Sample records for h2 emission lines

  1. Line Profile of H Lyman-Beta Emission from Dissociative Excitation of H2

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Ahmed, Syed M.; Liu, Xian-Ming

    1996-01-01

    A high-resolution ultraviolet spectrometer was employed for a measurement of the H Lyman-Beta(H L(sub Beta)) emission Doppler line profile at 1025.7 A from dissociative excitation of H2 by electron impact. Analysis of the deconvolved line profile reveals the existence of a narrow central peak, less than 30 mA full width at half maximum (FWHM), and a broad pedestal base about 260 mA FWHM. Analysis of the red wing of the line profile is complicated by a group of Wemer and Lyman rotational lines 160-220 mA from the line center. Analysis of the blue wing of the line profile gives the kinetic-energy distribution. There are two main kinetic-energy components to the H(3p) distribution: (1) a slow distribution with a peak value near 0 eV from singly excited states, and (2) a fast distribution with a peak contribution near 7 eV from doubly excited states. Using two different techniques, the absolute cross section of H L(sub Beta)p is found to be 3.2+/-.8 x 10(exp -19)sq cm at 100-eV electron impact energy. The experimental cross-section and line-profile results can be compared to previous studies of H(alpha) (6563.7 A) for principal quantum number n=3 and L(sub alpha)(1215.7 A) for n=2.

  2. Molecular line emission models of Herbig-Haro objects. I - H2 emission

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark G.; Konigl, Arieh

    1991-01-01

    A comprehensive model for molecular hydrogen emssion in Herbig-Haro objects that are associated with the heads of radiative stellar jets is presented by using a simple representation of the jet head as a comprising a leading bow shock and a trailing jet shock, separated by a dense layer of cool shocked gas. Attention is given to collisional excitation in a nondissociative shock and formation pumping in the molecular reformation zone behind a dissociative shock, employing detailed shock and photodissociation-region emission models that incorporate most of the relevant atomic physics and chemistry. The conditions under which each of these excitation mechanisms may be expected to contribute to the observed emission are discussed, and a general diagnostic scheme for discriminating among them is constructed. Applying this scheme to the HH 1-2 system, strong evidence for excitation by the radiation field of a fast shock is found. It is inferred that FUV pumping contributes a significant fraction of the H2 line emission, and it is shown that this can occur only if the UV pump lines are not strongly self-shielded.

  3. Calibration of H-alpha/H-beta Indexes for Emission Line Objects

    NASA Astrophysics Data System (ADS)

    Hintz, Eric G.; Joner, Michael D.

    2016-01-01

    In Joner and Hintz (2015) they report on a standard star system for calibration of H-alpha and H-beta observations. This work was based on data obtained with the Dominion Astrophysical Observatory 1.2-m telescope. As part of the data acquisition for that project, a large number of emission line objects were also observed. We will report on the preliminary results for the emission line data set. This will include a comparison of equivalent width measurements of each line with the matching index. We will also examine the relation between the absorption line objects previously published and the emission line objects, along with a discussion of the transition point. Object types included are Be stars, high mass x-ray binaries, one low mass x-ray binary, Herbig Ae/Be stars, pre-main sequence stars, T Tauri stars, young stellar objects, and one BY Draconis star. Some of these objects come from Cygnus OB-2, NGC 659, NGC 663, NGC 869 and NGC 884.

  4. A Calibrated H-alpha Index to Monitor Emission Line Objects

    NASA Astrophysics Data System (ADS)

    Hintz, Eric G.; Joner, M. D.

    2013-06-01

    Over an 8 year period we have developed a calibrated H-alpha index, similar to the more traditional H-beta index, based on spectrophotometric observations (Joner & Hintz, 2013) from the DAO 1.2-m Telescope. While developing the calibration for this filter set we also obtained spectra of a number of emission line systems such as high mass x-ray binaries (HMXB), Be stars, and young stellar objects. From this work we find that the main sequence stars fill a very tight relation in the H-alpha/H-beta plane and that the emission line objects are easily detected. We will present the overall location of these emission line objects. We will also present the changes experiences by these objects over the course of the years of the project.

  5. Photoionization Models of the H_2 Emission of the Narrow Line Region of AGNs

    NASA Astrophysics Data System (ADS)

    Aleman, I.; Gruenwald, R.

    2011-05-01

    The excitation mechanism of the narrow line region (NLR) of AGNs is still an open question. Excitation by UV radiation from O and B stars, x-rays from the central black hole, shock from supernovae or jets, or a combination of these mechanisms have been suggested. In the present work, we use photoionization models to study the excitation mechanisms of the H_2 infrared emission lines in the NLR. In the literature, analyzes of the H_2 emission have been done assuming that the molecules is present only in neutral regions (photodissociation regions, x-ray-dominated regions, or shocks; Veilleux et al. 1997, Krabbe et al. 2000, Rigopoulou et al. 2002, Rodriguez-Ardila et al. 2004, 2005, and Davies et al. 2005). However, they are not conclusive. In previous work (Aleman & Gruenwald 2004, 2011), we show that the H_2 emission from the ionized region of PNe can be significant for planetary nebulae (PNe) with hot central stars (T⋆ > 150000 K). Such stars produce copious amounts of high energy photons, which create an extended partially ionized region that favors the H_2 survival. The conditions in the NLR are similar to those in PNe with hot central stars, so we can expect that the H_2 emission might also be important. We obtain and analyze a grid of photoionization models for different NRL parameters. We study the resulting H_2 density and emission, as well as, the formation, destruction, excitation, and de-excitation mechanisms. The higher values observed for the H_2 1-0 S(1)/Brγ ratio cannot be reproduced by our models. The calculated ratios are between 10^-8 and 10^-1, while the observational ration can be as high as 10. The calculated ratio is strongly anti-correlated with the ionization parameter (U) and only models with U<10-3 result in ratios inside the observational range. We show that the NLR is an environment more hostile to the H_2 molecule than the ionized region of PNe. Another interesting result of our calculations is that the H_2 formation on grain surfaces

  6. Fluorescent H2 Emission Lines from the Reflection Nebula NGC 7023 Observed with IGRINS

    NASA Astrophysics Data System (ADS)

    Le, Huynh Anh N.; Pak, Soojong; Kaplan, Kyle; Mace, Gregory; Lee, Sungho; Pavel, Michael; Jeong, Ueejeong; Oh, Heeyoung; Lee, Hye-In; Chun, Moo-Young; Yuk, In-Soo; Pyo, Tae-Soo; Hwang, Narae; Kim, Kang-Min; Park, Chan; Sok Oh, Jae; Yu, Young Sam; Park, Byeong-Gon; Minh, Young Chol; Jaffe, Daniel T.

    2017-05-01

    We have analyzed the temperature, velocity, and density of H2 gas in NGC 7023 with a high-resolution near-infrared spectrum of the northwestern filament of the reflection nebula. By observing NGC 7023 in the H and K bands at R ≃ 45,000 with the Immersion GRating INfrared Spectrograph, we detected 68 H2 emission lines within the 1″ × 15″ slit. The diagnostic ratio of 2-1 S(1)/1-0 S(1) is 0.41-0.56. In addition, the estimated ortho-to-para ratio (OPR) is 1.63-1.82, indicating that the H2 emission transitions in the observed region arise mostly from gas excited by UV fluorescence. Gradients in the temperature, velocity, and OPR within the observed area imply motion of the photodissociation region (PDR) relative to the molecular cloud. In addition, we derive the column density of H2 from the observed emission lines and compare these results with PDR models in the literature covering a range of densities and incident UV field intensities. The notable difference between PDR model predictions and the observed data, in high rotational J levels of ν = 1, is that the predicted formation temperature for newly formed H2 should be lower than that of the model predictions. To investigate the density distribution, we combine pixels in 1″ × 1″ areas and derive the density distribution at the 0.002 pc scale. The derived gradient of density suggests that NGC 7023 has a clumpy structure, including a high clump density of ˜105 cm-3 with a size smaller than ˜5 × 10-3 pc embedded in lower-density regions of 103-104 cm-3.

  7. Fluorescent H{sub 2} Emission Lines from the Reflection Nebula NGC 7023 Observed with IGRINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Huynh Anh N.; Pak, Soojong; Lee, Hye-In

    We have analyzed the temperature, velocity, and density of H{sub 2} gas in NGC 7023 with a high-resolution near-infrared spectrum of the northwestern filament of the reflection nebula. By observing NGC 7023 in the H and K bands at R ≃ 45,000 with the Immersion GRating INfrared Spectrograph, we detected 68 H{sub 2} emission lines within the 1″ × 15″ slit. The diagnostic ratio of 2-1 S(1)/1-0 S(1) is 0.41−0.56. In addition, the estimated ortho-to-para ratio (OPR) is 1.63−1.82, indicating that the H{sub 2} emission transitions in the observed region arise mostly from gas excited by UV fluorescence. Gradients inmore » the temperature, velocity, and OPR within the observed area imply motion of the photodissociation region (PDR) relative to the molecular cloud. In addition, we derive the column density of H{sub 2} from the observed emission lines and compare these results with PDR models in the literature covering a range of densities and incident UV field intensities. The notable difference between PDR model predictions and the observed data, in high rotational J levels of ν = 1, is that the predicted formation temperature for newly formed H{sub 2} should be lower than that of the model predictions. To investigate the density distribution, we combine pixels in 1″ × 1″ areas and derive the density distribution at the 0.002 pc scale. The derived gradient of density suggests that NGC 7023 has a clumpy structure, including a high clump density of ∼10{sup 5} cm{sup −3} with a size smaller than ∼5 × 10{sup −3} pc embedded in lower-density regions of 10{sup 3}–10{sup 4} cm{sup −3}.« less

  8. Interstellar absorption in the Mg II resonance line k2 and h2 emissions

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1981-01-01

    High-resolution (0.2 A) IUE spectra for the long wavelength range (1800-3000 A) have been studied. It is shown that narrow interstellar Mg II lines are seen in the center of the k2 and h2 emissions from nearby stars with large rotational velocities. For all observed stars, the radial velocity of the central k3 absorption component in the rest system of the star is strongly correlated with the mirror image of the radial velocity of the stars; this shows that a major fraction if not all of the k3 absorption is due to interstellar absorption in the solar neighborhood. The violet to red asymmetry of the k2 emission also correlates with the radial velocities of the star; this shows that the shift of k3 is due to the velocity shift of the local interstellar cloud with respect to the star.

  9. PDR MODEL MAPPING OF OBSCURED H{sub 2} EMISSION AND THE LINE-OF-SIGHT STRUCTURE OF M17-SW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffer, Y.; Wolfire, M. G.

    2013-09-01

    We observed H{sub 2} line emission with Spitzer-IRS toward M17-SW and modeled the data with our photon-dominated region (PDR) code. Derived gas density values of up to few times 10{sup 7} cm{sup -3} indicate that H{sub 2} emission originates in high-density clumps. We discover that the PDR code can be utilized to map the amount of intervening extinction obscuring the H{sub 2} emission layers, and thus we obtain the radial profile of A{sub V} relative to the central ionizing cluster NGC 6618. The extinction has a positive radial gradient, varying between 15-47 mag over the projected distance of 0.9-2.5 pcmore » from the primary ionizer, CEN 1. These high extinction values are in good agreement with previous studies of A{sub V} toward stellar targets in M17-SW. The ratio of data to PDR model values is used to infer the global line-of-sight structure of the PDR surface, which is revealed to resemble a concave surface relative to NGC 6618. Such a configuration confirms that this PDR can be described as a bowl-shaped boundary of the central H II region in M17. The derived structure and physical conditions are important for interpreting the fine-structure and rotational line emission from the PDR.« less

  10. Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z 2-4

    NASA Astrophysics Data System (ADS)

    Yang, C.; Omont, A.; Beelen, A.; González-Alfonso, E.; Neri, R.; Gao, Y.; van der Werf, P.; Weiß, A.; Gavazzi, R.; Falstad, N.; Baker, A. J.; Bussmann, R. S.; Cooray, A.; Cox, P.; Dannerbauer, H.; Dye, S.; Guélin, M.; Ivison, R.; Krips, M.; Lehnert, M.; Michałowski, M. J.; Riechers, D. A.; Spaans, M.; Valiante, E.

    2016-11-01

    We report rest-frame submillimeter H2O emission line observations of 11 ultra- or hyper-luminous infrared galaxies (ULIRGs or HyLIRGs) at z 2-4 selected among the brightest lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Using the IRAM NOrthern Extended Millimeter Array (NOEMA), we have detected 14 new H2O emission lines. These include five 321-312ortho-H2O lines (Eup/k = 305 K) and nine J = 2 para-H2O lines, either 202-111(Eup/k = 101 K) or 211-202(Eup/k = 137 K). The apparent luminosities of the H2O emission lines are μLH2O 6-21 × 108 L⊙ (3 <μ< 15, where μ is the lens magnification factor), with velocity-integrated line fluxes ranging from 4-15 Jy km s-1. We have also observed CO emission lines using EMIR on the IRAM 30 m telescope in seven sources (most of those have not yet had their CO emission lines observed). The velocity widths for CO and H2O lines are found to be similar, generally within 1σ errors in the same source. With almost comparable integrated flux densities to those of the high-J CO line (ratios range from 0.4 to 1.1), H2O is found to be among the strongest molecular emitters in high-redshift Hy/ULIRGs. We also confirm our previously found correlation between luminosity of H2O (LH2O) and infrared (LIR) that LH2O LIR1.1-1.2, with ournew detections. This correlation could be explained by a dominant role of far-infrared pumping in the H2O excitation. Modelling reveals that the far-infrared radiation fields have warm dust temperature Twarm 45-75 K, H2O column density per unit velocity interval NH2O /ΔV ≳ 0.3 × 1015 cm-2 km-1 s and 100 μm continuum opacity τ100> 1 (optically thick), indicating that H2O is likely to trace highly obscured warm dense gas. However, further observations of J ≥ 4 H2O lines are needed to better constrain the continuum optical depth and other physical conditions of the molecular gas and dust. We have also detected H2O+ emission in three sources. A tight correlation

  11. H2 emission as a tracer of molecular hydrogen: Large-scale observations of Orion

    NASA Technical Reports Server (NTRS)

    Luhman, M. L.; Jaffe, D. T.; Keller, L. D.; Pak, Soojong

    1994-01-01

    We have detected extremely extended (greater than 1.5 deg, or 12 pc) near-infrared H2 line emission from the Orion A molecular cloud. We have mapped emission in the 1.601 micrometer(s) upsilon = 6 - 4 Q(1) and 2.121 micrometer(s) upsilon = 1 - 0 S(1) lines of H2 along a approx. 2 deg R.A. cut and from a 6' x 6' region near theta(sup 1) Ori C. The surface brightness of the extended H2 line emission is 10(exp -6) to 10(exp -5) ergs/s/sq. cm/sr. Based on the distribution and relative strengths of the H2 lines, we conclude that UV fluorescene is most likely the dominant H2 emission mechanism in the outer parts of the Orion cloud. Shock-heated gas does not make a major contribution to the H2 emission in this region. The fluorescent component of the total H2 upsilon = 1 - 0 S(1) luminosity from Orion is 30-40 solar luminosity. Molecular hydrogen excited by UV radiation from nearby OB stars contributes 98%-99% of the global H2 line emission from the Orion molecular cloud, even though this cloud has a powerful shock-excited H2 source in its core. The ability to detect large-scale H2 directly opens up new possibilities for the study of molecular clouds.

  12. 2D-model of oxygen emissions lines for Europa

    NASA Astrophysics Data System (ADS)

    Cessateur, Gaël; Barthelemy, Mathieu; Lilensten, Jean; Rubin, Martin; Maggiolo, Romain; De Keyser, Johan

    2017-04-01

    The Jovian moon Europa is an interesting case study as an archetype for icy satellites, and will be one of the primary targets of the ESA JUICE mission which should be launched in 2022. Hosting a thin neutral gas atmosphere mainly composed of O2 and H2O, Europa can be studied by its airglow and dayglow emissions. A 1D photochemistry model has first been developed to assess the impact of the solar UV flux on the visible emission, such as the red and green oxygen lines (Cessateur et al. 2016). For limb polar viewing, red line emissions can reach a few hundreds of Rayleigh close to the surface. The impact of the precipitating electrons has also been studied. The density and temperature of the electrons are first derived from the multifluid MHD model from Rubin et al. (2015). A 2D emission model has thus been developed to estimate the airglow emissions. When electrons are the major source of the visible emissions, the solar UV flux can be responsible for up to 15% of those emissions for some specific line of sight. Oxygen emission lines in the UV have also been considered, such as 130.5 and 135.6 nm. For the latter, we did estimate some significant line emissions reaching 700 Rayleigh for a polar limb viewing angle close to the surface. Oxygen emission lines are significant (higher than 10 R) for altitudes lower than 100 km for all lines, except for the red line emissions where emissions are still above 10 R up to 200 km from the surface. A sensitivity study has also been performed in order to assess the impact of the uncertainties relative to the dissociative-excitation cross sections. Cessateur G, Barthelemy M & Peinke I. Photochemistry-emission coupled model for Europa and Ganymede. J. Space Weather Space Clim., 6, A17, 2016 Rubin, M., et al. Self-consistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphere, J. Geophys. Res. Space Physics, 120, 3503-3524, 2015

  13. The Wardle Instability in Interstellar Shocks. 2; Gas Temperture and Line Emission

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Stone, James M.

    1997-01-01

    We have modeled the gas temperature structure in unstable C-type shocks and obtained predictions for the resultant CO and H2 rotational line emissions, using numerical simulations of the Wardle instability. Our model for the thermal balance of the gas includes ion-neutral frictional heating; compressional heating; radiative cooling due to rotational and ro-vibrational transitions of the molecules CO, H2O, and H2; and gas-grain collisional cooling. We obtained results for the gas temperature distribution in-and H2 and CO line emission from-shocks of neutral Alfvenic Mach number 10 and velocity 20 or 40 km/ s in which the Wardle instability has saturated. Both two- and three-dimensional simulations were carried out for shocks in which the preshock magnetic field is perpendicular to the shock propagation direction, and a two-dimensional simulation was carried out for the case in which the magnetic field is obliquely oriented with respect to the shock propagation direction. Although the Wardle instability profoundly affects the density structure behind C-type shocks, most of the shock-excited molecular line emission is generated upstream of the region where the strongest effects of the instability are felt. Thus the Wardle instability has a relatively small effect on the overall gas temperature distribution in-and the emission-line spectrum from-C-type shocks, at least for the cases that we have considered. In none of the cases that we have considered thus far did any of the predicted emission-line luminosities change by more than a factor of 2.5, and in most cases the effects of instability were significantly smaller than that. Slightly larger changes in the line luminosities seem likely for three-dimensional simulations of oblique shocks, although such simulations have yet to be carried out and lie beyond the scope of this study. Given the typical uncertainties that are always present when model predictions are compared with real astronomical data, we conclude that

  14. Thermal Pressure in Diffuse H2 Gas Measured by Herschel [C II] Emission and FUSE UV H2 Absorption

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.

    2017-04-01

    UV absorption studies with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite have made important observations of H2 molecular gas in Galactic interstellar translucent and diffuse clouds. Observations of the 158 μm [C II] fine-structure line with Herschel trace the same H2 molecular gas in emission. We present [C II] observations along 27 lines of sight (LOSs) toward target stars of which 25 have FUSE H2 UV absorption. Two stars have only HST STIS C II λ2325 absorption data. We detect [C II] 158 μm emission features in all but one target LOS. For three target LOSs that are close to the Galactic plane, | {\\text{}}b| < 1°, we also present position-velocity maps of [C II] emission observed by Herschel Heterodyne Instrument in the Far Infrared (HIFI) in on-the-fly spectral-line mapping. We use the velocity-resolved [C II] spectra observed by the HIFI instrument toward the target LOSs observed by FUSE to identify [C II] velocity components associated with the H2 clouds. We analyze the observed velocity integrated [C II] spectral-line intensities in terms of the densities and thermal pressures in the H2 gas using the H2 column densities and temperatures measured by the UV absorption data. We present the H2 gas densities and thermal pressures for 26 target LOSs and from the [C II] intensities derive a mean thermal pressure in the range of ˜6100-7700 K cm-3 in diffuse H2 clouds. We discuss the thermal pressures and densities toward 14 targets, comparing them to results obtained using the UV absorption data for two other tracers C I and CO. Our results demonstrate the richness of the far-IR [C II] spectral data which is a valuable complement to the UV H2 absorption data for studying diffuse H2 molecular clouds. While the UV absorption is restricted to the directions of the target star, far-IR [C II] line emission offers an opportunity to employ velocity-resolved spectral-line mapping capability to study in detail the clouds’ spatial and velocity structures.

  15. Spatially resolved H2 emission from the disk around T Tau N

    NASA Astrophysics Data System (ADS)

    Gustafsson, M.; Labadie, L.; Herbst, T. M.; Kasper, M.

    2008-09-01

    Context: Molecular hydrogen is the main constituent of circumstellar disks and could be an important tracer for the evolution and structure of such disks. So far, H2 has only been detected in a few disks and only through spectroscopic observations, resulting in a limited knowledge of the spatial distribution of the H2 emitting gas. Aims: We report the detection of quiescent H2 emission in a spatially resolved ring-like structure within 100 AU of T Tau N. We present evidence to show that the emission most likely arises from shocks in the atmosphere of a nearly face-on disk around T Tau N. Methods: Using high spatial resolution 3D spectroscopic K-band data, we trace the spatial distribution of several H2 NIR rovibrational lines in the vicinity of T Tau N. We examine the structure of the circumstellar material around the star through SED modeling. Then, we use models of shocks and UV+X-ray irradiation to reproduce the H2 line flux and line ratios in order to test how the H2 is excited. Results: We detect weak H2 emission from the v=1{-}0 S(0), S(1), Q(1) lines and the v=2{-}1 S(1) line in a ring-like structure around T Tau N between 0.1 arcsec ( 15 AU) and 0.7 arcsec ( 100 AU) from the star. The v=1{-}0 S(0) and v=2{-}1 S(1) lines are detected only in the outer parts of the ring structure. Closer to the star, the strong continuum limits our sensitivity to these lines. The total flux of the v=1{-}0 S(1) line is 1.8 × 10-14 erg s-1 cm-2, similar to previous measurements of H2 in circumstellar disks. The velocity of the H2 emitting gas around T Tau N is consistent with the rest velocity of the star, and the H2 does not seem to be part of a collimated outflow. Both shocks impinging on the surface of a disk and irradiation of a disk by UV-photons and X-rays from the central star are plausible candidates for the H2 excitation mechanism. However, irradiation should not create a large degree of excitation at radii larger than 20 AU. Most likely the H2 emission arises in the

  16. Charge Exchange X-Ray Emission due to Highly Charged Ion Collisions with H, He, and H2: Line Ratios for Heliospheric and Interstellar Applications

    NASA Astrophysics Data System (ADS)

    Cumbee, R. S.; Mullen, P. D.; Lyons, D.; Shelton, R. L.; Fogle, M.; Schultz, D. R.; Stancil, P. C.

    2018-01-01

    The fundamental collisional process of charge exchange (CX) has been established as a primary source of X-ray emission from the heliosphere, planetary exospheres, and supernova remnants. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly excited, high-charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays. To provide reliable CX-induced X-ray spectral models to realistically simulate these environments, line ratios and spectra are computed using theoretical CX cross sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, molecular-orbital close-coupling, and classical trajectory Monte Carlo methods for various collisional velocities relevant to astrophysics. X-ray spectra were computed for collisions of bare and H-like C to Al ions with H, He, and H2 with results compared to available experimental data. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant and the heliosphere are shown as examples with ion velocity dependence.

  17. Emission-line diagnostics of nearby H II regions including interacting binary populations

    NASA Astrophysics Data System (ADS)

    Xiao, Lin; Stanway, Elizabeth R.; Eldridge, J. J.

    2018-06-01

    We present numerical models of the nebular emission from H II regions around young stellar populations over a range of compositions and ages. The synthetic stellar populations include both single stars and interacting binary stars. We compare these models to the observed emission lines of 254 H II regions of 13 nearby spiral galaxies and 21 dwarf galaxies drawn from archival data. The models are created using the combination of the BPASS (Binary Population and Spectral Synthesis) code with the photoionization code CLOUDY to study the differences caused by the inclusion of interacting binary stars in the stellar population. We obtain agreement with the observed emission line ratios from the nearby star-forming regions and discuss the effect of binary-star evolution pathways on the nebular ionization of H II regions. We find that at population ages above 10 Myr, single-star models rapidly decrease in flux and ionization strength, while binary-star models still produce strong flux and high [O III]/H β ratios. Our models can reproduce the metallicity of H II regions from spiral galaxies, but we find higher metallicities than previously estimated for the H II regions from dwarf galaxies. Comparing the equivalent width of H β emission between models and observations, we find that accounting for ionizing photon leakage can affect age estimates for H II regions. When it is included, the typical age derived for H II regions is 5 Myr from single-star models, and up to 10 Myr with binary-star models. This is due to the existence of binary-star evolution pathways, which produce more hot Wolf-Rayet and helium stars at older ages. For future reference, we calculate new BPASS binary maximal starburst lines as a function of metallicity, and for the total model population, and present these in Appendix A.

  18. HIFI Spectroscopy of H2O Submillimeter Lines in Nuclei of Actively Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Liu, L.; Weiß, A.; Perez-Beaupuits, J. P.; Güsten, R.; Liu, D.; Gao, Y.; Menten, K. M.; van der Werf, P.; Israel, F. P.; Harris, A.; Martin-Pintado, J.; Requena-Torres, M. A.; Stutzki, J.

    2017-09-01

    We present a systematic survey of multiple velocity-resolved H2O spectra using Herschel/Heterodyne Instrument for the Far Infrared (HIFI) toward nine nearby actively star-forming galaxies. The ground-state and low-excitation lines (E up ≤ 130 K) show profiles with emission and absorption blended together, while absorption-free medium-excitation lines (130 K ≤ E up ≤ 350 K) typically display line shapes similar to CO. We analyze the HIFI observation together with archival SPIRE/PACS H2O data using a state-of-the-art 3D radiative transfer code that includes the interaction between continuum and line emission. The water excitation models are combined with information on the dust and CO spectral line energy distribution to determine the physical structure of the interstellar medium (ISM). We identify two ISM components that are common to all galaxies: a warm ({T}{dust}˜ 40{--}70 K), dense (n({{H}})˜ {10}5{--}{10}6 {{cm}}-3) phase that dominates the emission of medium-excitation H2O lines. This gas phase also dominates the far-IR emission and the CO intensities for {J}{up}> 8. In addition, a cold ({T}{dust}˜ 20{--}30 K), dense (n({{H}})˜ {10}4{--}{10}5 {{cm}}-3), more extended phase is present. It outputs the emission in the low-excitation H2O lines and typically also produces the prominent line absorption features. For the two ULIRGs in our sample (Arp 220 and Mrk 231) an even hotter and more compact (R s ≤ 100 pc) region is present, which is possibly linked to AGN activity. We find that collisions dominate the water excitation in the cold gas and for lines with {E}{up}≤slant 300 K and {E}{up}≤slant 800 K in the warm and hot component, respectively. Higher-energy levels are mainly excited by IR pumping.

  19. Line Profile of H Lyman (alpha) from Dissociative Excitation of H2 with Application to Jupiter

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Kasnik, Isik; Ahmed, Syed M.; Clarke, John T.

    1995-01-01

    Observations of the H Lyman(alpha) (Ly-alpha) emission from Jupiter have shown pronounced emissions, exceeding solar fluorescence, in the polar aurora and equatorial "bulge" regions. The H Ly-alpha line profiles from these regions are broader than expected, indicating high-energy processes producing fast atoms as determined from the observed Doppler broadening. Toward understanding that process a high-resolution ultraviolet (UV) spectrometer was employed for the first measurement of the H Ly-alpha emission Doppler profile from dissociative excitation of H2 by electron impact. Analysis of the deconvolved line profile reveals the existence of a narrow central peak of 40 +/- 4 mA full width at half maximum and a broad pedestal base about 240 mA wide. Two distinct dissociation mechanisms account for this Doppler structure. Slow H(2p) atoms characterized by a distribution function with peak energy near 80 meV produce the peak profile, which is nearly independent of the electron impact energy. Slow H(2p) atoms arise from direct dissociation and predissociation of singly excited states which have a dissociation limit of 14.68 eV. The wings of H Ly-alpha arise from dissociative excitation of a series of doubly excited states which cross the Franck-Condon region between 23 and 40 eV. The profile of the wings is dependent on the electron impact energy, and the distribution function of fast H(2p) atoms is therefore dependent on the electron impact energy. The fast atom kinetic energy distribution at 100 eV electron impact energy spans the energy range from 1 to 10 eV with a peak near 4 eV. For impact energies above 23 eV the fast atoms contribute to a slightly asymmetric structure of the line profile. The absolute cross sections of the H Ly-alpha line peak and wings were measured over the range from 0 to 200 eV. Analytic model coefficients are given for the measured cross sections which can be applied to planetary atmosphere auroral and dayglow calculations. The dissociative

  20. H2 emission from non-stationary magnetized bow shocks

    NASA Astrophysics Data System (ADS)

    Tram, L. N.; Lesaffre, P.; Cabrit, S.; Gusdorf, A.; Nhung, P. T.

    2018-01-01

    When a fast moving star or a protostellar jet hits an interstellar cloud, the surrounding gas gets heated and illuminated: a bow shock is born that delineates the wake of the impact. In such a process, the new molecules that are formed and excited in the gas phase become accessible to observations. In this paper, we revisit models of H2 emission in these bow shocks. We approximate the bow shock by a statistical distribution of planar shocks computed with a magnetized shock model. We improve on previous works by considering arbitrary bow shapes, a finite irradiation field and by including the age effect of non-stationary C-type shocks on the excitation diagram and line profiles of H2. We also examine the dependence of the line profiles on the shock velocity and on the viewing angle: we suggest that spectrally resolved observations may greatly help to probe the dynamics inside the bow shock. For reasonable bow shapes, our analysis shows that low-velocity shocks largely contribute to H2 excitation diagram. This can result in an observational bias towards low velocities when planar shocks are used to interpret H2 emission from an unresolved bow. We also report a large magnetization bias when the velocity of the planar model is set independently. Our 3D models reproduce excitation diagrams in BHR 71 and Orion bow shocks better than previous 1D models. Our 3D model is also able to reproduce the shape and width of the broad H2 1-0S(1) line profile in an Orion bow shock (Brand et al. 1989).

  1. Spectro-imaging observations of Jupiter's 2-μm auroral emission. I. H 3+ distribution and temperature

    NASA Astrophysics Data System (ADS)

    Raynaud, E.; Lellouch, E.; Maillard, J.-P.; Gladstone, G. R.; Waite, J. H.; Bézard, B.; Drossart, P.; Fouchet, T.

    2004-09-01

    We report on spectro-imaging infrared observations of Jupiter's auroral zones, acquired in October 1999 and October 2000 with the FTS/BEAR instrument at the Canada-France-Hawaii Telescope. The use of narrow-band filters at 2.09 and 2.12 μm, combined with high spectral resolution (0.2 cm -1), allowed us to map emission from the H 2S1(1) quadrupole line and from several H 3+ lines. The H 2 and H 3+ emission appears to be morphologically different, especially in the north, where the latter notably exhibits a "hot spot" near 150°-170° System III longitude. This hot spot coincides in position with the region of increased and variable hydrocarbon, FUV and X-ray emission, but is not seen in the more uniform H 2S1(1) emission. We also present the first images of the H 2 emission in the southern polar region. The spectra include a total of 14 H 3+ lines, including two hot lines from the 3 ν2- ν2 band, detected on Jupiter for the first time. They can be used to determine H 3+ column densities, rotational ( Trot) and vibrational ( Tvib) temperatures. We find the mean Tvib of the v2=3 state to be lower (960±50 K) than the mean Trot in v2=2 (1170±75 K), indicating an underpopulation of the v2=3 level with respect to local thermodynamical equilibrium. Rotational temperatures and associated column densities are generally higher and lower, respectively, than inferred previously from ν2 observations. This is a likely consequence of a large positive temperature gradient in the sub-microbar auroral atmosphere. While the signal-to-noise is not sufficient to take full advantage of the 2-D capabilities of the observations, the search for correlations between line intensities, Tvib and column densities, indicates that variations in line intensities are mostly due to correlated variations in the H 3+ column densities. The thermostatic role played by H 3+ at ionospheric levels may provide an explanation. The exception is the northern "hot spot," which exhibits a Tvib about 250 K

  2. Searching for H2 emission from protoplanetary disks using near- and mid-infrared high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Carmona, A.; van den Ancker, M. E.; Henning, Th.; Pavlyuchenkov, Ya.; Dullemond, C. P.; Goto, M.; Fedele, D.; Stecklum, B.; Thi, W.-F.; Bouwman, J.; Waters, L. B. F. M.

    2008-05-01

    The mass and dynamics of protoplanetary disks are dominated by molecular hydrogen (H2). However, observationally very little is known about the H2. In this paper, we discuss two projects aimed to constrain the properties of H2 in the disk's planet forming region (R<50AU). First, we present a sensitive survey for pure-rotational H2 emission at 12.278 and 17.035 μm in a sample of nearby Herbig Ae/Be and T Tauri stars using VISIR, ESO's VLT high-resolution mid-infrared spectrograph. Second, we report on a search for H2 ro-vibrational emission at 2.1228, 2.2233 and 2.2477 μm in the classical T Tauri star LkHα 264 and the debris disk 49 Cet employing CRIRES, ESO's VLT high-resolution near-infrared spectrograph. VISIR project: none of the sources show H2 mid-IR emission. The observed disks contain less than a few tenths of MJupiter of optically thin H2 at 150 K, and less than a few MEarth at T>300 K. % and higher T. Our non-detections are consistent with the low flux levels expected from the small amount of H2 gas in the surface layer of a Chiang and Goldreich (1997) Herbig Ae two-layer disk model. In our sources the H2 and dust in the surface layer have not significantly departed from thermal coupling (Tgas/Tdust<2) and the gas-to-dust ratio in the surface layer is very likely <1000. CRIRES project: The H2 lines at 2.1218 μm and 2.2233 μm are detected in LkHα 264. An upper limit on the 2.2477 μm H2 line flux in LkHα 264 is derived. 49 Cet does not exhibit H2 emission in any of observed lines. There are a few MMoon of optically thin hot H2 in the inner disk (0.1 AU) of LkHα 264, and less than a tenth of a MMoon of hot H2 in the inner disk of 49 Cet. The shape of the 1 0 S(0) line indicates that LkHα disk is close to face-on (i<35o). The measured 1 0 S(0)/1 0 S(1) and 2 1 S(1)/1 0 S(1) line ratios in LkHα 264 indicate that the H2 is thermally excited at T<1500 K. The lack of H2 emission in the NIR spectra of 49 Cet and the absence of Hα emission suggest that

  3. Ultraviolet continuum and H2 fluorescent emission in Herbig-Haro objects 43 and 47

    NASA Technical Reports Server (NTRS)

    Schwartz, R. D.

    1983-01-01

    IUE short wavelength spectra are presented for the low excitation Herbig-Haro objects HH 43 and HH 47. In the former, several emission lines in the Lyman band of H2 from an excited state are observed which are due to fluorescence from the H Ly-alpha line pumping a lower state (that is in turn excited by a low-velocity shock wave). No evidence of highly ionized gas emission is found in the UV spectra, and both objects exhibit a UV continuum which peaks in the vicinity of 1500 A and is probably caused by H two-photon emission enhanced by low velocity shock collisional excitation.

  4. Study of Opacity Effects on Emission Lines at EXTRAP T2R RFP

    NASA Astrophysics Data System (ADS)

    Stancalie, Viorica; Rachlew, Elisabeth

    We have investigated the influence of opacity on hydrogen (H-α and Ly-β) and Li-like oxygen emission lines from the EXTRAP T2R reversed field pinch. We used the Atomic Data Analysis System (AzDAS) based on the escape factor approximation for radiative transfer to calculate metastable and excited population densities via a collisional-radiative model. Population escape factor, emergent escape factor and modified line profiles are plotted vs. optical depth. The simulated emission line ratios in the density/temperature plane are in good agreement with experimental data for electron density and temperature measurements.

  5. Extended Structures of Planetary Nebulae Detected in H2 Emission

    NASA Astrophysics Data System (ADS)

    Fang, Xuan; Zhang, Yong; Kwok, Sun; Hsia, Chih-Hao; Chau, Wayne; Ramos-Larios, Gerardo; Guerrero, Martín A.

    2018-06-01

    We present narrowband near-infrared images of a sample of 11 Galactic planetary nebulae (PNe) obtained in the H2 2.122 μm and Brγ 2.166 μm emission lines and the K c 2.218 μm continuum. These images were collected with the Wide-field Infrared Camera on the 3.6 m Canada–France–Hawaii Telescope (CFHT); their unprecedented depth and wide field of view allow us to find extended nebular structures in H2 emission in several PNe, some of these being the first detection. The nebular morphologies in H2 emission are studied in analogy with the optical images, and indication of stellar wind interactions is discussed. In particular, the complete structure of the highly asymmetric halo in NGC 6772 is witnessed in H2, which strongly suggests interaction with the interstellar medium. Our sample confirms the general correlation between H2 emission and the bipolarity of PNe. The knotty or filamentary fine structures of the H2 gas are resolved in the inner regions of several ring-like PNe, also confirming the previous argument that H2 emission mostly comes from knots or clumps embedded within fully ionized material at the equatorial regions. Moreover, the H2 image of the butterfly-shaped Sh 1-89, after removal of field stars, clearly reveals a tilted ring structure at the waist. These high-quality CFHT images justify follow-up detailed morphokinematic studies that are desired in order to deduce the true physical structures of a few PNe in the sample. Based on observations obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, and France, at the Canada–France–Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  6. Predicting the Redshift 2 H-Alpha Luminosity Function Using [OIII] Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Mehta, Vihang; Scarlata, Claudia; Colbert, James W.; Dai, Y. S.; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry I.; hide

    2015-01-01

    Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure Baryonic Acoustic Oscillations (BAOs) in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the WFC3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of H-alpha emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8 - 1.65 micrometers wavelength range and allowing the detection of H-alpha emitters up to z approximately equal to 1.5 and [OIII] emitters to z approximately equal to 2.3. We derive the H-alpha-[OIII] bivariate line luminosity function for WISP galaxies at z approximately equal to 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurement, and demonstrate how it can be used to derive the H-alpha luminosity function from exclusively fitting [OIII] data. Using the z approximately equal to 2 [OIII] line luminosity function, and assuming that the relation between H-alpha and [OIII] luminosity does not change significantly over the redshift range, we predict the H-alpha number counts at z approximately equal to 2 - the upper end of the redshift range of interest for the future surveys. For the redshift range 0.7 less than z less than 2, we expect approximately 3000 galaxies per sq deg for a flux limit of 3 x 10(exp -16) ergs per sec per sq cm (the proposed depth of Euclid galaxy redshift survey) and approximately 20,000 galaxies per sq deg for a flux limit of approximately 10(exp -16) ergs per sec per sq cm (the baseline depth of WFIRST galaxy redshift survey).

  7. Observations of emission lines in M supergiants

    NASA Technical Reports Server (NTRS)

    Lambert, D. L.

    1979-01-01

    Copernicus observations of Mg 2 h and k emission lines from M giants and supergiants are described. Supergiants with extensive circumstellar gas shells show an asymmetric k line. The asymmetry is ascribed to superimposed lines of Fe 1 and Mn 1. The Mg 2 line width fit the Wilson-Bappu relation derived from observations of G and K Stars. Results of correlated ground-based observations include (1) the discovery of K 1 fluorescent emission from the Betelgeuse shell; (2) extimates of the mass-loss rates; and (3) the proposal that silicate dust grains must account for the major fraction of the Si atoms in the Betelgeuse shell.

  8. Candidate Water Vapor Lines to Locate the H2O Snowline through High-dispersion Spectroscopic Observations. III. Submillimeter H2 16O and H2 18O Lines

    NASA Astrophysics Data System (ADS)

    Notsu, Shota; Nomura, Hideko; Walsh, Catherine; Honda, Mitsuhiko; Hirota, Tomoya; Akiyama, Eiji; Millar, T. J.

    2018-03-01

    In this paper, we extend the results presented in our former papers on using ortho-{{{H}}}2{}16{{O}} line profiles to constrain the location of the H2O snowline in T Tauri and Herbig Ae disks, to include submillimeter para-{{{H}}}2{}16{{O}} and ortho- and para-{{{H}}}2{}18{{O}} lines. Since the number densities of the ortho- and para-{{{H}}}2{}18{{O}} molecules are about 560 times smaller than their 16O analogs, they trace deeper into the disk than the ortho-{{{H}}}2{}16{{O}} lines (down to z = 0, i.e., the midplane). Thus these {{{H}}}2{}18{{O}} lines are potentially better probes of the position of the H2O snowline at the disk midplane, depending on the dust optical depth. The values of the Einstein A coefficients of submillimeter candidate water lines tend to be lower (typically <10‑4 s‑1) than infrared candidate water lines. Thus in the submillimeter candidate water line cases, the local intensity from the outer optically thin region in the disk is around 104 times smaller than that in the infrared candidate water line cases. Therefore, in the submillimeter lines, especially {{{H}}}2{}18{{O}} and para-{{{H}}}2{}16{{O}} lines with relatively lower upper state energies (∼a few 100 K) can also locate the position of the H2O snowline. We also investigate the possibility of future observations with ALMA to identify the position of the water snowline. There are several candidate water lines that trace the hot water gas inside the H2O snowline in ALMA Bands 5–10.

  9. Detection of H-alpha emission in the hot white dwarf G191-B2B

    NASA Astrophysics Data System (ADS)

    Reid, Neill; Wegner, Gary

    1988-12-01

    High-resolution spectra of G191-B2B, the hottest known DA white dwarf were obtained which reveal emission in the core of the H-alpha line. The observations show little variation in the line profile over a period of four days, ruling out line-doubling in a close binary as an explanation. The observed emission cannot be due to a nearby red dwarf companion, while the absence of any spatially extended emission argues against either a planetary nebula remnant or local ionization of the interstellar medium. The determination of the systemic velocity, using the companion red dwarf G191-B2A, is 5 + or - 2 km/s and shows that both the H-alpha emission and the high-excitation species observed in the ultraviolet are redshifted by 19 + or - 3 km/s, suggesting a photospheric origin. The low redshift implies a mass of 0.45 solar mass for this hot white dwarf, although the uncertainties in the effective temperature and parallax permit masses in the range 0.29 to 0.60 solar mass.

  10. Ethylene line emission from the North Pole of Jupiter

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Espenak, F.; Romani, P.; Goldstein, J.

    1991-01-01

    A significant enhancement in infrared emission from hydrocarbon constituents of Jupiter's stratosphere was observed at a north polar hot spot (60 degrees latitude, 180 degrees longitude). A unique probe of this phenomena is ethylene (C2H4), which has not been observed previously from the ground. The profile of the emission line from ethylene at 951.742 cm-1, measured near the north pole of Jupiter, was analyzed to determine the morphology of the enhancement, the increase in C2H4 abundance and local temperature, as well as possible information on the altitude (pressure regions) where the increased emission is formed. Measurements were made using infrared heterodyne spectroscopy at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii in December 1989. At 181 degrees longitude a very strong emission line was seen, which corresponds to a 13-fold increase in C2H4 abundance or a 115K increase in temperature in the upper stratosphere, compared to values outside the hot spot. The hot spot was found to be localized to approx. 10 degrees in longitude; the line shape (width) implied that the enhanced emission originated very high in the stratosphere.

  11. Broad N2H+ Emission toward the Protostellar Shock L1157-B1

    NASA Astrophysics Data System (ADS)

    Codella, C.; Viti, S.; Ceccarelli, C.; Lefloch, B.; Benedettini, M.; Busquet, G.; Caselli, P.; Fontani, F.; Gómez-Ruiz, A.; Podio, L.; Vasta, M.

    2013-10-01

    We present the first detection of N2H+ toward a low-mass protostellar outflow, namely, the L1157-B1 shock, at ~0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30 m antenna. We observed emission at 93 GHz due to the J = 1-0 hyperfine lines. Analysis of this emission coupled with HIFI CHESS multiline CO observations leads to the conclusion that the observed N2H+(1-0) line originated from the dense (>=105 cm-3) gas associated with the large (20''-25'') cavities opened by the protostellar wind. We find an N2H+ column density of a few 1012 cm-2 corresponding to an abundance of (2-8) × 10-9. The N2H+ abundance can be matched by a model of quiescent gas evolved for more than 104 yr, i.e., for more than the shock kinematical age (sime2000 yr). Modeling of C-shocks confirms that the abundance of N2H+ is not increased by the passage of the shock. In summary, N2H+ is a fossil record of the pre-shock gas, formed when the density of the gas was around 104 cm-3, and then further compressed and accelerated by the shock.

  12. Optical spectrophotometry of Comet P/Giacobini-Zinner and emission profiles of H2O+

    NASA Technical Reports Server (NTRS)

    Strauss, M. A.; Mccarthy, P. J.; Spinrad, H.

    1986-01-01

    Two-dimensional CCD spectrograms were obtained of Comet P/Giacobini-Zinner (1984e) on five occasions between July and October 1985. Spatial emission profiles of H2O+ were extracted at 6198 angstroms (the strongest ionic line in the visible spectrum). This emission line traces the extent of the ion, or plasma, tail. The spectrographic slit was placed approximately along the trajectory of the ICE spacecraft on September 11, 1985; the resulting H2O+ profile has a full-width-half-maximum of about 5700 km, about three times that of the plasma density profile measured by ICE, and has a full-width-zero-intensity of about 30,000 km, very similar to the ICE values. H2O production rates for the comet are derived and compared with those of Comet P/Halley (1982i).

  13. Spectroscopy of an unusual emission line M star

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Greenstein, Jesse L.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    Moderate-resolution spectroscopy of an unusual late-type faint emission-line star, PC 0025 + 0047, is reported. A very strong (greater than 250 A equivalent width) an H-alpha emission line was detected by the present automated line search algorithm. The spectrum was found to have two unresolved emission lines (H-alpha and H-beta) near zero velocity, superposed on the absorption spectrum of a very red M dwarf which has strong K I, and relatively weak bands of TiO. From the weakness of the subordinate lines of Na I (8192 A) and other spectral features, it is inferred that it is definitely a cooler, and probably fainter, analog of LHS 2924. The strength of the emission lines indicates that PC 0025 + 0447 is very young and may be a fading predecessor brown drawf at an estimated M(bol) approaching 14m at a distance of about 60 pc.

  14. Broad line emission from iron K- and L-shell transitions in the active galaxy 1H 0707-495.

    PubMed

    Fabian, A C; Zoghbi, A; Ross, R R; Uttley, P; Gallo, L C; Brandt, W N; Blustin, A J; Boller, T; Caballero-Garcia, M D; Larsson, J; Miller, J M; Miniutti, G; Ponti, G; Reis, R C; Reynolds, C S; Tanaka, Y; Young, A J

    2009-05-28

    Since the 1995 discovery of the broad iron K-line emission from the Seyfert galaxy MCG-6-30-15 (ref. 1), broad iron K lines have been found in emission from several other Seyfert galaxies, from accreting stellar-mass black holes and even from accreting neutron stars. The iron K line is prominent in the reflection spectrum created by the hard-X-ray continuum irradiating dense accreting matter. Relativistic distortion of the line makes it sensitive to the strong gravity and spin of the black hole. The accompanying iron L-line emission should be detectable when the iron abundance is high. Here we report the presence of both iron K and iron L emission in the spectrum of the narrow-line Seyfert 1 galaxy 1H 0707-495. The bright iron L emission has enabled us to detect a reverberation lag of about 30 s between the direct X-ray continuum and its reflection from matter falling into the black hole. The observed reverberation timescale is comparable to the light-crossing time of the innermost radii around a supermassive black hole. The combination of spectral and timing data on 1H 0707-495 provides strong evidence that we are witnessing emission from matter within a gravitational radius, or a fraction of a light minute, from the event horizon of a rapidly spinning, massive black hole.

  15. Fabry-Perot Observations of [OI]6300, Hα, H-Beta, and NH2 Emissions from Comet Hyakutake C/1996B2

    NASA Astrophysics Data System (ADS)

    Scherb, F.; Roesler, F. L.; Tufte, S.; Haffner, M.

    1996-05-01

    During the period 16-23 March 1996, observations of Comet Hyakutake were carried out with the new WHAM facility at the University of Wisconsin Pine Bluff Observatory, near Madison. WHAM is a second-generation double-Fabry-Perot/CCD spectrometer that is more than ten times as efficient as our previous large-aperture Fabry-Perot instruments. Specifications of WHAM in the spectral mode are: a 1-degree field of view (FOV) on the sky, 10 km/sec velocity resolution, 200 km/sec range, and 20 sigma detection of a 1-Rayleigh H-alpha emission line in about 30 seconds. WHAM can also operate in a mode in which an image of an emission source over a 1-degree FOV can be obtained at a spectral resolution of about 10 km/sec. Spectra of cometary [OI]6300, H-alpha, H-beta, and NH2 emissions were obtained with the FOV centered on the comet head and also located 3/4 degree sunward of the comet head, repectively. This was the first time that cometary H-beta emission has been detected. Images of cometary [OI]6300 and NH2 emissions were obtained with the FOV centered on the comet head. The interpretation of these observations using coma gas dynamic and photochemical models yields values of the H2O production rate from both the [OI]6300 and H-alpha data. Comparison of the cometary H-alpha and H-beta intensities provides unique ground-based information on the EUV solar Lyman-beta and Lyman-gamma emission lines. These results will be presented.

  16. Jovian H2 dayglow emission (1978-1989)

    NASA Technical Reports Server (NTRS)

    Mcgrath, M. A.; Ballester, G. E.; Moos, H. W.

    1990-01-01

    The IUE data set accumulated through 10 years of Jovian equatorial observations is used to measure the long-term temporal variation of the H2 dayglow emission. The model that best fits the data indicates a possible correlation between long-term solar activity and the Jovian H2 emission in the region 1500-1700 A between 1978 and 1989, which spans the decline in solar activity for solar cycle 21 and the rise in solar activity accompanying solar cycle 22. The magnitude of the observed variation is closer to that of the solar Ly-alpha flux than the 10.7 cm radio flux. Short-wavelength H2 band emission intensity is inconsistent with the amount of long-wavelength emission but may be reconciled if relatively low-energy excitation or fluorescence of solar radiation is invoked. No persistent longitudinal feature analogous to the H I Ly-alpha can be identified.

  17. Nebular Continuum and Line Emission in Stellar Population Synthesis Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byler, Nell; Dalcanton, Julianne J.; Conroy, Charlie

    Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improvemore » estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H α , and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H ii regions and star-forming galaxies. Our models show improved agreement with the observed H ii regions in the Ne iii/O ii plane and show satisfactory agreement with He ii emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.« less

  18. An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines

    NASA Astrophysics Data System (ADS)

    Korista, Kirk; Baldwin, Jack; Ferland, Gary; Verner, Dima

    We present graphically the results of several thousand photoionization calculations of broad emission-line clouds in quasars, spanning 7 orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density-ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H) = 1023 cm-2. Results are similarly given for a small subset of emission lines for two other column densities (1022 and 1024 cm-2), five other incident continuum shapes, and a gas metallicity of 5 Z⊙. These graphs should prove useful in the analysis of quasar emission-line data and in the detailed modeling of quasar broad emission-line regions. The digital results of these emission-line grids and many more are available over the Internet.

  19. Extended analysis of the 5g. -->. 4f emissions in H/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, E.S.; Pulchtopek, S.; Eyler, E.E.

    1984-01-15

    An analysis starting from Hund's case d has been used to extend the work of Herzberg and Jungen on the 5g..-->..4f emissions in H/sub 2/. A simple analytical expression for the line intensities is presented that agrees with their calculations is about 1%. All of the experimentally observed lines have been accounted for by including higher vibrational levels in our calculations.

  20. Jovian equatorial H2 emission from 1979-1987

    NASA Technical Reports Server (NTRS)

    Mcgrath, M. A.; Moos, H. W.; Ballester, G. E.; Coplin, K. A.

    1988-01-01

    Ninety two IUE observations of the Jovian equatorial region taken between 2 Dec. 1978 and 1 Feb. 1988 were averaged together by date of observation, resulting in 22 averaged spectra which were fit with a model to determine the amount of H2 Lyman band emission in the region 1552 to 1624A. The data suggest that the H2 emission may vary with time. Especially suggestive is the marked downward trend of the emission between 1983 and 1987, during which time the strength of the emission in the 1552 to 1624A region decreases by a factor of 10. Uncertainty in the existing data and a gap in the data in 1980 and 1981 preclude a positive identification of a correlation between the brightness of the H2 emission and the major solar cycle.

  1. Broadening of spectral lines of CO2, N2O , H2CO, HCN, and H2S by pressure of gases dominant in planetary atmospheres (H2, He and CO2)

    NASA Astrophysics Data System (ADS)

    Samuels, Shanelle; Gordon, Iouli; Tan, Yan

    2018-01-01

    HITRAN1,2 is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in planetary atmospheres. The goal of this project is to add to the potential of the HITRAN database towards the exploration of the planetary atmospheres by including parameters describing broadening of spectral lines by H2, CO2, and He. These spectroscopic data are very important for the study of the hydrogen and helium-rich atmospheres of gas giants as well as rocky planets with volcanic activities, including Venus and Mars, since their atmospheres are dominated by CO2. First step in this direction was accomplished by Wilzewski et al.3 where this was done for SO2, NH3, HF, HCl, OCS and C2H2. The molecules investigated in this work were CO2, N2O, H2CO, HCN and H2S. Line-broadening coefficients, line shifts and temperature-dependence exponents for transitions of these molecules perturbed by H2, CO2 and He have been assembled from available peer-reviewed experimental and theoretical sources. The data was evaluated and the database was populated with these data and their extrapolations/interpolations using semi-empirical models that were developed to this end.Acknowledgements: Financial support from NASA PDART grant NNX16AG51G and the Smithsonian Astrophysical Observatory Latino Initiative Program from the Latino Initiatives Pool, administered by the Smithsonian Latino Center is gratefully acknowledged.References: 1. HITRAN online http://hitran.org/2. Gordon, I.E., Rothman, L.S., Hill, C., Kochanov, R.V., Tan, Y., et al., 2017. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. doi:10.1016/j.jqsrt.2017.06.0383. Wilzewski, J.S., Gordon, I.E., Kochanov, R. V., Hill, C., Rothman, L.S., 2016. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2. J. Quant. Spectrosc. Radiat

  2. Economical Emission-Line Mapping: ISM Properties of Nearby Protogalaxy Analogs

    NASA Astrophysics Data System (ADS)

    Monkiewicz, Jacqueline A.

    2017-01-01

    Optical emission line imaging can produce a wealth of information about the conditions of the interstellar medium, but a full set of custom emission-line filters for a professional-grade telescope camera can cost many thousands of dollars. A cheaper alternative is to use commercially-produced 2-inch narrow-band astrophotography filters. In order to use these standardized filters with professional-grade telescope cameras, custom filter mounts must be manufactured for each individual filter wheel. These custom filter adaptors are produced by 3-D printing rather than standard machining, which further lowers the total cost.I demonstrate the feasibility of this technique with H-alpha, H-beta, and [OIII] emission line mapping of the low metallicity star-forming galaxies IC10 and NGC 1569, taken with my astrophotography filter set on three different 2-meter class telescopes in Southern Arizona.

  3. Determining Black Hole Mass of AGN using FWHM of H-beta Emission Line and Luminosity Relations

    NASA Astrophysics Data System (ADS)

    Cameron, Thomas Jacob; Burris, Debra L.

    2017-01-01

    At the center of some active galaxies are super-massive black holes and for some time the accepted method of measuring the mass of such galaxies has been the method used by Vestergaard and Peterson, among others. By using the luminosity function which is related to Hemission spectra from these black holes, both for cosmic redshift and for Fe-II emissions using IRAF. From there, H-β can accurately measure the full width half max of the H-beta line in these spectrum as well as the luminosity and these paired with the O-III lines give us an estimate on the mass of the black hole. The purpose of this is to compare it to the values obtained from the Mass-Pitch Angle relation being proposed by Kennefick et al. (2016 in preparation)

  4. B Stars with and without emission lines, parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Underhill, A. (Editor); Doazan, V. (Editor)

    1982-01-01

    The spectra for B stars for which emission lines occur not on the main sequence, but only among the supergiants, and those B stars for which the presence of emission in H ahlpa is considered to be a significant factor in delineating atmospheric structure are examined. The development of models that are compatible with all known facts about a star and with the laws of physics is also discussed.

  5. The 51.8 micron (0 3) line emission observed in four galactic H 2 regions

    NASA Technical Reports Server (NTRS)

    Melnick, G.; Gull, G. E.; Harwit, M.

    1978-01-01

    The (0 III) 51.8 microns line from four H II regions, M42, M17, W51 and NGC 6375A was detected. Respective line strengths are 7 x 10 to the minus 15 power, 1.0 x 10 to the minus 14 power, 2.1 x 10 to the minus 15 power and 2.6 x 10 to the minus 15 power watt cm/2. Observations are consistent with previously reported line position and place the line at 51.80 + or 0.05 micron. When combined with the 88.35 microns (0 III) reported earlier, clumping seems to be an important factor in NGC 6375A and M42 and to a lesser extent in W51 and M17. The combined data also suggest an (0 III) abundance of approximately 3 x 0.0001 sub n e' a factor of 2 greater than previously assumed.

  6. Modelling the ArH+ emission from the Crab nebula

    NASA Astrophysics Data System (ADS)

    Priestley, F. D.; Barlow, M. J.; Viti, S.

    2017-12-01

    We have performed combined photoionization and photodissociation region (PDR) modelling of a Crab nebula filament subjected to the synchrotron radiation from the central pulsar wind nebula, and to a high flux of charged particles; a greatly enhanced cosmic-ray ionization rate over the standard interstellar value, ζ0, is required to account for the lack of detected [C I] emission in published Herschel SPIRE FTS observations of the Crab nebula. The observed line surface brightness ratios of the OH+ and ArH+ transitions seen in the SPIRE FTS frequency range can only be explained with both a high cosmic-ray ionization rate and a reduced ArH+ dissociative recombination rate compared to that used by previous authors, although consistent with experimental upper limits. We find that the ArH+/OH+ line strengths and the observed H2 vibration-rotation emission can be reproduced by model filaments with nH = 2 × 104 cm-3, ζ = 107ζ0 and visual extinctions within the range found for dusty globules in the Crab nebula, although far-infrared emission from [O I] and [C II] is higher than the observational constraints. Models with nH = 1900 cm-3 underpredict the H2 surface brightness, but agree with the ArH+ and OH+ surface brightnesses and predict [O I] and [C II] line ratios consistent with observations. These models predict HeH+ rotational emission above detection thresholds, but consideration of the formation time-scale suggests that the abundance of this molecule in the Crab nebula should be lower than the equilibrium values obtained in our analysis.

  7. Red Fluorescent Line Emission from Hydrogen Molecules in Diffuse Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Spaans, Marco

    1996-01-01

    We have modeled the fluorescent pumping of electronic and vibrational emissions of molecular hydrogen (H2) within diffuse molecular clouds that are illuminated by ultraviolet continuum radiation. Fluorescent line intensities are predicted for transitions at ultraviolet, infrared, and red visible wavelengths as functions of the gas density, the visual extinction through the cloud, and the intensity of the incident UV continuum radiation. The observed intensity in each fluorescent transition is roughly proportional to the integrated rate of H2 photodissociation along the line of sight. Although the most luminous fluorescent emissions detectable from ground-based observatories lie at near-infrared wavelengths, we argue that the lower sky brightness at visible wavelengths makes the red fluorescent transitions a particularly sensitive probe. Fabry-Perot spectrographs of the type that have been designed to observe very faint diffuse Ha emissions are soon expected to yield sensitivities that will be adequate to detect H2 vibrational emissions from molecular clouds that are exposed to ultraviolet radiation no stronger than the mean radiation field within the Galaxy. Observations of red H2 fluorescent emission together with cospatial 21 cm H I observations could serve as a valuable probe of the gas density in diffuse molecular clouds.

  8. Observations of southern emission-line stars

    NASA Technical Reports Server (NTRS)

    Henize, K. G.

    1976-01-01

    A catalog of 1929 stars showing H-alpha emission on photographic plates is presented which covers the entire southern sky south of declination -25 deg to a red limiting magnitude of about 11.0. The catalog provides previous designations of known emission-line stars equatorial (1900) and galactic coordinates, visual and photographic magnitudes, H-alpha emission parameters, spectral types, and notes on unusual spectral features. The objects listed include 16 M stars, 25 S stars, 37 carbon stars, 20 symbiotic stars, 40 confirmed or suspected T Tauri stars, 16 novae, 14 planetary nebulae, 11 P Cygni stars, 9 Bep stars, 87 confirmed or suspected Wolf-Rayet stars, and 26 'peculiar' stars. Two new T associations are discovered, one in Lupus and one in Chamaeleon. Objects with variations in continuum or H-alpha intensity are noted, and the distribution by spectral type is analyzed. It is found that the sky distribution of these emission-line stars shows significant concentrations in the region of the small Sagittarius cloud and in the Carina region.

  9. CO J = 2-1 LINE EMISSION IN CLUSTER GALAXIES AT z {approx} 1: FUELING STAR FORMATION IN DENSE ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagg, Jeff; Pope, Alexandra; Alberts, Stacey

    We present observations of CO J = 2-1 line emission in infrared-luminous cluster galaxies at z {approx} 1 using the IRAM Plateau de Bure Interferometer. Our two primary targets are optically faint, dust-obscured galaxies (DOGs) found to lie within 2 Mpc of the centers of two massive (>10{sup 14} M{sub Sun }) galaxy clusters. CO line emission is not detected in either DOG. We calculate 3{sigma} upper limits to the CO J = 2-1 line luminosities, L'{sub CO} < 6.08 Multiplication-Sign 10{sup 9} and <6.63 Multiplication-Sign 10{sup 9} K km s{sup -1} pc{sup 2}. Assuming a CO-to-H{sub 2} conversion factormore » derived for ultraluminous infrared galaxies in the local universe, this translates to limits on the cold molecular gas mass of M{sub H{sub 2}}< 4.86 Multiplication-Sign 10{sup 9} M{sub Sun} and M{sub H{sub 2}}< 5.30 Multiplication-Sign 10{sup 9} M{sub Sun }. Both DOGs exhibit mid-infrared continuum emission that follows a power law, suggesting that an active galactic nucleus (AGN) contributes to the dust heating. As such, estimates of the star formation efficiencies in these DOGs are uncertain. A third cluster member with an infrared luminosity, L{sub IR} < 7.4 Multiplication-Sign 10{sup 11} L{sub Sun }, is serendipitously detected in CO J = 2-1 line emission in the field of one of the DOGs located roughly two virial radii away from the cluster center. The optical spectrum of this object suggests that it is likely an obscured AGN, and the measured CO line luminosity is L'{sub CO} = (1.94 {+-} 0.35) Multiplication-Sign 10{sup 10} K km s{sup -1} pc{sup 2}, which leads to an estimated cold molecular gas mass M{sub H{sub 2}}= (1.55{+-}0.28) Multiplication-Sign 10{sup 10} M{sub Sun }. A significant reservoir of molecular gas in a z {approx} 1 galaxy located away from the cluster center demonstrates that the fuel can exist to drive an increase in star formation and AGN activity at the outskirts of high-redshift clusters.« less

  10. Study of the non-stationarity of the atmosphere of κ Cas. Ii. Variability of the H γ, H β, and H α wind-line profiles

    NASA Astrophysics Data System (ADS)

    Rzaev, A. Kh.

    2017-10-01

    We study the variability of the H γ, H β, and H α line profiles in the spectrum of the supergiant κ Cas. The variability pattern proved to be the same for all the lines considered: their profiles are superimposed by blueshifted, central, and redshifted emission. For H γ the positions of the emissions coincide with the positions of the corresponding emissions for He I λλ 5876, 6678 Å lines, and are equal to about -135 ± 30.0 km s-1, -20 ± 20 kms-1, and 135 ± 30.0 kms-1, respectively, whereas the three emissions in the H β profiles are fixed at about -170.0 ± 70.0 kms-1, 20 ± 30 kms-1, and 170.0 ± 70.0 km s-1, respectively. The positions of the blueshifted and central emissions for H α are the same as for H β, with additional blueshifted emission at -135.0 ± 30.0 kms-1, whereas no traces of emission can be seen in the red wing of the line. These emissions show up more conspicuously in wind lines, however, their traces can be seen in all photospheric lines. When passing from wind lines to photospheric lines the intensity of superimposed emission components decreases and the same is true for the absolute values of their positions in line wings expressed in terms of radial velocities. The V/ R variations of the lines studied found in the spectrum of κ Cas and the variability of the H α emission indicate that the star is a supergiant showing Be phenomenon.

  11. X-shooter spectroscopy of young stellar objects. VI. H I line decrements

    NASA Astrophysics Data System (ADS)

    Antoniucci, S.; Nisini, B.; Giannini, T.; Rigliaco, E.; Alcalá, J. M.; Natta, A.; Stelzer, B.

    2017-03-01

    Context. Hydrogen recombination emission lines commonly observed in accreting young stellar objects represent a powerful tracer for the gas conditions in the circumstellar structures (accretion columns, and winds or jets). Aims: Here we perform a study of the H I decrements and line profiles, from the Balmer and Paschen H I lines detected in the X-shooter spectra of a homogeneous sample of 36 T Tauri objects in Lupus, the accretion and stellar properties of which were already derived in a previous work. We aim to obtain information on the H I gas physical conditions to delineate a consistent picture of the H I emission mechanisms in pre-main sequence low-mass stars (M∗< 2 M⊙). Methods: We have empirically classified the sources based on their H I line profiles and decrements. We identified four Balmer decrement types (which we classified as 1, 2, 3, and 4) and three Paschen decrement types (A, B, and C), characterised by different shapes. We first discussed the connection between the decrement types and the source properties and then compared the observed decrements with predictions from recently published local line excitation models. Results: We identify a few groups of sources that display similar H I properties. One third of the objects show lines with narrow symmetric profiles, and present similar Balmer and Paschen decrements (straight decrements, types 2 and A). Lines in these sources are consistent with optically thin emission from gas with hydrogen densities of order 109 cm-3 and 5000 < T < 15 000 K. These objects are associated with low mass accretion rates. Type 4 (L-shaped) Balmer and type B Paschen decrements are found in conjunction with very wide line profiles and are characteristic of strong accretors, with optically thick emission from high-density gas (log nH > 11 cm-3). Type 1 (curved) Balmer decrements are observed only in three sub-luminous sources viewed edge-on, so we speculate that these are actually type 2 decrements that are reddened

  12. On the origin of the iron fluorescent line emission from the Galactic Ridge

    NASA Astrophysics Data System (ADS)

    Eze, R. N. C.

    2015-04-01

    The Galactic Ridge X-ray Emission (GRXE) spectrum has strong iron emission lines at 6.4, 6.7, and 7.0 keV, each corresponding to the neutral (or low-ionized), He-like, and H-like iron ions. The 6.4 keV fluorescence line is due to irradiation of neutral (or low ionized) material (iron) by hard X-ray sources, indicating uniform presence of the cold matter in the Galactic plane. In order to resolve the origin of the cold fluorescent matter, we examined the contribution of the 6.4 keV line emission from white dwarf surfaces in the hard X-ray emitting symbiotic stars (hSSs) and magnetic cataclysmic variables (mCVs) to the GRXE. In our spectral analysis of 4 hSSs and 19 mCVs observed with Suzaku, we were able to resolve the three iron emission lines. We found that the equivalent-widths (EWs) of the 6.4 keV lines of hSSs are systematically higher than those of mCVs, such that the EWs of the merged hSSs and mCVs are 179-11+46 eV and 93-3+20 eV, respectively. The EW of hSSs compares favorably with the typical EWs of the 6.4 keV line in the GRXE of 90-300 eV depending on Galactic positions. Average 6.4 keV line luminosities of the hSSs and mCVs are 9.2 ×1039 and 1.6 ×1039 photons s-1, respectively, indicating that hSSs are intrinsically more efficient 6.4 keV line emitters than mCVs. We estimated required space densities of hSSs and mCVs to account for all the GRXE 6.4 keV line emission flux to be 2 ×10-7 pc-3 and 1 ×10-6 pc-3, respectively. We also estimated the actual 6.4 keV line contribution from the mCVs with a known space density, which is as much as 20% of the observed GRXE flux, and for the hSSs, for which only five hSSs are known, we noted that they could contribute a significant percentage to the observed GRXE flux since we believe there is still more hSSs yet to be discovered in the Galaxy. We therefore conclude that the GRXE 6.4 keV line flux could be significantly explained by hSSs and mCVs 6.4 keV line flux.

  13. A CANDELS WFC3 Grism Study of Emission-Line Galaxies at Z approximates 2: A mix of Nuclear Activity and Low-Metallicity Star Formation

    NASA Technical Reports Server (NTRS)

    Trump, Jonathan R.; Weiner, Benjamin J.; Scarlata, Claudia; Kocevski, Dale D.; Bell, Eric F.; McGrath, Elizabeth J.; Koo, David C.; Faber, S. M.; Laird, Elise S.; Mozena, Mark; hide

    2011-01-01

    We present Hubble Space Telescope Wide Field Camera 3 slitless grism spectroscopy of 28 emission-line galaxies at z approximates 2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). The high sensitivity of these grism observations, with > 5-sigma detections of emission lines to f > 2.5 X 10(exp -18( erg/s/ square cm, means that the galaxies in the sample are typically approximately 7 times less massive (median M(star). = 10(exp 9.5)M(solar)) than previously studied z approximates 2 emission-line galaxies. Despite their lower mass, the galaxies have [O-III]/H-Beta ratios which are very similar to previously studied z approximates 2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the [O-III] emission line is more spatially concentrated than the H-Beta emission line with 98.1% confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L(sub [O-III])/L(sub 0.5.10keV) ratio is intermediate between typical z approximates 0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked [O-III] spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei.

  14. MICROLENSING OF QUASAR BROAD EMISSION LINES: CONSTRAINTS ON BROAD LINE REGION SIZE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerras, E.; Mediavilla, E.; Jimenez-Vicente, J.

    2013-02-20

    We measure the differential microlensing of the broad emission lines between 18 quasar image pairs in 16 gravitational lenses. We find that the broad emission lines are in general weakly microlensed. The results show, at a modest level of confidence (1.8{sigma}), that high ionization lines such as C IV are more strongly microlensed than low ionization lines such as H{beta}, indicating that the high ionization line emission regions are more compact. If we statistically model the distribution of microlensing magnifications, we obtain estimates for the broad line region size of r{sub s} = 24{sup +22} {sub -15} and r{sub s}more » = 55{sup +150} {sub -35} lt-day (90% confidence) for the high and low ionization lines, respectively. When the samples are divided into higher and lower luminosity quasars, we find that the line emission regions of more luminous quasars are larger, with a slope consistent with the expected scaling from photoionization models. Our estimates also agree well with the results from local reveberation mapping studies.« less

  15. Emission of hydrogen sulfide (H2S) at a waterfall in a sewer: study of main factors affecting H2S emission and modeling approaches.

    PubMed

    Jung, Daniel; Hatrait, Laetitia; Gouello, Julien; Ponthieux, Arnaud; Parez, Vincent; Renner, Christophe

    2017-11-01

    Hydrogen sulfide (H 2 S) represents one of the main odorant gases emitted from sewer networks. A mathematical model can be a fast and low-cost tool for estimating its emission. This study investigates two approaches to modeling H 2 S gas transfer at a waterfall in a discharge manhole. The first approach is based on an adaptation of oxygen models for H 2 S emission at a waterfall and the second consists of a new model. An experimental set-up and a statistical data analysis allowed the main factors affecting H 2 S emission to be studied. A new model of the emission kinetics was developed using linear regression and taking into account H 2 S liquid concentration, waterfall height and fluid velocity at the outlet pipe of a rising main. Its prediction interval was estimated by the residual standard deviation (15.6%) up to a rate of 2.3 g H 2h -1 . Finally, data coming from four sampling campaigns on sewer networks were used to perform simulations and compare predictions of all developed models.

  16. Rovibrational line-shape parameters for H2 in He and new H2-He potential energy surface

    NASA Astrophysics Data System (ADS)

    Thibault, Franck; Patkowski, Konrad; Żuchowski, Piotr S.; Jóźwiak, Hubert; Ciuryło, Roman; Wcisło, Piotr

    2017-11-01

    We report a new H2-He potential energy surface that, with respect to the previous one [Bakr et al.(2013)], covers much larger range of H2 stretching and exhibits more accurate asymptotic behavior for large separations between H2 and He. Close-coupling calculations performed on this improved potential energy surface allow us to provide line shape parameters for H2 between 5 and 2000 K for Raman isotropic Q lines and anisotropic Q lines (or electric quadrupole lines) and for vibrational bands from the ground up to v = 5 and rotational quantum numbers up to j = 5 . The parameters provided include the usual pressure -broadening and -shifting coefficients as well as the real and imaginary part of Dicke contribution to the Hess profile. The latter parameters can be readily implemented in other line-shape profiles like the most recent one of Hartmann and Tran.

  17. Molecular hydrogen (H2) emissions from gasoline and diesel vehicles.

    PubMed

    Bond, S W; Alvarez, R; Vollmer, M K; Steinbacher, M; Weilenmann, M; Reimann, S

    2010-08-01

    This study assesses individual-vehicle molecular hydrogen (H2) emissions in exhaust gas from current gasoline and diesel vehicles measured on a chassis dynamometer. Absolute H2 emissions were found to be highest for motorcycles and scooters (141+/-38.6 mg km(-1)), approximately 5 times higher than for gasoline-powered automobiles (26.5+/-12.1 mg km(-1)). All diesel-powered vehicles emitted marginal amounts of H2 ( approximately 0.1 mg km(-1)). For automobiles, the highest emission factors were observed for sub-cycles subject to a cold-start (mean of 53.1+/-17.0 mg km(-1)). High speeds also caused elevated H2 emission factors for sub-cycles reaching at least 150 km h(-1) (mean of 40.4+/-7.1 mg km(-1)). We show that H2/CO ratios (mol mol(-1)) from gasoline-powered vehicles are variable (sub-cycle means of 0.44-5.69) and are typically higher (mean for automobiles 1.02, for 2-wheelers 0.59) than previous atmospheric ratios characteristic of traffic-influenced measurements. The lowest mean individual sub-cycle ratios, which correspond to high absolute emissions of both H2 and CO, were observed during cold starts (for automobiles 0.48, for 2-wheelers 0.44) and at high vehicle speeds (for automobiles 0.73, for 2-wheelers 0.45). This finding illustrates the importance of these conditions to observed H2/CO ratios in ambient air. Overall, 2-wheelers displayed lower H2/CO ratios (0.48-0.69) than those from gasoline-powered automobiles (0.75-3.18). This observation, along with the lower H2/CO ratios observed through studies without catalytic converters, suggests that less developed (e.g. 2-wheelers) and older vehicle technologies are largely responsible for the atmospheric H2/CO ratios reported in past literature. 2010 Elsevier B.V. All rights reserved.

  18. SHOCK-ENHANCED C{sup +} EMISSION AND THE DETECTION OF H{sub 2}O FROM THE STEPHAN'S QUINTET GROUP-WIDE SHOCK USING HERSCHEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appleton, P. N.; Lord, S.; Lu, N.

    2013-11-01

    We present the first Herschel spectroscopic detections of the [O I] 63 μm and [C II] 158 μm fine-structure transitions, and a single para-H{sub 2}O line from the 35 × 15 kpc{sup 2} shocked intergalactic filament in Stephan's Quintet. The filament is believed to have been formed when a high-speed intruder to the group collided with a clumpy intergroup gas. Observations with the PACS spectrometer provide evidence for broad (>1000 km s{sup –1}) luminous [C II] line profiles, as well as fainter [O I] 63 μm emission. SPIRE FTS observations reveal water emission from the p-H{sub 2}O (1{sub 11}-0{sub 00})more » transition at several positions in the filament, but no other molecular lines. The H{sub 2}O line is narrow and may be associated with denser intermediate-velocity gas experiencing the strongest shock-heating. The [C II]/PAH{sub tot} and [C II]/FIR ratios are too large to be explained by normal photo-electric heating in photodissociation regions. H II region excitation or X-ray/cosmic-ray heating can also be ruled out. The observations lead to the conclusion that a large fraction the molecular gas is diffuse and warm. We propose that the [C II], [O I], and warm H{sub 2} line emission is powered by a turbulent cascade in which kinetic energy from the galaxy collision with the intergalactic medium is dissipated to small scales and low velocities, via shocks and turbulent eddies. Low-velocity magnetic shocks can help explain both the [C II]/[O I] ratio, and the relatively high [C II]/H{sub 2} ratios observed. The discovery that [C II] emission can be enhanced, in large-scale turbulent regions in collisional environments, has implications for the interpretation of [C II] emission in high-z galaxies.« less

  19. Searching for Dwarf H Alpha Emission-line Galaxies within Voids III: First Spectra

    NASA Astrophysics Data System (ADS)

    Moody, J. Ward; Draper, Christian; McNeil, Stephen; Joner, Michael D.

    2017-02-01

    The presence or absence of dwarf galaxies with {M}r\\prime > -14 in low-density voids is determined by the nature of dark matter halos. To better understand what this nature is, we are conducting an imaging survey through redshifted Hα filters to look for emission-line dwarf galaxies in the centers of two nearby galaxy voids called FN2 and FN8. Either finding such dwarfs or establishing that they are not present is a significant result. As an important step in establishing the robustness of the search technique, we have observed six candidates from the survey of FN8 with the Gillett Gemini telescope and GMOS spectrometer. All of these candidates had emission, although none was Hα. The emission in two objects was the [O III]λ4959, 5007 doublet plus Hβ, and the emission in the remaining four was the [O II]λ3727 doublet, all from objects beyond the void. While no objects were within the void, these spectra show that the survey is capable of finding emission-line dwarfs in the void centers that are as faint as {M}r\\prime ˜ -12.4, should they be present. These spectra also show that redshifts estimated from our filtered images are accurate to several hundred km s-1 if the line is identified correctly, encouraging further work in finding ways to conduct redshift surveys through imaging alone.

  20. Study of Star Formation Regions with Molecular Hydrogen Emission Lines

    NASA Astrophysics Data System (ADS)

    Pak, Soojong

    The goal of my dissertation is to understand the large-scale, near-infrared (near-IR) H2 emission from the central kiloparsec (kpc) regions of galaxies, and to study the structure and physics of photon-dominated regions (or photodissociation regions, hereafter PDRs). In order to explore the near-IR H2 lines, our group built the University of Texas near-IR Fabry-Perot Spectrometer optimized for observations of extended, low surface brightness sources. In this instrument project, I designed and built a programmable high voltage DC amplifier for the Fabry-Perot piezoelectric transducers, a temperature-controlled cooling box for the Fabry-Perot etalon, instrument control software, and data reduction software. With this instrument, we observed H2 emission lines in the inner 400 pc of the Galaxy, the central ~1 kpc of NGC 253 and M82, and the star formation regions in the Magellanic Clouds. We also observed the Magellanic Clouds in the CO J=1/to0 line. We found that the H2 emission is very extended in the central kpc of the galaxies and is mostly UV-excited. The ratios of the H2 (1,0) S(1) luminosities to the far-IR continuum luminosities in the central kpc regions do not change from the Galactic center to starburst galaxies and to ultraluminous IR bright galaxies. Using the data from the Magellanic Clouds, we studied the microscopic structure of star forming clouds. We compiled data sets including our H2 (1,0) S(1) and CO J=1/to0 results and published (C scII) and far-IR data from the Magellanic Clouds, and compared these observations with models we made using a PDR code and a radiative transfer code. Assuming the cloud is spherical, we derived the physical sizes of H2, (C scII), and CO emission regions. The average cloud size appears to increase as the metallicity decreases. Our results agree with the theory of photoionization-regulated star formation in which the interplay between the ambipolar diffusion and ionization by far-UV photons determines the size of stable

  1. A Study of Rovibrational H2O, OH, and CO emission from the Herbig Ae/Be star HD 250550

    NASA Astrophysics Data System (ADS)

    Leiendecker, Harrison; Brittain, Sean; Jensen, Stanley; Najita, Joan R.; Carr, John S.

    2018-01-01

    We present high-resolution spectroscopy (R∼75,000) of the Herbig Ae/Be star HD 250550. The L-band spectroscopy was obtained with the infrared echelle spectrograph (iSHELL) from The NASA Infrared Telescope Facility. We will describe the performance of the instrument and compare the CO and OH emission and upper limit on H2O emission to other Herbig Ae/Be stars. Specifically, L-band observationsof the ro-vibrational OH emission from the disk surrounding HD 250550 is compared to emission properties of the sources studied by Brittain et al. (2016). The OH 2Π3/2 P4.5 (1+,1-) doublet and the P5.5 (1+) line are spectrally resolved and have the same spectral profile as the CO ro-vibrational lines indicating that they arise from the same emitting region of the disk. The relative fluxes of the ro-vibrational lines from CO indicate that the rotational temperature of the gas is 1060 ± 115 K. The relative fluxes of the ro-vibrational lines from OH are consistent with this temperature.

  2. Detection of Thermal 2 cm and 1 cm Formaldehyde Emission in NGC 7538

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; Araya, E. D.; Hofner, P.; Kurtz, S.; Pihlstrom, Y.

    2011-05-01

    Formaldehyde is a tracer of high density gas in massive star forming regions. The K-doublet lines from the three lowest rotational energy levels of ortho-formaldehyde correspond to wavelengths of 6, 2 and 1 cm. Thermal emission of these transitions is rare, and maser emission has only been detected in the 6 cm line. NGC 7538 is an active site of massive star formation in the Galaxy, and one of only a few regions known to harbor 6 cm formaldehyde (H2CO) masers. Using the NRAO 100 m Green Bank Telescope (GBT), we detected 2 cm H2CO emission toward NGC 7538 IRS1. The velocity of the 2 cm H2CO line is very similar to the velocity of one of the 6 cm H2CO masers but the linewidth is greater. To investigate the nature of the 2 cm emission, we conducted observations of the 1 cm H2CO transition, and obtained a cross-scan map of the 2 cm line. We detected 1 cm emission and found that the 2 cm emission is extended (greater than 30"), which implies brightness temperatures of ˜0.2 K. Assuming optically thin emission, LTE, and that the 1 cm and 2 cm lines originate from the same volume of gas, both these detections are consistent with thermal emission of gas at ˜30 K. We conclude that the 1 cm and 2 cm H2CO lines detected with the GBT are thermal, which implies molecular densities above ˜105 cm-3. LY acknowledges support from WIU. PH acknowledges partial support from NSF grant AST-0908901.

  3. H2 Emission Nebulosity Associated with KH 15D

    NASA Astrophysics Data System (ADS)

    Tokunaga, A. T.; Dahm, S.; Gässler, W.; Hayano, Yutaka; Hayashi, Masahiko; Iye, Masanori; Kanzawa, Tomio; Kobayashi, Naoto; Kamata, Yukiko; Minowa, Yosuke; Nedachi, Ko; Oya, Shin; Pyo, Tae-Soo; Saint-Jacques, D.; Terada, Hiroshi; Takami, Hideki; Takato, Naruhisa

    2004-01-01

    An H2 emission filament is found in close proximity to the unique object KH 15D using the adaptive optics system of the Subaru Telescope. The morphology of the filament, the presence of spectroscopic outflow signatures observed by Hamilton et al., and the detection of extended H2 emission from KH 15D by Deming, Charbonneau, & Harrington suggest that this filament arises from shocked H2 in an outflow. The filament extends about 15" to the north of KH 15D. Based on data collected at Subaru Telescope, which is operated by the National AstronomiObservatory of Japan.

  4. Emission-Line Galaxies from the PEARS Hubble Ultra Deep Field: A 2-D Detection Method and First Results

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Straughn, Amber N.; Meurer, Gerhardt R.; Pirzkal, Norbert; Cohen, Seth H.; Malhotra, Sangeeta; Rhoads, james; Windhorst, Rogier A.; Gardner, Jonathan P.; Hathi, Nimish P.; hide

    2007-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) grism PEARS (Probing Evolution And Reionization Spectroscopically) survey provides a large dataset of low-resolution spectra from thousands of galaxies in the GOODS North and South fields. One important subset of objects in these data are emission-line galaxies (ELGs), and we have investigated several different methods aimed at systematically selecting these galaxies. Here we present a new methodology and results of a search for these ELGs in the PEARS observations of the Hubble Ultra Deep Field (HUDF) using a 2D detection method that utilizes the observation that many emission lines originate from clumpy knots within galaxies. This 2D line-finding method proves to be useful in detecting emission lines from compact knots within galaxies that might not otherwise be detected using more traditional 1D line-finding techniques. We find in total 96 emission lines in the HUDF, originating from 81 distinct "knots" within 63 individual galaxies. We find in general that [0 1111 emitters are the most common, comprising 44% of the sample, and on average have high equivalent widths (70% of [0 1111 emitters having rest-frame EW> 100A). There are 12 galaxies with multiple emitting knots; several show evidence of variations in H-alpha flux in the knots, suggesting that the differing star formation properties across a single galaxy can in general be probed at redshifts approximately greater than 0.2 - 0.4. The most prevalent morphologies are large face-on spirals and clumpy interacting systems, many being unique detections owing to the 2D method described here, thus highlighting the strength of this technique.

  5. Detailed Analysis of Near-IR Water (H2O) Emission in Comet C/2014 Q2 (Lovejoy) with the GIANO/TNG Spectrograph

    NASA Astrophysics Data System (ADS)

    Faggi, S.; Villanueva, G. L.; Mumma, M. J.; Brucato, J. R.; Tozzi, G. P.; Oliva, E.; Massi, F.; Sanna, N.; Tozzi, A.

    2016-10-01

    We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1-2.5 μm region. Spectral lines from eight ro-vibrational bands of H2O were detected, six of them for the first time. We quantified the water production rate [Q(H2O), (3.11 ± 0.14) × 1029 s-1] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H2O. The production rates of ortho-water [Q(H2O)ORTHO, (2.33 ± 0.11) × 1029 s-1] and para-water [Q(H2O)PARA, (0.87 ± 0.21) × 1029 s-1] provide a measure of the ortho-to-para ratio (2.70 ± 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.

  6. Detailed Analysis of Near-IR Water (H2O) Emission in Comet C/2014 Q2 (LOVEJOY) with the GIANO/TNG Spectrograph

    NASA Technical Reports Server (NTRS)

    Faggi, S.; Villanueva, G. L.; Mumma, M. J.; Brucato, J.R.; Tozzi, G. P.; Oliva, E.; Massi, F.; Sanna, N.; Tozzi, A.

    2016-01-01

    We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1-2.5 micron region. Spectral lines from eight ro-vibrational bands of H2O were detected, six of them for the first time. We quantified the water production rate [Q(H2O), (3.11+/- 0.14) x 10(exp 29)/s] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H2O. The production rates of ortho-water [Q(H2O)ORTHO, (2.33+/- 0.11) x 10(exp 29)/s] and para-water [Q(H2O)PARA, (0.87+/-0.21) x 10(exp 29)/s] provide a measure of the ortho-to-para ratio (2.70+/- 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.

  7. Abundances and Excitation of H2, H3+ & CO in Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Kulesa, Craig A.

    Although most of the 123 reported interstellar molecules to date have been detected through millimeter-wave emission-line spectroscopy, this technique is inapplicable to non-polar molecules like H2 and H3+, which are central to our understanding of interstellar chemistry. Thus high resolution infrared absorption-line spectroscopy bears an important role in interstellar studies: chemically important non-polar molecules can be observed, and their abundances and excitation conditions can be referred to the same ``pencil beam'' absorbing column. In particular, through a weak quadrupole absorption line spectrum at near-infrared wavelengths, the abundance of cold H2 in dark molecular clouds and star forming regions can now be accurately measured and compared along the same ``pencil beam'' line of sight with the abundance of its most commonly cited surrogate, CO, and its rare isotopomers. Also detected via infrared line absorption is the pivotal molecular ion H3+, whose abundance provides the most direct measurement of the cosmic ray ionization rate in dark molecular clouds, a process that initiates the formation of many other observed molecules there. Our growing sample of H2 and CO detections now includes detailed multi-beam studies of the ρ Ophiuchi molecular cloud and NGC 2024 in Orion. We explore the excitation and degree of ortho- and para-H2 thermalization in dark clouds, variation of the CO abundance over a cloud, and the relation of H2 column density to infrared extinction mapping, far-infrared/submillimeter dust continuum emission, and large scale submillimeter CO, [C I] and HCO+ line emission -- all commonly invoked to indirectly trace H2 during the past 30+ years. For each of the distinct velocity components seen toward some embedded young stellar objects, we are also able to determine the temperature, density, and a CO/H2 abundance ratio, thus unraveling some of the internal structure of a star-forming cloud. H2 and H3+ continue to surprise and delight us

  8. High-excitation OH and H2O Lines in Markarian 231: The Molecular Signatures of Compact Far-infrared Continuum Sources

    NASA Astrophysics Data System (ADS)

    González-Alfonso, Eduardo; Smith, Howard A.; Ashby, Matthew L. N.; Fischer, Jacqueline; Spinoglio, Luigi; Grundy, Timothy W.

    2008-03-01

    The ISO LWS far-infrared spectrum of the ultraluminous galaxy Mrk 231 shows OH and H2O lines in absorption from energy levels up to 300 K above the ground state, and emission in the [O I] 63 μm and [C II] 158 μm lines. Our analysis shows that OH and H2O are radiatively pumped by the far-infrared continuum emission of the galaxy. The absorptions in the high-excitation lines require high far-infrared radiation densities, allowing us to constrain the properties of the underlying continuum source. The bulk of the far-infrared continuum arises from a warm (Tdust = 70-100 K), optically thick (τ100μ m = 1-2) medium of effective diameter 200-400 pc. In our best-fit model of total luminosity LIR, the observed OH and H2O high-lying lines arise from a luminous (L/LIR ~ 0.56) region with radius ~100 pc. The high surface brightness of this component suggests that its infrared emission is dominated by the AGN. The derived column densities N(OH) gtrsim 1017 cm-2 and N(H2O) gtrsim 6 × 1016 cm-2 may indicate X-ray dominated region (XDR) chemistry, although significant starburst chemistry cannot be ruled out. The lower-lying OH, [C II] 158 μm, and [O I] 63 μm lines arise from a more extended (~350 pc) starburst region. We show that the [C II] deficit in Mrk 231 is compatible with a high average abundance of C+ because of an extreme overall luminosity to gas mass ratio. Therefore, a [C II] deficit may indicate a significant contribution to the luminosity by an AGN, and/or by extremely efficient star formation. Based on observations with the Infrared Space Observatory, an ESA project with instruments funded by ESA Member States (especially the principal investigator countries: France, Germany, Netherlands, and the United Kingdom) and with the participation of ISAS and NASA.

  9. How well does CO emission measure the H2 mass of MCs?

    NASA Astrophysics Data System (ADS)

    Szűcs, László; Glover, Simon C. O.; Klessen, Ralf S.

    2016-07-01

    We present numerical simulations of molecular clouds (MCs) with self-consistent CO gas-phase and isotope chemistry in various environments. The simulations are post-processed with a line radiative transfer code to obtain 12CO and 13CO emission maps for the J = 1 → 0 rotational transition. The emission maps are analysed with commonly used observational methods, I.e. the 13CO column density measurement, the virial mass estimate and the so-called XCO (also CO-to-H2) conversion factor, and then the inferred quantities (I.e. mass and column density) are compared to the physical values. We generally find that most methods examined here recover the CO-emitting H2 gas mass of MCs within a factor of 2 uncertainty if the metallicity is not too low. The exception is the 13CO column density method. It is affected by chemical and optical depth issues, and it measures both the true H2 column density distribution and the molecular mass poorly. The virial mass estimate seems to work the best in the considered metallicity and radiation field strength range, even when the overall virial parameter of the cloud is above the equilibrium value. This is explained by a systematically lower virial parameter (I.e. closer to equilibrium) in the CO-emitting regions; in CO emission, clouds might seem (sub-)virial, even when, in fact, they are expanding or being dispersed. A single CO-to-H2 conversion factor appears to be a robust choice over relatively wide ranges of cloud conditions, unless the metallicity is low. The methods which try to take the metallicity dependence of the conversion factor into account tend to systematically overestimate the true cloud masses.

  10. Detection of emission lines from z ˜ 3 DLAs towards the QSO J2358+0149

    NASA Astrophysics Data System (ADS)

    Srianand, Raghunathan; Hussain, Tanvir; Noterdaeme, Pasquier; Petitjean, Patrick; Krühler, Thomas; Japelj, Jure; Pâris, Isabelle; Kashikawa, Nobunari

    2016-07-01

    Using VLT/X-shooter, we searched for emission line galaxies associated with four damped Lyman α systems (DLAs) and one sub-DLA at 2.73 ≤z ≤3.25 towards QSO J2358+0149. We detect [O III] emission from a `low-cool' DLA at zabs = 2.9791 (having log N(H I) = 21.69 ± 0.10, [Zn/H] = -1.83 ± 0.18) at an impact parameter of, ρ ˜ 12 kpc. The associated galaxy is compact with a dynamical mass of (1-6) × 109 M⊙, very high excitation ([O III]/[O II] and [O III]/[Hβ] both greater than 10), 12+[O/H]≤8.5 and moderate star formation rate (SFR ≤2 M⊙ yr-1). Such properties are typically seen in the low-z extreme blue compact dwarf galaxies. The kinematics of the gas is inconsistent with that of an extended disc and the gas is part of either a large scale wind or cold accretion. We detect Lyα emission from the zabs = 3.2477 DLA [having log N(H I) = 21.12 ± 0.10 and [Zn/H] = -0.97 ± 0.13]. The Lyα emission is redshifted with respect to the metal absorption lines by 320 km s-1, consistent with the location of the red hump expected in radiative transport models. We derive SFR ˜0.2-1.7 M⊙ yr-1 and Lyα escape fraction of ≥10 per cent. No other emission line is detected from this system. Because the DLA has a small velocity separation from the quasar (˜500 km s-1) and the DLA emission is located within a small projected distance (ρ < 5 kpc), we also explore the possibility that the Lyα emission is being induced by the QSO itself. QSO-induced Lyα fluorescence is possible if the DLA is within a physical separation of 340 kpc to the QSO. Detection of stellar continuum light and/or the oxygen emission lines would disfavour this possibility. We do not detect any emission line from the remaining three systems.

  11. Far-Infrared Line Emission from High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Benford, D. J.; Cox, P.; Hunter, T. R.; Malhotra, S.; Phillips, T. G.; Yun, M. S.

    2002-01-01

    Recent millimeter and submillimeter detections of line emission in high redshift objects have yielded new information and constraints on star formation at early epochs. Only CO transitions and atomic carbon transitions have been detected from these objects, yet bright far-infrared lines such as C+ at 158 microns and N+ at 205 microns should be fairly readily detectable when redshifted into a submillimeter atmospheric window. We have obtained upper limits for C+ emission &om two high redshift quasars, BR1202-0725 at z=4.69 and BRI1335-0415 at z=4.41. These limits show that the ratio of the C+ line luminosity to the total far-infrared luminosity is less than 0.0l%, ten times smaller than has been observed locally. Additionally, we have searched for emission in the N+ 205 micron line from the Cloverleaf quasar, H1413+117, and detected emission in CO J=7-6. The N+ emission is found to be below the amount predicted based on comparison to the only previous detection of this line, in the starburst galaxy M82.

  12. X-ray and optical emission-line filaments in the cooling flow cluster 2A 0335 + 096

    NASA Technical Reports Server (NTRS)

    Sarazin, Craig L.; O'Connell, Robert W.; Mcnamara, Brian R.

    1992-01-01

    We present a new high-resolution X-ray image of the 2A 0335 + 096 cluster of galaxies obtained with the High Resolution Imager (HRI) aboard the ROSAT satellite. The presence of dense gas having a very short cooling time in the central regions confirms its earlier identification as a cooling flow. The X-ray emission from the central regions of the cooling flow shows a great deal of filamentary structure. Using the crude spectral resolution of the HRI, we show that these filaments are the result of excess emission, rather than foreground X-ray absorption. Although there are uncertainties in the pointing, many of the X-ray features in the cooling flow region correspond to features in H-alpha optical line emission. This suggests that the optical emission line gas has resulted directly from the cooling of X-ray-emitting gas. The filament material cannot be in hydrostatic equilibrium, and it is likely that other forces such as rotation, turbulence, and magnetic fields influence the dynamical state of the gas.

  13. Near-Infrared [Fe II] and H2 Study of the Galactic Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Hyun; Koo, Bon-Chul; Lee, Jae-Joon; Jaffe, Daniel T.; Burton, Michael G.; Ryder, Stuart D.

    2018-01-01

    We have searched for near-infrared (NIR) [Fe II] (1.644 μm) and H2 1-0 S(1) (2.122 μm) emission features associated with Galactic supernova remnants (SNRs) using the narrow-band imaging surveys UWIFE / UWISH2 (UKIRT Widefield Infrared Survey for [Fe II] / H2). Both surveys cover about 180 square degrees of the first Galactic quadrant (7° < l < 65° -1.3° < b < +1.3°), and a total of 79 SNRs are falling in the survey area. We have found 19 [Fe II]- and 19 H2-emitting SNRs, giving a detection rate of 24%. Eleven SNRs show both emission features. Some of the SNRs show bright, complex, and interesting structures that have never been reported in previous studies. The brightest SNR in the both emission is W49B, contributing ~70% of the total [Fe II] luminosity of the detected SNRs. The total [Fe II] luminosity, however, is considerably less than what we would expect from the SN rate of our Galaxy.Among the SNRs showing both [Fe II] and H2 emission lines, some SNRs show the “[Fe II]-H2 reversal” phenomenon, i.e., the H2 emission features are detected outside the [Fe II] emission boundary. We carried out high resolution (R~40,000) NIR H- and K-band spectroscopy of the five SNRs showing the [Fe II]-H2 reversal (G11.2-0.3, KES 73, W44, 3C 396, W49B) using IGRINS (Immersion GRating INfrared Spectrograph). Various ro-vibrational H2 lines have been detected, which are used to derive the kinematic distances to the SNRs and to investigate the origin of the H2 emission. The detected H2 lines show broad line width (> 10 km s-1) and line flux ratios of thermal excitation. We discuss the origin of the extended H2 emission features beyond the the [Fe II] emission boundary.

  14. Kinetic Energy Distribution of H(2p) Atoms from Dissociative Excitation of H2

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Ahmed, Syed M.; Kanik, Isik; Multari, Rosalie

    1995-01-01

    The kinetic energy distribution of H(2p) atoms resulting from electron impact dissociation of H2 has been measured for the first time with uv spectroscopy. A high resolution uv spectrometer was used for the measurement of the H Lyman-alpha emission line profiles at 20 and 100 eV electron impact energies. Analysis of the deconvolved 100 eV line profile reveals the existence of a narrow line peak and a broad pedestal base. Slow H(2p) atoms with peak energy near 80 meV produce the peak profile, which is nearly independent of impact energy. The wings of H Lyman-alpha arise from dissociative excitation of a series of doubly excited Q(sub 1) and Q(sub 2) states, which define the core orbitals. The fast atom energy distribution peaks at 4 eV.

  15. (12)CO (3-2) & (1-0) emission line observations of nearby starburst galaxy nuclei

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas; Taniguchi, Yoshiaki; Sanders, D. B.; Nakai, N.; Young, J. S.

    1994-01-01

    New measurements of the (12)CO (1-0) and (12)CO (3-2) line emission are presented for the nuclei of seven nearby starburst galaxies selected from a complete sample of 21 nearby starburst galaxies for which the nuclear star formation rates are measured to be comparable to the archetype starburst galaxies M82 and NGC 253. The new observations capitalize on the coincidence between the beam size of the 45 m Nobeyama telescope at 115 GHz and that of the 15 m James Clerk Maxwell Telescope at 345 GHz to measure the value of the (12)CO (3-2)/(1-0) emission line ratio in a 15 sec (less than or equal to 2.5 kpc) diameter region centered on the nuclear starburst. In principle, the (12)CO (3-2)/(1-0) emission line ratio provides a measure of temperature and optical depth for the (12)CO gas. The error weighted mean value of the (12)CO (3-2)/(1-0) emission line ratio measured for the seven starburst galaxy nuclei is -0.64 +/- 0.06. The (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is significantly higher than the average value measured for molecular gas in the disk of the Galaxy, implying warmer temperatures for the molecular gas in starburst galaxy nuclei. On the other hand, the (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is not as high as would be expected if the molecular gas were hot, greater than 20 K, and optically thin, tau much less than 1. The total mass of molecular gas contained within the central 1.2-2.8 kpc diameter region of the starburst galaxy nuclei ranges from 10(exp 8) to 10(exp 9) solar mass. While substantial, the molecular gas mass represents only a small percentage, approximately 9%-16%, of the dynamical mass in the same region.

  16. First Detection of Near-infrared Line Emission from Organics in Young Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Mandell, Avi M.; Bast, Jeanette; van Dishoeck, Ewine F.; Blake, Geoffrey A.; Salyk, Colette; Mumma, Michael J.; Villanueva, Geronimo

    2012-03-01

    We present an analysis of high-resolution spectroscopy of several bright T Tauri stars using the CRIRES spectrograph on the Very Large Telescope and NIRSPEC spectrograph on the Keck Telescope, revealing the first detections of emission from HCN and C2H2 in circumstellar disks at near-infrared wavelengths. Using advanced data reduction techniques, we achieve a dynamic range with respect to the disk continuum of ~500 at 3 μm, revealing multiple emission features of H2O, OH, HCN, and C2H2. We also present stringent upper limits for two other molecules thought to be abundant in the inner disk, CH4 and NH3. Line profiles for the different detected molecules are broad but centrally peaked in most cases, even for disks with previously determined inclinations of greater than 20°, suggesting that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We apply two different modeling strategies to constrain the molecular abundances and temperatures: we use a simplified single-temperature local thermal equilibrium (LTE) slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we compare these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests that the molecular emission originates from within a narrow region in the inner disk (R < 1 AU). Based partially on observations collected at the European Southern Observatory Very Large Telescope under program ID 179.C-0151, program ID 283.C-5016, and program ID 082.C-0432 (P.I.: Pontopiddan).

  17. CO line emission from galaxies in the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Vallini, L.; Pallottini, A.; Ferrara, A.; Gallerani, S.; Sobacchi, E.; Behrens, C.

    2018-01-01

    We study the CO line luminosity (LCO), the shape of the CO spectral line energy distribution (SLED), and the value of the CO-to-H2 conversion factor in galaxies in the Epoch of Reionization (EoR). For this aim, we construct a model that simultaneously takes into account the radiative transfer and the clumpy structure of giant molecular clouds (GMCs) where the CO lines are excited. We then use it to post-process state-of-the-art zoomed, high resolution (30 pc), cosmological simulation of a main-sequence (M* ≈ 1010 M⊙, SFR ≈ 100 M⊙ yr- 1) galaxy, 'Althæa', at z ≈ 6. We find that the CO emission traces the inner molecular disc (r ≈ 0.5 kpc) of Althæa with the peak of the CO surface brightness co-located with that of the [C II] 158 μm emission. Its LCO(1-0) = 104.85 L⊙ is comparable to that observed in local galaxies with similar stellar mass. The high (Σgas ≈ 220 M⊙ pc- 2) gas surface density in Althæa, its large Mach number (M ≈ 30) and the warm kinetic temperature (Tk ≈ 45 K) of GMCs yield a CO SLED peaked at the CO(7-6) transition, i.e. at relatively high-J and a CO-to-H2 conversion factor α _CO≈ 1.5 M_{⊙} (K km s^{-1} pc^2)^{-1} lower than that of the Milky Way. The Atacama Large Millimeter/submillimeter Array observing time required to detect (resolve) at 5σ the CO(7-6) line from galaxies similar to Althæa is ≈13 h (≈38 h).

  18. Excitation Mechanisms of Near-Infrared Emission Lines in LINER Galaxies

    NASA Astrophysics Data System (ADS)

    Boehle, Anna

    2017-01-01

    I will present high spatial resolution, integral field spectroscopic observations of the nearby LINER (low ionization nuclear emission line region) galaxy NGC 404. LINERs are found at the centers of ~1/3 of galaxies within 40 Mpc, but their physical nature is not well understood. Although NGC 404 is thought to host a intermediate mass black hole at its center, it is unclear whether accretion onto the black hole or another mechanism such as shock excitation drives its LINER emission. We use the OSIRIS near-infrared integral field spectrograph at Keck Observatory behind laser guide star adaptive optics to map the strength and kinematics of [FeII], H2, and hydrogen recombination lines in the nucleus of NGC 404. These observations have a spatial pixel sampling of 0.5 pc and span the central 30 pc of the galaxy. We find that the ionized and molecular gas show differences in their morphology and kinematics on parsec scales. In particular, there are regions with line ratios of [FeII]/Pa-β that are much higher than previously seen in spatially integrated spectra, significantly restricting the possible excitation mechanisms of the near-infrared emission lines in this source. We are also applying these analysis techniques to 10 additional nearby LINERs, a part of a larger sample of 14 sources, to understand what drives the emission lines in these active galaxies. As a part of this program, I worked on the upgrade of the detector in the OSIRIS spectrograph, which has allowed observations for this survey obtained since January 2016 to be taken with increased instrument sensitivity of a factor of ~2 at J-band wavelengths (1.2 - 1.4 microns) and ~1.6 at H- and K-band wavelengths (1.5 - 2.4 microns). I will present results from the LINER survey, the OSIRIS detector upgrade, and also touch on related work using stellar orbits around the Milky Way supermassive black hole Sgr A* to constrain the mass and distance to our own Galactic Center.

  19. Mid Infrared Hydrogen Recombination Line Emission from the Maser Star MWC 349A

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Strelnitski, V.; Miles, J. W.; Kelly, D. M.; Lacy, J. H.

    1997-01-01

    We have detected and spectrally resolved the mid-IR hydrogen recombination lines H6(alpha)(12.372 micrometers), H7(alpha)(19.062 micrometers), H7(beta)(l1.309 micrometers) and H8(gamma)(12.385 micrometers) from the star MWC349A. This object has strong hydrogen maser emission (reported in the millimeter and submillimeter hydrogen recombination lines from H36(alpha) to H21(alpha)) and laser emission (reported in the H15(alpha), H12(alpha) and H10(alpha) lines). The lasers/masers are thought to arise predominantly in a Keplerian disk around the star. The mid-IR lines do not show evident signs of lasing, and can be well modeled as arising from the strong stellar wind, with a component arising from a quasi-static atmosphere around the disk, similar to what is hypothesized for the near IR (less than or equal to 4 micrometers) recombination lines. Since populations inversions in the levels producing these mid-IR transitions are expected at densities up to approximately 10(exp 11)/cu cm, these results imply either that the disk does not contain high-density ionized gas over long enough path lengths to produce a gain approximately 1, and/or that any laser emission from such regions is small compared to the spontaneous background emission from the rest of the source as observed with a large beam. The results reinforce the interpretation of the far-IR lines as true lasers.

  20. Synthetic nebular emission from massive galaxies - I: origin of the cosmic evolution of optical emission-line ratios

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela; Charlot, Stephane; Feltre, Anna; Naab, Thorsten; Choi, Ena; Ostriker, Jeremiah P.; Somerville, Rachel S.

    2017-12-01

    Galaxies occupy different regions of the [O III]λ5007/H β-versus-[N II]λ6584/H α emission-line ratio diagram in the distant and local Universe. We investigate the origin of this intriguing result by modelling self-consistently, for the first time, nebular emission from young stars, accreting black holes (BHs) and older, post-asymptotic giant branch (post-AGB) stellar populations in galaxy formation simulations in a full cosmological context. In post-processing, we couple new-generation nebular-emission models with high-resolution, cosmological zoom-in simulations of massive galaxies to explore which galaxy physical properties drive the redshift evolution of the optical-line ratios [O III]λ5007/H β, [N II]λ6584/H α, [S II]λλ6717, 6731/H α and [O I]λ6300/H α. The line ratios of simulated galaxies agree well with observations of both star-forming and active local Sloan Digital Sky Survey galaxies. Towards higher redshifts, at fixed galaxy stellar mass, the average [O III]/H β is predicted to increase and [N II]/H α, [S II]/H α and [O I]/H α to decrease - widely consistent with observations. At fixed stellar mass, we identify star formation history, which controls nebular emission from young stars via the ionization parameter, as the primary driver of the cosmic evolution of [O III]/H β and [N II]/H α. For [S II]/H α and [O I]/H α, this applies only to redshifts greater than z = 1.5, the evolution at lower redshift being driven in roughly equal parts by nebular emission from active galactic nuclei and post-AGB stellar populations. Instead, changes in the hardness of ionizing radiation, ionized-gas density, the prevalence of BH accretion relative to star formation and the dust-to-metal mass ratio (whose impact on the gas-phase N/O ratio we model at fixed O/H) play at most a minor role in the cosmic evolution of simulated galaxy line ratios.

  1. Warm H2O and OH Disk Emission in V1331 Cyg

    NASA Astrophysics Data System (ADS)

    Doppmann, Greg W.; Najita, Joan R.; Carr, John S.; Graham, James R.

    2011-09-01

    We present high-resolution (R = 24, 000) L-band spectra of the young intermediate-mass star V1331 Cyg obtained with NIRSPEC on the Keck II telescope. The spectra show strong, rich emission from water and OH that likely arises from the warm surface region of the circumstellar disk. We explore the use of the new BT2 water line list in fitting the spectra, and we find that it does a much better job than the well-known HITRAN water line list in the observed wavelength range and for the warm temperatures probed by our data. By comparing the observed spectra with synthetic disk emission models, we find that the water and OH emission lines have similar widths (FWHM ~= 18 km s-1). If the line widths are set by disk rotation, the OH and water emission lines probe a similar range of disk radii in this source. The water and OH emission are consistent with thermal emission for both components at a temperature ~1500 K. The column densities of the emitting water and OH are large, ~1021 cm-2 and ~1020 cm-2, respectively. Such a high column density of water is more than adequate to shield the disk midplane from external UV irradiation in the event of complete dust settling out of the disk atmosphere, enabling chemical synthesis to continue in the midplane despite a harsh external UV environment. The large OH-to-water ratio is similar to expectations for UV irradiated disks, although the large OH column density is less easily accounted for. Data presented herein were obtained at the W. M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency's scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  2. Rings of Molecular Line Emission in the Disk Orbiting the Young, Close Binary V4046 Sgr

    NASA Astrophysics Data System (ADS)

    Dickson-Vandervelde, Dorothy; Kastner, Joel H.; Qi, C.; Forveille, Thierry; Hily-Blant, Pierre; Oberg, Karin; Wilner, David; Andrews, Sean; Gorti, Uma; Rapson, Valerie; Sacco, Germano; Principe, David

    2018-01-01

    We present analysis of a suite of subarcsecond ALMA Band 6 (1.1 - 1.4 mm) molecular line images of the circumbinary, protoplanetary disk orbiting V4046 Sgr. The ~20 Myr-old V4046 Sgr system, which lies a mere ~73 pc from Earth, consists of a close (separation ~10 Rsun) pair of roughly solar-mass stars that are orbited by a gas-rich crcumbinary disk extending to ~350 AU in radius. The ALMA images reveal that the molecules CO and HCN and their isotopologues display centrally peaked surface brightness morphologies, whereas the cyanide group molecules (HC3N, CH3CN), deuterated molecules (DCN, DCO+), hydrocarbons (as traced by C2H), and potential CO ice line tracers (N2H+, and H2CO) appear as a sequence of sharp and diffuse rings of increasing radii. The characteristic sizes of these molecular emission rings, which range from ~25 to >100 AU in radius, are evident in radial emission-line surface brightness profiles extracted from the deprojected disk images. We find that emission from 13CO emission transitions from optically thin to thick within ~50 AU, whereas C18O emission remains optically thin within this radius. We summarize the insight into the physical and chemical processes within this evolved protoplanetary disk that can be obtained from comparisons of the various emission-line morphologies with each other and with that of the continuum (large-grain) emission on size scales of tens of AU.This research is supported by NASA Exoplanets program grant NNX16AB43G to RIT

  3. VizieR Online Data Catalog: Vatican Emission-line stars (Coyne+ 1974-1983)

    NASA Astrophysics Data System (ADS)

    Coyne, G. V.; Lee, T. A.; de Graeve, E.; Wisniewski, W.; Corbally, C.; Otten, L. B.; MacConnell, D. J.

    2008-03-01

    The survey represents a search for Hα emission-line stars, and was conducted with a 12{deg} objective prism on the Vatican Schmidt telescope. The Vatican Emission Stars (VES) survey covers the galactic plane (|b|<=5{deg}) between galactic longitudes 58 and 174{deg}. The catalog was re-examined by B. Skiff (Lowell Observatory), and tne VES stars were cross-identified with modern surveys: GSC (Cat. I/255), Tycho-2 (I/256), 2MASS (II/246), IRAS point source catalog (II/125), MSX6C (V/114), CMC14 (I/304), GSC-2.3 (I/305), UCAC2 (I/289). Cross-identifications are also supplied with HD/BD/GCVS names, and with Dearborn catalog of red stars (II/68). Many of the stars in the first four papers are not early-type emission-line stars, but instead M giants, where the sharp TiO bandhead at 6544{AA} was mistaken for H-{alpha} emission on the objective-prism plates. Based on the revision of paper V and a later list prepared by Jack MacConnell, a column identifies the "non H-alpha" stars explicitly. The links with the Dearborn, IRAS, and MSX catalogues help identify the red stars. These and other identifications and comments are given in the remarks at the end of each line, or in longer notes in a separate file, indicated by an asterisk (*) next to the star number. (2 data files).

  4. DETAILED ANALYSIS OF NEAR-IR WATER (H{sub 2}O) EMISSION IN COMET C/2014 Q2 (LOVEJOY) WITH THE GIANO/TNG SPECTROGRAPH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faggi, S.; Brucato, J. R.; Tozzi, G. P.

    We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1–2.5 μ m region. Spectral lines from eight ro-vibrational bands of H{sub 2}O were detected, sixmore » of them for the first time. We quantified the water production rate [ Q (H{sub 2}O), (3.11 ± 0.14) × 10{sup 29} s{sup −1}] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H{sub 2}O. The production rates of ortho-water [ Q (H{sub 2}O){sup ORTHO}, (2.33 ± 0.11) × 10{sup 29} s{sup −1}] and para-water [ Q (H{sub 2}O){sup PARA}, (0.87 ± 0.21) × 1029 s{sup −1}] provide a measure of the ortho-to-para ratio (2.70 ± 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.« less

  5. Mid-infrared rotational line emission from interstellar molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Burton, Michael G.; Hollenbach, D. J.; Tielens, A. G. G.

    1992-11-01

    The line emission from the v = 0-0 S(0), S(2), and S(3), and the v = 1-0 and v = 2-1 S(1) transitions of molecular hydrogen in clouds exposed to high FUV fluxes and in shocks is modeled. Particular attention is given to the lowest pure rotational H2 transitions at 20 and 17 microns, respectively. It is found that, in photodissociation regions (PDRs), the emission comes from warm (greater than about 100 k) molecular gas, situated at optical depths greater than about 1, beyond the hot atomic surface layer of the clouds. For FUV fields, G0 = 1000 to 100,000 times the average interstellar field densities n = 10 exp 3 - 10 exp 7/cu cm, the typical line intensities are in the range 10 exp -6 to 10 exp -4 ergs/s sq cm sr. The predictions for the line intensities from both C-type and J-type shock models are compared. The results are applied to recent observations of the 0-0 S(1) transition in both the PDR and the shocked gas in Orion.

  6. Road vehicle emissions of molecular hydrogen (H 2) from a tunnel study

    NASA Astrophysics Data System (ADS)

    Vollmer, Martin K.; Juergens, Niklas; Steinbacher, Martin; Reimann, Stefan; Weilenmann, Martin; Buchmann, Brigitte

    Motor vehicle combustion emissions of molecular hydrogen (H 2), carbon monoxide (CO), and carbon dioxide (CO 2) were measured during a 6-week period from November 2004 to January 2005 in Gubrist Tunnel, Switzerland, to determine vehicle emission factors for these trace gases and the ratios of the concentration growths ΔH2/ΔCO and ΔH2/ΔCO2 in the tunnel under real-world highway driving conditions. For H 2, molar mixing ratios at the tunnel exit were found to be 7-10 ppm (parts-per-million, 10-6) during rush hours. Mean emission factors of E=49.7(±16.5)mgkm-1, ECO=1.46(±0.54)gkm-1, and E=266(±69)gkm-1 were calculated. E was largest during weekday rush-hour traffic, a consequence of the more frequent accelerations in congested traffic when fuel combustion is not optimal. E was smaller for heavy-duty vehicles (HDV) compared to light-duty vehicles (LDV), a finding which was attributed to the diesel vs. gasoline engine technology. The mean ΔH2/ΔCO molecular ratio was 0.48±0.12. This ratio increased to ˜0.6 during rush hours, suggesting that H 2 yield is favored relative to CO under fuel-rich conditions, presumably a consequence of an increasing contribution of the water-gas-shift reaction. The mean ΔH2/ΔCO2 molecular ratio was 4.4×10-3 but reduced to 2.5×10-3 when the relative HDV abundance was at maximum. Using three different approaches, road traffic H 2 emissions were estimated for 2004 for Switzerland at 5.0-6.6 Gg and globally at 4.2-8.1 Tg. Despite projections of increasing traffic, Swiss H 2 emissions are not expected to change significantly in the near future, and global emissions are likely to decrease due to improved exhaust gas clean-up technologies.

  7. The Sloan Digital Sky Survey Reverberation Mapping Project: Ensemble Spectroscopic Variability of Quasar Broad Emission Lines

    NASA Astrophysics Data System (ADS)

    Sun, Mouyuan; Trump, Jonathan R.; Shen, Yue; Brandt, W. N.; Dawson, Kyle; Denney, Kelly D.; Hall, Patrick B.; Ho, Luis C.; Horne, Keith; Jiang, Linhua; Richards, Gordon T.; Schneider, Donald P.; Bizyaev, Dmitry; Kinemuchi, Karen; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey

    2015-09-01

    We explore the variability of quasars in the Mg ii and {{H}}β broad emission lines and ultraviolet/optical continuum emission using the Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM). This is the largest spectroscopic study of quasar variability to date: our study includes 29 spectroscopic epochs from SDSS-RM over 6 months, containing 357 quasars with Mg ii and 41 quasars with {{H}}β . On longer timescales, the study is also supplemented with two-epoch data from SDSS-I/II. The SDSS-I/II data include an additional 2854 quasars with Mg ii and 572 quasars with {{H}}β . The Mg ii emission line is significantly variable ({{Δ }}f/f∼ 10% on ∼100-day timescales), a necessary prerequisite for its use for reverberation mapping studies. The data also confirm that continuum variability increases with timescale and decreases with luminosity, and the continuum light curves are consistent with a damped random-walk model on rest-frame timescales of ≳ 5 days. We compare the emission-line and continuum variability to investigate the structure of the broad-line region. Broad-line variability shows a shallower increase with timescale compared to the continuum emission, demonstrating that the broad-line transfer function is not a δ-function. {{H}}β is more variable than Mg ii (roughly by a factor of ∼1.5), suggesting different excitation mechanisms, optical depths and/or geometrical configuration for each emission line. The ensemble spectroscopic variability measurements enabled by the SDSS-RM project have important consequences for future studies of reverberation mapping and black hole mass estimation of 1\\lt z\\lt 2 quasars.

  8. Characteristics of H2S emission from aged refuse after excavation exposure.

    PubMed

    Shen, Dong-Sheng; Du, Yao; Fang, Yuan; Hu, Li-Fang; Fang, Cheng-Ran; Long, Yu-Yang

    2015-05-01

    Hydrogen sulfide (H2S(g)) emission from landfills is a widespread problem, especially when aged refuse is excavated. H2S(g) emission from aged refuse exposed to air was investigated and the results showed that large amounts of H2S(g) can be released, especially in the first few hours after excavation, when H2S(g) concentrations in air near refuse could reach 2.00 mg m(-3). Initial exposure to air did not inhibit the emission of H2S(g), as is generally assumed, but actually promoted it. The amounts of H2S(g) emitted in the first 2 d after excavation can be very dangerous, and the risks associated with the emission of H2S(g) could decrease significantly with time. Unlike a large number of sulfide existed under anaerobic conditions, the sulfide in aged municipal solid waste can be oxidized chemically to elemental sulfur (but not sulfate) under aerobic conditions, and its conversion rate was higher than 80%. Only microorganisms can oxidize the reduced sulfur species to sulfate, and the conversion rate could reach about 50%. Using appropriate techniques to enhance these chemical and biological transformations could allow the potential health risks caused by H2S(g) after refuse excavation to be largely avoided. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. VizieR Online Data Catalog: Vatican Emission-line stars (Coyne+ 1974-1983)

    NASA Astrophysics Data System (ADS)

    Coyne, G. V.; Lee, T. A.; de Graeve, E.; Wisniewski, W.; Corbally, C.; Otten, L. B.; MacConnell, D. J.

    2009-10-01

    The survey represents a search for Hα emission-line stars, and was conducted with a 12{deg} objective prism on the Vatican Schmidt telescope. The Vatican Emission Stars (VES) survey covers the galactic plane (|b|<=5{deg}) between galactic longitudes 58 and 174{deg}. The catalog was re-examined by B. Skiff (Lowell Observatory), and tne VES stars were cross-identified with modern surveys: GSC (Cat. I/255), Tycho-2 (I/256), 2MASS (II/246), IRAS point source catalog (II/125), MSX6C (V/114), CMC14 (I/304), GSC-2.3 (I/305), UCAC2 (I/289). Cross-identifications are also supplied with HD/BD/GCVS names, and with Dearborn catalog of red stars (II/68). Many of the stars in the first four papers are not early-type emission-line stars, but instead M giants, where the sharp TiO bandhead at 6544{AA} was mistaken for H-{alpha} emission on the objective-prism plates. Based on the revision of paper V and a later list prepared by Jack MacConnell, a column identifies the "non H-alpha" stars explicitly. The links with the Dearborn, IRAS, and MSX catalogues help identify the red stars. These and other identifications and comments are given in the remarks at the end of each line, or in longer notes in a separate file, indicated by an asterisk (*) next to the star number. (3 data files).

  10. Galaxy emission line classification using three-dimensional line ratio diagrams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, Frédéric P. A.; Dopita, Michael A.; Kewley, Lisa J.

    2014-10-01

    Two-dimensional (2D) line ratio diagnostic diagrams have become a key tool in understanding the excitation mechanisms of galaxies. The curves used to separate the different regions—H II-like or excited by an active galactic nucleus (AGN)—have been refined over time but the core technique has not evolved significantly. However, the classification of galaxies based on their emission line ratios really is a multi-dimensional problem. Here we exploit recent software developments to explore the potential of three-dimensional (3D) line ratio diagnostic diagrams. We introduce the ZQE diagrams, which are a specific set of 3D diagrams that separate the oxygen abundance and themore » ionization parameter of H II region-like spectra and also enable us to probe the excitation mechanism of the gas. By examining these new 3D spaces interactively, we define the ZE diagnostics, a new set of 2D diagnostics that can provide the metallicity of objects excited by hot young stars and that cleanly separate H II region-like objects from the different classes of AGNs. We show that these ZE diagnostics are consistent with the key log [N II]/Hα versus log [O III]/Hβ diagnostic currently used by the community. They also have the advantage of attaching a probability that a given object belongs to one class or the other. Finally, we discuss briefly why ZQE diagrams can provide a new way to differentiate and study the different classes of AGNs in anticipation of a dedicated follow-up study.« less

  11. PEARS Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; hide

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 < z < 1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allOW8 us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 [OII], [OIII] and/or H-alpha emission lines have been identified in the PEARS sample of approx 906 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  12. Infrared coronal emission lines and the possibility of their maser emission in Seyfert nuclei

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Feldman, Uri; Smith, Howard A.; Klapisch, Marcel; Bhatia, Anand K.; Bar-Shalom, Abi

    1993-01-01

    Energetic emitting regions have traditionally been studied via x-ray, UV and optical emission lines of highly ionized intermediate mass elements. Such lines are often referred to as 'coronal lines' since the ions, when produced by collisional ionization, reach maximum abundance at electron temperatures of approx. 10(exp 5) - 10(exp 6) K typical of the sun's upper atmosphere. However, optical and UV coronal lines are also observed in a wide variety of Galactic and extragalactic sources including the Galactic interstellar medium, nova shells, supernova remnants, galaxies and QSOs. Infrared coronal lines are providing a new window for observation of energetic emitting regions in heavily dust obscured sources such as infrared bright merging galaxies and Seyfert nuclei and new opportunities for model constraints on physical conditions in these sources. Unlike their UV and optical counterparts, infrared coronal lines can be primary coolants of collisionally ionized plasmas with 10(exp 4) less than T(sub e)(K) less than 10(exp 6) which produce little or no optical or shorter wavelength coronal line emission. In addition, they provide a means to probe heavily dust obscured emitting regions which are often inaccessible to optical or UV line studies. In this poster, we provide results from new model calculations to support upcoming Infrared Space Observatory (ISO) and current ground-based observing programs involving infrared coronal emission lines in AGN. We present a complete list of infrared (lambda greater than 1 micron) lines due to transitions within the ground configurations 2s(2)2p(k) and 3s(2)3p(k) (k = 1 to 5) or the first excited configurations 2s2p and 3s3p of highly ionized (x greater than or equal to 100 eV) astrophysically abundant (n(X)/n(H) greater than or equal to 10(exp -6)) elements. Included are approximately 74 lines in ions of O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Fe, and Ni spanning a wavelength range of approximately 1 - 280 microns. We present new

  13. Ultraviolet imaging telescope and optical emission-line observations of H II regions in M81

    NASA Technical Reports Server (NTRS)

    Hill, Jesse K.; Cheng, K.-P.; Bohlin, Ralph C.; Cornett, Robert H.; Hintzen, P. M. N.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1995-01-01

    Images of the type Sab spiral galaxy M81 were obtained in far-UV and near-UV bands by the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Spacelab mission of 1990 December. Magnitudes in the two UV bands are determined for 52 H II regions from the catalog of Petit, Sivan, & Karachentsev (1988). Fluxes of the H-alpha and H-beta emission lines are determined from CCD images. Extinctions for the brightest H II regions are determined from observed Balmer decrements. Fainter H II regions are assigned the average of published radio-H-alpha extinctions for several bright H II regions. The radiative transfer models of Witt, Thronson, & Capuano (1992) are shown to predict a relationship between Balmer Decrement and H-alpha extinction consistent with observed line and radio fluxes for the brightest 7 H II regions and are used to estimate the UV extinction. Ratios of Lyman continuum with ratios predicted by model spectra computed for initial mass function (IMF) slope equal to -1.0 and stellar masses ranging from 5 to 120 solar mass. Ages and masses are estimated by comparing the H-alpha and far-UV fluxes and their ratio with the models. The total of the estimated stellar masses for the 52 H II regions is 1.4 x 10(exp 5) solar mass. The star-formation rate inferred for M81 from the observed UV and H-alpha fluxes is low for a spiral galaxy at approximately 0.13 solar mass/yr, but consistent with the low star-formation rates obtained by Kennicutt (1983) and Caldwell et al. (1991) for early-type spirals.

  14. Significant contribution of the Cerenkov line-like radiation to the broad emission lines of quasars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, D. B.; You, J. H.; Chen, W. P.

    2014-01-01

    The Cerenkov line-like radiation in a dense gas (N {sub H} > 10{sup 13} cm{sup –3}) is potentially important in the exploration of the optical broad emission lines of quasars and Seyfert 1 galaxies. With this quasi-line emission mechanism, some long standing puzzles in the study of quasars could be resolved. In this paper, we calculate the power of the Cerenkov line-like radiation in dense gas and compare with the powers of other radiation mechanisms by a fast electron to confirm its importance. From the observed gamma-ray luminosity of 3C 279, we show that the total number of fast electronsmore » is sufficiently high to allow effective operation of the quasi-line emission. We present a model calculation for the luminosity of the Cerenkov Lyα line of 3C 279, which is high enough to compare with observations. We therefore conclude that the broad line of quasars may be a blend of the Cerenkov emission line with the real line produced by the bound-bound transition. A new approach to the absorption of the Cerenkov line is presented with the method of escape probability, which markedly simplifies the computation in the optically thick case. The revised set of formulae for the Cerenkov line-like radiation is more convenient in applications.« less

  15. Emission line galaxy pairs up to z=1.5 from the WISP survey

    NASA Astrophysics Data System (ADS)

    Teplitz, Harry I.; Dai, Yu Sophia; Malkan, Matthew Arnold; Scarlata, Claudia; Colbert, James W.; Atek, Hakim; Bagley, Micaela B.; Baronchelli, Ivano; Bedregal, Alejandro; Beck, Melanie; Bunker, Andrew; Dominguez, Alberto; Hathi, Nimish P.; Henry, Alaina L.; Mehta, Vihang; Pahl, Anthony; Rafelski, Marc; Ross, Nathaniel; Rutkowski, Michael J.; Siana, Brian D.; WISPs Team

    2016-01-01

    We present a sample of spectroscopically identified emission line galaxy pairs up to z=1.5 from WISPs (WFC3 Infrared Spectroscopic Parallel survey) using high resolution direct and grism images from HST. We searched ~150 fields with a covered area of ~600 arcmin^2, and a comoving volume of > 400 Gpc^3 at z=1-2, and found ~80 very close physical pairs (projected separation Dp < 50 h^{-1}kpc, relative velocity d_v < 500 kms^{-1}), and ~100 close physical pairs (50 < Dp < 100 h^{-1}kpc, d_v < 1000 kms^{-1}) of emission line galaxies, including two dozen triplets and quadruples. In this poster we present the multi-wavelength data, star formation rate (SFR), mass ratio, and study the merger rate evolution with this special galaxy pair sample.

  16. ON THE ORIGINS OF THE DIFFUSE H{alpha} EMISSION: IONIZED GAS OR DUST-SCATTERED H{alpha} HALOS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seon, Kwang-Il; Witt, Adolf N., E-mail: kiseon@kasi.re.kr

    2012-10-20

    It is known that the diffuse H{alpha} emission outside of bright H II regions not only are very extended, but also can occur in distinct patches or filaments far from H II regions, and the line ratios of [S II] {lambda}6716/H{alpha} and [N II] {lambda}6583/H{alpha} observed far from bright H II regions are generally higher than those in the H II regions. These observations have been regarded as evidence against the dust-scattering origin of the diffuse H{alpha} emission (including other optical lines), and the effect of dust scattering has been neglected in studies on the diffuse H{alpha} emission. In thismore » paper, we reexamine the arguments against dust scattering and find that the dust-scattering origin of the diffuse H{alpha} emission cannot be ruled out. As opposed to the previous contention, the expected dust-scattered H{alpha} halos surrounding H II regions are, in fact, in good agreement with the observed H{alpha} morphology. We calculate an extensive set of photoionization models by varying elemental abundances, ionizing stellar types, and clumpiness of the interstellar medium (ISM) and find that the observed line ratios of [S II]/H{alpha}, [N II]/H{alpha}, and He I {lambda}5876/H{alpha} in the diffuse ISM accord well with the dust-scattered halos around H II regions, which are photoionized by late O- and/or early B-type stars. We also demonstrate that the H{alpha} absorption feature in the underlying continuum from the dust-scattered starlight ({sup d}iffuse galactic light{sup )} and unresolved stars is able to substantially increase the [S II]/H{alpha} and [N II]/H{alpha} line ratios in the diffuse ISM.« less

  17. H- and He-like Charge-Exchange Induced X-ray Emission due to Ion Collisions with H, He, and H2

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata; Mullen, Patrick; Miller, Ansley; Lyons, David; Shelton, Robin L.; Schultz, David R.; Stancil, Phillip C.; Leutenegger, Maurice A.

    2017-08-01

    When a hot plasma collides with a cold neutral gas interactions occur between the microscopic constituents including charge exchange (CX). CX is a process in which an electron can be transferred from a neutral atom or molecule into an excited energy level of an ion. Following this transfer, the excited electron relaxes to lower energy levels, emitting X-rays. This process has been established as a primary source of X-ray emission within our solar system, such as when the solar wind interacts with cometary and planetary atmospheres, and outside of our solar system, such as in the hot outflows of starburst galaxies.Since the CX X-ray emission spectrum varies greatly with collision velocity, it is critical that realistic CX data are included in X-ray spectral models of astrophysical environments in which CX might be significant in order to correctly estimate the ion abundance and plasma velocities. Here, line ratios and spectra are computed using theoretical CX cross sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, and classical-trajectory Monte Carlo methods for a variety of collision energies relevant to various astrophysical environments. Collisions of bare and H-like C, N, O, Ne, Mg, Al, Si, P, S, and Cl ions are shown with H, He, and H2 as the neutral collision targets. An X-ray model using line ratios for C-Si ions is then performed within XSPEC for a region of the Cygnus Loop supernova remnant for 8 collision energies in order to highlight the variation in CX spectral models with collision energy.R. Cumbee’s research was partially supported by an appointment to the NASA Postdoctoral Program at NASA GSFC, administered by Universities Space Research Association under contract with NASA. Work at UGA was partially supported by NASA grants NNX09AC46G and NNG09WF24I.

  18. Detection of 183 GHz H2O megamaser emission towards NGC 4945

    NASA Astrophysics Data System (ADS)

    Humphreys, E. M. L.; Vlemmings, W. H. T.; Impellizzeri, C. M. V.; Galametz, M.; Olberg, M.; Conway, J. E.; Belitsky, V.; De Breuck, C.

    2016-08-01

    Aims: The aim of this work is to search Seyfert 2 galaxy NGC 4945, a well-known 22 GHz water megamaser galaxy, for H2O (mega)maser emission at 183 GHz. Methods: We used APEX SEPIA Band 5 (an ALMA Band 5 receiver on the APEX telescope) to perform the observations. Results: We detected 183 GHz H2O maser emission towards NGC 4945 with a peak flux density of ~3 Jy near the galactic systemic velocity. The emission spans a velocity range of several hundred km s-1. We estimate an isotropic luminosity of >1000 L⊙, classifying the emission as a megamaser. A comparison of the 183 GHz spectrum with that observed at 22 GHz suggests that 183 GHz emission also arises from the active galactic nucleus (AGN) central engine. If the 183 GHz emission originates from the circumnuclear disk, then we estimate that a redshifted feature at 1084 km s-1 in the spectrum should arise from a distance of 0.022 pc from the supermassive black hole (1.6 × 105 Schwarzschild radii), I.e. closer than the water maser emission previously detected at 22 GHz. This is only the second time 183 GHz maser emission has been detected towards an AGN central engine (the other galaxy being NGC 3079). It is also the strongest extragalactic millimetre/submillimetre water maser detected to date. Conclusions: Strong millimetre 183 GHz H2O maser emission has now been shown to occur in an external galaxy. For NGC 4945, we believe that the maser emission arises, or is dominated by, emission from the AGN central engine. Emission at higher velocity, I.e. for a Keplerian disk closer to the black hole, has been detected at 183 GHz compared with that for the 22 GHz megamaser. This indicates that millimetre/submillimetre H2O masers can indeed be useful for tracing out more of AGN central engine structures and dynamics than previously probed. Future observations using ALMA Band 5 should unequivocally determine the origin of the emission in this and other galaxies.

  19. H α VARIABILITY IN PTFO 8-8695 AND THE POSSIBLE DIRECT DETECTION OF EMISSION FROM A 2 MILLION YEAR OLD EVAPORATING HOT JUPITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johns-Krull, Christopher M.; Chen, Wei; Frazier, Sarah A., E-mail: cmj@rice.edu, E-mail: wc2@rice.edu, E-mail: sarah.a.frazier@rice.edu

    We use high time cadence, high spectral resolution optical observations to detect excess H α emission from the 2–3 Myr old weak-lined T Tauri star PTFO 8-8695. This excess emission appears to move in velocity as expected if it were produced by the suspected planetary companion to this young star. The excess emission is not always present, but when it is, the predicted velocity motion is often observed. We have considered the possibility that the observed excess emission is produced by stellar activity (flares), accretion from a disk, or a planetary companion; we find the planetary companion to be themore » most likely explanation. If this is the case, the strength of the H α line indicates that the emission comes from an extended volume around the planet, likely fed by mass loss from the planet which is expected to be overflowing its Roche lobe.« less

  20. Tests of star formation metrics in the low-metallicity galaxy NGC 5253 using ALMA observations of H30α line emission

    NASA Astrophysics Data System (ADS)

    Bendo, G. J.; Miura, R. E.; Espada, D.; Nakanishi, K.; Beswick, R. J.; D'Cruze, M. J.; Dickinson, C.; Fuller, G. A.

    2017-11-01

    We use Atacama Large Millimeter/submillimeter Array (ALMA) observations of H30α (231.90 GHz) emission from the low-metallicity dwarf galaxy NGC 5253 to measure the star formation rate (SFR) within the galaxy and to test the reliability of SFRs derived from other commonly used metrics. The H30α emission, which originates mainly from the central starburst, yields a photoionizing photon production rate of (1.9 ± 0.3) × 1052 s-1 and an SFR of 0.087 ± 0.013 M⊙ yr-1 based on conversions that account for the low metallicity of the galaxy and for stellar rotation. Among the other star formation metrics we examined, the SFR calculated from the total infrared flux was statistically equivalent to the values from the H30α data. The SFR based on a previously published version of the H α flux that was extinction corrected using Paα and Paβ lines was lower than but also statistically similar to the H30α value. The mid-infrared (22 μm) flux density and the composite star formation tracer based on H α and mid-infrared emission give SFRs that were significantly higher because the dust emission appears unusually hot compared to typical spiral galaxies. Conversely, the 70 and 160 μm flux densities yielded SFRs lower than the H30α value, although the SFRs from the 70 μm and H30α data were within 1σ-2σ of each other. While further analysis on a broader range of galaxies is needed, these results are instructive of the best and worst methods to use when measuring SFR in low-metallicity dwarf galaxies like NGC 5253.

  1. Neutral Hydrogen and Its Emission Lines in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Vial, Jean-Claude; Chane-Yook, Martine

    2016-12-01

    Since the Lyman-α rocket observations of Gabriel ( Solar Phys. 21, 392, 1971), it has been realized that the hydrogen (H) lines could be observed in the corona and that they offer an interesting diagnostic for the temperature, density, and radial velocity of the coronal plasma. Moreover, various space missions have been proposed to measure the coronal magnetic and velocity fields through polarimetry in H lines. A necessary condition for such measurements is to benefit from a sufficient signal-to-noise ratio. The aim of this article is to evaluate the emission in three representative lines of H for three different coronal structures. The computations have been performed with a full non-local thermodynamic-equilibrium (non-LTE) code and its simplified version without radiative transfer. Since all collisional and radiative quantities (including incident ionizing and exciting radiation) are taken into account, the ionization is treated exactly. Profiles are presented at two heights (1.05 and 1.9 solar radii, from Sun center) in the corona, and the integrated intensities are computed at heights up to five solar radii. We compare our results with previous computations and observations ( e.g. Lα from Ultraviolet Coronal Spectrometer) and find a rough (model-dependent) agreement. Since the Hα line is a possible candidate for ground-based polarimetry, we show that in order to detect its emission in various coronal structures, it is necessary to use a very narrow (less than 2 Å wide) bandpass filter.

  2. Uranus' (3-0) H2 quadrupole line profiles

    NASA Technical Reports Server (NTRS)

    Trafton, L.

    1987-01-01

    Spectra of Uranus' S3(0) and S3(1) H2 quadrupole lines, obtained during the 1978-1980 apparitions, are analyzed, and are found to require the presence of a deep cloud. Modifications of the Baines and Bergstralh (1986) standard model, including an additional haze layer above the 16-km-am H2 level which contains strongly absorbing particles, are needed to fit the observations. For a Rayleigh phase function, such a haze (uniformly mixed with the gas above this level) would have an absorption optical depth of 0.16 and a single scattering particle albedo of 0.30. This modification would imply a fraction of normal H2 equal to 0.25 + or - 0.10, in agreement with the Baines and Bergstralh standard model.

  3. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathore, Kavita, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Munshi, Prabhat, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Bhattacharjee, Sudeep, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actualmore » processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal–oxide–semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission H{sub α} (656 nm) and H{sub β} (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.« less

  4. Fe II emission lines. I - Chromospheric spectra of red giants

    NASA Technical Reports Server (NTRS)

    Judge, P. G.; Jordan, C.

    1991-01-01

    A 'difference filtering' algorithm developed by Ayers (1979) is used to construct high-quality high-dispersion long-wavelength IUE spectra of three giant stars. Measurements of all the emission lines seen between 2230 and 3100 A are tabulated. The emission spectrum of Fe II is discussed in comparison with other lines whose formation mechanisms are well understood. Systematic changes in the Fe II spectrum are related to the different physical conditions in the three stars, and examples are given of line profiles and ratios which can be used to determine conditions in the outer atomspheres of giants. It is concluded that most of the Fe II emission results from collisional excitation and/or absorption of photospheric photons at optical wavelengths, but some lines are formed by fluorescence, being photoexcited by other strong chromospheric lines. Between 10 and 20 percent of the radiative losses of Fe II arise from 10 eV levels radiatively excited by the strong chromospheric H Ly-alpha line.

  5. Resolving shocked and UV excited components of H2 emission in planetary nebulae with high-resolution near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kaplan, Kyle; Dinerstein, Harriet L.; Jaffe, Daniel Thomas

    2016-06-01

    Planetary nebulae (PNe) form when low and intermediate-mass stars eject their outer layers into the ISM at the end of the AGB phase. Many PNe exhibit near-infrared (NIR) emission from molecular hydrogen (H2). This NIR emission arises from radiative decay out of excited rotation-vibration (rovibrational) states. The rovibrational states can be populated by excitation to higher electronic states through absorption of a far-UV photon followed by a radiative cascade to the electronic ground state, or by collisions (e.g., in a hot gas). The two processes populate the rovibrational levels of H2 differently, so the observed emergent emission spectrum provides an effective probe of the mechanisms that excite the H2. Many PNe display line intensity ratios that are intermediate between these two processes (Otsuka et al. 2013). With the advantages of the high spectral resolution (R~40000), broad wavelength coverage (1.45-2.45 μm), and high spatial resolution of the Immersion GRating Infrared Spectrometer (IGRINS, Park et al. 2014), we are able to differentiate components in position-velocity space: we see a slowly expanding UV-excited H2 shell in the PN M 1-11 and two faster moving “bullets” of thermalized H2 that we interpret as shocked gas from a bipolar outflow. We also present observations of several other PNe that exhibit similar morphologies of thermalized and UV-excited H2 components.

  6. Database of emission lines

    NASA Astrophysics Data System (ADS)

    Binette, L.; Ortiz, P.; Joguet, B.; Rola, C.

    1998-11-01

    A widely accessible data bank (available through Netscape) and consiting of all (or most) of the emission lines reported in the litterature is being built. It will comprise objects as diverse as HII regions, PN, AGN, HHO. One of its use will be to define/refine existing diagnostic emission line diagrams.

  7. Different evolutionary stages in massive star formation. Centimeter continuum and H2O maser emission with ATCA

    NASA Astrophysics Data System (ADS)

    Sánchez-Monge, Á.; Beltrán, M. T.; Cesaroni, R.; Fontani, F.; Brand, J.; Molinari, S.; Testi, L.; Burton, M.

    2013-02-01

    Aims: We present Australia Telescope Compact Array (ATCA) observations of the H2O maser line and radio continuum at 18.0 GHz and 22.8 GHz toward a sample of 192 massive star-forming regions containing several clumps already imaged at 1.2 mm. The main aim of this study is to investigate the water maser and centimeter continuum emission (that likely traces thermal free-free emission) in sources at different evolutionary stages, using evolutionary classifications previously published. Methods: We used the recently comissioned Compact Array Broadband Backend (CABB) at ATCA that obtains images with ~20'' resolution in the 1.3 cm continuum and H2O maser emission in all targets. For the evolutionary analysis of the sources we used millimeter continuum emission from the literature and the infrared emission from the MSX Point Source Catalog. Results: We detect centimeter continuum emission in 88% of the observed fields with a typical rms noise level of 0.45 mJy beam-1. Most of the fields show a single radio continuum source, while in 20% of them we identify multiple components. A total of 214 cm continuum sources have been identified, that likely trace optically thin H ii regions, with physical parameters typical of both extended and compact H ii regions. Water maser emission was detected in 41% of the regions, resulting in a total of 85 distinct components. The low angular (~20'') and spectral (~14 km s-1) resolutions do not allow a proper analysis of the water maser emission, but suffice to investigate its association with the continuum sources. We have also studied the detection rate of H ii regions in the two types of IRAS sources defined in the literature on the basis of the IRAS colors: High and Low. No significant differences are found, with high detection rates (>90%) for both High and Low sources. Conclusions: We classify the millimeter and infrared sources in our fields in three evolutionary stages following the scheme presented previously: (Type 1) millimeter

  8. Herschel/HIFI observations of CO, H2O and NH3 in Monoceros R2

    NASA Astrophysics Data System (ADS)

    Pilleri, P.; Fuente, A.; Cernicharo, J.; Ossenkopf, V.; Berné, O.; Gerin, M.; Pety, J.; Goicoechea, J. R.; Rizzo, J. R.; Montillaud, J.; González-García, M.; Joblin, C.; Le Bourlot, J.; Le Petit, F.; Kramer, C.

    2012-08-01

    Context. Mon R2, at a distance of 830 pc, is the only ultracompact H ii region (UCH ii) where the associated photon-dominated region (PDR) can be resolved with Herschel. Owing to its brightness and proximity, it is one of the best-suited sources for investigating the chemistry and physics of highly UV-irradiated PDRs. Aims: Our goal is to estimate the abundance of H2O and NH3 in this region and investigate their origin. Methods: We present new observations ([C ii], 12CO, 13CO, C18O, o-H2O, p-H2O, o-H_218O and o-NH3) obtained with the HIFI instrument onboard Herschel and the IRAM-30 m telescope. We investigated the physical conditions in which these lines arise by analyzing their velocity structure and spatial variations. Using a large velocity gradient approach, we modeled the line intensities and derived an average abundance of H2O and NH3 across the region. Finally, we modeled the line profiles with a non-local radiative transfer model and compared these results with the abundance predicted by the Meudon PDR code. Results: The variations of the line profiles and intensities indicate complex geometrical and kinematical patterns. In several tracers ([C ii], CO 9 → 8 and H2O) the line profiles vary significantly with position and have broader line widths toward the H ii region. The H2O lines present strong self-absorption at the ambient velocity and emission in high-velocity wings toward the H ii region. The emission in the o-H_218O ground state line reaches its maximum value around the H ii region, has smaller linewidths and peaks at the velocity of the ambient cloud. Its spatial distribution shows that the o-H_218O emission arises in the PDR surrounding the H ii region. By modeling the o-H_218O emission and assuming the standard [16O] / [18O] = 500, we derive a mean abundance of o-H2O of ~10-8 relative to H2. The ortho-H2O abundance, however, is larger (~1 × 10-7) in the high-velocity wings detected toward the H ii region. Possible explanations for this larger

  9. Phylogenetic and functional potential links pH and N2O emissions in pasture soils.

    PubMed

    Samad, Md Sainur; Biswas, Ambarish; Bakken, Lars R; Clough, Timothy J; de Klein, Cecile A M; Richards, Karl G; Lanigan, Gary J; Morales, Sergio E

    2016-10-26

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N 2 O and N 2 emissions. Soil pH regulates the reduction of N 2 O to N 2 , however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N 2 O emission ratio (N 2 O/(NO + N 2 O + N 2 )) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N 2 O emission ratio and community changes. Soil pH was negatively associated with N 2 O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir &nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N 2 O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N 2 O emission ratio through more efficient conversion of N 2 O to N 2 .

  10. Phylogenetic and functional potential links pH and N2O emissions in pasture soils

    NASA Astrophysics Data System (ADS)

    Samad, M. D. Sainur; Biswas, Ambarish; Bakken, Lars R.; Clough, Timothy J.; de Klein, Cecile A. M.; Richards, Karl G.; Lanigan, Gary J.; Morales, Sergio E.

    2016-10-01

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N2O and N2 emissions. Soil pH regulates the reduction of N2O to N2, however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N2O emission ratio (N2O/(NO + N2O + N2)) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N2O emission ratio and community changes. Soil pH was negatively associated with N2O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir & nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N2O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N2O emission ratio through more efficient conversion of N2O to N2.

  11. Phylogenetic and functional potential links pH and N2O emissions in pasture soils

    PubMed Central

    Samad, M. d. Sainur; Biswas, Ambarish; Bakken, Lars R.; Clough, Timothy J.; de Klein, Cecile A. M.; Richards, Karl G.; Lanigan, Gary J.; Morales, Sergio E.

    2016-01-01

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N2O and N2 emissions. Soil pH regulates the reduction of N2O to N2, however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N2O emission ratio (N2O/(NO + N2O + N2)) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N2O emission ratio and community changes. Soil pH was negatively associated with N2O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir & nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N2O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N2O emission ratio through more efficient conversion of N2O to N2. PMID:27782174

  12. A survey of extended H2 emission from massive YSOs

    NASA Astrophysics Data System (ADS)

    Navarete, F.; Damineli, A.; Barbosa, C. L.; Blum, R. D.

    2015-07-01

    We present the results from a survey, designed to investigate the accretion process of massive young stellar objects (MYSOs) through near-infrared narrow-band imaging using the H2 ν=1-0 S(1) transition filter. A sample of 353 MYSO candidates was selected from the Red MSX Source survey using photometric criteria at longer wavelengths (infrared and submillimetre) and chosen with positions throughout the Galactic plane. Our survey was carried out at the Southern Astrophysical Research Telescope Telescope in Chile and Canada-France-Hawaii Telescope in Hawaii covering both hemispheres. The data reveal that extended H2 emission is a good tracer of outflow activity, which is a signpost of accretion process on young massive stars. Almost half of the sample exhibit extended H2 emission and 74 sources (21 per cent) have polar morphology, suggesting collimated outflows. The polar-like structures are more likely to appear on radio-quiet sources, indicating these structures occur during the pre-UCH II phase. We also found an important fraction of sources associated with fluorescent H2 diffuse emission that could be due to a more evolved phase. The images also indicate only ˜23 per cent (80) of the sample is associated with extant (young) stellar clusters. These results support the scenario in which massive stars are formed by accretion discs, since the merging of low-mass stars would not produce outflow structures.

  13. How fast do quasar emission lines vary? First results from a program to monitor the Balmer lines of the Palomar-Green Quasars

    NASA Technical Reports Server (NTRS)

    Maoz, Dan; Smith, Paul S.; Jannuzi, Buell T.; Kaspi, Shai; Netzer, Hagai

    1994-01-01

    We have monitored spectrophotometrically a subsample (28) of the Palomar-Green Bright Quasar Sample for 2 years in order to test for correlations between continuum and emission-line variations and to determine the timescales relevant to mapping the broad-line regions of high-luminosity active galactic nuclei (AGNs). Half of the quasars showed optical continuum variations with amplitudes in the range 20-75%. The rise and fall time for the continuum variations is typically 0.5-2 years. In most of the objects with continuum variations, we detect correlated variations in the broad H-alpha and H-beta emission lines. The amplitude of the line variations is usually 2-4 times smaller than the optical continuum fluctuations. We present light curves and analyze spectra for six of the variable quasars with 1000-10,000 A luminosity in the range 0.3-4 x 10(exp 45) ergs/s. In four of these objects the lines respond to the continuum variations with a lag that is smaller than or comparable to our typical sampling interval (a few months). Although continued monitoring is required to confirm these results and increase their accuracy, the present evidence indicates that quasars with the above luminosities have broad-line regions smaller than about 1 1t-yr. Two of the quasars monitored show no detectable line variations despite relatively large-amplitude continuum changes. This could be a stronger manifestation of the low-amplitude line-response phenomenon we observe in the other quasars.

  14. Polarized Balmer line emission from supernova remnant shock waves efficiently accelerating cosmic rays

    NASA Astrophysics Data System (ADS)

    Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo; Laming, J. Martin; Katsuda, Satoru

    2018-01-01

    Linearly polarized Balmer line emissions from supernova remnant shocks are studied taking into account the energy loss of the shock owing to the production of non-thermal particles. The polarization degree depends on the downstream temperature and the velocity difference between upstream and downstream regions. The former is derived once the line width of the broad component of the H α emission is observed. Then, the observation of the polarization degree tells us the latter. At the same time, the estimated value of the velocity difference independently predicts adiabatic downstream temperature that is derived from Rankine Hugoniot relations for adiabatic shocks. If the actually observed downstream temperature is lower than the adiabatic temperature, there is a missing thermal energy which is consumed for particle acceleration. It is shown that a larger energy-loss rate leads to more highly polarized H α emission. Furthermore, we find that polarized intensity ratio of H β to H α also depends on the energy-loss rate and that it is independent of uncertain quantities such as electron temperature, the effect of Lyman line trapping and our line of sight.

  15. Decreased N2O reduction by low soil pH causes high N2O emissions in a riparian ecosystem.

    PubMed

    Van den Heuvel, R N; Bakker, S E; Jetten, M S M; Hefting, M M

    2011-05-01

    Quantification of harmful nitrous oxide (N(2)O) emissions from soils is essential for mitigation measures. An important N(2)O producing and reducing process in soils is denitrification, which shows deceased rates at low pH. No clear relationship between N(2)O emissions and soil pH has yet been established because also the relative contribution of N(2)O as the denitrification end product decreases with pH. Our aim was to show the net effect of soil pH on N(2)O production and emission. Therefore, experiments were designed to investigate the effects of pH on NO(3)(-) reduction, N(2)O production and reduction and N(2) production in incubations with pH values set between 4 and 7. Furthermore, field measurements of soil pH and N(2)O emissions were carried out. In incubations, NO(3)(-) reduction and N(2) production rates increased with pH and net N(2)O production rate was highest at pH 5. N(2)O reduction to N(2) was halted until NO(3)(-) was depleted at low pH values, resulting in a built up of N(2)O. As a consequence, N(2)O:N(2) production ratio decreased exponentially with pH. N(2)O reduction appeared therefore more important than N(2)O production in explaining net N(2)O production rates. In the field, a negative exponential relationship for soil pH against N(2)O emissions was observed. Soil pH could therefore be used as a predictive tool for average N(2)O emissions in the studied ecosystem. The occurrence of low pH spots may explain N(2)O emission hotspot occurrence. Future studies should focus on the mechanism behind small scale soil pH variability and the effect of manipulating the pH of soils. © 2011 Blackwell Publishing Ltd.

  16. Carbon monoxide line emission from photon dominated regions

    NASA Astrophysics Data System (ADS)

    Koester, B.; Stoerzer, H.; Stutzki, J.; Sternberg, A.

    1994-04-01

    We present a theoretical study of (12)CO and (13)CO rotational line emission from photon dominated regions (PDRs). We incorporate the effects of clumpy cloud structure by computing the physical structures of plane-parallel photo dominated PDRs with finite thickness which are illuminated by UV-radiation fields from either one or both sides. We examine the influence of the gas density (no (H) = 10 4/cu cm to 107/cu cm), the UV intensity (chi = 103 to 106 times the intensity of the average interstellar UV field), the cloud thickness (measured in units of the visual extinction (AV, 2 less than or = AV less than or = 10) and the Doppler width (1 km/s and 3 km/s) on the emergent CO line center brightness temperatures. We explicitly include the effects of the C-13 chemistry on the line intensities. The high brightness temperatures of the (13)CO J = 6 to 5 line observed in several sources can be explained as originating in high density PDRs (n(H) greater than or = 106/cu cm) which are illuminated from two sides and under the assumption that several PDR clumps lie along the line of sight. To model the observed low-J (12)CO and (13)CO line ratios the models require densities of close to 105/cu cm or higher. Due to chemical fractionation the isotopic line intensity ratios for (12)CI/(13)CI can be a factor 2 to 3 lower than the intrinsic isotopic C-12/C-13 ratio. The high-J (12)CO brightness temperatures that we find are in general agreement with earlier PDR models.

  17. The Lick AGN Monitoring Project 2011: Spectroscopic Campaign and Emission-line Light Curves

    NASA Technical Reports Server (NTRS)

    Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Gates, Elinor L.; Greene, Jenny E..; Li, Weidong; Malkan, Matthew A.; Pancoast, Anna; Sand, David J.; hide

    2016-01-01

    In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hß line widths in mean and rms spectra. For the most highly variable AGNs we also measured broad H beta line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad H beta width and luminosity, demonstrating that the broad-line region "breathes" on short timescales of days to weeks in response to continuum variations. We also find that broad H beta velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad H beta velocity shifted by approximately 250 km s(exp -1) over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.

  18. Spatially-Resolved HST GRISM Spectroscopy of a Lensed Emission Line Galaxy at Z to approximately 1

    NASA Technical Reports Server (NTRS)

    Frye, Brenda L.; Hurley, Mairead; Bowen, David V.; Meurer, Gerhardt; Sharon, Keren; Straughn, Amber; Coe, Dan; Broadhurst, Tom; Guhathakurta, Puragra

    2012-01-01

    We take advantage of gravitational lensing amplification by Abell 1689 (z=0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i(sub 775)=27.3 via slitless grism spectroscopy. One ELG (at z=0.7895) is very bright owing to lensing magnification by a factor of approx = 4.5. Several Balmer emission lines detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M(sub star) approx = 2 x 10(exp 9)Solar Mass) with a high specific star formation rate (approx = 20/ Gyr). From the blue emission lines we measure a gas-phase oxygen abundance consistent with solar (12+log(O /H)=8.8 +/- O.2). We break the continuous line-emitting region of this giant arc into seven approx 1 kpc bins (intrinsic size) and measure a variety of metallicity dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by -lkpc have a placement on the blue HI! region excitation diagram with f([OIII]/ f(H-Beta) and f([NeIII/ f(H-Beta) that can be fit by an AGN. This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxy's extended tail, possibly instigated by a recent galaxy interaction.

  19. On the Search for Mid-IR and Pure Rotational H3+ Emission in Jupiter's Northern Aurora

    NASA Astrophysics Data System (ADS)

    Trafton, Laurence M.; Miller, Steve; Lacy, John H.; Greathouse, Thomas K.

    2017-06-01

    The first identification of astronomical spectral emission from the H3+ ion was made in Jupiter’s southern auroral region in the first overtone band near 2 μm (Drossart et al. 1989; Nature 340, 539). Trafton et al. (1989; ApJ 343, L73) also detected H3+ emission from this band near each of Jupiter’s auroral poles, but without identifying it. Shortly thereafter, Maillard et al (1990; ApJ 363, L37) detected the fundamental band emission near 4 μm. In order to determine the non-LTE column abundance of H3+, which is Jupiter’s primary ionospheric coolant, we searched in 2001-2002, initially above 10 μm, for emission lines from the H3+ pure rotational and ν1 -> ν2 difference band. This was done near the northern auroral “hot spot” at System III longitude 180 deg based on predicted theoretical frequencies. The results were reported by Trafton et al. (2009; Icarus 203, 189). No pure rotational lines were detected but there were marginal detections of two metastable difference band lines. The IR-inactive ν1 levels are populated in thermal equilibrium so these difference band lines are proxies for the pure rotational lines in establishing the total H3+ column. These marginal results are consistent with a vibrational relaxation of the ν2 level by a factor of ~6, consistent with the non-LTE calculation of Melin et al. (2005; Icarus 178, 97).We report here results from subsequent observations of Jupiter’s H3+ hot spot spectrum below 10 μm, where better detectivity was expected from the lower thermal background. However, this was offset by the reduced availability of emission from known hydrocarbons, leading to acquisition and guiding difficulty, which was resolved by offsetting from a Galilean satellite. The observations were made with the TEXES high-resolution mid-IR spectrograph at the IRTF telescope on Oct 1, 6, and 8 of 2012. Of the 18 lines predicted for this wavelength regime, half avoided blending with lines apparent in Jupiter’s auroral spectrum or

  20. Manganese ions enhance mitochondrial H2O2 emission from Krebs cycle oxidoreductases by inducing permeability transition.

    PubMed

    Bonke, Erik; Siebels, Ilka; Zwicker, Klaus; Dröse, Stefan

    2016-10-01

    Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn 2+ ions induce hydrogen peroxide (H 2 O 2 ) production from the ubiquinone binding site of mitochondrial complex II (II Q ) and generally enhance H 2 O 2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H 2 O 2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn 2+ and different respiratory chain inhibitors led to a dynamically increasing H 2 O 2 emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn 2+ stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca 2+ increased the rate of H 2 O 2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H 2 O 2 emission: stimulating its production from distinct sites (e.g. site II Q ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Survey of emission-line galaxies: Universidad Complutense de Madrid list

    NASA Technical Reports Server (NTRS)

    Zamorano, J.; Rego, Gallego, J.; Gallego, J. G.; Vitores, A. G.RA, R.; Gonzalez-Riestra, R..; Rodriguez-Caderot, G.

    1994-01-01

    A low-dispersion objective-prism survey for low-redshift emission-line galaxies (ELGs) is being carried out by the University Complutense de Madrid with the Schmidt telescope at the German-Spanish Observatory of Calar Alto (Almeria, Spain). A 4 deg full aperture prism, which provides a dispersion of 1950 A/mm, and IIIaF emulsion combination has been used to search for ELGs selected by the presence of H-alpha emission in their spectra. Our survey has proved to be able to recover objects already found by similar surveys with different techniques and, what is more important, to discover new objects not previously cataloged. A compilation of descriptions and positions, along with finding charts when necessary, is presented for 160 extragalactic emission-line objects. This is the first list, which contains objects located in a region of the sky covering 270 sq deg in 10 fields near alpha = 0(sup h) and delta = 20 deg.

  2. Overlap corrections for emissivity calculations of H2O-CO2-CO-N2 mixtures

    NASA Astrophysics Data System (ADS)

    Alberti, Michael; Weber, Roman; Mancini, Marco

    2018-01-01

    Calculations of total gas emissivities of gas mixtures containing several radiatively active species require corrections for band overlapping. In this paper, we generate such overlap correction charts for H2O-CO2-N2, H2O-CO-N2, and CO2-CO-N2 mixtures. These charts are applicable in the 0.1-40 bar total pressure range and in the 500 K-2500 K temperature range. For H2O-CO2-N2 mixtures, differences between our charts and Hottel's graphs as well as models of Leckner and Modak are highlighted and analyzed.

  3. Tomographic intensity mapping versus galaxy surveys: observing the Universe in H α emission with new generation instruments

    NASA Astrophysics Data System (ADS)

    Silva, B. Marta; Zaroubi, Saleem; Kooistra, Robin; Cooray, Asantha

    2018-04-01

    The H α line emission is an important probe for a number of fundamental quantities in galaxies, including their number density, star formation rate (SFR), and overall gas content. A new generation of low-resolution intensity mapping (IM) probes, e.g. SPHEREx and CDIM, will observe galaxies in H α emission over a large fraction of the sky from the local Universe till a redshift of z ˜ 6 - 10, respectively. This will also be the target line for observations by the high-resolution Euclid and WFIRST instruments in the z ˜ 0.7-2 redshift range. In this paper, we estimate the intensity and power spectra of the H α line in the z ˜ 0-5 redshift range using observed line luminosity functions (LFs), when possible, and simulations, otherwise. We estimate the significance of our predictions by accounting for the modelling uncertainties (e.g. SFR, extinction, etc.) and observational contamination. We find that IM surveys can make a statistical detection of the full H α emission between z ˜ 0.8 and 5. Moreover, we find that the high-frequency resolution and the sensitivity of the planned CDIM surveys allow for the separation of H α emission from several interloping lines. We explore ways to use the combination of these line intensities to probe galaxy properties. As expected, our study indicates that galaxy surveys will only detect bright galaxies that contribute up to a few per cent of the overall H α intensity. However, these surveys will provide important constraints on the high end of the H α LF and put strong constraints on the active galactic nucleus LF.

  4. Emission-line galaxies in the third list of the Case Low-Dispersion Northern Sky Survey

    NASA Technical Reports Server (NTRS)

    Weistrop, Donna; Downes, Ronald A.

    1991-01-01

    Observations of 47 galaxies in the third Case list are reported. Thirty-five of the galaxies in the sample were selected for the presence of emission lines on the objective prism plates. At the higher spectral dispersion of the data, significant line emission was found in 46 of the 47 galaxies. Twenty-six galaxies are found to be undergoing significant bursts of star formation. Ten additional galaxies may be starburst galaxies with low-excitation spectra. Two galaxies are probably type Seyfert 2. The most distant object, CG 200, at a redshift of 0.144, has a strong broad H-alpha emission line, and is probably a Seyfert 1. Seventeen of the galaxies have been detected by IRAS. Eight of the IRAS galaxies have H-II-region-type spectra and eight have low-ionization starburst spectra. The galaxies represent a mixture of types, ranging from intrinsically faint dwarf galaxies with Mb equalling -16 mag, to powerful galaxies with MB equalling -23 mag. Galaxies CG 234 and CG 235 are interacting, as are galaxies CG 269 and CG 270.

  5. Broadband spectral study of the jet-disc emission in the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Ghosh, Ritesh; Dewangan, Gulab C.; Mallick, Labani; Raychaudhuri, Biplab

    2018-06-01

    We present a broadband spectral study of the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342 based on multi-epoch observations performed with NuSTAR on 2014 March 15, and two simultaneous observations performed with Suzaku and Swift on 2009 July 26 and 2013 March 1. We found the presence of a strong soft X-ray excess emission, a broad but weak Fe line and hard X-ray excess emission. We used the blurred reflection (relxill) and the intrinsic disc Comptonization (optxagnf), two physically motivated models, to describe the broadband spectra and to disentangle the disk/corona and jet emission. The relxill model is mainly constrained by the strong soft X-ray excess although the model failed to predict this excess when fitted above 3{keV} and extrapolated to lower energies. The joint spectral analysis of the three datasets above 3{keV} with this model resulted in a high black hole spin (a > 0.9) and moderate reflection fraction R ˜ 0.5. The optxagnf model fitted to the two simultaneous datasets resulted in an excess emission in the UV band. The simultaneous UV-to-hard X-ray spectra of 1H 0323+342 are best described by a model consisting of a primary X-ray power-law continuum with Γ ˜ 1.8, a blurred reflection component with R ˜ 0.5, Comptonised disk emission as the soft X-ray excess, optical/UV emission from a standard accretion disk around a black hole of mass ˜107M⊙ and a steep power law (Γ ˜ 3 - 3.5) component, most likely the jet emission in the UV band. The fractional RMS variability spectra suggest that both the soft excess and the powerlaw component are variable in nature.

  6. The impact of H2S emissions on future geothermal power generation - The Geysers region, California

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1977-01-01

    The future potential for geothermal power generation in the Geysers region of California is as much as 10 times the current 502 MW(e) capacity. However, environmental factors such as H2S emissions and institutional considerations may play the primary role in determining the rate and ultimate level of development. In this paper a scenario of future geothermal generation capacity and H2S emissions in the Geysers region is presented. Problem areas associated with H2S emissions, H2S abatement processes, plant operations, and government agency resources are described. The impact of H2S emissions on future development and the views of effected organizations are discussed. Potential actions needed to remove these constraints are summarized.

  7. Wide-field Survey of Emission-line Stars in IC 1396

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Sugitani, K.; Watanabe, M.; Fukuda, N.; Ishihara, D.; Ueno, M.

    2012-03-01

    We have made an extensive survey of emission-line stars in the IC 1396 H II region to investigate the low-mass population of pre-main-sequence (PMS) stars. A total of 639 Hα emission-line stars were detected in an area of 4.2 deg2 and their i' photometry was measured. Their spatial distribution exhibits several aggregates near the elephant trunk globule (Rim A) and bright-rimmed clouds at the edge of the H II region (Rim B and SFO 37, 38, 39, 41), and near HD 206267, which is the main exciting star of the H II region. Based on the extinction estimated from the near-infrared color-color diagram, we have selected PMS star candidates associated with IC 1396. The age and mass were derived from the extinction-corrected color-magnitude diagram and theoretical PMS tracks. Most of our PMS candidates have ages of <3 Myr and masses of 0.2-0.6 M ⊙. Although it appears that only a few stars were formed in the last 1 Myr in the east region of the exciting star, the age difference among subregions in our surveyed area is not clear from the statistical test. Our results may suggest that massive stars were born after the continuous formation of low-mass stars for 10 Myr. The birth of the exciting star could be the late stage of slow but contiguous star formation in the natal molecular cloud. It may have triggered the formation of many low-mass stars at the dense inhomogeneity in and around the H II region by a radiation-driven implosion.

  8. ALMA WILL DETERMINE THE SPECTROSCOPIC REDSHIFT z > 8 WITH FIR [O III] EMISSION LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, A. K.; Shimizu, I.; Tamura, Y.

    We investigate the potential use of nebular emission lines in the rest-frame far-infrared (FIR) for determining spectroscopic redshift of z > 8 galaxies with the Atacama Large Millimeter/submillimeter Array (ALMA). After making a line emissivity model as a function of metallicity, especially for the [O III] 88 μm line which is likely to be the strongest FIR line from H II regions, we predict the line fluxes from high-z galaxies based on a cosmological hydrodynamics simulation of galaxy formation. Since the metallicity of galaxies reaches at ∼0.2 Z {sub ☉} even at z > 8 in our simulation, we expectmore » the [O III] 88 μm line as strong as 1.3 mJy for 27 AB objects, which is detectable at a high significance by <1 hr integration with ALMA. Therefore, the [O III] 88 μm line would be the best tool to confirm the spectroscopic redshifts beyond z = 8.« less

  9. CO in Hickson compact group galaxies with enhanced warm H2 emission: Evidence for galaxy evolution?

    NASA Astrophysics Data System (ADS)

    Lisenfeld, U.; Appleton, P. N.; Cluver, M. E.; Guillard, P.; Alatalo, K.; Ogle, P.

    2014-10-01

    Context. Galaxies in Hickson Compact Groups (HCGs) are believed to experience morphological transformations from blue, star-forming galaxies to red, early-type galaxies. Galaxies with a high ratio between the luminosities of the warm H2 to the 7.7 μm PAH emission (so-called Molecular Hydrogen Emission Galaxies, MOHEGs) are predominantly in an intermediate phase, the green valley. Their enhanced H2 emission suggests that the molecular gas is affected in the transition. Aims: We study the properties of the molecular gas traced by CO in galaxies in HCGs with measured warm H2 emission in order to look for evidence of the perturbations affecting the warm H2 in the kinematics, morphology and mass of the molecular gas. Methods: We observed the CO(1-0) emission of 20 galaxies in HCGs and complemented our sample with 11 CO(1-0) spectra from the literature. Most of the galaxies have measured warm H2 emission, and 14 of them are classified as MOHEGs. We mapped some of these galaxies in order to search for extra-galactic CO emission. We analyzed the molecular gas mass derived from CO(1-0), MH2, and its kinematics, and then compared it to the mass of the warm molecular gas, the stellar mass and star formation rate (SFR). Results: Our results are the following. (i) The mass ratio between the CO-derived and the warm H2 molecular gas is in the same range as found for field galaxies. (ii) Some of the galaxies, mostly MOHEGs, have very broad CO linewidths of up to 1000 km s-1 in the central pointing. The line shapes are irregular and show various components. (iii) In the mapped objects we found asymmetric distributions of the cold molecular gas. (iv) The star formation efficiency (=SFR/MH2) of galaxies in HCGs is very similar to isolated galaxies. No significant difference between MOHEGs and non-MOHEGs or between early-type and spiral galaxies has been found. In a few objects the SFE is significantly lower, indicating the presence of molecular gas that is not actively forming stars

  10. An optical emission-line phase of the extreme carbon star IRC +30219

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1980-01-01

    Optical spectroscopic monitoring of the extreme carbon star IRC +30219 has revealed striking changes between 1977 and 1980. The stellar photosphere was barely visible in early 1979. There was an emission line spectrum consisting of H, forbidden O I, forbidden O II, forbidden N I, forbidden N II, forbidden S II, and He I. It is likely that these lines arose in a shocked region where recent stellar mass loss encountered the extensive circumstellar envelope. By late 1979, this emission-line spectrum had vanished, and the photosphere had reappeared. The weakening of the photospheric features in early 1979 was caused by increased attenuation of starlight and overlying thermal emission, both due to recently condensed hot dust grains.

  11. Deep Emission-Line Imaging of Local Galactic Winds with NEWFIRM: Part II.

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain; Trippe, Margaret; Swaters, Rob; Rupke, David; McCormick, Alex

    2010-08-01

    Galactic winds are the primary mechanism by which energy and metals are recycled in galaxies and deposited into the IGM. New observations are revealing the ubiquity of this process, particularly at high redshift. Measurements have shown that winds contain cool (molecular/neutral), warm (partly ionized), and hot (fully ionized) gases. Though most of the wind mass is likely contained in the dusty molecular gas, very little is known about this component. However, our recent observations of M 82 with NEWFIRM on the Mayall 4-m show that H_2 emission can be used as a sensitive tracer of the cool molecular wind component. We propose to use NEWFIRM to study the NIR emission- line properties of a small but representative set of local wind galaxies. Deep images of these objects will be obtained at H_2 2.122 (micron) and [Fe II] 1.644 (micron) and combined with existing optical emission-line maps to (1) constrain the importance of molecular gas in the energetics of these winds and (2) determine the nature of the interaction between the central energy injection zone and the wind material. 5 nights were allocated for this program in 10B; we now request to observe the rest of the sample. These data will complement an approved Spitzer program to constrain the hot dust content of these winds, and likely become part of A. McCormick's PhD thesis.

  12. High-resolution spectroscopy of Saturn at 3 microns: CH 4, CH 3D, C 2H 2, C 2H 6, PH 3, clouds, and haze

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyeon; Kim, Sang J.; Geballe, Thomas R.; Kim, Sungsoo S.; Brown, Linda R.

    2006-12-01

    We report observation and analysis of a high-resolution 2.87-3.54 μm spectrum of the southern temperate region of Saturn obtained with NIRSPEC at Keck II. The spectrum reveals absorption and emission lines of five molecular species as well as spectral features of haze particles. The ν+ν band of CH 3D is detected in absorption between 2.87 and 2.92 μm; and we derived from it a mixing ratio approximately consistent with the Infrared Space Observatory result. The ν band of C 2H 2 also is detected in absorption between 2.95 and 3.05 μm; analysis indicates a sudden drop in the C 2H 2 mixing ratio at 15 mbar (130 km above the 1 bar level), probably due to condensation in the low stratosphere. The presence of the ν+ν+ν band of C 2H 6 near 3.07 μm, first reported by Bjoraker et al. [Bjoraker, G.L., Larson, H.P., Fink, U., 1981. Astrophys. J. 248, 856-862], is confirmed, and a C 2H 6 condensation altitude of 10 mbar (140 km) in the low stratosphere is determined. We assign weak emission lines within the 3.3 μm band of CH 4 to the ν band of C 2H 6, and derive a mixing ratio of 9±4×10 for this species. Most of the C 2H 6 3.3 μm line emission arises in the altitude range 460-620 km (at ˜μbar pressure levels), much higher than the 160-370 km range where the 12 μm thermal molecular line emission of this species arises. At 2.87-2.90 μm the major absorber is tropospheric PH 3. The cloud level determined here and at 3.22-3.54 is 390-460 mbar (˜30 km), somewhat higher than found by Kim and Geballe [Kim, S.J., Geballe, T.R., 2005. Icarus 179, 449-458] from analysis of a low resolution spectrum. A broad absorption feature at 2.96 μm, which might be due to NH 3 ice particles in saturnian clouds, is also present. The effect of a haze layer at about 125 km (˜12 mbar level) on the 3.20-3.54 μm spectrum, which was not apparent in the low resolution spectrum, is clearly evident in the high resolution data, and the spectral properties of the haze particles suggest that

  13. Water Planetary and Cometary Atmospheres: H2O/HDO Transmittance and Fluorescence Models

    NASA Technical Reports Server (NTRS)

    Villanueva, G. L.; Mumma, M. J.; Bonev, B. P.; Novak, R. E.; Barber, R. J.; DiSanti, M. A.

    2012-01-01

    We developed a modern methodology to retrieve water (H2O) and deuterated water (HDO) in planetary and cometary atmospheres, and constructed an accurate spectral database that combines theoretical and empirical results. Based on a greatly expanded set of spectroscopic parameters, we built a full non-resonance cascade fluorescence model and computed fluorescence efficiencies for H2O (500 million lines) and HDO (700 million lines). The new line list was also integrated into an advanced terrestrial radiative transfer code (LBLRTM) and adapted to the CO2 rich atmosphere of Mars, for which we adopted the complex Robert-Bonamy formalism for line shapes. We then retrieved water and D/H in the atmospheres of Mars, comet C/2007 WI, and Earth by applying the new formalism to spectra obtained with the high-resolution spectrograph NIRSPEC/Keck II atop Mauna Kea (Hawaii). The new model accurately describes the complex morphology of the water bands and greatly increases the accuracy of the retrieved abundances (and the D/H ratio in water) with respect to previously available models. The new model provides improved agreement of predicted and measured intensities for many H2O lines already identified in comets, and it identifies several unassigned cometary emission lines as new emission lines of H2O. The improved spectral accuracy permits retrieval of more accurate rotational temperatures and production rates for cometary water.

  14. Double-peaked broad line emission from the LINER nucleus of NGC 1097

    NASA Technical Reports Server (NTRS)

    Storchi-Bergmann, Thaisa; Baldwin, Jack A.; Wilson, Andrew S.

    1993-01-01

    We report the recent appearance of a very broad component in the H-alpha and H-beta emission lines of the weakly active nucleus of the Sersic-Pastoriza galaxy NGC 1097. The FWZI of the broad component is about 21,000 km/s, and its profile is double-peaked; the presence of a blue, featureless continuum in the nucleus is also suggested. The broad component was first observed in H-alpha in November 2, 1991, and confirmed 11 months later. The H-alpha profile and flux did not change in this time interval. Comparison with previously published spectral data indicates that the broad lines have only recently appeared. Together with the relatively high X-ray luminosity and the compact nuclear radio source, our results characterize the presence of a Seyfert 1 nucleus in a galaxy which had previously shown only LINER characteristics. Obscuring material along our line of sight to the nucleus appears to have recently cleared, permitting a direct view of the active nucleus. We discuss two possible structures for the broad line region, biconical outflow and an accretion disk, that could give rise to the observed profile.

  15. Theoretical quasar emission-line ratios. VII - Energy-balance models for finite hydrogen slabs

    NASA Technical Reports Server (NTRS)

    Hubbard, E. N.; Puetter, R. C.

    1985-01-01

    The present energy balance calculations for finite, isobaric, hydrogen-slab quasar emission line clouds incorporate probabilistic radiative transfer (RT) in all lines and bound-free continua of a five-level continuum model hydrogen atom. Attention is given to the line ratios, line formation regions, level populations and model applicability results obtained. H lines and a variety of other considerations suggest the possibility of emission line cloud densities in excess of 10 to the 10th/cu cm. Lyman-beta/Lyman-alpha line ratios that are in agreement with observed values are obtained by the models. The observed Lyman/Balmer ratios can be achieved with clouds whose column depths are about 10 to the 22nd/sq cm.

  16. SDSS-IV MaNGA: the impact of diffuse ionized gas on emission-line ratios, interpretation of diagnostic diagrams and gas metallicity measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Yan, Renbin; Bundy, Kevin; Bershady, Matthew; Haffner, L. Matthew; Walterbos, René; Maiolino, Roberto; Tremonti, Christy; Thomas, Daniel; Drory, Niv; Jones, Amy; Belfiore, Francesco; Sánchez, Sebastian F.; Diamond-Stanic, Aleksandar M.; Bizyaev, Dmitry; Nitschelm, Christian; Andrews, Brett; Brinkmann, Jon; Brownstein, Joel R.; Cheung, Edmond; Li, Cheng; Law, David R.; Roman Lopes, Alexandre; Oravetz, Daniel; Pan, Kaike; Storchi Bergmann, Thaisa; Simmons, Audrey

    2017-04-01

    Diffuse ionized gas (DIG) is prevalent in star-forming galaxies. Using a sample of 365 nearly face-on star-forming galaxies observed by Mapping Nearby Galaxies at APO, we demonstrate how DIG in star-forming galaxies impacts the measurements of emission-line ratios, hence the interpretation of diagnostic diagrams and gas-phase metallicity measurements. At fixed metallicity, DIG-dominated low ΣHα regions display enhanced [S II]/Hα, [N II]/Hα, [O II]/Hβ and [O I]/Hα. The gradients in these line ratios are determined by metallicity gradients and ΣHα. In line ratio diagnostic diagrams, contamination by DIG moves H II regions towards composite or low-ionization nuclear emission-line region (LI(N)ER)-like regions. A harder ionizing spectrum is needed to explain DIG line ratios. Leaky H II region models can only shift line ratios slightly relative to H II region models, and thus fail to explain the composite/LI(N)ER line ratios displayed by DIG. Our result favours ionization by evolved stars as a major ionization source for DIG with LI(N)ER-like emission. DIG can significantly bias the measurement of gas metallicity and metallicity gradients derived using strong-line methods. Metallicities derived using N2O2 are optimal because they exhibit the smallest bias and error. Using O3N2, R23, N2 = [N II]/Hα and N2S2Hα to derive metallicities introduces bias in the derived metallicity gradients as large as the gradient itself. The strong-line method of Blanc et al. (IZI hereafter) cannot be applied to DIG to get an accurate metallicity because it currently contains only H II region models that fail to describe the DIG.

  17. AN UNBIASED 1.3 mm EMISSION LINE SURVEY OF THE PROTOPLANETARY DISK ORBITING LkCa 15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punzi, K. M.; Kastner, J. H.; Hily-Blant, P.

    2015-06-01

    The outer (>30 AU) regions of the dusty circumstellar disk orbiting the ∼2–5 Myr old, actively accreting solar analog LkCa 15 are known to be chemically rich, and the inner disk may host a young protoplanet within its central cavity. To obtain a complete census of the brightest molecular line emission emanating from the LkCa 15 disk over the 210–270 GHz (1.4–1.1 mm) range, we have conducted an unbiased radio spectroscopic survey with the Institute de Radioastronomie Millimétrique (IRAM) 30 m telescope. The survey demonstrates that in this spectral region, the most readily detectable lines are those of CO andmore » its isotopologues {sup 13}CO and C{sup 18}O, as well as HCO{sup +}, HCN, CN, C{sub 2}H, CS, and H{sub 2}CO. All of these species had been previously detected in the LkCa 15 disk; however, the present survey includes the first complete coverage of the CN (2–1) and C{sub 2}H (3–2) hyperfine complexes. Modeling of these emission complexes indicates that the CN and C{sub 2}H either reside in the coldest regions of the disk or are subthermally excited, and that their abundances are enhanced relative to molecular clouds and young stellar object environments. These results highlight the value of unbiased single-dish line surveys in guiding future high-resolution interferometric imaging of disks.« less

  18. Line shape parameters for the H2O-H2 collision system for application to exoplanet and planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Renaud, Candice L.; Cleghorn, Kara; Hartmann, Léna; Vispoel, Bastien; Gamache, Robert R.

    2018-05-01

    Water can be detected throughout the universe: in comets, asteroids, dwarf planets, the inner and outer planets in our solar system, cool stars, brown dwarfs, and on many exoplanets. Here the focus is on locations rich in hydrogen gas. To properly study these environments, there is a need for the line shape parameters for H2O transitions in collision with hydrogen. This work presents calculations of the half-width and line shift, made using the Modified Complex Robert-Bonamy (MCRB) formalism, at a number of temperatures. It is shown that this collision system is strongly off-resonance. For such conditions, the atom-atom part of the intermolecular potential dominates the interaction of the radiating and perturbing molecules. The atom-atom parameters were adjusted by fitting the H2O-H2 measurements of Brown and Plymate (1996). Several techniques were used to extract lines for which there is more confidence in the quality of the data. The final potential yields results that agree with the measurements with ∼0.3% difference and a 5.9% standard deviation. Using this potential, MCRB calculations were made for all transitions in the pure rotation, ν2, ν1, and ν3 bands. The structure of the line shape parameters and the temperature dependence of the half-width, as a function of the rotational and vibrational quantum numbers, are discussed. It is shown that the power law model of the T-dependence of the half-width is inadequate over large temperature ranges.

  19. A 16 deg2 survey of emission-line galaxies at z < 1.5 in HSC-SSP Public Data Release 1

    NASA Astrophysics Data System (ADS)

    Hayashi, Masao; Tanaka, Masayuki; Shimakawa, Rhythm; Furusawa, Hisanori; Momose, Rieko; Koyama, Yusei; Silverman, John D.; Kodama, Tadayuki; Komiyama, Yutaka; Leauthaud, Alexie; Lin, Yen-Ting; Miyazaki, Satoshi; Nagao, Tohru; Nishizawa, Atsushi J.; Ouchi, Masami; Shibuya, Takatoshi; Tadaki, Ken-ichi; Yabe, Kiyoto

    2018-01-01

    We present initial results from the Subaru Strategic Program (SSP) with Hyper Suprime-Cam (HSC) on a comprehensive survey of emission-line galaxies at z < 1.5 based on narrowband imaging. The first Public Data Release provides us with data from two narrowband filters, specifically NB816 and NB921 over 5.7 deg2 and 16.2 deg2 respectively. The 5 σ limiting magnitudes are 25.2 mag (UltraDeep layer, 1.4 deg2) and 24.8 mag (Deep layer, 4.3 deg2) for NB816, and 25.1 mag (UltraDeep, 2.9 deg2) and 24.6-24.8 mag (Deep, 13.3 deg2) for NB921. The wide-field imaging allows us to construct unprecedentedly large samples of 8054 H α emitters at z ≈ 0.25 and 0.40, 8656 [O III] emitters at z ≈ 0.63 and 0.84, and 16877 [O II] emitters at z ≈ 1.19 and 1.47. We map the cosmic web on scales out to about 50 comoving Mpc that includes galaxy clusters, identified by red sequence galaxies, located at the intersection of filamentary structures of star-forming galaxies. The luminosity functions of emission-line galaxies are measured with precision and are consistent with published studies. The wide field coverage of the data enables us to measure the luminosity functions up to brighter luminosities than previous studies. The comparison of the luminosity functions between the different HSC-SSP fields suggests that a survey volume of >5 × 105 Mpc3 is essential to overcome cosmic variance. Since the current data have not reached the full depth expected for the HSC-SSP, the color cut in i - NB816 or z - NB921 induces a bias towards star-forming galaxies with large equivalent widths, primarily seen in the stellar mass functions for the H α emitters at z ≈ 0.25-0.40. Even so, the emission-line galaxies clearly cover a wide range of luminosity, stellar mass, and environment, thus demonstrating the usefulness of the narrowband data from the HSC-SSP for investigating star-forming galaxies at z < 1.5.

  20. Simultaneous measurement of stratospheric O3, H2O, CH4, and N2O profiles from infrared limb thermal emissions

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Glenn, M. J.; Kunde, V. G.; Brasunas, J.; Conrath, B. J.; Maguire, W. C.; Herman, J. R.

    1987-01-01

    Thermal emission measurements of the earth's stratospheric limb were made with a cryogenically cooled high-resolution Michelson interferometer on a balloon flight launched from Palestine, TX, on Nov. 6, 1984. Infrared spectra for complete limb sequences were obtained over portions of the 700-1940/cm range with an unapodized spectral resolution of 0.03/cm for tangent heights varying from 13 to 39 km. The observed data from 1125 to 1425/cm have been analyzed for simultaneous measurement of O3, H2O, CH4, and N2O profiles. The analysis employs line-by-line and layer-by-layer radiative-transfer calculations, including curvature and refraction effects. The optimum use of geometric and spectral effects is made to obtain sharply peaked weighting functions. Contributions from stratospheric aerosol are included by measuring the light extinction within the window regions of the observed spectra. The retrieved constituent profiles are compared with measurements made with a variety of techniques by other groups. The comparison shows good agreement with the published data for all gases, indicating the capability of retrieving trace gas profiles from high-resolution thermal emission limb measurements.

  1. Hunting for extremely metal-poor emission-line galaxies in the Sloan Digital Sky Survey: MMT and 3.5 m APO observations

    NASA Astrophysics Data System (ADS)

    Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.

    2012-10-01

    We present 6.5-m MMT and 3.5 m APO spectrophotometry of 69 H ii regions in 42 low-metallicity emission-line galaxies, selected from the data release 7 of the Sloan Digital Sky Survey to have mostly [O iii]λ4959/Hβ ≲ 1 and [N ii]λ6583/Hβ ≲ 0.1. The electron temperature-sensitive emission line [O iii] λ4363 is detected in 53 H ii regions allowing a direct abundance determination. The oxygen abundance in the remaining 16 H ii regions is derived using a semi-empirical method. The oxygen abundance of the galaxies in our sample ranges from 12 + log O/H ~ 7.1 to ~7.9, with 14 H ii regions in 7 galaxies with 12 + log O/H ≤ 7.35. In 5 of the latter galaxies, the oxygen abundance is derived here for the first time. Including other known extremely metal-deficient emission-line galaxies from the literature, e.g. SBS 0335-052W, SBS 0335-052E and I Zw 18, we have compiled a sample of the 17 most metal-deficient (with 12 + log O/H ≤ 7.35) emission-line galaxies known in the local universe. There appears to be a metallicity floor at 12 + log O/H ~ 6.9, suggesting that the matter from which dwarf emission-line galaxies formed was pre-enriched to that level by e.g. Population III stars. Based on observations with the Multiple Mirror telescope (MMT) and the 3.5 m Apache Point Observatory (APO). The MMT is operated by the MMT Observatory (MMTO), a joint venture of the Smithsonian Institution and the University of Arizona. The Apache Point Observatory 3.5-m telescope is owned and operated by the Astrophysical Research Consortium.Figures 1-3 and Tables 2-8 are available in electronic form at http://www.aanda.org

  2. Emission Line Properties of Seyfert Galaxies in the 12 μm Sample

    NASA Astrophysics Data System (ADS)

    Malkan, Matthew A.; Jensen, Lisbeth D.; Rodriguez, David R.; Spinoglio, Luigi; Rush, Brian

    2017-09-01

    We present optical and ultraviolet spectroscopic measurements of the emission lines of 81 Seyfert 1 and 104 Seyfert 2 galaxies that comprise nearly all of the IRAS 12 μm AGN sample. We have analyzed the emission-line luminosity functions, reddening, and other diagnostics. For example, the narrow-line regions (NLR) of Seyfert 1 and 2 galaxies do not significantly differ from each other in most of these diagnostics. Combining the Hα/Hβ ratio with a new reddening indicator—the [S II]6720/[O II]3727 ratio—we find the average E(B-V) is 0.49 ± 0.35 for type 1 and 0.52 ± 0.26 for type 2 Seyferts. The NLR of Sy 1s has an ionization level insignificantly higher than that of Sy 2s. For the broad-line region (BLR), we find that the C IV equivalent width correlates more strongly with [O III]/Hβ than with UV luminosity. Our bright sample of local active galaxies includes 22 Seyfert nuclei with extremely weak broad wings in Hα, known as Seyfert 1.9s and 1.8s, depending on whether or not broad Hβ wings are detected. Aside from these weak broad lines, our low-luminosity Seyferts are more similar to the Sy 2s than to Sy 1s. In a BPT diagram, we find that Sy 1.8s and 1.9s overlap the region occupied by Sy 2s. We compare our results on optical emission lines with those obtained by previous investigators, using AGN subsamples from the Sloan Digital Sky Survey. The luminosity functions of forbidden emission lines [O II]λ3727 Å, [O III]λ5007 Å, and [S II]λ6720 Å in Sy 1s and Sy 2s are indistinguishable. They all show strong downward curvature. Unlike the LFs of Seyfert galaxies measured by the Sloan Digital Sky Survey, ours are nearly flat at low luminosities. The larger number of faint Sloan “AGN” is attributable to their inclusion of weakly emitting LINERs and H II+AGN “composite” nuclei, which do not meet our spectral classification criteria for Seyferts. In an Appendix, we have investigated which emission line luminosities can provide the most reliable

  3. H2 Fluorescence in M Dwarf Systems: A Stellar Origin

    NASA Astrophysics Data System (ADS)

    Kruczek, Nicholas; France, Kevin; Evonosky, William; Loyd, R. O. Parke; Youngblood, Allison; Roberge, Aki; Wittenmyer, Robert A.; Stocke, John T.; Fleming, Brian; Hoadley, Keri

    2017-08-01

    Observations of molecular hydrogen (H2) fluorescence are a potentially useful tool for measuring the H2 abundance in exoplanet atmospheres. This emission was previously observed in {{M}} dwarfs with planetary systems. However, low signal-to-noise prevented a conclusive determination of its origin. Possible sources include exoplanetary atmospheres, circumstellar gas disks, and the stellar surface. We use observations from the “Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanet Host Stars” Treasury Survey to study H2 fluorescence in {{M}} dwarfs. We detect fluorescence in Hubble Space Telescope spectra of 8/9 planet-hosting and 5/6 non-planet-hosting {{M}} dwarfs. The detection statistics, velocity centroids, and line widths of the emission suggest a stellar origin. We calculate H2-to-stellar-ion flux ratios to compare flux levels between stars. For stars with planets, we find an average ratio of 1.7+/- 0.9, using the fluxes of the brightest H2 feature and two stellar C IV lines. This is compared to 0.9+/- 0.4 for stars without planets, showing that the planet-hosting {{M}} dwarfs do not have significant excess H2 emission. This claim is supported by the direct FUV imaging of GJ 832, where no fluorescence is observed at the expected star-planet separation. Additionally, the 3σ upper limit of 4.9 × 10-17 erg cm-2 s-1 from these observations is two orders of magnitude below the spectroscopically observed H2 flux. We constrain the location of the fluorescing H2 using 1D radiative transfer models, and find that it could reside in starspots or a ˜2500-3000 {{K}} region in the lower chromosphere. The presence of this emission could complicate efforts to quantify the atmospheric abundance of H2 in exoplanets orbiting {{M}} dwarfs.

  4. Boötes-HiZELS: an optical to near-infrared survey of emission-line galaxies at z = 0.4-4.7

    NASA Astrophysics Data System (ADS)

    Matthee, Jorryt; Sobral, David; Best, Philip; Smail, Ian; Bian, Fuyan; Darvish, Behnam; Röttgering, Huub; Fan, Xiaohui

    2017-10-01

    We present a sample of ˜1000 emission-line galaxies at z = 0.4-4.7 from the ˜0.7deg2 High-z Emission-Line Survey in the Boötes field identified with a suite of six narrow-band filters at ≈0.4-2.1 μm. These galaxies have been selected on their Ly α (73), [O II] (285), H β/[O III] (387) or H α (362) emission line, and have been classified with optical to near-infrared colours. A subsample of 98 sources have reliable redshifts from multiple narrow-band (e.g. [O II]-H α) detections and/or spectroscopy. In this survey paper, we present the observations, selection and catalogues of emitters. We measure number densities of Ly α, [O II], H β/[O III] and H α and confirm strong luminosity evolution in star-forming galaxies from z ˜ 0.4 to ˜5, in agreement with previous results. To demonstrate the usefulness of dual-line emitters, we use the sample of dual [O II]-H α emitters to measure the observed [O II]/H α ratio at z = 1.47. The observed [O II]/H α ratio increases significantly from 0.40 ± 0.01 at z = 0.1 to 0.52 ± 0.05 at z = 1.47, which we attribute to either decreasing dust attenuation with redshift, or due to a bias in the (typically) fibre measurements in the local Universe that only measure the central kpc regions. At the bright end, we find that both the H α and Ly α number densities at z ≈ 2.2 deviate significantly from a Schechter form, following a power law. We show that this is driven entirely by an increasing X-ray/active galactic nucleus fraction with line luminosity, which reaches ≈100 per cent at line luminosities L ≳ 3 × 1044 erg s-1.

  5. Microwave Spectrum of the H_2S Dimer: Observation of K_{a}=1 Lines

    NASA Astrophysics Data System (ADS)

    Das, Arijit; Mandal, Pankaj; Lovas, Frank J.; Medcraft, Chris; Arunan, Elangannan

    2017-06-01

    Large amplitude tunneling motions in (H_2S)_{2} complicate the analysis of its microwave spectrum. The previous rotational spectrum of (H_2S)_{2} was observed using the Balle-Flygare pulsed nozzle FT microwave spectrometers at NIST and IISc. For most isotopomers of (H_2S)_{2} a two state pattern of a-type K_{a}=0 transitions had been observed and were interpreted to arise from E_{1}^{+/-} and E_{2}^{+/-} states of the six tunneling states expected for (H_2S)_{2}. K_{a}=0 lines gave us only the distance between the acceptor and donor S atoms. The (B+C)/2 for E_{1} and E_{2} states were found to be 1749.3091(8) MHz and 1748.1090(8) MHz respectively. In this work, we have observed the K_{a}=1 microwave transitions which enable us to determine finer structural details of the dimer. The observation of the K_{a}=1 lines indicate that (H_2S)_{2} is not spherical in nature, their interactions do have some anisotropy. Preliminary assignment of K_{a}=1 lines for the E_{1} state results in B=1752.859 MHz and C=1745.780 MHz. We also report a new progression of lines which probably belongs to the parent isotopomers. F. J. Lovas, P. K. Mandal and E. Arunan, unpublished work P. K. Mandal Ph.D. Dissertation, Indian Institute of Science, (2005) F. J. Lovas, R. D. Suenram, and L. H. Coudert. 43rd Int.Symp. on Molecular Spectroscopy. (1988)

  6. H2-,He-and CO2-line broadening coefficients and pressure shifts for the HITRAN database

    NASA Astrophysics Data System (ADS)

    Wilzewski, Jonas; Gordon, Iouli E.; Rothman, Laurence S.

    2014-06-01

    To increase the potential of the HITRAN database in astronomy, experimental and theoretical line broadening coefficients and line shifts of molecules of planetary interest broadened by H2,He,and CO2 have been assembled from available peer-reviewed sources. Since H2 and He are major constituents in the atmospheres of gas giants, and CO2 predominates in atmospheres of some rocky planets with volcanic activity, these spectroscopic data are important for studying planetary atmospheres. The collected data were used to create semi-empirical models for complete data sets from the microwave to the UV part of the spectrum of the studied molecules. The presented work will help identify the need for further investigations of broadening and shifting of spectral lines.

  7. Origin of warm and hot gas emission from low-mass protostars: Herschel-HIFI observations of CO J = 16-15. I. Line profiles, physical conditions, and H2O abundance

    NASA Astrophysics Data System (ADS)

    Kristensen, L. E.; van Dishoeck, E. F.; Mottram, J. C.; Karska, A.; Yıldız, U. A.; Bergin, E. A.; Bjerkeli, P.; Cabrit, S.; Doty, S.; Evans, N. J.; Gusdorf, A.; Harsono, D.; Herczeg, G. J.; Johnstone, D.; Jørgensen, J. K.; van Kempen, T. A.; Lee, J.-E.; Maret, S.; Tafalla, M.; Visser, R.; Wampfler, S. F.

    2017-09-01

    Context. Through spectrally unresolved observations of high-J CO transitions, Herschel Photodetector Array Camera and Spectrometer (PACS) has revealed large reservoirs of warm (300 K) and hot (700 K) molecular gas around low-mass protostars. The excitation and physical origin of this gas is still not understood. Aims: We aim to shed light on the excitation and origin of the CO ladder observed toward protostars, and on the water abundance in different physical components within protostellar systems using spectrally resolved Herschel-HIFI data. Methods: Observations are presented of the highly excited CO line J = 16-15 (Eup/kB = 750 K) with the Herschel Heterodyne Instrument for the Far Infrared (HIFI) toward a sample of 24 low-mass protostellar objects. The sources were selected from the Herschel "Water in Star-forming regions with Herschel" (WISH) and "Dust, Ice, and Gas in Time" (DIGIT) key programs. Results: The spectrally resolved line profiles typically show two distinct velocity components: a broad Gaussian component with an average FWHM of 20 km s-1 containing the bulk of the flux, and a narrower Gaussian component with a FWHM of 5 km s-1 that is often offset from the source velocity. Some sources show other velocity components such as extremely-high-velocity features or "bullets". All these velocity components were first detected in H2O line profiles. The average rotational temperature over the entire profile, as measured from comparison between CO J = 16-15 and 10-9 emission, is 300 K. A radiative-transfer analysis shows that the average H2O/CO column-density ratio is 0.02, suggesting a total H2O abundance of 2 × 10-6, independent of velocity. Conclusions: Two distinct velocity profiles observed in the HIFI line profiles suggest that the high-J CO ladder observed with PACS consists of two excitation components. The warm PACS component (300 K) is associated with the broad HIFI component, and the hot PACS component (700 K) is associated with the offset HIFI

  8. The ExoMol pressure broadening diet: H2 and He line-broadening parameters

    NASA Astrophysics Data System (ADS)

    Barton, Emma J.; Hill, C.; Czurylo, M.; Li, H. Y.; Hyslop, A.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2017-12-01

    In a variety of astronomical objects including gas giant (exo-)planets, brown dwarfs and cool stars, molecular hydrogen and helium are the major line broadeners. However, there is currently no systematic source for these parameters, particularly at the elevated temperatures encountered in many of these objects. The ExoMol project provides comprehensive molecular line lists for exoplanet and other hot atmospheres. The ExoMol database has recently been extended to provide additional data including temperature-dependent, pressure-broadening parameters. Here we assemble H2 and He pressure-broadening datasets for the molecules H2O, NH3, SO2, CH4, PH3, HCN and H2CO using available experimental and theoretical studies.

  9. LX Persei, an eclipsing binary with H and K emission

    NASA Technical Reports Server (NTRS)

    Weiler, E. J.

    1974-01-01

    The masses and MK classes were calculated for the eclipsing spectroscopic binary LX Persei. Its spectrum shows strong H and K emission and doubled lines in the photographic region. The Ca II emission velocity shifts vary in phase with the secondary's absorption lines and are presumably associated with this component. The stars are tentatively classed as G0 V and K0 IV, and the cooler component is the more massive by a ratio of 0.96. The system has a period of 8.0 days.

  10. Constraining UV Continuum Slopes of Active Galactic Nuclei with CLOUDY Models of Broad-line Region Extreme-ultraviolet Emission Lines

    NASA Astrophysics Data System (ADS)

    Moloney, Joshua; Shull, J. Michael

    2014-10-01

    Understanding the composition and structure of the broad-line region (BLR) of active galactic nuclei (AGNs) is important for answering many outstanding questions in supermassive black hole evolution, galaxy evolution, and ionization of the intergalactic medium. We used single-epoch UV spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to measure EUV emission-line fluxes from four individual AGNs with 0.49 <= z <= 0.64, two AGNs with 0.32 <= z <= 0.40, and a composite of 159 AGNs. With the CLOUDY photoionization code, we calculated emission-line fluxes from BLR clouds with a range of density, hydrogen ionizing flux, and incident continuum spectral indices. The photoionization grids were fit to the observations using single-component and locally optimally emitting cloud (LOC) models. The LOC models provide good fits to the measured fluxes, while the single-component models do not. The UV spectral indices preferred by our LOC models are consistent with those measured from COS spectra. EUV emission lines such as N IV λ765, O II λ833, and O III λ834 originate primarily from gas with electron temperatures between 37,000 K and 55,000 K. This gas is found in BLR clouds with high hydrogen densities (n H >= 1012 cm-3) and hydrogen ionizing photon fluxes (ΦH >= 1022 cm-2 s-1). Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555.

  11. Radiative transitions involving the (2p2)(3 Pe) metastable autodetaching of H(-)

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.; Bhatia, A. K.; Temkin, A.

    1974-01-01

    The absorption coefficient for the free-bound transition H (ls) + e(-)+ h omega yields H(-)(2 sq p,(3)P(e)) is calculated (together with the differential emission rate for the inverse process) using ls - 2s - 2p close coupling continuum wave functions and a Hylleraas bound state wave function. A maximum in the absorption and emission spectra is found to occur at a photon wavelength of 1219.5 A, which is 2 A closer to the Lyman alpha line than predicted by the calculations of Drake, and is in closer agreement with the stellar absorption feature identified by Heap and Stecher. The free-bound absorption process appears to be a significant source of continuous ultraviolet opacity.

  12. Polarisation observations of VY Canis Majoris H2O 532-441 620.701 GHz maser emission with HIFI

    NASA Astrophysics Data System (ADS)

    Harwit, M.; Houde, M.; Sonnentrucker, P.; Boogert, A. C. A.; Cernicharo, J.; De Beck, E.; Decin, L.; Henkel, C.; Higgins, R. D.; Jellema, W.; Kraus, A.; McCoey, C.; Melnick, G. J.; Menten, K. M.; Risacher, C.; Teyssier, D.; Vaillancourt, J. E.; Alcolea, J.; Bujarrabal, V.; Dominik, C.; Justtanont, K.; de Koter, A.; Marston, A. P.; Olofsson, H.; Planesas, P.; Schmidt, M.; Schöier, F. L.; Szczerba, R.; Waters, L. B. F. M.

    2010-10-01

    Context. Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight. Aims: We have aimed to elucidate the nature and structure of the VY CMa water vapour masers in part by observationally testing a theoretical prediction of the relative strengths of the 620.701 GHz and the 22.235 GHz maser components of ortho H2O. Methods: In its high-resolution mode (HRS) the Herschel Heterodyne Instrument for the Far Infrared (HIFI) offers a frequency resolution of 0.125 MHz, corresponding to a line-of-sight velocity of 0.06 km s-1, which we employed to obtain the strength and linear polarisation of maser spikes in the spectrum of VY CMa at 620.701 GHz. Simultaneous ground based observations of the 22.235 GHz maser with the Max-Planck-Institut für Radioastronomie 100-m telescope at Effelsberg, provided a ratio of 620.701 GHz to 22.235 GHz emission. Results: We report the first astronomical detection to date of H2O maser emission at 620.701 GHz. In VY CMa both the 620.701 and the 22.235 GHz polarisation are weak. At 620.701 GHz the maser peaks are superposed on what appears to be a broad emission component, jointly ejected from the star. We observed the 620.701 GHz emission at two epochs 21 days apart, both to measure the potential direction of linearly polarised maser components and to obtain a measure of the longevity of these components. Although we do not detect significant polarisation levels in the core of the line, they rise up to approximately 6% in its wings. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix (page 5) is only available in electronic form at http://www.aanda.org

  13. Effect of H2O on the NO emission characteristics of pulverized coal during oxy-fuel combustion.

    PubMed

    Lei, Ming; Sun, Cen; Zou, Chan; Mi, Hang; Wang, Chunbo

    2018-04-01

    The NO emission characteristics of Datong bituminous coal and Yangquan anthracite in O 2 /H 2 O/CO 2 atmospheres were investigated by using a fixed-bed reactor system, and the emission characteristics were compared with the experimental results from O 2 /N 2 and O 2 /CO 2 atmospheres, especially at low O 2 concentrations and high temperatures. The results showed that NO emissions of pulverized coal in O 2 /CO 2 environments were less than those in the O 2 /N 2 environments, regardless of the O 2 concentration and the furnace temperature. Adding H 2 O decreased the possibility of reactions between the reductive groups (NH) and the oxygen radical during devolatilization, which led to a decrease in NO emissions at 1000 °C. However, as the furnace temperature increased, "additional" nitrogen precursors (HCN and NH 3 ) generated by enhanced char-H 2 O gasification were quickly oxidized to generate a large amount of NO during char oxidation that exceeded the amount of NO reduced by NH during devolatilization. Thus, the NO emissions in O 2 /CO 2 /H 2 O atmosphere were higher than those in O 2 /CO 2 atmosphere at a low O 2 concentration. However, as the O 2 concentration increased, the NO emissions in O 2 /CO 2 /H 2 O atmosphere became lower than those in O 2 /CO 2 atmosphere because the effect of H 2 O gasification became weaker. The NO emissions of Yangquan anthracite (YQ) were higher than those of DT, but the changing trend of YQ was similar to that of DT.

  14. Far-infrared line emission from the galaxy. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.

    1985-01-01

    The diffuse 157.74 micron (CII) emission from the Galaxy was sampled at several galactic longitudes near the galactic plane including complete scan across the plane at (II) = 2.16 deg and (II) = 7.28 deg. The observed (CII) emission profiles follow closely the nearby (12)CO (J=1to0) emission profiles. The (CII) emission probably arises in neutral photodissociation regions near the edges of giant moleclar clouds (GMC's). These regions have densities of approximately 350 cm(-3) and temperatures of approximately 300 K, and amount to 4x10(8) solar mass of hydrogen in the inner Galaxy. The total 157.74 micron luminosity of the Galaxy is estimated to be 6x10(7) solar luminosity. Estimates were also made of the galactic emission in other far-infrared (FIR) cooling lines. The (CII) line was found to be the dominant FIR emission line from the galaxy and the primary coolant for the warm neutral gas near the galactic plane. Other cooling lines predicted to be prominent in the galactic spectrum are discussed. The 145.53 micron (OI) emission line from the Orion nebula was also measured.

  15. The Frequency Detuning Correction and the Asymmetry of Line Shapes: The Far Wings of H2O-H2O

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Hansen, James E. (Technical Monitor)

    2002-01-01

    A far-wing line shape theory which satisfies the detailed balance principle is applied to the H2O-H2O system. Within this formalism, two line shapes are introduced, corresponding to band-averages over the positive and negative resonance lines, respectively. Using the coordinate representation, the two line shapes can be obtained by evaluating 11-dimensional integrations whose integrands are a product of two factors. One depends on the interaction between the two molecules and is easy to evaluate. The other contains the density matrix of the system and is expressed as a product of two 3-dimensional distributions associated with the density matrices of the absorber and the perturber molecule, respectively. If most of the populated states are included in the averaging process, to obtain these distributions requires extensive computer CPU time, but only have to be computed once for a given temperature. The 11-dimensional integrations are evaluated using the Monte Carlo method, and in order to reduce the variance, the integration variables are chosen such that the sensitivity of the integrands on them is clearly distinguished.

  16. The VIRUS Emission Line Detection Recipe

    NASA Astrophysics Data System (ADS)

    Gössl, C. A.; Hopp, U.; Köhler, R.; Grupp, F.; Relke, H.; Drory, N.; Gebhardt, K.; Hill, G.; MacQueen, P.

    2007-10-01

    HETDEX, the Hobby-Eberly Telescope Dark Energy Experiment, will measure the imprint of the baryonic acoustic oscillations on the galaxy population at redshifts of 1.8 < z < 3.7 to constrain the nature of dark energy. The survey will be performed over at least 200 deg^2. The tracer population for this blind search will be Ly-α emitting galaxies through their most prominent emission line. The data reduction pipeline will extract these emission line objects from ˜35,000 spectra per exposure (5 million per night, i.e. 500 million in total) while performing astrometric, photometric, and wavelength calibration fully automatically. Here we will present our ideas how to find and classify objects even at low signal-to-noise ratios.

  17. Investigating the Fraction of Radio-Loud Quasars with High Velocity Broad Emission LInes

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Anirban; Gilbert, Miranda; Brotherton, Michael S.

    2018-06-01

    Quasars show a bimodal distribution in their radio emission, with some having powerful radio-emitting jets (radio-loud), and most having weak or no jets (radio-quiet). Surveys have shown around 10% of of quasars have detectable radio emissions. These quasars are called radio-loud. Several multiwavelength studies have shown that radio-loud quasars have different properties than radio-quiet quasars. This fraction of radio-loud quasars to radio-quiet quasars has been assumed to be constant across all parameter space. In this study, we breakdown the parameter space with respect to the increasing velocity dispersion of broad emission lines. Our sample has been drawn from 2011 Shen et al. catalog of more than 100,000 quasars. In this study, we demonstrate that this fraction varies with respect to the increasing velocity dispersion (FWHM) of broad emission lines. We compare three different emission lines: H-Beta, MgII, and CIV. We observe with increasing FWHM of these three emission lines, fraction of radio-loud quasars within the subset increases. This poster presents our initial results into investigating whether the fraction of RL quasars remains 10% in different parameter space.

  18. Uncertainties Associated with Theoretically Calculated N2-Broadened Half-Widths of H2O Lines

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Gamache, R. R.

    2010-01-01

    With different choices of the cut-offs used in theoretical calculations, we have carried out extensive numerical calculations of the N2-broadend Lorentzian half-widths of the H2O lines using the modified Robert-Bonamy formalism. Based on these results, we are able to thoroughly check for convergence. We find that, with the low-order cut-offs commonly used in the literature, one is able to obtain converged values only for lines with large half-widths. Conversely, for lines with small half-widths, much higher cut-offs are necessary to guarantee convergence. We also analyse the uncertainties associated with calculated half-widths, and these are correlated as above. In general, the smaller the half-widths, the poorer the convergence and the larger the uncertainty associated with them. For convenience, one can divide all H2O lines into three categories, large, intermediate, and small, according to their half-width values. One can use this division to judge whether the calculated half-widths are converged or not, based on the cut-offs used, and also to estimate how large their uncertainties are. We conclude that with the current Robert- Bonamy formalism, for lines in category lone can achieve the accuracy requirement set by HITRAN, whereas for lines in category 3, it 'is impossible to meet this goal.

  19. Atomic emission lines in the near ultraviolet; hydrogen through krypton, section 2

    NASA Technical Reports Server (NTRS)

    Kelly, R. L.

    1979-01-01

    A compilation of spectra from the first 36 elements was prepared from published literature available through October 1977. In most cases, only those lines which were actually observed in emission or absorption are listed. The wavelengths included range from 2000 Angstroms to 3200 Angstroms with some additional lines up to 3500 Angstroms. Only lines of stripped atoms are reported; no molecular bands are included.

  20. Intrinsic aerobic capacity correlates with greater inherent mitochondrial oxidative and H2O2 emission capacities without major shifts in myosin heavy chain isoform

    PubMed Central

    Seifert, Erin L.; Bastianelli, Mark; Aguer, Céline; Moffat, Cynthia; Estey, Carmen; Koch, Lauren G.; Britton, Steven L.

    2012-01-01

    Exercise capacity and performance strongly associate with metabolic and biophysical characteristics of skeletal muscle, factors that also relate to overall disease risk. Despite its importance, the exact mechanistic features that connect aerobic metabolism with health status are unknown. To explore this, we applied artificial selection of rats for intrinsic (i.e., untrained) aerobic treadmill running to generate strains of low- and high-capacity runners (LCR and HCR, respectively), subsequently shown to diverge for disease risk. Concurrent breeding of LCR and HCR per generation allows the lines to serve as reciprocal controls for unknown environmental changes. Here we provide the first direct evidence in mitochondria isolated from skeletal muscle that intrinsic mitochondrial capacity is higher in HCR rats. Maximal phosphorylating respiration was ∼40% greater in HCR mitochondria, independent of substrate and without altered proton leak or major changes in protein levels or muscle fiber type, consistent with altered control of phosphorylating respiration. Unexpectedly, H2O2 emission was ∼20% higher in HCR mitochondria, due to greater reduction of more harmful reactive oxygen species to H2O2; indeed, oxidative modification of mitochondrial proteins was lower. When the higher mitochondrial yield was considered, phosphorylating respiration and H2O2 emission were 70–80% greater in HCR muscle. Greater capacity of HCR muscle for work and H2O2 signaling may result in enhanced and more immediate cellular repair, possibly explaining lowered disease risks. PMID:22995392

  1. Intrinsic aerobic capacity correlates with greater inherent mitochondrial oxidative and H2O2 emission capacities without major shifts in myosin heavy chain isoform.

    PubMed

    Seifert, Erin L; Bastianelli, Mark; Aguer, Céline; Moffat, Cynthia; Estey, Carmen; Koch, Lauren G; Britton, Steven L; Harper, Mary-Ellen

    2012-11-01

    Exercise capacity and performance strongly associate with metabolic and biophysical characteristics of skeletal muscle, factors that also relate to overall disease risk. Despite its importance, the exact mechanistic features that connect aerobic metabolism with health status are unknown. To explore this, we applied artificial selection of rats for intrinsic (i.e., untrained) aerobic treadmill running to generate strains of low- and high-capacity runners (LCR and HCR, respectively), subsequently shown to diverge for disease risk. Concurrent breeding of LCR and HCR per generation allows the lines to serve as reciprocal controls for unknown environmental changes. Here we provide the first direct evidence in mitochondria isolated from skeletal muscle that intrinsic mitochondrial capacity is higher in HCR rats. Maximal phosphorylating respiration was ~40% greater in HCR mitochondria, independent of substrate and without altered proton leak or major changes in protein levels or muscle fiber type, consistent with altered control of phosphorylating respiration. Unexpectedly, H(2)O(2) emission was ~20% higher in HCR mitochondria, due to greater reduction of more harmful reactive oxygen species to H(2)O(2); indeed, oxidative modification of mitochondrial proteins was lower. When the higher mitochondrial yield was considered, phosphorylating respiration and H(2)O(2) emission were 70-80% greater in HCR muscle. Greater capacity of HCR muscle for work and H(2)O(2) signaling may result in enhanced and more immediate cellular repair, possibly explaining lowered disease risks.

  2. Metallicities of Emission-Line Galaxies from HST ACS PEARS and HST WFC3 ERS Grism Spectroscopy at 0.6 is less than z is less than 2.4

    NASA Technical Reports Server (NTRS)

    Xia, Lifang; Malhotra, Sangetta; Rhoads, James; Pirzkal, Nor; Straughn, Amber; Finkelstein, Steven; Cohen, Seth; Kuntschner, Harald; Walsh, Jeremy; Windhorst, Rogier A.; hide

    2012-01-01

    Galaxies selected on the basis of their emission line strength. show low metallicities, regardless of their redshifts. We conclude this from a sample of faint galaxies at redshifts between 0.6 < z < 2.4, selected by their prominent emission lines in low resolution grism spectra in the optiCa.i with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST) and in the near-infrared using Wide-Field Camera 3 (WFC3). Using a sample of 11 emission line galaxies (ELGs) at 0.6 < z < 2.4 with luminosities of -22 approx < MB approx -19 which have [OII], H-Beta, and [OIII] line flux measurements from the combination of two grism spectral surveys, we use the R23 method to derive the gas-phase oxygen abundances: 7.5 <12+log(0/H)<8.5. The galaxy stellar masses are derived using Bayesian based Markov Chain Monte Carlo (pi MC(exp 2)) fitting of their Spectral Energy Distribution (SED), and span the mass range 8.1 < log(M(stellar)/M(solar)) < 10.1. These galaxies show a mass-metal1icity (M-L) and Luminosity-Metallicity (LZ) relation, which is offset by -2 samples at similar redshifts. The emission-line selected galaxies most resemble the local "green peas" galaxies and Lyman-alpha galaxies at z approx = 0.3 and z approx = 2.3 in the M-Z and L-Z relations and their morphologies. The G - M(sub 20) morphology analysis shows that 10 out of 11 show disturbed morphology, even as the star-forming regions are compact. These galaxies may be intrinsically metal poor, being at early stages of formation, or the low metallicities may be due to gas infall and accretion due to mergers.

  3. A probabilistic approach to emission-line galaxy classification

    NASA Astrophysics Data System (ADS)

    de Souza, R. S.; Dantas, M. L. L.; Costa-Duarte, M. V.; Feigelson, E. D.; Killedar, M.; Lablanche, P.-Y.; Vilalta, R.; Krone-Martins, A.; Beck, R.; Gieseke, F.

    2017-12-01

    We invoke a Gaussian mixture model (GMM) to jointly analyse two traditional emission-line classification schemes of galaxy ionization sources: the Baldwin-Phillips-Terlevich (BPT) and WH α versus [N II]/H α (WHAN) diagrams, using spectroscopic data from the Sloan Digital Sky Survey Data Release 7 and SEAGal/STARLIGHT data sets. We apply a GMM to empirically define classes of galaxies in a three-dimensional space spanned by the log [O III]/H β, log [N II]/H α and log EW(H α) optical parameters. The best-fitting GMM based on several statistical criteria suggests a solution around four Gaussian components (GCs), which are capable to explain up to 97 per cent of the data variance. Using elements of information theory, we compare each GC to their respective astronomical counterpart. GC1 and GC4 are associated with star-forming galaxies, suggesting the need to define a new starburst subgroup. GC2 is associated with BPT's active galactic nuclei (AGN) class and WHAN's weak AGN class. GC3 is associated with BPT's composite class and WHAN's strong AGN class. Conversely, there is no statistical evidence - based on four GCs - for the existence of a Seyfert/low-ionization nuclear emission-line region (LINER) dichotomy in our sample. Notwithstanding, the inclusion of an additional GC5 unravels it. The GC5 appears associated with the LINER and passive galaxies on the BPT and WHAN diagrams, respectively. This indicates that if the Seyfert/LINER dichotomy is there, it does not account significantly to the global data variance and may be overlooked by standard metrics of goodness of fit. Subtleties aside, we demonstrate the potential of our methodology to recover/unravel different objects inside the wilderness of astronomical data sets, without lacking the ability to convey physically interpretable results. The probabilistic classifications from the GMM analysis are publicly available within the COINtoolbox at https://cointoolbox.github.io/GMM_Catalogue/.

  4. Observations of D/H ratios in H2O, HCl, and HF on Venus and new DCl and DF line strengths

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V. A.; Belyaev, D. A.; Gordon, I. E.; Li, G.; Rothman, L. S.

    2013-05-01

    Intensities of the spectral lines in the fundamental bands of D35Cl and DF were calculated using the semi-empirical dipole moment functions derived from the most accurate and precise measurements of intensities of the ro-vibrational lines of H35Cl and HF. Values obtained in this way for the deuterated species are superior to any available measured or calculated data to date. Our study of the D/H ratios in H2O, HCl, and HF on Venus is based on spatially-resolved high-resolution spectroscopy using the CSHELL spectrograph at NASA IRTF. Search for DF on Venus using its R5 (1-0) line at 3024.054 cm-1 results in a DF mixing ratio of 0.23 ± 0.11 ppb that corresponds to (D/H)HF = 420 ± 200 times that in the Standard Mean Ocean Water (SMOW). H2O abundances on Venus were retrieved using lines at 3022.366 and 3025.761 cm-1 that were observed at an exceptionally low overhead telluric water abundance of 0.3 pr. mm. The measured H2O mixing ratios at 74 km vary insignificantly between 55°S and 55°N with a mean value of 3.2 ppm. When compared with simultaneous observations of HDO near 2722 cm-1, this results in (D/H)H2O = 95 ± 15 times SMOW. Reanalysis of the observation of the D35Cl R4 (1-0) line at 2141.540 cm-1 (Krasnopolsky, V.A. [2012b]. Icarus 219, 244-249) using the improved line strength and more thorough averaging of the spectra gives (D/H)HCl = 190 ± 50 times SMOW. The similarity of the measured (D/H)H2O = 95 ± 15 at 74 km with 120 ± 40 observed by De Bergh et al. (De Bergh, C., Bezard, B., Owen, T., Crisp, D., Maillard, J.P., Lutz, B.L. [1991]. Science 251, 547-549) below the clouds favors the constant (D/H)H2O from the surface to the mesosphere, in accord with the prediction by theory. D/H ≈ 100 removes a difference of a factor of 2 between H2O abundances in the observations by Krasnopolsky (Krasnopolsky, V.A. [2010b]. Icarus 209, 314-322) and the Venus Express nadir observations (Cottini, V., Ignatiev, N.I., Piccioni, G., Drossart, P., Grassi, D., Markiewicz

  5. DETECTION OF H i IN EMISSION IN THE LY α EMITTING GALAXY HARO 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardy, Stephen A.; Cannon, John M.; Östlin, Göran

    We present the first robust detection of H i 21 cm emission in the blue compact galaxy Haro 11 using the 100 m Robert C. Byrd Green Bank Telescope (GBT). Haro 11 is a luminous blue compact galaxy with emission in both Ly α and the Lyman continuum. We detect (5.1 ± 0.7 × 10{sup 8}) M {sub ⊙} of H i gas at an assumed distance of 88 Mpc, making this galaxy H i deficient compared to other local galaxies with similar optical properties. Given this small H i mass, Haro 11 has an elevated M{sub H2}/ M{sub Hi} ratio and a verymore » low gas fraction compared to most local galaxies, and contains twice as much mass in ionized hydrogen as in neutral hydrogen. The H i emission has a linewidth of 71 km s{sup −}1 and is offset 60 km s{sup −1} redward of the optical line center. It is undergoing a starburst after a recent merger that has elevated the star formation rate, and will deplete the gas supply in <0.2 Gyr. Although this starburst has elevated the star formation rate (SFR) compared to galaxies with similar H i masses and line widths, Haro 11 matches a trend of lower gas fractions toward higher SFRs and is below the general trend of increasing H i mass with increasing luminosity. Taken together, our results paint Haro 11 as a standard low-mass galaxy that is undergoing an unusually efficient star formation episode.« less

  6. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2

    NASA Astrophysics Data System (ADS)

    Wilzewski, Jonas S.; Gordon, Iouli E.; Kochanov, Roman V.; Hill, Christian; Rothman, Laurence S.

    2016-01-01

    To increase the potential for use of the HITRAN database in astronomy, experimental and theoretical line-broadening coefficients, line shifts and temperature-dependence exponents of molecules of planetary interest broadened by H2, He, and CO2 have been assembled from available peer-reviewed sources. The collected data were used to create semi-empirical models so that every HITRAN line of the studied molecules has corresponding parameters. Since H2 and He are major constituents in the atmospheres of gas giants, and CO2 predominates in atmospheres of some rocky planets with volcanic activity, these spectroscopic data are important for remote sensing studies of planetary atmospheres. In this paper we make the first step in assembling complete sets of these parameters, thereby creating datasets for SO2, NH3, HF, HCl, OCS and C2H2.

  7. Unbiased millimeter-wave line surveys of TW Hya and V4046 Sgr: The enhanced C{sub 2}H and CN abundances of evolved protoplanetary disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastner, Joel H.; Punzi, Kristina; Hily-Blant, Pierre

    2014-09-20

    We have conducted the first comprehensive millimeter-wave molecular emission line surveys of the evolved circumstellar disks orbiting the nearby, roughly solar-mass, pre-main-sequence (T Tauri) stars, TW Hya (D = 54 pc) and V4046 Sgr AB (D = 73 pc). Both disks are known to retain significant residual gaseous components despite the advanced ages of their host stars (∼8 Myr and ∼21 Myr, respectively). Our unbiased broadband radio spectral surveys of the TW Hya and V4046 Sgr disks were performed with the Atacama Pathfinder Experiment 12 m telescope, and are intended to yield a complete census of the bright molecular emissionmore » lines in the range 275-357 GHz (1.1-0.85 mm). We find that lines of {sup 12}CO, {sup 13}CO, HCN, CN, and C{sub 2}H, all of which lie in the higher frequency (>330 GHz) range, constitute the strongest molecular emission from both disks in the spectral region surveyed. The molecule C{sub 2}H is detected here for the first time in both disks, as is CS in the TW Hya disk. The survey results also include the first measurements of the full suite of the hyperfine transitions of CN N = 3 → 2 and C{sub 2}H N = 4 → 3 in both disks. Modeling of these CN and C{sub 2}H hyperfine complexes in the spectrum of TW Hya indicates that the emission from both species is optically thick and may originate from very cold (≲10 K) disk regions. The latter result, if confirmed, would suggest the efficient production of CN and C{sub 2}H in the outer disk and/or near the disk midplane. It furthermore appears that the fractional abundances of CN and C{sub 2}H are significantly enhanced in these evolved protoplanetary disks, relative to the fractional abundances of the same molecules in the environments of deeply embedded protostars. These results, combined with previous determinations of the enhanced abundances of other species (such as HCO{sup +}) in T Tauri star disks, underscore the importance of properly accounting for high-energy (FUV and X

  8. The Lyman Continuum Escape Fraction of Emission Line-selected z ∼ 2.5 Galaxies Is Less Than 15%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutkowski, Michael J.; Hayes, Matthew; Scarlata, Claudia

    Recent work suggests that strong emission line, star-forming galaxies (SFGs) may be significant Lyman continuum leakers. We combine archival Hubble Space Telescope broadband ultraviolet and optical imaging (F275W and F606W, respectively) with emission line catalogs derived from WFC3 IR G141 grism spectroscopy to search for escaping Lyman continuum (LyC) emission from homogeneously selected z ∼ 2.5 SFGs. We detect no escaping Lyman continuum from SFGs selected on [O ii] nebular emission ( N = 208) and, within a narrow redshift range, on [O iii]/[O ii]. We measure 1 σ upper limits to the LyC escape fraction relative to the non-ionizingmore » UV continuum from [O ii] emitters, f {sub esc} ≲ 5.6%, and strong [O iii]/[O ii] > 5 ELGs, f {sub esc} ≲ 14.0%. Our observations are not deep enough to detect f {sub esc} ∼ 10% typical of low-redshift Lyman continuum emitters. However, we find that this population represents a small fraction of the star-forming galaxy population at z ∼ 2. Thus, unless the number of extreme emission line galaxies grows substantially to z ≳ 6, such galaxies may be insufficient for reionization. Deeper survey data in the rest-frame ionizing UV will be necessary to determine whether strong line ratios could be useful for pre-selecting LyC leakers at high redshift.« less

  9. Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Johnson, M. A.; Mclaren, R. A.; Sutton, E. C.

    1975-01-01

    Strong 10 micrometer line emission from (c-12)(o-16)2 in the upper atmosphere of Venus was detected by heterodyne techniques. Observations of the absolute Doppler shift of the emission features indicate mean zonal wind velocities less than 10 m/sec in the upper atmosphere near the equator. No evidence was found of the 100 m/sec wind velocity implied by the apparent 4-day rotation period of ultraviolet cloud features.

  10. Emission Lines from the Gas Disk Around TW Hydra and the Origin of the Inner Hole

    NASA Technical Reports Server (NTRS)

    Gorti, U.; Hollenbach, D.; Najita, J.; Pascucci, I.

    2011-01-01

    We compare line emission calculated from theoretical disk models with optical to submillimeter wavelength observational data of the gas disk surrounding TW Hya and infer the spatial distribution of mass in the gas disk. The model disk that best matches observations has a gas mass ranging from approx.10(exp -4) to 10(exp -5) M for 0.06AU < r < 3.5 AU and approx. 0.06M for 3.5AU < r < 200 AU. We find that the inner dust hole (r < 3.5 AU) in the disk must be depleted of gas by approx. 1-2 orders of magnitude compared with the extrapolated surface density distribution of the outer disk. Grain growth alone is therefore not a viable explanation for the dust hole. CO vibrational emission arises within r approx. 0.5 AU from thermal excitation of gas. [O i] 6300Å and 5577Å forbidden lines and OH mid-infrared emission are mainly due to prompt emission following UV photodissociation of OH and water at r < or approx. 0.1 AU and at r approx. 4 AU. [Ne ii] emission is consistent with an origin in X-ray heated neutral gas at r < or approx. 10 AU, and may not require the presence of a significant extreme-ultraviolet (h? > 13.6 eV) flux from TW Hya. H2 pure rotational line emission comes primarily from r approx. 1 to 30 AU. [Oi] 63microns, HCO+, and CO pure rotational lines all arise from the outer disk at r approx. 30-120 AU. We discuss planet formation and photoevaporation as causes for the decrease in surface density of gas and dust inside 4 AU. If a planet is present, our results suggest a planet mass approx. 4-7MJ situated at 3 AU. Using our photoevaporation models and the best surface density profile match to observations, we estimate a current photoevaporative mass loss rate of 4x10(exp -9M)/yr and a remaining disk lifetime of approx.5 million years.

  11. Ozone depletion caused by NO and H2O emissions from hydrazine-fueled rockets

    NASA Astrophysics Data System (ADS)

    Ross, M. N.; Danilin, M. Y.; Weisenstein, D. K.; Ko, M. K. W.

    2004-11-01

    Rockets using unsymmetrical dimethyl hydrazine (N(CH3)2NH2) and dinitrogen tetroxide (N2O4) propellants account for about one third of all stratospheric rocket engine emissions, comparable to the solid-fueled rocket emissions. We use plume and global atmosphere models to provide the first estimate of the local and global ozone depletion caused by NO and H2O emissions from the Proton rocket, the largest hydrazine-fueled launcher in use. NO and H2O emission indices are assumed to be 20 and 350 g/kg (propellant), respectively. Predicted maximum ozone loss in the plume of the Proton rocket is 21% at 44 km altitude. Plume ozone loss at 20 km equals 8% just after launch and steadily declines to 2% by model sunset. Predicted steady state global ozone loss from ten Proton launches annually is 1.2 × 10-4%, with nearly all of the loss due to the NO component of the emission. Normalized by stratospheric propellant consumption, the global ozone depletion efficiency of the Proton is approximately 66-90 times less than that of solid-fueled rockets. In situ Proton plume measurements are required to validate assumed emission indices and to assess the role of rocket emissions not considered in these calculations. Such future studies would help to establish a formalism to evaluate the relative ozone depletion caused by different rocket engines using different propellants.

  12. ENHANCED WARM H{sub 2} EMISSION IN THE COMPACT GROUP MID-INFRARED ''GREEN VALLEY''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cluver, M. E.; Ogle, P.; Guillard, P.

    2013-03-10

    We present results from a Spitzer mid-infrared spectroscopy study of a sample of 74 galaxies located in 23 Hickson Compact Groups (HCGs), chosen to be at a dynamically active stage of H I depletion. We find evidence for enhanced warm H{sub 2} emission (i.e., above that associated with UV excitation in star-forming regions) in 14 galaxies ({approx}20%), with 8 galaxies having extreme values of L(H{sub 2} S(0)-S(3))/L(7.7 {mu}m polycyclic aromatic hydrocarbon), in excess of 0.07. Such emission has been seen previously in the compact group HCG 92 (Stephan's Quintet), and was shown to be associated with the dissipation of mechanicalmore » energy associated with a large-scale shock caused when one group member collided, at high velocity, with tidal debris in the intragroup medium. Similarly, shock excitation or turbulent heating is likely responsible for the enhanced H{sub 2} emission in the compact group galaxies, since other sources of heating (UV or X-ray excitation from star formation or active galactic nuclei) are insufficient to account for the observed emission. The group galaxies fall predominantly in a region of mid-infrared color-color space identified by previous studies as being connected to rapid transformations in HCG galaxy evolution. Furthermore, the majority of H{sub 2}-enhanced galaxies lie in the optical ''green valley'' between the blue cloud and red sequence, and are primarily early-type disk systems. We suggest that H{sub 2}-enhanced systems may represent a specific phase in the evolution of galaxies in dense environments and provide new insight into mechanisms which transform galaxies onto the optical red sequence.« less

  13. Simultaneous detection and analysis of optical and ultraviolet broad emission lines in quasars at z 2.2

    NASA Astrophysics Data System (ADS)

    Bisogni, S.; di Serego Alighieri, S.; Goldoni, P.; Ho, L. C.; Marconi, A.; Ponti, G.; Risaliti, G.

    2017-06-01

    We studied the spectra of six z 2.2 quasars obtained with the X-shooter spectrograph at the Very Large Telescope. The redshift of these sources and the X-shooter's spectral coverage allow us to cover the rest of the spectral range 1200-7000 Å for the simultaneous detection of optical and ultraviolet lines emitted by the broad-line region. Simultaneous measurements, avoiding issues related to quasars variability, help us understand the connection between the different broad-line region line profiles generally used as virial estimators of black hole masses in quasars. The goal of this work is to compare the different emission lines for each object to check on the reliability of Hα, Mg II and C iv with respect to Hβ. Hα and Mg II linewidths correlate well with Hβ, while C iv shows a poorer correlation, due to the presence of strong blueshifts and asymmetries in the profile. We compared our sample with the only other two whose spectra were taken with the same instrument and for all examined lines our results are in agreement with the ones obtained with X-shooter at z 1.5-1.7. We finally evaluate C III] as a possible substitute of C iv in the same spectral range and find that its behaviour is more coherent with those of the other lines: we believe that, when a high quality spectrum such as the ones we present is available and a proper modelization with the Fe II and Fe III emissions is performed, it is more appropriate to use this line than that of C iv if not corrected for the contamination by non-virialized components. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programme 086.B-0320(A).The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A1

  14. An Explanation of Remarkable Emission-line Profiles in Post-flare Coronal Rain

    NASA Astrophysics Data System (ADS)

    Lacatus, Daniela A.; Judge, Philip G.; Donea, Alina

    2017-06-01

    We study broad redshifted emission in chromospheric and transition region lines that appears to correspond to a form of post-flare coronal rain. Profiles of Mg II, C II, and Si IV lines were obtained using IRIS before, during, and after the X2.1 flare of 2015 March 11 (SOL2015-03-11T16:22). We analyze the profiles of the five transitions of Mg II (the 3p-3s h and k transitions, and three lines belonging to the 3d-3p transitions). We use analytical methods to understand the unusual profiles, together with higher-resolution observational data of similar phenomena observed by Jing et al. The peculiar line ratios indicate anisotropic emission from the strands that have cross-strand line center optical depths (k line) of between 1 and 10. The lines are broadened by unresolved Alfvénic motions whose energy exceeds the radiation losses in the Mg II lines by an order of magnitude. The decay of the line widths is accompanied by a decay in the brightness, suggesting a causal connection. If the plasma is ≲99% ionized, ion-neutral collisions can account for the dissipation; otherwise, a dynamical process seems necessary. Our work implies that the motions are initiated during the impulsive phase, to be dissipated as radiation over a period of an hour, predominantly by strong chromospheric lines. The coronal “rain” we observe is far more turbulent than most earlier reports have indicated, with implications for plasma heating mechanisms.

  15. H2 16O line list for the study of atmospheres of Venus and Mars

    NASA Astrophysics Data System (ADS)

    Lavrentieva, N. N.; Voronin, B. A.; Fedorova, A. A.

    2015-01-01

    IR spectroscopy is an important method of remote measurement of H2 16O content in planetary atmospheres with initial spectroscopic information from the HITRAN, GEISA, etc., databases adapted for studies in the Earth's atmosphere. Unlike the Earth, the atmospheres of Mars and Venus mainly consist of carbon dioxide with a CO2 content of about 95%. In this paper, the line list of H2 16O is obtained on the basis of the BT2 line list (R.J. Barber, J. Tennyson, G.J. Harris, et al., Mon. Not. R. Astron. Soc. 368, 1087 (2006)). The BT2 line list containing information on the centers, intensities, and quantum identification of lines is supplemented with the line contour parameters: the self-broadening and carbon dioxide broadening coefficients and the temperature dependence coefficient at 296 K in the range of 0.001-30000 cm-1. Transitions with intensity values 10-30, 10-32, and 10-35 cm/molecule, the total number of which is 323310, 753529, and 2011072, respectively, were chosen from the BT2 line list.

  16. EMISSION-LINE OBJECTS PROJECTED UPON THE GALACTIC BULGE*

    PubMed Central

    Herbig, G. H.

    1969-01-01

    Low-dispersion slit spectrograms have been obtained of 34 faint objects that lie in the direction of the galactic bulge and have the Hα line in emission upon a detectable continuum. Eleven of these are certain or probable symbiotic stars. A rough comparison with R CrB stars in the same area suggests that these brightest symbiotics in the bulge have in the mean Mv ≈ -3 to -4, which suggest Population II red giants rather than conventional Population I M-type objects. The sample also contains a number of hot stars having H and [O II] or [O III] in emission, as well as four conventional Be stars, and six certain or possible planetary nebulae. Images PMID:16578699

  17. Emission-line objects projected upon the galactic bulge.

    PubMed

    Herbig, G H

    1969-08-01

    Low-dispersion slit spectrograms have been obtained of 34 faint objects that lie in the direction of the galactic bulge and have the Halpha line in emission upon a detectable continuum. Eleven of these are certain or probable symbiotic stars. A rough comparison with R CrB stars in the same area suggests that these brightest symbiotics in the bulge have in the mean M(v) approximately -3 to -4, which suggest Population II red giants rather than conventional Population I M-type objects. The sample also contains a number of hot stars having H and [O II] or [O III] in emission, as well as four conventional Be stars, and six certain or possible planetary nebulae.

  18. The molecular core in G34.3 + 0.2 - Millimeter interferometric observations of HCO(+), H(C-13)N, H(C-15)N, and SO

    NASA Technical Reports Server (NTRS)

    Carral, Patricia; Welch, William J.

    1992-01-01

    This study presents high-resolution observations of the molecular core in the star-forming region G34.3 + 0.2. Maps at 6-arcsec resolution of emission and absorption of the J = 1 - 0 transitions of HCO(+), H (C-13)N, H(C-15)N, and of the 2(2) - 1(1) transition of SO were obtained in addition to a map of the 3.4-mm continuum emission from the compact H II component. The HCL(+) emission toward G34.3 + 0.2 traces a warm molecular core about 0.9 pc in size. Emission from H (C-13)N is detected over about 0.3 pc. The cometary H II region lies near the edge of the molecular core. The blueshift of the radio recombination lines with respect to the molecular emission suggests that gas from the H II region is accelerated in a champagne flow caused by a steep gradient in the ambient gas density.

  19. Linear Polarization Measurements of Chromospheric Emission Lines

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Keller, C. U.

    2003-01-01

    We have used the Zurich Imaging Stokes Polarimeter (ZIMPOL I) with the McMath-Pierce 1.5 m main telescope on Kitt Peak to obtain linear polarization measurements of the off-limb chromosphere with a sensitivity better than 1 x 10(exp -5). We found that the off-disk observations require a combination of good seeing (to show the emission lines) and a clean heliostat (to avoid contamination by scattered light from the Sun's disk). When these conditions were met, we obtained the following principal results: 1. Sometimes self-reversed emission lines of neutral and singly ionized metals showed linear polarization caused by the transverse Zeeman effect or by instrumental cross talk from the longitudinal Zeeman effect in chromospheric magnetic fields. Otherwise, these lines tended to depolarize the scattered continuum radiation by amounts that ranged up to 0.2%. 2. Lines previously known to show scattering polarization just inside the limb (such as the Na I lambda5889 D2 and the He I lambda5876 D3 lines) showed even more polarization above the Sun's limb, with values approaching 0.7%. 3. The O I triplet at lambda7772, lambda7774, and lambda7775 showed a range of polarizations. The lambda7775 line, whose maximum intrinsic polarizability, P(sub max), is less than 1%, revealed mainly Zeeman contributions from chromospheric magnetic fields. However, the more sensitive lambda7772 (P(sub max) = 19%) and lambda7774 (P(sub max) = 29%) lines had relatively strong scattering polarizations of approximately 0.3% in addition to their Zeeman polarizations. At times of good seeing, the polarization spectra resolve into fine structures that seem to be chromospheric spicules.

  20. Spectral properties of X-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero-Colmenero, E.

    1998-03-01

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha~1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for N_H. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law slope of the average NELG is alpha = 0.45 +/- 0.09, whilst that of the AGN is alpha = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (<= 2e-15 ergs cm-2 s-1), thus suggesting that NELGs are important contributors to the residual soft (<2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (alpha~0.4, 1-10 keV) is harder than that of AGN (alpha~1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha~0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to

  1. Spectral properties of x-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero Colmenero, Encarnacion

    constitute it. Furthermore, by combining both samples of NELGs, I find a tendency for sources at lower fluxes to display harder slopes (95% confidence level), further strengthening the case for NELGs to be major contributors to the XRB at the fainter fluxes. The analysis of optical spectroscopy, obtained on La Palma and Hawaii, shows that NELGs form a very heterogeneous group, made up of a mixture of Seyfert 2, LINER and HII-region like galaxies. Seyfert 2 galaxies are found to possess in general the steepest X-ray slopes. Ways to explain this in the context of the unified model of AGN are discussed. The FWHM of some emission lines (H, [NH]) in the NELGs appears to increase with steepening X-ray spectral slope. In the case of the Balmer lines, this at variance with what is observed in broad line AGN. The FWHM of the Balmer lines is also correlated to the FWHM of the forbidden lines, indicating that they must originate in regions of similar velocity fields. Unfortunately, the number of sources uniquely classified is not sufficient to investigate these relationships on a source type basis. The optical emission line ratios of a bright RIXOS source (aka Arp 185, NGC 6217), classified as a starburst galaxy in the literature, indicate that this is in fact a weak-[OI] LINER, powered either by emission from hot O stars or by hot stars together with a non-stellar continuum. Spatially resolved spectroscopic analysis suggests that the Balmer emission lines are concentrated in the inner regions of the nucleus, while the forbidden lines arise from a more extended region. Line ratios do not indicate a change in the ionizing continuum of this source with distance from the centre.

  2. (Sub)millimeter emission lines of molecules in born-again stars

    NASA Astrophysics Data System (ADS)

    Tafoya, D.; Toalá, J. A.; Vlemmings, W. H. T.; Guerrero, M. A.; De Beck, E.; González, M.; Kimeswenger, S.; Zijlstra, A. A.; Sánchez-Monge, Á.; Treviño-Morales, S. P.

    2017-04-01

    Context. Born-again stars provide a unique possibility to study the evolution of the circumstellar envelope of evolved stars in human timescales. Up until now, most of the observations of the circumstellar material in these stars have been limited to studying the relatively hot gas and dust. In other evolved stars, the emission from rotational transitions of molecules, such as CO, is commonly used to study the cool component of their circumstellar envelopes. Thus, the detection and study of molecular gas in born-again stars is of great importance when attempting to understand their composition and chemical evolution. In addition, the molecular emission is an invaluable tool for exploring the physical conditions, kinematics, and formation of asymmetric structures in the circumstellar envelopes of these evolved stars. However, up until now, all attempts to detect molecular emission from the cool material around born-again stars have failed. Aims: We searched for emission from rotational transitions of molecules in the hydrogen-deficient circumstellar envelopes of born-again stars to explore the chemical composition, kinematics, and physical parameters of the relatively cool gas. Methods: We carried out observations using the APEX and IRAM 30 m telescopes to search for molecular emission toward four well-studied born-again stars, V4334 Sgr, V605 Aql, A30, and A78, that are thought to represent an evolutionary sequence. Results: For the first time, we detected emission from HCN and H13CN molecules toward V4334 Sgr, and CO emission in V605 Aql. No molecular emission was detected above the noise level toward A30 and A78. The detected lines exhibit broad linewidths ≳150 km s-1, which indicates that the emission comes from gas ejected during the born-again event, rather than from the old planetary nebula. A first estimate of the H12CN/H13CN abundance ratio in the circumstellar environment of V4334 Sgr is ≈3, which is similar to the value of the 12C/13C ratio measured

  3. A MODEL FOR TYPE 2 CORONAL LINE FOREST (CLiF) AGNs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glidden, Ana; Rose, Marvin; Elvis, Martin

    2016-06-10

    We present a model for the classification of Coronal Line Forest Active Galactic Nuclei (CLiF AGNs). CLiF AGNs are of special interest due to their remarkably large number of emission lines, especially forbidden high-ionization lines (FHILs). Rose et al. suggest that their emission is dominated by reflection from the inner wall of the obscuring region rather than direct emission from the accretion disk. This makes CLiF AGNs laboratories to test AGN-torus models. Modeling an AGN as an accreting supermassive black hole surrounded by a cylinder of dust and gas, we show a relationship between the viewing angle and the revealedmore » area of the inner wall. From the revealed area, we can determine the amount of FHIL emission at various angles. We calculate the strength of [Fe vii] λ 6087 emission for a number of intermediate angles (30°, 40°, and 50°) and compare the results with the luminosity of the observed emission line from six known CLiF AGNs. We find that there is good agreement between our model and the observational results. The model also enables us to determine the relationship between the type 2:type 1 AGN fraction vs the ratio of torus height to radius, h / r .« less

  4. Analytic H I-to-H2 Photodissociation Transition Profiles

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Sternberg, Amiel

    2016-05-01

    We present a simple analytic procedure for generating atomic (H I) to molecular ({{{H}}}2) density profiles for optically thick hydrogen gas clouds illuminated by far-ultraviolet radiation fields. Our procedure is based on the analytic theory for the structure of one-dimensional H I/{{{H}}}2 photon-dominated regions, presented by Sternberg et al. Depth-dependent atomic and molecular density fractions may be computed for arbitrary gas density, far-ultraviolet field intensity, and the metallicity-dependent H2 formation rate coefficient, and dust absorption cross section in the Lyman-Werner photodissociation band. We use our procedure to generate a set of {{H}} {{I}}{-}{to}{-}{{{H}}}2 transition profiles for a wide range of conditions, from the weak- to strong-field limits, and from super-solar down to low metallicities. We show that if presented as functions of dust optical depth, the {{H}} {{I}} and {{{H}}}2 density profiles depend primarily on the Sternberg “α G parameter” (dimensionless) that determines the dust optical depth associated with the total photodissociated {{H}} {{I}} column. We derive a universal analytic formula for the {{H}} {{I}}{-}{to}{-}{{{H}}}2 transition points as a function of just α G. Our formula will be useful for interpreting emission-line observations of H I/{{{H}}}2 interfaces, for estimating star formation thresholds, and for sub-grid components in hydrodynamics simulations.

  5. The Orion Fingers: H2 Temperatures and Excitation in an Explosive Outflow

    NASA Astrophysics Data System (ADS)

    Youngblood, Allison; France, Kevin; Ginsburg, Adam; Hoadley, Keri; Bally, John

    2018-04-01

    We measure H2 temperatures and column densities across the Orion Becklin-Neugebauer/Kleinmann-Low (BN/KL) explosive outflow from a set of 13 near-infrared (IR) H2 rovibrational emission lines observed with the TripleSpec spectrograph on Apache Point Observatory’s 3.5 m telescope. We find that most of the region is well characterized by a single temperature (∼2000–2500 K), which may be influenced by the limited range of upper-energy levels (6000–20,000 K) probed by our data set. The H2 column density maps indicate that warm H2 comprises 10‑5–10‑3 of the total H2 column density near the center of the outflow. Combining column density measurements for co-spatial H2 and CO at T = 2500 K, we measure a CO/H2 fractional abundance of 2 × 10‑3 and discuss possible reasons why this value is in excess of the canonical 10‑4 value, including dust attenuation, incorrect assumptions on co-spatiality of the H2 and CO emission, and chemical processing in an extreme environment. We model the radiative transfer of H2 in this region with ultraviolet (UV) pumping models to look for signatures of H2 fluorescence from H I Lyα pumping. Dissociative (J-type) shocks and nebular emission from the foreground Orion H II region are considered as possible Lyα sources. From our radiative transfer models, we predict that signatures of Lyα pumping should be detectable in near-IR line ratios given a sufficiently strong source, but such a source is not present in the BN/KL outflow. The data are consistent with shocks as the H2 heating source.

  6. The Ratio of Ortho- to Para-H2 in Photodissociation Regions

    NASA Technical Reports Server (NTRS)

    Sternberg, Amiel; Neufeld, David A.

    1999-01-01

    We discuss the ratio of ortho- to para-H2 in photodissociation regions (PDRs). We draw attention to an apparent confusion in the literature between the ortho-to-para ratio of molecules in FUV-pumped vibrationally excited states and the total H2 ortho-to-para abundance ratio. These ratios are not the same because the process of FUV pumping of fluorescent H2 emission in PDRs occurs via optically thick absorption lines. Thus gas with an equilibrium ratio of ortho- to para-H2 equal to 3 will yield FUV-pumped vibrationally excited ortho-to-para ratios smaller than 3, because the ortho-H2 pumping rates are preferentially reduced by optical depth effects. Indeed, if the ortho and para pumping lines are on the "square root" part of the curve of growth, then the expected ratio of ortho and para vibrational line strengths is 3(sup 1/2) approximately 1.7, close to the typically observed value. Thus, contrary to what has sometimes been stated in the literature, most previous measurements of the ratio of ortho- to para-H2 in vibrationally excited states are entirely consistent with a total ortho-to-para ratio of 3, the equilibrium value for temperatures greater than 200 K. We present an analysis and several detailed models that illustrate the relationship between the total ratios of ortho- to para-H2 and the vibrationally excited ortho-to-para ratios in PDRs. Recent Infrared Space Observatory measurements of pure rotational and vibrational H2 emissions from the PDR in the star-forming region S140 provide strong observational support for our conclusions.

  7. Emission lines in the long period Cepheid l Carinae

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika; Love, Stanley G.

    1991-01-01

    For the Cepheid (l) Carinae with a pulsation period of 35.5 days we have studied the emission line fluxes as a function of pulsational phase in order to find out whether we see chromosphere and transition layer emission or whether we see emission due to an outward moving shock. All emission lines show a steep increase in flux shortly before maximum light suggestive of a shock moving through the surface layers. The large ratio of the C IV to C II line fluxes shows that these are not transition layer lines. During maximum light the large ratio of the C IV to C II line fluxes also suggests that we see emission from a shock with velocities greater than 100 km/sec such that C IV emission can be excited. With such velocities mass outflow appears possible. The variations seen in the Mg II line profiles show that there is an internal absorption over a broad velocity band independent of the pulsational phase. We attribute this absorption to a circumstellar 'shell'. This 'shell' appears to be seen also as spatially extended emission in the O I line at 1300 angstrom, which is probably excited by resonance with Ly beta.

  8. H6+ in irradiated solid para-hydrogen and its decay dynamics: reinvestigation of quartet electron paramagnetic resonance lines assigned to H2-.

    PubMed

    Kumada, Takayuki; Tachikawa, Hiroto; Takayanagi, Toshiyuki

    2005-03-07

    The quartet electron paramagnetic resonance (EPR) lines observed in gamma- and X-ray irradiated solid para-H2, which have previously been assigned to H2-, are reinvestigated. We have reassigned the quartet lines to H6 rather than H2- mainly due to comparison of experimentally obtained EPR parameters to theoretical results. Based on the new assignment, trapping site, rotation, ortho-para conversion, quantum diffusion and isotope effect of H+ have been reinterpreted by the precise reanalysis as follows. The H6+ ion is composed of the collinearly aligned H2+ core at the center and two H2 rotors at both ends, occupies a single substitutional site, and has a precession motion around a crystalline axis with the angle of approximately 57 degrees. The ortho-para conversion of H2+ core of H6+ is completed within the time-scale of hours, whereas ortho-H2 molecules near H6+ convert much faster. H6+ diffuses quantum mechanically by the repetition of H6+ + H2 --> H2 + H6+ reaction. The diffusion terminates by the reaction, H6(+) + HD --> H5D(+) + H2, with a HD impurity contained in the para-H2 sample at natural abundance. Finally, we will propose a possible reason why H6+ is produced instead of H3+ in the irradiated solid H2.

  9. Electromagnetic plasma wave emissions from the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1977-01-01

    The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  10. ExoMol molecular line lists - XXVII: spectra of C2H4

    NASA Astrophysics Data System (ADS)

    Mant, Barry P.; Yachmenev, Andrey; Yurchenko, Jonathan Tennyson Sergei N.

    2018-05-01

    A new line list for ethylene, 12C21H4 is presented. The line list is based on high level ab initiopotential energy and dipole moment surfaces. The potential energy surface is refined by fitting to experimental energies. The line list covers the range up to 7000 cm-1(1.43 μm) with all ro-vibrational transitions (50 billion) with the lower state below 5000 cm-1included and thus should be applicable for temperatures up to 700 K. A technique for computing molecular opacities from vibrational band intensities is proposed and used to provide temperature dependent cross sections of ethylene for shorter wavelength and higher temperatures. When combined with realistic band profiles (such as the proposed three-band model), the vibrational intensity technique offers a cheap but reasonably accurate alternative to the full ro-vibrational calculations at high temperatures and should be reliable for representing molecular opacities. The C2H4 line list, which is called MaYTY, is rmade available in electronic form from the CDS (http://cdsarc.u-strasbg.fr) and ExoMol (www.exomol.com) databases.

  11. Measurement of the deuterium Balmer series line emission on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, C. R.; Xu, Z.; Jin, Z.

    Volume recombination plays an important role towards plasma detachment for magnetically confined fusion devices. High quantum number states of the Balmer series of deuterium are used to study recombination. On EAST (Experimental Advanced Superconducting Tokamak), two visible spectroscopic measurements are applied for the upper/lower divertor with 13 channels, respectively. Both systems are coupled with Princeton Instruments ProEM EMCCD 1024B camera: one is equipped on an Acton SP2750 spectrometer, which has a high spectral resolution ∼0.0049 nm with 2400 gr/mm grating to measure the D{sub α}(H{sub α}) spectral line and with 1200 gr/mm grating to measure deuterium molecular Fulcher band emissionsmore » and another is equipped on IsoPlane SCT320 using 600 gr/mm to measure high-n Balmer series emission lines, allowing us to study volume recombination on EAST and to obtain the related line averaged plasma parameters (T{sub e}, n{sub e}) during EAST detached phases. This paper will present the details of the measurements and the characteristics of deuterium Balmer series line emissions during density ramp-up L-mode USN plasma on EAST.« less

  12. Spatial distribution of FIR rotationally excited CH+ and OH emission lines in the Orion Bar PDR⋆

    PubMed Central

    Parikka, A.; Habart, E.; Bernard-Salas, J.; Goicoechea, J. R.; Abergel, A.; Pilleri, P.; Dartois, E.; Joblin, C.; Gerin, M.; Godard, B.

    2016-01-01

    Context The methylidyne cation (CH+) and hydroxyl (OH) are key molecules in the warm interstellar chemistry, but their formation and excitation mechanisms are not well understood. Their abundance and excitation are predicted to be enhanced by the presence of vibrationally excited H2 or hot gas (~500–1000 K) in photodissociation regions with high incident FUV radiation field. The excitation may also originate in dense gas (> 105 cm−3) followed by nonreactive collisions with H2, H, and electrons. Previous observations of the Orion Bar suggest that the rotationally excited CH+ and OH correlate with the excited CO, a tracer of dense and warm gas, and formation pumping contributes to CH+ excitation. Aims Our goal is to examine the spatial distribution of the rotationally excited CH+ and OH emission lines in the Orion Bar in order to establish their physical origin and main formation and excitation mechanisms. Methods We present spatially sampled maps of the CH+ J=3-2 transition at 119.8 µm and the OH Λ-doublet at 84 µm in the Orion Bar over an area of 110″×110″ with Herschel (PACS). We compare the spatial distribution of these molecules with those of their chemical precursors, C+, O and H2, and tracers of warm and dense gas (high-J CO). We assess the spatial variation of CH+ J=2-1 velocity-resolved line profile at 1669 GHz with Herschel HIFI spectrometer observations. Results The OH and especially CH+ lines correlate well with the high-J CO emission and delineate the warm and dense molecular region at the edge of the Bar. While notably similar, the differences in the CH+ and OH morphologies indicate that CH+ formation and excitation are strongly related to the observed vibrationally excited H2. This, together with the observed broad CH+ line widths, indicates that formation pumping contributes to the excitation of this reactive molecular ion. Interestingly, the peak of the rotationally excited OH 84 µm emission coincides with a bright young object, proplyd

  13. Electron beam-generated Ar/N{sub 2} plasmas: The effect of nitrogen addition on the brightest argon emission lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lock, E. H., E-mail: evgeniya.lock@nrl.navy.mil, E-mail: scott.walton@nrl.navy.mil; Petrova, Tz. B.; Petrov, G. M.

    2016-04-15

    The effect of nitrogen addition on the emission intensities of the brightest argon lines produced in a low pressure argon/nitrogen electron beam-generated plasmas is characterized using optical emission spectroscopy. In particular, a decrease in the intensities of the 811.5 nm and 763.5 nm lines is observed, while the intensity of the 750.4 nm line remains unchanged as nitrogen is added. To explain this phenomenon, a non-equilibrium collisional-radiative model is developed and used to compute the population of argon excited states and line intensities as a function of gas composition. The results show that the addition of nitrogen to argon modifies the electron energymore » distribution function, reduces the electron temperature, and depopulates Ar metastables in exchange reactions with electrons and N{sub 2} molecules, all of which lead to changes in argon excited states population and thus the emission originating from the Ar 4p levels.« less

  14. JET-SHOCKED H{sub 2} AND CO IN THE ANOMALOUS ARMS OF MOLECULAR HYDROGEN EMISSION GALAXY NGC 4258

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogle, P. M.; Lanz, L.; Appleton, P. N., E-mail: ogle@ipac.caltech.edu

    2014-06-20

    We present a Spitzer Infrared Spectrograph map of H{sub 2} emission from the nearby galaxy NGC 4258 (Messier 106). The H{sub 2} emission comes from 9.4 ± 0.4 × 10{sup 6} M {sub ☉} of warm molecular hydrogen heated to 240-1040 K in the inner anomalous arms, a signature of jet interaction with the galaxy disk. The spectrum is that of a molecular hydrogen emission galaxy (MOHEG), with a large ratio of H{sub 2} over 7.7 μm polycyclic aromatic hydrocarbon emission (0.37), characteristic of shocked molecular gas. We find close spatial correspondence between the H{sub 2} and CO emission from the anomalousmore » arms. Our estimate of cold molecular gas mass based on CO emission is 10 times greater than our estimate of 1.0 × 10{sup 8} M {sub ☉} based on dust emission. We suggest that the X {sub CO} value is 10 times lower than the Milky Way value because of high kinetic temperature and enhanced turbulence. The H{sub 2} disk has been overrun and is being shocked by the jet cocoon, and much of the gas originally in the disk has been ejected into the galaxy halo in an X-ray hot outflow. We measure a modest star formation rate of 0.08 M {sub ☉} yr{sup –1} in the central 3.4 kpc{sup 2} that is consistent with the remaining gas surface density.« less

  15. HUBBLE SPACE TELESCOPE EMISSION-LINE GALAXIES AT z ∼ 2: THE MYSTERY OF NEON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeimann, Gregory R.; Ciardullo, Robin; Gebhardt, Henry

    2015-01-01

    We use near-infrared grism spectroscopy from the Hubble Space Telescope to examine the strength of [Ne III] λ3869 relative to Hβ, [O II] λ3727, and [O III] λ5007 in 236 low-mass (7.5 ≲ log (M {sub *}/M {sub ☉}) ≲ 10.5) star-forming galaxies in the redshift range 1.90 < z < 2.35. By stacking the data by stellar mass, we show that the [Ne III]/[O II] ratios of the z ∼ 2 universe are marginally higher than those seen in a comparable set of local Sloan Digital Sky Survey galaxies, and that [Ne III]/[O III] is enhanced by ∼0.2 dex.more » We consider the possible explanations for this ∼4σ result, including higher oxygen depletion out of the gas phase, denser H II regions, higher production of {sup 22}Ne via Wolf-Rayet stars, and the existence of a larger population of X-ray obscured active galactic nuclei at z ∼ 2 compared to z ∼ 0. None of these simple scenarios, alone, are favored to explain the observed line ratios. We conclude by suggesting several avenues of future observations to further explore the mystery of enhanced [Ne III] emission.« less

  16. Community-LINE Source Model (C-LINE) to estimate roadway emissions

    EPA Pesticide Factsheets

    C-LINE is a web-based model that estimates emissions and dispersion of toxic air pollutants for roadways in the U.S. This reduced-form air quality model examines what-if scenarios for changes in emissions such as traffic volume fleet mix and vehicle speed.

  17. A joint program with Japanese investigators to map carbon 2 line emission from the galaxy

    NASA Technical Reports Server (NTRS)

    Low, Frank J.; Nishimura, Tetsuo

    1993-01-01

    A large portion of the inner galactic plane has been mapped in the far-infrared (C II) line using a balloon-borne survey instrument. Complete coverage is reported from 25 degrees north to 80 degrees south of the galactic center and extending a few degrees on each side of the plane. Effective resolution is 14.1 acrmin (FWHM) and contour levels begin at 2 E -5 ergs/(s x sq. cm x ster). When compared with 100 micron dust emission observed by IRAS the (C II) appears well correlated with the dust emission except for a 10 degree region centered on the galactic center where emission from the gas is much weaker than that from the dust.

  18. Herschel GASPS spectral observations of T Tauri stars in Taurus. Unraveling far-infrared line emission from jets and discs

    NASA Astrophysics Data System (ADS)

    Alonso-Martínez, M.; Riviere-Marichalar, P.; Meeus, G.; Kamp, I.; Fang, M.; Podio, L.; Dent, W. R. F.; Eiroa, C.

    2017-07-01

    Context. At early stages of stellar evolution young stars show powerful jets and/or outflows that interact with protoplanetary discs and their surroundings. Despite the scarce knowledge about the interaction of jets and/or outflows with discs, spectroscopic studies based on Herschel and ISO data suggests that gas shocked by jets and/or outflows can be traced by far-IR (FIR) emission in certain sources. Aims: We want to provide a consistent catalogue of selected atomic ([OI] and [CII]) and molecular (CO, H2O, and OH) line fluxes observed in the FIR, separate and characterize the contribution from the jet and the disc to the observed line emission, and place the observations in an evolutionary picture. Methods: The atomic and molecular FIR (60-190 μm) line emission of protoplanetary discs around 76 T Tauri stars located in Taurus are analysed. The observations were carried out within the Herschel key programme Gas in Protoplanetary Systems (GASPS). The spectra were obtained with the Photodetector Array Camera and Spectrometer (PACS). The sample is first divided in outflow and non-outflow sources according to literature tabulations. With the aid of archival stellar/disc and jet/outflow tracers and model predictions (PDRs and shocks), correlations are explored to constrain the physical mechanisms behind the observed line emission. Results: Outflow sources exhibit brighter atomic and molecular emission lines and higher detection rates than non-outflow sources. The line detection fractions decrease with SED evolutionary status (from Class I to Class III). We find correlations between [OI] 63.18 μm and [OI] 6300 Å, o-H2O 78.74 μm, CO 144.78 μm, OH 79.12+79.18 μm, and the continuum flux at 24 μm. The atomic line ratios can be explain either by fast (Vshock > 50 km s-1) dissociative J-shocks at low densities (n 103 cm-3) occurring along the jet and/or PDR emission (G0 > 102, n 103-106 cm-3). To account for the [CII] absolute fluxes, PDR emission or UV irradiation of

  19. Double-peaked Emission Lines Due to a Radio Outflow in KISSR 1219

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharb, P.; Vaddi, S.; Subramanian, S.

    We present the results from 1.5 and 5 GHz phase-referenced VLBA and 1.5 GHz Karl G. Jansky Very Large Array (VLA) observations of the Seyfert 2 galaxy KISSR 1219, which exhibits double-peaked emission lines in its optical spectrum. The VLA and VLBA data reveal a one-sided core-jet structure at roughly the same position angles, providing evidence of an active galactic nucleus outflow. The absence of dual parsec-scale radio cores puts the binary black-hole picture in doubt for the case of KISSR 1219. The high brightness temperatures of the parsec-scale core and jet components (>10{sup 6} K) are consistent with thismore » interpretation. Doppler boosting with jet speeds of ≳0.55 c to ≳0.25 c , going from parsec to kiloparsec scales, at a jet inclination ≳50° can explain the jet one-sidedness in this Seyfert 2 galaxy. A blueshifted broad emission line component in [O iii] is also indicative of an outflow in the emission line gas at a velocity of ∼350 km s{sup −1}, while the [O i] doublet lines suggest the presence of shock-heated gas. A detailed line ratio study using the MAPPINGS III code further suggests that a shock+precursor model can explain the line ionization data well. Overall, our data suggest that the radio outflow in KISSR 1219 is pushing the emission line clouds, both ahead of the jet and in a lateral direction, giving rise to the double peak emission line spectra.« less

  20. Reverberation Mapping of Optical Emission Lines in Five Active Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fausnaugh, M. M.; Denney, K. D.; Peterson, B. M.

    2017-05-10

    We present the first results from an optical reverberation mapping campaign executed in 2014 targeting the active galactic nuclei (AGNs) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a “changing look” AGN and a broad-line radio galaxy. Based on continuum-H β lags, we measure black hole masses for all five targets. We also obtain H γ and He ii λ 4686 lags for all objects except 3C 382. The He ii λ 4686 lags indicate radial stratification of the BLR, and the masses derived from different emission lines aremore » in general agreement. The relative responsivities of these lines are also in qualitative agreement with photoionization models. These spectra have extremely high signal-to-noise ratios (100–300 per pixel) and there are excellent prospects for obtaining velocity-resolved reverberation signatures.« less

  1. Near-Infrared Emission Lines of Nova Cassiopeiae 1995

    NASA Astrophysics Data System (ADS)

    Rudy, R. J.; Lynch, D. K.; Mazuk, S. M.; Venturini, C. C.; Puetter, R. C.

    2000-12-01

    The slow nova V 723 Cas (Nova Cas 1995) exhibits comparatively narrow emission features (FWHM 500 km sec-1) that make it ideal for classifying weak lines and lines blended with stronger features. We present spectra from 0.8-2.5 microns that track the gradual incrase in excitation of Nova Cas and discuss the emission lines that were present. During the period encompassed by these observations Nova Cas reached only moderate excitation-the most energetic coronal lines were [S VIII] 9913 and [Al IX] 20444; lines such as [S IX] 12523 that are prominent in some novae were not detected. Additional coronal lines present include [Si VI] 19641, [Ca VIII] 23205, and [Si VII] 24807. New lines identified include features of [Fe V], [Fe VI]. These iron features are not coronal lines, arising from transitions among low-lying terms rather than within the ground term itself. Also detected was [Ti VI] 17151 that was first identified in V1974 Cygni (Nova Cyg 1992), and possibly [Ti VII] 22050. Accurate wavelengths for a number of unidentified lines are also presented. These unidentified features are discussed with regard to their likely level of excitation and their presence in other novae. This work was supported by the IR&D program of the Aerospace Corporation. RCP acknowledges support from NASA.

  2. H2 Fluorescence in M dwarf Systems: A Stellar Origin

    NASA Astrophysics Data System (ADS)

    Kruczek, Nicholas; France, Kevin; Evonosky, William; Youngblood, Allison; Loyd, R. O. Parke

    2017-01-01

    Observations of Lyα-driven H2 fluorescence can be a useful tool for measuring the abundance of H2 in exoplanet atmospheres. This emission has been previously observed in M dwarfs with planetary systems but at too low of a signal to determine its origin. It may have been originating in the atmospheres of planets, but conditions within these systems also mean that the H2 could be residing on the stellar surface or in a circumstellar disk. We use observations from the ``Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanet Host Stars" (MUSCLES) Hubble Space Telescope (HST) Treasury Survey to study H2 fluorescence in M dwarfs with and without confirmed planets to determine the origin of the emission. The results are further supported by the direct imaging of a candidate M dwarf system using the HST-Advanced Camera for Surveys/Solar Blind Channel. We constrain the location of the fluorescing H2 through analysis of the line profiles and determine that the emission is originating on the star. We verify that this interpretation is consistent with 1D radiative transfer models that are optimized using the spectra of the MUSCLES stars and find that the H2 likely resides in starspots or a cool region of the lower chromosphere.

  3. Infrared and near infrared emission spectra of TeH and TeD

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Shayesteh, Alireza; Fu, Dejian; Bernath, Peter F.

    2005-04-01

    The vibration-rotation emission spectra for the X2Π ground state and the near infrared emission spectra of the X2Π 1/2- X2Π 3/2 system of the TeH and TeD free radicals have been measured at high resolution using a Fourier transform spectrometer. TeH and TeD were generated in a tube furnace with a DC discharge of a flowing mixture of argon, hydrogen (or deuterium), and tellurium vapor. In the infrared region, for the X2Π 3/2 spin component we observed the 1-0, 2-1, and 3-2 vibrational bands for most of the eight isotopologues of TeH and the 1-0 and 2-1 bands for three isotopologues of TeD. For the X2Π 1/2- X2Π 3/2 transition, we observed the 0-0 and 1-1 bands for TeH and the 0-0, 1-1, and 2-2 bands for TeD. Except for a few lines, the tellurium isotopic shift was not resolved for the X2Π 1/2- X2Π 3/2 transitions of TeH and TeD. Local perturbations with Δ v = 2 between the two spin components of the X2Π state of TeH were found: X2Π 1/2, v = 0 with X2Π 3/2, v = 2; X2Π 1/2, v = 1 with X2Π 3/2, v = 3. The new data were combined with the previous data from the literature and two kinds of fits (Hund's case (a) and Hund's case (c)) were carried out for each of the 10 observed isotopologues: 130TeD, 128TeD, 126TeD, 130TeH, 128TeH, 126TeH, 125TeH, 124TeH, 123TeH, and 122TeH.

  4. Stratospheric cooling and polar ozone loss due to H2 emissions of a global hydrogen economy

    NASA Astrophysics Data System (ADS)

    Feck, T.; Grooß, J.-U.; Riese, M.; Vogel, B.

    2009-04-01

    "Green" hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H2) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H2 that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H2 can occur along the whole hydrogen process chain which increase the tropospheric H2 burden. Across the tropical tropopause H2 reaches the stratosphere where it is oxidised and forms water vapour (H2O). This causes increased IR-emissions into space and hence a cooling of the stratosphere. Both effects, the increase of stratospheric H2O and the cooling, enhances the potential of chlorine activation on liquid sulfate aerosol and polar stratospheric clouds (PSCs), which increase polar ozone destruction. Hence a global hydrogen economy could provoke polar ozone loss and could lead to a substantial delay of the current projected recovery of the stratospheric ozone layer. Our investigations show that even if 90% of the current global fossil primary energy input could be replaced by hydrogen and approximately 9.5% of the product gas would leak to the atmosphere, the ozone loss would be increased between 15 to 26 Dobson Units (DU) if the stratospheric CFC loading would retain unchanged. A consistency check of the used approximation methods with the Chemical Lagrangian Model of the Stratosphere (CLaMS) shows that this additional ozone loss can probably be treated as an upper limit. Towards more realistic future H2 leakage rate assumptions (< 3%) the additional ozone loss would be rather small (? 10 DU). However, in all cases the full damage would only occur if stratospheric CFC-levels would retain unchanged. Due to the CFC-prohibition as a result of the Montreal Protocol the forecasts suggest a decline of the stratospheric CFC loading about 50% until 2050. In this case our calculations

  5. Optical emission line monitor with background observation and cancellation

    DOEpatents

    Goff, D.R.; Notestein, J.E.

    1985-01-04

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interfering blackbody radiation by greater than 20 dB.

  6. Optical emission line monitor with background observation and cancellation

    DOEpatents

    Goff, David R.; Notestein, John E.

    1986-01-01

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interferring blackbody radiation by greater than 20 dB.

  7. A search for the H2 /3, 0/ S1 line in the spectrum of Titan

    NASA Technical Reports Server (NTRS)

    Muench, G.; Trauger, J. T.; Roesler, F. L.

    1977-01-01

    Results are reported for measurements of the quadrupole S1 line of the (3, 0) absorption band of H2 in spectra of Titan, which were performed at an effective resolution of 0.09 A by scanning with a PEPSIOS spectrometer over a range of 0.85 A centered at the expected position of the investigated line and sampling in 80 contiguous channels. No statistically significant H2 (3, 0) S1 feature is found in the spectra, but a three-sigma upper limit of 3 mA is set for the equivalent width of the S1 line that might be present in a co-added spectrum. It is concluded that these measurements do not provide any evidence for the presence of H2 in the atmosphere of Titan.

  8. Continued observations of the H Ly alpha emission from Uranus

    NASA Technical Reports Server (NTRS)

    Clarke, J.; Durrance, S.; Moos, W.; Murthy, J.; Atreya, S.; Barnes, A.; Mihalov, J.; Belcher, J.; Festou, M.; Imhoff, C.

    1986-01-01

    Observations of Uranus obtained over four years with the IUE Observatory supports the initial identification of a bright H Ly alpha flux which varies independently of the solar H Ly alpha flux, implying a largely self-excited emission. An average brightness of 1400 Rayleighs is derived, and limits for the possible contribution by reflected solar H Ly alpha emission, estimated to be about 200 Rayleighs, suggest that the remaining self-excited emission is produced by an aurora. Based on comparison with solar wind measurements obtained in the vicinity of Uranus by Voyager 2 and Pioneer 11, no evidence for correlation between the solar wind density and the H Ly alpha brightness is found. The upper limit to H2 emission gives a lower limit to the ratio of H Ly alpha/H2 emissions of about 2.4, suggesting that the precipitating particles may be significantly less energetic on Uranus than those responsible for the aurora on Jupiter. The average power in precipitating particles is estimated to be of the order of 10 to the 12th W.

  9. Spatially Resolved HST Grism Spectroscopy of a Lensed Emission Line Galaxy at z ~ 1

    NASA Astrophysics Data System (ADS)

    Frye, Brenda L.; Hurley, Mairead; Bowen, David V.; Meurer, Gerhardt; Sharon, Keren; Straughn, Amber; Coe, Dan; Broadhurst, Tom; Guhathakurta, Puragra

    2012-07-01

    We take advantage of gravitational lensing amplification by A1689 (z = 0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i 775 = 27.3 via slitless grism spectroscopy. One ELG (at z = 0.7895) is very bright owing to lensing magnification by a factor of ≈4.5. Several Balmer emission lines (ELs) detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M * ≈ 2 × 109 M ⊙) with a high specific star formation rate (≈20 Gyr-1). From the blue ELs we measure a gas-phase oxygen abundance consistent with solar (12+log(O/H) = 8.8 ± 0.2). We break the continuous line-emitting region of this giant arc into seven ~1 kpc bins (intrinsic size) and measure a variety of metallicity-dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by ~1 kpc have a placement on the blue H II region excitation diagram with f ([O III])/f (Hβ) and f ([Ne III])/f (Hβ) that can be fitted by an active galactic nucleus (AGN). This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxy's extended tail, possibly instigated by a recent galaxy interaction. Based, in part, on data obtained with the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  10. Lines in the spectrum of /sup 6/LiH (2985--5158 A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K.C.

    1976-01-01

    The emission spectra of the A/sup 1/..sigma../sup +/--X/sup 1/..sigma../sup +/ bands of /sup 6/LiH were photographed in the 2985 - 5158 A region with a 3.4 meter Ebert Spectrograph of theoretical resolution of about 0.07 cm/sup -1/. High-purity /sup 6/LiH crystals were obtained from Oak Ridge National Laboratory. The atomic percent of /sup 6/Li in /sup 6/LiH was 95.58 percent. The discharge source was a demountable stainless steel hollow cathode lamp. The lithium hydride crystals were packed into the cathode. Pressure in the discharge tube was about 10 to 20 torr of H/sub 2/. The disharge was run at aboutmore » 600 volts and 1.25 to 1.75 amperes. Acceptable spectra were obtained with exposure time of 6 hours. A Westinghouse iron hollow cathode was used to produce the iron spectrum for calibration. The plates were measured on the Gaertner photoplate comparator with an encoder system and on-line computer service at Argonne National Laboratory. The measured lines in the spectra of /sup 6/LiH are given in this report (COO-2326-17). Similar spectra for /sup 6/LiD and /sup 7/LiH are given in companion reports (COO-2326-18) and (COO-2326-19), respectively. The relative intensities of the lines are applicable only to short regions and do not extend over the whole spectrum.« less

  11. GAME: GAlaxy Machine learning for Emission lines

    NASA Astrophysics Data System (ADS)

    Ucci, G.; Ferrara, A.; Pallottini, A.; Gallerani, S.

    2018-06-01

    We present an updated, optimized version of GAME (GAlaxy Machine learning for Emission lines), a code designed to infer key interstellar medium physical properties from emission line intensities of ultraviolet /optical/far-infrared galaxy spectra. The improvements concern (a) an enlarged spectral library including Pop III stars, (b) the inclusion of spectral noise in the training procedure, and (c) an accurate evaluation of uncertainties. We extensively validate the optimized code and compare its performance against empirical methods and other available emission line codes (PYQZ and HII-CHI-MISTRY) on a sample of 62 SDSS stacked galaxy spectra and 75 observed HII regions. Very good agreement is found for metallicity. However, ionization parameters derived by GAME tend to be higher. We show that this is due to the use of too limited libraries in the other codes. The main advantages of GAME are the simultaneous use of all the measured spectral lines and the extremely short computational times. We finally discuss the code potential and limitations.

  12. Ongoing Search for Metal Line Emission in Intermediate and High Velocity Clouds with WHAM

    NASA Astrophysics Data System (ADS)

    Barger, K. A.; Haffner, L. M.; Madsen, G. J.; Hill, A. S.; Wakker, B. P.

    2010-01-01

    We present new observations of the ionized gas in Complexes A, K, and L obtained with the Wisconsin H-Alpha Mapper (WHAM). To date, there have been only a limited number of studies of the ionized components of intermediate and high velocity clouds. Investigating their emission provides a rare probe of the physical conditions of the clouds and the halo they are embedded within. These types of measurements will help guide discussion of the origin and evolution of these neutral halo structures. Here we follow up on the H-alpha maps we have presented elsewhere with deeper observations in H-alpha, [S II], [N II], and [O I]. Distance constraints from absorption studies place this gas in the mid to lower Galactic halo. Complex A has been constrained to a distance of 8-10 kpc (Wakker et al. 2008); Complex K has an upper limit of 6.8 kpc; and Complex L at a distance of 8-15 kpc (Wakker 2000). Some halo gas structures have clear metal line emission (e.g., Smith Cloud; Hill et al. 2009 and this meeting); however, the lack of [S II] emission toward Complex C combined with absorption-line observations demonstrates that it has very low metallically (Wakker, et al. 1999). Such discoveries reveal ongoing gas replenishment of the evolving Milky Way. Here, we find a similar lack of emission toward the high-velocity Complex A. In particular, the cores of its cloud components designated III and IV show no evidence for metal line emission in our new observations, which places new constraints on the metallically of this complex. These observations were taken with WHAM at Kitt Peak, and we thank the excellent, decade-long support from its staff. WHAM operations are supported through NSF award AST-0607512.

  13. Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H3+ emissions and comparison with the north aurora

    NASA Astrophysics Data System (ADS)

    Adriani, A.; Mura, A.; Moriconi, M. L.; Dinelli, B. M.; Fabiano, F.; Altieri, F.; Sindoni, G.; Bolton, S. J.; Connerney, J. E. P.; Atreya, S. K.; Bagenal, F.; Gérard, J.-C. M. C.; Filacchione, G.; Tosi, F.; Migliorini, A.; Grassi, D.; Piccioni, G.; Noschese, R.; Cicchetti, A.; Gladstone, G. R.; Hansen, C.; Kurth, W. S.; Levin, S. M.; Mauk, B. H.; McComas, D. J.; Olivieri, A.; Turrini, D.; Stefani, S.; Amoroso, M.

    2017-05-01

    The Jupiter InfraRed Auroral Mapper (JIRAM) aboard Juno observed the Jovian South Pole aurora during the first orbit of the mission. H3+ (trihydrogen cation) and CH4 (methane) emissions have been identified and measured. The observations have been carried out in nadir and slant viewing both by a L-filtered imager and a 2-5 μm spectrometer. Results from the spectral analysis of the all observations taken over the South Pole by the instrument are reported. The coverage of the southern aurora during these measurements has been partial, but sufficient to determine different regions of temperature and abundance of the H3+ ion from its emission lines in the 3-4 μm wavelength range. Finally, the results from the southern aurora are also compared with those from the northern ones from the data taken during the same perijove pass and reported by Dinelli et al. (2017).

  14. Variation of the H-Beta Emission Lines of Yy-Geminorum - Part Two - Change of Sectorial Structures of Active Regions

    NASA Astrophysics Data System (ADS)

    Kodaira, K.; Ichimura, K.

    Sixty-three image-tube spectrograms of YY Gem (4 Å mm-1, λλ4820-4900 Å) are analyzed to yield the radial-velocity curves and the variations in the intensities and the widths of Hβ emission lines during the quiescent phase at epochs 1980 February 11-16, 1981 January 14-15, and 1981 March 11. The emission-line intensity of component A varied in a single-wave mode over an orbital period, with an apparent phase drift, -0.006019 fraction of the period per day from one epoch to another. The pattern of the intensity variation of component B changed within a few years. The ratio of the amplitudes of radial-velocity curves (KA/KB) of Hβ emission was found to be 0.91 in February 1980 but 1.01 in January 1981. This modulation in the ratio is interpreted as the results of the varying inhomogeneous distributions of emission intensities over the stellar surfaces which are inferred from the observed intensity variations under the assumption of synchronous rotation. A ratio KA/KB = 1.00±001 is proposed as the actual value which would be observed if the effects of inhomogeneities were negligible. The double-wave mode of the line-width variation over a period, which was found by Kodaira and Ichimura (1980), persisted for component A but changed into a single-wave mode for component B. No appreciable changes were detected in the average levels of both the intensity and width of Hβ emission lines within the last few years.

  15. High-resolution Near-IR Spectral Mapping with H2 and [Fe II] Lines of Multiple Outflows around LkHα 234

    NASA Astrophysics Data System (ADS)

    Oh, Heeyoung; Pyo, Tae-Soo; Koo, Bon-Chul; Yuk, In-Soo; Kaplan, Kyle F.; Lee, Yong-Hyun; Sokal, Kimberly R.; Mace, Gregory N.; Park, Chan; Lee, Jae-Joon; Park, Byeong-Gon; Hwang, Narae; Kim, Hwihyun; Jaffe, Daniel T.

    2018-05-01

    We present a high-resolution, near-IR spectroscopic study of multiple outflows in the LkHα 234 star formation region using the Immersion GRating INfrared Spectrometer (IGRINS). Spectral mapping over the blueshifted emission of HH 167 allowed us to distinguish at least three separate, spatially overlapped outflows in H2 and [Fe II] emission. We show that the H2 emission represents not a single jet but rather complex multiple outflows driven by three known embedded sources: MM1, VLA 2, and VLA 3. There is a redshifted H2 outflow at a low velocity, V LSR <+50 km s‑1, with respect to the systemic velocity of V LSR = ‑11.5 km s‑1, that coincides with the H2O masers seen in earlier radio observations 2″ southwest of VLA 2. We found that the previously detected [Fe II] jet with | {V}LSR}| > 100 km s‑1 driven by VLA 3B is also detected in H2 emission and confirm that this jet has a position angle of about 240°. Spectra of the redshifted knots at 14″–65″ northeast of LkHα 234 are presented for the first time. These spectra also provide clues to the existence of multiple outflows. We detected high-velocity (50–120 km s‑1) H2 gas in the multiple outflows around LkHα 234. Since these gases move at speeds well over the dissociation velocity (>40 km s‑1), the emission must originate from the jet itself rather than H2 gas in the ambient medium. Also, position–velocity and excitation diagrams indicate that emission from knot C in HH 167 comes from two different phenomena, shocks and photodissociation.

  16. Infrared coronal emission lines and the possibility of their laser emission in Seyfert nuclei

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Feldman, Uri; Smith, Howard A.; Klapisch, Marcel; Bhatia, Anand K.; Bar-Shalom, Avi

    1993-01-01

    Results are presented from detailed balance calculations, and a compilation of atomic data and other model calculations designed to support upcoming ISO and current observing programs involving IR coronal emission lines, together with a table with a complete line list of infrared transitions within the ground configurations 2s2 2p(k), 3s2 3p(k), and the first excited configurations 2s 2p and 3s 3p of highly ionized astrophysically abundant elements. The temperature and density parameter space for dominant cooling via IR coronal lines is presented, and the relationship of IR and optical coronal lines is discussed. It is found that, under physical conditions found in Seyfert nuclei, 14 of 70 transitions examined have significant population inversions in levels that give rise to IR coronal lines. Several IR coronal line transitions were found to have laser gain lengths that correspond to column densities of 10 exp 24-25/sq cm which are modeled to exist in Seyfert nuclei. Observations that can reveal inverted level populations and laser gain in IR coronal lines are suggested.

  17. Disc origin of broad optical emission lines of the TDE candidate PTF09djl

    NASA Astrophysics Data System (ADS)

    Liu, F. K.; Zhou, Z. Q.; Cao, R.; Ho, L. C.; Komossa, S.

    2017-11-01

    An otherwise dormant supermassive black hole (SMBH) in a galactic nucleus flares up when it tidally disrupts a star passing by. Most of the tidal disruption events (TDEs) and candidates discovered in the optical/UV have broad optical emission lines with complex and diverse profiles of puzzling origin. In this Letter, we show that the double-peaked broad H α line of the TDE candidate PTF09djl can be well modelled with a relativistic elliptical accretion disc and the peculiar substructures with one peak at the line rest wavelength and the other redshifted to about 3.5 × 104 km s-1 are mainly due to the orbital motion of the emitting matter within the disc plane of large inclination 88° and pericentre orientation nearly vertical to the observer. The accretion disc has an extreme eccentricity 0.966 and semimajor axis of 340 BH Schwarzschild radii. The viewing angle effects of large disc inclination lead to significant attenuation of He emission lines originally produced at large electron scattering optical depth and to the absence/weakness of He emission lines in the spectra of PTF09djl. Our results suggest that the diversities of line intensity ratios among the line species in optical TDEs are probably due to the differences of disc inclinations.

  18. Emission line galaxies and active galactic nuclei in WINGS clusters

    NASA Astrophysics Data System (ADS)

    Marziani, P.; D'Onofrio, M.; Bettoni, D.; Poggianti, B. M.; Moretti, A.; Fasano, G.; Fritz, J.; Cava, A.; Varela, J.; Omizzolo, A.

    2017-03-01

    We present the analysis of the emission line galaxies members of 46 low-redshift (0.04 < z < 0.07) clusters observed by WINGS (WIde-field Nearby Galaxy cluster Survey). Emission line galaxies were identified following criteria that are meant to minimize biases against non-star-forming galaxies and classified employing diagnostic diagrams. We examined the emission line properties and frequencies of star-forming galaxies, transition objects, and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency, and a systematically lower Balmer emission line equivalent width and luminosity with respect to control samples; this implies a lower amount of ionized gas per unit mass and a lower star formation rate if the source is classified as Hii region. A sizable population of transition objects and of low-luminosity LINERs (≈ 10-20% of all emission line galaxies) are detected among WINGS cluster galaxies. These sources are a factor of ≈1.5 more frequent, or at least as frequent, as in control samples with respect to Hii sources. Transition objects and LINERs in clusters are most affected in terms ofline equivalent width by the environment and appear predominantly consistent with so-called retired galaxies. Shock heating can be a possible gas excitation mechanism that is able to account for observed line ratios. Specific to the cluster environment, we suggest interaction between atomic and molecular gas and the intracluster medium as a possible physical cause of line-emitting shocks. The data whose description is provided in Table B.1, and emission line catalog of the WINGS database are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A83

  19. New Line Lists for planetological applications: HC3N and C4H2

    NASA Astrophysics Data System (ADS)

    Jolly, A.; Benilan, Y.; Fayt, A.

    2009-04-01

    The Composite Infrared Spectrometer (CIRS) on-board Cassini, after four years of operation in Saturnian orbit with over thirty close fly-bys of Titan, has obtained spectra in the far and mid-infrared with a spectral resolution of 0.5 cm-1. Mismatch between observed spectra and model spectra obtained from the available line lists has led us to study the bending bands of HC3N and C4H2, the longest carbon chains observed on Titan. Our experimental study for HC3N (Jolly et al. 2007, J.Mol.Spec) has shown that band intensities had to be revised and that including hot bands with lower level as high as 1300 cm-1 was necessary to model our experimental spectra at 0.5 cm-1 resolution. A new extended line list could be obtained by fitting high resolution data with the help of a global analysis. This line list was made available to the astronomers of the CIRS team and will be included in the next version of the GEISA data base. Thanks to the precision of the new spectroscopic data, 13C isotopologues of HC3N have been detected and quantified for the first time in the atmosphere of Titan (Jennings et al. 2008, ApJL). Search for the 15N isotopologues of HC3N will also be presented. The proportion of hot bands is even more important for C4H2 than for HC3N and a new extended line list was absolutely necessary to improve the CIRS spectral analysis. We will present a new line list and show comparison between synthetic spectra and experimental spectra of C4H2 obtained between 193 and 296 K at 0.1 and 0.5 cm-1 resolution. Comparison of model spectra to CIRS observations of C4H2 at 220 and 630 cm-1 will also be presented. Detections of hot bands and isotopes in cold environments such as Titan will be emphasized.

  20. The CU mobile Solar Occultation Flux instrument: structure functions and emission rates of NH3, NO2 and C2H6

    NASA Astrophysics Data System (ADS)

    Kille, Natalie; Baidar, Sunil; Handley, Philip; Ortega, Ivan; Sinreich, Roman; Cooper, Owen R.; Hase, Frank; Hannigan, James W.; Pfister, Gabriele; Volkamer, Rainer

    2017-02-01

    We describe the University of Colorado mobile Solar Occultation Flux instrument (CU mobile SOF). The instrument consists of a digital mobile solar tracker that is coupled to a Fourier transform spectrometer (FTS) of 0.5 cm-1 resolution and a UV-visible spectrometer (UV-vis) of 0.55 nm resolution. The instrument is used to simultaneously measure the absorption of ammonia (NH3), ethane (C2H6) and nitrogen dioxide (NO2) along the direct solar beam from a moving laboratory. These direct-sun observations provide high photon flux and enable measurements of vertical column densities (VCDs) with geometric air mass factors, high temporal resolution of 2 s and spatial resolution of 5-19 m. It is shown that the instrument line shape (ILS) of the FTS is independent of the azimuth and elevation angle pointing of the solar tracker. Further, collocated measurements next to a high-resolution FTS at the National Center for Atmospheric Research (HR-NCAR-FTS) show that the CU mobile SOF measurements of NH3 and C2H6 are precise and accurate; the VCD error at high signal to noise ratio is 2-7 %. During the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) from 21 July to 3 September 2014 in Colorado, the CU mobile SOF instrument measured median (minimum, maximum) VCDs of 4.3 (0.5, 45) × 1016 molecules cm-2 NH3, 0.30 (0.06, 2.23) × 1016 molecules cm-2 NO2 and 3.5 (1.5, 7.7) × 1016 molecules cm-2 C2H6. All gases were detected in larger 95 % of the spectra recorded in urban, semi-polluted rural and remote rural areas of the Colorado Front Range. We calculate structure functions based on VCDs, which describe the variability of a gas column over distance, and find the largest variability for NH3. The structure functions suggest that currently available satellites resolve about 10 % of the observed NH3 and NO2 VCD variability in the study area. We further quantify the trace gas emission fluxes of NH3 and C2H6 and production rates of NO2 from concentrated animal feeding

  1. The 1943 K emission spectrum of H216O between 6600 and 7050 cm-1

    NASA Astrophysics Data System (ADS)

    Czinki, Eszter; Furtenbacher, Tibor; Császár, Attila G.; Eckhardt, André K.; Mellau, Georg Ch.

    2018-02-01

    An emission spectrum of H216O has been recorded, with Doppler-limited resolution, at 1943 K using Hot Gas Molecular Emission (HOTGAME) spectroscopy. The wavenumber range covered is 6600 to 7050 cm-1. This work reports the analysis and subsequent assignment of close to 3700 H216O transitions out of a total of more than 6700 measured peaks. The analysis is based on the Measured Active Rotational-Vibrational Energy Levels (MARVEL) energy levels of H216O determined in 2013 and emission line intensities obtained from accurate variational nuclear-motion computations. The analysis of the spectrum yields about 1300 transitions not measured previously and 23 experimentally previously unidentified rovibrational energy levels. The accuracy of the line positions and intensities used in the analysis was improved with the spectrum deconvolution software SyMath via creating a peak list corresponding to the dense emission spectrum. The extensive list of labeled transitions and the new experimental energy levels obtained are deposited in the Supplementary Material of this article as well as in the ReSpecTh (http://www.respecth.hu) information system.

  2. [CII] observations of H2 molecular layers in transition clouds

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.

    2010-10-01

    We present the first results on the diffuse transition clouds observed in [CII] line emission at 158 μm (1.9 THz) towards Galactic longitudes near 340° (5 LOSs) & 20° (11 LOSs) as part of the HIFI tests and GOT C+ survey. Out of the total 146 [CII] velocity components detected by profile fitting we identify 53 as diffuse molecular clouds with associated 12CO emission but without 13CO emission and characterized by AV < 5 mag. We estimate the fraction of the [CII] emission in the diffuse HI layer in each cloud and then determine the [CII] emitted from the molecular layers in the cloud. We show that the excess [CII] intensities detected in a few clouds is indicative of a thick H2 layer around the CO core. The wide range of clouds in our sample with thin to thick H2 layers suggests that these are at various evolutionary states characterized by the formation of H2 and CO layers from HI and C+, respectively. In about 30% of the clouds the H2 column densities (“dark gas”) traced by the [CII] is 50% or more than that traced by 12CO emission. On the average ~25% of the total H2 in these clouds is in an H2 layer which is not traced by CO. We use the HI, [CII], and 12CO intensities in each cloud along with simple chemical models to obtain constraints on the FUV fields and cosmic ray ionization rates. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. Detection of Interstellar Ortho-D2H+ with SOFIA

    NASA Astrophysics Data System (ADS)

    Harju, Jorma; Sipilä, Olli; Brünken, Sandra; Schlemmer, Stephan; Caselli, Paola; Juvela, Mika; Menten, Karl M.; Stutzki, Jürgen; Asvany, Oskar; Kamiński, Tomasz; Okada, Yoko; Higgins, Ronan

    2017-05-01

    We report on the detection of the ground-state rotational line of ortho-D2H+ at 1.477 THz (203 μm) using the German REceiver for Astronomy at Terahertz frequencies (GREAT) on board the Stratospheric Observatory For Infrared Astronomy (SOFIA). The line is seen in absorption against far-infrared continuum from the protostellar binary IRAS 16293-2422 in Ophiuchus. The para-D2H+ line at 691.7 GHz was not detected with the APEX telescope toward this position. These D2H+ observations complement our previous detections of para-H2D+ and ortho-H2D+ using SOFIA and APEX. By modeling chemistry and radiative transfer in the dense core surrounding the protostars, we find that the ortho-D2H+ and para-H2D+ absorption features mainly originate in the cool (T < 18 K) outer envelope of the core. In contrast, the ortho-H2D+ emission from the core is significantly absorbed by the ambient molecular cloud. Analyses of the combined D2H+ and H2D+ data result in an age estimate of ˜5 × 105 yr for the core, with an uncertainty of ˜2 × 105 yr. The core material has probably been pre-processed for another 5 × 105 years in conditions corresponding to those in the ambient molecular cloud. The inferred timescale is more than 10 times the age of the embedded protobinary. The D2H+ and H2D+ ions have large and nearly equal total (ortho+para) fractional abundances of ˜10-9 in the outer envelope. This confirms the central role of {{{H}}}3+ in the deuterium chemistry in cool, dense gas, and adds support to the prediction of chemistry models that also {{{D}}}3+ should be abundant in these conditions.

  4. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...

  5. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...

  6. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...

  7. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...

  8. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...

  9. Far-ultraviolet MAMA detector imagery and emission-line CCD imagery of NGC 6240

    NASA Technical Reports Server (NTRS)

    Smith, Andrew M.; Hill, Robert S.; Vrba, Frederick J.; Timothy, J. G.

    1992-01-01

    An image of the luminous infrared galaxy NGC 6240 at 1480 A was obtained using a multianode microchannel array (MAMA) detector with a rocket-borne telescope. At distances greater than 12 arcsec from the nucleus, the measured ultraviolet luminosity implies intensive star formation activity equal to 2-3 times that of a spiral galaxy such as M83. Optical images in the H-beta and forbidden O III 5007 A emission lines reveal a region of high excitation east of the nucleus between the centers of disks 1 and 2 as described by Bland-Hawthorn et al.

  10. The SAMI Galaxy Survey: Data Release One with emission-line physics value-added products

    NASA Astrophysics Data System (ADS)

    Green, Andrew W.; Croom, Scott M.; Scott, Nicholas; Cortese, Luca; Medling, Anne M.; D'Eugenio, Francesco; Bryant, Julia J.; Bland-Hawthorn, Joss; Allen, J. T.; Sharp, Rob; Ho, I.-Ting; Groves, Brent; Drinkwater, Michael J.; Mannering, Elizabeth; Harischandra, Lloyd; van de Sande, Jesse; Thomas, Adam D.; O'Toole, Simon; McDermid, Richard M.; Vuong, Minh; Sealey, Katrina; Bauer, Amanda E.; Brough, S.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goodwin, Michael; Hampton, Elise J.; Hopkins, A. M.; Jones, D. Heath; Konstantopoulos, Iraklis S.; Lawrence, J. S.; Leon-Saval, Sergio G.; Liske, Jochen; López-Sánchez, Ángel R.; Lorente, Nuria P. F.; Mould, Jeremy; Obreschkow, Danail; Owers, Matt S.; Richards, Samuel N.; Robotham, Aaron S. G.; Schaefer, Adam L.; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; Zafar, T.

    2018-03-01

    We present the first major release of data from the SAMI Galaxy Survey. This data release focuses on the emission-line physics of galaxies. Data Release One includes data for 772 galaxies, about 20 per cent of the full survey. Galaxies included have the redshift range 0.004 < z < 0.092, a large mass range (7.6 < log M*/ M⊙ < 11.6), and star formation rates of ˜10-4 to ˜101M⊙ yr-1. For each galaxy, we include two spectral cubes and a set of spatially resolved 2D maps: single- and multi-component emission-line fits (with dust-extinction corrections for strong lines), local dust extinction, and star formation rate. Calibration of the fibre throughputs, fluxes, and differential atmospheric refraction has been improved over the Early Data Release. The data have average spatial resolution of 2.16 arcsec (full width at half-maximum) over the 15 arcsec diameter field of view and spectral (kinematic) resolution of R = 4263 (σ = 30 km s-1) around H α. The relative flux calibration is better than 5 per cent, and absolute flux calibration has an rms of 10 per cent. The data are presented online through the Australian Astronomical Observatory's Data Central.

  11. Fluorescent excitation of Fe 2, Mn 2, Ti 2, N 1 lines by V 4, N 5, O 6: Emission lines in the spectra of symbiotic stars and Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Gilra, D. P.

    1984-01-01

    Analysis of the published IUE and ground based high resolution spectra of symbiotic stars, particularly RR Tel, shows that the dominant excitation mechanism of Fe II, Mn II, Ti II, and N I lines is the selective fluorescent excitation of some levels by the strong C IV, N V, and O VI emission lines. The same mechanism should work for the excitation of Fe II lines in the spectra of Seyfert galaxies and Q60's whose emission spectra are quite similar to those of symbiotic stars. The similarities and differences between the fluroescent excitation mechanism reported herein and the Bowen's mechanism is analyzed.

  12. Resolving the Optical Emission Lines of Lyα Blob "B1" at z = 2.38: Another Hidden Quasar

    NASA Astrophysics Data System (ADS)

    Overzier, R. A.; Nesvadba, N. P. H.; Dijkstra, M.; Hatch, N. A.; Lehnert, M. D.; Villar-Martín, M.; Wilman, R. J.; Zirm, A. W.

    2013-07-01

    We have used the SINFONI near-infrared integral field unit on the Very Large Telescope to resolve the optical emission line structure of one of the brightest (L Lyα ≈ 1044 erg s-1) and nearest (z ≈ 2.38) of all Lyα blobs (LABs). The target, known in the literature as object "B1", lies at a redshift where the main optical emission lines are accessible in the observed near-infrared. We detect luminous [O III] λλ4959, 5007 and Hα emission with a spatial extent of at least 32 × 40 kpc (4'' × 5''). The dominant optical emission line component shows relatively broad lines (600-800 km s-1, FWHM) and line ratios consistent with active galactic nucleus (AGN) photoionization. The new evidence for AGN photoionization, combined with previously detected C IV and luminous, warm infrared emission, suggest that B1 is the site of a hidden quasar. This is confirmed by the fact that [O II] is relatively weak compared with [O III] (extinction-corrected [O III]/[O II] of about 3.8), which is indicative of a high, Seyfert-like ionization parameter. From the extinction-corrected [O III] luminosity we infer a bolometric AGN luminosity of ~3 × 1046 erg s-1, and further conclude that the obscured AGN may be Compton-thick given existing X-ray limits. The large line widths observed are consistent with clouds moving within the narrow-line region of a luminous QSO. The AGN scenario is capable of producing sufficient ionizing photons to power the Lyα, even in the presence of dust. By performing a census of similar objects in the literature, we find that virtually all luminous LABs harbor obscured quasars. Based on simple duty-cycle arguments, we conclude that AGNs are the main drivers of the Lyα in LABs rather than the gravitational heating and subsequent cooling suggested by cold stream models. We also conclude that the empirical relation between LABs and overdense environments at high redshift must be due to a more fundamental correlation between AGNs (or massive galaxies) and

  13. VizieR Online Data Catalog: Emission lines for SDSS Coronal-Line Forest AGNs (Rose+, 2015)

    NASA Astrophysics Data System (ADS)

    Rose, M.; Elvis, M.; Tadhunter, C. N.

    2017-11-01

    In this paper, we make use of SDSS spectra. The basic properties of the CLiF AGN sample studied in this paper are given in Table 1. Note that the outputs of the SDSS pipeline are used only for the sample selection. Detailed measurements of emission line parameters such as the flux and velocity widths are measured using our own methods (Section 4). The redshifts were determined using single Gaussian fits to the [O III] λ5007 emission line. This line was chosen because it is the most prominent emission line in the optical spectra of these and most other AGN. (5 data files).

  14. OT2_jcernich_9: Time Variability of Thermal Molecular Line Emission in IRC+10216

    NASA Astrophysics Data System (ADS)

    Cernicharo, J.

    2011-09-01

    We have found during our GT line survey of IRC+10216 and the search for hydrides (OT1 proposal) that some molecular lines present a strong intensity variation with time due to the role of infrared pumping. For some lines the intensity change in six months reaches a factor 3 (CCH). We have checked that the effect is not instrumental and than it arises from physical processes ignored so far in the radiative transfer models. We propose to observe the CCH and HNC lines within bands 1a-5b of HIFI every four months (three observing slots) to allow a detailed study of the variation of thermal molecular emission, and dust emission, in this prototype of AGB C-rich object. The settings will also provide, as a bonus, many lines of SiO, SiS, CS, HCN, CO and 13CO for which intensity variations of up to 30% have been found. In addition, a few specificc settings for HCN and CO will complete the observations. SPIRE and PACS observations will complement, with lower spectral resolution, the whole spectrum of each of these molecules and will provide a global view of the total intensity change of these lines with time. A crude estimate of the distance could be also obtained from the observed time lags between the blue and red parts of the line profiles observed with HIFI.

  15. Outer atmospheres of cool stars. XII - A survey of IUE ultraviolet emission line spectra of cool dwarf stars

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.; Bornmann, P. L.; Carpenter, K. G.; Hege, E. K.; Wing, R. F.; Giampapa, M. S.; Worden, S. P.

    1982-01-01

    Quantitative information is obtained on the chromospheres and transition regions of M dwarf stars, in order to determine how the outer atmospheres of dMe stars differ from dM stars and how they compare with the outer atmospheres of quiet and active G and K type dwarfs. IUE spectra of six dMe and four dM stars, together with ground-based photometry and spectroscopy of the Balmer and Ca II H and K lines, show no evidence of flares. It is concluded, regarding the quiescent behavior of these stars, that emission-line spectra resemble that of the sun and contain emission lines formed in regions with 4000-20,000 K temperatures that are presumably analogous to the solar chromosphere, as well as regions with temperatures of 20,000-200,000 K that are presumably analogous to the solar transition region. Emission-line surface fluxes are proportional to the emission measure over the range of temperatures at which the lines are formed.

  16. The nature of extreme emission line galaxies at z = 1-2: kinematics and metallicities from near-infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maseda, Michael V.; Van der Wel, Arjen; Rix, Hans-Walter

    2014-08-10

    We present near-infrared spectroscopy of a sample of 22 Extreme Emission Line Galaxies at redshifts 1.3 < z < 2.3, confirming that these are low-mass (M{sub *} = 10{sup 8}-10{sup 9} M{sub ☉}) galaxies undergoing intense starburst episodes (M{sub *}/SFR ∼ 10-100 Myr). The sample is selected by [O III] or Hα emission line flux and equivalent width using near-infrared grism spectroscopy from the 3D-HST survey. High-resolution NIR spectroscopy is obtained with LBT/LUCI and VLT/X-SHOOTER. The [O III]/Hβ line ratio is high (≳ 5) and [N II]/Hα is always significantly below unity, which suggests a low gas-phase metallicity. We aremore » able to determine gas-phase metallicities for seven of our objects using various strong-line methods, with values in the range 0.05-0.30 Z{sub ☉} and with a median of 0.15 Z{sub ☉}; for three of these objects we detect [O III] λ4363, which allows for a direct constraint on the metallicity. The velocity dispersion, as measured from the nebular emission lines, is typically ∼50 km s{sup –1}. Combined with the observed star-forming activity, the Jeans and Toomre stability criteria imply that the gas fraction must be large (f{sub gas} ≳ 2/3), consistent with the difference between our dynamical and stellar mass estimates. The implied gas depletion timescale (several hundred Myr) is substantially longer than the inferred mass-weighted ages (∼50 Myr), which further supports the emerging picture that most stars in low-mass galaxies form in short, intense bursts of star formation.« less

  17. A First Comparison of Millimeter Continuum and Mg ii Ultraviolet Line Emission from the Solar Chromosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastian, T. S.; Chintzoglou, G.; De Pontieu, B.

    We present joint observations of the Sun by the Atacama Large Millimeter/submillimeter Array (ALMA) and the Interface Region Imaging Spectrograph ( IRIS ). Both millimeter/submillimeter- λ continuum emission and ultraviolet (UV) line emission originate from the solar chromosphere and both have the potential to serve as powerful and complementary diagnostics of physical conditions in this enigmatic region of the solar atmosphere. The observations were made of a solar active region on 2015 December 18 as part of the ALMA science verification effort. A map of the Sun’s continuum emission was obtained by ALMA at a wavelength of 1.25 mm (239more » GHz). A contemporaneous map was obtained by IRIS in the Mg ii h doublet line at 2803.5 Å. While a clear correlation between the 1.25 mm brightness temperature T{sub B} and the Mg ii h line radiation temperature T {sub rad} is observed, the slope is <1, perhaps as a result of the fact that these diagnostics are sensitive to different parts of the chromosphere and that the Mg ii h line source function includes a scattering component. There is a significant difference (35%) between the mean T{sub B} (1.25 mm) and mean T {sub rad} (Mg ii). Partitioning the maps into “sunspot,” “quiet areas,” and “plage regions” we find the relation between the IRIS Mg ii h line T {sub rad} and the ALMA T {sub B} region-dependent. We suggest this may be the result of regional dependences of the formation heights of the IRIS and ALMA diagnostics and/or the increased degree of coupling between the UV source function and the local gas temperature in the hotter, denser gas in plage regions.« less

  18. Simultaneous 183 GHz H2O maser and SiO observations towards evolved stars using APEX SEPIA Band 5

    NASA Astrophysics Data System (ADS)

    Humphreys, E. M. L.; Immer, K.; Gray, M. D.; De Beck, E.; Vlemmings, W. H. T.; Baudry, A.; Richards, A. M. S.; Wittkowski, M.; Torstensson, K.; De Breuck, C.; Møller, P.; Etoka, S.; Olberg, M.

    2017-07-01

    Aims: The aim is to investigate the use of 183 GHz H2O masers for characterization of the physical conditions and mass loss process in the circumstellar envelopes of evolved stars. Methods: We used APEX SEPIA Band 5 (an ALMA Band 5 receiver on the APEX telescope) to observe the 183 GHz H2O line towards two red supergiant (RSG) and three asymptotic giant branch (AGB) stars. Simultaneously, we observed the J = 4-3 line for 28SiO v = 0, 1, 2 and 3, and for 29SiO v = 0 and 1. We compared the results with simulations and radiative transfer models for H2O and SiO, and examined data for the individual linear orthogonal polarizations. Results: We detected the 183 GHz H2O line towards all the stars with peak flux densities >100 Jy, including a new detection from VY CMa. Towards all five targets, the water line had indications of being caused by maser emission and had higher peak flux densities than for the SiO lines. The SiO lines appear to originate from both thermal and maser processes. Comparison with simulations and models indicate that 183 GHz maser emission is likely to extend to greater radii in the circumstellar envelopes than SiO maser emission and to similar or greater radii than water masers at 22, 321 and 325 GHz. We speculate that a prominent blue-shifted feature in the W Hya 183 GHz spectrum is amplifying the stellar continuum, and is located at a similar distance from the star as mainline OH maser emission. We note that the coupling of an SiO maser model to a hydrodynamical pulsating model of an AGB star yields qualitatively similar simulated results to the observations. From a comparison of the individual polarizations, we find that the SiO maser linear polarization fraction of several features exceeds the maximum fraction allowed under standard maser assumptions and requires strong anisotropic pumping of the maser transition and strongly saturated maser emission. The low polarization fraction of the H2O maser however, fits with the expectation for a non

  19. Laboratory, semi-pilot and room scale study of nitrite and molybdate mediated control of H(2)S emission from swine manure.

    PubMed

    Moreno, Lyman; Predicala, Bernardo; Nemati, Mehdi

    2010-04-01

    The effects of manure age on emission of H(2)S and required level of nitrite or molybdate to control these emissions were investigated in the present work. Molybdate mediated control of H(2)S emission was also studied in semi-pilot scale open systems, and in specifically designed chambers which simulated swine production rooms. With fresh 1-, 3- and 6-month old manures average H(2)S concentration in the headspace gas of the closed systems were 4856+/-460, 3431+/-208, 1037+/-98 ppm and non-detectable, respectively. Moreover, the level of nitrite or molybdate required to control the emission of H(2)S decreased as manure age increased. In the semi-pilot scale open system and chambers, average H(2)S concentration at the surface of agitated fresh manure were 831+/-26 and 88.4+/-5.7 ppm, respectively. Furthermore, 0.1-0.25 mM molybdate was sufficient to control the emission of H(2)S. A cost study for an average size swine operation showed that the cost of treatment with molybdate was less than 1% of the overall production cost for each market hog. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. ExoMol molecular line lists XIX: high-accuracy computed hot line lists for H218O and H217O

    NASA Astrophysics Data System (ADS)

    Polyansky, Oleg L.; Kyuberis, Aleksandra A.; Lodi, Lorenzo; Tennyson, Jonathan; Yurchenko, Sergei N.; Ovsyannikov, Roman I.; Zobov, Nikolai F.

    2017-04-01

    Hot line lists for two isotopologues of water, H218O and H217O, are presented. The calculations employ newly constructed potential energy surfaces (PES), which take advantage of a novel method for using the large set of experimental energy levels for H216O to give high-quality predictions for H218O and H217O. This procedure greatly extends the energy range for which a PES can be accurately determined, allowing an accurate prediction of higher lying energy levels than are currently known from direct laboratory measurements. This PES is combined with a high-accuracy, ab initio dipole moment surface of water in the computation of all energy levels, transition frequencies and associated Einstein A coefficients for states with rotational excitation up to J = 50 and energies up to 30 000 cm-1. The resulting HotWat78 line lists complement the well-used BT2 H216O line list. Full line lists are made available online as Supporting Information and at www.exomol.com.

  1. Photoionization modelling of the giant broad-line region in NGC 3998

    NASA Astrophysics Data System (ADS)

    Devereux, Nick

    2018-01-01

    Prior high angular resolution spectroscopic observations of the Low-ionization nuclear emission-line region (Liner) in NGC 3998 obtained with the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST) revealed a rich UV-visible spectrum consisting of broad permitted and broad forbidden emission lines. The photoionization code XSTAR is employed together with reddening-insensitive emission line diagnostics to constrain a dynamical model for the broad-line region (BLR) in NGC 3998. The BLR is modelled as a large H+ region ∼ 7 pc in radius consisting of dust-free, low-density ∼ 104 cm-3, low-metallicity ∼ 0.01 Z/Z⊙ gas. Modelling the shape of the broad H α emission line significantly discriminates between two independent measures of the black hole (BH) mass, favouring the estimate of de Francesco, Capetti & Marconi (2006). Interpreting the broad H α emission line in terms of a steady-state spherically symmetric inflow leads to a mass inflow rate of 1.4 × 10-2 M⊙ yr-1, well within the present uncertainty of calculations that attempt to explain the observed X-ray emission in terms of an advection-dominated accretion flow (ADAF). Collectively, the model provides an explanation for the shape of the H α emission line, the relative intensities and luminosities for the H Balmer, [O III], and potentially several of the broad UV emission lines, as well as refining the initial conditions needed for future modelling of the ADAF.

  2. SDSS J163459.82+204936.0: A Ringed Infrared-luminous Quasar with Outflows in Both Absorption and Emission Lines

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Zhou, Hong-Yan; Jiang, Ning; Wu, Xufen; Lyu, Jianwei; Shi, Xiheng; Shu, Xinwen; Jiang, Peng; Ji, Tuo; Wang, Jian-Guo; Wang, Shu-Fen; Sun, Luming

    2016-05-01

    SDSS J163459.82+204936.0 is a local (z = 0.1293) infrared-luminous quasar with L IR = 1011.91 {L}⊙ . We present a detailed multiwavelength study of both the host galaxy and the nucleus. The host galaxy, appearing as an early-type galaxy in the optical images and spectra, demonstrates violent, obscured star formation activities with SFR ≈ 140 {M}⊙ yr-1, estimated from either the polycyclic aromatic hydrocarbon emission or IR luminosity. The optical to NIR spectra exhibit a blueshifted narrow cuspy component in Hβ, He I λλ5876, 10830, and other emission lines consistently with an offset velocity of ≈900 {km} {{{s}}}-1, as well as additional blueshifting phenomena in high-ionization lines (e.g., a blueshifted broad component of He I λ10830 and the bulk blueshifting of [O III]λ5007), while there exist blueshifted broad absorption lines (BALs) in Na I D and He I λλ3889, 10830, indicative of the active galactic nucleus outflows producing BALs and emission lines. Constrained mutually by the several BALs in the photoionization simulations with Cloudy, the physical properties of the absorption line outflow are derived as follows: density 104 < n H ≲ 105 cm-3, ionization parameter 10-1.3 ≲ U ≲ 10-0.7 , and column density 1022.5 ≲ N H ≲ 1022.9 cm-2, which are similar to those derived for the emission line outflows. This similarity suggests a common origin. Taking advantages of both the absorption lines and outflowing emission lines, we find that the outflow gas is located at a distance of ˜48-65 pc from the nucleus and that the kinetic luminosity of the outflow is 1044-1046 {erg} {{{s}}}-1. J1634+2049 has a off-centered galactic ring on the scale of ˜30 kpc that is proved to be formed by a recent head-on collision by a nearby galaxy for which we spectroscopically measure the redshift. Thus, this quasar is a valuable object in the transitional phase emerging out of dust enshrouding as depicted by the co-evolution scenario invoking galaxy merger (or

  3. K-H2 line shapes for the spectra of cool brown dwarfs

    NASA Astrophysics Data System (ADS)

    Allard, N. F.; Spiegelman, F.; Kielkopf, J. F.

    2016-05-01

    Observations of cooler and cooler brown dwarfs show that the contribution from broadening at many bars pressure is becoming important. The opacity in the red optical to near-IR region under these conditions is dominated by the extremely pressure-broadened wings of the alkali resonance lines, in particular, the K I resonance doublet at 0.77 μm. Collisions with H2 are preponderant in brown dwarf atmospheres at an effective temperature of about 1000 K; the H2 perturber densities reach several 1019 even in Jupiter-mass planets and exceed 1020 for super-Jupiters and older Y dwarfs. As a consequence, it appears that when the far wing absorption due to alkali atoms in a dense H2 atmosphere is significant, accurate pressure broadened profiles that are valid at high densities of H2 should be incorporated into spectral models. The opacity tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A21

  4. Detailed modelling of the circumstellar molecular line emission of the S-type AGB star W Aquilae

    NASA Astrophysics Data System (ADS)

    Danilovich, T.; Bergman, P.; Justtanont, K.; Lombaert, R.; Maercker, M.; Olofsson, H.; Ramstedt, S.; Royer, P.

    2014-09-01

    Context. S-type AGB stars have a C/O ratio which suggests that they are transition objects between oxygen-rich M-type stars and carbon-rich C-type stars. As such, their circumstellar compositions of gas and dust are thought to be sensitive to their precise C/O ratio, and it is therefore of particular interest to examine their circumstellar properties. Aims: We present new Herschel HIFI and PACS sub-millimetre and far-infrared line observations of several molecular species towards the S-type AGB star W Aql. We use these observations, which probe a wide range of gas temperatures, to constrain the circumstellar properties of W Aql, including mass-loss rate and molecular abundances. Methods: We used radiative transfer codes to model the circumstellar dust and molecular line emission to determine circumstellar properties and molecular abundances. We assumed a spherically symmetric envelope formed by a constant mass-loss rate driven by an accelerating wind. Our model includes fully integrated H2O line cooling as part of the solution of the energy balance. Results: We detect circumstellar molecular lines from CO, H2O, SiO, HCN, and, for the first time in an S-type AGB star, NH3. The radiative transfer calculations result in an estimated mass-loss rate for W Aql of 4.0 × 10-6 M⊙ yr-1 based on the 12CO lines. The estimated 12CO/13CO ratio is 29, which is in line with ratios previously derived for S-type AGB stars. We find an H2O abundance of 1.5 × 10-5, which is intermediate to the abundances expected for M and C stars, and an ortho/para ratio for H2O that is consistent with formation at warm temperatures. We find an HCN abundance of 3 × 10-6, and, although no CN lines are detected using HIFI, we are able to put some constraints on the abundance, 6 × 10-6, and distribution of CN in W Aql's circumstellar envelopeusing ground-based data. We find an SiO abundance of 3 × 10-6, and an NH3 abundance of 1.7 × 10-5, confined to a small envelope. If we include uncertainties

  5. Line Emission and X-ray Line Polarization of Multiply Ionized Mo Ions

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Safronova, A. S.; Kantsyrev, V. L.; Shlyaptseva, V. V.; Stafford, A.; Safronova, U. I.; Shrestha, I. K.; Schultz, K. A.; Childers, R.; Cooper, M. C.; Beiersdorfer, P.; Hell, N.; Brown, G. V.

    2016-10-01

    We present a comprehensive experimental and theoretical study of the line emission from multiply ionized Mo ions produced by two different sets of experiments: at LLNL EBIT and the pulsed power generator Zebra at UNR. Mo line emission and polarization measurements were accomplished at EBIT for the first time. In particular, benchmarking experiments at the LLNL EBIT with Mo ions produced at electron beam energies from 2.75 keV up to 15 keV allowed us to break down these very complicated spectra into spectra with only few ionization stages and to select processes that influence them as well as to measure line polarization. The EBIT data were recorded using the EBIT Calorimeter Spectrometer and a crystal spectrometer with a Ge crystal. X-ray Mo spectra and pinhole images were collected from Z-pinch plasmas produced from various wire loads. Non-LTE modeling, high-precision relativistic atomic and polarization data were used to analyze L-shell Mo spectra. The influence of different plasma processes including electron beams on Mo line radiation is summarized. This work was supported by NNSA under DOE Grant DE-NA0002954. Experiments at the NTF/UNR were funded in part by DE-NA0002075. Work at LLNL was performed under the auspices of the U.S. DOE under contract DE-AC52-07NA27344.

  6. Reduction in soil N2O emissions by pH manipulation and enhanced nosZ gene transcription under different water regimes.

    PubMed

    Shaaban, Muhammad; Wu, Yupeng; Khalid, Muhammad Salman; Peng, Qi-An; Xu, Xiangyu; Wu, Lei; Younas, Aneela; Bashir, Saqib; Mo, Yongliang; Lin, Shan; Zafar-Ul-Hye, Muhammad; Abid, Muhammad; Hu, Ronggui

    2018-04-01

    Several studies have been carried out to examine nitrous oxide (N 2 O) emissions from agricultural soils in the past. However, the emissions of N 2 O particularly during amelioration of acidic soils have been rarely studied. We carried out the present study using a rice-rapeseed rotation soil (pH 5.44) that was amended with dolomite (0, 1 and 2 g kg -1 soil) under 60% water filled pore space (WFPS) and flooding. N 2 O emissions and several soil properties (pH, NH 4 + N, NO 3 - -N, and nosZ gene transcripts) were measured throughout the study. The increase in soil pH with dolomite application triggered soil N transformation and transcripts of nosZ gene controlling N 2 O emissions under both water regimes (60% WFPS and flooding). The 60% WFPS produced higher soil N 2 O emissions than that of flooding, and dolomite largely reduced N 2 O emissions at higher pH under both water regimes through enhanced transcription of nosZ gene. The results suggest that ameliorating soil acidity with dolomite can substantially mitigate N 2 O emissions through promoting nosZ gene transcription. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Shocked molecular hydrogen emission from Herbig-Haro objects and their exciting stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilking, B.A.; Schwartz, R.D.; Mundy, L.G.

    1990-01-01

    The results of an H2 emission-line survey of the 1-0 S(1) transition from 33 Herbig-Haro objects and suspected Herbig-Haro objects are presented. The survey focuses on Herbig-Haro objects that have been recently identified and/or lie at southern declinations. Data are also presented for the 2-1 S(3), 1-0 Q(1), and 1-0 Q(3) transitions of H2 for a subset of the sample. H2 emission has been detected toward 16 Herbig-Haro or nebulous objects; published optical spectra of 13 of these objects suggest that they are low-excitation nebulae associated with low-velocity shocks. H2 has also been detected toward the emission-line stars RU Lupmore » and LkH-alpha 234. Extended 1-0 S(1) emission has been mapped in the vicinity of gas outflows associated with the emission-line stars R CrA and LkH-alpha 234 and appears to delineate the blueshifted molecular gas in these bipolar outflows. A comparison of the data, in combination with the atomic line data from these HHs, is made with current C- and J-type shock models. 41 refs.« less

  8. A Virtual Sky with Extragalactic H I and CO Lines for the Square Kilometre Array and the Atacama Large Millimeter/Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Obreschkow, D.; Klöckner, H.-R.; Heywood, I.; Levrier, F.; Rawlings, S.

    2009-10-01

    We present a sky simulation of the atomic H I-emission line and the first 10 12C16O rotational emission lines of molecular gas in galaxies beyond the Milky Way. The simulated sky field has a comoving diameter of 500 h -1 Mpc; hence, the actual field of view depends on the (user-defined) maximal redshift z max; e.g., for z max = 10, the field of view yields ~4 × 4 deg2. For all galaxies, we estimate the line fluxes, line profiles, and angular sizes of the H I and CO-emission lines. The galaxy sample is complete for galaxies with cold hydrogen masses above 108 M sun. This sky simulation builds on a semi-analytic model of the cosmic evolution of galaxies in a Λ cold dark matter (ΛCDM) cosmology. The evolving CDM distribution was adopted from the Millennium Simulation, an N-body CDM simulation in a cubic box with a side length of 500 h -1 Mpc. This side length limits the coherence scale of our sky simulation: it is long enough to allow the extraction of the baryon acoustic oscillations in the galaxy power spectrum, yet the position and amplitude of the first acoustic peak will be imperfectly defined. This sky simulation is a tangible aid to the design and operation of future telescopes, such as the Square Kilometre Array, Large Millimeter Telescope, and Atacama Large Millimeter/Submillimeter Array. The results presented in this paper have been restricted to a graphical representation of the simulated sky and fundamental dN/dz analyses for peak flux density limited and total flux limited surveys of H I and CO. A key prediction is that H I will be harder to detect at redshifts z gsim 2 than predicted by a no-evolution model. The future verification or falsification of this prediction will allow us to qualify the semi-analytic models. -SAX-Sky"

  9. The influence of H2O line blanketing on the spectra of cool dwarf stars

    NASA Technical Reports Server (NTRS)

    Allard, F.; Hauschildt, P. H.; Miller, S.; Tennyson, J.

    1994-01-01

    We present our initial results of model atmosphere calculations for cool M dwarfs using an opacity sampling method and a new list of H2O lines. We obtain significantly improved fits to the infrared spectrum of the M dwarf VB10 when compared to earlier models. H2O is by far the dominant opacity source in cool stars. To illustrate this, we show the Rosseland mean of the total extinction under various assumptions. Our calculations demonstrate the importance of a good treatment of the water opacities in cool stars and the improvements possible by using up-to-date data for the water line absorption.

  10. A Highly Doppler Blueshifted Fe-K Emission Line in the High-Redshift QSO PKS 2149-306.

    PubMed

    Yaqoob; George; Nandra; Turner; Zobair; Serlemitsos

    1999-11-01

    We report the results from an ASCA observation of the high-luminosity, radio-loud quasar PKS 2149-306 (redshift 2.345), covering the approximately 1.7-30 keV band in the quasar frame. We find the source to have a luminosity approximately 6x1047 ergs s-1 in the 2-10 keV band (quasar frame). We detect an emission line centered at approximately 17 keV in the quasar frame. Line emission at this energy has not been observed in any other active galaxy or quasar to date. We present evidence rejecting the possibility that this line is the result of instrumental artifacts or a serendipitous source. The most likely explanation is blueshifted Fe-K emission (the equivalent width is EW approximately 300+/-200 eV, quasar frame). Bulk velocities of the order of 0.75c are implied by the data. We show that Fe-K line photons originating in an accretion disk and Compton scattering off a leptonic jet aligned along the disk axis can account for the emission line. Curiously, if the emission-line feature recently discovered in another quasar (PKS 0637-752, z=0.654) at 1.6 keV in the quasar frame is due to blueshifted O vii emission, the Doppler blueshifting factor in both quasars is similar ( approximately 2.7-2.8).

  11. The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H2O Dissociation

    NASA Astrophysics Data System (ADS)

    France, Kevin; Roueff, Evelyne; Abgrall, Hervé

    2017-08-01

    The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we have assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope-Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100-1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST-COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490-1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L(Bump) ≈ 7 × 1029 erg s-1. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ o = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H2 excited by electron -impact. We show that this Bump makes up between 5%-50% of the total FUV continuum emission in the 1490-1690 Å band and emits roughly 10%-80% of the total fluorescent H2 luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Lyα photons. We argue that the most likely mechanism is Lyα-driven dissociation of H2O in the inner disk, r

  12. An Integrated Modeling Study for Coordinated Observations of H, O, OH, and H2O(+) Emissions in the Coma and Ion Tail of the Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2001-01-01

    This project has two overall objectives. One objective is to advance our general understanding of both the comet neutral atmosphere and the cometary plasma in the atmosphere and ion tall. The other objective is to obtain specific key information about comet Hale-Bopp that is generally important for Hale-Bopp studies. The primary emphasis in this project is to analyze, in a self-consistent manner, excellent quality high resolution image and line profile observations obtained by the University of Wisconsin for H, O, OH, and H2O+ emissions from the inner coma, outer coma, and ion tail of Hale-Bopp. The information on the spatial and velocity distributions of H2O neutral and ionized photo-products in the inner coma, outer coma, and in the H2O+ ion tail is of substantial and direct importance in the development of an integrated understanding of the complex structure and dynamics of the neutral and plasma species in the atmosphere of Hale-Bopp in particular and comets in general. The H2O production rate of Hale-Bopp is determined and, together with the other information related to the structure and dynamics of the neutral and plasma atmospheres obtained in this study, provide critical information important for a wide variety of research conducted by other groups.

  13. Flux-line response in 2H-NbSe 2 investigated by means of the vibrating superconductor method

    NASA Astrophysics Data System (ADS)

    D'Anna, G.; André, M.-O.; Benoit, W.; Rodríguez, E.; Rodríguez, D. S.; Luzuriaga, J.; Wasczak, J. V.

    1993-12-01

    We measure transverse AC losses in the low- and high-amplitude regime of 2H-NbSe 2 single crystals using vibrating superconductor methods. The measurements are sensitive to small deviations of the critical state. The data constitute evidence for a peak effect of the critical current as a function of the temperature in this compound. We construct in the H- T phase diagram the “peak-effect” line which is supposed to mark an abrupt cross-over in the vortex-pinning regime.

  14. Confirmation of Small Dynamical and Stellar Masses for Extreme Emission Line Galaxies at z Approx. 2

    NASA Technical Reports Server (NTRS)

    Maseda, Michael V.; van Der Wel, Arjen; da Cunha, Elisabete; Rix, Hans-Walter; Pacifici, Camilla; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; van Dokkum, Pieter; Bell, Eric F.; hide

    2013-01-01

    Spectroscopic observations from the Large Binocular Telescope and the Very Large Telescope reveal kinematically narrow lines (approx. 50 km/s) for a sample of 14 extreme emission line galaxies at redshifts 1.4 < z < 2.3. These measurements imply that the total dynamical masses of these systems are low (< or approx. 3 × 10(exp 9) M). Their large [O III] (lambda)5007 equivalent widths (500-1100 Angstroms) and faint blue continuum emission imply young ages of 10-100 Myr and stellar masses of 10(exp 8)-10(exp 9)M, confirming the presence of a violent starburst. The dynamical masses represent the first such determinations for low-mass galaxies at z > 1. The stellar mass formed in this vigorous starburst phase represents a large fraction of the total (dynamical) mass, without a significantly massive underlying population of older stars. The occurrence of such intense events in shallow potentials strongly suggests that supernova-driven winds must be of critical importance in the subsequent evolution of these systems.

  15. Differential effects of buffer pH on Ca2+-induced ROS emission with inhibited mitochondrial complexes I and III

    PubMed Central

    Lindsay, Daniel P.; Camara, Amadou K. S.; Stowe, David F.; Lubbe, Ryan; Aldakkak, Mohammed

    2015-01-01

    Excessive mitochondrial reactive oxygen species (ROS) emission is a critical component in the etiology of ischemic injury. Complex I and complex III of the electron transport chain are considered the primary sources of ROS emission during cardiac ischemia and reperfusion (IR) injury. Several factors modulate ischemic ROS emission, such as an increase in extra-matrix Ca2+, a decrease in extra-matrix pH, and a change in substrate utilization. Here we examined the combined effects of these factors on ROS emission from respiratory complexes I and III under conditions of simulated IR injury. Guinea pig heart mitochondria were suspended in experimental buffer at a given pH and incubated with or without CaCl2. Mitochondria were then treated with either pyruvate, a complex I substrate, followed by rotenone, a complex I inhibitor, or succinate, a complex II substrate, followed by antimycin A, a complex III inhibitor. H2O2 release rate and matrix volume were compared with and without adding CaCl2 and at pH 7.15, 6.9, or 6.5 with pyruvate + rotenone or succinate + antimycin A to simulate conditions that may occur during in vivo cardiac IR injury. We found a large increase in H2O2 release with high [CaCl2] and pyruvate + rotenone at pH 6.9, but not at pHs 7.15 or 6.5. Large increases in H2O2 release rate also occurred at each pH with high [CaCl2] and succinate + antimycin A, with the highest levels observed at pH 7.15. The increases in H2O2 release were associated with significant mitochondrial swelling, and both H2O2 release and swelling were abolished by cyclosporine A, a desensitizer of the mitochondrial permeability transition pore (mPTP). These results indicate that ROS production by complex I and by complex III is differently affected by buffer pH and Ca2+ loading with mPTP opening. The study suggests that changes in the levels of cytosolic Ca2+ and pH during IR alter the relative amounts of ROS produced at mitochondrial respiratory complex I and complex III. PMID

  16. Exploring star formation in high-z galaxies using atomic and molecular emission lines

    NASA Astrophysics Data System (ADS)

    Gullberg, Bitten

    2016-03-01

    The conditions under which stars are formed and the reasons for triggering and quenching of starburst events in high-z galaxies, are still not well understood. Studying the interstellar medium (ISM) and the morphology of high-z galaxies are therefore key points in order to understand galaxy evolution. The cosmic star formation rate density peaks between 1line strength of ionised carbon ([CII]) and carbon monoxide (CO). We find that the line ratios can best be described by a medium of [CII] and CO emitting gas with a higher [CII] than CO excitation temperature, high CO optical depth tau(CO)>>1, and low to moderate [CII] optical depth tau(CII)<1. Combining millimetre/sub-millimetre and optical data cubes for the high-z radio galaxy (HzRG) MRC0943-242, has revealed a much more complicated morphology than seen in the individual data sets. The millimetre/sub-millimetre observations data have allowed us to spatially separate of the AGN and starburst dominated components, which ~65 kpc apart. The optical data reveal structures of emitting and absorbing gas at multiple wavelengths. A deep high resolution millimetre/sub-millimetre study of the HzRG MRC1138-262, shows emission from water (H2O) and an unusually large amount of neutral atomic carbon ([CI]) relative to highly excited CO compared to lensed DSFGs. The

  17. Observations and analysis of O(1D) and NH2 line profiles for the coma of comet P/Halley

    NASA Technical Reports Server (NTRS)

    Smyth, William H.; Combi, Michael R.; Roesler, Fred L.; Scherb, Frank

    1995-01-01

    A set of high-resolution Fabry-Perot measurements of the coma of comet P/Halley was acquired in the (O I) 6300 A and NH2 6298.62 A emission lines. These high-resolution measurements provide the first optical observations capable of studying directly the photochemical kinetics and dynamic outflow of the coma. The observations were analyzed by a Monte Carlo Particle Trajectory Model. The agreement of the model and observed line profiles was excellent and verified the underlying dynamics, exothermic photodissociative chemistry, and collisional thermalization in the coma. The somewhat wider intrinsic line profile width for the O(1D) emission in 1986 January compared to 1986 May, is, for example, produced by the larger outflow speeds and gas temperatures nearer perihelion in January. The January O(1D) profile, which is wider than the January NH2 profile, is indicative of the photochemical kinetics in the dissociation of the parent molecules H2O and OH in the coma. The absolute calibration of the observations in 1986 January allowed the production rates for H2O and the NH2-parent molecules to be determined. The average daily water production rates derived from the O(1D) emission data for January 16 and 17 are presented. These very large water production rates are consistent with the extrapolated (and 7.6 day time variable) water production rates determined from the analysis of lower spectral resolution observations for O(1D) and H-alpha emissions that covered the time period up to January 13. The large production rates on January 16 and 17 establish that the maximum water production rate for comet Halley accurred pre-perihelion in January. Implications drawn from comparison with 18 cm radio emission data in January suggest that the peak water production rate was even larger. The average production rate for NH3 determined from the NH2 emission data for January 17 was (1.48 +/- 0.10) x 10(exp 28) molecules/s, yielding an NH3/H2O production rate ratio of 0.55%.

  18. ExoMol line lists XXIV: a new hot line list for silicon monohydride, SiH

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Sinden, Frances; Lodi, Lorenzo; Hill, Christian; Gorman, Maire N.; Tennyson, Jonathan

    2018-02-01

    SiH has long been observed in the spectrum of our Sun and other cool stars. Computed line lists for the main isotopologues of silicon monohydride, 28SiH, 29SiH, 30SiH and 28SiD are presented. These line lists consider rotation-vibration transitions within the ground X 2Π electronic state as well as transitions to the low-lying A 2Δ and a 4Σ- states. Ab initio potential energy (PECs) and dipole moment curves along with spin-orbit and electronic angular momentum couplings between them are calculated using the multireference configuration interaction level of theory with the MOLPRO package. The PEC for the ground X 2Π state is refined to available experimental data with a typical accuracy of around 0.01 cm-1 or better. The 28SiH line list includes 11 785 rovibronic states and 1724 841 transitions with associated Einstein-A coefficients for angular momentum J up to 82.5 and covering wavenumbers up to 31 340 cm-1 (λ < 0.319 μm). Spectra are simulated using the new line list and comparisons made with various experimental spectra. These line lists are applicable up to temperatures of 5000 K, making them relevant to astrophysical objects such as exoplanetary atmospheres and cool stars and opening up the possibility of detection in the interstellar medium. These line lists, called SiGHTLY, are available at the ExoMol (www.exomol.com) and CDS data base websites.

  19. THE NATURE OF ACTIVE GALACTIC NUCLEI WITH VELOCITY OFFSET EMISSION LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller-Sánchez, F.; Comerford, J.; Stern, D.

    We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ∼0.″18, OSIRIS allows us to distinguish which velocity offset emission lines are produced by the motion of an AGN in a dual supermassive black hole system, and which are produced by outflows or other kinematic structures. In three galaxies, J1018+2941, J1055+1520, and J1346+5228, the spectral offsetmore » of the emission lines is caused by AGN-driven outflows. In the remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that contains the peak of Pa α emission 0.″2 from the center of the galaxy. The most plausible explanation for the origin of this spatially and kinematically offset peak is that it is a region of enhanced Pa α emission located at the intersection zone between the nuclear disk and the bar of the galaxy. In all four objects, the peak of ionized gas emission is not spatially coincident with the center of the galaxy as traced by the peak of the near-IR continuum emission. The peaks of ionized gas emission are spatially offset from the galaxy centers by 0.″1–0.″4 (0.1–0.7 kpc). We find that the velocity offset originates at the location of this peak of emission, and the value of the offset can be directly measured in the velocity maps. The emission-line ratios of these four velocity-offset AGNs can be reproduced only with a mixture of shocks and AGN photoionization. Shocks provide a natural explanation for the origin of the spatially and spectrally offset peaks of ionized gas emission in these galaxies.« less

  20. A survey of Mg II h and k emission in near-solar type stars

    NASA Technical Reports Server (NTRS)

    Doherty, L. R.

    1984-01-01

    International Ultraviolet Explorer measurements of Mg II h and k emission fluxes are presented for 30 F and G stars that are on or near the main sequence and compared with Wilson's measurements of the Ca II H and K fluxes in these stars. The survey includes a large proportion of stars with very low chromospheric activity as well as 111 Tau, X(1) Ori and other examples of strong chromospheric emission. Emission cores are presented in all of the stars observed. A sharp lower limit to the flux in the cores of the k lines implies the existence of a minimum level of chromospheric activity in which the k line flux is a constant fraction of stellar luminosity. Reduction of Wilson's values to absolute fluxes produces a close correlation between Mg and Ca strength with possibly some dependence on color. For the most active stars, the Mg k and Ca fluxes are consistent with the presence of solar plage covering up to one half of the stellar surface. However, the ratio of k to h in these stars is much less than this simple interpretation predicts.

  1. MASTER OT J132104.04+560957.8: A Polar with Absorption–Emission Line Reversals

    NASA Astrophysics Data System (ADS)

    Littlefield, Colin; Garnavich, Peter; Hoyt, Taylor J.; Kennedy, Mark

    2018-01-01

    We present time-resolved photometry and spectroscopy of the recently classified polar MASTER OT J132104.04+560957.8. The spectrum shows a smooth, nonthermal continuum at the time of maximum light, without any individually discernible cyclotron harmonics. Using homogenous cyclotron modeling, we interpret this as cyclotron radiation whose individual harmonics have blended together, and on this basis, we loosely constrain the magnetic-field strength to be less than ∼30 MG. In addition, for about one-tenth of the orbital period, the Balmer and He I emission lines transition into absorption features, with He II developing an absorption core. We use our observations of this phenomenon to test theoretical models of the accretion curtain and conclude that the H and He I lines are produced throughout the curtain, in contravention of theoretical predictions of separate H and He I line-forming regions. Moreover, a significant amount of He II emission originates within the accretion curtain, implying that the curtain is significantly hotter than expected from theory. Finally, we comment on the object’s long-term photometry, including evidence that it recently transitioned into a prolonged, exceptionally stable high state following a potentially decades-long low state.

  2. Kinetic-Energy Distribution of D(2p) Atoms from Analysis of the D Lyman-Alpha Line Profile

    NASA Technical Reports Server (NTRS)

    Ciocca, M.; Ajello, Joseph M.; Liu, Xianming; Maki, Justin

    1997-01-01

    The kinetic-energy distribution of D(2p) atoms resulting from electron-impact dissociation of D2 has been measured. A high-resolution vacuum ultraviolet spectrometer was employed for the first measurement of the D Lyman-alpha (D L(alpha)) emission line profiles at 20- and 100-eV excitation energies. Analysis of the deconvoluted line profile of D L(alpha) at 100 eV reveals the existence of a narrow line central peak of 29+/-2 mA full width at half maximum and a broad pedestal wing structure about 190 mA wide. The wings of the line can be used to determine the fast atom distribution. The wings of D L(alpha) arise from dissociative excitation of a series of doubly excited states that cross the Franck-Condon region between 23 and 40 eV. The fast atom distribution at 100-eV electron impact energy spans the energy range from 1 to 10 eV with a peak value near 6 eV. Slow D(2p) atoms characterized by a distribution function with peak energy near 100 meV produce the central peak profile, which is nearly independent of the impact energy. The deconvoluted line profiles of the central peak at 20 eV for dissociative excitation of D2 and H2 are fitted with an analytical function for use in calibration of space flight instrumentation equipped with a D/H absorption cell. The kinetic-energy and line profile results are compared to similar measurements for H2. The absolute cross sections for the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coefficients are given for the energy dependence of the measured slow atom cross section.

  3. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Spinoglio, Luigi; Smith, Howard A.; Gonzalez-Alfonso, Eduardo; Fisher, Jacqueline

    2005-01-01

    We report on the analysis of the first complete far-infrared spectrum (43-197 microns) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) onboard the Infrared Space Observatory (ISO). In addition to the 7 expected ionic fine structure emission lines, the OH rotational lines at 79, 119 and 163 microns were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 micron line, where detected, is always in absorption. The observed line intensities were modelled together with IS0 Short Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the AGN component and the starburst component in the circumnuclear ring of approximately 3kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a big blue bump is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Br gamma equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low ionization parameter (U=10(exp -3.5)) and low densities (n=100 cm (exp -3)) are derived. Combining the AGN and starburst components, we succeed in modeling the overall UV to far-IR atomic spectrum of SGC 1068, reproducing the line fluxes to within a factor 2.0 on average with a standard deviation of 1.4. The OH 119 micron emission indicates that the line is collisionally excited, and arises in a warm and dense region. The OH emission has been modeled using spherically symmetric, non-local, non-LTE radiative transfer models. The models indicate that the bulk of the emission arises from the nuclear region, although some extended contribution from the starburst is not ruled out. The OH abundance

  4. The peculiar, luminous early-type emission line stars of the Magellanic clouds: A preliminary taxonomy

    NASA Technical Reports Server (NTRS)

    Shore, S. N.; Sanduleak, N.

    1982-01-01

    A sample of some 20 early type emission supergiants in the Magellanic clouds was observed with both the SWP and LWR low resolution mode of IUE. All stars have strong H-emission, some showing P-Cygni structure as well with HeI, HeII, FeII and other ions also showing strong emission. It is found that the stars fall into three distinct groups on the basis of the HeII/HeI and HeI/HI strengths: (1) HeII strong, HeI, HI; (2) HeII absent, HeI, HI strong; (3) HeI absent, HI, FeII, FeII, strong in addition to low excitation ions. The two most extreme emission line stars found in the Clouds S 134/LMC and S 18/SMC are discussed. Results for the 2200A feature in these supergiants, and evidence for shells around the most luminous stars in the clouds are also described.

  5. Molecular line emission models of Herbig-Haro objects. II - HCO(+) emission

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark G.; Koenigl, Arieh

    1993-01-01

    We present time-dependent models of the chemistry and temperature of interstellar molecular gas clumps that are exposed to the radiation from propagating stellar-jet shocks. The X-ray, EUV, and FUV radiation from the shock initiates ion chemistry and also heats the gas in the clumps. Using representative parameters, we show that, on the shock transit time between the clumps, the abundances of the ionized molecular species that are produced in the clumps can exceed the values determined from steady state models by several orders of magnitude. Collisional excitation by the heated gas can lead to measurable line emission from several ionized species; as in previous investigations of X-ray-irradiated molecular gas, we find that electron impacts contribute significantly to this process. We apply these results to the interpretation of the HCO(+) line emission that has already been detected in several Herbig-Haro objects. We demonstrate that this picture provides a natural explanation of the fact that the line intensity typically peaks ahead of the associated shock, as well as of the reported low line-center velocities and narrow line widths. We tabulate several diagnostic line intensities of HCO(+) and other molecular species that may be used to infer the physical conditions in the emitting gas.

  6. The Peculiar Radio-loud Narrow Line Seyfert 1 Galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Sahayanathan, S.; Parker, M. L.; Fabian, A. C.; Stalin, C. S.; Anjum, Ayesha; Pandey, S. B.

    2014-07-01

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ~3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  7. HIGHLY EXCITED H{sub 2} IN HERBIG–HARO 7: FORMATION PUMPING IN SHOCKED MOLECULAR GAS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, R. E.; Geballe, T. R.; Burton, M. G.

    2016-05-10

    We have obtained K -band spectra at R ∼ 5000 and an angular resolution of 0.″3 of a section of the Herbig–Haro 7 (HH7) bow shock, using the Near-Infrared Integral Field Spectrograph at Gemini North. Present in the portion of the data cube corresponding to the brightest part of the bow shock are emission lines of H{sub 2} with upper state energies ranging from ∼6000 K to the dissociation energy of H{sub 2}, ∼50,000 K. Because of low signal-to-noise ratios, the highest excitation lines cannot be easily seen elsewhere in the observed region. However, excitation temperatures, measured throughout much ofmore » the observed region using lines from levels as high as 25,000 K, are a strong function of upper level energy, indicating that the very highest levels are populated throughout. The level populations in the brightest region are well fit by a two-temperature model, with 98.5% of the emitting gas at T = 1800 K and 1.5% at T = 5200 K. The bulk of the H{sub 2} line emission in HH7, from the 1800 K gas, has previously been well-modeled by a continuous shock, but the 5200 K cozmponent is inconsistent with standalone standard continuous shock models. We discuss various possible origins for the hot component and suggest that this component is H{sub 2} newly reformed on dust grains and then ejected from them, presumably following dissociation of some of the H{sub 2} by the shock.« less

  8. Submillimeter vibrationally excited water emission from the peculiar red supergiant VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Menten, K. M.; Philipp, S. D.; Güsten, R.; Alcolea, J.; Polehampton, E. T.; Brünken, S.

    2006-08-01

    Context: .Vibrationally excited emission from the SiO and H2O molecules probes the innermost circumstellar envelopes of oxygen-rich red giant and supergiant stars. VY CMa is the most prolific known emission source in these molecules. Aims: .Observations were made to search for rotational lines in the lowest vibrationally excited state of H2O. Methods: .The APEX telescope was used for observations of H2O lines at frequencies around 300 GHz. Results: .Two vibrationally excited H2O lines were detected, a third one could not be found. In one of the lines we find evidence for weak maser action, similar to known (sub)millimeter ν2 = 1 lines. We find that the other line's intensity is consistent with thermal excitation by the circumstellar infrared radiation field. Several SiO lines were detected together with the H2O lines.

  9. X-ray line emission from the Puppis A supernova remnant - Oxygen lines

    NASA Technical Reports Server (NTRS)

    Winkler, P. F.; Clark, G. W.; Markert, T. H.; Petre, R.; Canizares, C. R.

    1981-01-01

    Six prominent X-ray emission lines of O VII and O VIII have been detected from a portion of the Puppis A supernova remnant in observations with the Einstein Observatory Focal Plane Crystal Spectrometer. The lines are sufficiently well resolved to serve as diagnostics of the emitting plasma. From the relative intensities of the lines, it is inferred that the population of O VIII is about 1.5 times that of O VII, and that electron collisions are the dominant excitation mechanism in the plasma. A locus of allowed electron temperatures and interstellar-absorption column densities is derived: 1.5 x 10 to the 6th K, and (2-6) x 10 to the 21st per sq cm. The data are consistent with either a thin plasma source in equilibrium at a temperature of 2.2 x 10 to the 6th K with a column density of 4 x 10 to the 21st per sq cm, or with a nonequilibrium source in which the electrons have been shock-heated to a higher temperature and oxygen is underionized.

  10. Mg II Chromospheric Emission Line Bisectors Of HD39801 And Its Relation With The Activity Cycle

    NASA Astrophysics Data System (ADS)

    García García, Leonardo Enrique; Pérez Martínez, M. Isabel

    2016-07-01

    Betelgeuse is a cool star of spectral type M and luminosity class I. In the present work, the activity cycle of Betelgeuse was obtained from the integrated emission flux of the Mg II H and K lines, using more than 250 spectra taken from the International Ultraviolet Explorer (IUE) online database. Of which it was found, based on a Lomb Scargle periodogram, a cycle of 16 years, along with 2 sub-cycles with a period of the order of 0.60 and 0.65 years, which may be due to turbulence or possible stellar flares. In addition, an analysis of line asymmetry was made by means of the chromospheric emission line bisectors, due to the strong self-absorption observed in this lines, the blue and red wings were analyzed independently. In order to measure such asymmetry, a "line shift" was calculated, from which several cycles of variability were obtained from a Lomb Scargle periodogram, spanning from few months to 4 years. In the sense, the most significant cycle is about 0.44 and 0.33 years in the blue and red wing respectively. It is worth noting, that the rotation period of the star doesn't play an important role in the variability of the Mg II lines. This technique provides us with a new way to study activity cycles of evolved stars.

  11. Reprocessing of Soft X-ray Emission Lines in Black Hole Accretion Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauche, C W; Liedahl, D A; Mathiesen, B F

    By means of a Monte Carlo code that accounts for Compton scattering and photoabsorption followed by recombination, we have investigated the radiation transfer of Ly{alpha}, He{alpha}, and recombination continua photons of H- and He-like C, N, O, and Ne produced in the photoionized atmosphere of a relativistic black hole accretion disk. We find that photoelectric opacity causes significant attenuation of photons with energies above the O VIII K-edge; that the conversion efficiencies of these photons into lower-energy lines and recombination continua are high; and that accounting for this reprocessing significantly (by factors of 21% to 105%) increases the flux ofmore » the Ly{alpha} and He{alpha} emission lines of H- and He-like C and O escaping the disk atmosphere.« less

  12. 3C 159 - a double emission-line radio galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tytler, D.; Browne, I.

    1985-09-01

    An optical identification for 3C 159 is reported with a 19-mag emission-line radio galaxy at z = 0.482. Photometric measurements show it to be unusually bright and blue. The emission lines are of exceptionally high luminosity, and are split into two components separated by 598 + or - 13 km/s and 3 kpc along the spectrograph slit. A VLA may show that one of the radio lobes has two hot spots with tails of emission leading to both. 21 references.

  13. Uncommon and Emissive {[Au2(C3H6NS2)2][Au(C3H6NS2)2]2(PF6)2} Mixed Au+ and Au3+ Pseudotetranuclear Crystalline Compound: Synthesis, Structural Characterization, and Optical Properties.

    PubMed

    Langaro, Ana P; Souza, Ana K R; Morassuti, Claudio Y; Lima, Sandro M; Casagrande, Gleison A; Deflon, Victor M; Nunes, Luiz A O; Da Cunha Andrade, Luis H

    2016-11-23

    An uncommon emissive pseudotetranuclear compound, {[Au 2 (C 3 H 6 NS 2 ) 2 ][Au(C 3 H 6 NS 2 ) 2 ] 2 (PF 6 ) 2 }, was synthesized and characterized in terms of its structure and optical properties. The synthesis produced a crystalline compound composed of four gold atoms with two different oxidation states (Au + and Au 3+ ) in the same crystalline structure. The title complex belonged to a triclinic crystalline system involving the centrosymmetric P1̅ space group. X-ray diffractometry and vibrational spectroscopy (infrared, Raman, and SERS) were used for structural characterization of the new crystal. The vibrational spectroscopy techniques supported the X-ray diffraction results and confirmed the presence of bonds including Au-Au and Au-S. Optical characterization performed using UV-vis spectroscopy showed that under ultraviolet excitation, the emissive crystalline complex presented characteristic broad luminescent bands centered at 420 and 670 nm.

  14. Spectroscopic characteristics of H α /OI atomic lines generated by nanosecond pulsed corona-like discharge in deionized water

    NASA Astrophysics Data System (ADS)

    Pongrác, Branislav; Šimek, Milan; Člupek, Martin; Babický, Václav; Lukeš, Petr

    2018-03-01

    Basic emission fingerprints of nanosecond discharges produced in deionized water by fast rise-time positive high-voltage pulses (duration of 6 ns and amplitude of  +100 kV) in a point-to-plane electrode geometry were investigated by means of time-resolved intensified charge-coupled device (ICCD) spectroscopy. Time-resolved emission spectra were measured via ICCD kinetic series during the discharge ignition and later phases over the 350-850 nm spectral range with fixed, either 3 ns or 30 ns, acquisition time and with 3 ns or 30 ns time resolution, respectively. The luminous phase of the initial discharge expansion and its subsequent collapse was characterized by a broadband vis-NIR continuum emission evolving during the first few nanoseconds which shifted more toward the UV with further increase of time. After ~30 ns from the discharge onset, the continuum gradually disappeared followed by the emission of H α and OI atomic lines. The electron densities calculated from the H α profile fit were estimated to be of the order of 1018-1019 cm-3. It is unknown if the H α and OI atomic lines are generated even in earlier times (before ~30 ns) because such signals were not detectable due to the superposition with the strong continuum. However, subsequent events caused by the reflected HV pulses were observed to have significant effects on the emission spectra profiles of the nanosecond discharge. By varying the time delay of the reflected pulse from 45 to 90 ns after the primary pulse, the intensities of the H α /OI atomic lines in the emission spectra of the secondary discharges were clearly visible and their intensities were greater with shorter time delay between primary and reflected pulses. These results indicate that the discharges generated due to the reflected pulses were very likely generated in the non-relaxed environment.

  15. Variability of Lyman-alpha emission from Jupiter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, W.D.; Barker, E.S.

    1979-12-01

    The Jovian L..cap alpha.. emission line was reobserved in 1978 March using the high-resolution spectrometer of the Copernicus satellite. An intensity of 8.3 +- 2.9 kilorayleighs was measured. This value represents a significant increase in intensity over previous (1976) Copernicus observations, but is lower than the recent (1979) values obtained by Voyager 1 and IUE. The increase in intensity has been accompanied by a significant increase in line width givin strong support to the theory that the emission results from resonant scattering of the solar L..cap alpha.. line by H atoms in the upper Jovian atmosphere. The strength of Jovianmore » L..cap alpha.. emission correlates well with the level of solar activity. The solar extreme ultraviolet radiation varies with the solar cycle. This radiation causes the dissociation of H/sub 2/ and CH/sub 4/ into H atoms in the Jovian atmosphere. Therefore, in times of high solar activity, the H column density will increase, causing the observed stronger Jovian L..cap alpha.. emission.« less

  16. Chemical shift in Lα, Lβ1, Lβ3,4, Lβ2,15, Lγ1 and Lγ2,3 emission lines of 47Ag, 48Cd and 50Sn compounds

    NASA Astrophysics Data System (ADS)

    Singh Kainth, Harpreet; Singh, Ranjit; Singh, Gurjot; Mehta, D.

    2018-01-01

    Positive and negative shifts in L shell emission lines of 47Ag, 48Cd and 50Sn elements in different chemical compounds were determined from their recorded X-ray emission spectra in high resolution wavelength dispersive X-ray fluorescence (WDXRF) spectrometer. In 47Ag compounds, the measured energy shifts in Lα X-ray emission line were in the ranges from (0.12 to 0.40) eV, Lβ1 (0.27 to 0.36) eV, Lβ3,4 (1.10 to 4.89) eV, Lγ1 (-0.09 to 1.13) eV and Lγ2,3 (-2.08 to 0.59) eV. Likewise, for 48Cd compounds, the estimated shifts in Lα X-ray emission lines were in the range (-0.27 to 0.69) eV, Lβ1 (0.50 to 2.06) eV, Lβ2,15 (0.12 to 0.79), Lβ3,4 (-0.62 to 1.79) eV, Lγ1 (0.10 to 1.35) eV and Lγ2,3 (-0.73 to 1.75) eV, while for 50Sn compounds, the measured shifts in Lα X-ray emission lines were in the range of (0.02 to 1.81) eV, Lβ1 (0.11 to 0.78) eV, Lβ2,15 (0.15 to 1.40), Lβ3,4 (0.17 to 2.01) eV, Lγ1 (0.09 to 1.08) eV and Lγ2,3 (0.17 to 1.40) eV respectively. The effective charges (qP, qS, qL and qB) were calculated by four different theoretical methods (Pauling method, Suchet method, Levine method and Batsonav method) and found to be linear dependent with the chemical shift. Further, the measured chemical shifts were correlated with bond length, relative line-width (FWHM), effective charge, electronegativity, number of ligands and Coster-Kronig (CK) transition processes.

  17. Time variations of oxygen emission lines and solar wind dynamic parameters in low latitude region

    NASA Astrophysics Data System (ADS)

    Jamlongkul, P.; Wannawichian, S.; Mkrtichian, D.; Sawangwit, U.; A-thano, N.

    2017-09-01

    Aurora phenomenon is an effect of collision between precipitating particles with gyromotion along Earth’s magnetic field and Earth’s ionospheric atoms or molecules. The particles’ precipitation occurs normally around polar regions. However, some auroral particles can reach lower latitude regions when they are highly energetic. A clear emission from Earth’s aurora is mostly from atomic oxygen. Moreover, the sun’s activities can influence the occurrence of the aurora as well. This work studies time variations of oxygen emission lines and solar wind parameters, simultaneously. The emission’s spectral lines were observed by Medium Resolution Echelle Spectrograph (MRES) along with 2.4 meters diameter telescope at Thai National Observatory, Intanon Mountain, Chiang Mai, Thailand. Oxygen (OI) emission lines were calibrated by Dech-Fits spectra processing program and Dech95 2D image processing program. The correlations between oxygen emission lines and solar wind dynamics will be analyzed. This result could be an evidence of the aurora in low latitude region.

  18. Bayesian Redshift Classification of Emission-line Galaxies with Photometric Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Leung, Andrew S.; Acquaviva, Viviana; Gawiser, Eric; Ciardullo, Robin; Komatsu, Eiichiro; Malz, A. I.; Zeimann, Gregory R.; Bridge, Joanna S.; Drory, Niv; Feldmeier, John J.; Finkelstein, Steven L.; Gebhardt, Karl; Gronwall, Caryl; Hagen, Alex; Hill, Gary J.; Schneider, Donald P.

    2017-07-01

    We present a Bayesian approach to the redshift classification of emission-line galaxies when only a single emission line is detected spectroscopically. We consider the case of surveys for high-redshift Lyα-emitting galaxies (LAEs), which have traditionally been classified via an inferred rest-frame equivalent width (EW {W}{Lyα }) greater than 20 Å. Our Bayesian method relies on known prior probabilities in measured emission-line luminosity functions and EW distributions for the galaxy populations, and returns the probability that an object in question is an LAE given the characteristics observed. This approach will be directly relevant for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), which seeks to classify ˜106 emission-line galaxies into LAEs and low-redshift [{{O}} {{II}}] emitters. For a simulated HETDEX catalog with realistic measurement noise, our Bayesian method recovers 86% of LAEs missed by the traditional {W}{Lyα } > 20 Å cutoff over 2 < z < 3, outperforming the EW cut in both contamination and incompleteness. This is due to the method’s ability to trade off between the two types of binary classification error by adjusting the stringency of the probability requirement for classifying an observed object as an LAE. In our simulations of HETDEX, this method reduces the uncertainty in cosmological distance measurements by 14% with respect to the EW cut, equivalent to recovering 29% more cosmological information. Rather than using binary object labels, this method enables the use of classification probabilities in large-scale structure analyses. It can be applied to narrowband emission-line surveys as well as upcoming large spectroscopic surveys including Euclid and WFIRST.

  19. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  20. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  1. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  2. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  3. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  4. Inelastic rate coefficients for collisions of C6H- with H2 and He

    NASA Astrophysics Data System (ADS)

    Walker, Kyle M.; Lique, François; Dumouchel, Fabien; Dawes, Richard

    2017-04-01

    The recent detection of anions in the interstellar medium has shown that they exist in a variety of astrophysical environments - circumstellar envelopes, cold dense molecular clouds and star-forming regions. Both radiative and collisional processes contribute to molecular excitation and de-excitation in these regions so that the 'local thermodynamic equilibrium' approximation, where collisions cause the gas to behave thermally, is not generally valid. Therefore, along with radiative coefficients, collisional excitation rate coefficients are needed to accurately model the anionic emission from these environments. We focus on the calculation of state-to-state rate coefficients of the C6H- molecule in its ground vibrational state in collisions with para-H2, ortho-H2 and He using new potential energy surfaces. Dynamical calculations for the pure rotational excitation of C6H- were performed for the first 11 rotational levels (up to j1 = 10) using the close-coupling method, while the coupled-states approximation was used to extend the H2 rate coefficients to j1 = 30, where j1 is the angular momentum quantum number of C6H-. State-to-state rate coefficients were obtained for temperatures ranging from 2 to 100 K. The rate coefficients for H2 collisions for Δj1 = -1 transitions are of the order of 10-10 cm3 s-1, a factor of 2 to 3 greater than those of He. Propensity rules are discussed. The collisional excitation rate coefficients produced here impact astrophysical modelling since they are required for obtaining accurate C6H- level populations and line emission for regions that contain anions.

  5. Three-dimensional modeling of the Ca II H and K lines in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Bjørgen, Johan P.; Sukhorukov, Andrii V.; Leenaarts, Jorrit; Carlsson, Mats; de la Cruz Rodríguez, Jaime; Scharmer, Göran B.; Hansteen, Viggo H.

    2018-03-01

    Context. CHROMIS, a new imaging spectrometer at the Swedish 1-m Solar Telescope (SST), can observe the chromosphere in the H and K lines of Ca II at high spatial and spectral resolution. Accurate modeling as well as an understanding of the formation of these lines are needed to interpret the SST/CHROMIS observations. Such modeling is computationally challenging because these lines are influenced by strong departures from local thermodynamic equilibrium, three-dimensional radiative transfer, and partially coherent resonance scattering of photons. Aim. We aim to model the Ca II H and K lines in 3D model atmospheres to understand their formation and to investigate their diagnostic potential for probing the chromosphere. Methods: We model the synthetic spectrum of Ca II using the radiative transfer code Multi3D in three different radiation-magnetohydrodynamic model atmospheres computed with the Bifrost code. We classify synthetic intensity profiles according to their shapes and study how their features are related to the physical properties in the model atmospheres. We investigate whether the synthetic data reproduce the observed spatially-averaged line shapes, center-to-limb variation and compare this data with SST/CHROMIS images. Results: The spatially-averaged synthetic line profiles show too low central emission peaks, and too small separation between the peaks. The trends of the observed center-to-limb variation of the profiles properties are reproduced by the models. The Ca II H and K line profiles provide a temperature diagnostic of the temperature minimum and the temperature at the formation height of the emission peaks. The Doppler shift of the central depression is an excellent probe of the velocity in the upper chromosphere.

  6. The Zeeman effect or linear birefringence? VLA polarimetric spectral line observations of H2O masers

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Hui; Goss, W. M.; Diamond, P.

    We present line profiles of the four Stokes parameters of H2O masers at 22 GHz observed with the VLA in full polarimetric spectral line mode. With careful calibration, the instrumental effects such as linear leakage and the difference of antenna gain between RCP and LCP, can be minimized. Our measurements show a few percent linear polarization. Weak circular polarization was detected at a level of 0.1 percent of the peak intensity. A large uncertainty in the measurements of weak circular polarization is caused by telescope pointing errors. The observed polarization of H2O masers can be interpreted as either the Zeeman effect or linear birefringence.

  7. Theoretical Studies of N2-broadened Half-widths of H2O Lines Involving High j States

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    Based on the properties of the energy levels and wave functions of H2O states, one can categorize H2O lines into individually defined groups such that within the same group, the energy levels and the wave functions associated with two paired lines have an identity property while those associated with different pairs have a similarity property. Meanwhile, by thoroughly analyzing processes used to calculate N2-broadened half-widths, it was found that the 'Fourier series' of W(sup a)(sub L(sub 1))(sub K(sub 1))(sub K(sub 1)) (t; j(sub f) T(sub f) and W(sup a)(sub L(sub 1))(sub K(sub 1))(sub K(sub 1)) (t; j(sub i) T(sub i), and a factor P(sub 222) (j(sub f) T(sub f) j(sub i) T(sub i)) are the key items in the Robert-Bonamy formalism to distinguish contributions to ReS2(r(sub c)) among different transitions of j(sub f) T(sub f) - j(sub i). However, these items are completely determined by the energy levels and the wave functions associated with their initial and final states and they must bear the latter's features as well. Thus, it becomes obvious that for two paired lines in the same group, their calculated half-widths must be almost identical and the values associated with different pairs must vary smoothly as their ji values vary. Thus, the pair identity and the smooth variation rules are established within individual groups of lines. One can use these rules to screen half-width data listed in HITRAN and to improve the data accuracies.

  8. QSO Broad Emission Line Asymmetries: Evidence of Gravitational Redshift?

    NASA Astrophysics Data System (ADS)

    Corbin, Michael R.

    1995-07-01

    The broad optical and ultraviolet emission lines of QSOs and active galactic nuclei (AGNs) display both redward and blueward asymmetries. This result is particularly well established for Hβ and C IV λ1549, and it has been found that Hβ becomes increasingly redward asymmetric with increasing soft X-ray luminosity. Two models for the origin of these asymmetries are investigated: (1) Anisotropic line emission from an ensemble of radially moving clouds, and (2) Two-component profiles consisting of a core of intermediate (˜1000-4000 km s-1) velocity width and a very broad (˜5000-20,000 km s-1) base, in which the asymmetries arise due to a velocity difference between the centroids of the components. The second model is motivated by the evidence that the traditional broad-line region is actually composed of an intermediate-line region (ILR) of optically thick clouds and a very broad line region (VBLR) of optically thin clouds lying closer to the central continuum source. Line profiles produced by model (1) are found to be inconsistent with those observed, being asymmetric mainly in their cores, whereas the asymmetries of actual profiles arise mainly from excess emission in their wings. By contrast, numerical fitting to actual Hβ and C IV λ1549 line profiles reveals that the majority can be accurately modeled by two components, either two Gaussians or the combination of a Gaussian base and a logarithmic core. The profile asymmetries in Hβ can be interpreted as arising from a shift of the base component over a range ˜6300 km s-1 relative to systemic velocity as defined by the position of the [O III] λ5007 line. A similar model appears to apply to C IV λ1549. The correlation between Hβ asymmetry and X-ray luminosity may thus be interpreted as a progressive red- shift of the VBLR velocity centroid relative to systemic velocity with increasing X-ray luminosity. This in turn suggests that the underlying effect is gravitational red shift, as soft X-ray emission

  9. The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H{sub 2}O Dissociation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, Kevin; Roueff, Evelyne; Abgrall, Hervé, E-mail: kevin.france@colorado.edu

    The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we havemore » assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope -Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100–1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST -COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490–1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L (Bump) ≈ 7 × 10{sup 29} erg s{sup −1}. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ {sub o} = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H{sub 2} excited by electron -impact. We show that this Bump makes up between 5%–50% of the total FUV continuum emission in the 1490–1690 Å band and emits roughly 10%–80% of the total fluorescent H{sub 2} luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Ly α photons. We argue that the most likely

  10. Chromospheres of late-type active and quiescent dwarfs. III - Variability of CA II H emission profiles

    NASA Astrophysics Data System (ADS)

    Garcia Lopez, R. J.; Crivellari, L.; Beckman, J. E.; Rebolo, R.

    1992-08-01

    We have used high-resolution spectra of the Ca II H resonance line in late-type dwarfs, obtained with high S:N ratios, over a period of four years to widen our understanding of the dynamical behavior of the Ca II emission cores. All of the stars dealt with in this article, which are chromospherically active, show variability both in core emission flux and line width. They also show significant wavelength shifts with time of order hundreds of meters per second in the mean core wavelength, and with lower amplitude in the H3 self-absorption, compared to the photospheric rest wavelength of Ca II H. Comparing the emission core shifts with those observed in the H3 features, we find, for the first time, direct prima facie evidence for vertical chromospheric velocity fields, which show stability in sense over periods of years in a given star, with notable modulation in gradient, and which differ in gradient from star to star. We present evidence to show that the observed effects are almost certainly not due to projected rotational modulation, and offer new prospects, given spectral measurements closely sampled in time, for investigating the vertical velocity structures of chromospheres.

  11. On the determination of Te by radio erecombination lines in H II regions

    NASA Astrophysics Data System (ADS)

    Guzmán, F.

    2017-11-01

    Radio recombination alpha and beta lines originate in high-n Rydberg levels of H I and He I are used to determine temperatures and densities of H II regions and galactic abundance gradients. Calculations of the departures from local thermodynamical equilibrium are very important for the determination of intensities, opacities, and abundances. I will show how uncertainties in atomic collisions are translated to large changes in emissivities and absorption coefficients in H II regions. I will show how these predictions can be tackled using the new GTM/LMT facility.

  12. Lyman alpha line shapes from electron impact H2 dissociative processes in the Jovian auroral zone

    NASA Technical Reports Server (NTRS)

    Waite, J. H., Jr.; Gladstone, G. R.

    1992-01-01

    Over the past two years several Lyman alpha line profile spectra of Jupiter were obtained using the International Ultraviolet Explorer (IUE) telescope. Several different regions of the planet were observed including the auroral zone, the low and mid latitudes, and the equatorial region which includes the Lyman alpha bulge region. These results have presented a very interesting picture of atomic hydrogen on Jupiter with explanations that range from ion outflow in the auroral zone to large thermospheric winds at low and mid latitudes. New data are needed to address the outstanding questions. Almost certainly, high resolution spectra from the Hubble Space Telescope will play a role in new observations. Better data also require better models, and better models require new laboratory data as inputs. The purpose of this program is two-fold: (1) to introduce a method by which new laboratory electron impact measurements of H2 dissociation can be used to calculate both the slow and fast H(S-2) and H(P-2) fragments in an H2 atmosphere; and (2) to determine the predicted Lyman alpha line shape that would result from electron impact production of these dissociative fragments in the Jovian auroral zone.

  13. The Nature of Active Galactic Nuclei with Velocity Offset Emission Lines

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Comerford, J.; Stern, D.; Harrison, F. A.

    2016-10-01

    We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ˜0.″18, OSIRIS allows us to distinguish which velocity offset emission lines are produced by the motion of an AGN in a dual supermassive black hole system, and which are produced by outflows or other kinematic structures. In three galaxies, J1018+2941, J1055+1520, and J1346+5228, the spectral offset of the emission lines is caused by AGN-driven outflows. In the remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that contains the peak of Paα emission 0.″2 from the center of the galaxy. The most plausible explanation for the origin of this spatially and kinematically offset peak is that it is a region of enhanced Paα emission located at the intersection zone between the nuclear disk and the bar of the galaxy. In all four objects, the peak of ionized gas emission is not spatially coincident with the center of the galaxy as traced by the peak of the near-IR continuum emission. The peaks of ionized gas emission are spatially offset from the galaxy centers by 0.″1-0.″4 (0.1-0.7 kpc). We find that the velocity offset originates at the location of this peak of emission, and the value of the offset can be directly measured in the velocity maps. The emission-line ratios of these four velocity-offset AGNs can be reproduced only with a mixture of shocks and AGN photoionization. Shocks provide a natural explanation for the origin of the spatially and spectrally offset peaks of ionized gas emission in these galaxies. Based on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the

  14. Variability of Lyman-alpha emission from Jupiter

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Jovian Lyman-alpha emission line was again observed in 1978 using the high resolution spectrometer on the Copernicus satellite. In intensity of 8.4+3.0 kilo Rayleighs was measured. This value represents a significant increase in intensity over previous (1976) Copernicus observations, but is lower than the recent (1979) values obtained by Voyager I and IUE. The increase in intensity was accompanied by a significant increase in line width, giving strong support to the theory that the emission results from resonant scattering of the solar Ly-alpha line by H atoms in the upper Jovian atmosphere. The strength of Jovian Ly-alpha emission correlates well with the level of solar activity. The solar extreme ultraviolet radiation varies with the solar cycle. This radiation causes the dissociation of H2 and CH4 into H atoms in the Jovian atmosphere. Therefore, in times of high solar activity, the H column density will increase, causing the observed stronger Jovian Ly-alpha emission.

  15. Diffuse H_{2} emission: a useful geochemical tool to monitor the volcanic activity at El Hierro volcano system

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Melián, Gladys; González-Santana, Judit; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Padrón, Eleazar; Hernández, Pedro A.

    2016-04-01

    The occurrence of interfering processes affecting reactive gases as CO2 during its ascent from magmatic bodies or hydrothermal systems toward the surface environment hinders the interpretation of their enrichments in the soil atmosphere and fluxes for volcano monitoring purposes (Marini and Gambardella, 2005). These processes include gas scrubbing by ground-waters and interaction with rocks, decarbonatation processes, biogenic production, etc. Within the rest of the soil gases, particularly interest has been addressed to light and highly mobile gases. They offer important advantages for the detection of vertical permeability structures, because their interaction with the surrounding rocks or fluids during the ascent toward the surface is minimum. H2 is one of the most abundant trace species in volcano-hydrothermal systems and is a key participant in many redox reactions occurring in the hydrothermal reservoir gas (Giggenbach, 1987). Although H2 can be produced in soils by N2-fixing and fertilizing bacteria, soils are considered nowadays as sinks of molecular hydrogen (Smith-Downey et al., 2006). Because of its chemical and physical characteristics, H2 generated within the crust moves rapidly and escapes to the atmosphere. These characteristics make H2 one of the best geochemical indicators of magmatic and geothermal activity at depth. El Hierro is the youngest and the SW-most of the Canary Islands and the scenario of the last volcanic eruption of the archipelago, a submarine eruption that took place 2 km off the southern coast of the island from October 2011 to March 2012. Since at El Hierro Island there are not any surface geothermal manifestations (fumaroles, etc), we have focused our studies on soil degassing surveys. Here we show the results of soil H2 emission surveys that have been carried out regularly since mid-2012. Soil gas samples were collected in ˜600 sites selected based on their accessibility and geological criteria. Soil gases were sampled at ˜40

  16. Infrared molecular emissions from comets

    NASA Technical Reports Server (NTRS)

    Weaver, H. A.; Mumma, M. J.

    1983-01-01

    The possibility of detecting IR molecular line emission from cometary parent molecules is explored. Due to the non-LTE conditions in the inner coma and the large amount of near IR solar flux, IR fluorescence will be a significant source of cometary emission and, in fact, will dominate the grain radiation in a sufficiently high resolution instrument. The detection of this line emission will be difficult due to absorption in the terrestrial atmosphere, but it appears possible to measure cometary H2O emission from airplane altitudes. As IR molecular line emission represents one of the few promising methods of detecting cometary parent molecules directly, further research on this problem should be vigorously pursued.

  17. DEFPOS H α observations of H II regions

    NASA Astrophysics Data System (ADS)

    Aksaker, N.; Sahan, M.; Yegingil, I.; Emrahoglu, N.

    2011-12-01

    We present H α emission line measurements of northern bright H II regions selected from the Sharpless (1959) catalog near the Galactic plane ( b ⩽ ± 6°). A total of 10 H II regions were observed with DEFPOS (Dual Etalon Fabry-Perot Optical Spectrometer) system at the f/48 Coude focus of 150 cm RTT150 telescope located at TUBITAK National Observatory (TUG) in Antalya/Turkey. The intensities, the local standard of rest (LSR) velocities ( VLSR), and the linewidths (Full Width Half Maximum: FWHM) of the H α emission line from our observations were in the range of 84 to 745 Rayleigh ( R [one Rayleigh ( R) is 10 6/4 π photons cm -2 sr -1 s -1 = 2.4110 -7 erg cm -2 sr -1 s -1 at H α and corresponds to an emission measure (EM=∫ne2dl) of 2.3 pc cm -6 for a gas temperature of 8000 K, where ne is the averaged electron density within an emitting region in the interstellar medium; dl is distance element to the source region ( Haffner et al., 2003; Reynolds et al., 2005), 3 to -43 km s -1 and 30 to 73 km s -1, respectively. The LSR velocities and the linewidths from the data were obtained and compared with early results. We found that our results are in close agreement with them. Moreover, associated stars of some of the H II regions were updated by analyzing their location, velocities, and brightness.

  18. A study of the H2O absorption line shifts in the visible spectrum region due to air pressure

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Browell, E. V.; Bykov, A. D.; Kapitanov, V. A.; Korotchenko, E. A.

    1990-01-01

    Results of measured and calculated shift coefficients are presented for 170 absorption lines of H2O in five vibrational-rotational bands. The measurements have been carried out using highly sensitive laser spectrometers with a resolution of at least 0.01/cm; the calculations are based on the Anderson-Tsao-Curnutte-Frost method. Good agreement is obtained between the theoretical and experimental values of the shift coefficients of H2O lines due to N2, O2, and air pressure.

  19. Polarisation of auroral emission lines in the Earth's upper atmosphere : first results and perspectives

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Barthelemy, M.; Simon Wedlund, C.; Lilensten, J.; Bommier, V.

    2011-12-01

    Polarisation of light is a key observable to provide information about asymmetry or anisotropy within a radiative source. Following the pioneering and controversial work of Duncan in 1959, the polarisation of auroral emission lines in the Earth's upper atmosphere has been overlooked for a long time, even though the red intense auroral line (6300Å) produced by collisional impacts with electrons precipitating along magnetic field lines is a good candidate to search for polarisation. This problem was investigated again by Lilensten et al (2006) and observations were obtained by Lilensten et al (2008) confirming that the red auroral emission line is polarised. More recent measurements obtained by Barthélemy et al (2011) are presented and discussed. The results are compared to predictions of the theoretical work of Bommier et al (2011) and are in good agreement. Following these encouraging results, a new dedicated spectropolarimeter is currently under construction between BIRA-IASB and IPAG to provide simultaneously the polarisation of the red line and of other interesting auroral emission lines such as N2+ 1NG (4278Å), other N2 bands, etc... Perspectives regarding the theoretical polarisation of some of these lines will be presented. The importance of these polarisation measurements in the framework of atmospheric modeling and geomagnetic activity will be discussed.

  20. Interpreting Methanol v(sub 2)-Band Emission in Comets Using Empirical Fluorescence g-Factors

    NASA Technical Reports Server (NTRS)

    DiSanti, Michael; Villanueva, G. L.; Bonev, B. P.; Mumma, M. J.; Paganini, L.; Gibb, E. L.; Magee-Sauer, K.

    2011-01-01

    For many years we have been developing the ability, through high-resolution spectroscopy targeting ro-vibrational emission in the approximately 3 - 5 micrometer region, to quantify a suite of (approximately 10) parent volatiles in comets using quantum mechanical fluorescence models. Our efforts are ongoing and our latest includes methanol (CH3OH). This is unique among traditionally targeted species in having lacked sufficiently robust models for its symmetric (v(sub 3) band) and asymmetric (v(sub 2) and v(sub 9) bands) C-H3 stretching modes, required to provide accurate predicted intensities for individual spectral lines and hence rotational temperatures and production rates. This has provided the driver for undertaking a detailed empirical study of line intensities, and has led to substantial progress regarding our ability to interpret CH3OH in comets. The present study concentrates on the spectral region from approximately 2970 - 3010 per centimeter (3.367 - 3.322 micrometer), which is dominated by emission in the (v(sub 7) band of C2H6 and the v(sub 2) band of CH3OH, with minor contributions from CH3OH (v(sub 9) band), CH4 (v(sub 3)), and OH prompt emissions (v(sub 1) and v(sub 2)- v(sub 1)). Based on laboratory jet-cooled spectra (at a rotational temperature near 20 K)[1], we incorporated approximately 100 lines of the CH3OH v(sub 2) band, having known frequencies and lower state rotational energies, into our model. Line intensities were determined through comparison with several comets we observed with NIRSPEC at Keck 2, after removal of continuum and additional molecular emissions and correcting for atmospheric extinction. In addition to the above spectral region, NIRSPEC allows simultaneous sampling of the CH3OH v(sub 3) band (centered at 2844 per centimeter, or 3.516 micrometers and several hot bands of H2O in the approximately 2.85 - 2.9 micrometer region, at a nominal spectral resolving power of approximately 25,000 [2]. Empirical g-factors for v(sub 2

  1. HST WFC3 Early Release Science: Emission-Line Galaxies from IR Grism Observations

    NASA Technical Reports Server (NTRS)

    Straughn, A. N.; Kuntschner, H.; Kuemmel, M.; Walsh, J. R.; Cohen, S. H.; Gardner, J. P.; Windhorst, R. A.; O'Connell, R. W.; Pirzkal, N.; Meurer, G.; hide

    2010-01-01

    We present grism spectra of emission line galaxies (ELGs) from 0.6-1.6 microns from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). These new infrared grism data augment previous optical Advanced Camera for Surveys G800L (0.6-0.95 micron) grism data in GOODS South, extending the wavelength coverage well past the G800L red cutoff. The ERS grism field was observed at a depth of 2 orbits per grism, yielding spectra of hundreds of faint objects, a subset of which are presented here. ELGs are studied via the Ha, [O III ], and [OII] emission lines detected in the redshift ranges 0.2 less than or equal to z less than or equal to 1.6, 1.2 less than or equal to z less than or equal to 2.4 and 2.0 less than or equal to z less than or equal to 3.6 respectively in the G102 (0.8-1.1 microns; R approximately 210) and C141 (1.1-1.6 microns; R approximately 130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., [S II] and [S III] lines). From these relatively shallow observations, line luminosities, star formation rates, and grism spectroscopic redshifts are determined for a total of 25 ELGs to M(sub AB)(F098M) approximately 25 mag. The faintest source in our sample with a strong but unidentified emission line--is MAB(F098M)=26.9 mag. We also detect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample, indicative of downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes.

  2. Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulbul, Esra; Foster, Adam; Smith, Randall K.

    2014-07-01

    We detect a weak unidentified emission line at E = (3.55-3.57) ± 0.03 keV in a stacked XMM-Newton spectrum of 73 galaxy clusters spanning a redshift range 0.01-0.35. When the full sample is divided into three subsamples (Perseus, Centaurus+Ophiuchus+Coma, and all others), the line is seen at >3σ statistical significance in all three independent MOS spectra and the PN 'all others' spectrum. It is also detected in the Chandra spectra of the Perseus Cluster. However, it is very weak and located within 50-110 eV of several known lines. The detection is at the limit of the current instrument capabilities. Wemore » argue that there should be no atomic transitions in thermal plasma at this energy. An intriguing possibility is the decay of sterile neutrino, a long-sought dark matter particle candidate. Assuming that all dark matter is in sterile neutrinos with m{sub s} = 2E = 7.1 keV, our detection corresponds to a neutrino decay rate consistent with previous upper limits. However, based on the cluster masses and distances, the line in Perseus is much brighter than expected in this model, significantly deviating from other subsamples. This appears to be because of an anomalously bright line at E = 3.62 keV in Perseus, which could be an Ar XVII dielectronic recombination line, although its emissivity would have to be 30 times the expected value and physically difficult to understand. Another alternative is the above anomaly in the Ar line combined with the nearby 3.51 keV K line also exceeding expectation by a factor of 10-20. Confirmation with Astro-H will be critical to determine the nature of this new line.« less

  3. X-ray Emission Line Spectroscopy of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Daniel

    What are the origins of the diffuse soft X-ray emission from non-AGN galaxies? Preliminary analysis of XMM-Newton RGS spectra shows that a substantial fraction of the emission cannot arise from optically-thin thermal plasma, as commonly assumed, and may originate in charge exchange at the interface with neutral gas. We request the support for a comprehensive observing, data analysis, and modeling program to spectroscopically determine the origins of the emission. First, we will use our scheduled XMM-Newton AO-10 368 ks observations of the nearest compact elliptical galaxy M32 to obtain the first spectroscopic calibration of the cumulative soft X-ray emission from the old stellar population and will develop a spectral model for the charge exchange, as well as analysis tools to measure the spatial and kinematic properties of the X-ray line- emitting plasma. Second, we will characterize the truly diffuse emission from the hot plasma and/or its interplay with the neutral gas in a sample of galactic spheroids and active star forming/starburst regions in nearby galaxies observed by XMM-Newton. In particular, we will map out the spatial distributions of key emission lines and measure (or tightly constrain) the kinematics of hot plasma outflows for a few X-ray-emitting regions with high-quality RGS data. For galaxies with insufficient counting statistics in individual emission lines, we will conduct a spectral stacking analysis to constrain the average properties of the X-ray-emitting plasma. We will use the results of these X-ray spectroscopic analyses, together with complementary X-ray CCD imaging/spectral data and observations in other wavelength bands, to test the models of the emission. In addition to the charge exchange, alternative scenarios such as resonance scattering and relic AGN photo-ionization will also be examined for suitable regions. These studies are important to the understanding of the relationship between the diffuse soft X-ray emission and various

  4. Interferometric investigation of emission lines from the solar corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, P.M.; Henderson, G.

    1973-11-01

    The profiles of the Fe XN, lambda 5303, and Fe X, lambda 6374, emission lines of the solar corona were observed at different posttions using a photoelectric scanning Fabry -- Perot interferometer. These profiles were obtained during the eclipse of 7th March 1970, in Mexico and at the Pic-du-Midi coronagraph in October, 1970. The half-widths of these profiles were determined for both the coronal lines and temperatures were derived from these widths. No systematic temperature variation was discovered, however there was some suggestion of the existence of a fluctuation with time in the width of the emission lines. (auth)

  5. Anomalous broadening and shift of emission lines in a femtosecond laser plasma filament in air

    NASA Astrophysics Data System (ADS)

    Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.; Mayor, A. Yu.; Proschenko, D. Yu.

    2017-12-01

    The temporal evolution of the width and shift of N I 746.8 and O I 777.4 nm lines is investigated in a filament plasma produced by a tightly focused femtosecond laser pulse (0.9 mJ, 48 fs). The nitrogen line shift and width are determined by the joint action of electron impact shift and the far-off resonance AC Stark effect. The intensive (I = 1.2·1010 W/cm2) electric field of ASE (amplified spontaneous emission) and post-pulses result in a possible LS coupling break for the O I 3p 5P level and the generation of Rabi sidebands. The blueshifted main femtosecond pulse and Rabi sideband cause the stimulated emission of the N2 1+ system. The maximal widths of emission lines are approximately 6.7 times larger than the calculated Stark widths.

  6. Einstein A coefficients for rovibronic lines of the A2Π → X2Σ+ and B2Σ+ → X2Σ+ transitions of CaH and CaD

    NASA Astrophysics Data System (ADS)

    Alavi, S. Fatemeh; Shayesteh, Alireza

    2018-02-01

    Calcium monohydride is an important diatomic molecule appearing in the spectra of sunspots and M dwarfs. We report complete line lists with Einstein A coefficients for the A2Π-X2Σ+ and B2Σ+-X2Σ+ electronic transitions of CaH and CaD radicals. The most recent ab initio transition dipole moments and potential energy curves were used for the calculation of vibronic band intensities, taking the Herman-Wallis effect into account, and the rotational line strengths were calculated using the PGOPHER program of Western. For the A2Π and B2Σ+ excited states of CaH and CaD, new off-diagonal electronic matrix elements were included in the Hamiltonian matrix, and new sets of spectroscopic constants were determined in order to accurately reproduce the line positions and relative intensities of the observed branches in laboratory spectra. For both CaH and CaD isotopologues, Einstein A coefficients were calculated for all possible rovibronic transitions from the v΄ = 0-3 vibrational levels of the A2Π state and the v΄ = 0-2 vibrational levels of the B2Σ+ state to the v″ = 0-4 vibrational levels of the X2Σ+ ground state. The line lists and intensities reported here can be used to accurately determine the amounts of CaH and CaD in stellar environments.

  7. Control of H2S emissions using an ozone oxidation process: Preliminary results

    NASA Technical Reports Server (NTRS)

    Defaveri, D.; Ferrando, B.; Ferraiolo, G.

    1986-01-01

    The problem of eliminating industrial emission odors does not have a simple solution, and consequently has not been researched extensively. Therefore, an experimental research program regarding oxidation of H2S through ozone was undertaken to verify the applicable limits of the procedure and, in addition, was designed to supply a useful analytical means of rationalizing the design of reactors employed in the sector.

  8. Emission line shapes produced by dissociative excitation of atmospheric gases

    NASA Technical Reports Server (NTRS)

    Zipf, E. C.; Wells, W. C.

    1980-01-01

    The spectral line shapes of the radiation emitted from O atoms produced by the dissociative excitation of O2, CO, CO2 and NO are investigated. Doppler line shapes are derived from time-of-flight spectra of O (5S0) atoms decaying by the emission of 1356-A radiation after being produced in electron impact experiments at incident electron energies from 25 to 300 eV. It is shown that the effective line width of the radiation is large compared with the Doppler absorption widths of ambient O atoms in both photoelectron and auroral excitation, and thus the dissociatively excited component of the O I 1304-A airglow will behave as though it were optically thin, exhibiting pronounced limb brightening effects and a scale height characteristic of the initial, local source function. It is found that the average kinetic energy of the dissociation fragments inferred from O I (5S) time-of-flight spectra is in good agreement with that of O I (3S) atoms in the electron impact dissociation of CO2, although not for O2. Finally, it is suggested that although electron impact dissociation of CO and CO2 contributes to the 1304-A emission in the upper atmosphere of Venus, it cannot be the dominant source of this radiation since the absolute cross sections for the reaction are too small.

  9. A Suzaku Observation of the Neutral Fe-line Emission from RCW 86

    NASA Technical Reports Server (NTRS)

    Ueno, Masaru; Sato, Rie; Kataoka, Jun; Bamba, Aya; Harrus, Ilana; Hiraga, Junko; Hughes, John P.; Kilbourne, Caroline A.; Koyama, Katsuji; Kokubun, Motohide; hide

    2007-01-01

    The newly operational X-ray satellite Suzaku observed the supernova remnant (SNR) RCW 86 in February 2006 to study the nature of the 6.4 keV emission line first detected with the Advanced Satellite for Cosmology and Astronomy (ASCA). The new data confirms the existence of the line, localizing it for the first time inside a low temperature emission region and not at the locus of the continuum hard X-ray emission. We also report the first detection of a 7.1 keV line that we interpret as the K(beta) emission from neutral or low-ionized iron. The Fe-K line features are consistent with a non-equilibrium plasma of Fe-rich ejecta with n(sub e) less than or approx. equal to 10(exp 9)/cu cm s and kT(sub e) > 1 keV. We found a sign that Fe K(alpha) line is intrinsically broadened 47 (35-57) eV (99% error region). Cr-K line is also marginally detected, which is supporting the ejecta origin for the Fe-K line. By showing that the hard continuum above 3 keV has different spatial distribution from the Fe-K line, we confirmed it to be synchrotron X-ray emission.

  10. GBT Observations of Radio Recombination Line Emission Associated with Supernova Remnants W28 and W44

    NASA Astrophysics Data System (ADS)

    Hewitt, John W.; Yusef-Zadeh, F.

    2006-06-01

    Since the 1970's weak radio recombination line(RRL) emission has been observed toward several supernova remnants. It has remained unclear if this emission is in fact associated with these remnants or due to intervening sources such as extended HII envelopes along the line of sight. To explore the origin of this emitting gas we have recently undertaken Green Bank Telescope (GBT) observations of prominent supernova remnants W28 and W44 which are well-known to be interacting with molecular clouds. Eight alpha and beta RRL transitions were mapped at C-Band (4-6 GHz) with 2.5' resolution. Maps cover 0.5 and 0.25 square degrees of W28 and W44, respectively, permitting comparison with the distribution of X-rays, Radio, and H-alpha emission. Both remnants are observed to have a mixed-morphology: a radio-continuum shell centrally-filled by thermal X-rays. We find the observed velocity of RRL emission is near the systemic velocity of both remnants as traced by OH(1720 MHz) masers. Preliminary results are presented exploring the association of the RRL-emitting gas with these interacting supernova remants and implications for the origins of the hot thermal X-ray plasma that fills their centers. Support for this work was provided by the NSF through The GBT Student Support Program from the NRAO.

  11. Infrared molecular emissions from comets

    NASA Technical Reports Server (NTRS)

    Weaver, H. A.; Mumma, M. J.

    1984-01-01

    The possibility of detecting IR molecular line emission from cometary parent molecules is explored. Due to the non-LTE conditions in the inner coma and the large amount of near IR solar flux, IR fluorescence will be a significant source of cometary emission and, in fact, will dominate the grain radiation in a sufficiently high resolution instrument. The detection of this line emission will be difficult due to absorption in the terrestrial atmosphere, but it appears possible to measure cometary H2O emission from airplane altitudes. As IR molecular line emission represents one of the few promising methods of detecting cometary parent molecules directly, further research on this problem should be vigorously pursued. Previously announced in STAR as N83-30344

  12. A search for near-infrared molecular hydrogen emission in the CTTS LkHα 264 and the debris disk 49 Ceti

    NASA Astrophysics Data System (ADS)

    Carmona, A.; van den Ancker, M. E.; Henning, Th.; Goto, M.; Fedele, D.; Stecklum, B.

    2007-12-01

    We report on the first results of a search for molecular hydrogen emission from protoplanetary disks using CRIRES, ESO's new VLT Adaptive Optics high resolution near-infrared spectrograph. We observed the classical T Tauri star LkHα 264 and the debris disk 49 Cet, and searched for υ= 1-0 S(1) H2 emission at 2.1218 μm, υ = 1-0 S(0) H2 emission at 2.2233 μm and υ = 2-1 S(1) H2 emission at 2.2477 μm. The H2 line at 2.1218 μm is detected in LkHα 264 confirming the previous observations by Itoh et al. (2003). In addition, our CRIRES spectra reveal the previously observed but not detected H2 line at 2.2233 μm in LkHα 264. An upper limit of 5.3 × 10-16 erg s-1 cm-2 on the υ = 2-1 S(1) H2 line flux in LkHα 264 is derived. The detected lines coincide with the rest velocity of LkHα 264. They have a FWHM of ~20 km s-1. This is strongly suggestive of a disk origin for the lines. These observations are the first simultaneous detection of υ = 1-0 S(1) and υ = 1-0 S(0) H2 emission from a protoplanetary disk. 49 Cet does not exhibit H2 emission in any of the three observed lines. We derive the mass of optically thin H2 at T˜1500 K in the inner disk of LkHα 264 and derive stringent limits in the case of 49 Cet at the same temperature. There are a few lunar masses of optically thin hot H2 in the inner disk (~0.1 AU) of LkHα 264, and less than a tenth of a lunar mass of hot H2 in the inner disk of 49 Cet. The measured 1-0 S(0)/1-0 S(1) and 2-1 S(1)/1-0 S(1) line ratios in LkHα 264 indicate that the H2 emitting gas is at a temperature lower than 1500 K and that the H2 is most likely thermally excited by UV photons. The υ = 1-0 S(1) H2 line in LkHα 264 is single peaked and spatially unresolved. Modeling of the shape of the line suggests that the disk should be seen close to face-on (i<35°) and that the line is emitted within a few AU of the LkHα 264 disk. A comparative analysis of the physical properties of classical T Tauri stars in which the H2 υ = 1-0 S(1

  13. H α and H β Raman scattering line profiles of the symbiotic star AG Pegasi

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Jae; Hyung, Siek

    2018-04-01

    The H α and H β line profiles of the symbiotic star AG Pegasi, observed in 1998 September (phase ϕ = 10.24), display top narrow double Gaussian components and bottom broad components (FWHM = 200-400 km s-1). The photoionization model indicates that the ionized zone, responsible for the hydrogen Balmer and Lyman lines, is radiation-bounded, with a hydrogen gas number density of nH ˜ 109.85 cm-3 and a gas temperature of Te = 12 000-15 000 K. We have carried out Monte Carlo simulations to fit the Raman scattering broad wings, assuming that the hydrogen Ly β and Ly γ lines emitted within the radiation-bounded H II zone around a white dwarf have the same double Gaussian line profile shape as the hydrogen Balmer lines. The simulation shows that the scattering H I zones are attached to (or located just outside) the inner H II shells. The best fit to the observed broad H I line profiles indicates that the column density of the scattering neutral zone is NH ≃ 3-5 × 1019 cm-2. We have examined whether the geometrical structure responsible for the observed H α and H β line profiles is a bipolar conical shell structure, consisting of the radiation-bounded ionized zone and the outer material bounded neutral zone. The expanding bipolar structure might be two opposite regions of the common envelope or the outer shell of the Roche lobe around the hot white dwarf, formed through the mass inflows from the giant star and pushed out by the fast winds from the hot white dwarf.

  14. The metallicities of the broad emission line regions in the nitrogen-loudest quasars

    NASA Astrophysics Data System (ADS)

    Batra, Neelam Dhanda; Baldwin, Jack A.

    2014-03-01

    We measured the metallicity Z in the broad emission-line regions (BELRs) of 43 Sloan Digital Sky Survey (SDSS) quasars with the strongest N IV] and N III] emission lines. These N-loud quasi-stellar objects (QSOs) have unusually low-black-hole masses. We used the intensity ratio of N lines to collisionally excited emission lines of other heavy elements to find metallicities in their BELR regions. We found that seven of the eight line-intensity ratios that we employed give roughly consistent metallicities as measured, but that for each individual QSO their differences from the mean of all metallicity measurements depend on the ionization potential of the ions that form the emission lines. After correcting for this effect, the different line-intensity ratios give metallicities that generally agree to within the 0.24 dex uncertainty in the measurements of the line-intensity ratios. The metallicities are very high, with mean log Z for the whole sample of 5.5 Z⊙ and a maximum of 18 Z⊙. Our results argue against the possibility that the strong N lines represent an overabundance only of N but not of all heavy elements. They are compatible with either that (1) the BELR gas has been chemically enriched by the general stellar population in the central bulge of the host galaxy, but the locally optimally emitting cloud model used in the analysis needs some fine tuning or (2) that instead this gas has been enriched by intense star formation on the very local scale of the active nucleus that has resulted in an abundance gradient within the BELR.

  15. Strong optical and UV intermediate-width emission lines in the quasar SDSS J232444.80-094600.3: dust-free and intermediate-density gas at the skin of dusty torus?

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Zhen; Zhou, Hong-Yan; Hao, Lei; Wang, Shu-Fen; Ji, Tuo; Liu, Bo

    2016-09-01

    Emission lines from the broad emission line region (BELR) and the narrow emission line region (NELR) of active galactic nuclei (AGNs) have been extensively studied. However, emission lines are rarely detected between these two regions. We present a detailed analysis of quasar SDSS J232444.80-094600.3 (SDSS J2324-0946), which is remarkable for its strong intermediate-width emission lines (IELs) with FWHM ≈ 1800 km s-1. The IEL component is present in different emission lines, including the permitted lines Lyα λ1216, CIV λ1549, semiforbidden line [CIII] λ1909, and forbidden lines [OIII] λλ4959, 5007. With the aid of photo-ionization models, we found that the IELs are produced by gas with a hydrogen density of nH ˜ 106.2 ˜ 106.3 cm-3, a distance from the central ionizing source of R ˜ 35 - 50 pc, a covering factor of ˜ 6%, and a dust-to-gas ratio of ≤ 4% that of the SMC. We suggest that the strong IELs of this quasar are produced by nearly dust-free and intermediate-density gas located at the skin of the dusty torus. Such strong IELs, which serve as a useful diagnostic, can provide an avenue to study the properties of gas between the BELR and the NELR.

  16. CHEMICAL IMAGING OF THE CO SNOW LINE IN THE HD 163296 DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Chunhua; Öberg, Karin I.; Andrews, Sean M.

    2015-11-10

    The condensation fronts (snow lines) of H{sub 2}O, CO, and other abundant volatiles in the midplane of a protoplanetary disk affect several aspects of planet formation. Locating the CO snow line, where the CO gas column density is expected to drop substantially, based solely on CO emission profiles, is challenging. This has prompted an exploration of chemical signatures of CO freeze-out. We present ALMA Cycle 1 observations of the N{sub 2}H{sup +} J = 3−2 and DCO{sup +} J = 4−3 emission lines toward the disk around the Herbig Ae star HD 163296 at ∼0.″5 (60 AU) resolution, and evaluatemore » their utility as tracers of the CO snow line location. The N{sub 2}H{sup +} emission is distributed in a ring with an inner radius at 90 AU, corresponding to a midplane temperature of 25 K. This result is consistent with a new analysis of optically thin C{sup 18}O data, which implies a sharp drop in CO abundance at 90 AU. Thus N{sub 2}H{sup +} appears to be a robust tracer of the midplane CO snow line. The DCO{sup +} emission also has a ring morphology, but neither the inner nor the outer radius coincide with the CO snow line location of 90 AU, indicative of a complex relationship between DCO{sup +} emission and CO freeze-out in the disk midplane. Compared to TW Hya, CO freezes out at a higher temperature in the disk around HD 163296 (25 versus 17 K in the TW Hya disk), perhaps due to different ice compositions. This highlights the importance of actually measuring the CO snow line location, rather than assuming a constant CO freeze-out temperature for all disks.« less

  17. First light - II. Emission line extinction, population III stars, and X-ray binaries

    NASA Astrophysics Data System (ADS)

    Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin; O'Shea, Brian W.; Norman, Michael L.; Xu, Hao

    2018-02-01

    We produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of their rate of occurrence are Ly α, the C IV λλ1548, 1551 doublet, H α, and the Ca II λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w - J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.

  18. Early Science with the Large Millimeter Telescope: observations of dust continuum and CO emission lines of cluster-lensed submillimetre galaxies at z=2.0-4.7

    NASA Astrophysics Data System (ADS)

    Zavala, J. A.; Yun, M. S.; Aretxaga, I.; Hughes, D. H.; Wilson, G. W.; Geach, J. E.; Egami, E.; Gurwell, M. A.; Wilner, D. J.; Smail, Ian; Blain, A. W.; Chapman, S. C.; Coppin, K. E. K.; Dessauges-Zavadsky, M.; Edge, A. C.; Montaña, A.; Nakajima, K.; Rawle, T. D.; Sánchez-Argüelles, D.; Swinbank, A. M.; Webb, T. M. A.; Zeballos, M.

    2015-09-01

    We present Early Science observations with the Large Millimeter Telescope, AzTEC 1.1 mm continuum images and wide bandwidth spectra (73-111 GHz) acquired with the Redshift Search Receiver, towards four bright lensed submillimetre galaxies identified through the Herschel Lensing Survey-snapshot and the Submillimetre Common-User Bolometer Array-2 Cluster Snapshot Survey. This pilot project studies the star formation history and the physical properties of the molecular gas and dust content of the highest redshift galaxies identified through the benefits of gravitational magnification. We robustly detect dust continuum emission for the full sample and CO emission lines for three of the targets. We find that one source shows spectroscopic multiplicity and is a blend of three galaxies at different redshifts (z = 2.040, 3.252, and 4.680), reminiscent of previous high-resolution imaging follow-up of unlensed submillimetre galaxies, but with a completely different search method, that confirm recent theoretical predictions of physically unassociated blended galaxies. Identifying the detected lines as 12CO (Jup = 2-5) we derive spectroscopic redshifts, molecular gas masses, and dust masses from the continuum emission. The mean H2 gas mass of the full sample is (2.0 ± 0.2) × 1011 M⊙/μ, and the mean dust mass is (2.0 ± 0.2) × 109 M⊙/μ, where μ ≈ 2-5 is the expected lens amplification. Using these independent estimations we infer a gas-to-dust ratio of δGDR ≈ 55-75, in agreement with other measurements of submillimetre galaxies. Our magnified high-luminosity galaxies fall on the same locus as other high-redshift submillimetre galaxies, extending the L^' }_CO-LFIR correlation observed for local luminous and ultraluminous infrared galaxies to higher far-infrared and CO luminosities.

  19. A long-term study of H(alpha) line variations in FK Comae Berenices

    NASA Technical Reports Server (NTRS)

    Welty, Alan D.; Ramsey, Lawrence W.; Iyengar, Mrinal; Nations, Harold L.; Buzasi, Derek L.

    1993-01-01

    We present observations of H(alpha) V/R ratio variations in FK Comae Berencies obtained during several observing seasons from 1981 to 1992. The raw H(alpha) emission profile is always observed to be double peaked due to the stellar-absorption component. During the most years the V/R ratio varies regularly with the period of the photometric light curve. The V/R periodicity is most obvious when time spans no longer than several stellar rotations are considered. We propose that the bulk of the emission component of the H(alpha) line arises in corotating circumstellar material that may be similar to that of a quiescent solar prominence. The lifetime of these structures appears to be on the order of weeks. A weak contribution from a circumstellar disk is evident and chromospheric emission may also be present. The appearance or disappearance of circumstellar structures over periods longer than a few weeks, or the total absence of such structures, blurs the more regular variations in H(alpha) seen over short time scales. Other more stochastic activity, such as flares, also clearly occurs. Phase shifts of the V/R ratio from year to year rule out the hypothesis that mass tranfer in a close binary system is responsible for the V/R variations.

  20. Far-infrared rotational emission by carbon monoxide

    NASA Technical Reports Server (NTRS)

    Mckee, C. F.; Storey, J. W. V.; Watson, D. M.; Green, S.

    1982-01-01

    Accurate theoretical collisional excitation rates are used to determine the emissivities of CO rotational lines for an H2 molecule content of at least 10,000/cu cm, temperature in the range 100-3000 K, and J not more than 60 under the assumption that the lines are optically thin. An approximate analytic expression for the emissivities which is valid in this region is obtained. Population inversions in the lower rotational levels occur for densities of molecular H2 around 1000-100,000/cu cm and temperatures T not more than about 50 K provided photon trapping is unimportant. Interstellar shocks observed edge-on are a potential source of weak millimeter-wave CO maser emission.

  1. The implementation of non-Voigt line profiles in the HITRAN database: H2 case study

    NASA Astrophysics Data System (ADS)

    Wcisło, P.; Gordon, I. E.; Tran, H.; Tan, Y.; Hu, S.-M.; Campargue, A.; Kassi, S.; Romanini, D.; Hill, C.; Kochanov, R. V.; Rothman, L. S.

    2016-07-01

    Experimental capabilities of molecular spectroscopy and its applications nowadays require a sub-percent or even sub-per mille accuracy of the representation of the shapes of molecular transitions. This implies the necessity of using more advanced line-shape models which are characterized by many more parameters than a simple Voigt profile. It is a great challenge for modern molecular spectral databases to store and maintain the extended set of line-shape parameters as well as their temperature dependences. It is even more challenging to reliably retrieve these parameters from experimental spectra over a large range of pressures and temperatures. In this paper we address this problem starting from the case of the H2 molecule for which the non-Voigt line-shape effects are exceptionally pronounced. For this purpose we reanalyzed the experimental data reported in the literature. In particular, we performed detailed line-shape analysis of high-quality spectra obtained with cavity-enhanced techniques. We also report the first high-quality cavity-enhanced measurement of the H2 fundamental vibrational mode. We develop a correction to the Hartmann-Tran profile (HTP) which adjusts the HTP to the particular model of the velocity-changing collisions. This allows the measured spectra to be better represented over a wide range of pressures. The problem of storing the HTP parameters in the HITRAN database together with their temperature dependences is also discussed.

  2. Thermal Water Vapor Emission from Shocked Regions in Orion

    NASA Technical Reports Server (NTRS)

    Harwitt, Martin; Neufeld, David A.; Melnick, Gary J.; Kaufman, Michael J.

    1998-01-01

    Using the Long Wavelength Spectrometer on board the Infrared Space Observatory, we have observed thermal water vapor emission from a roughly circular field of view approximately 75" in diameter centered on the Orion BN-KL region. The Fabry-Perot line strengths, line widths, and spectral line shifts observed in eight transitions between 71 and 125 micron show good agreement with models of thermal emission arising from a molecular cloud subjected to a magnetohydrodynamic C-type shock. Both the breadth and the relative strengths of the observed lines argue for emission from a shock rather than from warm quiescent gas in the Orion core. Although one of the eight transitions appears anomalously strong and may be subject to the effects of radiative pumping, the other seven indicate an H2O/H2 abundance ratio on the order of 5 x 10(exp -4) and a corresponding gas-phase oxygen-to-hydrogen abundance ratio on the order of 4 x 10(exp -4). Given current estimates of the interstellar, gas-phase, oxygen and carbon abundances in the solar vicinity, this value is consistent with theoretical shock models that predict the conversion into water of all the gas-phase oxygen that is not bound as CO. The overall cooling provided by rotational transitions of H2O in this region appears to be comparable to the cooling through rotational lines of CO but is an order of magnitude lower than cooling through H2 emission. However, the model that best fits our observations shows cooling by H2O and CO dominant in that portion of the postshock region where temperatures are below approximately 800 K and neither vibrational nor rotational radiative cooling by H2 is appreciable.

  3. Emission-line studies of young stars. 4: The optical forbidden lines

    NASA Astrophysics Data System (ADS)

    Hamann, Fred

    1994-08-01

    Optical forbidden line strengths and profiles are discussed for a sample of 30 T Tauri stars and 12 Herbig Ae-Be stars. Transitions of (C I), (N II), (O I), (O II), (S II), (Ca II), (Cr II), (Fe II), and (Ni II) are detected. Profile variability occurred in DG Tau and probably other sources. The ensemble profiles can be divided into four generic components that may represent distinct emitting regions; (1) narrow rest-velocity lines, (2) 'low'-velocity lines (peaking at less than or approximately +/- 50 km s-1), (3) 'high'-velocity (usually greater than or approximately +/- 100 km s-1) blueshifted peaks or wings, and (4) high-velocity redshifted peaks. Among T Tauri stars, the rest-velocity lines appear most often in sources with weak and narrow permitted lines, such as the Ca II triplet. The low- and high-velocity blueshifted components usually appear together in sources with strong and broad Ca II triplet lines. If the velocity-shifted lines form in jets, the smallest (full) opening angles required by the profiles are less than or approximately 20 deg for the narrow, blueshifted (Ca II) lines of DG Tau and HL Tau. Other lines in DG Tau are much broader, implying larger opening angles or greater velocity dispersions. The variability in DG Tau also implies significant changes in the collimation or velocity coherence on timescales of a few years. RW Aur and AS 353A have blue- and redshifted line peaks that could form in oppositely directed jets. The strong (S II) lambda 6716 and lambda 6731 lines in RW Aur are exclusively redshifted and require opening angles less than or approximately 60 deg. Measurements of different profiles in the same spectrum show that the physical conditions change with the line-of-sight velocities. The most persistent trends are for more (N II) and (O II) and less (O I) lambda 5577 flux at high velocities. Constraints on the physical conditions are derived by modeling the emission lines via multilevel ions in 'coronal ionization equilibrium

  4. Emission-line studies of young stars. 4: The optical forbidden lines

    NASA Technical Reports Server (NTRS)

    Hamann, Fred

    1994-01-01

    Optical forbidden line strengths and profiles are discussed for a sample of 30 T Tauri stars and 12 Herbig Ae-Be stars. Transitions of (C I), (N II), (O I), (O II), (S II), (Ca II), (Cr II), (Fe II), and (Ni II) are detected. Profile variability occurred in DG Tau and probably other sources. The ensemble profiles can be divided into four generic components that may represent distinct emitting regions; (1) narrow rest-velocity lines, (2) 'low'-velocity lines (peaking at less than or approximately +/- 50 km s(exp -1)), (3) 'high'-velocity (usually greater than or approximately +/- 100 km s(exp -1)) blueshifted peaks or wings, and (4) high-velocity redshifted peaks. Among T Tauri stars, the rest-velocity lines appear most often in sources with weak and narrow permitted lines, such as the Ca II triplet. The low- and high-velocity blueshifted components usually appear together in sources with strong and broad Ca II triplet lines. If the velocity-shifted lines form in jets, the smallest (full) opening angles required by the profiles are less than or approximately 20 deg for the narrow, blueshifted (Ca II) lines of DG Tau and HL Tau. Other lines in DG Tau are much broader, implying larger opening angles or greater velocity dispersions. The variability in DG Tau also implies significant changes in the collimation or velocity coherence on timescales of a few years. RW Aur and AS 353A have blue- and redshifted line peaks that could form in oppositely directed jets. The strong (S II) lambda 6716 and lambda 6731 lines in RW Aur are exclusively redshifted and require opening angles less than or approximately 60 deg. Measurements of different profiles in the same spectrum show that the physical conditions change with the line-of-sight velocities. The most persistent trends are for more (N II) and (O II) and less (O I) lambda 5577 flux at high velocities. Constraints on the physical conditions are derived by modeling the emission lines via multilevel ions in 'coronal ionization

  5. Sub-arcsecond imaging of the water emission in Arp 220.

    PubMed

    König, S; Martín, S; Muller, S; Cernicharo, J; Sakamoto, K; Zschaechner, L K; Humphreys, E M L; Mroczkowski, T; Krips, M; Galametz, M; Aalto, S; Vlemmings, W H T; Ott, J; Meier, D S; Fuente, A; García-Burillo, S; Neri, R

    2017-06-01

    Extragalactic observations of water emission can provide valuable insights into the excitation of the interstellar medium. In particular they allow us to investigate the excitation mechanisms in obscured nuclei, i.e. whether an active galactic nucleus or a starburst dominate. We use sub-arcsecond resolution observations to tackle the nature of the water emission in Arp 220. ALMA Band 5 science verification observations of the 183 GHz H 2 O 3 13 -2 20 line, in conjunction with new ALMA Band 7 H 2 O 5 15 -4 22 data at 325 GHz, and supplementary 22 GHz H 2 O 6 16 - 5 23 VLA observations, are used to better constrain the parameter space in the excitation modelling of the water lines. We detect 183 GHz H 2 O and 325 GHz water emission towards the two compact nuclei at the center of Arp 220, being brighter in Arp 220 West. The emission at these two frequencies is compared to previous single-dish data and does not show evidence of variability. The 183 and 325 GHz lines show similar spectra and kinematics, but the 22 GHz profile is significantly different in both nuclei due to a blend with an NH 3 absorption line. Our findings suggest that the most likely scenario to cause the observed water emission in Arp 220 is a large number of independent masers originating from numerous star-forming regions.

  6. DETECTION OF THE INTERMEDIATE-WIDTH EMISSION LINE REGION IN QUASAR OI 287 WITH THE BROAD EMISSION LINE REGION OBSCURED BY THE DUSTY TORUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenzhen; Zhou, Hongyan; Wang, Huiyuan

    2015-10-20

    The existence of intermediate-width emission line regions (IELRs) in active galactic nuclei has been discussed for over two decades. A consensus, however, is yet to be arrived at due to the lack of convincing evidence for their detection. We present a detailed analysis of the broadband spectrophotometry of the partially obscured quasar OI 287. The ultraviolet intermediate-width emission lines (IELs) are very prominent, in high contrast to the corresponding broad emission lines (BELs) which are heavily suppressed by dust reddening. Assuming that the IELR is virialized, we estimated its distance to the central black hole to be ∼2.9 pc, similarmore » to the dust sublimation radius of ∼1.3 pc. Photo-ionization calculations suggest that the IELR has a hydrogen density of ∼10{sup 8.8}–10{sup 9.4} cm{sup −3}, within the range of values quoted for the dusty torus near the sublimation radius. Both its inferred location and physical conditions suggest that the IELR originates from the inner surface of the dusty torus. In the spectrum of this quasar, we identified only one narrow absorption-line system associated with the dusty material. With the aid of photo-ionization model calculations, we found that the obscuring material might originate from an outer region of the dusty torus. We speculate that the dusty torus, which is exposed to the central ionizing source, may produce IELs through photo-ionization processes, as well as obscure BELs as a natural “coronagraph.” Such a “coronagraph” could be found in a large number of partially obscured quasars and may be a useful tool to study IELRs.« less

  7. Hot chemistry in the diffuse medium: spectral signature in the H2 rotational lines

    NASA Astrophysics Data System (ADS)

    Verstraete, L.; Falgarone, E.; Pineau des Forets, G.; Flower, D.; Puget, J. L.

    1999-03-01

    Most of the diffuse interstellar medium is cold, but it must harbor pockets of hot gas to explain the large observed abundances of molecules like CH+ and HCO+. Because they dissipate locally large amounts of kinetic energy, MHD shocks and coherent vortices in turbulence can drive endothermic chemical reactions or reactions with large activation barriers. We predict the spectroscopic signatures in the H2 rotational lines of MHD shocks and vortices and compare them to those observed with the ISO-SWS along a line of sight through the Galaxy which samples 20 magnitudes of mostly diffuse gas.

  8. A SPITZER SURVEY OF MID-INFRARED MOLECULAR EMISSION FROM PROTOPLANETARY DISKS. I. DETECTION RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontoppidan, Klaus M.; Blake, Geoffrey A.; Meijerink, Rowin

    2010-09-01

    We present a Spitzer InfraRed Spectrometer search for 10-36 {mu}m molecular emission from a large sample of protoplanetary disks, including lines from H{sub 2}O, OH, C{sub 2}H{sub 2}, HCN, and CO{sub 2}. This paper describes the sample and data processing and derives the detection rate of mid-infrared molecular emission as a function of stellar mass. The sample covers a range of spectral type from early M to A, and is supplemented by archival spectra of disks around A and B stars. It is drawn from a variety of nearby star-forming regions, including Ophiuchus, Lupus, and Chamaeleon. Spectra showing strong emissionmore » lines are used to identify which lines are the best tracers of various physical and chemical conditions within the disks. In total, we identify 22 T Tauri stars with strong mid-infrared H{sub 2}O emission. Integrated water line luminosities, where water vapor is detected, range from 5 x 10{sup -4} to 9 x 10{sup -3} L{sub sun}, likely making water the dominant line coolant of inner disk surfaces in classical T Tauri stars. None of the five transitional disks in the sample show detectable gaseous molecular emission with Spitzer upper limits at the 1% level in terms of line-to-continuum ratios (apart from H{sub 2}), but the sample is too small to conclude whether this is a general property of transitional disks. We find a strong dependence on detection rate with spectral type; no disks around our sample of 25 A and B stars were found to exhibit water emission, down to 1%-2% line-to-continuum ratios, in the mid-infrared, while more than half of disks around late-type stars (M-G) show sufficiently intense water emission to be detected by Spitzer, with a detection rate approaching 2/3 for disks around K stars. Some Herbig Ae/Be stars show tentative H{sub 2}O/OH emission features beyond 20 {mu}m at the 1%-2% level, however, and one of them shows CO{sub 2} in emission. We argue that the observed differences between T Tauri disks and Herbig Ae/Be disks are

  9. C-H Hot Bands in the Near-IR Emission Spectra of Leonids

    NASA Technical Reports Server (NTRS)

    Freund, F. T.; Scoville, J.; Holm, R.; Seelemann, R.; Freund, M. M.

    2002-01-01

    The reported infrared (IR) emission spectra from 1999 Leonid fireballs show a 3.4 micron C-H emission band and unidentified bands at longer wavelengths. Upon atmospheric entry, the Leonid meteorites were flash-heated to temperatures around 2400K, which would destroy any organics on the surface of the meteorite grains. We propose that the nu(sub )CH emission band in the Leonid emission spectra arises from matrix-embedded C(sub n)-H-O entities that are protected from instant pyrolysis. Our model is based on IR absorption nu(sub )CH bands, which we observed in laboratory-grown MgO and natural olivine single crystals, where they arise from C(sub n)-H-O units imbedded in the mineral matrix, indicative of aliphatic -CH2- and -CH3 organics. Instead of being pyrolyzed, the C(sub n)-H-O entities in the Leonid trails become vibrationally excited to higher levels n = 1, 2, 3 etc. During de-excitation they emit at 3.4 microns, due to the (0 => 1) transition, and at longer wavelengths, due to hot bands. As a first step toward verifying this hypothesis we measured the C-H vibrational manifold of hexane (C6H14). The calculated positions of the (2 => l ) , (3 => 2), and possibly (4 => 3) hot bands agree with the Leonid emission bands at 3.5, 3.8 and 4.l microns.

  10. VizieR Online Data Catalog: Excess CaII H&K emission in active binaries (Montes+, 1996)

    NASA Astrophysics Data System (ADS)

    Montes, D.; Fernandez-Figueroa, M. J.; Cornide, M.; de Castro, E.

    1996-05-01

    In this work we analyze the behaviour of the excess CaII H & K and H_epsilon emissions in a sample of 73 chromospherically active binary systems (RS CVn and BY Dra classes), of different activity levels and luminosity classes. This sample includes the 53 stars analyzed by Fernandez-Figueroa et al. (1994) and the observations of 28 systems described by Montes et al. (1995). By using the spectral subtraction technique (subtraction of a synthesized stellar spectrum constructed from reference stars of spectral type and luminosity class similar to those of the binary star components) we obtain the active-chromosphere contribution to the CaII H & K lines in these 73 systems. We have determined the excess CaII H & K emission equivalent widths and converted them into surface fluxes. The emissions arising from each component were obtained when it was possible to deblend both contributions. (4 data files).

  11. Cloudy 94 and Applications to Quasar Emission Line Regions

    NASA Technical Reports Server (NTRS)

    Ferland, Gary J.

    2000-01-01

    This review discusses the most recent developments of the plasma simulation code Cloudy and its application to the, emission-line regions of quasars. The longterm goal is to develop the tools needed to determine the chemical composition of the emitting gas and the luminosity of the central engine for any emission line source. Emission lines and the underlying thermal continuum are formed in plasmas that are far from thermodynamic equilibrium. Their thermal and ionization states are the result of a balance of a vast set of microphysical processes. Once produced, radiation must, propagate out of the (usually) optically thick source. No analytic solutions are possible, and recourse to numerical simulations is necessary. I am developing the large-scale plasma simulation code Cloudy as an investigative tool for this work, much as an observer might build a spectrometer. This review describes the current version of Cloudy, version 94. It describes improvements made since the, release of the previous version, C90. The major recent, application has been the development of the "Locally Optimally-Emitting Cloud" (LOC) model of AGN emission line regions. Powerful selection effects, introduced by the atomic physics and line formation process, permit individual lines to form most efficiently only near certain selected parameters. These selection effects, together with the presence of gas with a wide range of conditions, are enough to reproduce the spectrum of a typical quasar with little dependence on details. The spectrum actually carries little information to the identity of the emitters. I view this as a major step forward since it provides a method to handle accidental details at the source, so that we can concentrate on essential information such as the luminosity or chemical composition of the quasar.

  12. Photoionization Modelling of the Giant Broad-Line Region in NGC 3998.

    NASA Astrophysics Data System (ADS)

    Devereux, Nicholas

    2018-01-01

    Prior high angular resolution spectroscopic observations of the low-ionization nuclear emission-line region in NGC 3998 obtained with the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope revealed a rich UV-visible spectrum consisting of broad permitted and broad forbidden emission lines. The photoionization code XSTAR is employed together with reddening-insensitive emission line diagnostics to constrain a dynamical model for the broad-line region (BLR) in NGC 3998. The BLR is modelled as a large H+ region ~ 7 pc in radius consisting of dust-free, low density ~ 104 cm-3, low metallicity ~ 0.01 Z/Z⊙ gas. Modelling the shape of the broad Hα emission line significantly discriminates between two independent measures of the black hole mass, favouring the estimate of de Francesco (2006). Interpreting the broad Hα emission line in terms of a steady-state spherically symmetric inflow leads to a mass inflow rate of 1.4 x 10-2 M⊙/yr, well within the present uncertainty of calculations that attempt to explain the observed X-ray emission in terms of an advection-dominated accretion flow (ADAF). Collectively, the model provides an explanation for the shape of the Hα emission line, the relative intensities and luminosities for the H Balmer, [OIII], and potentially several of the broad UV emission lines, as well as refining the initial conditions needed for future modelling of the ADAF.

  13. Rapid reagent-less on-line H2O2 quantification in alkaline semiconductor etching solution, Part 2: Nephelometry application.

    PubMed

    Zlatev, Roumen; Stoytcheva, Margarita; Valdez, Benjamin

    2018-03-01

    A simple and rapid reagent less nephelometric method for on-line H 2 O 2 quantification in semiconductors etching solutions was developed, optimized, characterized and validated. The intensity of the light scattered by the oxygen gas suspension resulted from H 2 O 2 catalytic decomposition by immobilized MnO 2 was registered as analytical response. The influences of the light wave length, the agitation rate, the temperature and the catalyst surface area on the response amplitude were studied and optimization was done. The achieved linear concentration range from 10 to 150mmolL -1 at 0.9835 calibration curve correlation coefficient, precision from 3.65% to 0.95% and response time from 35 to 20s respectively, at sensitivity of 8.01µAmmol -1 L and LOD of 2.9mmolL -1 completely satisfy the semiconductor industry requirements. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Astrophysical Applications for Charge-Exchange with H, He, and H2 Targets

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata S.; Mullen, Patrick D.; Shelton, Robin L.; Schultz, David R.; Stancil, Phillip C.

    2018-01-01

    When a hot plasma collides with a cold neutral gas, interactions occur between the constituents at the interface of the collision, including charge exchange (CX). CX is a process in which an electron can be transferred from a neutral atom or molecule into an excited energy level of an ion. Following this transfer, the excited electron relaxes to lower energy levels, emitting X-rays. This process has been established as a primary source of X-ray emission within our solar system, such as when the solar wind interacts with cometary and planetary atmospheres, and outside of our solar system, such as in the hot outflows of starburst galaxies.As the CX X-ray emission spectrum varies greatly with collision velocity, it is critical that realistic CX data are included in X-ray spectral models in regions in which CX might be significant so that the ion abundance and plasma velocities can be estimated most accurately. Here, a set of CX X-ray line ratios and spectra will be shown for a variety of collision velocities for C-Cl ions colliding with H, He, and H2. An X-ray emission model including these line ratios performed in XSPEC will be presented for a region of the Cygnus Loop supernova remnant and the starburst galaxy M82 in order to highlight the variation in CX spectral models with collision energy and neutral target species.R. Cumbee’s research was partially supported by an appointment to the NASA Postdoctoral Program at NASA GSFC, administered by Universities Space Research Association under contract with NASA. Work at UGA was partially supported by NASA grants NNX09AC46G and NNG09WF24I.

  15. Mid-IR Properties of an Unbiased AGN Sample of the Local Universe. 1; Emission-Line Diagnostics

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Melendez, M.; Muhotzky, R. F.; Kraemer, S.; Engle, K.; Malumuth. E.; Tueller, J.; Markwardt, C.; Berghea, C. T.; Dudik, R. P.; hide

    2010-01-01

    \\Ve compare mid-IR emission-lines properties, from high-resolution Spitzer IRS spectra of a statistically-complete hard X-ray (14-195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 microns, [Ne II] 12.81 microns, [Ne III] 15.56 microns and [Ne V] 14.32 microns, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations, although six newly discovered BAT AGNs are shown to be under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT luminosities suggests that the emission lines primarily arise in gas ionized by the AGN. We also compared the mid-IR emission-lines in the BAT AGNs with those from published studies of star-forming galaxies and LINERs. We found that the BAT AGN fall into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] quantities. From this we found that sources that have been previously classified in the mid-infrared/optical as AGN have smaller emission line ratios than those found for the BAT AGNs, suggesting that, in our X-ray selected sample, the AGN represents the main contribution to the observed line emission. Overall, we present a different set of emission line diagnostics to distinguish between AGN and star forming galaxies that can be used as a tool to find new AGN.

  16. Discovery of New Coronal Lines at 2.843 and 2.853 μm

    NASA Astrophysics Data System (ADS)

    Samra, Jenna E.; Judge, Philip G.; DeLuca, Edward E.; Hannigan, James W.

    2018-04-01

    Two new emission features were observed during the 2017 August 21 total solar eclipse by a novel spectrometer, the Airborne Infrared Spectrometer (AIR-Spec), flown at 14.3 km altitude aboard the NCAR Gulfstream-V aircraft. We derive wavelengths in air of 2.8427 ± 0.00009 μm and 2.8529 ± 0.00008 μm. One of these lines belongs to the 3{{{p}}}53{{d}}{}3{{{F}}}3^\\circ \\to 3{{{p}}}53{{d}}{}3{{{F}}}4^\\circ transition in Ar-like Fe IX. This appears to be the first detection of this transition from any source. Minimization of residual wavelength differences using both measured wavelengths, together with National Institute of Standards and Technology (NIST) extreme ultraviolet wavelengths, does not clearly favor assignment to Fe IX. However, the shorter wavelength line appears more consistent with other observed features formed at similar temperatures to Fe IX. The transition occurs between two levels within the excited 3{{{p}}}53{{d}} configuration, 429,000 cm‑1 above the ground level. The line is therefore absent in photo-ionized coronal-line astrophysical sources such as the Circinus Galaxy. Data from a Fourier transform interferometer (FTIR) deployed from Wyoming show that both lines are significantly attenuated by telluric H2O, even at dry sites. We have been unable to identify the longer wavelength transition.

  17. Chapter 2: Livestock and Grazed Lands Emissions

    USDA-ARS?s Scientific Manuscript database

    A total of 342 MMT CO2 eq. of greenhouse gasses (GHGs) were emitted from livestock, managed livestock waste, and grazed land in 2013. This represents about 66% of total emissions from the agricultural sector, which totaled 516 MMT CO2 eq. Compared to the base line year (1990), emissions from livesto...

  18. THE DISTRIBUTION AND CHEMISTRY OF H{sub 2}CO IN THE DM TAU PROTOPLANETARY DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, Ryan A.; Öberg, Karin I.; Guzman, Viviana V.

    H{sub 2}CO ice on dust grains is an important precursor of complex organic molecules (COMs). H{sub 2}CO gas can be readily observed in protoplanetary disks and may be used to trace COM chemistry. However, its utility as a COM probe is currently limited by a lack of constraints on the relative contributions of two different formation pathways: on icy grain surfaces and in the gas phase. We use archival Atacama Large (sub-)Millimeter Array observations of the resolved distribution of H{sub 2}CO emission in the disk around the young low-mass star DM Tau to assess the relative importance of these formationmore » routes. The observed H{sub 2}CO emission has a centrally peaked and radially broad brightness profile (extending out to 500 AU). We compare these observations with disk chemistry models with and without grain-surface formation reactions and find that both gas and grain-surface chemistry are necessary to explain the spatial distribution of the emission. Gas-phase H{sub 2}CO production is responsible for the observed central peak, while grain-surface chemistry is required to reproduce the emission exterior to the CO snow line (where H{sub 2}CO mainly forms through the hydrogenation of CO ice before being non-thermally desorbed). These observations demonstrate that both gas and grain-surface pathways contribute to the observed H{sub 2}CO in disks and that their relative contributions depend strongly on distance from the host star.« less

  19. VizieR Online Data Catalog: NGC253 near-infrared H2 emission (Rosenberg+,

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J. F.; van der Werf, P. P.; Israel, F. P.

    2012-11-01

    All observations were made with SINFONI at the ESO VLT. We observed in the H, and K bands using a spatial pixel scale of 0.25" corresponding to a field of view of 8" by 8" per frame and a spectral resolution of 2000, 3000 and 4000 respectively, which corresponds to a velocity resolution of 149.8, 99.9 and 74.9km/s. All science observations were taken in the ABA'nodding mode (300s of object, 300s of sky, 300s of object), where A' is slightly offset from A. The object exposures are aligned and averaged during the reconstruction of the data cube. The observations of NGC 253 were made in visitor mode on August 28th, 2005. In order to capture the full extent of the H2 emission, consecutive frames were taken in the K band moving further away from the center, along the disk until H2 was no longer detected. This resulted in 6 separate pointings. Since there are also H2 transitions in the H band, a similar strategy was used, resulting in 4 separate pointings. We used the standard reduction techniques of the SINFONI pipeline on all observations, including corrections for flat field, dark current, nonlinearity of pixels, distortion, and wavelength calibration. We obtained the flux calibration and atmospheric corrections from observations of a standard star, namely HR 2058 in the H band and HD 20001 in the K band (2 data files).

  20. Emission-line maps with OSIRIS-TF: The case of M101

    NASA Astrophysics Data System (ADS)

    Méndez-Abreu, J.

    2013-05-01

    We investigate the suitability of GTC/OSIRIS Tunable Filters (TFs) for obtaining emission-line maps of extended objects. We developed a technique to reconstruct an emission-line image from a set of images taken at consecutive central wavelengths. We demonstrate the feasibility of the reconstruction method by generating a flux calibrated Hα image of the well-known spiral galaxy M101. We tested our emission-line fluxes and ratios by using data present in the literature. We found that the differences in both Hα fluxes and N II/Hα line ratios are ~15% and ~50%, respectively. These results are fully in agreement with the expected values for our observational setup. The proposed methodology will allow us to use OSIRIS/GTC to perform accurate spectrophotometric studies of extended galaxies in the local Universe.

  1. Increased H2CO production in the outer disk around HD 163296

    NASA Astrophysics Data System (ADS)

    Carney, M. T.; Hogerheijde, M. R.; Loomis, R. A.; Salinas, V. N.; Öberg, K. I.; Qi, C.; Wilner, D. J.

    2017-09-01

    Context. The gas and dust in circumstellar disks provide the raw materials to form planets. The study of organic molecules and their building blocks in such disks offers insight into the origin of the prebiotic environment of terrestrial planets. Aims: We aim to determine the distribution of formaldehyde, H2CO, in the disk around HD 163296 to assess the contribution of gas- and solid-phase formation routes of this simple organic. Methods: Three formaldehyde lines were observed (H2CO 303-202, H2CO 322-221, and H2CO 321-220) in the protoplanetary disk around the Herbig Ae star HD 163296 with ALMA at 0.5″ (60 AU) spatial resolution. Different parameterizations of the H2CO abundance were compared to the observed visibilities, using either a characteristic temperature, a characteristic radius or a radial power law index to describe the H2CO chemistry. Similar models were applied to ALMA Science Verification data of C18O. In each scenario, χ2 minimization on the visibilities was used to determine the best-fit model in each scenario. Results: H2CO 303-202 was readily detected via imaging, while the weaker H2CO 322-221 and H2CO 321-220 lines required matched filter analysis to detect. H2CO is present throughout most of the gaseous disk, extending out to 550 AU. An apparent 50 AU inner radius of the H2CO emission is likely caused by an optically thick dust continuum. The H2CO radial intensity profile shows a peak at 100 AU and a secondary bump at 300 AU, suggesting increased production in the outer disk. In all modeling scenarios, fits to the H2CO data show an increased abundance in the outer disk. The overall best-fit H2CO model shows a factor of two enhancement beyond a radius of 270 ± 20 AU, with an inner abundance (relative to H2) of 2 - 5 × 10-12. The H2CO emitting region has a lower limit on the kinetic temperature of T> 20 K. The C18O modeling suggests an order of magnitude depletion of C18O in the outer disk and an abundance of 4 - 12 × 10-8 in the inner disk

  2. MARVEL analysis of the rotational-vibrational states of the molecular ions H2D+ and D2H+.

    PubMed

    Furtenbacher, Tibor; Szidarovszky, Tamás; Fábri, Csaba; Császár, Attila G

    2013-07-07

    Critically evaluated rotational-vibrational line positions and energy levels, with associated critically reviewed labels and uncertainties, are reported for two deuterated isotopologues of the H3(+) molecular ion: H2D(+) and D2H(+). The procedure MARVEL, standing for Measured Active Rotational-Vibrational Energy Levels, is used to determine the validated levels and lines and their self-consistent uncertainties based on the experimentally available information. The spectral ranges covered for the isotopologues H2D(+) and D2H(+) are 5.2-7105.5 and 23.0-6581.1 cm(-1), respectively. The MARVEL energy levels of the ortho and para forms of the ions are checked against ones determined from accurate variational nuclear motion computations employing the best available adiabatic ab initio potential energy surfaces of these isotopologues. The number of critically evaluated, validated and recommended experimental (levels, lines) are (109, 185) and (104, 136) for H2D(+) and D2H(+), respectively. The lists of assigned MARVEL lines and levels and variational levels obtained for H2D(+) and D2H(+) as part of this study are deposited in the ESI to this paper.

  3. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-01-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  4. Precise predictions of H2O line shapes over a wide pressure range using simulations corrected by a single measurement

    NASA Astrophysics Data System (ADS)

    Ngo, N. H.; Nguyen, H. T.; Tran, H.

    2018-03-01

    In this work, we show that precise predictions of the shapes of H2O rovibrational lines broadened by N2, over a wide pressure range, can be made using simulations corrected by a single measurement. For that, we use the partially-correlated speed-dependent Keilson-Storer (pcsdKS) model whose parameters are deduced from molecular dynamics simulations and semi-classical calculations. This model takes into account the collision-induced velocity-changes effects, the speed dependences of the collisional line width and shift as well as the correlation between velocity and internal-state changes. For each considered transition, the model is corrected by using a parameter deduced from its broadening coefficient measured for a single pressure. The corrected-pcsdKS model is then used to simulate spectra for a wide pressure range. Direct comparisons of the corrected-pcsdKS calculated and measured spectra of 5 rovibrational lines of H2O for various pressures, from 0.1 to 1.2 atm, show very good agreements. Their maximum differences are in most cases well below 1%, much smaller than residuals obtained when fitting the measurements with the Voigt line shape. This shows that the present procedure can be used to predict H2O line shapes for various pressure conditions and thus the simulated spectra can be used to deduce the refined line-shape parameters to complete spectroscopic databases, in the absence of relevant experimental values.

  5. The SAMI Galaxy Survey: Publicly Available Spatially Resolved Emission Line Data Products

    NASA Astrophysics Data System (ADS)

    Medling, Anne; Green, Andrew W.; Ho, I.-Ting; Groves, Brent; Croom, Scott; SAMI Galaxy Survey Team

    2017-01-01

    The SAMI Galaxy Survey is collecting optical integral field spectroscopy of up to 3400 nearby (z<0.1) galaxies with a range of stellar masses and in a range of environments. The first public data release contains nearly 800 galaxies from the Galaxy And Mass Assembly (GAMA) Survey. In addition to releasing the reduced data cubes, we also provide emission line fits (flux and kinematic maps of strong emission lines including Halpha and Hbeta, [OII]3726,29, [OIII]4959,5007, [OI]6300, [NII]6548,83, and [SII]6716,31), extinction maps, star formation classification masks, and star formation rate maps. We give an overview of the data available for your favorite emission line science and present a few early science results. For example, a sample of edge-on disk galaxies show enhanced extraplanar emission related to SF-driven outflows, which are correlated with a bursty star formation history and higher star formation rate surface densities. Interestingly, the star formation rate surface densities of these wind hosts are 5-100 times lower than the canonical threshold for driving winds (0.1 MSun/yr/kpc2), indicating that galactic winds may be more important in normal star-forming galaxies than previously thought.

  6. ANOMALOUS MICROWAVE EMISSION IN H ii REGIONS: IS IT REALLY ANOMALOUS? THE CASE OF RCW 49

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paladini, Roberta; Ingallinera, Adriano; Agliozzo, Claudia

    2015-11-01

    The detection of an excess of emission at microwave frequencies with respect to the predicted free–free emission has been reported for several Galactic H ii regions. Here, we investigate the case of RCW 49, for which the Cosmic Background Imager tentatively (∼3σ) detected Anomalous Microwave Emission (AME) at 31 GHz on angular scales of 7′. Using the Australia Telescope Compact Array, we carried out a multi-frequency (5, 19, and 34 GHz) continuum study of the region, complemented by observations of the H109α radio recombination line. The analysis shows that: (1) the spatial correlation between the microwave and IR emission persistsmore » on angular scales from 3.′4 to 0.″4, although the degree of the correlation slightly decreases at higher frequencies and on smaller angular scales; (2) the spectral indices between 1.4 and 5 GHz are globally in agreement with optically thin free–free emission, however, ∼30% of these are positive and much greater than −0.1, consistent with a stellar wind scenario; and (3) no major evidence for inverted free–free radiation is found, indicating that this is likely not the cause of the Anomalous Emission in RCW 49. Although our results cannot rule out the spinning dust hypothesis to explain the tentative detection of AME in RCW 49, they emphasize the complexity of astronomical sources that are very well known and studied, such as H ii regions, and suggest that, at least in these objects, the reported excess of emission might be ascribed to alternative mechanisms such as stellar winds and shocks.« less

  7. First Light II: Emission Line Extinction, Population III Stars, and X-ray Binaries

    DOE PAGES

    Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin; ...

    2017-11-17

    Here, we produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of theirmore » rate of occurrence are Ly α, the C iv λλ1548, 1551 doublet, H α, and the Ca ii λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w – J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.« less

  8. First Light II: Emission Line Extinction, Population III Stars, and X-ray Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin

    Here, we produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of theirmore » rate of occurrence are Ly α, the C iv λλ1548, 1551 doublet, H α, and the Ca ii λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w – J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.« less

  9. Origin, Emission, and Propagation of P-H Pulses

    NASA Astrophysics Data System (ADS)

    Kikuchi, H.

    2007-05-01

    Origin, Emission, and Propagation of P-H Pulses H. Kikuchi Institute for Environmental Electromagnetics 3-8-18, Komagome, Toshima-ku, Tokyo 170, Japan e-mail: hkikuchi@mars.dti.ne.jp Abstract According to Pulinets, characters of P-H pulses is following. The registered emission has not continuous but pulsed character and has very wide frequency spectrum from kHz to more than hundred MHz. These two facts imply that should be the electric discharge-like emission similar to thunderstorm flashes emission. The emission is connected in some way with seismic activity and the emission intensity increases 12-24 hour before the seismic shock. Another intriguing factor is that emission is registered at large distances up to 500 km (some witness claim up to 1500 km). Taking into account that emission is registered at VHF band also, the source of emission cannot be situated on the ground. This paper puts forwards a model of P-H pulses generation based on "dust dynamics". Rotating ions ascending, for instance erupped metalic ions in the earth's crust into the atmosphere incorporating aerosols might be captured by diffuse dust layers which may exist below or beyond the electric mirror point produced by quadrupole-like thunder- cloud configurations or even form a portion of dust layers and could be a source-origin of P-H pulses that might be emitted by local electric discharges within diffuse dust layers somewhat similar to thundercloud discharges, though emission frequencies and characters are quite different, namely P-H pulses are over a wide range of frequencies, say from kHz to more than hundred MHz with pulsed character in contrast to lightning emission with more continuous character whose frequencies are 1 to 10 kHz. Such diffuse dust layers could be formed over a wide range of height in the troposphere, stratosphere, mesosphere and the thermosphere. Propagation distance of P-H pulses are very large up to 500-1500 km.

  10. Detection of the H92α recombination line from NGC 4945

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Oosterloo, T.; Goss, W. M.; Anantharamaiah, K. R.

    2010-07-01

    Context. Hydrogen ionized by young, high-mass stars in starburst galaxies radiates radio recombination lines (RRLs), whose strength can be used as a diagnostic of the ionization rate, conditions and gas dynamics in the starburst region, without problems of dust obscuration. However, the lines are weak and only few extragalactic starburst systems have been detected. Aims: We aimed to increase the number of known starburst systems with detectable RRLs for detailed studies, and we used the line properties to study the gas properties and dynamics. Methods: We searched for the RRLs H91α and H92α with rest frequencies of 8.6 GHz and 8.3 GHz in the nearby southern Seyfert galaxy NGC 4945 using the Australia Telescope Compact Array with resolution of 3”. This yielded a detection from which we derived conditions in the starburst regions. Results: We detected RRLs from the nucleus of NGC 4945 with a peak line strength integrated over the source of 17.8 mJy, making it the strongest extragalactic RRL emitter known at this frequency. The line and continuum emission from NGC 4945 can be matched by a model consisting of a collection of 10 to 300 H II regions with temperatures of 5000 K, densities of 103 cm-3 to 104 cm-3 and a total effective diameter of 2 pc to 100 pc. The Lyman continuum production rate required to maintain the ionization is 6 × 1052 s-1 to 3 × 1053 s-1, which requires 2000 to 10 000 O5 stars to be produced in the starburst, inferring a star formation rate of 2 M_⊙ yr-1 to 8 M_⊙ yr-1. We resolved the rotation curve within the central 70 pc region and this is well described by a set of rotating rings that were coplanar and edge on. We found no reason to depart from a simple flat rotation curve. The rotation speed of 120 km s-1 within the central 1” (19 pc) radius infers an enclosed mass of 3 × 107 M⊙, and an average surface density with the central 19 pc of 25 000 pc-2, which exceeds the threshold gas surface density for star formation. Conclusions

  11. Quenching from highly-excited SiO rotational levels due to H2 collision

    NASA Astrophysics Data System (ADS)

    Stancil, Phillip C.; Belayneh, Michael; Wan, Yier; Yang, Benhui H.

    2018-06-01

    Using a full quantum-mechanical close-coupling approach on a 4D rigid-rotor potential energy surface (PES), we performed scattering calculations for highly-excited rotational levels (j=6-10) of SiO for interactions with H2 for the first time. Emission lines from highly excited SiO rotational levels are observed in a variety of environments including outflows from AGB stars. However, explicit collisional data are lacking for H2 colliders, except for recent work from our group for j=1-5. Here we extend that work using a hybrid OpenMP/MPI scattering code and a PES computed at the CCSD(T)-F12b level of theory. The H2 and SiO bond lengths are fixed at their equilibrium values. The current results will allow for non-local thermodynamic models of SiO rotational emission from AGB stars. This work was funded by NASA grant NNX16AF09G.

  12. CO line ratios in molecular clouds: the impact of environment

    NASA Astrophysics Data System (ADS)

    Peñaloza, Camilo H.; Clark, Paul C.; Glover, Simon C. O.; Klessen, Ralf S.

    2018-04-01

    Line emission is strongly dependent on the local environmental conditions in which the emitting tracers reside. In this work, we focus on modelling the CO emission from simulated giant molecular clouds (GMCs), and study the variations in the resulting line ratios arising from the emission from the J = 1-0, J = 2-1, and J = 3-2 transitions. We perform a set of smoothed particle hydrodynamics simulations with time-dependent chemistry, in which environmental conditions - including total cloud mass, density, size, velocity dispersion, metallicity, interstellar radiation field (ISRF), and the cosmic ray ionization rate (CRIR) - were systematically varied. The simulations were then post-processed using radiative transfer to produce synthetic emission maps in the three transitions quoted above. We find that the cloud-averaged values of the line ratios can vary by up to ±0.3 dex, triggered by changes in the environmental conditions. Changes in the ISRF and/or in the CRIR have the largest impact on line ratios since they directly affect the abundance, temperature, and distribution of CO-rich gas within the clouds. We show that the standard methods used to convert CO emission to H2 column density can underestimate the total H2 molecular gas in GMCs by factors of 2 or 3, depending on the environmental conditions in the clouds.

  13. Study of chemical shift in Kα, Kβ1,3 and Kβ// X-ray emission lines of 37Rb compounds with WDXRF

    NASA Astrophysics Data System (ADS)

    Kainth, Harpreet Singh; Singh, Ranjit; Singh, Tejbir; Mehta, D.; Shahi, J. S.; Kumar, Sanjeev

    2018-05-01

    The positive and negative chemical shifts in Kα, Kβ1,3 and Kβ// X-ray emission lines of rubidium compounds were measured with high resolution WDXRF spectrometer. The measured energy shifts in Kα emission lines ranges from -2.95 eV to -3.64 eV, Kβ1,3 emission lines ranges from 1.16 eV to 1.32 eV and Kβ// emission lines ranges from 1.31 eV to 4.36 eV respectively. In the present work, it has been found that chemical shift in Kβ// X-ray emission lines were found to be larger than Kα and Kβ1,3 X-ray emission lines. To find the cause of chemical shift, various factors like effective charge, line intensity ratio, bond length and electro-negativity were calculated and correlated with the chemical shift.

  14. Hydrophilic CeO2 nanocubes protect pancreatic β-cell line INS-1 from H2O2-induced oxidative stress

    NASA Astrophysics Data System (ADS)

    Lyu, Guang-Ming; Wang, Yan-Jie; Huang, Xue; Zhang, Huai-Yuan; Sun, Ling-Dong; Liu, Yan-Jun; Yan, Chun-Hua

    2016-04-01

    Oxidative stress plays a key role in the occurrence and development of diabetes. With their unique redox properties, CeO2 nanoparticles (nanoceria) exhibit promising potential for the treatment of diabetes resulting from oxidative stress. Here, we develop a novel preparation of hydrophilic CeO2 nanocubes (NCs) with two different sizes (5 nm and 25 nm) via an acetate assisted hydrothermal method. Dynamic light scattering, zeta potential measurements and thermogravimetric analyses were utilized to investigate the changes in the physico-chemical characteristics of CeO2 NCs when exposed to in vitro cell culture conditions. CCK-8 assays revealed that the CeO2 NCs did not impair cell proliferation in the pancreatic β-cell line INS-1 at the highest dose of 200 μg mL-1 over the time scale of 72 h, while being able to protect INS-1 cells from H2O2-induced cytotoxicity even after protein adsorption. It is also noteworthy that nanoceria with a smaller hydrodynamic radius exhibit stronger antioxidant and anti-apoptotic effects, which is consistent with their H2O2 quenching capability in biological systems. These findings suggest that nanoceria can be used as an excellent antioxidant for controlling oxidative stress-induced pancreatic β-cell damage.Oxidative stress plays a key role in the occurrence and development of diabetes. With their unique redox properties, CeO2 nanoparticles (nanoceria) exhibit promising potential for the treatment of diabetes resulting from oxidative stress. Here, we develop a novel preparation of hydrophilic CeO2 nanocubes (NCs) with two different sizes (5 nm and 25 nm) via an acetate assisted hydrothermal method. Dynamic light scattering, zeta potential measurements and thermogravimetric analyses were utilized to investigate the changes in the physico-chemical characteristics of CeO2 NCs when exposed to in vitro cell culture conditions. CCK-8 assays revealed that the CeO2 NCs did not impair cell proliferation in the pancreatic β-cell line INS-1 at

  15. Spatial variation of the cooling lines in the reflection nebula NGC 7023

    NASA Astrophysics Data System (ADS)

    Bernard-Salas, J.; Habart, E.; Köhler, M.; Abergel, A.; Arab, H.; Lebouteiller, V.; Pinto, C.; van der Wiel, M. H. D.; White, G. J.; Hoffmann, M.

    2015-02-01

    Context. The north-west photo-dissociation region (PDR) in the reflection nebula NGC 7023 displays a complex structure. Filament-like condensations at the edge of the cloud can be traced via the emission of the main cooling lines, offering a great opportunity to study the link between the morphology and energetics of these regions. Aims: We study the spatial variation of the far-infrared fine-structure lines of [C ii] (158 μm) and [O i] (63 and 145 μm). These lines trace the local gas conditions across the PDR. We also compare their emission with molecular tracers including rotational and ro-vibrational lines of H2 and high-rotational lines of CO. Methods: We used observations from the Herschel/PACS instrument to map the spatial distribution of these fine-structure lines. The observed region covers a square area of about 110″ × 110″ with an angular resolution that varies from 4'' to 11''. We compared this emission with ground-based and Spitzer observations of H2 lines, Herschel/SPIRE observations of CO lines, and Spitzer/IRAC 3.6 μm images that trace the emission of polycyclic aromatic hydrocarbons. We used a PDR code to model the [O i]145 μm line and infer the physical conditions in the region. Results: The [C ii] (158 μm) and [O i] (63 and 145 μm) lines arise from the warm cloud surface where the PDR is located and the gas is warm, cooling the region. We find that although the relative contribution to the cooling budget over the observed region is dominated by [O i]63 μm (>30%), H2 contributes significantly in the PDR (~35%), as does [C ii]158 μm outside the PDR (30%). Other species contribute little to the cooling ([O i]145 μm 9%, and CO 4%). Enhanced emission of these far-infrared atomic lines trace the presence of condensations, where high-excitation CO rotational lines and dust emission in the submillimetre are detected as well. The [O i] maps resolve these condensations into two structures and show that the peak of [O i] is slightly displaced

  16. Localized emission from laser-irradiated defects in 2D hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Hou, Songyan; Danang Birowosuto, Muhammad; Umar, Saleem; Ange Anicet, Maurice; Yingjie Tay, Roland; Coquet, Philippe; Tay, Beng Kang; Wang, Hong; Teo, Edwin Hang Tong

    2018-01-01

    Hexagonal boron nitride (hBN) has emerged as a promising two-dimensional (2D) material for photonics device due to its large bandgap and flexibility in nanophotonic circuits. Here, we report bright and localized luminescent centres can be engineered in hBN monolayers and flakes using laser irradiation. The transition from hBN to cBN emerges in laser irradiated hBN large monolayers while is absent in processed hBN flakes. Remarkably, the colour centres in hBN flakes exhibit room temperature cleaner single photon emissions with g 2(0) ranging from 0.20 to 0.42, a narrower line width of 1.4 nm and higher brightness compared with monolayers. Our results pave the way to engineering deterministic defects in hBN induced by laser pulse and show great prospect for application of defects in hBN used as nano-size light source in photonics.

  17. Anomalous broadening and shift of emission lines in filaments

    NASA Astrophysics Data System (ADS)

    Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.; Mayor, A. Yu.; Proschenko, D. Yu.

    2017-11-01

    The temporal evolution of width and shift of N I 746.8 and O I 777.4 nm lines is investigated in filament plasma produced by tightly focused femtosecond laser pulse (0.9 mJ, 48 fs). Nitrogen line shift is determined by joint action of electron impact shift and far-off resonance AC Stark effect. Intensive (I 1010 W/cm2 ) electric field of ASE and postpulses result in possible LS coupling break for O I 3p 5P level and generation of Rabi sidebands. The blue-shifted main femtosecond pulse and Rabi sideband cause the stimulated emission of N21+ system.

  18. Very Long Baseline Array Imaging of Type-2 Seyferts with Double-peaked Narrow Emission Lines: Searches for Sub-kpc Dual AGNs and Jet-powered Outflows

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Lazio, T. Joseph W.; Shen, Yue; Strauss, Michael A.

    2018-02-01

    This paper presents Very Long Baseline Array (VLBA) observations of 13 double-peaked [O III] emission-line type-2 active galactic nuclei (AGNs) at redshifts 0.06 < z < 0.41 (with a median redshift of z ∼ 0.15) identified in the Sloan Digital Sky Survey. Such double-peaked emission-line objects may result from jets or outflows from the central engine or from a dual AGN. The VLBA provides an angular resolution of ≲10 pc at the distance of many of these galaxies, sufficient to resolve the radio emission from extremely close dual AGNs and to contribute to understanding the origin of double-peaked [O III] emission lines. Of the 13 galaxies observed at 3.6 cm (8.4 GHz), we detect six at a 1σ sensitivity level of ∼0.15 mJy beam‑1, two of which show clear jet structures on scales ranging from a few milliarcseconds to tens of milliarcseconds (corresponding to a few pc to tens of pc at a median redshift of 0.15). We suggest that radio-loud, double-peaked emission-line type-2 AGNs may be indicative of jet produced structures, but a larger sample of double-peaked [O III] AGNs with high angular resolution radio observations will be required to confirm this suggestion. Based, in part, on observations made with the Very Long Baseline Array, obtained at the Long Baseline Observatory. The Long Baseline Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  19. Odin observations of H2O and O2 in comets and interstellar clouds

    NASA Astrophysics Data System (ADS)

    Hjalmarson, Åke; Odin Team

    2002-11-01

    We here report on results from single-position observations, and in some cases also mapping, of the 557 GHz ortho-H2O line in several comets and in many interstellar molecular clouds by the Odin sub-millimetre wave spectroscopy satellite. The H2O production rates have been accurately determined in four comets, C/2001 A2 (LINEAR), 19P/Borrelly, C/2000 WM1 (LINEAR), and 153P/2002 C1 (Ikeya-Zhang). In comet Ikeya-Zhang our detection at a low level of the corresponding H218O emission line verifies the H2O production rate (which depends upon the assumed radiative and collisional excitation and also upon radiative transfer modelling) and is consistent with a nearly terrestrial 16O/18O-isotope ratio. In an astrobiological context, the cometary H2O production rates are especially important as reference levels for comparison with abundances of other molecules simultaneously observed with ground-based telescopes. In interstellar clouds the observed gas-phase H2O abundances (vs H2) range from 5×10-4 in the Orion KL outflow/shock region (where essentially all oxygen is locked up in H2O) to circa 10-8 in quiescent cloud regions (where H2O) is just one of many trace molecules). From an astrobiological point of view, the molecular abundances in star forming clouds are important in terms of initial conditions for the chemistry in proto-planetary disks ("proto-solar nebulae"), the formation sites of new planetary systems. In simultaneous observations, Odin has also detected the 572 GHz ortho-NH3 line in cold and warm clouds as well as in the Orion outflow and Bar/PDR regions (an area of increased ionisation caused by the intense UV flux from newly born massive stars). In other simultaneous observations, we have performed sensitive searches for O2 at 119 GHz. Although no detection can be reported as yet, the resulting very low abundance limits (<10-7) are very intriguing when they are compared with current "standard" model expectations, which fall in the range 10-5-10-4.

  20. CANDIDATE WATER VAPOR LINES TO LOCATE THE H{sub 2}O SNOWLINE THROUGH HIGH-DISPERSION SPECTROSCOPIC OBSERVATIONS. I. THE CASE OF A T TAURI STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notsu, Shota; Ishimoto, Daiki; Nomura, Hideko

    2016-08-20

    Inside the H{sub 2}O snowline of protoplanetary disks, water evaporates from the dust-grain surface into the gas phase, whereas it is frozen out onto the dust in the cold region beyond the snowline. H{sub 2}O ice enhances the solid material in the cold outer part of a disk, which promotes the formation of gas-giant planet cores. We can regard the H{sub 2}O snowline as the surface that divides the regions between rocky and gaseous giant planet formation. Thus observationally measuring the location of the H{sub 2}O snowline is crucial for understanding the planetesimal and planet formation processes, and the originmore » of water on Earth. In this paper, we find candidate water lines to locate the H{sub 2}O snowline through future high-dispersion spectroscopic observations. First, we calculate the chemical composition of the disk and investigate the abundance distributions of H{sub 2}O gas and ice, and the position of the H{sub 2}O snowline. We confirm that the abundance of H{sub 2}O gas is high not only in the hot midplane region inside the H{sub 2}O snowline but also in the hot surface layer of the outer disk. Second, we calculate the H{sub 2}O line profiles and identify those H{sub 2}O lines that are promising for locating the H{sub 2}O snowline: the identified lines are those that have small Einstein A coefficients and high upper state energies. The wavelengths of the candidate H{sub 2}O lines range from mid-infrared to sub-millimeter, and they overlap with the regions accessible to the Atacama Large Millimeter/sub-millimeter Array and future mid-infrared high-dispersion spectrographs (e.g., TMT/MICHI, SPICA).« less

  1. Molecular Line Emission as a Tool for Galaxy Observations (LEGO). I. HCN as a tracer of moderate gas densities in molecular clouds and galaxies

    NASA Astrophysics Data System (ADS)

    Kauffmann, Jens; Goldsmith, Paul F.; Melnick, Gary; Tolls, Volker; Guzman, Andres; Menten, Karl M.

    2017-09-01

    Trends observed in galaxies, such as the Gao & Solomon relation, suggest a linear relationship between the star formation rate and the mass of dense gas available for star formation. Validation of such trends requires the establishment of reliable methods to trace the dense gas in galaxies. One frequent assumption is that the HCN (J = 1-0) transition is unambiguously associated with gas at H2 densities ≫ 104 cm-3. If so, the mass of gas at densities ≫ 104 cm-3 could be inferred from the luminosity of this emission line, LHCN (1-0). Here we use observations of the Orion A molecular cloud to show that the HCN (J = 1-0) line traces much lower densities 103 cm-3 in cold sections of this molecular cloud, corresponding to visual extinctions AV ≈ 6 mag. We also find that cold and dense gas in a cloud like Orion produces too little HCN emission to explain LHCN (1-0) in star forming galaxies, suggesting that galaxies might contain a hitherto unknown source of HCN emission. In our sample of molecules observed at frequencies near 100 GHz (also including 12CO, 13CO, C18O, CN, and CCH), N2H+ is the only species clearly associated with relatively dense gas.

  2. Hyperfine excitation of linear molecules by para- and ortho-H{sub 2}: Application to the HCl–H{sub 2} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanza, Mathieu; Lique, François, E-mail: francois.lique@univ-lehavre.fr

    The determination of hyperfine structure resolved excitation cross sections and rate coefficients due to H{sub 2} collisions is required to interpret astronomical spectra. In this paper, we present several theoretical approaches to compute these data. An almost exact recoupling approach and approximate sudden methods are presented. We apply these different approaches to the HCl–H{sub 2} collisional system in order to evaluate their respective accuracy. HCl–H{sub 2} hyperfine structure resolved cross sections and rate coefficients are then computed using recoupling and approximate sudden methods. As expected, the approximate sudden approaches are more accurate when the collision energy increases and the resultsmore » suggest that these approaches work better for para-H{sub 2} than for ortho-H{sub 2} colliding partner. For the first time, we present HCl–H{sub 2} hyperfine structure resolved rate coefficients, computed here for temperatures ranging from 5 to 300 K. The usual Δj{sub 1} = ΔF{sub 1} propensity rules are observed for the hyperfine transitions. The new rate coefficients will significantly help the interpretation of interstellar HCl emission lines observed with current and future telescopes. We expect that these new data will allow a better determination of the HCl abundance in the interstellar medium, that is crucial to understand the interstellar chlorine chemistry.« less

  3. The Abundance of C2H4 in the Circumstellar Envelope of IRC+10216.

    PubMed

    Fonfría, J P; Hinkle, K H; Cernicharo, J; Richter, M J; Agúndez, M; Wallace, L

    2017-02-01

    High spectral resolution mid-IR observations of ethylene (C 2 H 4 ) towards the AGB star IRC+10216 were obtained using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). Eighty ro-vibrational lines from the 10.5 µ m vibrational mode ν 7 with J ≲ 30 were detected in absorption. The observed lines are divided into two groups with rotational temperatures of 105 and 400 K (warm and hot lines). The warm lines peak at ≃ -14 km s -1 with respect to the systemic velocity, suggesting that they are mostly formed outwards from ≃ 20 R ⋆ . The hot lines are centered at -10 km s -1 indicating that they come from a shell between 10 and 20 R ⋆ . 35% of the observed lines are unblended and can be fitted with a code developed to model the emission of a spherically symmetric circumstellar envelope. The analysis of several scenarios reveal that the C 2 H 4 abundance relative to H 2 in the range 5 - 20 R ⋆ is 6.9 × 10 -8 in average and it could be as high as 1.1 × 10 -7 . Beyond 20 R ⋆ , it is 8.2 × 10 -8 . The total column density is (6.5 ± 3.0) × 10 15 cm -2 . C 2 H 4 is found to be rotationally under local thermodynamical equilibrium (LTE) and vibrationally out of LTE. One of the scenarios that best reproduce the observations suggests that up to 25% of the C 2 H 4 molecules at 20 R ⋆ could condense onto dust grains. This possible depletion would not influence significantly the gas acceleration although it could play a role in the surface chemistry on the dust grains.

  4. The Abundance of C2H4 in the Circumstellar Envelope of IRC+10216

    PubMed Central

    Fonfría, J. P.; Hinkle, K. H.; Cernicharo, J.; Richter, M. J.; Agúndez, M.

    2017-01-01

    High spectral resolution mid-IR observations of ethylene (C2H4) towards the AGB star IRC+10216 were obtained using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). Eighty ro-vibrational lines from the 10.5 µm vibrational mode ν7 with J ≲ 30 were detected in absorption. The observed lines are divided into two groups with rotational temperatures of 105 and 400 K (warm and hot lines). The warm lines peak at ≃ −14 km s−1 with respect to the systemic velocity, suggesting that they are mostly formed outwards from ≃ 20R⋆. The hot lines are centered at −10 km s−1 indicating that they come from a shell between 10 and 20R⋆. 35% of the observed lines are unblended and can be fitted with a code developed to model the emission of a spherically symmetric circumstellar envelope. The analysis of several scenarios reveal that the C2H4 abundance relative to H2 in the range 5 − 20R⋆ is 6.9 × 10−8 in average and it could be as high as 1.1 × 10−7. Beyond 20R⋆, it is 8.2 × 10−8. The total column density is (6.5 ± 3.0) × 1015 cm−2. C2H4 is found to be rotationally under local thermodynamical equilibrium (LTE) and vibrationally out of LTE. One of the scenarios that best reproduce the observations suggests that up to 25% of the C2H4 molecules at 20R⋆ could condense onto dust grains. This possible depletion would not influence significantly the gas acceleration although it could play a role in the surface chemistry on the dust grains. PMID:28184097

  5. {{\\rm{H}}}_{2}\\,X{}^{1}{{\\rm{\\Sigma }}}_{g}^{+}-c{}^{3}{{\\rm{\\Pi }}}_{u} Excitation by Electron Impact: Energies, Spectra, Emission Yields, Cross-sections, and H(1s) Kinetic Energy Distributions

    NASA Astrophysics Data System (ADS)

    Liu, Xianming; Shemansky, Donald E.; Yoshii, Jean; Liu, Melinda J.; Johnson, Paul V.; Malone, Charles P.; Khakoo, Murtadha A.

    2017-10-01

    The c{}3{{{\\Pi }}}u state of the hydrogen molecule has the second largest triplet-state excitation cross-section, and plays an important role in the heating of the upper thermospheres of outer planets by electron excitation. Precise energies of the H2, D2, and HD c{}3{{{\\Pi }}}u-(v,N) levels are calculated from highly accurate ab initio potential energy curves that include relativistic, radiative, and empirical non-adiabatic corrections. The emission yields are determined from predissociation rates and refined radiative transition probabilities. The excitation function and excitation cross-section of the c{}3{{{\\Pi }}}u state are extracted from previous theoretical calculations and experimental measurements. The emission cross-section is determined from the calculated emission yield and the extracted excitation cross-section. The kinetic energy (E k ) distributions of H atoms produced via the predissociation of the c{}3{{{\\Pi }}}u state, the c{}3{{{\\Pi }}}u- - b{}3{{{Σ }}}u+ dissociative emission by the magnetic dipole and electric quadrupole, and the c{}3{{{\\Pi }}}u - a{}3{{{Σ }}}g+ - b{}3{{{Σ }}}u+ cascade dissociative emission by the electric dipole are obtained. The predissociation of the c{}3{{{\\Pi }}}u+ and c{}3{{{\\Pi }}}u- states both produce H(1s) atoms with an average E k of ˜4.1 eV/atom, while the c{}3{{{\\Pi }}}u- - b{}3{{{Σ }}}u+ dissociative emissions by the magnetic dipole and electric quadrupole give an average E k of ˜1.0 and ˜0.8 eV/atom, respectively. The c{}3{{{\\Pi }}}u - a{}3{{{Σ }}}g+ - b{}3{{{Σ }}}u+ cascade and dissociative emission gives an average E k of ˜1.3 eV/atom. On average, each H2 excited to the c{}3{{{\\Pi }}}u state in an H2-dominated atmosphere deposits ˜7.1 eV into the atmosphere while each H2 directly excited to the a{}3{{{Σ }}}g+ and d{}3{{{\\Pi }}}u states contribute ˜2.3 and ˜3.3 eV, respectively, to the atmosphere. The spectral distribution of the calculated continuum emission arising from the X{}1{{{

  6. F2 region response to geomagnetic disturbances across Indian latitudes: O(1S) dayglow emission

    NASA Astrophysics Data System (ADS)

    Upadhayaya, A. K.; Gupta, Sumedha; Brahmanandam, P. S.

    2016-03-01

    The morphology of ionospheric storms has been investigated across equatorial and low latitudes of Indian region. The deviation in F2 region characteristic parameters (foF2 and h'F) along with modeled green line dayglow emission intensities is examined at equatorial station Thiruvananthapuram (8.5°N, 76.8°E, 0.63°S geomagnetic latitude) and low-latitude station Delhi (28.6°N, 77.2°E,19.2°N geomagnetic latitude) during five geomagnetic storm events. Both positive and negative phases have been noticed in this study. The positive storm phase over equatorial station is found to be more frequent, while the drop in ionization in most of the cases was observed at low-latitude station. It is concluded that the reaction as seen at different ionospheric stations may be quite different during the same storm depending on both the geographic and geomagnetic coordinates of the station, storm intensity, and the storm onset time. Modulation in the F2 layer critical frequency at low and equatorial stations during geomagnetic disturbance of 20-23 November 2003 was caused by the storm-induced changes in O/N2. It is also found that International Reference Ionosphere 2012 model predicts the F2 layer characteristic (foF2 and h'F) parameters at both the low and equatorial stations during disturbed days quite reasonably. A simulative approach in GLOW model developed by Solomon is further used to estimate the changes in the volume emission rate of green line dayglow emission under quiet and strong geomagnetic conditions. It is found that the O(1S) dayglow thermospheric emission peak responds to varying geomagnetic conditions.

  7. A New Diagnostic Diagram of Ionization Sources for High-redshift Emission Line Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Hao, Lei

    2018-04-01

    We propose a new diagram, the kinematics–excitation (KEx) diagram, which uses the [O III] λ5007/Hβ line ratio and the [O III] λ5007 emission line width (σ [O III]) to diagnose the ionization source and physical properties of active galactic nuclei (AGNs) and star-forming galaxies (SFGs). The KEx diagram is a suitable tool to classify emission line galaxies at intermediate redshift because it uses only the [O III] λ5007 and Hβ emission lines. We use the main galaxy sample of SDSS DR7 and the Baldwin‑Phillips‑Terlevich (BPT) diagnostic to calibrate the diagram at low redshift. The diagram can be divided into three regions: the KEx-AGN region, which consists mainly of pure AGNs, the KEx-composite region, which is dominated by composite galaxies, and the KEx-SFG region, which contains mostly SFGs. LINERs strongly overlap with the composite and AGN regions. AGNs are separated from SFGs in this diagram mainly because they preferentially reside in luminous and massive galaxies and have higher [O III]/Hβ than SFGs. The separation between AGNs and SFGs is even cleaner thanks to the additional 0.15/0.12 dex offset in σ [O III] at fixed luminosity/stellar mass. We apply the KEx diagram to 7866 galaxies at 0.3 < z < 1 in the DEEP2 Galaxy Redshift Survey, and compare it to an independent X-ray classification scheme using Chandra observations. X-ray AGNs are mostly located in the KEx-AGN region, while X-ray SFGs are mostly located in the KEx-SFG region. Almost all Type 1 AGNs lie in the KEx-AGN region. These tests support the reliability of this classification diagram for emission line galaxies at intermediate redshift. At z ∼ 2, the demarcation line between SFGs and AGNs is shifted by ∼0.3 dex toward higher values of σ [O III] due to evolution effects.

  8. Prediction of emission line fluxes of gravitationally lensed very high-z galaxies

    NASA Astrophysics Data System (ADS)

    Inoue, Akio; Shimizu, Ikkoh; Okamoto, Takashi; Yoshida, Naoki; Matsuo, Hiroshi; Tamura, Yoichi

    2015-08-01

    Spectroscopic confirmation of very high-z galaxy candidates is extremely valuable because this is a direct proof of the existence of galaxies in the early Universe and put a strong constraint on the structure formation theory to produce such galaxies during the limited age of the Universe. Before the completion of the cosmic reionization, hydrogen Ly-alpha emission line is hard to be observed and we need other emission lines to confirm the redshift of galaxies. By using a state-of-the-art cosmological hydrodynamics simulation of galaxy formation and evolution with an emission line model based on Cloudy, we predict the line fluxes of some gravitationally-lensed very high-z galaxy candidates. We also discuss their detectability with the current and future telescopes.

  9. Subarcsecond imaging of the water emission in Arp 220

    NASA Astrophysics Data System (ADS)

    König, S.; Martín, S.; Muller, S.; Cernicharo, J.; Sakamoto, K.; Zschaechner, L. K.; Humphreys, E. M. L.; Mroczkowski, T.; Krips, M.; Galametz, M.; Aalto, S.; Vlemmings, W. H. T.; Ott, J.; Meier, D. S.; Fuente, A.; García-Burillo, S.; Neri, R.

    2017-06-01

    Aims: Extragalactic observations of water emission can provide valuable insight into the excitation of the interstellar medium. In particular they allow us to investigate the excitation mechanisms in obscured nuclei, that is, whether an active galactic nucleus or a starburst dominates. Methods: We use subarcsecond resolution observations to tackle the nature of the water emission in Arp 220. ALMA Band 5 science verification observations of the 183 GHz H2O 313 - 220 line, in conjunction with new ALMA Band 7 H2O 515 - 422 data at 325 GHz, and supplementary 22 GHz H2O 616 - 523 VLA observations, are used to better constrain the parameter space in the excitation modeling of the water lines. Results: We detect 183 GHz H2O and 325 GHz water emission toward the two compact nuclei at the center of Arp 220, being brighter in Arp 220 West. The emission at these two frequencies is compared to previous single-dish data and does not show evidence of variability. The 183 and 325 GHz lines show similar spectra and kinematics, but the 22 GHz profile is significantly different in both nuclei due to a blend with an NH3 absorption line. Conclusions: Our findings suggest that the most likely scenario to cause the observed water emission in Arp 220 is a large number of independent masers originating from numerous star-forming regions. Based on observations carried in ALMA programs ADS/JAO.ALMA#2011.0.00018.SV and ADS/JAO.ALMA#2012.1.00453.S, with the IRAM 30 m telescope under project numbers 189-12 and 186-13.We dedicate this work to the memory of Fred Lo.

  10. A Link Between X-ray Emission Lines and Radio Jets in 4U 1630-47?

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, A.; Edwards, Phillip; Broderick, Jess

    2014-06-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. We present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find a strong disk wind but no evidence for any relativistic X-ray emission lines. Indeed, despite ˜5× brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ˜20× weaker than the line observed by Díaz Trigo et al. Thus we can conclusively say that radio emission is not universally associated with relativistically Doppler-shifted emission lines in 4U 1630-47. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby ISM, in which case the X-ray emission lines might be unrelated to the radio emission.

  11. The correlation between HCN/H2O flux ratios and disk mass: evidence for protoplanet formation

    NASA Astrophysics Data System (ADS)

    Rose, Caitlin; Salyk, Colette

    2017-01-01

    We analyze hydrogen cyanide (HCN) and water vapor flux ratios in protoplanetary disks as a way to trace planet formation. Analyzing only disks in the Taurus molecular cloud, Najita et al. (2013) found a tentative correlation between protoplanetary disk mass and the HCN/H2O line flux ratio in Spitzer-IRS emission spectra. They interpret this correlation to be a consequence of more massive disks forming planetesimals more efficiently than smaller disks, as the formation of large planetesimals may lock up water ice in the cool outer disk region and prevent it from migrating, drying out the inner disk. The sequestering of water (and therefore oxygen) in the outer disk may also increase the carbon-to- oxygen ratio in the inner disk, leading to enhanced organic molecule (e.g. HCN) emission. To confirm this trend, we expand the Najita et al. sample by calculating HCN/H2O line flux ratios for 8 more sources with known disk masses from clusters besides Taurus. We find agreement with the Najita et al. trend, suggesting that this is a widespread phenomenon. In addition, we find HCN/H2O line flux ratios for 17 more sources that await disk mass measurements, which should become commonplace in the ALMA era. Finally, we investigate linear fits and outliers to this trend, and discuss possible causes.

  12. An Emission Measure Analysis of Stars Near the Transition Region Dividing Line

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffery L.

    We request high dispersion, short wavelength IUE spectra for three of the stars beta Gem (K0III), alpha Tau (K5III), epsilon Gem (G81b) and beta Cam (G0Ib) with exposure times of 16 hours or greater. These data will allow the measurement of line profiles, widths and Doppler shifts as well as density sensitive and opacity sensitive line ratios. Models of chromospheric and transition region structure will be calculated by emission measure techniques and model atmosphere computations for optically thick resonance lines such as MgII h and k, including partial redistribution radiation transfer. The chromospheric models will be used to investigate the energy balance of the atmosphere and the nature of the energy deposition processes. These results will be considered in relation to the evolutionary status of the stars, and will be compared with the atmospheric model properties of other stars previously studied by the authors and their collaborators.

  13. Hot Water In The ISM: Masing and Non-Masing Emission From Non-Dissociative Shocks

    NASA Astrophysics Data System (ADS)

    Kaufman, M. J.; Neufeld, D. A.

    1993-12-01

    We investigate the possibility that dense non-dissociative shocks may be a source of water maser emission in regions of active star formation. Recent observations of maser line ratios in several star forming regions (Melnick et al. 1993 ApJ 416, L37) indicate that water masers are excited in T>1000K gas, temperatures too high for molecular emission behind dissociative shocks. We solve for the structure of, and emission from, multi-fluid shocks in gas with n(H_2)>10(7) cm(-3) and Vshock< 50 km s(-1) , using new treatments of molecular cooling and ion-neutral coupling in dense gas. Such high densities are required by maser collisional pumping schemes. In this gas, the fractional ionization is low and carried on grains; results are presented for a variety of assumed grain size distributions and as a function of shock velocity, magnetic field and preshock density. Suitable preshock conditions yield individual masing regions with sizes of ~ 10(13) cm, consistent with interferometric observations of 22 GHz maser spots, and peak masing gas temperatures of ~ fewtimes 10(3) K, consistent with the temperatures inferred from maser line ratios. Although these masers are an `exotic' manifestation of the passing shock waves, most of the shock energy emerges in non-masing rovibrational line emission from H_2O,OH,CO and H_2, and we investigate this emission from shocks with densities as low as n(H_2) ~ 10(5cm(-3)) . Our study of the expected H_2O far-IR line emissions is motivated, in particular, by the possibility of observing such emissions with the European Space Agency's Infrared Space Observatory.

  14. X-ray Emission Line Anisotropy Effects on the Isoelectronic Temperature Measurement Method

    NASA Astrophysics Data System (ADS)

    Liedahl, Duane; Barrios, Maria; Brown, Greg; Foord, Mark; Gray, William; Hansen, Stephanie; Heeter, Robert; Jarrott, Leonard; Mauche, Christopher; Moody, John; Schneider, Marilyn; Widmann, Klaus

    2016-10-01

    Measurements of the ratio of analogous emission lines from isoelectronic ions of two elements form the basis of the isoelectronic method of inferring electron temperatures in laser-produced plasmas, with the expectation that atomic modeling errors cancel to first order. Helium-like ions are a common choice in many experiments. Obtaining sufficiently bright signals often requires sample sizes with non-trivial line optical depths. For lines with small destruction probabilities per scatter, such as the 1s2p-1s2 He-like resonance line, repeated scattering can cause a marked angular dependence in the escaping radiation. Isoelectronic lines from near-Z equimolar dopants have similar optical depths and similar angular variations, which leads to a near angular-invariance for their line ratios. Using Monte Carlo simulations, we show that possible ambiguities associated with anisotropy in deriving electron temperatures from X-ray line ratios are minimized by exploiting this isoelectronic invariance.

  15. Airborne observations of the Orion molecular hydrogen emission spectrum

    NASA Technical Reports Server (NTRS)

    Davis, D. S.; Larson, H. P.; Smith, H. A.

    1982-01-01

    The Orion near-infrared H2 emission spectrum was observed from an altitude of 12.5 km in order to measure line intensities free from interference by terrestrial H2O. For the peak source, the observations indicate that the differential extinction between 4126 and 4712 per cm is 0.59 + or -0.06 mag, and the relative line intensities are consistent with those expected from a homogeneous source in approximate LTE at 1540 + or -100 K. An anomalous ortho/para H2 abundance ratio of 3.5(+ or - 0.2):1 is found, and the estimated total luminosity in vibrationally excited H2 lines is 300 + or - 100 solar luminosities. Rough molecular abundance limits, based on the missing H2 Q(6) line and the good agreement between other line intensities and the LTE model, place the H2 region no deeper within OMC-1 than the IR cluster and no shallower than 50 percent of the depth to the cluster.

  16. Ultraviolet emission lines in young low-mass galaxies at z ≃ 2: physical properties and implications for studies at z > 7

    NASA Astrophysics Data System (ADS)

    Stark, Daniel P.; Richard, Johan; Siana, Brian; Charlot, Stéphane; Freeman, William R.; Gutkin, Julia; Wofford, Aida; Robertson, Brant; Amanullah, Rahman; Watson, Darach; Milvang-Jensen, Bo

    2014-12-01

    We present deep spectroscopy of 17 very low mass (M⋆ ≃ 2.0 × 106-1.4 × 109 M⊙) and low luminosity (MUV ≃ -13.7 to -19.9) gravitationally lensed galaxies in the redshift range z ≃ 1.5-3.0. Deep rest-frame ultraviolet spectra reveal large equivalent width emission from numerous emission lines (N IV], O III], C IV, Si III], C III]) which are rarely seen in individual spectra of more massive star-forming galaxies. C III] is detected in 16 of 17 low-mass star-forming systems with rest-frame equivalent widths as large as 13.5 Å. Nebular C IV emission is present in the most extreme C III] emitters, requiring an ionizing source capable of producing a substantial component of photons with energies in excess of 47.9 eV. Photoionization models support a picture whereby the large equivalent widths are driven by the increased electron temperature and enhanced ionizing output arising from metal-poor gas and stars (0.04-0.13 Z⊙), young stellar populations (6-50 Myr), and large ionization parameters (log U = -2.16 to -1.84). The young ages implied by the emission lines and continuum spectral energy distributions (SEDs) indicate that the extreme line emitters in our sample are in the midst of a significant upturn in their star formation activity. The low stellar masses, blue UV colours, and large specific star formation rates of our sample are similar to those of typical z ≳ 6 galaxies. Given the strong attenuation of Lyα in z ≳ 6 galaxies, we suggest that C III] is likely to provide our best probe of early star-forming galaxies with ground-based spectrographs and one off the most efficient means of confirming z ≳ 10 galaxies with the James Webb Space Telescope.

  17. THE FORMATION OF IRIS DIAGNOSTICS. II. THE FORMATION OF THE Mg II h and k LINES IN THE SOLAR ATMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leenaarts, J.; Pereira, T. M. D.; Carlsson, M.

    NASA's Interface Region Imaging Spectrograph (IRIS) small explorer mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h and k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations requires forward modeling of Mg II h and k line formation from three-dimensional (3D) radiation-magnetohydrodynamic (RMHD) models. This paper is the second in a series where we undertake this modeling. We compute the vertically emergent h and k intensity from a snapshot of a dynamic 3D RMHD model of the solar atmosphere, and investigate whichmore » diagnostic information about the atmosphere is contained in the synthetic line profiles. We find that the Doppler shift of the central line depression correlates strongly with the vertical velocity at optical depth unity, which is typically located less than 200 km below the transition region (TR). By combining the Doppler shifts of the h and k lines we can retrieve the sign of the velocity gradient just below the TR. The intensity in the central line depression is anti-correlated with the formation height, especially in subfields of a few square Mm. This intensity could thus be used to measure the spatial variation of the height of the TR. The intensity in the line-core emission peaks correlates with the temperature at its formation height, especially for strong emission peaks. The peaks can thus be exploited as a temperature diagnostic. The wavelength difference between the blue and red peaks provides a diagnostic of the velocity gradients in the upper chromosphere. The intensity ratio of the blue and red peaks correlates strongly with the average velocity in the upper chromosphere. We conclude that the Mg II h and k lines are excellent probes of the very upper chromosphere just below the TR, a height regime that is impossible to probe with other spectral lines. They also provide decent temperature and velocity diagnostics of the middle

  18. Collision Induced Velocity Changes from Molecular Dynamic Simulations. Application to the Spectral Shape of the Q(1) Raman Lines of H{_2}/H{_2}

    NASA Astrophysics Data System (ADS)

    Tran, H.; Hartmann, J. M.

    2011-06-01

    Collision induced velocity changes for pure H{_2} have been computed from classical dynamic simulations. The results have been compared with the Keilson-Storer model from four different points of view. The first involves various autocorrelation functions associated with the velocity. The second and third give more detailed information, and are time evolutions of some conditional probabilities for changes of the velocity modulus and orientation and the collision kernels themselves. The fourth considers the evolutions, with density, of the half widths of the Q(1) lines of the isotropic Raman (1-0) fundamental band and of the (2-0) overtone quadrupole band. These spectroscopic data enable an indirect test of the models since velocity changes translate into line-shape modifications through the speed dependence of collisional parameters and the Dicke narrowing of the Doppler contribution to the profile. The results indicate that, while the KS approach gives a poor description of detailed velocity-to-velocty changes, it leads to accurate results for the correlation functions and spectral shapes, quantities related to large averages over the velocity. It is also shown that the use of collision kernels directly derived from MDS lead to an almost perfect prediction of all considered quantities (correlation functions, conditional probabilities, and spectral shapes). Finally, the results stress the need for very accurate calculations of line-broadening and -shifting coefficients from the intermolecular potential to obviate the need for experimental data and permit fully meaningful tests of the models. H. Tran, J.M. Hartmann J. Chem. Phys. 130, 094301, 2009.

  19. Searches for H2O masers toward narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Yoshiaki, Hagiwara; Doi, Akihiro; Hachisuka, Kazuya; Horiuchi, Shinji

    2018-05-01

    We present searches for 22 GHz H2O masers toward 36 narrow-line Seyfert 1 galaxies (NLS1s), selected from known NLS1s with vsys ≲ 41000 km s-1. Out of the 36 NLS1s in our sample, 11 have been first surveyed in our observations, while the observations of other NLS1s were previously reported in literature. In our survey, no new water maser source from NLS1s was detected at the 3σ rms level of 8.4 mJy to 144 mJy, which depends on different observing conditions or inhomogeneous sensitivities of each observation using three different telescopes. It is likely that the non-detection of new masers in our NLS1 sample is primarily due to insufficient sensitivities of our observations. Including the five known NLS1 masers, the total detection rate of the H2O maser in NLS1s is not remarkably different from that of type 2 Seyfert galaxies or LINERs. However, more extensive and systematic searches of NLS1 would be required for a statistical discussion of the detection rate of the NLS1 maser, compared with that of type 2 Seyferts or LINERs.

  20. Searches for H2O masers toward narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Hagiwara, Yoshiaki; Doi, Akihiro; Hachisuka, Kazuya; Horiuchi, Shinji

    2018-06-01

    We present searches for 22 GHz H2O masers toward 36 narrow-line Seyfert 1 galaxies (NLS1s), selected from known NLS1s with vsys ≲ 41000 km s-1. Out of the 36 NLS1s in our sample, 11 have been first surveyed in our observations, while the observations of other NLS1s were previously reported in literature. In our survey, no new water maser source from NLS1s was detected at the 3σ rms level of 8.4 mJy to 144 mJy, which depends on different observing conditions or inhomogeneous sensitivities of each observation using three different telescopes. It is likely that the non-detection of new masers in our NLS1 sample is primarily due to insufficient sensitivities of our observations. Including the five known NLS1 masers, the total detection rate of the H2O maser in NLS1s is not remarkably different from that of type 2 Seyfert galaxies or LINERs. However, more extensive and systematic searches of NLS1 would be required for a statistical discussion of the detection rate of the NLS1 maser, compared with that of type 2 Seyferts or LINERs.

  1. Spectrophotometry of emission-line stars in the magellanic clouds

    NASA Technical Reports Server (NTRS)

    Bohannan, Bruce

    1990-01-01

    The strong emission lines in the most luminous stars in the Magellanic Clouds indicate that these stars have such strong stellar winds that their photospheres are so masked that optical absorption lines do not provide an accurate measure of photospheric conditions. In the research funded by this grant, temperatures and gravities of emission-line stars both in the Large (LMC) and Small Magellanic Clouds (SMC) have been measured by fitting of continuum ultraviolet-optical fluxes observed with IUE with theoretical model atmospheres. Preliminary results from this work formed a major part of an invited review 'The Distribution of Types of Luminous Blue Variables'. Interpretation of the IUE observations obtained in this grant and archive data were also included in a talk at the First Boulder-Munich Hot Stars Workshop. Final results of these studies are now being completed for publication in refereed journals.

  2. High-resolution H -band Spectroscopy of Be Stars with SDSS-III/APOGEE. II. Line Profile and Radial Velocity Variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chojnowski, S. Drew; Holtzman, Jon A.; Wisniewski, John P.

    2017-04-01

    We report on the H -band spectral variability of classical Be stars observed over the course of the Apache Point Galactic Evolution Experiment (APOGEE), one of four subsurveys comprising SDSS-III. As described in the first paper of this series, the APOGEE B-type emission-line (ABE) star sample was culled from the large number of blue stars observed as telluric standards during APOGEE observations. In this paper, we explore the multi-epoch ABE sample, consisting of 1100 spectra for 213 stars. These “snapshots” of the circumstellar disk activity have revealed a wealth of temporal variability including, but not limited to, gradual disappearance ofmore » the line emission and vice versa over both short and long timescales. Other forms of variability include variation in emission strength, emission peak intensity ratios, and emission peak separations. We also analyze radial velocities (RVs) of the emission lines for a subsample of 162 stars with sufficiently strong features, and we discuss on a case-by-case basis whether the RV variability exhibited by some stars is caused by binary motion versus dynamical processes in the circumstellar disks. Ten systems are identified as convincing candidates for binary Be stars with as of yet undetected companions.« less

  3. A Link between X-Ray Emission Lines and Radio Jets in 4U 1630-47?

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, Anastasios K.; Edwards, Philip G.; Broderick, Jess W.

    2014-03-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ~5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is >~ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.

  4. Inferring physical properties of galaxies from their emission-line spectra

    NASA Astrophysics Data System (ADS)

    Ucci, G.; Ferrara, A.; Gallerani, S.; Pallottini, A.

    2017-02-01

    We present a new approach based on Supervised Machine Learning algorithms to infer key physical properties of galaxies (density, metallicity, column density and ionization parameter) from their emission-line spectra. We introduce a numerical code (called GAME, GAlaxy Machine learning for Emission lines) implementing this method and test it extensively. GAME delivers excellent predictive performances, especially for estimates of metallicity and column densities. We compare GAME with the most widely used diagnostics (e.g. R23, [N II] λ6584/Hα indicators) showing that it provides much better accuracy and wider applicability range. GAME is particularly suitable for use in combination with Integral Field Unit spectroscopy, both for rest-frame optical/UV nebular lines and far-infrared/sub-millimeter lines arising from photodissociation regions. Finally, GAME can also be applied to the analysis of synthetic galaxy maps built from numerical simulations.

  5. 1E 0104.2 + 3153 - A broad absorption-line QSO viewed through a giant elliptical galaxy

    NASA Technical Reports Server (NTRS)

    Stocke, J. T.; Liebert, J.; Schild, R.; Gioia, I. M.; Maccacaro, T.

    1984-01-01

    The optical identification of the X-ray source 1E 0104.2 + 3153 is complicated by the close projection of a broad absorption-line (BAL) QSO (z = 2.027) 10 arcsec from a giant elliptical galaxy (z = 0.111) at the center of a compact group of galaxies. At only 1.2 de Vaucouleur radii (16 kpc for H sub 0 = 100 km/s Mpc) this QSO-galaxy projection is the closest yet discovered. Based upon current observations, the source of the X-ray emission cannot be conclusively determined. Present in the BAL QSO spectrum are extremely strong Ca II H and K absorption lines due to the intervening galaxy, the first optical detection of the cold interstellar medium in an elliptical galaxy. The strength of these lines (EW = 2 and 1 A) requires observation through several interstellar clouds in the line of sight to the QSO. By its proximity to the central regions of the elliptical galaxy and the relative distances of the galaxy and QSO, this QSO is a particularly good candidate for observing dramatic transient gravitational lensing phenomena due to halo stars in the foreground galaxy.

  6. The Impact of Diffuse Ionized Gas on Emission-line Ratios and Gas Metallicity Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Yan, Renbin; MaNGA Team

    2016-01-01

    Diffuse Ionized Gas (DIG) is prevalent in star-forming galaxies. Using a sample of galaxies observed by MaNGA, we demonstrate how DIG in star-forming galaxies impact the measurements of emission line ratios, hence the gas-phase metallicity measurements and the interpretation of diagnostic diagrams. We demonstrate that emission line surface brightness (SB) is a reasonably good proxy to separate HII regions from regions dominated by diffuse ionized gas. For spatially-adjacent regions or regions at the same radius, many line ratios change systematically with emission line surface brightness, reflecting a gradual increase of dominance by DIG towards low SB. DIG could significantly bias the measurement of gas metallicity and metallicity gradient. Because DIG tend to have a higher temperature than HII regions, at fixed metallicity DIG displays lower [NII]/[OII] ratios. DIG also show lower [OIII]/[OII] ratios than HII regions, due to extended partially-ionized regions that enhance all low-ionization lines ([NII], [SII], [OII], [OI]). The contamination by DIG is responsible for a substantial portion of the scatter in metallicity measurements. At different surface brightness, line ratios and line ratio gradients can differ systematically. As DIG fraction could change with radius, it can affect the metallicity gradient measurements in systematic ways. The three commonly used strong-line metallicity indicators, R23, [NII]/[OII], O3N2, are all affected in different ways. To make robust metallicity gradient measurements, one has to properly isolate HII regions and correct for DIG contamination. In line ratio diagnostic diagrams, contamination by DIG moves HII regions towards composite or LINER-like regions.

  7. Anti-proliferative activity of 2,6-dichloro-9- or 7-(ethoxycarbonylmethyl)-9H- or 7H-purines against several human solid tumour cell lines.

    PubMed

    Morales, Fátima; Ramírez, Alberto; Conejo-García, Ana; Morata, Cynthia; Marchal, Juan A; Campos, Joaquín M

    2014-04-09

    As leads we took several benzo-fused seven- and six-membered scaffolds linked to the pyrimidine or purine moieties with notable anti-proliferative activity against human breast, colon and melanoma cancerous cell lines. We then decided to maintain the double-ringed nitrogenous bases and change the other components to the ethyl acetate moiety. This way six purine and two 5-fluorouracil derivatives were obtained and evaluated against the MCF-7, HCT-116, A-375 and G-361 cancer cell lines. Two QSARs are obtained between the anti-proliferative IC₅₀ values for compounds 26-33 and the clog P against the melanoma cell lines A-375 and G-361. Our results show that two of the analogues [ethyl 2-(2,6-dichloro-9H- or 7H-purine-9- or 7-yl)acetates (30 and 33, respectively)] are potent cytotoxic agents against all the tumour cell lines assayed, showing single-digit micromolar IC₅₀ values. This exemplifies the potential of our previously reported purine compounds to qualify as lead structures for medicinal chemistry campaigns, affording simplified analogues easy to synthesize and with a noteworthy bioactivity. The selective activity of 30 and 33 against the melanoma cell line A-375, via apoptosis, supposes a great advantage for a future therapeutic use. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. On-line CO, CO2 emissions evaluation and (benzene, toluene, xylene) determination from experimental burn of tropical biomass.

    PubMed

    Tawfiq, Mohammed F; Aroua, Mohamed Kheireddine; Sulaiman, Nik Meriam Nik

    2015-07-01

    Atmospheric pollution and global warming issues are increasingly becoming major environmental concerns. Fire is one of the significant sources of pollutant gases released into the atmosphere; and tropical biomass fires, which are of particular interest in this study, contribute greatly to the global budget of CO and CO2. This pioneer research simulates the natural biomass burning strategy in Malaysia using an experimental burning facility. The investigation was conducted on the emissions (CO2, CO, and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)) from ten tropical biomass species. The selected species represent the major tropical forests that are frequently subjected to dry forest fire incidents. An experimental burning facility equipped with an on-line gas analyzer was employed to determine the burning emissions. The major emission factors were found to vary among the species, and the specific results were as follows. The moisture content of a particular biomass greatly influenced its emission pattern. The smoke analysis results revealed the existence of BTEX, which were sampled from a combustion chamber by enrichment traps aided with a universal gas sampler. The BTEX were determined by organic solvent extraction followed by GC/MS quantification, the results of which suggested that the biomass burning emission factor contributed significant amounts of benzene, toluene, and m,p-xylene. The modified combustion efficiency (MCE) changed in response to changes in the sample moisture content. Therefore, this study concluded that the emission of some pollutants mainly depends on the burning phase and sample moisture content of the biomass. Copyright © 2015. Published by Elsevier B.V.

  9. A line parameter list for the nu2 and nu4 bands of /C-12/H4 and /C-13/H4, extended to J-prime = 25 and its application to planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Orton, G. S.; Robiette, A. G.

    1980-01-01

    Line parameters (transition frequencies, line strengths, line widths, ground state energies and quantum identifications) for the nu2 and nu4 bands of (C-12)H4 and (C-13)H4 have been calculated for J-prime equal to or less than 25 using the simultaneous coupled fitting procedure of Gray and Robiette. Molecular constants for the nu2 band of (C-13)H4 were estimated from isotopic shifts from (C-12)H4 values. Agreement with laboratory spectra, where available, is always well within 1 kayser over the entire spectral range covered by the list. The most serious problem in comparison with laboratory data is the omission of lines belonging to 'hot' bands in this spectral region. This list is valuable in remote sensing problems for sorting out lines of trace species from weak methane lines and for determining the atmospheric opacity in relatively transparent spectral regions. Applications of the parameter list are demonstrated for remote sounding of the Jovian atmosphere.

  10. Emission of a pulsed purely rotational transition chemical H{sub 2}-F{sub 2} laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molevich, N E; Pichugin, S Yu

    2008-04-30

    The possibility of obtaining efficient emission at purely rotational transitions of HF molecules in a pulsed chemical hydrogen fluoride laser is studied theoretically. The operation of a H{sub 2}-F{sub 2} laser with a gas pressure of 1.1 atm emitting at the v, j {yields} v, j - 1 (v = 1 - 6, j = 10 - 14) transitions is simulated taking into account resonance VR processes. The total specific laser energy release calculated over all the vibrational levels is 5.5 J L{sup -1} on purely rotational transitions at {lambda}{approx}17 {mu}m (j = 14), 3.5 J L{sup -1} at {lambda}{approx}18.5more » {mu}m (j = 13), and 2.5 J L{sup -1} at {lambda}{approx}20 {mu}m (j = 12). (lasers and amplifiers)« less

  11. Laboratory measurement of the millimeter wave properties of liquid sulfuric acid (H2SO4). [study of microwave emission from Venus

    NASA Technical Reports Server (NTRS)

    Fahd, Antoine K.; Steffes, Paul G.

    1991-01-01

    The methodology and the results of laboratory measurements of the millimeter wave properties of liquid sulfuric acid are presented. Measurements conducted at 30-40 and 90-100 GHz are reported, using different concentrations of liquid H2SO4. The measured data are used to compute the expected opacity of H2SO4 condensates and their effects on the millimeter wave emission from Venus. The cloud condensate is found to have an effect on the emission from Venus. The calculated decrease in brightness temperature is well below the observed decrease in brightness temperature found by de Pater et al. (1991). It is suggested that other constituents such as gaseous H2SO4 also affect the observed variation in the brightness temperature.

  12. X-RAY EMISSION LINE PROFILES FROM WIND CLUMP BOW SHOCKS IN MASSIVE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignace, R.; Waldron, W. L.; Cassinelli, J. P.

    2012-05-01

    The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two-component flow structure of wind and clumps using two 'beta' velocity laws. While individual bow shocks tend to generate double-horned emission line profiles,more » a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the wind can be derived. The emission measure tends to be power law, and the temperature distribution is broad in terms of wind velocity. Although restricted to the case of adiabatic cooling, our models highlight the influence of bow shock effects for hot plasma temperature and emission measure distributions in stellar winds and their impact on X-ray line profile shapes. Previous models have focused on geometrical considerations of the clumps and their distribution in the wind. Our results represent the first time that the temperature distribution of wind clump structures are explicitly and self-consistently accounted for in modeling X-ray line profile shapes for massive stars.« less

  13. HERACLES: THE HERA CO LINE EXTRAGALACTIC SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, Adam K.; Walter, Fabian; Bigiel, Frank

    2009-06-15

    We present the Heterodyne Receiver Array CO Line Extragalactic Survey, an atlas of CO emission from 18 nearby galaxies that are also part of The H I Nearby Galaxy Survey and the Spitzer Infrared Nearby Galaxies Survey. We used the HERA multipixel receiver on the IRAM 30-m telescope to map the CO J = 2 {yields} 1 line over the full optical disk (defined by the isophotal radius r {sub 25}) of each target, at 13'' angular resolution and 2.6 km s{sup -1} velocity resolution. Here we describe the observations and reduction of the data and show channel maps, azimuthallymore » averaged profiles, integrated intensity maps, and peak intensity maps. The implied H{sub 2} masses range from 7 x 10{sup 6} to 6 x 10{sup 9} M {sub sun}, with four low metallicity dwarf irregular galaxies yielding only upper limits. In the cases where CO is detected, the integrated H{sub 2}-to-H I ratios range from 0.02 to 1.13 and H{sub 2}-to-stellar mass ratios from 0.01 to 0.25. Exponential scale lengths of the CO emission for our targets are in the range 0.8-3.2 kpc, or 0.2 {+-} 0.05r {sub 25}. The intensity-weighted mean velocity of CO matches that of H I very well, with a 1{sigma} scatter of only 6 km s{sup -1}. The CO J = 2 {yields} 1/J = 1 {yields} 0 line ratio varies over a range similar to that found in the Milky Way and other nearby galaxies, {approx}0.6-1.0, with higher values found in the centers of galaxies. The typical line ratio, {approx}0.8, could be produced by optically thick gas with an excitation temperature of {approx}10 K.« less

  14. Design, synthesis and biological evaluation of 1H-1,2,3-Triazole-Linked-1H‑Dibenzo[b,h]xanthenes as Inductors of ROS-Mediated Apoptosis in the Breast Cancer Cell Line MCF-7.

    PubMed

    Bortolot, Carolina S; da S M Forezi, Luana; Marra, Roberta K F; Reis, Marcelo I P; Sa, Barbara V F E; Filho, Ricardo Imbroisi; Ghasemishahrestani, Zeinab; Sola-Penna, Mauro; Zancan, Patricia; Ferreira, Vitor F; de C da Silva, Fernando

    2018-05-23

    Low molecular weight 1,2,3-triazoles and naphthoquinones are endowed with various types of biological activity, such as against cancer, HIV and bacteria. However, in some cases, the conjugation of these two nuclei considerably increases their biological activities Objective: In this work, we decided to study the synthesis and screening of bis-naphthoquinones and xanthenes tethered to 1,2,3-triazoles against cancer cell lines, specifically the human breast cancer cell line MCF-7. Starting from lawsone and aryl-1H-1,2,3-triazole-4-carbaldehydes (10a-h) several new 7-(1-aryl-1H-1,2,3-triazol-4-yl)-6H-dibenzo[b,h]xanthene-5,6,8,13(7H)-tetraones (12a-h) and 3,3'-((1-aryl-1H-1,2,3-triazol-4-yl)methylene)bis(2-hydroxynaphthalene-1,4-diones) 11a-h were synthesized and evaluated for their cytotoxic activities using the human breast cancer cell line MCF-7 and the non-tumor cell line MCF10A as control. We performed test of cell viability, cell proliferation, intracellular ATP content and cell cytometry to determine reactive oxygen species (ROS) formation. Based on these results, we found that compound 12a promote ROS production, interfering with energy metabolism, cell viability and proliferation, and thus promoting an whole cell damage. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Sub-arcsecond imaging of the water emission in Arp 220⋆ ⋆⋆

    PubMed Central

    König, S.; Martín, S.; Muller, S.; Cernicharo, J.; Sakamoto, K.; Zschaechner, L. K.; Humphreys, E. M. L.; Mroczkowski, T.; Krips, M.; Galametz, M.; Aalto, S.; Vlemmings, W. H. T.; Ott, J.; Meier, D. S.; Fuente, A.; García-Burillo, S.; Neri, R.

    2017-01-01

    Aims Extragalactic observations of water emission can provide valuable insights into the excitation of the interstellar medium. In particular they allow us to investigate the excitation mechanisms in obscured nuclei, i.e. whether an active galactic nucleus or a starburst dominate. Methods We use sub-arcsecond resolution observations to tackle the nature of the water emission in Arp 220. ALMA Band 5 science verification observations of the 183 GHz H2O 313−220 line, in conjunction with new ALMA Band 7 H2O 515−422 data at 325 GHz, and supplementary 22 GHz H2O 616 − 523 VLA observations, are used to better constrain the parameter space in the excitation modelling of the water lines. Results We detect 183 GHz H2O and 325 GHz water emission towards the two compact nuclei at the center of Arp 220, being brighter in Arp 220 West. The emission at these two frequencies is compared to previous single-dish data and does not show evidence of variability. The 183 and 325 GHz lines show similar spectra and kinematics, but the 22 GHz profile is significantly different in both nuclei due to a blend with an NH3 absorption line. Conclusions Our findings suggest that the most likely scenario to cause the observed water emission in Arp 220 is a large number of independent masers originating from numerous star-forming regions. PMID:29151605

  16. H2O absorption spectroscopy for determination of temperature and H2O mole fraction in high-temperature particle synthesis systems.

    PubMed

    Torek, Paul V; Hall, David L; Miller, Tiffany A; Wooldridge, Margaret S

    2002-04-20

    Water absorption spectroscopy has been successfully demonstrated as a sensitive and accurate means for in situ determination of temperature and H2O mole fraction in silica (SiO2) particle-forming flames. Frequency modulation of near-infrared emission from a semiconductor diode laser was used to obtain multiple line-shape profiles of H2O rovibrational (v1 + v3) transitions in the 7170-7185-cm(-1) region. Temperature was determined by the relative peak height ratios, and XH2O was determined by use of the line-shape profiles. Measurements were made in the multiphase regions of silane/hydrogen/oxygen/ argon flames to verify the applicability of the diagnostic approach to combustion synthesis systems with high particle loadings. A range of equivalence ratios was studied (phi = 0.47 - 2.15). The results were compared with flames where no silane was present and with adiabatic equilibrium calculations. The spectroscopic results for temperature were in good agreement with thermocouple measurements, and the qualitative trends as a function of the equivalence ratio were in good agreement with the equilibrium predictions. The determinations for water mole fraction were in good agreement with theoretical predictions but were sensitive to the spectroscopic model parameters used to describe collisional broadening. Water absorption spectroscopy has substantial potential as a valuable and practical technology for both research and production combustion synthesis facilities.

  17. Simple approximation of total emissivity of CO2-H2O mixture used in the zonal method of calculation of heat transfer by radiation

    NASA Astrophysics Data System (ADS)

    Lisienko, V. G.; Malikov, G. K.; Titaev, A. A.

    2014-12-01

    The paper presents a new simple-to-use expression to calculate the total emissivity of a mixture of gases CO2 and H2O used for modeling heat transfer by radiation in industrial furnaces. The accuracy of this expression is evaluated using the exponential wide band model. It is found that the time taken to calculate the total emissivity in this expression is 1.5 times less than in other approximation methods.

  18. Extreme Ultraviolet Emission Lines of Iron Fe XI-XIII

    NASA Astrophysics Data System (ADS)

    Lepson, Jaan; Beiersdorfer, P.; Brown, G. V.; Liedahl, D. A.; Brickhouse, N. S.; Dupree, A. K.

    2013-04-01

    The extreme ultraviolet (EUV) spectral region (ca. 20--300 Å) is rich in emission lines from low- to mid-Z ions, particularly from the middle charge states of iron. Many of these emission lines are important diagnostics for astrophysical plasmas, providing information on properties such as elemental abundance, temperature, density, and even magnetic field strength. In recent years, strides have been made to understand the complexity of the atomic levels of the ions that emit the lines that contribute to the richness of the EUV region. Laboratory measurements have been made to verify and benchmark the lines. Here, we present laboratory measurements of Fe XI, Fe XII, and Fe XIII between 40-140 Å. The measurements were made at the Lawrence Livermore electron beam ion trap (EBIT) facility, which has been optimized for laboratory astrophysics, and which allows us to select specific charge states of iron to help line identification. We also present new calculations by the Hebrew University - Lawrence Livermore Atomic Code (HULLAC), which we also utilized for line identification. We found that HULLAC does a creditable job of reproducing the forest of lines we observed in the EBIT spectra, although line positions are in need of adjustment, and line intensities often differed from those observed. We identify or confirm a number of new lines for these charge states. This work was supported by the NASA Solar and Heliospheric Program under Contract NNH10AN31I and the DOE General Plasma Science program. Work was performed in part under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344.

  19. Classification of Hot Stars by Disk Variability using Hα Line Emission Characteristics

    NASA Astrophysics Data System (ADS)

    Hoyt Hannah, Christian; Glennon Fagan, W.; Tycner, Christopher

    2018-06-01

    The variability associated with circumstellar disks around hot and massive stars has been observed on time scales ranging from less than a day to decades. Variations detected in line emission from circumstellar disks on long time scales are typically attributed to disk-growth and disk-loss events. However, in order to fully describe and model such phenomena, adequate spectroscopic observations over long time scales are needed. In this project, we conduct a comprehensive study that is based on spectra recorded over a 14-year period (2005 to 2018) of roughly 100 B-type stars. Using results from a representative sample of over 20 targets, we illustrate how the Hα emission line, one of the most prominent emission features from circumstellar disks, can be used to monitor the variability associated with these systems. Using high-resolution spectra, we utilize line emission characteristics such as equivalent width, peak strength(s), and line-width to setup a classification scheme that describes different types of variabilities. This in turn can be used to divide the systems in disk-growth, disk-loss, variable and stable categories. With additional numerical disk modeling, the recorded variations based on emission line characteristics can also be used to describe changes in disk temperature and density structure. The aim is to develop a tool to help further our understanding of the processes behind the production and eventual dissipation of the circumstellar disks found in hot stars. This work has been supported by NSF grant AST-1614983.

  20. Military Aircraft Emissions Research - Case of Hercules Cargo Plane (C-130H) Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.

    2007-01-01

    Tactical airlifter like C-130H has been in use for more than 50 years, and is expected to serve for many years to come. However, the emission characteristics data of the aircraft are scarce. To increase our understanding of turboprop engine emissions, emissions from a military C-130H cargo aircraft were characterized in field conditions in the fall of 2005. Particulate and gaseous pollutants were measured by conventional and advanced instrumentation platforms that were built with in-situ extractive or remote optical sensing technologies. The measurements performed at the C-130H engine exhaust exit showed increased levels of emissions as the engine power settingmore » increased. In contrast, there was no such a relationship found for the C-130H emitted particulate matter (as a function of engine power setting) measured at about 15-m downstream of the engine exhaust plane. The emitted gaseous species measured at both locations were, however, proportional to the engine power setting and comparable (at both locations) when corrected for ambient dilution indicating the lack of particulate emission-power setting relationship at the far field is unique. The result clearly indicates that the aircraft emission factor or index for particulate matter cannot be experimentally determined at a downstream location away from the exhaust exit and has to be determined right at the engine exhaust plane. Emission indices that are needed for air quality modeling will be presented.« less

  1. Galaxy clustering dependence on the [O II] emission line luminosity in the local Universe

    NASA Astrophysics Data System (ADS)

    Favole, Ginevra; Rodríguez-Torres, Sergio A.; Comparat, Johan; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Montero-Dorta, Antonio D.

    2017-11-01

    We study the galaxy clustering dependence on the [O II] emission line luminosity in the SDSS DR7 Main galaxy sample at mean redshift z ∼ 0.1. We select volume-limited samples of galaxies with different [O II] luminosity thresholds and measure their projected, monopole and quadrupole two-point correlation functions. We model these observations using the 1 h-1 Gpc MultiDark-Planck cosmological simulation and generate light cones with the SUrvey GenerAtoR algorithm. To interpret our results, we adopt a modified (Sub)Halo Abundance Matching scheme, accounting for the stellar mass incompleteness of the emission line galaxies. The satellite fraction constitutes an extra parameter in this model and allows to optimize the clustering fit on both small and intermediate scales (i.e. rp ≲ 30 h-1 Mpc), with no need of any velocity bias correction. We find that, in the local Universe, the [O II] luminosity correlates with all the clustering statistics explored and with the galaxy bias. This latter quantity correlates more strongly with the SDSS r-band magnitude than [O II] luminosity. In conclusion, we propose a straightforward method to produce reliable clustering models, entirely built on the simulation products, which provides robust predictions of the typical ELG host halo masses and satellite fraction values. The SDSS galaxy data, MultiDark mock catalogues and clustering results are made publicly available.

  2. Mapping High-Velocity H-alpha and Lyman-alpha Emission from Supernova 1987A

    NASA Technical Reports Server (NTRS)

    France, Kevin; McCray, Richard; Fransson, Claes; Larsson, Josefin; Frank, Kari A.; Burrows, David N.; Challis, Peter; Kirshner, Robert P.; Chevalier, Roger A.; Garnavich, Peter; hide

    2015-01-01

    We present new Hubble Space Telescope images of high-velocity H-alpha and Lyman-alpha emission in the outer debris of SN 1987A. The H-alpha images are dominated by emission from hydrogen atoms crossing the reverse shock. For the first time we observe emission from the reverse shock surface well above and below the equatorial ring, suggesting a bipolar or conical structure perpendicular to the ring plane. Using the H-alpha imaging, we measure the mass flux of hydrogen atoms crossing the reverse shock front, in the velocity intervals (-7,500 < V(sub obs) < -2,800 km/s) and (1,000 < V(sub obs) < 7,500 km/s), ?M(sub H) = 1.2 × 10(exp -3) M/ y. We also present the first Lyman-alpha imaging of the whole remnant and new Chandra X-ray observations. Comparing the spatial distribution of the Lyman-alpha and X-ray emission, we observe that the majority of the high-velocity Lyman-alpha emission originates interior to the equatorial ring. The observed Lyman-alpha/H-alpha photon ratio, R(L-alpha/H-alpha) approx. = 17, is significantly higher than the theoretically predicted ratio of approx. = 5 for neutral atoms crossing the reverse shock front. We attribute this excess to Lyman-alpha emission produced by X-ray heating of the outer debris. The spatial orientation of the Lyman-alpha and X-ray emission suggests that X-ray heating of the outer debris is the dominant Lyman-alpha production mechanism in SN 1987A at this phase in its evolution.

  3. Accurate Emission Line Diagnostics at High Redshift

    NASA Astrophysics Data System (ADS)

    Jones, Tucker

    2017-08-01

    How do the physical conditions of high redshift galaxies differ from those seen locally? Spectroscopic surveys have invested hundreds of nights of 8- and 10-meter telescope time as well as hundreds of Hubble orbits to study evolution in the galaxy population at redshifts z 0.5-4 using rest-frame optical strong emission line diagnostics. These surveys reveal evolution in the gas excitation with redshift but the physical cause is not yet understood. Consequently there are large systematic errors in derived quantities such as metallicity.We have used direct measurements of gas density, temperature, and metallicity in a unique sample at z=0.8 to determine reliable diagnostics for high redshift galaxies. Our measurements suggest that offsets in emission line ratios at high redshift are primarily caused by high N/O abundance ratios. However, our ground-based data cannot rule out other interpretations. Spatially resolved Hubble grism spectra are needed to distinguish between the remaining plausible causes such as active nuclei, shocks, diffuse ionized gas emission, and HII regions with escaping ionizing flux. Identifying the physical origin of evolving excitation will allow us to build the necessary foundation for accurate measurements of metallicity and other properties of high redshift galaxies. Only then can we expoit the wealth of data from current surveys and near-future JWST spectroscopy to understand how galaxies evolve over time.

  4. Near-infrared emission bands of TeH and TeD

    NASA Astrophysics Data System (ADS)

    Fink, E. H.; Setzer, K. D.; Ramsay, D. A.; Vervloet, M.

    1989-11-01

    High-resolution emission spectra of TeH and TeD have been obtained in the region 4200 to 3600 cm -1 using a Bomem DA3.002 Fourier transform spectrometer. Analyses are given for the 0-0 and 1-1 bands of the X 22Π{1}/{2}-X 12Π{3}/{2} system of TeH and for the 0-0 band of TeD. In addition the 2-0 vibrational overtone bands of 130TeH, 128TeH, and 126TeH are observed and analyzed. Accurate molecular constants are given for the first time.

  5. Subcloning the RBL-2H3 mucosal mast cell line reduces Ca2+ response heterogeneity at the single-cell level.

    PubMed

    Kuchtey, J; Fewtrell, C

    1996-03-01

    Ca2+ imaging experiments have revealed that for a wide variety of cell types, including RBL-2H3 mucosal mast cells, there are considerable cell-to-cell differences of the Ca2+ responses of individual cells. This heterogeneity is evident in both the shape and latency of the responses. Mast cells within a single microscopic field of view, which have experienced identical culture conditions and experimental preparation, display a wide variety of responses upon antigen stimulation. We have subcloned the RBL-2H3 mucosal mast cell line to test the hypothesis that genetic heterogeneity within the population is the cause of the Ca2+ response heterogeneity. We found that cell-to-cell variability was significantly reduced in four of five clonal lines. The response heterogeneity remaining within the clones was not an experimental artifact caused by differences in the amount of fura-2 loaded by individual cells. Factors other than genetic heterogeneity must partly account for Ca2+ response heterogeneity. It is possible that the complex shapes and variability of the Ca2+ responses are reflections of the fact that there are multiple factors underlying the Ca2-response to antigen stimulation. Small differences from cell to cell in one or more of these factors could be a cause of the remaining Ca2+ response heterogeneity.

  6. Energetics of the molecular gas in the H2 luminous radio galaxy 3C 326: Evidence for negative AGN feedback

    NASA Astrophysics Data System (ADS)

    Nesvadba, N. P. H.; Boulanger, F.; Salomé, P.; Guillard, P.; Lehnert, M. D.; Ogle, P.; Appleton, P.; Falgarone, E.; Pineau Des Forets, G.

    2010-10-01

    We present a detailed analysis of the gas conditions in the H2 luminous radio galaxy 3C 326 N at z ~ 0.1, which has a low star-formation rate (SFR ~ 0.07 M⊙ yr-1) in spite of a gas surface density similar to those in starburst galaxies. Its star-formation efficiency is likely a factor ~10-50 lower than those of ordinary star-forming galaxies. Combining new IRAM CO emission-line interferometry with existing Spitzer mid-infrared spectroscopy, we find that the luminosity ratio of CO and pure rotational H2 line emission is factors 10-100 lower than what is usually found. This suggests that most of the molecular gas is warm. The Na D absorption-line profile of 3C 326 N in the optical suggests an outflow with a terminal velocity of ~-1800 km s-1 and a mass outflow rate of 30-40 M⊙ yr-1, which cannot be explained by star formation. The mechanical power implied by the wind, of order 1043 erg s-1, is comparable to the bolometric luminosity of the emission lines of ionized and molecular gas. To explain these observations, we propose a scenario where a small fraction of the mechanical energy of the radio jet is deposited in the interstellar medium of 3C 326 N, which powers the outflow, and the line emission through a mass, momentum and energy exchange between the different gas phases of the ISM. Dissipation times are of order 107-8 yrs, similar or greater than the typical jet lifetime. Small ratios of CO and PAH surface brightnesses in another 7 H2 luminous radio galaxies suggest that a similar form of AGN feedback could be lowering star-formation efficiencies in these galaxies in a similar way. The local demographics of radio-loud AGN suggests that secular gas cooling in massive early-type galaxies of ≥1011 M⊙ could generally be regulated through a fundamentally similar form of “maintenance-phase” AGN feedback. Based on observations carried out with the IRAM Plateau de Bure Interferometer.

  7. Non-Controlled Biogenic Emission of CO, H2S, NH3 and Hg0 from Lazareto's Landfill, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Nolasco, D.; Lima, R.; Salazar, J.; Hernández, P. A.; Pérez, N. M.

    2002-12-01

    Landfills are important sources of contaminant gases to the surrounding environment and a significant amount of them could be released to the atmosphere through the surface environment in a diffuse form, also known as non-controlled emission of landfill gases. CH4 and CO2 are major components in landfill gases and other gas species are only present in minor amounts. Trace compounds include both inorganic and a large number of volatile organic components. The goal of this study is to evaluate the non-controlled biogenic emission of inorganic toxic gases from Lazareto's landfill. Which is located in the city of Santa Cruz de Tenerife, with a population of about 150,000, and is used as a Palm tree park. Lazareto's landfill has an extension of 0.22 Km2 and it is not operative since 1980. A non-controlled biogenic gas emission survey of 281 sampling sites was carried out from February tod March, 2002. Surface CO2 efflux measurements were performed by means of a portable NDIR sensor according with the accumulation chamber method. Surface CO2 efflux ranged from negligible values up to 30,600 gm-2d-1. At each sampling site, surface landfill gas samples were collected at 40 cm depth using a metallic soil probe. These gas samples were analyzed within 24 hours for major and inorganic toxic gas species by means of microGC and specific electrochemical sensors. The highest concentrations of CO, H2S, NH3 and Hg0 were 3, 20, 2,227, 0.010 ppmV, respectively. Non-controlled biogenic emission rate of CO, H2S, NH3, and Hg0 were estimated by multiplying the observed surface CO2 efflux times (Inorganic Toxic Gas)i/CO2 weight ratio at each sampling site, respectively. The highest surface inorganic toxic gas efllux rates were 699 gm-2d-1 for NH3, 81, 431 and 4 mgm-2d-1 for CO, H2S and Hg0, respectively. Taking into consideration the spatial distribution of the inorganic toxic gas efflux values as well as the extension of the landfill, the non-controlled biogenic emission of CO, H2S, NH3

  8. Constraints on the outer radius of the broad emission line region of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Ward, Martin J.; Elvis, Martin; Karovska, Margarita

    2014-03-01

    Here we present observational evidence that the broad emission line region (BELR) of active galactic nuclei (AGN) generally has an outer boundary. This was already clear for sources with an obvious transition between the broad and narrow components of their emission lines. We show that the narrow component of the higher-order Paschen lines is absent in all sources, revealing a broad emission line profile with a broad, flat top. This indicates that the BELR is kinematically separate from the narrow emission line region. We use the virial theorem to estimate the BELR outer radius from the flat top width of the unblended profiles of the strongest Paschen lines, Paα and Paβ, and find that it scales with the ionizing continuum luminosity roughly as expected from photoionization theory. The value of the incident continuum photon flux resulting from this relationship corresponds to that required for dust sublimation. A flat-topped broad emission line profile is produced by both a spherical gas distribution in orbital motion and an accretion disc wind if the ratio between the BELR outer and inner radius is assumed to be less than ˜100-200. On the other hand, a pure Keplerian disc can be largely excluded, since for most orientations and radial extents of the disc the emission line profile is double-horned.

  9. Dark matter line emission constraints from NuSTAR observations of the bullet cluster

    DOE PAGES

    Riemer-Sørensen, S.; Wik, D.; Madejski, G.; ...

    2015-08-27

    Some dark matter candidates, e.g., sterile neutrinos, provide observable signatures in the form of mono-energetic line emission. Here, we present the first search for dark matter line emission in themore » $$3-80\\;\\mathrm{keV}$$ range in a pointed observation of the Bullet Cluster with NuSTAR. We do not detect any significant line emission and instead we derive upper limits (95% CL) on the flux, and interpret these constraints in the context of sterile neutrinos and more generic dark matter candidates. NuSTAR does not have the sensitivity to constrain the recently claimed line detection at $$3.5\\;\\mathrm{keV}$$, but improves on the constraints for energies of $$10-25\\;\\mathrm{keV}$$.« less

  10. The first CO+ image: I. Probing the HI/H2 layer around the ultracompact HII region Mon R2

    PubMed Central

    Treviño-Morales, S. P.; Fuente, A.; Sánchez-Monge, Á.; Pilleri, P.; Goicoechea, J. R.; Ossenkopf-Okada, V.; Roueff, E.; Rizzo, J. R.; Gerin, M.; Berné, O.; Cernicharo, J.; Gónzalez-García, M.; Kramer, C.; García-Burillo, S.; Pety, J.

    2016-01-01

    The CO+ reactive ion is thought to be a tracer of the boundary between a HII region and the hot molecular gas. In this study, we present the spatial distribution of the CO+ rotational emission toward the Mon R2 star-forming region. The CO+ emission presents a clumpy ring-like morphology, arising from a narrow dense layer around the HII region. We compare the CO+ distribution with other species present in photon-dominated regions (PDR), such as [CII] 158 µm, H2 S(3) rotational line at 9.3 µm, polycyclic aromatic hydrocarbons (PAHs) and HCO+. We find that the CO+ emission is spatially coincident with the PAHs and [CII] emission. This confirms that the CO+ emission arises from a narrow dense layer of the HI/H2 interface. We have determined the CO+ fractional abundance, relative to C+ toward three positions. The abundances range from 0.1 to 1.9 ×10−10 and are in good agreement with previous chemical model, which predicts that the production of CO+ in PDRs only occurs in dense regions with high UV fields. The CO+ linewidth is larger than those found in molecular gas tracers, and their central velocity are blue-shifted with respect to the molecular gas velocity. We interpret this as a hint that the CO+ is probing photo-evaporating clump surfaces. PMID:27721515

  11. X-radiation /E greater than 10 keV/, H-alpha and microwave emission during the impulsive phase of solar flares.

    NASA Technical Reports Server (NTRS)

    Vorpahl, J. A.

    1972-01-01

    A study has been made of the variation in hard (E greater than 10 keV) X-radiation, H-alpha and microwave emission during the impulsive phase of solar flares. Analysis shows that the rise-time in the 20-30-keV X-ray spike depends on the electron hardness. The impulsive phase is also marked by an abrupt, very intense increase in H-alpha emission in one or more knots of the flare. Properties of these H-alpha kernels include: (1) a luminosity several times greater than the surrounding flare, (2) an intensity rise starting about 20-30 sec before, peaking about 20-25 sec after, and lasting about twice as long as the hard spike, (3) a location lower in the chromosphere than the remaining flare, (4) essentially no expansion prior to the hard spike, and (5) a position within 6000 km of the boundary separating polarities, usually forming on both sides of the neutral line near both feet of the same tube of force. Correspondingly, impulsive microwave events are characterized by: (1) great similarity in burst structure with 20-32 keV X-rays but only above 5000 MHz, (2) typical low frequency burst cutoff between 1400-3800 MHz, and (3) maximum emission above 7500 MHz.

  12. A (Si VI) (1.92 micrometer) coronal line survey of galactic nuclei

    NASA Astrophysics Data System (ADS)

    Marconi, A.; Moorwood, A. F. M.; Salvati, M.; Oliva, E.

    1994-11-01

    We present the results of a (Si VI) lambda 1.962 emission line survey of active, starburst and IRAS luminous galaxies. The line was only detected in known Seyfert type 1 and 2 nuclei confirming previous suggestions that (Si VI) is related to Seyfert activity. By modeling the formation of (Si VI) and (Fe VIII) lambda 6087 we find further strong evidence that these lines arise in gas photoionized by the active nucleus although collisional ionization e.g. by shock fronts may be important in some galaxies exhibiting (Fe VII) much greater than (Si VI). Our failure to detect (Si VI) in the IRAS ultraluminous galaxies does not exclude the possible presence of obscured Active Galactic Nuclei (AGNs), particularly as some of the known Seyferts were also not detected. Molecular hydrogen lines (a by-product of our spectra) are common in all galaxy types including several IRAS ultraluminous galaxies whose H2 equivalent widths (Wlambda less that 20 A) are 'normal'and much lower than the extreme value (Wlambda approximately = 70 A) found in NGC 6240 and NGC 1275. 'Bare' Seyferts have Wlambda(H2) less than 1 A and a factor greater than or approximately 10 lower than starbursts, and we do not confirm previous claims of H2 line emission in the quasar 3C273. Although the ratio of H2 to (Si VI) emission varies over a wide range it does not appear to provide a useful indicator of activity type or to impose constraints on the He excitation mechanism.

  13. The Ca II V/R ratio and mass loss. [stellar spectral emission lines

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.

    1978-01-01

    High-dispersion coude spectrograms of 181 MK standards of types early F through late M, including luminosity classes Ia, Ib, II, and III, are analyzed. It is shown that the brightness ratio of the V and R self-reversed emission peaks (denoted V/R) in the center of the Ca II K line is correlated with spectral type as well as with certain other spectral-type and luminosity-sensitive parameters, including indicators of mass loss and the H-K wing emission lines. The observations indicate that V/R varies smoothly from less than unity in late K and M giants to greater than unity for G giants. This trend appears to be true for bright giants as well but not necessarily for supergiants and seems to hold for the average V/R for a given star, although short-term variations in V/R occur. It is suggested that the V/R values, which can be interpreted in terms of atmospheric motions, may indirectly relate to effects of evolutionary changes in stellar structure and that V/R among late-type stars could be useful as an indicator of both chromospheric activity and the state of stellar evolution.

  14. Cervical Cancer Cell Line Secretome Highlights the Roles of Transforming Growth Factor-Beta-Induced Protein ig-h3, Peroxiredoxin-2, and NRF2 on Cervical Carcinogenesis.

    PubMed

    Kontostathi, Georgia; Zoidakis, Jerome; Makridakis, Manousos; Lygirou, Vasiliki; Mermelekas, George; Papadopoulos, Theofilos; Vougas, Konstantinos; Vlamis-Gardikas, Alexios; Drakakis, Peter; Loutradis, Dimitrios; Vlahou, Antonia; Anagnou, Nicholas P; Pappa, Kalliopi I

    2017-01-01

    Cancer cells acquire unique secretome compositions that contribute to tumor development and metastasis. The aim of our study was to elucidate the biological processes involved in cervical cancer, by performing a proteomic analysis of the secretome from the following informative cervical cell lines: SiHa (HPV16+), HeLa (HPV18+), C33A (HPV-), and HCK1T (normal). Proteins were analyzed by 2D gel electrophoresis coupled to MALDI-TOF-MS. Enrichment of secreted proteins with characteristic profiles for each cell line was followed by the identification of differentially expressed proteins. Particularly, transforming growth factor-beta-induced protein ig-h3 (Beta ig-h3) and peroxiredoxin-2 (PRDX2) overexpression in the secretome of cancer cell lines was detected and confirmed by Western blot. Bioinformatics analysis identified the transcription factor NRF2 as a regulator of differentially expressed proteins in the cervical cancer secretome. NRF2 levels were measured by both Western blot and Multiple Reaction Monitoring (MRM) in the total cell extract of the four cell lines. NRF2 was upregulated in SiHa and C33A compared to HCK1T. In conclusion, the secreted proteins identified in cervical cancer cell lines indicate that aberrant NRF2-mediated oxidative stress response (OSR) is a prominent feature of cervical carcinogenesis.

  15. Amplification of spontaneous emission on sodium D-lines using nonresonance broadband optical pumping

    NASA Astrophysics Data System (ADS)

    Petukhov, T. D.; Evtushenko, G. S.; Tel'minov, E. N.

    2018-04-01

    This work describes an experimental study of obtaining the amplified spontaneous emission (ASE) on sodium D-lines using nonresonance broadband optical pumping. ASE is observed at transitions D2 and D1 line: 589 nm (32 P3/2 - 32 S1/2) and 589.6 nm (32 P1/2 - 32 S1/2). The active medium was pumped by the dye laser with FWHM of 5 nm, maximum radiation in the range 584.5-586.5 nm, and pulse energy above 2 mJ. The working temperature of the active medium was 260 °C, initial pressure of buffer gas-helium was 300 torr (operating pressure - 500 torr). A change in the absorption spectra at D lines at different temperatures of the active medium and buffer gas pressures was observed

  16. Using a New Infrared Si X Coronal Emission Line for Discriminating between Magnetohydrodynamic Models of the Solar Corona During the 2006 Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Dima, Gabriel I.; Kuhn, Jeffrey R.; Mickey, Don; Downs, Cooper

    2018-01-01

    During the 2006 March 29 total solar eclipse, coronal spectropolarimetric measurements were obtained over a 6 × 6 R ⊙ field of view with a 1–2 μm spectral range. The data yielded linearly polarized measurements of the Fe XIII 1.075 μm, He I 1.083 μm, and for the first time, of the Si X 1.430 μm emission lines. To interpret the measurements, we used forward-integrated synthetic emission from two magnetohydrodynamic models for the same Carrington rotation with different heating functions and magnetic boundary conditions. Observations of the Fe XIII 1.075/Si X 1.430 line ratio allowed us to discriminate between two models of the corona, with the observations strongly favoring the warmer model. The observed polarized amplitudes for the Si X 1.430 μm line are around 7%, which is three times higher than the predicted values from available atomic models for the line. This discrepancy indicates a need for a closer look at some of the model assumptions for the collisional coefficients, as well as new polarized observations of the line to rule out any unknown systematic effect in the present data. All but two near-limb fibers show correlated bright He I 1.083 μm and H I 1.282 μm emission, which likely indicates cool prominence emission that is non-localized by the strongly defocused optics. One of the distant fibers located at 1.5 R ⊙ detected a weak He I 1.083 μm intensity signal consistent with previous eclipse measurements around 3 × 10‑7 {B}ȯ . However, given the limitations of these observations, it is not possible to completely remove contamination that is due to emission from prominence material that is not obscured by the lunar limb.

  17. Study on Emission Spectral Lines of Iron, Fe in Laser-Induced Breakdown Spectroscopy (LIBS) on Soil Samples

    NASA Astrophysics Data System (ADS)

    Idris, Nasrullah; Lahna, Kurnia; Fadhli; Ramli, Muliadi

    2017-05-01

    In this work, LIBS technique has been used for detection of heavy metal especially iron, Fe in soil sample. As there are a large number of emission spectral lines due to Fe and other constituents in soil, this study is intended to identify emission spectral lines of Fe and finally to find best fit emission spectral lines for carrying out a qualitative and quantitative analysis. LIBS apparatus used in this work consists of a laser system (Neodymium Yttrium Aluminum Garnet, Nd-YAG: Quanta Ray; LAB SERIES; 1,064 nm; 500 mJ; 8 ns) and an optical multichannel analyzer (OMA) system consisting of a spectrograph (McPherson model 2061; 1,000 mm focal length; f/8.6 Czerny- Turner) and an intensified charge coupled device (ICCD) 1024x256 pixels (Andor I*Star). The soil sample was collected from Banda Aceh city, Aceh, Indonesia. For spectral data acquisition, the soil sample has been prepared by a pressing machine in the form of pellet. The laser beam was focused using a high density lens (f=+150 mm) and irradiated on the surface of the pellet for generating luminous plasma under 1 atmosphere of air surrounding. The plasma emission was collected by an optical fiber and then sent to the optical multichannel analyzer (OMA) system for acquisition of the emission spectra. It was found that there are many Fe emission lines both atomic lines (Fe I) and ionic lines (Fe II) appeared in all detection windows in the wavelength regions, ranging from 200 nm to 1000 nm. The emission lines of Fe with strong intensities occurs together with emission lines due to other atoms such as Mg, Ca, and Si. Thus, the identification of emission lines from Fe is complicated by presence of many other lines due to other major and minor elements in soil. Considering the features of the detected emission lines, several emission spectral lines of Fe I (atomic emission line), especially Fe I 404.58 nm occurring at visible range are potential to be good candidate of analytical lines in relation to detection

  18. EMISSION SIGNATURES FROM SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES. I. DIAGNOSTIC POWER OF BROAD EMISSION LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Khai; Bogdanović, Tamara

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks thatmore » are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.« less

  19. Sodium D-line emission from Io - Comparison of observed and theoretical line profiles

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Matson, D. L.; Johnson, T. V.; Bergstralh, J. T.

    1978-01-01

    High-resolution spectra of the D-line profiles have been obtained for Io's sodium emission cloud. These lines, which are produced through resonance scattering of sunlight, are broad and asymmetric and can be used to infer source and dynamical properties of the sodium cloud. In this paper we compare line profile data with theoretical line shapes computed for several assumed initial velocity distributions corresponding to various source mechanisms. We also examine the consequences of source distributions which are nonuniform over the surface of Io. It is found that the experimental data are compatible with escape of sodium atoms from the leading hemisphere of Io and with velocity distributions characteristic of sputtering processes. Thermal escape and simple models of plasma sweeping are found to be incompatible with the observations.

  20. Interstellar H3O(+) and its relation to the O2 and H2O abundances

    NASA Astrophysics Data System (ADS)

    Phillips, T. G.; van Dishoeck, Ewine F.; Keene, Jocelyn

    1992-11-01

    An interstellar medium study of the three reasonably accessible low-lying submillimeter lines of the H3O(+) molecular ion at 396, 364, and 307 GHz is presented. An analysis of the H3O(+) line ratios shows that under high density (about 10 exp 6 - 10 exp 7/cu cm) and high-temperature (greater than about 50 K), the 396 GHz line is about a factor of two stronger than the 364 GHz line, with the 307 GHz line much weaker. For lower densities, the excitation of the 364 GHz line can be very sensitive to dust radiation pumping, and it is shown that this is the case in Sgr B2, resulting in the 364 GHz line being a factor of 2-3 stronger than the 396 GHz line. Under almost all conditions, the 307 GHz line is weak, the exception being for densities greater than about 10 exp 7/cu cm.

  1. Searching for the Expelled Hydrogen Envelope in Type I Supernovae via Late-Time H α Emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinko, J.; Silverman, J. M.; Wheeler, J. C.

    2017-03-01

    We report the first results from our long-term observational survey aimed at discovering late-time interaction between the ejecta of hydrogen-poor Type I supernovae (SNe I) and the hydrogen-rich envelope expelled from the progenitor star several decades/centuries before explosion. The expelled envelope, moving with a velocity of ∼10–100 km s{sup −1}, is expected to be caught up by the fast-moving SN ejecta several years/decades after explosion, depending on the history of the mass-loss process acting in the progenitor star prior to explosion. The collision between the SN ejecta and the circumstellar envelope results in net emission in the Balmer lines, especiallymore » H α . We look for signs of late-time H α emission in older SNe Ia/Ibc/IIb with hydrogen-poor ejecta via narrowband imaging. Continuum-subtracted H α emission has been detected for 13 point sources: 9 SN Ibc, 1 SN IIb, and 3 SN Ia events. Thirty-eight SN sites were observed on at least two epochs, from which three objects (SN 1985F, SN 2005kl, and SN 2012fh) showed significant temporal variation in the strength of their H α emission in our Direct Imaging Auxiliary Functions Instrument (DIAFI) data. This suggests that the variable emission is probably not due to nearby H ii regions unassociated with the SN and hence is an important additional hint that ejecta–circumstellar medium interaction may take place in these systems. Moreover, we successfully detected the late-time H α emission from the Type Ib SN 2014C, which was recently discovered as a strongly interacting SN in various (radio, infrared, optical, and X-ray) bands.« less

  2. Influence of velocity effects on the shape of N2 (and air) broadened H2O lines revisited with classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ngo, N. H.; Tran, H.; Gamache, R. R.; Bermejo, D.; Domenech, J.-L.

    2012-08-01

    The modeling of the shape of H2O lines perturbed by N2 (and air) using the Keilson-Storer (KS) kernel for collision-induced velocity changes is revisited with classical molecular dynamics simulations (CMDS). The latter have been performed for a large number of molecules starting from intermolecular-potential surfaces. Contrary to the assumption made in a previous study [H. Tran, D. Bermejo, J.-L. Domenech, P. Joubert, R. R. Gamache, and J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transf. 108, 126 (2007)], 10.1016/j.jqsrt.2007.03.009, the results of these CMDS show that the velocity-orientation and -modulus changes statistically occur at the same time scale. This validates the use of a single memory parameter in the Keilson-Storer kernel to describe both the velocity-orientation and -modulus changes. The CMDS results also show that velocity- and rotational state-changing collisions are statistically partially correlated. A partially correlated speed-dependent Keilson-Storer model has thus been used to describe the line-shape. For this, the velocity changes KS kernel parameters have been directly determined from CMDS, while the speed-dependent broadening and shifting coefficients have been calculated with a semi-classical approach. Comparisons between calculated spectra and measurements of several lines of H2O broadened by N2 (and air) in the ν3 and 2ν1 + ν2 + ν3 bands for a wide range of pressure show very satisfactory agreement. The evolution of non-Voigt effects from Doppler to collisional regimes is also presented and discussed.

  3. The Number Density Evolution of Extreme Emission Line Galaxies in 3D-HST: Results from a Novel Automated Line Search Technique for Slitless Spectroscopy

    NASA Astrophysics Data System (ADS)

    Maseda, Michael V.; van der Wel, Arjen; Rix, Hans-Walter; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; Lundgren, Britt F.; Skelton, Rosalind E.; Whitaker, Katherine E.

    2018-02-01

    The multiplexing capability of slitless spectroscopy is a powerful asset in creating large spectroscopic data sets, but issues such as spectral confusion make the interpretation of the data challenging. Here we present a new method to search for emission lines in the slitless spectroscopic data from the 3D-HST survey utilizing the Wide-Field Camera 3 on board the Hubble Space Telescope. Using a novel statistical technique, we can detect compact (extended) emission lines at 90% completeness down to fluxes of 1.5(3.0)× {10}-17 {erg} {{{s}}}-1 {{cm}}-2, close to the noise level of the grism exposures, for objects detected in the deep ancillary photometric data. Unlike previous methods, the Bayesian nature allows for probabilistic line identifications, namely redshift estimates, based on secondary emission line detections and/or photometric redshift priors. As a first application, we measure the comoving number density of Extreme Emission Line Galaxies (restframe [O III] λ5007 equivalent widths in excess of 500 Å). We find that these galaxies are nearly 10× more common above z ∼ 1.5 than at z ≲ 0.5. With upcoming large grism surveys such as Euclid and WFIRST, as well as grisms featured prominently on the NIRISS and NIRCam instruments on the James Webb Space Telescope, methods like the one presented here will be crucial for constructing emission line redshift catalogs in an automated and well-understood manner. This work is based on observations taken by the 3D-HST Treasury Program and the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  4. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  5. 2.5 MHz Line-Width High-energy, 2 Micrometer Coherent Wind Lidar Transmitter

    NASA Technical Reports Server (NTRS)

    Petros, Mulugeta; Yu, Jirong; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Singh, Upendra N.; Reithmaier, Karl

    2007-01-01

    2 micron solid-state lasers are the primary choice for coherent Doppler wind detection. As wind lidars, they are used for wake vortex and clear air turbulence detection providing air transport safety. In addition, 2 micron lasers are one of the candidates for CO2 detection lidars. The rich CO2 absorption line around 2 micron, combined with the long upper state life of time, has made Ho based 2 micron lasers a viable candidate for CO2 sensing DIAL instrument. The design and fabrication of a compact coherent laser radar transmitter for Troposphere wind sensing is under way. This system is hardened for ground as well as airborne applications. As a transmitter for a coherent wind lidar, this laser has stringent spectral line width and beam quality requirements. Although the absolute wavelength does not have to be fixed for wind detection, to maximize return signal, the output wavelength should avoid atmospheric CO2 and H2O absorption lines. The base line laser material is Ho:Tm:LuLF which is an isomorph of Ho:Tm:YLF. LuLF produces 20% more output power than Ho:Tm:YLF. In these materials the Tm absorption cross-section, the Ho emission cross-section, the Tm to Ho energy transfer parameters and the Ho (sup 5) I (sub 7) radiative life time are all identical. However, the improved performance of the LuLF is attributed to the lower thermal population in the (sup 5) I (sub 8) manifold. It also provides higher normal mode to Q-switch conversion than YLF at high pump energy indicating a lower up-conversion. The laser architecture is composed of a seed laser, a ring oscillator, and a double pass amplifier. The seed laser is a single longitudinal mode with a line width of 13 KHz. The 100mJ class oscillator is stretched to 3 meters to accommodate the line-width requirement without compromising the range resolution of the instrument. The amplifier is double passed to produce greater than 300mJ energy.

  6. Soil pH management without lime, a strategy to reduce greenhouse gas emissions from cultivated soils

    NASA Astrophysics Data System (ADS)

    Nadeem, Shahid; Bakken, Lars; Reent Köster, Jan; Tore Mørkved, Pål; Simon, Nina; Dörsch, Peter

    2015-04-01

    For decades, agricultural scientists have searched for methods to reduce the climate forcing of food production by increasing carbon sequestration in the soil and reducing the emissions of nitrous oxide (N2O). The outcome of this research is depressingly meagre and the two targets appear incompatible: efforts to increase carbon sequestration appear to enhance the emissions of N2O. Currently there is a need to find alternative management strategies which may effectively reduce both the CO2 and N2O footprints of food production. Soil pH is a master variable in soil productivity and plays an important role in controlling the chemical and biological activity in soil. Recent investigations of the physiology of denitrification have provided compelling evidence that the emission of N2O declines with increasing pH within the range 5-7. Thus, by managing the soil pH at a near neutral level appears to be a feasible way to reduce N2O emissions. Such pH management has been a target in conventional agriculture for a long time, since a near-neutral pH is optimal for a majority of cultivated plants. The traditional way to counteract acidification of agricultural soils is to apply lime, which inevitably leads to emission of CO2. An alternative way to increase the soil pH is the use of mafic rock powders, which have been shown to counteract soil acidification, albeit with a slower reaction than lime. Here we report a newly established field trail in Norway, in which we compare the effects of lime and different mafic mineral and rock powders (olivine, different types of plagioclase) on CO2 and N2O emissions under natural agricultural conditions. Soil pH is measured on a monthly basis from all treatment plots. Greenhouse gas (GHG) emission measurements are carried out on a weekly basis using static chambers and an autonomous robot using fast box technique. Field results from the first winter (fallow) show immediate effect of lime on soil pH, and slower effects of the mafic rocks. The

  7. Detection of Broad Hα Emission Lines in the Late-Time Spectra of a Hydrogen-Poor Superluminous Supernova

    DOE PAGES

    Yan, Lin; Quimby, R.; Ofek, E.; ...

    2015-11-23

    iPTF13ehe is a hydrogen-poor superluminous supernova (SLSN) at z = 0.3434, with a slow-evolving light curve and spectral features similar to SN2007bi. It rises in 83–148 days to reach a peak bolometric luminosity of ~1.3 × 10 44 erg s -1, then decays slowly at 0.015 mag day -1. The measured ejecta velocity is ~ 13,000 km s -1. The inferred explosion characteristics, such as the ejecta mass (70–220 M ⊙), and the total radiative and kinetic energy (E rad ~ 10 51 erg, E kin ~ 2 × 10 53 erg), are typical of slow-evolving H-poor SLSN events. However,more » the late-time spectrum taken at +251 days (rest, post-peak) reveals a Balmer Hα emission feature with broad and narrow components, which has never been detected before among other H-poor SLSNe. The broad component has a velocity width of ~4500 km s -1 and a ~300 km s -1 blueward shift relative to the narrow component. In this paper, we interpret this broad Hα emission with a luminosity of ~2 × 10 41 erg s -1 as resulting from the interaction between the supernova ejecta and a discrete H-rich shell, located at a distance of ~4 × 10 16 cm from the explosion site. This interaction causes the rest-frame r-band LC to brighten at late times. The fact that the late-time spectra are not completely absorbed by the shock-ionized H-shell implies that its Thomson scattering optical depth is likely ≤1, thus setting upper limits on the shell mass ≤30 M ⊙. Of the existing models, a Pulsational Pair Instability supernova model can naturally explain the observed 30 M ⊙ H-shell, ejected from a progenitor star with an initial mass of (95–150) M ⊙ about 40 years ago. Finally, we estimate that at least ~15% of all SLSNe-I may have late-time Balmer emission lines.« less

  8. Detection of Broad Hα Emission Lines in the Late-time Spectra of a Hydrogen-poor Superluminous Supernova

    NASA Astrophysics Data System (ADS)

    Yan, Lin; Quimby, R.; Ofek, E.; Gal-Yam, A.; Mazzali, P.; Perley, D.; Vreeswijk, P. M.; Leloudas, G.; De Cia, A.; Masci, F.; Cenko, S. B.; Cao, Y.; Kulkarni, S. R.; Nugent, P. E.; Rebbapragada, Umaa D.; Woźniak, P. R.; Yaron, O.

    2015-12-01

    iPTF13ehe is a hydrogen-poor superluminous supernova (SLSN) at z = 0.3434, with a slow-evolving light curve and spectral features similar to SN2007bi. It rises in 83-148 days to reach a peak bolometric luminosity of ˜1.3 × 1044 erg s-1, then decays slowly at 0.015 mag day-1. The measured ejecta velocity is ˜ 13,000 km s-1. The inferred explosion characteristics, such as the ejecta mass (70-220 M⊙), and the total radiative and kinetic energy (Erad ˜ 1051 erg, Ekin ˜ 2 × 1053 erg), are typical of slow-evolving H-poor SLSN events. However, the late-time spectrum taken at +251 days (rest, post-peak) reveals a Balmer Hα emission feature with broad and narrow components, which has never been detected before among other H-poor SLSNe. The broad component has a velocity width of ˜4500 km s-1 and a ˜300 km s-1 blueward shift relative to the narrow component. We interpret this broad Hα emission with a luminosity of ˜2 × 1041 erg s-1 as resulting from the interaction between the supernova ejecta and a discrete H-rich shell, located at a distance of ˜4 × 1016 cm from the explosion site. This interaction causes the rest-frame r-band LC to brighten at late times. The fact that the late-time spectra are not completely absorbed by the shock-ionized H-shell implies that its Thomson scattering optical depth is likely ≤1, thus setting upper limits on the shell mass ≤30 M⊙. Of the existing models, a Pulsational Pair Instability supernova model can naturally explain the observed 30 M⊙ H-shell, ejected from a progenitor star with an initial mass of (95-150) M⊙ about 40 years ago. We estimate that at least ˜15% of all SLSNe-I may have late-time Balmer emission lines.

  9. Performance of a Line Loss Correction Method for Gas Turbine Emission Measurements

    NASA Astrophysics Data System (ADS)

    Hagen, D. E.; Whitefield, P. D.; Lobo, P.

    2015-12-01

    International concern for the environmental impact of jet engine exhaust emissions in the atmosphere has led to increased attention on gas turbine engine emission testing. The Society of Automotive Engineers Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter from aircraft engines, and is developing an Aerospace Recommended Practice (ARP) for methodology and system specification. The Missouri University of Science and Technology (MST) Center for Excellence for Aerospace Particulate Emissions Reduction Research has led numerous jet engine exhaust sampling campaigns to characterize emissions at different locations in the expanding exhaust plume. Particle loss, due to various mechanisms, occurs in the sampling train that transports the exhaust sample from the engine exit plane to the measurement instruments. To account for the losses, both the size dependent penetration functions and the size distribution of the emitted particles need to be known. However in the proposed ARP, particle number and mass are measured, but size is not. Here we present a methodology to generate number and mass correction factors for line loss, without using direct size measurement. A lognormal size distribution is used to represent the exhaust aerosol at the engine exit plane and is defined by the measured number and mass at the downstream end of the sample train. The performance of this line loss correction is compared to corrections based on direct size measurements using data taken by MST during numerous engine test campaigns. The experimental uncertainty in these correction factors is estimated. Average differences between the line loss correction method and size based corrections are found to be on the order of 10% for number and 2.5% for mass.

  10. C3H2 observations as a diagnostic probe for molecular clouds

    NASA Technical Reports Server (NTRS)

    Avery, L. W.

    1986-01-01

    Recently the three-membered ring molecule, cyclopropenylidene, C3H2, has been identified in the laboratory and detected in molecular clouds by Thaddeus, Vrtilek and Gottlieb (1985). This molecule is wide-spread throughout the Galaxy and has been detected in 25 separate sources including cold dust clouds, circumstellar envelopes, HII regions, and the spiral arms observed against the Cas supernova remnant. In order to evaluate the potential of C3H2 as a diagnostic probe for molecular clouds, and to attempt to identify the most useful transitions, statistical equilibrium calculations were carried out for the lowest 24 levels of the ortho species and the lowest 10 levels of the para species. Many of the sources observed by Matthews and Irvine (1985) show evidence of being optically thick in the 1(10)-1(01) line. Consequently, the effects of radiative trapping should be incorporated into the equilibrium calculations. This was done using the Large Velocity Gradient approximation for a spherical cloud of uniform density. Some results of the calculations for T(K)=10K are given. Figures are presented which show contours of the logarithm of the ratio of peak line brightness temperatures for ortho-para pairs of lines at similar frequencies. It appears that the widespread nature of C3H2, the relatively large strength of its spectral lines, and their sensitivity to density and molecular abundance combine to make this a useful molecule for probing physical conditions in molecular clouds. The 1(10)-1(01) and 2(20)-2(11) K-band lines may be especially useful in this regard because of the ease with which they are observed and their unusual density-dependent emission/absorption properties.

  11. Stellar model chromospheres. IV - The formation of the H-epsilon feature in the sun /G2 V/ and Arcturus /K2 III/

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Linsky, J. L.

    1975-01-01

    The formation of the Balmer-series member H-epsilon in the near-red wing of the Ca II H line is discussed for two cases: the sun (H-epsilon absorption profile) and Arcturus (H-epsilon emission profile). It is shown that although the H-epsilon source functions in both stars are dominated by the Balmer-continuum radiation field through photoionizations, the line-formation problems in the two stars are quantitatively different, owing to a substantial difference in the relative importance of the stellar chromosphere temperature inversion as compared with the stellar photosphere.

  12. CONSTRAINING THE MILKY WAY'S HOT GAS HALO WITH O VII AND O VIII EMISSION LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Matthew J.; Bregman, Joel N., E-mail: mjmil@umich.edu, E-mail: jbregman@umich.edu

    2015-02-10

    The Milky Way hosts a hot (≈2 × 10{sup 6} K), diffuse, gaseous halo based on detections of z = 0 O VII and O VIII absorption lines in quasar spectra and emission lines in blank-sky spectra. Here we improve constraints on the structure of the hot gas halo by fitting a radial model to a much larger sample of O VII and O VIII emission line measurements from XMM-Newton/EPIC-MOS spectra compared to previous studies (≈650 sightlines). We assume a modified β-model for the halo density distribution and a constant-density Local Bubble from which we calculate emission to compare withmore » the observations. We find an acceptable fit to the O VIII emission line observations with χ{sub red}{sup 2} (dof) = 1.08 (644) for best-fit parameters of n{sub o}r{sub c}{sup 3β}=1.35±0.24 cm{sup –3} kpc{sup 3β} and β = 0.50 ± 0.03 for the hot gas halo and negligible Local Bubble contribution. The O VII observations yield an unacceptable χ{sub red}{sup 2} (dof) = 4.69 (645) for similar best-fit parameters, which is likely due to temperature or density variations in the Local Bubble. The O VIII fitting results imply hot gas masses of M(<50 kpc) = 3.8{sub −0.3}{sup +0.3}×10{sup 9} M{sub ⊙} and M(<250 kpc) = 4.3{sub −0.8}{sup +0.9}×10{sup 10} M{sub ⊙}, accounting for ≲50% of the Milky Way's missing baryons. We also explore our results in the context of optical depth effects in the halo gas, the halo gas cooling properties, temperature and entropy gradients in the halo gas, and the gas metallicity distribution. The combination of absorption and emission line analyses implies a sub-solar gas metallicity that decreases with radius, but that also must be ≥0.3 Z {sub ☉} to be consistent with the pulsar dispersion measure toward the Large Magellanic Cloud.« less

  13. Cervical Cancer Cell Line Secretome Highlights the Roles of Transforming Growth Factor-Beta-Induced Protein ig-h3, Peroxiredoxin-2, and NRF2 on Cervical Carcinogenesis

    PubMed Central

    Zoidakis, Jerome; Makridakis, Manousos; Lygirou, Vasiliki; Mermelekas, George; Vougas, Konstantinos; Drakakis, Peter

    2017-01-01

    Cancer cells acquire unique secretome compositions that contribute to tumor development and metastasis. The aim of our study was to elucidate the biological processes involved in cervical cancer, by performing a proteomic analysis of the secretome from the following informative cervical cell lines: SiHa (HPV16+), HeLa (HPV18+), C33A (HPV−), and HCK1T (normal). Proteins were analyzed by 2D gel electrophoresis coupled to MALDI-TOF-MS. Enrichment of secreted proteins with characteristic profiles for each cell line was followed by the identification of differentially expressed proteins. Particularly, transforming growth factor-beta-induced protein ig-h3 (Beta ig-h3) and peroxiredoxin-2 (PRDX2) overexpression in the secretome of cancer cell lines was detected and confirmed by Western blot. Bioinformatics analysis identified the transcription factor NRF2 as a regulator of differentially expressed proteins in the cervical cancer secretome. NRF2 levels were measured by both Western blot and Multiple Reaction Monitoring (MRM) in the total cell extract of the four cell lines. NRF2 was upregulated in SiHa and C33A compared to HCK1T. In conclusion, the secreted proteins identified in cervical cancer cell lines indicate that aberrant NRF2-mediated oxidative stress response (OSR) is a prominent feature of cervical carcinogenesis. PMID:28261610

  14. Observing Infrared Emission Lines of Neutron-Capture Species in Planetary Nebulae: New Detections with IGRINS

    NASA Astrophysics Data System (ADS)

    Dinerstein, Harriet L.; Sterling, N. C.; Kaplan, Kyle F.; Bautista, Manuel A.

    2015-08-01

    As the former envelopes of evolved stars, planetary nebulae (PNe) present an opportunity to study slow neutron-capture reactions (the “s-process”) during the AGB. Such studies differ from those of AGB stars in two ways. First, PNe represent the end point of self-enrichment and dredge-up in the star and most of its mass return to the ISM, enabling us to infer the nucleosynthetic yield of a specific element. Second, some s-process products are observable in PNe but difficult or impossible to observe in cool stars. These include some species with nuclear charge Z in the 30’s for which the major synthesis sites are uncertain. Optical emission lines of trans-iron species have been observed in some PNe, but are faint and can suffer from blending with lines of more abundant elements (Péquignot & Baluteau 1994, A&A, 283, 593; Sharpee et al. 2007, ApJ, 659, 1265). Observing infrared transitions from low energy states has proven to be a fruitful alternate approach. We used K-band lines of Se (Z=34) and Kr (Z=36) to study the demographics of their abundances in a large sample of Milky Way PNe (Dinerstein 2001, ApJ, 550, L223; Sterling & Dinerstein 2008, ApJ, 174, 158; Sterling, Porter, & Dinerstein 2015, submitted). An L-band emission line of Zn identified by Dinerstein & Geballe (2001, ApJ, 562, 515) and further observed by Smith, Zijlstra, & Dinerstein 2014 (MNRAS, 441, 3161), can be used as a tracer of the Fe-group, enabling determinations of the key stellar population diagnostic ratio [alpha/Fe] in PNe (see poster by Dinerstein et al., Focus Meeting 4). Using IGRINS, a high spectral resolution H and K band spectrometer (Park & Jaffe et al. 2014, Proc SPIE, 9147), we have discovered several new lines not previously reported in any astronomical object. Our detection of an H-band line of Rb (Z=37) confirms previous claims of optical Rb detections and indicates enrichment by a factor of ~4 in the PN NGC 7027 (Sterling, Dinerstein, Kaplan, & Bautista, in preparation

  15. SDSS-IV eBOSS emission-line galaxy pilot survey

    DOE PAGES

    Comparat, J.; Delubac, T.; Jouvel, S.; ...

    2016-08-09

    The Sloan Digital Sky Survey IV extended Baryonic Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) will observe 195,000 emission-line galaxies (ELGs) to measure the Baryonic Acoustic Oscillation standard ruler (BAO) at redshift 0.9. To test different ELG selection algorithms, 9,000 spectra were observed with the SDSS spectrograph as a pilot survey based on data from several imaging surveys. First, using visual inspection and redshift quality flags, we show that the automated spectroscopic redshifts assigned by the pipeline meet the quality requirements for a reliable BAO measurement. We also show the correlations between sky emission, signal-to-noise ratio in the emission lines, and redshift error.more » Then we provide a detailed description of each target selection algorithm we tested and compare them with the requirements of the eBOSS experiment. As a result, we provide reliable redshift distributions for the different target selection schemes we tested. Lastly, we determine an target selection algorithms that is best suited to be applied on DECam photometry because they fulfill the eBOSS survey efficiency requirements.« less

  16. Measurement of X-ray emission efficiency for K-lines.

    PubMed

    Procop, M

    2004-08-01

    Results for the X-ray emission efficiency (counts per C per sr) of K-lines for selected elements (C, Al, Si, Ti, Cu, Ge) and for the first time also for compounds and alloys (SiC, GaP, AlCu, TiAlC) are presented. An energy dispersive X-ray spectrometer (EDS) of known detection efficiency (counts per photon) has been used to record the spectra at a takeoff angle of 25 degrees determined by the geometry of the secondary electron microscope's specimen chamber. Overall uncertainty in measurement could be reduced to 5 to 10% in dependence on the line intensity and energy. Measured emission efficiencies have been compared with calculated efficiencies based on models applied in standardless analysis. The widespread XPP and PROZA models give somewhat too low emission efficiencies. The best agreement between measured and calculated efficiencies could be achieved by replacing in the modular PROZA96 model the original expression for the ionization cross section by the formula given by Casnati et al. (1982) A discrepancy remains for carbon, probably due to the high overvoltage ratio.

  17. 3D model of auroral emissions for Europa

    NASA Astrophysics Data System (ADS)

    Cessateur, G.; Barthelemy, M.; Rubin, M.; Lilensten, J.; Maggiolo, R.; De Keyser, J.; Gunell, H.; Loreau, J.

    2017-12-01

    As archetype of icy satellites, Europa will be one of the primary targets of the ESA JUICE and NASA Europa Clipper missions. Through surface sputtering, Europa does possess a thin neutral gas atmosphere, mainly composed of O2 and H2O. Valuable information can therefore be retrieved from auroral and airglow measurements. We present here a 3D electron-excitation-transport-emission coupled model of oxygen line emissions produced through precipitating electrons. The density and temperature of the electrons are first derived from the multifluid MHD model from Rubin et al. (2015). Oxygen emission lines in the UV have first been modelled, such as those at 130.5 and 135.6 nm, and there is a nonhomogenous distribution of the emission. For 135.6 nm, the line emission can be significant and reach 700 Rayleigh close to the surface for a polar limb viewing angle. Visible emissions with the red-doublet (630-636.4 nm) and green (577.7 nm) oxygen lines are also considered with emission intensities reaching 7150 R and 200 R, respectively, for limb polar viewing. Using different cross section data, a sensitivity study has also been performed to assess the impact of the uncertainties on the auroral emissions.

  18. Precursory diffuse CO2 and H2S emission signatures of the 2011-2012 El Hierro submarine eruption, Canary Islands

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Padilla, Germán D.; Padrón, Eleazar; Hernández, Pedro A.; Melián, Gladys V.; Barrancos, José; Dionis, Samara; Nolasco, Dácil; Rodríguez, Fátima; Calvo, David; Hernández, Íñigo

    2012-08-01

    On October 12, 2011, a submarine eruption began 2 km off the coast of La Restinga, south of El Hierro Island. CO2 and H2S soil efflux were continuously measured during the period of volcanic unrest by using the accumulation chamber method at two different geochemical stations, HIE01 and HIE07. Recorded CO2 and H2S effluxes showed precursory signals that preceded the submarine eruption. Beginning in late August, the CO2 efflux time series started increasing at a relatively constant rate over one month, reaching a maximum of 19 gm-2d-1 one week before the onset of the submarine volcanic eruption. The H2S efflux time series at HIE07 showed a pulse in H2S emission just one day before the initiation of the submarine eruption, reaching peak values of 42 mg m-2 d-1, 10 times the average H2S efflux recorded during the observation period. Since CO2 and H2S effluxes are strongly influenced by external factors, we applied a multiple regression analysis to remove their contribution. A statistical analysis showed that the long-term trend of the filtered data is well correlated with the seismic energy. We find that these geochemical stations are important monitoring sites for evaluating the volcanic activity of El Hierro and that they demonstrate the potential of applying continuous monitoring of soil CO2 and H2S efflux to improve and optimize the detection of early warning signals of future volcanic unrest episodes at El Hierro. Continuous diffuse degassing studies would likely prove useful for monitoring other volcanoes during unrest episodes.

  19. ORION’S VEIL. IV. H{sub 2} EXCITATION AND GEOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abel, N. P.; Ferland, G. J.; Troland, T. H.

    2016-03-10

    The foreground Veil of material that lies in front of the Orion Nebula is the best studied sample of the interstellar medium because we know where it is located, how it is illuminated, and the balance of thermal and magnetic energy. In this work, we present high-resolution STIS observations toward the Trapezium, with the goal of better understanding the chemistry and geometry of the two primary Veil layers, along with ionized gas along the line of sight. The most complete characterization of the rotational/vibrational column densities of H{sub 2} in the almost purely atomic components of the Veil are presented,more » including updates to the Cloudy model for H{sub 2} formation on grain surfaces. The observed H{sub 2} is found to correlate almost exclusively with Component B. The observed H{sub 2}, observations of CI, CI*, and CI**, and theoretical calculations using Cloudy allow us to place the tightest constraints yet on the distance, density, temperature, and other physical characteristics for each cloud component. We find the H{sub 2} excitation spectrum observed in the Veil is incompatible with a recent study that argued that the Veil was quite close to the Trapezium. The nature of a layer of ionized gas lying between the Veil and the Trapezium is characterized through the emission and absorption lines it produces, which we find to be the blueshifted component observed in S iii and P iii absorption. We deduce that, within the next 30–60 thousand years, the blueshifted ionized layer and Component B will merge, which will subsequently merge with Component A in the next one million years.« less

  20. The nature of the [O III] emission line system in the black hole hosting globular cluster RZ2109

    NASA Astrophysics Data System (ADS)

    Steele, Matthew M.

    > 30.2 and < -364. The measured [O III]lambda5007/Hbeta ratios are significantly higher than can be produced in radiative models of the emission line region with solar composition, and the confidence interval limits exclude all but the most extremely massive models. Therefore, we conclude that the region from which the [O III]lambda5007 emission originates must be hydrogen depleted relative to solar composition gas. This finding is consistent with emission from an accretion powered outflow driven by a hydrogen depleted donor star, such as a white dwarf, being accreted onto a black hole. In the third paper, we examine the variability of the [O III]lambdalambda4959,5007 emission line source in the NGC 4472 black hole hosting globular cluster RZ2109. Our continuing multi-facility monitoring program finds the strong emission line source had decreased 24+/-2 percent from the 2007-2010 mean levels in 2011 and 40+/-5 percent from the earlier mean in 2012. An analysis of the variability of the emission line velocity profile finds that the flux ratio of higher velocity 1600 km s-1 component to the lower velocity 300 km s-1 component has decreased 30 percent from 2009 to 2011, and the asymmetry between the red and blue wings of the profile has decreased 17 percent. We compare this variability to predictions of photoionized nova ejecta models of the emission line region, and discuss its implications for an accretion powered outflow from a CO WD-BH binary model.

  1. Radiometric observations of the 752.033-GHz rotational absorption line of H2O from a laboratory jet. [simulation of rocket plumes

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T.-S.; Fetterman, H. R.; Litvak, M. M.

    1980-01-01

    With the aid of a high-resolution two-stage heterodyne radiometer, spectral absorption measurements of the 752.033 GHz line of water vapor were carried out, using a blackbody continuum as a background radiation source for investigating the absorptive properties of the H2O content of high altitude rocket plumes. To simulate this physical situation in a laboratory environment, a small steam jet was operated within a large high-vacuum chamber, with the H2O jet plume traversing the radiometer line of sight. The experiments verified that this rotational line is optically thick, with excitation temperatures below 100 K, in the downstream part of the plume, as predicted by theoretical modelling.

  2. Infrared spectra and anharmonic coupling of proton-bound nitrogen dimers N2-H+-N2, N2-D+-N2, and 15N2-H+-15N2 in solid para-hydrogen.

    PubMed

    Liao, Hsin-Yi; Tsuge, Masashi; Tan, Jake A; Kuo, Jer-Lai; Lee, Yuan-Pern

    2017-08-09

    The proton-bound nitrogen dimer, N 2 -H + -N 2 , and its isotopologues were investigated by means of vibrational spectroscopy. These species were produced upon electron bombardment of mixtures of N 2 (or 15 N 2 ) and para-hydrogen (p-H 2 ) or normal-D 2 (n-D 2 ) during deposition at 3.2 K. Reduced-dimension anharmonic vibrational Schrödinger equations were constructed to account for the strong anharmonic effects in these protonated species. The fundamental lines of proton motions in N 2 -H + -N 2 were observed at 715.0 (NH + N antisymmetric stretch, ν 4 ), 1129.6 (NH + N bend, ν 6 ), and 2352.7 (antisymmetric NN/NN stretch, ν 3 ) cm -1 , in agreement with values of 763, 1144, and 2423 cm -1 predicted with anharmonic calculations using the discrete-variable representation (DVR) method at the CCSD/aug-cc-pVDZ level. The lines at 1030.2 and 1395.5 cm -1 were assigned to combination bands involving nν 2 + ν 4 (n = 1 and 2) according to theoretical calculations; ν 2 is the N 2 N 2 stretching mode. For 15 N 2 -H + - 15 N 2 in solid p-H 2 , the corresponding major lines were observed at 710.0 (ν 4 ), 1016.7 (ν 2 + ν 4 ), 1124.3 (ν 6 ), 1384.8 (2ν 2 + ν 4 ), and 2274.9 (ν 3 ) cm -1 . For N 2 -D + -N 2 in solid n-D 2 , the corresponding major lines were observed at 494.0 (ν 4 ), 840.7 (ν 2 + ν 4 ), 825.5 (ν 6 ), and 2356.2 (ν 3 ) cm -1 . In addition, two lines at 762.0 (weak) and 808.3 cm -1 were tentatively assigned to be some modes of N 2 -H + -N 2 perturbed or activated by a third N 2 near the proton.

  3. Chemistry in Infrared Dark Cloud Clumps: A Molecular Line Survey at 3 mm

    NASA Astrophysics Data System (ADS)

    Sanhueza, Patricio; Jackson, James M.; Foster, Jonathan B.; Garay, Guido; Silva, Andrea; Finn, Susanna C.

    2012-09-01

    We have observed 37 Infrared Dark Clouds (IRDCs), containing a total of 159 clumps, in high-density molecular tracers at 3 mm using the 22 m ATNF Mopra Telescope located in Australia. After determining kinematic distances, we eliminated clumps that are not located in IRDCs and clumps with a separation between them of less than one Mopra beam. Our final sample consists of 92 IRDC clumps. The most commonly detected molecular lines are (detection rates higher than 8%) N2H+, HNC, HN13C, HCO+, H13CO+, HCN, C2H, HC3N, HNCO, and SiO. We investigate the behavior of the different molecular tracers and look for chemical variations as a function of an evolutionary sequence based on Spitzer IRAC and MIPS emission. We find that the molecular tracers behave differently through the evolutionary sequence and some of them can be used to yield useful relative age information. The presence of HNC and N2H+ lines does not depend on the star formation activity. On the other hand, HC3N, HNCO, and SiO are predominantly detected in later stages of evolution. Optical depth calculations show that in IRDC clumps the N2H+ line is optically thin, the C2H line is moderately optically thick, and HNC and HCO+ are optically thick. The HCN hyperfine transitions are blended, and, in addition, show self-absorbed line profiles and extended wing emission. These factors combined prevent the use of HCN hyperfine transitions for the calculation of physical parameters. Total column densities of the different molecules, except C2H, increase with the evolutionary stage of the clumps. Molecular abundances increase with the evolutionary stage for N2H+ and HCO+. The N2H+/HCO+ and N2H+/HNC abundance ratios act as chemical clocks, increasing with the evolution of the clumps.

  4. CAPABILITY TO RECOVER PLUTONIUM-238 IN H-CANYON/HB-LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R.

    2013-01-09

    Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site hadmore » previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np-237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-anyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase-3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ~ 2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare

  5. A photoionization model for the optical line emission from cooling flows

    NASA Technical Reports Server (NTRS)

    Donahue, Megan; Voit, G. M.

    1991-01-01

    The detailed predictions of a photoionization model previously outlined in Voit and Donahue (1990) to explain the optical line emission associated with cooling flows in X-ray emitting clusters of galaxies are presented. In this model, EUV/soft X-ray radiation from condensing gas photoionizes clouds that have already cooled. The energetics and specific consequences of such a model, as compared to other models put forth in the literature is discussed. Also discussed are the consequences of magnetic fields and cloud-cloud shielding. The results illustrate how varying the individual column densities of the ionized clouds can reproduce the range of line ratios observed and strongly suggest that the emission-line nebulae are self-irradiated condensing regions at the centers of cooling flows.

  6. Fourier transform emission spectra and deperturbation analysis of the A2Π - X2Σ+ and B2Σ+ - X2Σ+ electronic transitions of ZnH

    NASA Astrophysics Data System (ADS)

    Abbasi, Mahdi; Shayesteh, Alireza

    2017-10-01

    A discharge-furnace emission source was used to generate the A2Π → X2Σ+ and B2Σ+ → X2Σ+ spectra of ZnH radical. High resolution emission spectra were recorded with a Fourier transform spectrometer, and several bands have been assigned for the 64ZnH major isotopologue. The data span the v″ = 0-6 levels of the X2Σ+ ground state, the v‧ = 0-3 levels of the A2Π state, and the v‧ = 0-2 levels of the B2Σ+ state, extending to high rotational quantum numbers near and above the dissociation asymptote of the ground state. Large local perturbations were observed in the A2Π and B2Σ+ electronic states, and a deperturbation analysis was carried out using a single Hamiltonian matrix that includes 2Π and 2Σ+ matrix elements, as well as off-diagonal elements coupling vibrational levels of the two electronic states. Band constants and Dunham coefficients were obtained for the A2Π and B2Σ+ excited states by least-squares-fitting of all the experimental data. The equilibrium vibrational constants ωe and ωexe have been determined to be 1907.528(4) and 38.674(2) cm-1, respectively, for the A2Π state, and 1021.135(94) and 17.725(80) cm-1, for the B2Σ+ state, and the equilibrium Zn-H distances (re) are 1.511662(2) Å and 2.26805(7) Å for the A2Π and B2Σ+ states, respectively. The RKR potential curves were constructed for the A2Π and B2Σ+ states, and vibrational radial overlap integrals were computed. The off-diagonal matrix elements coupling the electronic wavefunctions of the A2Π and B2Σ+ states, i.e., a+ and b, were determined to be 228 ± 3 cm-1 and 0.73 ± 0.01, respectively, for the ZnH molecule.

  7. Selective Adsorption Resonances in the Scattering of n-H2 p-H2 n-D2 and o-D2 from Ag(111)

    NASA Astrophysics Data System (ADS)

    Yu, Chien-Fan; Whaley, K. Birgitta; Hogg, Charles S.; Sibener, Steven J.

    1983-12-01

    Diffractive and rotationally mediated selective adsorption scattering resonances are reported for n-H2 p-H2 n-D2 and o-D2 on Ag(111). Small resonance shifts and line-width differences are observed between n-H2 and p-H2 indicating a weak orientation dependence of the laterally averaged H2/Ag(111) potential. The p-H2 and o-D2 levels were used to determine the isotropic component of this potential, yielding a well depth of ~ 32 meV.

  8. OMEGA - OSIRIS Mapping of Emission-line Galaxies in A901/2 - II. Environmental influence on integrated star formation properties and AGN activity

    NASA Astrophysics Data System (ADS)

    Rodríguez del Pino, Bruno; Aragón-Salamanca, Alfonso; Chies-Santos, Ana L.; Weinzirl, Tim; Bamford, Steven P.; Gray, Meghan E.; Böhm, Asmus; Wolf, Christian; Maltby, David T.

    2017-06-01

    We present a study of the star formation and AGN activity for galaxies in CP 15051 the Abell 901/2 multicluster system at z ˜ 0.167 as part of the OSIRIS Mapping of Emission-line Galaxies in A901/2 (OMEGA) survey. Using Tuneable Filter data obtained with the OSIRIS instrument at the Gran Telescopio Canarias, we produce spectra covering the Hα and [N II] spectral lines for more than 400 galaxies. Using optical emission-line diagnostics, we identify a significant number of galaxies hosting AGN, which tend to have high masses and a broad range of morphologies. Moreover, within the environmental densities probed by our study, we find no environmental dependence on the fraction of galaxies hosting AGN. The analysis of the integrated Hα emission shows that the specific star formation rates of a majority of the cluster galaxies are below the field values for a given stellar mass. We interpret this result as evidence for a slow decrease in the star formation activity of star-forming galaxies as they fall into higher density regions, contrary to some previous studies that suggested a rapid truncation of star formation. We find that most of the intermediate- and high-mass spiral galaxies go through a phase in which their star formation is suppressed but still retain significant star formation activity. During this phase, these galaxies tend to retain their spiral morphology while their colours become redder. The presence of this type of galaxies in high-density regions indicates that the physical mechanism responsible for suppressing star formation affects mainly the gas component of the galaxies, suggesting that ram-pressure stripping or starvation is potentially responsible.

  9. [Establishment of a human bladder cancer cell line stably co-expressing hSPRY2 and luciferase genes and its subcutaneous tumor xenograft model in nude mice].

    PubMed

    Yin, Xiaotao; Li, Fanglong; Jin, Yipeng; Yin, Zhaoyang; Qi, Siyong; Wu, Shuai; Wang, Zicheng; Wang, Lin; Yu, Jiyun; Gao, Jiangping

    2017-03-01

    Objective To establish a human bladder cancer cell line stably co-expressing human sprouty2 (hSPRY2) and luciferase (Luc) genes simultaneously, and develop its subcutaneous tumor xenograft model in nude mice. Methods The hSPRY2 and Luc gene segments were amplified by PCR, and were cloned into lentiviral vector pCDH and pLVX respectively to produce corresponding lentivirus particles. The J82 human bladder cancer cells were infected with these two kinds of lentivirus particles, and then further screened by puromycin and G418. The expressions of hSPRY2 and Luc genes were detected by bioluminescence, immunofluorescence and Western blot analysis. The screened J82-hSPRY2/Luc cells were injected subcutaneously into BALB/c nude mice, and the growth of tumor was monitored dynamically using in vivo fluorescence imaging system. Results J82-hSPRY2/Luc cell line stably expressing hSPRY2 and Luc genes was established successfully. Bioluminescence, immunofluorescence and Western blot analysis validated the expressions of hSPRY2 and Luc genes. The in vivo fluorescence imaging system showed obvious fluorescence in subcutaneous tumor xenograft in nude mice. Conclusion The J82-hSPRY2/Luc bladder cancer cell line and its subcutaneous tumor xenograft model in nude mice have been established successfully.

  10. Inter-laboratory calibration of natural gas round robins for δ2H and δ13C using off-line and on-line techniques

    USGS Publications Warehouse

    Dai, Jinxing; Xia, Xinyu; Li, Zhisheng; Coleman, Dennis D.; Dias, Robert F.; Gao, Ling; Li, Jian; Deev, Andrei; Li, Jin; Dessort, Daniel; Duclerc, Dominique; Li, Liwu; Liu, Jinzhong; Schloemer, Stefan; Zhang, Wenlong; Ni, Yunyan; Hu, Guoyi; Wang, Xiaobo; Tang, Yongchun

    2012-01-01

    Compound-specific carbon and hydrogen isotopic compositions of three natural gas round robins were calibrated by ten laboratories carrying out more than 800 measurements including both on-line and off-line methods. Two-point calibrations were performed with international measurement standards for hydrogen isotope ratios (VSMOW and SLAP) and carbon isotope ratios (NBS 19 and L-SVEC CO2). The consensus δ13C values and uncertainties were derived from the Maximum Likelihood Estimation (MLE) based on off-line measurements; the consensus δ2H values and uncertainties were derived from MLE of both off-line and on-line measurements, taking the bias of on-line measurements into account. The calibrated consensus values in ‰ relative to VSMOW and VPDB are: NG1 (coal-related gas): Methane: δ2HVSMOW = − 185.1‰ ± 1.2‰, δ13CVPDB = − 34.18‰ ± 0.10‰ Ethane: δ2HVSMOW = − 156.3‰ ± 1.8‰, δ13CVPDB = − 24.66‰ ± 0.11‰ Propane: δ2HVSMOW = − 143.6‰ ± 3.3‰, δ13CVPDB = − 22.21‰ ± 0.11‰ i-Butane: δ13CVPDB = − 21.62‰ ± 0.12‰ n-Butane: δ13CVPDB = − 21.74‰ ± 0.13‰ CO2: δ13CVPDB = − 5.00‰ ± 0.12‰ NG2 (biogas): Methane: δ2HVSMOW = − 237.0‰ ± 1.2‰, δ13CVPDB = − 68.89‰ ± 0.12‰ NG3 (oil-related gas): Methane: δ2HVSMOW = − 167.6‰ ± 1.0‰, δ13CVPDB = − 43.61‰ ± 0.09‰ Ethane: δ2HVSMOW = − 164.1‰ ± 2.4‰, δ13CVPDB = − 40.24‰ ± 0.10‰ Propane: δ2HVSMOW = − 138.4‰ ± 3.0‰, δ13CVPDB = − 33.79‰ ± 0.09‰ All of the assigned values are traceable to the international carbon isotope standard of VPDB and hydrogen isotope standard of VSMOW.

  11. Regulation of the angiopoietin-2 gene by hCG in ovarian cancer cell line OVCAR-3.

    PubMed

    Pietrowski, D; Wiehle, P; Sator, M; Just, A; Keck, C

    2010-05-01

    Angiogenesis is a crucial step in growing tissues including many tumors. It is regulated by pro- and antiangiogenic factors including the family of angiopoietins and their corresponding receptors. In previous work we have shown that in human ovarian cells the expression of angiopoietin 2 (ANG2) is regulated by human chorionic gonadotropin (hCG). To better understand the mechanisms of hCG-dependent regulation of the ANG2-gene we have now investigated upstream regulatory active elements of the ANG2-promoter in the ovarian carcinoma cell line OVCAR-3. We cloned several ANG2-promoter-fragments of different lengths into a luciferase reporter-gene-vector and analyzed the corresponding ANG2 expression before and after hCG stimulation. We identified regions of the ANG2-promoter between 1 048 bp and 613 bp upstream of the transcriptional start site where hCG-dependent pathways promote a significant downregulation of gene expression. By sequence analysis of this area we found several potential binding sites for transcription factors that are involved in regulation of ANG2-expression, vascular development and ovarian function. These encompass the forkhead family transcription factors FOXC2 and FOXO1 as well as the CCAAT/enhancer binding protein family (C/EBP). In conclusion, we have demonstrated that the regulation of ANG2-expression in ovarian cancer cells is hCG-dependent and we suggest that forkhead transcription factor and C/EBP-dependent pathways are involved in the regulation of ANG2-expression in ovarian cancer cells. Georg Thieme Verlag KG Stuttgart-New York.

  12. Detection of molecular hydrogen emission from five planetary nebulae

    NASA Technical Reports Server (NTRS)

    Beckwith, S.; Gatley, I.; Persson, S. E.

    1978-01-01

    The v = 1 to 0 S(1) line of molecular hydrogen has been detected in five planetary nebulae. They are the Ring Nebula (M57, NGC 6720), BD+30 deg 3639, Hb 12, CRL 618, and CRL 2688. A region in the northeast of the Ring Nebula has been mapped in both the v = 1 to 0 S(1) molecular hydrogen line and the Brackett gamma line of atomic hydrogen. The H2 emission is not spatially correlated with the B-gamma, but is correlated with the (OI) emission as determined from interference filter photographs.

  13. Modeling Line Emission from Structures Seen at High Resolution in the Nebulae m1 and M16

    NASA Astrophysics Data System (ADS)

    Sankrit, Ravi

    1998-12-01

    Narrow band images of the Crab Nebula supernova remnant and of the Eagle Nebula H II region taken with the Hubble Space Telescope (HST) show the ionization structure of the emitting gas in unprecedented detail because of the high spatial resolution. The physics of the emission processes-shock excited emission and photoionized emission-is well understood. Sophisticated numerical codes are used to model the ionization structure and emission observed in these images. It is found that the thin skin of material around the Crab synchrotron nebula visible in (O III) λ5007 emission is best explained as the cooling region behind a shock driven by the synchrotron nebula into a surrounding remnant of freely expanding ejecta. Shock models, with parameters derived from independently known properties of the Crab, explain the observed spectrum of the skin while photoionization models fail to explain the observed strength of high ionization lines such as C IV λ1549. This result is clear evidence that the synchrotron nebula is interacting with an extended remnant of ejecta, which in turn has significant implications for the structure and evolution of the Crab. At HST resolution, it is seen that low ionization emission, from lines such as (O I) λ6300, is concentrated in sharp structures while high ionization emission (from (O III) λ5007) is much more diffuse. Individual filaments are found to lie along a sequence of ionization structure ranging from features in which all lines are concentrated in the same compact volume through features with low ionization cores surrounded by high ionization envelopes. Photoionization models of cylindrically symmetrical filaments with varying 'core-halo' density profiles can match the observed variation in the filament structure in the Crab. A photoionization model of a uniform low density medium matches the extended diffuse component which dominates the high ionization emission. It is found that detailed knowledge of the filament structures

  14. Halocarbon emissions by selected tropical seaweeds: species-specific and compound-specific responses under changing pH.

    PubMed

    Mithoo-Singh, Paramjeet Kaur; Keng, Fiona S-L; Phang, Siew-Moi; Leedham Elvidge, Emma C; Sturges, William T; Malin, Gill; Abd Rahman, Noorsaadah

    2017-01-01

    Five tropical seaweeds, Kappaphycus alvarezii (Doty) Doty ex P.C. Silva, Padina australis Hauck, Sargassum binderi Sonder ex J. Agardh (syn. S. aquifolium (Turner) C. Agardh), Sargassum siliquosum J. Agardh and Turbinaria conoides (J. Agardh) Kützing, were incubated in seawater of pH 8.0, 7.8 (ambient), 7.6, 7.4 and 7.2, to study the effects of changing seawater pH on halocarbon emissions. Eight halocarbon species known to be emitted by seaweeds were investigated: bromoform (CHBr 3 ), dibro-momethane (CH 2 Br 2 ), iodomethane (CH 3 I), diiodomethane (CH 2 I 2 ), bromoiodomethane (CH 2 BrI), bromochlorometh-ane (CH 2 BrCl), bromodichloromethane (CHBrCl 2 ), and dibro-mochloromethane (CHBr 2 Cl). These very short-lived halocarbon gases are believed to contribute to stratospheric halogen concentrations if released in the tropics. It was observed that the seaweeds emit all eight halocarbons assayed, with the exception of K. alvarezii and S. binderi for CH 2 I 2 and CH 3 I respectively, which were not measurable at the achievable limit of detection. The effect of pH on halocarbon emission by the seaweeds was shown to be species-specific and compound specific. The highest percentage changes in emissions for the halocarbons of interest were observed at the lower pH levels of 7.2 and 7.4 especially in Padina australis and Sargassum spp., showing that lower seawater pH causes elevated emissions of some halocarbon compounds. In general the seaweed least affected by pH change in terms of types of halocarbon emission, was P. australis . The commercially farmed seaweed K. alvarezii was very sensitive to pH change as shown by the high increases in most of the compounds in all pH levels relative to ambient. In terms of percentage decrease in maximum quantum yield of photosynthesis ( F v ∕ F m ) prior to and after incubation, there were no significant correlations with the various pH levels tested for all seaweeds. The correlation between percentage decrease in the maximum

  15. Halocarbon emissions by selected tropical seaweeds: species-specific and compound-specific responses under changing pH

    PubMed Central

    Leedham Elvidge, Emma C.; Sturges, William T.; Malin, Gill; Abd Rahman, Noorsaadah

    2017-01-01

    Five tropical seaweeds, Kappaphycus alvarezii (Doty) Doty ex P.C. Silva, Padina australis Hauck, Sargassum binderi Sonder ex J. Agardh (syn. S. aquifolium (Turner) C. Agardh), Sargassum siliquosum J. Agardh and Turbinaria conoides (J. Agardh) Kützing, were incubated in seawater of pH 8.0, 7.8 (ambient), 7.6, 7.4 and 7.2, to study the effects of changing seawater pH on halocarbon emissions. Eight halocarbon species known to be emitted by seaweeds were investigated: bromoform (CHBr3), dibro­momethane (CH2Br2), iodomethane (CH3I), diiodomethane (CH2I2), bromoiodomethane (CH2BrI), bromochlorometh­ane (CH2BrCl), bromodichloromethane (CHBrCl2), and dibro­mochloromethane (CHBr2Cl). These very short-lived halocarbon gases are believed to contribute to stratospheric halogen concentrations if released in the tropics. It was observed that the seaweeds emit all eight halocarbons assayed, with the exception of K. alvarezii and S. binderi for CH2I2 and CH3I respectively, which were not measurable at the achievable limit of detection. The effect of pH on halocarbon emission by the seaweeds was shown to be species-specific and compound specific. The highest percentage changes in emissions for the halocarbons of interest were observed at the lower pH levels of 7.2 and 7.4 especially in Padina australis and Sargassum spp., showing that lower seawater pH causes elevated emissions of some halocarbon compounds. In general the seaweed least affected by pH change in terms of types of halocarbon emission, was P. australis. The commercially farmed seaweed K. alvarezii was very sensitive to pH change as shown by the high increases in most of the compounds in all pH levels relative to ambient. In terms of percentage decrease in maximum quantum yield of photosynthesis (Fv∕Fm) prior to and after incubation, there were no significant correlations with the various pH levels tested for all seaweeds. The correlation between percentage decrease in the maximum quantum yield of photosynthesis

  16. Investigation Of In-Line Monitoring Options At H Canyon/HB Line For Plutonium Oxide Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sexton, L.

    2015-10-14

    H Canyon and HB Line have a production goal of 1 MT per year of plutonium oxide feedstock for the MOX facility by FY17 (AFS-2 mission). In order to meet this goal, steps will need to be taken to improve processing efficiency. One concept for achieving this goal is to implement in-line process monitoring at key measurement points within the facilities. In-line monitoring during operations has the potential to increase throughput and efficiency while reducing costs associated with laboratory sample analysis. In the work reported here, we mapped the plutonium oxide process, identified key measurement points, investigated alternate technologies thatmore » could be used for in-line analysis, and initiated a throughput benefit analysis.« less

  17. Chemical state analysis of Cl Kα and Kβ1,3 X-ray emission lines using polychromatic WDXRF spectrometer

    NASA Astrophysics Data System (ADS)

    Kainth, Harpreet Singh; Upmanyu, Arun; Sharma, Hitesh; Singh, Tejbir; Kumar, Sanjeev

    2018-02-01

    With the support of research projects focusing on sampling and data analysing of different varieties of chemical compounds, wavelength dispersive X-ray fluorescence (WDXRF) technique is commonly used in many research laboratories throughout the world wide to determine the elemental composition of various unknown samples. In the present study, first time we have employed polychromatic S8 TIGER WDXRF spectrometer to study the chemical state analysis in Cl Kα and Kβ1,3 X-ray emission lines. A Voigt function is used to determine the central peak position of the K shell emission lines in all samples. From the present measurements, it is seen that both positive and negative shifts have been observed in Cl Kα (2.622 keV) and Kβ1,3 (2.817 keV) emission peaks. It has been also seen that the effective charge, relative line-width and relative intensity ratio I(Kβ1,3/Kα) are found proportional with the chemical shift. Furthermore, a parabolic relation is also established between them.

  18. Soft X-ray emission lines of NiXVIII in the solar spectrum

    NASA Astrophysics Data System (ADS)

    Keenan, F. P.; Mathioudakis, M.; Pinfield, D. J.; Brown, W. A.; Bruner, M. E.

    1999-04-01

    R-matrix calculations of electron impact excitation rates in Nixviii are used to derive theoretical electron-temperature-sensitive emission line ratios involving 3s-4p,3p-4d,3p -4s, and 3d-4f transitions in the 41-53Å wavelength range. A comparison of these with solar flare observations from a rocket-borne X-ray spectrograph (XSST) reveals generally excellent agreement between theory and experiment (within the experimental and theoretical uncertainties), which provides support for the atomic data adopted in the analysis. However the 3s2S-4p2P1/2 line of Nixviii at 41.22Å appears to be blended with the Fexix 13.74Å feature observed by XSST in third order. In addition, the measured Nixviii intensity ratio I(3p2P3/2- 4s2S)/I(3p2P1/2-4s2S)=I(51.02Å)/I(50.26Å)=0.56, a factor of ~3.8 smaller than the theoretical (temperature and density-insensitive) value of 2.1. The reason for this discrepancy is currently unexplained, but is unlikely to be due to blending of the 50.26Å line, as the intensity of this feature is consistent with that expected from the other Nixviii lines in the XSST spectrum. Future observations of the Nixviii lines by the Advanced X-ray Astrophysics Facility (AXAF) should allow this problem to be resolved, and may also permit the use of the lines as electron-temperature diagnostics.

  19. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapovalova, A. I.; Burenkov, A. N.; Popovic, L. C.

    2012-09-15

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with amore » sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.« less

  20. 40 CFR 63.1569 - What are my requirements for HAP emissions from bypass lines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true What are my requirements for HAP emissions from bypass lines? 63.1569 Section 63.1569 Protection of Environment ENVIRONMENTAL PROTECTION... HAP emissions from bypass lines? (a) What work practice standards must I meet? (1) You must meet each...

  1. Inflowing gas onto a compact obscured nucleus in Arp 299A. Herschel spectroscopic studies of H2O and OH

    NASA Astrophysics Data System (ADS)

    Falstad, N.; González-Alfonso, E.; Aalto, S.; Fischer, J.

    2017-01-01

    Aims: We probe the physical conditions in the core of Arp 299A and try to put constraints on the nature of its nuclear power source. Methods: We used Herschel Space Observatory far-infrared and submillimeter observations of H2O and OH rotational lines in Arp 299A to create a multi-component model of the galaxy. In doing this, we employed a spherically symmetric radiative transfer code. Results: Nine H2O lines in absorption and eight in emission, as well as four OH doublets in absorption and one in emission, are detected in Arp 299A. No lines of the 18O isotopologues, which have been seen in compact obscured nuclei of other galaxies, are detected. The absorption in the ground state OH 2Π3/2-2Π3/2(5/2)+-(3/2)- doublet at 119 μm is found redshifted by 175 km s-1 compared with other OH and H2O lines, suggesting a low excitation inflow. We find that at least two components are required in order to account for the excited molecular line spectrum. The inner component has a radius of 20-25 pc, a very high infrared surface brightness (≳3 × 1013L⊙kpc-2), warm dust (Td > 90 K), and a large H2 column density (NH2 > 1024 cm-2). The modeling also indicates high nuclear H2O (1-5 × 10-6) and OH (0.5-5 × 10-5) abundances relative to H nuclei. The outer component is larger (50-100 pc) with slightly cooler dust (70-90 K) and molecular abundances that are approximately one order of magnitude lower. In addition to the two components that account for the excited OH and H2O lines, we require a much more extended inflowing component to account for the OH 2Π3/2-2Π3/2(5/2)+-(3/2)- doublet at 119 μm. Conclusions: The Compton-thick nature of the core makes it difficult to determine the nature of the buried power source, but the high surface brightness indicates that it is an active galactic nucleus and/or a dense nuclear starburst. Our results are consistent with a composite source. The high OH/H2O ratio in the nucleus indicates that ion-neutral chemistry induced by X-rays or

  2. Search with Copernicus for ultraviolet emission lines in the planetary nebula NGC 3242

    NASA Technical Reports Server (NTRS)

    Schwartz, R. D.; Snow, T. P., Jr.; Upson, W. L., II

    1978-01-01

    The high-excitation planetary nebula NGC 3242 has been observed with the ultraviolet telescope-spectrometer aboard Copernicus. Wavelength intervals corresponding to the emission lines of O VI at 1032 A, He II at 1085 A, Si III at 1206 A, and N V at 1239 A have been scanned. Upper limits to the observed fluxes are reported and compared with predicted emission-line fluxes from this object.

  3. Calculated hydroxyl A2 sigma --> X2 pi (0, 0) band emission rate factors applicable to atmospheric spectroscopy

    NASA Technical Reports Server (NTRS)

    Cageao, R. P.; Ha, Y. L.; Jiang, Y.; Morgan, M. F.; Yung, Y. L.; Sander, S. P.

    1997-01-01

    A calculation of the A2 sigma --> X2 pi (0, 0) band emission rate factors and line center absorption cross sections of OH applicable to its measurement using solar resonant fluorescence in the terrestrial atmosphere is presented in this paper. The most accurate available line parameters have been used. Special consideration has been given to the solar input flux because of its highly structured Fraunhofer spectrum. The calculation for the OH atmospheric emission rate factor in the solar resonant fluorescent case is described in detail with examples and intermediate results. Results of this calculation of OH emission rate factors for individual rotational lines are on average 30% lower than the values obtained in an earlier work.

  4. Characterization of photoreceptor degeneration in the rhodopsin P23H transgenic rat line 2 using optical coherence tomography.

    PubMed

    Monai, Natsuki; Yamauchi, Kodai; Tanabu, Reiko; Gonome, Takayuki; Ishiguro, Sei-Ichi; Nakazawa, Mitsuru

    2018-01-01

    To characterize the optical coherence tomography (OCT) appearances of photoreceptor degeneration in the rhodopsin P23H transgenic rat (line 2) in relation to the histological, ultrastructural, and electroretinography (ERG) findings. Homozygous rhodopsin P23H transgenic albino rats (line 2, very-slow degeneration model) were employed. Using OCT (Micron IV®; Phoenix Research Labs, Pleasanton, CA, USA), the natural course of photoreceptor degeneration was recorded from postnatal day (P) 15 to P 287. The OCT images were qualitatively observed by comparing them to histological and ultrastructural findings at P 62 and P 169. In addition, each retinal layer was quantitatively analyzed longitudinally during degeneration, compared it to that observed in wild type Sprague-Dawley (SD) rats. The relationships between the ERG (full-field combined rod-cone response, 3.0 cds/m2 stimulation) findings and OCT images were also analyzed. In the qualitative study, the two layers presumably corresponding to the photoreceptor inner segment ellipsoid zone (EZ) and interdigitation zone (IZ) were identified in the P23H rat until PN day 32. However, the photoreceptor inner and outer segment (IS/OS) layer became diffusely hyperreflective on OCT after P 46, and the EZ and IZ zones could no longer be identified on OCT. In contrast, in the SD rats, the EZ and IZ were clearly distinguished until at least P 247. The ultrastructural study showed partial disarrangements of the photoreceptor outer segment discs in the P23H rats at P 62, although a light-microscopic histological study detected almost no abnormality in the outer segment. In the quantitative study, the outer retinal layer including the outer plexiform layer (OPL) and the outer nuclear layer (ONL) became significantly thinner in the P23H rats than in the SD rats after P 71. The thickness of the IS/OS layer was maintained in the P23H rats until P 130, and it became statistically thinner than in the SD rats at P 237. The longitudinal

  5. Revealing the Ionization Properties of the Magellanic Stream Using Optical Emission

    NASA Astrophysics Data System (ADS)

    Barger, K. A.; Madsen, G. J.; Fox, A. J.; Wakker, B. P.; Bland-Hawthorn, J.; Nidever, D.; Haffner, L. M.; Antwi-Danso, Jacqueline; Hernandez, Michael; Lehner, N.; Hill, A. S.; Curzons, A.; Tepper-García, T.

    2017-12-01

    The Magellanic Stream, a gaseous tail that trails behind the Magellanic Clouds, could replenish the Milky Way (MW) with a tremendous amount of gas if it reaches the Galactic disk before it evaporates into the halo. To determine how the Magellanic Stream’s properties change along its length, we have conducted an observational study of the Hα emission, along with other optical warm ionized gas tracers, toward 39 sight lines. Using the Wisconsin Hα Mapper telescope, we detect Hα emission brighter than 30–50 mR in 26 of our 39 sight lines. This Hα emission extends over 2^\\circ away from the H I emission. By comparing {I}{{H}α } and {I}[{{O}{{I}}]}, we find that regions with {log}{N}{{H}{{I}}}/{{cm}}-2≈ 19.5{--}20.0 are 16%–67% ionized. Most of the {I}{{H}α } along the Magellanic Stream are much higher than expected if the primary ionization source is photoionization from Magellanic Clouds, the MW, and the extragalactic background. We find that the additional contribution from self ionization through a “shock cascade” that results as the Stream plows through the halo might be sufficient to reproduce the underlying level of Hα emission along the Stream. In the sparsely sampled region below the South Galactic Pole, there exists a subset of sight lines with uncharacteristically bright emission, which suggest that gas is being ionized further by an additional source that could be a linked to energetic processes associated with the Galactic center.

  6. Variable H13CO+ Emission in the IM Lup Disk: X-Ray Driven Time-dependent Chemistry?

    NASA Astrophysics Data System (ADS)

    Cleeves, L. Ilsedore; Bergin, Edwin A.; Öberg, Karin I.; Andrews, Sean; Wilner, David; Loomis, Ryan

    2017-07-01

    We report the first detection of a substantial brightening event in an isotopologue of a key molecular ion, HCO+, within a protoplanetary disk of a T Tauri star. The H13CO+ J=3-2 rotational transition was observed three times toward IM Lup between 2014 July and 2015 May with the Atacama Large Millimeter/submillimeter Array. The first two observations show similar spectrally integrated line and continuum fluxes, while the third observation shows a doubling in the disk-integrated J=3-2 line flux compared to the continuum, which does not change between the three epochs. We explore models of an X-ray active star irradiating the disk via stellar flares, and find that the optically thin H13CO+ emission variation can potentially be explained via X-ray-driven chemistry temporarily enhancing the HCO+ abundance in the upper layers of the disk atmosphere during large or prolonged flaring events. If the HCO+ enhancement is indeed caused by an X-ray flare, future observations should be able to spatially resolve these events and potentially enable us to watch the chemical aftermath of the high-energy stellar radiation propagating across the face of protoplanetary disks, providing a new pathway to explore ionization physics and chemistry, including electron density, in disks.

  7. Ultraviolet Fe VII absorption and Fe II emission lines of central stars of planetary nebulae

    NASA Technical Reports Server (NTRS)

    Cheng, Kwang-Ping; Feibelman, Walter A.; Bruhweiler, Frederick C.

    1991-01-01

    The SWP camera of the IUE satellite was used in the high-dispersion mode to search for Fe VII absorption and Fe II high-excitation emission lines in five additional very hot central stars of planetary nebulae. Some of the Fe VII lines were detected at 1208, 1239, and 1332 A in all the objects of this program, LT 5, NGC 6058, NGC 7094, A43, and Lo 1 (= K1-26), as well as some of the Fe II emission lines at A 1360, 1776, 1869, 1881, 1884, and 1975 A. Two additional objects, NGC 2867 and He 2-131, were obtained from the IUE archive and were evaluated. The present study probably exhausts the list of candidates that are sufficiently bright and hot to be reached with the high-dispersion mode of the IUE.

  8. Ultraviolet Fe VII absorption and Fe II emission lines of central stars of planetary nebulae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Kwang-Ping; Feibelman, W.A.; Bruhweiler, F.C.

    1991-08-01

    The SWP camera of the IUE satellite was used in the high-dispersion mode to search for Fe VII absorption and Fe II high-excitation emission lines in five additional very hot central stars of planetary nebulae. Some of the Fe VII lines were detected at 1208, 1239, and 1332 A in all the objects of this program, LT 5, NGC 6058, NGC 7094, A43, and Lo 1 (= K1-26), as well as some of the Fe II emission lines at A 1360, 1776, 1869, 1881, 1884, and 1975 A. Two additional objects, NGC 2867 and He 2-131, were obtained from themore » IUE archive and were evaluated. The present study probably exhausts the list of candidates that are sufficiently bright and hot to be reached with the high-dispersion mode of the IUE. 17 refs.« less

  9. VUV dissociative excitation cross sections of H2O, NH3, and CH4 by electron impact. [Vacuum Ultra-Violet

    NASA Technical Reports Server (NTRS)

    Morgan, H. D.; Mentall, J. E.

    1974-01-01

    Absolute excitation functions for excited fragments resulting from electron bombardment of H2O, NH3, and CH4 by low-energy electrons (0 to 300 eV) have been measured in the vacuum ultraviolet (1100 to 1950 A). The predominant emission for each molecule was the H Lyman-alpha line, while the O I, N I, C I, and C II emissions were at least an order of magnitude weaker. Absolute cross sections at 100 eV are given along with the appearance potential of the various processes and the possible dissociative-excitation channels through which such processes proceed.

  10. Hyperfine excitation of C2H and C2D by para-H2

    NASA Astrophysics Data System (ADS)

    Dumouchel, Fabien; Lique, François; Spielfiedel, Annie; Feautrier, Nicole

    2017-10-01

    The [C2H]/[C2D] abundance ratio is a useful tool to explore the physical and chemical conditions of cold molecular clouds. Hence, an accurate determination of both the C2H and C2D abundances is of fundamental interest. Due to the low density of the interstellar medium, the population of the energy levels of the molecules is not at local thermodynamical equilibrium. Thus, the accurate modelling of the emission spectra requires the calculation of collisional rate coefficients with the most abundant interstellar species. Hence, we provide rate coefficients for the hyperfine excitation of C2H and C2D by para-H2(j=0), the most abundant collisional partner in cold molecular clouds. State-to-state rate coefficients between the lowest levels were computed for temperatures ranging from 5 to 80 K. For both isotopologues, the Δj = ΔF propensity rule is observed. The comparison between C2H and C2D rate coefficients shows that differences by up to a factor of two exist, mainly for Δj = ΔN = 1 transitions. The new rate coefficients will significantly help in the interpretation of recent observed spectra.

  11. Detection of blueshifted emission and absorption and a relativistic iron line in the X-ray spectrum of ESO323-G077

    NASA Astrophysics Data System (ADS)

    Jiménez-Bailón, E.; Krongold, Y.; Bianchi, S.; Matt, G.; Santos-Lleó, M.; Piconcelli, E.; Schartel, N.

    2008-12-01

    We report on the X-ray observation of the Seyfert 1 galaxy ESO323-G077 performed with XMM-Newton. The EPIC spectra show a complex spectrum with conspicuous absorption and emission features. The continuum emission can be modelled with a power law with an index of 1.99 +/- 0.02 in the whole XMM-Newton energy band, marginally consistent with typical values of type I objects. An absorption component with an uncommonly high equivalent hydrogen column (nH = 5.82+0.12-0.11 × 1022cm-2) is affecting the soft part of the spectrum. Additionally, two warm absorption components are also present in the spectrum. The lower ionized one, mainly imprinting the soft band of the spectrum, has an ionization parameter of logU = 2.14+0.06-0.07 and an outflowing velocity of v = 3200+600-200kms-1. Two absorption lines located at ~6.7 and ~7.0keV can be modelled with the highly ionized absorber. The ionization parameter and outflowing velocity of the gas measured are logU = 3.26+0.19-0.15 and v = 1700+600-400kms-1, respectively. Four emission lines were also detected in the soft energy band. The most likely explanation for these emission lines is that they are associated with an outflowing gas with a velocity of ~2000kms-1. The data suggest that the same gas which is causing the absorption could also being responsible of these emission features. Finally, the XMM-Newton spectrum shows the presence of a relativistic iron emission line likely originated in the accretion disc of a Kerr black hole with an inclination of ~25°. We propose a model to explain the observed X-ray properties which invokes the presence of a two-phase outflow with cone-like structure and a velocity of the order of 2000- 4000kms-1. The inner layer of the cone would be less ionized, or even neutral, than the outer layer. The inclination angle of the source would be lower than the opening angle of the outflowing cone. Partially based on observations obtained with XMM-Newton, an ESA science mission with instruments and

  12. Method for measuring radial impurity emission profiles using correlations of line integrated signals

    NASA Astrophysics Data System (ADS)

    Kuldkepp, M.; Brunsell, P. R.; Drake, J.; Menmuir, S.; Rachlew, E.

    2006-04-01

    A method of determining radial impurity emission profiles is outlined. The method uses correlations between line integrated signals and is based on the assumption of cylindrically symmetric fluctuations. Measurements at the reversed field pinch EXTRAP T2R show that emission from impurities expected to be close to the edge is clearly different in raw as well as analyzed data to impurities expected to be more central. Best fitting of experimental data to simulated correlation coefficients yields emission profiles that are remarkably close to emission profiles determined using more conventional techniques. The radial extension of the fluctuations is small enough for the method to be used and bandpass filtered signals indicate that fluctuations below 10kHz are cylindrically symmetric. The novel method is not sensitive to vessel window attenuation or wall reflections and can therefore complement the standard methods in the impurity emission reconstruction procedure.

  13. Twenty-two emission-line AGNs from the HEAO-1 X-ray survey

    NASA Technical Reports Server (NTRS)

    Remillard, R. A.; Bradt, H. V. D.; Brissenden, R. J. V.; Buckley, D. A. H.; Roberts, W.; Schwartz, D. A.; Stroozas, B. A.; Tuohy, I. R.

    1993-01-01

    We report 22 emission-line AGN as bright, hard X-ray sources. All of them appear to be new classifications with the exception of one peculiar IRAS source which is a known quasar and has no published spectrum. This sample exhibits a rich diversity in optical spectral properties and luminosities, ranging from a powerful broad-absorption-line quasar to a weak nucleus embedded in a nearby NGC galaxy. Two cases confer X-ray luminosities in excess of 10 exp 47 erg/s. However, there is a degree of uncertainty in the X-ray identification for the AGN fainter than V about 16.5. Optically, several AGN exhibit very strong Fe II emission. One Seyfert galaxy with substantial radio flux is an exception to the common association of strong Fe II emission and radio-quiet AGN. The previously recognized IRAS quasar shows extreme velocities in the profiles of the forbidden lines; the 0 III pair is broadened to the point that the lines are blended. Several of these AGN show evidence of intrinsic obscuration, illustrating the effectiveness of hard X-ray surveys in locating AGN through high column density.

  14. Soft X-Ray Emission Lines from a Relativistic Accretion Disk in MCG -6-30-15 and Mrk 766

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sako, M.; Kahn, S. M.; Brinkman, A. C.; Kaastra, J. S.; Page, M. J.

    2000-01-01

    XMM-Newton Reflection Grating Spectrometer (RGS) spectra of the Narrow Line Seyfert 1 galaxies MCG -6-30-15 and Mrk 766 are physically and spectroscopically inconsistent with standard models comprising a power-law continuum absorbed by either cold or ionized matter. We propose that the remarkably similar features detected in both objects in the 5 - 35 A band are H-like oxygen, nitrogen, and carbon emission lines, gravitation- ally redshifted and broadened by relativistic effects in the vicinity of a Kerr black hole. We discuss the implications of our interpretation, and demonstrate that the derived parameters can be physically self-consistent.

  15. 3-Helium in Obscure H II Regions

    NASA Astrophysics Data System (ADS)

    Bania, T. M.; Rood, R. T.; Balser, D. S.

    1999-05-01

    The light isotope of helium, (3) He, can serve as a probe of cosmology, the evolution of low mass stars, and the chemical evolution of the Galaxy. Its abundance can be determined via measurements of the 3.46 cm hyperfine transition of (3) He(+) . Potentially observable sources of ionized gas include H ii regions and planetary nebulae. The selection of (3) He targets is counter-intuitive because the (3) He(+) hyperfine line strength is proportional to the source density, while one usually thinks of H ii regions in terms of radio continuum or recombination line strength both of which depend on the square of the density. The (3) He(+) line strength depends on the (3) He(+) abundance ratio and a number of other factors: $ TL(A}({) (3) He(+)) ~ frac {N((3) He(+)}{N() H(+)}) frac {({TC(A}}D)({1/2)) Te(1/4) (theta_obs (2) - theta_beam (2})({3/4}}{Delta {v}({)) (3) He(+)) [ln(5.717 x 10(-3}Te({3/2})]^{1/2)) theta_obs } where T_L^A and Delta v are the antenna temperature and FWHM of the ^3He^+ line, D is the nebular distance, T_C^A and theta_obs are the antenna temperature and observed FWHM angular size of the continuum emission, theta_beam is the telescope's FWHM beam, and Te is the nebular electron temperature. For H {sc ii} regions much larger than the telescope beam we can select targets using the criterion: TLA(^3He^+)\\sim\\sqrt{TCA D\\theta_obs}. This is the case since we can neglect the weak dependence on T_e and because we do not know either ^3He^{+}/H^+ or Delta v. Thus big, distant H ii regions could be potential ^3He^+ targets even if their continuum emission is weak. Armed with this knowledge we included H ii regions like S209 in our early observing list along with more famous sources like W43. Still we did not have the temerity to push this reasoning to the limit. We have now found, however, that this selection criterion is valid for even the wimpiest known H ii regions. Here we report on the detection of ^3He^+$ emission in 8 distant, low density H ii regions.

  16. The discovery of pulsed iron line emission from Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Day, C. S. R.; Nagase, F.; Asai, K.; Takeshima, T.

    1993-01-01

    We present the first discovery of pulsed iron line emission from an X-ray binary, namely Cen X-3. Compared with the continuum pulsations, the iron line pulsations are shallow (50 percent change in amplitude), smeared (the profile is a single-peaked sinusoid) and phase-shifted (by about half a cycle). We also discuss the constraints on the origin of the line imposed by this discovery and by other observations.

  17. Optical design of visible emission line coronagraph on Indian space solar mission Aditya-L1

    NASA Astrophysics Data System (ADS)

    Raj Kumar, N.; Raghavendra Prasad, B.; Singh, Jagdev; Venkata, Suresh

    2018-04-01

    The ground based observations of the coronal emission lines using a coronagraph are affected by the short duration of clear sky and varying sky transparency. These conditions do not permit to study small amplitude variations in the coronal emission reliably necessary to investigate the process or processes involved in heating the coronal plasma and dynamics of solar corona. The proposed Visible Emission Line Coronagraph (VELC) over comes these limitations and will provide continuous observation 24 h a day needed for detailed studies of solar corona and drivers for space weather predictions. VELC payload onboard India's Aditya-L1 space mission is an internally occulted solar coronagraph for studying the temperature, velocity, density and heating of solar corona. To achieve the proposed science goals, an instrument which is capable of carrying out simultaneous imaging, spectroscopy and spectro-polarimetric observations of the solar corona close to the solar limb is required. VELC is designed with salient features of (a) Imaging solar corona at 500 nm with an angular resolution of 5 arcsec over a FOV of 1.05Ro to 3Ro (Ro:Solar radius) (b) Simultaneous multi-slit spectroscopy at 530.3 nm [Fe XIV],789.2 nm [Fe XI] and 1074.7 nm [Fe XIII] with spectral dispersion of 28mÅ, 31mÅ and 202mÅ per pixel respectively, over a FOV of 1.05Ro to 1.5Ro. (c) Multi-slit dual beam spectro-polarimetry at 1074.7 nm. All the components of instrument have been optimized in view of the scientific objectives and requirements of space payloads. In this paper we present the details of optical configuration and the expected performance of the payload.

  18. High Color Rendering Index White-Light Emission from UV-Driven LEDs Based on Single Luminescent Materials: Two-Dimensional Perovskites (C6H5C2H4NH3)2PbBr xCl4- x.

    PubMed

    Yang, Shuming; Lin, Zhenghuan; Wang, Jingwei; Chen, Yunxiang; Liu, Zhengde; Yang, E; Zhang, Jian; Ling, Qidan

    2018-05-09

    Two-dimensional (2D) white-light-emitting hybrid perovskites (WHPs) are promising active materials for single-component white-light-emitting diodes (WLEDs) driven by UV. However, the reported WHPs exhibit low quantum yields (≤9%) and low color rendering index (CRI) values less than 85, which does not satisfy the demand of solid-state lighting applications. In this work, we report a series of mixed-halide 2D layered WHPs (C 6 H 5 C 2 H 4 NH 3 ) 2 PbBr x Cl 4- x (0 < x < 4) obtained from the phenethylammonium cation. Unlike the reported WHPs including (C 6 H 5 C 2 H 4 NH 3 ) 2 PbCl 4 , the mixed-halide perovskites display morphology-dependent white emission for the different extents of self-absorption. Additionally, the amount of Br has a huge influence on the photophysical properties of mixed-halide WHPs. With the increasing content of Br, the quantum yields of WHPs increase gradually from 0.2 to 16.9%, accompanied by tunable color temperatures ranging from 4000 K ("warm" white light) to 7000 K ("cold" white light). When applied to the WLEDs, the mixed-halide perovskite powders exhibit tunable white electroluminescent emission with very high CRI of 87-91.

  19. Nebular Line Emission and Stellar Mass of Bright z 8 Galaxies "Super-Eights"

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne; Bouwens, Rychard; Trenti, Michele; Oesch, Pascal; Labbe, Ivo; Smit, Renske; Roberts-Borsani, Guido; Bernard, Stephanie; Bridge, Joanna

    2018-05-01

    Searches for the Lyman-alpha emission from the very first galaxies ionizing the Universe have proved to be extremely difficult with limited success beyond z 7 (<3% detections). However, a search of all CANDELS yielded four bright z 8 sources with associated strong Lyman-alpha lines, despite the Universe expected to be 70% neutral at this time. The key to their selection is an extremely red IRAC color ([3.6]-[4.5]> 0.5, Roberts-Borsani+ 2016), indicative of very strong nebular line emission. Do such extreme line emitting galaxies produce most of the photons to reionize the Universe? We propose to expand the sample of bright z 8 galaxies with reliable IRAC colors with seven more Y-band dropouts found with HST and confirmed through HST/Spitzer. The Spitzer observations will test how many of bright z 8 galaxies are IRAC-red and measure both their stellar mass and [OIII]+Hbeta line strength. Together with Keck/VLT spectroscopy, they will address these questions: I) Do all luminous z 8 galaxies show such red IRAC colors ([OIII] emission / hard spectra)? II) Is luminosity or a red IRAC color the dominant predictor for Lyman-alpha emission? III) Or are these sources found along exceptionally transparent sightlines into the early Universe? With 11 bright z 8 sources along different lines-of-sight, all prime targets for JWST, we will aim to determine which of the considered factors (luminosity, color, sight-line) drives the high Lyman-alpha prevalence (100%) and insight into the sources reionizing the Universe.

  20. Observations of the 12.3 micron Mg I emission line during a major solar flare

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Hewagama, Tilak

    1990-01-01

    The extremely Zeeman-sensitive 12.32 micron Mg I solar emission line was observed during a 3B/X5.7 solar flare on October 24, 1989. When compared to postflare values, Mg I emission-line intensity in the penumbral flare ribbon was 20 percent greater at the peak of the flare in soft X-rays, and the 12 micron continuum intensity was 7 percent greater. The flare also excited the emission line in the umbra where it is normally absent. The umbral flare emission exhibits a Zeeman splitting 200 G less than the adjacent penumbra, suggesting that it is excited at higher altitude. The absolute penumbral magnetic field strength did not change by more than 100 G between the flare peak and postflare period. However, a change in the inclination of the field lines, probably related to the formation and development of the flare loop system, was seen.

  1. VizieR Online Data Catalog: Orion Integral Filament ALMA+IRAM30m N2H+(1-0) data (Hacar+, 2018)

    NASA Astrophysics Data System (ADS)

    Hacar, A.; Tafalla, M.; Forbrich, J.; Alves, J.; Meingast, S.; Grossschedl, J.; Teixeira, P. S.

    2018-01-01

    Combined ALMA+IRAM30m large-scale N2H+(1-0) emission in the Orion ISF. Two datasets are presented here in FITS format: 1.- Full data cube: spectral resolution = 0.1 kms-1 2.- Total integrated line intensity (moment 0) map Units are in Jy/beam See also: https://sites.google.com/site/orion4dproject/home (2 data files).

  2. Detection and Characterization of the Stannylene (SnH_{2} ) Radical in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Smith, Tony; Clouthier, Dennis

    2017-06-01

    The electronic spectrum of the jet-cooled SnH_{2} radical has been detected by LIF spectroscopy. The radical was produced in a pulsed electric discharge through a precursor mixture of SnH_{4} in argon. Each band in the LIF spectrum consists of a small number of rovibronic transitions to the lowest energy (K_{a} = 0, J = 0,1,2,3) rotational levels in the excited state. High resolution spectra of the ^{p}P_{1}(1) line of the 2^{2}_{0} band show 7 components whose relative intensities are characteristic of the tin major isotopic abundances. The emission spectra are also consistent with assigning the spectrum as due to SnH_{2}. The fluorescence lifetimes of the upper state rotational levels decrease with increasing J', indicative of a rotationally dependent predissociation process in the excited state, similar to that previously observed in SiH_{2} and GeH_{2}. Fluorescence hole burning experiments have located the upper state K_{a} = 2 levels which allow a determination of the molecular structure.

  3. Calculations of thermal radiation transfer of C2H2 and C2H4 together with H2O, CO2, and CO in a one-dimensional enclosure using LBL and SNB models

    NASA Astrophysics Data System (ADS)

    Qi, Chaobo; Zheng, Shu; Zhou, Huaichun

    2017-08-01

    Generally, the involvement of hydrocarbons such as C2H4 and its derivative C2H2 in thermal radiation has not been accounted in the numerical simulation of their flames, which may cause serious error for estimation of temperature in the early stage of combustion. At the first, the Statistical Narrow-Band (SNB) model parameters for C2H2 and C2H4 are generated from line by line (LBL) calculations. The distributions of the concentrations of radiating gases such as H2O, CO2, CO, C2H2 and C2H4, and the temperature along the centerline of a laminar ethylene/air diffusion flame were chosen to form a one-dimensional, planar enclosure to be tested in this study. Thermal radiation transfer in such an enclosure was calculated using the LBL approach and the SNB model, most of the relative errors are less than 8% and the results of these two models shows an excellent agreement. Below the height of 20 mm, which is the early stage of the flame, the average fraction contributed by C2H2 and C2H4 in the radiative heat source is 33.8%, while that by CO is only 5.8%. This result indicates that the involvement of C2H2 and C2H4 in radiation heat transfer needs to be taken into account in the numerical modeling of the ethylene/air diffusion flame, especially in the early stage of combustion.

  4. Lymphoblast-derived integration-free iPSC line AD-TREM2-3 from a 74 year-old Alzheimer's disease patient expressing the TREM2 p.R47H variant.

    PubMed

    Martins, Soraia; Yigit, Hatice; Bohndorf, Martina; Graffmann, Nina; Fiszl, Aurelian Robert; Wruck, Wasco; Sleegers, Kristel; Van Broeckhoven, Christine; Adjaye, James

    2018-06-01

    Human lymphoblast cells from a male diagnosed with Alzheimer's disease (AD) expressing the TREM2 p.R47H variant were used to generate integration-free induced pluripotent stem cells (iPSCs) by over-expressing episomal-based plasmids harbouring OCT4, SOX2, KLF4, LIN28, L-MYC and p53 shRNA. The derived iPSC line - AD-TREM2-3 was defined as pluripotent based on (i) expression of pluripotency-associated markers (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptome of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.940. Copyright © 2018. Published by Elsevier B.V.

  5. Linearized spectrum correlation analysis for line emission measurements

    NASA Astrophysics Data System (ADS)

    Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Sarff, J. S.

    2017-08-01

    A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave. The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdivides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations without averaging over the fast time dynamics. In principle, small fluctuations in the parameters used for a line shape model can be measured by evaluating the cross spectrum between different channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measurements (100-200 kHz) were made by using this method. We also conducted simulations to compare LSCA with a moment analysis technique under a low photon count condition. Both experimental and synthetic measurements demonstrate the effectiveness of LSCA.

  6. Emission intensities and line ratios from a fast neutral helium beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, J-W.; Craig, D.; Fiksel, G.

    2007-08-15

    The emission intensities and line ratios from a fast neutral helium beam is investigated in the Madison Symmetric Torus (MST) [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 1991]. Predicted He I line intensities and line ratios from a recently developed collisional-radiative model are compared with experiment. The intensity of singlet lines comes mostly (>95%) from the contribution of the ground state population and is very weakly dependent on the initial metastable fraction at the observation point in the plasma core. On the other hand, the intensity ofmore » triplet lines is strongly affected by the local metastable state (2{sup 1}S and 2{sup 3}S) populations and the initial metastable fraction plays an important role in determining line intensities. The fraction of local metastable states can only be estimated by making use of electron temperature (T{sub e}), electron density (n{sub e}), and effective ion charge (Z{sub eff}) profiles as inputs to the population balance equations. This leads triplet lines to be unusable for the investigation of their local plasma parameter dependence. The ratio of singlet lines at 667.8 nm and 492.2 nm (I{sub 667}/I{sub 492}) as well as the ratio of 667.8 nm and 501.6 nm lines (I{sub 667}/I{sub 501}) has been investigated for the dependence on T{sub e} and n{sub e} both theoretically and experimentally. I{sub 667}/I{sub 492} shows strong dependence on n{sub e} with weak sensitivity to T{sub e}. Measurements and predictions agree quantitatively within a factor of 2. There has been no ratio of singlet lines identified to have strong enough T{sub e} dependence yet. The ratios are expected to be reasonably insensitive to the variation of Z{sub eff}.« less

  7. OT2_pgolds01_6: Herschel [NII] Observations to Define the Source of [CII] Emission

    NASA Astrophysics Data System (ADS)

    Goldsmith, P.

    2011-09-01

    The 158 micron line of ionized carbon is the strongest single long-wavelength emission feature from the interstellar medium and is the most important coolant of gas in which hydrogen is in atomic form. It is a key determinant of the evolution of these largely atomic regions into denser, cooler molecular clouds in which new stars are formed, and is widely used as a tracer of star formation in the Milky Way and other galaxies. There is, however, an ongoing, serious controversy about the origin of the [CII] emission, which has been asserted to come from the extended low-density warm interstellar medium, but has more generally been associated with the primarily molecular photon dominated regions (PDRs) intimately associated with massive, young stars. We propose a combined HIFI and PACS study of the two far-infrared [NII] fine structure lines in order to resolve the important question of the fraction of CII emission that arises in ionized gas. Specifically, we will (1) utilize the fact that due to its ionization potential NII is found only in HII regions, and with PACS 122 and 205 micron observations, determine electron densities in a sample of such regions in the Galactic plane; (2) utilize available data on radio free-free and H-alpha emission to determine the NII column densities and from this the CII column densities in the HII regions; (3) use the electron densities to determine the fraction of CII emission arising in the ionized interstellar medium. These observations will be carried out at 150 of the positions in the Galactic plane observed in [CII] by the GOT-C+ project. We will also carry out HIFI observations of 10 selected positions in the 205 micron line to determine spectral characteristics of the NII emission line, which with CII, CI, and CO profiles already in hand will serve as a further discriminant among the proposed sources of CII emission.

  8. DETECTION OF BROAD Hα EMISSION LINES IN THE LATE-TIME SPECTRA OF A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Lin; Masci, F.; Quimby, R.

    2015-12-01

    iPTF13ehe is a hydrogen-poor superluminous supernova (SLSN) at z = 0.3434, with a slow-evolving light curve and spectral features similar to SN2007bi. It rises in 83–148 days to reach a peak bolometric luminosity of ∼1.3 × 10{sup 44} erg s{sup −1}, then decays slowly at 0.015 mag day{sup −1}. The measured ejecta velocity is ∼ 13,000 km s{sup −1}. The inferred explosion characteristics, such as the ejecta mass (70–220 M{sub ⊙}), and the total radiative and kinetic energy (E{sub rad} ∼ 10{sup 51} erg, E{sub kin} ∼ 2 × 10{sup 53} erg), are typical of slow-evolving H-poor SLSN events. However,more » the late-time spectrum taken at +251 days (rest, post-peak) reveals a Balmer Hα emission feature with broad and narrow components, which has never been detected before among other H-poor SLSNe. The broad component has a velocity width of ∼4500 km s{sup −1} and a ∼300 km s{sup −1} blueward shift relative to the narrow component. We interpret this broad Hα emission with a luminosity of ∼2 × 10{sup 41} erg s{sup −1} as resulting from the interaction between the supernova ejecta and a discrete H-rich shell, located at a distance of ∼4 × 10{sup 16} cm from the explosion site. This interaction causes the rest-frame r-band LC to brighten at late times. The fact that the late-time spectra are not completely absorbed by the shock-ionized H-shell implies that its Thomson scattering optical depth is likely ≤1, thus setting upper limits on the shell mass ≤30 M{sub ⊙}. Of the existing models, a Pulsational Pair Instability supernova model can naturally explain the observed 30 M{sub ⊙} H-shell, ejected from a progenitor star with an initial mass of (95–150) M{sub ⊙} about 40 years ago. We estimate that at least ∼15% of all SLSNe-I may have late-time Balmer emission lines.« less

  9. First Detections of the [N II] 122 micron Line at High Redshift: Demonstrating the Utility of the Line for Studying Galaxies in the Early Universe

    NASA Technical Reports Server (NTRS)

    Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Phillips, Thomas G.; Falgarone, Edith; Benford, Dominic J.; Staguhn, Johannes G.; Tucker, Carol E.

    2011-01-01

    We report the first detections of the [N II] 122 micron line from a high-redshift galaxy. The line was strongly (>6(sigma)) detected from SMMJ02399-0136, and H1413 + 117 (the Cloverleaf QSO) using the Redshift (zeta) and Early Universe Spectrometer on the Caltech Submillimeter Observatory. The lines from both sources are quite bright with line to far-infrared (FIR) continuum luminosity ratios that are approx.7.0 x 10(exp -4) (Cloverleaf) and 2.1 x 10(exo -3) (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line to continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, approx.8%-17% of the molecUlar gas mass. The [O III]/[N II] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an active galactic nucleus (AGN). Using Our previous detection of the [O III] 88 micron line, the [O III]/[N II]line ratio for SMMJ02399-0136 indicates that the dominant source of the line emission is either stellar H II regions ionized by O9.5 stars, or the NLR of the AGN with ionization parameter log(U) = -3.3 to -4.0. A composite system, where 30%-50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of approx.200 M82-like starbursts accounting for all of the FIR emission and 43% of the [N II]line. The remainder may come from the NLR. This war!< demonstrates the utility of the [N II] and [O III] lines in constraining properties of the ionized medium.

  10. Infrared absorption of t-HOCO{sup +}, H{sup +}(CO{sub 2}){sub 2}, and HCO{sub 2}{sup −} produced in electron bombardment of CO{sub 2} in solid para-H{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Prasanta; Tsuge, Masashi; Lee, Yuan-Pern, E-mail: yplee@mail.nctu.edu.tw

    We have employed electron bombardment during matrix deposition of CO{sub 2} (or {sup 13}CO{sub 2}, C{sup 18}O{sub 2}) and para-hydrogen (p-H{sub 2}) at 3.2 K and recorded infrared (IR) spectra of t-HOCO{sup +}, H{sup +}(CO{sub 2}){sub 2}, HCO{sub 2}{sup −}, CO{sub 2}{sup −}, t-HOCO, and other species isolated in solid p-H{sub 2}. After the matrix was maintained in darkness for 13 h, intensities of absorption features of t-HOCO{sup +} at 2403.5 (ν{sub 1}), 2369.9 (ν{sub 2}), 1018.1 (ν{sub 4}), and 606.5 (ν{sub 6}) cm{sup −1} and those of H{sup +}(CO{sub 2}){sub 2} at 1341.1, 883.6, and 591.5 cm{sup −1} decreased.more » Corresponding lines of isotopologues were observed when {sup 13}CO{sub 2} or C{sup 18}O{sub 2} replaced CO{sub 2}. In contrast, lines of HCO{sub 2}{sup −} at 2522.4 (ν{sub 1}), 1616.1 (ν{sub 5}), 1327.9 (ν{sub 2}), and 745.6 (ν{sub 3}) cm{sup −1} increased in intensity; corresponding lines of H{sup 13}CO{sub 2}{sup −} or HC{sup 18}O{sub 2}{sup −} were also observed. Lines of t-DOCO{sup +} and DCO{sub 2}{sup −} were observed in an electron bombarded CO{sub 2} /normal-deuterium (n-D{sub 2}) matrix. Data of ν{sub 6} of t-HOCO{sup +} and all observed modes of H{sup 18}OC{sup 18}O{sup +} and HC{sup 18}O{sub 2}{sup −} are new. The assignments were made according to expected chemical behavior, observed isotopic shifts, and comparisons with vibrational wavenumbers and relative intensities of previous reports and calculations with the B3PW91/aug-cc-pVQZ method. The ν{sub 1} line of t-HOCO{sup +} in solid p-H{sub 2} (2403.5 cm{sup −1}), similar to the line at 2673 cm{sup −1} of t-HOCO{sup +} tagged with an Ar atom, is significantly red-shifted from that reported for gaseous t-HOCO{sup +} (3375.37 cm{sup −1}) due to partial proton sharing between CO{sub 2} and H{sub 2} or Ar. The ν{sub 1} line of HCO{sub 2}{sup −} in solid p-H{sub 2} (2522.4 cm{sup −1}) is blue shifted from that reported for HCO{sub 2}{sup −} in solid

  11. SMA observations of the W3(OH) complex: Dynamical differentiation between W3(H2O) and W3(OH)

    NASA Astrophysics Data System (ADS)

    Qin, Sheng-Li; Schilke, Peter; Wu, Jingwen; Liu, Tie; Wu, Yuefang; Sánchez-Monge, Álvaro; Liu, Ying

    2016-03-01

    We present Submillimeter Array observations of the HCN (3-2) and HCO+ (3-2) molecular lines towards the W3(H2O) and W3(OH) star-forming complexes. Infall and outflow motions in the W3(H2O) have been characterized by observing HCN and HCO+ transitions. High-velocity blue/red-shifted emission, tracing the outflow, show multiple knots, which might originate in episodic and precessing outflows. `Blue-peaked' line profiles indicate that gas is infalling on to the W3(H2O) dust core. The measured large mass accretion rate, 2.3 × 10-3 M⊙ yr-1, together with the small free-fall time-scale, 5 × 103 yr, suggest W3(H2O) is in an early evolutionary stage of the process of formation of high-mass stars. For the W3(OH), a two-layer model fit to the HCN and HCO+ spectral lines and Spizter/Infrared Array Camera (IRAC) images support that the W3(OH) H II region is expanding and interacting with the ambient gas, with the shocked neutral gas being expanding with an expansion time-scale of 6.4 × 103 yr. The observations suggest different kinematical time-scales and dynamical states for the W3(H2O) and W3(OH).

  12. 40 CFR 75.19 - Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hourly SO2 mass emissions under this section. Alternatively, for fuel oil combustion, a lower, fuel... (or ozone season) prior to the year of the test (g H2O/g air). Ho = Observed humidity ratio during the test run (g H2O/g air). Tr = Average annual atmospheric temperature (or average ozone season...

  13. ALMA IMAGING OF THE CO (6-5) LINE EMISSION IN NGC 7130

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yinghe; Lu, Nanyao; Xu, C. Kevin

    2016-04-01

    In this paper, we report our high-resolution (0.″20 × 0.″14 or ∼70 × 49 pc) observations of the CO(6-5) line emission, which probes warm and dense molecular gas, and the 434 μm dust continuum in the nuclear region of NGC 7130, obtained with the Atacama Large Millimeter Array (ALMA). The CO line and dust continuum fluxes detected in our ALMA observations are 1230 ± 74 Jy km s{sup −1} and 814 ± 52 mJy, respectively, which account for 100% and 51% of their total fluxes. We find that the CO(6-5) and dust emissions are generally spatially correlated, but their brightest peaks show an offset of ∼70 pc, suggestingmore » that the gas and dust emissions may start decoupling at this physical scale. The brightest peak of the CO(6-5) emission does not spatially correspond to the radio continuum peak, which is likely dominated by an active galactic nucleus (AGN). This, together with our additional quantitative analysis, suggests that the heating contribution of the AGN to the CO(6-5) emission in NGC 7130 is negligible. The CO(6-5) and the extinction-corrected Pa-α maps display striking differences, suggestive of either a breakdown of the correlation between warm dense gas and star formation at linear scales of <100 pc or a large uncertainty in our extinction correction to the observed Pa-α image. Over a larger scale of ∼2.1 kpc, the double-lobed structure found in the CO(6-5) emission agrees well with the dust lanes in the optical/near-infrared images.« less

  14. Investigating the Near-Infrared Properties of Planetary Nebulae II. Medium Resolution Spectra. 2; Medium Resolution Spectra

    NASA Technical Reports Server (NTRS)

    Hora, Joseph L.; Latter, William B.; Deutsch, Lynne K.

    1998-01-01

    We present medium-resolution (R approximately 700) near-infrared (lambda = 1 - 2.5 micrometers) spectra of a sample of planetary nebulae (PNe). A narrow slit was used which sampled discrete locations within the nebulae; observations were obtained at one or more positions in the 41 objects included in the survey. The PN spectra fall into one of four general categories: H1 emission line-dominated PNe, H1 and H2 emission line PNe, H2 emission line-dominated PNe, and continuum-dominated PNe. These categories correlate with morphological type, with the elliptical PNe falling into the first group, and the bipolar PNe primarily in the H2 and continuum emission groups. The categories also correlate with C/O ratio, with the O-rich objects falling into the first group and the C-rich objects in the groups. Other spectral features were observed in all catagories, such as continuum emission from the central star, and warm dust continuum emission towards the long wavelength end of the spectra. H2 was detected in four PNe in this survey for the first time. An analysis was performed using the H2 line ratios in all of the PN spectra in the survey where a sufficient number of lines were observed to determine the ortho-to-para ratio and the rotational and vibrational excitation temperatures of the H-2 in those objects. One unexpected result from this analysis is that the H-2 is excited by absorption of ultraviolet photons in most of the PNe, although there are several PNe in which collisional excitation plays an important role. The correlation between bipolar morphology and H2 emission has been strengthened with the new detections of H2 in this survey.

  15. Electric Field Induced Spectra of H sub 2 and D sub 2

    NASA Technical Reports Server (NTRS)

    Boyd, William Joseph

    1974-01-01

    The frequencies of four Q-branch lines of H2 and five Q-branch lines of D2 were measured as a function of density, and their shifts were observed to be in the linear region. The individual slopes and extrapolated zero density frequency of each line was determined. Hydrogen was measured for polarizability using the integrated intensity of the Q1(0) and S1(1), H2 absorption line. A highly automated technique for determining the response function of the spectrometer using digitally recorded data is presented. For the Q1(0) and Q1(1) lines of H2 the halfwidths were measured as a function of electric field intensity at constant pressure, and again at several densities and compared to previously measured widths. Technical and operational details of equipment built for this experiment, and for the five-meter Littrow spectrometer used, are described. Modifications of the spectrometer optics to accept the Stark cell are discussed.

  16. Limb observations of the 12.32 micron solar emission line during the 1991 July total eclipse

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Jennings, Donald E.; Mccabe, George; Noyes, Robert; Wiedemann, Gunter; Espenak, Fred

    1992-01-01

    The limb profile of the Mg I 12.32-micron emission line is determined by occultation in the July 11, 1991 total solar eclipse over Mauna Kea. It is shown that the emission peaks are very close to the 12-micron continuum limb, as predicted by recent theory for this line as a non-LTE photospheric emission. The increase in optical depth for this extreme limb-viewing situation indicates that most of the observed emission arises from above the chromospheric temperature minimum, and it is found that this emission is extended to heights well in excess of the model predictions. The line emission can be observed as high as 2000 km above the 12-micron continuum limb, whereas theory predicts it to remain observable no higher than about 500 km above the continuum limb. The substantial limb extension observed in this line is quantitatively consistent with limb extensions seen in the far-IR continuum, and it is concluded that it is indicative of departures from gravitational hydrostatic equilibrium, or spatial inhomogeneities, in the upper solar atmosphere.

  17. Influence of excited state spatial distributions on plasma diagnostics: Atmospheric pressure laser-induced He-H2 plasma

    NASA Astrophysics Data System (ADS)

    Monfared, Shabnam K.; Hüwel, Lutz

    2012-10-01

    Atmospheric pressure plasmas in helium-hydrogen mixtures with H2 molar concentrations ranging from 0.13% to 19.7% were investigated at times from 1 to 25 μs after formation by a Q-switched Nd:YAG laser. Spatially integrated electron density values are obtained using time resolved optical emission spectroscopic techniques. Depending on mixture concentration and delay time, electron densities vary from almost 1017 cm-3 to about 1014 cm-3. Helium based results agree reasonably well with each other, as do values extracted from the Hα and Hβ emission lines. However, in particular for delays up to about 7 μs and in mixtures with less than 1% hydrogen, large discrepancies are observed between results obtained from the two species. Differences decrease with increasing hydrogen partial pressure and/or increasing delay time. In mixtures with molecular hydrogen fraction of 7% or more, all methods yield electron densities that are in good agreement. These findings seemingly contradict the well-established idea that addition of small amounts of hydrogen for diagnostic purposes does not perturb the plasma. Using Abel inversion analysis of the experimental data and a semi-empirical numerical model, we demonstrate that the major part of the detected discrepancies can be traced to differences in the spatial distributions of excited helium and hydrogen neutrals. The model yields spatially resolved emission intensities and electron density profiles that are in qualitative agreement with experiment. For the test case of a 1% H2 mixture at 5 μs delay, our model suggests that high electron temperatures cause an elevated degree of ionization and thus a reduction of excited hydrogen concentration relative to that of helium near the plasma center. As a result, spatially integrated analysis of hydrogen emission lines leads to oversampling of the plasma perimeter and thus to lower electron density values compared to those obtained from helium lines.

  18. On the Brγ line emission of the Herbig Ae/Be star MWC 120

    NASA Astrophysics Data System (ADS)

    Kreplin, Alexander; Tambovtseva, Larisa; Grinin, Vladimir; Kraus, Stefan; Weigelt, Gerd; Wang, Yang

    2018-06-01

    The origin of the Br γ line in Herbig Ae/Be stars is still an open question. It has been proposed that a fraction of the 2.166-μm Br γ emission might emerge from a disc wind, the magnetosphere and other regions. Investigations of the Br γ line in young stellar objects are important to improve our understanding of the accretion-ejection process. Near-infrared long-baseline interferometry enables the investigation of the Br γ line-emitting region with high spatial and high spectral resolution. We observed the Herbig Ae/Be star MWC 120 with the Astronomical Multi-Beam Recombiner (AMBER) on the Very Large Telescope Interferometer (VLTI) in different spectral channels across the Br γ line with a spectral resolution of R ˜ 1500. Comparison of the visibilities, differential and closure phases in the continuum and the line-emitting region with geometric and radiative transfer disc-wind models leads to constraints on the origin and dynamics of the gas emitting the Br γ light. Geometric modelling of the visibilities reveals a line-emission region about two times smaller than the K-band continuum region, which indicates a scenario where the Br γ emission is dominated by an extended disc wind rather than by a much more compact magnetospheric origin. To compare our data with a physical model, we applied a state-of-the-art radiative transfer disc-wind model. We find that all measured visibilities, differential and closure phases of MWC 120 can be approximately reproduced by a disc-wind model. A comparison with other Herbig stars indicates a correlation of the modelled inner disc-wind radii with the corresponding Alfvén radii for late spectral type stars.

  19. Induced emission cross section of a possible laser line in Nd:Y2O3 ceramics at 1.095 μm

    NASA Astrophysics Data System (ADS)

    Fukabori, Akihiro; Sekita, Masami; Ikegami, Takayasu; Iyi, Nobuo; Komatsu, Toshiki; Kawamura, Masayuki; Suzuki, Makoto

    2007-02-01

    In this study, we measured the change of the optical transmittance for calcination temperatures, in steps of 10°, at two different sintering temperatures. It was found that the optical transmittance is highly dependent on the calcination temperature. The highest optical transmittance obtained was 70% for the transparent Y2O3 (yttria) ceramics produced without the use of additives and high injection presure in this study, higher than the highest reported value of 65%. Optical absorption and emission spectra of Nd :Y2O3 obtained from a low temperature synthesis process were measured. The energy level structure of Nd3+ in the Y2O3 ceramics was determined for a 1mol% Nd concentration. The induced emission cross section was calculated to be in the range of 3.2×10-19-1.1×10-17cm2 for the 1mol% Nd-doped Y2O3 ceramics. Furthermore, a laser line possibly has been identified in this study, in the Nd :Y2O3 ceramic at 1.095μm.

  20. THE DUST SUBLIMATION RADIUS AS AN OUTER ENVELOPE TO THE BULK OF THE NARROW Fe Kα LINE EMISSION IN TYPE 1 AGNs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandhi, Poshak; Hönig, Sebastian F.; Kishimoto, Makoto

    2015-10-20

    The Fe Kα emission line is the most ubiquitous feature in the X-ray spectra of active galactic nuclei (AGNs), but the origin of its narrow core remains uncertain. Here, we investigate the connection between the sizes of the Fe Kα core emission regions and the measured sizes of the dusty tori in 13 local Type 1 AGNs. The observed Fe Kα emission radii (R{sub Fe}) are determined from spectrally resolved line widths in X-ray grating spectra, and the dust sublimation radii (R{sub dust}) are measured either from optical/near-infrared (NIR) reverberation time lags or from resolved NIR interferometric data. This directmore » comparison shows, on an object-by-object basis, that the dust sublimation radius forms an outer envelope to the bulk of the Fe Kα emission. R{sub Fe} matches R{sub dust} well in the AGNs, with the best constrained line widths currently. In a significant fraction of objects without a clear narrow line core, R{sub Fe} is similar to, or smaller than, the radius of the optical broad line region. These facts place important constraints on the torus geometries for our sample. Extended tori in which the solid angle of fluorescing gas peaks at well beyond the dust sublimation radius can be ruled out. We also test for luminosity scalings of R{sub Fe}, finding that the Eddington ratio is not a prime driver in determining the line location in our sample. We also discuss in detail potential caveats of data analysis and instrumental limitations, simplistic line modeling, uncertain black hole masses, and sample selection, showing that none of these is likely to bias our core result. The calorimeter on board Astro-H will soon vastly increase the parameter space over which line measurements can be made, overcoming many of these limitations.« less