N1pdm09 viruses resulting in a reassortant A/H3N2 virus.

    PubMed

    Rith, Sareth; Chin, Savuth; Sar, Borann; Y, Phalla; Horm, Srey Viseth; Ly, Sovann; Buchy, Philippe; Dussart, Philippe; Horwood, Paul F

    2015-12-01

    Despite annual co-circulation of different subtypes of seasonal influenza, co-infections between different viruses are rarely detected. These co-infections can result in the emergence of reassortant progeny. We document the detection of an influenza co-infection, between influenza A/H3N2 with A/H1N1pdm09 viruses, which occurred in a 3 year old male in Cambodia during April 2014. Both viruses were detected in the patient at relatively high viral loads (as determined by real-time RT-PCR CT values), which is unusual for influenza co-infections. As reassortment can occur between co-infected influenza A strains we isolated plaque purified clonal viral populations from the clinical material of the patient infected with A/H3N2 and A/H1N1pdm09. Complete genome sequences were completed for 7 clonal viruses to determine if any reassorted viruses were generated during the influenza virus co-infection. Although most of the viral sequences were consistent with wild-type A/H3N2 or A/H1N1pdm09, one reassortant A/H3N2 virus was isolated which contained an A/H1N1pdm09 NS1 gene fragment. The reassortant virus was viable and able to infect cells, as judged by successful passage in MDCK cells, achieving a TCID50 of 10(4)/ml at passage number two. There is no evidence that the reassortant virus was transmitted further. The co-infection occurred during a period when co-circulation of A/H3N2 and A/H1N1pdm09 was detected in Cambodia. It is unclear how often influenza co-infections occur, but laboratories should consider influenza co-infections during routine surveillance activities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  20. PLC-γ1 is involved in the inflammatory response induced by influenza A virus H1N1 infection.

    PubMed

    Zhu, Liqian; Yuan, Chen; Ding, Xiuyan; Xu, Shuai; Yang, Jiayun; Liang, Yuying; Zhu, Qiyun

    2016-09-01

    We have previously reported that phosphoinositide-specific phospholipase γ1 (PLC-γ1) signaling is activated by influenza virus H1N1 infection and mediates efficient viral entry in human epithelial cells. In this study, we show that H1N1 also activates PLCγ-1 signaling in human promonocytic cell line -derived macrophages. Surprisingly, the activated PLCγ-1 signaling is not important for viral replication in macrophages, but is involved in the virus-induced inflammatory responses. PLC-γ1-specific inhibitor U73122 strongly inhibits the H1N1 virus-induced NF-κB signaling, blocking the up-regulation of TNF-α, IL-6, MIP-1α, and reactive oxidative species. In a positive feedback loop, IL-1β and TNF-α activate the PLCγ-1 signaling in both epithelial and macrophage cell lines. In summary, we have shown for the first time that the PLCγ-1 signaling plays an important role in the H1N1-induced inflammatory responses. Our study suggests that targeting the PLCγ-1 signaling is a potential antiviral therapy against H1N1 by inhibiting both viral replication and excessive inflammation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. H1N1 viral proteome peptide microarray predicts individuals at risk for H1N1 infection and segregates infection versus Pandemrix® vaccination

    PubMed Central

    Ambati, Aditya; Valentini, Davide; Montomoli, Emanuele; Lapini, Guilia; Biuso, Fabrizio; Wenschuh, Holger; Magalhaes, Isabelle; Maeurer, Markus

    2015-01-01

    A high content peptide microarray containing the entire influenza A virus [A/California/08/2009(H1N1)] proteome and haemagglutinin proteins from 12 other influenza A subtypes, including the haemagglutinin from the [A/South Carolina/1/1918(H1N1)] strain, was used to gauge serum IgG epitope signatures before and after Pandemrix® vaccination or H1N1 infection in a Swedish cohort during the pandemic influenza season 2009. A very narrow pattern of pandemic flu-specific IgG epitope recognition was observed in the serum from individuals who later contracted H1N1 infection. Moreover, the pandemic influenza infection generated IgG reactivity to two adjacent epitopes of the neuraminidase protein. The differential serum IgG recognition was focused on haemagglutinin 1 (H1) and restricted to classical antigenic sites (Cb) in both the vaccinated controls and individuals with flu infections. We further identified a novel epitope VEPGDKITFEATGNL on the Ca antigenic site (251–265) of the pandemic flu haemagglutinin, which was exclusively recognized in serum from individuals with previous vaccinations and never in serum from individuals with H1N1 infection (confirmed by RNA PCR analysis from nasal swabs). This epitope was mapped to the receptor-binding domain of the influenza haemagglutinin and could serve as a correlate of immune protection in the context of pandemic flu. The study shows that unbiased epitope mapping using peptide microarray technology leads to the identification of biologically and clinically relevant target structures. Most significantly an H1N1 infection induced a different footprint of IgG epitope recognition patterns compared with the pandemic H1N1 vaccine. PMID:25639813

  2. A monoclonal antibody-based ELISA for differential diagnosis of 2009 pandemic H1N1

    USDA-ARS?s Scientific Manuscript database

    The swine-origin 2009 pandemic H1N1 virus (pdmH1N1) is genetically related to North American swine H1 influenza viruses and unrelated to human seasonal H1 viruses. Currently, specific diagnosis of pdmH1N1 relies on RT-PCR. In order to develop an assay that does not rely in amplification of the viral...

  3. Viral replication rate regulates clinical outcome and CD8 T cell responses during highly pathogenic H5N1 influenza virus infection in mice.

    PubMed

    Hatta, Yasuko; Hershberger, Karen; Shinya, Kyoko; Proll, Sean C; Dubielzig, Richard R; Hatta, Masato; Katze, Michael G; Kawaoka, Yoshihiro; Suresh, M

    2010-10-07

    Since the first recorded infection of humans with H5N1 viruses of avian origin in 1997, sporadic human infections continue to occur with a staggering mortality rate of >60%. Although sustained human-to-human transmission has not occurred yet, there is a growing concern that these H5N1 viruses might acquire this trait and raise the specter of a pandemic. Despite progress in deciphering viral determinants of pathogenicity, we still lack crucial information on virus/immune system interactions pertaining to severe disease and high mortality associated with human H5N1 influenza virus infections. Using two human isolates of H5N1 viruses that differ in their pathogenicity in mice, we have defined mechanistic links among the rate of viral replication, mortality, CD8 T cell responses, and immunopathology. The extreme pathogenicity of H5N1 viruses was directly linked to the ability of the virus to replicate rapidly, and swiftly attain high steady-state titers in the lungs within 48 hours after infection. The remarkably high replication rate of the highly pathogenic H5N1 virus did not prevent the induction of IFN-β or activation of CD8 T cells, but the CD8 T cell response was ineffective in controlling viral replication in the lungs and CD8 T cell deficiency did not affect viral titers or mortality. Additionally, BIM deficiency ameliorated lung pathology and inhibited T cell apoptosis without affecting survival of mice. Therefore, rapidly replicating, highly lethal H5N1 viruses could simply outpace and overwhelm the adaptive immune responses, and kill the host by direct cytopathic effects. However, therapeutic suppression of early viral replication and the associated enhancement of CD8 T cell responses improved the survival of mice following a lethal H5N1 infection. These findings suggest that suppression of early H5N1 virus replication is key to the programming of an effective host response, which has implications in treatment of this infection in humans.

  4. Different neuraminidase inhibitor susceptibilities of human H1N1, H1N2, and H3N2 influenza A viruses isolated in Germany from 2001 to 2005/2006.

    PubMed

    Bauer, Katja; Richter, Martina; Wutzler, Peter; Schmidtke, Michaela

    2009-04-01

    In the flu season 2005/2006 amantadine-resistant human influenza A viruses (FLUAV) of subtype H3N2 circulated in Germany. This raises questions on the neuraminidase inhibitor (NAI) susceptibility of FLUAV. To get an answer, chemiluminescence-based neuraminidase inhibition assays were performed with 51 H1N1, H1N2, and H3N2 FLUAV isolated in Germany from 2001 to 2005/2006. According to the mean IC(50) values (0.38-0.91 nM for oseltamivir and 0.76-1.13 nM for zanamivir) most H1N1 and H3N2 FLUAV were NAI-susceptible. But, about four times higher zanamivir concentrations were necessary to inhibit neuraminidase activity of H1N2 viruses. Two H1N1 isolates were less susceptible to both drugs in NA inhibition as well as virus yield reduction assays. Results from sequence analysis of viral hemagglutinin and neuraminidase genes and evolutionary analysis of N2 gene revealed (i) different subclades for N2 in H1N2 and H3N2 FLUAV that could explain the differences in zanamivir susceptibility among these viruses and (ii) specific amino acid substitutions in the neuraminidase segment of the two less NAI-susceptible H1N1 isolates. One H3N2 was isolate proved to be a mixture of a NA deletion mutant and full-length NA viruses.

  5. Clinical and Virological Factors Associated with Viremia in Pandemic Influenza A/H1N1/2009 Virus Infection

    PubMed Central

    Tse, Herman; To, Kelvin K. W.; Wen, Xi; Chen, Honglin; Chan, Kwok-Hung; Tsoi, Hoi-Wah; Li, Iris W. S.; Yuen, Kwok-Yung

    2011-01-01

    Background Positive detection of viral RNA in blood and other non-respiratory specimens occurs in severe human influenza A/H5N1 viral infection but is not known to occur commonly in seasonal human influenza infection. Recently, viral RNA was detected in the blood of patients suffering from severe pandemic influenza A/H1N1/2009 viral infection, although the significance of viremia had not been previously studied. Our study aims to explore the clinical and virological factors associated with pandemic influenza A/H1N1/2009 viremia and to determine its clinical significance. Methodology/Principal Findings Clinical data of patients admitted to hospitals in Hong Kong between May 2009 and April 2010 and tested positive for pandemic influenza A/H1N1/2009 was collected. Viral RNA was detected by reverse-transcription polymerase chain reactions (RT-PCR) targeting the matrix (M) and HA genes of pandemic influenza A/H1N1/2009 virus from the following specimens: nasopharyngeal aspirate (NPA), endotracheal aspirate (ETA), blood, stool and rectal swab. Stool and/ or rectal swab was obtained only if the patient complained of any gastrointestinal symptoms. A total of 139 patients were included in the study, with viral RNA being detected in the blood of 14 patients by RT-PCR. The occurrence of viremia was strongly associated with a severe clinical presentation and a higher mortality rate, although the latter association was not statistically significant. D222G/N quasispecies were observed in 90% of the blood samples. Conclusion Presence of pandemic influenza A/H1N1/2009 viremia is an indicator of disease severity and strongly associated with D222G/N mutation in the viral hemagglutinin protein. PMID:21980333

  6. Characterization of cross protection of Swine-Origin Influenza Virus (S-OIV) H1N1 and reassortant H5N1 influenza vaccine in BALB/c mice given a single-dose vaccination

    PubMed Central

    2013-01-01

    Background Influenza virus has antigen drift and antigen shift effect, vaccination with some influenza vaccine might not induce sufficient immunity for host to the threat of other influenza virus strains. S-OIV H1N1 and H5N1 influenza vaccines in single-dose immunization were evaluated in mice for cross protection to the challenge of A/California/7/2009 H1N1 or NIBRG-14 H5N1 virus. Results Both H1N1 and H5N1 induced significant homologous IgG, HAI, and microneutralization antibody responses in the mice, while only vaccines plus adjuvant produced significant heterogeneous IgG and HAI antibody responses. Both alum and MPLA adjuvants significantly reduced the S-OIV H1N1 vaccine dose required to elicit protective HAI antibody titers from 0.05 μg to 0.001 μg. Vaccines alone did not protect mice from challenge with heterogeneous influenza virus, while H5N1 vaccine plus alum and MPLA adjuvants did. Mouse body weight loss was also less significant in the presence of adjuvant than in the vaccine without adjuvant. Furthermore, both H1N1 and H5N1 lung viral titers of immunized mice were significantly reduced post challenge with homologous viruses. Conclusion Only in the presence of MPLA adjuvant could the H5N1 vaccine significantly reduce mouse lung viral titers post H1N1 virus challenge, and not vice versa. MPLA adjuvant induced cross protection with a single dose vaccination to the challenge of heterogeneous influenza virus in mice. Lung viral titer seemed to be a better indicator compared to IgG, neutralization antibody, and HAI titer to predict survival of mice infected with influenza virus. PMID:23517052

  7. IFIT1 Expression Patterns Induced by H9N2 Virus and Inactivated Viral Particle in Human Umbilical Vein Endothelial Cells and Bronchus Epithelial Cells.

    PubMed

    Feng, Bo; Zhang, Qian; Wang, Jianfang; Dong, Hong; Mu, Xiang; Hu, Ge; Zhang, Tao

    2018-04-30

    IFIT1 (also known as ISG56) is a member of the interferon-inducible protein with tetratricopeptide repeats (IFITs) family. IFITs are strongly induced by type I interferon (IFN), double-stranded RNA and virus infection. Here, we investigated IFIT1 expression in human umbilical vein endothelial cells (HUVECs) and in human bronchus epithelial cells (BEAS-2Bs) induced by the H9N2 virus and inactivated viral particle at different time points. We also investigated the effect of H9N2 virus and viral particle infection on IFN-α/β production, and assessed whether hemagglutinin or neuraminidase protein induced IFIT1 expression. Results showed that both H9N2 virus infection and viral particle inoculation induced the expression of IFIT1 at mRNA and protein levels in the two cell lines. Hemagglutinin or neuraminidase protein binding alone is not sufficient to induce IFIT1 expression. Surprisingly, the expression patterns of IFIT1 in response to H9N2 virus and viral particles in the two cell lines were opposite, and production kinetics of IFN-α/β also differed. An additional finding was that induction of IFIT1 in response to H9N2 virus infection or viral particle inoculation was more sensitive in HUVECs than in BEAS-2Bs. Our data offers new insight into the innate immune response of endothelial cells to H9N2 virus infection.

  8. IFIT1 Expression Patterns Induced by H9N2 Virus and Inactivated Viral Particle in Human Umbilical Vein Endothelial Cells and Bronchus Epithelial Cells

    PubMed Central

    Feng, Bo; Zhang, Qian; Wang, Jianfang; Dong, Hong; Mu, Xiang; Hu, Ge; Zhang, Tao

    2018-01-01

    IFIT1 (also known as ISG56) is a member of the interferon-inducible protein with tetratricopeptide repeats (IFITs) family. IFITs are strongly induced by type I interferon (IFN), double-stranded RNA and virus infection. Here, we investigated IFIT1 expression in human umbilical vein endothelial cells (HUVECs) and in human bronchus epithelial cells (BEAS-2Bs) induced by the H9N2 virus and inactivated viral particle at different time points. We also investigated the effect of H9N2 virus and viral particle infection on IFN-α/β production, and assessed whether hemagglutinin or neuraminidase protein induced IFIT1 expression. Results showed that both H9N2 virus infection and viral particle inoculation induced the expression of IFIT1 at mRNA and protein levels in the two cell lines. Hemagglutinin or neuraminidase protein binding alone is not sufficient to induce IFIT1 expression. Surprisingly, the expression patterns of IFIT1 in response to H9N2 virus and viral particles in the two cell lines were opposite, and production kinetics of IFN-α/β also differed. An additional finding was that induction of IFIT1 in response to H9N2 virus infection or viral particle inoculation was more sensitive in HUVECs than in BEAS-2Bs. Our data offers new insight into the innate immune response of endothelial cells to H9N2 virus infection. PMID:29629559

  9. Experimentally infected domestic ducks show efficient transmission of Indonesian H5N1 highly pathogenic avian influenza virus, but lack persistent viral shedding.

    PubMed

    Wibawa, Hendra; Bingham, John; Nuradji, Harimurti; Lowther, Sue; Payne, Jean; Harper, Jenni; Junaidi, Akhmad; Middleton, Deborah; Meers, Joanne

    2014-01-01

    Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2-8 dpi. Viral ribonucleic acid was detected from 1-15 days post inoculation from the oral route and 1-24 days post inoculation from the cloacal route (cycle threshold <40). Most ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection.

  10. Experimentally Infected Domestic Ducks Show Efficient Transmission of Indonesian H5N1 Highly Pathogenic Avian Influenza Virus, but Lack Persistent Viral Shedding

    PubMed Central

    Wibawa, Hendra; Bingham, John; Nuradji, Harimurti; Lowther, Sue; Payne, Jean; Harper, Jenni; Junaidi, Akhmad; Middleton, Deborah; Meers, Joanne

    2014-01-01

    Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2–8 dpi. Viral ribonucleic acid was detected from 1–15 days post inoculation from the oral route and 1–24 days post inoculation from the cloacal route (cycle threshold <40). Most ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection. PMID:24392085

  11. Information Entropy Analysis of the H1N1 Genetic Code

    NASA Astrophysics Data System (ADS)

    Martwick, Andy

    2010-03-01

    During the current H1N1 pandemic, viral samples are being obtained from large numbers of infected people world-wide and are being sequenced on the NCBI Influenza Virus Resource Database. The information entropy of the sequences was computed from the probability of occurrence of each nucleotide base at every position of each set of sequences using Shannon's definition of information entropy, [ H=∑bpb,2( 1pb ) ] where H is the observed information entropy at each nucleotide position and pb is the probability of the base pair of the nucleotides A, C, G, U. Information entropy of the current H1N1 pandemic is compared to reference human and swine H1N1 entropy. As expected, the current H1N1 entropy is in a low entropy state and has a very large mutation potential. Using the entropy method in mature genes we can identify low entropy regions of nucleotides that generally correlate to critical protein function.

  12. Detection of influenza A(H1N1)v virus by real-time RT-PCR.

    PubMed

    Panning, M; Eickmann, M; Landt, O; Monazahian, M; Olschläger, S; Baumgarte, S; Reischl, U; Wenzel, J J; Niller, H H; Günther, S; Hollmann, B; Huzly, D; Drexler, J F; Helmer, A; Becker, S; Matz, B; Eis-Hübinger, Am; Drosten, C

    2009-09-10

    Influenza A(H1N1)v virus was first identified in April 2009. A novel real-time RT-PCR for influenza A(H1N1)v virus was set up ad hoc and validated following industry-standard criteria. The lower limit of detection of the assay was 384 copies of viral RNA per ml of viral transport medium (95% confidence interval: 273-876 RNA copies/ml). Specificity was 100% as assessed on a panel of reference samples including seasonal human influenza A virus H1N1 and H3N2, highly pathogenic avian influenza A virus H5N1 and porcine influenza A virus H1N1, H1N2 and H3N2 samples. The real-time RT-PCR assay for the influenza A matrix gene recommended in 2007 by the World Health Organization was modified to work under the same reaction conditions as the influenza A(H1N1)v virus-specific test. Both assays were equally sensitive. Clinical applicability of both assays was demonstrated by screening of almost 2,000 suspected influenza (H1N1)v specimens, which included samples from the first cases of pandemic H1N1 influenza imported to Germany. Measuring influenza A(H1N1)v virus concentrations in 144 laboratory-confirmed samples yielded a median of 4.6 log RNA copies/ml. The new methodology proved its principle and might assist public health laboratories in the upcoming influenza pandemic.

  13. The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice

    PubMed Central

    Metreveli, Giorgi; Gao, Qinshan; Mena, Nacho; Schmolke, Mirco; Berg, Mikael; Albrecht, Randy A.; García-Sastre, Adolfo

    2017-01-01

    Swine appear to be a key species in the generation of novel human influenza pandemics. Previous pandemic viruses are postulated to have evolved in swine by reassortment of avian, human, and swine influenza viruses. The human pandemic influenza viruses that emerged in 1957 and 1968 as well as swine viruses circulating since 1998 encode PB1 segments derived from avian influenza viruses. Here we investigate the possible role in viral replication and virulence of the PB1 gene segments present in two swine H1N2 influenza A viruses, A/swine/Sweden/1021/2009(H1N2) (sw 1021) and A/swine/Sweden/9706/2010(H1N2) (sw 9706), where the sw 1021 virus has shown to be more pathogenic in mice. By using reverse genetics, we swapped the PB1 genes of these two viruses. Similar to the sw 9706 virus, chimeric sw 1021 virus carrying the sw 9706 PB1 gene was not virulent in mice. In contrast, replacement of the PB1 gene of the sw 9706 virus by that from sw 1021 virus resulted in increased pathogenicity. Our study demonstrated that differences in virulence of swine influenza virus subtype H1N2 are attributed at least in part to the PB1 segment. PMID:24726997

  14. Signal Immune Reactions of Macrophages Differentiated from THP-1 Monocytes to Infection with Pandemic H1N1PDM09 Virus and H5N2 and H9N2 Avian Influenza A Virus.

    PubMed

    Sokolova, T M; Poloskov, V V; Shuvalov, A N; Rudneva, I A; Timofeeva, T A

    2018-03-01

    In culture of THP-1 cells differentiated into macrophages with PMA (THP-PMA macrophages) infected with influenza viruses of subtypes H1, H5 and H9, we measured the expression of TLR7 and RIG1 receptor genes, sensors of viral RNA and ribonucleoprotein, and the levels of production of inflammatory cytokines IL-1β, TNFα, IL-10, and IFNα. The sensitivity and inflammatory response of THP-PMA macrophages to pandemic influenza A virus H1N1pdm09 and avian influenza H5N2 and H9N2 viruses correlate with the intracellular level of their viral RNA and activation of the RIG1 gene. Abortive infection is accompanied by intensive macrophage secretion of TNFα, IL-1β, and toxic factors inducing cell death. Activity of endosomal TLR7 receptor gene changed insignificantly in 24 h after infection and significantly decreased in 48 and 72 h under the action of H5N2 and H9N2, which correlated with manifestation of the cytopathogenic effect of these viruses. H5N2 and H9N2 avian viruses in THP-PMA macrophages are strong activators of the expression of the gene of the cytoplasmic RIG1 receptor 24 and 48 h after infection, and the pandemic virus H1N1pdm09 is a weak stimulator of RIG1 gene. Avian influenza H5N2 and H9N2 viruses are released by rapid induction of the inflammatory response in macrophages. At the late stages of infection, we observed a minor increase in IL-10 secretion in macrophages and, probably, the polarization of a part of the population in type M2. The studied influenza A viruses are weak inductors of IFN in THP-PMA macrophages. In the culture medium of THP-PMA macrophages infected with H9N2 and H5N2 viruses, MTT test revealed high levels of toxic factors causing the death of Caco-2 cells. In contrast to avian viruses, pandemic virus H1N1pdm09 did not induce production of toxic factors.

  15. H7N9 Influenza Virus Is More Virulent in Ferrets than 2009 Pandemic H1N1 Influenza Virus.

    PubMed

    Yum, Jung; Ku, Keun Bon; Kim, Hyun Soo; Seo, Sang Heui

    2015-12-01

    The novel H7N9 influenza virus has been infecting humans in China since February 2013 and with a mortality rate of about 40%. This study compared the pathogenicity of the H7N9 and 2009 pandemic H1N1 influenza viruses in a ferret model, which shows similar symptoms to those of humans infected with influenza viruses. The H7N9 influenza virus caused a more severe disease than did the 2009 pandemic H1N1 influenza virus. All of the ferrets infected with the H7N9 influenza virus had died by 6 days after infection, while none of those infected with the 2009 pandemic H1N1 influenza virus died. Ferrets infected with the H7N9 influenza virus had higher viral titers in their lungs than did those infected with the 2009 pandemic H1N1 influenza virus. Histological findings indicated that hemorrhagic pneumonia was caused by infection with the H7N9 influenza virus, but not with the 2009 pandemic H1N1 influenza virus. In addition, the lung tissues of ferrets infected with the H7N9 influenza virus contained higher levels of chemokines than did those of ferrets infected with the 2009 pandemic H1N1 influenza virus. This study suggests that close monitoring is needed to prevent human infection by the lethal H7N9 influenza virus.

  16. 'Presenting CXR phenotype of H1N1' flu compared with contemporaneous non-H1N1, community acquired pneumonia, during pandemic and post-pandemic outbreaks'.

    PubMed

    Minns, F C; Mhuineachain, A Ni; van Beek, E J R; Ritchie, G; Hill, A; Murchison, J T

    2015-09-01

    To review, phenotype and assess potential prognostic value of initial chest X-ray findings in patients with H1N1 influenza during seasonal outbreaks of 2009 and 2010, in comparison with non-H1N1, community acquired pneumonia (CAP). We retrospectively identified 72 patients admitted to hospital with pneumonia during the seasons of 2009 and 2010. H1N1 cases were confirmed by virology PCR. Presenting chest X-rays were jointly read by 2 radiologists, who were 'blinded' to further patient details and divided into 6 zones. Total number of opacified zones, the pattern and distribution of changes and length of hospital stay were recorded. Patients with H1N1 demonstrated more opacified zones (mean of 2.9 compared with 2.0; p=0.006), which were bilateral in two-thirds compared with a quarter of those with non-H1N1 CAP (p=0.001). H1N1 radiographs were more likely to be 'patchy' versus 'confluent' changes of non-H1N1 CAP (p=0.03) and more often demonstrated peripheral distribution (p=0.01). H1N1 patients tended to stay in hospital longer (not significant; p=0.08). A positive correlation existed between number of affected zones and length of inpatient stay, which was statistically significant for the cohorts combined (p=0.02). The findings were the same for the two evaluated seasons. H1N1 patients demonstrated more extensive disease, which was more likely bilateral, 'patchy', and peripheral in distribution. With increasing global cases of H1N1, knowledge of the typical findings of the H1N1 presenting chest X-ray may assist with early triage of patients, particularly where rapid viral testing is not available. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus.

    PubMed

    Busquets, Núria; Segalés, Joaquim; Córdoba, Lorena; Mussá, Tufaria; Crisci, Elisa; Martín-Valls, Gerard E; Simon-Grifé, Meritxell; Pérez-Simó, Marta; Pérez-Maíllo, Monica; Núñez, Jose I; Abad, Francesc X; Fraile, Lorenzo; Pina, Sonia; Majó, Natalia; Bensaid, Albert; Domingo, Mariano; Montoya, María

    2010-01-01

    The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains. © INRA, EDP Sciences, 2010.

  18. Comparative virulence of wild-type H1N1pdm09 influenza A isolates in swine.

    PubMed

    Henningson, Jamie N; Rajao, Daniela S; Kitikoon, Pravina; Lorusso, Alessio; Culhane, Marie R; Lewis, Nicola S; Anderson, Tavis K; Vincent, Amy L

    2015-03-23

    In 2009, a novel swine-origin H1N1 (H1N1pdm09) influenza A virus (IAV) reached pandemic status and was soon after detected in pigs worldwide. The objective of this study was to evaluate whether differences in the HA protein can affect pathogenicity and antigenicity of H1N1pdm09 in swine. We compared lung pathology, viral replication and shedding and the antigenic relationships of four wild-type H1N1pdm09 viruses in pigs: one human (CA/09) and three isolated in swine after the pandemic (IL/09, IL/10, and MN/10). The swine strains were selected based upon unique amino acid substitutions in the HA protein. All selected viruses resulted in mild disease and viral shedding through nasal and oral fluids, however, viral replication and the degree of pathology varied between the isolates. A/Swine/IL/5265/2010 (IL/10), with substitutions I120M, S146G, S186P, V252M, had lower viral titers in the lungs and nasal secretions and fewer lung lesions. The other two swine viruses caused respiratory pathology and replicated to titers similar to the human CA/09, although MN/10 (with mutations D45Y, K304E, A425S) had lower nasal shedding. Swine-adapted H1N1pdm09 have zoonotic potential, and have reassorted with other co-circulating swine viruses, influencing the evolution of IAV in swine globally. Further, our results suggest that amino acid changes in the HA gene have the potential to alter the virulence of H1N1pdm09 in swine. Importantly, the limited clinical signs in pigs could result in continued circulation of these viruses with other endemic swine IAVs providing opportunities for reassortment. Published by Elsevier B.V.

  19. Viral encephalitis after allogeneic stem cell transplantation: a rare complication with distinct characteristics of different causative agents

    PubMed Central

    Schmidt-Hieber, Martin; Schwender, Julie; Heinz, Werner J.; Zabelina, Tatjana; Kühl, Jörn S.; Mousset, Sabine; Schüttrumpf, Silke; Junghanss, Christian; Silling, Gerda; Basara, Nadezda; Neuburger, Stefan; Thiel, Eckhard; Blau, Igor W.

    2011-01-01

    Background Limited data are available on characteristics of viral encephalitis in patients after allogeneic stem cell transplantation. Design and Methods We analyzed 2,628 patients after allogeneic stem cell transplantation to identify risk factors and characteristics of viral encephalitis. Results Viral encephalitis occurred in 32 patients (1.2%, 95% confidence interval 0.8%–1.6%) and was associated with the use of OKT-3 or alemtuzumab for T-cell depletion (P<0.001) and an increased mortality (P=0.011) in comparison to patients without viral encephalitis. Detected viruses included human herpesvirus-6 (28%), Epstein-Barr virus (19%), herpes simplex virus (13%), JC virus (9%), varicella zoster virus (6%), cytomegalovirus (6%) and adenovirus (3%). More than one virus was identified in 16% of the patients. The median onset time was 106 days after allogeneic stem cell transplantation for the total group of 32 patients, but onset times were shortest in those with human herpesvirus-6 encephalitis and longest in those with JC virus-associated progressive multifocal leukoencephalopathy. The probability of a sustained response to treatment was 63% (95% confidence interval 44%–82%) with a median survival of 94 (95% confidence interval 36–152) days after onset, but significant variation was found when considering different causative viruses. Patients with herpes simplex virus encephalitis had the most favorable outcome with no encephalitis-related deaths. Conclusions The use of OKT-3 or alemtuzumab for in vivo T-cell depletion is associated with an increased risk of viral encephalitis after allogeneic stem cell transplantation. Different viruses are frequently associated with distinct characteristics such as onset time, response to treatment and outcome. PMID:20851868

  20. The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice.

    PubMed

    Metreveli, Giorgi; Gao, Qinshan; Mena, Ignacio; Schmolke, Mirco; Berg, Mikael; Albrecht, Randy A; García-Sastre, Adolfo

    2014-08-08

    Swine appear to be a key species in the generation of novel human influenza pandemics. Previous pandemic viruses are postulated to have evolved in swine by reassortment of avian, human, and swine influenza viruses. The human pandemic influenza viruses that emerged in 1957 and 1968 as well as swine viruses circulating since 1998 encode PB1 segments derived from avian influenza viruses. Here we investigate the possible role in viral replication and virulence of the PB1 gene segments present in two swine H1N2 influenza A viruses, A/swine/Sweden/1021/2009(H1N2) (sw 1021) and A/swine/Sweden/9706/2010(H1N2) (sw 9706), where the sw 1021 virus has shown to be more pathogenic in mice. By using reverse genetics, we swapped the PB1 genes of these two viruses. Similar to the sw 9706 virus, chimeric sw 1021 virus carrying the sw 9706 PB1 gene was not virulent in mice. In contrast, replacement of the PB1 gene of the sw 9706 virus by that from sw 1021 virus resulted in increased pathogenicity. Our study demonstrated that differences in virulence of swine influenza virus subtype H1N2 are attributed at least in part to the PB1 segment. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Etiology and prognosis of acute viral encephalitis and meningitis in Chinese children: a multicentre prospective study.

    PubMed

    Ai, Junhong; Xie, Zhengde; Liu, Gang; Chen, Zongbo; Yang, Yong; Li, Yuning; Chen, Jing; Zheng, Guo; Shen, Kunling

    2017-07-14

    In China, there were few studies about the pathogens of acute viral encephalitis and meningitis in children in recent years. The aims of this study were to characterize the etiology and prognosis of acute viral encephalitis and meningitis in Chinese children. This was a multicentre prospective study. Two hundred and sixty one viral encephalitis patients and 285 viral meningitis patients were enrolled. The mean age of viral encephalitis and meningitis were 5.88 ± 3.60 years and 6.39 ± 3.57 years, respectively. Real-time reverse transcription PCR and multiplex PCR were used to detect human enteroviruses and herpes viruses in cerebrospinal fluid (CSF) of patients with encephalitis or meningitis. The enzyme-linked immune absorbent assay (ELISA) was used for detecting IgM antibody against Japanese encephalitis virus (JEV) in CSF and against mumps virus, tick-borne encephalitis virus (TBEV), dengue virus and rubella virus in acute serum. The clinical and outcome data were collected during patients' hospitalization. The etiology of viral encephalitis was confirmed in 52.5% patients. The primary pathogen was human enteroviruses (27.7%) in viral encephalitis. The incidence of sequelae and the fatality rate of viral encephalitis with confirmed etiology were 7.5% and 0.8%, respectively. The etiology of viral meningitis was identified in 42.8% cases. The leading pathogen was also human enteroviruses (37.7%) in viral meningitis. The prognosis of viral meningitis was favorable with only 0.7% patients had neurological sequelae. Human enteroviruses were the leading cause both in acute viral encephalitis and viral meningitis in children. The incidence of sequelae and fatality rate of viral encephalitis with confirmed etiology were 7.5% and 0.8%, respectively. The prognosis of viral meningitis was favorable compared to viral encephalitis.

  2. Sequencing the cap-snatching repertoire of H1N1 influenza provides insight into the mechanism of viral transcription initiation

    PubMed Central

    Koppstein, David; Ashour, Joseph; Bartel, David P.

    2015-01-01

    The influenza polymerase cleaves host RNAs ∼10–13 nucleotides downstream of their 5′ ends and uses this capped fragment to prime viral mRNA synthesis. To better understand this process of cap snatching, we used high-throughput sequencing to determine the 5′ ends of A/WSN/33 (H1N1) influenza mRNAs. The sequences provided clear evidence for nascent-chain realignment during transcription initiation and revealed a strong influence of the viral template on the frequency of realignment. After accounting for the extra nucleotides inserted through realignment, analysis of the capped fragments indicated that the different viral mRNAs were each prepended with a common set of sequences and that the polymerase often cleaved host RNAs after a purine and often primed transcription on a single base pair to either the terminal or penultimate residue of the viral template. We also developed a bioinformatic approach to identify the targeted host transcripts despite limited information content within snatched fragments and found that small nuclear RNAs and small nucleolar RNAs contributed the most abundant capped leaders. These results provide insight into the mechanism of viral transcription initiation and reveal the diversity of the cap-snatched repertoire, showing that noncoding transcripts as well as mRNAs are used to make influenza mRNAs. PMID:25901029

  3. Neurologic complications of influenza A(H1N1)pdm09

    PubMed Central

    Khandaker, Gulam; Zurynski, Yvonne; Buttery, Jim; Marshall, Helen; Richmond, Peter C.; Dale, Russell C.; Royle, Jenny; Gold, Michael; Snelling, Tom; Whitehead, Bruce; Jones, Cheryl; Heron, Leon; McCaskill, Mary; Macartney, Kristine; Elliott, Elizabeth J.

    2012-01-01

    Objective: We sought to determine the range and extent of neurologic complications due to pandemic influenza A (H1N1) 2009 infection (pH1N1′09) in children hospitalized with influenza. Methods: Active hospital-based surveillance in 6 Australian tertiary pediatric referral centers between June 1 and September 30, 2009, for children aged <15 years with laboratory-confirmed pH1N1′09. Results: A total of 506 children with pH1N1′09 were hospitalized, of whom 49 (9.7%) had neurologic complications; median age 4.8 years (range 0.5–12.6 years) compared with 3.7 years (0.01–14.9 years) in those without complications. Approximately one-half (55.1%) of the children with neurologic complications had preexisting medical conditions, and 42.8% had preexisting neurologic conditions. On presentation, only 36.7% had the triad of cough, fever, and coryza/runny nose, whereas 38.7% had only 1 or no respiratory symptoms. Seizure was the most common neurologic complication (7.5%). Others included encephalitis/encephalopathy (1.4%), confusion/disorientation (1.0%), loss of consciousness (1.0%), and paralysis/Guillain-Barré syndrome (0.4%). A total of 30.6% needed intensive care unit (ICU) admission, 24.5% required mechanical ventilation, and 2 (4.1%) died. The mean length of stay in hospital was 6.5 days (median 3 days) and mean ICU stay was 4.4 days (median 1.5 days). Conclusions: Neurologic complications are relatively common among children admitted with influenza, and can be life-threatening. The lack of specific treatment for influenza-related neurologic complications underlines the importance of early diagnosis, use of antivirals, and universal influenza vaccination in children. Clinicians should consider influenza in children with neurologic symptoms even with a paucity of respiratory symptoms. PMID:22993280

  4. Elicitation of Protective Antibodies against a Broad Panel of H1N1 Viruses in Ferrets Preimmune to Historical H1N1 Influenza Viruses.

    PubMed

    Carter, Donald M; Darby, Christopher A; Johnson, Scott K; Carlock, Michael A; Kirchenbaum, Greg A; Allen, James D; Vogel, Thorsten U; Delagrave, Simon; DiNapoli, Joshua; Kleanthous, Harold; Ross, Ted M

    2017-12-15

    Most preclinical animal studies test influenza vaccines in immunologically naive animal models, even though the results of vaccination may not accurately reflect the effectiveness of vaccine candidates in humans that have preexisting immunity to influenza. In this study, novel, broadly reactive influenza vaccine candidates were assessed in preimmune ferrets. These animals were infected with different H1N1 isolates before being vaccinated or infected with another influenza virus. Previously, our group has described the design and characterization of computationally optimized broadly reactive hemagglutinin (HA) antigens (COBRA) for H1N1 isolates. Vaccinating ferrets with virus-like particle (VLP) vaccines expressing COBRA HA proteins elicited antibodies with hemagglutination inhibition (HAI) activity against more H1N1 viruses in the panel than VLP vaccines expressing wild-type HA proteins. Specifically, ferrets infected with the 1986 virus and vaccinated with a single dose of the COBRA HA VLP vaccines elicited antibodies with HAI activity against 11 to 14 of the 15 H1N1 viruses isolated between 1934 and 2013. A subset of ferrets was infected with influenza viruses expressing the COBRA HA antigens. These COBRA preimmune ferrets had superior breadth of HAI activity after vaccination with COBRA HA VLP vaccines than COBRA preimmune ferrets vaccinated with VLP vaccines expressing wild-type HA proteins. Overall, priming naive ferrets with COBRA HA based viruses or using COBRA HA based vaccines to boost preexisting antibodies induced by wild-type H1N1 viruses, COBRA HA antigens elicited sera with the broadest HAI reactivity against multiple antigenic H1N1 viral variants. This is the first report demonstrating the effectiveness of a broadly reactive or universal influenza vaccine in a preimmune ferret model. IMPORTANCE Currently, many groups are testing influenza vaccine candidates to meet the challenge of developing a vaccine that elicits broadly reactive and long

  5. Elicitation of Protective Antibodies against a Broad Panel of H1N1 Viruses in Ferrets Preimmune to Historical H1N1 Influenza Viruses

    PubMed Central

    Carter, Donald M.; Darby, Christopher A.; Johnson, Scott K.; Carlock, Michael A.; Kirchenbaum, Greg A.; Allen, James D.; Vogel, Thorsten U.; Delagrave, Simon; DiNapoli, Joshua; Kleanthous, Harold

    2017-01-01

    ABSTRACT Most preclinical animal studies test influenza vaccines in immunologically naive animal models, even though the results of vaccination may not accurately reflect the effectiveness of vaccine candidates in humans that have preexisting immunity to influenza. In this study, novel, broadly reactive influenza vaccine candidates were assessed in preimmune ferrets. These animals were infected with different H1N1 isolates before being vaccinated or infected with another influenza virus. Previously, our group has described the design and characterization of computationally optimized broadly reactive hemagglutinin (HA) antigens (COBRA) for H1N1 isolates. Vaccinating ferrets with virus-like particle (VLP) vaccines expressing COBRA HA proteins elicited antibodies with hemagglutination inhibition (HAI) activity against more H1N1 viruses in the panel than VLP vaccines expressing wild-type HA proteins. Specifically, ferrets infected with the 1986 virus and vaccinated with a single dose of the COBRA HA VLP vaccines elicited antibodies with HAI activity against 11 to 14 of the 15 H1N1 viruses isolated between 1934 and 2013. A subset of ferrets was infected with influenza viruses expressing the COBRA HA antigens. These COBRA preimmune ferrets had superior breadth of HAI activity after vaccination with COBRA HA VLP vaccines than COBRA preimmune ferrets vaccinated with VLP vaccines expressing wild-type HA proteins. Overall, priming naive ferrets with COBRA HA based viruses or using COBRA HA based vaccines to boost preexisting antibodies induced by wild-type H1N1 viruses, COBRA HA antigens elicited sera with the broadest HAI reactivity against multiple antigenic H1N1 viral variants. This is the first report demonstrating the effectiveness of a broadly reactive or universal influenza vaccine in a preimmune ferret model. IMPORTANCE Currently, many groups are testing influenza vaccine candidates to meet the challenge of developing a vaccine that elicits broadly reactive and long

  6. Co-infection of classic swine H1N1 influenza virus in pigs persistently infected with porcine rubulavirus.

    PubMed

    Rivera-Benitez, José Francisco; De la Luz-Armendáriz, Jazmín; Saavedra-Montañez, Manuel; Jasso-Escutia, Miguel Ángel; Sánchez-Betancourt, Ivan; Pérez-Torres, Armando; Reyes-Leyva, Julio; Hernández, Jesús; Martínez-Lara, Atalo; Ramírez-Mendoza, Humberto

    2016-02-29

    Porcine rubulavirus (PorPV) and swine influenza virus infection causes respiratory disease in pigs. PorPV persistent infection could facilitate the establishment of secondary infections. The aim of this study was to analyse the pathogenicity of classic swine H1N1 influenza virus (swH1N1) in growing pigs persistently infected with porcine rubulavirus. Conventional six-week-old pigs were intranasally inoculated with PorPV, swH1N1, or PorPV/swH1N1. A mock-infected group was included. The co-infection with swH1N1 was at 44 days post-infection (DPI), right after clinical signs of PorPV infection had stopped. The pigs of the co-infection group presented an increase of clinical signs compared to the simple infection groups. In all infected groups, the most recurrent lung lesion was hyperplasia of the bronchiolar-associated lymphoid tissue and interstitial pneumonia. By means of immunohistochemical evaluation it was possible to demonstrate the presence of the two viral agents infecting simultaneously the bronchiolar epithelium. Viral excretion of PorPV in nasal and oral fluid was recorded at 28 and 52 DPI, respectively. PorPV persisted in several samples from respiratory tissues (RT), secondary lymphoid organs (SLO), and bronchoalveolar lavage fluid (BALF). For swH1N1, the viral excretion in nasal fluids was significantly higher in single-infected swH1N1 pigs than in the co-infected group. However, the co-infection group exhibited an increase in the presence of swH1N1 in RT, SLO, and BALF at two days after co-infection. In conclusion, the results obtained confirm an increase in the clinical signs of infection, and PorPV was observed to impact the spread of swH1N1 in analysed tissues in the early stage of co-infection, although viral shedding was not enhanced. In the present study, the interaction of swH1N1 infection is demonstrated in pigs persistently infected with PorPV. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice.

    PubMed

    Sui, Jinyu; Yang, Dawei; Qiao, Chuanling; Xu, Huiyang; Xu, Bangfeng; Wu, Yunpu; Yang, Huanliang; Chen, Yan; Chen, Hualan

    2016-07-19

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Investigation of antiviral state mediated by interferon-inducible transmembrane protein 1 induced by H9N2 virus and inactivated viral particle in human endothelial cells.

    PubMed

    Feng, Bo; Zhao, Lihong; Wang, Wei; Wang, Jianfang; Wang, Hongyan; Duan, Huiqin; Zhang, Jianjun; Qiao, Jian

    2017-11-03

    Endothelial cells are believed to play an important role in response to virus infection. Our previous microarray analysis showed that H9N2 virus infection and inactivated viral particle inoculation increased the expression of interferon-inducible transmembrane protein 1 (IFITM1) in human umbilical vein endothelial cells (HUVECs). In present study, we deeply investigated the expression patterns of IFITM1 and IFITM1-mediated antiviral response induced by H9N2 virus infection and inactivated viral particle inoculation in HUVECs. Epithelial cells that are considered target cells of the influenza virus were selected as a reference control. First, we quantified the expression levels of IFITM1 in HUVECs induced by H9N2 virus infection or viral particle inoculation using quantitative real-time PCR and western blot. Second, we observed whether hemagglutinin or neuraminidase affected IFITM1 expression in HUVECs. Finally, we investigated the effect of induced-IFITM1 on the antiviral state in HUVECs by siRNA and activation plasmid transfection. Both H9N2 virus infection and viral particle inoculation increased the expression of IFITM1 without elevating the levels of interferon-ɑ/β in HUVECs. HA or NA protein binding alone is not sufficient to increase the levels of IFITM1 and interferon-ɑ/β in HUVECs. IFITM1 induced by viral particle inoculation significantly decreased the virus titers in culture supernatants of HUVECs. Our results showed that inactivated viral particle inoculation increased the expression of IFITM1 at mRNA and protein levels. Moreover, the induction of IFITM1 expression mediated the antiviral state in HUVECs.

  9. Partial heterologous protection by low pathogenic H9N2 virus against natural H9N2-PB1 gene reassortant highly pathogenic H5N1 virus in chickens.

    PubMed

    Dash, Sandeep Kumar; Kumar, Manoj; Kataria, Jag Mohan; Nagarajan, Shanmugasundaram; Tosh, Chakradhar; Murugkar, Harshad V; Kulkarni, Diwakar D

    2016-06-01

    Low pathogenic avian influenza H9N2 and highly pathogenic avian influenza H5N1 viruses continue to co-circulate in chickens. Prior infection with low pathogenic avian influenza can modulate the outcome of H5N1 infection. In India, low pathogenic H9N2 and highly pathogenic H5N1 avian influenza viruses are co-circulating in poultry. Herein, by using chickens with prior infection of A/chicken/India/04TI05/2012 (H9N2) virus we explored the outcome of infection with H5N1 virus A/turkey/India/10CA03/2012 natural PB1 gene reassortant from H9N2. Four groups (E1-E4) of SPF chickens (n = 6) prior inoculated with 10(6) EID50 of H9N2 virus were challenged with 10(6) EID50 of H5N1 natural reassortant (PB1-H9N2) virus at days 1 (group E1); 3 (group E2); 7 (group E3) and 14 (group E4) post H9N2 inoculation. The survival percentage in groups E1-E4 was 0, 100, 66.6 and 50%, respectively. Virus shedding periods for groups E1-E4 were 3, 4, 7 and 9 days, respectively post H5N1 challenge. Birds of group E1 and E2 were shedding both H9N2 and H5N1 viruses and mean viral RNA copy number was higher in oropharyngeal swabs than cloacal swabs. In group, E3 and E4 birds excreted only H5N1 virus and mean viral RNA copy number was higher in most cloacal swabs than oral swabs. These results indicate that prior infection with H9N2 virus could protect from lethal challenge of reassortant H5N1 virus as early as with three days prior H9N2 inoculation and protection decreased in groups E3 and E4 as time elapsed. However, prior infection with H9N2 did not prevent infection with H5N1 virus and birds continue to excrete virus in oropharyngeal and cloacal swabs. Amino acid substitution K368E was found in HA gene of excreted H5N1 virus of group E3. Hence, concurrent infection can also cause emergence of viruses with mutations leading to virus evolution. The results of this study are important for the surveillance and epidemiological data analysis where both H9N2 and H5N1 viruses are co

  10. Adaptation of Pandemic H1N1 Influenza Viruses in Mice▿

    PubMed Central

    Ilyushina, Natalia A.; Khalenkov, Alexey M.; Seiler, Jon P.; Forrest, Heather L.; Bovin, Nicolai V.; Marjuki, Henju; Barman, Subrata; Webster, Robert G.; Webby, Richard J.

    2010-01-01

    The molecular mechanism by which pandemic 2009 influenza A viruses were able to sufficiently adapt to humans is largely unknown. Subsequent human infections with novel H1N1 influenza viruses prompted an investigation of the molecular determinants of the host range and pathogenicity of pandemic influenza viruses in mammals. To address this problem, we assessed the genetic basis for increased virulence of A/CA/04/09 (H1N1) and A/TN/1-560/09 (H1N1) isolates, which are not lethal for mice, in a new mammalian host by promoting their mouse adaptation. The resulting mouse lung-adapted variants showed significantly enhanced growth characteristics in eggs, extended extrapulmonary tissue tropism, and pathogenicity in mice. All mouse-adapted viruses except A/TN/1-560/09-MA2 grew faster and to higher titers in cells than the original strains. We found that 10 amino acid changes in the ribonucleoprotein (RNP) complex (PB2 E158G/A, PA L295P, NP D101G, and NP H289Y) and hemagglutinin (HA) glycoprotein (K119N, G155E, S183P, R221K, and D222G) controlled enhanced mouse virulence of pandemic isolates. HA mutations acquired during adaptation affected viral receptor specificity by enhancing binding to α2,3 together with decreasing binding to α2,6 sialyl receptors. PB2 E158G/A and PA L295P amino acid substitutions were responsible for the significant enhancement of transcription and replication activity of the mouse-adapted H1N1 variants. Taken together, our findings suggest that changes optimizing receptor specificity and interaction of viral polymerase components with host cellular factors are the major mechanisms that contribute to the optimal competitive advantage of pandemic influenza viruses in mice. These modulators of virulence, therefore, may have been the driving components of early evolution, which paved the way for novel 2009 viruses in mammals. PMID:20592084

  11. Evaluation of the zoonotic potential of a novel reassortant H1N2 swine influenza virus with gene constellation derived from multiple viral sources.

    PubMed

    Lee, Jee Hoon; Pascua, Philippe Noriel Q; Decano, Arun G; Kim, Se Mi; Park, Su-Jin; Kwon, Hyeok-Il; Kim, Eun-Ha; Kim, Young-Il; Kim, HyongKyu; Kim, Seok-Yong; Song, Min-Suk; Jang, Hyung-Kwan; Park, Bong Kyun; Choi, Young Ki

    2015-08-01

    In 2011-2012, contemporary North American-like H3N2 swine influenza viruses (SIVs) possessing the 2009 pandemic H1N1 matrix gene (H3N2pM-like virus) were detected in domestic pigs of South Korea where H1N2 SIV strains are endemic. More recently, we isolated novel reassortant H1N2 SIVs bearing the Eurasian avian-like swine H1-like hemagglutinin and Korean swine H1N2-like neuraminidase in the internal gene backbone of the H3N2pM-like virus. In the present study, we clearly provide evidence on the genetic origins of the novel H1N2 SIVs virus through genetic and phylogenetic analyses. In vitro studies demonstrated that, in comparison with a pre-existing 2012 Korean H1N2 SIV [A/swine/Korea/CY03-11/2012 (CY03-11/2012)], the 2013 novel reassortant H1N2 isolate [A/swine/Korea/CY0423/2013 (CY0423-12/2013)] replicated more efficiently in differentiated primary human bronchial epithelial cells. The CY0423-12/2013 virus induced higher viral titers than the CY03-11/2012 virus in the lungs and nasal turbinates of infected mice and nasal wash samples of ferrets. Moreover, the 2013 H1N2 reassortant, but not the intact 2012 H1N2 virus, was transmissible to naïve contact ferrets via respiratory-droplets. Noting that the viral precursors have the ability to infect humans, our findings highlight the potential threat of a novel reassortant H1N2 SIV to public health and underscore the need to further strengthen influenza surveillance strategies worldwide, including swine populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Viral Etiology of Encephalitis in Children in Southern Vietnam: Results of a One-Year Prospective Descriptive Study

    PubMed Central

    Tan, Le Van; Qui, Phan Tu; Ha, Do Quang; Hue, Nguyen Bach; Bao, Lam Quoi; Cam, Bach Van; Khanh, Truong Huu; Hien, Tran Tinh; Vinh Chau, Nguyen Van; Tram, Tran Tan; Hien, Vo Minh; Nga, Tran Vu Thieu; Schultsz, Constance; Farrar, Jeremy; van Doorn, H. Rogier; de Jong, Menno D.

    2010-01-01

    Background Acute encephalitis is an important and severe disease in children in Vietnam. However, little is known about the etiology while such knowledge is essential for optimal prevention and treatment. To identify viral causes of encephalitis, in 2004 we conducted a one-year descriptive study at Children's Hospital Number One, a referral hospital for children in southern Vietnam including Ho Chi Minh City. Methodology/Principal Findings Children less than 16 years of age presenting with acute encephalitis of presumed viral etiology were enrolled. Diagnostic efforts included viral culture, serology and real time (RT)-PCRs. A confirmed or probable viral causative agent was established in 41% of 194 enrolled patients. The most commonly diagnosed causative agent was Japanese encephalitis virus (n = 50, 26%), followed by enteroviruses (n = 18, 9.3%), dengue virus (n = 9, 4.6%), herpes simplex virus (n = 1), cytomegalovirus (n = 1) and influenza A virus (n = 1). Fifty-seven (29%) children died acutely. Fatal outcome was independently associated with patient age and Glasgow Coma Scale (GCS) on admission. Conclusions/Significance Acute encephalitis in children in southern Vietnam is associated with high mortality. Although the etiology remains unknown in a majority of the patients, the result from the present study may be useful for future design of treatment and prevention strategies of the disease. The recognition of GCS and age as predictive factors may be helpful for clinicians in managing the patient. PMID:21049060

  13. A novel H6N1 virus-like particle vaccine induces long-lasting cross-clade antibody immunity against human and avian H6N1 viruses.

    PubMed

    Yang, Ji-Rong; Chen, Chih-Yuan; Kuo, Chuan-Yi; Cheng, Chieh-Yu; Lee, Min-Shiuh; Cheng, Ming-Chu; Yang, Yu-Chih; Wu, Chia-Ying; Wu, Ho-Sheng; Liu, Ming-Tsan; Hsiao, Pei-Wen

    2016-02-01

    Avian influenza A(H6N1) virus is one of the most common viruses isolated from migrating birds and domestic poultry in many countries. The first and only known case of human infection by H6N1 virus in the world was reported in Taiwan in 2013. This led to concern that H6N1 virus may cause a threat to public health. In this study, we engineered a recombinant H6N1 virus-like particle (VLP) and investigated its vaccine effectiveness compared to the traditional egg-based whole inactivated virus (WIV) vaccine. The H6N1-VLPs exhibited similar morphology and functional characteristics to influenza viruses. Prime-boost intramuscular immunization in mice with unadjuvanted H6N1-VLPs were highly immunogenic and induced long-lasting antibody immunity. The functional activity of the VLP-elicited IgG antibodies was proved by in vitro seroprotective hemagglutination inhibition and microneutralization titers against the homologous human H6N1 virus, as well as in vivo viral challenge analyses which showed H6N1-VLP immunization significantly reduced viral load in the lung, and protected against human H6N1 virus infection. Of particular note, the H6N1-VLPs but not the H6N1-WIVs were able to confer cross-reactive humoral immunity; antibodies induced by H6N1-VLP vaccine robustly inhibited the hemagglutination activities and in vitro replication of distantly-related heterologous avian H6N1 viruses. Furthermore, the H6N1-VLPs were found to elicit significantly greater anti-HA2 antibody responses in immunized mice than H6N1-WIVs. Collectively, we demonstrated for the first time a novel H6N1-VLP vaccine that effectively provides broadly protective immunity against both human and avian H6N1 viruses. These results, which uncover the underlying mechanisms for induction of wide-range immunity against influenza viruses, may be useful for future influenza vaccine development. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cytokine profile of bronchoalveolar lavage fluid from a mouse model of bronchial asthma during seasonal H1N1 infection.

    PubMed

    Hasegawa, Shunji; Wakiguchi, Hiroyuki; Okada, Seigo; Gui Kang, Yu; Fujii, Nao; Hasegawa, Masanari; Hasegawa, Hideki; Ainai, Akira; Atsuta, Ryo; Shirabe, Komei; Toda, Shoichi; Wakabayashi-Takahara, Midori; Morishima, Tsuneo; Ichiyama, Takashi

    2014-10-01

    Several studies support the role of viral infections in the pathogenesis of asthma exacerbation. However, several pediatricians believe that influenza virus infection does not exacerbate bronchial asthma, except for influenza A H1N1 2009 pandemic [A(H1N1)pdm09] virus infection. We previously reported that A(H1N1)pdm09 infection possibly induces severe pulmonary inflammation or severe asthmatic attack in a mouse model of bronchial asthma and in asthmatic children. However, the ability of seasonal H1N1 influenza (H1N1) infection to exacerbate asthmatic attacks in bronchial asthma patients has not been previously reported, and the differences in the pathogenicity profiles, such as cytokine profiles, remains unclear in bronchial asthma patients after A(H1N1)pdm09 and H1N1 infections. The cytokine levels and viral titers in the bronchoalveolar lavage (BAL) fluid from mice with and without asthma after H1N1 infection (A/Yamagata and A/Puerto Rico strains) were compared. The interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, IL-5, interferon (IFN)-α, IFN-β, and IFN-γ levels were significantly higher in the BAL fluids from the control/H1N1 mice than from the asthmatic/H1N1 mice. The viral titers in the BAL fluid were also significantly higher in the control/H1N1mice than in the asthmatic/H1N1 mice infected with either A/Yamagata or A/Puerto Rico. A(H1N1)pdm09 infection, but not H1N1 infection, can induce severe pulmonary inflammation through elevated cytokine levels in a mouse model of asthma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Glycosylation on Hemagglutinin Affects the Virulence and Pathogenicity of Pandemic H1N1/2009 Influenza A Virus in Mice

    PubMed Central

    Li, Yongtao; Bradley, Konrad C.; Cao, Jiyue; Chen, Huanchun; Jin, Meilin; Zhou, Hongbo

    2013-01-01

    The two glycosylation sites (Asn142 and Asn177) were observed in the HA of most human seasonal influenza A/H1N1 viruses, while none in pandemic H1N1/2009 influenza A (pH1N1) viruses. We investigated the effect of the two glycosylation sites on viral virulence and pathogenicity in mice using recombinant pH1N1. The H1N1/144 and H1N1/177 mutants which gained potential glycosylation sites Asn142 and Asn177 on HA respectively were generated from A/Mexico/4486/2009(H1N1) by site-directed mutagenesis and reverse genetics, the same as the H1N1/144+177 gained both glycosylation sites Asn142 and Asn177. The biological characteristics and antigenicity of the mutants were compared with wild-type pH1N1. The virulence and pathogenicity of recombinants were also detected in mice. Our results showed that HA antigenicity and viral affinity for receptor may change with introduction of the glycosylation sites. Compared with wild-type pH1N1, the mutant H1N1/177 displayed an equivalent virus titer in chicken embryos and mice, and increased virulence and pathogenicity in mice. The H1N1/144 displayed the highest virus titer in mice lung. However, the H1N1/144+177 displayed the most serious alveolar inflammation and pathogenicity in infected mice. The introduction of the glycosylation sites Asn144 and Asn177 resulted in the enhancement on virulence and pathogenicity of pH1N1 in mice, and was also associated with the change of HA antigenicity and the viral affinity for receptor. PMID:23637827

  16. Pathology of whooper swans (Cygnus cygnus) infected with H5N1 avian influenza virus in Akita, Japan, in 2008.

    PubMed

    Ogawa, Shuji; Yamamoto, Yu; Yamada, Manabu; Mase, Masaji; Nakamura, Kikuyasu

    2009-10-01

    Two (1 adult and 1 young bird) of 4 H5N1-highly-pathogenic-avian-influenza (HPAI)-virus-infected whooper swans in Akita, Japan, in 2008 were investigated pathologically. Macroscopically, white spots with hemorrhages were scattered in the pancreas in the adult bird. Histologically, the adult bird had severe necrotizing pancreatitis and mild nonpurulent encephalitis. The young bird had severe nonpurulent encephalitis and nonpurulent enteric ganglionitis, and intestinal venous wall thickening. Virus antigens were detected in the lesions of pancreatitis in the adult bird and of encephalitis in adult and young birds. These findings suggest that the swans died or became moribund due to neurological disorders and necrotizing pancreatitis caused by H5N1 HPAI virus infection.

  17. [Meningitis and encephalitis in Poland in 2010].

    PubMed

    Parda, Natalia; Polkowska, Aleksandra

    2012-01-01

    Annually 2 000-3 000 cases of meningitis and encephalitis are notified to the Polish surveillance system. The leading etiologic agents of the bacterial infections are: N. meningitidis, S. pneumoniae, H. influenzae type B and L. monocytogenes. The most common causes of bacterial infections in children are: E. coli, S. agalactiae and H. influenzae type B. The viral infections are mainly caused by the following pathogens: Echovirus, Coxsackie virus group A and B. The agents responsible for the viral infections are also: arboviruses, Herpes simplex virus and mumps virus. The objectives of the present article are to analyze the epidemiology of meningitis and encephalitis in Poland in 2010 and to present the information on the vaccines used to prevent the discussed infections. The analysis was based on the data retrieved from the questionnaires used for the surveillance purposes, aggregated data on meningitis and encephalitis published in "Infectious diseases and poisonings in Poland in 2010", aggregated data on the vaccination coverage published in "Vaccinations in Poland in 2010", "Case definitions for the infectious diseases used for the surveillance purposes in 2009-2011" and Polish Immunization Programme for 2010. In 2010, Poland reported 3 063 neuroinfections--nearly 22% more than in 2009. The incidence rate was 8.03 cases per 100 000 population. From the analysis of data transpired that of the notified cases, 1 619 were of viral etiology, 846--were bacterial and 598 of other or unknown origin. Given the bacterial infections of determined etiology, the leading pathogenic agent was S. pneumoniae (180 cases), following by N. meningitidis (146 cases) and Haemophilus influenzae typu B (11 cases). Among confirmed cases of the viral infections, the predominant were tick-borne encephalitis cases (294). Compared to the data from 2009, the epidemiologic situation of the meningitis and encephalitis in Poland in 2010 has not changed significantly.

  18. Cross-protective immunity against influenza A/H1N1 virus challenge in mice immunized with recombinant vaccine expressing HA gene of influenza A/H5N1 virus

    PubMed Central

    2013-01-01

    Background Influenza virus undergoes constant antigenic evolution, and therefore influenza vaccines must be reformulated each year. Time is necessary to produce a vaccine that is antigenically matched to a pandemic strain. A goal of many research works is to produce universal vaccines that can induce protective immunity to influenza A viruses of various subtypes. Despite intensive studies, the precise mechanisms of heterosubtypic immunity (HSI) remain ambiguous. Method In this study, mice were vaccinated with recombinant virus vaccine (rL H5), in which the hemagglutinin (HA) gene of influenza A/H5N1 virus was inserted into the LaSota Newcastle disease virus (NDV) vaccine strain. Following a challenge with influenza A/H1N1 virus, survival rates and lung index of mice were observed. The antibodies to influenza virus were detected using hemagglutination inhibition (HI). The lung viral loads, lung cytokine levels and the percentages of both IFN-γ+CD4+ and IFN-γ+CD8+ T cells in spleen were detected using real-time RT-PCR, ELISA and flow cytometry respectively. Results In comparison with the group of mice given phosphate-buffered saline (PBS), the mice vaccinated with rL H5 showed reductions in lung index and viral replication in the lungs after a challenge with influenza A/H1N1 virus. The antibody titer in group 3 (H1N1-H1N1) was significantly higher than that in other groups which only low levels of antibody were detected. IFN-γ levels increased in both group 1 (rL H5-H1N1) and group 2 (rL H5 + IL-2-H1N1). And the IFN-γ level of group 2 was significantly higher than that of group 1. The percentages of both IFN-γ+CD4+ and IFN-γ+CD8+ T cells in group 1 (rL H5-H1N1) and group 2 (rL H5 + IL-2-H1N1) increased significantly, as measured by flow cytometry. Conclusion After the mice were vaccinated with rL H5, cross-protective immune response was induced, which was against heterosubtypic influenza A/H1N1 virus. To some extent, cross-protective immune response can

  19. In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential

    PubMed Central

    Muñoz-Medina, José Esteban; Sánchez-Vallejo, Carlos Javier; Méndez-Tenorio, Alfonso; Monroy-Muñoz, Irma Eloísa; Angeles-Martínez, Javier; Santos Coy-Arechavaleta, Andrea; Santacruz-Tinoco, Clara Esperanza; González-Ibarra, Joaquín; Anguiano-Hernández, Yu-Mei; González-Bonilla, César Raúl; Ramón-Gallegos, Eva; Díaz-Quiñonez, José Alberto

    2015-01-01

    The unpredictable, evolutionary nature of the influenza A virus (IAV) is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2) in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2) and in one of the main aviary subtypes responsible for zoonosis (H5N1). For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB) and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years) and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques. PMID:26346523

  20. Restored PB1-F2 in the 2009 Pandemic H1N1 Influenza Virus Has Minimal Effects in Swine

    PubMed Central

    Pena, Lindomar; Loving, Crystal L.; Henningson, Jamie N.; Lager, Kelly M.; Lorusso, Alessio

    2012-01-01

    PB1-F2 is an 87- to 90-amino-acid-long protein expressed by certain influenza A viruses. Previous studies have shown that PB1-F2 contributes to virulence in the mouse model; however, its role in natural hosts—pigs, humans, or birds—remains largely unknown. Outbreaks of domestic pigs infected with the 2009 pandemic H1N1 influenza virus (pH1N1) have been detected worldwide. Unlike previous pandemic strains, pH1N1 viruses do not encode a functional PB1-F2 due to the presence of three stop codons resulting in premature truncation after codon 11. However, pH1N1s have the potential to acquire the full-length form of PB1-F2 through mutation or reassortment. In this study, we assessed whether restoring the full-length PB1-F2 open reading frame (ORF) in the pH1N1 background would have an effect on virus replication and virulence in pigs. Restoring the PB1-F2 ORF resulted in upregulation of viral polymerase activity at early time points in vitro and enhanced virus yields in porcine respiratory explants and in the lungs of infected pigs. There was an increase in the severity of pneumonia in pigs infected with isogenic virus expressing PB1-F2 compared to the wild-type (WT) pH1N1. The extent of microscopic pneumonia correlated with increased pulmonary levels of alpha interferon and interleukin-1β in pigs infected with pH1N1 encoding a functional PB1-F2 but only early in the infection. Together, our results indicate that PB1-F2 in the context of pH1N1 moderately modulates viral replication, lung histopathology, and local cytokine response in pigs. PMID:22379102

  1. Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses

    PubMed Central

    Szécsi, Judit; Boson, Bertrand; Johnsson, Per; Dupeyrot-Lacas, Pia; Matrosovich, Mikhail; Klenk, Hans-Dieter; Klatzmann, David; Volchkov, Viktor; Cosset, François-Loïc

    2006-01-01

    There is an urgent need to develop novel approaches to vaccination against the emerging, highly pathogenic avian influenza viruses. Here, we engineered influenza viral-like particles (Flu-VLPs) derived from retroviral core particles that mimic the properties of the viral surface of two highly pathogenic influenza viruses of either H7N1 or H5N1 antigenic subtype. We demonstrate that, upon recovery of viral RNAs from a field strain, one can easily generate expression vectors that encode the HA, NA and M2 surface proteins of either virus and prepare high-titre Flu-VLPs. We characterise these Flu-VLPs incorporating the HA, NA and M2 proteins and we show that they induce high-titre neutralising antibodies in mice. PMID:16948862

  2. H5N1 pathogenesis studies in mammalian models

    PubMed Central

    Belser, Jessica A.; Tumpey, Terrence M.

    2017-01-01

    H5N1 influenza viruses are capable of causing severe disease and death in humans, and represent a potential pandemic subtype should they acquire a transmissible phenotype. Due to the expanding host and geographic range of this virus subtype, there is an urgent need to better understand the contribution of both virus and host responses following H5N1 virus infection to prevent and control human disease. The use of mammalian models, notably the mouse and ferret, has enabled the detailed study of both complex virus–host interactions as well as the contribution of individual viral proteins and point mutations which influence virulence. In this review, we describe the behavior of H5N1 viruses which exhibit high and low virulence in numerous mammalian species, and highlight the contribution of inoculation route to virus pathogenicity. The involvement of host responses as studied in both inbred and outbred mammalian models is discussed. The roles of individual viral gene products and molecular determinants which modulate the severity of H5N1 disease in vivo are presented. This research contributes not only to our understanding of influenza virus pathogenesis, but also identifies novel preventative and therapeutic targets to mitigate the disease burden caused by avian influenza viruses. PMID:23458998

  3. Oseltamivir-resistant pandemic influenza a (H1N1) 2009 viruses in Spain.

    PubMed

    Ledesma, Juan; Vicente, Diego; Pozo, Francisco; Cilla, Gustavo; Castro, Sonia Pérez; Fernández, Jonathan Suárez; Ruiz, Mercedes Pérez; Navarro, José María; Galán, Juan Carlos; Fernández, Mirian; Reina, Jordi; Larrauri, Amparo; Cuevas, María Teresa; Casas, Inmaculada; Breña, Pilar Pérez

    2011-07-01

    Pandemic influenza A (H1N1) 2009 virus appeared in Spain on April 25, 2009 for the first time. This new virus was adamantane-resistant but it was sensitive to neuraminidase (NA) inhibitors oseltamivir and zanamivir. To detect oseltamivir-resistant pandemic influenza A (H1N1) 2009 viruses by the Spanish Influenza Surveillance System (SISS) and a possible spread of oseltamivir-resistant viruses in Spain since starting of the pandemic situation. A total of 1229 respiratory samples taken from 413 severe and 766 non-severe patients with confirmed viral detection of pandemic influenza A (H1N1) 2009 viruses from different Spanish regions were analyzed for the specific detection of the H275Y mutation in NA between April 2009 and May 2010. H275Y NA substitution was found in 8 patients infected with pandemic influenza A (H1N1) 2009 viruses collected in November and December 2009 and in January 2010. All oseltamivir-resistant viruses were detected in severe patients (8/413, 1.93%) who previously received treatment with oseltamivir. Six of these patients were immunocompromised. In Spain, the number of oseltamivir-resistant pandemic influenza A (H1N1) 2009 viruses is until now very low. No evidence for any spread of oseltamivir-resistant H1N1 viruses is achieved in our Country. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. [Pulmonary pathology in fatal human influenza A (H1N1) infection].

    PubMed

    Duan, Xue-jing; Li, Yong; Gong, En-cong; Wang, Jue; Lü, Fu-dong; Zhang, He-qiu; Sun, Lin; Yue, Zhu-jun; Song, Chen-chao; Zhang, Shi-Jie; Li, Ning; Dai, Jie

    2011-12-01

    To study the pulmonary pathology in patients died of fatal human influenza A(H1N1) infection. Eight cases of fatal human influenza A (H1N1) infection, including 2 autopsy cases and 6 paramortem needle puncture biopsies, were enrolled into the study. Histologic examination, immunohistochemitry, flow cytometry and Western blotting were carried out. The major pathologic changes included necrotizing bronchiolitis with surrounding inflammation, diffuse alveolar damage and pulmonary hemorrhage. Influenza viral antigen expression was detected in the lung tissue by Western blotting. Immunohistochemical study demonstrated the presence of nuclear protein and hemagglutinin virus antigens in parts of trachea, bronchial epithelium and glands, alveolar epithelium, macrophages and endothelium. Flow cytometry showed that the apoptotic rate of type II pneumocytes (32.15%, 78.15%) was significantly higher than that of the controls (1.93%, 3.77%). Necrotizing bronchiolitis, diffuse alveolar damage and pulmonary hemorrhage followed by pulmonary fibrosis in late stage are the major pathologic changes in fatal human influenza A (H1N1) infection.

  5. Pre-infection of pigs with Mycoplasma hyopneumoniae modifies outcomes of infection with European swine influenza virus of H1N1, but not H1N2, subtype.

    PubMed

    Deblanc, C; Gorin, S; Quéguiner, S; Gautier-Bouchardon, A V; Ferré, S; Amenna, N; Cariolet, R; Simon, G

    2012-05-25

    Swine influenza virus (SIV) and Mycoplasma hyopneumoniae (Mhp) are widespread in farms and are major pathogens involved in the porcine respiratory disease complex (PRDC). The aim of this experiment was to compare the pathogenicity of European avian-like swine H1N1 and European human-like reassortant swine H1N2 viruses in naïve pigs and in pigs previously infected with Mhp. Six groups of SPF pigs were inoculated intra-tracheally with either Mhp, or H1N1, or H1N2 or Mhp+H1N1 or Mhp+H1N2, both pathogens being inoculated at 21 days intervals in these two last groups. A mock-infected group was included. Although both SIV strains induced clinical signs when singly inoculated, results indicated that the H1N2 SIV was more pathogenic than the H1N1 virus, with an earlier shedding and a greater spread in lungs. Initial infection with Mhp before SIV inoculation increased flu clinical signs and pathogenesis (hyperthermia, loss of appetite, pneumonia lesions) due to the H1N1 virus but did not modify significantly outcomes of H1N2 infection. Thus, Mhp and SIV H1N1 appeared to act synergistically, whereas Mhp and SIV H1N2 would compete, as H1N2 infection led to the elimination of Mhp in lung diaphragmatic lobes. In conclusion, SIV would be a risk factor for the severity of respiratory disorders when associated with Mhp, depending on the viral subtype involved. This experimental model of coinfection with Mhp and avian-like swine H1N1 is a relevant tool for studying the pathogenesis of SIV-associated PRDC and testing intervention strategies for the control of the disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Neurologic manifestations and complications of pandemic influenza A H1N1 in Malaysian children: what have we learnt from the ordeal?

    PubMed

    Muhammad Ismail, Hussain Imam; Teh, Chee Ming; Lee, Yin Leng

    2015-01-01

    In 2009, pandemic influenza A H1N1 emerged in Mexico and subsequently spread worldwide. In Malaysia, there were more than a thousand of confirmed cases among children. The general clinical characteristics of these children have been well-published. However, the description of neurologic complications is scarce. This study aims to describe the characteristics of neurologic manifestations and complications in a national paediatric cohort with pandemic influenza A H1N1. During the pandemic, children (12 years or less) admitted for novel influenza A H1N1 in 68 Malaysian public hospitals, were prospectively enrolled into national database. The clinical, laboratory and neuro-imaging data for children with neurologic manifestations, hospitalized from 15th June 2009 till 30th November 2009, was reviewed. Of 1244 children with influenza A H1N1 during the study period, 103 (8.3%) presented with influenza-related neurological manifestations. The mean age of our study cohort was 4.2 years (SD: 3.3 years). Sixty percent of them were males. Sixty-nine (66.9%) were diagnosed as febrile seizures, 16 (15.5%) as breakthrough seizures with underlying epilepsy, 14 (13.6%) as influenza-associated encephalopathy or encephalitis (IAE) and 4 (3.9%) as acute necrotizing encephalopathy of childhood (ANEC). All 4 available CSF specimens were negative for influenza viral PCR. Among 14 children with brain-imaging done, 9 were abnormal (2: cerebral oedema, 4: ANEC and 3: other findings). There were four deaths and three cases with permanent neurological sequelae. About one-tenth of children with pandemic influenza A H1N1 presented with neurologic complications. The most common diagnosis was febrile seizures. One-fifth of those children with neurologic presentation had IAE or ANEC, which carried higher mortality and morbidity. This large national study provides us useful data to better manage children with neurologic complications in the future pandemic influenza outbreaks. Copyright © 2014 The

  7. LGI1 antibody encephalitis and psychosis.

    PubMed

    Wang, Dahai; Hao, Qinjian; He, Lan; Wang, Qiang

    2018-05-01

    To describe a case of leucine-rich, glioma inactivated 1 antibody-encephalitis presenting with psychosis. Case report. A young man with leucine-rich, glioma inactivated 1-antibody encephalitis initially presented with acute psychotic symptoms, short-term memory loss and faciobrachial dystonic seizures. Magnetic resonance imaging revealed hippocampal lesions. Electroencephalography revealed frontotemporal slowing of background activity. Increased awareness of leucine-rich, glioma inactivated 1-antibody encephalitis may promote early recognition and treatment.

  8. Antigenic Differences between AS03 Adjuvanted Influenza A (H1N1) Pandemic Vaccines: Implications for Pandemrix-Associated Narcolepsy Risk

    PubMed Central

    Vaarala, Outi; Vuorela, Arja; Partinen, Markku; Baumann, Marc; Freitag, Tobias L.; Meri, Seppo; Saavalainen, Päivi; Jauhiainen, Matti; Soliymani, Rabah; Kirjavainen, Turkka; Olsen, Päivi; Saarenpää-Heikkilä, Outi; Rouvinen, Juha; Roivainen, Merja; Nohynek, Hanna; Jokinen, Jukka; Julkunen, Ilkka; Kilpi, Terhi

    2014-01-01

    Background Narcolepsy results from immune-mediated destruction of hypocretin secreting neurons in hypothalamus, however the triggers and disease mechanisms are poorly understood. Vaccine-attributable risk of narcolepsy reported so far with the AS03 adjuvanted H1N1 vaccination Pandemrix has been manifold compared to the AS03 adjuvanted Arepanrix, which contained differently produced H1N1 viral antigen preparation. Hence, antigenic differences and antibody response to these vaccines were investigated. Methods and Findings Increased circulating IgG-antibody levels to Pandemrix H1N1 antigen were found in 47 children with Pandemrix-associated narcolepsy when compared to 57 healthy children vaccinated with Pandemrix. H1N1 antigen of Arepanrix inhibited poorly these antibodies indicating antigenic difference between Arepanrix and Pandemrix. High-resolution gel electrophoresis quantitation and mass spectrometry identification analyses revealed higher amounts of structurally altered viral nucleoprotein (NP) in Pandemrix. Increased antibody levels to hemagglutinin (HA) and NP, particularly to detergent treated NP, was seen in narcolepsy. Higher levels of antibodies to NP were found in children with DQB1*06∶02 risk allele and in DQB1*06∶02 transgenic mice immunized with Pandemrix when compared to controls. Conclusions This work identified 1) higher amounts of structurally altered viral NP in Pandemrix than in Arepanrix, 2) detergent-induced antigenic changes of viral NP, that are recognized by antibodies from children with narcolepsy, and 3) increased antibody response to NP in association of DQB1*06∶02 risk allele of narcolepsy. These findings provide a link between Pandemrix and narcolepsy. Although detailed mechanisms of Pandemrix in narcolepsy remain elusive, our results move the focus from adjuvant(s) onto the H1N1 viral proteins. PMID:25501681

  9. Analysis of the surveillance situation for viral encephalitis and meningitis in Europe.

    PubMed

    Donoso Mantke, O; Vaheri, A; Ambrose, H; Koopmans, M; de Ory, F; Zeller, H; Beyrer, K; Windorfer, A; Niedrig, M

    2008-01-17

    Infective processes in the brain, spinal cord and meninges are considered to be the main causes of encephalitis, myelitis and meningitis. However, most cases remain unexplained. The incidence of different viral aetiologies (zoonotic and non-zoonotic) is especially poorly estimated, due to the lack of a standard case definition and of agreed diagnostic algorithms, including harmonised diagnostic methods and sample collection. It is important to clarify the incidence of viral encephalitis/meningitis and to optimise the diagnosis of infectious neurological illness, particularly to ensure early recognition of outbreaks or emerging infectious such a West Nile encephalitis. The European Network for Diagnostics of 'Imported' Viral Diseases (ENIVD) has analysed the present surveillance situation for viral encephalitis/meningitis in Europe. Here we give an overview of the existing epidemiological sources of information in European Union (EU) Member States, mapping the laboratory capacity and identifying key requirements for a possible future surveillance study at European level. The data presented will help design a harmonised/standardised Europe-wide surveillance study investigating patients with encephalitis and/or meningitis in order to obtain more information on the role of infections in these rarely analysed syndromes, both from a clinical and an epidemiological perspective.

  10. Effect of low-to-moderate-dose corticosteroids on mortality of hospitalized adolescents and adults with influenza A(H1N1)pdm09 viral pneumonia.

    PubMed

    Li, Hui; Yang, Shi-Gui; Gu, Li; Zhang, Yao; Yan, Xi-Xin; Liang, Zong-An; Zhang, Wei; Jia, Hong-Yu; Chen, Wei; Liu, Meng; Yu, Kai-Jiang; Xue, Chun-Xue; Hu, Ke; Zou, Qi; Li, Lan-Juan; Cao, Bin; Wang, Chen

    2017-07-01

    The effect of corticosteroids on influenza A(H1N1)pdm09 viral pneumonia patients remains controversial, and the impact of dosage has never been studied. Using data of hospitalized adolescent and adult patients with influenza A(H1N1)pdm09 viral pneumonia, prospectively collected from 407 hospitals in mainland China, the effects of low-to-moderate-dose (25-150 mg d -1 ) and high-dose (>150 mg d -1 ) corticosteroids on 30-day mortality, 60-day mortality, and nosocomial infection were assessed with multivariate Cox regression and propensity score-matched case-control analysis. In total, 2141 patients (median age: 34 years; morality rate: 15.9%) were included. Among them, 1160 (54.2%) had PaO 2 /FiO 2 <300 mm Hg on admission, and 1055 (49.3%) received corticosteroids therapy. Corticosteroids, without consideration of dose, did not influence either 30-day or 60-day mortality. Further analysis revealed that, as compared with the no-corticosteroid group, low-to-moderate-dose corticosteroids were related to reduced 30-day mortality (adjusted hazard ratio [aHR] 0.64 [95% CI 0.43-0.96, P=.033]). In the subgroup analysis among patients with PaO 2 /FiO 2 <300 mm Hg, low-to-moderate-dose corticosteroid treatment significantly reduced both 30-day mortality (aHR 0.49 [95% CI 0.32-0.77]) and 60-day mortality (aHR 0.51 [95% CI 0.33-0.78]), while high-dose corticosteroid therapy yielded no difference. For patients with PaO 2 /FiO 2 ≥300 mm Hg, corticosteroids (irrespective of dose) showed no benefit and even increased 60-day mortality (aHR 3.02 [95% CI 1.06-8.58]). Results were similar in the propensity model analysis. Low-to-moderate-dose corticosteroids might reduce mortality of influenza A(H1N1)pdm09 viral pneumonia patients with PaO 2 /FiO 2 <300 mm Hg. Mild patients with PaO 2 /FiO 2 ≥300 mm Hg could not benefit from corticosteroid therapy. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  11. H1N1 seasonal influenza virus evolutionary rate changed over time.

    PubMed

    Suptawiwat, Ornpreya; Kongchanagul, Alita; Boonarkart, Chompunuch; Auewarakul, Prasert

    2018-05-02

    It was previously shown that the seasonal H1N1 influenza virus antigenic drift occurred at a slower rate than the seasonal H3N2 virus during the first decade of the 21th century. It was hypothesized that the slower antigenic evolution led to a decrease in average ages of infection, which in turn resulted in lower level of global viral circulation. It is unclear what caused the difference between the two viruses, but a plausible explanation may be related to the fact that the H1N1 virus had been in human population for much longer than the H3N2 virus. This would suggest that H1N1 antigenic drift in an earlier period may have been different from a more recent period. To test this hypothesis, we analyzed seasonal H1N1 influenza sequences during various time periods. In comparison to more recent H1N1 virus, the older H1N1 virus during the first half of the 20th century showed evidences of higher nonsynnonymous/synonymous ration (dN/dS) in its hemagglutinin (HA) gene. We compared amino acid sequence changes in the HA epitopes for each outbreak season and found that there were less changes in later years. Amino acid sequence diversity in the epitopes as measured by sequence entropy became smaller for each passing decade. These suggest that there might be some limit to the antigenic drift. The longer an influenza virus has drifted in human population, the less flexibility it may become. With less flexibility to adapt and escape the host immunity, the virus may have to rely more on younger naïve population. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Anti-pandemic influenza A (H1N1) virus potential of catechin and gallic acid.

    PubMed

    You, Huey-Ling; Huang, Chao-Chun; Chen, Chung-Jen; Chang, Cheng-Chin; Liao, Pei-Lin; Huang, Sheng-Teng

    2018-05-01

    The pandemic influenza A (H1N1) virus has spread worldwide and infected a large proportion of the human population. Discovery of new and effective drugs for the treatment of influenza is a crucial issue for the global medical community. According to our previous study, TSL-1, a fraction of the aqueous extract from the tender leaf of Toonasinensis, has demonstrated antiviral activities against pandemic influenza A (H1N1) through the down-regulation of adhesion molecules and chemokine to prevent viral attachment. The aim of the present study was to identify the active compounds in TSL-1 which exert anti-influenza A (H1N1) virus effects. XTT assay was used to detect the cell viability. Meanwhile, the inhibitory effect on the pandemic influenza A (H1N1) virus was analyzed by observing plaque formation, qRT-PCR, neuraminidase activity, and immunofluorescence staining of influenza A-specific glycoprotein. Both catechin and gallic acid were found to be potent inhibitors in terms of influenza virus mRNA replication and MDCK plaque formation. Additionally, both compounds inhibited neuraminidase activities and viral glycoprotein. The 50% effective inhibition concentration (EC 50 ) of catechin and gallic acid for the influenza A (H1N1) virus were 18.4 μg/mL and 2.6 μg/mL, respectively; whereas the 50% cytotoxic concentrations (CC 50 ) of catechin and gallic acid were >100 μg/mL and 22.1 μg/mL, respectively. Thus, the selectivity indexes (SI) of catechin and gallic acid were >5.6 and 22.1, respectively. The present study demonstrates that catechin might be a safe reagent for long-term use to prevent influenza A (H1N1) virus infection; whereas gallic acid might be a sensitive reagent to inhibit influenza virus infection. We conclude that these two phyto-chemicals in TSL-1 are responsible for exerting anti-pandemic influenza A (H1N1) virus effects. Copyright © 2017. Published by Elsevier Taiwan LLC.

  13. Anti-LGI1 encephalitis is associated with unique HLA subtypes.

    PubMed

    Kim, Tae-Joon; Lee, Soon-Tae; Moon, Jangsup; Sunwoo, Jun-Sang; Byun, Jung-Ick; Lim, Jung-Ah; Shin, Yong-Won; Jun, Jin-Sun; Lee, Han Sang; Lee, Woo-Jin; Yang, Ah Reaum; Choi, Yunhee; Park, Kyung-Il; Jung, Keun-Hwa; Jung, Ki-Young; Kim, Manho; Lee, Sang Kun; Chu, Kon

    2017-02-01

    Autoimmune encephalitis (AE), represented by anti-leucine-rich glioma-inactivated 1 (anti-LGI1) and anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis, has increasing clinical significance based on recent discoveries of neuronal autoantibodies. However, its immunopathogenesis is not fully understood. Here, we investigated whether AE is associated with the human leukocyte antigen (HLA) subtypes. We compared the HLA genotypes of 11 anti-LGI1 and 17 anti-NMDAR encephalitis patients to the control groups, which consisted of 210 epilepsy patients and 485 healthy Koreans. Anti-LGI1 encephalitis was associated with the DRB1*07:01-DQB1*02:02 haplotype (10 patients; 91%) in HLA class II genes, as well as with B*44:03 (8 patients; 73%) and C*07:06 (7 patients; 64%) in the HLA class I region. The prevalence of these alleles in anti-LGI1 encephalitis was significantly higher than that in the epilepsy controls or healthy controls. By contrast, anti-NMDAR encephalitis was not associated with HLA genotypes. Additional analysis using HLA-peptide binding prediction algorithms and computational docking underpinned the close relationship. This finding suggests that most anti-LGI1 encephalitis develops in a population with specific HLA subtypes, providing insight into a novel disease mechanism. Ann Neurol 2017;81:183-192. © 2016 American Neurological Association.

  14. Defining the chemokine basis for leukocyte recruitment during viral encephalitis.

    PubMed

    Michlmayr, Daniela; McKimmie, Clive S; Pingen, Marieke; Haxton, Ben; Mansfield, Karen; Johnson, Nicholas; Fooks, Anthony R; Graham, Gerard J

    2014-09-01

    The encephalitic response to viral infection requires local chemokine production and the ensuing recruitment of immune and inflammatory leukocytes. Accordingly, chemokine receptors present themselves as plausible therapeutic targets for drugs aimed at limiting encephalitic responses. However, it remains unclear which chemokines are central to this process and whether leukocyte recruitment is important for limiting viral proliferation and survival in the brain or whether it is predominantly a driver of coincident inflammatory pathogenesis. Here we examine chemokine expression and leukocyte recruitment in the context of avirulent and virulent Semliki Forest virus (SFV) as well as West Nile virus infection and demonstrate rapid and robust expression of a variety of inflammatory CC and CXC chemokines in all models. On this basis, we define a chemokine axis involved in leukocyte recruitment to the encephalitic brain during SFV infection. CXCR3 is the most active; CCR2 is also active but less so, and CCR5 plays only a modest role in leukocyte recruitment. Importantly, inhibition of each of these receptors individually and the resulting suppression of leukocyte recruitment to the infected brain have no effect on viral titer or survival following infection with a virulent SFV strain. In contrast, simultaneous blockade of CXCR3 and CCR2 results in significantly reduced mortality in response to virulent SFV infection. In summary, therefore, our data provide an unprecedented level of insight into chemokine orchestration of leukocyte recruitment in viral encephalitis. Our data also highlight CXCR3 and CCR2 as possible therapeutic targets for limiting inflammatory damage in response to viral infection of the brain. Brain inflammation (encephalitis) in response to viral infection can lead to severe illness and even death. This therefore represents an important clinical problem and one that requires the development of new therapeutic approaches. Central to the pathogenesis of

  15. Eurasian-Origin Gene Segments Contribute to the Transmissibility, Aerosol Release, and Morphology of the 2009 Pandemic H1N1 Influenza Virus

    PubMed Central

    Lakdawala, Seema S.; Lamirande, Elaine W.; Suguitan, Amorsolo L.; Wang, Weijia; Santos, Celia P.; Vogel, Leatrice; Matsuoka, Yumiko; Lindsley, William G.; Jin, Hong; Subbarao, Kanta

    2011-01-01

    The epidemiological success of pandemic and epidemic influenza A viruses relies on the ability to transmit efficiently from person-to-person via respiratory droplets. Respiratory droplet (RD) transmission of influenza viruses requires efficient replication and release of infectious influenza particles into the air. The 2009 pandemic H1N1 (pH1N1) virus originated by reassortment of a North American triple reassortant swine (TRS) virus with a Eurasian swine virus that contributed the neuraminidase (NA) and M gene segments. Both the TRS and Eurasian swine viruses caused sporadic infections in humans, but failed to spread from person-to-person, unlike the pH1N1 virus. We evaluated the pH1N1 and its precursor viruses in a ferret model to determine the contribution of different viral gene segments on the release of influenza virus particles into the air and on the transmissibility of the pH1N1 virus. We found that the Eurasian-origin gene segments contributed to efficient RD transmission of the pH1N1 virus likely by modulating the release of influenza viral RNA-containing particles into the air. All viruses replicated well in the upper respiratory tract of infected ferrets, suggesting that factors other than viral replication are important for the release of influenza virus particles and transmission. Our studies demonstrate that the release of influenza viral RNA-containing particles into the air correlates with increased NA activity. Additionally, the pleomorphic phenotype of the pH1N1 virus is dependent upon the Eurasian-origin gene segments, suggesting a link between transmission and virus morphology. We have demonstrated that the viruses are released into exhaled air to varying degrees and a constellation of genes influences the transmissibility of the pH1N1 virus. PMID:22241979

  16. Spatiotemporal dynamics of influenza A(H1N1)pdm09 in Brazil during the pandemic and post-pandemic periods.

    PubMed

    Manito, Alessandra C B; Gräf, Tiago; Lunge, Vagner R; Ikuta, Nilo

    2017-06-15

    Influenza A(H1N1)pdm09 was responsible for the first global flu pandemic in 21st century affecting all the world. In Brazil, A(H1N1)pdm09 is still circulating as a seasonal virus, causing deaths every year. Nevertheless, the viral diffusion process that yearly seeds new influenza strains in the country was not investigated yet. The aim of the current study was to describe the phylodynamics and phylogeography of influenza A(H1N1)pdm09 in Brazil between 2009 and 2014. Neuraminidase sequences from Brazil and other regions of the World were retrieved and analyzed. Bayesian phylogeographic and phylodynamic model approaches were used to reconstruct the spatiotemporal and demographic history of influenza A(H1N1)pdm09 in Brazil (divided in subtropical and tropical regions) and related countries. Our analyses reveal that new influenza A(H1N1)pdm09 lineages are seeded in Brazil in almost each year and the main sources of viral diversity are North America, Europe and East Asia. The phylogeographic asymmetric model also revealed that Brazil, mainly the subtropical region, seeds viral lineages into other countries. Coalescent analysis of the compiled dataset reconstructed the peak of viral transmissions in the winter months of Southern hemisphere. The results presented in this study can be informative to public health, guide intervention strategies and in the understanding of flu virus migration, which helps to predict antigenic drift and consequently the developing of new vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Adaptive Mutations That Occurred during Circulation in Humans of H1N1 Influenza Virus in the 2009 Pandemic Enhance Virulence in Mice.

    PubMed

    Otte, A; Sauter, M; Daxer, M A; McHardy, A C; Klingel, K; Gabriel, G

    2015-07-01

    During the 2009 H1N1 influenza pandemic, infection attack rates were particularly high among young individuals who suffered from pneumonia with occasional death. Moreover, previously reported determinants of mammalian adaptation and pathogenicity were not present in 2009 pandemic H1N1 influenza A viruses. Thus, it was proposed that unknown viral factors might have contributed to disease severity in humans. In this study, we performed a comparative analysis of two clinical 2009 pandemic H1N1 strains that belong to the very early and later phases of the pandemic. We identified mutations in the viral hemagglutinin (HA) and the nucleoprotein (NP) that occurred during pandemic progression and mediate increased virulence in mice. Lethal disease outcome correlated with elevated viral replication in the alveolar epithelium, increased proinflammatory cytokine and chemokine responses, pneumonia, and lymphopenia in mice. These findings show that viral mutations that have occurred during pandemic circulation among humans are associated with severe disease in mice. In this study, novel determinants of 2009 pandemic H1N1 influenza pathogenicity were identified in the viral hemagglutinin (HA) and the nucleoprotein (NP) genes. In contrast to highly pathogenic avian influenza viruses, increased virulence in mice did not correlate with enhanced polymerase activity but with reduced activity. Lethal 2009 pandemic H1N1 infection in mice correlated with lymphopenia and severe pneumonia. These studies suggest that molecular mechanisms that mediate 2009 pandemic H1N1 influenza pathogenicity are distinct from those that mediate avian influenza virus pathogenicity in mice. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Diagnostic Approach to Viral Acute Encephalitis Syndrome (AES) in Paediatric Age Group: A Study from New Delhi.

    PubMed

    Goel, Shipra; Chakravarti, Anita; Mantan, Mukta; Kumar, Surinder; Ashraf, Md Anzar

    2017-09-01

    Acute Encephalitis Syndrome has heralded the emergence of multiple virulent pathogens, which may result in severe morbidity and mortality. In India, encephalitis is not notified and there has been a dearth of analysis for trends in encephalitis death rates and causation. A downward trend has been observed in encephalitis deaths, due to 'known' causes, which can be largely explained by improvement in diagnostic, treatment, and prevention methods. There is still a very high proportion of encephalitis deaths in developing countries, where the aetiological diagnosis of the pathogen is not established and thus, lies the importance of monitoring encephalitis morbidity and mortality with a view to improve pathogen diagnosis and identify emerging infectious diseases. To formulate a diagnostic approach to viral acute encephalitis syndrome in paediatric age group. A cross-sectional study including 50 paediatric patients, clinically diagnosed with acute encephalitis syndrome using WHO criteria was conducted. The CSF of all the patients was evaluated to diagnose the aetiology for viral pathogens. ELISA was used for diagnosing Japanese encephalitis and dengue encephalitis; and multiplex real time PCR was used for detecting HSV-1, HSV-2, Varicella zoster virus, Mumps virus, Enterovirus and Parechovirus. Confirmed diagnosis was established in 11 (22%) of 50 cases. A confirmed or probable viral agent of encephalitis was found in 7 (14%), bacterial agent was found in 2 (4%), non-infectious aetiology was found in 2 (4%). Fatal outcome was independently associated with patient age. Despite extensive testing, the aetiologies of more than three fourth of the cases remains elusive. Nevertheless the result from the present study may be useful for future design of early diagnosis and treatment of the disease. New strategies for pathogen identification and continued analysis of clinical features and case histories should help us improve our ability to diagnose, treat and prevent

  19. [Differences in oligomerization of nucleocapsid protein of epidemic human influenza A(H1N1), A(H1N2) and B viruses].

    PubMed

    Prokudina, E N; Semenova, N P; Chumakov, V M; Burtseva, E I; Slepushkin, A N

    2003-01-01

    A comparative analysis of involving the nucleocapsid protein (NP) into shaping-up of SDS-resistant oligomers was carried out presently in circulating epidemic strains of human influenza, viruses A and B. The study results of viral isolates obtained from clinical samples and recent standard strains revealed that the involvement of NP in the SDS-resistant oligomers, which are different in various subtypes of influenza A viruses. According to this sign, the human viruses A(9H3N2) are close to the avian ones, in which, as proved by us previously, virtually the entire NP transforms itself into the oligomers resistant to SDS. About 10-20% of NP are involved in shaping-up the virus influenza A(H1N1) of SDS-resistant oligomers. No SDS-resistant NP-oligomers were detected in influenza of type B. It is suggested that the prevalence of human viruses A(H3N2) in NP-oligomers are the peculiarities of NP structure and of the presence of the PB1 protein from avian influenza virus.

  20. Highly pathogenic avian influenza virus H5N1 infection in a long-distance migrant shorebird under migratory and non-migratory states.

    PubMed

    Reperant, Leslie A; van de Bildt, Marco W G; van Amerongen, Geert; Buehler, Debbie M; Osterhaus, Albert D M E; Jenni-Eiermann, Susi; Piersma, Theunis; Kuiken, Thijs

    2011-01-01

    Corticosterone regulates physiological changes preparing wild birds for migration. It also modulates the immune system and may lead to increased susceptibility to infection, with implications for the spread of pathogens, including highly pathogenic avian influenza virus (HPAIV) H5N1. The red knot (Calidris canutus islandica) displays migratory changes in captivity and was used as a model to assess the effect of high plasma concentration of corticosterone on HPAIV H5N1 infection. We inoculated knots during pre-migration (N = 6), fueling (N = 5), migration (N = 9) and post-migration periods (N = 6). Knots from all groups shed similar viral titers for up to 5 days post-inoculation (dpi), peaking at 1 to 3 dpi. Lesions of acute encephalitis, associated with virus replication in neurons, were seen in 1 to 2 knots per group, leading to neurological disease and death at 5 to 11 dpi. Therefore, the risk of HPAIV H5N1 infection in wild birds and of potential transmission between wild birds and poultry may be similar at different times of the year, irrespective of wild birds' migratory status. However, in knots inoculated during the migration period, viral shedding levels positively correlated with pre-inoculation plasma concentration of corticosterone. Of these, knots that did not become productively infected had lower plasma concentration of corticosterone. Conversely, elevated plasma concentration of corticosterone did not result in an increased probability to develop clinical disease. These results suggest that birds with elevated plasma concentration of corticosterone at the time of migration (ready to migrate) may be more susceptible to acquisition of infection and shed higher viral titers--before the onset of clinical disease--than birds with low concentration of corticosterone (not ready for take-off). Yet, they may not be more prone to the development of clinical disease. Therefore, assuming no effect of sub-clinical infection on the likelihood of

  1. Antigenic Drift of the Pandemic 2009 A(H1N1) Influenza Virus in a Ferret Model

    PubMed Central

    Guarnaccia, Teagan; Carolan, Louise A.; Maurer-Stroh, Sebastian; Lee, Raphael T. C.; Job, Emma; Reading, Patrick C.; Petrie, Stephen; McCaw, James M.; McVernon, Jodie; Hurt, Aeron C.; Kelso, Anne; Mosse, Jennifer; Barr, Ian G.; Laurie, Karen L.

    2013-01-01

    Surveillance data indicate that most circulating A(H1N1)pdm09 influenza viruses have remained antigenically similar since they emerged in humans in 2009. However, antigenic drift is likely to occur in the future in response to increasing population immunity induced by infection or vaccination. In this study, sequential passaging of A(H1N1)pdm09 virus by contact transmission through two independent series of suboptimally vaccinated ferrets resulted in selection of variant viruses with an amino acid substitution (N156K, H1 numbering without signal peptide; N159K, H3 numbering without signal peptide; N173K, H1 numbering from first methionine) in a known antigenic site of the viral HA. The N156K HA variant replicated and transmitted efficiently between naïve ferrets and outgrew wildtype virus in vivo in ferrets in the presence and absence of immune pressure. In vitro, in a range of cell culture systems, the N156K variant rapidly adapted, acquiring additional mutations in the viral HA that also potentially affected antigenic properties. The N156K escape mutant was antigenically distinct from wildtype virus as shown by binding of HA-specific antibodies. Glycan binding assays demonstrated the N156K escape mutant had altered receptor binding preferences compared to wildtype virus, which was supported by computational modeling predictions. The N156K substitution, and culture adaptations, have been detected in human A(H1N1)pdm09 viruses with N156K preferentially reported in sequences from original clinical samples rather than cultured isolates. This study demonstrates the ability of the A(H1N1)pdm09 virus to undergo rapid antigenic change to evade a low level vaccine response, while remaining fit in a ferret transmission model of immunization and infection. Furthermore, the potential changes in receptor binding properties that accompany antigenic changes highlight the importance of routine characterization of clinical samples in human A(H1N1)pdm09 influenza surveillance

  2. Antiviral activity of a synthesized shikonin ester against influenza A (H1N1) virus and insights into its mechanism.

    PubMed

    Zhang, Yahan; Han, Hongwei; Qiu, Hanyue; Lin, Hongyan; Yu, Lugang; Zhu, Wanzhan; Qi, Jinliang; Yang, Rongwu; Pang, Yanjun; Wang, Xiaoming; Lu, Guihua; Yang, Yonghua

    2017-09-01

    This study aimed to examine the antiviral effects of shikonin ester ((R)-1-(5, 8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-en-1-yl3-(1H- indol-3-yl) propanoate (PMM-034) against influenza A (H1N1) virus. We investigated PMM-034 anti-H1N1 activity and its effect on caspase 3 gene expression during cellular apoptosis after influenza virus infection in vitro. Neuraminidase (NA) inhibition was assessed in comparison with oseltamivir in the influenza virus standard strains A/PR/8/34 to understand the viral mechanism. MDCK and A549 cells were used to investigate influenza viral infection and the structure-activity relationship between PMM-034 and NA was evaluated by pharmacophore-based docking modeling. The production of viral protein was tested by western blot. A/PR/8/34 induced cell inhibition but this was reduced by PMM-034 to 16μg/mL and this showed a selective index of 10mM. PMM-034 inhibited NA in a dose dependent manner, similar to oseltamivir inhibition. A sharp decrease in viral nucleocapsid protein mRNA was observed in infected cells after treatment with PMM-034. Apoptosis of infected A459 cells was inhibited by PMM-034 with decreased caspase 3 levels. ARG 118, ARG 152, ARG 371 and GLU 227 in the binding pocket of NA bound to PMM-034 in the docking model. Taken together, these results suggest PMM-034 shikonin ester blocked H1N1 infection and might be a potential anti-H1N1 drug. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Structural Study of the C-Terminal Domain of Nonstructural Protein 1 from Japanese Encephalitis Virus.

    PubMed

    Poonsiri, Thanalai; Wright, Gareth S A; Diamond, Michael S; Turtle, Lance; Solomon, Tom; Antonyuk, Svetlana V

    2018-04-01

    Japanese encephalitis virus (JEV) is a mosquito-transmitted flavivirus that is closely related to other emerging viral pathogens, including dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV). JEV infection can result in meningitis and encephalitis, which in severe cases cause permanent brain damage and death. JEV occurs predominantly in rural areas throughout Southeast Asia, the Pacific Islands, and the Far East, causing around 68,000 cases of infection worldwide each year. In this report, we present a 2.1-Å-resolution crystal structure of the C-terminal β-ladder domain of JEV nonstructural protein 1 (NS1-C). The surface charge distribution of JEV NS1-C is similar to those of WNV and ZIKV but differs from that of DENV. Analysis of the JEV NS1-C structure, with in silico molecular dynamics simulation and experimental solution small-angle X-ray scattering, indicates extensive loop flexibility on the exterior of the protein. This, together with the surface charge distribution, indicates that flexibility influences the protein-protein interactions that govern pathogenicity. These factors also affect the interaction of NS1 with the 22NS1 monoclonal antibody, which is protective against West Nile virus infection. Liposome and heparin binding assays indicate that only the N-terminal region of NS1 mediates interaction with membranes and that sulfate binding sites common to NS1 structures are not glycosaminoglycan binding interfaces. This report highlights several differences between flavivirus NS1 proteins and contributes to our understanding of their structure-pathogenic function relationships. IMPORTANCE JEV is a major cause of viral encephalitis in Asia. Despite extensive vaccination, epidemics still occur. Nonstructural protein 1 (NS1) plays a role in viral replication, and, because it is secreted, it can exhibit a wide range of interactions with host proteins. NS1 sequence and protein folds are conserved within the Flavivirus genus, but variations in

  4. Pediatric neurological complications associated with the A(H1N1)pdm09 influenza infection.

    PubMed

    Frobert, E; Sarret, C; Billaud, G; Gillet, Y; Escuret, V; Floret, D; Casalegno, J S; Bouscambert, M; Morfin, F; Javouhey, E; Lina, B

    2011-12-01

    Influenza-related neurological complications (INC) have been reported during seasonal flu in children. To investigate the types, outcomes and incidence of INC occurring during the 2009 A(H1N1) pandemic, a retrospective analyze was conducted in the single French pediatric hospital of Lyon from October 2009 to February 2010. All children presenting with fever, influenza-like illness, respiratory distress or neurological symptoms were tested for influenza A(H1N1)pdm09 infection from respiratory specimens using real time RT-PCR. INC occurred in 14 A(H1N1)pdm09 positive children (7.7% of A(H1N1)pdm09 positive children admitted to hospital) with a median age of 5.1 years. Admission to the intensive care unit (ICU) was required for nine children (64.3%). Half of the children with INC had comorbidity and three had coinfection, both characteristics mainly found in children requiring the ICU. All children received oral oseltamivir treatment. Febrile seizures were observed in eight children, half of them having a chronic comorbidity (2 epilepsy, 1 nonketotic hyperglycinemia, 1 anoxic encephalopathy). Other INC, less commonly reported, included 2 cases of encephalitis, 1 encephalopathy, 1 basilar artery thrombosis, 1 myasthenic crisis and 1 coma. Eleven of the 14 children (78.6%) recovered, one had a minor disability, one child developed a locked-in syndrome and one died from complications of an acute necrotizing encephalopathy. INC can be observed even in children with no underlying disorder. It may lead to dramatic issue in a significant number of cases. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the classical swine H1N1 subtype influenza virus in mice and pigs.

    PubMed

    Wen, Feng; Yu, Hai; Yang, Fu-Ru; Huang, Meng; Yang, Sheng; Zhou, Yan-Jun; Li, Ze-Jun; Tong, Guang-Zhi

    2014-11-01

    Swine influenza (SI) is an acute, highly contagious respiratory disease caused by swine influenza A viruses (SwIVs), and it poses a potential global threat to human health. Classical H1N1 (cH1N1) SwIVs are still circulating and remain the predominant subtype in the swine population in China. In this study, a high-growth reassortant virus (GD/PR8) harboring the hemagglutinin (HA) and neuraminidase (NA) genes from a novel cH1N1 isolate in China, A/Swine/Guangdong/1/2011 (GD/11) and six internal genes from the high-growth A/Puerto Rico/8/34(PR8) virus was generated by plasmid-based reverse genetics and tested as a candidate seed virus for the preparation of an inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice and pigs challenged with GD/11 virus. Prime and boost inoculation of GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting (HI) antibodies and IgG antibodies for GD/11 in both mice and pigs. Complete protection of mice and pigs against cH1N1 SIV challenge was observed, with significantly fewer lung lesions and reduced viral shedding in vaccine-inoculated animals compared with unvaccinated control animals. Our data demonstrated that the GD/PR8 may serve as the seed virus for a promising SwIVs vaccine to protect the swine population.

  6. Modified vaccinia virus Ankara expressing the hemagglutinin of pandemic (H1N1) 2009 virus induces cross-protective immunity against Eurasian 'avian-like' H1N1 swine viruses in mice.

    PubMed

    Castrucci, Maria R; Facchini, Marzia; Di Mario, Giuseppina; Garulli, Bruno; Sciaraffia, Ester; Meola, Monica; Fabiani, Concetta; De Marco, Maria A; Cordioli, Paolo; Siccardi, Antonio; Kawaoka, Yoshihiro; Donatelli, Isabella

    2014-05-01

    To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian "avian-like" (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans. © 2013 The Authors Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  7. Co-circulation of pandemic 2009 H1N1, classical swine H1N1 and avian-like swine H1N1 influenza viruses in pigs in China.

    PubMed

    Chen, Yan; Zhang, Jian; Qiao, Chuanling; Yang, Huanliang; Zhang, Ying; Xin, Xiaoguang; Chen, Hualan

    2013-01-01

    The pandemic A/H1N1 influenza viruses emerged in both Mexico and the United States in March 2009, and were transmitted efficiently in the human population. They were transmitted occasionally from humans to other mammals including pigs, dogs and cats. In this study, we report the isolation and genetic analysis of novel viruses in pigs in China. These viruses were related phylogenetically to the pandemic 2009 H1N1 influenza viruses isolated from humans and pigs, which indicates that the pandemic virus is currently circulating in swine populations, and this hypothesis was further supported by serological surveillance of pig sera collected within the same period. Furthermore, we isolated another two H1N1 viruses belonging to the lineages of classical swine H1N1 virus and avian-like swine H1N1 virus, respectively. Multiple genetic lineages of H1N1 viruses are co-circulating in the swine population, which highlights the importance of intensive surveillance for swine influenza in China. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Respiratory failure presenting in H1N1 influenza with Legionnaires disease: two case reports

    PubMed Central

    2011-01-01

    Introduction Media sensationalism on the H1N1 outbreak may have influenced decisional processes and clinical diagnosis. Case Presentation We report two cases of patients who presented in 2009 with coexisting H1N1 virus and Legionella infections: a 69-year-old Caucasian man and a 71-year-old Caucasian woman. In our cases all the signs and symptoms, including vomiting, progressive respiratory disease leading to respiratory failure, refractory hypoxemia, leukopenia, lymphopenia, thrombocytopenia, and elevated levels of creatine kinase and hepatic aminotransferases, were consistent with critical illness due to 2009 H1N1 virus infection. Other infectious disorders may mimic H1N1 viral infection especially Legionnaires' disease. Because the swine flu H1N1 pandemic occurred in Autumn in Italy, Legionnaires disease was to be highly suspected since the peak incidence usually occurs in early fall. We do think that our immediate suspicion of Legionella infection based on clinical history and X-ray abnormalities was fundamental for a successful resolution. Conclusion Our two case reports suggest that patients with H1N1 should be screened for Legionella, which is not currently common practice. This is particularly important since the signs and symptoms of both infections are similar. PMID:22018019

  9. Auto-immune encephalitis as differential diagnosis of infectious encephalitis

    PubMed Central

    Armangue, Thaís; Leypoldt, Frank; Dalmau, Josep

    2014-01-01

    Purpose of review To describe the main types of autoimmune encephalitis with special emphasis on those associated with antibodies against neuronal cell surface or synaptic proteins, and the differential diagnosis with infectious encephalitis. Recent findings There is a continuous expansion of the number of cell surface or synaptic proteins that are targets of autoimmunity. The most recently identified include the mGluR5, DPPX, and the GABAAR. In these and previously known autoimmune encephalitis (NMDAR, AMPAR, GABABR, LGI1, CASPR2), the prodromal symptoms or types of presentations often suggest a viral encephalitis. We review here clues that help in the differential diagnosis with infectious encephalitis. Moreover, recent investigations indicate that viral encephalitis (e.g., herpes simplex) can trigger synaptic autoimmunity. In all these disorders immunotherapy is usually effective. Summary Autoimmune encephalitis comprises an expanding group of potentially treatable disorders that should be included in the differential diagnosis of any type of encephalitis. PMID:24792345

  10. Pathogenicity and Transmissibility of Novel Reassortant H3N2 Influenza Viruses with 2009 Pandemic H1N1 Genes in Pigs

    PubMed Central

    Ma, Jingjiao; Shen, Huigang; Liu, Qinfang; Bawa, Bhupinder; Qi, Wenbao; Duff, Michael; Lang, Yuekun; Lee, Jinhwa; Yu, Hai; Bai, Jianfa; Tong, Guangzhi; Hesse, Richard A.; Richt, Jürgen A.

    2014-01-01

    viruses with 3 or 5 genes from A(H1N1)pdm09 isolated from diseased pigs are pathogenic and transmissible in pigs, but the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes displayed less efficient transmissibility than the endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies revealed that an avian-like glycine at the HA 228 receptor binding site of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes is responsible for less efficient transmissibility in pigs. Our results provide insights into viral pathogenesis and the transmission of novel reassortant H3N2 viruses that are circulating in U.S. swine herds and warrant future surveillance. PMID:25540372

  11. Prior infection of chickens with H1N1 or H1N2 avian influenza elicits partial heterologous protection against highly pathogenic H5N1.

    PubMed

    Nfon, Charles; Berhane, Yohannes; Pasick, John; Embury-Hyatt, Carissa; Kobinger, Gary; Kobasa, Darwyn; Babiuk, Shawn

    2012-01-01

    There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70-80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.

  12. Prior Infection of Chickens with H1N1 or H1N2 Avian Influenza Elicits Partial Heterologous Protection against Highly Pathogenic H5N1

    PubMed Central

    Nfon, Charles; Berhane, Yohannes; Pasick, John; Embury-Hyatt, Carissa; Kobinger, Gary; Kobasa, Darwyn; Babiuk, Shawn

    2012-01-01

    There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70–80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody. PMID:23240067

  13. Novel reassortant of swine influenza H1N2 virus in Germany.

    PubMed

    Zell, Roland; Motzke, Susann; Krumbholz, Andi; Wutzler, Peter; Herwig, Volker; Dürrwald, Ralf

    2008-01-01

    European porcine H1N2 influenza viruses arose after multiple reassortment steps involving a porcine influenza virus with avian-influenza-like internal segments and human H1N1 and H3N2 viruses in 1994. In Germany, H1N2 swine influenza viruses first appeared in 2000. Two German H1N2 swine influenza virus strains isolated from pigs with clinical symptoms of influenza are described. They were characterized by the neutralization test, haemagglutination inhibition (HI) test and complete sequencing of the viral genomes. The data demonstrate that these viruses represent a novel H1N2 reassortant. The viruses showed limited neutralization by sera raised against heterologous A/sw/Bakum/1,832/00-like H1N2 viruses. Sera pools from recovered pigs showed a considerably lower HI reaction, indicative of diagnostic difficulties in using the HI test to detect these viruses with A/sw/Bakum/1,832/00-like H1N2 antigens. Genome sequencing revealed the novel combination of the human-like HAH1 gene of European porcine H1N2 influenza viruses and the NAN2 gene of European porcine H3N2 viruses.

  14. H1N1 influenza (Swine flu)

    MedlinePlus

    Swine flu; H1N1 type A influenza ... The H1N1 virus is now considered a regular flu virus. It is one of the three viruses included in the regular (seasonal) flu vaccine . You cannot get H1N1 flu virus from ...

  15. Genome-Wide Analysis of Evolutionary Markers of Human Influenza A(H1N1)pdm09 and A(H3N2) Viruses May Guide Selection of Vaccine Strain Candidates.

    PubMed

    Belanov, Sergei S; Bychkov, Dmitrii; Benner, Christian; Ripatti, Samuli; Ojala, Teija; Kankainen, Matti; Kai Lee, Hong; Wei-Tze Tang, Julian; Kainov, Denis E

    2015-11-27

    Here we analyzed whole-genome sequences of 3,969 influenza A(H1N1)pdm09 and 4,774 A(H3N2) strains that circulated during 2009-2015 in the world. The analysis revealed changes at 481 and 533 amino acid sites in proteins of influenza A(H1N1)pdm09 and A(H3N2) strains, respectively. Many of these changes were introduced as a result of random drift. However, there were 61 and 68 changes that were present in relatively large number of A(H1N1)pdm09 and A(H3N2) strains, respectively, that circulated during relatively long time. We named these amino acid substitutions evolutionary markers, as they seemed to contain valuable information regarding the viral evolution. Interestingly, influenza A(H1N1)pdm09 and A(H3N2) viruses acquired non-overlapping sets of evolutionary markers. We next analyzed these characteristic markers in vaccine strains recommended by the World Health Organization for the past five years. Our analysis revealed that vaccine strains carried only few evolutionary markers at antigenic sites of viral hemagglutinin (HA) and neuraminidase (NA). The absence of these markers at antigenic sites could affect the recognition of HA and NA by human antibodies generated in response to vaccinations. This could, in part, explain moderate efficacy of influenza vaccines during 2009-2014. Finally, we identified influenza A(H1N1)pdm09 and A(H3N2) strains, which contain all the evolutionary markers of influenza A strains circulated in 2015, and which could be used as vaccine candidates for the 2015/2016 season. Thus, genome-wide analysis of evolutionary markers of influenza A(H1N1)pdm09 and A(H3N2) viruses may guide selection of vaccine strain candidates. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. HIV-1 and Its gp120 Inhibits the Influenza A(H1N1)pdm09 Life Cycle in an IFITM3-Dependent Fashion

    PubMed Central

    Mesquita, Milene; Fintelman-Rodrigues, Natalia; Sacramento, Carolina Q.; Abrantes, Juliana L.; Costa, Eduardo; Temerozo, Jairo R.; Siqueira, Marilda M.; Bou-Habib, Dumith Chequer; Souza, Thiago Moreno L.

    2014-01-01

    HIV-1-infected patients co-infected with A(H1N1)pdm09 surprisingly presented benign clinical outcome. The knowledge that HIV-1 changes the host homeostatic equilibrium, which may favor the patient resistance to some co-pathogens, prompted us to investigate whether HIV-1 infection could influence A(H1N1)pdm09 life cycle in vitro. We show here that exposure of A(H1N1)pdm09-infected epithelial cells to HIV-1 viral particles or its gp120 enhanced by 25% the IFITM3 content, resulting in a decrease in influenza replication. This event was dependent on toll-like receptor 2 and 4. Moreover, knockdown of IFITM3 prevented HIV-1 ability to inhibit A(H1N1)pdm09 replication. HIV-1 infection also increased IFITM3 levels in human primary macrophages by almost 100%. Consequently, the arrival of influenza ribonucleoproteins (RNPs) to nucleus of macrophages was inhibited, as evaluated by different approaches. Reduction of influenza RNPs entry into the nucleus tolled A(H1N1)pdm09 life cycle in macrophages earlier than usual, limiting influenza's ability to induce TNF-α. As judged by analysis of the influenza hemagglutin (HA) gene from in vitro experiments and from samples of HIV-1/A(H1N1)pdm09 co-infected individuals, the HIV-1-induced reduction of influenza replication resulted in delayed viral evolution. Our results may provide insights on the mechanisms that may have attenuated the clinical course of Influenza in HIV-1/A(H1N1)pdm09 co-infected patients during the recent influenza form 2009/2010. PMID:24978204

  17. HIV-1 and its gp120 inhibits the influenza A(H1N1)pdm09 life cycle in an IFITM3-dependent fashion.

    PubMed

    Mesquita, Milene; Fintelman-Rodrigues, Natalia; Sacramento, Carolina Q; Abrantes, Juliana L; Costa, Eduardo; Temerozo, Jairo R; Siqueira, Marilda M; Bou-Habib, Dumith Chequer; Souza, Thiago Moreno L

    2014-01-01

    HIV-1-infected patients co-infected with A(H1N1)pdm09 surprisingly presented benign clinical outcome. The knowledge that HIV-1 changes the host homeostatic equilibrium, which may favor the patient resistance to some co-pathogens, prompted us to investigate whether HIV-1 infection could influence A(H1N1)pdm09 life cycle in vitro. We show here that exposure of A(H1N1)pdm09-infected epithelial cells to HIV-1 viral particles or its gp120 enhanced by 25% the IFITM3 content, resulting in a decrease in influenza replication. This event was dependent on toll-like receptor 2 and 4. Moreover, knockdown of IFITM3 prevented HIV-1 ability to inhibit A(H1N1)pdm09 replication. HIV-1 infection also increased IFITM3 levels in human primary macrophages by almost 100%. Consequently, the arrival of influenza ribonucleoproteins (RNPs) to nucleus of macrophages was inhibited, as evaluated by different approaches. Reduction of influenza RNPs entry into the nucleus tolled A(H1N1)pdm09 life cycle in macrophages earlier than usual, limiting influenza's ability to induce TNF-α. As judged by analysis of the influenza hemagglutin (HA) gene from in vitro experiments and from samples of HIV-1/A(H1N1)pdm09 co-infected individuals, the HIV-1-induced reduction of influenza replication resulted in delayed viral evolution. Our results may provide insights on the mechanisms that may have attenuated the clinical course of Influenza in HIV-1/A(H1N1)pdm09 co-infected patients during the recent influenza form 2009/2010.

  18. Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.

    PubMed

    Takemae, Nobuhiro; Nguyen, Tung; Ngo, Long Thanh; Hiromoto, Yasuaki; Uchida, Yuko; Pham, Vu Phong; Kageyama, Tsutomu; Kasuo, Shizuko; Shimada, Shinichi; Yamashita, Yasutaka; Goto, Kaoru; Kubo, Hideyuki; Le, Vu Tri; Van Vo, Hung; Do, Hoa Thi; Nguyen, Dang Hoang; Hayashi, Tsuyoshi; Matsuu, Aya; Saito, Takehiko

    2013-04-01

    The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.

  19. Reassortment between Swine H3N2 and 2009 Pandemic H1N1 in the United States Resulted in Influenza A Viruses with Diverse Genetic Constellations with Variable Virulence in Pigs

    PubMed Central

    Rajão, Daniela S.; Walia, Rasna R.; Campbell, Brian; Gauger, Phillip C.; Janas-Martindale, Alicia; Killian, Mary Lea

    2016-01-01

    ABSTRACT Repeated spillovers of the H1N1 pandemic virus (H1N1pdm09) from humans to pigs resulted in substantial evolution of influenza A viruses infecting swine, contributing to the genetic and antigenic diversity of influenza A viruses (IAV) currently circulating in swine. The reassortment with endemic swine viruses and maintenance of some of the H1N1pdm09 internal genes resulted in the circulation of different genomic constellations in pigs. Here, we performed a whole-genome phylogenetic analysis of 368 IAV circulating in swine from 2009 to 2016 in the United States. We identified 44 different genotypes, with the most common genotype (32.33%) containing a clade IV-A HA gene, a 2002-lineage NA gene, an M-pdm09 gene, and remaining gene segments of triple reassortant internal gene (TRIG) origin. To understand how different genetic constellations may relate to viral fitness, we compared the pathogenesis and transmission in pigs of six representative genotypes. Although all six genotypes efficiently infected pigs, they resulted in different degrees of pathology and viral shedding. These results highlight the vast H3N2 genetic diversity circulating in U.S. swine after 2009. This diversity has important implications in the control of this disease by the swine industry, as well as a potential risk for public health if swine-adapted viruses with H1N1pdm09 genes have an increased risk to humans, as occurred in the 2011-2012 and 2016 human variant H3N2v cases associated with exhibition swine. IMPORTANCE People continue to spread the 2009 H1N1 pandemic (H1N1pdm09) IAV to pigs, allowing H1N1pdm09 to reassort with endemic swine IAV. In this study, we determined the 8 gene combinations of swine H3N2 IAV detected from 2009 to 2016. We identified 44 different genotypes of H3N2, the majority of which contained at least one H1N1pdm09 gene segment. We compared six representative genotypes of H3N2 in pigs. All six genotypes efficiently infected pigs, but they resulted in different

  20. Reassortment between Swine H3N2 and 2009 Pandemic H1N1 in the United States Resulted in Influenza A Viruses with Diverse Genetic Constellations with Variable Virulence in Pigs.

    PubMed

    Rajão, Daniela S; Walia, Rasna R; Campbell, Brian; Gauger, Phillip C; Janas-Martindale, Alicia; Killian, Mary Lea; Vincent, Amy L

    2017-02-15

    Repeated spillovers of the H1N1 pandemic virus (H1N1pdm09) from humans to pigs resulted in substantial evolution of influenza A viruses infecting swine, contributing to the genetic and antigenic diversity of influenza A viruses (IAV) currently circulating in swine. The reassortment with endemic swine viruses and maintenance of some of the H1N1pdm09 internal genes resulted in the circulation of different genomic constellations in pigs. Here, we performed a whole-genome phylogenetic analysis of 368 IAV circulating in swine from 2009 to 2016 in the United States. We identified 44 different genotypes, with the most common genotype (32.33%) containing a clade IV-A HA gene, a 2002-lineage NA gene, an M-pdm09 gene, and remaining gene segments of triple reassortant internal gene (TRIG) origin. To understand how different genetic constellations may relate to viral fitness, we compared the pathogenesis and transmission in pigs of six representative genotypes. Although all six genotypes efficiently infected pigs, they resulted in different degrees of pathology and viral shedding. These results highlight the vast H3N2 genetic diversity circulating in U.S. swine after 2009. This diversity has important implications in the control of this disease by the swine industry, as well as a potential risk for public health if swine-adapted viruses with H1N1pdm09 genes have an increased risk to humans, as occurred in the 2011-2012 and 2016 human variant H3N2v cases associated with exhibition swine. People continue to spread the 2009 H1N1 pandemic (H1N1pdm09) IAV to pigs, allowing H1N1pdm09 to reassort with endemic swine IAV. In this study, we determined the 8 gene combinations of swine H3N2 IAV detected from 2009 to 2016. We identified 44 different genotypes of H3N2, the majority of which contained at least one H1N1pdm09 gene segment. We compared six representative genotypes of H3N2 in pigs. All six genotypes efficiently infected pigs, but they resulted in different degrees of lung damage

  1. Interleukin-6 Is a Potential Biomarker for Severe Pandemic H1N1 Influenza A Infection

    PubMed Central

    Paquette, Stéphane G.; Banner, David; Zhao, Zhen; Fang, Yuan; Huang, Stephen S. H.; Leόn, Alberto J.; Ng, Derek C. K.; Almansa, Raquel; Martin-Loeches, Ignacio; Ramirez, Paula; Socias, Lorenzo; Loza, Ana; Blanco, Jesus; Sansonetti, Paola; Rello, Jordi; Andaluz, David; Shum, Bianche; Rubino, Salvatore; de Lejarazu, Raul Ortiz; Tran, Dat; Delogu, Giovanni; Fadda, Giovanni; Krajden, Sigmund; Rubin, Barry B.; Bermejo-Martin, Jesús F.; Kelvin, Alyson A.; Kelvin, David J.

    2012-01-01

    Pandemic H1N1 influenza A (H1N1pdm) is currently a dominant circulating influenza strain worldwide. Severe cases of H1N1pdm infection are characterized by prolonged activation of the immune response, yet the specific role of inflammatory mediators in disease is poorly understood. The inflammatory cytokine IL-6 has been implicated in both seasonal and severe pandemic H1N1 influenza A (H1N1pdm) infection. Here, we investigated the role of IL-6 in severe H1N1pdm infection. We found IL-6 to be an important feature of the host response in both humans and mice infected with H1N1pdm. Elevated levels of IL-6 were associated with severe disease in patients hospitalized with H1N1pdm infection. Notably, serum IL-6 levels associated strongly with the requirement of critical care admission and were predictive of fatal outcome. In C57BL/6J, BALB/cJ, and B6129SF2/J mice, infection with A/Mexico/4108/2009 (H1N1pdm) consistently triggered severe disease and increased IL-6 levels in both lung and serum. Furthermore, in our lethal C57BL/6J mouse model of H1N1pdm infection, global gene expression analysis indicated a pronounced IL-6 associated inflammatory response. Subsequently, we examined disease and outcome in IL-6 deficient mice infected with H1N1pdm. No significant differences in survival, weight loss, viral load, or pathology were observed between IL-6 deficient and wild-type mice following infection. Taken together, our findings suggest IL-6 may be a potential disease severity biomarker, but may not be a suitable therapeutic target in cases of severe H1N1pdm infection due to our mouse data. PMID:22679491

  2. Histopathological Evaluation of the Diversity of Cells Susceptible to H5N1 Virulent Avian Influenza Virus

    PubMed Central

    Ogiwara, Haru; Yasui, Fumihiko; Munekata, Keisuke; Takagi-Kamiya, Asako; Munakata, Tsubasa; Nomura, Namiko; Shibasaki, Futoshi; Kuwahara, Kazuhiko; Sakaguchi, Nobuo; Sakoda, Yoshihiro; Kida, Hiroshi; Kohara, Michinori

    2015-01-01

    Patients infected with highly pathogenic avian influenza A H5N1 viruses (H5N1 HPAIV) show diffuse alveolar damage. However, the temporal progression of tissue damage and repair after viral infection remains poorly defined. Therefore, we assessed the sequential histopathological characteristics of mouse lung after intranasal infection with H5N1 HPAIV or H1N1 2009 pandemic influenza virus (H1N1 pdm). We determined the amount and localization of virus in the lung through IHC staining and in situ hybridization. IHC used antibodies raised against the virus protein and antibodies specific for macrophages, type II pneumocytes, or proliferating cell nuclear antigen. In situ hybridization used RNA probes against both viral RNA and mRNA encoding the nucleoprotein and the hemagglutinin protein. H5N1 HPAIV infection and replication were observed in multiple lung cell types and might result in rapid progression of lung injury. Both type II pneumocytes and macrophages proliferated after H5N1 HPAIV infection. However, the abundant macrophages failed to block the viral attack, and proliferation of type II pneumocytes failed to restore the damaged alveoli. In contrast, mice infected with H1N1 pdm exhibited modest proliferation of type II pneumocytes and macrophages and slight alveolar damage. These results suggest that the virulence of H5N1 HPAIV results from the wide range of cell tropism of the virus, excessive virus replication, and rapid development of diffuse alveolar damage. PMID:24200852

  3. Viral reassortment and transmission after co-infection of pigs with classical H1N1 and triple-reassortant H3N2 swine influenza viruses.

    PubMed

    Ma, Wenjun; Lager, Kelly M; Lekcharoensuk, Porntippa; Ulery, Eva S; Janke, Bruce H; Solórzano, Alicia; Webby, Richard J; García-Sastre, Adolfo; Richt, Jürgen A

    2010-09-01

    Triple-reassortant swine influenza viruses circulating in North American pigs contain the internal genes derived from swine (matrix, non-structural and nucleoprotein), human [polymerase basic 1 (PB1)] and avian (polymerase acidic and PB2) influenza viruses forming a constellation of genes that is well conserved and is called the triple-reassortant internal gene (TRIG) cassette. In contrast, the external genes [haemagglutinin (HA) and neuraminidase (NA)] are less conserved, reflecting multiple reassortant events that have produced viruses with different combinations of HA and NA genes. This study hypothesized that maintenance of the TRIG cassette confers a selective advantage to the virus. To test this hypothesis, pigs were co-infected with the triple-reassortant H3N2 A/Swine/Texas/4199-2/98 (Tx/98) and the classical H1N1 A/Swine/Iowa/15/1930 viruses and co-housed with a group of sentinel animals. This direct contact group was subsequently moved into contact with a second group of naïve animals. Four different subtypes (H1N1, H1N2, H3N1 and H3N2) of influenza virus were identified in bronchoalveolar lavage fluid collected from the lungs of the experimentally infected pigs, with most of the viruses containing TRIG from the Tx/98 virus. Interestingly, only the intact H3N2 Tx/98 virus was transmitted from the infected pigs to the direct-contact animals and from them to the second contact group of pigs. These results demonstrated that multiple reassortments can occur within a host; however, only specific gene constellations are readily transmissible. It was concluded that certain HA and NA gene pairs, in conjunction with the TRIG cassette, may have a competitive advantage over other combinations for transmission and maintenance in swine.

  4. The fight against the influenza A virus H1N1: synthesis, molecular modeling, and biological evaluation of benzofurazan derivatives as viral RNA polymerase inhibitors.

    PubMed

    Pagano, Mafalda; Castagnolo, Daniele; Bernardini, Martina; Fallacara, Anna Lucia; Laurenzana, Ilaria; Deodato, Davide; Kessler, Ulrich; Pilger, Beatrice; Stergiou, Lilli; Strunze, Stephan; Tintori, Cristina; Botta, Maurizio

    2014-01-01

    The influenza RNA polymerase complex, which consists of the three subunits PA, PB1, and PB2, is a promising target for the development of new antiviral drugs. A large library of benzofurazan compounds was synthesized and assayed against influenza virus A/WSN/33 (H1N1). Most of the new derivatives were found to act by inhibiting the viral RNA polymerase complex through disruption of the complex formed between subunits PA and PB1. Docking studies were also performed to elucidate the binding mode of benzofurazans within the PB1 binding site in PA and to identify amino acids involved in their mechanism of action. The predicted binding pose is fully consistent with the biological data and lays the foundation for the rational development of more effective PA-PB1 inhibitors. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Vaccination with virus-like particles containing H5 antigens from three H5N1 clades protects chickens from H5N1 and H5N8 influenza viruses

    PubMed Central

    Kapczynski, Darrell R.; Tumpey, Terrence M.; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tretyakova, Irina; Pushko, Peter

    2016-01-01

    Highly pathogenic avian influenza (HPAI) viruses, especially H5N1 strains, represent a public health threat and cause widespread morbidity and mortality in domestic poultry. Recombinant virus-like particles (VLPs) represent a promising novel vaccine approach to control avian influenza including HPAI strains. Influenza VLPs contain viral hemagglutinin (HA), which can be expressed in cell culture within highly immunogenic VLPs that morphologically and antigenically resemble influenza virions, except VLPs are non-infectious. Here we describe a recombinant VLP containing HA proteins derived from three distinct clades of H5N1 viruses as an experimental, broadly protective H5 avian influenza vaccine. A baculovirus vector was configured to co-express the H5 genes from recent H5N1 HPAI isolates A/chicken/Germany/2014 (clade 2.3.4.4), A/chicken/West Java/Subang/29/2007 (clade 2.1.3) and A/chicken/Egypt/121/2012 (clade 2.2.1). Co-expression of these genes in Sf9 cells along with influenza neuraminidase (NA) and retrovirus gag genes resulted in production of triple-clade H555 VLPs that exhibited hemagglutination activity and morphologically resembled influenza virions. Vaccination of chickens with these VLPs resulted in induction of serum antibody responses and efficient protection against experimental challenges with three different viruses including the recent U.S. H5N8 HPAI isolate. We conclude that these novel triple-clade VLPs represent a feasible strategy for simultaneously evoking protective antibodies against multiple variants of H5 influenza virus. PMID:26868083

  6. Integrated Clinical, Pathologic, Virologic, and Transcriptomic Analysis of H5N1 Influenza Virus-Induced Viral Pneumonia in the Rhesus Macaque

    PubMed Central

    Shinya, Kyoko; Gao, Yuwei; Cilloniz, Cristian; Suzuki, Yasuhiro; Fujie, Masahiro; Deng, Guohua; Zhu, Qiyun; Fan, Shufang; Makino, Akiko; Muramoto, Yukiko; Fukuyama, Satoshi; Tamura, Daisuke; Noda, Takeshi; Eisfeld, Amie J.; Katze, Michael G.

    2012-01-01

    Viral pneumonia has been frequently reported during early stages of influenza virus pandemics and in many human cases of highly pathogenic avian influenza (HPAI) H5N1 virus infection. To better understand the pathogenesis of this disease, we produced nonlethal viral pneumonia in rhesus macaques by using an HPAI H5N1 virus (A/Anhui/2/2005; referred to as Anhui/2). Infected macaques were monitored for 14 days, and tissue samples were collected at 6 time points for virologic, histopathologic, and transcriptomic analyses. Anhui/2 efficiently replicated in the lung from 12 h to 3 days postinfection (p.i.) and caused temporal but severe pneumonia that began to resolve by day 14. Lung transcriptional changes were first observed at 6 h, and increased expression of vascular permeability regulators and neutrophil chemoattractants correlated with increased serum leakage and neutrophil infiltration in situ. Additional inflammatory, antiviral, and apoptotic genes were upregulated from 12 h, concurrent with viral antigen detection and increasing immune cell populations. A shift toward upregulation of acquired immunity was apparent after day 6. Expression levels of established immune cell molecular markers revealed remarkable similarity with pathological findings, indicating early and robust neutrophil infiltration, a slight delay in macrophage accumulation, and abundant late populations of T lymphocytes. We also characterized the putative mechanisms regulating a unique, pneumonia-associated biphasic fever pattern. Thus, this study is the first to use a comprehensive and integrative approach to delineate specific molecular mechanisms regulating influenza virus-induced pneumonia in nonhuman primates, an important first step toward better management of human influenza virus disease. PMID:22491448

  7. Genetic predisposition in anti-LGI1 and anti-NMDA receptor encephalitis.

    PubMed

    Mueller, Stefanie H; Färber, Anna; Prüss, Harald; Melzer, Nico; Golombeck, Kristin S; Kümpfel, Tania; Thaler, Franziska; Elisak, Martin; Lewerenz, Jan; Kaufmann, Max; Sühs, Kurt-Wolfram; Ringelstein, Marius; Kellinghaus, Christoph; Bien, Christian G; Kraft, Andrea; Zettl, Uwe K; Ehrlich, Sven; Handreka, Robert; Rostásy, Kevin; Then Bergh, Florian; Faiss, Jürgen H; Lieb, Wolfgang; Franke, Andre; Kuhlenbäumer, Gregor; Wandinger, Klaus-Peter; Leypoldt, Frank

    2018-04-01

    We performed a genome-wide association study in 1,194 controls and 150 patients with anti-N-methyl-D-aspartate receptor (anti-NMDAR, n = 96) or anti-leucine-rich glioma-inactivated1 (anti-LGI1, n = 54) autoimmune encephalitis. Anti-LGI1 encephalitis was highly associated with 27 single-nucleotide polymorphisms (SNPs) in the HLA-II region (leading SNP rs2858870 p = 1.22 × 10 -17 , OR = 13.66 [7.50-24.87]). Potential associations, below genome-wide significance, were found with rs72961463 close to the doublecortin-like kinase 2 gene (DCLK2) and rs62110161 in a cluster of zinc-finger genes. HLA allele imputation identified association of anti-LGI1 encephalitis with HLA-II haplotypes encompassing DRB1*07:01, DQA1*02:01 and DQB1*02:02 (p < 2.2 × 10 -16 ) and anti-NMDAR encephalitis with HLA-I allele B*07:02 (p = 0.039). No shared genetic risk factors between encephalitides were identified. Ann Neurol 2018;83:863-869. © 2018 American Neurological Association.

  8. Pathogenic analysis of the pandemic 2009 H1N1 influenza A viruses in ferrets.

    PubMed

    Tsuda, Yoshimi; Weisend, Carla; Martellaro, Cynthia; Feldmann, Friederike; Haddock, Elaine

    2017-08-18

    The pandemic 2009 H1N1 influenza A virus emerged in humans and caused the first influenza pandemic of the 21st century. Mexican isolates, A/Mexico/4108/2009 (H1N1) (Mex4108) and A/Mexico/InDRE4478/2009 (H1N1) (Mex4487) derived from a mild case and from a cluster of severe cases, showed heterogeneity in virulence in a cynomolgus macaque model. To compare the more pathogenic differences, we generated recombinant viruses and compared their virulence in ferrets. Ferrets infected with recombinant Mex4487 displayed a slightly higher rate of viral replication and severe pneumonia in the early stage of infection. In contrast, prolonged lower virus shedding of recombinant Mex4108 than that of recombinant Mex4487 was detected in throat swabs. Thus, Mex4487 induces severe pneumonia in infected individuals, whereas Mex4108 might have wide-spreading potential with mild disease.

  9. Design and Characterization of a Computationally Optimized Broadly Reactive Hemagglutinin Vaccine for H1N1 Influenza Viruses

    PubMed Central

    Carter, Donald M.; Darby, Christopher A.; Lefoley, Bradford C.; Crevar, Corey J.; Alefantis, Timothy; Oomen, Raymond; Anderson, Stephen F.; Strugnell, Tod; Cortés-Garcia, Guadalupe; Vogel, Thorsten U.; Parrington, Mark; Kleanthous, Harold

    2016-01-01

    ABSTRACT One of the challenges of developing influenza A vaccines is the diversity of antigenically distinct isolates. Previously, a novel hemagglutinin (HA) for H5N1 influenza was derived from a methodology termed computationally optimized broadly reactive antigen (COBRA). This COBRA HA elicited a broad antibody response against H5N1 isolates from different clades. We now report the development and characterization of a COBRA-based vaccine for both seasonal and pandemic H1N1 influenza virus isolates. Nine prototype H1N1 COBRA HA proteins were developed and tested in mice using a virus-like particle (VLP) format for the elicitation of broadly reactive, functional antibody responses and protection against viral challenge. These candidates were designed to recognize H1N1 viruses isolated within the last 30 years. In addition, several COBRA candidates were designed based on sequences of H1N1 viruses spanning the past 100 years, including modern pandemic H1N1 isolates. Four of the 9 H1N1 COBRA HA proteins (X1, X3, X6, and P1) had the broadest hemagglutination inhibition (HAI) activity against a panel of 17 H1N1 viruses. These vaccines were used in cocktails or prime-boost combinations. The most effective regimens that both elicited the broadest HAI response and protected mice against a pandemic H1N1 challenge were vaccines that contained the P1 COBRA VLP and either the X3 or X6 COBRA VLP vaccine. These mice had little or no detectable viral replication, comparable to that observed with a matched licensed vaccine. This is the first report describing a COBRA-based HA vaccine strategy that elicits a universal, broadly reactive, protective response against seasonal and pandemic H1N1 isolates. IMPORTANCE Universal influenza vaccine approaches have the potential to be paradigm shifting for the influenza vaccine field, with the goal of replacing the current standard of care with broadly cross-protective vaccines. We have used COBRA technology to develop an HA head

  10. Characterization of Monoclonal Antibodies against HA Protein of H1N1 Swine Influenza Virus and Protective Efficacy against H1 Viruses in Mice.

    PubMed

    Liu, Yun; Li, Hongtao; Xue, Yujia; Zhao, Shuang; Li, Chenxi; Qu, Liandong; Zhang, Yun; Liu, Ming

    2017-08-08

    H1N1 swine influenza viruses (SIV) are prevalent in pigs globally, and occasionally emerge in humans, which raises concern about their pandemic threats. To stimulate hemagglutination (HA) of A/Swine/Guangdong/LM/2004 (H1N1) (SW/GD/04) antibody response, eukaryotic expression plasmid pCI-neo-HA was constructed and used as an immunogen to prepare monoclonal antibodies (mAbs). Five mAbs (designed 8C4, 8C6, 9D6, 8A4, and 8B1) against HA protein were obtained and characterized. Western blot showed that the 70 kDa HA protein could be detected by all mAbs in MDCK cells infected with SW/GD/04. Three mAbs-8C4, 8C6, and 9D6-have hemagglutination inhibition (HI) and neutralization test (NT) activities, and 8C6 induces the highest HI and NT titers. The protection efficacy of 8C6 was investigated in BALB/c mice challenged with homologous or heterologous strains of the H1 subtype SIV. The results indicate that mAb 8C6 protected the mice from viral infections, especially the homologous strain, which was clearly demonstrated by the body weight changes and reduction of viral load. Thus, our findings document for the first time that mAb 8C6 might be of potential therapeutic value for H1 subtype SIV infection.

  11. H1N1-associated acute retinitis.

    PubMed

    Rifkin, Lana; Schaal, Shlomit

    2012-06-01

    To present the first reported case of bilateral H(1)N(1)-associated acute retinitis and its successful treatment. Interventional case report. A 41-year-old HIV-positive male presented with acute vision loss, panuveitis, and retinitis. A diagnostic and therapeutic vitrectomy with intravitreal injection of vancomycin and ganciclovir and endolaser was performed. One month later, the patient returned with similar symptoms in the fellow eye and underwent the same procedure. ELISA immunoassay revealed H(1)N(1) antibodies in both the vitreous and serum. PCR for herpes viruses included HSV, CMV, and VZV. Bacterial and fungal cultures were negative. On 1-year follow-up, the vision remained 20/20 in both eyes without evidence of recurrent inflammation. H(1)N(1) should be included in the differential diagnosis of any patient with a history of recent influenza A (H(1)N(1)) infection and acute retinitis. H(1)N(1) may carry a better prognosis than other viruses causing acute retinitis.

  12. Heterosubtypic Neutralizing Monoclonal Antibodies Cross-Protective against H5N1 and H1N1 Recovered from Human IgM+ Memory B Cells

    PubMed Central

    Throsby, Mark; van den Brink, Edward; Jongeneelen, Mandy; Poon, Leo L. M.; Alard, Philippe; Cornelissen, Lisette; Bakker, Arjen; Cox, Freek; van Deventer, Els; Guan, Yi; Cinatl, Jindrich; ter Meulen, Jan; Lasters, Ignace; Carsetti, Rita; Peiris, Malik; de Kruif, John; Goudsmit, Jaap

    2008-01-01

    Background The hemagglutinin (HA) glycoprotein is the principal target of protective humoral immune responses to influenza virus infections but such antibody responses only provide efficient protection against a narrow spectrum of HA antigenic variants within a given virus subtype. Avian influenza viruses such as H5N1 are currently panzootic and pose a pandemic threat. These viruses are antigenically diverse and protective strategies need to cross protect against diverse viral clades. Furthermore, there are 16 different HA subtypes and no certainty the next pandemic will be caused by an H5 subtype, thus it is important to develop prophylactic and therapeutic interventions that provide heterosubtypic protection. Methods and Findings Here we describe a panel of 13 monoclonal antibodies (mAbs) recovered from combinatorial display libraries that were constructed from human IgM+ memory B cells of recent (seasonal) influenza vaccinees. The mAbs have broad heterosubtypic neutralizing activity against antigenically diverse H1, H2, H5, H6, H8 and H9 influenza subtypes. Restriction to variable heavy chain gene IGHV1-69 in the high affinity mAb panel was associated with binding to a conserved hydrophobic pocket in the stem domain of HA. The most potent antibody (CR6261) was protective in mice when given before and after lethal H5N1 or H1N1 challenge. Conclusions The human monoclonal CR6261 described in this study could be developed for use as a broad spectrum agent for prophylaxis or treatment of human or avian influenza infections without prior strain characterization. Moreover, the CR6261 epitope could be applied in targeted vaccine strategies or in the design of novel antivirals. Finally our approach of screening the IgM+ memory repertoire could be applied to identify conserved and functionally relevant targets on other rapidly evolving pathogens. PMID:19079604

  13. Involvement of the different lung compartments in the pathogenesis of pH1N1 influenza virus infection in ferrets.

    PubMed

    Vidaña, Beatriz; Martínez, Jorge; Martorell, Jaime; Montoya, María; Córdoba, Lorena; Pérez, Mónica; Majó, Natàlia

    2016-11-08

    Severe cases after pH1N1 infection are consequence of interstitial pneumonia triggered by alveolar viral replication and an exacerbated host immune response, characterized by the up-regulation of pro-inflammatory cytokines and the influx of inflammatory leukocytes to the lungs. Different lung cell populations have been suggested as culprits in the unregulated innate immune responses observed in these cases. This study aims to clarify this question by studying the different induction of innate immune molecules by the distinct lung anatomic compartments (vascular, alveolar and bronchiolar) of ferrets intratracheally infected with a human pH1N1 viral isolate, by means of laser microdissection techniques. The obtained results were then analysed in relation to viral quantification in the different anatomic areas and the histopathological lesions observed. More severe lung lesions were observed at 24 h post infection (hpi) correlating with viral antigen detection in bronchiolar and alveolar epithelial cells. However, high levels of viral RNA were detected in all anatomic compartments throughout infection. Bronchiolar areas were the first source of IFN-α and most pro-inflammatory cytokines, through the activation of RIG-I. In contrast, vascular areas contributed with the highest induction of CCL2 and other pro-inflammatory cytokines, through the activation of TLR3.

  14. APOBEC3H haplotypes and HIV-1 pro-viral vif DNA sequence diversity in early untreated human immunodeficiency virus-1 infection.

    PubMed

    Gourraud, P A; Karaouni, A; Woo, J M; Schmidt, T; Oksenberg, J R; Hecht, F M; Liegler, T J; Barbour, J D

    2011-03-01

    We examined single nucleotide polymorphisms (SNP) in the APOBEC3 locus on chromosome 22, paired with population sequences of pro-viral human immunodeficiency virus-1 (HIV-1) vif from peripheral blood mononuclear cells, from 96 recently HIV-1-infected treatment-naive adults. We found evidence for the existence of an APOBEC3H linkage disequilibrium (LD) block associated with variation in GA → AA, or APOBEC3F/H signature, sequence changes in pro-viral HIV-1 vif sequence (top 10 significant SNPs with a significant p = 4.8 × 10(-3)). We identified a common five position risk haplotype distal to APOBEC3H (A3Hrh). These markers were in high LD (D' = 1; r(2) = 0.98) to a previously described A3H "RED" haplotype containing a variant (E121) with enhanced susceptibility to HIV-1 Vif. This association was confirmed by a haplotype analysis. Homozygote carriers of the A3Hrh had lower GA->AA (A3F/H) sequence editing upon pro-viral HIV-1 vif sequence (p = 0.01), and lower HIV-1 RNA levels over time during early, untreated HIV-1 infection, (p = 0.015 mixed effects model). This effect may be due to enhanced susceptibility of A3H forms to HIV-1 Vif mediated viral suppression of sequence editing activity, slowing viral diversification and escape from immune responses. Copyright © 2011 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  15. Histopathological evaluation of the diversity of cells susceptible to H5N1 virulent avian influenza virus.

    PubMed

    Ogiwara, Haru; Yasui, Fumihiko; Munekata, Keisuke; Takagi-Kamiya, Asako; Munakata, Tsubasa; Nomura, Namiko; Shibasaki, Futoshi; Kuwahara, Kazuhiko; Sakaguchi, Nobuo; Sakoda, Yoshihiro; Kida, Hiroshi; Kohara, Michinori

    2014-01-01

    Patients infected with highly pathogenic avian influenza A H5N1 viruses (H5N1 HPAIV) show diffuse alveolar damage. However, the temporal progression of tissue damage and repair after viral infection remains poorly defined. Therefore, we assessed the sequential histopathological characteristics of mouse lung after intranasal infection with H5N1 HPAIV or H1N1 2009 pandemic influenza virus (H1N1 pdm). We determined the amount and localization of virus in the lung through IHC staining and in situ hybridization. IHC used antibodies raised against the virus protein and antibodies specific for macrophages, type II pneumocytes, or proliferating cell nuclear antigen. In situ hybridization used RNA probes against both viral RNA and mRNA encoding the nucleoprotein and the hemagglutinin protein. H5N1 HPAIV infection and replication were observed in multiple lung cell types and might result in rapid progression of lung injury. Both type II pneumocytes and macrophages proliferated after H5N1 HPAIV infection. However, the abundant macrophages failed to block the viral attack, and proliferation of type II pneumocytes failed to restore the damaged alveoli. In contrast, mice infected with H1N1 pdm exhibited modest proliferation of type II pneumocytes and macrophages and slight alveolar damage. These results suggest that the virulence of H5N1 HPAIV results from the wide range of cell tropism of the virus, excessive virus replication, and rapid development of diffuse alveolar damage. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Origins of the 2009 H1N1 influenza pandemic in swine in Mexico

    PubMed Central

    Mena, Ignacio; Nelson, Martha I; Quezada-Monroy, Francisco; Dutta, Jayeeta; Cortes-Fernández, Refugio; Lara-Puente, J Horacio; Castro-Peralta, Felipa; Cunha, Luis F; Trovão, Nídia S; Lozano-Dubernard, Bernardo; Rambaut, Andrew; van Bakel, Harm; García-Sastre, Adolfo

    2016-01-01

    Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the zoonotic origins of the 2009 A/H1N1 influenza pandemic virus (pdmH1N1) remain unclear, due to conflicting evidence from swine and humans. There is strong evidence that the first human outbreak of pdmH1N1 occurred in Mexico in early 2009. However, no related swine viruses have been detected in Mexico or any part of the Americas, and to date the most closely related ancestor viruses were identified in Asian swine. Here, we use 58 new whole-genome sequences from IAVs collected in Mexican swine to establish that the swine virus responsible for the 2009 pandemic evolved in central Mexico. This finding highlights how the 2009 pandemic arose from a region not considered a pandemic risk, owing to an expansion of IAV diversity in swine resulting from long-distance live swine trade. DOI: http://dx.doi.org/10.7554/eLife.16777.001 PMID:27350259

  17. Complex patterns of human antisera reactivity to novel 2009 H1N1 and historical H1N1 influenza strains.

    PubMed

    Carter, Donald M; Lu, Hai-Rong; Bloom, Chalise E; Crevar, Corey J; Cherry, Joshua L; Lipman, David J; Ross, Ted M

    2012-01-01

    During the 2009 influenza pandemic, individuals over the age of 60 had the lowest incidence of infection with approximately 25% of these people having pre-existing, cross-reactive antibodies to novel 2009 H1N1 influenza isolates. It was proposed that older people had pre-existing antibodies induced by previous 1918-like virus infection(s) that cross-reacted to novel H1N1 strains. Using antisera collected from a cohort of individuals collected before the second wave of novel H1N1 infections, only a minority of individuals with 1918 influenza specific antibodies also demonstrated hemagglutination-inhibition activity against the novel H1N1 influenza. In this study, we examined human antisera collected from individuals that ranged between the ages of 1 month and 90 years to determine the profile of seropositive influenza immunity to viruses representing H1N1 antigenic eras over the past 100 years. Even though HAI titers to novel 2009 H1N1 and the 1918 H1N1 influenza viruses were positively associated, the association was far from perfect, particularly for the older and younger age groups. Therefore, there may be a complex set of immune responses that are retained in people infected with seasonal H1N1 that can contribute to the reduced rates of H1N1 influenza infection in older populations.

  18. Clinical presentations of pandemic 2009 influenza A (H1N1) virus infection in hospitalized Thai children.

    PubMed

    Lochindarat, Sorasak; Bunnag, Thanyanat

    2011-08-01

    A novel influenza A (H1N1) virus of swine origin caused human infection and acute respiratory illness in Mexico during the spring of 2009. After that, the virus spread globally, resulting in the influenza pandemic. To observe the clinical manifestations of the 2009 pandemic influenza A (H1N1) and the epidemic waves of hospitalized children for a period of one year. A prospective observational study of children under eighteen years old, confirmed having the 2009 pandemic influenza (H1N1) infection by real-time reverse-transcription-polymerase-chain-reaction (RT-PCR), admitted at Queen Sirikit National Institute of Child Health, Bangkok, Thailand during one year, from 1st June 2009 to 31st May 2010. A total of 83 pandemic influenza infected children were admitted during a one-year period. There were two waves of epidemic outbreak, the first wave from June to August 2009 and the second wave from January to February 2010. There were 47 cases of males (56.6%), with the highest attack rates among children 1-5 years of age (48.2%). The youngest case was a 29-day old girl. The correct provisional diagnosis of pandemic influenza infection are 39.5%, the other initial diagnosis are pneumonia, bronchiolitis, tonsillitis, encephalitis, and dengue infection. Most patients coming for care had typical, influenza-like symptoms with fever (98.8%), cough (92.6%) and rhinorrhea (74.1%). Systemic symptoms are frequent. Gastrointestinal symptoms (including vomiting (46.9%) and diarrhea (24.7%)) occur more commonly than seasonal influenza. Pneumonia is the most common complication (43.2%); other complications include bronchiolitis, hemoptysis, acute respiratory distress syndrome (ARDS) and encephalitis. In one case, a seven year old girl suffered from ARDS, sepsis, multi-organ dysfunction syndrome and ventilator associated pneumonia, but survived with some neurological sequelae. Radiographic findings included diffuse interstitial, alveolar infiltrates and some in lobar distributions

  19. Glycosylation at Asn91 of H1N1 haemagglutinin affects binding to glycan receptors

    PubMed Central

    Jayaraman, Akila; Koh, Xiaoying; Li, Jing; Raman, Rahul; Viswanathan, Karthik; Shriver, Zachary; Sasisekharan, Ram

    2012-01-01

    The glycoprotein HA (haemagglutinin) on the surface of influenza A virus plays a central role in recognition and binding to specific host cell-surface glycan receptors and in fusion of viral membrane to the host nuclear membrane during viral replication. Given the abundance of HA on the viral surface, this protein is also the primary target for host innate and adaptive immune responses. Although addition of glycosylation sites on HA are a part of viral evolution to evade the host immune responses, there are specific glycosylation sites that are conserved during most of the evolution of the virus. In the present study, it was demonstrated that one such conserved glycosylation site at Asn91 in H1N1 HA critically governs the glycan receptor-binding specificity and hence would potentially impinge on the host adaptation of the virus. PMID:22642577

  20. Glycosylation at Asn91 of H1N1 haemagglutinin affects binding to glycan receptors.

    PubMed

    Jayaraman, Akila; Koh, Xiaoying; Li, Jing; Raman, Rahul; Viswanathan, Karthik; Shriver, Zachary; Sasisekharan, Ram

    2012-06-15

    The glycoprotein HA (haemagglutinin) on the surface of influenza A virus plays a central role in recognition and binding to specific host cell-surface glycan receptors and in fusion of viral membrane to the host nuclear membrane during viral replication. Given the abundance of HA on the viral surface, this protein is also the primary target for host innate and adaptive immune responses. Although addition of glycosylation sites on HA are a part of viral evolution to evade the host immune responses, there are specific glycosylation sites that are conserved during most of the evolution of the virus. In the present study, it was demonstrated that one such conserved glycosylation site at Asn(91) in H1N1 HA critically governs the glycan receptor-binding specificity and hence would potentially impinge on the host adaptation of the virus.

  1. Pandemic and post-pandemic Influenza A (H1N1) infection in critically ill patients

    PubMed Central

    2011-01-01

    Background There is a vast amount of information published regarding the impact of 2009 pandemic Influenza A (pH1N1) virus infection. However, a comparison of risk factors and outcome during the 2010-2011 post-pandemic period has not been described. Methods A prospective, observational, multi-center study was carried out to evaluate the clinical characteristics and demographics of patients with positive RT-PCR for H1N1 admitted to 148 Spanish intensive care units (ICUs). Data were obtained from the 2009 pandemic and compared to the 2010-2011 post-pandemic period. Results Nine hundred and ninety-seven patients with confirmed An/H1N1 infection were included. Six hundred and forty-eight patients affected by 2009 (pH1N1) virus infection and 349 patients affected by the post-pandemic Influenza (H1N1)v infection period were analyzed. Patients during the post-pandemic period were older, had more chronic comorbid conditions and presented with higher severity scores (Acute Physiology And Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment (SOFA)) on ICU admission. Patients from the post-pandemic Influenza (H1N1)v infection period received empiric antiviral treatment less frequently and with delayed administration. Mortality was significantly higher in the post-pandemic period. Multivariate analysis confirmed that haematological disease, invasive mechanical ventilation and continuous renal replacement therapy were factors independently associated with worse outcome in the two periods. HIV was the only new variable independently associated with higher ICU mortality during the post-pandemic Influenza (H1N1)v infection period. Conclusion Patients from the post-pandemic Influenza (H1N1)v infection period had an unexpectedly higher mortality rate and showed a trend towards affecting a more vulnerable population, in keeping with more typical seasonal viral infection. PMID:22126648

  2. Pandemic and post-pandemic influenza A (H1N1) infection in critically ill patients.

    PubMed

    Martin-Loeches, Ignacio; Díaz, Emili; Vidaur, Loreto; Torres, Antoni; Laborda, Cesar; Granada, Rosa; Bonastre, Juan; Martín, Mar; Insausti, Josu; Arenzana, Angel; Guerrero, Jose Eugenio; Navarrete, Ines; Bermejo-Martin, Jesus; Suarez, David; Rodriguez, Alejandro

    2011-01-01

    There is a vast amount of information published regarding the impact of 2009 pandemic Influenza A (pH1N1) virus infection. However, a comparison of risk factors and outcome during the 2010-2011 post-pandemic period has not been described. A prospective, observational, multi-center study was carried out to evaluate the clinical characteristics and demographics of patients with positive RT-PCR for H1N1 admitted to 148 Spanish intensive care units (ICUs). Data were obtained from the 2009 pandemic and compared to the 2010-2011 post-pandemic period. Nine hundred and ninety-seven patients with confirmed An/H1N1 infection were included. Six hundred and forty-eight patients affected by 2009 (pH1N1) virus infection and 349 patients affected by the post-pandemic Influenza (H1N1)v infection period were analyzed. Patients during the post-pandemic period were older, had more chronic comorbid conditions and presented with higher severity scores (Acute Physiology And Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment (SOFA)) on ICU admission. Patients from the post-pandemic Influenza (H1N1)v infection period received empiric antiviral treatment less frequently and with delayed administration. Mortality was significantly higher in the post-pandemic period. Multivariate analysis confirmed that haematological disease, invasive mechanical ventilation and continuous renal replacement therapy were factors independently associated with worse outcome in the two periods. HIV was the only new variable independently associated with higher ICU mortality during the post-pandemic Influenza (H1N1)v infection period. Patients from the post-pandemic Influenza (H1N1)v infection period had an unexpectedly higher mortality rate and showed a trend towards affecting a more vulnerable population, in keeping with more typical seasonal viral infection.

  3. 2009 H1N1 Flu Vaccine Facts

    MedlinePlus

    ... turn Javascript on. Feature: Flu 2009 H1N1 Flu Vaccine Facts Past Issues / Fall 2009 Table of Contents ... H1N1 flu vaccine. 1 The 2009 H1N1 flu vaccine is safe and well tested. Clinical trials conducted ...

  4. Reassortment process after co-infection of pigs with avian H1N1 and swine H3N2 influenza viruses.

    PubMed

    Urbaniak, Kinga; Markowska-Daniel, Iwona; Kowalczyk, Andrzej; Kwit, Krzysztof; Pomorska-Mól, Małgorzata; Frącek, Barbara; Pejsak, Zygmunt

    2017-07-08

    The influenza A virus is highly variable, which, to some degree, is caused by the reassortment of viral genetic material. This process plays a major role in the generation of novel influenza virus strains that can emerge in a new host population. Due to the susceptibility of pigs to infections with avian, swine and human influenza viruses, they are considered intermediate hosts for the adaptation of the avian influenza virus to humans. In order to test the reassortment process in pigs, they were co-infected with H3N2 A/swine/Gent/172/2008 (Gent/08) and H1N1 A/duck/Italy/1447/2005 (Italy/05) and co-housed with a group of naïve piglets. The Gent/08 strains dominated over Italy/05, but reassortment occurred. The reassortant strains of the H1N1 subtype (12.5%) with one gene (NP or M) of swine-origin were identified in the nasal discharge of the contact-exposed piglets. These results demonstrate that despite their low efficiency, genotypically and phenotypically different influenza A viruses can undergo genetic exchange during co-infection of pigs.

  5. Higher titers of some H5N1 and recent human H1N1 and H3N2 influenza viruses in Mv1 Lu vs. MDCK cells

    PubMed Central

    2011-01-01

    Background The infectivity of influenza A viruses can differ among the various primary cells and continuous cell lines used for such measurements. Over many years, we observed that all things equal, the cytopathic effects caused by influenza A subtype H1N1, H3N2, and H5N1 viruses were often detected earlier in a mink lung epithelial cell line (Mv1 Lu) than in MDCK cells. We asked whether virus yields as measured by the 50% tissue culture infectious dose and plaque forming titer also differed in MDCK and Mv1 Lu cells infected by the same influenza virus subtypes. Results The 50% tissue culture infectious dose and plaque forming titer of many influenza A subtype H1N1, H3N2, and H5N1 viruses was higher in Mv1 Lu than in MDCK cells. Conclusions The yields of influenza subtype H1N1, H3N2, and H5N1 viruses can be higher in Mv1 Lu cells than in MDCK cells. PMID:21314955

  6. Unique Infectious Strategy of H5N1 Avian Influenza Virus Is Governed by the Acid-Destabilized Property of Hemagglutinin.

    PubMed

    Daidoji, Tomo; Watanabe, Yohei; Arai, Yasuha; Kajikawa, Junichi; Hirose, Ryohei; Nakaya, Takaaki

    Highly pathogenic avian influenza (HPAI) H5N1 virus emerged in 1997 as a zoonotic disease in Hong Kong. It has since spread to Asia and Europe and is a serious threat to both the poultry industry and human health. For effective surveillance and possible prevention/control of HPAI H5N1 viruses, it is necessary to understand the molecular mechanism underlying HPAI H5N1 pathogenesis. The hemagglutinin (HA) protein of influenza A viruses (IAVs) is one of the major determinants of host adaptation, transmissibility, and viral virulence. The main function of the HA protein is to facilitate viral entry and viral genome release within host cells before infection. To achieve viral infection, IAVs belonging to different subtypes or strains induce viral-cell membrane fusion at different endosomal pH levels after internalization through endocytosis. However, host-specific endosomal pH also affects induction of membrane fusion followed by infection. The HA protein of HPAI H5N1 has a higher pH threshold for membrane fusion than the HA protein of classical avian influenza viruses. Although this particular property of HA (which governs viral infection) is prone to deactivation in the avian intestine or in an ambient environment, it facilitates efficient infection of host cells, resulting in a broad host tropism, regardless of the pH in the host endosome. Accumulated knowledge, together with further research, about the HA-governed mechanism underlying HPAI H5N1 virulence (i.e., receptor tropism and pH-dependent viral-cell membrane fusion) will be helpful for developing effective surveillance strategies and for prevention/control of HPAI H5N1 infection.

  7. Genetic Compatibility and Virulence of Reassortants Derived from Contemporary Avian H5N1 and Human H3N2 Influenza A Viruses

    PubMed Central

    Zhou, Hong; Cox, Nancy J.; Donis, Ruben O.

    2008-01-01

    The segmented structure of the influenza virus genome plays a pivotal role in its adaptation to new hosts and the emergence of pandemics. Despite concerns about the pandemic threat posed by highly pathogenic avian influenza H5N1 viruses, little is known about the biological properties of H5N1 viruses that may emerge following reassortment with contemporary human influenza viruses. In this study, we used reverse genetics to generate the 63 possible virus reassortants derived from H5N1 and H3N2 viruses, containing the H5N1 surface protein genes, and analyzed their viability, replication efficiency, and mouse virulence. Specific constellations of avian–human viral genes proved deleterious for viral replication in cell culture, possibly due to disruption of molecular interaction networks. In particular, striking phenotypes were noted with heterologous polymerase subunits, as well as NP and M, or NS. However, nearly one-half of the reassortants replicated with high efficiency in vitro, revealing a high degree of compatibility between avian and human virus genes. Thirteen reassortants displayed virulent phenotypes in mice and may pose the greatest threat for mammalian hosts. Interestingly, one of the most pathogenic reassortants contained avian PB1, resembling the 1957 and 1968 pandemic viruses. Our results reveal the broad spectrum of phenotypes associated with H5N1/H3N2 reassortment and a possible role for the avian PB1 in the emergence of pandemic influenza. These observations have important implications for risk assessment of H5N1 reassortant viruses detected in surveillance programs. PMID:18497857

  8. Excessive innate immune response and mutant D222G/N in severe A (H1N1) pandemic influenza.

    PubMed

    Berdal, Jan-Erik; Mollnes, Tom E; Wæhre, Torgun; Olstad, Ole K; Halvorsen, Bente; Ueland, Thor; Laake, Jon H; Furuseth, May T; Maagaard, Anne; Kjekshus, Harald; Aukrust, Pål; Jonassen, Christine M

    2011-10-01

    Explore the role of viral factors and immune response in patients with severe pandemic pdmH1N1 illness without significant co-morbidity. Seven patients with pdmH1N1 influenza, bilateral chest X-rays infiltrates, requiring mechanical ventilator support were consecutively recruited. Seven age- and gender-matched healthy individuals served as controls. Four patients were viremic, two with the mutant D222G/N pdmH1N1.Microarray analyses of peripheral blood leukocytes suggested a marked granulocytes activation, but no up-regulation of inflammatory cytokine mRNA. Patients with severe pdmH1NI had a marked systemic complement activation, and in contrast to the lack of cytokine mRNA up-regulation in blood leukocytes, plasma levels of a broad range of inflammatory mediators, including IP-10, and mediators involved in pulmonary remodelling were markedly elevated. Patients with mutant virus had particularly high IP-10 levels, and the most pronounced complement activation. In severe pdmH1N1, viremia was common and the D222G/N mutant was found in half of the viremic patients. Host immune response was characterized by strong activation of the innate immune system, including complement and granulocytes activation, increased serum levels of inflammation and pulmonary remodelling markers, possibly contributing to the observed tissue damage. However, few patients were included and further studies are needed to characterize the immune response in severe pdmH1N1 infection. Copyright © 2011 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  9. HA222 polymorphism in Influenza A(H1N1) 2009 isolates from Intensive Care Units and ambulatory patients during three influenza seasons.

    PubMed

    Corcioli, F; Arvia, R; Pierucci, F; Clausi, V; Bonizzoli, M; Peris, A; Azzi, A

    2014-02-13

    Amino acid substitutions which can affect the receptor binding specificity of the influenza virus, like the substitution of aspartic acid with glycine in position 222 of the haemagglutinin (HA) of influenza virus A(H1N1) 2009, have been associated with increased viral pathogenicity and increased tropism for the lower respiratory tract. In this paper, the polymorphic site 222 and the site 223 of the HA1 polypeptide of H1N1 2009 viruses were analyzed in order to better clarify the role of these substitutions in H1N1 2009 virus virulence. Viral strains included in this study were collected in Tuscany during 3 different influenza seasons from patients with severe as well as with mild forms of influenza caused by A(H1N1) 2009 virus. In addition, the oseltamivir resistance of the H1N1 2009 strains circulating during the same seasons was monitored with the aim to evaluate whether these changes in the HA and in neuraminidase (NA) tend to be linked and to influence each other. Altogether, the results indicate that in severe forms of influenza viral population is more variable than in mild influenza, as regards the site 222. The frequency of such substitutions varied among the three seasons, it was highest in the season 2010-2011 and very low in the season 2012-2013. However these differences were not significant. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Recombinant Parainfluenza Virus 5 Expressing Hemagglutinin of Influenza A Virus H5N1 Protected Mice against Lethal Highly Pathogenic Avian Influenza Virus H5N1 Challenge

    PubMed Central

    Li, Zhuo; Mooney, Alaina J.; Gabbard, Jon D.; Gao, Xiudan; Xu, Pei; Place, Ryan J.; Hogan, Robert J.; Tompkins, S. Mark

    2013-01-01

    A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine. PMID:23077314

  11. Association of swine influenza H1N1 pandemic virus (SIV-H1N1p) with porcine respiratory disease complex in sows from commercial pig farms in Colombia.

    PubMed

    Jiménez, Luisa Fernanda Mancipe; Ramírez Nieto, Gloria; Alfonso, Victor Vera; Correa, Jairo Jaime

    2014-08-01

    Porcine respiratory disease complex (PRDC) is a serious health problem that mainly affects growing and finishing pigs. PRDC is caused by a combination of viral and bacterial agents, such as porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), Mycoplasma hyopneumoniae (Myh), Actinobacillus pleuropneumoniae (APP), Pasteurella multocida and Porcine circovirus 2 (PCV2). To characterize the specific role of swine influenza virus in PRDC presentation in Colombia, 11 farms from three major production regions in Colombia were examined in this study. Nasal swabs, bronchial lavage and lung tissue samples were obtained from animals displaying symptoms compatible with SIV. Isolation of SIV was performed in 9-day embryonated chicken eggs or Madin-Darby Canine Kidney (MDCK) cells. Positive isolates, identified via the hemagglutination inhibition test, were further analyzed using PCR. Overall, 7 of the 11 farms were positive for SIV. Notably, sequencing of the gene encoding the hemagglutinin (HA) protein led to grouping of strains into circulating viruses identified during the human outbreak of 2009, classified as pandemic H1N1-2009. Serum samples from 198 gilts and multiparous sows between 2008 and 2009 were obtained to determine antibody presence of APP, Myh, PCV2 and PRRSV in both SIV-H1N1p-negative and -positive farms, but higher levels were recorded for SIV-H1N1p-positive farms. Odds ratio (OR) and P values revealed statistically significant differences (p<0.05) in PRDC presentation in gilts and multiparous sows of farms positive for SIV-H1N1p. Our findings indicate that positive farms have increased risk of PRDC presentation, in particular, PCV2, APP and Myh.

  12. Narcolepsy with cataplexy and hyperthyroidism sudden appeared after H1N1 vaccination

    PubMed Central

    Leiva, Silvia; Madrazo, Jimena; Podesta, Claudio

    2018-01-01

    Narcolepsy type 1 (NT1) is a chronic sleep disorder, characterized by excessive daytime sleepiness, cataplexy and fragmented nocturnal sleep. It is caused by a hypocretin deficiency due to a significant reduction of the neurons producing it. In the last years, it has been postulated that an autoimmune mechanism would be responsible for the destruction of these neurons in those genetically predisposed patients. The increased incidence of narcolepsy after the pandemic H1N1 influenza vaccination campaign in 2009-2010 is known. We present below the case of an adult patient who, 10 days after receiving H1N1 vaccination, suffers a traffic accident after falling asleep. Subsequent studies revealed hyperthyroidism due to Graves disease. In spite of the treatment, the patient persisted with daily and disabling daytime sleepiness, sleep attacks and episodes of generalized muscle atony with preservation of consciousness. A nocturnal polysomnography and multiple sleep latency test (MSLT) were performed with a diagnosis of NT1. The particularity of this case is the presentation of 2 autoimmune diseases triggered by an H1N1 vaccine without adjuvant, so far there is only evidence of NT1 associated with vaccines with adjuvant and viral infection. The association of both entities has made us reflect on the autoimmune mechanism, reinforcing the theory of its role in the onset of the disease. PMID:29796199

  13. A Naturally Occurring Deletion in the Effector Domain of H5N1 Swine Influenza Virus Nonstructural Protein 1 Regulates Viral Fitness and Host Innate Immunity.

    PubMed

    Wang, Junyong; Zeng, Yan; Xu, Shuai; Yang, Jiayun; Wang, Wanbing; Zhong, Bo; Ge, Jinying; Yin, Lei; Bu, Zhigao; Shu, Hong-Bing; Chen, Hualan; Lei, Cao-Qi; Zhu, Qiyun

    2018-06-01

    Nonstructural protein 1 (NS1) of influenza A virus regulates innate immune responses via various mechanisms. We previously showed that a naturally occurring deletion (the EALQR motif) in the NS1 effector domain of an H5N1 swine-origin avian influenza virus impairs the inhibition of type I interferon (IFN) in chicken fibroblasts and attenuates virulence in chickens. Here we found that the virus bearing this deletion in its NS1 effector domain showed diminished inhibition of IFN-related cytokine expression and attenuated virulence in mice. We further showed that deletion of the EALQR motif disrupted NS1 dimerization, impairing double-stranded RNA (dsRNA) sequestration and competitive binding with RIG-I. In addition, the EALQR-deleted NS1 protein could not bind to TRIM25, unlike full-length NS1, and was less able to block TRIM25 oligomerization and self-ubiquitination, further impairing the inhibition of TRIM25-mediated RIG-I ubiquitination compared to that with full-length NS1. Our data demonstrate that the EALQR deletion prevents NS1 from blocking RIG-I-mediated IFN induction via a novel mechanism to attenuate viral replication and virulence in mammalian cells and animals. IMPORTANCE H5 highly pathogenic avian influenza viruses have infected more than 800 individuals across 16 countries, with an overall case fatality rate of 53%. Among viral proteins, nonstructural protein 1 (NS1) of influenza virus is considered a key determinant for type I interferon (IFN) antagonism, pathogenicity, and host range. However, precisely how NS1 modulates virus-host interaction, facilitating virus survival, is not fully understood. Here we report that a naturally occurring deletion (of the EALQR motif) in the NS1 effector domain of an H5N1 swine-origin avian influenza virus disrupted NS1 dimerization, which diminished the blockade of IFN induction via the RIG-I signaling pathway, thereby impairing virus replication and virulence in the host. Our study demonstrates that the EALQR motif

  14. Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002-2003.

    PubMed

    Van Reeth, Kristien; Brown, Ian H; Dürrwald, Ralf; Foni, Emanuela; Labarque, Geoffrey; Lenihan, Patrick; Maldonado, Jaime; Markowska-Daniel, Iwona; Pensaert, Maurice; Pospisil, Zdenek; Koch, Guus

    2008-05-01

    Avian-like H1N1 and human-like H3N2 swine influenza viruses (SIV) have been considered widespread among pigs in Western Europe since the 1980s, and a novel H1N2 reassortant with a human-like H1 emerged in the mid 1990s. This study, which was part of the EC-funded 'European Surveillance Network for Influenza in Pigs 1', aimed to determine the seroprevalence of the H1N2 virus in different European regions and to compare the relative prevalences of each SIV between regions. Laboratories from Belgium, the Czech Republic, Germany, Italy, Ireland, Poland and Spain participated in an international serosurvey. A total of 4190 sow sera from 651 farms were collected in 2002-2003 and examined in haemagglutination inhibition tests against H1N1, H3N2 and H1N2. In Belgium, Germany, Italy and Spain seroprevalence rates to each of the three SIV subtypes were high (> or =30% of the sows seropositive) to very high (> or =50%), except for a lower H1N2 seroprevalence rate in Italy (13.8%). Most sows in these countries with high pig populations had antibodies to two or three subtypes. In Ireland, the Czech Republic and Poland, where swine farming is less intensive, H1N1 was the dominant subtype (8.0-11.7% seropositives) and H1N2 and H3N2 antibodies were rare (0-4.2% seropositives). Thus, SIV of H1N1, H3N2 and H1N2 subtype are enzootic in swine producing regions of Western Europe. In Central Europe, SIV activity is low and the circulation of H3N2 and H1N2 remains to be confirmed. The evolution and epidemiology of SIV throughout Europe is being further monitored through a second 'European Surveillance Network for Influenza in Pigs'.

  15. Antibodies to H5 subtype avian influenza virus and Japanese encephalitis virus in northern pintails (Anas acuta) sampled in Japan

    USGS Publications Warehouse

    Ramey, Andy M.; Spackman, Erica; Yeh, Jung-Yong; Fujita, Go; Konishi, Kan; Reed, John A.; Wilcox, Benjamin R.; Brown, Justin D.; Stallknecht, David E.

    2013-01-01

    Blood samples from 105 northern pintails (Anas acuta) captured on Hokkaido, Japan were tested for antibodies to avian influenza virus (AIV), Japanese encephalitis virus (JEV), and West Nile virus (WNV) to assess possible involvement of this species in the spread of economically important and potentially zoonotic pathogens. Antibodies to AIV were detected in 64 of 105 samples (61%). Of the 64 positives, 95% and 81% inhibited agglutination of two different H5 AIV antigens (H5N1 and H5N9), respectively. Antibodies to JEV and WNV were detected in five (5%) and none of the samples, respectively. Results provide evidence for prior exposure of migrating northern pintails to H5 AIV which couldhave implications for viral shedding and disease occurrence. Results also provide evidence for limited involvement of this species in the transmission and spread of flaviviruses during spring migration.

  16. H1N1pdm in the Americas

    PubMed Central

    Lessler, Justin; Santos, Thais dos; Aguilera, Ximena; Brookmeyer, Ron; Cummings, Derek AT

    2010-01-01

    In late April 2009 the emergence of 2009 pandemic influenza A (H1N1pdm) virus was detected in humans. From its detection through July 18th, 2009, confirmed cases of H1N1pdm in the Americas were periodically reported to the Pan-American Health Organization (PAHO) by member states. Because the Americas span much of the world’s latitudes, this data provides an excellent opportunity to examine variation in H1N1pdm transmission by season. Using reports from PAHO member states from April 26th, 2009 through July 18th, 2009, we characterize the early spread of the H1N1 pandemic in the Americas. For a geographically representative sample of member states we estimate the reproductive number (R) of H1N1pdm over the reporting period. The association between these estimates and latitude, temperature, humidity and population age structure was estimated. Estimates of the peak reproductive number of H1N1pdm ranged from 1.3 (for Panama, Colombia) to 2.1 (for Chile). We found that reproductive number estimates were most associated with latitude in both univariate and multivariate analyses. To the extent that latitude is a proxy for seasonal changes in climate and behavior, this association suggests a strong seasonal component to H1N1pdm transmission. However, the reasons for this seasonality remain unclear. PMID:20847900

  17. Human T-cells directed to seasonal influenza A virus cross-react with 2009 pandemic influenza A (H1N1) and swine-origin triple-reassortant H3N2 influenza viruses.

    PubMed

    Hillaire, Marine L B; Vogelzang-van Trierum, Stella E; Kreijtz, Joost H C M; de Mutsert, Gerrie; Fouchier, Ron A M; Osterhaus, Albert D M E; Rimmelzwaan, Guus F

    2013-03-01

    Virus-specific CD8(+) T-cells contribute to protective immunity against influenza A virus (IAV) infections. As the majority of these cells are directed to conserved viral proteins, they may afford protection against IAVs of various subtypes. The present study assessed the cross-reactivity of human CD8(+) T-lymphocytes, induced by infection with seasonal A (H1N1) or A (H3N2) influenza virus, with 2009 pandemic influenza A (H1N1) virus [A(H1N1)pdm09] and swine-origin triple-reassortant A (H3N2) [A(H3N2)v] viruses that are currently causing an increasing number of human cases in the USA. It was demonstrated that CD8(+) T-cells induced after seasonal IAV infections exerted lytic activity and produced gamma interferon upon in vitro restimulation with A(H1N1)pdm09 and A(H3N2)v influenza A viruses. Furthermore, CD8(+) T-cells directed to A(H1N1)pdm09 virus displayed a high degree of cross-reactivity with A(H3N2)v viruses. It was concluded that cross-reacting T-cells had the potential to afford protective immunity against A(H1N1)pdm09 viruses during the pandemic and offer some degree of protection against infection with A(H3N2)v viruses.

  18. Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses.

    PubMed

    Clark, Amelia M; Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L

    2017-09-01

    to the present. It was previously shown that the NS1 protein from the 2009 pandemic H1N1 (pH1N1) virus is not able to inhibit general gene expression. However, currently circulating pH1N1 viruses have evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) that allow the NS1 protein of contemporary pH1N1 strains to inhibit host gene expression, which correlates with its ability to interact with CPSF30. Infection with a recombinant pH1N1 virus encoding these 6 amino acid changes (pH1N1/NSs-6mut) induced lower levels of proinflammatory cytokines, resulting in viral attenuation in vivo This might represent an adaptation of pH1N1 virus to humans. Copyright © 2017 American Society for Microbiology.

  19. Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses

    PubMed Central

    Clark, Amelia M.; Nogales, Aitor; Martinez-Sobrido, Luis

    2017-01-01

    then and up to the present. It was previously shown that the NS1 protein from the 2009 pandemic H1N1 (pH1N1) virus is not able to inhibit general gene expression. However, currently circulating pH1N1 viruses have evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) that allow the NS1 protein of contemporary pH1N1 strains to inhibit host gene expression, which correlates with its ability to interact with CPSF30. Infection with a recombinant pH1N1 virus encoding these 6 amino acid changes (pH1N1/NSs-6mut) induced lower levels of proinflammatory cytokines, resulting in viral attenuation in vivo. This might represent an adaptation of pH1N1 virus to humans. PMID:28637754

  20. Influence of the CCR-5/MIP-1 α Axis in the Pathogenesis of Rocio Virus Encephalitis in a Mouse Model

    PubMed Central

    Chávez, Juliana H.; França, Rafael F. O.; Oliveira, Carlo J. F.; de Aquino, Maria T. P.; Farias, Kleber J. S.; Machado, Paula R. L.; de Oliveira, Thelma F. M.; Yokosawa, Jonny; Soares, Edson G.; da Silva, João S.; da Fonseca, Benedito A. L.; Figueiredo, Luiz T. M.

    2013-01-01

    Rocio virus (ROCV) caused an outbreak of human encephalitis during the 1970s in Brazil and its immunopathogenesis remains poorly understood. CC-chemokine receptor 5 (CCR5) is a chemokine receptor that binds to macrophage inflammatory protein (MIP-1 α). Both molecules are associated with inflammatory cells migration during infections. In this study, we demonstrated the importance of the CCR5 and MIP-1 α, in the outcome of viral encephalitis of ROCV-infected mice. CCR5 and MIP-1 α knockout mice survived longer than wild-type (WT) ROCV-infected animals. In addition, knockout mice had reduced inflammation in the brain. Assessment of brain viral load showed mice virus detection five days post-infection in wild-type and CCR5−/− mice, while MIP-1 α−/− mice had lower viral loads seven days post-infection. Knockout mice required a higher lethal dose than wild-type mice as well. The CCR5/MIP-1 α axis may contribute to migration of infected cells to the brain and consequently affect the pathogenesis during ROCV infection. PMID:24080631

  1. Meningitis and encephalitis in Poland in 2014

    PubMed

    Paradowska-Stankiewicz, Iwona; Piotrowska, Anna

    The aim of this study was to assess the epidemiology of meningitis and/or encephalitis in Poland in 2014. In the last three years in Poland, about 3000 cases of meningitis and/or encephalitis of viral or bacterial etiology were recorded annually. Assessment of the epidemiological situation of meningitis and/or encephalitis in Poland in 2014, was based on the results of the analysis of epidemiological reports sent to the NIZP-PZH by the Regional Sanitary-Epidemiological Stations published in the annual bulletin “Infectious diseases and poisonings in Poland in 2014” and “Preventive immunizations in Poland in 2014”. In 2014 in Poland 3488 cases of bacterial meningitis and/or encephalitis were recorded. Almost 61.3% of these were viral infections. In 2014, in comparison to 2013, a 1.1% increase in the number of cases of meningitis and/or encephalitis was observed and 91% with viral etiology.

  2. Aciclovir-induced acute kidney injury in patients with 'suspected viral encephalitis' encountered on a liaison neurology service.

    PubMed

    Bogdanova-Mihaylova, Petya; Burke, David; O'Dwyer, John P; Bradley, David; Williams, Jennifer A; Cronin, Simon J; Smyth, Shane; Murphy, Raymond P; Murphy, Sinead M; Wall, Catherine; McCabe, Dominick J H

    2018-01-06

    Patients with 'suspected viral encephalitis' are frequently empirically treated with intravenous aciclovir. Increasing urea and creatinine are 'common', but rapidly progressive renal failure is reported to be 'very rare'. To describe the clinical course and outcome of cases of aciclovir-induced acute kidney injury (AKI) encountered by the Liaison Neurology Service at AMNCH and to highlight the importance of surveillance and urgent treatment of this iatrogenic complication. Retrospectively and prospectively collected data from the Liaison Neurology Service at AMNCH on patients who received IV aciclovir for suspected viral encephalitis and developed AKI were analysed. Aciclovir-induced AKI was defined by a consultant nephrologist in all cases as a rise in serum creatinine of > 26 μmol/L in 48 h or by ≥ 1.5 times the baseline value. Renal function, haematocrit, and fluid balance were monitored following AKI onset. Data from 10 patients were analysed. Median time to AKI onset was 3.5 days (range: 1-6 days). Aciclovir was stopped or the dose adjusted. All patients recovered with IV normal saline, aiming for a urine output > 100-150 ml/h. The interval between first rise in creatinine and return to normal levels varied between 5 and 19 days. Liaison neurologists and general physicians need to be aware that aciclovir may cause AKI attributed to distal intra-tubular crystal nephropathy. Daily fluid balance and renal function monitoring are essential because AKI may arise even with intensive pre-hydration. Prognosis is good if identified early and actively treated.

  3. Influenza virus A(H1N1)2009 antibody-dependent cellular cytotoxicity in young children prior to the H1N1 pandemic.

    PubMed

    Mesman, Annelies W; Westerhuis, Brenda M; Ten Hulscher, Hinke I; Jacobi, Ronald H; de Bruin, Erwin; van Beek, Josine; Buisman, Annemarie M; Koopmans, Marion P; van Binnendijk, Robert S

    2016-09-01

    Pre-existing immunity played a significant role in protection during the latest influenza A virus H1N1 pandemic, especially in older age groups. Structural similarities were found between A(H1N1)2009 and older H1N1 virus strains to which humans had already been exposed. Broadly cross-reactive antibodies capable of neutralizing the A(H1N1)2009 virus have been implicated in this immune protection in adults. We investigated the serological profile of a group of young children aged 9 years (n=55), from whom paired blood samples were available, just prior to the pandemic wave (March 2009) and shortly thereafter (March 2010). On the basis of A(H1N1)2009 seroconversion, 27 of the 55 children (49 %) were confirmed to be infected between these two time points. Within the non-infected group of 28 children (51 %), high levels of seasonal antibodies to H1 and H3 HA1 antigens were detected prior to pandemic exposure, reflecting past infection with H1N1 and H3N2, both of which had circulated in The Netherlands prior to the pandemic. In some children, this reactivity coincided with specific antibody reactivity against A(H1N1)2009. While these antibodies were not able to neutralize the A(H1N1)2009 virus, they were able to mediate antibody-dependent cellular cytotoxicity (ADCC) in vitro upon interaction with the A(H1N1)2009 virus. This finding suggests that cross-reactive antibodies could contribute to immune protection in children via ADCC.

  4. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012.

    PubMed

    Grgić, Helena; Costa, Marcio; Friendship, Robert M; Carman, Susy; Nagy, Éva; Poljak, Zvonimir

    2015-01-01

    The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors.

  5. Underreporting of viral encephalitis and viral meningitis, Ireland, 2005-2008.

    PubMed

    Kelly, Tara A; O'Lorcain, Piaras; Moran, Joanne; Garvey, Patricia; McKeown, Paul; Connell, Jeff; Cotter, Suzanne

    2013-01-01

    Viral encephalitis (VE) and viral meningitis (VM) have been notifiable infectious diseases under surveillance in the Republic of Ireland since 1981. Laboratories have reported confirmed cases by detection of viral nucleic acid in cerebrospinal fluid since 2004. To determine the prevalence of these diseases in Ireland during 2005-2008, we analyzed 3 data sources: Hospital In-patient Enquiry data (from hospitalized following patients discharge) accessed through Health Intelligence Ireland, laboratory confirmations from the National Virus Reference Laboratory, and events from the Computerised Infectious Disease Reporting surveillance system. We found that the national surveillance system underestimates the incidence of these diseases in Ireland with a 10-fold higher VE hospitalization rate and 3-fold higher VM hospitalization rate than the reporting rate. Herpesviruses were responsible for most specified VE and enteroviruses for most specified VM from all 3 sources. Recommendations from this study have been implemented to improve the surveillance of these diseases in Ireland.

  6. Correlations between A/H1N1 influenza and acute cellular rejection in liver transplantation patients.

    PubMed

    Stucchi, R S B; Boin, I F S F; Angerami, R Nogueira; Sinckoc, V; Sa, F Cesar; Seva-Pereira, T; Escanhoela, C A Fazzio

    2010-12-01

    Influenza is a common cause of respiratory infection in transplant recipients. It is expected that A/H1N1 influenza virus causes more severe disease in solid-organ recipients. Our goal was to describe two A/H1N1 infections that occurred after Orthotopic liver transplantation followed by acute allograft rejection episodes. From March 2009 to March 2010 we observe two liver transplant patients with symptoms suggestive of A/H1N1 infection. The diagnosis was out based on a temperature of 37.8°C (100°F) or higher and the presence of a cough or using materials from anasopharyngeal and oropharyngeal swabs a sore throat. The diagnosis was confirmed by viral RNA detection by real-time reverse-transcriptase-polymerase-chain-reaction assay (RT-PCR) using materials from nasopharyngeal and oropharyngeal swabs. We performed the RT-PCR assay for A/H1N1 detection in a liver biopsy from one patient. Both patients were treated with usual doses of oseltamivir (75 mg twice daily for 5 days). One patient developed acute bacterial sinusitis requiring antibiotic therapy. Thereafter the liver enzymes increased and transplant biopsies showed moderate-to-severe acute cellular rejection. They were treated with corticosteroids. The liver enzymes normalized after 3 months. A/H1N1 influenza can lead to a severe acute cellular rejection episode with corticosteroid resistant treatment in liver transplant patients. Transplant centers should be aware of a possible relationship between A/H1N1 infections and acute allograft rejection episodes. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012

    PubMed Central

    Grgić, Helena; Costa, Marcio; Friendship, Robert M.; Carman, Susy; Nagy, Éva; Poljak, Zvonimir

    2015-01-01

    The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors. PMID:26030614

  8. Radioisotope cisternography in acute viral encephalitis. A reappraisal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuyama, H.; Kawamura, J.

    1982-05-01

    Five cases of presumed acute viral encephalitis with convulsions were examined with radioisotope (RI) cisternography six and 24 hours after an intrathecal injection of 1 mCi of pentetic acid labeled with either /sup 169/Yb or /sup 111/In. All cases showed abnormalities with this study. The cold areas observed with RI cisternography were well correlated with abnormal foci on the EEG. Although the findings are nonspecific, the CSF dynamics and patency of the subarachnoid space are easily examined by RI cisternography without appreciable complications. It is a useful supplementary diagnostic method to depict the extent of lobar abnormalities of cerebral cortex,more » particularly at an early stage, that either narrow or obliterate subarachnoid space and CSF pathways.« less

  9. Sensitivity of influenza rapid diagnostic tests to H5N1 and 2009 pandemic H1N1 viruses.

    PubMed

    Sakai-Tagawa, Yuko; Ozawa, Makoto; Tamura, Daisuke; Le, Mai thi Quynh; Nidom, Chairul A; Sugaya, Norio; Kawaoka, Yoshihiro

    2010-08-01

    Simple and rapid diagnosis of influenza is useful for making treatment decisions in the clinical setting. Although many influenza rapid diagnostic tests (IRDTs) are available for the detection of seasonal influenza virus infections, their sensitivity for other viruses, such as H5N1 viruses and the recently emerged swine origin pandemic (H1N1) 2009 virus, remains largely unknown. Here, we examined the sensitivity of 20 IRDTs to various influenza virus strains, including H5N1 and 2009 pandemic H1N1 viruses. Our results indicate that the detection sensitivity to swine origin H1N1 viruses varies widely among IRDTs, with some tests lacking sufficient sensitivity to detect the early stages of infection when the virus load is low.

  10. Enhanced pneumonia and disease in pigs vaccinated with an inactivated human-like (δ-cluster) H1N2 vaccine and challenged with pandemic 2009 H1N1 influenza virus.

    PubMed

    Gauger, Phillip C; Vincent, Amy L; Loving, Crystal L; Lager, Kelly M; Janke, Bruce H; Kehrli, Marcus E; Roth, James A

    2011-03-24

    Influenza is an economically important respiratory disease affecting swine world-wide with potential zoonotic implications. Genetic reassortment and drift has resulted in genetically and antigenically distinct swine influenza viruses (SIVs). Consequently, prevention of SIV infection is challenging due to the increased rate of genetic change and a potential lack of cross-protection between vaccine strains and circulating novel isolates. This report describes a vaccine-heterologous challenge model in which pigs were administered an inactivated H1N2 vaccine with a human-like (δ-cluster) H1 six and three weeks before challenge with H1 homosubtypic, heterologous 2009 pandemic H1N1. At necropsy, macroscopic and microscopic pneumonia scores were significantly higher in the vaccinated and challenged (Vx/Ch) group compared to non-vaccinated and challenged (NVx/Ch) pigs. The Vx/Ch group also demonstrated enhanced clinical disease and a significantly elevated pro-inflammatory cytokine profile in bronchoalveolar lavage fluid compared to the NVx/Ch group. In contrast, viral shedding and replication were significantly higher in NVx/Ch pigs although all challenged pigs, including Vx/Ch pigs, were shedding virus in nasal secretions. Hemagglutination inhibition (HI) and serum neutralizing (SN) antibodies were detected to the priming antigen in the Vx/Ch pigs but no measurable cross-reacting HI or SN antibodies were detected to pandemic H1N1 (pH1N1). Overall, these results suggest that inactivated SIV vaccines may potentiate clinical signs, inflammation and pneumonia following challenge with divergent homosubtypic viruses that do not share cross-reacting HI or SN antibodies. Published by Elsevier Ltd.

  11. COMPARISON BETWEEN PROTON MAGNETIC RESONANCE SPECTROSCOPY FINDINGS IN DOGS WITH TICK-BORNE ENCEPHALITIS AND CLINICALLY NORMAL DOGS.

    PubMed

    Sievert, Christine; Richter, Henning; Beckmann, Katrin; Kircher, Patrick R; Carrera, Ines

    2017-01-01

    In vivo diagnosis of tick-borne encephalitis is difficult due to high seroprevalence and rapid viral clearance, limiting detection of antibodies in blood and cerebrospinal fluid. Magnetic resonance imaging (MRI) characteristics of tick-borne encephalitis have been reported, however MRI studies can also be negative despite the presence of neurologic signs. Magnetic resonance spectroscopy ( 1 H MRS) is an imaging method that provides additional information about the metabolic characteristics of brain tissues. The purpose of this retrospective cross-sectional study was to describe brain metabolites using short echo time single-voxel 1 H MRS in dogs with confirmed tick-borne encephalitis and compare them with healthy dogs. Inclusion criteria for the affected dogs were neurological symptoms suggestive of tick-borne encephalitis, previous endemic stay and tick-bite, diagnostic quality brain MRI and 1 H MRS studies, and positive antibody titers or confirmation of tick-borne encephalitis with necropsy. Control dogs were 10, clinically normal beagles that had been used in a previous study. A total of six affected dogs met inclusion criteria. All dogs affected with tick-borne encephalitis had 1 H MRS metabolite concentration alterations versus control dogs. These changes included mild to moderate decreases in N-acetyl aspartate and creatine peaks, and mild increases in glutamate/glutamine peaks. No lactate or lipid signal was detected in any dog. Myoinositol and choline signals did not differ between affected and control dogs. In conclusion, findings supported the use of 1 H MRS as an adjunctive imaging method for dogs with suspected tick-borne encephalitis and inconclusive conventional MRI findings. © 2016 American College of Veterinary Radiology.

  12. Characteristics of a Widespread Community Cluster of H275Y Oseltamivir-Resistant A(H1N1)pdm09 Influenza in Australia

    PubMed Central

    Hurt, A. C.; Hardie, K.; Wilson, N. J.; Deng, Y. M.; Osbourn, M.; Leang, S. K.; Lee, R. T. C.; Iannello, P.; Gehrig, N.; Shaw, R.; Wark, P.; Caldwell, N.; Givney, R. C.; Xue, L.; Maurer-Stroh, S.; Dwyer, D. E.; Wang, B.; Smith, D. W.; Levy, A.; Booy, R.; Dixit, R.; Merritt, T.; Kelso, A.; Dalton, C.; Durrheim, D.; Barr, I. G.

    2012-01-01

    Background. Oseltamivir resistance in A(H1N1)pdm09 influenza is rare, particularly in untreated community cases. Sustained community transmission has not previously been reported. Methods. Influenza specimens from the Asia–Pacific region were collected through sentinel surveillance, hospital, and general practitioner networks. Clinical and epidemiological information was collected on patients infected with oseltamivir-resistant viruses. Results. Twenty-nine (15%) of 191 A(H1N1)pdm09 viruses collected between May and September 2011 from Hunter New England (HNE), Australia, contained the H275Y neuraminidase substitution responsible for oseltamivir resistance. Only 1 patient had received oseltamivir before specimen collection. The resistant strains were genetically very closely related, suggesting the spread of a single variant. Ninety percent of cases lived within 50 kilometers. Three genetically similar oseltamivir-resistant variants were detected outside of HNE, including 1 strain from Perth, approximately 4000 kilometers away. Computational analysis predicted that neuraminidase substitutions V241I, N369K, and N386S in these viruses may offset the destabilizing effect of the H275Y substitution. Conclusions This cluster represents the first widespread community transmission of H275Y oseltamivir-resistant A(H1N1)pdm09 influenza. These cases and data on potential permissive mutations suggest that currently circulating A(H1N1)pdm09 viruses retain viral fitness in the presence of the H275Y mutation and that widespread emergence of oseltamivir-resistant strains may now be more likely. PMID:22561367

  13. Identification of combinatorial host-specific signatures with a potential to affect host adaptation in influenza A H1N1 and H3N2 subtypes.

    PubMed

    Khaliq, Zeeshan; Leijon, Mikael; Belák, Sándor; Komorowski, Jan

    2016-07-29

    The underlying strategies used by influenza A viruses (IAVs) to adapt to new hosts while crossing the species barrier are complex and yet to be understood completely. Several studies have been published identifying singular genomic signatures that indicate such a host switch. The complexity of the problem suggested that in addition to the singular signatures, there might be a combinatorial use of such genomic features, in nature, defining adaptation to hosts. We used computational rule-based modeling to identify combinatorial sets of interacting amino acid (aa) residues in 12 proteins of IAVs of H1N1 and H3N2 subtypes. We built highly accurate rule-based models for each protein that could differentiate between viral aa sequences coming from avian and human hosts. We found 68 host-specific combinations of aa residues, potentially associated to host adaptation on HA, M1, M2, NP, NS1, NEP, PA, PA-X, PB1 and PB2 proteins of the H1N1 subtype and 24 on M1, M2, NEP, PB1 and PB2 proteins of the H3N2 subtypes. In addition to these combinations, we found 132 novel singular aa signatures distributed among all proteins, including the newly discovered PA-X protein, of both subtypes. We showed that HA, NA, NP, NS1, NEP, PA-X and PA proteins of the H1N1 subtype carry H1N1-specific and HA, NA, PA-X, PA, PB1-F2 and PB1 of the H3N2 subtype carry H3N2-specific signatures. M1, M2, PB1-F2, PB1 and PB2 of H1N1 subtype, in addition to H1N1 signatures, also carry H3N2 signatures. Similarly M1, M2, NP, NS1, NEP and PB2 of H3N2 subtype were shown to carry both H3N2 and H1N1 host-specific signatures (HSSs). To sum it up, we computationally constructed simple IF-THEN rule-based models that could distinguish between aa sequences of avian and human IAVs. From the rules we identified HSSs having a potential to affect the adaptation to specific hosts. The identification of combinatorial HSSs suggests that the process of adaptation of IAVs to a new host is more complex than previously suggested

  14. Anti-inflammatory effect of thalidomide on H1N1 influenza virus-induced pulmonary injury in mice.

    PubMed

    Zhu, Haiyan; Shi, Xunlong; Ju, Dianwen; Huang, Hai; Wei, Wei; Dong, Xiaoying

    2014-12-01

    The purpose of this study is to investigate the anti-inflammatory effect of thalidomide (Thd) on H1N1-induced acute lung injury in mice. BALB/C mice were infected intranasally with influenza A virus (H1N1) and then treated with Thd at a dose of 100 or 200 mg/kg/day for 7 days. Weight loss and survival of mice were monitored for 14 days after virus challenge, and the serum and lung tissues were collected at 4 days for histological and biochemical analysis. The results showed that Thd significantly improved the survival rate, reduced the infiltration of inflammatory cells and cytokine (e.g., IL-6, TNF-α) and chemokine (e.g., RANTES, IP-10) levels, and inhibited activated p-NFκB p65 in infected mice. These findings suggested that Thd may attenuate H1N1-induced pulmonary injury and thus may find use in the treatment of viral diseases.

  15. Phylogenetic analyses of influenza A (H1N1)pdm09 hemagglutinin gene during and after the pandemic event in Brazil.

    PubMed

    Resende, Paola Cristina; Motta, Fernando Couto; Born, Priscila Silva; Machado, Daniela; Caetano, Braulia Costa; Brown, David; Siqueira, Marilda Mendonça

    2015-12-01

    Pandemic influenza A H1N1 [A(H1N1)pdm09] was first detected in Brazil in May 2009, and spread extensively throughout the country causing a peak of infection during June to August 2009. Since then, it has continued to circulate with a seasonal pattern, causing high rates of morbidity and mortality. Over this period, the virus has continually evolved with the accumulation of new mutations. In this study we analyze the phylogenetic relationship in a collection of 220 A(H1N1)pdm09 hemagglutinin (HA) gene sequences collected during and after the pandemic period (2009 to 2014) in Brazil. In addition, we have looked for evidence of viral polymorphisms associated with severe disease and compared the range of viral variants with the vaccine strain (A/California/7/2009) used throughout this period. The phylogenetic analyses in this study revealed the circulation of at least eight genetic groups in Brazil. Two (G6-pdm and G7-pdm) co-circulated during the pandemic period, showing an early pattern of viral diversification with a low genetic distance from vaccine strain. Other phylogenetic groups, G5, G6 (including 6B, 6C and 6D subgroups), and G7 were found in the subsequent epidemic seasons from 2011 to 2014. These viruses exhibited more amino acid differences from the vaccine strain with several substitutions at the antigenic sites. This is associated with a theoretical decrease in the vaccine efficacy. Furthermore, we observed that the presence of any polymorphism at residue 222 of the HA gene was significantly associated with severe/fatal cases, reinforcing previous reports that described this residue as a potential virulence marker. This study provides new information about the circulation of some viral variants in Brazil, follows up potential genetic markers associated with virulence and allows infer if the efficacy of the current vaccine against more recent A(H1N1)pdm09 strains may be reduced. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Extreme Evolutionary Conservation of Functionally Important Regions in H1N1 Influenza Proteome

    PubMed Central

    Warren, Samantha; Wan, Xiu-Feng; Conant, Gavin; Korkin, Dmitry

    2013-01-01

    The H1N1 subtype of influenza A virus has caused two of the four documented pandemics and is responsible for seasonal epidemic outbreaks, presenting a continuous threat to public health. Co-circulating antigenically divergent influenza strains significantly complicates vaccine development and use. Here, by combining evolutionary, structural, functional, and population information about the H1N1 proteome, we seek to answer two questions: (1) do residues on the protein surfaces evolve faster than the protein core residues consistently across all proteins that constitute the influenza proteome? and (2) in spite of the rapid evolution of surface residues in influenza proteins, are there any protein regions on the protein surface that do not evolve? To answer these questions, we first built phylogenetically-aware models of the patterns of surface and interior substitutions. Employing these models, we found a single coherent pattern of faster evolution on the protein surfaces that characterizes all influenza proteins. The pattern is consistent with the events of inter-species reassortment, the worldwide introduction of the flu vaccine in the early 80’s, as well as the differences caused by the geographic origins of the virus. Next, we developed an automated computational pipeline to comprehensively detect regions of the protein surface residues that were 100% conserved over multiple years and in multiple host species. We identified conserved regions on the surface of 10 influenza proteins spread across all avian, swine, and human strains; with the exception of a small group of isolated strains that affected the conservation of three proteins. Surprisingly, these regions were also unaffected by genetic variation in the pandemic 2009 H1N1 viral population data obtained from deep sequencing experiments. Finally, the conserved regions were intrinsically related to the intra-viral macromolecular interaction interfaces. Our study may provide further insights towards the

  17. Characterization of pseudoparticles paired with hemagglutinin and neuraminidase from highly pathogenic H5N1 influenza and avian influenza A (H7N9) viruses.

    PubMed

    Zhang, Fengwei; Wang, Shanshan; Wang, Yanan; Shang, Xuechai; Zhou, Hongjuan; Cai, Long

    2018-05-31

    The reassortment of two highly pathogenic avian influenza (HPAI) H5N1 and H7N9 viruses presents a potential challenge to human health. The hemagglutinins (HAs) and neuraminidases (NAs) of these simultaneously circulating avian influenza viruses were evaluated using the pseudoparticle (pp) system. Native and mismatched virus pps were generated to investigate their biological characteristics. The HAs and NAs of the two viruses reassorted successfully to generate infectious viral particles. H7 was demonstrated to have the ability to reassort with NA from the H5N1 viruses, resulting in the generation of virions that were highly infectious to bronchial epithelial cells. Although the Anhui H5+Anhui N9 combination showed an moderate infectivity to the four cell lines, it was most sensitive to oseltamivir. The H7 in the pps was found to be predominantly HA0. Further, H5 in the pps primarily presented as HA1, owing to the particular mechanisms underlying its maturation. All NAs predominantly existed in monomer form. In our study, HAs/NAs, in all combinations, were functional and able to perform their corresponding function in the viral life cycle. Our data suggest that HAs/NAs from the (HPAI) H5N1 and H7N9 viruses are capable of assembly into infectious virions, posing a threat topublic health. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. H5N1 Influenza A Virus PB1-F2 Relieves HAX-1-Mediated Restriction of Avian Virus Polymerase PA in Human Lung Cells.

    PubMed

    Mazel-Sanchez, B; Boal-Carvalho, I; Silva, F; Dijkman, R; Schmolke, M

    2018-06-01

    Highly pathogenic influenza A viruses (IAV) from avian hosts were first reported to directly infect humans 20 years ago. However, such infections are rare events, and our understanding of factors promoting or restricting zoonotic transmission is still limited. One accessory protein of IAV, PB1-F2, was associated with pathogenicity of pandemic and zoonotic IAV. This short (90-amino-acid) peptide does not harbor an enzymatic function. We thus identified host factors interacting with H5N1 PB1-F2, which could explain its importance for virulence. PB1-F2 binds to HCLS1-associated protein X1 (HAX-1), a recently identified host restriction factor of the PA subunit of IAV polymerase complexes. We demonstrate that the PA of a mammal-adapted H1N1 IAV is resistant to HAX-1 imposed restriction, while the PA of an avian-origin H5N1 IAV remains sensitive. We also showed HAX-1 sensitivity for PAs of A/Brevig Mission/1/1918 (H1N1) and A/Shanghai/1/2013 (H7N9), two avian-origin zoonotic IAV. Inhibition of H5N1 polymerase by HAX-1 can be alleviated by its PB1-F2 through direct competition. Accordingly, replication of PB1-F2-deficient H5N1 IAV is attenuated in the presence of large amounts of HAX-1. Mammal-adapted H1N1 and H3N2 viruses do not display this dependence on PB1-F2 for efficient replication in the presence of HAX-1. We propose that PB1-F2 plays a key role in zoonotic transmission of avian H5N1 IAV into humans. IMPORTANCE Aquatic and shore birds are the natural reservoir of influenza A viruses from which the virus can jump into a variety of bird and mammal host species, including humans. H5N1 influenza viruses are a good model for this process. They pose an ongoing threat to human and animal health due to their high mortality rates. However, it is currently unclear what restricts these interspecies jumps on the host side or what promotes them on the virus side. Here we show that a short viral peptide, PB1-F2, helps H5N1 bird influenza viruses to overcome a human restriction

  19. Pathogenesis and transmissibility of highly (H7N1) and low (H7N9) pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa).

    PubMed

    Bertran, Kateri; Pérez-Ramírez, Elisa; Busquets, Núria; Dolz, Roser; Ramis, Antonio; Darji, Ayub; Abad, Francesc Xavier; Valle, Rosa; Chaves, Aida; Vergara-Alert, Júlia; Barral, Marta; Höfle, Ursula; Majó, Natàlia

    2011-02-07

    An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in both groups. In HPAIV infected birds, the first clinical signs were observed at 3 dpi, and mortality started at 4 dpi, reaching 100% at 8 dpi. The presence of viral antigen in tissues and viral shedding were confirmed by immunohistochemistry and quantitative real time RT-PCR (qRRT-PCR), respectively, in all birds infected with HPAIV. However, neither clinical signs nor histopathological findings were observed in LPAIV infected partridges. In addition, only short-term viral shedding together with seroconversion was detected in some LPAIV inoculated animals. The present study demonstrates that the red-legged partridge is highly susceptible to the H7N1 HPAIV strain, causing severe disease, mortality and abundant viral shedding and thus contributing to the spread of a potential local outbreak of this virus. In contrast, our results concerning H7N9 LPAIV suggest that the red-legged partridge is not a reservoir species for this virus.

  20. Pathogenesis and transmissibility of highly (H7N1) and low (H7N9) pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa)

    PubMed Central

    2011-01-01

    An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in both groups. In HPAIV infected birds, the first clinical signs were observed at 3 dpi, and mortality started at 4 dpi, reaching 100% at 8 dpi. The presence of viral antigen in tissues and viral shedding were confirmed by immunohistochemistry and quantitative real time RT-PCR (qRRT-PCR), respectively, in all birds infected with HPAIV. However, neither clinical signs nor histopathological findings were observed in LPAIV infected partridges. In addition, only short-term viral shedding together with seroconversion was detected in some LPAIV inoculated animals. The present study demonstrates that the red-legged partridge is highly susceptible to the H7N1 HPAIV strain, causing severe disease, mortality and abundant viral shedding and thus contributing to the spread of a potential local outbreak of this virus. In contrast, our results concerning H7N9 LPAIV suggest that the red-legged partridge is not a reservoir species for this virus. PMID:21314907

  1. Heterogeneity of T Cell Responses to Pandemic pH1N1 Monovalent Vaccine in HIV-Infected Pregnant Women.

    PubMed

    Weinberg, Adriana; Muresan, Petronella; Richardson, Kelly; Fenton, Terence; Dominguez, Teresa; Bloom, Anthony; Watts, D Heather; Abzug, Mark J; Nachman, Sharon A; Levin, Myron J

    2015-11-01

    We investigated the Th1 protective and regulatory T and B cell (Treg and Breg) responses to pH1N1 monovalent influenza vaccine (IIV1) in HIV-infected pregnant women on combination antiretroviral therapy (cART). Peripheral blood mononuclear cells (PBMCs) from 52 study participants were cryopreserved before and after vaccination and analyzed by flow cytometry. pH1N1-specific Th1, Treg, and Breg responses were measured in PBMCs after in vitro stimulation with pH1N1 and control antigen. The cohort analysis did not detect changes in pH1N1-Th1, Treg, or Breg subsets postvaccination. However, individual analyses distinguished subjects who mounted vigorous Th1 responses postvaccination from others who did not. Postvaccination, high pH1N1-Th1 correlated with high pH1N1-Treg and Breg responses, suggesting that low influenza effector responses did not result from excessive vaccine-induced immune regulation. High postvaccination pH1N1-Th1 responses correlated with baseline high PHA- and pH1N1-IFN-γ ELISpot and circulating CD4(+)CD39(+)% and CD8(+)CD39(+)% Treg, with low CD8(+) cell numbers and CD19(+)FOXP3(+)% Breg, but not with CD4(+) cell numbers or HIV viral load. These data highlight the heterogeneity of T cell responses to vaccines in HIV-infected individuals on cART. Predictors of robust Th1 responses to IIV include CD8(+) cell numbers, T cell functionality, and circulating Breg and Treg.

  2. Comparison of Shedding Characteristics of Seasonal Influenza Virus (Sub)Types and Influenza A(H1N1)pdm09; Germany, 2007–2011

    PubMed Central

    Suess, Thorsten; Remschmidt, Cornelius; Schink, Susanne B.; Schweiger, Brunhilde; Heider, Alla; Milde, Jeanette; Nitsche, Andreas; Schroeder, Kati; Doellinger, Joerg; Braun, Christian; Haas, Walter; Krause, Gérard; Buchholz, Udo

    2012-01-01

    Background Influenza viral shedding studies provide fundamental information for preventive strategies and modelling exercises. We conducted a prospective household study to investigate viral shedding in seasonal and pandemic influenza between 2007 and 2011 in Berlin and Munich, Germany. Methods Study physicians recruited index patients and their household members. Serial nasal specimens were obtained from all household members over at least eight days and tested quantitatively by qRT-PCR for the influenza virus (sub)type of the index patient. A subset of samples was also tested by viral culture. Symptoms were recorded daily. Results We recruited 122 index patients and 320 household contacts, of which 67 became secondary household cases. Among all 189 influenza cases, 12 were infected with seasonal/prepandemic influenza A(H1N1), 19 with A(H3N2), 60 with influenza B, and 98 with A(H1N1)pdm09. Nine (14%) of 65 non-vaccinated secondary cases were asymptomatic/subclinical (0 (0%) of 21 children, 9 (21%) of 44 adults; p = 0.03). Viral load among patients with influenza-like illness (ILI) peaked on illness days 1, 2 or 3 for all (sub)types and declined steadily until days 7–9. Clinical symptom scores roughly paralleled viral shedding dynamics. On the first day prior to symptom onset 30% (12/40) of specimens were positive. Viral load in 6 asymptomatic/subclinical patients was similar to that in ILI-patients. Duration of infectiousness as measured by viral culture lasted approximately until illness days 4–6. Viral load did not seem to be influenced by antiviral therapy, age or vaccination status. Conclusion Asymptomatic/subclinical infections occur infrequently, but may be associated with substantial amounts of viral shedding. Presymptomatic shedding may arise in one third of cases, and shedding characteristics appear to be independent of (seasonal or pandemic) (sub)type, age, antiviral therapy or vaccination; however the power to find moderate differences was

  3. Calculating the potential for within-flight transmission of influenza A (H1N1)

    PubMed Central

    2009-01-01

    Background Clearly air travel, by transporting infectious individuals from one geographic location to another, significantly affects the rate of spread of influenza A (H1N1). However, the possibility of within-flight transmission of H1N1 has not been evaluated; although it is known that smallpox, measles, tuberculosis, SARS and seasonal influenza can be transmitted during commercial flights. Here we present the first quantitative risk assessment to assess the potential for within-flight transmission of H1N1. Methods We model airborne transmission of infectious viral particles of H1N1 within a Boeing 747 using methodology from the field of quantitative microbial risk assessment. Results The risk of catching H1N1 will essentially be confined to passengers travelling in the same cabin as the source case. Not surprisingly, we find that the longer the flight the greater the number of infections that can be expected. We calculate that H1N1, even during long flights, poses a low to moderate within-flight transmission risk if the source case travels First Class. Specifically, 0-1 infections could occur during a 5 hour flight, 1-3 during an 11 hour flight and 2-5 during a 17 hour flight. However, within-flight transmission could be significant, particularly during long flights, if the source case travels in Economy Class. Specifically, two to five infections could occur during a 5 hour flight, 5-10 during an 11 hour flight and 7-17 during a 17 hour flight. If the aircraft is only partially loaded, under certain conditions more infections could occur in First Class than in Economy Class. During a 17 hour flight, a greater number of infections would occur in First Class than in Economy if the First Class Cabin is fully occupied, but Economy class is less than 30% full. Conclusions Our results provide insights into the potential utility of air travel restrictions on controlling influenza pandemics in the winter of 2009/2010. They show travel by one infectious individual

  4. Calculating the potential for within-flight transmission of influenza A (H1N1).

    PubMed

    Wagner, Bradley G; Coburn, Brian J; Blower, Sally

    2009-12-24

    Clearly air travel, by transporting infectious individuals from one geographic location to another, significantly affects the rate of spread of influenza A (H1N1). However, the possibility of within-flight transmission of H1N1 has not been evaluated; although it is known that smallpox, measles, tuberculosis, SARS and seasonal influenza can be transmitted during commercial flights. Here we present the first quantitative risk assessment to assess the potential for within-flight transmission of H1N1. We model airborne transmission of infectious viral particles of H1N1 within a Boeing 747 using methodology from the field of quantitative microbial risk assessment. The risk of catching H1N1 will essentially be confined to passengers travelling in the same cabin as the source case. Not surprisingly, we find that the longer the flight the greater the number of infections that can be expected. We calculate that H1N1, even during long flights, poses a low to moderate within-flight transmission risk if the source case travels First Class. Specifically, 0-1 infections could occur during a 5 hour flight, 1-3 during an 11 hour flight and 2-5 during a 17 hour flight. However, within-flight transmission could be significant, particularly during long flights, if the source case travels in Economy Class. Specifically, two to five infections could occur during a 5 hour flight, 5-10 during an 11 hour flight and 7-17 during a 17 hour flight. If the aircraft is only partially loaded, under certain conditions more infections could occur in First Class than in Economy Class. During a 17 hour flight, a greater number of infections would occur in First Class than in Economy if the First Class Cabin is fully occupied, but Economy class is less than 30% full. Our results provide insights into the potential utility of air travel restrictions on controlling influenza pandemics in the winter of 2009/2010. They show travel by one infectious individual, rather than causing a single outbreak of H1N

  5. Experimental infection of mandarin duck with highly pathogenic avian influenza A (H5N8 and H5N1) viruses.

    PubMed

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Heo, Gyeong-Beom; Jung, Joojin; Jang, Il; Bae, You-Chan; Jung, Suk Chan; Lee, Youn-Jeong

    2017-01-01

    A highly pathogenic avian influenza (HPAI) H5N8 virus was first detected in poultry and wild birds in South Korea in January 2014. Here, we determined the pathogenicity and transmissibility of three different clades of H5 viruses in mandarin ducks to examine the potential for wild bird infection. H5N8 (clade 2.3.4.4) replicated more efficiently in the upper and lower respiratory tract of mandarin ducks than two previously identified H5N1 virus clades (clades 2.2 and 2.3.2.1). However, none of the mandarin ducks infected with H5N8 and H5N1 viruses showed severe clinical signs or mortality, and gross lesions were only observed in a few tissues. Viral replication and shedding were greater in H5N8-infected ducks than in H5N1-infected ducks. Recovery of all viruses from control duck in contact with infected ducks indicated that the highly pathogenic H5 viruses spread horizontally through contact. Taken together, these results suggest that H5N8 viruses spread efficiently in mandarin ducks. Further studies of pathogenicity in wild birds are required to examine possible long-distance dissemination via migration routes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Coinfection with influenza A(H1N1)pdm09 and dengue virus in fatal cases.

    PubMed

    Perdigão, Anne Carolinne Bezerra; Ramalho, Izabel Letícia Cavalcante; Guedes, Maria Izabel Florindo; Braga, Deborah Nunes Melo; Cavalcanti, Luciano Pamplona Góes; Melo, Maria Elisabeth Lisboa de; Araújo, Rafael Montenegro de Carvalho; Lima, Elza Gadelha; Silva, Luciene Alexandre Bié da; Araújo, Lia de Carvalho; Araújo, Fernanda Montenegro de Carvalho

    2016-09-01

    We report on four patients with fatal influenza A(H1N1)pdm09 and dengue virus coinfections. Clinical, necropsy and histopathologic findings presented in all cases were characteristic of influenza-dengue coinfections, and all were laboratory-confirmed for both infections. The possibility of influenza and dengue coinfection should be considered in locations where these two viruses' epidemic periods coincide to avoid fatal outcomes. Dengue is a mosquito-borne viral infection caused by one of the four dengue viruses (DENV-1 to 4). Each of these viruses is capable of causing nonspecific febrile illnesses, classic dengue fever and dengue haemorrhagic fever (Gubler 1998). As a result, dengue is often difficult to diagnose clinically, especially because peak dengue season often coincides with that of other common febrile illnesses in tropical regions (Chacon et al. 2015). In April 2009, a new virus, influenza A/H1N1/pandemic (FluA/H1N1/09pdm), caused a severe outbreak in Mexico. The virus quickly spread throughout the world, and in June 2009, the World Health Organization declared a pandemic (WHO 2010). In Brazil, the first laboratory confirmed case of FluA/H1N1/09pdm was in July 2009 (Pires Neto et al. 2013). The state of Ceará, in Northeast Brazil, is a dengue endemic area. In this state, the virus influenza A(H1N1)pdm09 has circulated since 2009, and through the first half of 2012, 11 deaths caused by the virus were confirmed (Pires Neto et al. 2013). The influenza and dengue seasons in Ceará overlap, which led to diagnostic difficulties. We report four cases of laboratory-confirmed coinfection of deadly influenza A(H1N1)pdm09 with DENV, which occurred during the dengue and influenza season in 2012 and 2013 in Ceará.

  7. Coinfection with influenza A(H1N1)pdm09 and dengue virus in fatal cases

    PubMed Central

    Perdigão, Anne Carolinne Bezerra; Ramalho, Izabel Letícia Cavalcante; Guedes, Maria Izabel Florindo; Braga, Deborah Nunes Melo; Cavalcanti, Luciano Pamplona Góes; de Melo, Maria Elisabeth Lisboa; Araújo, Rafael Montenegro de Carvalho; Lima, Elza Gadelha; da Silva, Luciene Alexandre Bié; Araújo, Lia de Carvalho; Araújo, Fernanda Montenegro de Carvalho

    2016-01-01

    Abstract We report on four patients with fatal influenza A(H1N1)pdm09 and dengue virus coinfections. Clinical, necropsy and histopathologic findings presented in all cases were characteristic of influenza-dengue coinfections, and all were laboratory-confirmed for both infections. The possibility of influenza and dengue coinfection should be considered in locations where these two viruses’ epidemic periods coincide to avoid fatal outcomes. Dengue is a mosquito-borne viral infection caused by one of the four dengue viruses (DENV-1 to 4). Each of these viruses is capable of causing nonspecific febrile illnesses, classic dengue fever and dengue haemorrhagic fever (Gubler 1998). As a result, dengue is often difficult to diagnose clinically, especially because peak dengue season often coincides with that of other common febrile illnesses in tropical regions (Chacon et al. 2015). In April 2009, a new virus, influenza A/H1N1/pandemic (FluA/H1N1/09pdm), caused a severe outbreak in Mexico. The virus quickly spread throughout the world, and in June 2009, the World Health Organization declared a pandemic (WHO 2010). In Brazil, the first laboratory confirmed case of FluA/H1N1/09pdm was in July 2009 (Pires Neto et al. 2013). The state of Ceará, in Northeast Brazil, is a dengue endemic area. In this state, the virus influenza A(H1N1)pdm09 has circulated since 2009, and through the first half of 2012, 11 deaths caused by the virus were confirmed (Pires Neto et al. 2013). The influenza and dengue seasons in Ceará overlap, which led to diagnostic difficulties. We report four cases of laboratory-confirmed coinfection of deadly influenza A(H1N1)pdm09 with DENV, which occurred during the dengue and influenza season in 2012 and 2013 in Ceará. PMID:27598244

  8. Efficacy of a Recombinant Turkey Herpesvirus H5 Vaccine Against Challenge With H5N1 Clades 1.1.2 and 2.3.2.1 Highly Pathogenic Avian Influenza Viruses in Domestic Ducks (Anas platyrhynchos domesticus).

    PubMed

    Pantin-Jackwood, Mary J; Kapczynski, Darrell R; DeJesus, Eric; Costa-Hurtado, Mar; Dauphin, Gwenaelle; Tripodi, Astrid; Dunn, John R; Swayne, David E

    2016-03-01

    Domestic ducks are the second most abundant poultry species in many Asian countries and have played a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI).In this study, the protective efficacy of a live recombinant vector vaccine based on a turkey herpesvirus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAI strain (A/Swan/Hungary/4999/ 2006) (rHVT-H5/2.2), given at 3 days of age, was examined in Pekin ducks (Anas platyrhynchos domesticus). The vaccine was given alone or in combination with an inactivated H5N1 clade 2.3.2.1 reverse genetic (rgGD/2.3.2.1) vaccine given at 16 days of age, either as a single vaccination or in a prime-boost regime. At 30 days of age, ducks were challenged with one of two H5N1 HPAI viruses: A/duck/Vietnam/NCVD-2721/2013 (clade 1.1.2) or A/duck/Vietnam/NCVD-1584/2012 (clade 2.3.2.1.C). These viruses produced 100% mortality in less than 5 days in nonvaccinated control ducks. Ducks vaccinated with the rgGD/2.3.2.1 vaccine, with or without the rHVT-H5/2.2 vaccine, were 90%-100% protected against mortality after challenge with either of the two H5N1 HPAI viruses. The rHVT-H5/2.2 vaccine alone, however, conferred only 30% protection against mortality after challenge with either H5N1 HPAI virus; the surviving ducks from these groups shed higher amount of virus and for longer than the single-vaccinated rgGD/2.3.2.1 group. Despite low protection, ducks vaccinated with the rHVT-H5/2.2 vaccine and challenged with the clade 1.1.2 Vietnam virus had a longer mean death time than nonvaccinated controls (P = 0.02). A booster effect was found on reduction of virus shedding when using both vaccines, with lower oropharyngeal viral titers at 4 days after challenge with either HPAI virus (P < 0.05). Neither rHVT-H5/2.2 nor standard HVT vaccine could be detected in samples collected from multiple tissues at different time points, indicting minimal levels of viral replication. In conclusion, although a minor effect on

  9. Development and characterization of a panel of cross-reactive monoclonal antibodies generated using H1N1 influenza virus.

    PubMed

    Guo, Chun-yan; Tang, Yi-gui; Qi, Zong-li; Liu, Yang; Zhao, Xiang-rong; Huo, Xue-ping; Li, Yan; Feng, Qing; Zhao, Peng-hua; Wang, Xin; Li, Yuan; Wang, Hai-fang; Hu, Jun; Zhang, Xin-jian

    2015-08-01

    To characterize the antigenic epitopes of the hemagglutinin (HA) protein of H1N1 influenza virus, a panel consisting of 84 clones of murine monoclonal antibodies (mAbs) were generated using the HA proteins from the 2009 pandemic H1N1 vaccine lysate and the seasonal influenza H1N1(A1) vaccines. Thirty-three (39%) of the 84 mAbs were found to be strain-specific, and 6 (7%) of the 84 mAbs were subtype-specific. Twenty (24%) of the 84 mAbs recognized the common HA epitopes shared by 2009 pandemic H1N1, seasonal A1 (H1N1), and A3 (H3N2) influenza viruses. Twenty-five of the 84 clones recognized the common HA epitopes shared by the 2009 pandemic H1N1, seasonal A1 (H1N1) and A3 (H3N2) human influenza viruses, and H5N1 and H9N2 avian influenza viruses. We found that of the 16 (19%) clones of the 84 mAbs panel that were cross-reactive with human respiratory pathogens, 15 were made using the HA of the seasonal A1 (H1N1) virus and 1 was made using the HA of the 2009 pandemic H1N1 influenza virus. Immunohistochemical analysis of the tissue microarray (TMA) showed that 4 of the 84 mAb clones cross-reacted with human tissue (brain and pancreas). Our results indicated that the influenza virus HA antigenic epitopes not only induce type-, subtype-, and strain-specific monoclonal antibodies against influenza A virus but also cross-reactive monoclonal antibodies against human tissues. Further investigations of these cross-reactive (heterophilic) epitopes may significantly improve our understanding of viral antigenic variation, epidemics, pathophysiologic mechanisms, and adverse effects of influenza vaccines. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Underreporting of Viral Encephalitis and Viral Meningitis, Ireland, 2005–2008

    PubMed Central

    O’Lorcain, Piaras; Moran, Joanne; Garvey, Patricia; McKeown, Paul; Connell, Jeff; Cotter, Suzanne

    2013-01-01

    Viral encephalitis (VE) and viral meningitis (VM) have been notifiable infectious diseases under surveillance in the Republic of Ireland since 1981. Laboratories have reported confirmed cases by detection of viral nucleic acid in cerebrospinal fluid since 2004. To determine the prevalence of these diseases in Ireland during 2005–2008, we analyzed 3 data sources: Hospital In-patient Enquiry data (from hospitalized following patients discharge) accessed through Health Intelligence Ireland, laboratory confirmations from the National Virus Reference Laboratory, and events from the Computerised Infectious Disease Reporting surveillance system. We found that the national surveillance system underestimates the incidence of these diseases in Ireland with a 10-fold higher VE hospitalization rate and 3-fold higher VM hospitalization rate than the reporting rate. Herpesviruses were responsible for most specified VE and enteroviruses for most specified VM from all 3 sources. Recommendations from this study have been implemented to improve the surveillance of these diseases in Ireland. PMID:23965781

  11. Introduction and enzootic of A/H5N1 in Egypt: Virus evolution, pathogenicity and vaccine efficacy ten years on.

    PubMed

    Abdelwhab, E M; Hassan, M K; Abdel-Moneim, A S; Naguib, M M; Mostafa, A; Hussein, I T M; Arafa, A; Erfan, A M; Kilany, W H; Agour, M G; El-Kanawati, Z; Hussein, H A; Selim, A A; Kholousy, S; El-Naggar, H; El-Zoghby, E F; Samy, A; Iqbal, M; Eid, A; Ibraheem, E M; Pleschka, S; Veits, J; Nasef, S A; Beer, M; Mettenleiter, T C; Grund, C; Ali, M M; Harder, T C; Hafez, H M

    2016-06-01

    It is almost a decade since the highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 was introduced to Egypt in 2005, most likely, via wild birds; marking the longest endemic status of influenza viruses in poultry outside Asia. The endemic A/H5N1 in Egypt still compromises the poultry industry, poses serious hazards to public health and threatens to become potentially pandemic. The control strategies adopted for A/H5N1 in Egyptian poultry using diverse vaccines in commercialized poultry neither eliminated the virus nor did they decrease its evolutionary rate. Several virus clades have evolved, a few of them disappeared and others prevailed. Disparate evolutionary traits in both birds and humans were manifested by accumulation of clade-specific mutations across viral genomes driven by a variety of selection pressures. Viruses in vaccinated poultry populations displayed higher mutation rates at the immunogenic epitopes, promoting viral escape and reducing vaccine efficiency. On the other hand, viruses isolated from humans displayed changes in the receptor binding domain, which increased the viral affinity to bind to human-type glycan receptors. Moreover, viral pathogenicity exhibited several patterns in different hosts. This review aims to provide an overview of the viral evolution, pathogenicity and vaccine efficacy of A/H5N1 in Egypt during the last ten years. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Intense Co-Circulation of Non-Influenza Respiratory Viruses during the First Wave of Pandemic Influenza pH1N1/2009: A Cohort Study in Reunion Island

    PubMed Central

    Turpin, Magali; Rollot, Olivier; Flahault, Antoine; Carrat, Fabrice; de Lamballerie, Xavier; Gérardin, Patrick; Dellagi, Koussay

    2012-01-01

    Objective The aim of the present study was to weigh up, at the community level, the respective roles played by pandemic Influenza (pH1N1) virus and co-circulating human Non-Influenza Respiratory Viruses (NIRVs) during the first wave of the 2009 pH1N1 pandemic. Methods A population-based prospective cohort study was conducted in Reunion Island during the austral winter 2009 (weeks 30–44) that allowed identification of 125 households with at least one member who developed symptoms of Influenza-like illness (ILI). Three consecutive nasal swabs were collected from each household member (443 individuals) on day 0, 3 and 8 post-ILI report and tested for pH1N1 and 15 NIRVs by RT-PCR. Results Two successive waves of viral infections were identified: a first wave (W33–37) when pH1N1 was dominant and co-circulated with NIRVs, sharply interrupted by a second wave (W38–44), almost exclusively composed of NIRVs, mainly human Rhinoviruses (hRV) and Coronaviruses (hCoV). Data suggest that some interference may occur between NIRVs and pH1N1 when they co-circulate within the same household, where NIRVs were more likely to infect pH1N1 negative individuals than pH1N1 positive peers (relative risk: 3.13, 95% CI: 1.80–5.46, P<0.001). Viral shedding was significantly shorter (P = 0.035) in patients who were co-infected by pH1N1 and NIRV or by two different NIRVs compared to those who were infected with only one virus, whatever this virus was (pH1N1 or NIRVs). Although intense co-circulation of NIRVs (especially hRV) likely brought pH1N1 under the detection threshold, it did not prevent spread of the pandemic Influenza virus within the susceptible population nor induction of an extensive herd immunity to it. Conclusion Our results suggest that NIRV co-infections during Influenza epidemics may act as cofactors that contribute to shape an outbreak and modulate the attack rate. They further warrant broad spectrum studies to fully understand viral epidemics. PMID:22984554

  13. A Candidate H1N1 Pandemic Influenza Vaccine Elicits Protective Immunity in Mice

    PubMed Central

    Steitz, Julia; Barlow, Peter G.; Hossain, Jaber; Kim, Eun; Okada, Kaori; Kenniston, Tom; Rea, Sheri; Donis, Ruben O.; Gambotto, Andrea

    2010-01-01

    Background In 2009 a new pandemic disease appeared and spread globally. The recent emergence of the pandemic influenza virus H1N1 first isolated in Mexico and USA raised concerns about vaccine availability. We here report our development of an adenovirus-based influenza H1N1 vaccine tested for immunogenicity and efficacy to confer protection in animal model. Methods We generated two adenovirus(Ad5)-based influenza vaccine candidates encoding the wildtype or a codon-optimized hemagglutinin antigen (HA) from the recently emerged swine influenza isolate A/California/04/2009 (H1N1)pdm. After verification of antigen expression, immunogenicity of the vaccine candidates were tested in a mouse model using dose escalations for subcutaneous immunization. Sera of immunized animals were tested in microneutalization and hemagglutination inhibition assays for the presence of HA-specific antibodies. HA-specific T-cells were measured in IFNγ Elispot assays. The efficiency of the influenza vaccine candidates were evaluated in a challenge model by measuring viral titer in lung and nasal turbinate 3 days after inoculation of a homologous H1N1 virus. Conclusions/Significance A single immunization resulted in robust cellular and humoral immune response. Remarkably, the intensity of the immune response was substantially enhanced with codon-optimized antigen, indicating the benefit of manipulating the genetic code of HA antigens in the context of recombinant influenza vaccine design. These results highlight the value of advanced technologies in vaccine development and deployment in response to infections with pandemic potential. Our study emphasizes the potential of an adenoviral-based influenza vaccine platform with the benefits of speed of manufacture and efficacy of a single dose immunization. PMID:20463955

  14. Serosurveillance for pandemic influenza A (H1N1) 2009 virus infection in domestic elephants, Thailand

    PubMed Central

    Paungpin, Weena; Wiriyarat, Witthawat; Chaichoun, Kridsada; Tiyanun, Ekasit; Sangkachai, Nareerat; Changsom, Don; Poltep, Kanaporn; Ratanakorn, Parntep

    2017-01-01

    The present study conducted serosurveillance for the presence of antibody to pandemic influenza A (H1N1) 2009 virus (H1N1pdm virus) in archival serum samples collected between 2009 and 2013 from 317 domestic elephants living in 19 provinces situated in various parts of Thailand. To obtain the most accurate data, hemagglutination-inhibition (HI) assay was employed as the screening test; and sera with HI antibody titers ≥20 were further confirmed by other methods, including cytopathic effect/hemagglutination based-microneutralization (microNT) and Western blot (WB) assays using H1N1pdm matrix 1 (M1) or hemagglutinin (HA) recombinant protein as the test antigen. Conclusively, the appropriate assays using HI in conjunction with WB assays for HA antibody revealed an overall seropositive rate of 8.5% (27 of 317). The prevalence of antibody to H1N1pdm virus was 2% (4/172) in 2009, 32% (17/53) in 2010, 9% (2/22) in 2011, 12% (1/8) in 2012, and 5% (3/62) in 2013. Notably, these positive serum samples were collected from elephants living in 7 tourist provinces of Thailand. The highest seropositive rate was obtained from elephants in Phuket, a popular tourist beach city. Young elephants had higher seropositive rate than older elephants. The source of H1N1pdm viral infection in these elephants was not explored, but most likely came from close contact with the infected mahouts or from the infected tourists who engaged in activities such as elephant riding and feeding. Nevertheless, it could not be excluded that elephant-to-elephant transmission did occur. PMID:29073255

  15. Serosurveillance for pandemic influenza A (H1N1) 2009 virus infection in domestic elephants, Thailand.

    PubMed

    Paungpin, Weena; Wiriyarat, Witthawat; Chaichoun, Kridsada; Tiyanun, Ekasit; Sangkachai, Nareerat; Changsom, Don; Poltep, Kanaporn; Ratanakorn, Parntep; Puthavathana, Pilaipan

    2017-01-01

    The present study conducted serosurveillance for the presence of antibody to pandemic influenza A (H1N1) 2009 virus (H1N1pdm virus) in archival serum samples collected between 2009 and 2013 from 317 domestic elephants living in 19 provinces situated in various parts of Thailand. To obtain the most accurate data, hemagglutination-inhibition (HI) assay was employed as the screening test; and sera with HI antibody titers ≥20 were further confirmed by other methods, including cytopathic effect/hemagglutination based-microneutralization (microNT) and Western blot (WB) assays using H1N1pdm matrix 1 (M1) or hemagglutinin (HA) recombinant protein as the test antigen. Conclusively, the appropriate assays using HI in conjunction with WB assays for HA antibody revealed an overall seropositive rate of 8.5% (27 of 317). The prevalence of antibody to H1N1pdm virus was 2% (4/172) in 2009, 32% (17/53) in 2010, 9% (2/22) in 2011, 12% (1/8) in 2012, and 5% (3/62) in 2013. Notably, these positive serum samples were collected from elephants living in 7 tourist provinces of Thailand. The highest seropositive rate was obtained from elephants in Phuket, a popular tourist beach city. Young elephants had higher seropositive rate than older elephants. The source of H1N1pdm viral infection in these elephants was not explored, but most likely came from close contact with the infected mahouts or from the infected tourists who engaged in activities such as elephant riding and feeding. Nevertheless, it could not be excluded that elephant-to-elephant transmission did occur.

  16. The severe pathogenicity of alveolar macrophage-depleted ferrets infected with 2009 pandemic H1N1 influenza virus.

    PubMed

    Kim, Heui Man; Kang, Young Myong; Ku, Keun Bon; Park, Eun Hye; Yum, Jung; Kim, Jeong Cheol; Jin, Seo Yeon; Lee, Joo Sub; Kim, Hyun Soo; Seo, Sang Heui

    2013-09-01

    The in vivo role of alveolar macrophages in the infections with 2009 pandemic H1N1 influenza virus is not as yet known. Ferret study shows that alveolar macrophages are critical for lowering the risk of severe outcomes in 2009 pandemic H1N1 influenza virus infections. Up to 40% of the infected ferrets depleted of alveolar macrophages died, with elevated body temperature and major loss of body weight in contrast to infected ferrets not depleted of alveolar macrophages. The higher viral titers in the lungs were detected in infected ferrets depleted of alveolar macrophages than infected ferrets not depleted of alveolar macrophages 5 days after infection. The inflammatory chemokines were induced at greater levels in the lungs of infected ferrets depleted of alveolar macrophages than in those of infected ferrets not depleted of alveolar macrophages. Our study implies that alveolar macrophages are important for controlling the infections of 2009 pandemic H1N1 influenza virus. © 2013 Elsevier Inc. All rights reserved.

  17. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany.

    PubMed

    van den Brand, Judith Ma; Krone, Oliver; Wolf, Peter U; van de Bildt, Marco W G; van Amerongen, Geert; Osterhaus, Albert D M E; Kuiken, Thijs

    2015-03-05

    Raptors may contract highly pathogenic avian influenza virus H5N1 by hunting or scavenging infected prey. However, natural H5N1 infection in raptors is rarely reported. Therefore, we tested raptors found dead during an H5N1 outbreak in wild waterbirds in Mecklenburg-Western Pomerania, Germany, in 2006 for H5N1-associated disease. We tested 624 raptors of nine species-common buzzard (385), Eurasian sparrowhawk (111), common kestrel (38), undetermined species of buzzard (36), white-tailed sea eagle (19), undetermined species of raptor (12), northern goshawk (10), peregrine falcon (6), red kite (3), rough-legged buzzard (3), and western marsh-harrier (1)-for H5N1 infection in tracheal or combined tracheal/cloacal swabs of all birds, and on major tissues of all white-tailed sea eagles. H5N1 infection was detected in two species: common buzzard (12 positive, 3.1%) and peregrine falcon (2 positive, 33.3%). In all necropsied birds (both peregrine falcons and the six freshest common buzzards), H5N1 was found most consistently and at the highest concentration in the brain, and the main H5N1-associated lesion was marked non-suppurative encephalitis. Other H5N1-associated lesions occurred in air sac, lung, oviduct, heart, pancreas, coelomic ganglion, and adrenal gland. Our results show that the main cause of death in H5N1-positive raptors was encephalitis. Our results imply that H5N1 outbreaks in wild waterbirds are more likely to lead to exposure to and mortality from H5N1 in raptors that hunt or scavenge medium-sized birds, such as common buzzards and peregrine falcons, than in raptors that hunt small birds and do not scavenge, such as Eurasian sparrowhawks and common kestrels.

  18. Enhanced enteroviral infectivity via viral protease-mediated cleavage of Grb2-associated binder 1

    PubMed Central

    Deng, Haoyu; Fung, Gabriel; Shi, Junyan; Xu, Suowen; Wang, Chen; Yin, Meimei; Hou, Jun; Zhang, Jingchun; Jin, Zheng-Gen; Luo, Honglin

    2015-01-01

    Coxsackievirus B3 (CVB3), an important human causative pathogen for viral myocarditis, pancreatitis, and meningitis, has evolved different strategies to manipulate the host signaling machinery to ensure successful viral infection. We previously revealed a crucial role for the ERK1/2 signaling pathway in regulating viral infectivity. However, the detail mechanism remains largely unknown. Grb2-associated binder 1 (GAB1) is an important docking protein responsible for intracellular signaling assembly and transduction. In this study, we demonstrated that GAB1 was proteolytically cleaved after CVB3 infection at G175 and G436 by virus-encoded protease 2Apro, independent of caspase activation. Knockdown of GAB1 resulted in a significant reduction of viral protein expression and virus titers. Moreover, we showed that virus-induced cleavage of GAB1 is beneficial to viral growth as the N-terminal proteolytic product of GAB1 (GAB1-N1–174) further enhances ERK1/2 activation and promotes viral replication. Our results collectively suggest that CVB3 targets host GAB1 to generate a GAB1-N1–174 fragment that enhances viral infectivity, at least in part, via activation of the ERK pathway. The findings in this study suggest a novel mechanism that CVB3 employs to subvert the host signaling and facilitate consequent viral replication.—Deng, H., Fung, G., Shi, J., Xu, S., Wang, C., Yin, M., Hou, J., Zhang, J., Jin, Z.-G., Luo, H. Enhanced enteroviral infectivity via viral protease-mediated cleavage of Grb2-associated binder 1. PMID:26183772

  19. Predictors of H1N1 influenza in the emergency department: proposition for a modified H1N1 case definition.

    PubMed

    Flick, H; Drescher, M; Prattes, J; Tovilo, K; Kessler, H H; Vander, K; Seeber, K; Palfner, M; Raggam, R B; Avian, A; Krause, R; Hoenigl, M

    2014-02-01

    Reliable and rapid diagnosis of influenza A H1N1 is essential to initiate appropriate antiviral therapy and preventive measures. We analysed the differences in clinical presentation and laboratory parameters between emergency department patients with PCR-confirmed H1N1 influenza infection (n = 199) and those with PCR-negative influenza-like illness (ILI; n = 252). Cough, wheezing, leucopenia, eosinopenia and a lower C-reactive protein remained significant predictors of H1N1 influenza. Proposed combinations of clinical symptoms with simple laboratory parameters (e.g. reported or measured fever and either cough or leucocytes <8.5 × 10(9) /L) were clearly superior to currently used official ILI case definitions that use clinical criteria alone. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  20. Molecular detection of viral causes of encephalitis and meningitis in New York State.

    PubMed

    Dupuis, Michelle; Hull, Rene; Wang, Heng; Nattanmai, Seela; Glasheen, Bernadette; Fusco, Heather; Dzigua, Lela; Markey, Katie; Tavakoli, Norma P

    2011-12-01

    The etiology of encephalitis and meningitis, serious diseases of the central nervous system (CNS), in most cases remains unknown. The importance of establishing a diagnosis however, becomes even more important as advances are made in effective therapy. Molecular methods of detection, in particular, PCR, are being used routinely and have established a place in the arsenal of tools for diagnosis of CNS infections. In this study a viral etiological agent was detected by PCR in 340 of the total 2,357 specimens from patients who exhibited symptoms of encephalitis or meningitis. The detection rate increased from 8.9% during the first year of the study to 14.8% during the second year of the study with improved methodology and an expanded panel of viral agents. Methods were enhanced by developing real-time PCR assays (some multiplexed), using increased automation, superior nucleic acid extraction, and reverse transcription (RT) methods, and incorporation of an internal extraction control. Additionally, adenovirus and human herpes virus 6 (HHV-6) were added to the original panel of 10 viruses that included enteroviruses, herpesviruses, and arboviruses. The most common viruses detected were enteroviruses (129; 5.5%), Epstein-Barr virus (EBV) (85; 3.6%), herpes simplex viruses (HSVs) 1 and 2 (67; 2.8%), and varicella zoster virus (VZV) (44; 1.9%). Copyright © 2011 Wiley Periodicals, Inc.

  1. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus

    NASA Astrophysics Data System (ADS)

    Mori, Yasutaka; Ono, Takeshi; Miyahira, Yasushi; Nguyen, Vinh Quang; Matsui, Takemi; Ishihara, Masayuki

    2013-02-01

    Silver nanoparticle (Ag NP)/chitosan (Ch) composites with antiviral activity against H1N1 influenza A virus were prepared. The Ag NP/Ch composites were obtained as yellow or brown floc-like powders following reaction at room temperature in aqueous medium. Ag NPs (3.5, 6.5, and 12.9 nm average diameters) were embedded into the chitosan matrix without aggregation or size alternation. The antiviral activity of the Ag NP/Ch composites was evaluated by comparing the TCID50 ratio of viral suspensions treated with the composites to untreated suspensions. For all sizes of Ag NPs tested, antiviral activity against H1N1 influenza A virus increased as the concentration of Ag NPs increased; chitosan alone exhibited no antiviral activity. Size dependence of the Ag NPs on antiviral activity was also observed: antiviral activity was generally stronger with smaller Ag NPs in the composites. These results indicate that Ag NP/Ch composites interacting with viruses exhibit antiviral activity.

  2. Comparative analysis of selected innate immune-related genes following infection of immortal DF-1 cells with highly pathogenic (H5N1) and low pathogenic (H9N2) avian influenza viruses.

    PubMed

    Liu, Ai-Ling; Li, Yu-Feng; Qi, Wenbao; Ma, Xiu-Li; Yu, Ke-Xiang; Huang, Bing; Liao, Ming; Li, Feng; Pan, Jie; Song, Min-Xun

    2015-04-01

    H5N1 and H9N2 viruses are important causes of avian influenza in China. H5N1 is typically associated with severe to fatal disease in poultry, while H9N2 is usually associated with mild disease. Differences in viral virulence prompted us to investigate whether innate immune responses would be differentially regulated following infection by H5N1 and H9N2 viruses. To address this hypothesis, expression of a panel of innate immune-related genes including IFN-α, IFN-β, Mx1, OASL, ISG12, IFIT5, IRF7, USP18, SST, and KHSRP in immortal DF-1 cells following H5N1 and H9N2 infection was analyzed and compared by real-time quantitative RT-PCR. Cells infected by either virus overall exhibited a similar expression profile for four ISGs (Mx1, OASL, ISG12, and IFIT5), IFN-α, IFN-β, and SST gene. However, two immune-regulatory genes (IRF7 and KHSRP) were not responsive to highly pathogenic H5N1 infection but were strongly up-regulated in DF-1 cells infected with low pathogenic H9N2 infection. The subtype-dependent host response observed in this study offers new insights into the potential roles of IRF7 and KHSRP in control and modulation of the replication and virulence of different subtypes or strains of avian influenza A virus.

  3. Immune efficacy of an adenoviral vector-based swine influenza vaccine against antigenically distinct H1N1 strains in mice.

    PubMed

    Wu, Yunpu; Yang, Dawei; Xu, Bangfeng; Liang, Wenhua; Sui, Jinyu; Chen, Yan; Yang, Huanliang; Chen, Hualan; Wei, Ping; Qiao, Chuanling

    2017-11-01

    Avian-like H1N1 swine influenza viruses are prevalent in pigs and have occasionally crossed the species barrier and infected humans, which highlights the importance of preventing swine influenza. Human adenovirus serotype 5 (Ad5) has been tested in human influenza vaccine clinical trials and has exhibited a reliable safety profile. Here, we generated a replication-defective, recombinant adenovirus (designated as rAd5-avH1HA) expressing the hemagglutinin gene of an avian-like H1N1 virus (A/swine/Zhejiang/199/2013, ZJ/199/13). Using a BALB/c mouse model, we showed that a two-dose intramuscular administration of recombinant rAd5-avH1HA induced high levels of hemagglutination inhibition antibodies and prevented homologous and heterologous H1N1 virus-induced weight loss, as well as viral replication in the nasal turbinates and lungs of mice. Furthermore, a prime-boost immunization strategy trial with a recombinant plasmid (designated as pCAGGS-HA) followed by rAd5-avH1HA vaccine provided effective protection against homologous and heterologous H1N1 virus infection in mice. These results indicate that rAd5-avH1HA is an efficacious genetically engineered vaccine candidate against H1N1 swine influenza. Future studies should examine its immune efficacy in pigs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Detection of NH1N1 influenza virus in nonrespiratory sites among children.

    PubMed

    Wootton, Susan H; Aguilera, Elizabeth A; Wanger, Audrey; Jewell, Alan; Patel, Kirtida; Murphy, James R; Piedra, Pedro A

    2014-01-01

    Among 20 children admitted with laboratory-confirmed influenza, viral RNA was detected in respiratory secretion, stool and blood in 19, 5 and 1 children, respectively. Gastrointestinal symptoms were common but were not associated with viral RNA in stool. nH1N1 viremia was detected, for the first time, in an immunocompetent child.

  5. Highly (H5N1) and Low (H7N2) Pathogenic Avian Influenza Virus Infection in Falcons Via Nasochoanal Route and Ingestion of Experimentally Infected Prey

    PubMed Central

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5–7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey

  6. Highly (H5N1) and low (H7N2) pathogenic avian influenza virus infection in falcons via nasochoanal route and ingestion of experimentally infected prey.

    PubMed

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey and

  7. Highly pathogenic influenza A(H5N1) virus survival in complex artificial aquatic biotopes.

    PubMed

    Horm, Viseth Srey; Gutiérrez, Ramona A; Nicholls, John M; Buchy, Philippe

    2012-01-01

    Very little is known regarding the persistence of Highly Pathogenic Avian Influenza (HPAI) H5N1 viruses in aquatic environments in tropical countries, although environmental materials have been suggested to play a role as reservoirs and sources of transmission for H5N1 viruses. The survival of HPAI H5N1 viruses in experimental aquatic biotopes (water, mud, aquatic flora and fauna) relevant to field conditions in Cambodia was investigated. Artificial aquatic biotopes, including simple ones containing only mud and water, and complex biotopes involving the presence of aquatic flora and fauna, were set up. They were experimentally contaminated with H5N1 virus. The persistence of HPAI H5N1 virus (local avian and human isolates) was determined by virus isolation in embryonated chicken eggs and by real-time reverse-polymerase chain reaction. Persistence of infectious virus did not exceed 4 days, and was only identified in rain water. No infectious virus particles were detected in pond and lake water or mud even when high inoculum doses were used. However, viral RNA persisted up to 20 days in rain water and 7 days in pond or lake water. Viral RNA was also detected in mud samples, up to 14 days post-contamination in several cases. Infectious virus and viral RNA was detected in few cases in the aquatic fauna and flora, especially in bivalves and labyrinth fish, although these organisms seemed to be mostly passive carriers of the virus rather than host allowing virus replication. Although several factors for the survival and persistence of HPAI viruses in the environment are still to be elucidated, and are particularly hard to control in laboratory conditions, our results, along with previous data, support the idea that environmental surveillance is of major relevance for avian influenza control programs.

  8. Highly Pathogenic Influenza A(H5N1) Virus Survival in Complex Artificial Aquatic Biotopes

    PubMed Central

    Horm, Viseth Srey; Gutiérrez, Ramona A.; Nicholls, John M.; Buchy, Philippe

    2012-01-01

    Background Very little is known regarding the persistence of Highly Pathogenic Avian Influenza (HPAI) H5N1 viruses in aquatic environments in tropical countries, although environmental materials have been suggested to play a role as reservoirs and sources of transmission for H5N1 viruses. Methodology/Principal Findings The survival of HPAI H5N1 viruses in experimental aquatic biotopes (water, mud, aquatic flora and fauna) relevant to field conditions in Cambodia was investigated. Artificial aquatic biotopes, including simple ones containing only mud and water, and complex biotopes involving the presence of aquatic flora and fauna, were set up. They were experimentally contaminated with H5N1 virus. The persistence of HPAI H5N1 virus (local avian and human isolates) was determined by virus isolation in embryonated chicken eggs and by real-time reverse-polymerase chain reaction. Persistence of infectious virus did not exceed 4 days, and was only identified in rain water. No infectious virus particles were detected in pond and lake water or mud even when high inoculum doses were used. However, viral RNA persisted up to 20 days in rain water and 7 days in pond or lake water. Viral RNA was also detected in mud samples, up to 14 days post-contamination in several cases. Infectious virus and viral RNA was detected in few cases in the aquatic fauna and flora, especially in bivalves and labyrinth fish, although these organisms seemed to be mostly passive carriers of the virus rather than host allowing virus replication. Conclusions/Significance Although several factors for the survival and persistence of HPAI viruses in the environment are still to be elucidated, and are particularly hard to control in laboratory conditions, our results, along with previous data, support the idea that environmental surveillance is of major relevance for avian influenza control programs. PMID:22514622

  9. Cross-protective efficacies of highly-pathogenic avian influenza H5N1 vaccines against a recent H5N8 virus.

    PubMed

    Park, Su-Jin; Si, Young-Jae; Kim, Jihye; Song, Min-Suk; Kim, Se-Mi; Kim, Eun-Ha; Kwon, Hyeok-Il; Kim, Young-Il; Lee, Ok-Jun; Shin, Ok Sarah; Kim, Chul-Joong; Shin, Eui-Cheol; Choi, Young Ki

    2016-11-01

    To investigate cross-protective vaccine efficacy of highly-pathogenic avian influenza H5N1 viruses against a recent HPAI H5N8 virus, we immunized C57BL/6 mice and ferrets with three alum-adjuvanted inactivated whole H5N1 vaccines developed through reverse-genetics (Rg): [Vietnam/1194/04xPR8 (clade 1), Korea/W149/06xPR8 (clade 2.2), and Korea/ES223N/03xPR8 (clade 2.5)]. Although relatively low cross-reactivities (10-40 HI titer) were observed against heterologous H5N8 virus, immunized animals were 100% protected from challenge with the 20 mLD50 of H5N8 virus, with the exception of mice vaccinated with 3.5μg of Rg Vietnam/1194/04xPR8. Of note, the Rg Korea/ES223N/03xPR8 vaccine provided not only effective protection, but also markedly inhibited viral replication in the lungs and nasal swabs of vaccine recipients within five days of HPAI H5N8 virus challenge. Further, we demonstrated that antibody-dependent cell-mediated cytotoxicity (ADCC) of an antibody-coated target cell by cytotoxic effector cells also plays a role in the heterologous protection of H5N1 vaccines against H5N8 challenge. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Highly Pathogenic H5N1 Avian Influenza Viruses Exhibit Few Barriers to Gene Flow in Vietnam

    PubMed Central

    Carrel, Margaret; Wan, Xiu-Feng; Nguyen, Tung; Emch, Michael

    2013-01-01

    Locating areas where genetic change is inhibited can illuminate underlying processes that drive evolution of pathogens. The persistence of highly pathogenic H5N1 avian influenza in Vietnam since 2003, and the continuous molecular evolution of Vietnamese avian influenza viruses, indicates that local environmental factors are supportive not only of incidence but also of viral adaptation. This article explores whether gene flow is constant across Vietnam, or whether there exist boundary areas where gene flow exhibits discontinuity. Using a dataset of 125 highly pathogenic H5N1 avian influenza viruses, principal components analysis and wombling analysis are used to indicate the location, magnitude, and statistical significance of genetic boundaries. Results show that a small number of geographically minor boundaries to gene flow in highly pathogenic H5N1 avian influenza viruses exist in Vietnam, but that overall there is little division in genetic exchange. This suggests that differences in genetic characteristics of viruses from one region to another are not the result of barriers to H5N1 viral exchange in Vietnam, and that H5N1 avian influenza is able to spread relatively unimpeded across the country. PMID:22350419

  11. Usefulness of CURB-65 and pneumonia severity index for influenza A H1N1v pneumonia.

    PubMed

    Estella, A

    2012-01-01

    Usefulness of CURB-65 and pneumonia severity index for influenza A H1N1v pneumonia. A. Estella. Different prognostic scales have been documented to assess the severity and indications for hospitalization and ICU admissions of community acquired pneumonia. During the past two years Influenza A H1N1v infections have been commonly attended to in emergency departments. The aim of the study was to analyse the usefulness of the application of the Pneumonia Severity Index (PSI) and CURB-65 prognostic scales in patients with primary viral pneumonia caused by influenza A H1N1v. A retrospective study was performed at a community hospital with a 17 bed-intensive care unit. Patients admitted in hospital with influenza A H1N1v pneumonia over a two year period were analysed. CURB 65 and PSI scales were applied in the emergency department and outcome and destination of admission were analysed. 24 patients were registered, 19 required ICU admission and 5 patients were admitted in medical wards. Most of the patients admitted to the intensive care unit (78.9%) required mechanical ventilation. Mortality was 21.1%. Most patients admitted to the ICU had CURB 65 scale of 1 (60%), 13.3% obtained 0 and 26.7% 2. PSI scale resulted class I in a 20%, class II 40%, 26.7% class IV and 13.3% class V. The scales CURB 65 and PSI showed no differences in scores according to the destination of admission and mortality. Use of CURB-65 and PSI in the emergency department may underestimate the risk of patients with Influenza A H1N1v pneumonia. Based in our results, the ability of these scales to predict ICU admissions for Influenza A H1N1v pneumonia is questioned.

  12. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt.

    PubMed

    Hagag, Ibrahim Thabet; Mansour, Shimaa M G; Zhang, Zerui; Ali, Ahmed A H; Ismaiel, El-Bakry M; Salama, Ali A; Cardona, Carol J; Collins, James; Xing, Zheng

    2015-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis) for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA) and nonstructural proteins (NS) among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF) in the cleavage site in HA and glutamate at position 92 (D92E) in NS1. This is the first report of the pathogenicity of the HPAIVH5N

  13. Protection of human influenza vaccines against a reassortant swine influenza virus of pandemic H1N1 origin using a pig model.

    PubMed

    Arunorat, Jirapat; Charoenvisal, Nataya; Woonwong, Yonlayong; Kedkovid, Roongtham; Jittimanee, Supattra; Sitthicharoenchai, Panchan; Kesdangsakonwut, Sawang; Poolperm, Pariwat; Thanawongnuwech, Roongroje

    2017-10-01

    Since the pandemic H1N1 emergence in 2009 (pdmH1N1), many reassortant pdmH1N1 viruses emerged and found circulating in the pig population worldwide. Currently, commercial human subunit vaccines are used commonly to prevent the influenza symptom based on the WHO recommendation. In case of current reassortant swine influenza viruses transmitting from pigs to humans, the efficacy of current human influenza vaccines is of interest. In this study, influenza A negative pigs were vaccinated with selected commercial human subunit vaccines and challenged with rH3N2. All sera were tested with both HI and SN assays using four representative viruses from the surveillance data in 2012 (enH1N1, pdmH1N1, rH1N2 and rH3N2). The results showed no significant differences in clinical signs and macroscopic and microscopic findings among groups. However, all pig sera from vaccinated groups had protective HI titers to the enH1N1, pdmH1N1 and rH1N2 at 21DPV onward and had protective SN titers only to pdmH1N1and rH1N2 at 21DPV onward. SN test results appeared more specific than those of HI tests. All tested sera had no cross-reactivity against the rH3N2. Both studied human subunit vaccines failed to protect and to stop viral shedding with no evidence of serological reaction against rH3N2. SIV surveillance is essential for monitoring a novel SIV emergence potentially for zoonosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of Priming with H1N1 Influenza Viruses of Variable Antigenic Distances on Challenge with 2009 Pandemic H1N1 Virus

    PubMed Central

    O'Donnell, Christopher D.; Wright, Amber; Vogel, Leatrice N.; Wei, Chih-Jen; Nabel, Gary J.

    2012-01-01

    Compared to seasonal influenza viruses, the 2009 pandemic H1N1 (pH1N1) virus caused greater morbidity and mortality in children and young adults. People over 60 years of age showed a higher prevalence of cross-reactive pH1N1 antibodies, suggesting that they were previously exposed to an influenza virus or vaccine that was antigenically related to the pH1N1 virus. To define the basis for this cross-reactivity, ferrets were infected with H1N1 viruses of variable antigenic distance that circulated during different decades from the 1930s (Alaska/35), 1940s (Fort Monmouth/47), 1950s (Fort Warren/50), and 1990s (New Caledonia/99) and challenged with 2009 pH1N1 virus 6 weeks later. Ferrets primed with the homologous CA/09 or New Jersey/76 (NJ/76) virus served as a positive control, while the negative control was an influenza B virus that should not cross-protect against influenza A virus infection. Significant protection against challenge virus replication in the respiratory tract was observed in ferrets primed with AK/35, FM/47, and NJ/76; FW/50-primed ferrets showed reduced protection, and NC/99-primed ferrets were not protected. The hemagglutinins (HAs) of AK/35, FM/47, and FW/50 differ in the presence of glycosylation sites. We found that the loss of protective efficacy observed with FW/50 was associated with the presence of a specific glycosylation site. Our results suggest that changes in the HA occurred between 1947 and 1950, such that prior infection could no longer protect against 2009 pH1N1 infection. This provides a mechanistic understanding of the nature of serological cross-protection observed in people over 60 years of age during the 2009 H1N1 pandemic. PMID:22674976

  15. Effect of priming with H1N1 influenza viruses of variable antigenic distances on challenge with 2009 pandemic H1N1 virus.

    PubMed

    O'Donnell, Christopher D; Wright, Amber; Vogel, Leatrice N; Wei, Chih-Jen; Nabel, Gary J; Subbarao, Kanta

    2012-08-01

    Compared to seasonal influenza viruses, the 2009 pandemic H1N1 (pH1N1) virus caused greater morbidity and mortality in children and young adults. People over 60 years of age showed a higher prevalence of cross-reactive pH1N1 antibodies, suggesting that they were previously exposed to an influenza virus or vaccine that was antigenically related to the pH1N1 virus. To define the basis for this cross-reactivity, ferrets were infected with H1N1 viruses of variable antigenic distance that circulated during different decades from the 1930s (Alaska/35), 1940s (Fort Monmouth/47), 1950s (Fort Warren/50), and 1990s (New Caledonia/99) and challenged with 2009 pH1N1 virus 6 weeks later. Ferrets primed with the homologous CA/09 or New Jersey/76 (NJ/76) virus served as a positive control, while the negative control was an influenza B virus that should not cross-protect against influenza A virus infection. Significant protection against challenge virus replication in the respiratory tract was observed in ferrets primed with AK/35, FM/47, and NJ/76; FW/50-primed ferrets showed reduced protection, and NC/99-primed ferrets were not protected. The hemagglutinins (HAs) of AK/35, FM/47, and FW/50 differ in the presence of glycosylation sites. We found that the loss of protective efficacy observed with FW/50 was associated with the presence of a specific glycosylation site. Our results suggest that changes in the HA occurred between 1947 and 1950, such that prior infection could no longer protect against 2009 pH1N1 infection. This provides a mechanistic understanding of the nature of serological cross-protection observed in people over 60 years of age during the 2009 H1N1 pandemic.

  16. Comparative Pathogenesis of an Avian H5N2 and a Swine H1N1 Influenza Virus in Pigs

    PubMed Central

    De Vleeschauwer, Annebel; Atanasova, Kalina; Van Borm, Steven; van den Berg, Thierry; Rasmussen, Thomas Bruun; Uttenthal, Åse; Van Reeth, Kristien

    2009-01-01

    Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs) to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal) to compare the pathogenesis of a low pathogenic (LP) H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals. PMID:19684857

  17. Infection by rhinovirus: similarity of clinical signs included in the case definition of influenza IAn/H1N1.

    PubMed

    de Oña Navarro, Maria; Melón García, Santiago; Alvarez-Argüelles, Marta; Fernández-Verdugo, Ana; Boga Riveiro, Jose Antonio

    2012-08-01

    Although new influenza virus (IAn/H1N1) infections are mild and indistinguishable from any other seasonal influenza virus infections, there are few data on comparisons of the clinical features of infection with (IAn/H1N1) and with other respiratory viruses. The incidence, clinical aspects and temporal distribution of those respiratory viruses circulating during flu pandemic period were studied. Respiratory samples from patients with acute influenza-like symptoms were collected from May 2009 to December 2009. Respiratory viruses were detected by conventional culture methods and genome amplification techniques. Although IAn/H1N1 was the virus most frequently detected, several other respiratory viruses co-circulated with IAn/H1N1 during the pandemic period, especially rhinovirus. The similarity between clinical signs included in the clinical case definition for influenza and those caused by other respiratory viruses, particularly rhinovirus, suggest that a high percentage of viral infections were clinically diagnosed as case of influenza. Our study offers useful information to face future pandemics caused by influenza virus, indicating that differential diagnoses are required in order to not overestimate the importance of the pandemic. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  18. Addition of glycosylation to influenza A virus hemagglutinin modulates antibody-mediated recognition of H1N1 2009 pandemic viruses.

    PubMed

    Job, Emma R; Deng, Yi-Mo; Barfod, Kenneth K; Tate, Michelle D; Caldwell, Natalie; Reddiex, Scott; Maurer-Stroh, Sebastian; Brooks, Andrew G; Reading, Patrick C

    2013-03-01

    Seasonal influenza A viruses (IAV) originate from pandemic IAV and have undergone changes in antigenic structure, including addition of glycans to the viral hemagglutinin (HA). Glycans on the head of HA promote virus survival by shielding antigenic sites, but highly glycosylated seasonal IAV are inactivated by soluble lectins of the innate immune system. In 2009, human strains of pandemic H1N1 [A(H1N1)pdm] expressed a single glycosylation site (Asn(104)) on the head of HA. Since then, variants with additional glycosylation sites have been detected, and the location of these sites has been distinct to those of recent seasonal H1N1 strains. We have compared wild-type and reverse-engineered A(H1N1)pdm IAV with differing potential glycosylation sites on HA for sensitivity to collectins and to neutralizing Abs. Addition of a glycan (Asn(136)) to A(H1N1)pdm HA was associated with resistance to neutralizing Abs but did not increase sensitivity to collectins. Moreover, variants expressing Asn(136) showed enhanced growth in A(H1N1)pdm-vaccinated mice, consistent with evasion of Ab-mediated immunity in vivo. Thus, a fine balance exists regarding the optimal pattern of HA glycosylation to facilitate evasion of Ab-mediated immunity while maintaining resistance to lectin-mediated defenses of the innate immune system.

  19. Toward a method for tracking virus evolutionary trajectory applied to the pandemic H1N1 2009 influenza virus.

    PubMed

    Squires, R Burke; Pickett, Brett E; Das, Sajal; Scheuermann, Richard H

    2014-12-01

    In 2009 a novel pandemic H1N1 influenza virus (H1N1pdm09) emerged as the first official influenza pandemic of the 21st century. Early genomic sequence analysis pointed to the swine origin of the virus. Here we report a novel computational approach to determine the evolutionary trajectory of viral sequences that uses data-driven estimations of nucleotide substitution rates to track the gradual accumulation of observed sequence alterations over time. Phylogenetic analysis and multiple sequence alignments show that sequences belonging to the resulting evolutionary trajectory of the H1N1pdm09 lineage exhibit a gradual accumulation of sequence variations and tight temporal correlations in the topological structure of the phylogenetic trees. These results suggest that our evolutionary trajectory analysis (ETA) can more effectively pinpoint the evolutionary history of viruses, including the host and geographical location traversed by each segment, when compared against either BLAST or traditional phylogenetic analysis alone. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Predictors of outcome in acute encephalitis

    PubMed Central

    Thakur, Kiran T.; Motta, Melissa; Asemota, Anthony O.; Kirsch, Hannah L.; Benavides, David R.; Schneider, Eric B.; McArthur, Justin C.; Geocadin, Romergryko G.

    2013-01-01

    Objective: To investigate predictors of outcome in patients with all-cause encephalitis receiving care in the intensive care unit. Methods: A retrospective analysis of encephalitis cases at The Johns Hopkins Hospital and Johns Hopkins Bayview Medical Center was performed. Using multivariate logistic regression analysis, we examined mortality and predictors of good outcome (defined as modified Rankin Scale scores of 1–3) and poor outcome (scores 4 and 5) in those surviving to hospital discharge. Results: In our cohort of 103 patients, the median age was 52 years (interquartile range 26), 52 patients (50.49%) were male, 28 patients (27.18%) had viral encephalitis, 19 (18.45%) developed status epilepticus (SE), 15 (14.56%) had cerebral edema, and 19 (18.45%) died. In our multivariate logistic regression analysis, death was associated with cerebral edema (odds ratio [OR] 18.06, 95% confidence interval [CI] 3.14–103.92), SE (OR 8.16, 95% CI 1.55–43.10), and thrombocytopenia (OR 6.28, 95% CI 1.41–28.03). Endotracheal intubation requirement with ventilator support was highly correlated with death (95%). In addition, in those patients who survived, viral, nonviral, and unknown causes of encephalitis were less likely to have a poor outcome at hospital discharge compared with an autoimmune etiology (viral encephalitis: OR 0.09, 95% CI 0.01–0.57; nonviral encephalitis: OR 0.02, 95% CI 0.01–0.31; unknown etiology: OR 0.18, 95% CI 0.04–0.91). Conclusions: Our study suggests that predictors of death in patients with encephalitis comprise potentially reversible conditions including cerebral edema, SE, and thrombocytopenia. Further prospective studies are needed to determine whether aggressive management of these complications in patients with encephalitis improves outcome. PMID:23892708

  1. Identification of swine H1N2/pandemic H1N1 reassortant influenza virus in pigs, United States.

    PubMed

    Ali, Ahmed; Khatri, Mahesh; Wang, Leyi; Saif, Yehia M; Lee, Chang-Won

    2012-07-06

    In October and November 2010, novel H1N2 reassortant influenza viruses were identified from pigs showing mild respiratory signs that included cough and depression. Sequence and phylogenetic analysis showed that the novel H1N2 reassortants possesses HA and NA genes derived from recent H1N2 swine isolates similar to those isolated from Midwest. Compared to the majority of reported reassortants, both viruses preserved human-like host restrictive and putative antigenic sites in their HA and NA genes. The four internal genes, PB2, PB1, PA, and NS were similar to the contemporary swine triple reassortant viruses' internal genes (TRIG). Interestingly, NP and M genes of the novel reassortants were derived from the 2009 pandemic H1N1. The NP and M proteins of the two isolates demonstrated one (E16G) and four (G34A, D53E, I109T, and V313I) amino acid changes in the M2 and NP proteins, respectively. Similar amino acid changes were also noticed upon incorporation of the 2009 pandemic H1N1 NP in other reassortant viruses reported in the U.S. Thus the role of those amino acids in relation to host adaptation need to be further investigated. The reassortments of pandemic H1N1 with swine influenza viruses and the potential of interspecies transmission of these reassortants from swine to other species including human indicate the importance of systematic surveillance of swine population to determine the origin, the prevalence of similar reassortants in the U.S. and their impact on both swine production and public health. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Analytical validation of viral CNS Flow Chip kit for detection of acute meningitis and encephalitis.

    PubMed

    Pérez-Ruiz, Mercedes; Pedrosa-Corral, Irene; Sanbonmatsu-Gámez, Sara; Gómez-Camarasa, Cristina; Navarro-Marí, José María

    2018-06-12

    A new molecular assay (Viral CNS Flow Chip kit, Master Diagnóstica, Spain) has been developed for the detection of eight viruses causing acute meningitis and encephalitis, i.e. herpes simplex viruses 1-2, varicella zoster virus, human enterovirus, human parechovirus, Toscana virus, human cytomegalovirus and Epstein Barr virus. The new assay is a multiplex one-step RT-PCR followed by automatic flow-through hybridization, colorimetric detection and image analysis. The limit of detection was 50 copies/reaction, and 10 copies/reaction for human enterovirus and the other seven viruses, respectively. The analytical validation was performed with nucleic acids extracted from 268 cerebrospinal fluid samples and the results were compared with routine molecular assays. An excellent coefficient of agreement was observed between V-CNS and routine assays [kappa index: 0.948 (95%CI: 0.928-0.968)]. The overall sensitivity and specificity was 95.9% (95%CI: 91.2-98.3%) and 99.9% (95%CI: 99.6-100%), respectively. Viral CNS Flow Chip kit is an efficient multiplex platform for the detection of the main viruses involved in acute meningitis and encephalitis. The inclusion of a TOSV genome target may improve the laboratory diagnosis of viral neurological infections in endemic areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus

    PubMed Central

    Kilany, Walid H.; Safwat, Marwa; Mohammed, Samy M.; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G.; Shalaby, Azhar G.; Dauphin, Gwenaelle; Hassan, Mohammed K.; Lubroth, Juan; Jobre, Yilma M.

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge. PMID:27304069

  4. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus.

    PubMed

    Kilany, Walid H; Safwat, Marwa; Mohammed, Samy M; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G; Shalaby, Azhar G; Dauphin, Gwenaelle; Hassan, Mohammed K; Lubroth, Juan; Jobre, Yilma M

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge.

  5. Persistence of Avian Influenza Virus (H5N1) in Feathers Detached from Bodies of Infected Domestic Ducks ▿

    PubMed Central

    Yamamoto, Yu; Nakamura, Kikuyasu; Yamada, Manabu; Mase, Masaji

    2010-01-01

    Asian lineage highly pathogenic avian influenza virus (H5N1) continues to cause mortality in poultry and wild bird populations at a panzootic scale. However, little is known about its persistence in contaminated tissues derived from infected birds. We investigated avian influenza virus (H5N1) persistence in feathers detached from bodies of infected ducks to evaluate their potential risk for environmental contamination. Four-week-old domestic ducks were inoculated with different clades of avian influenza virus (H5N1). Feathers, drinking water, and feces were collected on day 3 postinoculation and stored at 4°C or 20°C. Viral persistence in samples was investigated for 360 days by virus isolation and reverse transcription-PCR. Infectious viruses persisted for the longest period in feathers, compared with drinking water and feces, at both 4°C and 20°C. Viral infectivity persisted in the feathers for 160 days at 4°C and for 15 days at 20°C. Viral titers of 104.3 50% egg infectious doses/ml or greater were detected for 120 days in feathers stored at 4°C. Viral RNA in feathers was more stable than the infectivity. These results indicate that feathers detached from domestic ducks infected with highly pathogenic avian influenza virus (H5N1) can be a source of environmental contamination and may function as fomites with high viral loads in the environment. PMID:20581177

  6. Cold-Adapted Influenza and Recombinant Adenovirus Vaccines Induce Cross-Protective Immunity against pH1N1 Challenge in Mice

    PubMed Central

    Soboleski, Mark R.; Gabbard, Jon D.; Price, Graeme E.; Misplon, Julia A.; Lo, Chia-Yun; Perez, Daniel R.; Ye, Jianqiang; Tompkins, S. Mark; Epstein, Suzanne L.

    2011-01-01

    Background The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1) highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus. Methodology/Principal Findings BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca) influenza viruses from 1977 or recombinant adenoviruses (rAd) expressing 1934 nucleoprotein (NP) and consensus matrix 2 (M2) (NP+M2-rAd). Antibodies against the M2 ectodomain (M2e) were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus. Conclusion/Significance Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic. PMID:21789196

  7. Heterosubtypic anti-avian H5N1 influenza antibodies in intravenous immunoglobulins from globally separate populations protect against H5N1 infection in cell culture

    PubMed Central

    Sullivan, John S; Selleck, Paul W; Downton, Teena; Boehm, Ingrid; Axell, Anna-Maree; Ayob, Yasmin; Kapitza, Natalie M; Dyer, Wayne; Fitzgerald, Anna; Walsh, Bradley; Lynch, Garry W

    2009-01-01

    With antigenically novel epidemic and pandemic influenza strains persistently on the horizon it is of fundamental importance that we understand whether heterosubtypic antibodies gained from exposures to circulating human influenzas exist and can protect against emerging novel strains. Our studies of IVIG obtained from an infection-naive population (Australian) enabled us to reveal heterosubtypic influenza antibodies that cross react with H5N1. We now expand those findings for an Australian donor population to include IVIG formulations from a variety of northern hemisphere populations. Examination of IVIGs from European and South East-Asian (Malaysian) blood donor populations further reveal heterosubtypic antibodies to H5N1 in humans from different global regions. Importantly these protect against highly pathogenic avian H5N1 infection in vitro, albeit at low titres of inhibition. Although there were qualitative and quantitative differences in binding and protection between globally different formulations, the heterosubtypic antibody activities for the respective IVIGs were in general quite similar. Of particular note because of the relative geographic proximity to the epicentre of H5N1 and the majority of human infections, was the similarity in the antibody binding responses between IVIGs from the Malayan peninsula, Europe and Australia. These findings highlight the value of employing IVIGs for the study of herd immunity, and particularly heterosubtypic antibody responses to viral antigens such as those conserved between circulating human influenzas and emerging influenza strains such as H5N1. They also open a window into a somewhat ill defined arena of antibody immunity, namely heterosubtypic immunity. PMID:20076794

  8. Acute phase protein response during subclinical infection of pigs with H1N1 swine influenza virus.

    PubMed

    Pomorska-Mól, Małgorzata; Markowska-Daniel, Iwona; Pejsak, Zygmunt

    2012-10-12

    In the present study acute phase proteins (APPs) responses in pigs after subclinical infection with H1N1 swine influenza virus (SwH1N1) were evaluated. Fourteen 5 weeks old, seronegative piglets, both sexes were used. Ten of them were infected intranasally with SwH1N1. C-reactive protein (CRP), haptoglobin (Hp), serum amyloid A (SAA) and pig major acute phase protein (Pig-MAP) concentrations in serum were measured using commercial ELISAs. No significant clinical signs were observed in any of the infected pigs, however, all infected animals developed specific antibodies against SwH1N1 and viral shedding was observed from 2 to 5 dpi. Only concentrations of Hp and SAA were significantly induced after infection, with mean maximum levels from days 1 to 2 post infection (dpi). The concentrations of CRP and Pig-MAP remained generally unchanged, however in half of infected pigs the concentration of CRP tended to increase at 1 dpi (but without statistical significance). The results of our study confirmed that monitoring of APPs may be useful for detection of subclinically infected pigs. The use of SAA or Hp and Pig-MAP may be a valuable in combination [i.e. Hp (increased concentration) and Pig-MAP (unchanged concentration)] to detect subclinically SIV infected pigs, or to identify pigs actually producing a large amount of virus. Additional studies need to be done in order to confirm these findings. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Obesity is associated with higher risk of intensive care unit admission and death in influenza A (H1N1) patients: a systematic review and meta-analysis.

    PubMed

    Fezeu, L; Julia, C; Henegar, A; Bitu, J; Hu, F B; Grobbee, D E; Kengne, A-P; Hercberg, S; Czernichow, S

    2011-08-01

    The aim of this study was to assess the association between obesity and the risk of intensive care unit (ICU) admission and death among patients hospitalized for influenza A (H1N1) viral infection. A systematic review of the Medline and Cochrane databases using 'obesity', 'hospitalization', 'influenza A viral infection', various synonyms, and reference lists of retrieved articles from January 2009 to January 2010. Studies comparing the prevalence of obesity among patients with confirmed infection for influenza A virus and who were either hospitalized or admitted to ICU/died were included. A total of 3059 subjects from six cross-sectional studies, who were hospitalized for influenza A (H1N1) viral infection, were included in this meta-analysis. Severely obese H1N1 patients (body mass index ≥ 40 kg m(-2), n = 804) were as twice as likely to be admitted to ICU or die (odds ration: 2.01, 95% confidence interval: 1.29-3.14, P < 0.002) compared with H1N1 patients who were not severely obese. Having a body mass index ≥ 30 kg m(-2) was similarly associated with a more than twofold increased risk of ICU admission or death although this did not reach statistical significance (2.14, 0.92-4.99, P < 0.07). This meta-analysis supports the view that obesity is associated with higher risks of ICU admission or death in patients with influenza A (H1N1) infection. Therefore, morbid obese patients should be monitored more intensively when hospitalized. © 2011 The Authors. obesity reviews © 2011 International Association for the Study of Obesity.

  10. The microRNA-let-7b-mediated attenuated strain of influenza A (H1N1) virus in a mouse model.

    PubMed

    Tan, Mingming; Sun, Wenkui; Feng, Chunlai; Xia, Di; Shen, Xiaoyue; Ding, Yuan; Liu, Zhicheng; Xing, Zheng; Su, Xin; Shi, Yi

    2016-09-30

    Evaluating the attenuation of influenza viruses in animal studies is important in developing safe and effective vaccines. This study aimed to demonstrate that the microRNA (miRNA)-let-7b-mediated attenuated influenza viruses (miRT-H1N1) are sufficiently attenuated and safe in mice. The pathogenicity of the miRT-H1N1virus was investigated in a mouse model, evaluated with median lethal dose (LD50). The replicative dynamics of the miRT-H1N1, wild type (wt)-H1N1, and scramble (scbl)-H1N1 viruses in the lungs of infected mice were compared. The degrees of lesions and the expression levels of IL-6, TNF-α, and IFN-β in the lungs of mice infected with different viruses were also analyzed. In miRT-H1N1 virus-infected mice, 100% of mice survived, and a lower pathogenicity was characterized with non-significant weight loss when compared to mice infected with the control wt virus. The miRT-H1N1 virus was not fatal for mice, even at the highest dose administered. The viral load in the lungs of miRT-H1N1-infected mice was significantly lower than that of the wild-type virus-infected mice. Fewer pulmonary lesions and lower levels of selected pro-inflammatory cytokines in the lungs of the mice infected with the miRT-H1N1 virus were also observed. The virulence of the miRT-H1N1 virus reduced significantly, suggesting that the miRT-H1N1 virus was safe for mice. Our study demonstrated that the miRNA-mediated gene silencing is an alternative approach to attenuating the pathogenicity of wt influenza viruses that have potential in the development of influenza vaccines.

  11. [Swine-origin influenza H1N1/California--passions and facts].

    PubMed

    Gendon, Iu Z

    2010-01-01

    Analysis of pandemic caused by swine influenza virus H1N1/California showed moderate virulence of this virus compared to pandemic viruses, which caused pandemics in 1918, 1957, and 1968. During seasonal influenza epidemic in countries of southern hemisphere (June-August 2009) despite on circulation of H1N1/California strain, epidemics was caused by human influenza viruses H3N2 and H1N1. It was concluded that strain H1N1/California could not be attributed to pandemic strains of influenza viruses.

  12. Treatment and Prevention of Pandemic H1N1 Influenza.

    PubMed

    Rewar, Suresh; Mirdha, Dashrath; Rewar, Prahlad

    2015-01-01

    Swine influenza is a respiratory infection common to pigs worldwide caused by type A influenza viruses, principally subtypes H1N1, H1N2, H2N1, H3N1, H3N2, and H2N3. Swine influenza viruses also can cause moderate to severe illness in humans and affect persons of all age groups. People in close contact with swine are at especially high risk. Until recently, epidemiological study of influenza was limited to resource-rich countries. The World Health Organization declared an H1N1 pandemic on June 11, 2009, after more than 70 countries reported 30,000 cases of H1N1 infection. In 2015, incidence of swine influenza increased substantially to reach a 5-year high. In India in 2015, 10,000 cases of swine influenza were reported with 774 deaths. The Centers for Disease Control and Prevention recommend real-time polymerase chain reaction as the method of choice for diagnosing H1N1. Antiviral drugs are the mainstay of clinical treatment of swine influenza and can make the illness milder and enable the patient to feel better faster. Antiviral drugs are most effective when they are started within the first 48 hours after the clinical signs begin, although they also may be used in severe or high-risk cases first seen after this time. The Centers for Disease Control and Prevention recommends use of oseltamivir (Tamiflu, Genentech) or zanamivir (Relenza, GlaxoSmithKline). Prevention of swine influenza has 3 components: prevention in swine, prevention of transmission to humans, and prevention of its spread among humans. Because of limited treatment options, high risk for secondary infection, and frequent need for intensive care of individuals with H1N1 pneumonia, environmental control, including vaccination of high-risk populations and public education are critical to control of swine influenza out breaks. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Population-environment drivers of H5N1 avian influenza molecular change in Vietnam

    PubMed Central

    Carrel, Margaret A.; Emch, Michael; Nguyen, Tung; Jobe, R. Todd; Wan, Xiu-Feng

    2013-01-01

    This study identifies population and environment drivers of genetic change in H5N1 avian influenza viruses (AIV) in Vietnam using a landscape genetics approach. While prior work has examined how combinations of local-level environmental variables influence H5N1 occurrence, this research expands the analysis to the complex genetic characteristics of H5N1 viruses. A dataset of 125 highly pathogenic H5N1 AIV isolated in Vietnam from 2003–2007 is used to explore which population and environment variables are correlated with increased genetic change among viruses. Results from non-parametric multidimensional scaling and regression analyses indicate that variables relating to both the environmental and social ecology of humans and birds in Vietnam interact to affect the genetic character of viruses. These findings suggest that it is a combination of suitable environments for species mixing, the presence of high numbers of potential hosts, and in particular the temporal characteristics of viral occurrence, that drive genetic change among H5N1 AIV in Vietnam. PMID:22652510

  14. Population-environment drivers of H5N1 avian influenza molecular change in Vietnam.

    PubMed

    Carrel, Margaret A; Emch, Michael; Nguyen, Tung; Todd Jobe, R; Wan, Xiu-Feng

    2012-09-01

    This study identifies population and environment drivers of genetic change in H5N1 avian influenza viruses (AIV) in Vietnam using a landscape genetics approach. While prior work has examined how combinations of local-level environmental variables influence H5N1 occurrence, this research expands the analysis to the complex genetic characteristics of H5N1 viruses. A dataset of 125 highly pathogenic H5N1 AIV isolated in Vietnam from 2003 to 2007 is used to explore which population and environment variables are correlated with increased genetic change among viruses. Results from non-parametric multidimensional scaling and regression analyses indicate that variables relating to both the environmental and social ecology of humans and birds in Vietnam interact to affect the genetic character of viruses. These findings suggest that it is a combination of suitable environments for species mixing, the presence of high numbers of potential hosts, and in particular the temporal characteristics of viral occurrence, that drive genetic change among H5N1 AIV in Vietnam. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Outbreak of Influenza A(H1N1) in a Kidney Transplant Unit-Protective Effect of Vaccination.

    PubMed

    Helanterä, I; Anttila, V-J; Lappalainen, M; Lempinen, M; Isoniemi, H

    2015-09-01

    Seasonal influenza vaccination is recommended for patients with end-stage renal disease (ESRD), despite suggested inferior efficacy among these patients. We characterize an outbreak of influenza A(H1N1) in a kidney transplant unit. Altogether 23 patients were treated on the ward for postoperative care after kidney transplantation during the outbreak. After the first positive case, all patients were tested with nasopharyngeal swab tests and 7 patients were diagnosed with influenza A(H1N1). Altogether 17/23 patients had received adequate seasonal influenza vaccination, of whom 2/17 tested positive for influenza (one asymptomatic, one with mild cough). Five of six unvaccinated patients were diagnosed with influenza A(H1N1); 3/5 suffered from severe respiratory failure and were treated with ventilator support in the ICU, but all died due to acute respiratory distress syndrome, whereas 2/5 suffered from mild viral pneumonitis and recovered fully. The risk of influenza infection and mortality was significantly increased in unvaccinated patients (odds ratio 37.5 [95% CI 2.7-507.5, p = 0.01] and 6.7 [95% CI 2.3-18.9, p = 0.003], respectively). Influenza A(H1N1) had a high mortality in our cohort of nonvaccinated immunosuppressed patients early after kidney transplantation. None of the vaccinated patients developed serious disease, supporting the role of vaccination also for ESRD patients. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  16. Defense.gov - Special Report - H1N1 Flu: Facing the H1N1 Flu

    Science.gov Websites

    Learned WASHINGTON, Nov. 6, 2009 - Senior medical officials who successfully slowed the spread of H1N1 flu Crucial To Fleet Readiness NORFOLK (NNS) -- Commands and medical clinics throughout U.S. Fleet Forces , Ghana. Story» Naval Medical Center Portsmouth Works to Immunize Against Flu PORTSMOUTH, Va., Dec. 15

  17. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    NASA Astrophysics Data System (ADS)

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-04-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.

  18. Outbreaks of pandemic (H1N1) 2009 and seasonal influenza A (H3N2) on cruise ship.

    PubMed

    Ward, Kate A; Armstrong, Paul; McAnulty, Jeremy M; Iwasenko, Jenna M; Dwyer, Dominic E

    2010-11-01

    To determine the extent and pattern of influenza transmission and effectiveness of containment measures, we investigated dual outbreaks of pandemic (H1N1) 2009 and influenza A (H3N2) that had occurred on a cruise ship in May 2009. Of 1,970 passengers and 734 crew members, 82 (3.0%) were infected with pandemic (H1N1) 2009 virus, 98 (3.6%) with influenza A (H3N2) virus, and 2 (0.1%) with both. Among 45 children who visited the ship's childcare center, infection rate for pandemic (H1N1) 2009 was higher than that for influenza A (H3N2) viruses. Disembarked passengers reported a high level of compliance with isolation and quarantine recommendations. We found 4 subsequent cases epidemiologically linked to passengers but no evidence of sustained transmission to the community or passengers on the next cruise. Among this population of generally healthy passengers, children seemed more susceptible to pandemic (H1N1) 2009 than to influenza (H3N2) viruses. Intensive disease control measures successfully contained these outbreaks.

  19. The avian-origin PB1 gene segment facilitated replication and transmissibility of the H3N2/1968 pandemic influenza virus.

    PubMed

    Wendel, Isabel; Rubbenstroth, Dennis; Doedt, Jennifer; Kochs, Georg; Wilhelm, Jochen; Staeheli, Peter; Klenk, Hans-Dieter; Matrosovich, Mikhail

    2015-04-01

    The H2N2/1957 and H3N2/1968 pandemic influenza viruses emerged via the exchange of genomic RNA segments between human and avian viruses. The avian hemagglutinin (HA) allowed the hybrid viruses to escape preexisting immunity in the human population. Both pandemic viruses further received the PB1 gene segment from the avian parent (Y. Kawaoka, S. Krauss, and R. G. Webster, J Virol 63:4603-4608, 1989), but the biological significance of this observation was not understood. To assess whether the avian-origin PB1 segment provided pandemic viruses with some selective advantage, either on its own or via cooperation with the homologous HA segment, we modeled by reverse genetics the reassortment event that led to the emergence of the H3N2/1968 pandemic virus. Using seasonal H2N2 virus A/California/1/66 (Cal) as a surrogate precursor human virus and pandemic virus A/Hong Kong/1/68 (H3N2) (HK) as a source of avian-derived PB1 and HA gene segments, we generated four reassortant recombinant viruses and compared pairs of viruses which differed solely by the origin of PB1. Replacement of the PB1 segment of Cal by PB1 of HK facilitated viral polymerase activity, replication efficiency in human cells, and contact transmission in guinea pigs. A combination of PB1 and HA segments of HK did not enhance replicative fitness of the reassortant virus compared with the single-gene PB1 reassortant. Our data suggest that the avian PB1 segment of the 1968 pandemic virus served to enhance viral growth and transmissibility, likely by enhancing activity of the viral polymerase complex. Despite the high impact of influenza pandemics on human health, some mechanisms underlying the emergence of pandemic influenza viruses still are poorly understood. Thus, it was unclear why both H2N2/1957 and H3N2/1968 reassortant pandemic viruses contained, in addition to the avian HA, the PB1 gene segment of the avian parent. Here, we addressed this long-standing question by modeling the emergence of the H3N2

  20. The Avian-Origin PB1 Gene Segment Facilitated Replication and Transmissibility of the H3N2/1968 Pandemic Influenza Virus

    PubMed Central

    Wendel, Isabel; Rubbenstroth, Dennis; Doedt, Jennifer; Kochs, Georg; Wilhelm, Jochen; Staeheli, Peter; Klenk, Hans-Dieter

    2015-01-01

    ABSTRACT The H2N2/1957 and H3N2/1968 pandemic influenza viruses emerged via the exchange of genomic RNA segments between human and avian viruses. The avian hemagglutinin (HA) allowed the hybrid viruses to escape preexisting immunity in the human population. Both pandemic viruses further received the PB1 gene segment from the avian parent (Y. Kawaoka, S. Krauss, and R. G. Webster, J Virol 63:4603–4608, 1989), but the biological significance of this observation was not understood. To assess whether the avian-origin PB1 segment provided pandemic viruses with some selective advantage, either on its own or via cooperation with the homologous HA segment, we modeled by reverse genetics the reassortment event that led to the emergence of the H3N2/1968 pandemic virus. Using seasonal H2N2 virus A/California/1/66 (Cal) as a surrogate precursor human virus and pandemic virus A/Hong Kong/1/68 (H3N2) (HK) as a source of avian-derived PB1 and HA gene segments, we generated four reassortant recombinant viruses and compared pairs of viruses which differed solely by the origin of PB1. Replacement of the PB1 segment of Cal by PB1 of HK facilitated viral polymerase activity, replication efficiency in human cells, and contact transmission in guinea pigs. A combination of PB1 and HA segments of HK did not enhance replicative fitness of the reassortant virus compared with the single-gene PB1 reassortant. Our data suggest that the avian PB1 segment of the 1968 pandemic virus served to enhance viral growth and transmissibility, likely by enhancing activity of the viral polymerase complex. IMPORTANCE Despite the high impact of influenza pandemics on human health, some mechanisms underlying the emergence of pandemic influenza viruses still are poorly understood. Thus, it was unclear why both H2N2/1957 and H3N2/1968 reassortant pandemic viruses contained, in addition to the avian HA, the PB1 gene segment of the avian parent. Here, we addressed this long-standing question by modeling the

  1. Selection on hemagglutinin imposes a bottleneck during mammalian transmission of reassortant H5N1 influenza viruses

    PubMed Central

    Wilker, Peter R.; Dinis, Jorge M.; Starrett, Gabriel; Imai, Masaki; Hatta, Masato; Nelson, Chase W.; O’Connor, David H.; Hughes, Austin L.; Neumann, Gabriele; Kawaoka, Yoshihiro; Friedrich, Thomas C.

    2013-01-01

    The emergence of human-transmissible H5N1 avian influenza viruses poses a major pandemic threat. H5N1 viruses are thought to be highly genetically diverse both among and within hosts, but the effects of this diversity on viral replication and transmission are poorly understood. Here we use deep sequencing to investigate the impact of within-host viral variation on adaptation and transmission of H5N1 viruses in ferrets. We show that although within-host genetic diversity in hemagglutinin (HA) increases during replication in inoculated ferrets, HA diversity is dramatically reduced upon respiratory droplet transmission, where infection is established by only 1–2 distinct HA segments from a diverse source virus population in transmitting animals. Moreover, minor HA variants present in as little as 5.9% of viruses within the source animal become dominant in ferrets infected via respiratory droplets. These findings demonstrate that selective pressures acting during influenza virus transmission among mammals impose a significant bottleneck. PMID:24149915

  2. Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography

    PubMed Central

    2014-01-01

    Background Pathogenic autoantibodies targeting the recently identified leucine rich glioma inactivated 1 protein and the subunit 1 of the N-methyl-D-aspartate receptor induce autoimmune encephalitis. A comparison of brain metabolic patterns in 18F-fluoro-2-deoxy-d-glucose positron emission tomography of anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis patients has not been performed yet and shall be helpful in differentiating these two most common forms of autoimmune encephalitis. Methods The brain 18F-fluoro-2-deoxy-d-glucose uptake from whole-body positron emission tomography of six anti-N-methyl-D-aspartate receptor encephalitis patients and four patients with anti-leucine rich glioma inactivated 1 protein encephalitis admitted to Hannover Medical School between 2008 and 2012 was retrospectively analyzed and compared to matched controls. Results Group analysis of anti-N-methyl-D-aspartate encephalitis patients demonstrated regionally limited hypermetabolism in frontotemporal areas contrasting an extensive hypometabolism in parietal lobes, whereas the anti-leucine rich glioma inactivated 1 protein syndrome was characterized by hypermetabolism in cerebellar, basal ganglia, occipital and precentral areas and minor frontomesial hypometabolism. Conclusions This retrospective 18F-fluoro-2-deoxy-d-glucose positron emission tomography study provides novel evidence for distinct brain metabolic patterns in patients with anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis. PMID:24950993

  3. Influenza Risk Management: Lessons Learned from an A(H1N1) pdm09 Outbreak Investigation in an Operational Military Setting

    DTIC Science & Technology

    2013-07-10

    of the virus in Spain was detected during an outbreak investigation of influenza -like illness (ILI) in soldiers from an engineering military academy...SwInfA primer and probe set) and specific A(H1N1) pdm09 influenza A viruses using SwH1 primer and probe set developed by CDC, Atlanta (WHO...CY062374, CY062375 and CY062376. Viral culture Influenza viruses were isolated from clinical samples by infecting Madin Darby Canine Kidney (MDCK

  4. Isolation and genetic characterization of avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China.

    PubMed

    Yu, Hai; Zhang, Peng-Chao; Zhou, Yan-Jun; Li, Guo-Xin; Pan, Jie; Yan, Li-Ping; Shi, Xiao-Xiao; Liu, Hui-Li; Tong, Guang-Zhi

    2009-08-21

    As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or "mixing vessels", and swine influenza virus surveillance in China should be given a high priority.

  5. Pandemic Seasonal H1N1 Reassortants Recovered from Patient Material Display a Phenotype Similar to That of the Seasonal Parent

    PubMed Central

    Ducatez, Mariette F.; DeBeauchamp, Jennifer; Crumpton, Jeri-Carol; Rubrum, Adam; Sharp, Bridgett; Hall, Richard J.; Peacey, Matthew; Huang, Sue; Webby, Richard J.

    2016-01-01

    ABSTRACT We have previously shown that 11 patients became naturally coinfected with seasonal H1N1 (A/H1N1) and pandemic H1N1 (pdm/H1N1) during the Southern hemisphere winter of 2009 in New Zealand. Reassortment of influenza A viruses is readily observed during coinfection of host animals and in vitro; however, reports of reassortment occurring naturally in humans are rare. Using clinical specimen material, we show reassortment between the two coinfecting viruses occurred with high likelihood directly in one of the previously identified patients. Despite the lack of spread of these reassortants in the community, we did not find them to be attenuated in several model systems for viral replication and virus transmission: multistep growth curves in differentiated human bronchial epithelial cells revealed no growth deficiency in six recovered reassortants compared to A/H1N1 and pdm/H1N1 isolates. Two reassortant viruses were assessed in ferrets and showed transmission to aerosol contacts. This study demonstrates that influenza virus reassortants can arise in naturally coinfected patients. IMPORTANCE Reassortment of influenza A viruses is an important driver of virus evolution, but little has been done to address humans as hosts for the generation of novel influenza viruses. We show here that multiple reassortant viruses were generated during natural coinfection of a patient with pandemic H1N1 (2009) and seasonal H1N1 influenza A viruses. Though apparently fit in model systems, these reassortants did not become established in the wider population, presumably due to herd immunity against their seasonal H1 antigen. PMID:27279619

  6. Pandemic Seasonal H1N1 Reassortants Recovered from Patient Material Display a Phenotype Similar to That of the Seasonal Parent.

    PubMed

    Sonnberg, Stephanie; Ducatez, Mariette F; DeBeauchamp, Jennifer; Crumpton, Jeri-Carol; Rubrum, Adam; Sharp, Bridgett; Hall, Richard J; Peacey, Matthew; Huang, Sue; Webby, Richard J

    2016-09-01

    We have previously shown that 11 patients became naturally coinfected with seasonal H1N1 (A/H1N1) and pandemic H1N1 (pdm/H1N1) during the Southern hemisphere winter of 2009 in New Zealand. Reassortment of influenza A viruses is readily observed during coinfection of host animals and in vitro; however, reports of reassortment occurring naturally in humans are rare. Using clinical specimen material, we show reassortment between the two coinfecting viruses occurred with high likelihood directly in one of the previously identified patients. Despite the lack of spread of these reassortants in the community, we did not find them to be attenuated in several model systems for viral replication and virus transmission: multistep growth curves in differentiated human bronchial epithelial cells revealed no growth deficiency in six recovered reassortants compared to A/H1N1 and pdm/H1N1 isolates. Two reassortant viruses were assessed in ferrets and showed transmission to aerosol contacts. This study demonstrates that influenza virus reassortants can arise in naturally coinfected patients. Reassortment of influenza A viruses is an important driver of virus evolution, but little has been done to address humans as hosts for the generation of novel influenza viruses. We show here that multiple reassortant viruses were generated during natural coinfection of a patient with pandemic H1N1 (2009) and seasonal H1N1 influenza A viruses. Though apparently fit in model systems, these reassortants did not become established in the wider population, presumably due to herd immunity against their seasonal H1 antigen. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Genomic reassortants of pandemic A (H1N1) 2009 virus and endemic porcine H1 and H3 viruses in swine in Japan.

    PubMed

    Kirisawa, Rikio; Ogasawara, Yoshitaka; Yoshitake, Hayato; Koda, Asuka; Furuya, Tokujiro

    2014-11-01

    From 2010 to 2013 in Japan, we isolated 11 swine influenza viruses (SIVs) from pigs showing respiratory symptoms. Sequence and phylogenetic analyses showed that 6 H1N1 viruses originated from the pandemic (H1N1) 2009 (pdm 09) virus and the other 5 viruses were reassortants between SIVs and pdm 09 viruses, representing 4 genotypes. Two H1N2 viruses contained H1 and N2 genes originated from Japanese H1N2 SIV together with internal genes of pdm 09 viruses. Additionally, 1 H1N2 virus contained a further NP gene originating from Japanese H1N2 SIV. One H1N1 virus contained only the H1 gene originating from Japanese H1 SIV in a pdm 09 virus background. One H3N2 virus contained H3 and N2 genes originating from Japanese H3N2 SIV together with internal genes of pdm 09 virus. The results indicate that pdm 09 viruses are distributed widely in the Japanese swine population and that several reassortments with Japanese SIVs have occurred.

  8. Herpes Simplex Virus-1 Encephalitis in Adults: Pathophysiology, Diagnosis, and Management.

    PubMed

    Bradshaw, Michael J; Venkatesan, Arun

    2016-07-01

    Herpetic infections have plagued humanity for thousands of years, but only recently have advances in antiviral medications and supportive treatments equipped physicians to combat the most severe manifestations of disease. Prompt recognition and treatment can be life-saving in the care of patients with herpes simplex-1 virus encephalitis, the most commonly identified cause of sporadic encephalitis worldwide. Clinicians should be able to recognize the clinical signs and symptoms of the infection and familiarize themselves with a rational diagnostic approach and therapeutic modalities, as early recognition and treatment are key to improving outcomes. Clinicians should also be vigilant for the development of acute complications, including cerebral edema and status epilepticus, as well as chronic complications, including the development of autoimmune encephalitis associated with antibodies to the N-methyl-D-aspartate receptor and other neuronal cell surface and synaptic epitopes. Herein, we review the pathophysiology, differential diagnosis, and clinical and radiological features of herpes simplex virus-1 encephalitis in adults, including a discussion of the most common complications and their treatment. While great progress has been made in the treatment of this life-threatening infection, a majority of patients will not return to their previous neurologic baseline, indicating the need for further research efforts aimed at improving the long-term sequelae.

  9. Outbreaks of Pandemic (H1N1) 2009 and Seasonal Influenza A (H3N2) on Cruise Ship

    PubMed Central

    Ward, Kate A.; Armstrong, Paul; Iwasenko, Jenna M.; Dwyer, Dominic E.

    2010-01-01

    To determine the extent and pattern of influenza transmission and effectiveness of containment measures, we investigated dual outbreaks of pandemic (H1N1) 2009 and influenza A (H3N2) that had occurred on a cruise ship in May 2009. Of 1,970 passengers and 734 crew members, 82 (3.0%) were infected with pandemic (H1N1) 2009 virus, 98 (3.6%) with influenza A (H3N2) virus, and 2 (0.1%) with both. Among 45 children who visited the ship’s childcare center, infection rate for pandemic (H1N1) 2009 was higher than that for influenza A (H3N2) viruses. Disembarked passengers reported a high level of compliance with isolation and quarantine recommendations. We found 4 subsequent cases epidemiologically linked to passengers but no evidence of sustained transmission to the community or passengers on the next cruise. Among this population of generally healthy passengers, children seemed more susceptible to pandemic (H1N1) 2009 than to influenza (H3N2) viruses. Intensive disease control measures successfully contained these outbreaks. PMID:21029531

  10. [Human enterovirus infection status and clinical characteristics of 274 patients with viral encephalitis in Henan Province, 2011-2012].

    PubMed

    Ma, H X; Pan, J J; Li, Y; Kang, K; Huang, X Y; You, A G; Xu, B L

    2017-02-06

    Objective: To investigate human enterovirus (HEV) infection and clinical characteristics of viral encephalitis patients in Pingdingshan, Henan Province. Methods: Cerebrospinal fluid specimens and epidemiological information were collected from 274 viral encephalitis patients in the departments of pediatrics and neurology in hospitals in Pingdingshan, Henan Province, from April 2011 to August 2012. Patients with bacterial infections were excluded from the study. Demographic information was collected by questionnaires and clinical information was mainly obtained from hospital examinations. Viral RNA was extracted using magnetic bead extraction. Real-time RT-PCR was then performed for HEV, CV-A16, and EV-A71 testing. SPSS statistical software was statistical analyses. Significant differences were determined using the chi-squared test ( P< 0.05). Results: Among 274 cases of viral encephalitis, 180 cases (65.7%) were male and 94 cases were female (34.3%). The median age was 2.17 years. Approximately 61.3% (168) of patients were younger than 3 years of age. A total of 107 (39.1%), 2 (0.7%), and 42 (15.3%) cases were positive for HEV, CV-A16, and EV-A71, respectively. Eleven patients were younger than 6 months of age and one patient was co-infected with HEV and EV-A71. In the<3, 3-5, 6-15, and>15 years old age groups, HEV infections comprised 31.5% (53/168), 52.9% (18/34), 53.0% (35/66), and 16.7% (1/6) (χ(2)=13.10, P= 0.003), respectively. The EV-A71 infection rates were 17.9% (30/168), 23.5% (8/34), 6.1% (4/66), and 0 (χ(2)=8.04, P= 0.045), respectively. The other enterovirus (OEV) infection rates were 12.5% (21/168), 29.4% (10/34), 48.5% (32/66), and 16.7% (1/6) (χ(2)=35.19, P< 0.001), respectively. The rate of vomiting in OEV and EV-A71 infected patients was 73% (44/60) and 26% (11/42), respectively, while the frequency of skin rash in OEV and EV-A71 infected patients was 32% (19/60) and 79% (33/42), respectively. Approximately 95% (99/104) of patients infected

  11. Critically ill infants and children with influenza A (H1N1) in pediatric intensive care units in Argentina.

    PubMed

    Farias, Julio A; Fernández, Analía; Monteverde, Ezequiel; Vidal, Nilda; Arias, Pilar; Montes, María J; Rodríguez, Gabriela; Allasia, Mariela; Ratto, Maria E; Jaén, Roxana; Meregalli, Claudia; Fiquepron, Karina; Calvo, Ana R; Siaba, Alejandro; Albano, Lidia; Poterala, Rossana; Neira, Pablo; Esteban, Andrés

    2010-06-01

    To determine the epidemiological features, course, and outcomes of critically ill pediatric patients with Influenza A (H1N1) virus. Prospective cohort of children in pediatric intensive care units (PICUs) due to Influenza A (H1N1) virus infection. Seventeen medical-surgical PICUs in tertiary care hospital in Argentina. All consecutive patients admitted to the PICUs with influenza A (H1N1) viral infection from 15 June to 31 July 2009. Of 437 patients with acute lower respiratory infection in PICUs, 147 (34%) were diagnosed with influenza A (H1N1) related to critical illness. The median age of these patients was 10 months (IQR 3-59). Invasive mechanical ventilation was used in 117 (84%) on admission. The rate of acute respiratory distress syndrome (ARDS) was 80% (118 of 147 patients). Initial non-invasive ventilation failed in 19 of 22 attempts (86%). Mortality at 28 days was 39% (n = 57). Chronic complex conditions (CCCs), acute renal dysfunction (ARD) and ratio PaO(2)/FiO(2) at day 3 on MV were independently associated with a higher risk of mortality. The odds ratio (OR) for CCCs was 3.06, (CI 95% 1.36-6.84); OR for ARD, 3.38, (CI 95% 1.45-10.33); OR for PaO(2)/FiO(2), 4 (CI 95% 1.57-9.59). The administration of oseltamivir within 24 h after admission had a protective effect: OR 0.2 (CI 95% 0.07-0.54). In children with ARDS, H1N1 as an etiologic agent confers high mortality, and the presence of CCCs in such patients increases the risk of death.

  12. Broadly-reactive human monoclonal antibodies elicited following pandemic H1N1 influenza virus exposure protect mice from highly pathogenic H5N1 challenge.

    PubMed

    Nachbagauer, Raffael; Shore, David; Yang, Hua; Johnson, Scott K; Gabbard, Jon D; Tompkins, S Mark; Wrammert, Jens; Wilson, Patrick C; Stevens, James; Ahmed, Rafi; Krammer, Florian; Ellebedy, Ali H

    2018-06-13

    Broadly cross-reactive antibodies that recognize conserved epitopes within the influenza virus hemagglutinin (HA) stalk domain are of particular interest for their potential use as therapeutic and prophylactic agents against multiple influenza virus subtypes including zoonotic virus strains. Here, we characterized four human HA stalk-reactive monoclonal antibodies (mAbs) for their binding breadth and affinity, in vitro neutralization capacity, and in vivo protective potential against an highly pathogenic avian influenza virus. The monoclonal antibodies were isolated from individuals shortly following infection with (70-1F02 and 1009-3B05) or vaccination against (05-2G02 and 09-3A01) A(H1N1)pdm09. Three of the mAbs bound HAs from multiple strains of group 1 viruses, and one mAb, 05-2G02, bound to both group 1 and group 2 influenza A HAs. All four antibodies prophylactically protected mice against a lethal challenge with the highly pathogenic A/Vietnam/1203/04 (H5N1) strain. Two mAbs, 70-1F02 and 09-3A01, were further tested for their therapeutic efficacy against the same strain and showed good efficacy in this setting as well. One mAb, 70-1F02, was co-crystallized with H5 HA and showed similar heavy chain only interactions as a the previously described anti-stalk antibody CR6261. Finally, we showed that antibodies that compete with these mAbs are prevalent in serum from an individual recently infected with A(H1N1)pdm09 virus. The antibodies described here can be developed into broad-spectrum antiviral therapeutics that could be used to combat infections with zoonotic or emerging pandemic influenza viruses. IMPORTANCE The rise in zoonotic infections of humans with emerging influenza viruses is a worldwide public health concern. The majority of recent zoonotic human influenza cases were caused by H7N9 and H5Nx viruses and were associated with high morbidity and mortality. In addition, seasonal influenza viruses are estimated to cause up to 650,000 deaths annually

  13. Comparison of the efficacy of a commercial inactivated influenza A/H1N1/pdm09 virus (pH1N1) vaccine and two experimental M2e-based vaccines against pH1N1 challenge in the growing pig model.

    PubMed

    Opriessnig, Tanja; Gauger, Phillip C; Gerber, Priscilla F; Castro, Alessandra M M G; Shen, Huigang; Murphy, Lita; Digard, Paul; Halbur, Patrick G; Xia, Ming; Jiang, Xi; Tan, Ming

    2018-01-01

    Swine influenza A viruses (IAV-S) found in North American pigs are diverse and the lack of cross-protection among heterologous strains is a concern. The objective of this study was to compare a commercial inactivated A/H1N1/pdm09 (pH1N1) vaccine and two novel subunit vaccines, using IAV M2 ectodomain (M2e) epitopes as antigens, in a growing pig model. Thirty-nine 2-week-old IAV negative pigs were randomly assigned to five groups and rooms. At 3 weeks of age and again at 5 weeks of age, pigs were vaccinated intranasally with an experimental subunit particle vaccine (NvParticle/M2e) or a subunit complex-based vaccine (NvComplex/M2e) or intramuscularly with a commercial inactivated vaccine (Inact/pH1N1). At 7 weeks of age, the pigs were challenged with pH1N1 virus or sham-inoculated. Necropsy was conducted 5 days post pH1N1 challenge (dpc). At the time of challenge one of the Inact/pH1N1 pigs had seroconverted based on IAV nucleoprotein-based ELISA, Inact/pH1N1 pigs had significantly higher pdm09H1N1 hemagglutination inhibition (HI) titers compared to all other groups, and M2e-specific IgG responses were detected in the NvParticle/M2e and the NvComplex/M2e pigs with significantly higher group means in the NvComplex/M2e group compared to SHAMVAC-NEG pigs. After challenge, nasal IAV RNA shedding was significantly reduced in Inact/pH1N1 pigs compared to all other pH1N1 infected groups and this group also had reduced IAV RNA in oral fluids. The macroscopic lung lesions were characterized by mild-to-severe, multifocal-to-diffuse, cranioventral dark purple consolidated areas typical of IAV infection and were similar for NvParticle/M2e, NvComplex/M2e and SHAMVAC-IAV pigs. Lesions were significantly less severe in the SHAMVAC-NEG and the Inact/pH1N1pigs. Under the conditions of this study, a commercial Inact/pH1N1 specific vaccine effectively protected pigs against homologous challenge as evidenced by reduced clinical signs, virus shedding in nasal secretions and oral fluids

  14. Comparison of the efficacy of a commercial inactivated influenza A/H1N1/pdm09 virus (pH1N1) vaccine and two experimental M2e-based vaccines against pH1N1 challenge in the growing pig model

    PubMed Central

    Gauger, Phillip C.; Gerber, Priscilla F.; Castro, Alessandra M. M. G.; Shen, Huigang; Murphy, Lita; Digard, Paul; Halbur, Patrick G.; Xia, Ming; Jiang, Xi; Tan, Ming

    2018-01-01

    Swine influenza A viruses (IAV-S) found in North American pigs are diverse and the lack of cross-protection among heterologous strains is a concern. The objective of this study was to compare a commercial inactivated A/H1N1/pdm09 (pH1N1) vaccine and two novel subunit vaccines, using IAV M2 ectodomain (M2e) epitopes as antigens, in a growing pig model. Thirty-nine 2-week-old IAV negative pigs were randomly assigned to five groups and rooms. At 3 weeks of age and again at 5 weeks of age, pigs were vaccinated intranasally with an experimental subunit particle vaccine (NvParticle/M2e) or a subunit complex-based vaccine (NvComplex/M2e) or intramuscularly with a commercial inactivated vaccine (Inact/pH1N1). At 7 weeks of age, the pigs were challenged with pH1N1 virus or sham-inoculated. Necropsy was conducted 5 days post pH1N1 challenge (dpc). At the time of challenge one of the Inact/pH1N1 pigs had seroconverted based on IAV nucleoprotein-based ELISA, Inact/pH1N1 pigs had significantly higher pdm09H1N1 hemagglutination inhibition (HI) titers compared to all other groups, and M2e-specific IgG responses were detected in the NvParticle/M2e and the NvComplex/M2e pigs with significantly higher group means in the NvComplex/M2e group compared to SHAMVAC-NEG pigs. After challenge, nasal IAV RNA shedding was significantly reduced in Inact/pH1N1 pigs compared to all other pH1N1 infected groups and this group also had reduced IAV RNA in oral fluids. The macroscopic lung lesions were characterized by mild-to-severe, multifocal-to-diffuse, cranioventral dark purple consolidated areas typical of IAV infection and were similar for NvParticle/M2e, NvComplex/M2e and SHAMVAC-IAV pigs. Lesions were significantly less severe in the SHAMVAC-NEG and the Inact/pH1N1pigs. Under the conditions of this study, a commercial Inact/pH1N1 specific vaccine effectively protected pigs against homologous challenge as evidenced by reduced clinical signs, virus shedding in nasal secretions and oral fluids

  15. Experimental Infection of Swans and Geese with Highly Pathogenic Avian Influenza Virus (H5N1) of Asian Lineage

    PubMed Central

    Stallknecht, David E.; Swayne, David E.

    2008-01-01

    The role of wild birds in the epidemiology of the Asian lineage highly pathogenic avian influenza (HPAI) virus subtype H5N1 epizootic and their contribution to the spread of the responsible viruses in Eurasia and Africa are unclear. To better understand the potential role of swans and geese in the epidemiology of this virus, we infected 4 species of swans and 2 species of geese with an HPAI virus of Asian lineage recovered from a whooper swan in Mongolia in 2005, A/whooper swan/Mongolia/244/2005 (H5N1). The highest mortality rates were observed in swans, and species-related differences in clinical illness and viral shedding were evident. These results suggest that the potential for HPAI (H5N1) viral shedding and the movement of infected birds may be species-dependent and can help explain observed deaths associated with HPAI (H5N1) infection in anseriforms in Eurasia. PMID:18258093

  16. Experimental infection of swans and geese with highly pathogenic avian influenza virus (H5N1) of Asian lineage.

    PubMed

    Brown, Justin D; Stallknecht, David E; Swayne, David E

    2008-01-01

    The role of wild birds in the epidemiology of the Asian lineage highly pathogenic avian influenza (HPAI) virus subtype H5N1 epizootic and their contribution to the spread of the responsible viruses in Eurasia and Africa are unclear. To better understand the potential role of swans and geese in the epidemiology of this virus, we infected 4 species of swans and 2 species of geese with an HPAI virus of Asian lineage recovered from a whooper swan in Mongolia in 2005, A/whooper swan/Mongolia/244/2005 (H5N1). The highest mortality rates were observed in swans, and species-related differences in clinical illness and viral shedding were evident. These results suggest that the potential for HPAI (H5N1) viral shedding and the movement of infected birds may be species-dependent and can help explain observed deaths associated with HPAI (H5N1) infection in anseriforms in Eurasia.

  17. Identification of Amino Acid Substitutions Supporting Antigenic Change of Influenza A(H1N1)pdm09 Viruses

    PubMed Central

    Koel, Björn F.; Mögling, Ramona; Chutinimitkul, Salin; Fraaij, Pieter L.; Burke, David F.; van der Vliet, Stefan; de Wit, Emmie; Bestebroer, Theo M.; Rimmelzwaan, Guus F.; Osterhaus, Albert D. M. E.; Smith, Derek J.; Fouchier, Ron A. M.

    2015-01-01

    ABSTRACT The majority of currently circulating influenza A(H1N1) viruses are antigenically similar to the virus that caused the 2009 influenza pandemic. However, antigenic variants are expected to emerge as population immunity increases. Amino acid substitutions in the hemagglutinin protein can result in escape from neutralizing antibodies, affect viral fitness, and change receptor preference. In this study, we constructed mutants with substitutions in the hemagglutinin of A/Netherlands/602/09 in an attenuated backbone to explore amino acid changes that may contribute to emergence of antigenic variants in the human population. Our analysis revealed that single substitutions affecting the loop that consists of amino acid positions 151 to 159 located adjacent to the receptor binding site caused escape from ferret and human antibodies elicited after primary A(H1N1)pdm09 virus infection. The majority of these substitutions resulted in similar or increased replication efficiency in vitro compared to that of the virus carrying the wild-type hemagglutinin and did not result in a change of receptor preference. However, none of the substitutions was sufficient for escape from the antibodies in sera from individuals that experienced both seasonal and pandemic A(H1N1) virus infections. These results suggest that antibodies directed against epitopes on seasonal A(H1N1) viruses contribute to neutralization of A(H1N1)pdm09 antigenic variants, thereby limiting the number of possible substitutions that could lead to escape from population immunity. IMPORTANCE Influenza A viruses can cause significant morbidity and mortality in humans. Amino acid substitutions in the hemagglutinin protein can result in escape from antibody-mediated neutralization. This allows the virus to reinfect individuals that have acquired immunity to previously circulating strains through infection or vaccination. To date, the vast majority of A(H1N1)pdm09 strains remain antigenically similar to the virus

  18. Hypocretin-1 CSF levels in anti-Ma2 associated encephalitis.

    PubMed

    Overeem, S; Dalmau, J; Bataller, L; Nishino, S; Mignot, E; Verschuuren, J; Lammers, G J

    2004-01-13

    Idiopathic narcolepsy is associated with deficient hypocretin transmission. Narcoleptic symptoms have recently been described in paraneoplastic encephalitis with anti-Ma2 antibodies. The authors measured CSF hypocretin-1 levels in six patients with anti-Ma2 encephalitis, and screened for anti-Ma antibodies in patients with idiopathic narcolepsy. Anti-Ma autoantibodies were not detected in patients with idiopathic narcolepsy. Four patients with anti-Ma2 encephalitis had excessive daytime sleepiness; hypocretin-1 was not detectable in their cerebrospinal fluid, suggesting an immune-mediated hypocretin dysfunction.

  19. Hypocretin-1 CSF levels in anti-Ma2 associated encephalitis

    PubMed Central

    Overeem, S.; Dalmau, J.; Bataller, L.; Nishino, S.; Mignot, E.; Verschuuren, J.; Lammers, G.J.

    2008-01-01

    Idiopathic narcolepsy is associated with deficient hypocretin transmission. Narcoleptic symptoms have recently been described in paraneoplastic encephalitis with anti-Ma2 antibodies. The authors measured CSF hypocretin-1 levels in six patients with anti-Ma2 encephalitis, and screened for anti-Ma antibodies in patients with ideopathic narcolepsy. Anti-Ma autoantibodies were not detected in patients with idiopathic narcolepsy. Four patients with anti-Ma2 encephalitis had excessive daytime sleepiness; hypocretin-1 was not detectable in their cerebrospinal fluid, suggesting an immune-mediated hypocretin dysfunction. PMID:14718718

  20. Sensitization with vaccinia virus encoding H5N1 hemagglutinin restores immune potential against H5N1 influenza virus.

    PubMed

    Yasui, Fumihiko; Itoh, Yasushi; Ikejiri, Ai; Kitabatake, Masahiro; Sakaguchi, Nobuo; Munekata, Keisuke; Shichinohe, Shintaro; Hayashi, Yukiko; Ishigaki, Hirohito; Nakayama, Misako; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa; Kohara, Michinori

    2016-11-28

    H5N1 highly pathogenic avian influenza (H5N1 HPAI) virus causes elevated mortality compared with seasonal influenza viruses like H1N1 pandemic influenza (H1N1 pdm) virus. We identified a mechanism associated with the severe symptoms seen with H5N1 HPAI virus infection. H5N1 HPAI virus infection induced a decrease of dendritic cell number in the splenic extrafollicular T-cell zone and impaired formation of the outer layers of B-cell follicles, resulting in insufficient levels of antibody production after infection. However, in animals vaccinated with a live recombinant vaccinia virus expressing the H5 hemagglutinin, infection with H5N1 HPAI virus induced parafollicular dendritic cell accumulation and efficient antibody production. These results indicate that a recombinant vaccinia encoding H5 hemagglutinin gene does not impair dendritic cell recruitment and can be a useful vaccine candidate.

  1. Canine susceptibility to human influenza viruses (A/pdm 09H1N1, A/H3N2 and B).

    PubMed

    Song, Daesub; Kim, Hyekwon; Na, Woonsung; Hong, Minki; Park, Seong-Jun; Moon, Hyoungjoon; Kang, Bokyu; Lyoo, Kwang-Soo; Yeom, Minjoo; Jeong, Dae Gwin; An, Dong-Jun; Kim, Jeong-Ki

    2015-02-01

    We investigated the infectivity and transmissibility of the human seasonal H3N2, pandemic (pdm) H1N1 (2009) and B influenza viruses in dogs. Dogs inoculated with human seasonal H3N2 and pdm H1N1 influenza viruses exhibited nasal shedding and were seroconverted against the viruses; this did not occur in the influenza B virus-inoculated dogs. Transmission of human H3N2 virus between dogs was demonstrated by observing nasal shedding and seroconversion in naïve dogs after contact with inoculated dogs. The seroprevalence study offered evidence of human H3N2 infection occurring in dogs since 2008. Furthermore, serological evidence of pdm H1N1 influenza virus infection alone and in combination with canine H3N2 virus was found in the serum samples collected from field dogs during 2010 and 2011. Our results suggest that dogs may be hosts for human seasonal H3N2 and pdm H1N1 influenza viruses. © 2015 The Authors.

  2. Mannose-binding lectin contributes to deleterious inflammatory response in pandemic H1N1 and avian H9N2 infection.

    PubMed

    Ling, Man To; Tu, Wenwei; Han, Yan; Mao, Huawei; Chong, Wai Po; Guan, Jing; Liu, Ming; Lam, Kwok Tai; Law, Helen K W; Peiris, J S Malik; Takahashi, K; Lau, Yu Lung

    2012-01-01

    Mannose-binding lectin (MBL) is a pattern-recognition molecule, which functions as a first line of host defense. Pandemic H1N1 (pdmH1N1) influenza A virus caused massive infection in 2009 and currently circulates worldwide. Avian influenza A H9N2 (H9N2/G1) virus has infected humans and has the potential to be the next pandemic virus. Antiviral function and immunomodulatory role of MBL in pdmH1N1 and H9N2/G1 virus infection have not been investigated. In this study, MBL wild-type (WT) and MBL knockout (KO) murine models were used to examine the role of MBL in pdmH1N1 and H9N2/G1 virus infection. Our study demonstrated that in vitro, MBL binds to pdmH1N1 and H9N2/G1 viruses, likely via the carbohydrate recognition domain of MBL. Wild-type mice developed more severe disease, as evidenced by a greater weight loss than MBL KO mice during influenza virus infection. Furthermore, MBL WT mice had enhanced production of proinflammatory cytokines and chemokines compared with MBL KO mice, suggesting that MBL could upregulate inflammatory responses that may potentially worsen pdmH1N1 and H9N2/G1 virus infections. Our study provided the first in vivo evidence that MBL may be a risk factor during pdmH1N1 and H9N2/G1 infection by upregulating proinflammatory response.

  3. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark.

    PubMed

    Trebbien, Ramona; Bragstad, Karoline; Larsen, Lars Erik; Nielsen, Jens; Bøtner, Anette; Heegaard, Peter M H; Fomsgaard, Anders; Viuff, Birgitte; Hjulsager, Charlotte Kristiane

    2013-09-18

    The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically and the infection dynamics compared to an "avian-like" H1N1 virus by an experimental infection study. Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an "avian-like" H1N1 virus, respectively, followed by inoculation with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European "avian-like" H1-gene and a European "swine-like" N2-gene, thus being genetically distinct from most H1N2 viruses circulating in Europe, but similar to viruses reported in 2009/2010 in Sweden and Italy. Sequence analyses of the internal genes revealed that the reassortment probably arose between circulating Danish "avian-like" H1N1 and H3N2 SIVs. Infected pigs developed cross-reactive antibodies, and increased levels of acute phase proteins after inoculations. Pigs inoculated with H1N2 exhibited nasal virus excretion for seven days, peaking day 1 after inoculation two days earlier than H1N1 infected pigs and at a six times higher level. The difference, however, was not statistically significant. Pigs euthanized on day 4 after inoculation, had a high virus load in all lung lobes. After the second inoculation, the nasal virus excretion was minimal. There were no clinical sign except elevated body temperature under the experimental conditions. The "avian-like" H1N2 subtype, which has been established in the Danish pig population at least since 2003, is a reassortant between circulating swine "avian-like" H1N1 and H3N2. The Danish

  4. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark

    PubMed Central

    2013-01-01

    Background The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically and the infection dynamics compared to an “avian-like” H1N1 virus by an experimental infection study. Methods Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an “avian-like” H1N1 virus, respectively, followed by inoculation with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. Results The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European “avian-like” H1-gene and a European “swine-like” N2-gene, thus being genetically distinct from most H1N2 viruses circulating in Europe, but similar to viruses reported in 2009/2010 in Sweden and Italy. Sequence analyses of the internal genes revealed that the reassortment probably arose between circulating Danish “avian-like” H1N1 and H3N2 SIVs. Infected pigs developed cross-reactive antibodies, and increased levels of acute phase proteins after inoculations. Pigs inoculated with H1N2 exhibited nasal virus excretion for seven days, peaking day 1 after inoculation two days earlier than H1N1 infected pigs and at a six times higher level. The difference, however, was not statistically significant. Pigs euthanized on day 4 after inoculation, had a high virus load in all lung lobes. After the second inoculation, the nasal virus excretion was minimal. There were no clinical sign except elevated body temperature under the experimental conditions. Conclusions The “avian-like” H1N2 subtype, which has been established in the Danish pig population at least since 2003, is a reassortant

  5. Expression of the serine/threonine kinase hSGK1 in chronic viral hepatitis.

    PubMed

    Fillon, Sophie; Klingel, Karin; Wärntges, Simone; Sauter, Martina; Gabrysch, Sabine; Pestel, Sabine; Tanneur, Valerie; Waldegger, Siegfried; Zipfel, Annette; Viebahn, Richard; Häussinger, Dieter; Bröer, Stefan; Kandolf, Reinhard; Lang, Florian

    2002-01-01

    The human serine/threonine kinase hSGK1 is expressed ubiquitously with highest transcript levels in pancreas and liver. This study has been performed to determine the hSGK1 distribution in normal liver and its putative role in fibrosing liver disease. HSGK1-localization was determined by in situ hybridization, regulation of hSGK1-transcription by Northern blotting, fibronectin synthesis and hSGK1 phosphorylation by Western blotting. In normal liver hSGK1 was mainly transcribed by Kupffer cells. In liver tissue from patients with chronic viral hepatitis, hSGK1 transcript levels were excessively high in numerous activated Kupffer cells and inflammatory cells localized within fibrous septum formations. HSGK1 transcripts were also detected in activated hepatic stellate cells. Accordingly, Western blotting revealed that tissue from fibrotic liver expresses excessive hSGK1 protein as compared to normal liver. TGF-beta1 (2 ng/ml) increases hSGK1 transcription in both human U937 macro-phages and HepG2 hepatoma cells. H(2)O(2) (0.3 mM) activated hSGK1 and increased fibronectin formation in HepG2 cells overexpressing hSGK1 but not in HepG2 cells expressing the inactive mutant hSGK1(K127R). In conclusion hSGK1 is upregulated by TGF-beta1 during hepatitis and may contribute to enhanced matrix formation during fibrosing liver disease. Copyright 2002 S. Karger AG, Basel

  6. Mannose-Binding Lectin Contributes to Deleterious Inflammatory Response in Pandemic H1N1 and Avian H9N2 Infection

    PubMed Central

    Ling, Man To; Tu, Wenwei; Han, Yan; Mao, Huawei; Chong, Wai Po; Guan, Jing; Liu, Ming; Lam, Kwok Tai; Law, Helen K. W.; Peiris, J. S. Malik; Takahashi, K.

    2012-01-01

    Background. Mannose-binding lectin (MBL) is a pattern-recognition molecule, which functions as a first line of host defense. Pandemic H1N1 (pdmH1N1) influenza A virus caused massive infection in 2009 and currently circulates worldwide. Avian influenza A H9N2 (H9N2/G1) virus has infected humans and has the potential to be the next pandemic virus. Antiviral function and immunomodulatory role of MBL in pdmH1N1 and H9N2/G1 virus infection have not been investigated. Methods. In this study, MBL wild-type (WT) and MBL knockout (KO) murine models were used to examine the role of MBL in pdmH1N1 and H9N2/G1 virus infection. Results. Our study demonstrated that in vitro, MBL binds to pdmH1N1 and H9N2/G1 viruses, likely via the carbohydrate recognition domain of MBL. Wild-type mice developed more severe disease, as evidenced by a greater weight loss than MBL KO mice during influenza virus infection. Furthermore, MBL WT mice had enhanced production of proinflammatory cytokines and chemokines compared with MBL KO mice, suggesting that MBL could upregulate inflammatory responses that may potentially worsen pdmH1N1 and H9N2/G1 virus infections. Conclusions. Our study provided the first in vivo evidence that MBL may be a risk factor during pdmH1N1 and H9N2/G1 infection by upregulating proinflammatory response. PMID:22080095

  7. Genetic diversity of influenza A(H1N1)2009 virus circulating during the season 2010-2011 in Spain.

    PubMed

    Ledesma, Juan; Pozo, Francisco; Reina, Gabriel; Blasco, Miriam; Rodríguez, Guadalupe; Montes, Milagrosa; López-Miragaya, Isabel; Salvador, Carmen; Reina, Jordi; Ortíz de Lejarazu, Raúl; Egido, Pilar; López Barba, José; Delgado, Concepción; Cuevas, María Teresa; Casas, Inmaculada

    2012-01-01

    Genetic diversity of influenza A(H1N1)2009 viruses has been reported since the pandemic virus emerged in April 2009. Different genetic clades have been identified and defined based on amino acid substitutions found in the haemagglutinin (HA) protein sequences. In Spain, circulating influenza viruses are monitored each season by the regional laboratories enrolled in the Spanish Influenza Surveillance System (SISS). The analysis of the HA gene sequence helps to detect the genetic diversity and viral evolution. To perform an analysis of the genetic diversity of influenza A(H1N1)2009 viruses circulating in Spain during the season 2010-2011 based on analysis of the HA sequence gene. Phylogenetic analysis based on the HA1 subunit of the haemagglutinin gene was carried out on 220 influenza A(H1N1)2009 viruses circulating during the season 2010-2011. Six different genetic groups were identified among circulating A(H1N1)2009 viruses, five of them were previously reported during season 2010-2011. A new group, characterized by E172K and K308E changes and a proline at position 83, was observed in 12.27% of the Spanish viruses. Co-circulation of six different genetic groups of influenza A(H1N1)2009 viruses was identified in Spain during the season 2010-2011. Nevertheless, at this stage, none of the groups identified to date have resulted in significant antigenic changes according to data collected by World Health Organization Collaborating Centres for influenza surveillance. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Innate Immunity to H5N1 Influenza Viruses in Humans

    PubMed Central

    Ramos, Irene; Fernandez-Sesma, Ana

    2012-01-01

    Avian influenza virus infections in the human population are rare due to their inefficient direct human-to-human transmission. However, when humans are infected, a strong inflammatory response is usually induced, characterized by elevated levels of cytokines and chemokines in serum, believed to be important in the severe pathogenesis that develops in a high proportion of these patients. Extensive research has been performed to understand the molecular viral mechanisms involved in the H5N1 pathogenesis in humans, providing interesting insights about the virus-host interaction and the regulation of the innate immune response by these highly pathogenic viruses. In this review we summarize and discuss the most important findings in this field, focusing mainly on H5N1 virulence factors and their impact on the modulation of the innate immunity in humans. PMID:23342363

  9. H1N1 Swine Influenza Viruses Differ from Avian Precursors by a Higher pH Optimum of Membrane Fusion.

    PubMed

    Baumann, Jan; Kouassi, Nancy Mounogou; Foni, Emanuela; Klenk, Hans-Dieter; Matrosovich, Mikhail

    2016-02-01

    The H1N1 Eurasian avian-like swine (EAsw) influenza viruses originated from an avian H1N1 virus. To characterize potential changes in the membrane fusion activity of the hemagglutinin (HA) during avian-to-swine adaptation of the virus, we studied EAsw viruses isolated in the first years of their circulation in pigs and closely related contemporary H1N1 viruses of wild aquatic birds. Compared to the avian viruses, the swine viruses were less sensitive to neutralization by lysosomotropic agent NH4Cl in MDCK cells, had a higher pH optimum of hemolytic activity, and were less stable at acidic pH. Eight amino acid substitutions in the HA were found to separate the EAsw viruses from their putative avian precursor; four substitutions-T492S, N722D, R752K, and S1132F-were located in the structural regions of the HA2 subunit known to play a role in acid-induced conformational transition of the HA. We also studied low-pH-induced syncytium formation by cell-expressed HA proteins and found that the HAs of the 1918, 1957, 1968, and 2009 pandemic viruses required a lower pH for fusion induction than did the HA of a representative EAsw virus. Our data show that transmission of an avian H1N1 virus to pigs was accompanied by changes in conformational stability and fusion promotion activity of the HA. We conclude that distinctive host-determined fusion characteristics of the HA may represent a barrier for avian-to-swine and swine-to-human transmission of influenza viruses. Continuing cases of human infections with zoonotic influenza viruses highlight the necessity to understand which viral properties contribute to interspecies transmission. Efficient binding of the HA to cellular receptors in a new host species is known to be essential for the transmission. Less is known about required adaptive changes in the membrane fusion activity of the HA. Here we show that adaptation of an avian influenza virus to pigs in Europe in 1980s was accompanied by mutations in the HA, which decreased

  10. H1N1 Swine Influenza Viruses Differ from Avian Precursors by a Higher pH Optimum of Membrane Fusion

    PubMed Central

    Baumann, Jan; Kouassi, Nancy Mounogou; Foni, Emanuela; Klenk, Hans-Dieter

    2015-01-01

    ABSTRACT The H1N1 Eurasian avian-like swine (EAsw) influenza viruses originated from an avian H1N1 virus. To characterize potential changes in the membrane fusion activity of the hemagglutinin (HA) during avian-to-swine adaptation of the virus, we studied EAsw viruses isolated in the first years of their circulation in pigs and closely related contemporary H1N1 viruses of wild aquatic birds. Compared to the avian viruses, the swine viruses were less sensitive to neutralization by lysosomotropic agent NH4Cl in MDCK cells, had a higher pH optimum of hemolytic activity, and were less stable at acidic pH. Eight amino acid substitutions in the HA were found to separate the EAsw viruses from their putative avian precursor; four substitutions—T492S, N722D, R752K, and S1132F—were located in the structural regions of the HA2 subunit known to play a role in acid-induced conformational transition of the HA. We also studied low-pH-induced syncytium formation by cell-expressed HA proteins and found that the HAs of the 1918, 1957, 1968, and 2009 pandemic viruses required a lower pH for fusion induction than did the HA of a representative EAsw virus. Our data show that transmission of an avian H1N1 virus to pigs was accompanied by changes in conformational stability and fusion promotion activity of the HA. We conclude that distinctive host-determined fusion characteristics of the HA may represent a barrier for avian-to-swine and swine-to-human transmission of influenza viruses. IMPORTANCE Continuing cases of human infections with zoonotic influenza viruses highlight the necessity to understand which viral properties contribute to interspecies transmission. Efficient binding of the HA to cellular receptors in a new host species is known to be essential for the transmission. Less is known about required adaptive changes in the membrane fusion activity of the HA. Here we show that adaptation of an avian influenza virus to pigs in Europe in 1980s was accompanied by mutations in

  11. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    PubMed

    Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B

    2016-01-01

    HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  12. Characterization of Functional Antibody and Memory B-Cell Responses to pH1N1 Monovalent Vaccine in HIV-Infected Children and Youth

    PubMed Central

    Curtis, Donna J.; Muresan, Petronella; Nachman, Sharon; Fenton, Terence; Richardson, Kelly M.; Dominguez, Teresa; Flynn, Patricia M.; Spector, Stephen A.; Cunningham, Coleen K.; Bloom, Anthony; Weinberg, Adriana

    2015-01-01

    Objectives We investigated immune determinants of antibody responses and B-cell memory to pH1N1 vaccine in HIV-infected children. Methods Ninety subjects 4 to <25 years of age received two double doses of pH1N1 vaccine. Serum and cells were frozen at baseline, after each vaccination, and at 28 weeks post-immunization. Hemagglutination inhibition (HAI) titers, avidity indices (AI), B-cell subsets, and pH1N1 IgG and IgA antigen secreting cells (ASC) were measured at baseline and after each vaccination. Neutralizing antibodies and pH1N1-specific Th1, Th2 and Tfh cytokines were measured at baseline and post-dose 1. Results At entry, 26 (29%) subjects had pH1N1 protective HAI titers (≥1:40). pH1N1-specific HAI, neutralizing titers, AI, IgG ASC, IL-2 and IL-4 increased in response to vaccination (p<0.05), but IgA ASC, IL-5, IL-13, IL-21, IFNγ and B-cell subsets did not change. Subjects with baseline HAI ≥1:40 had significantly greater increases in IgG ASC and AI after immunization compared with those with HAI <1:40. Neutralizing titers and AI after vaccination increased with older age. High pH1N1 HAI responses were associated with increased IgG ASC, IFNγ, IL-2, microneutralizion titers, and AI. Microneutralization titers after vaccination increased with high IgG ASC and IL-2 responses. IgG ASC also increased with high IFNγ responses. CD4% and viral load did not predict the immune responses post-vaccination, but the B-cell distribution did. Notably, vaccine immunogenicity increased with high CD19+CD21+CD27+% resting memory, high CD19+CD10+CD27+% immature activated, low CD19+CD21-CD27-CD20-% tissue-like, low CD19+CD21-CD27-CD20-% transitional and low CD19+CD38+HLADR+% activated B-cell subsets. Conclusions HIV-infected children on HAART mount a broad B-cell memory response to pH1N1 vaccine, which was higher for subjects with baseline HAI≥1:40 and increased with age, presumably due to prior exposure to pH1N1 or to other influenza vaccination/infection. The response

  13. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs.

    PubMed

    Lyoo, K S; Na, W; Phan, L V; Yoon, S W; Yeom, M; Song, D; Jeong, D G

    2017-12-01

    Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)-, 2.3.2.1c (H5N1)- and 2.3.4.4 (H5N6)-infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a "mixing vessel" for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian-human influenza virus reassortment if they are also co-infected with human influenza viruses. © 2017 Blackwell Verlag GmbH.

  14. Identification of climate factors related to human infection with avian influenza A H7N9 and H5N1 viruses in China.

    PubMed

    Li, Jing; Rao, Yuhan; Sun, Qinglan; Wu, Xiaoxu; Jin, Jiao; Bi, Yuhai; Chen, Jin; Lei, Fumin; Liu, Qiyong; Duan, Ziyuan; Ma, Juncai; Gao, George F; Liu, Di; Liu, Wenjun

    2015-12-11

    Human influenza infections display a strongly seasonal pattern. However, whether H7N9 and H5N1 infections correlate with climate factors has not been examined. Here, we analyzed 350 cases of H7N9 infection and 47 cases of H5N1 infection. The spatial characteristics of these cases revealed that H5N1 infections mainly occurred in the South, Middle, and Northwest of China, while the occurrence of H7N9 was concentrated in coastal areas of East and South of China. Aside from spatial-temporal characteristics, the most adaptive meteorological conditions for the occurrence of human infections by these two viral subtypes were different. We found that H7N9 infections correlate with climate factors, especially temperature (TEM) and relative humidity (RHU), while H5N1 infections correlate with TEM and atmospheric pressure (PRS). Hence, we propose a risky window (TEM 4-14 °C and RHU 65-95%) for H7N9 infection and (TEM 2-22 °C and PRS 980-1025 kPa) for H5N1 infection. Our results represent the first step in determining the effects of climate factors on two different virus infections in China and provide warning guidelines for the future when provinces fall into the risky windows. These findings revealed integrated predictive meteorological factors rooted in statistic data that enable the establishment of preventive actions and precautionary measures against future outbreaks.

  15. Jerking & confused: Leucine-rich glioma inactivated 1 receptor encephalitis.

    PubMed

    Casault, Colin; Alikhani, Katayoun; Pillay, Neelan; Koch, Marcus

    2015-12-15

    This is a case of autoimmune encephalitis with features of faciobrachial dystonic seizures (FBDS) pathognomonic for Leucine Rich Glioma inactivated (LGI)1 antibody encephalitis. This voltage-gated potassium channel complex encephalitis is marked by rapid onset dementia, FBDS and hyponatremia, which is sensitive to management with immunotherapy including steroids, IVIG and other agents. In this case report we review the clinical features, imaging and management of this condition. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  16. Understanding the cross-resistance of oseltamivir to H1N1 and H5N1 influenza A neuraminidase mutations using multidimensional computational analyses

    PubMed Central

    Singh, Ashona; Soliman, Mahmoud E

    2015-01-01

    This study embarks on a comprehensive description of the conformational contributions to resistance of neuraminidase (N1) in H1N1 and H5N1 to oseltamivir, using comparative multiple molecular dynamic simulations. The available data with regard to elucidation of the mechanism of resistance as a result of mutations in H1N1 and H5N1 neuraminidases is not well established. Enhanced post-dynamic analysis, such as principal component analysis, solvent accessible surface area, free binding energy calculations, and radius of gyration were performed to gain a precise insight into the binding mode and origin of resistance of oseltamivir in H1N1 and H5N1 mutants. Three significant features reflecting resistance in the presence of mutations H274Y and I222K, of the protein complexed with the inhibitor are: reduced flexibility of the α-carbon backbone; an improved ΔEele of ~15 (kcal/mol) for H1N1 coupled with an increase in ΔGsol (~13 kcal/mol) from wild-type to mutation; a low binding affinity in comparison with the wild-type of ~2 (kcal/mol) and ~7 (kcal/mol) with respect to each mutation for the H5N1 systems; and reduced hydrophobicity of the overall surface structure due to an impaired hydrogen bonding network. We believe the results of this study will ultimately provide a useful insight into the structural landscape of neuraminidase-associated binding of oseltamivir. Furthermore, the results can be used in the design and development of potent inhibitors of neuraminidases. PMID:26257512

  17. Understanding the cross-resistance of oseltamivir to H1N1 and H5N1 influenza A neuraminidase mutations using multidimensional computational analyses.

    PubMed

    Singh, Ashona; Soliman, Mahmoud E

    2015-01-01

    This study embarks on a comprehensive description of the conformational contributions to resistance of neuraminidase (N1) in H1N1 and H5N1 to oseltamivir, using comparative multiple molecular dynamic simulations. The available data with regard to elucidation of the mechanism of resistance as a result of mutations in H1N1 and H5N1 neuraminidases is not well established. Enhanced post-dynamic analysis, such as principal component analysis, solvent accessible surface area, free binding energy calculations, and radius of gyration were performed to gain a precise insight into the binding mode and origin of resistance of oseltamivir in H1N1 and H5N1 mutants. Three significant features reflecting resistance in the presence of mutations H274Y and I222K, of the protein complexed with the inhibitor are: reduced flexibility of the α-carbon backbone; an improved ΔEele of ~15 (kcal/mol) for H1N1 coupled with an increase in ΔGsol (~13 kcal/mol) from wild-type to mutation; a low binding affinity in comparison with the wild-type of ~2 (kcal/mol) and ~7 (kcal/mol) with respect to each mutation for the H5N1 systems; and reduced hydrophobicity of the overall surface structure due to an impaired hydrogen bonding network. We believe the results of this study will ultimately provide a useful insight into the structural landscape of neuraminidase-associated binding of oseltamivir. Furthermore, the results can be used in the design and development of potent inhibitors of neuraminidases.

  18. Predicting Disease Severity and Viral Spread of H5N1 Influenza Virus in Ferrets in the Context of Natural Exposure Routes

    PubMed Central

    Edenborough, Kathryn M.; Lowther, Suzanne; Laurie, Karen; Yamada, Manabu; Long, Fenella; Bingham, John; Payne, Jean; Harper, Jennifer; Haining, Jessica; Arkinstall, Rachel; Gilbertson, Brad; Middleton, Deborah

    2015-01-01

    ABSTRACT Although avian H5N1 influenza virus has yet to develop the capacity for human-to-human spread, the severity of the rare cases of human infection has warranted intensive follow-up of potentially exposed individuals that may require antiviral prophylaxis. For countries where antiviral drugs are limited, the World Health Organization (WHO) has developed a risk categorization for different levels of exposure to environmental, poultry, or human sources of infection. While these take into account the infection source, they do not account for the likely mode of virus entry that the individual may have experienced from that source and how this could affect the disease outcome. Knowledge of the kinetics and spread of virus after natural routes of exposure may further inform the risk of infection, as well as the likely disease severity. Using the ferret model of H5N1 infection, we compared the commonly used but artificial inoculation method that saturates the total respiratory tract (TRT) with virus to upper respiratory tract (URT) and oral routes of delivery, those likely to be encountered by humans in nature. We show that there was no statistically significant difference in survival rate with the different routes of infection, but the disease characteristics were somewhat different. Following URT infection, viral spread to systemic organs was comparatively delayed and more focal than after TRT infection. By both routes, severe disease was associated with early viremia and central nervous system infection. After oral exposure to the virus, mild infections were common suggesting consumption of virus-contaminated liquids may be associated with seroconversion in the absence of severe disease. IMPORTANCE Risks for human H5N1 infection include direct contact with infected birds and frequenting contaminated environments. We used H5N1 ferret infection models to show that breathing in the virus was more likely to produce clinical infection than swallowing contaminated

  19. Don't let the flu catch you: agency assignment in printed educational materials about the H1N1 influenza virus.

    PubMed

    McGlone, Matthew S; Bell, Robert A; Zaitchik, Sarah T; McGlynn, Joseph

    2013-01-01

    In English and in other languages, the agency for viral transmission can be grammatically assigned to people (e.g., Thousands may contract H1N1) or to the virus itself (e.g., H1N1 may infect thousands). These assignment options shape different conceptions of transmission as attributable either to social contact within one's control or to pursuit of an active predator. The authors tested the effect of agency assignment and agentic images on young adults' (N = 246) reactions to educational materials about H1N1 influenza. The authors hypothesized that assigning agency to the virus would heighten perceived severity and personal susceptibility relative to human agency assignment. Results were consistent with this hypothesis, indicating that virus agency increased perceptions of severity, personal susceptibility, and reported intentions to seek vaccination relative to human agency. The image manipulation did not directly affect these factors. The findings suggest that strategic agency assignment can improve the effectiveness of educational materials about influenza and other health threats.

  20. Outbreak of pandemic influenza A/H1N1 2009 in Nepal.

    PubMed

    Adhikari, Bal Ram; Shakya, Geeta; Upadhyay, Bishnu Prasad; Prakash Kc, Khagendra; Shrestha, Sirjana Devi; Dhungana, Guna Raj

    2011-03-23

    The 2009 flu pandemic is a global outbreak of a new strain of H1N1 influenza virus. Pandemic influenza A (H1N1) 2009 has posed a serious public health challenge world-wide. Nepal has started Laboratory diagnosis of Pandemic influenza A/H1N1 from mid June 2009 though active screening of febrile travellers with respiratory symptoms was started from April 27, 2009. Out of 609 collected samples, 302 (49.6%) were Universal Influenza A positive. Among the influenza A positive samples, 172(28.3%) were positive for Pandemic influenza A/H1N1 and 130 (21.3%) were Seasonal influenza A. Most of the pandemic cases (53%) were found among young people with ≤ 20 years. Case Fatality Ratio for Pandemic influenza A/H1N1 in Nepal was 1.74%. Upon Molecular characterization, all the isolated pandemic influenza A/H1N1 2009 virus found in Nepal were antigenically and genetically related to the novel influenza A/CALIFORNIA/07/2009-LIKE (H1N1)v type. The Pandemic 2009 influenza virus found in Nepal were antigenically and genetically related to the novel A/CALIFORNIA/07/2009-LIKE (H1N1)v type.

  1. Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses

    PubMed Central

    Nang, Nguyen Tai; Song, Byung Min; Kang, Young Myong; Kim, Heui Man; Kim, Hyun Soo; Seo, Sang Heui

    2012-01-01

    Please cite this paper as: Nang et al. (2013) Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses. Influenza and Other Respiratory Viruses 7(2) 120–131. Background  The highly pathogenic H5N1 and H9N2 influenza viruses are endemic in many countries around the world and have caused considerable economic loss to the poultry industry. Objectives  We aimed to study whether a live attenuated H5N1 vaccine comprising internal genes from a cold‐adapted H9N2 influenza virus could protect chickens from infection by both H5N1 and H9N2 viruses. Methods  We developed a cold‐adapted H9N2 vaccine virus expressing hemagglutinin and neuraminidase derived from the highly pathogenic H5N1 influenza virus using reverse genetics. Results and Conclusions  Chickens immunized with the vaccine were protected from lethal infections with homologous and heterologous H5N1 or H9N2 influenza viruses. Specific antibody against H5N1 virus was detected up to 11 weeks after vaccination (the endpoint of this study). In vaccinated chickens, IgA and IgG antibody subtypes were induced in lung and intestinal tissue, and CD4+ and CD8+ T lymphocytes expressing interferon‐gamma were induced in the splenocytes. These data suggest that a live attenuated H5N1 vaccine with cold‐adapted H9N2 internal genes can protect chickens from infection with H5N1 and H9N2 influenza viruses by eliciting humoral and cellular immunity. PMID:22487301

  2. Protective Efficacy of an H5N1 Inactivated Vaccine Against Challenge with Lethal H5N1, H5N2, H5N6, and H5N8 Influenza Viruses in Chickens.

    PubMed

    Zeng, Xianying; Chen, Pucheng; Liu, Liling; Deng, Guohua; Li, Yanbing; Shi, Jianzhong; Kong, Huihui; Feng, Huapeng; Bai, Jie; Li, Xin; Shi, Wenjun; Tian, Guobin; Chen, Hualan

    2016-05-01

    The Goose/Guangdong-lineage H5 viruses have evolved into diverse clades and subclades based on their hemagglutinin (HA) gene during their circulation in wild birds and poultry. Since late 2013, the clade 2.3.4.4 viruses have become widespread in poultry and wild bird populations around the world. Different subtypes of the clade 2.3.4.4 H5 viruses, including H5N1, H5N2, H5N6, and H5N8, have caused vast disease outbreaks in poultry in Asia, Europe, and North America. In this study, we developed a new H5N1 inactivated vaccine by using a seed virus (designated as Re-8) that contains the HA and NA genes from a clade 2.3.4.4 virus, A/chicken/Guizhou/4/13(H5N1) (CK/GZ/4/13), and its six internal genes from the high-growth A/Puerto Rico/8/1934 (H1N1) virus. We evaluated the protective efficacy of this vaccine in chickens challenged with one H5N1 clade 2.3.2.1b virus and six different subtypes of clade 2.3.4.4 viruses, including H5N1, H5N2, H5N6, and H5N8 strains. In the clade 2.3.2.1b virus DK/GX/S1017/13-challenged groups, half of the vaccinated chickens shed virus through the oropharynx and two birds (20%) died during the observation period. All of the control chickens shed viruses and died within 6 days of infection with challenge virus. All of the vaccinated chickens remained healthy following challenge with the six clade 2.3.4.4 viruses, and virus shedding was not detected from any of these birds; however, all of the control birds shed viruses and died within 4 days of challenge with the clade 2.3.4.4 viruses. Our results indicate that the Re-8 vaccine provides protection against different subtypes of clade 2.3.4.4 H5 viruses.

  3. Formulation and immunological evaluation of a trivalent vaccine comprising emulsified submicron particles and inactivated virions of H5N1/EV71/JEV

    PubMed Central

    Lin, Chih-Wei; Chang, Ching-Yun; Chen, Wei-Lin; Lin, Shih-Chang; Liao, Chien-Chun; Chang, Jui-Yuan; Liu, Chia-Chyi; Hu, Alan Yung-Chih; Lu, Tsung-Chun; Chou, Ai-Hsiang; Wu, Suh-Chin; Chong, Pele; Huang, Ming-Hsi

    2013-01-01

    Combination vaccines can reduce the number of injections and simplify the immunization schedule required to prevent different diseases. Here we assessed the immunogenicity in a mouse model of a vaccine composition comprising inactivated influenza viruses (H5N1/H1N1), enterovirus 71 (EV71), and/or Japanese encephalitis virus (JEV) and investigated whether the vaccine formulations can overcome the immunologic interference between the individual vaccine components. We demonstrated that the antigenic competition happens between H5N1/H1N1 or H5N1/EV71 inactivated virions when the vaccine combinations either formulated with Alum suspensions or without adjuvant. In the presence of PELC emulsified particles, EV71-specific immune responses before and after incorporating H5N1 virus into EV71 vaccine were detected of no significant difference; in addition, H5N1- and EV71-specific immune responses were found at the same level when H5N1/EV71/JEV consolidating into combination vaccine. Emulsified vaccine formulation was represented as a potential tool that is found to reduce the number of injections required to prevent multiple infectious strains causing the same disease (H5N1/H1N1) and/or that protect against different diseases (H5N1/EV71). Combination vaccines can also include a third component to protect against H5N1/EV71/JEV at the same time. PMID:23838466

  4. Fitness of Pandemic H1N1 and Seasonal influenza A viruses during Co-infection: Evidence of competitive advantage of pandemic H1N1 influenza versus seasonal influenza.

    PubMed

    Perez, Daniel Roberto; Sorrell, Erin; Angel, Matthew; Ye, Jianqiang; Hickman, Danielle; Pena, Lindomar; Ramirez-Nieto, Gloria; Kimble, Brian; Araya, Yonas

    2009-08-24

    On June 11, 2009 the World Health Organization (WHO) declared a new H1N1 influenza pandemic. This pandemic strain is as transmissible as seasonal H1N1 and H3N2 influenza A viruses. Major concerns facing this pandemic are whether the new virus will replace, co-circulate and/or reassort with seasonal H1N1 and/or H3N2 human strains. Using the ferret model, we investigated which of these three possibilities were most likely favored. Our studies showed that the current pandemic virus is more transmissible than, and has a biological advantage over, prototypical seasonal H1 or H3 strains.

  5. Characterization of the 2009 Pandemic A/Beijing/501/2009 H1N1 Influenza Strain in Human Airway Epithelial Cells and Ferrets

    PubMed Central

    Xing, Li; Li, Zhiwei; Wang, Wei; Zhao, Yan; Yan, Yiwu; Gu, Hongjing; Liu, Xin; Zhao, Zhongpeng; Zhang, Shaogeng; Wang, Xiliang; Jiang, Chengyu

    2012-01-01

    Background A novel 2009 swine-origin influenza A H1N1 virus (S-OIV H1N1) has been transmitted among humans worldwide. However, the pathogenesis of this virus in human airway epithelial cells and mammals is not well understood. Methodology/Principal Finding In this study, we showed that a 2009 A (H1N1) influenza virus strain, A/Beijing/501/2009, isolated from a human patient, caused typical influenza-like symptoms including weight loss, fluctuations in body temperature, and pulmonary pathological changes in ferrets. We demonstrated that the human lung adenocarcinoma epithelial cell line A549 was susceptible to infection and that the infected cells underwent apoptosis at 24 h post-infection. In contrast to the seasonal H1N1 influenza virus, the 2009 A (H1N1) influenza virus strain A/Beijing/501/2009 induced more cell death involving caspase-3-dependent apoptosis in A549 cells. Additionally, ferrets infected with the A/Beijing/501/2009 H1N1 virus strain exhibited increased body temperature, greater weight loss, and higher viral titers in the lungs. Therefore, the A/Beijing/501/2009 H1N1 isolate successfully infected the lungs of ferrets and caused more pathological lesions than the seasonal influenza virus. Our findings demonstrate that the difference in virulence of the 2009 pandemic H1N1 influenza virus and the seasonal H1N1 influenza virus in vitro and in vivo may have been mediated by different mechanisms. Conclusion/Significance Our understanding of the pathogenesis of the 2009 A (H1N1) influenza virus infection in both humans and animals is broadened by our findings that apoptotic cell death is involved in the cytopathic effect observed in vitro and that the pathological alterations in the lungs of S-OIV H1N1-infected ferrets are much more severe. PMID:23049974

  6. Deep Sequencing to Identify the Causes of Viral Encephalitis

    PubMed Central

    Chan, Benjamin K.; Wilson, Theodore; Fischer, Kael F.; Kriesel, John D.

    2014-01-01

    Deep sequencing allows for a rapid, accurate characterization of microbial DNA and RNA sequences in many types of samples. Deep sequencing (also called next generation sequencing or NGS) is being developed to assist with the diagnosis of a wide variety of infectious diseases. In this study, seven frozen brain samples from deceased subjects with recent encephalitis were investigated. RNA from each sample was extracted, randomly reverse transcribed and sequenced. The sequence analysis was performed in a blinded fashion and confirmed with pathogen-specific PCR. This analysis successfully identified measles virus sequences in two brain samples and herpes simplex virus type-1 sequences in three brain samples. No pathogen was identified in the other two brain specimens. These results were concordant with pathogen-specific PCR and partially concordant with prior neuropathological examinations, demonstrating that deep sequencing can accurately identify viral infections in frozen brain tissue. PMID:24699691

  7. [Autochthonous acute viral and bacterial infections of the central nervous system (meningitis and encephalitis)].

    PubMed

    Pérez-Ruiz, Mercedes; Vicente, Diego; Navarro-Marí, José María

    2008-07-01

    Rapid diagnosis of acute viral and bacterial infections of the central nervous system (meningitis and encephalitis) is highly important for the clinical management of the patient and helps to establish early therapy that may solve life-threatening situations, to avoid unnecessary empirical treatments, to reduce hospital stay, and to facilitate appropriate interventions in the context of public health. Molecular techniques, especially real-time polymerase chain reaction, have become the fastest and most sensitive diagnostic procedures for autochthonous viral meningitis and encephalitis, and their role is becoming increasingly important for the diagnosis and control of most frequent acute bacterial meningitides. Automatic and closed systems may encourage the widespread and systematic use of molecular techniques for the diagnosis of these neurological syndromes in most laboratories.

  8. Susceptibility of wild passerines to subtype H5N1 highly pathogenic avian influenza viruses.

    PubMed

    Fujimoto, Yoshikazu; Usui, Tatsufumi; Ito, Hiroshi; Ono, Etsuro; Ito, Toshihiro

    2015-01-01

    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype have spread throughout many areas of Asia, Europe and Africa, and numerous cases of HPAI outbreaks in domestic and wild birds have been reported. Although recent studies suggest that the dissemination of H5N1 viruses is closely linked to the migration of wild birds, information on the potential for viral infection in species other than poultry and waterfowl is relatively limited. To investigate the susceptibility of terrestrial wild birds to infection with H5N1 HPAI viruses, common reed buntings (Emberiza schoeniclus), pale thrushes (Turdus pallidus) and brown-eared bulbuls (Hypsipetes amaurotis) were infected with A/mountain hawk-eagle/Kumamoto/1/07(H5N1) and A/whooper swan/Aomori/1/08(H5N1). The results showed that common reed buntings and brown-eared bulbuls were severely affected by both virus strains (100% mortality). While pale thrushes did not exhibit any clinical signs, seroconversion was confirmed. In common reed buntings, intraspecies-transmission of A/whooper swan/Aomori/1/08 to contact birds was also confirmed. The findings show that three passerine species; common reed buntings, brown-eared bulbuls and pale thrushes are susceptible to infection by H5N1 HPAI viruses, which emphasizes that continued surveillance of species other than waterfowl is crucial for effective monitoring of H5N1 HPAI virus outbreaks.

  9. Evolution of highly pathogenic avian H5N1 influenza viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macken, Catherine A; Green, Margaret A

    2009-01-01

    Highly pathogenic avian H5N1 viruses have circulated in Southeast Asia for more than a decade, are now endemic in parts of this region, and have also spread to more than 60 countries on three continents. The evolution of these viruses is characterized by frequent reassortment events that have created a significant number of different genotypes, both transient and longer lasting. However, fundamental questions remain about the generation and perpetuation of this substantial genetic diversity. These gaps in understanding may, in part, be due to the difficulties of genotyping closely related viruses, and limitations in the size of the data setsmore » used in analysis. Using our recently published novel genotyping procedure ('two-time test'), which is amenable to high throughput analysis and provides an increased level of resolution relative to previous analyses, we propose a detailed model for the evolution and diversification of avian H5N1 viruses. Our analysis suggests that (i) all current H5N1 genotypes are derived from a single, clearly defined sequence of initial reassortment events; (ii) reassortment of the polymerase and NP genes may have played an important role in avian H5N1 virus evolution; (iii) the current genotype Z viruses have diverged into three distinguishable sub-genotypes in the absence of reassortment; (iv) some potentially significant molecular changes appear to be correlated with particular genotypes (for example, reassortment of the internal genes is often paralleled by a change in the HA clade); and (v) as noted in earlier studies of avian influenza A virus evolution, novel segments are typically derived from different donors (i.e., there is no obvious pattern of gene linkage in reassortment). The model of avian H5N1 viral evolution by reassortment and mutation that emerges from our study provides a context within which significant amino acid changes may be revealed; it also may help in predicting the 'success' of newly emerging avian H5N1

  10. Performance of the Directigen EZ Flu A+B rapid influenza diagnostic test to detect pandemic influenza A/H1N1 2009.

    PubMed

    Boyanton, Bobby L; Almradi, Amro; Mehta, Tejal; Robinson-Dunn, Barbara

    2014-04-01

    The Directigen EZ Flu A+B rapid influenza diagnostic test, as compared to real-time reverse transcriptase polymerase chain reaction, demonstrated suboptimal performance to detect pandemic influenza A/H1N1 2009. Age- and viral load-stratified test sensitivity ranged from 33.3 to 84.6% and 0 to 100%, respectively. © 2013.

  11. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus.

    PubMed

    Kang, Xiao-ping; Jiang, Tao; Li, Yong-qiang; Lin, Fang; Liu, Hong; Chang, Guo-hui; Zhu, Qing-yu; Qin, E-de; Qin, Cheng-feng; Yang, Yin-hui

    2010-06-02

    A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009) influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose) for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same as that of each single-target RT-PCR for pandemic H1N1 and even more sensitive for H5N1 with the same primers and probes. No cross reactivity of detecting other subtype influenza viruses or respiratory tract viruses was observed. Two hundred and thirty-six clinical specimens were tested by comparing with single real-time RT-PCR and result from the duplex assay was 100% consistent with the results of single real-time RT-PCR and sequence analysis.

  12. In-Depth Analysis of HA and NS1 Genes in A(H1N1)pdm09 Infected Patients.

    PubMed

    Caglioti, Claudia; Selleri, Marina; Rozera, Gabriella; Giombini, Emanuela; Zaccaro, Paola; Valli, Maria Beatrice; Capobianchi, Maria Rosaria

    2016-01-01

    In March/April 2009, a new pandemic influenza A virus (A(H1N1)pdm09) emerged and spread rapidly via human-to-human transmission, giving rise to the first pandemic of the 21th century. Influenza virus may be present in the infected host as a mixture of variants, referred to as quasi-species, on which natural and immune-driven selection operates. Since hemagglutinin (HA) and non-structural 1 (NS1) proteins are relevant in respect of adaptive and innate immune responses, the present study was aimed at establishing the intra-host genetic heterogeneity of HA and NS1 genes, applying ultra-deep pyrosequencing (UDPS) to nasopharyngeal swabs (NPS) from patients with confirmed influenza A(H1N1)pdm09 infection. The intra-patient nucleotide diversity of HA was significantly higher than that of NS1 (median (IQR): 37.9 (32.8-42.3) X 10-4 vs 30.6 (27.4-33.6) X 10-4 substitutions/site, p = 0.024); no significant correlation for nucleotide diversity of NS1 and HA was observed (r = 0.319, p = 0.29). Furthermore, a strong inverse correlation between nucleotide diversity of NS1 and viral load was observed (r = - 0.74, p = 0.004). For both HA and NS1, the variants appeared scattered along the genes, thus indicating no privileged mutation site. Known polymorphisms, S203T (HA) and I123V (NS1), were observed as dominant variants (>98%) in almost all patients; three HA and two NS1 further variants were observed at frequency >40%; a number of additional variants were detected at frequency <6% (minority variants), of which three HA and four NS1 variants were novel. In few patients multiple variants were observed at HA residues 203 and 222. According to the FLUSURVER tool, some of these variants may affect immune recognition and host range; however, these inferences are based on H5N1, and their extension to A(H1N1)pdm09 requires caution. More studies are necessary to address the significance of the composite nature of influenza virus quasi-species within infected patients.

  13. Epidemiology, clinical features, and prognosis of elderly adults with severe forms of influenza A (H1N1.

    PubMed

    Garnacho-Montero, José; Gutiérrez-Pizarraya, Antonio; Màrquez, Juan A; Zaragoza, Rafael; Granada, Rosa; Ruiz-Santana, Sergio; Rello, Jordi; Rodríguez, Alejandro

    2013-03-01

    To examine epidemiological and clinical data of individuals aged 65 and older with influenza virus A (H1N1) admitted to the intensive care unit (ICU) and to identify independent predictors of ICU mortality. Prospective, observational, multicenter study to determine prognostic factors in individuals infected with influenza A (H1N1) admitted to the ICU. One hundred forty-eight Spanish ICUs. Individuals with influenza A (H1N1) confirmed using real-time polymerase chain reaction from April 2009 to July 2011. Individuals aged 65 and older were compared with younger individuals. A multivariate analysis was conducted to determine independent predictors of mortality in this population. One thousand one hundred twenty individuals (129 (11.5%) aged 65) were included. Prevalence of chronic diseases was more common in older individuals. Viral pneumonitis was more frequent in individuals younger than 65 (70.5% vs 54.3%, P < .001). In older individuals, Acute Physiology and Chronic Health Evaluation II score (odds ratio (OR) = 1.11, 95% confidence interval (CI) = 1.11–1.20, P = .002), immunosuppression (OR = 3.66, 95% CI, 1.33–10.03, P = .01) and oseltamivir therapy initiated after 48 hours (OR = 3.32, 95% CI = 1.02–10.8, P = .04) were identified as independent variables associated with mortality. Corticosteroid use was associated with a trend toward greater mortality (OR = 2.39, 95% CI = 0.98–5.91, P = .06). Individuals aged 65 and older with influenza A (H1N1) admitted to the ICU have a higher incidence of underlying diseases than younger individuals and differences in clinical presentation. Early oseltamivir therapy is associated with better outcomes in elderly adults.

  14. Evolutionary trajectories and diagnostic challenges of potentially zoonotic avian influenza viruses H5N1 and H9N2 co-circulating in Egypt.

    PubMed

    Naguib, Mahmoud M; Arafa, Abdel-Satar A; El-Kady, Magdy F; Selim, Abdullah A; Gunalan, Vithiagaran; Maurer-Stroh, Sebastian; Goller, Katja V; Hassan, Mohamed K; Beer, Martin; Abdelwhab, E M; Harder, Timm C

    2015-08-01

    In Egypt, since 2006, descendants of the highly pathogenic avian influenza virus (HP AIV) H5N1 of clade 2.2 continue to cause sharp losses in poultry production and seriously threaten public health. Potentially zoonotic H9N2 viruses established an endemic status in poultry in Egypt as well and co-circulate with HP AIV H5N1 rising concerns of reassortments between H9N2 and H5N1 viruses along with an increase of mixed infections of poultry. Nucleotide sequences of whole genomes of 15 different isolates (H5N1: 7; H9N2: 8), and of the hemagglutinin (HA) and neuraminidase (NA) encoding segments of nine further clinical samples (H5N1: 2; H9N2: 7) from 2013 and 2014 were generated and analysed. The HA of H5N1 viruses clustered with clade 2.2.1 while the H9 HA formed three distinguishable subgroups within cluster B viruses. BEAST analysis revealed that H9N2 viruses are likely present in Egypt since 2009. Several previously undescribed substituting mutations putatively associated with host tropism and virulence modulation were detected in different proteins of the analysed H9N2 and H5N1 viruses. Reassortment between HP AIV H5N1 and H9N2 is anticipated in Egypt, and timely detection of such events is of public health concern. As a rapid tool for detection of such reassortants discriminative SYBR-Green reverse transcription real-time PCR assays (SG-RT-qPCR), targeting the internal genes of the Egyptian H5N1 and H9N2 viruses were developed for the rapid screening of viral RNAs from both virus isolates and clinical samples. However, in accordance to Sanger sequencing, no reassortants were found by SG-RT-qPCR. Nevertheless, the complex epidemiology of avian influenza in poultry in Egypt will require sustained close observation. Further development and continuing adaptation of rapid and cost-effective screening assays such as the SG-RT-qPCR protocol developed here are at the basis of efforts for improvement the currently critical situation. Copyright © 2015 Elsevier B.V. All

  15. Andrographolide as an anti-H1N1 drug and the mechanism related to retinoic acid-inducible gene-I-like receptors signaling pathway.

    PubMed

    Yu, Bin; Dai, Cong-qi; Jiang, Zhen-you; Li, En-qing; Chen, Chen; Wu, Xian-lin; Chen, Jia; Liu, Qian; Zhao, Chang-lin; He, Jin-xiong; Ju, Da-hong; Chen, Xiao-yin

    2014-07-01

    To observe the anti-virus effects of andrographolide (AD) on the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) signaling pathway when immunological cells were infected with H1N1. Leukomonocyte was obtained from umbilical cord blood by Ficoll density gradient centrifugation, and immunological cells were harvested after cytokines stimulation. Virus infected cell model was established by H1N1 co-cultured with normal human bronchial epithelial cell line (16HBE). The optimal concentration of AD was defined by methyl-thiazolyl-tetrazolium (MTT) assay. After the virus infected cell model was established, AD was added into the medium as a treatment intervention. After 24-h co-culture, cell supernatant was collected for interferon gamma (IFN-γ) and interleukin-4 (IL-4) enzyme-linked immunosorbent assay (ELISA) detection while immunological cells for real-time polymerase chain reaction (RT-PCR). The optimal concentration of AD for anti-virus effect was 250 μg/mL. IL-4 and IFN-γ in the supernatant and mRNA levels in RLRs pathway increased when cells was infected by virus, RIG-I, IFN-β promoter stimulator-1 (IPS-1), interferon regulatory factor (IRF)-7, IRF-3 and nuclear transcription factor κB (NF-κB) mRNA levels increased significantly (P<0.05). When AD was added into co-culture medium, the levels of IL-4 and IFN-γ were lower than those in the non-interference groups and the mRNA expression levels decreased, RIG-I, IPS-1, IRF-7, IRF-3 and NF-κB decreased significantly in each group with significant statistic differences (P<0.05). The RLRs mediated viral recognition provided a potential molecular target for acute viral infections and andrographolide could ameliorate H1N1 virus-induced cell mortality. And the antiviral effects might be related to its inhibition of viral-induced activation of the RLRs signaling pathway.

  16. Homosubtypic and heterosubtypic antibodies against highly pathogenic avian influenza H5N1 recombinant proteins in H5N1 survivors and non-H5N1 subjects.

    PubMed

    Noisumdaeng, Pirom; Pooruk, Phisanu; Prasertsopon, Jarunee; Assanasen, Susan; Kitphati, Rungrueng; Auewarakul, Prasert; Puthavathana, Pilaipan

    2014-04-01

    Six recombinant vaccinia viruses containing HA, NA, NP, M or NS gene insert derived from a highly pathogenic avian influenza H5N1 virus, and the recombinant vaccinia virus harboring plasmid backbone as the virus control were constructed. The recombinant proteins were characterized for their expression and subcellular locations in TK(-) cells. Antibodies to the five recombinant proteins were detected in all 13 sequential serum samples collected from four H5N1 survivors during four years of follow-up; and those directed to rVac-H5 HA and rVac-NA proteins were found in higher titers than those directed to the internal proteins as revealed by indirect immunofluorescence assay. Although all 28 non-H5N1 subjects had no neutralizing antibodies against H5N1 virus, they did have cross-reactive antibodies to those five recombinant proteins. A significant increase in cross-reactive antibody titer to rVac-H5 HA and rVac-NA was found in paired blood samples from patients infected with the 2009 pandemic virus. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Influenza A(H1N1)pdm09 during air travel

    PubMed Central

    Neatherlin, John; Cramer, Elaine H.; Dubray, Christine; Marienau, Karen J.; Russell, Michelle; Sun, Hong; Whaley, Melissa; Hancock, Kathy; Duong, Krista K.; Kirking, Hannah L.; Schembri, Christopher; Katz, Jacqueline M.; Cohen, Nicole J.; Fishbein, Daniel B.

    2015-01-01

    Summary The global spread of the influenza A(H1N1)pdm09 virus (pH1N1) associated with travelers from North America during the onset of the 2009 pandemic demonstrates the central role of international air travel in virus migration. To characterize risk factors for pH1N1 transmission during air travel, we investigated travelers and airline employees from four North American flights carrying ill travelers with confirmed pH1N1 infection. Of 392 passengers and crew identified, information was available for 290 (74%) passengers were interviewed. Overall attack rates for acute respiratory infection and influenza-like illness 1–7 days after travel were 5.2% and 2.4% respectively. Of 43 individuals that provided sera, 4 (9.3%) tested positive for pH1N1 antibodies, including 3 with serologic evidence of asymptomatic infection. Investigation of novel influenza aboard aircraft may be instructive. However, beyond the initial outbreak phase, it may compete with community-based mitigation activities, and interpretation of findings will be difficult in the context of established community transmission. PMID:23523241

  18. A(H1N1)pdm09 influenza infection: vaccine inefficiency.

    PubMed

    Friedman, Nehemya; Drori, Yaron; Pando, Rakefet; Glatman-Freedman, Aharona; Sefty, Hanna; Bassal, Ravit; Stein, Yaniv; Shohat, Tamy; Mendelson, Ella; Hindiyeh, Musa; Mandelboim, Michal

    2017-05-16

    The last influenza pandemic, caused by the swine A(H1N1)pdm09 influenza virus, began in North America at 2009. Since then, the World Health Organization (WHO) recommended integration of the swine-based virus A/California/07/2009 strain in yearly vaccinations. Yet, infections with A(H1N1)pdm09 have continued in subsequent years. The reasons for this are currently unknown. During the 2015-2016 influenza season, we noted an increased prevalence of A(H1N1)pdm09 influenza virus infection in Israel. Our phylogenetic analysis indicated that the circulating A(H1N1)pdm09 strains belonged to 6B.1 and 6B.2 clades and differed from the vaccinating strain, with approximately 18 amino acid differences found between the circulating strains and the immunizing A/California/07/2009 strain. Hemmaglutination inhibition (HI) assays demonstrated higher antibodies titer against the A/California/07/2009 vaccinating strain as compared to the circulating Israeli strains. We thus suggest that the current vaccination was not sufficiently effective and propose inclusion of the current circulating A(H1N1)pdm09 influenza viruses in the annual vaccine composition.

  19. Retargeting of rat parvovirus H-1PV to cancer cells through genetic engineering of the viral capsid.

    PubMed

    Allaume, Xavier; El-Andaloussi, Nazim; Leuchs, Barbara; Bonifati, Serena; Kulkarni, Amit; Marttila, Tiina; Kaufmann, Johanna K; Nettelbeck, Dirk M; Kleinschmidt, Jürgen; Rommelaere, Jean; Marchini, Antonio

    2012-04-01

    The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds α(v)β(3) and α(v)β(5) integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing α(v)β(5) integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy.

  20. Vaccination and auto-immune rheumatic diseases: lessons learnt from the 2009 H1N1 influenza virus vaccination campaign.

    PubMed

    Touma, Zahi; Gladman, Dafna D; Urowitz, Murray B

    2013-03-01

    To determine the safety and efficacy of adjuvant and nonadjuvant influenza A/H1NI vaccination in patients with rheumatic diseases. Due to immune abnormalities and the use of steroids and immunosuppressant treatment, patients with rheumatic diseases are susceptible to infections including influenza. Infections continue to be one of the leading causes of morbidity and mortality in rheumatic diseases, partly due to the disease processes and partly due to medications. Viral infections are particularly an issue, so vaccinations would be advisable. However, because of the abnormalities in immune mechanisms in many rheumatic diseases, it is not clear whether vaccinations are well tolerated and effective. A number of studies confirmed the efficacy and safety of adjuvant and nonadjuvant influenza A/H1NI vaccination in patients with rheumatic diseases. The potential side effects associated with H1N1 vaccines were not different from those observed with seasonal influenza vaccine. The use of steroids and immunosuppressant therapies may alter the efficacy of the vaccines. Adjuvant and nonadjuvant influenza A/H1NI vaccinations have no clinically important effect on production or levels of autoantibodies in patients with rheumatic diseases. H1N1 vaccination should be given to patients with rheumatic diseases.

  1. Early Detection of Pandemic (H1N1) 2009, Bangladesh

    PubMed Central

    Rahman, Mustafizur; Al Mamun, Abdullah; Haider, Mohammad Sabbir; Zaman, Rashid Uz; Karmakar, Polash Chandra; Nasreen, Sharifa; Muneer, Syeda Mah-E; Homaira, Nusrat; Goswami, Doli Rani; Ahmed, Be-Nazir; Husain, Mohammad Mushtuq; Jamil, Khondokar Mahbuba; Khatun, Selina; Ahmed, Mujaddeed; Chakraborty, Apurba; Fry, Alicia; Widdowson, Marc-Alain; Bresee, Joseph; Azim, Tasnim; Alamgir, A.S.M.; Brooks, Abdullah; Hossain, Mohamed Jahangir; Klimov, Alexander; Rahman, Mahmudur; Luby, Stephen P.

    2012-01-01

    To explore Bangladesh’s ability to detect novel influenza, we examined a series of laboratory-confirmed pandemic (H1N1) 2009 cases. During June–July 2009, event-based surveillance identified 30 case-patients (57% travelers); starting July 29, sentinel sites identified 252 case-patients (1% travelers). Surveillance facilitated response weeks before the spread of pandemic (H1N1) 2009 infection to the general population. PMID:22257637

  2. Pathogenesis of pandemic influenza A (H1N1) and triple-reassortant swine influenza A (H1) viruses in mice

    USDA-ARS?s Scientific Manuscript database

    The pandemic H1N1 virus of 2009 (2009 H1N1) continues to cause illness worldwide, primarily in younger age groups. To better understand the pathogenesis of these viruses in mammals, we used a mouse model to evaluate the relative virulence of selected 2009 H1N1 viruses and compared them to a represe...

  3. Supply of neuraminidase inhibitors related to reduced influenza A (H1N1) mortality during the 2009-2010 H1N1 pandemic: an ecological study.

    PubMed

    Miller, Paula E; Rambachan, Aksharananda; Hubbard, Roderick J; Li, Jiabai; Meyer, Alison E; Stephens, Peter; Mounts, Anthony W; Rolfes, Melissa A; Penn, Charles R

    2012-01-01

    The influenza A (H1N1) pandemic swept across the globe from April 2009 to August 2010 affecting millions. Many WHO Member States relied on antiviral drugs, specifically neuraminidase inhibitors (NAIs) oseltamivir and zanamivir, to treat influenza patients in critical condition. Such drugs have been found to be effective in reducing severity and duration of influenza illness, and likely reduced morbidity during the pandemic. However, it is less clear whether NAIs used during the pandemic reduced H1N1 mortality. Country-level data on supply of oseltamivir and zanamivir were used to predict H1N1 mortality (per 100,000 people) from July 2009 to August 2010 in forty-two WHO Member States. Poisson regression was used to model the association between NAI supply and H1N1 mortality, with adjustment for economic, demographic, and health-related confounders. After adjustment for potential confounders, each 10% increase in kilograms of oseltamivir, per 100,000 people, was associated with a 1.6% reduction in H1N1 mortality over the pandemic period (relative rate (RR) = 0.84 per log increase in oseltamivir supply). While the supply of zanamivir was considerably less than that of oseltamivir in each Member State, each 10% increase in kilogram of active zanamivir, per 100,000, was associated with a 0.3% reduction in H1N1 mortality (RR = 0.97 per log increase). While there are limitations to the ecologic nature of these data, this analysis offers evidence of a protective relationship between antiviral drug supply and influenza mortality and supports a role for influenza antiviral use in future pandemics.

  4. Psychiatric aspects of herpes simplex encephalitis, tick-borne encephalitis and herpes zoster encephalitis among immunocompetent patients.

    PubMed

    Więdłocha, Magdalena; Marcinowicz, Piotr; Stańczykiewicz, Bartłomiej

    2015-01-01

    The psychopathological symptoms occurring in the course of diseases associated with infections are often initially isolated and non-characteristic, and may cause diagnostic difficulties. Moreover, such disorders tend to be less responsive to psychiatric management. Among possible causes such as trauma, neoplasm and vascular changes, inflammatory changes of the brain as a result of a viral infection should also be considered. There were 452 registered cases of viral encephalitis in Poland in 2010, and although not very prevalent they remain a severe and life-threatening condition. What is more, the frequently occurring neurological and psychiatric complications of viral encephalitis often result in permanent disabilities, causing a significant decrease in the quality of life. This article presents the three types of encephalitis that are most prevalent among immunocompetent patients in Poland, i.e. herpes simplex encephalitis (HSE), tick-borne encephalitis (TBE) and herpes zoster encephalitis (HZE). The psychopathology of the acute phase of the infection, the residual symptoms, features apparent in imaging studies and some neuropathological aspects are also presented. The paper also focuses on psychiatric aspects of the diagnostics and treatment of the described conditions. The clinical pictures of these infections are quite specific, although they cover a wide range of symptoms, and these characteristic features are described. The aim of this review is also to show the significance of thorough diagnostics and a multidisciplinary approach to patients with viral CNS infections.

  5. Antibodies Against the Current Influenza A(H1N1) Vaccine Strain Do Not Protect Some Individuals From Infection With Contemporary Circulating Influenza A(H1N1) Virus Strains.

    PubMed

    Petrie, Joshua G; Parkhouse, Kaela; Ohmit, Suzanne E; Malosh, Ryan E; Monto, Arnold S; Hensley, Scott E

    2016-12-15

    During the 2013-2014 influenza season, nearly all circulating 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) strains possessed an antigenically important mutation in hemagglutinin (K166Q). Here, we performed hemagglutination-inhibition (HAI) assays, using sera collected from 382 individuals prior to the 2013-2014 season, and we determined whether HAI titers were associated with protection from A(H1N1)pdm09 infection. Protection was associated with HAI titers against an A(H1N1)pdm09 strain possessing the K166Q mutation but not with HAI titers against the current A(H1N1)pdm09 vaccine strain, which lacks this mutation. These data indicate that contemporary A(H1N1)pdm09 strains are antigenically distinct from the current A(H1N1)pdm09 vaccine strain. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Parasite-mediated upregulation of NK cell-derived gamma interferon protects against severe highly pathogenic H5N1 influenza virus infection.

    PubMed

    O'Brien, Kevin B; Schultz-Cherry, Stacey; Knoll, Laura J

    2011-09-01

    Outbreaks of influenza A viruses are associated with significant human morbidity worldwide. Given the increasing resistance to the available influenza drugs, new therapies for the treatment of influenza virus infection are needed. An alternative approach is to identify products that enhance a protective immune response. In these studies, we demonstrate that infecting mice with the Th1-inducing parasite Toxoplasma gondii prior to highly pathogenic avian H5N1 influenza virus infection led to decreased lung viral titers and enhanced survival. A noninfectious fraction of T. gondii soluble antigens (STAg) elicited an immune response similar to that elicited by live parasites, and administration of STAg 2 days after H5N1 influenza virus infection enhanced survival, lowered viral titers, and reduced clinical disease. STAg administration protected H5N1 virus-infected mice lacking lymphocytes, suggesting that while the adaptive immune response was not required for enhanced survival, it was necessary for STAg-mediated viral clearance. Mechanistically, we found that administration of STAg led to increased production of gamma interferon (IFN-γ) from natural killer (NK) cells, which were both necessary and sufficient for survival. Further, administration of exogenous IFN-γ alone enhanced survival from H5N1 influenza virus infection, although not to the same level as STAg treatment. These studies demonstrate that a noninfectious T. gondii extract enhances the protective immune response against severe H5N1 influenza virus infections even when a single dose is administered 2 days postinfection.

  7. Reducing Occurrence and Severity of Pneumonia Due to Pandemic H1N1 2009 by Early Oseltamivir Administration: A Retrospective Study in Mexico

    PubMed Central

    Higuera Iglesias, Anjarath Lorena; Kudo, Koichiro; Manabe, Toshie; Corcho Berdugo, Alexander Enrique; Baeza, Ariel Corrales; Ramos, Leticia Alfaro; Gutiérrez, René Guevara; Manjarrez Zavala, María Eugenia; Takasaki, Jin; Izumi, Shinyu; Bautista, Edgar; Perez Padilla, José Rogelio

    2011-01-01

    Background Anti-viral treatment has been used to treat severe or progressive illness due to pandemic H1N1 2009. A main cause of severe illness in pandemic H1N1 2009 is viral pneumonia; however, it is unclear how effective antiviral treatment is against pneumonia when administered >48 hours after symptom onset. Therefore, we aimed to determine how time from symptom onset to antiviral administration affected the effectiveness of antiviral treatment against pneumonia due to pandemic (H1N1) 2009. Methods/Principal Findings A retrospective medical chart review of 442 patients was conducted in a hospital in Mexico. Subjects had tested positive for pandemic H1N1 2009 virus by real-time reverse-transcriptase-polymerase-chain-reaction and were administered oseltamivir. Median time from symptom onset to oseltamivir administration was 5.0 days (range, 0–43). 442 subjects, 71 (16.1%) had severe pneumonia which required mechanical ventilation, 191 (43.2%) had mild to moderate pneumonia, and 180 (40%) did not have pneumonia. Subjects were divided into four groups based on time to oseltamivir administration: ≤2, 3–7, 8–14, and >14 days. Severity of respiratory features was associated with time to treatment, and multivariate analysis indicated that time to oseltamivir administration was associated with severity of respiratory features. A proportional odds model indicated that 50% probability for occurrence of pneumonia of any severity and that of severe pneumonia in patients who would develop pneumonia reached at approximately 3.4 and 21 days, respectively, after symptom onset. Patients with a shorter time to oseltamivir administration were discharged earlier from the hospital. Conclusions Earlier initiation of oseltamivir administration after symptom onset significantly reduced occurrence and severity of pneumonia and shortened hospitalization due to pandemic H1N1 2009. Even when administered >48 hours after symptom onset, oseltamivir showed considerable potential for

  8. Novel reassortant influenza A(H1N2) virus derived from A(H1N1)pdm09 virus isolated from swine, Japan, 2012.

    PubMed

    Kobayashi, Miho; Takayama, Ikuyo; Kageyama, Tsutomu; Tsukagoshi, Hiroyuki; Saitoh, Mika; Ishioka, Taisei; Yokota, Yoko; Kimura, Hirokazu; Tashiro, Masato; Kozawa, Kunihisa

    2013-12-01

    We isolated a novel influenza virus A(H1N2) strain from a pig on January 13, 2012, in Gunma Prefecture, Japan. Phylogenetic analysis showed that the strain was a novel type of double-reassortant virus derived from the swine influenza virus strains H1N1pdm09 and H1N2, which were prevalent in Gunma at that time.

  9. Pandemic (H1N1) 2009 Cases, Buenos Aires, Argentina

    PubMed Central

    Querci, Marcia; Marcone, Débora; Videla, Cristina; Martínez, Alfredo; Bonvehi, Pablo; Carballal, Guadalupe

    2010-01-01

    To determine clinical and virologic characteristics of pandemic (H1N1) 2009 in Buenos Aires, Argentina, we conducted real-time reverse transcription–PCR on samples from patients with influenza-like illness, June 11–30, 2009. Of 513 patients tested, 54% were positive for influenza virus subtype H1N1. Infection rate was lowest for patients ≥60 years of age. PMID:20113568

  10. Serological study of the 2009 pandemic due to influenza A H1N1 in the metropolitan French population.

    PubMed

    Delangue, J; Salez, N; Ninove, L; Kieffer, A; Zandotti, C; Seston, M; Lina, B; Nougairede, A; Charrel, R; Flahault, A; de Lamballerie, X

    2012-02-01

    We looked for evidence of antibodies to the 2009 influenza A/H1N1 pandemic virus in panels of sera from individuals living in metropolitan France, obtained either before, during or after the epidemic, using standard haemagglutination inhibition and microneutralization tests. The difference between seroprevalence values measured in post- and pre-epidemic panels was used as an estimate of seroconversion rate in different age groups (23.4% (0-24 years, age-group 0); 16.5% (25-34); 7.9% (35-44); 7.2% (45-54); 1.6% (55-64); and 3.1% (>65)), confirming that the distribution of cases in different age groups was similar to that of the seasonal H1N1 virus. During the pre-pandemic period low-titre cross-reactive antibodies were present in a large proportion of the population (presumably acquired against seasonal H1N1) whereas cross-reactive antibodies were detected in individuals over the age of 65 years with significantly higher prevalence and serological titres (presumably acquired previously against Spanish flu-related H1N1 strains). Clinical data and analysis of post-pandemic seroprevalence showed that few of these latter patients were infected by the influenza virus during the epidemic. In contrast, the majority of both clinical cases and seroconversions were recorded in the 0-24 age group and a global inverse relationship between prevalence of antibodies to pH1N1 in the pre-pandemic period and rate of seroconversion was observed amongst age groups. Our results emphasize the complex relationships involved in antigenic reactivity to pandemic and seasonal H1N1 viral antigens; hence the difficulty in distinguishing between low-titre specific and cross-reactive antibodies, establishing precise seroprevalence numbers and fully understanding the relationship between previous immunity to seasonal viruses and protection against the novel variant. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  11. Inactivation of influenza A virus H1N1 by disinfection process.

    PubMed

    Jeong, Eun Kyo; Bae, Jung Eun; Kim, In Seop

    2010-06-01

    Because any patient, health care worker, or visitor is capable of transmitting influenza to susceptible persons within hospitals, hospital-acquired influenza has been a clinical concern. Disinfection and cleaning of medical equipment, surgical instruments, and hospital environment are important measures to prevent transmission of influenza virus from hospitals to individuals. This study was conducted to evaluate the efficacy of disinfection processes, which can be easily operated at hospitals, in inactivating influenza A virus H1N1 (H1N1). The effects of 0.1 mol/L NaOH, 70% ethanol, 70% 1-propanol, solvent/detergent (S/D) using 0.3% tri (n-butyl)-phosphate and 1.0% Triton X-100, heat, and ethylene oxide (EO) treatments in inactivating H1N1 were determined. Inactivation of H1N1 was kinetically determined by the treatment of disinfectants to virus solution. Also, a surface test method, which involved drying an amount of virus on a surface and then applying the inactivation methods for 1 minute of contact time, was used to determine the virucidal activity. H1N1 was completely inactivated to undetectable levels in 1 minute of 70% ethanol, 70% 1-propanol, and solvent/detergent treatments in the surface tests as well as in the suspension tests. H1N1 was completely inactivated in 1 minute of 0.1 mol/L NaOH treatment in the suspension tests and also effectively inactivated in the surface tests with the log reduction factor of 3.7. H1N1 was inactivated to undetectable levels within 5 minutes, 2.5 minutes, and 1 minute of heat treatment at 70, 80, and 90 degrees C, respectively in the suspension tests. Also, H1N1 was completely inactivated by EO treatment in the surface tests. Common disinfectants, heat, and EO tested in this study were effective at inactivating H1N1. These results would be helpful in implementing effective disinfecting measures to prevent hospital-acquired infections. Copyright 2010 Association for Professionals in Infection Control and Epidemiology, Inc

  12. Novel Reassortant Influenza A(H1N2) Virus Derived from A(H1N1)pdm09 Virus Isolated from Swine, Japan, 2012

    PubMed Central

    Kobayashi, Miho; Takayama, Ikuyo; Kageyama, Tsutomu; Tsukagoshi, Hiroyuki; Saitoh, Mika; Ishioka, Taisei; Yokota, Yoko; Kimura, Hirokazu; Tashiro, Masato

    2013-01-01

    We isolated a novel influenza virus A(H1N2) strain from a pig on January 13, 2012, in Gunma Prefecture, Japan. Phylogenetic analysis showed that the strain was a novel type of double-reassortant virus derived from the swine influenza virus strains H1N1pdm09 and H1N2, which were prevalent in Gunma at that time. PMID:24274745

  13. Pandemic influenza A (H1N1) 2009 vaccine: an update.

    PubMed

    Goel, M K; Goel, M; Khanna, P; Mittal, K

    2011-01-01

    The world witnessed a the first influenza pandemic in this century and fourth overall since first flu pandemic was reported during the World War I. The past experiences with influenza viruses and this pandemic of H1N1 place a consider-able strain on health services and resulted in serious illnesses and a large number of deaths. Develop-ing countries were declared more likely to be at risk from the pandemic effects, as they faced the dual problem of highly vulnerable populations and limited resources to respond H1N1. The public health experts agreed that vaccination is the most effective ways to mitigate the negative effects of the pandemic. The vaccines for H1N1 virus have been used in over 40 countries and administered to over 200 million people helped in a great way and on August 10, 2010, World Health Organization (WHO) announced H1N1 to be in postpandemic period. But based on knowledge about past pandemics, the H1N1 (2009) virus is expected to continue to circulate as a seasonal virus and may undergo some agenic-variation. As WHO strongly recommends vaccination, vigilance for regular updating of the composition of influenza vaccines, based on an assessment of the future impact of circulating viruses along with safety surveillance of the vaccines is necessary. This review has been done to take a stock of the currently available H1N1 vaccines and their possible use as public health intervention in the postpandemic period.

  14. Characterization of a Human H5N1 Influenza A Virus Isolated in 2003

    PubMed Central

    Shinya, Kyoko; Hatta, Masato; Yamada, Shinya; Takada, Ayato; Watanabe, Shinji; Halfmann, Peter; Horimoto, Taisuke; Neumann, Gabriele; Kim, Jin Hyun; Lim, Wilina; Guan, Yi; Peiris, Malik; Kiso, Makoto; Suzuki, Takashi; Suzuki, Yasuo; Kawaoka, Yoshihiro

    2005-01-01

    In 2003, H5N1 avian influenza virus infections were diagnosed in two Hong Kong residents who had visited the Fujian province in mainland China, affording us the opportunity to characterize one of the viral isolates, A/Hong Kong/213/03 (HK213; H5N1). In contrast to H5N1 viruses isolated from humans during the 1997 outbreak in Hong Kong, HK213 retained several features of aquatic bird viruses, including the lack of a deletion in the neuraminidase stalk and the absence of additional oligosaccharide chains at the globular head of the hemagglutinin molecule. It demonstrated weak pathogenicity in mice and ferrets but caused lethal infection in chickens. The original isolate failed to produce disease in ducks but became more pathogenic after five passages. Taken together, these findings portray the HK213 isolate as an aquatic avian influenza A virus without the molecular changes associated with the replication of H5N1 avian viruses in land-based poultry such as chickens. This case challenges the view that adaptation to land-based poultry is a prerequisite for the replication of aquatic avian influenza A viruses in humans. PMID:16014953

  15. An H5N1-based matrix protein 2 ectodomain tetrameric peptide vaccine provides cross-protection against lethal infection with H7N9 influenza virus.

    PubMed

    Leung, Ho-Chuen; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Zhao, Han-Jun; Cheung, Chung-Yan; Ng, Fai; Huang, Jian-Dong; Zheng, Bo-Jian

    2015-04-01

    In March 2013, a patient infected with a novel avian influenza A H7N9 virus was reported in China. Since then, there have been 458 confirmed infection cases and 177 deaths. The virus contains several human-adapted markers, indicating that H7N9 has pandemic potential. The outbreak of this new influenza virus highlighted the need for the development of universal influenza vaccines. Previously, we demonstrated that a tetrameric peptide vaccine based on the matrix protein 2 ectodomain (M2e) of the H5N1 virus (H5N1-M2e) could protect mice from lethal infection with different clades of H5N1 and 2009 pandemic H1N1 influenza viruses. In this study, we investigated the cross-protection of H5N1-M2e against lethal infection with the new H7N9 virus. Although five amino acid differences existed at positions 13, 14, 18, 20, and 21 between M2e of H5N1 and H7N9, H5N1-M2e vaccination with either Freund's adjuvant or the Sigma adjuvant system (SAS) induced a high level of anti-M2e antibody, which cross-reacted with H7N9-M2e peptide. A mouse-adapted H7N9 strain, A/Anhui/01/2013m, was used for lethal challenge in animal experiments. H5N1-M2e vaccination provided potent cross-protection against lethal challenge of the H7N9 virus. Reduced viral replication and histopathological damage of mouse lungs were also observed in the vaccinated mice. Our results suggest that the tetrameric H5N1-M2e peptide vaccine could protect against different subtypes of influenza virus infections. Therefore, this vaccine may be an ideal candidate for developing a universal vaccine to prevent the reemergence of avian influenza A H7N9 virus and the emergence of potential novel reassortants of influenza virus.

  16. Microbial study of meningitis and encephalitis cases.

    PubMed

    Selim, Heba S; El-Barrawy, Mohamed A; Rakha, Magda E; Yingst, Samuel L; Baskharoun, Magda F

    2007-01-01

    Meningitis and/or encephalitis can pose a serious public health problem especially during outbreaks. A rapid and accurate diagnosis is important for effective earlier treatment. This study aimed to identify the possible microbial causes of meningitis and/or encephalitis cases. CSF and serum samples were collected from 322 patients who had signs and symptoms suggestive of meningitis and/or encephalitis. Out of 250 cases with confirmed clinical diagnosis, 83 (33.2%) were definitely diagnosed as bacterial meningitis and/or encephalitis cases (by using CSF culture, biochemical tests, latex agglutination test, and CSF stain), 17 (6.8%) were definitely diagnosed as having viral causes ( by viral isolation on tissue culture, PCR and ELISA), and one (0.4%) was diagnosed as fungal meningitis case (by India ink stain, culture, and biochemical tests). Also, there was one encephalitis case with positive serum ELISA IgM antibodies against Sandfly scilian virus. N. meningitidis, S. pneumonia and M. tuberculosis were the most frequently detected bacterial agents, while Enteroviruses, herpes simplex viruses and varicella zoster viruses were the most common viral agents encountered. Further studies are needed to assess the role of different microbial agents in CNS infections and their effective methods of diagnosis.

  17. Identification of reassortant pandemic H1N1 influenza virus in Korean pigs.

    PubMed

    Han, Jae Yeon; Park, Sung Jun; Kim, Hye Kwon; Rho, Semi; Nguyen, Giap Van; Song, Daesub; Kang, Bo Kyu; Moon, Hyung Jun; Yeom, Min Joo; Park, Bong Kyun

    2012-05-01

    Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin- Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.

  18. Possible Increased Pathogenicity of Pandemic (H1N1) 2009 Influenza Virus upon Reassortment

    PubMed Central

    Schrauwen, Eefje J.A.; Herfst, Sander; Chutinimitkul, Salin; Bestebroer, Theo M.; Rimmelzwaan, Guus F.; Osterhaus, Albert D.M.E.; Kuiken, Thijs

    2011-01-01

    Since emergence of the pandemic (H1N1) 2009 virus in April 2009, three influenza A viruses—seasonal (H3N2), seasonal (H1N1), and pandemic (H1N1) 2009—have circulated in humans. Genetic reassortment between these viruses could result in enhanced pathogenicity. We compared 4 reassortant viruses with favorable in vitro replication properties with the wild-type pandemic (H1N1) 2009 virus with respect to replication kinetics in vitro and pathogenicity and transmission in ferrets. Pandemic (H1N1) 2009 viruses containing basic polymerase 2 alone or in combination with acidic polymerase of seasonal (H1N1) virus were attenuated in ferrets. In contrast, pandemic (H1N1) 2009 with neuraminidase of seasonal (H3N2) virus resulted in increased virus replication and more severe pulmonary lesions. The data show that pandemic (H1N1) 2009 virus has the potential to reassort with seasonal influenza viruses, which may result in increased pathogenicity while it maintains the capacity of transmission through aerosols or respiratory droplets. PMID:21291589

  19. Pre-immune state induced by chicken interferon gamma inhibits the replication of H1N1 human and H9N2 avian influenza viruses in chicken embryo fibroblasts.

    PubMed

    Yuk, Seong-Su; Lee, Dong-Hun; Park, Jae-Keun; Tseren-Ochir, Erdene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2016-04-27

    Interferon gamma (IFN-γ), an immunoregulatory cytokine, is known to control many microbial infections. In a previous study, chicken interferon gamma (chIFN-γ) was found to be up-regulated following avian influenza virus (AIV) infection in specific pathogen-free chickens. We aimed to investigate whether the pre-immune state induced by chIFN-γ could generate an antiviral response against influenza virus. We generated a chIFN-γ-expressing plasmid and transfected it into chicken embryo fibroblasts (CEFs) and then infected the cells with human origin H1N1 or avian origin H9N2 influenza viruses. Viral titers of culture medium were evaluated in MDCK cell and the viral RNA and IFN-stimulated genes (ISGs) were then quantified by real-time reverse transcriptase polymerase. To further evaluate the role of the antiviral effect of chIFN-γ by using a backward approach, synthetic small interfering RNAs (siRNA) targeting chIFN-γ were used to suppress chIFN-γ. The chIFN-γ-stimulated CEFs inhibited the replication of viral RNA (vRNA) and showed a mild decrease in the infectious virus load released in the culture medium. Compared to the mock-transfected control, the messenger RNA (mRNA) levels of type I IFNs and IFN-stimulated genes were up-regulated in the cells expressing chIFN-γ. After treatment with the siRNA, we detected a higher expression of viral genes than that observed in the mock-transfected control. Our results suggest that apart from the important role played by chIFN-γ in the antiviral state generated against influenza virus infection, the pre-immune state induced by chIFN-γ can be helpful in mitigating the propagation of influenza virus.

  20. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt.

    PubMed

    Kim, Shin-Hee

    2018-03-09

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.

  1. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt

    PubMed Central

    2018-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry. PMID:29522492

  2. H1N1, globalization and the epidemiology of inequality.

    PubMed

    Sparke, Matthew; Anguelov, Dimitar

    2012-07-01

    This paper examines the lessons learned from the 2009 H1N1 pandemic in relation to wider work on globalization and the epidemiology of inequality. The media attention and economic resources diverted to the threats posed by H1N1 were significant inequalities themselves when contrasted with weaker responses to more lethal threats posed by other diseases associated with global inequality. However, the multiple inequalities revealed by H1N1 itself in 2009 still provide important insights into the future of global health in the context of market-led globalization. These lessons relate to at least four main forms of inequality: (1) inequalities in blame for the outbreak in the media; (2) inequalities in risk management; (3) inequalities in access to medicines; and (4) inequalities encoded in the actual emergence of new flu viruses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Impact of pandemic (H1N1) 2009 on Australasian critical care units.

    PubMed

    Drennan, Kelly; Hicks, Peter; Hart, Graeme

    2010-12-01

    To identify the resource usage by patients with influenza A H1N1 admitted to Australian and New Zealand intensive care units during the first wave of the pandemic in June, July and August 2009. Data were collected in two separate surveys: the 2007-08 resource and activity survey and the 2009 influenza pandemic survey. Participants comprised 143 of the 189 Australian and New Zealand critical care units identified by the Australian and New Zealand Intensive Care Society Centre for Outcome and Resource Evaluation (ANZICS CORE). Mean length of stay (LOS) and ventilation data for H1N1 patients were reported by the ANZIC Influenza Investigators study from the same units over the same time period. Mean LOS for all ICU admissions was obtained from the ANZICS CORE adult patient database 10-year study. H1N1 patient admissions as a proportion of all ICU admissions; H1N1 patient bed-days as a proportion of total bed-days; ventilation resource usage by H1N1 patients; changes in ICU admissions for elective surgery during the H1N1 pandemic. Over the period June-August 2009, among 30 222 ICU admissions to 133 ICUs contributing data, 704 patients (2.3%) had H1N1 influenza A. Twenty-eight units had no H1N1 patient admissions. The peak of the pandemic in Australia and New Zealand occurred in July 2009, when H1N1 patients represented 3.7% of all ICU admissions for July and 53.5% of all H1N1 patient admissions in the period June-August 2009. We estimate that H1N1 cases required approximately 12.4% of the ventilator resources and used 8.1% of total patient bed-days. During the pandemic, there was a 3.2 percentage-point reduction in elective admissions to public hospitals (from 32.5% to 29.3%). Low rates of admission of H1N1 patients to ICUs during the 2009 pandemic enabled the intensive care system to cope with the large demand when analysed at a jurisdictional level.

  4. Monitoring bound HA1(H1N1) and HA1(H5N1) on freely suspended graphene over plasmonic platforms with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Banerjee, Amrita; Chakraborty, Sumit; Altan-Bonnet, Nihal; Grebel, Haim

    2013-09-01

    Infrared (IR) spectroscopy provides fingerprinting of the energy and orientation of molecular bonds. The IR signals are generally weak and require amplification. Here we present a new plasmonic platform, made of freely suspended graphene, which was coating periodic metal structures. Only monolayer thick films were needed for a fast signal recording. We demonstrated unique IR absorption signals of bound proteins: these were the hemagglutinin area (HA1) of swine influenza (H1N1) and the avian influenza (H5N1) viruses bound to their respective tri-saccharides ligand receptors. The simplicity and sensitivity of such approach may find applications in fast monitoring of binding events.

  5. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulatingmore » the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.« less

  6. Evaluation of the attenuation, immunogenicity, and efficacy of a live virus vaccine generated by codon-pair bias de-optimization of the 2009 pandemic H1N1 influenza virus, in ferrets

    PubMed Central

    Broadbent, Andrew J.; Santos, Celia P.; Anafu, Amanda; Wimmer, Eckard; Mueller, Steffen; Subbarao, Kanta

    2015-01-01

    Codon-pair bias de-optimization (CPBD) of viruses involves re-writing viral genes using statistically underrepresented codon pairs, without any changes to the amino acid sequence or codon usage. Previously, this technology has been used to attenuate the influenza A/Puerto Rico/8/34 (H1N1) virus. The de-optimized virus was immunogenic and protected inbred mice from challenge. In order to assess whether CPBD could be used to produce a live vaccine against a clinically relevant influenza virus, we generated an influenza A/California/07/2009 pandemic H1N1 (2009 pH1N1) virus with de-optimized HA and NA gene segments (2009 pH1N1-(HA+NA)Min), and evaluated viral replication and protein expression in MDCK cells, and attenuation, immunogenicity, and efficacy in outbred ferrets. The 2009 pH1N1-(HA+NA)Min virus grew to a similar titer as the 2009 pH1N1 wild type (wt) virus in MDCK cells (~106 TCID50/ml), despite reduced HA and NA protein expression on western blot. In ferrets, intranasal inoculation of 2009 pH1N1-(HA+NA)Min virus at doses ranging from 103 to 105 TCID50 led to seroconversion in all animals and protection from challenge with the 2009 pH1N1 wt virus 28 days later. The 2009 pH1N1-(HA+NA)Min virus did not cause clinical illness in ferrets, but replicated to a similar titer as the wt virus in the upper and lower respiratory tract, suggesting that de-optimization of additional gene segments may be warranted for improved attenuation. Taken together, our data demonstrate the potential of using CPBD technology for the development of a live influenza virus vaccine if the level of attenuation is optimized. PMID:26655630

  7. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1) in experimentally infected chickens.

    PubMed

    Chaves, Aida J; Busquets, Núria; Valle, Rosa; Rivas, Raquel; Vergara-Alert, Júlia; Dolz, Roser; Ramis, Antonio; Darji, Ayub; Majó, Natàlia

    2011-10-07

    In order to understand the mechanism of neuroinvasion of a highly pathogenic avian influenza virus (HPAIV) into the central nervous system (CNS) of chickens, specific pathogen free chickens were inoculated with a H7N1 HPAIV. Blood, cerebrospinal fluid (CSF), nasal cavity and brain tissue samples were obtained from 1 to 4 days post-inoculation (dpi) of infected and control chickens. Viral antigen topographical distribution, presence of influenza A virus receptors in the brain, as well as, the role of the olfactory route in virus CNS invasion were studied using different immunohistochemistry techniques. Besides, viral RNA load in CSF and blood was quantified by means of a quantitative real-time reverse transcription-polymerase chain reaction. Viral antigen was observed widely distributed in the CNS, showing bilateral and symmetrical distribution in the nuclei of the diencephalon, mesencephalon and rhombencephalon. Viral RNA was detected in blood and CSF at one dpi, indicating that the virus crosses the blood-CSF-barrier early during infection. This early dissemination is possibly favoured by the presence of Siaα2,3 Gal and Siaα2,6 Gal receptors in brain vascular endothelial cells, and Siaα2,3 Gal receptors in ependymal and choroid plexus cells. No viral antigen was observed in olfactory sensory neurons, while the olfactory bulb showed only weak staining, suggesting that the virus did not use this pathway to enter into the brain. The sequence of virus appearance and the topographical distribution of this H7N1 HPAIV indicate that the viral entry occurs via the haematogenous route, with early and generalized spreading through the CSF.

  8. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1) in experimentally infected chickens

    PubMed Central

    2011-01-01

    In order to understand the mechanism of neuroinvasion of a highly pathogenic avian influenza virus (HPAIV) into the central nervous system (CNS) of chickens, specific pathogen free chickens were inoculated with a H7N1 HPAIV. Blood, cerebrospinal fluid (CSF), nasal cavity and brain tissue samples were obtained from 1 to 4 days post-inoculation (dpi) of infected and control chickens. Viral antigen topographical distribution, presence of influenza A virus receptors in the brain, as well as, the role of the olfactory route in virus CNS invasion were studied using different immunohistochemistry techniques. Besides, viral RNA load in CSF and blood was quantified by means of a quantitative real-time reverse transcription-polymerase chain reaction. Viral antigen was observed widely distributed in the CNS, showing bilateral and symmetrical distribution in the nuclei of the diencephalon, mesencephalon and rhombencephalon. Viral RNA was detected in blood and CSF at one dpi, indicating that the virus crosses the blood-CSF-barrier early during infection. This early dissemination is possibly favoured by the presence of Siaα2,3 Gal and Siaα2,6 Gal receptors in brain vascular endothelial cells, and Siaα2,3 Gal receptors in ependymal and choroid plexus cells. No viral antigen was observed in olfactory sensory neurons, while the olfactory bulb showed only weak staining, suggesting that the virus did not use this pathway to enter into the brain. The sequence of virus appearance and the topographical distribution of this H7N1 HPAIV indicate that the viral entry occurs via the haematogenous route, with early and generalized spreading through the CSF. PMID:21982125

  9. Characteristics and influences of H1N1 communication on college students

    PubMed Central

    Koskan, Alexis; Foster, Caroline; Karlis, Jack; Rose, India; Tanner, Andrea

    2014-01-01

    Purpose The purpose of this paper is to assess how college students received and responded to H1N1 pandemic emergency preparedness information and to assess college students’ knowledge and attitudes towards H1N1 during the height of the H1N1 epidemic and corresponding public health response to the outbreak. Design/methodology/approach Using a case study approach, the researchers conducted five focus groups at a large Southeastern US university between October 20–29, 2009. Findings In order to effectively communicate emergency preparedness information to college students, universities should rely on interpersonal communication and mediated communication from trusted sources. College students need to understand the health-related emergency, the risk of the emergency, basic steps to avoid it, and only pertinent cues to action. Oversaturation of this information can lead college students to lessen their perceived importance of the disaster prevention information. Research limitations/implications Focus groups were conducted during only two consecutive weeks of the H1N1 epidemic, and snowball sampling may have led to sample bias. Originality/value This research was conducted during the height of the H1N1 pandemic, and is the only study to date that explores college students’ knowledge, attitudes, and behaviors towards H1N1. PMID:25328288

  10. Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses

    PubMed Central

    Pica, Natalie; Hai, Rong; Krammer, Florian; Wang, Taia T.; Maamary, Jad; Eggink, Dirk; Tan, Gene S.; Krause, Jens C.; Moran, Thomas; Stein, Cheryl R.; Banach, David; Wrammert, Jens; Belshe, Robert B.; García-Sastre, Adolfo; Palese, Peter

    2012-01-01

    After the emergence of pandemic influenza viruses in 1957, 1968, and 2009, existing seasonal viruses were observed to be replaced in the human population by the novel pandemic strains. We have previously hypothesized that the replacement of seasonal strains was mediated, in part, by a population-scale boost in antibodies specific for conserved regions of the hemagglutinin stalk and the viral neuraminidase. Numerous recent studies have shown the role of stalk-specific antibodies in neutralization of influenza viruses; the finding that stalk antibodies can effectively neutralize virus alters the existing dogma that influenza virus neutralization is mediated solely by antibodies that react with the globular head of the viral hemagglutinin. The present study explores the possibility that stalk-specific antibodies were boosted by infection with the 2009 H1N1 pandemic virus and that those antibodies could have contributed to the disappearance of existing seasonal H1N1 influenza virus strains. To study stalk-specific antibodies, we have developed chimeric hemagglutinin constructs that enable the measurement of antibodies that bind the hemagglutinin protein and neutralize virus but do not have hemagglutination inhibition activity. Using these chimeric hemagglutinin reagents, we show that infection with the 2009 pandemic H1N1 virus elicited a boost in titer of virus-neutralizing antibodies directed against the hemagglutinin stalk. In addition, we describe assays that can be used to measure influenza virus-neutralizing antibodies that are not detected in the traditional hemagglutination inhibition assay. PMID:22308500

  11. Cross-Reactive T Cells Are Involved in Rapid Clearance of 2009 Pandemic H1N1 Influenza Virus in Nonhuman Primates

    PubMed Central

    Weinfurter, Jason T.; Brunner, Kevin; Capuano, Saverio V.; Li, Chengjun; Broman, Karl W.; Kawaoka, Yoshihiro; Friedrich, Thomas C.

    2011-01-01

    In mouse models of influenza, T cells can confer broad protection against multiple viral subtypes when antibodies raised against a single subtype fail to do so. However, the role of T cells in protecting humans against influenza remains unclear. Here we employ a translational nonhuman primate model to show that cross-reactive T cell responses play an important role in early clearance of infection with 2009 pandemic H1N1 influenza virus (H1N1pdm). To “prime” cellular immunity, we first infected 5 rhesus macaques with a seasonal human H1N1 isolate. These animals made detectable cellular and antibody responses against the seasonal H1N1 isolate but had no neutralizing antibodies against H1N1pdm. Four months later, we challenged the 5 “primed” animals and 7 naive controls with H1N1pdm. In naive animals, CD8+ T cells with an activated phenotype (Ki-67+ CD38+) appeared in blood and lung 5–7 days post inoculation (p.i.) with H1N1pdm and reached peak magnitude 7–10 days p.i. In contrast, activated T cells were recruited to the lung as early as 2 days p.i. in “primed” animals, and reached peak frequencies in blood and lung 4–7 days p.i. Interferon (IFN)-γ Elispot and intracellular cytokine staining assays showed that the virus-specific response peaked earlier and reached a higher magnitude in “primed” animals than in naive animals. This response involved both CD4+ and CD8+ T cells. Strikingly, “primed” animals cleared H1N1pdm infection significantly earlier from the upper and lower respiratory tract than the naive animals did, and before the appearance of H1N1pdm-specific neutralizing antibodies. Together, our results suggest that cross-reactive T cell responses can mediate early clearance of an antigenically novel influenza virus in primates. Vaccines capable of inducing such cross-reactive T cells may help protect humans against severe disease caused by newly emerging pandemic influenza viruses. PMID:22102819

  12. IFNγ inhibits G-CSF induced neutrophil expansion and invasion of the CNS to prevent viral encephalitis.

    PubMed

    Ramakrishna, Chandran; Cantin, Edouard M

    2018-01-01

    Emergency hematopoiesis facilitates the rapid expansion of inflammatory immune cells in response to infections by pathogens, a process that must be carefully regulated to prevent potentially life threatening inflammatory responses. Here, we describe a novel regulatory role for the cytokine IFNγ that is critical for preventing fatal encephalitis after viral infection. HSV1 encephalitis (HSE) is triggered by the invasion of the brainstem by inflammatory monocytes and neutrophils. In mice lacking IFNγ (GKO), we observed unrestrained increases in G-CSF levels but not in GM-CSF or IL-17. This resulted in uncontrolled expansion and infiltration of apoptosis-resistant, degranulating neutrophils into the brainstem, causing fatal HSE in GKO but not WT mice. Excessive G-CSF in GKO mice also induced granulocyte derived suppressor cells, which inhibited T-cell proliferation and function, including production of the anti-inflammatory cytokine IL-10. Unexpectedly, we found that IFNγ suppressed G-CSF signaling by increasing SOCS3 expression in neutrophils, resulting in apoptosis. Depletion of G-CSF, but not GM-CSF, in GKO mice induced neutrophil apoptosis and reinstated IL-10 secretion by T cells, which restored their ability to limit innate inflammatory responses resulting in protection from HSE. Our studies reveals a novel, complex interplay among IFNγ, G-CSF and IL-10, which highlights the opposing roles of G-CSF and IFNγ in regulation of innate inflammatory responses in a murine viral encephalitis model and reveals G-CSF as a potential therapeutic target. Thus, the antagonistic G-CSF-IFNγ interactions emerge as a key regulatory node in control of CNS inflammatory responses to virus infection.

  13. Characterization of a newly emerged genetic cluster of H1N1 and H1N2 swine influenza virus in the United States.

    PubMed

    Vincent, Amy L; Ma, Wenjun; Lager, Kelly M; Gramer, Marie R; Richt, Juergen A; Janke, Bruce H

    2009-10-01

    H1 influenza A viruses that were distinct from the classical swine H1 lineage were identified in pigs in Canada in 2003–2004; antigenic and genetic characterization identified the hemagglutinin (HA) as human H1 lineage. The viruses identified in Canadian pigs were human lineage in entirety or double (human–swine) reassortants. Here, we report the whole genome sequence analysis of four human-like H1 viruses isolated from U.S. swine in 2005 and 2007. All four isolates were characterized as triple reassortants with an internal gene constellation similar to contemporary U.S. swine influenza virus (SIV), with HA and neuraminidase (NA) most similar to human influenza virus lineages. A 2007 human-like H1N1 was evaluated in a pathogenesis and transmission model and compared to a 2004 reassortant H1N1 SIV isolate with swine lineage HA and NA. The 2007 isolate induced disease typical of influenza virus and was transmitted to contact pigs; however, the kinetics and magnitude differed from the 2004 H1N1 SIV. This study indicates that the human-like H1 SIV can efficiently replicate and transmit in the swine host and now co-circulates with contemporary SIVs as a distinct genetic cluster of H1 SIV.

  14. Vaccination with Killed but Metabolically Active E. coli Over-expressing Hemagglutinin Elicits Neutralizing Antibodies to H1N1 Swine Origin Influenza A Virus

    PubMed Central

    Liu, Pei-Feng; Wang, Yanhan; Liu, Yu-Tsueng; Huang, Chun-Ming

    2017-01-01

    There is a need for a fast and simple method for vaccine production to keep up with the pace of a rapidly spreading virus in the early phases of the influenza pandemic. The use of whole viruses produced in chicken eggs or recombinant antigens purified from various expression systems has presented considerable challenges, especially with lengthy processing times. Here, we use the killed but metabolically active (KBMA) Escherichia coli (E. coli) to harbor the hemagglutinin (HA) of swine origin influenza A (H1N1) virus (S-OIV) San Diego/01/09 (SD/H1N1-S-OIV). Intranasal vaccination of mice with KBMA E. coli SD/H1N1-S-OIV HA without adding exogenous adjuvants provoked detectable neutralizing antibodies against the virus-induced hemagglutination within three weeks. Boosting vaccination enhanced the titers of neutralizing antibodies, which can decrease viral infectivity in Madin-Darby canine kidney (MDCK) cells. The antibodies were found to specifically neutralize the SD/H1N1-S-OIV-, but not seasonal influenza viruses (H1N1 and H3N2), -induced hemagglutination. The use of KBMA E. coli as an egg-free system to produce anti-influenza vaccines makes unnecessary the rigorous purification of an antigen prior to immunization, providing an alternative modality to combat influenza virus in future outbreaks. PMID:28492063

  15. Spatiotemporal structure of molecular evolution of H5N1 highly pathogenic avian influenza viruses in Vietnam.

    PubMed

    Carrel, Margaret A; Emch, Michael; Jobe, R Todd; Moody, Aaron; Wan, Xiu-Feng

    2010-01-08

    Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10): e3462) demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear. In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets) isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City. The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space. This correlation varies by scale, time, and gene, though a classic isolation by

  16. Retargeting of Rat Parvovirus H-1PV to Cancer Cells through Genetic Engineering of the Viral Capsid

    PubMed Central

    Allaume, Xavier; El-Andaloussi, Nazim; Leuchs, Barbara; Bonifati, Serena; Kulkarni, Amit; Marttila, Tiina; Kaufmann, Johanna K.; Nettelbeck, Dirk M.; Kleinschmidt, Jürgen; Rommelaere, Jean

    2012-01-01

    The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds αvβ3 and αvβ5 integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing αvβ5 integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy. PMID:22258256

  17. Characterization of H1N1 swine influenza viruses circulating in Canadian pigs in 2009.

    PubMed

    Nfon, Charles K; Berhane, Yohannes; Hisanaga, Tamiko; Zhang, Shunzhen; Handel, Katherine; Kehler, Helen; Labrecque, Olivia; Lewis, Nicola S; Vincent, Amy L; Copps, John; Alexandersen, Soren; Pasick, John

    2011-09-01

    The 2009 pandemic H1N1 (pH1N1), of apparent swine origin, may have evolved in pigs unnoticed because of insufficient surveillance. Consequently, the need for surveillance of influenza viruses circulating in pigs has received added attention. In this study we characterized H1N1 viruses isolated from Canadian pigs in 2009. Isolates from May 2009 were comprised of hemagglutinin and neuraminidase (NA) genes of classical SIV origin in combination with the North American triple-reassortant internal gene (TRIG) cassette, here termed contemporary SIV (conSIV) H1N1. These conSIV H1N1 viruses were contiguous with the North American αH1 cluster, which was distinct from the pH1N1 isolates that were antigenically more related to the γH1 cluster. After the initial isolation of pH1N1 from an Alberta pig farm in early May 2009, pH1N1 was found several times in Canadian pigs. These pH1N1 isolates were genetically and antigenically homogeneous. In addition, H1N1 viruses bearing seasonal human H1 and N1 genes together with the TRIG cassette and an NA encoding an oseltamivir-resistance marker were isolated from pigs. The NS gene of one of these seasonal human-like SIV (shSIV) H1N1 isolates was homologous to pH1N1 NS, implicating reassortment between the two strains. Antigenic cross-reactivity was observed between pH1N1 and conSIV but not with shSIV H1N1. In summary, although there was cocirculation of pH1N1 with conSIV and shSIV H1N1 in Canadian pigs after May 2009, there was no evidence supporting the presence of pH1N1 in pigs prior to May 2009. The possibility for further reassortants being generated exists and should be closely monitored.

  18. Expression of profibrotic growth factors and their receptors by mouse lung macrophages and fibroblasts under conditions of acute viral inflammation in influenza A/H5N1 virus.

    PubMed

    Anikina, A G; Shkurupii, V A; Potapova, O V; Kovner, A V; Shestopalov, A M

    2014-04-01

    Morphological signs of early interstitial fibrosis, developing under conditions of acute viral inflammation (postinfection days 1-14), were observed in C57Bl/6 mice infected with influenza A/H5N1 A/goose/Krasnoozerskoye/627/05 virus. The development of fibrosis was confirmed by an increase in the number of lung cells expressing TNF-α. These changes were recorded in the presence of a many-fold increase in the counts of macrophages and fibroblasts expressing FGF, EGF, and their receptors.

  19. Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A H5N1 viruses in ferrets.

    PubMed

    Pearce, Melissa B; Pappas, Claudia; Gustin, Kortney M; Davis, C Todd; Pantin-Jackwood, Mary J; Swayne, David E; Maines, Taronna R; Belser, Jessica A; Tumpey, Terrence M

    2017-02-01

    Sporadic avian to human transmission of highly pathogenic avian influenza (HPAI) A(H5N1) viruses necessitates the analysis of currently circulating and evolving clades to assess their potential risk. Following the spread and sustained circulation of clade 2 viruses across multiple continents, numerous subclades and genotypes have been described. To better understand the pathogenesis associated with the continued diversification of clade 2A(H5N1) influenza viruses, we investigated the relative virulence of eleven human and poultry isolates collected from 2006 to 2013 by determining their ability to cause disease in the ferret model. Numerous clade 2 viruses, including a clade 2.2 avian isolate, a 2.2.2.1 human isolate, and two 2.2.1 human isolates, were found to be of low virulence in the ferret model, though lethality was detected following infection with one 2.2.1 human isolate. In contrast, three of six clade 2.3.2.1 avian isolates tested led to severe disease and death among infected ferrets. Clade 2.3.2.1b and 2.3.2.1c isolates, but not 2.3.2.1a isolates, were associated with ferret lethality. All A(H5N1) viruses replicated efficiently in the respiratory tract of ferrets regardless of their virulence and lethality. However, lethal isolates were characterized by systemic viral dissemination, including detection in the brain and enhanced histopathology in lung tissues. The finding of disparate virulence phenotypes between clade 2A(H5N1) viruses, notably differences between subclades of 2.3.2.1 viruses, suggests there are distinct molecular determinants present within the established subclades, the identification of which will assist in molecular-based surveillance and public health efforts against A(H5N1) viruses. Published by Elsevier Inc.

  20. Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A H5N1 viruses in ferrets

    PubMed Central

    Pearce, Melissa B.; Pappas, Claudia; Gustin, Kortney M.; Davis, C. Todd; Pantin-Jackwood, Mary J.; Swayne, David E.; Maines, Taronna R.; Belser, Jessica A.; Tumpey, Terrence M.

    2017-01-01

    Sporadic avian to human transmission of highly pathogenic avian influenza (HPAI) A(H5N1) viruses necessitates the analysis of currently circulating and evolving clades to assess their potential risk. Following the spread and sustained circulation of clade 2 viruses across multiple continents, numerous subclades and genotypes have been described. To better understand the pathogenesis associated with the continued diversification of clade 2 A(H5N1) influenza viruses, we investigated the relative virulence of eleven human and poultry isolates collected from 2006 to 2013 by determining their ability to cause disease in the ferret model. Numerous clade 2 viruses, including a clade 2.2 avian isolate, a 2.2.2.1 human isolate, and two 2.2.1 human isolates, were found to be of low virulence in the ferret model, though lethality was detected following infection with one 2.2.1 human isolate. In contrast, three of six clade 2.3.2.1 avian isolates tested led to severe disease and death among infected ferrets. Clade 2.3.2.1b and 2.3.2.1c isolates, but not 2.3.2.1a isolates, were associated with ferret lethality. All A(H5N1) viruses replicated efficiently in the respiratory tract of ferrets regardless of their virulence and lethality. However, lethal isolates were characterized by systemic viral dissemination, including detection in the brain and enhanced histopathology in lung tissues. The finding of disparate virulence phenotypes between clade 2 A(H5N1) viruses, notably differences between subclades of 2.3.2.1 viruses, suggests there are distinct molecular determinants present within the established subclades, the identification of which will assist in molecular-based surveillance and public health efforts against A(H5N1) viruses. PMID:28038412

  1. Modulation of the immune-related gene responses to protect mice against Japanese encephalitis virus using the antimicrobial peptide, tilapia hepcidin 1-5.

    PubMed

    Huang, Han-Ning; Rajanbabu, Venugopal; Pan, Chieh-Yu; Chan, Yi-Lin; Hui, Cho-Fat; Chen, Jyh-Yih; Wu, Chang-Jer

    2011-10-01

    Japanese encephalitis virus (JEV), a neurotropic flavivirus, is one of the major causes of acute encephalitis in humans. After infection, it is commonly associated with inflammatory reactions and neurological disease. There is still no effective antiviral drug available against Japanese encephalitis virus infection. Recently, a number of investigators found that antimicrobial peptide (AMPs) present a broad range of biological activities including antimicrobial and immunomodulatory activities. In this study, we found that an AMP, tilapia hepcidin (TH)1-5, caused no harm to either cells or test animals during the test course and could control JEV viral infection in BHK-21 cells. Mice co-injected with TH1-5/JEV and subsequently subjected to JEV re-challenge survived and behaved normally. The neuroprotective effects were associated with marked decreases in: (i) the viral load and viral replication within the brain, (ii) neuronal death, and (iii) secondary inflammation resulting from microglial activation. TH1-5 was also determined to enhance adaptive immunity by elevating levels of anti-JEV-neutralizing antibodies in the serum. The microarray data also showed that TH1-5 modulated Socs-6, interleukin (IL)-6, Toll-like receptor (TLR)-1, TLR-7, caspase-4, interferon (IFN)-β1, ATF-3, and several immune-responsive genes to protect mice against JEV infection. In addition, TH1-5 was confirmed to modulate the expressions of several proinflammatory and immune-responsive genes, such as IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, tumor necrosis factor (TNF)-α, IFN-γ and monocyte chemoattractant protein (MCP)-1 at both the transcriptional and translational levels in JEV-infected mice. In conclusion, our findings provide mechanistic insights into the actions of TH1-5 against JEV. Results from our in vivo and in vitro experiments clearly indicate that TH1-5 has antiviral, neuroprotective, anti-inflammatory, and immunomodulatory activities. Furthermore, TH1-5 successfully reduced the

  2. Serological Cross-Reactions Between the Hemagglutinin Subunits of H0N1 and H1N1 Influenza Viruses Detected with “Monospecific” Antisera

    PubMed Central

    Baker, Nicola; Stone, H. O.; Webster, R. G.

    1973-01-01

    “Monospecific” antisera to the “fragile” hemaglutinnis of H0N1 (PR8) and H1N1 (FM1) influenza viruses detected an asymmetrical cross-reaction between these two strains that could not be explained by a common neuraminidase. Images PMID:4630797

  3. Humans and Ferrets with Prior H1N1 Influenza Virus Infections Do Not Exhibit Evidence of Original Antigenic Sin after Infection or Vaccination with the 2009 Pandemic H1N1 Influenza Virus

    PubMed Central

    O'Donnell, Christopher D.; Wright, Amber; Vogel, Leatrice; Boonnak, Kobporn; Treanor, John J.

    2014-01-01

    The hypothesis of original antigenic sin (OAS) states that the imprint established by an individual's first influenza virus infection governs the antibody response thereafter. Subsequent influenza virus infection results in an antibody response against the original infecting virus and an impaired immune response against the newer influenza virus. The purpose of our study was to seek evidence of OAS after infection or vaccination with the 2009 pandemic H1N1 (2009 pH1N1) virus in ferrets and humans previously infected with H1N1 viruses with various antigenic distances from the 2009 pH1N1 virus, including viruses from 1935 through 1999. In ferrets, seasonal H1N1 priming did not diminish the antibody response to infection or vaccination with the 2009 pH1N1 virus, nor did it diminish the T-cell response, indicating the absence of OAS in seasonal H1N1 virus-primed ferrets. Analysis of paired samples of human serum taken before and after vaccination with a monovalent inactivated 2009 pH1N1 vaccine showed a significantly greater-fold rise in the titer of antibody against the 2009 pH1N1 virus than against H1N1 viruses that circulated during the childhood of each subject. Thus, prior experience with H1N1 viruses did not result in an impairment of the antibody response against the 2009 pH1N1 vaccine. Our data from ferrets and humans suggest that prior exposure to H1N1 viruses did not impair the immune response against the 2009 pH1N1 virus. PMID:24648486

  4. Humans and ferrets with prior H1N1 influenza virus infections do not exhibit evidence of original antigenic sin after infection or vaccination with the 2009 pandemic H1N1 influenza virus.

    PubMed

    O'Donnell, Christopher D; Wright, Amber; Vogel, Leatrice; Boonnak, Kobporn; Treanor, John J; Subbarao, Kanta

    2014-05-01

    The hypothesis of original antigenic sin (OAS) states that the imprint established by an individual's first influenza virus infection governs the antibody response thereafter. Subsequent influenza virus infection results in an antibody response against the original infecting virus and an impaired immune response against the newer influenza virus. The purpose of our study was to seek evidence of OAS after infection or vaccination with the 2009 pandemic H1N1 (2009 pH1N1) virus in ferrets and humans previously infected with H1N1 viruses with various antigenic distances from the 2009 pH1N1 virus, including viruses from 1935 through 1999. In ferrets, seasonal H1N1 priming did not diminish the antibody response to infection or vaccination with the 2009 pH1N1 virus, nor did it diminish the T-cell response, indicating the absence of OAS in seasonal H1N1 virus-primed ferrets. Analysis of paired samples of human serum taken before and after vaccination with a monovalent inactivated 2009 pH1N1 vaccine showed a significantly greater-fold rise in the titer of antibody against the 2009 pH1N1 virus than against H1N1 viruses that circulated during the childhood of each subject. Thus, prior experience with H1N1 viruses did not result in an impairment of the antibody response against the 2009 pH1N1 vaccine. Our data from ferrets and humans suggest that prior exposure to H1N1 viruses did not impair the immune response against the 2009 pH1N1 virus.

  5. Comparative analysis of MicroRNA expression in dog lungs infected with the H3N2 and H5N1 canine influenza viruses.

    PubMed

    Zheng, Yun; Fu, Xinliang; Wang, Lifang; Zhang, Wenyan; Zhou, Pei; Zhang, Xin; Zeng, Weijie; Chen, Jidang; Cao, Zongxi; Jia, Kun; Li, Shoujun

    2018-05-14

    MicroRNAs, a class of noncoding RNAs 18 to 23 nucleotides (nt) in length, play critical roles in a wide variety of biological processes. The objective of this study was to examine differences in microRNA expression profiles derived from the lungs of beagle dogs infected with the avian-origin H3N2 canine influenza virus (CIV) or the highly pathogenic avian influenza (HPAI) H5N1 virus (canine-origin isolation strain). After dogs were infected with H3N2 or H5N1, microRNA expression in the lungs was assessed using a deep-sequencing approach. To identify the roles of microRNAs in viral pathogenicity and the host immune response, microRNA target genes were predicted, and their functions were analyzed using bioinformatics software. A total of 229 microRNAs were upregulated in the H5N1 infection group compared with those in the H3N2 infection group, and 166 microRNAs were downregulated. MicroRNA target genes in the H5N1 group were more significantly involved in metabolic pathways, such as glycerolipid metabolism and glycerophospholipid metabolism, than those in the H3N2 group. The inhibition of metabolic pathways may lead to appetite loss, weight loss and weakened immunity. Moreover, miR-485, miR-144, miR-133b, miR-4859-5p, miR-6902-3p, miR-7638, miR-1307-3p and miR-1346 were significantly altered microRNAs that potentially led to the inhibition of innate immune pathways and the heightened pathogenicity of H5N1 compared with that of H3N2 in dogs. This study deepens our understanding of the complex relationships among microRNAs, the influenza virus-mediated immune response and immune injury in dogs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Encephalitis, Ontario, Canada, 2002-2013.

    PubMed

    Parpia, Alyssa S; Li, Ye; Chen, Cynthia; Dhar, Badal; Crowcroft, Natasha S

    2016-03-01

    Encephalitis, a brain inflammation leading to severe illness and often death, is caused by >100 pathogens. To assess the incidence and trends of encephalitis in Ontario, Canada, we obtained data on 6,463 Ontario encephalitis hospitalizations from the hospital Discharge Abstract Database for April 2002-December 2013 and analyzed these data using multiple negative binomial regression. The estimated crude incidence of all-cause encephalitis in Ontario was ≈4.3 cases/100,000 persons/year. Incidence rates for infants <1 year of age and adults >65 years were 3.9 and 3.0 times that of adults 20-44 years of age, respectively. Incidence peaks during August-September in 2002 and 2012 resulted primarily from encephalitis of unknown cause and viral encephalitis. Encephalitis occurred more frequently in older age groups and less frequently in women in Ontario when compared to England, but despite differences in population, vector-borne diseases, climate, and geography, the epidemiology was overall remarkably similar in the two regions.

  7. Protection of guinea pigs by vaccination with a recombinant swinepox virus co-expressing HA1 genes of swine H1N1 and H3N2 influenza viruses.

    PubMed

    Xu, Jiarong; Yang, Deji; Huang, Dongyan; Xu, Jiaping; Liu, Shichao; Lin, Huixing; Zhu, Haodan; Liu, Bao; Lu, Chengping

    2013-03-01

    Swine influenza (SI) is an acute respiratory infectious disease of swine caused by swine influenza virus (SIV). SIV is not only an important respiratory pathogen in pigs but also a potent threat to human health. Here, we report the construction of a recombinant swinepox virus (rSPV/H3-2A-H1) co-expressing hemagglutinin (HA1) of SIV subtypes H1N1 and H3N2. Immune responses and protection efficacy of the rSPV/H3-2A-H1 were evaluated in guinea pigs. Inoculation of rSPV/H3-2A-H1 yielded neutralizing antibodies against SIV H1N1 and H3N2. The IFN-γ and IL-4 concentrations in the supernatant of lymphocytes stimulated with purified SIV HA1 antigen were significantly higher (P < 0.01) than those of the control groups. Complete protection of guinea pigs against SIV H1N1 or H3N2 challenge was observed. No SIV shedding was detected from guinea pigs vaccinated with rSPV/H3-2A-H1 after challenge. Most importantly, the guinea pigs immunized with rSPV/H3-2A-H1 did not show gross and micrographic lung lesions. However, the control guinea pigs experienced distinct gross and micrographic lung lesions at 7 days post-challenge. Our data suggest that the recombinant swinepox virus encoding HA1 of SIV H1N1 and H3N2 might serve as a promising candidate vaccine for protection against SIV H1N1 and H3N2 infections.

  8. Phylogenetic and nucleotide sequence analysis of influenza A (H1N1) HA and NA genes of strains isolated from Saudi Arabia.

    PubMed

    Al-Qahtani, Ahmed Ali; Mubin, Muhammad; Dela Cruz, Damian M; Althawadi, Sahar Isa; Ul Rehman, Muhammad Shah Nawaz; Bohol, Marie Fe F; Al-Ahdal, Mohammed N

    2017-01-30

    In early 2009, a novel influenza A (H1N1) virus appeared in Mexico and rapidly disseminated worldwide. Little is known about the phylogeny and evolutionary dynamics of the H1N1 strain found in Saudi Arabia. Nucleotide sequencing and bioinformatics analyses were used to study molecular variation between the virus isolates. In this report, 72 hemagglutinin (HA) and 45 neuraminidase (NA) H1N1 virus gene sequences, isolated in 2009 from various regions of Saudi Arabia, were analyzed. Genetic characterization indicated that viruses from two different clades, 6 and 7, were circulating in the region, with clade 7, the most widely circulating H1N1 clade globally in 2009, being predominant. Sequence analysis of the HA and NA genes revealed a high degree of sequence identity with the corresponding genes from viruses circulating in the South East Asia region and with the A/California/7/2009 strain. New mutations in the HA gene of pandemic H1N1 (pH1N1) viruses, that could alter viral fitness, were identified. Relaxed-clock and Bayesian Skyline Plot analyses, based on the isolates used in this study and closely related globally representative strains, indicated marginally higher substitution rates than the type strain (5.14×10-3 and 4.18×10-3 substitutions/nucleotide/year in the HA and NA genes, respectively). The Saudi isolates were antigenically homogeneous and closely related to the prototype vaccine strain A/California/7/2009. The antigenic site of the HA gene had acquired novel mutations in some isolates, making continued monitoring of these viruses vital for the identification of potentially highly virulent and drug resistant variants.

  9. Low Clinical Burden of 2009 Pandemic Influenza A (H1N1) Infection during Pregnancy on the Island of La Réunion

    PubMed Central

    Gérardin, Patrick; El Amrani, Rachid; Cyrille, Béatrice; Gabrièle, Marc; Guillermin, Philippe; Boukerrou, Malik; Boumahni, Brahim; Randrianaivo, Hanitra; Winer, Arnaud; Rouanet, Jean-Fabien; Bohrer, Michel; Jaffar-Bandjee, Marie-Christine; Robillard, Pierre-Yves; Barau, Georges; Michault, Alain

    2010-01-01

    Background Pregnant women have been identified as a group at risk, both for respiratory complications than for the admissions to the Intensive Care Unit (ICU) during the 2009 H1N1 influenza pandemic (pdm). The purpose of this prospective register-based cohort-study was to characterize the clinical virulence of the pdm (H1N1/09)v during pregnancy in La Réunion. Methods/Principal Findings Over a twelve-week pdm wave (13 July to 3 October 2009), 294 pregnant women presented with an influenza-like illness (ILI) to one of the three maternity departments of the South Reunion area, Indian Ocean. Out of these, 278 were checked by RT-PCR for influenza viruses (157 positive and 121 negative, of whom, 141 with pdm flu and 132 with ILIs of non pdm origin, 5 untyped). The median body temperature was higher in women experiencing pdm flu than in those with non pdm ILI (38.9°C versus 38.3°C, P<0.0001), without evidence linked to circulating viremia. Oseltamivir was given for 86% of pdm flu cases in a median time inferior than 48 hrs (range 0–7 days). The hospitalization rate for pdm flu was of 60% and not associated with underlying conditions. Six viral pneumonia and fourteen asthma attacks were observed among 84 hospitalized pdm flu cases, of whom, only one led to the ICU for an acute lung injury. No maternal death occurred during the pdm wave. None adverse pregnancy outcome was associated with pdm flu. No congenital birth defect, nor early-onset neonatal influenza infection was attributable to pdm flu exposure. Conclusions/Significance This report mitigates substantially the presumed severity of pandemic H1N1/09 influenza infection during pregnancy. The reasons for which the clinical burden of H1N1/09 influenza virus may differ worldwide raise questions about a differential local viral-strain effect and public health preparedness, notably in timely access to special care and antiviral treatments. PMID:20531946

  10. The critical care costs of the influenza A/H1N1 2009 pandemic in Australia and New Zealand.

    PubMed

    Higgins, A M; Pettilä, V; Harris, A H; Bailey, M; Lipman, J; Seppelt, I M; Webb, S A

    2011-05-01

    The aim of this study was to determine the critical care and associated hospital costs for 2009 influenza A/H1N1 patients admitted to intensive care units (ICU) in Australia and New Zealand during the southern hemisphere winter All 762 patients admitted to ICUs in Australian and New Zealand between 1 June and 31 August 2009 with confirmed 2009 H1N1 influenza A were included. Costs were assigned based on ICU and hospital length-of-stay, using data from a single Australian ICU which estimated the daily cost of an ICU bed, along with published costs for a ward bed. Additional costs were assigned for allied health, overheads and extracorporeal membrane oxygenation services. The median (interquartile range) ICU and total hospital costs per patient were AU$35,942 ($10,269 to $82,152) and AU$51,294 ($22,849 to $110,340) respectively, while the mean (standard deviation) ICU and total hospital costs per patient were AU$63,298 ($78,722) and AU$85,395 ($147,457), respectively. A multivariate analysis found death was significantly associated with a reduction in the log of total costs, while the use of mechanical ventilation and ICU admission with viral pneumonitis/acute respiratory distress syndrome or secondary bacterial pneumonia were significantly associated with an increase in the log of total costs. The cost of 2009 H1N1 patients in ICU was significantly higher than the previously published costs for an average ICU admission, and the total cost of treating 2009 H1N1 patients in ICU admitted during winter 2009 was more than $65,000,000.

  11. [Unexplicated neuropsychiatric disorders: Do not ignore dysimmune encephalitis. A case report of a dysimmune encephalitis with anti-leucine rich glioma inactivated 1 (LGI-1) antibodies].

    PubMed

    Le Dault, E; Lagarde, S; Guedj, E; Dufournet, B; Rey, C; Kaphan, E; Tanguy, G; Bregigeon, M; Sagui, E; Brosset, C

    2016-02-01

    Anti-leucine rich glioma inactivated 1 encephalitis is a common and a treatable etiology of autoimmune encephalitis. Its diagnosis is a challenge because the initial diagnostic work-up is often normal. A 48-year-old man experienced cognitive and behavioral troubles, facio-brachial dystonic seizures and a syndrome of inappropriate antidiuretic hormone secretion. First line tests excluded infectious, neoplastic, systemic inflammatory, endrocrine or toxic etiologies. Cerebral (18)Fluoro-desoxy-glucose (FDG) position emission tomography and research of specific antibodies in cerebro-spinal fluid and serum led to diagnose an anti-leucine rich glioma inactivated 1 encephalitis. Intravenous immunoglobulins and corticosteroids were partially effective. Cyclophosphamid permitted a good recovery. In the presence of acute neuropsychiatric disorders with a negative etiologic research, physician should think about dysimmune encephalitis. Facio-brachial dystonic seizures and syndrome of inappropriate antidiuretic hormone secretion are highly evocative of anti-leucine rich glioma inactivated 1 encephalitis. The diagnosis needs specific diagnostic tests (cerebral (18)FDG position emission tomography and antibodies research in cerebro-spinal fluid and in serum), after the exclusion of alternative diagnoses. Extensive and repeated diagnostic work-up for neoplasia is required. Immunosupressive therapies are effective in most cases. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  12. Challenge of N95 Filtering Facepiece Respirators with Viable H1N1 Influenza Aerosols

    PubMed Central

    Harnish, Delbert A.; Heimbuch, Brian K.; Husband, Michael; Lumley, April E.; Kinney, Kimberly; Shaffer, Ronald E.; Wander, Joseph D.

    2015-01-01

    OBJECTIVE Specification of appropriate personal protective equipment for respiratory protection against influenza is somewhat controversial. In a clinical environment, N95 filtering facepiece respirators (FFRs) are often recommended for respiratory protection against infectious aerosols. This study evaluates the ability of N95 FFRs to capture viable H1N1 influenza aerosols. METHODS Five N95 FFR models were challenged with aerosolized viable H1N1 influenza and inert polystyrene latex particles at continuous flow rates of 85 and 170 liters per minute. Virus was assayed using Madin-Darby canine kidney cells to determine the median tissue culture infective dose (TCID50). Aerosols were generated using a Collison nebulizer containing H1N1 influenza virus at 1 × 108 TCID50/mL. To determine filtration efficiency, viable sampling was performed upstream and downstream of the FFR. RESULTS N95 FFRs filtered 0.8-µm particles of both H1N1 influenza and inert origins with more than 95% efficiency. With the exception of 1 model, no statistically significant difference in filtration performance was observed between influenza and inert particles of similar size. Although statistically significant differences were observed for 2 models when comparing the 2 flow rates, the differences have no significance to protection. CONCLUSIONS This study empirically demonstrates that a National Institute for Occupational Safety and Health–approved N95 FFR captures viable H1N1 influenza aerosols as well as or better than its N95 rating, suggesting that a properly fitted FFR reduces inhalation exposure to airborne influenza virus. This study also provides evidence that filtration efficiency is based primarily on particle size rather than the nature of the particle’s origin. PMID:23571366

  13. Supply of neuraminidase inhibitors related to reduced influenza A (H1N1) mortality during the 2009-2010 H1N1 pandemic: summary of an ecological study.

    PubMed

    Miller, Paula E; Rambachan, Aksharananda; Hubbard, Roderick J; Li, Jiabai; Meyer, Alison E; Stephens, Peter; Mounts, Anthony W; Rolfes, Melissa A; Penn, Charles R

    2013-09-01

    When the influenza A (H1N1) pandemic spread across the globe from April 2009 to August 2010, many WHO Member States used antiviral drugs, specifically neuraminidase inhibitors (NAIs) oseltamivir and zanamivir, to treat influenza patients in critical condition. Antivirals have been found to be effective in reducing severity and duration of influenza illness, and likely reduce morbidity; however, it is unclear whether NAIs used during the pandemic reduced H1N1 mortality. To assess the association between antivirals and influenza mortality, at an ecologic level, country-level data on supply of oseltamivir and zanamivir were compared to laboratory-confirmed H1N1 deaths (per 100 000 people) from July 2009 to August 2010 in 42 WHO Member States. From this analysis, it was found that each 10% increase in kilograms of oseltamivir, per 100 000 people, was associated with a 1·6% reduction in H1N1 mortality over the pandemic period [relative rate (RR) = 0·84 per log increase in oseltamivir supply]. Each 10% increase in kilogram of active zanamivir, per 100 000, was associated with a 0·3% reduction in H1N1 mortality (RR = 0·97 per log increase). While limitations exist in the inference that can be drawn from an ecologic evaluation, this analysis offers evidence of a protective relationship between antiviral drug supply and influenza mortality and supports a role for influenza antiviral use in future pandemics. This article summarises the original study described previously, which can be accessed through the following citation: Miller PE, Rambachan A, Hubbard RJ, Li J, Meyer AE, et al. (2012) Supply of Neuraminidase Inhibitors Related to Reduced Influenza A (H1N1) Mortality during the 2009-2010 H1N1 Pandemic: An Ecological Study. PLoS ONE 7(9): e43491. © 2013 Blackwell Publishing Ltd.

  14. Molecular basis of mammalian transmissibility of avian H1N1 influenza viruses and their pandemic potential

    PubMed Central

    Zanin, Mark; Wong, Sook-San; Barman, Subrata; Kaewborisuth, Challika; Vogel, Peter; Rubrum, Adam; Darnell, Daniel; Marinova-Petkova, Atanaska; Krauss, Scott; Webby, Richard J.; Webster, Robert G.

    2017-01-01

    North American wild birds are an important reservoir of influenza A viruses, yet the potential of viruses in this reservoir to transmit and cause disease in mammals is not well understood. Our surveillance of avian influenza viruses (AIVs) at Delaware Bay, USA, revealed a group of similar H1N1 AIVs isolated in 2009, some of which were airborne-transmissible in the ferret model without prior adaptation. Comparison of the genomes of these viruses revealed genetic markers of airborne transmissibility in the Polymerase Basic 2 (PB2), PB1, PB1-F2, Polymerase Acidic-X (PA-X), Nonstructural Protein 1 (NS1), and Nuclear Export Protein (NEP) genes. We studied the role of NS1 in airborne transmission and found that NS1 mutants that were not airborne-transmissible caused limited tissue pathology in the upper respiratory tract (URT). Viral maturation was also delayed, evident as strong intranuclear staining and little virus at the mucosa. Our study of this naturally occurring constellation of genetic markers has provided insights into the poorly understood phenomenon of AIV airborne transmissibility by revealing a role for NS1 and characteristics of viral replication in the URT that were associated with airborne transmission. The transmissibility of these viruses further highlights the pandemic potential of AIVs in the wild bird reservoir and the need to maintain surveillance. PMID:28874549

  15. Reassortant Avian Influenza A(H5N1) Viruses with H9N2-PB1 Gene in Poultry, Bangladesh

    PubMed Central

    Yamage, Mat; Dauphin, Gwenaëlle; Claes, Filip; Ahmed, Garba; Giasuddin, Mohammed; Salviato, Annalisa; Ormelli, Silvia; Bonfante, Francesco; Schivo, Alessia; Cattoli, Giovanni

    2013-01-01

    Bangladesh has reported a high number of outbreaks of highly pathogenic avian influenza (HPAI) (H5N1) in poultry. We identified a natural reassortant HPAI (H5N1) virus containing a H9N2-PB1 gene in poultry in Bangladesh. Our findings highlight the risks for prolonged co-circulation of avian influenza viruses and the need to monitor their evolution. PMID:24047513

  16. Antigenic Patterns and Evolution of the Human Influenza A (H1N1) Virus.

    PubMed

    Liu, Mi; Zhao, Xiang; Hua, Sha; Du, Xiangjun; Peng, Yousong; Li, Xiyan; Lan, Yu; Wang, Dayan; Wu, Aiping; Shu, Yuelong; Jiang, Taijiao

    2015-09-28

    The influenza A (H1N1) virus causes seasonal epidemics that result in severe illnesses and deaths almost every year. A deep understanding of the antigenic patterns and evolution of human influenza A (H1N1) virus is extremely important for its effective surveillance and prevention. Through development of antigenicity inference method for human influenza A (H1N1), named PREDAC-H1, we systematically mapped the antigenic patterns and evolution of the human influenza A (H1N1) virus. Eight dominant antigenic clusters have been inferred for seasonal H1N1 viruses since 1977, which demonstrated sequential replacements over time with a similar pattern in Asia, Europe and North America. Among them, six clusters emerged first in Asia. As for China, three of the eight antigenic clusters were detected in South China earlier than in North China, indicating the leading role of South China in H1N1 transmission. The comprehensive view of the antigenic evolution of human influenza A (H1N1) virus can help formulate better strategy for its prevention and control.

  17. A novel pathogenic mechanism of highly pathogenic avian influenza H5N1 viruses involves hemagglutinin mediated resistance to serum innate inhibitors.

    PubMed

    Panaampon, Jutatip; Ngaosuwankul, Nathamon; Suptawiwat, Ornpreya; Noisumdaeng, Pirom; Sangsiriwut, Kantima; Siridechadilok, Bunpote; Lerdsamran, Hatairat; Auewarakul, Prasert; Pooruk, Phisanu; Puthavathana, Pilaipan

    2012-01-01

    In this study, the effect of innate serum inhibitors on influenza virus infection was addressed. Seasonal influenza A(H1N1) and A(H3N2), 2009 pandemic A(H1N1) (H1N1pdm) and highly pathogenic avian influenza (HPAI) A(H5N1) viruses were tested with guinea pig sera negative for antibodies against all of these viruses as evaluated by hemagglutination-inhibition and microneutralization assays. In the presence of serum inhibitors, the infection by each virus was inhibited differently as measured by the amount of viral nucleoprotein produced in Madin-Darby canine kidney cells. The serum inhibitors inhibited seasonal influenza A(H3N2) virus the most, while the effect was less in seasonal influenza A(H1N1) and H1N1pdm viruses. The suppression by serum inhibitors could be reduced by heat inactivation or treatment with receptor destroying enzyme. In contrast, all H5N1 strains tested were resistant to serum inhibitors. To determine which structure (hemagglutinin (HA) and/or neuraminidase (NA)) on the virus particles that provided the resistance, reverse genetics (rg) was applied to construct chimeric recombinant viruses from A/Puerto Rico/8/1934(H1N1) (PR8) plasmid vectors. rgPR8-H5 HA and rgPR8-H5 HANA were resistant to serum inhibitors while rgPR8-H5 NA and PR8 A(H1N1) parental viruses were sensitive, suggesting that HA of HPAI H5N1 viruses bestowed viral resistance to serum inhibition. These results suggested that the ability to resist serum inhibition might enable the viremic H5N1 viruses to disseminate to distal end organs. The present study also analyzed for correlation between susceptibility to serum inhibitors and number of glycosylation sites present on the globular heads of HA and NA. H3N2 viruses, the subtype with highest susceptibility to serum inhibitors, harbored the highest number of glycosylation sites on the HA globular head. However, this positive correlation cannot be drawn for the other influenza subtypes.

  18. Clinical course of asthma patients with H1N1 influenza infection and oseltamivir.

    PubMed

    Kim, Min-Hye; Song, Woo-Jung; Yang, Min-Suk; Lee, So-Hee; Kwon, Jae-Woo; Kim, Sae-Hoon; Kang, Hye-Ryun; Park, Heung-Woo; Cho, Young-Joo; Cho, Sang-Heon; Min, Kyung-Up; Kim, You-Young; Chang, Yoon-Seok

    2018-02-01

    H1N1 influenza virus prevailed throughout the world in 2009. However, there are few reports on the clinical features of H1N1 influenza infection in adult asthma patients. We evaluated the clinical features in asthma patients with H1N1 influenza infection who took oseltamivir and compared them to those with other upper respiratory infections. We reviewed asthma patients over 15 years of age who had visited Seoul National University Hospital and Seoul National University Bundang Hospital for suspected H1N1 influenza infection from August 2009 to March 2010. Various clinical features such as hospital admission days, respiratory symptoms, basal lung function, and past history was compared between H1N1 influenza PCR positive and negative groups. A total of 111 asthmatics were enrolled. All patients took oseltamivir. H1N1 RT-PCR was positive in 62 patients (55.9%), negative in 49 patients (44.1%). Wheezing developed more frequently in the H1N1 positive group. (43.5 vs. 16.7%, P=0.044). The rate of acute asthma exacerbations and pneumonia development were higher in the H1N1 positive group (59.7 vs. 51%, P=0.015, 25.0% vs. 0%, P<0.001). The rates for emergency room visit, hospital admissions, intensive care unit admissions, hospital days were not different between the groups. Underlying medical conditions were accompanied more frequently in the H1N1 negative patients (21.6% vs. 30.6%, P=0.002), especially cardiac disease (7.2% vs. 15.3%, P=0.011). H1N1 influenza infection may affect the clinical course of asthma combined with more severe manifestations; however, Oseltamivir could have affected the clinical course of H1N1 infected patients and made it milder than expected.

  19. Influenza Virus Vaccines: Lessons from the 2009 H1N1 pandemic

    PubMed Central

    Broadbent, Andrew J.; Subbarao, Kanta

    2011-01-01

    Reflecting on the 2009 H1N1 pandemic, we summarize lessons regarding influenza vaccines that can be applied in the future. The two major challenges to vaccination during the 2009 H1N1 pandemic were timing and availability of vaccine. Vaccines were, however, well-tolerated and immunogenic, with inactivated vaccines containing 15μg of HA generally inducing antibody titers ≥1:40 in adults within 2 weeks of the administration of a single dose. Moreover, the use of oil-in-water adjuvants in Europe permitted dose- reduction, with vaccines containing as little as 3.75 or 7.5μg HA being immunogenic. Case-control studies demonstrated that monovalent 2009 H1N1 vaccines were effective in preventing infection with the 2009 H1N1 virus, but preliminary data suggests that it is important for individuals to be re-immunized annually. PMID:22125588

  20. Serological Evidence of Pandemic H1N1 Influenza Virus Infections in Greek Swine.

    PubMed

    Kyriakis, C S; Papatsiros, V G; Athanasiou, L V; Valiakos, G; Brown, I H; Simon, G; Van Reeth, K; Tsiodras, S; Spyrou, V; Billinis, C

    2016-08-01

    The introduction of the 2009 pandemic H1N1 (pH1N1) influenza virus in pigs changed the epidemiology of influenza A viruses (IAVs) in swine in Europe and the rest of the world. Previously, three IAV subtypes were found in the European pig population: an avian-like H1N1 and two reassortant H1N2 and H3N2 viruses with human-origin haemagglutinin (HA) and neuraminidase proteins and internal genes of avian decent. These viruses pose antigenically distinct HAs, which allow the retrospective diagnosis of infection in serological investigations. However, cross-reactions between the HA of pH1N1 and the HAs of the other circulating H1 IAVs complicate serological diagnosis. The prevalence of IAVs in Greek swine has been poorly investigated. In this study, we examined and compared haemagglutination inhibition (HI) antibody titres against previously established IAVs and pH1N1 in 908 swine sera from 88 herds, collected before and after the 2009 pandemic. While we confirmed the historic presence of the three IAVs established in European swine, we also found that 4% of the pig sera examined after 2009 had HI antibodies only against the pH1N1 virus. Our results indicate that pH1N1 is circulating in Greek pigs and stress out the importance of a vigorous virological surveillance programme. © 2015 Blackwell Verlag GmbH.

  1. Divergent genetic evolution of hemagglutinin in influenza A H1N1 and A H1N2 subtypes isolated in the south-France since the winter of 2001-2002.

    PubMed

    Al Faress, Shaker; Cartet, Gaëlle; Ferraris, Olivier; Norder, Helene; Valette, Martine; Lina, Bruno

    2005-07-01

    Influenza A viruses are divided into subtypes based on their hemagglutinin (H1 to H15) and neuraminidase (N1 to N9) glycoproteins. Of these, three A subtypes H1N1, H3N2 and H1N2 circulate in the human population. Influenza A viruses display a high antigenic variability called "antigenic drift" which allows the virus to escape antibody neutralization. Evaluate the mutations apparition that might predict a divergent antigenic evolution of hemagglutinin in influenza A H1N1 and A H1N2 viruses. During the three winters of 2001-2002 to 2003-2004, 58 A H1N1 and 23 A H1N2 subtypes have been isolated from patients with influenza-like illness in the south of France. The HA1 region was analyzed by RT-PCR and subsequently sequenced to compare the HA1 genetic evolution of influenza A H1N1 and A H1N2 subtypes. Our results showed that 28 amino acid substitutions have accumulated in the HA1 region since the circulation of A/New Caledonia/20/99-like viruses in France. Of these, fifteen were located in four antigenic sites (B, C, D and E). Six of them were observed only in the A H1N2 isolates, six only in the A H1N1 isolates and three in both subtypes. Furthermore, nine of twenty two A H1N2 isolates from the winter of 2002-2003 shared a T90A amino acid change which has not been observed in any A H1N1 isolate; resulting in the introduction of a new glycosylation site close to the antigenic site E. This might mask some antigenic E determinants and therefore, modify the A H1N2 antigenicity. The divergent genetic evolution of hemagglutinin may ultimately lead to a significant different antigenicity between A H1N1 and A H1N2 subtypes that would require the introduction of a new subtype in the vaccine batches.

  2. Structural Characterization of the 1918 Influenza H1N1 Neuraminidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X.; Zhu, X.; Dwek, R.A.

    2009-05-28

    Influenza virus neuraminidase (NA) plays a crucial role in facilitating the spread of newly synthesized virus in the host and is an important target for controlling disease progression. The NA crystal structure from the 1918 'Spanish flu' (A/Brevig Mission/1/18 H1N1) and that of its complex with zanamivir (Relenza) at 1.65-{angstrom} and 1.45-{angstrom} resolutions, respectively, corroborated the successful expression of correctly folded NA tetramers in a baculovirus expression system. An additional cavity adjacent to the substrate-binding site is observed in N1, compared to N2 and N9 NAs, including H5N1. This cavity arises from an open conformation of the 150 loop (Gly147more » to Asp151) and appears to be conserved among group 1 NAs (N1, N4, N5, and N8). It closes upon zanamivir binding. Three calcium sites were identified, including a novel site that may be conserved in N1 and N4. Thus, these high-resolution structures, combined with our recombinant expression system, provide new opportunities to augment the limited arsenal of therapeutics against influenza.« less

  3. Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis

    PubMed Central

    Miller, Thomas D.; Chong, Trevor T.-J.; Aimola Davies, Anne M.; Ng, Tammy W.C.; Johnson, Michael R.; Irani, Sarosh R.; Vincent, Angela; Husain, Masud; Jacob, Saiju; Maddison, Paul; Kennard, Christopher; Gowland, Penny A.

    2017-01-01

    Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 × 0.39 × 1.0 mm3) 7.0 T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 ± 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P < 0.0001], despite hyperintense signal evident in 5 of 18 patients on presentation. Second, early and later intervention (<3 versus >3 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans. PMID:28369215

  4. Different features of influenza A H1N1pdm09 virus infection among adults in 2009/10 and 2010/11.

    PubMed

    Grgic, Svjetlana; Skocibusic, Sinisa; Celjuska-Tosev, Elvira; Nikolic, Jadranka; Arapovic, Jurica; Kuzman, Ilija

    2016-02-28

    Influenza A H1N1pdm09 virus infection causes an epidemiologically and clinically severe disease mostly characterized by pneumonia, resulting in a high mortality rate. The purpose of this study was to investigate and compare epidemiological and clinical characteristics of influenza A H1N1pdm09 virus infection in patients hospitalized during the pandemic (2009/10) and post-pandemic seasons (2010/11). The data of patients with laboratory-confirmed influenza A H1N1pdm09 virus infection hospitalized and treated at the University Hospital for Infectious Diseases Dr. Fran Mihaljevic in Zagreb, Croatia in the first two seasons of appearance were analyzed. Compared to the pandemic season, in the post-pandemic season, patients were hospitalized longer, had higher values of inflammatory parameters, and were more often treated with antibiotics. The total number of risk factors in patients did not vary significantly between the two seasons. In the pandemic season, a significantly higher number of obese patients and patients with chronic lung disease was observed, whereas in the post-pandemic season, a statistically significant number of patients presented with symptoms of chronic cardiac and neuromuscular diseases. Primary viral pneumonia was frequently registered in younger adults during the pandemic season, whereas in the post-pandemic season, there were more cases of bacterial pneumonia. During the pandemic season, the influenza A H1N1pdm09 virus infection caused a severe disease with rare bacterial complications, especially in adult patients. The common characteristics of the influenza A H1N1pdm09 virus were lost in the post-pandemic season, assuming the shape and characteristics of the seasonal influenza A virus.

  5. IL-1β and IL-6 Upregulation in Children with H1N1 Influenza Virus Infection

    PubMed Central

    Chiaretti, Antonio; Pulitanò, Silvia; Barone, Giovanni; Ferrara, Pietro; Capozzi, Domenico; Riccardi, Riccardo

    2013-01-01

    The role of cytokines in relation to clinical manifestations, disease severity, and outcome of children with H1N1 virus infection remains thus far unclear. The aim of this study was to evaluate interleukin IL-1β and IL-6 plasma expressions and their association with clinical findings, disease severity, and outcome of children with H1N1 infection. We prospectively evaluated 15 children with H1N1 virus infection and 15 controls with lower respiratory tract infections (LRTI). Interleukin plasma levels were measured using immunoenzymatic assays. Significantly higher levels of IL-1β and IL-6 were detected in all patients with H1N1 virus infection compared to controls. It is noteworthy to mention that in H1N1 patients with more severe clinical manifestations of disease IL-1β and IL-6 expressions were significantly upregulated compared to H1N1 patients with mild clinical manifestations. In particular, IL-6 was significantly correlated with specific clinical findings, such as severity of respiratory compromise and fever. No correlation was found between interleukin expression and final outcome. In conclusion, H1N1 virus infection induces an early and significant upregulation of both interleukins IL1β and IL-6 plasma expressions. The upregulation of these cytokines is likely to play a proinflammatory role in H1N1 virus infection and may contribute to airway inflammation and bronchial hyperreactivity in these patients. PMID:23737648

  6. Influenza A (H1N1) virus pneumonia in intensive care unit.

    PubMed

    Adıgüzel, Nalan; Karakurt, Zuhal; Kalamanoğlu Balcı, Merih; Acartürk, Eylem; Güngör, Gökay; Yazıcıoğlu Moçin, Ozlem; Batı Kutlu, Semra; Yılmaz, Adnan

    2010-01-01

    Patients with influenza A (H1N1) virus infection have been admitted to intensive care units (ICU) due to development of severe respiratory failure. We described the clinical and epidemiologic characteristics of the 19 patients admitted to ICU due to influenza A (H1N1) virus infection. Study design is a descriptive case series in a third level-20 bed respiratory ICU at training hospital in Istanbul/Turkey. Influenza A (H1N1) virus infection was laboratory confirmed in specimens using real-time reverse transcriptase-polymerase-chain-reaction (RT-PCR). We collected data concerning demographic, epidemiologic and clinical characteristics of the patients, treatment mortality and outcome. From November 10 to December 31 2009, a total of 19 patients; 7 laboratory confirmed, 12 with high clinical suspicion were treated at ICU. Among 12 patients with high clinical suspicion; 3 patients had negative RT-PCR testing for influenza A (H1N1) virus, 9 patients had no tests. Mean age was 41.6 ± 11.9 (range 21 to 61). Median number of lung zone involvement was 4 (IQR= 3-4). Median PaO2/FiO2 was 105 (IQR= 85-165). Mean severity (APACHE II) and organ failure score (SOFA) were 13 ± 4 and 4.0 ± 1.3 respectively. Non-invasive mechanical ventilation (68.4%, n= 13), invasive mechanical ventilation (21.1%, n= 4) and nasal cannula oxygen (31.5%, n= 6) were implicated. The median length of ICU stay was 6 (IQR= 4-8). Oseltamivir therapy was given as 75 mg bid to 12 patients and 150 mg bid to 7 obese patients. ICU mortality rate was 21.1%. Presenting patients with pneumonia and acute respiratory failure due to influenza A (H1N1) virus infection were treated predominantly and successfully with non invasive mechanical ventilation. Clinicians should be aware of pulmonary complications of influenza A (H1N1) virus infection and that patients can be treated with non invasive mechanical ventilation paying attention to protective measures for health care providers.

  7. Antigenic Patterns and Evolution of the Human Influenza A (H1N1) Virus

    PubMed Central

    Liu, Mi; Zhao, Xiang; Hua, Sha; Du, Xiangjun; Peng, Yousong; Li, Xiyan; Lan, Yu; Wang, Dayan; Wu, Aiping; Shu, Yuelong; Jiang, Taijiao

    2015-01-01

    The influenza A (H1N1) virus causes seasonal epidemics that result in severe illnesses and deaths almost every year. A deep understanding of the antigenic patterns and evolution of human influenza A (H1N1) virus is extremely important for its effective surveillance and prevention. Through development of antigenicity inference method for human influenza A (H1N1), named PREDAC-H1, we systematically mapped the antigenic patterns and evolution of the human influenza A (H1N1) virus. Eight dominant antigenic clusters have been inferred for seasonal H1N1 viruses since 1977, which demonstrated sequential replacements over time with a similar pattern in Asia, Europe and North America. Among them, six clusters emerged first in Asia. As for China, three of the eight antigenic clusters were detected in South China earlier than in North China, indicating the leading role of South China in H1N1 transmission. The comprehensive view of the antigenic evolution of human influenza A (H1N1) virus can help formulate better strategy for its prevention and control. PMID:26412348

  8. Responses to pandemic ASO3-adjuvanted A/California/07/09 H1N1 influenza vaccine in human immunodeficiency virus-infected individuals.

    PubMed

    Kelly, Deborah; Burt, Kimberley; Missaghi, Bayan; Barrett, Lisa; Keynan, Yoav; Fowke, Keith; Grant, Michael

    2012-08-31

    Influenza infection may be more serious in human immunodeficiency virus (HIV)-infected individuals, therefore, vaccination against seasonal and pandemic strains is highly advised. Seasonal influenza vaccines have had no significant negative effects in well controlled HIV infection, but the impact of adjuvanted pandemic A/California/07/2009 H1N1 influenza hemaglutinin (HA) vaccine, which was used for the first time in the Canadian population as an authorized vaccine in autumn 2009, has not been extensively studied. Assess vaccine-related effects on CD4(+) T cell counts and humoral responses to the vaccine in individuals attending the Newfoundland and Labrador Provincial HIV clinic. A single dose of Arepanrix™ split vaccine including 3.75 μg A/California/07/2009 H1N1 HA antigen and ASO3 adjuvant was administered to 81 HIV-infected individuals by intramuscular injection. Plasma samples from shortly before, and 1-5 months after vaccination were collected from 80/81 individuals to assess humoral anti-H1N1 HA responses using a sensitive microbead-based array assay. Data on CD4(+) T cell counts, plasma viral load, antiretroviral therapy and patient age were collected from clinical records of 81 individuals. Overall, 36/80 responded to vaccination either by seroconversion to H1N1 HA or with a clear increase in anti-H1N1 HA antibody levels. Approximately 1/3 (28/80) had pre-existing anti-H1N1 HA antibodies and were more likely to respond to vaccination (22/28). Responders had higher baseline CD4(+) T cell counts and responders without pre-existing antibodies against H1N1 HA were younger than either non-responders or responders with pre-existing antibodies. Compared to changes in their CD4(+) T cell counts observed over a similar time period one year later, vaccine recipients displayed a minor, transient fall in CD4(+) T cell numbers, which was greater amongst responders. We observed low response rates to the 2009 pandemic influenza vaccine among HIV-infected individuals

  9. Thromboembolic events in patients with severe pandemic influenza A/H1N1.

    PubMed

    Avnon, Lone Sølling; Munteanu, Daniela; Smoliakov, Alexander; Jotkowitz, Alan; Barski, Leonid

    2015-10-01

    The 2009 pandemic influenza A/H1N1 developed as a novel swine influenza which caused more diseases among younger age groups than in the elderly. Severe hypoxemic respiratory failure from A/H1N1 pneumonia resulted in an increased need for ICU beds. Several risk groups were identified that were at a higher risk for adverse outcomes. Pregnant women were a particularly vulnerable group of patients The CDC reported on the first ten patients with severe illness and acute hypoxemic respiratory failure associated with A/H1N1 infection, none of whom were pregnant, but they noticed that half of the patients had a pulmonary embolism. During a four-month period from September to December 2009, 252 patients were admitted to our hospital with confirmed pandemic influenza H1N1 by real-time reverse transcriptase-polymerase chain reaction test (rRT-PCR). We cared for twenty patients (7.9%) admitted to MICU with severe A/H1N1. Results on Thrombotic events were identified in five (25%) of our critically ill patients. We recommend that patients with severe influenza A/H1N1 pneumonitis and respiratory failure be administered DVT prophylaxis in particular if there are additional risk factors for TVE. Further prospective studies on the relationship of influenza A/H1N1 and VTE are needed. Copyright © 2015 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  10. IFNγ inhibits G-CSF induced neutrophil expansion and invasion of the CNS to prevent viral encephalitis

    PubMed Central

    Ramakrishna, Chandran

    2018-01-01

    Emergency hematopoiesis facilitates the rapid expansion of inflammatory immune cells in response to infections by pathogens, a process that must be carefully regulated to prevent potentially life threatening inflammatory responses. Here, we describe a novel regulatory role for the cytokine IFNγ that is critical for preventing fatal encephalitis after viral infection. HSV1 encephalitis (HSE) is triggered by the invasion of the brainstem by inflammatory monocytes and neutrophils. In mice lacking IFNγ (GKO), we observed unrestrained increases in G-CSF levels but not in GM-CSF or IL-17. This resulted in uncontrolled expansion and infiltration of apoptosis-resistant, degranulating neutrophils into the brainstem, causing fatal HSE in GKO but not WT mice. Excessive G-CSF in GKO mice also induced granulocyte derived suppressor cells, which inhibited T-cell proliferation and function, including production of the anti-inflammatory cytokine IL-10. Unexpectedly, we found that IFNγ suppressed G-CSF signaling by increasing SOCS3 expression in neutrophils, resulting in apoptosis. Depletion of G-CSF, but not GM-CSF, in GKO mice induced neutrophil apoptosis and reinstated IL-10 secretion by T cells, which restored their ability to limit innate inflammatory responses resulting in protection from HSE. Our studies reveals a novel, complex interplay among IFNγ, G-CSF and IL-10, which highlights the opposing roles of G-CSF and IFNγ in regulation of innate inflammatory responses in a murine viral encephalitis model and reveals G-CSF as a potential therapeutic target. Thus, the antagonistic G-CSF-IFNγ interactions emerge as a key regulatory node in control of CNS inflammatory responses to virus infection. PMID:29352287

  11. Contextualizing ethics: ventilators, H1N1 and marginalized populations.

    PubMed

    Silva, Diego S; Nie, Jason X; Rossiter, Kate; Sahni, Sachin; Upshur, Ross E G

    2010-01-01

    If the H1N1 pandemic worsens, there may not be enough ventilated beds to care for all persons with respiratory failure. To date, researchers who explicitly discuss the ethics of intensive care unit admission and the allocation of ventilators during an influenza pandemic have based criteria predominantly on the principles of utility and efficiency, that is, promoting actions that maximize the greatest good for the greatest number of people. However, haphazardly applying utility and efficiency potentially disadvantages marginalized populations who might be at increased risk of severe reactions to H1N1. In Canada, Aboriginals represent 3% of Canadians, yet 11% of H1N1 cases requiring hospitalization involve Aboriginal persons. Aboriginal persons suffer from high rates of obesity due to socio-economic inequalities. Obesity is also a risk factor for severe H1N1 reactions. Yet, since obesity is found to increase the duration of stay in ventilated beds and a long stay is not considered an optimal use of ventilators, applying the principles of utility and efficiency may magnify existing social inequalities. Although promoting utility and efficiency is important, other ethical principles, such as equity and need, require thoughtful consideration and implementation. Furthermore, since public resources are being used to address a public health hazard, the viewpoints of the public, and specifically stakeholders who will be disproportionately affected, should inform decision-makers. Finally, giving attention to the needs and rights of marginalized populations means that ventilators should not be allocated based on criteria that exacerbate the social injustices faced by these groups of people.

  12. Construction and comparison of different source neuraminidase candidate vaccine strains for human infection with Eurasian avian-like influenza H1N1 virus.

    PubMed

    Liu, Liqi; Lu, Jian; Zhou, Jianfang; Li, Zi; Zhang, Heng; Wang, Dayan; Shu, Yuelong

    2017-12-01

    Human infections with Eurasian avian-like swine influenza H1N1 viruses have been reported in China in past years. One case resulted in death and others were mild case. In 2016, the World Health Organization recommended the use of A/Hunan/42443/2015(H1N1) virus to construct the first candidate vaccine strain for Eurasian avian-like swine influenza H1N1 viruses. Previous reports showed that the neuraminidase of A/Puerto Rico/8/34(H1N1) might improve the viral yield of reassortant viruses. Therefore, we constructed two reassortant candidate vaccine viruses of A/Hunan/42443/2015(H1N1) by reverse genetic technology, with (6+2) and (7+1) gene constitution, respectively. The (6+2) virus had hemagglutinin and neuraminidase from A/Hunan/42443/2015, and the (7+1) one had hemagglutinin from A/Hunan/42443/2015, while all the other genes were from A/Puerto Rico/8/34. Our data revealed that although the neuraminidase of the (7+1) virus was from high yield A/Puerto Rico/8/34, the hemagglutination titer and the hemagglutinin protein content of the (7+1) virus was not higher than that of the (6+2) virus. Both of the (7+1) and (6+2) viruses reached a similar level to that of A/Puerto Rico/8/34 at the usual harvest time in vitro. Therefore, both reassortant viruses are potential candidate vaccine viruses, which could contribute to pandemic preparedness. Copyright © 2017. Published by Elsevier Masson SAS.

  13. A Simple Restriction Fragment Length Polymorphism-Based Strategy That Can Distinguish the Internal Genes of Human H1N1, H3N2, and H5N1 Influenza A Viruses

    PubMed Central

    Cooper, Lynn A.; Subbarao, Kanta

    2000-01-01

    A simple molecular technique for rapid genotyping was developed to monitor the internal gene composition of currently circulating influenza A viruses. Sequence information from recent H1N1, H3N2, and H5N1 human virus isolates was used to identify conserved regions within each internal gene, and gene-specific PCR primers capable of amplifying all three virus subtypes were designed. Subtyping was based on subtype-specific restriction fragment length polymorphism (RFLP) patterns within the amplified regions. The strategy was tested in a blinded fashion using 10 control viruses of each subtype (total, 30) and was found to be very effective. Once standardized, the genotyping method was used to identify the origin of the internal genes of 51 influenza A viruses isolated from humans in Hong Kong during and immediately following the 1997–1998 H5N1 outbreak. No avian-human or H1-H3 reassortants were detected. Less than 2% (6 of 486) of the RFLP analyses were inconclusive; all were due to point mutations within a restriction site. The technique was also used to characterize the internal genes of two avian H9N2 viruses isolated from children in Hong Kong during 1999. PMID:10878047

  14. Novel triple reassortant H1N2 influenza viruses bearing six internal genes of the pandemic 2009/H1N1 influenza virus were detected in pigs in China.

    PubMed

    Qiao, Chuanling; Liu, Liping; Yang, Huanliang; Chen, Yan; Xu, Huiyang; Chen, Hualan

    2014-12-01

    The pandemic A/H1N1 influenza viruses emerged in both Mexico and the United States in March 2009, and were transmitted efficiently in the human population. Transmissions of the pandemic 2009/H1N1 virus from humans to poultry and other species of mammals were reported from several continents during the course of the 2009 H1N1 pandemic. Reassortant H1N1, H1N2, and H3N2 viruses containing genes of the pandemic 2009/H1N1 viruses appeared in pigs in some countries. In winter of 2012, a total of 2600 nasal swabs were collected from healthy pigs in slaughterhouses located throughout 10 provinces in China. The isolated viruses were subjected to genetic and antigenic analysis. Two novel triple-reassortant H1N2 influenza viruses were isolated from swine in China in 2012, with the HA gene derived from Eurasian avian-like swine H1N1, the NA gene from North American swine H1N2, and the six internal genes from the pandemic 2009/H1N1 viruses. The two viruses had similar antigenic features and some significant changes in antigenic characteristics emerged when compared to the previously identified isolates. We inferred that the novel reassortant viruses in China may have arisen from the accumulation of the three types of influenza viruses, which further indicates that swine herds serve as "mixing vessels" for influenza viruses. Influenza virus reassortment is an ongoing process, and our findings highlight the urgent need for continued influenza surveillance among swine herds. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Host cell interactome of PA protein of H5N1 influenza A virus in chicken cells.

    PubMed

    Wang, Qiao; Li, Qinghe; Liu, Ranran; Zheng, Maiqing; Wen, Jie; Zhao, Guiping

    2016-03-16

    Influenza A virus (IAV) heavily depends on viral-host protein interactions in order to replicate and spread. Identification of host factors that interact with viral proteins plays crucial roles in understanding the mechanism of IAV infection. Here we report the interaction landscape of H5N1 IAV PA protein in chicken cells through the use of affinity purification and mass spectrometry. PA protein was expressed in chicken cells and PA interacting complexes were captured by co-immunoprecipitation and analyzed by mass spectrometry. A total of 134 proteins were identified as PA-host interacting factors. Protein complexes including the minichromosome maintenance complex (MCM), 26S proteasome and the coat protein I (COPI) complex associated with PA in chicken cells, indicating the essential roles of these functional protein complexes during the course of IAV infection. Gene Ontology and pathway enrichment analysis both showed strong enrichment of PA interacting proteins in the category of DNA replication, covering genes such as PCNA, MCM2, MCM3, MCM4, MCM5 and MCM7. This study has uncovered the comprehensive interactome of H5N1 IAV PA protein in its chicken host and helps to establish the foundation for further investigation into the newly identified viral-host interactions. Influenza A virus (IAV) is a great threat to public health and avian production. However, the manner in which avian IAV recruits the host cellular machinery for replication and how the host antagonizes the IAV infection was previously poorly understood. Here we present the viral-host interactome of the H5N1 IAV PA protein and reveal the comprehensive association of host factors with PA. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. In vitro and in vivo efficacy of fluorodeoxycytidine analogs against highly pathogenic avian influenza H5N1, seasonal, and pandemic H1N1 virus infections

    PubMed Central

    Kumaki, Yohichi; Day, Craig W.; Smee, Donald F.; Morrey, John D.; Barnard, Dale L.

    2011-01-01

    Various fluorodeoxyribonucleosides were evaluated for their antiviral activities against influenza virus infections in vitro and in vivo. Among the most potent inhibitors was 2'-deoxy-2'-fluorocytidine (2'-FdC). It inhibited various strains of low and highly pathogenic avian influenza H5N1 viruses, pandemic H1N1 viruses, an oseltamivir-resistant pandemic H1N1 virus, and seasonal influenza viruses (H3N2, H1N1, influenza B) in MDCK cells, with the 90% inhibitory concentrations ranging from 0.13 µM to 4.6 µM, as determined by a virus yield reduction assay. 2'-FdC was then tested for efficacy in BALB/c mice infected with a lethal dose of highly pathogenic influenza A/Vietnam/1203/2004 H5N1 virus. 2’FdC (60 mg/kg/d) administered intraperitoneally (i.p.) twice a day beginning 24 h after virus exposure significantly promoted survival (80% survival) of infected mice (p=0.0001). Equally efficacious were the treatment regimens in which mice were treated with 2'-FdC at 30 or 60 mg/kg/day (bid × 8) beginning 24 h before virus exposure. At these doses, 70–80% of the mice were protected from death due to virus infection (p=0.0005, p=0.0001; respectively). The lungs harvested from treated mice at day four of the infection displayed little surface pathology or histopathology, lung weights were lower, and the 60 mg/kg dose reduced lung virus titers, although not significantly compared to the placebo controls. All doses were well tolerated in uninfected mice. 2'-FdC could also be administered as late as 72 h post virus exposure and still significantly protect 60% mice from the lethal effects of the H5N1 virus infection (p=0.019). Other fluorodeoxyribonucleosides tested in the H5N1 mouse model, 2’-deoxy-5-fluorocytidine and 2'-deoxy-2', 2'-difluorocytidine, were very toxic at higher doses and not inhibitory at lower doses. Finally, 2'-FdC, which was active in the H5N1 mouse model, was also active in a pandemic H1N1 influenza A infection model in mice. When given at 30 mg

  17. Prevalence of Diabetes in the 2009 Influenza A (H1N1) and the Middle East Respiratory Syndrome Coronavirus: A Systematic Review and Meta-Analysis.

    PubMed

    Badawi, Alaa; Ryoo, Seung Gwan

    2016-12-09

    Over the past two decades a number of severe acute respiratory infection outbreaks such as the 2009 influenza A (H1N1) and the Middle East respiratory syndrome coronavirus (MERS-CoV) have emerged and presented a considerable global public health threat. Epidemiologic evidence suggests that diabetic subjects are more susceptible to these conditions. However, the prevalence of diabetes in H1N1 and MERS-CoV has not been systematically described. The aim of this study is to conduct a systematic review and meta-analysis of published reports documenting the prevalence of diabetes in H1N1 and MERS-CoV and compare its frequency in the two viral conditions. Meta-analysis for the proportions of subjects with diabetes was carried out in 29 studies for H1N1 ( n =92,948) and 9 for MERS-CoV ( n =308). Average age of H1N1 patients (36.2±6.0 years) was significantly younger than that of subjects with MERS-CoV (54.3±7.4 years, P<0.05). Compared to MERS-CoV patients, subjects with H1N1 exhibited 3-fold lower frequency of cardiovascular diseases and 2- and 4-fold higher prevalence of obesity and immunosuppression, respectively. The overall prevalence of diabetes in H1N1 was 14.6% (95% CI: 12.3-17.0%; P<0.001), a 3.6-fold lower than in MERS-CoV (54.4%; 95% CI: 29.4-79.5; P<0.001). The prevalence of diabetes among H1N1 cases from Asia and North America was ~two-fold higher than those from South America and Europe. The prevalence of diabetes in MERS-CoV cases is higher than in H1N1. Regional comparisons suggest that an etiologic role of diabetes in MERS-CoV may exist distinctive from that in H1N1.

  18. Anti-NMDA receptor encephalitis and nonencephalitic HSV-1 infection.

    PubMed

    Salovin, Amy; Glanzman, Jason; Roslin, Kylie; Armangue, Thais; Lynch, David R; Panzer, Jessica A

    2018-07-01

    To determine whether there is an association between nonencephalitic herpes simplex virus 1 (HSV-1) infection and anti-NMDA receptor encephalitis (anti-NMDARE). Antibody testing was performed using samples from 2 cohorts in a case-control observational study. The cohort "Philadelphia" included 16 serum samples of pediatric anti-NMDARE cases and 42 age-matched controls with other neuroinflammatory disorders studied at the Children's Hospital of Philadelphia and University of Pennsylvania. The cohort "Barcelona" contained 23 anti-NMDARE patient samples and 26 age-matched participants with other neuroinflammatory disorders studied at IDIBAPS-Hospital Clinic, University of Barcelona. The presence of HSV-1 IgG antibodies was examined by ELISA. As an additional control, IgG antibodies to cytomegalovirus (CMV) and Epstein-Barr virus viral capsid antigen (EBV-VCA) were determined. In each cohort, more participants with anti-NMDARE than controls had anti-HSV-1 IgG antibodies. In the Philadelphia cohort (58 participants), 44% of anti-NMDARE cases had antibodies to HSV-1 compared with 14% controls (OR 4.67, 95% CI 1.3-17.3, p = 0.031). In the Barcelona cohort (49 participants), 52% of participants with anti-NMDARE had antibodies to HSV-1 compared with 31% of controls (OR 2.45, 95% CI 0.7-7.9, p = 0.155). Overall, 49% of anti-NMDARE cases have antibodies to HSV-1 in these 2 combined cohorts compared with 21% of controls (Mantel-Haenszel OR 3.21, 95% CI 1.3-7.7, p = 0.007). Past HSV-1 infection was found in significantly more anti-NMDARE cases than controls. This suggests a meaningful association between nonencephalitic HSV-1 infection and development of anti-NMDARE.

  19. Plasma metabolomics for the diagnosis and prognosis of H1N1 influenza pneumonia.

    PubMed

    Banoei, Mohammad M; Vogel, Hans J; Weljie, Aalim M; Kumar, Anand; Yende, Sachin; Angus, Derek C; Winston, Brent W

    2017-04-19

    Metabolomics is a tool that has been used for the diagnosis and prognosis of specific diseases. The purpose of this study was to examine if metabolomics could be used as a potential diagnostic and prognostic tool for H1N1 pneumonia. Our hypothesis was that metabolomics can potentially be used early for the diagnosis and prognosis of H1N1 influenza pneumonia. 1 H nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry were used to profile the metabolome in 42 patients with H1N1 pneumonia, 31 ventilated control subjects in the intensive care unit (ICU), and 30 culture-positive plasma samples from patients with bacterial community-acquired pneumonia drawn within the first 24 h of hospital admission for diagnosis and prognosis of disease. We found that plasma-based metabolomics from samples taken within 24 h of hospital admission can be used to discriminate H1N1 pneumonia from bacterial pneumonia and nonsurvivors from survivors of H1N1 pneumonia. Moreover, metabolomics is a highly sensitive and specific tool for the 90-day prognosis of mortality in H1N1 pneumonia. This study demonstrates that H1N1 pneumonia can create a quite different plasma metabolic profile from bacterial culture-positive pneumonia and ventilated control subjects in the ICU on the basis of plasma samples taken within 24 h of hospital/ICU admission, early in the course of disease.

  20. Spatiotemporal Structure of Molecular Evolution of H5N1 Highly Pathogenic Avian Influenza Viruses in Vietnam

    PubMed Central

    Emch, Michael; Jobe, R. Todd; Moody, Aaron

    2010-01-01

    Background Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10): e3462) demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear. Methodology/Principal Findings In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets) isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City. Conclusions/Significance The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space. This correlation

  1. Newly emerging mutations in the matrix genes of the human influenza A(H1N1)pdm09 and A(H3N2) viruses reduce the detection sensitivity of real-time reverse transcription-PCR.

    PubMed

    Yang, Ji-Rong; Kuo, Chuan-Yi; Huang, Hsiang-Yi; Wu, Fu-Ting; Huang, Yi-Lung; Cheng, Chieh-Yu; Su, Yu-Ting; Chang, Feng-Yee; Wu, Ho-Sheng; Liu, Ming-Tsan

    2014-01-01

    New variants of the influenza A(H1N1)pdm09 and A(H3N2) viruses were detected in Taiwan between 2012 and 2013. Some of these variants were not detected in clinical specimens using a common real-time reverse transcription-PCR (RT-PCR) assay that targeted the conserved regions of the viral matrix (M) genes. An analysis of the M gene sequences of the new variants revealed that several newly emerging mutations were located in the regions where the primers or probes of the real-time RT-PCR assay bind; these included three mutations (G225A, T228C, and G238A) in the A(H1N1)pdm09 virus, as well as one mutation (C163T) in the A(H3N2) virus. These accumulated mismatch mutations, together with the previously identified C154T mutation of the A(H1N1)pdm09 virus and the C153T and G189T mutations of the A(H3N2) virus, result in a reduced detection sensitivity for the real-time RT-PCR assay. To overcome the loss of assay sensitivity due to mismatch mutations, we established a real-time RT-PCR assay using degenerate nucleotide bases in both the primers and probe and successfully increased the sensitivity of the assay to detect circulating variants of the human influenza A viruses. Our observations highlight the importance of the simultaneous use of different gene-targeting real-time RT-PCR assays for the clinical diagnosis of influenza.

  2. X-ray diffraction analysis of 4- and 4'-substituted C n H2 n + 1O-C6H3(OH)-CH=N-C6H4-C m H2 m + 1 ( n/ m = 2/1 and 3/4) salicylideneanilines

    NASA Astrophysics Data System (ADS)

    Kuz'mina, L. G.; Navasardyan, M. A.; Mikhailov, A. A.

    2017-11-01

    X-ray diffraction study of two crystalline modifications of C2H5O-C6H3(OH)-CH=N-C6H4-CH3 ( 1a, sp. gr. P21/ n, and 1b, sp. gr. C2/c) and C3H7O-C6H3(OH)-CH=N-C6H4-C4H9 ( 2, sp. gr. P212121) has been performed. The 1a crystal structure contains two independent molecules. The molecules are conformationally nonrigid with respect to the mutual rotation of benzene rings; the dihedral angles between their planes are 29.19° and 26.00° in the independent molecules of 1a, 18.72° in the molecule of 1b, and 50.35° in the molecule of 2. The crystal packing of the compounds is discussed.

  3. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies.

    PubMed

    Kashyap, Arun K; Steel, John; Oner, Ahmet F; Dillon, Michael A; Swale, Ryann E; Wall, Katherine M; Perry, Kimberly J; Faynboym, Aleksandr; Ilhan, Mahmut; Horowitz, Michael; Horowitz, Lawrence; Palese, Peter; Bhatt, Ramesh R; Lerner, Richard A

    2008-04-22

    The widespread incidence of H5N1 influenza viruses in bird populations poses risks to human health. Although the virus has not yet adapted for facile transmission between humans, it can cause severe disease and often death. Here we report the generation of combinatorial antibody libraries from the bone marrow of five survivors of the recent H5N1 avian influenza outbreak in Turkey. To date, these libraries have yielded >300 unique antibodies against H5N1 viral antigens. Among these antibodies, we have identified several broadly reactive neutralizing antibodies that could be used for passive immunization against H5N1 virus or as guides for vaccine design. The large number of antibodies obtained from these survivors provide a detailed immunochemical analysis of individual human solutions to virus neutralization in the setting of an actual virulent influenza outbreak. Remarkably, three of these antibodies neutralized both H1 and H5 subtype influenza viruses.

  4. Adaptive evolution during the establishment of European avian-like H1N1 influenza A virus in swine.

    PubMed

    Joseph, Udayan; Vijaykrishna, Dhanasekaran; Smith, Gavin J D; Su, Yvonne C F

    2018-04-01

    An H1N1 subtype influenza A virus with all eight gene segments derived from wild birds (including mallards), ducks and chickens, caused severe disease outbreaks in swine populations in Europe beginning in 1979 and successfully adapted to form the European avian-like swine (EA-swine) influenza lineage. Genes of the EA-swine lineage that are clearly segregated from its closest avian relatives continue to circulate in swine populations globally and represent a unique opportunity to study the adaptive process of an avian-to-mammalian cross-species transmission. Here, we used a relaxed molecular clock model to test whether the EA-swine virus originated through the introduction of a single avian ancestor as an entire genome, followed by an analysis of host-specific selection pressures among different gene segments. Our data indicated independent introduction of gene segments via transmission of avian viruses into swine followed by reassortment events that occurred at least 1-4 years prior to the EA-swine outbreak. All EA-swine gene segments exhibit greater selection pressure than avian viruses, reflecting both adaptive pressures and relaxed selective constraints that are associated with host switching. Notably, we identified key amino acid mutations in the viral surface proteins (H1 and N1) that play a role in adaptation to new hosts. Following the establishment of EA-swine lineage, we observed an increased frequency of intrasubtype reassortment of segments compared to the earlier strains that has been associated with adaptive amino acid replacements, disease severity and vaccine escape. Taken together, our study provides key insights into the adaptive changes in viral genomes following the transmission of avian influenza viruses to swine and the early establishment of the EA-swine lineage.

  5. Single-Domain Antibodies Targeting Neuraminidase Protect against an H5N1 Influenza Virus Challenge

    PubMed Central

    Cardoso, Francisco Miguel; Ibañez, Lorena Itatí; Van den Hoecke, Silvie; De Baets, Sarah; Smet, Anouk; Roose, Kenny; Schepens, Bert; Descamps, Francis J.; Fiers, Walter; Muyldermans, Serge

    2014-01-01

    ABSTRACT Influenza virus neuraminidase (NA) is an interesting target of small-molecule antiviral drugs. We isolated a set of H5N1 NA-specific single-domain antibodies (N1-VHHm) and evaluated their in vitro and in vivo antiviral potential. Two of them inhibited the NA activity and in vitro replication of clade 1 and 2 H5N1 viruses. We then generated bivalent derivatives of N1-VHHm by two methods. First, we made N1-VHHb by genetically joining two N1-VHHm moieties with a flexible linker. Second, bivalent N1-VHH-Fc proteins were obtained by genetic fusion of the N1-VHHm moiety with the crystallizable region of mouse IgG2a (Fc). The in vitro antiviral potency against H5N1 of both bivalent N1-VHHb formats was 30- to 240-fold higher than that of their monovalent counterparts, with 50% inhibitory concentrations in the low nanomolar range. Moreover, single-dose prophylactic treatment with bivalent N1-VHHb or N1-VHH-Fc protected BALB/c mice against a lethal challenge with H5N1 virus, including an oseltamivir-resistant H5N1 variant. Surprisingly, an N1-VHH-Fc fusion without in vitro NA-inhibitory or antiviral activity also protected mice against an H5N1 challenge. Virus escape selection experiments indicated that one amino acid residue close to the catalytic site is required for N1-VHHm binding. We conclude that single-domain antibodies directed against influenza virus NA protect against H5N1 virus infection, and when engineered with a conventional Fc domain, they can do so in the absence of detectable NA-inhibitory activity. IMPORTANCE Highly pathogenic H5N1 viruses are a zoonotic threat. Outbreaks of avian influenza caused by these viruses occur in many parts of the world and are associated with tremendous economic loss, and these viruses can cause very severe disease in humans. In such cases, small-molecule inhibitors of the viral NA are among the few treatment options for patients. However, treatment with such drugs often results in the emergence of resistant viruses

  6. Molecular characterization of avian influenza H5N1 virus in Egypt and the emergence of a novel endemic subclade

    PubMed Central

    El-Shesheny, Rabeh; Kandeil, Ahmed; Bagato, Ola; Maatouq, Asmaa M.; Moatasim, Yassmin; Rubrum, Adam; Song, Min-Suk; Webby, Richard J.

    2014-01-01

    Clade 2.2 highly pathogenic H5N1 viruses have been in continuous circulation in Egyptian poultry since 2006. Their persistence caused significant genetic drift that led to the reclassification of these viruses into subclades 2.2.1 and 2.2.1.1. Here, we conducted full-genome sequence and phylogenetic analyses of 45 H5N1 isolated during 2006–2013 through systematic surveillance in Egypt, and 53 viruses that were sequenced previously and available in the public domain. Results indicated that H5N1 viruses in Egypt continue to evolve and a new distinct cluster has emerged. Mutations affecting viral virulence, pathogenicity, transmission, receptor-binding preference and drug resistance were studied. In light of our findings that H5N1 in Egypt continues to evolve, surveillance and molecular studies need to be sustained. PMID:24722680

  7. Encephalitis, Ontario, Canada, 2002–2013

    PubMed Central

    Parpia, Alyssa S.; Li, Ye; Chen, Cynthia; Dhar, Badal

    2016-01-01

    Encephalitis, a brain inflammation leading to severe illness and often death, is caused by >100 pathogens. To assess the incidence and trends of encephalitis in Ontario, Canada, we obtained data on 6,463 Ontario encephalitis hospitalizations from the hospital Discharge Abstract Database for April 2002–December 2013 and analyzed these data using multiple negative binomial regression. The estimated crude incidence of all-cause encephalitis in Ontario was ≈4.3 cases/100,000 persons/year. Incidence rates for infants <1 year of age and adults >65 years were 3.9 and 3.0 times that of adults 20–44 years of age, respectively. Incidence peaks during August–September in 2002 and 2012 resulted primarily from encephalitis of unknown cause and viral encephalitis. Encephalitis occurred more frequently in older age groups and less frequently in women in Ontario when compared to England, but despite differences in population, vector-borne diseases, climate, and geography, the epidemiology was overall remarkably similar in the two regions. PMID:26890626

  8. Evolution of highly pathogenic H5N1 avian influenza viruses in Vietnam between 2001 and 2007.

    PubMed

    Wan, Xiu-Feng; Nguyen, Tung; Davis, C Todd; Smith, Catherine B; Zhao, Zi-Ming; Carrel, Margaret; Inui, Kenjiro; Do, Hoa T; Mai, Duong T; Jadhao, Samadhan; Balish, Amanda; Shu, Bo; Luo, Feng; Emch, Michael; Matsuoka, Yumiko; Lindstrom, Stephen E; Cox, Nancy J; Nguyen, Cam V; Klimov, Alexander; Donis, Ruben O

    2008-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses have caused dramatic economic losses to the poultry industry of Vietnam and continue to pose a serious threat to public health. As of June 2008, Vietnam had reported nearly one third of worldwide laboratory confirmed human H5N1 infections. To better understand the emergence, spread and evolution of H5N1 in Vietnam we studied over 300 H5N1 avian influenza viruses isolated from Vietnam since their first detection in 2001. Our phylogenetic analyses indicated that six genetically distinct H5N1 viruses were introduced into Vietnam during the past seven years. The H5N1 lineage that evolved following the introduction in 2003 of the A/duck/Hong Kong/821/2002-like viruses, with clade 1 hemagglutinin (HA), continued to predominate in southern Vietnam as of May 2007. A virus with a clade 2.3.4 HA newly introduced into northern Vietnam in 2007, reassorted with pre-existing clade 1 viruses, resulting in the emergence of novel genotypes with neuraminidase (NA) and/or internal gene segments from clade 1 viruses. A total of nine distinct genotypes have been present in Vietnam since 2001, including five that were circulating in 2007. At least four of these genotypes appear to have originated in Vietnam and represent novel H5N1 viruses not reported elsewhere. Geographic and temporal analyses of H5N1 infection dynamics in poultry suggest that the majority of viruses containing new genes were first detected in northern Vietnam and subsequently spread to southern Vietnam after reassorting with pre-existing local viruses in northern Vietnam. Although the routes of entry and spread of H5N1 in Vietnam remain speculative, enhanced poultry import controls and virologic surveillance efforts may help curb the entry and spread of new HPAI viral genes.

  9. Eastern Equine Encephalitis in Latin America

    PubMed Central

    Carrera, Jean-Paul; Forrester, Naomi; Wang, Eryu; Vittor, Amy Y.; Haddow, Andrew D.; López-Vergès, Sandra; Abadía, Ivan; Castaño, Elizabeth; Sosa, Nestor; Báez, Carmen; Estripeaut, Dora; Díaz, Yamilka; Beltrán, Davis; Cisneros, Julio; Cedeño, Hector G.; da Rosa, Amelia P. Travassos; Hernandez, Humberto; Martínez-Torres, Alex O.; Tesh, Robert B.; Weaver, Scott C.

    2013-01-01

    BACKGROUND The eastern equine encephalitis (EEE) and Venezuelan equine encephalitis (VEE) viruses are pathogens that infect humans and horses in the Americas. Outbreaks of neurologic disease in humans and horses were reported in Panama from May through early August 2010. METHODS We performed antibody assays and tests to detect viral RNA and isolate the viruses in serum samples from hospitalized patients. Additional cases were identified with enhanced surveillance. RESULTS A total of 19 patients were hospitalized for encephalitis. Among them, 7 had confirmed EEE, 3 had VEE, and 1 was infected with both viruses; 3 patients died, 1 of whom had confirmed VEE. The clinical findings for patients with EEE included brain lesions, seizures that evolved to status epilepticus, and neurologic sequelae. An additional 99 suspected or probable cases of alphavirus infection were detected during active surveillance. In total, 13 cases were confirmed as EEE, along with 11 cases of VEE and 1 case of dual infection. A total of 50 cases in horses were confirmed as EEE and 8 as VEE; mixed etiologic factors were associated with 11 cases in horses. Phylogenetic analyses of isolates from 2 cases of equine infection with the EEE virus and 1 case of human infection with the VEE virus indicated that the viruses were of enzootic lineages previously identified in Panama rather than new introductions. CONCLUSIONS Cases of EEE in humans in Latin America may be the result of ecologic changes that increased human contact with enzootic transmission cycles, genetic changes in EEE viral strains that resulted in increased human virulence, or an altered host range. (Funded by the National Institutes of Health and the Secretaría Nacional de Ciencia, Tecnología e Innovación, Panama.) PMID:23964935

  10. LGI1-antibody encephalitis is characterised by frequent, multifocal clinical and subclinical seizures.

    PubMed

    Aurangzeb, Sidra; Symmonds, Mkael; Knight, Ravi K; Kennett, Robin; Wehner, Tim; Irani, Sarosh R

    2017-08-01

    To describe clinical and electrographic characteristics of seizures LGI1-antibody encephalitis, and their correlations with two-year outcomes. Video-electroencephalography recordings were performed on a cohort of 16 consecutive patients with LGI1-antibodies from two UK neuroscience-centers over five-years. From 14 of 16 patients (13 males; age-range 53-92years), 86 faciobrachial dystonic seizures were recorded at a median frequency of 0.4 per hour (range 0.1-9.8), and ictal EEG changes accompanied 5/86 events. In addition, 11/16 patients showed 53 other seizures - subclinical (n=18), motor (n=16), or sensory (n=19) - at a median of 0.1 per hour (range 0.1-2) associated with temporal and frontal discharges. The sensory events were most commonly thermal sensations or body-shuddering, and the motor events were frequently automatisms or vocalisations. Furthermore, multifocal interictal epileptiform discharges, from temporal, frontal and parietal regions, and interictal slow-wave activity were observed in 25% and 69% of patients, respectively. Higher observed seizure frequency correlated with poorer functional recovery at two-years (p=0.001). Multiple frequent seizure semiologies, in addition to numerous subclinical seizures and interictal epileptiform discharges, are hallmarks of LGI1-antibody encephalitis. High overall seizure frequency may predict more limited long-term recovery. These observations should encourage closer monitoring and proactive treatment of seizure activity in these patients. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. The NS segment of H5N1 avian influenza viruses (AIV) enhances the virulence of an H7N1 AIV in chickens.

    PubMed

    Vergara-Alert, Júlia; Busquets, Núria; Ballester, Maria; Chaves, Aida J; Rivas, Raquel; Dolz, Roser; Wang, Zhongfang; Pleschka, Stephan; Majó, Natàlia; Rodríguez, Fernando; Darji, Ayub

    2014-01-25

    Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5-types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7-virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens.

  12. An effective quarantine measure reduced the total incidence of influenza A H1N1 in the workplace: another way to control the H1N1 flu pandemic.

    PubMed

    Miyaki, Koichi; Sakurazawa, Hirofumi; Mikurube, Hajime; Nishizaka, Mika; Ando, Hidehiko; Song, Yixuan; Shimbo, Takuro

    2011-01-01

    To evaluate the effectiveness of a non-vaccine quarantine measure against pandemic influenza A H1N1 in workplaces. Design was quasi-cluster randomized controlled trial in two sibling companies (Cohort 1 n=6,634, Cohort 2 n=8,500). The follow-up period was from July 1st, 2009 to February 19th, 2010 (233 days). Intervention was voluntary waiting at home on full pay if the family became Influenza like Illness (ILI). The incidences of influenza A H1N1 and those of the subgroups whose families got ILI in both cohorts were compared by a Cox regression model and log-rank test. There were 189 and 270 workers who got H1N1 infection during the follow-up period in each cohort. In this period 317 workers in Cohort 1 were asked to wait at home for several days (100% obeyed). The intervention group (Cohort 1) showed a statistically significant lower risk (p for log-rank test=0.033) compared with the control (Cohort 2), and the hazard ratio of the intervention was 0.799 [0.658-0.970] after adjusting for age, sex, BMI and smoking status. The workers who were asked to wait at home showed H1N1 infection more frequently (49 out of 317) compared with the workers whose family got ILI but were not asked to wait and work regularly (77 out of 990, RR=2.17 [1.48-3.18]). The waiting on full pay policy in the workplace reduced the overall risk of influenza A H1N1 by about 20% in one flu season in Japan. This kind of non-vaccine measure will be a promising option in workplaces to control the next flu pandemic.

  13. Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis.

    PubMed

    Miller, Thomas D; Chong, Trevor T-J; Aimola Davies, Anne M; Ng, Tammy W C; Johnson, Michael R; Irani, Sarosh R; Vincent, Angela; Husain, Masud; Jacob, Saiju; Maddison, Paul; Kennard, Christopher; Gowland, Penny A; Rosenthal, Clive R

    2017-05-01

    Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 × 0.39 × 1.0 mm3) 7.0 T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 ± 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P < 0.0001], despite hyperintense signal evident in 5 of 18 patients on presentation. Second, early and later intervention (<3 versus >3 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  14. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus.

    PubMed

    Brass, Abraham L; Huang, I-Chueh; Benita, Yair; John, Sinu P; Krishnan, Manoj N; Feeley, Eric M; Ryan, Bethany J; Weyer, Jessica L; van der Weyden, Louise; Fikrig, Erol; Adams, David J; Xavier, Ramnik J; Farzan, Michael; Elledge, Stephen J

    2009-12-24

    Influenza viruses exploit host cell machinery to replicate, resulting in epidemics of respiratory illness. In turn, the host expresses antiviral restriction factors to defend against infection. To find host cell modifiers of influenza A H1N1 viral infection, we used a functional genomic screen and identified over 120 influenza A virus-dependency factors with roles in endosomal acidification, vesicular trafficking, mitochondrial metabolism, and RNA splicing. We discovered that the interferon-inducible transmembrane proteins IFITM1, 2, and 3 restrict an early step in influenza A viral replication. The IFITM proteins confer basal resistance to influenza A virus but are also inducible by interferons type I and II and are critical for interferon's virustatic actions. Further characterization revealed that the IFITM proteins inhibit the early replication of flaviviruses, including dengue virus and West Nile virus. Collectively this work identifies a family of antiviral restriction factors that mediate cellular innate immunity to at least three major human pathogens. Copyright 2009 Elsevier Inc. All rights reserved.

  15. [Experience in the management of the severe form of human influenza A H1N1 pneumonia in an intensive care unit].

    PubMed

    Carrillo-Esper, Raúl; Sosa-García, Jesús Ojino; Arch-Tirado, Emilio

    2011-01-01

    At the beginning of the second trimester of 2009 there was an influenza A (H1N1) outbreak. The aim of this study is to describe the clinical presentation and mortality of the severe form of pneumonia in patients with human influenza A H1N1. We conducted a retrospective review of all files of confirmed and suspected patients with severe human influenza A (H1N1) pneumonia. We studied 26 patients admitted to the ICU from April 1 to December 31, 2009, among which 16 were males (61.54%) and 10 females (38.46%) with an average age of 52.26 ± 15.48 years. The time of onset of symptoms to admission to the ICU was 6.3 ± 3.19 days. The most frequent symptoms and signs were salmonated sputum (47%), chills (45%), dry cough (44%) and myalgia (42%). The mortality rate was 19.23%. The treatment was based on antiviral therapy, modulating inflammation and ventilatory techniques to optimize oxygenation. There was an association between combined therapy based on methylprednisolone, activated protein C and statins with a better survival (p = 0.05). Pneumonia virus of human influenza A (H1N1) is associated with high morbidity and mortality. According to our results, it is recommended to make an early diagnosis and to initiate a treatment regimen based on treatment bundles designed to optimize oxygenation, reduce viral load and modulate inflammation.

  16. Interactome Analysis of NS1 Protein Encoded by Influenza A H7N9 Virus Reveals an Inhibitory Role of NS1 in Host mRNA Maturation.

    PubMed

    Kuo, Rei-Lin; Chen, Chi-Jene; Tam, Ee-Hong; Huang, Chung-Guei; Li, Li-Hsin; Li, Zong-Hua; Su, Pei-Chia; Liu, Hao-Ping; Wu, Chih-Ching

    2018-04-06

    Influenza A virus infections can result in severe respiratory diseases. The H7N9 subtype of avian influenza A virus has been transmitted to humans and caused severe disease and death. Nonstructural protein 1 (NS1) of influenza A virus is a virulence determinant during viral infection. To elucidate the functions of the NS1 encoded by influenza A H7N9 virus (H7N9 NS1), interaction partners of H7N9 NS1 in human cells were identified with immunoprecipitation followed by SDS-PAGE coupled with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). We identified 36 cellular proteins as the interacting partners of the H7N9 NS1, and they are involved in RNA processing, mRNA splicing via spliceosome, and the mRNA surveillance pathway. Two of the interacting partners, cleavage and polyadenylation specificity factor subunit 2 (CPSF2) and CPSF7, were confirmed to interact with H7N9 NS1 using coimmunoprecipitation and immunoblotting based on the previous finding that the two proteins are involved in pre-mRNA polyadenylation machinery. Furthermore, we illustrate that overexpression of H7N9 NS1, as well as infection by the influenza A H7N9 virus, interfered with pre-mRNA polyadenylation in host cells. This study comprehensively profiled the interactome of H7N9 NS1 in host cells, and the results demonstrate a novel endotype for H7N9 NS1 in inhibiting host mRNA maturation.

  17. Antibody Affinity Against 2009 A/H1N1 Influenza and Pandemrix Vaccine Nucleoproteins Differs Between Childhood Narcolepsy Patients and Controls.

    PubMed

    Lind, Alexander; Freyhult, Eva; Ramelius, Anita; Olsson, Tomas; Arnheim-Dahlström, Lisen; Lamb, Favelle; Khademi, Mohsen; Ambati, Aditya; Maeurer, Markus; Lima Bomfim, Izaura; Fink, Katharina; Fex, Malin; Törn, Carina; Elding Larsson, Helena; Lernmark, Åke

    2017-10-01

    patients and 1/21 (4.8%) of the childhood controls had A/H1N1-NS1 antibodies. The higher antibody affinities against NP-PR1934 in controls suggest better protection against wild-type virus. In contrast, the reduced NP-PR1934 antibody affinities among childhood narcolepsy patients suggest poor protection from the wild-type A/H1N1 virus and possibly increased risk for viral damage.

  18. Environmental Levels of the Antiviral Oseltamivir Induce Development of Resistance Mutation H274Y in Influenza A/H1N1 Virus in Mallards

    PubMed Central

    Järhult, Josef D.; Söderström, Hanna; Orozovic, Goran; Gunnarsson, Gunnar; Bröjer, Caroline; Latorre-Margalef, Neus; Fick, Jerker; Grabic, Roman; Lennerstrand, Johan; Waldenström, Jonas; Lundkvist, Åke; Olsen, Björn

    2011-01-01

    Oseltamivir (Tamiflu®) is the most widely used drug against influenza infections and is extensively stockpiled worldwide as part of pandemic preparedness plans. However, resistance is a growing problem and in 2008–2009, seasonal human influenza A/H1N1 virus strains in most parts of the world carried the mutation H274Y in the neuraminidase gene which causes resistance to the drug. The active metabolite of oseltamivir, oseltamivir carboxylate (OC), is poorly degraded in sewage treatment plants and surface water and has been detected in aquatic environments where the natural influenza reservoir, dabbling ducks, can be exposed to the substance. To assess if resistance can develop under these circumstances, we infected mallards with influenza A/H1N1 virus and exposed the birds to 80 ng/L, 1 µg/L and 80 µg/L of OC through their sole water source. By sequencing the neuraminidase gene from fecal samples, we found that H274Y occurred at 1 µg/L of OC and rapidly dominated the viral population at 80 µg/L. IC50 for OC was increased from 2–4 nM in wild-type viruses to 400–700 nM in H274Y mutants as measured by a neuraminidase inhibition assay. This is consistent with the decrease in sensitivity to OC that has been noted among human clinical isolates carrying H274Y. Environmental OC levels have been measured to 58–293 ng/L during seasonal outbreaks and are expected to reach µg/L-levels during pandemics. Thus, resistance could be induced in influenza viruses circulating among wild ducks. As influenza viruses can cross species barriers, oseltamivir resistance could spread to human-adapted strains with pandemic potential disabling oseltamivir, a cornerstone in pandemic preparedness planning. We propose surveillance in wild birds as a measure to understand the resistance situation in nature and to monitor it over time. Strategies to lower environmental levels of OC include improved sewage treatment and, more importantly, a prudent use of antivirals. PMID:21931841

  19. Anti-NMDA Encephalitis: An Uncommon, Autoimmune Mediated Form of Encephalitis

    PubMed Central

    Azizyan, Avetis; Albrektson, Joshua R; Maya, Marcel M; Pressman, Barry D; Moser, Franklin

    2014-01-01

    We report an interesting case of a 19 year old female with findings on MRI suggestive of viral encephalitis. An extensive workup was negative for infectious causes and she was subsequently diagnosed with anti-NMDA encephalitis. Anti-NMDA encephalitis is a highly lethal but treatable form of autoimmune encephalitis that has recently been characterized. It is frequently found in young women and associated with an underlying teratoma. Although rare, this diagnosis should be considered in young females for whom a rapid onset of encephalitis cannot be explained by more common causes. PMID:25426239

  20. Differential Contribution of PB1-F2 to the Virulence of Highly Pathogenic H5N1 Influenza A Virus in Mammalian and Avian Species

    PubMed Central

    Schmolke, Mirco; Manicassamy, Balaji; Pena, Lindomar; Sutton, Troy; Hai, Rong; Varga, Zsuzsanna T.; Hale, Benjamin G.; Steel, John; Pérez, Daniel R.; García-Sastre, Adolfo

    2011-01-01

    Highly pathogenic avian influenza A viruses (HPAIV) of the H5N1 subtype occasionally transmit from birds to humans and can cause severe systemic infections in both hosts. PB1-F2 is an alternative translation product of the viral PB1 segment that was initially characterized as a pro-apoptotic mitochondrial viral pathogenicity factor. A full-length PB1-F2 has been present in all human influenza pandemic virus isolates of the 20th century, but appears to be lost evolutionarily over time as the new virus establishes itself and circulates in the human host. In contrast, the open reading frame (ORF) for PB1-F2 is exceptionally well-conserved in avian influenza virus isolates. Here we perform a comparative study to show for the first time that PB1-F2 is a pathogenicity determinant for HPAIV (A/Viet Nam/1203/2004, VN1203 (H5N1)) in both mammals and birds. In a mammalian host, the rare N66S polymorphism in PB1-F2 that was previously described to be associated with high lethality of the 1918 influenza A virus showed increased replication and virulence of a recombinant VN1203 H5N1 virus, while deletion of the entire PB1-F2 ORF had negligible effects. Interestingly, the N66S substituted virus efficiently invades the CNS and replicates in the brain of Mx+/+ mice. In ducks deletion of PB1-F2 clearly resulted in delayed onset of clinical symptoms and systemic spreading of virus, while variations at position 66 played only a minor role in pathogenesis. These data implicate PB1-F2 as an important pathogenicity factor in ducks independent of sequence variations at position 66. Our data could explain why PB1-F2 is conserved in avian influenza virus isolates and only impacts pathogenicity in mammals when containing certain amino acid motifs such as the rare N66S polymorphism. PMID:21852950

  1. Differential contribution of PB1-F2 to the virulence of highly pathogenic H5N1 influenza A virus in mammalian and avian species.

    PubMed

    Schmolke, Mirco; Manicassamy, Balaji; Pena, Lindomar; Sutton, Troy; Hai, Rong; Varga, Zsuzsanna T; Hale, Benjamin G; Steel, John; Pérez, Daniel R; García-Sastre, Adolfo

    2011-08-01

    Highly pathogenic avian influenza A viruses (HPAIV) of the H5N1 subtype occasionally transmit from birds to humans and can cause severe systemic infections in both hosts. PB1-F2 is an alternative translation product of the viral PB1 segment that was initially characterized as a pro-apoptotic mitochondrial viral pathogenicity factor. A full-length PB1-F2 has been present in all human influenza pandemic virus isolates of the 20(th) century, but appears to be lost evolutionarily over time as the new virus establishes itself and circulates in the human host. In contrast, the open reading frame (ORF) for PB1-F2 is exceptionally well-conserved in avian influenza virus isolates. Here we perform a comparative study to show for the first time that PB1-F2 is a pathogenicity determinant for HPAIV (A/Viet Nam/1203/2004, VN1203 (H5N1)) in both mammals and birds. In a mammalian host, the rare N66S polymorphism in PB1-F2 that was previously described to be associated with high lethality of the 1918 influenza A virus showed increased replication and virulence of a recombinant VN1203 H5N1 virus, while deletion of the entire PB1-F2 ORF had negligible effects. Interestingly, the N66S substituted virus efficiently invades the CNS and replicates in the brain of Mx+/+ mice. In ducks deletion of PB1-F2 clearly resulted in delayed onset of clinical symptoms and systemic spreading of virus, while variations at position 66 played only a minor role in pathogenesis. These data implicate PB1-F2 as an important pathogenicity factor in ducks independent of sequence variations at position 66. Our data could explain why PB1-F2 is conserved in avian influenza virus isolates and only impacts pathogenicity in mammals when containing certain amino acid motifs such as the rare N66S polymorphism.

  2. Etiological associations and outcome predictors of acute electroencephalography in childhood encephalitis.

    PubMed

    Mohammad, Shekeeb S; Soe, Samantha M; Pillai, Sekhar C; Nosadini, Margherita; Barnes, Elizabeth H; Gill, Deepak; Dale, Russell C

    2016-10-01

    To examine EEG features in a retrospective 13-year cohort of children with encephalitis. 354 EEGs from 119 patients during their admission were rated blind using a proforma with demonstrated inter-rater reliability (mean k=0.78). Patients belonged to 12 etiological groups that could be grouped into infectious and infection-associated (n=47), immune-mediated (n=36) and unknown (n=33). EEG features were analyzed between groups and for risk of abnormal Liverpool Outcome Score and drug resistant epilepsy (DRE) at last follow up. 86% children had an abnormal first EEG and 89% had at least one abnormal EEG. 55% had an abnormal outcome, and 13% had DRE after median follow-up of 7.3years (2.0-15.8years). Reactive background on first EEGs (9/11, p=0.04) and extreme spindles (4/11, p<0.001) distinguished patients with anti-N-Methyl-d-Aspartate Receptor encephalitis. Non-reactive EEG background (48% first EEGs) predicted abnormal outcome (OR 3.8, p<0.001). A shifting focal seizure pattern, seen in FIRES (4/5), anti-voltage gated potassium channel (2/3), Mycoplasma (1/10), other viral (1/10) and other unknown (1/28) encephalitis, was most predictive of DRE after multivariable analysis (OR 11.9, p<0.001). Non-reactive EEG background and the presence of shifting focal seizures resembling migrating partial seizures of infancy are predictors of abnormal outcome and DRE respectively in childhood encephalitis. EEG is a sensitive but non-discriminatory marker of childhood encephalitis. We highlight the EEG features that predict abnormal outcome and DRE. Copyright © 2016 International Federation of Clinical Neurophysiology. All rights reserved.

  3. The PD-1: PD-L1 pathway promotes development of brain-resident memory T cells following acute viral encephalitis.

    PubMed

    Prasad, Sujata; Hu, Shuxian; Sheng, Wen S; Chauhan, Priyanka; Singh, Amar; Lokensgard, James R

    2017-04-13

    Previous work from our laboratory has demonstrated that during acute viral brain infection, glial cells modulate antiviral T cell effector responses through the PD-1: PD-L1 pathway, thereby limiting the deleterious consequences of unrestrained neuroinflammation. Here, we evaluated the PD-1: PD-L1 pathway in development of brain-resident memory T cells (bT RM ) following murine cytomegalovirus (MCMV) infection. Flow cytometric analysis of immune cells was performed at 7, 14, and 30 days post-infection (dpi) to assess the shift of brain-infiltrating CD8 + T cell populations from short-lived effector cells (SLEC) to memory precursor effector cells (MPEC), as well as generation of bT RMs . In wild-type (WT) animals, we observed a switch in the phenotype of brain-infiltrating CD8 + T cell populations from KLRG1 + CD127 - (SLEC) to KLRG1 - CD127 + (MPEC) during transition from acute through chronic phases of infection. At 14 and 30 dpi, the majority of CD8 + T cells expressed CD127, a marker of memory cells. In contrast, fewer CD8 + T cells expressed CD127 within brains of infected, PD-L1 knockout (KO) animals. Notably, in WT mice, a large population of CD8 + T cells was phenotyped as CD103 + CD69 + , markers of bT RM , and differences were observed in the numbers of these cells when compared to PD-L1 KOs. Immunohistochemical studies revealed that brain-resident CD103 + bT RM cells were localized to the parenchyma. Higher frequencies of CXCR3 were also observed among WT animals in contrast to PD-L1 KOs. Taken together, our results indicate that bT RMs are present within the CNS following viral infection and the PD-1: PD-L1 pathway plays a role in the generation of this brain-resident population.

  4. Susceptibility of openbill storks (Anastomius oscitans) to highly pathogenic avian influenza virus subtype H5N1.

    PubMed

    Chaichoun, Kridsada; Wiriyarat, Withawat; Phonaknguen, Rassmeepen; Sariya, Ladawan; Taowan, Nam-aoy; Chakritbudsabong, Warunya; Chaisilp, Natnapat; Eiam-ampai, Krirat; Phuttavatana, Pilaipan; Ratanakorn, Parntep

    2013-09-01

    This investigation detailed the clinical disease, gross and histologic lesions in juvenile openbill storks (Anastomus oscitans) intranasally inoculated with an avian influenza virus, A/chicken/Thailand/vsmu-3 (H5N1), which is highly pathogenic for chickens. High morbidity and mortality were observed in openbill storks inoculated with HPAI H5N1 virus. Gross lesions from infected birds were congestion and brain hemorrhage (10/20), pericardial effusions, pericarditis and focal necrosis of the cardiac muscle (2/20), pulmonary edema and pulmonary necrosis, serosanguineous fluid in the bronchis (16/20), liver congestion (6/20), bursitis (5/20), subcutaneous hemorrhages (2/20) and pinpoint proventiculus hemorrhage (2/20). Real time RT-PCR demonstrated the presence of viral RNA in organs associated with the lesions: brain, trachea, lungs, liver, spleen and intestines. Similar to viral genome detection, virus was also isolated from these vital organs. Antibodies to influenza virus detected with a hemagglutination inhibition test, were found only in the openbill storks who died 8 days post-inoculation.

  5. The Continuing Evolution of H5N1 and H9N2 Influenza Viruses in Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Shanmuganatham, Karthik; Feeroz, Mohammed M.; Jones-Engel, Lisa; Hassan, M. Kamrul; Akhtar, Sharmin; Turner, Jasmine; Walker, David; Seiler, Patrick; Franks, John; McKenzie, Pamela; Krauss, Scott; Webby, Richard J.; Webster, Robert G.

    2017-01-01

    Summary In 2011, avian influenza surveillance at the Bangladesh live bird markets (LBMs) showed complete replacement of the highly pathogenic avian influenza (HPAI) H5N1 virus of clade 2.2.2 (Qinghai-like H5N1 lineage) by the HPAI H5N1 clade 2.3.2.1. This clade, which continues to circulate in Bangladesh and neighboring countries, is an intra- and inter-clade reassortant; its HA, PB1, PA and NS genes come from subclade 2.3.2.1a; PB2 from subclade 2.3.2.1c; and NA, NP, and M from clade 2.3.4.2. The H9N2 influenza viruses co-circulating in the Bangladesh LBMs are also reassortants, possessing five genes (NS, M, NP, PA, and PB1) from a HPAI H7N3 virus previously isolated in Pakistan. Despite frequent co-infection of chickens and ducks, reassortment between these H5N1 and H9N2 viruses has been rare. However, all such reassortants detected in 2011 through 2013 have carried 7 genes from HPAI H5N1 clade 2.3.2.1a and the PB1 gene from the Bangladeshi H9N2 clade G1 Mideast, itself derived from HPAI H7N3 virus. Although, the live birds which we sampled in Bangladesh showed no clinical signs of morbidity, the emergence of this reassortant HPAI H5N1 lineage further complicates endemic circulation of H5N1 viruses in Bangladesh, posing a threat to both poultry and humans. PMID:27309046

  6. Molecular characterization of a novel reassortant H1N2 influenza virus containing genes from the 2009 pandemic human H1N1 virus in swine from eastern China.

    PubMed

    Peng, Xiuming; Wu, Haibo; Xu, Lihua; Peng, Xiaorong; Cheng, Linfang; Jin, Changzhong; Xie, Tiansheng; Lu, Xiangyun; Wu, Nanping

    2016-06-01

    Pandemic outbreaks of H1N1 swine influenza virus have been reported since 2009. Reassortant H1N2 viruses that contain genes from the pandemic H1N1 virus have been isolated in Italy and the United States. However, there is limited information regarding the molecular characteristics of reassortant H1N2 swine influenza viruses in eastern China. Active influenza surveillance programs in Zhejiang Province identified a novel H1N2 influenza virus isolated from pigs displaying clinical signs of influenza virus infection. Whole-genome sequencing was performed and this strain was compared with other influenza viruses available in GenBank. Phylogenetic analysis suggested that the novel strain contained genes from the 2009 pandemic human H1N1 and swine H3N2 viruses. BALB/c mice were infected with the isolated virus to assess its virulence in mice. While the novel H1N2 isolate replicated well in mice, it was found to be less virulent. These results provide additional evidence that swine serve as intermediate hosts or 'mixing vessels' for novel influenza viruses. They also emphasize the importance of surveillance in the swine population for use as an early warning system for influenza outbreaks in swine and human populations.

  7. Bell’s palsy and influenza(H1N1)pdm09 containing vaccines: A self-controlled case series

    PubMed Central

    Wijnans, Leonoor; Weibel, Daniel; Sturkenboom, Miriam

    2017-01-01

    Background An association between AS03 adjuvanted pandemic influenza vaccine and the occurrence of Bell’s palsy was found in a population based cohort study in Stockholm, Sweden. To evaluate this association in a different population, we conducted a self-controlled case series in a primary health care database, THIN, in the United Kingdom. The aim of this study was to determine whether there was an increased risk of Bell’s palsy following vaccination with any influenza vaccine containing A/California/7/2009 (H1N1)-like viral strains. Secondly, we investigated whether risks were different following pandemic influenza A(H1N1)pdm09 vaccines and seasonal influenza vaccines containing the influenza A(H1N1)pdm09 strain. Methods The study population comprised all incident Bell’s palsy cases between 1 June 2009 and 30 June 2013 identified in THIN. We determined the relative incidence (RI) of Bell’s palsy during the 6 weeks following vaccination with either pandemic or seasonal influenza vaccine. All analyses were adjusted for seasonality and confounding variables. Results We found an incidence rate of Bell’s palsy of 38.7 per 100,000 person years. Both acute respiratory infection (ARI) consultations and pregnancy were found to be confounders. When adjusted for seasonality, ARI consultations and pregnancies, the RI during the 42 days after vaccination with an influenza vaccine was 0.85 (95% CI: 0.72–1.01). The RI was similar during the 42 days following seasonal vaccine (0.96, 95%CI: 0.82–1.13) or pandemic vaccine (0.73, 95%CI: 0.47–1.12). Conclusion We found no evidence for an increased incidence of Bell’s palsy following seasonal influenza vaccination overall, nor for monovalent pandemic influenza vaccine in 2009. PMID:28467420

  8. Genetic characterization of human herpesvirus type 1: Full-length genome sequence of strain obtained from an encephalitis case from India.

    PubMed

    Bondre, Vijay P; Sankararaman, Vasudha; Andhare, Vijaysinh; Tupekar, Manisha; Sapkal, Gajanan N

    2016-11-01

    Human herpes simplex virus 1 (HSV-1) is the most common cause of sporadic encephalitis in humans that contributes to >10 per cent of the encephalitis cases occurring worldwide. Availability of limited full genome sequences from a small number of isolates resulted in poor understanding of host and viral factors responsible for variable clinical outcome. In this study genetic relationship, extent and source of recombination using full-length genome sequence derived from a newly isolated HSV-1 isolate was studied in comparison with those sampled from patients with varied clinical outcome. Full genome sequence of HSV-1 isolated from cerebrospinal fluid (CSF) of a patient with acute encephalitis syndrome (AES) by inoculation in baby hamster kidney-21 (BHK-21) cells was determined using next-generation sequencing (NGS) technology. Phylogenetic analysis of the newly generated sequence in comparison with 33 additional full-length genomes defined genetic relationship with worldwide distributed strains. The bootscan and similarity plot analysis defined recombination crossovers and similarities between newly isolated Indian HSV-1 with six Asian and a total of 34 worldwide isolated strains. Mapping of 376,332 reads amplified from HSV-1 DNA by NGS generated full-length genome of 151,024 bp from newly isolated Indian HSV-1. Phylogenetic analysis classified worldwide distributed strains into three major evolutionary lineages correlating to their geographic distribution. Lineage 1 containing strains were isolated from America and Europe; lineage 2 contained all the strains from Asian countries along with the North American KOS and RE strains whereas the South African isolates were distributed into two groups under lineage 3. Recombination analysis confirmed events of recombination in Indian HSV-1 genome resulting from mixing of different strains evolved in Asian countries. Our results showed that the full-length genome sequence generated from an Indian HSV-1 isolate shared close

  9. Genetic characterization of human herpesvirus type 1: Full-length genome sequence of strain obtained from an encephalitis case from India

    PubMed Central

    Bondre, Vijay P.; Sankararaman, Vasudha; Andhare, Vijaysinh; Tupekar, Manisha; Sapkal, Gajanan N.

    2016-01-01

    Background & objectives: Human herpes simplex virus 1 (HSV-1) is the most common cause of sporadic encephalitis in humans that contributes to >10 per cent of the encephalitis cases occurring worldwide. Availability of limited full genome sequences from a small number of isolates resulted in poor understanding of host and viral factors responsible for variable clinical outcome. In this study genetic relationship, extent and source of recombination using full-length genome sequence derived from a newly isolated HSV-1 isolate was studied in comparison with those sampled from patients with varied clinical outcome. Methods: Full genome sequence of HSV-1 isolated from cerebrospinal fluid (CSF) of a patient with acute encephalitis syndrome (AES) by inoculation in baby hamster kidney-21 (BHK-21) cells was determined using next-generation sequencing (NGS) technology. Phylogenetic analysis of the newly generated sequence in comparison with 33 additional full-length genomes defined genetic relationship with worldwide distributed strains. The bootscan and similarity plot analysis defined recombination crossovers and similarities between newly isolated Indian HSV-1 with six Asian and a total of 34 worldwide isolated strains. Results: Mapping of 376,332 reads amplified from HSV-1 DNA by NGS generated full-length genome of 151,024 bp from newly isolated Indian HSV-1. Phylogenetic analysis classified worldwide distributed strains into three major evolutionary lineages correlating to their geographic distribution. Lineage 1 containing strains were isolated from America and Europe; lineage 2 contained all the strains from Asian countries along with the North American KOS and RE strains whereas the South African isolates were distributed into two groups under lineage 3. Recombination analysis confirmed events of recombination in Indian HSV-1 genome resulting from mixing of different strains evolved in Asian countries. Interpretation & conclusions: Our results showed that the full

  10. Epidemiology of pandemic influenza A/H1N1 virus during 2009-2010 in Taiwan.

    PubMed

    Lan, Yu-Ching; Su, Mei-Chi; Chen, Chao-Hsien; Huang, Su-Hua; Chen, Wan-Li; Tien, Ni; Lin, Cheng-Wen

    2013-10-01

    Outbreak of swine-origin influenza A/H1N1 virus (pdmH1N1) occurred in 2009. Taiwanese authorities implemented nationwide vaccinations with pdmH1N1-specific inactivated vaccine as of November 2009. This study evaluates prevalence, HA phylogenetic relationship, and transmission dynamic of influenza A and B viruses in Taiwan in 2009-2010. Respiratory tract specimens were analyzed for influenza A and B viruses. The pdmH1N1 peaked in November 2009, was predominant from August 2009 to January 2010, then sharply dropped in February 2010. Significant prevalence peaks of influenza B in April-June of 2010 and H3N2 virus in July and August were observed. Highest percentage of pdmH1N1- and H3N2-positive cases appeared among 11-15-year-olds; influenza B-positive cases were dominant among those 6-10 years old. Maximum likelihood phylogenetic trees showed 11 unique clusters of pdmH1N1, seasonal H3N2 influenza A and B viruses, as well as transmission clusters and mixed infections of influenza strains in Taiwan. The 2009 pdmH1N1 virus was predominant in Taiwan from August 2009 to January 2010; seasonal H3N2 influenza A and B viruses exhibited small prevalence peaks after nationwide vaccinations. Phylogenetic evidence indicated transmission clusters and multiple independent clades of co-circulating influenza A and B strains in Taiwan. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Avian influenza A H5N1 virus: a continuous threat to humans

    PubMed Central

    To, Kelvin KW; Ng, Kenneth HL; Que, Tak-Lun; Chan, Jacky MC; Tsang, Kay-Yan; Tsang, Alan KL; Chen, Honglin; Yuen, Kwok-Yung

    2012-01-01

    We report the first case of severe pneumonia due to co-infection with the emerging avian influenza A (H5N1) virus subclade 2.3.2.1 and Mycoplasma pneumoniae. The patient was a returning traveller who had visited a poultry market in South China. We then review the epidemiology, virology, interspecies barrier limiting poultry-to-human transmission, clinical manifestation, laboratory diagnosis, treatment and control measures of H5N1 clades that can be transmitted to humans. The recent controversy regarding the experiments involving aerosol transmission of recombinant H5N1 virus between ferrets is discussed. We also review the relative contribution of the poor response to antiviral treatment and the virus-induced hyperinflammatory damage to the pathogenesis and the high mortality of this infection. The factors related to the host, virus or medical intervention leading to the difference in disease mortality of different countries remain unknown. Because most developing countries have difficulty in instituting effective biosecurity measures, poultry vaccination becomes an important control measure. The rapid evolution of the virus would adversely affect the efficacy of poultry vaccination unless a correctly matched vaccine was chosen, manufactured and administered in a timely manner. Vigilant surveillance must continue to allow better preparedness for another poultry or human pandemic due to new viral mutants. PMID:26038430

  12. Characterization of influenza A(H1N1)pdm09 viruses isolated from Nepalese and Indian outbreak patients in early 2015.

    PubMed

    Nakamura, Kazuya; Shirakura, Masayuki; Fujisaki, Seiichiro; Kishida, Noriko; Burke, David F; Smith, Derek J; Kuwahara, Tomoko; Takashita, Emi; Takayama, Ikuyo; Nakauchi, Mina; Chadha, Mandeep; Potdar, Varsha; Bhushan, Arvind; Upadhyay, Bishnu Prasad; Shakya, Geeta; Odagiri, Takato; Kageyama, Tsutomu; Watanabe, Shinji

    2017-09-01

    We characterized influenza A(H1N1)pdm09 isolates from large-scale outbreaks that occurred in Nepal and India in early 2015. Although no specific viral features, which may have caused the outbreaks, were identified, an S84N substitution in hemagglutinin was frequently observed. Chronological phylogenetic analysis revealed that these Nepalese and Indian viruses possessing the S84N substitution constitute potential ancestors of the novel genetic subclade 6B.1 virus that spread globally in the following (2015/16) influenza season. Thus, active surveillance of circulating influenza viruses in the Southern Asia region, including Nepal and India, would be beneficial for detecting novel variant viruses prior to their worldwide spread. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  13. Increased risk of A(H1N1)pdm09 influenza infection in UK pig industry workers compared to a general population cohort.

    PubMed

    Fragaszy, Ellen; Ishola, David A; Brown, Ian H; Enstone, Joanne; Nguyen-Van-Tam, Jonathan S; Simons, Robin; Tucker, Alexander W; Wieland, Barbara; Williamson, Susanna M; Hayward, Andrew C; Wood, James L N

    2016-07-01

    Pigs are mixing vessels for influenza viral reassortment, but the extent of influenza transmission between swine and humans is not well understood. To assess whether occupational exposure to pigs is a risk factor for human infection with human and swine-adapted influenza viruses. UK pig industry workers were frequency-matched on age, region, sampling month, and gender with a community-based comparison group from the Flu Watch study. HI assays quantified antibodies for swine and human A(H1) and A(H3) influenza viruses (titres ≥ 40 considered seropositive and indicative of infection). Virus-specific associations between seropositivity and occupational pig exposure were examined using multivariable regression models adjusted for vaccination. Pigs on the same farms were also tested for seropositivity. Forty-two percent of pigs were seropositive to A(H1N1)pdm09. Pig industry workers showed evidence of increased odds of A(H1N1)pdm09 seropositivity compared to the comparison group, albeit with wide confidence intervals (CIs), adjusted odds ratio after accounting for possible cross-reactivity with other swine A(H1) viruses (aOR) 25·3, 95% CI (1·4-536·3), P = 0·028. The results indicate that A(H1N1)pdm09 virus was common in UK pigs during the pandemic and subsequent period of human A(H1N1)pdm09 circulation, and occupational exposure to pigs was a risk factor for human infection. Influenza immunisation of pig industry workers may reduce transmission and the potential for virus reassortment. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  14. Red ginseng and vitamin C increase immune cell activity and decrease lung inflammation induced by influenza A virus/H1N1 infection.

    PubMed

    Kim, Hyemin; Jang, Mirim; Kim, Yejin; Choi, Jiyea; Jeon, Jane; Kim, Jihoon; Hwang, Young-Il; Kang, Jae Seung; Lee, Wang Jae

    2016-03-01

    Because red ginseng and vitamin C have immunomodulatory function and anti-viral effect, we investigated whether red ginseng and vitamin C synergistically regulate immune cell function and suppress viral infection. Red ginseng and vitamin C were treated to human peripheral blood mononuclear cells (PBMCs) or sarcoma-associated herpesvirus (KSHV)-infected BCBL-1, and administrated to Gulo(-/-) mice, which are incapable of synthesizing vitamin C, with or without influenza A virus/H1N1 infection. Red ginseng and vitamin C increased the expression of CD25 and CD69 of PBMCs and natural killer (NK) cells. Co-treatment of them decreased cell viability and lytic gene expression in BCBL-1. In Gulo(-/-) mice, red ginseng and vitamin C increased the expression of NKp46, a natural cytotoxic receptor of NK cells and interferon (IFN)-γ production. Influenza infection decreased the survival rate, and increased inflammation and viral plaque accumulation in the lungs of vitamin C-depleted Gulo(-/-) mice, which were remarkably reduced by red ginseng and vitamin C supplementation. Administration of red ginseng and vitamin C enhanced the activation of immune cells like T and NK cells, and repressed the progress of viral lytic cycle. It also reduced lung inflammation caused by viral infection, which consequently increased the survival rate. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  15. H5N1-SeroDetect EIA and rapid test: a novel differential diagnostic assay for serodiagnosis of H5N1 infections and surveillance.

    PubMed

    Khurana, Surender; Sasono, Pretty; Fox, Annette; Nguyen, Van Kinh; Le, Quynh Mai; Pham, Quang Thai; Nguyen, Tran Hien; Nguyen, Thanh Liem; Horby, Peter; Golding, Hana

    2011-12-01

    Continuing evolution of highly pathogenic (HP) H5N1 influenza viruses in wild birds with transmission to domestic poultry and humans poses a pandemic threat. There is an urgent need for a simple and rapid serological diagnostic assay which can differentiate between antibodies to seasonal and H5N1 strains and that could provide surveillance tools not dependent on virus isolation and nucleic acid technologies. Here we describe the establishment of H5N1 SeroDetect enzyme-linked immunosorbent assay (ELISA) and rapid test assays based on three peptides in HA2 (488-516), PB1-F2 (2-75), and M2e (2-24) that are highly conserved within H5N1 strains. These peptides were identified by antibody repertoire analyses of H5N1 influenza survivors in Vietnam using whole-genome-fragment phage display libraries (GFPDLs). To date, both platforms have demonstrated high levels of sensitivity and specificity in detecting H5N1 infections (clade 1 and clade 2.3.4) in Vietnamese patients as early as 7 days and up to several years postinfection. H5N1 virus-uninfected individuals in Vietnam and the United States, including subjects vaccinated with seasonal influenza vaccines or with confirmed seasonal virus infections, did not react in the H5N1-SeroDetect assays. Moreover, sera from individuals vaccinated with H5N1 subunit vaccine with moderate anti-H5N1 neutralizing antibody titers did not react positively in the H5N1-SeroDetect ELISA or rapid test assays. The simple H5N1-SeroDetect ELISA and rapid tests could provide an important tool for large-scale surveillance for potential exposure to HP H5N1 strains in both humans and birds.

  16. Anti-NMDA receptor encephalitis and nonencephalitic HSV-1 infection

    PubMed Central

    Salovin, Amy; Glanzman, Jason; Roslin, Kylie; Armangue, Thais; Panzer, Jessica A.

    2018-01-01

    Objective To determine whether there is an association between nonencephalitic herpes simplex virus 1 (HSV-1) infection and anti-NMDA receptor encephalitis (anti-NMDARE). Methods Antibody testing was performed using samples from 2 cohorts in a case-control observational study. The cohort “Philadelphia” included 16 serum samples of pediatric anti-NMDARE cases and 42 age-matched controls with other neuroinflammatory disorders studied at the Children's Hospital of Philadelphia and University of Pennsylvania. The cohort “Barcelona” contained 23 anti-NMDARE patient samples and 26 age-matched participants with other neuroinflammatory disorders studied at IDIBAPS-Hospital Clinic, University of Barcelona. The presence of HSV-1 IgG antibodies was examined by ELISA. As an additional control, IgG antibodies to cytomegalovirus (CMV) and Epstein-Barr virus viral capsid antigen (EBV-VCA) were determined. Results In each cohort, more participants with anti-NMDARE than controls had anti-HSV-1 IgG antibodies. In the Philadelphia cohort (58 participants), 44% of anti-NMDARE cases had antibodies to HSV-1 compared with 14% controls (OR 4.67, 95% CI 1.3–17.3, p = 0.031). In the Barcelona cohort (49 participants), 52% of participants with anti-NMDARE had antibodies to HSV-1 compared with 31% of controls (OR 2.45, 95% CI 0.7–7.9, p = 0.155). Overall, 49% of anti-NMDARE cases have antibodies to HSV-1 in these 2 combined cohorts compared with 21% of controls (Mantel-Haenszel OR 3.21, 95% CI 1.3–7.7, p = 0.007). Conclusion Past HSV-1 infection was found in significantly more anti-NMDARE cases than controls. This suggests a meaningful association between nonencephalitic HSV-1 infection and development of anti-NMDARE. PMID:29629396

  17. Pandemic (H1N1) 2009 and Hajj Pilgrims Who Received Predeparture Vaccination, Egypt

    PubMed Central

    Kandeel, Amr; Abdel Kereem, Eman; El-Refay, Samir; Afifi, Salma; Abukela, Mohammed; Earhart, Kenneth; El-Sayed, Nasr; El-Gabaly, Hatem

    2011-01-01

    In Egypt, vaccination against pandemic (H1N1) 2009 virus was required of pilgrims departing for the 2009 Hajj. A survey of 551 pilgrims as they returned to Egypt found 542 (98.1% [weighted]) reported receiving the vaccine; 6 (1.0% [weighted]) were infected with influenza virus A (H3N2) but none with pandemic (H1N1) 2009 virus. PMID:21762583

  18. A highly pathogenic avian influenza virus H5N1 with 2009 pandemic H1N1 internal genes demonstrated increased replication and transmission in pigs

    USDA-ARS?s Scientific Manuscript database

    This study investigated the pathogenicity and transmissibility of a reverse-genetics derived highly pathogenic avian influenza (HPAI) H5N1 influenza A virus (IAV), A/Iraq/775/06, and a reassortant virus comprised of the HA and NA from A/Iraq/775/06 and the internal genes of a 2009 pandemic H1N1, A/N...

  19. Cross-protection against European swine influenza viruses in the context of infection immunity against the 2009 pandemic H1N1 virus: studies in the pig model of influenza.

    PubMed

    Qiu, Yu; De Hert, Karl; Van Reeth, Kristien

    2015-09-24

    Pigs are natural hosts for the same influenza virus subtypes as humans and are a valuable model for cross-protection studies with influenza. In this study, we have used the pig model to examine the extent of virological protection between a) the 2009 pandemic H1N1 (pH1N1) virus and three different European H1 swine influenza virus (SIV) lineages, and b) these H1 viruses and a European H3N2 SIV. Pigs were inoculated intranasally with representative strains of each virus lineage with 6- and 17-week intervals between H1 inoculations and between H1 and H3 inoculations, respectively. Virus titers in nasal swabs and/or tissues of the respiratory tract were determined after each inoculation. There was substantial though differing cross-protection between pH1N1 and other H1 viruses, which was directly correlated with the relatedness in the viral hemagglutinin (HA) and neuraminidase (NA) proteins. Cross-protection against H3N2 was almost complete in pigs with immunity against H1N2, but was weak in H1N1/pH1N1-immune pigs. In conclusion, infection with a live, wild type influenza virus may offer substantial cross-lineage protection against viruses of the same HA and/or NA subtype. True heterosubtypic protection, in contrast, appears to be minimal in natural influenza virus hosts. We discuss our findings in the light of the zoonotic and pandemic risks of SIVs.

  20. The NS segment of H5N1 avian influenza viruses (AIV) enhances the virulence of an H7N1 AIV in chickens

    PubMed Central

    2014-01-01

    Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5–types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7–virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens. PMID:24460592

  1. Did advances in global surveillance and notification systems make a difference in the 2009 H1N1 pandemic?--a retrospective analysis.

    PubMed

    Zhang, Ying; Lopez-Gatell, Hugo; Alpuche-Aranda, Celia M; Stoto, Michael A

    2013-01-01

    The 2009 H1N1 outbreak provides an opportunity to identify strengths and weaknesses of disease surveillance and notification systems that have been implemented in the past decade. Drawing on a systematic review of the scientific literature, official documents, websites, and news reports, we constructed a timeline differentiating three kinds of events: (1) the emergence and spread of the pH1N1 virus, (2) local health officials' awareness and understanding of the outbreak, and (3) notifications about the events and their implications. We then conducted a "critical event" analysis of the surveillance process to ascertain when health officials became aware of the epidemiologic facts of the unfolding pandemic and whether advances in surveillance notification systems hastened detection. This analysis revealed three critical events. First, medical personnel identified pH1N1in California children because of an experimental surveillance program, leading to a novel viral strain being identified by CDC. Second, Mexican officials recognized that unconnected outbreaks represented a single phenomenon. Finally, the identification of a pH1N1 outbreak in a New York City high school was hastened by awareness of the emerging pandemic. Analysis of the timeline suggests that at best the global response could have been about one week earlier (which would not have stopped spread to other countries), and could have been much later. This analysis shows that investments in global surveillance and notification systems made an important difference in the 2009 H1N1 pandemic. In particular, enhanced laboratory capacity in the U.S. and Canada led to earlier detection and characterization of the 2009 H1N1. This includes enhanced capacity at the federal, state, and local levels in the U.S., as well as a trilateral agreement enabling collaboration among U.S., Canada, and Mexico. In addition, improved global notification systems contributed by helping health officials understand the relevance and

  2. Clinical Profile and Outcome of Influenza A/H1N1 in Pediatric Oncology Patients During the 2015 Outbreak: A Single Center Experience from Northern India.

    PubMed

    Verma, Nishant; Pooniya, Vishal; Kumar, Archana

    2017-10-01

    Owing to their immunocompromised status, childhood cancer patients on chemotherapy are at a greater risk for Influenza infection and its associated complications. There is limited data available on the clinical profile and outcome of Influenza A/H1N1 in this subset of patients. A retrospective study was performed of Influenza A/H1N1 cases diagnosed between January 2015 to December 2015 in the in-patients of Pediatric Oncology unit of a tertiary care hospital from Northern India. In total, 16 children were diagnosed with laboratory confirmed H1N1. Most frequent symptoms were fever and cough. Oseltamivir was administered to all patients. Complications encountered were delay/interruption of antineoplastic therapy (9), need for respiratory support (5), and air leaks (1). Prolonged viral shedding was encountered in 50% of patients who were retested for H1N1 in their throat swabs. There were 2 deaths, 1 in a child of Acute Lymphoblastic Leukemia on induction therapy and another in a child with anaplastic Wilms tumor. Childhood cancer patients infected with Influenza A/H1N1 are at risk of serious illness and higher mortality. Delay of anticancer treatment is a concern in these infected children. Prompt initiation of antivirals and an optimum duration of treatment are warranted to reduce the morbidity and mortality.

  3. Major incidents in rural areas: managing a pandemic A/H1N1/2009 cluster.

    PubMed

    Stark, Cameron; Garman, Elaine; McMenamin, Jim; McCormick, Duncan; Oates, Ken

    2010-01-01

    Pandemic Influenza (A/H1N1/2009) caused worldwide concern because of its potential to spread rapidly in human populations. In Scotland, Government policy had been to seek to contain the spread of the virus for as long as possible in order to allow time for service preparations, and for vaccine development and supply. The first major Scottish outbreak of pandemic A/H1N1/2009 was in the rural area of Cowal and Bute. After two initial cases were identified, contact tracing found a cluster of cases associated with a football supporters' bus. Within 3 weeks, 130 cases had been identified in the area. Rapid provision of treatment doses of anti-viral medication to cases and prophylactic treatment of asymptomatic close contacts, advice on self-isolation and, where required, interruption of transmission by temporary school closure, were successful in containing the outbreak. Pre-existing Major Incident and Pandemic Flu plans were used and adapted to the particular circumstances of the outbreak and the area. Supporting operational decision-making as close to the cases as possible allowed for speed and flexibility of response. Contact tracing and tracking of cases and results was performed by specialist public health staff who were geographically removed from the cases. This was possible because of effective use of existing telephone conferencing facilities, clarity of roles, and frequent communication among staff working on all areas of the response. Basing the work on established plans, staff experience of rural areas and rural service provision was successful.

  4. Fitness of Pandemic H1N1 and Seasonal influenza A viruses during Co-infection

    PubMed Central

    Perez, Daniel Roberto; Sorrell, Erin; Angel, Matthew; Ye, Jianqiang; Hickman, Danielle; Pena, Lindomar; Ramirez-Nieto, Gloria; Kimble, Brian; Araya, Yonas

    2009-01-01

    On June 11, 2009 the World Health Organization (WHO) declared a new H1N1 influenza pandemic. This pandemic strain is as transmissible as seasonal H1N1 and H3N2 influenza A viruses. Major concerns facing this pandemic are whether the new virus will replace, co-circulate and/or reassort with seasonal H1N1 and/or H3N2 human strains. Using the ferret model, we investigated which of these three possibilities were most likely favored. Our studies showed that the current pandemic virus is more transmissible than, and has a biological advantage over, prototypical seasonal H1 or H3 strains. PMID:20029606

  5. Pandemic Paradox: Early Life H2N2 Pandemic Influenza Infection Enhanced Susceptibility to Death during the 2009 H1N1 Pandemic.

    PubMed

    Gagnon, Alain; Acosta, Enrique; Hallman, Stacey; Bourbeau, Robert; Dillon, Lisa Y; Ouellette, Nadine; Earn, David J D; Herring, D Ann; Inwood, Kris; Madrenas, Joaquin; Miller, Matthew S

    2018-01-16

    Recent outbreaks of H5, H7, and H9 influenza A viruses in humans have served as a vivid reminder of the potentially devastating effects that a novel pandemic could exert on the modern world. Those who have survived infections with influenza viruses in the past have been protected from subsequent antigenically similar pandemics through adaptive immunity. For example, during the 2009 H1N1 "swine flu" pandemic, those exposed to H1N1 viruses that circulated between 1918 and the 1940s were at a decreased risk for mortality as a result of their previous immunity. It is also generally thought that past exposures to antigenically dissimilar strains of influenza virus may also be beneficial due to cross-reactive cellular immunity. However, cohorts born during prior heterosubtypic pandemics have previously experienced elevated risk of death relative to surrounding cohorts of the same population. Indeed, individuals born during the 1890 H3Nx pandemic experienced the highest levels of excess mortality during the 1918 "Spanish flu." Applying Serfling models to monthly mortality and influenza circulation data between October 1997 and July 2014 in the United States and Mexico, we show corresponding peaks in excess mortality during the 2009 H1N1 "swine flu" pandemic and during the resurgent 2013-2014 H1N1 outbreak for those born at the time of the 1957 H2N2 "Asian flu" pandemic. We suggest that the phenomenon observed in 1918 is not unique and points to exposure to pandemic influenza early in life as a risk factor for mortality during subsequent heterosubtypic pandemics. IMPORTANCE The relatively low mortality experienced by older individuals during the 2009 H1N1 influenza virus pandemic has been well documented. However, reported situations in which previous influenza virus exposures have enhanced susceptibility are rare and poorly understood. One such instance occurred in 1918-when those born during the heterosubtypic 1890 H3Nx influenza virus pandemic experienced the highest

  6. Initial psychological responses to Influenza A, H1N1 ("Swine flu").

    PubMed

    Goodwin, Robin; Haque, Shamsul; Neto, Felix; Myers, Lynn B

    2009-10-06

    The outbreak of the pandemic flu, Influenza A H1N1 (Swine Flu) in early 2009, provided a major challenge to health services around the world. Previous pandemics have led to stockpiling of goods, the victimisation of particular population groups, and the cancellation of travel and the boycotting of particular foods (e.g. pork). We examined initial behavioural and attitudinal responses towards Influenza A, H1N1 ("Swine flu") in the six days following the WHO pandemic alert level 5, and regional differences in these responses. 328 respondents completed a cross-sectional Internet or paper-based questionnaire study in Malaysia (N = 180) or Europe (N = 148). Measures assessed changes in transport usage, purchase of preparatory goods for a pandemic, perceived risk groups, indicators of anxiety, assessed estimated mortality rates for seasonal flu, effectiveness of seasonal flu vaccination, and changes in pork consumption 26% of the respondents were 'very concerned' about being a flu victim (42% Malaysians, 5% Europeans, p < .001). 36% reported reduced public transport use (48% Malaysia, 22% Europe, p < .001), 39% flight cancellations (56% Malaysia, 17% Europe, p < .001). 8% had purchased preparatory materials (e.g. face masks: 8% Malaysia, 7% Europe), 41% Malaysia (15% Europe) intended to do so (p < .001). 63% of Europeans, 19% of Malaysians had discussed the pandemic with friends (p < .001). Groups seen as at 'high risk' of infection included the immune compromised (mentioned by 87% respondents), pig farmers (70%), elderly (57%), prostitutes/highly sexually active (53%), and the homeless (53%). In data collected only in Europe, 64% greatly underestimated the mortality rates of seasonal flu, 26% believed seasonal flu vaccination gave protection against swine flu. 7% had reduced/stopped eating pork. 3% had purchased anti-viral drugs for use at home, while 32% intended to do so if the pandemic worsened. Initial responses to Influenza A show large regional differences in

  7. Pandemic influenza A/H1N1 virus infection and TNF, LTA, IL1B, IL6, IL8, and CCL polymorphisms in Mexican population: a case–control study

    PubMed Central

    2012-01-01

    Background Some patients have a greater response to viral infection than do others having a similar level of viral replication. Hypercytokinemia is the principal immunopathological mechanism that contributes to a severer clinical course in cases of influenza A/H1N1. The benefit produced, or damage caused, by these cytokines in severe disease is not known. The genes that code for these molecules are polymorphic and certain alleles have been associated with susceptibility to various diseases. The objective of the present study was to determine whether there was an association between polymorphisms of TNF, LTA, IL1B, IL6, IL8, and CCL1 and the infection and severity of the illness caused by the pandemic A/H1N1 in Mexico in 2009. Methods Case–control study. The cases were patients confirmed with real time PCR with infection by the A/H1N1 pandemic virus. The controls were patients with infection like to influenza and non-familial healthy contacts of the patients with influenza. Medical history and outcome of the disease was registered. The DNA samples were genotyped for polymorphisms TNF rs361525, rs1800629, and rs1800750; LTA rs909253; IL1B rs16944; IL6 rs1818879; IL8 rs4073; and CCL1 rs2282691. Odds ratio (OR) and the 95% confidence interval (95% CI) were calculated. The logistic regression model was adjusted by age and severity of the illness in cases. Results Infection with the pandemic A/H1N1 virus was associated with the following genotypes: TNF rs361525 AA, OR = 27.00; 95% CI = 3.07–1248.77); LTA rs909253 AG (OR = 4.33, 95% CI = 1.82–10.32); TNF rs1800750 AA (OR = 4.33, 95% CI = 1.48–12.64); additionally, LTA rs909253 AG showed a limited statistically significant association with mortality (p = 0.06, OR = 3.13). Carriers of the TNF rs1800629 GA genotype were associated with high levels of blood urea nitrogen (p = 0.05); those of the TNF rs1800750 AA genotype, with high levels of creatine phosphokinase (p=0.05). The IL1B rs16944 AA genotype was associated

  8. Pandemic influenza A/H1N1 virus infection and TNF, LTA, IL1B, IL6, IL8, and CCL polymorphisms in Mexican population: a case-control study.

    PubMed

    Morales-García, Guadalupe; Falfán-Valencia, Ramcés; García-Ramírez, Román Alejandro; Camarena, Ángel; Ramirez-Venegas, Alejandra; Castillejos-López, Manuel; Pérez-Rodríguez, Martha; González-Bonilla, César; Grajales-Muñíz, Concepción; Borja-Aburto, Víctor; Mejía-Aranguré, Juan Manuel

    2012-11-13

    Some patients have a greater response to viral infection than do others having a similar level of viral replication. Hypercytokinemia is the principal immunopathological mechanism that contributes to a severer clinical course in cases of influenza A/H1N1. The benefit produced, or damage caused, by these cytokines in severe disease is not known. The genes that code for these molecules are polymorphic and certain alleles have been associated with susceptibility to various diseases. The objective of the present study was to determine whether there was an association between polymorphisms of TNF, LTA, IL1B, IL6, IL8, and CCL1 and the infection and severity of the illness caused by the pandemic A/H1N1 in Mexico in 2009. Case-control study. The cases were patients confirmed with real time PCR with infection by the A/H1N1 pandemic virus. The controls were patients with infection like to influenza and non-familial healthy contacts of the patients with influenza. Medical history and outcome of the disease was registered. The DNA samples were genotyped for polymorphisms TNF rs361525, rs1800629, and rs1800750; LTA rs909253; IL1B rs16944; IL6 rs1818879; IL8 rs4073; and CCL1 rs2282691. Odds ratio (OR) and the 95% confidence interval (95% CI) were calculated. The logistic regression model was adjusted by age and severity of the illness in cases. Infection with the pandemic A/H1N1 virus was associated with the following genotypes: TNF rs361525 AA, OR = 27.00; 95% CI = 3.07-1248.77); LTA rs909253 AG (OR = 4.33, 95% CI = 1.82-10.32); TNF rs1800750 AA (OR = 4.33, 95% CI = 1.48-12.64); additionally, LTA rs909253 AG showed a limited statistically significant association with mortality (p = 0.06, OR = 3.13). Carriers of the TNF rs1800629 GA genotype were associated with high levels of blood urea nitrogen (p = 0.05); those of the TNF rs1800750 AA genotype, with high levels of creatine phosphokinase (p=0.05). The IL1B rs16944 AA genotype was associated with an elevated number of

  9. Microevolution of Highly Pathogenic Avian Influenza A(H5N1) Viruses Isolated from Humans, Egypt, 2007–2011

    PubMed Central

    Younan, Mary; Poh, Mee Kian; Elassal, Emad; Davis, Todd; Rivailler, Pierre; Balish, Amanda L.; Simpson, Natosha; Jones, Joyce; Deyde, Varough; Loughlin, Rosette; Perry, Ije; Gubareva, Larisa; ElBadry, Maha A.; Truelove, Shaun; Gaynor, Anne M.; Mohareb, Emad; Amin, Magdy; Cornelius, Claire; Pimentel, Guillermo; Earhart, Kenneth; Naguib, Amel; Abdelghani, Ahmed S.; Refaey, Samir; Klimov, Alexander I.; Kandeel, Amr

    2013-01-01

    We analyzed highly pathogenic avian influenza A(H5N1) viruses isolated from humans infected in Egypt during 2007–2011. All analyzed viruses evolved from the lineage of subtype H5N1 viruses introduced into Egypt in 2006; we found minimal evidence of reassortment and no exotic introductions. The hemagglutinin genes of the viruses from 2011 formed a monophyletic group within clade 2.2.1 that also included human viruses from 2009 and 2010 and contemporary viruses from poultry; this finding is consistent with zoonotic transmission. Although molecular markers suggestive of decreased susceptibility to antiviral drugs were detected sporadically in the neuraminidase and matrix 2 proteins, functional neuraminidase inhibition assays did not identify resistant viruses. No other mutations suggesting a change in the threat to public health were detected in the viral proteomes. However, a comparison of representative subtype H5N1 viruses from 2011 with older subtype H5N1 viruses from Egypt revealed substantial antigenic drift. PMID:23260983

  10. Diagnosis and management of acute encephalitis.

    PubMed

    Halperin, J J

    2017-01-01

    Encephalitis is typically viral (approximately half of diagnosed cases) or autoimmune (about a quarter) with the remainder remaining undiagnosable at this time. All require general supportive care but only a minority requires intensive care admission - in these intubation, to protect the airway or to treat status epilepticus with anesthetic drugs, may be needed. In some dysautonomia with wide blood pressure fluctuations is the principal concern. Remarkably, in addition to supportive care, specific treatment options are available for the majority - immune-modulating therapy for those with autoimmune disorders, antiviral therapy for herpes simplex 1 and 2, and varicella-zoster encephalitis. Flavivirus infections (West Nile, Japanese encephalitis, tick-borne encephalitis) remain the most common other identified cause of encephalitis but no specific intervention is available. Overall long-term outcomes are favorable in the majority of patients with encephalitis, a proportion that hopefully will improve with further advances in diagnostic technology and therapeutic interventions. © 2017 Elsevier B.V. All rights reserved.

  11. Fulminant fatal swine influenza (H1N1): Myocarditis, myocardial infarction, or severe influenza pneumonia?

    PubMed

    Cunha, Burke A; Syed, Uzma; Mickail, Nardeen

    2010-01-01

    The swine influenza (H1N1) pandemic began in Mexico and rapidly spread worldwide. As is the case with pandemic influenza A, the majority of early deaths have been in young healthy adults. The complications of pandemic H1N1 have been reported from several centers. Noteworthy has been the relative rarity of bacterial coinfection in bacterial pneumonia in hospitalized adults with H1N1 pneumonia. Simultaneous bacterial community-acquired pneumonia due to methicillin-sensitive Staphylococcus aureus or community-acquired methicillin resistant S. aureus and subsequent bacterial community-acquired pneumonia due to S. pneumoniae or Haemophilus influenzae have been reportedly rare (0.4%-4% of well-documented cases). Cardiac complications of H1N1 infection have been uncommon. Young healthy adults without a cardiac history who have H1N1 and chest pain usually have either acute myocardial infarction or acute myocarditis. Cardiac symptomatology with H1N1 often overshadows pulmonary manifestations, that is, influenza pneumonia. With H1N1 pneumonia, clinicians should be alert for otherwise unexplained tachycardia or chest pain that may represent acute myocardial infarction or myocarditis. We present a case of rapidly fatal H1N1 in a young adult treated with oseltamivir and peramivir. He was initially tachycardic, thought to represent myocarditis. He subsequently became hypotensive and expired. At autopsy there was cardiomegaly present but there were no signs of acute myocardial infarction or myocarditis. Pathologically, he died of severe H1N1 pneumonia and not bacterial pneumonia. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Immune Responses in Pigs Vaccinated with Adjuvanted and Non-Adjuvanted A(H1N1)pdm/09 Influenza Vaccines Used in Human Immunization Programmes

    PubMed Central

    Lefevre, Eric A.; Carr, B. Veronica; Inman, Charlotte F.; Prentice, Helen; Brown, Ian H.; Brookes, Sharon M.; Garcon, Fanny; Hill, Michelle L.; Iqbal, Munir; Elderfield, Ruth A.; Barclay, Wendy S.; Gubbins, Simon; Bailey, Mick; Charleston, Bryan

    2012-01-01

    Following the emergence and global spread of a novel H1N1 influenza virus in 2009, two A(H1N1)pdm/09 influenza vaccines produced from the A/California/07/09 H1N1 strain were selected and used for the national immunisation programme in the United Kingdom: an adjuvanted split virion vaccine and a non-adjuvanted whole virion vaccine. In this study, we assessed the immune responses generated in inbred large white pigs (Babraham line) following vaccination with these vaccines and after challenge with A(H1N1)pdm/09 virus three months post-vaccination. Both vaccines elicited strong antibody responses, which included high levels of influenza-specific IgG1 and haemagglutination inhibition titres to H1 virus. Immunisation with the adjuvanted split vaccine induced significantly higher interferon gamma production, increased frequency of interferon gamma-producing cells and proliferation of CD4−CD8+ (cytotoxic) and CD4+CD8+ (helper) T cells, after in vitro re-stimulation. Despite significant differences in the magnitude and breadth of immune responses in the two vaccinated and mock treated groups, similar quantities of viral RNA were detected from the nasal cavity in all pigs after live virus challenge. The present study provides support for the use of the pig as a valid experimental model for influenza infections in humans, including the assessment of protective efficacy of therapeutic interventions. PMID:22427834

  13. Measurement of Swine H1N1 Hemagglutinin Peptide binding with Piezoresistive Microcantilever Arrays

    DOE PAGES

    Bajwa, Navdeep K; Maldonado, Carlos J.; Thundat, Thomas George; ...

    2014-03-24

    The effective detection of Swine H1N1 Hemagglutinin peptide is crucial as it could be used as a positive control to screen for highly infectious flu strains such as Swine-Origin Influenza A (H1N1). Piezoresistive microcantilever arrays present a pathway towards highly sensitive and label-free detection of biomolecules by transducing the antigen-antibody binding into change in resistivity via induced surface stress variation. We also demonstrate a mechanical transduction of Swine H1N1 Hemagglutinin peptide binding and suggest the employed technique may offer a potential platform for detection of the H1N1 virus, which could be clinically used to diagnose and provide subsequent relief.

  14. Piezoresistive measurement of Swine H1N1 Hemagglutinin peptide binding with microcantilever arrays

    NASA Astrophysics Data System (ADS)

    Bajwa, N.; Maldonado, C. J.; Thundat, T.; Passian, A.

    2014-03-01

    Effective detection of Swine H1N1 Hemagglutinin peptide is crucial as it could be used as a positive control to screen for highly infectious flu strains such as Swine-Origin Influenza A (H1N1). Piezoresistive microcantilever arrays present a pathway towards highly sensitive and label-free detection of biomolecules by transducing the antigen-antibody binding into change in resistivity via induced surface stress variation. We demonstrate a mechanical transduction of Swine H1N1 Hemagglutinin peptide binding and suggest the employed technique may offer a potential platform for detection of the H1N1 virus, which could be clinically used to diagnose and provide subsequent relief.

  15. Measurement of Swine H1N1 Hemagglutinin Peptide binding with Piezoresistive Microcantilever Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajwa, Navdeep K; Maldonado, Carlos J.; Thundat, Thomas George

    The effective detection of Swine H1N1 Hemagglutinin peptide is crucial as it could be used as a positive control to screen for highly infectious flu strains such as Swine-Origin Influenza A (H1N1). Piezoresistive microcantilever arrays present a pathway towards highly sensitive and label-free detection of biomolecules by transducing the antigen-antibody binding into change in resistivity via induced surface stress variation. We also demonstrate a mechanical transduction of Swine H1N1 Hemagglutinin peptide binding and suggest the employed technique may offer a potential platform for detection of the H1N1 virus, which could be clinically used to diagnose and provide subsequent relief.

  16. Corneal Opacity in Domestic Ducks Experimentally Infected With H5N1 Highly Pathogenic Avian Influenza Virus.

    PubMed

    Yamamoto, Y; Nakamura, K; Yamada, M; Mase, M

    2016-01-01

    Domestic ducks can be a key factor in the regional spread of H5N1 highly pathogenic avian influenza (HPAI) virus in Asia. The authors performed experimental infections to examine the relationship between corneal opacity and H5N1 HPAI virus infection in domestic ducks (Anas platyrhyncha var domestica). A total of 99 domestic ducks, including 3 control birds, were used in the study. In experiment 1, when domestic ducks were inoculated intranasally with 2 H5N1 HPAI viruses, corneal opacity appeared more frequently than neurologic signs and mortality. Corneal ulceration and exophthalmos were rare findings. Histopathologic examinations of the eyes of domestic ducks in experiment 2 revealed that corneal opacity was due to the loss of corneal endothelial cells and subsequent keratitis with edema. Influenza viral antigen was detected in corneal endothelial cells and some other ocular cells by immunohistochemistry. Results suggest that corneal opacity is a characteristic and frequent finding in domestic ducks infected with the H5N1 HPAI virus. Confirming this ocular change may improve the detection rate of infected domestic ducks in the field. © The Author(s) 2015.

  17. In situ molecular identification of the Influenza A (H1N1) 2009 Neuraminidase in patients with severe and fatal infections during a pandemic in Mexico City

    PubMed Central

    2013-01-01

    Background In April 2009, public health surveillance detected an increased number of influenza-like illnesses in Mexico City’s hospitals. The etiological agent was subsequently determined to be a spread of a worldwide novel influenza A (H1N1) triple reassortant. The purpose of the present study was to demonstrate that molecular detection of pandemic influenza A (H1N1) 2009 strains is possible in archival material such as paraffin-embedded lung samples. Methods In order to detect A (H1N1) virus sequences in archived biological samples, eight paraffin-embedded lung samples from patients who died of pneumonia and respiratory failure were tested for influenza A (H1N1) Neuraminidase (NA) RNA using in situ RT-PCR. Results We detected NA transcripts in 100% of the previously diagnosed A (H1N1)-positive samples as a cytoplasmic signal. No expression was detected by in situ RT-PCR in two Influenza-like Illness A (H1N1)-negative patients using standard protocols nor in a non-related cervical cell line. In situ relative transcription levels correlated with those obtained when in vitro RT-PCR assays were performed. Partial sequences of the NA gene from A (H1N1)-positive patients were obtained by the in situ RT-PCR-sequencing method. Sequence analysis showed 98% similarity with influenza viruses reported previously in other places. Conclusions We have successfully amplified specific influenza A (H1N1) NA sequences using stored clinical material; results suggest that this strategy could be useful when clinical RNA samples are quantity limited, or when poor quality is obtained. Here, we provide a very sensitive method that specifically detects the neuraminidase viral RNA in lung samples from patients who died from pneumonia caused by Influenza A (H1N1) outbreak in Mexico City. PMID:23327529

  18. Pandemic (H1N1) 2009 virus infection during pregnancy in South India.

    PubMed

    Pramanick, Angsumita; Rathore, Swati; Peter, John V; Moorthy, Mahesh; Lionel, Jessie

    2011-04-01

    To assess the clinical profile of pregnant/puerperal women from a semi-urban Indian population who were infected with pandemic (H1N1) 2009 virus (P[H1N1]2009v) and to evaluate their outcome. In a cross-sectional study, 566 women (79 pregnant/puerperal, 487 nonpregnant) who presented to a tertiary care hospital with influenza-like illness were tested for P(H1N1)2009v by real-time reverse transcriptase polymerase chain reaction. Outcomes measures were the maternal mortality and the perinatal mortality rate (PMR). Twenty (25%) pregnant/puerperal and 144 (30%) nonpregnant women tested positive for P(H1N1)2009v, with 5 pregnant and 3 postpartum women requiring admission to the intensive care unit (ICU). P(H1N1)2009v-related mortality was higher in pregnant than nonpregnant women (25% versus 8%; P=0.04). In the pregnant/puerperal cohort, factors associated with death included delayed presentation (median 6days versus 1.5days in survivors; P=0.007), need for ICU admission (P=0.004), need for ventilation (P=0.001), and renal failure (P=0.001). The PMR was 55.5/1000 births compared with 33.5/1000 births in the hospital overall during the study period. In a low-income country, P(H1N1)2009v infection in pregnancy is associated with considerable mortality. Delayed presentation to a tertiary care center, lack of awareness, and restricted access to treatment might have contributed to the high mortality. Copyright © 2011 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  19. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape

    DOE PAGES

    Menachery, Vineet D.; Schafer, Alexandra; Burnum-Johnson, Kristin E.; ...

    2018-01-16

    Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways in order to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems based approach, we examined differential regulation of IFNγ dependent genes following infection with highly pathogenic viruses including influenza (H5N1-VN1203, H1N1-CA04) and coronaviruses (SARS-CoV, MERS-CoV). Categorizing by function, we observed down regulation of genes associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down regulation of antigenmore » presentation genes and was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation rather than histone modification plays a crucial role in MERS-CoV mediated antagonism of antigen presentation genes; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Altogether, the results indicate a common approach utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.« less

  20. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menachery, Vineet D.; Schäfer, Alexandra; Burnum-Johnson, Kristin E.

    Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways in order to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems based approach, we examined differential regulation of IFNγ dependent genes following infection with highly pathogenic viruses including influenza (H5N1-VN1203, H1N1-CA04) and coronaviruses (SARS-CoV, MERS-CoV). Categorizing by function, we observed down regulation of genes associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down regulation of antigenmore » presentation genes and was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation rather than histone modification plays a crucial role in MERS-CoV mediated antagonism of antigen presentation genes; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Together, the results indicate a common approach utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.« less

  1. The safety of the H1N1 influenza A vaccine in egg allergic individuals.

    PubMed

    Greenhawt, Matthew J; Chernin, Anna S; Howe, Laura; Li, James T; Sanders, Georgiana

    2010-11-01

    The safety of H1N1 vaccine is unknown in egg allergic (EA) recipients. To establish the safety of administering H1N1 vaccine and to evaluate the predictability of H1N1 skin testing in EA patients. In a controlled, prospective trial, H1N1 skin testing and vaccination was compared between EA patients (n = 105) and non-EA controls (n = 19). Those with negative H1N1 skin test results received a full H1N1 dose; those with a positive skin test result received a graded challenge (10%, 90%). Booster vaccine, if required, was given as a single dose from a different lot without prior testing. Prick and intradermal test results were positive in 3 (2.4%) of 124 and 41 (33.1%) of 124 study participants, respectively. Forty-one individuals received a 2-step graded vaccine challenge, including 13 of 25 with a history of egg anaphylaxis. No significant allergic reactions resulted from either method of vaccination or from subsequent booster doses. All study participants received the H1N1 vaccine without significant allergic reactions. Skin testing is unnecessary and does not predict vaccine tolerance. All study participants who received a graded challenge tolerated a single dose booster from a different, untested lot, including 7 individuals with a history of egg-induced anaphylaxis. We recommend administration of H1N1 vaccine to EA children without prior skin testing or graded challenge dosing. Copyright © 2010 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Antigenic and genomic characterization of human influenza A and B viruses circulating in Argentina after the introduction of influenza A(H1N1)pdm09.

    PubMed

    Russo, Mara L; Pontoriero, Andrea V; Benedetti, Estefania; Czech, Andrea; Avaro, Martin; Periolo, Natalia; Campos, Ana M; Savy, Vilma L; Baumeister, Elsa G

    2014-12-01

    This study was conducted as part of the Argentinean Influenza and other Respiratory Viruses Surveillance Network, in the context of the Global Influenza Surveillance carried out by the World Health Organization (WHO). The objective was to study the activity and the antigenic and genomic characteristics of circulating viruses for three consecutive seasons (2010, 2011 and 2012) in order to investigate the emergence of influenza viral variants. During the study period, influenza virus circulation was detected from January to December. Influenza A and B, and all current subtypes of human influenza viruses, were present each year. Throughout the 2010 post-pandemic season, influenza A(H1N1)pdm09, unexpectedly, almost disappeared. The haemagglutinin (HA) of the A(H1N1)pdm09 viruses studied were segregated in a different genetic group to those identified during the 2009 pandemic, although they were still antigenically closely related to the vaccine strain A/California/07/2009. Influenza A(H3N2) viruses were the predominant strains circulating during the 2011 season, accounting for nearly 76 % of influenza viruses identified. That year, all HA sequences of the A(H3N2) viruses tested fell into the A/Victoria/208/2009 genetic clade, but remained antigenically related to A/Perth/16/2009 (reference vaccine recommended for this three-year period). A(H3N2) viruses isolated in 2012 were antigenically closely related to A/Victoria/361/2011, recommended by the WHO as the H3 component for the 2013 Southern Hemisphere formulation. B viruses belonging to the B/Victoria lineage circulated in 2010. A mixed circulation of viral variants of both B/Victoria and B/Yamagata lineages was detected in 2012, with the former being predominant. A(H1N1)pdm09 viruses remained antigenically closely related to the vaccine virus A/California/7/2009; A(H3N2) viruses continually evolved into new antigenic clusters and both B lineages, B/Victoria/2/87-like and B/Yamagata/16/88-like viruses, were observed

  3. Distribution of avian influenza H5N1 viral RNA in tissues of AI-vaccinated and unvaccinated contact chickens after experimental infection.

    PubMed

    Hassan, Mohamed K; Kilany, Walid H; Abdelwhab, E M; Arafa, Abdel-Satar; Selim, Abdullah; Samy, Ahmed; Samir, M; Le Brun, Yvon; Jobre, Yilma; Aly, Mona M

    2012-05-01

    Avian influenza due to highly pathogenic avian influenza (HPAIV) H5N1 virus is not a food-borne illness but a serious panzootic disease with the potential to be pandemic. In this study, broiler chickens were vaccinated with commercial H5N1 or H5N2 inactivated vaccines prior to being challenged with an HPAIV H5N1 (clade 2.2.1 classic) virus. Challenged and non-challenged vaccinated chickens were kept together, and unvaccinated chickens served as contact groups. Post-challenge samples from skin and edible internal organs were collected from dead and sacrificed (after a 14-day observation period) birds and tested using qRT-PCR for virus detection and quantification. H5N1 vaccine protected chickens against morbidity, mortality and transmission. Virus RNA was not detected in the meat or edible organs of chickens vaccinated with H5N1 vaccine. Conversely, H5N2 vaccine did not confer clinical protection, and a significant virus load was detected in the meat and internal organs. Phylogenetic analysis showed that the H5N1 virus vaccine and challenge virus strains are closely related. The results of the present study strongly suggest a need for proper selection of vaccines and their routine evaluation against newly emergent field viruses. These actions will help to reduce human exposure to HPAIV H5N1 virus from both infected live birds and slaughtered poultry. In addition, rigorous preventive measures should be put in place in order to minimize the public-health risks of avian influenza at the human-animal interface.

  4. Evolution of Highly Pathogenic H5N1 Avian Influenza Viruses in Vietnam between 2001 and 2007

    PubMed Central

    Smith, Catherine B.; Zhao, Zi-Ming; Carrel, Margaret; Inui, Kenjiro; Do, Hoa T.; Mai, Duong T.; Jadhao, Samadhan; Balish, Amanda; Shu, Bo; Luo, Feng; Emch, Michael; Matsuoka, Yumiko; Lindstrom, Stephen E.; Cox, Nancy J.; Nguyen, Cam V.; Klimov, Alexander; Donis, Ruben O.

    2008-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses have caused dramatic economic losses to the poultry industry of Vietnam and continue to pose a serious threat to public health. As of June 2008, Vietnam had reported nearly one third of worldwide laboratory confirmed human H5N1 infections. To better understand the emergence, spread and evolution of H5N1 in Vietnam we studied over 300 H5N1 avian influenza viruses isolated from Vietnam since their first detection in 2001. Our phylogenetic analyses indicated that six genetically distinct H5N1 viruses were introduced into Vietnam during the past seven years. The H5N1 lineage that evolved following the introduction in 2003 of the A/duck/Hong Kong/821/2002-like viruses, with clade 1 hemagglutinin (HA), continued to predominate in southern Vietnam as of May 2007. A virus with a clade 2.3.4 HA newly introduced into northern Vietnam in 2007, reassorted with pre-existing clade 1 viruses, resulting in the emergence of novel genotypes with neuraminidase (NA) and/or internal gene segments from clade 1 viruses. A total of nine distinct genotypes have been present in Vietnam since 2001, including five that were circulating in 2007. At least four of these genotypes appear to have originated in Vietnam and represent novel H5N1 viruses not reported elsewhere. Geographic and temporal analyses of H5N1 infection dynamics in poultry suggest that the majority of viruses containing new genes were first detected in northern Vietnam and subsequently spread to southern Vietnam after reassorting with pre-existing local viruses in northern Vietnam. Although the routes of entry and spread of H5N1 in Vietnam remain speculative, enhanced poultry import controls and virologic surveillance efforts may help curb the entry and spread of new HPAI viral genes. PMID:18941631

  5. Cardiac complications associated with the influenza viruses A subtype H7N9 or pandemic H1N1 in critically ill patients under intensive care.

    PubMed

    Wang, Jiajia; Xu, Hua; Yang, Xinjing; Zhao, Daguo; Liu, Shenglan; Sun, Xue; Huang, Jian-An; Guo, Qiang

    The clinical presentations and disease courses of patients hospitalized with either influenza A virus subtype H7N9 (H7N9) or 2009 pandemic H1N1 influenza virus were compared in a recent report, but associated cardiac complications remain unclear. The present retrospective study investigated whether cardiac complications in critically ill patients with H7N9 infections differed from those infected with the pandemic H1N1 influenza virus strain. Suspect cases were confirmed by reverse transcription polymerase chain reaction assays with specific confirmation of the pandemic H1N1 strain at the Centers for Disease Control and Prevention. Comparisons were conducted at the individual-level data of critically ill patients hospitalized with H7N9 (n=24) or pandemic H1N1 influenza virus (n=22) infections in Suzhou, China. Changes in cardiac biochemical markers, echocardiography, and electrocardiography during hospitalization in the intensive care unit were considered signs of cardiac complications. The following findings were more common among the H7N9 group relative to the pandemic H1N1 influenza virus group: greater tricuspid regurgitation pressure gradient, sinus tachycardia (heartbeat≥130bpm), ST segment depression, right ventricular dysfunction, and elevated cardiac biochemical markers. Pericardial effusion was more often found among pandemic H1N1 influenza virus patients than in the H7N9 group. In both groups, most of the cardiac complications were detected from day 6 to 14 after the onset of influenza symptoms. Those who developed cardiac complications were especially vulnerable during the first four days after initiation of mechanical ventilation. Cardiac complications were reversible in the vast majority of discharged H7N9 patients. Critically ill hospitalized H7N9 patients experienced a higher rate of cardiac complications than did patients with 2009 pandemic H1N1 influenza virus infections, with the exception of pericardial effusion. This study may help in the

  6. 2009 H1N1 influenza and experience in three critical care units.

    PubMed

    Teke, Turgut; Coskun, Ramazan; Sungur, Murat; Guven, Muhammed; Bekci, Taha T; Maden, Emin; Alp, Emine; Doganay, Mehmet; Erayman, Ibrahim; Uzun, Kursat

    2011-04-07

    We describe futures of ICU admission, demographic characteristics, treatment and outcome for critically ill patients with laboratory-confirmed and suspected infection with the H1N1 virus admitted to the three different critical care departments in Turkey. Retrospective study of critically ill patients with 2009 influenza A(H1N1) at ICU. Demographic data, symptoms, comorbid conditions, and clinical outcomes were collected using a case report form. Critical illness occurred in 61 patients admitted to an ICU with confirmed (n=45) or probable and suspected 2009 influenza A(H1N1). Patients were young (mean, 41.5 years), were female (54%). Fifty-six patients, required mechanical ventilation (14 invasive, 27 noninvasive, 15 both) during the course of ICU. On admission, mean APACHE II score was 18.7±6.3 and median PaO(2)/FIO(2) was 127.9±70.4. 31 patients (50.8%) was die. There were no significant differences in baseline PaO(2)/FIO(2 )and ventilation strategies between survivors and nonsurvivors. Patients who survived were more likely to have NIMV use at the time of admission to the ICU. Critical illness from 2009 influenza A(H1N1) in ICU predominantly affects young patients with little major comorbidity and had a high case-fatality rate. NIMV could be used in 2009 influenza A (H1N1) infection-related hypoxemic respiratory failure.

  7. How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin.

    PubMed

    Doud, Michael B; Lee, Juhye M; Bloom, Jesse D

    2018-04-11

    Influenza virus can escape most antibodies with single mutations. However, rare antibodies broadly neutralize many viral strains. It is unclear how easily influenza virus might escape such antibodies if there was strong pressure to do so. Here, we map all single amino-acid mutations that increase resistance to broad antibodies to H1 hemagglutinin. Our approach not only identifies antigenic mutations but also quantifies their effect sizes. All antibodies select mutations, but the effect sizes vary widely. The virus can escape a broad antibody to hemagglutinin's receptor-binding site the same way it escapes narrow strain-specific antibodies: via single mutations with huge effects. In contrast, broad antibodies to hemagglutinin's stalk only select mutations with small effects. Therefore, among the antibodies we examine, breadth is an imperfect indicator of the potential for viral escape via single mutations. Antibodies targeting the H1 hemagglutinin stalk are quantifiably harder to escape than the other antibodies tested here.

  8. West nile virus-induced activation of mammalian target of rapamycin complex 1 supports viral growth and viral protein expression.

    PubMed

    Shives, Katherine D; Beatman, Erica L; Chamanian, Mastooreh; O'Brien, Caitlin; Hobson-Peters, Jody; Beckham, J David

    2014-08-01

    Since its introduction in New York City, NY, in 1999, West Nile virus (WNV) has spread to all 48 contiguous states of the United States and is now the leading cause of epidemic encephalitis in North America. As a member of the family Flaviviridae, WNV is part of a group of clinically important human pathogens, including dengue virus and Japanese encephalitis virus. The members of this family of positive-sense, single-stranded RNA viruses have limited coding capacity and are therefore obligated to co-opt a significant amount of cellular factors to translate their genomes effectively. Our previous work has shown that WNV growth was independent of macroautophagy activation, but the role of the evolutionarily conserved mammalian target of rapamycin (mTOR) pathway during WNV infection was not well understood. mTOR is a serine/threonine kinase that acts as a central cellular censor of nutrient status and exercises control of vital anabolic and catabolic cellular responses such as protein synthesis and autophagy, respectively. We now show that WNV activates mTOR and cognate downstream activators of cap-dependent protein synthesis at early time points postinfection and that pharmacologic inhibition of mTOR (KU0063794) significantly reduced WNV growth. We used an inducible Raptor and Rictor knockout mouse embryonic fibroblast (MEF) system to further define the role of mTOR complexes 1 and 2 in WNV growth and viral protein synthesis. Following inducible genetic knockout of the major mTOR cofactors raptor (TOR complex 1 [TORC1]) and rictor (TORC2), we now show that TORC1 supports flavivirus protein synthesis via cap-dependent protein synthesis pathways and supports subsequent WNV growth. Since its introduction in New York City, NY, in 1999, West Nile virus (WNV) has spread to all 48 contiguous states in the United States and is now the leading cause of epidemic encephalitis in North America. Currently, the mechanism by which flaviviruses such as WNV translate their genomes in

  9. Influenza A H5N1 and H7N9 in China: A spatial risk analysis

    PubMed Central

    Gardner, Lauren; MacIntyre, Raina; Sarkar, Sahotra

    2017-01-01

    Background Zoonotic avian influenza poses a major risk to China, and other parts of the world. H5N1 has remained endemic in China and globally for nearly two decades, and in 2013, a novel zoonotic influenza A subtype H7N9 emerged in China. This study aimed to improve upon our current understanding of the spreading mechanisms of H7N9 and H5N1 by generating spatial risk profiles for each of the two virus subtypes across mainland China. Methods and findings In this study, we (i) developed a refined data set of H5N1 and H7N9 locations with consideration of animal/animal environment case data, as well as spatial accuracy and precision; (ii) used this data set along with environmental variables to build species distribution models (SDMs) for each virus subtype in high resolution spatial units of 1km2 cells using Maxent; (iii) developed a risk modelling framework which integrated the results from the SDMs with human and chicken population variables, which was done to quantify the risk of zoonotic transmission; and (iv) identified areas at high risk of H5N1 and H7N9 transmission. We produced high performing SDMs (6 of 8 models with AUC > 0.9) for both H5N1 and H7N9. In all our SDMs, H7N9 consistently showed higher AUC results compared to H5N1, suggesting H7N9 suitability could be better explained by environmental variables. For both subtypes, high risk areas were primarily located in south-eastern China, with H5N1 distributions found to be more diffuse and extending more inland compared to H7N9. Conclusions We provide projections of our risk models to public health policy makers so that specific high risk areas can be targeted for control measures. We recommend comparing H5N1 and H7N9 prevalence rates and survivability in the natural environment to better understand the role of animal and environmental transmission in human infections. PMID:28376125

  10. High genetic compatibility and increased pathogenicity of reassortants derived from avian H9N2 and pandemic H1N1/2009 influenza viruses

    PubMed Central

    Sun, Yipeng; Qin, Kun; Wang, Jingjing; Pu, Juan; Tang, Qingdong; Hu, Yanxin; Bi, Yuhai; Zhao, Xueli; Yang, Hanchun; Shu, Yuelong; Liu, Jinhua

    2011-01-01

    H9N2 influenza viruses have been circulating worldwide in multiple avian species and repeatedly infecting mammals, including pigs and humans, posing a significant threat to public health. The coexistence of H9N2 and pandemic influenza H1N1/2009 viruses in pigs and humans provides an opportunity for these viruses to reassort. To evaluate the potential public risk of the reassortant viruses derived from these viruses, we used reverse genetics to generate 127 H9 reassortants derived from an avian H9N2 and a pandemic H1N1 virus, and evaluated their compatibility, replication ability, and virulence in mice. These hybrid viruses showed high genetic compatibility and more than half replicated to a high titer in vitro. In vivo studies of 73 of 127 reassortants revealed that all viruses were able to infect mice without prior adaptation and 8 reassortants exhibited higher pathogenicity than both parental viruses. All reassortants with higher virulence than parental viruses contained the PA gene from the 2009 pandemic virus, revealing the important role of the PA gene from the H1N1/2009 virus in generating a reassortant virus with high public health risk. Analyses of the polymerase activity of the 16 ribonucleoprotein combinations in vitro suggested that the PA of H1N1/2009 origin also enhanced polymerase activity. Our results indicate that some avian H9-pandemic reassortants could emerge with a potentially higher threat for humans and also highlight the importance of monitoring the H9-pandemic reassortant viruses that may arise, especially those that possess the PA gene of H1N1/2009 origin. PMID:21368167

  11. The H1N1 pandemic: media frames, stigmatization and coping

    PubMed Central

    2013-01-01

    Background Throughout history, people have soothed their fear of disease outbreaks by searching for someone to blame. Such was the case with the April 2009 H1N1 flu outbreak. Mexicans and other Latinos living in the US were quickly stigmatized by non-Latinos as carriers of the virus, partly because of news reports on the outbreak’s alleged origin in Mexican pig farms. Methods In this exploratory study we examined the psychological processes of cue convergence and associative priming, through which many people likely conflated news of the H1N1 outbreak with pre-existing cognitive scripts that blamed Latino immigrants for a variety of social problems. We also used a transactional model of stress and coping to analyze the transcripts from five focus groups, in order to examine the ways in which a diverse collection of New England residents appraised the threat of H1N1, processed information about stereotypes and stigmas, and devised personal strategies to cope with these stressors. Results Twelve themes emerged in the final wave of coding, with most of them appearing at distinctive points in the stress and coping trajectories of focus group participants. Primary and secondary appraisals were mostly stressful or negative, with participants born in the USA reporting more stressful responses than those who were not. Latino participants reported no stressful primary appraisals, but spoke much more often than Whites or Non-Hispanic Blacks about negative secondary appraisals. When interactions between participants dealt with stigmas regarding Latinos and H1N1, Latinos in our focus groups reported using far more negative coping strategies than Whites or Non-Hispanic Blacks. When discussions did not focus on stereotypes or stigmas, Latino participants spoke much more often about positive coping strategies compared to members of these same groups. Conclusions Participants in all five focus groups went through a similar process of stress and coping in response to the threat

  12. The H1N1 pandemic: media frames, stigmatization and coping.

    PubMed

    McCauley, Michael; Minsky, Sara; Viswanath, Kasisomayajula

    2013-12-03

    Throughout history, people have soothed their fear of disease outbreaks by searching for someone to blame. Such was the case with the April 2009 H1N1 flu outbreak. Mexicans and other Latinos living in the US were quickly stigmatized by non-Latinos as carriers of the virus, partly because of news reports on the outbreak's alleged origin in Mexican pig farms. In this exploratory study we examined the psychological processes of cue convergence and associative priming, through which many people likely conflated news of the H1N1 outbreak with pre-existing cognitive scripts that blamed Latino immigrants for a variety of social problems. We also used a transactional model of stress and coping to analyze the transcripts from five focus groups, in order to examine the ways in which a diverse collection of New England residents appraised the threat of H1N1, processed information about stereotypes and stigmas, and devised personal strategies to cope with these stressors. Twelve themes emerged in the final wave of coding, with most of them appearing at distinctive points in the stress and coping trajectories of focus group participants. Primary and secondary appraisals were mostly stressful or negative, with participants born in the USA reporting more stressful responses than those who were not. Latino participants reported no stressful primary appraisals, but spoke much more often than Whites or Non-Hispanic Blacks about negative secondary appraisals. When interactions between participants dealt with stigmas regarding Latinos and H1N1, Latinos in our focus groups reported using far more negative coping strategies than Whites or Non-Hispanic Blacks. When discussions did not focus on stereotypes or stigmas, Latino participants spoke much more often about positive coping strategies compared to members of these same groups. Participants in all five focus groups went through a similar process of stress and coping in response to the threat of H1N1, though individual responses

  13. Safety of pandemic H1N1 vaccines in children and adolescents.

    PubMed

    Wijnans, Leonoor; de Bie, Sandra; Dieleman, Jeanne; Bonhoeffer, Jan; Sturkenboom, Miriam

    2011-10-06

    During the 2009 influenza A (H1N1) pandemic several pandemic H1N1 vaccines were licensed using fast track procedures, with relatively limited data on the safety in children and adolescents. Different extensive safety monitoring efforts were put in place to ensure timely detection of adverse events following immunization. These combined efforts have generated large amounts of data on the safety of the different pandemic H1N1 vaccines, also in children and adolescents. In this overview we shortly summarize the safety experience with seasonal influenza vaccines as a background and focus on the clinical and post marketing safety data of the pandemic H1N1 vaccines in children. We identified 25 different clinical studies including 10,505 children and adolescents, both healthy and with underlying medical conditions, between the ages of 6 months and 23 years. In addition, large monitoring efforts have resulted in large amounts of data, with almost 13,000 individual case reports in children and adolescents to the WHO. However, the diversity in methods and data presentation in clinical study publications and publications of spontaneous reports hampered the analysis of safety of the different vaccines. As a result, relatively little has been learned on the comparative safety of these pandemic H1N1 vaccines - particularly in children. It should be a collective effort to give added value to the enormous work going into the individual studies by adhering to available guidelines for the collection, analysis, and presentation of vaccine safety data in clinical studies and to guidance for the clinical investigation of medicinal products in the pediatric population. Importantly the pandemic has brought us the beginning of an infrastructure for collaborative vaccine safety studies in the EU, USA and globally. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Academics and competing interests in H1N1 influenza media reporting.

    PubMed

    Mandeville, Kate L; O'Neill, Sam; Brighouse, Andrew; Walker, Alice; Yarrow, Kielan; Chan, Kenneth

    2014-03-01

    Concerns have been raised over competing interests (CoI) among academics during the 2009 to 2010 A/H1N1 pandemic. Media reporting can influence public anxiety and demand for pharmaceutical products. We assessed CoI of academics providing media commentary during the early stages of the pandemic. We performed a retrospective content analysis of UK newspaper articles on A/H1N1 influenza, examining quoted sources. We noted when academics made a risk assessment of the pandemic and compared this with official estimations. We also looked for promotion or rejection of the use of neuraminidase inhibitors or H1N1-specific vaccine. We independently searched for CoI for each academic. Academics were the second most frequently quoted source after Ministers of Health. Where both academics and official agencies estimated the risk of H1N1, one in two academics assessed the risk as higher than official predictions. For academics with CoI, the odds of a higher risk assessment were 5.8 times greater than those made by academics without CoI (Wald p value=0.009). One in two academics commenting on the use of neuraminidase inhibitors or vaccine had CoI. The odds of CoI in academics promoting the use of neuraminidase inhibitors were 8.4 times greater than for academics not commenting on their use (Fisher's exact p=0.005). There is evidence of CoI among academics providing media commentary during the early H1N1 pandemic. Heightened risk assessments, combined with advocacy for pharmaceutical products to counter this risk, may lead to increased public anxiety and demand. Academics should declare, and journalists report, relevant CoI for media interviews.

  15. The hemagglutinin structure of an avian H1N1 influenza A virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Tianwei; Wang, Gengyan; Li, Anzhang

    2009-09-15

    The interaction between hemagglutinin (HA) and receptors is a kernel in the study of evolution and host adaptation of H1N1 influenza A viruses. The notion that the avian HA is associated with preferential specificity for receptors with Sia{alpha}2,3Gal glycosidic linkage over those with Sia{alpha}2,6Gal linkage is not all consistent with the available data on H1N1 viruses. By x-ray crystallography, the HA structure of an avian H1N1 influenza A virus, as well as its complexes with the receptor analogs, was determined. The structures revealed no preferential binding of avian receptor analogs over that of the human analog, suggesting that the HA/receptormore » binding might not be as stringent as is commonly believed in determining the host receptor preference for some subtypes of influenza viruses, such as the H1N1 viruses. The structure also showed difference in glycosylation despite the preservation of related sequences, which may partly contribute to the difference between structures of human and avian origin.« less

  16. Nosocomial Co-Transmission of Avian Influenza A(H7N9) and A(H1N1)pdm09 Viruses between 2 Patients with Hematologic Disorders

    PubMed Central

    Chen, Huazhong; Liu, Shelan; Liu, Jun; Chai, Chengliang; Mao, Haiyan; Yu, Zhao; Tang, Yuming; Zhu, Geqin; Chen, Haixiao X.; Zhu, Chengchu; Shao, Hui; Tan, Shuguang; Wang, Qianli; Bi, Yuhai; Zou, Zhen; Liu, Guang; Jin, Tao; Jiang, Chengyu; Gao, George F.; Peiris, Malik

    2016-01-01

    A nosocomial cluster induced by co-infections with avian influenza A(H7N9) and A(H1N1)pdm09 (pH1N1) viruses occurred in 2 patients at a hospital in Zhejiang Province, China, in January 2014. The index case-patient was a 57-year-old man with chronic lymphocytic leukemia who had been occupationally exposed to poultry. He had co-infection with H7N9 and pH1N1 viruses. A 71-year-old man with polycythemia vera who was in the same ward as the index case-patient for 6 days acquired infection with H7N9 and pH1N1 viruses. The incubation period for the second case-patient was estimated to be <4 days. Both case-patients died of multiple organ failure. Virus genetic sequences from the 2 case-patients were identical. Of 103 close contacts, none had acute respiratory symptoms; all were negative for H7N9 virus. Serum samples from both case-patients demonstrated strong proinflammatory cytokine secretion but incompetent protective immune responses. These findings strongly suggest limited nosocomial co-transmission of H7N9 and pH1N1 viruses from 1 immunocompromised patient to another. PMID:26982379

  17. Did Advances in Global Surveillance and Notification Systems Make a Difference in the 2009 H1N1 Pandemic?–A Retrospective Analysis

    PubMed Central

    Zhang, Ying; Lopez-Gatell, Hugo; Alpuche-Aranda, Celia M.; Stoto, Michael A.

    2013-01-01

    Background The 2009 H1N1 outbreak provides an opportunity to identify strengths and weaknesses of disease surveillance and notification systems that have been implemented in the past decade. Methods Drawing on a systematic review of the scientific literature, official documents, websites, and news reports, we constructed a timeline differentiating three kinds of events: (1) the emergence and spread of the pH1N1 virus, (2) local health officials’ awareness and understanding of the outbreak, and (3) notifications about the events and their implications. We then conducted a “critical event” analysis of the surveillance process to ascertain when health officials became aware of the epidemiologic facts of the unfolding pandemic and whether advances in surveillance notification systems hastened detection. Results This analysis revealed three critical events. First, medical personnel identified pH1N1in California children because of an experimental surveillance program, leading to a novel viral strain being identified by CDC. Second, Mexican officials recognized that unconnected outbreaks represented a single phenomenon. Finally, the identification of a pH1N1 outbreak in a New York City high school was hastened by awareness of the emerging pandemic. Analysis of the timeline suggests that at best the global response could have been about one week earlier (which would not have stopped spread to other countries), and could have been much later. Conclusions This analysis shows that investments in global surveillance and notification systems made an important difference in the 2009 H1N1 pandemic. In particular, enhanced laboratory capacity in the U.S. and Canada led to earlier detection and characterization of the 2009 H1N1. This includes enhanced capacity at the federal, state, and local levels in the U.S., as well as a trilateral agreement enabling collaboration among U.S., Canada, and Mexico. In addition, improved global notification systems contributed by helping

  18. Tromantadine inhibits HSV-1 induced syncytia formation and viral glycoprotein processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ickes, D.E.

    1989-01-01

    Tromantadine inhibits a late event in Herpes Simplex Virus Type 1 (HSV-1) replication, visualized by the inhibition of both the size and number of syncytia. Tromantadine can be added at any time between 1 and 9 h post infection with complete inhibition of syncytia formation. Glycan synthesis of the viral glycoproteins, important for syncytia formation, is incomplete due to tromantadine treatment. Tromantadine does not inhibit the initiation of glycosylation, since viral glycoproteins, gX{sub t}, synthesized in the presence of tromantadine still incorporate {sup 3}H-glucosamine. Tromantadine does not inhibit the transport of t e viral glycoproteins to the cell surface, sincemore » glycoproteins B, C, and D are expressed, as demonstrated by immunofluorescence. Tromantadine inhibition of HSV-1 glycoprotein processing is demonstrated by an increase in mobility of the radioimmunoprecipitated gX{sub t}, on SDS-PAGE. The gX{sub t} of KOS, a non-syncytial strain of HSV-1, had a similar increase in mobility, suggesting that the block in glycoprotein processing is a general effect of tromantadine treatment. Fucose, which is incorporated into oligosaccharides in the medial Golgi, is incorporated into gX{sub t}, indicating that the tromantadine block in glycoprotein processing occurs after this step. Lectin binding studies and SDS-PAGE analysis of gC processed in the presence of tromantadine, gC{sub t}, indicates that it has terminal galactose residues in both N- and O-linked glycans (binds Peanut and Ricin Agglutinins, respectively). The inhibition of sialylation of N-linked glycans by tromantadine was indicated by the extent of the increase in SDS-PAGE mobility of the G protein from Vesicular Stomatitis Virus. O-glycanase digestion and SDS-PAGE analysis of gC{sub t} indicate that the O-linked disaccharide NAcGal-Galactose is present.« less

  19. H1N1 vaccination in pediatric renal transplant patients.

    PubMed

    Kelen, K; Ferenczi, D; Jankovics, I; Varga, M; Molnar, M Z; Sallay, P; Reusz, G; Langer, R M; Pasti, K; Gerlei, Z; Szabo, A J

    2011-05-01

    Solid organ transplant recipients undergoing immunosuppressive therapy are considered to be at high risk of serious infectious complications. In 2009, a new influenza pandemic caused serious infections and deaths, especially among children and immunocompromised patients. Herein we have reported the safety and efficacy of a single-shot monovalent whole-virus vaccine against H1N1 infection in the pediatric renal transplant population. In November and December 2009, we vaccinated 37 renal transplant children and adolescents and measured their antibody responses. Seroprotection, seroconversion, and seroconversion factors were analyzed at 21 days after vaccination. None of the vaccinated patients experienced vaccine-related side effects. None of the patients had an H1N1 influenza infection after vaccination. All of the patients showed elevations in antibody titer at 21 days after vaccination. In contrast, only 29.72% of the patients achieved a safe seroprotection level and only 18.75% a safe seroconversion rate. More intense immunosuppressive treatment displayed negative effect on seroprotection and seroconversion, and antibody production significantly increased with age. No other factor was observed to influence seroprotection. We recommend vaccination of children and adolescent renal transplant recipients against H1N1 virus. However, a single shot of vaccine may not be sufficient; to achieve seroprotection, a booster vaccination and measurement of the antibody response are needed to assure protection of our patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Avian influenza A (H5N1).

    PubMed

    de Jong, Menno D; Hien, Tran Tinh

    2006-01-01

    Since their reemergence in 2003, highly pathogenic avian influenza A (H5N1) viruses have reached endemic levels among poultry in several southeast Asian countries and have caused a still increasing number of more than 100 reported human infections with high mortality. These developments have ignited global fears of an imminent influenza pandemic. The current knowledge of the virology, clinical spectrum, diagnosis and treatment of human influenza H5N1 virus infections is reviewed herein.

  1. Childhood narcolepsy with cataplexy: comparison between post-H1N1 vaccination and sporadic cases.

    PubMed

    Pizza, Fabio; Peltola, Hanna; Sarkanen, Tomi; Moghadam, Keivan K; Plazzi, Giuseppe; Partinen, Markku

    2014-02-01

    We aimed to compare post-Pandemrix vaccination (postvaccine) childhood narcolepsy with cataplexy (NC) vs. sporadic pre-H1N1 pandemic (pre-H1N1) cases. Clinical, anthropometric, polysomnographic, and cerebrospinal hypocretin 1 (hcrt-1) measurements were collected together with the video recordings of cataplexy in 27 Finnish patients with NC onset after H1N1 Pandemrix vaccination (mean age, 12±4 years; 52% boys) and 42 Italian NC patients with NC onset before the H1N1 pandemic (mean age, 11±3 years; 48% boys). All subjects carried the HLA-DQB1*0602 allele. Postvaccine subjects were older at NC onset (12±3 vs. 9±3 years; P=.008) and displayed a shorter mean sleep latency in multiple sleep latency tests (MSLT) (2.3±2.2 vs. 3.7±2.9 min; P=.026) compared to pre-H1N1 cases. Anthropometric, clinical (core NC symptoms), hcrt-1 deficiency, and polysomnographic data did not differ among groups, but higher disrupted nocturnal sleep was observed in postvaccine subjects. Comparison of cataplexy features at video assessment showed an overlapping picture with the exception for hyperkinetic movements which appeared to be more evident in pre-H1N1 subjects. The clinical picture of childhood NC was similar in postvaccine and pre-H1N1 children. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Outbreak of H3N2 influenza at a US military base in Djibouti during the H1N1 pandemic of 2009.

    PubMed

    Cosby, Michael T; Pimentel, Guillermo; Nevin, Remington L; Fouad Ahmed, Salwa; Klena, John D; Amir, Ehab; Younan, Mary; Browning, Robert; Sebeny, Peter J

    2013-01-01

    Influenza pandemics have significant operational impact on deployed military personnel working in areas throughout the world. The US Department of Defense global influenza-like illness (ILI) surveillance network serves an important role in establishing baseline trends and can be leveraged to respond to outbreaks of respiratory illness. We identified and characterized an operationally unique outbreak of H3N2 influenza at Camp Lemonnier, Djibouti occurring simultaneously with the H1N1 pandemic of 2009 [A(H1N1)pdm09]. Enhanced surveillance for ILI was conducted at Camp Lemonnier in response to local reports of a possible outbreak during the A(H1N1)pdm09 pandemic. Samples were collected from consenting patients presenting with ILI (utilizing a modified case definition) and who completed a case report form. Samples were cultured and analyzed using standard real-time reverse transcriptase PCR (rt-RT-PCR) methodology and sequenced genetic material was phylogenetically compared to other published strains. rt-RT-PCR and DNA sequencing revealed that 25 (78%) of the 32 clinical samples collected were seasonal H3N2 and only 2 (6%) were A(H1N1)pdm09 influenza. The highest incidence of H3N2 occurred during the month of May and 80% of these were active duty military personnel. Phylogenetic analysis revealed that sequenced H3N2 strains were genetically similar to 2009 strains from the United States of America, Australia, and South east Asia. This outbreak highlights challenges in the investigation of influenza among deployed military populations and corroborates the public health importance of maintaining surveillance systems for ILI that can be enhanced locally when needed.

  3. A reassortant H9N2 influenza virus containing 2009 pandemic H1N1 internal-protein genes acquired enhanced pig-to-pig transmission after serial passages in swine.

    PubMed

    Mancera Gracia, José Carlos; Van den Hoecke, Silvie; Richt, Juergen A; Ma, Wenjun; Saelens, Xavier; Van Reeth, Kristien

    2017-05-02

    Avian H9N2 and 2009 pandemic H1N1 (pH1N1) influenza viruses can infect pigs and humans, raising the concern that H9N2:pH1N1 reassortant viruses could emerge. Such reassortants demonstrated increased replication and transmissibility in pig, but were still inefficient when compared to pH1N1. Here, we evaluated if a reassortant virus containing the hemagglutinin and neuraminidase of A/quail/Hong Kong/G1/1997 (H9N2) in the A/California/04/2009 (pH1N1) backbone could become better adapted to pigs by serial passaging. The tropism of the original H9N2:pH1N1 (P0) virus was restricted to the nasal mucosa, with no virus detected in the trachea or lungs. Nevertheless, after seven passages the H9N2:pH1N1 (P7) virus replicated in the entire respiratory tract. We also compared the transmissibility of H9N2:pH1N1 (P0), H9N2:pH1N1 (P7) and pH1N1. While only 2/6 direct-contact pigs showed nasal virus excretion of H9N2:pH1N1 (P0) ≥five days, 4/6 direct-contact animals shed the H9N2:pH1N1 (P7). Interestingly, those four animals shed virus with titers similar to those of the pH1N1, which readily transmitted to all six contact animals. The broader tissue tropism and the increased post-transmission replication after seven passages were associated with the HA-D225G substitution. Our data demonstrate that the pH1N1 internal-protein genes together with the serial passages favour H9N2 virus adaptation to pigs.

  4. Factors Influencing School Closure and Dismissal Decisions: Influenza A (H1N1), Michigan 2009

    ERIC Educational Resources Information Center

    Dooyema, Carrie A.; Copeland, Daphne; Sinclair, Julie R.; Shi, Jianrong; Wilkins, Melinda; Wells, Eden; Collins, Jim

    2014-01-01

    Background: In fall 2009, many US communities experienced school closures during the influenza A H1N1 pandemic (pH1N1) and the state of Michigan reported 567 closures. We conducted an investigation in Michigan to describe pH1N1-related school policies, practices, and identify factors related to school closures. Methods: We distributed an online…

  5. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses.

    PubMed

    Li, Qiaoli; Zhao, Zhenhuan; Zhou, Dihan; Chen, Yaoqing; Hong, Wei; Cao, Luyang; Yang, Jingyi; Zhang, Yan; Shi, Wei; Cao, Zhijian; Wu, Yingliang; Yan, Huimin; Li, Wenxin

    2011-07-01

    Outbreaks of SARS-CoV, influenza A (H5N1, H1N1) and measles viruses in recent years have raised serious concerns about the measures available to control emerging and re-emerging infectious viral diseases. Effective antiviral agents are lacking that specifically target RNA viruses such as measles, SARS-CoV and influenza H5N1 viruses, and available vaccinations have demonstrated variable efficacy. Therefore, the development of novel antiviral agents is needed to close the vaccination gap and silence outbreaks. We previously identified mucroporin, a cationic host defense peptide from scorpion venom, which can effectively inhibit standard bacteria. The optimized mucroporin-M1 can inhibit gram-positive bacteria at low concentrations and antibiotic-resistant pathogens. In this investigation, we further tested mucroporin and the optimized mucroporin-M1 for their antiviral activity. Surprisingly, we found that the antiviral activities of mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses were notably increased with an EC₅₀ of 7.15 μg/ml (3.52 μM) and a CC₅₀ of 70.46 μg/ml (34.70 μM) against measles virus, an EC₅₀ of 14.46 μg/ml (7.12 μM) against SARS-CoV and an EC₅₀ of 2.10 μg/ml (1.03 μM) against H5N1, while the original peptide mucroporin showed no antiviral activity against any of these three viruses. The inhibition model could be via a direct interaction with the virus envelope, thereby decreasing the infectivity of virus. This report provides evidence that host defense peptides from scorpion venom can be modified for antiviral activity by rational design and represents a practical approach for developing broad-spectrum antiviral agents, especially against RNA viruses. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Influenza A(H1N1)v in Germany: the first 10,000 cases.

    PubMed

    Gilsdorf, Andreas; Poggensee, Gabriele

    2009-08-27

    The analysis of the first 10,000 cases of influenza A(H1N1)v in Germany confirms findings from other sources that the virus is currently mainly causing mild diseases, affecting mostly adolescents and young adults. Overall hospitalisation rate for influenza A(H1N1)v was low (7%). Only 3% of the cases had underlying conditions and pneumonia was rare (0.4%). Both reporting and testing requirements have been adapted recently, taking into consideration the additional information available on influenza A(H1N1)v infections.

  7. Obstetricians and the 2009-2010 H1N1 vaccination effort: implications for future pandemics.

    PubMed

    Clark, Sarah J; Cowan, Anne E; Wortley, Pascale M

    2013-09-01

    Our objective was to describe the experiences of obstetricians during the 2009-2010 H1N1 vaccination campaign in order to identify possible improvements for future pandemic situations. We conducted a cross-sectional mail survey of a national random sample of 4,000 obstetricians, fielded in Summer 2010. Survey items included availability, recommendation, and patient acceptance of H1N1 vaccine; prioritization of H1N1 vaccine when supply was limited; problems with H1N1 vaccination; and likelihood of providing vaccine during a future influenza pandemic. Response rate was 66 %. Obstetricians strongly recommended H1N1 vaccine during the second (85 %) and third (86 %) trimesters, and less often during the first trimester (71 %) or the immediate postpartum period (76 %); patient preferences followed a similar pattern. H1N1 vaccine was typically available in outpatient obstetrics clinics (80 %). Overall vaccine supply was a major problem for 30 % of obstetricians, but few rated lack of thimerosal-free vaccine as a major problem (12 %). Over half of obstetricians had no major problems with the H1N1 vaccine campaign. Based on this experience, 74 % would be "very likely" and 12 % "likely" to provide vaccine in the event of a future influenza pandemic. Most obstetricians strongly recommended H1N1 vaccine, had few logistical problems beyond limited vaccine supply, and are willing to vaccinate in a future pandemic. Addressing concerns about first-trimester vaccination, developing guidance for prioritization of vaccine in the event of severe supply constraints, and continued facilitation of the logistical aspects of vaccination should be emphasized in future influenza pandemics.

  8. H1N1 Flu & U.S. Schools: Answers to Frequently Asked Questions

    ERIC Educational Resources Information Center

    US Department of Education, 2009

    2009-01-01

    A severe form of influenza known as H1N1, commonly being called swine flu, has health officials around the world concerned. In the United States, the outbreak of H1N1 has prompted school closures and cancellation of school-related events. As the flu spreads, the Department of Education encourages school leaders, parents and students to know how to…

  9. A case of urinary retention in the early stages of herpes simplex virus type-1 encephalitis.

    PubMed

    Fukuoka, Takuya; Nakazato, Yoshihiko; Miyake, Akifumi; Tamura, Naotoshi; Araki, Nobuo; Yamamoto, Toshimasa

    2017-06-01

    A 70-year-old man developed urinary retention in the early stages of herpes simplex virus (HSV) type-1 encephalitis. A nerve conduction study suggested latent myeloradiculitis. This is the first report of human herpes simplex virus-1 encephalitis followed by urinary retention at early stage from the onset like the Elsberg syndrome. Although relatively few similar cases have been reported, we consider that urinary retention is common in HSV-1 encephalitis, in which disturbances of consciousness usually require bladder catheterization from the onset. We further emphasize that urinary retention may occasionally occur in early stages of HSV-1 encephalitis, with a significant possibility of recovery. Copyright © 2017. Published by Elsevier B.V.

  10. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    PubMed

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.

  11. A Historical Perspective of Influenza A(H1N2) Virus

    PubMed Central

    McVernon, Jodie; Hall, Robert; Leder, Karin

    2014-01-01

    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase with limited person-to-person transmission. During 2012 in the United States, an A(H1N2)v virus was transmitted to humans from swine. During the same year, Australia recorded its first H1N2 subtype infection among swine. The A(H3N2)v and A(H1N2)v viruses contained the matrix protein from the A(H1N1)pdm09 virus, raising the possibility of increased transmissibility among humans and underscoring the potential for influenza pandemics of novel swine-origin viruses. We report on the differing histories of A(H1N2) viruses among humans and animals. PMID:24377419

  12. A historical perspective of influenza A(H1N2) virus.

    PubMed

    Komadina, Naomi; McVernon, Jodie; Hall, Robert; Leder, Karin

    2014-01-01

    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase with limited person-to-person transmission. During 2012 in the United States, an A(H1N2)v virus was transmitted to humans from swine. During the same year, Australia recorded its first H1N2 subtype infection among swine. The A(H3N2)v and A(H1N2)v viruses contained the matrix protein from the A(H1N1)pdm09 virus, raising the possibility of increased transmissibility among humans and underscoring the potential for influenza pandemics of novel swine-origin viruses. We report on the differing histories of A(H1N2) viruses among humans and animals.

  13. Liver Biochemistry During the Course of Influenza A/H1N1 Infection.

    PubMed

    Seretis, Charalampos; Lagoudianakis, Emmanuel; Salemis, Nikolaos; Pappas, Apostolos; Gemenetzis, George; Seretis, Fotios; Gourgiotis, Stavros

    2013-06-01

    Despite the multi-systemic effects of influenza A/H1N1 virus, the occurrence of hepatic injury during the natural course of the infection remains a matter of debate. We performed a review of the published clinical studies which assess the above mentioned relationship, reviewing the studies published in PubMed database (English literature), using the key words "H1N1", "influenza A" and "liver". We excluded case reports and clinical studies that referred to pediatric and transplanted patients, pregnants and patients with known history of chronic liver diseases. From a total of 96 results, a total of 78 papers met one or more of the exclusion criteria set. Evaluating the remaining 18 published papers, 14 more were excluded as they did not provide any sufficient data, relevant to the subject of our review. Although the analysis of the remaining studies revealed the existence of conflicting results concerning the exact degree and the potential mechanisms of liver injury in H1N1 positive patients, it can be assumed that influenza A/H1N1 virus is -or at least could be- a hepatotropic virus.

  14. Liver Biochemistry During the Course of Influenza A/H1N1 Infection

    PubMed Central

    Seretis, Charalampos; Lagoudianakis, Emmanuel; Salemis, Nikolaos; Pappas, Apostolos; Gemenetzis, George; Seretis, Fotios; Gourgiotis, Stavros

    2013-01-01

    Despite the multi-systemic effects of influenza A/H1N1 virus, the occurrence of hepatic injury during the natural course of the infection remains a matter of debate. We performed a review of the published clinical studies which assess the above mentioned relationship, reviewing the studies published in PubMed database (English literature), using the key words “H1N1”, “influenza A” and “liver”. We excluded case reports and clinical studies that referred to pediatric and transplanted patients, pregnants and patients with known history of chronic liver diseases. From a total of 96 results, a total of 78 papers met one or more of the exclusion criteria set. Evaluating the remaining 18 published papers, 14 more were excluded as they did not provide any sufficient data, relevant to the subject of our review. Although the analysis of the remaining studies revealed the existence of conflicting results concerning the exact degree and the potential mechanisms of liver injury in H1N1 positive patients, it can be assumed that influenza A/H1N1 virus is -or at least could be- a hepatotropic virus. PMID:27785237

  15. Protective efficacy of passive immunization with monoclonal antibodies in animal models of H5N1 highly pathogenic avian influenza virus infection.

    PubMed

    Itoh, Yasushi; Yoshida, Reiko; Shichinohe, Shintaro; Higuchi, Megumi; Ishigaki, Hirohito; Nakayama, Misako; Pham, Van Loi; Ishida, Hideaki; Kitano, Mitsutaka; Arikata, Masahiko; Kitagawa, Naoko; Mitsuishi, Yachiyo; Ogasawara, Kazumasa; Tsuchiya, Hideaki; Hiono, Takahiro; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Kida, Hiroshi; Ito, Mutsumi; Quynh Mai, Le; Kawaoka, Yoshihiro; Miyamoto, Hiroko; Ishijima, Mari; Igarashi, Manabu; Suzuki, Yasuhiko; Takada, Ayato

    2014-06-01

    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype often cause severe pneumonia and multiple organ failure in humans, with reported case fatality rates of more than 60%. To develop a clinical antibody therapy, we generated a human-mouse chimeric monoclonal antibody (MAb) ch61 that showed strong neutralizing activity against H5N1 HPAI viruses isolated from humans and evaluated its protective potential in mouse and nonhuman primate models of H5N1 HPAI virus infections. Passive immunization with MAb ch61 one day before or after challenge with a lethal dose of the virus completely protected mice, and partial protection was achieved when mice were treated 3 days after the challenge. In a cynomolgus macaque model, reduced viral loads and partial protection against lethal infection were observed in macaques treated with MAb ch61 intravenously one and three days after challenge. Protective effects were also noted in macaques under immunosuppression. Though mutant viruses escaping from neutralization by MAb ch61 were recovered from macaques treated with this MAb alone, combined treatment with MAb ch61 and peramivir reduced the emergence of escape mutants. Our results indicate that antibody therapy might be beneficial in reducing viral loads and delaying disease progression during H5N1 HPAI virus infection in clinical cases and combined treatment with other antiviral compounds should improve the protective effects of antibody therapy against H5N1 HPAI virus infection.

  16. Outbreak of H3N2 Influenza at a US Military Base in Djibouti during the H1N1 Pandemic of 2009

    PubMed Central

    Cosby, Michael T.; Pimentel, Guillermo; Nevin, Remington L.; Fouad Ahmed, Salwa; Klena, John D.; Amir, Ehab; Younan, Mary; Browning, Robert; Sebeny, Peter J.

    2013-01-01

    Background Influenza pandemics have significant operational impact on deployed military personnel working in areas throughout the world. The US Department of Defense global influenza-like illness (ILI) surveillance network serves an important role in establishing baseline trends and can be leveraged to respond to outbreaks of respiratory illness. Objective We identified and characterized an operationally unique outbreak of H3N2 influenza at Camp Lemonnier, Djibouti occurring simultaneously with the H1N1 pandemic of 2009 [A(H1N1)pdm09]. Methods Enhanced surveillance for ILI was conducted at Camp Lemonnier in response to local reports of a possible outbreak during the A(H1N1)pdm09 pandemic. Samples were collected from consenting patients presenting with ILI (utilizing a modified case definition) and who completed a case report form. Samples were cultured and analyzed using standard real-time reverse transcriptase PCR (rt-RT-PCR) methodology and sequenced genetic material was phylogenetically compared to other published strains. Results rt-RT-PCR and DNA sequencing revealed that 25 (78%) of the 32 clinical samples collected were seasonal H3N2 and only 2 (6%) were A(H1N1)pdm09 influenza. The highest incidence of H3N2 occurred during the month of May and 80% of these were active duty military personnel. Phylogenetic analysis revealed that sequenced H3N2 strains were genetically similar to 2009 strains from the United States of America, Australia, and South east Asia. Conclusions This outbreak highlights challenges in the investigation of influenza among deployed military populations and corroborates the public health importance of maintaining surveillance systems for ILI that can be enhanced locally when needed. PMID:24339995

  17. Novel triple-reassortant H1N1 swine influenza viruses in pigs in Tianjin, Northern China.

    PubMed

    Sun, Ying-Feng; Wang, Xiu-Hui; Li, Xiu-Li; Zhang, Li; Li, Hai-Hua; Lu, Chao; Yang, Chun-Lei; Feng, Jing; Han, Wei; Ren, Wei-Ke; Tian, Xiang-Xue; Tong, Guang-Zhi; Wen, Feng; Li, Ze-Jun; Gong, Xiao-Qian; Liu, Xiao-Min; Ruan, Bao-Yang; Yan, Ming-Hua; Yu, Hai

    2016-02-01

    Pigs are susceptible to both human and avian influenza viruses and therefore have been proposed to be mixing vessels for the generation of pandemic influenza viruses through reassortment. In this study, for the first time, we report the isolation and genetic analyses of three novel triple-reassortant H1N1 swine influenza viruses from pigs in Tianjin, Northern China. Phylogenetic analysis showed that these novel viruses contained genes from the 2009 pandemic H1N1 (PB2, PB1, PA and NP), Eurasian swine (HA, NA and M) and triple-reassortant swine (NS) lineages. This indicated that the reassortment among the 2009 pandemic H1N1, Eurasian swine and triple-reassortant swine influenza viruses had taken place in pigs in Tianjin and resulted in the generation of new viruses. Furthermore, three human-like H1N1, two classical swine H1N1 and two Eurasian swine H1N1 viruses were also isolated during the swine influenza virus surveillance from 2009 to 2013, which indicated that multiple genetic lineages of swine H1N1 viruses were co-circulating in the swine population in Tianjin, China. The emergence of novel triple-reassortant H1N1 swine influenza viruses may be a potential threat to human health and emphasizes the importance of further continuous surveillance. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Assessment of H1N1 questions and answers posted on the Web.

    PubMed

    Kim, Sujin; Pinkerton, Thomas; Ganesh, Nithya

    2012-04-01

    A novel strain of human influenza A (H1N1) posed a serious pandemic threat worldwide during 2009. The public's fear of pandemic flu often raises awareness and discussion of such events. The goal of this study was to characterize major topical matters of H1N1 questions and answers raised by the online question and answer community Yahoo! Answers during H1N1 outbreak. The study used Text Mining for SPSS Clementine (v.12; SPSS Inc., Chicago, IL) to extract the major concepts of the collected Yahoo! questions and answers. The original collections were retrieved using "H1N1" in search, keyword and then filtered for only "resolved questions" in the "health" category submitted within the past 2 years. The most frequently formed categories were as follows: general health (health, disease, medicine, investigation, evidence, problem), flu-specific terms (H1N1, swine, shot, fever, cold, infective, throat), and nonmedical issues (feel, North American, people, child, nations, government, states, help, doubt, emotion). The study found that URL data are fairly predictable: those providing answers are divided between ones dedicated to giving trustworthy information-from news organizations and the government, for instance-and those looking to espouse a more biased point of view. Critical evaluation of online sources should be taught to select the quality of information and improve health literacy. The challenges of pandemic prevention and control, therefore, demand both e-surveillance and better informed "Netizens." Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  19. Role of Terrestrial Wild Birds in Ecology of Influenza A Virus (H5N1)

    PubMed Central

    Boon, Adrianus C.M.; Sandbulte, Matthew R.; Seiler, Patrick; Webby, Richard J.; Songserm, Thaweesak; Guan, Yi

    2007-01-01

    House sparrows, European starlings, and Carneux pigeons were inoculated with 4 influenza A (H5N1) viruses isolated from different avian species. We monitored viral replication, death after infection, and transmission to uninfected contact birds of the same species. Sparrows were susceptible to severe infection; 66%–100% of birds died within 4–7 days. High levels of virus were detected from oropharyngeal and cloacal swabs and in organs of deceased sparrows. Inoculation of starlings caused no deaths, despite high levels of virus shedding evident in oropharyngeal swabs. Least susceptible were pigeons, which had no deaths and very low levels of virus in oropharyngeal and cloacal swabs. Transmission to contact birds did not occur frequently: only A/common magpie/Hong Kong/645/2006 virus was shown to transmit to 1 starling. In summary, recent influenza (H5N1) viruses are pathogenic for small terrestrial bird species but the rate of intraspecies transmission in these hosts is very low. PMID:18217557

  20. Pandemic H1N1 2009 ('swine flu'): diagnostic and other challenges.

    PubMed

    Burkardt, Hans-Joachim

    2011-01-01

    Pandemic H1N1 2009 ('swine flu') virus was 'the virus of the year 2009' because it affected the lives of many people in this year. H1N1 was first described in California in April 2009 and spread very rapidly all over the globe. The fast global penetration of the swine flu caused the WHO in Geneva to call the infection with H1N1 a new pandemic with a rapid escalation of the different pandemic phases that ended on 11 June 2009, with the declaration of phase 6 (full-blown pandemic). This had far-reaching consequences for the local health authorities in the different affected countries and created awareness in the public and fear in the experts and even more so in many lay people. The consequences were: setting up reliable diagnostic tests as soon as possible; enhanced production, distribution and stock creation of the few drugs that were available to treat newly infected persons; and development, production, distribution and stock creation of new and appropriate anti-H1N1 swine flu vaccines. This all resulted in enormous costs in the local healthcare systems and also required smart and diligent logistics, because demand for all this was, in most cases, much higher than availability. Fortunately, the pandemic ended quite quickly (there was no 'second wave' as had been anticipated by some experts) and the death toll was moderate, compared with other influenza pandemic in the past and even to the regular annual appearance of the seasonal flu. This favorable outcome, however, provoked some harsh criticism that the WHO and healthcare systems in general had over-reacted and by doing so, a lot of money was thrown out of the window. This article describes the history of the H1N1 pandemic, the diagnostic challenges and resolutions, touches on treatment and vaccination very briefly and also comments on the criticism and arguments that came up immediately at the end and following the termination of the pandemic situation.

  1. The Influenza Virus and the 2009 H1N1 Outbreak

    DTIC Science & Technology

    2016-04-08

    Envelope L’ol • Sequencing Figure 1 Influenza Virus Anatomy -Neuramlnldase (Sialldase) ’ Hemagglutlnln 9 Key laboratory techniques...discover the 2009 H1 N1 influenza virus Phylogenetic Tree Out of the over 400 human H1 ’s USAFSAM sequenced this season no specimen has had less than a...surveillance/vaccine contents • Shot Versus Flu Mist • How does Tamiflu work • Sequencing HA - Culture, HAI, PCR, Serology ••• • t.tt

  2. West Nile and St. Louis encephalitis viral genetic determinants of avian host competence

    PubMed Central

    Maharaj, Payal D.; Bosco-Lauth, Angela M.; Langevin, Stanley A.; Anishchenko, Michael; Bowen, Richard A.; Reisen, William K.

    2018-01-01

    West Nile virus (WNV) and St. Louis encephalitis (SLEV) virus are enzootically maintained in North America in cycles involving the same mosquito vectors and similar avian hosts. However, these viruses exhibit dissimilar viremia and virulence phenotypes in birds: WNV is associated with high magnitude viremias that can result in mortality in certain species such as American crows (AMCRs, Corvus brachyrhynchos) whereas SLEV infection yields lower viremias that have not been associated with avian mortality. Cross-neutralization of these viruses in avian sera has been proposed to explain the reduced circulation of SLEV since the introduction of WNV in North America; however, in 2015, both viruses were the etiologic agents of concurrent human encephalitis outbreaks in Arizona, indicating the need to re-evaluate host factors and cross-neutralization responses as factors potentially affecting viral co-circulation. Reciprocal chimeric WNV and SLEV viruses were constructed by interchanging the pre-membrane (prM)-envelope (E) genes, and viruses subsequently generated were utilized herein for the inoculation of three different avian species: house sparrows (HOSPs; Passer domesticus), house finches (Haemorhous mexicanus) and AMCRs. Cross-protective immunity between parental and chimeric viruses were also assessed in HOSPs. Results indicated that the prM-E genes did not modulate avian replication or virulence differences between WNV and SLEV in any of the three avian species. However, WNV-prME proteins did dictate cross-protective immunity between these antigenically heterologous viruses. Our data provides further evidence of the important role that the WNV / SLEV viral non-structural genetic elements play in viral replication, avian host competence and virulence. PMID:29447156

  3. Encephalitis in Australian children: contemporary trends in hospitalisation.

    PubMed

    Britton, Philip N; Khoury, Lynette; Booy, Robert; Wood, Nicholas; Jones, Cheryl A

    2016-01-01

    The clinical epidemiology of childhood encephalitis in Australia is inadequately understood. We aimed to describe recent trends in childhood encephalitis-related hospitalisation. We identified encephalitis-related hospital admissions (2000-2012) in national datasets among children ≤14 years using ICD encephalitis codes. We calculated hospitalisation rates and analysed trends by year, age, gender, location, indigenous status and aetiology. Rates of childhood encephalitis hospitalisations significantly declined over an 11-year period (2000-2012; average hospitalisation rate 3.2/100 000). Varicella encephalitis hospitalisations decreased significantly, associated with high levels of varicella vaccine coverage since 2006. Acute disseminated encephalomyelitis (ADEM) was the most common 'specified' cause of encephalitis hospitalisation (15%-17%), and its rate has significantly increased. The highest hospitalisation rates occurred in the <1 year age group (5.8/100 000) and varied by location (highest in Northern Territory). The majority (58.9%) of hospitalised encephalitis had no cause identified; this proportion was highest in the <1 year age group (77%). The most common specified infectious causes included: herpes simplex virus, enterovirus, bacterial meningoencephalitis and varicella. When aggregated, the proportion of childhood encephalitis coded as viral was 21.2%. Hospitalisation of childhood encephalitis has slightly decreased in Australia. High rates of childhood immunisation have been associated with a reduction of varicella-associated encephalitis in Australian children. ADEM, an immune-mediated encephalitis, is the most common recognised cause of encephalitis in children. Young children (<1 year) have the highest admission rates. The high proportion of 'unspecified' encephalitis deaths and hospitalisations is an ongoing challenge. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence

  4. Evaluation of Wondfo influenza A&B fast test based on immunochromatography assay for rapid diagnosis of influenza A H1N1.

    PubMed

    Peng, Yunping; Wu, Junlin; Liu, Xiaoyun; Wang, Jihua; Li, Wenmei

    2013-01-01

    Influenza viruses cause significant morbidity and mortality in both children and adults during local outbreaks or epidemics. Therefore, a rapid test for influenza A&B would be useful. This study was conducted to evaluate the clinical performance of the Wondfo influenza A&B test for rapid diagnosis of influenza A H1N1 Infection. The rapid testing assay could distinguish infection of influenza A and B virus. The reference viral strains were cultured in MDCK cells while TCID50 if the viruses were determined. The analytical sensitivity of the Wondfo kit was 100TCID50/ml. The Wondfo kit did not show cross reactivity with other common viruses. 1928 suspected cases of influenza A (H1N1) virus infection were analyzed in the Wondfo influenza A&B test and other commercially available products. Inconsistent results were further confirmed by virus isolation in cell culture. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were 100%, 98.23%, 92.45%, and 100% for flu A, and 96.39%, 99.95%, 98.77%, and 99.84% for flu B respectively. 766 suspected cases of influenza A (H1N1) virus infection were analyzed in the Wondfo influenza A&B test and RT-PCR. The sensitivity, specificity, PPV and NPV were 56.5%, 99.75%, 99.52% and 71.04% for flu A, 25.45%, 99.86%, 93.33% and 94.54% for flu B respectively. These results indicate that the Wondfo influenza A&B test has high positive and negative detection rates. One hundred fifty-six specimens of influenza A (H1N1) confirmed by RT-PCR were analyzed by the Wondfo influenza A&B test and 66.67% were positive while only 18.59% were positive by the reference kit. These results indicate that our rapid diagnostic assay may be useful for analyzing influenza A H1N1 infections in patient specimen. Copyright © 2013 Elsevier Editora Ltda. All rights reserved.

  5. Dynamic analysis of expression of chemokine and cytokine gene responses to H5N1 and H9N2 avian influenza viruses in DF-1 cells.

    PubMed

    Luo, Chang; Liu, Jianxin; Qi, Wenbao; Ren, Xujiao; Lu, Rong; Liao, Ming; Ning, Zhangyong

    2018-05-01

    H5N1 and H9N2 are the most important causes of avian influenza in China. Chemokines and cytokines play important roles in inflammatory response that clearly differ between H5N1 and H9N2 infection. To investigate whether chemokines and cytokines are differentially regulated following H5N1 and H9N2 AIVs infection, dynamic expression of chemokines and cytokines, including IL8L1, IL8L2, CX3CL1, CCL5, CCL20, K203, SCYA4, XLC1, CCLi10, CCL19, IFN-α, IFN-β, IL-1β, IL-6 and TNF-α, were analyzed by real-time quantitative RT-PCR in DF-1 cells. It was found that IL8L1, IL8L2, CX3CL1, CCL5, CCL20, K203, SCYA4, IFN-α, IFN-β, IL-1β, IL-6 and TNF-α increased significantly after induction of H5N1 or H9N2 AIV infection, whereas no expression of XCL1, CCLi10 or CCL19 was detected. H9N2 AIV infection was associated with much stronger chemokine responses than infection with H5N1, whereas the cytokines showed opposite results. It was found that K203 is a constant chemotactic factor independent of subtype of AIVs and infectious dose, CCL20 and IL-1β are constant regardless of the infectious dose but depend on the subtype of AIV, chemotactic factors IL8L1, IL8L2 and CCL5 are dependent both on subtype of AIVs and infectious dose, and K203, CX3CL1, SCYA4, CCL20, IFN-α, IL-1β and TNF-α are specific to responses to H5N1 AIV infection whereas K203, CCL20, IFN-β, IL-1β and IL-6 are specific to H9N2 infection. These results provide basic data for explaining differences in inflammation and phenotypes of histopathological changes caused by H5N1 and H9N2 and add new information on the roles of chemokines and cytokines in virulence of AIVs. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  6. The Genomic Contributions of Avian H1N1 Influenza A Viruses to the Evolution of Mammalian Strains

    PubMed Central

    Wu, Gang; Zhang, Jinghui; Webster, Robert G.

    2015-01-01

    Among the influenza A viruses (IAVs) in wild aquatic birds, only H1, H2, and H3 subtypes have caused epidemics in humans. H1N1 viruses of avian origin have also caused 3 of 5 pandemics. To understand the reappearance of H1N1 in the context of pandemic emergence, we investigated whether avian H1N1 IAVs have contributed to the evolution of human, swine, and 2009 pandemic H1N1 IAVs. On the basis of phylogenetic analysis, we concluded that the polymerase gene segments (especially PB2 and PA) circulating in North American avian H1N1 IAVs have been reintroduced to swine multiple times, resulting in different lineages that led to the emergence of the 2009 pandemic H1N1 IAVs. Moreover, the similar topologies of hemagglutinin and nucleoprotein and neuraminidase and matrix gene segments suggest that each surface glycoprotein coevolved with an internal gene segment within the H1N1 subtype. The genotype of avian H1N1 IAVs of Charadriiformes origin isolated in 2009 differs from that of avian H1N1 IAVs of Anseriformes origin. When the antigenic sites in the hemagglutinin of all 31 North American avian H1N1 IAVs were considered, 60%-80% of the amino acids at the antigenic sites were identical to those in 1918 and/or 2009 pandemic H1N1 viruses. Thus, although the pathogenicity of avian H1N1 IAVs could not be inferred from the phylogeny due to the small dataset, the evolutionary process within the H1N1 IAV subtype suggests that the circulation of H1N1 IAVs in wild birds poses a continuous threat for future influenza pandemics in humans. PMID:26208281

  7. Highly Pathogenic H5N1 Influenza A Virus Strains Provoke Heterogeneous IFN-α/β Responses That Distinctively Affect Viral Propagation in Human Cells

    PubMed Central

    Matthaei, Markus; Budt, Matthias; Wolff, Thorsten

    2013-01-01

    The fatal transmissions of highly pathogenic avian influenza A viruses (IAV) of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β) are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to overcome the human IFN

  8. Structural Determinants for Naturally Evolving H5N1 Hemagglutinin to Switch its Receptor Specificity

    PubMed Central

    Tharakaraman, Kannan; Raman, Rahul; Viswanathan, Karthik; Stebbins, Nathan W.; Jayaraman, Akila; Krishnan, Arvind; Sasisekharan, V.; Sasisekharan, Ram

    2013-01-01

    SUMMARY Of the factors governing human-to-human transmission of the highly pathogenic avian-adapted H5N1 virus, the most critical is the acquisition of mutations on the viral hemagglutinin (HA) to “quantitatively switch” its binding from avian to human glycan receptors. Herein, we describe a structural framework that outlines a necessary set of H5 HA receptor binding site (RBS) features required for the H5 HA to quantitatively switch its preference to human receptors. We show here that the same RBS HA mutations that lead to aerosol transmission of A/Vietnam/1203/04 and A/Indonesia/5/05 viruses, when introduced in currently circulating H5N1, do not lead to quantitative switch in receptor preference. We demonstrate that HAs from circulating clades require as few as a single base-pair mutation to quantitatively switch their binding to human receptors. The mutations identified by this study can be used to monitor the emergence of strains having human-to-human transmission potential. PMID:23746829

  9. Accumulation of Human-Adapting Mutations during Circulation of A(H1N1)pdm09 Influenza Virus in Humans in the United Kingdom

    PubMed Central

    Elderfield, Ruth A.; Watson, Simon J.; Godlee, Alexandra; Adamson, Walt E.; Thompson, Catherine I.; Dunning, Jake; Fernandez-Alonso, Mirian; Blumenkrantz, Deena; Hussell, Tracy; Zambon, Maria; Openshaw, Peter; Kellam, Paul

    2014-01-01

    ABSTRACT The influenza pandemic that emerged in 2009 provided an unprecedented opportunity to study adaptation of a virus recently acquired from an animal source during human transmission. In the United Kingdom, the novel virus spread in three temporally distinct waves between 2009 and 2011. Phylogenetic analysis of complete viral genomes showed that mutations accumulated over time. Second- and third-wave viruses replicated more rapidly in human airway epithelial (HAE) cells than did the first-wave virus. In infected mice, weight loss varied between viral isolates from the same wave but showed no distinct pattern with wave and did not correlate with viral load in the mouse lungs or severity of disease in the human donor. However, second- and third-wave viruses induced less alpha interferon in the infected mouse lungs. NS1 protein, an interferon antagonist, had accumulated several mutations in second- and third-wave viruses. Recombinant viruses with the third-wave NS gene induced less interferon in human cells, but this alone did not account for increased virus fitness in HAE cells. Mutations in HA and NA genes in third-wave viruses caused increased binding to α-2,6-sialic acid and enhanced infectivity in human mucus. A recombinant virus with these two segments replicated more efficiently in HAE cells. A mutation in PA (N321K) enhanced polymerase activity of third-wave viruses and also provided a replicative advantage in HAE cells. Therefore, multiple mutations allowed incremental changes in viral fitness, which together may have contributed to the apparent increase in severity of A(H1N1)pdm09 influenza virus during successive waves. IMPORTANCE Although most people infected with the 2009 pandemic influenza virus had mild or unapparent symptoms, some suffered severe and devastating disease. The reasons for this variability were unknown, but the numbers of severe cases increased during successive waves of human infection in the United Kingdom. To determine the causes

  10. Accumulation of human-adapting mutations during circulation of A(H1N1)pdm09 influenza virus in humans in the United Kingdom.

    PubMed

    Elderfield, Ruth A; Watson, Simon J; Godlee, Alexandra; Adamson, Walt E; Thompson, Catherine I; Dunning, Jake; Fernandez-Alonso, Mirian; Blumenkrantz, Deena; Hussell, Tracy; Zambon, Maria; Openshaw, Peter; Kellam, Paul; Barclay, Wendy S

    2014-11-01

    The influenza pandemic that emerged in 2009 provided an unprecedented opportunity to study adaptation of a virus recently acquired from an animal source during human transmission. In the United Kingdom, the novel virus spread in three temporally distinct waves between 2009 and 2011. Phylogenetic analysis of complete viral genomes showed that mutations accumulated over time. Second- and third-wave viruses replicated more rapidly in human airway epithelial (HAE) cells than did the first-wave virus. In infected mice, weight loss varied between viral isolates from the same wave but showed no distinct pattern with wave and did not correlate with viral load in the mouse lungs or severity of disease in the human donor. However, second- and third-wave viruses induced less alpha interferon in the infected mouse lungs. NS1 protein, an interferon antagonist, had accumulated several mutations in second- and third-wave viruses. Recombinant viruses with the third-wave NS gene induced less interferon in human cells, but this alone did not account for increased virus fitness in HAE cells. Mutations in HA and NA genes in third-wave viruses caused increased binding to α-2,6-sialic acid and enhanced infectivity in human mucus. A recombinant virus with these two segments replicated more efficiently in HAE cells. A mutation in PA (N321K) enhanced polymerase activity of third-wave viruses and also provided a replicative advantage in HAE cells. Therefore, multiple mutations allowed incremental changes in viral fitness, which together may have contributed to the apparent increase in severity of A(H1N1)pdm09 influenza virus during successive waves. Although most people infected with the 2009 pandemic influenza virus had mild or unapparent symptoms, some suffered severe and devastating disease. The reasons for this variability were unknown, but the numbers of severe cases increased during successive waves of human infection in the United Kingdom. To determine the causes of this variation

  11. Population‐based surveillance for 2009 pandemic influenza A (H1N1) virus in Guatemala, 2009

    PubMed Central

    Reyes, Lissette; Arvelo, Wences; Estevez, Alejandra; Gray, Jennifer; Moir, Juan C.; Gordillo, Betty; Frenkel, Gal; Ardón, Francisco; Moscoso, Fabiola; Olsen, Sonja J.; Fry, Alicia M.; Lindstrom, Steve; Lindblade, Kim A.

    2010-01-01

    Please cite this paper as: Reyes et al. (2010) Population‐based surveillance for 2009 pandemic influenza A (H1N1) virus in Guatemala, 2009. Influenza and Other Respiratory Viruses 4(3), 129–140. Background  In April 2009, 2009 pandemic influenza A H1N1 (2009 H1N1) was first identified in Mexico but did not cause widespread transmission in neighboring Guatemala until several weeks later. Methodology and principle findings  Using a population‐based surveillance system for hospitalized pneumonia and influenza‐like illness ongoing before the 2009 H1N1 pandemic began, we tracked the onset of 2009 H1N1 infection in Guatemala. We identified 239 individuals infected with influenza A (2009 H1N1) between May and December 2009, of whom 76 were hospitalized with pneumonia and 11 died (case fatality proportion: 4·6%, 95% confidence interval [CI] 2·3–8·1%). The median age of patients infected with 2009 H1N1 was 8·8 years, the median age of those hospitalized with pneumonia was 4·2 years, and five (45·5%) deaths occurred in children <5 years old. Crude rates of hospitalization between May and December 2009 were highest for children <5 years old. Twenty‐one (27·6%) of the patients hospitalized with 2009 H1N1 were admitted to the intensive care unit and eight (10·5%) required mechanical ventilation. Underlying chronic conditions were noted in 14 (18·4%) of patients with pneumonia hospitalized with 2009 H1N1 infection. Conclusions and significance  Chronic illnesses may be underdiagnosed in Guatemala, making it difficult to identify this risk group for vaccination. Children 6 months to 5 years old should be among priority groups for vaccination to prevent serious consequences because of 2009 H1N1 infection. PMID:20409209

  12. Phylogeography of influenza A H5N1 clade 2.2.1.1 in Egypt

    PubMed Central

    2013-01-01

    Background Influenza A H5N1 has killed millions of birds and raises serious public health concern because of its potential to spread to humans and cause a global pandemic. While the early focus was in Asia, recent evidence suggests that Egypt is a new epicenter for the disease. This includes characterization of a variant clade 2.2.1.1, which has been found almost exclusively in Egypt. We analyzed 226 HA and 92 NA sequences with an emphasis on the H5N1 2.2.1.1 strains in Egypt using a Bayesian discrete phylogeography approach. This allowed modeling of virus dispersion between Egyptian governorates including the most likely origin. Results Phylogeography models of hemagglutinin (HA) and neuraminidase (NA) suggest Ash Sharqiyah as the origin of virus spread, however the support is weak based on Kullback–Leibler values of 0.09 for HA and 0.01 for NA. Association Index (AI) values and Parsimony Scores (PS) were significant (p-value < 0.05), indicating that dispersion of H5N1 in Egypt was geographically structured. In addition, the Ash Sharqiyah to Al Gharbiyah and Al Fayyum to Al Qalyubiyah routes had the strongest statistical support. Conclusion We found that the majority of routes with strong statistical support were in the heavily populated Delta region. In particular, the Al Qalyubiyah governorate appears to represent a popular location for virus transition as it represented a large portion of branches in both trees. However, there remains uncertainty about virus dispersion to and from this location and thus more research needs to be conducted in order to examine this. Phylogeography can highlight the drivers of H5N1 emergence and spread. This knowledge can be used to target public health efforts to reduce morbidity and mortality. For Egypt, future work should focus on using data about vaccination and live bird markets in phylogeography models to study their impact on H5N1 diffusion within the country. PMID:24325606

  13. Acceptance of 2009 H1N1 influenza vaccine among pregnant women in Delaware.

    PubMed

    Drees, Marci; Johnson, Oluwakemi; Wong, Esther; Stewart, Ashley; Ferisin, Stephanie; Silverman, Paul R; Ehrenthal, Deborah B

    2012-04-01

    Due to disproportionately high mortality from 2009 H1N1 influenza, pregnant women were given highest priority for H1N1 vaccination. We surveyed postpartum women to determine vaccine uptake and reasons for lack of vaccination. We performed a cross-sectional survey of postpartum women delivering at our institution from February 1 to April 15, 2010. The 12-question survey ascertained maternal characteristics and vaccination concerns. Among 307 postpartum women, 191 (62%) had received H1N1 vaccination and 98 (32%) had declined. Factors associated with H1N1 vaccination included older age (relative risk [RR] 1.3, 95% confidence interval [CI] 1.1 to 1.5 for age ≥35 years compared with 20 to 34 years), at least college education (RR 1.5, 95% CI 1.3 to 1.8), prior influenza vaccination (RR 1.6, 95% CI 1.3 to 2.0), provider recommendation (RR 3.9, 95% CI 2.1 to 7.4), vaccination of family members (RR 1.6, 95% CI 1.3 to 1.9), and receipt of seasonal influenza vaccination (RR 2.2, 95% CI 1.7 to 2.9). Non-Hispanic black women were less likely to have been vaccinated (RR 0.6, 95% CI 0.5 to 0.8) than non-Hispanic white women. Safety concerns were cited by the majority (66%) of nonvaccinated women. H1N1 vaccine uptake among pregnant women was substantially higher than reported influenza vaccination rates during previous seasons. Safety concerns were the major barrier to vaccination. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Severe H1N1-Associated acute respiratory distress syndrome: A case series.

    PubMed

    Lai, Andrew R; Keet, Kevin; Yong, Celina M; Diaz, Janet V

    2010-03-01

    Acute respiratory distress syndrome resulting from novel influenza A virus (H1N1) infection remains uncommon. We describe the clinical profiles of adult patients with acute respiratory distress syndrome due to microbiologically confirmed H1N1 admitted to a medical intensive care unit in San Francisco, California over a 2-month period. Between June 1 and July 31, 2009, 7 patients (age range: 25-66 years; 4 patients under the age of 40 years; 6 male; 1 pregnant) were diagnosed with H1N1, with 5 of 6 (83%) having initial false-negative rapid testing. All developed respiratory failure complicated by acute respiratory distress syndrome, with 4 additionally developing multiorgan dysfunction. All were managed with a lung protective ventilator strategy (average number of days on the ventilator: 16), and 4 patients also required additional rescue therapies for refractory hypoxemia, including very high positive end-expiratory pressure, inhaled epoprostenol, recruitment maneuvers, and prone positioning. Despite these measures, 3 patients (43%) ultimately died. Clinicians should be vigilant for the potential of H1N1 infection to progress to severe acute respiratory distress syndrome in a variety of patient demographics, including younger patients without baseline cardiopulmonary disease. A high degree of suspicion is critical, especially with the relative insensitivity of rapid testing, and should prompt empiric antiviral therapy. 2010 Elsevier Inc. All rights reserved.

  15. Acquisition of Human-Type Receptor Binding Specificity by New H5N1 Influenza Virus Sublineages during Their Emergence in Birds in Egypt

    PubMed Central

    Watanabe, Yohei; Ibrahim, Madiha S.; Ellakany, Hany F.; Kawashita, Norihito; Mizuike, Rika; Hiramatsu, Hiroaki; Sriwilaijaroen, Nogluk; Takagi, Tatsuya; Suzuki, Yasuo; Ikuta, Kazuyoshi

    2011-01-01

    Highly pathogenic avian influenza A virus subtype H5N1 is currently widespread in Asia, Europe, and Africa, with 60% mortality in humans. In particular, since 2009 Egypt has unexpectedly had the highest number of human cases of H5N1 virus infection, with more than 50% of the cases worldwide, but the basis for this high incidence has not been elucidated. A change in receptor binding affinity of the viral hemagglutinin (HA) from α2,3- to α2,6-linked sialic acid (SA) is thought to be necessary for H5N1 virus to become pandemic. In this study, we conducted a phylogenetic analysis of H5N1 viruses isolated between 2006 and 2009 in Egypt. The phylogenetic results showed that recent human isolates clustered disproportionally into several new H5 sublineages suggesting that their HAs have changed their receptor specificity. Using reverse genetics, we found that these H5 sublineages have acquired an enhanced binding affinity for α2,6 SA in combination with residual affinity for α2,3 SA, and identified the amino acid mutations that produced this new receptor specificity. Recombinant H5N1 viruses with a single mutation at HA residue 192 or a double mutation at HA residues 129 and 151 had increased attachment to and infectivity in the human lower respiratory tract but not in the larynx. These findings correlated with enhanced virulence of the mutant viruses in mice. Interestingly, these H5 viruses, with increased affinity to α2,6 SA, emerged during viral diversification in bird populations and subsequently spread to humans. Our findings suggested that emergence of new H5 sublineages with α2,6 SA specificity caused a subsequent increase in human H5N1 influenza virus infections in Egypt, and provided data for understanding the virus's pandemic potential. PMID:21637809

  16. Structural Basis of Preexisting Immunity to the 2009 H1N1 Pandemic Influenza Virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Rui; Ekiert, Damian C.; Krause, Jens C.

    The 2009 H1N1 swine flu is the first influenza pandemic in decades. The crystal structure of the hemagglutinin from the A/California/04/2009 H1N1 virus shows that its antigenic structure, particularly within the Sa antigenic site, is extremely similar to those of human H1N1 viruses circulating early in the 20th century. The cocrystal structure of the 1918 hemagglutinin with 2D1, an antibody from a survivor of the 1918 Spanish flu that neutralizes both 1918 and 2009 H1N1 viruses, reveals an epitope that is conserved in both pandemic viruses. Thus, antigenic similarity between the 2009 and 1918-like viruses provides an explanation for themore » age-related immunity to the current influenza pandemic.« less

  17. Understanding newsworthiness of an emerging pandemic: international newspaper coverage of the H1N1 outbreak.

    PubMed

    Smith, Katherine C; Rimal, Rajiv N; Sandberg, Helena; Storey, John D; Lagasse, Lisa; Maulsby, Catherine; Rhoades, Elizabeth; Barnett, Daniel J; Omer, Saad B; Links, Jonathan M

    2013-09-01

    During an evolving public health crisis, news organizations disseminate information rapidly, much of which is uncertain, dynamic, and difficult to verify. We examine factors related to international news coverage of H1N1 during the first month after the outbreak in late April 2009 and consider the news media's role as an information source during an emerging pandemic. Data on H1N1 news were compiled in real time from newspaper websites across twelve countries between April 29, 2009 and May 28, 2009. A news sample was purposively constructed to capture variation in countries' prior experience with avian influenza outbreaks and pandemic preparation efforts. We analyzed the association between H1N1 news volume and four predictor variables: geographic region, prior experience of a novel flu strain (H5N1), existence of a national pandemic plan, and existence of a localized H1N1 outbreak. H1N1 news was initially extensive but declined rapidly (OR = 0.85, P < .001). Pandemic planning did not predict newsworthiness. However, countries with prior avian flu experience had higher news volume (OR = 1.411, P < .05), suggesting that H1N1 newsworthiness was bolstered by past experiences. The proportion of H1N1 news was significantly lower in Europe than elsewhere (OR = 0.388, P < 0.05). Finally, coverage of H1N1 increased after a first in-country case (OR = 1.415, P < .01), interrupting the pattern of coverage decline. Findings demonstrate the enhanced newsworthiness of localized threats, even during an emerging pandemic. We discuss implications for news media's role in effective public health communication throughout an epidemic given the demonstrated precipitous decline in news interest. © 2012 John Wiley & Sons Ltd.

  18. Diagnostic testing for pandemic influenza in Singapore: a novel dual-gene quantitative real-time RT-PCR for the detection of influenza A/H1N1/2009.

    PubMed

    Lee, Hong Kai; Lee, Chun Kiat; Loh, Tze Ping; Tang, Julian Wei-Tze; Chiu, Lily; Tambyah, Paul A; Sethi, Sunil K; Koay, Evelyn Siew-Chuan

    2010-09-01

    With the relative global lack of immunity to the pandemic influenza A/H1N1/2009 virus that emerged in April 2009 as well as the sustained susceptibility to infection, rapid and accurate diagnostic assays are essential to detect this novel influenza A variant. Among the molecular diagnostic methods that have been developed to date, most are in tandem monoplex assays targeting either different regions of a single viral gene segment or different viral gene segments. We describe a dual-gene (duplex) quantitative real-time RT-PCR method selectively targeting pandemic influenza A/H1N1/2009. The assay design includes a primer-probe set specific to only the hemagglutinin (HA) gene of this novel influenza A variant and a second set capable of detecting the nucleoprotein (NP) gene of all swine-origin influenza A virus. In silico analysis of the specific HA oligonucleotide sequence used in the assay showed that it targeted only the swine-origin pandemic strain; there was also no cross-reactivity against a wide spectrum of noninfluenza respiratory viruses. The assay has a diagnostic sensitivity and specificity of 97.7% and 100%, respectively, a lower detection limit of 50 viral gene copies/PCR, and can be adapted to either a qualitative or quantitative mode. It was first applied to 3512 patients with influenza-like illnesses at a tertiary hospital in Singapore, during the containment phase of the pandemic (May to July 2009).

  19. Differential Pathological and Immune Responses in Newly Weaned Ferrets Are Associated with a Mild Clinical Outcome of Pandemic 2009 H1N1 Infection

    PubMed Central

    Huang, Stephen S. H.; Banner, David; Degousee, Norbert; Leon, Alberto J.; Xu, Louling; Paquette, Stephane G.; Kanagasabai, Thirumagal; Fang, Yuan; Rubino, Salvatore; Rubin, Barry; Kelvin, Alyson A.

    2012-01-01

    Young children are typically considered a high-risk group for disease associated with influenza virus infection. Interestingly, recent clinical reports suggested that young children were the smallest group of cases with severe pandemic 2009 H1N1 (H1N1pdm) influenza virus infection. Here we established a newly weaned ferret model for the investigation of H1N1pdm infection in young age groups compared to adults. We found that young ferrets had a significantly milder fever and less weight loss than adult ferrets, which paralleled the mild clinical symptoms in the younger humans. Although there was no significant difference in viral clearance, disease severity was associated with pulmonary pathology, where newly weaned ferrets had an earlier pathology improvement. We examined the immune responses associated with protection of the young age group during H1N1pdm infection. We found that interferon and regulatory interleukin-10 responses were more robust in the lungs of young ferrets. In contrast, myeloperoxidase and major histocompatibility complex responses were persistently higher in the adult lungs; as well, the numbers of inflammation-prone granulocytes were highly elevated in the adult peripheral blood. Importantly, we observed that H1N1pdm infection triggered formation of lung structures that resembled inducible bronchus-associated lymphoid tissues (iBALTs) in young ferrets which were associated with high levels of homeostatic chemokines CCL19 and CXCL13, but these were not seen in the adult ferrets with severe disease. These results may be extrapolated to a model of the mild disease seen in human children. Furthermore, these mechanistic analyses provide significant new insight into the developing immune system and effective strategies for intervention and vaccination against respiratory viruses. PMID:23055557

  20. Differential pathological and immune responses in newly weaned ferrets are associated with a mild clinical outcome of pandemic 2009 H1N1 infection.

    PubMed

    Huang, Stephen S H; Banner, David; Degousee, Norbert; Leon, Alberto J; Xu, Louling; Paquette, Stephane G; Kanagasabai, Thirumagal; Fang, Yuan; Rubino, Salvatore; Rubin, Barry; Kelvin, David J; Kelvin, Alyson A

    2012-12-01

    Young children are typically considered a high-risk group for disease associated with influenza virus infection. Interestingly, recent clinical reports suggested that young children were the smallest group of cases with severe pandemic 2009 H1N1 (H1N1pdm) influenza virus infection. Here we established a newly weaned ferret model for the investigation of H1N1pdm infection in young age groups compared to adults. We found that young ferrets had a significantly milder fever and less weight loss than adult ferrets, which paralleled the mild clinical symptoms in the younger humans. Although there was no significant difference in viral clearance, disease severity was associated with pulmonary pathology, where newly weaned ferrets had an earlier pathology improvement. We examined the immune responses associated with protection of the young age group during H1N1pdm infection. We found that interferon and regulatory interleukin-10 responses were more robust in the lungs of young ferrets. In contrast, myeloperoxidase and major histocompatibility complex responses were persistently higher in the adult lungs; as well, the numbers of inflammation-prone granulocytes were highly elevated in the adult peripheral blood. Importantly, we observed that H1N1pdm infection triggered formation of lung structures that resembled inducible bronchus-associated lymphoid tissues (iBALTs) in young ferrets which were associated with high levels of homeostatic chemokines CCL19 and CXCL13, but these were not seen in the adult ferrets with severe disease. These results may be extrapolated to a model of the mild disease seen in human children. Furthermore, these mechanistic analyses provide significant new insight into the developing immune system and effective strategies for intervention and vaccination against respiratory viruses.