Sample records for h2 production potential

  1. Enhanced H2O2 Production at Reductive Potentials from Oxidized Boron-Doped Ultrananocrystalline Diamond Electrodes.

    PubMed

    Thostenson, James O; Ngaboyamahina, Edgard; Sellgren, Katelyn L; Hawkins, Brian T; Piascik, Jeffrey R; Klem, Ethan J D; Parker, Charles B; Deshusses, Marc A; Stoner, Brian R; Glass, Jeffrey T

    2017-05-17

    This work investigates the surface chemistry of H 2 O 2 generation on a boron-doped ultrananocrystalline diamond (BD-UNCD) electrode. It is motivated by the need to efficiently disinfect liquid waste in resource constrained environments with limited electrical power. X-ray photoelectron spectroscopy was used to identify functional groups on the BD-UNCD electrode surfaces while the electrochemical potentials of generation for these functional groups were determined via cyclic voltammetry, chronocoulometry, and chronoamperometry. A colorimetric technique was employed to determine the concentration and current efficiency of H 2 O 2 produced at different potentials. Results showed that preanodization of an as-grown BD-UNCD electrode can enhance the production of H 2 O 2 in a strong acidic environment (pH 0.5) at reductive potentials. It is proposed that the electrogeneration of functional groups at oxidative potentials during preanodization allows for an increased current density during the successive electrolysis at reductive potentials that correlates to an enhanced production of H 2 O 2 . Through potential cycling methods, and by optimizing the applied potentials and duty cycle, the functional groups can be stabilized allowing continuous production of H 2 O 2 more efficiently compared to static potential methods.

  2. Enhanced H2O2 Production at Reductive Potentials from Oxidized Boron-Doped Ultrananocrystalline Diamond Electrodes

    PubMed Central

    2017-01-01

    This work investigates the surface chemistry of H2O2 generation on a boron-doped ultrananocrystalline diamond (BD-UNCD) electrode. It is motivated by the need to efficiently disinfect liquid waste in resource constrained environments with limited electrical power. X-ray photoelectron spectroscopy was used to identify functional groups on the BD-UNCD electrode surfaces while the electrochemical potentials of generation for these functional groups were determined via cyclic voltammetry, chronocoulometry, and chronoamperometry. A colorimetric technique was employed to determine the concentration and current efficiency of H2O2 produced at different potentials. Results showed that preanodization of an as-grown BD-UNCD electrode can enhance the production of H2O2 in a strong acidic environment (pH 0.5) at reductive potentials. It is proposed that the electrogeneration of functional groups at oxidative potentials during preanodization allows for an increased current density during the successive electrolysis at reductive potentials that correlates to an enhanced production of H2O2. Through potential cycling methods, and by optimizing the applied potentials and duty cycle, the functional groups can be stabilized allowing continuous production of H2O2 more efficiently compared to static potential methods. PMID:28471651

  3. Metagenomic Evidence for H2 Oxidation and H2 Production by Serpentinite-Hosted Subsurface Microbial Communities

    PubMed Central

    Brazelton, William J.; Nelson, Bridget; Schrenk, Matthew O.

    2012-01-01

    Ultramafic rocks in the Earth’s mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2). In order to assess the potential for microbial H2 utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field) and two continental serpentinite-hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland). Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H2-oxidizers. Both sites also yielded metagenomic evidence for microbial H2 production catalyzed by [FeFe]-hydrogenases in anaerobic Gram-positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood–Ljungdahl pathway. In general, our results point to H2-oxidizing Betaproteobacteria thriving in shallow, oxic–anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H2-powered primary production in serpentinite-hosted subsurface habitats. PMID:22232619

  4. Metagenomic evidence for h(2) oxidation and h(2) production by serpentinite-hosted subsurface microbial communities.

    PubMed

    Brazelton, William J; Nelson, Bridget; Schrenk, Matthew O

    2012-01-01

    Ultramafic rocks in the Earth's mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H(2)). In order to assess the potential for microbial H(2) utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field) and two continental serpentinite-hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland). Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H(2)-oxidizers. Both sites also yielded metagenomic evidence for microbial H(2) production catalyzed by [FeFe]-hydrogenases in anaerobic Gram-positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood-Ljungdahl pathway. In general, our results point to H(2)-oxidizing Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H(2)-powered primary production in serpentinite-hosted subsurface habitats.

  5. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  6. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  7. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets

    NASA Astrophysics Data System (ADS)

    Xiang, Quanjun; Yu, Jiaguo; Jaroniec, Mietek

    2011-09-01

    Graphene-modified TiO2 nanosheets with exposed (001) facets (graphene/TiO2) were prepared by microwave-hydrothermal treatment of graphene oxide (GO) and hydrothermally synthesized TiO2 nanosheets with exposed (001) facets in an ethanol-water solvent. These nanocomposite samples showed high photocatalytic H2-production activity in aqueous solutions containing methanol, as sacrificial reagent, even without Pt co-catalyst. The optimal graphene content was found to be ~1.0 wt%, giving a H2-production rate of 736 μmol h-1 g-1 with a quantum efficiency (QE) of 3.1%, which exceeded the rate observed on pure TiO2 nanosheets by more than 41 times. This high photocatalytic H2-production activity is due to the deposition of TiO2 nanosheets on graphene sheets, which act as an electron acceptor to efficiently separate the photogenerated charge carriers. The observed enhancement in the photocatalytic activity is due to the lower absolute potential of graphene/graphene z.rad- (-0.08 V vs. SHE, pH = 0) in comparison to the conduction band (-0.24 V) of anatase TiO2, meanwhile the aforementioned absolute value is higher than the reduction potential of H+ (0 V), which favors the electron transfer from the conduction band (CB) of TiO2 to graphene sheets and the reduction of H+, thus enhancing photocatalytic H2-production activity. The proposed mechanism for the observed photocatalytic performance of TiO2 nanosheets, modified with a small amount of graphene, was further confirmed by photoluminescence spectroscopy and transient photocurrent response. This work not only shows a possibility for the utilization of low cost graphene sheets as a substitute for noble metals (such as Pt) in the photocatalytic H2-production but also for the first time shows a significant enhancement in the H2-production activity by using metal-free carbon material as an effective co-catalyst.

  8. H2+, HeH and H2: Approximating potential curves, calculating rovibrational states

    NASA Astrophysics Data System (ADS)

    Olivares-Pilón, Horacio; Turbiner, Alexander V.

    2018-06-01

    Analytic consideration of the Bohr-Oppenheimer (BO) potential curves for diatomic molecules is proposed: accurate analytic interpolation for a potential curve consistent with its rovibrational spectra is found. It is shown that in the BO approximation for four lowest electronic states 1 sσg and 2 pσu, 2 pπu and 3 dπg of H2+, the ground state X2Σ+ of HeH and the two lowest states 1 Σg+ and 3 Σu+ of H2, the potential curves can be analytically interpolated in full range of internuclear distances R with not less than 4-5-6 s.d. Approximation based on matching the Laurant-type expansion at small R and a combination of the multipole expansion with one-instanton type contribution at large distances R is given by two-point Padé approximant. The position of minimum, when exists, is predicted within 1% or better. For the molecular ion H2+ in the Lagrange mesh method, the spectra of vibrational, rotational and rovibrational states (ν , L) associated with 1 sσg and 2 pσu, 2 pπu and 3 dπg potential curves are calculated. In general, it coincides with spectra found via numerical solution of the Schrödinger equation (when available) within six s.d. It is shown that 1 sσg curve contains 19 vibrational states (ν , 0) , while 2 pσu curve contains a single one (0 , 0) and 2 pπu state contains 12 vibrational states (ν , 0) . In general, 1 sσg electronic curve contains 420 rovibrational states, which increases up to 423 when we are beyond BO approximation. For the state 2 pσu the total number of rovibrational states (all with ν = 0) is equal to 3, within or beyond Bohr-Oppenheimer approximation. As for the state 2 pπu within the Bohr-Oppenheimer approximation the total number of the rovibrational bound states is equal to 284. The state 3 dπg is repulsive, no rovibrational state is found. It is confirmed in Lagrange mesh formalism the statement that the ground state potential curve of the heteronuclear molecule HeH does not support rovibrational states. Accurate

  9. Production of H2 from aluminium/water reaction and its potential for CO2 methanation

    NASA Astrophysics Data System (ADS)

    Khai Phung, Khor; Sethupathi, Sumathi; Siang Piao, Chai

    2018-04-01

    Carbon dioxide (CO2) is a natural gas that presents in excess in the atmosphere. Owing to its ability to cause global warming, capturing and conversion of CO2 have attracted much attention worldwide. CO2 methanation using hydrogen (H2) is believed to be a promising route for CO2 removal. In the present work, H2 is produced using aluminum-water reaction and tested for its ability to convert CO2 to methane (CH4). Different type of water i.e. tap water, distilled water, deionized water and ultrapure water, concentration of sodium hydroxide (NaOH) (0.2 M to 1.0 M) and particle size of aluminum (45 m to 500 μm) were varied as parameter study. It was found that the highest yield of H2 was obtained using distilled water, 1.0 M of NaOH and 45μm particle size of aluminium. However, the highest yield of methane was achieved using a moderate and progressive H2 production (distilled water, 0.6 M of NaOH and 45 μm particle size of aluminium) which allowed sufficient time for H2 to react with CO2. It was concluded that 1130 ml of H2 can produce about 560 ppm of CH4 within 25 min of batch reaction using nickel catalyst.

  10. Potential energy surfaces of LaH + and LaH + 2

    NASA Astrophysics Data System (ADS)

    Das, Kalyan K.; Balasubramanian, K.

    1991-03-01

    Using the complete active space multiconfiguration self-consistent field (CAS-MCSCF) followed by full second-order configuration interaction (SOCI) calculations, 16 electronic states of LaH+ and 8 electronic states of LaH+2 are investigated. The potential energy surface of these electronic states of LaH+2 and LaH+ are computed. These calculations show that the 3F(5d2) ground state of La+ ion forms a weak complex with H2. The La+(1D) excited state inserts into H2 with a small barrier (<8 kcal/mol) to form the 1A1 ground state of LaH+2 (re=2.057 Å, θe=106°). At the SOCI level of theory LaH+2 is found to be 11 kcal/mol more stable than La+(3F)+H2. Our calculations explain the experimental observations on La++H2→LaH++H reaction. The adiabatic ionization potential (IP) of LaH2 and LaH are calculated as 5.23 and 5.33 eV, respectively. The ground state of LaH+ was found to be a 2Δ state. We compute De(LaH+) and De(HLa-H+) as 2.54 eV in excellent agreement with the experimental De(LaH+)=2.57 eV measured by Armentrout and co-workers. The spin-orbit effects of LaH+ were also studied using the relativistic configuration interaction (RCI) method.

  11. Effective potentials for H2O-He and H2O-Ar systems. Isotropic induction-dispersion potentials

    NASA Astrophysics Data System (ADS)

    Starikov, Vitali I.; Petrova, Tatiana M.; Solodov, Alexander M.; Solodov, Alexander A.; Deichuli, Vladimir M.

    2017-05-01

    The vibrational and rotational dependence of the effective isotropic interaction potential of H2O-He and H2O-Ar systems, taken in the form of Lennard-Jones 6-12 potential has been analyzed. The analysis is based on the experimental line broadening (γ) and line shift (δ) coefficients obtained for different vibrational bands of H2O molecule perturbed by He and Ar. The first and second derivatives of the function C(1)(q) for the long-range part of the induction-dispersion potential with respect to the dimensionless normal coordinates q were calculated using literature information for the dipole moment and mean polarizability functions μ(q) and α(q), respectively. These derivatives have been used in the calculations of the quantities which determine the vibrational and rotational dependence of the long-range part of the effective isotropic potential. The optimal set of the derivatives for the function C(1)(q) is proposed. The comparison with the experimental data has been performed.

  12. The contribution of the Precambrian continental lithosphere to global H2 production.

    PubMed

    Lollar, Barbara Sherwood; Onstott, T C; Lacrampe-Couloume, G; Ballentine, C J

    2014-12-18

    Microbial ecosystems can be sustained by hydrogen gas (H2)-producing water-rock interactions in the Earth's subsurface and at deep ocean vents. Current estimates of global H2 production from the marine lithosphere by water-rock reactions (hydration) are in the range of 10(11) moles per year. Recent explorations of saline fracture waters in the Precambrian continental subsurface have identified environments as rich in H2 as hydrothermal vents and seafloor-spreading centres and have suggested a link between dissolved H2 and the radiolytic dissociation of water. However, extrapolation of a regional H2 flux based on the deep gold mines of the Witwatersrand basin in South Africa yields a contribution of the Precambrian lithosphere to global H2 production that was thought to be negligible (0.009 × 10(11) moles per year). Here we present a global compilation of published and new H2 concentration data obtained from Precambrian rocks and find that the H2 production potential of the Precambrian continental lithosphere has been underestimated. We suggest that this can be explained by a lack of consideration of additional H2-producing reactions, such as serpentinization, and the absence of appropriate scaling of H2 measurements from these environments to account for the fact that Precambrian crust represents over 70 per cent of global continental crust surface area. If H2 production via both radiolysis and hydration reactions is taken into account, our estimate of H2 production rates from the Precambrian continental lithosphere of 0.36-2.27 × 10(11) moles per year is comparable to estimates from marine systems.

  13. A Chebyshev method for state-to-state reactive scattering using reactant-product decoupling: OH + H2H2O + H.

    PubMed

    Cvitaš, Marko T; Althorpe, Stuart C

    2013-08-14

    We extend a recently developed wave packet method for computing the state-to-state quantum dynamics of AB + CD → ABC + D reactions [M. T. Cvitaš and S. C. Althorpe, J. Phys. Chem. A 113, 4557 (2009)] to include the Chebyshev propagator. The method uses the further partitioned approach to reactant-product decoupling, which uses artificial decoupling potentials to partition the coordinate space of the reaction into separate reactant, product, and transition-state regions. Separate coordinates and basis sets can then be used that are best adapted to each region. We derive improved Chebyshev partitioning formulas which include Mandelshtam-and-Taylor-type decoupling potentials, and which are essential for the non-unitary discrete variable representations that must be used in 4-atom reactive scattering calculations. Numerical tests on the fully dimensional OH + H2H2O + H reaction for J = 0 show that the new version of the method is as efficient as the previously developed split-operator version. The advantages of the Chebyshev propagator (most notably the ease of parallelization for J > 0) can now be fully exploited in state-to-state reactive scattering calculations on 4-atom reactions.

  14. A potential energy surface for the process H2 + H2O yielding H + H + H2O - Ab initio calculations and analytical representation

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1991-01-01

    Extensive ab initio calculations on the ground state potential energy surface of H2 + H2O were performed using a large contracted Gaussian basis set and a high level of correlation treatment. An analytical representation of the potential energy surface was then obtained which reproduces the calculated energies with an overall root-mean-square error of only 0.64 mEh. The analytic representation explicitly includes all nine internal degrees of freedom and is also well behaved as the H2 dissociates; it thus can be used to study collision-induced dissociation or recombination of H2. The strategy used to minimize the number of energy calculations is discussed, as well as other advantages of the present method for determining the analytical representation.

  15. Energy distribution among reaction products. VI - F + H2, D2.

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    Study of the F + H2 reaction, which is of special theoretical interest since it is one of the simplest examples of an exothermic chemical reaction. The FH2 system involves only 11 electrons, and the computation of a potential-energy hypersurface to chemical accuracy may now be within the reach of ab initio calculations. The 'arrested relaxation' variant of the infrared chemiluminescence method is used to obtain the initial vibrational, rotational and translational energy distributions in the products of exothermic reactions.

  16. A neural network potential energy surface for the NaH2 system and dynamics studies on the H(2S) + NaH(X1Σ+) → Na(2S) + H2(X1Σg+) reaction.

    PubMed

    Wang, Shufen; Yuan, Jiuchuang; Li, Huixing; Chen, Maodu

    2017-08-02

    In order to study the dynamics of the reaction H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ), a new potential energy surface (PES) for the ground state of the NaH 2 system is constructed based on 35 730 ab initio energy points. Using basis sets of quadruple zeta quality, multireference configuration interaction calculations with Davidson correction were carried out to obtain the ab initio energy points. The neural network method is used to fit the PES, and the root mean square error is very small (0.00639 eV). The bond lengths, dissociation energies, zero-point energies and spectroscopic constants of H 2 (X 1 Σ g + ) and NaH(X 1 Σ + ) obtained on the new NaH 2 PES are in good agreement with the experiment data. On the new PES, the reactant coordinate-based time-dependent wave packet method is applied to study the reaction dynamics of H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ), and the reaction probabilities, integral cross-sections (ICSs) and differential cross-sections (DCSs) are obtained. There is no threshold in the reaction due to the absence of an energy barrier on the minimum energy path. When the collision energy increases, the ICSs decrease from a high value at low collision energy. The DCS results show that the angular distribution of the product molecules tends to the forward direction. Compared with the LiH 2 system, the NaH 2 system has a larger mass and the PES has a larger well at the H-NaH configuration, which leads to a higher ICS value in the H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ) reaction. Because the H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ) reaction releases more energy, the product molecules can be excited to a higher vibrational state.

  17. Hierarchical Honeycomb Br-, N-Codoped TiO2 with Enhanced Visible-Light Photocatalytic H2 Production.

    PubMed

    Zhang, Chao; Zhou, Yuming; Bao, Jiehua; Sheng, Xiaoli; Fang, Jiasheng; Zhao, Shuo; Zhang, Yiwei; Chen, Wenxia

    2018-06-06

    The halogen elements modification strategy of TiO 2 encounters a bottleneck in visible-light H 2 production. Herein, we have for the first time reported a hierarchical honeycomb Br-, N-codoped anatase TiO 2 catalyst (HM-Br,N/TiO 2 ) with enhanced visible-light photocatalytic H 2 production. During the synthesizing process, large amounts of meso-macroporous channels and TiO 2 nanosheets were fabricated in massive TiO 2 automatically, constructing the hierarchical honeycomb structure with large specific surface area (464 m 2 g -1 ). cetyl trimethylammonium bromide and melamine played a key role in constructing the meso-macroporous channels. Additionally, HM-Br,N/TiO 2 showed a high visible-light H 2 production rate of 2247 μmol h -1 g -1 , which is far more higher than single Br- or N-doped TiO 2 (0 or 63 μmol h -1 g -1 , respectively), thereby demonstrating the excellent synergistic effects of Br and N elements in H 2 evolution. In HM-Br,N/TiO 2 catalytic system, the codoped Br-N atoms could reduce the band gap of TiO 2 to 2.88 eV and the holes on acceptor levels (N acceptor) can passivate the electrons on donor levels (Br donor), thereby preventing charge carriers recombination significantly. Furthermore, the proposed HM-Br,N/TiO 2 fabrication strategy had a wide range of choices for N source (e.g., melamine, urea, and dicyandiamide) and it can be applied to other TiO 2 materials (e.g., P25) as well, thereby implying its great potential application in visible-light H 2 production. Finally, on the basis of experimental results, a possible photocatalytic H 2 production mechanism for HM-Br,N/TiO 2 was proposed.

  18. Full-dimensional, high-level ab initio potential energy surfaces for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2} with application to hydrogen clathrate hydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homayoon, Zahra; Conte, Riccardo; Qu, Chen

    2015-08-28

    New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H{sub 2}(H{sub 2}O) two-body and H{sub 2}(H{sub 2}O){sub 2} three-body potentials. The database for H{sub 2}(H{sub 2}O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are comparedmore » to computationally faster ones obtained via “purified” symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H{sub 2}, H{sub 2}O, and (H{sub 2}O){sub 2}, to obtain full PESs for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2}. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H{sub 2}(H{sub 2}O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathrate hydrates, illustrated for H{sub 2}@(H{sub 2}O){sub 20}. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H{sub 2} from the calculated equilibrium structure.« less

  19. Tunable Syngas Production from CO2 and H2 O in an Aqueous Photoelectrochemical Cell.

    PubMed

    Chu, Sheng; Fan, Shizhao; Wang, Yongjie; Rossouw, David; Wang, Yichen; Botton, Gianluigi A; Mi, Zetian

    2016-11-07

    Syngas, the mixture of CO and H 2 , is a key feedstock to produce methanol and liquid fuels in industry, yet limited success has been made to develop clean syngas production using renewable solar energy. We demonstrated that syngas with a benchmark turnover number of 1330 and a desirable CO/H 2 ratio of 1:2 could be attained from photoelectrochemical CO 2 and H 2 O reduction in an aqueous medium by exploiting the synergistic co-catalytic effect between Cu and ZnO. The CO/H 2 ratio in the syngas products was tuned in a large range between 2:1 and 1:4 with a total unity Faradaic efficiency. Moreover, a high Faradaic efficiency of 70 % for CO was acheived at underpotential of 180 mV, which is the lowest potential ever reported in an aqueous photoelectrochemical cell. It was found that the combination of Cu and ZnO offered complementary chemical properties that lead to special reaction channels not seen in Cu, or ZnO alone. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. State-to-state reactive scattering in six dimensions using reactant-product decoupling: OH + H2H2O + H (J = 0).

    PubMed

    Cvitaš, Marko T; Althorpe, Stuart C

    2011-01-14

    We extend to full dimensionality a recently developed wave packet method [M. T. Cvitaš and S. C. Althorpe, J. Phys. Chem. A 113, 4557 (2009)] for computing the state-to-state quantum dynamics of AB + CD → ABC + D reactions and also increase the computational efficiency of the method. This is done by introducing a new set of product coordinates, by applying the Crank-Nicholson approximation to the angular kinetic energy part of the split-operator propagator and by using a symmetry-adapted basis-to-grid transformation to evaluate integrals over the potential energy surface. The newly extended method is tested on the benchmark OH + H(2) → H(2)O + H reaction, where it allows us to obtain accurately converged state-to-state reaction probabilities (on the Wu-Schatz-Fang-Lendvay-Harding potential energy surface) with modest computational effort. These methodological advances will make possible efficient calculations of state-to-state differential cross sections on this system in the near future.

  1. Potential Size of and Value Proposition for H2@Scale Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark F; Jadun, Paige; Pivovar, Bryan S

    The H2@Scale concept is focused on developing hydrogen as an energy carrier and using hydrogen's properties to improve the national energy system. Specifically hydrogen has the abilities to (1) supply a clean energy source for industry and transportation and (2) increase the profitability of variable renewable electricity generators such as wind turbines and solar photovoltaic (PV) farms by providing value for otherwise potentially-curtailed electricity. Thus the concept also has the potential to reduce oil dependency by providing a low-carbon fuel for fuel cell electric vehicles (FCEVs), reduce emissions of carbon dioxide and pollutants such as NOx, and support domestic energymore » production, manufacturing, and U.S. economic competitiveness. The analysis reported here focuses on the potential market size and value proposition for the H2@Scale concept. It involves three analysis phases: 1. Initial phase estimating the technical potential for hydrogen markets and the resources required to meet them; 2. National-scale analysis of the economic potential for hydrogen and the interactions between willingness to pay by hydrogen users and the cost to produce hydrogen from various sources; and 3. In-depth analysis of spatial and economic issues impacting hydrogen production and utilization and the markets. Preliminary analysis of the technical potential indicates that the technical potential for hydrogen use is approximately 60 million metric tons (MMT) annually for light duty FCEVs, heavy duty vehicles, ammonia production, oil refining, biofuel hydrotreating, metals refining, and injection into the natural gas system. The technical potential of utility-scale PV and wind generation independently are much greater than that necessary to produce 60 MMT / year hydrogen. Uranium, natural gas, and coal reserves are each sufficient to produce 60 MMT / year hydrogen in addition to their current uses for decades to centuries. National estimates of the economic potential of

  2. Noble metal-free RGO/TiO2 composite nanofiber with enhanced photocatalytic H2-production performance

    NASA Astrophysics Data System (ADS)

    Xu, Difa; Li, Lingling; He, Rongan; Qi, Lifang; Zhang, Liuyang; Cheng, Bei

    2018-03-01

    1D reduced graphene oxide (RGO)/TiO2 nanocomposite fibers were fabricated by a facile two-step method. These samples demonstrated high photocatalytic H2-production activity from methanol aqueous solution, even without the aid of noble metal. When the ratio of RGO is 0.25 wt%, the highest H2-production rate was achieved. It increased by 10 fold than bare TiO2, reaching 149 μmol h-1 g-1 with quantum efficiency (QE) of 0.75%. The reasons were as follows. Firstly, the RGO nanosheets acted as electron acceptors. Secondly, some shallow trap states at the surface or interface of TiO2 were created by the reduction of GO during calcination. Thirdly, the redox potential position of graphene/graphene- was suitable. Fourthly, RGO could efficiently promote the separation of photogenerated electron-hole pairs and significantly enhance the photocatalytic H2-production activity. This interpretation was corroborated by transient photocurrent response. The aforementioned marvelous results provided a probable solution to replace noble metals (such as Pt) by graphene as an effective cocatalyst.

  3. Perspectives and advances of biological H2 production in microorganisms.

    PubMed

    Rupprecht, Jens; Hankamer, Ben; Mussgnug, Jan H; Ananyev, Gennady; Dismukes, Charles; Kruse, Olaf

    2006-09-01

    The rapid development of clean fuels for the future is a critically important global challenge for two main reasons. First, new fuels are needed to supplement and ultimately replace depleting oil reserves. Second, fuels capable of zero CO2 emissions are needed to slow the impact of global warming. This review summarizes the development of solar powered bio-H2 production processes based on the conversion of photosynthetic products by fermentative bacteria, as well as using photoheterotrophic and photoautrophic organisms. The use of advanced bioreactor systems and their potential and limitations in terms of process design, efficiency, and cost are also briefly reviewed.

  4. H2 production pathways in nutrient-replete mixotrophic Chlamydomonas cultures under low light. Response to the commentary article "On the pathways feeding the H2 production process in nutrient-replete, hypoxic conditions," by Alberto Scoma and Szilvia Z. Tóth.

    PubMed

    González-Ballester, David; Jurado-Oller, Jose Luis; Galván, Aurora; Fernández, Emilio; Dubini, Alexandra

    2017-01-01

    A recent Commentary article entitled "On the pathways feeding the H 2 production process in nutrient-replete, hypoxic conditions" by Dr. Scoma and Dr. Tóth, Biotechnology for Biofuels (2017), opened a very interesting debate about the H 2 production photosynthetic-linked pathways occurring in Chlamydomonas cultures grown in acetate-containing media and incubated under hypoxia/anoxia conditions. This Commentary article mainly focused on the results of our previous article "Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures," by Jurado-Oller et al., Biotechnology for Biofuels (7, 2015; 8:149). Here, we review some previous knowledge about the H 2 production pathways linked to photosynthesis in Chlamydomonas, especially focusing on the role of the PSII-dependent and -independent pathways in acetate-containing nutrient-replete cultures. The potential contributions of these pathways to H 2 production under anoxia/hypoxia are discussed. Despite the fact that the PSII inhibitor DCMU is broadly used to discern between the two different photosynthetic pathways operating under H 2 production conditions, its use may lead to distinctive conclusions depending on the growth conditions. The different potential sources of reductive power needed for the PSII-independent H 2 production in mixotrophic nutrient-replete cultures are a matter of debate and conclusive evidences are still missing.

  5. Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid

    EPA Science Inventory

    Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid Vicki Richardson1, Susan D. Richardson2, Mary Moyer3, Jane Ellen Simmons1, and Anthony DeAngelo1, 1U.S. Environmental Protection Agency, Research Triangle Park, NC, 2University of...

  6. Production of B atoms and BH radicals from B2H6/He/H2 mixtures activated on heated W wires.

    PubMed

    Umemoto, Hironobu; Kanemitsu, Taijiro; Tanaka, Akihito

    2014-07-17

    B atoms and BH radicals could be identified by laser-induced fluorescence when B2H6/He/H2 mixtures were activated on heated tungsten wires. The densities of these radical species increased not only with the wire temperature but also with the partial pressure of H2. The densities in the presence of 0.026 Pa of B2H6 and 2.6 Pa of H2 were on the order of 10(11) cm(-3) both for B and BH when the wire temperature was 2000 K. Densities in the absence of a H2 flow were much smaller, suggesting that the direct production of these species on wire surfaces is minor. B and BH must be produced in the H atom shifting reactions, BH(x) + H → BH(x-1) + H2 (x = 1-3), in the gas phase, while H atoms are produced from H2 on wire surfaces. The B atom density increased monotonously with the H atom density, while the BH density showed saturation. These tendencies could be reproduced by simple modeling based on ab initio potential energy calculations and the transition-state theoretical calculations of the rate constants. The absolute densities could also be reproduced within a factor of 2.5.

  7. Microchannel Reactor System Design & Demonstration For On-Site H2O2 Production by Controlled H2/O2 Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeniyi Lawal

    We successfully demonstrated an innovative hydrogen peroxide (H2O2) production concept which involved the development of flame- and explosion-resistant microchannel reactor system for energy efficient, cost-saving, on-site H2O2 production. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for controlled direct combination of H2 and O2 in all proportions including explosive regime, at a low pressure and a low temperature to produce about 1.5 wt% H2O2 as proposed. In the second phase of the program, as a prelude to full-scale commercialization, we demonstrated our H2O2 production approach by ‘numbering up’ the channels in a multi-channel microreactor-based pilot plant tomore » produce 1 kg/h of H2O2 at 1.5 wt% as demanded by end-users of the developed technology. To our knowledge, we are the first group to accomplish this significant milestone. We identified the reaction pathways that comprise the process, and implemented rigorous mechanistic kinetic studies to obtain the kinetics of the three main dominant reactions. We are not aware of any such comprehensive kinetic studies for the direct combination process, either in a microreactor or any other reactor system. We showed that the mass transfer parameter in our microreactor system is several orders of magnitude higher than what obtains in the macroreactor, attesting to the superior performance of microreactor. A one-dimensional reactor model incorporating the kinetics information enabled us to clarify certain important aspects of the chemistry of the direct combination process as detailed in section 5 of this report. Also, through mathematical modeling and simulation using sophisticated and robust commercial software packages, we were able to elucidate the hydrodynamics of the complex multiphase flows that take place in the microchannel. In conjunction with the kinetics information, we were able to validate the experimental data. If fully implemented across the

  8. Application of Symmetry-Broken H2-H2 Potential Energy Surface to Low Energy o-/p-H2+HD Collisions of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Sultanov, R. A.; Guster, D.; Adhukari, S. K.

    2011-05-01

    A possibility of correct description of non-symmetrical HD+H2 collision at low temperatures (T≤300 K) is considered by applying symmetrical H2-H2 potential energy surface (PES) [Diep, P. & Johnson, K. 2000, J. Chem. Phys. 113, 3480 (DJ PES)]. With the use of a special mathematical transformation technique, which was applied to this surface, and a quantum dynamical method we obtained a quite satisfactory agreement with previous results when another H2-H2 PES was used [Boothroyd, A.I. et al. 2002, J. Chem. Phys. 116, 666 (BMKP PES)].

  9. Synthesis and PGE(2) production inhibition of 1H-furan-2,5-dione and 1H-pyrrole-2,5-dione derivatives.

    PubMed

    Moon, Jong Taik; Jeon, Ji Young; Park, Hang Ah; Noh, Young-Soo; Lee, Kyung-Tae; Kim, Jungahn; Choo, Dong Joon; Lee, Jae Yeol

    2010-01-15

    3,4-Diphenyl-substituted 1H-furan-2,5-dione and 1H-pyrrole-2,5-dione derivatives were synthesized and evaluated for the inhibitory activities on LPS-induced PGE(2) production in RAW 264.7 macrophage cells. Both 1H-furan-2,5-dione and 1H-pyrrole-2,5-dione rings as main scaffolds were easily obtained using one of three synthetic methods. Among the compounds investigated, 1H-3-(4-sulfamoylphenyl)-4-phenyl-pyrrole-2,5-dione (6l) showed a strong inhibitory activity (IC(50)=0.61microM) of PGE(2) production. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Corrosion of 310 stainless steel in H2-H2O-H2S gas mixtures: Studies at constant temperature and fixed oxygen potential

    NASA Technical Reports Server (NTRS)

    Rao, D. B.; Jacob, K. T.; Nelson, H. G.

    1981-01-01

    Corrosion of SAE 310 stainless steel in H2-H2O-H2S gas mixtures was studied at a constant temperature of 1150 K. Reactive gas mixtures were chosen to yield a constant oxygen potential of approximately 6 x 10 to the minus 13th power/cu Nm and sulfur potentials ranging from 0.19 x 10 to the minus 2nd power/cu Nm to 33 x 10 to the minus 2nd power/cu Nm. The kinetics of corrosion were determined using a thermobalance, and the scales were analyzed using metallography, scanning electron microscopy, and energy dispersive X-ray analysis. Two corrosion regimes, which were dependent on sulfur potential, were identified. At high sulfur potentials (p sub S sub 2 less than or equal to 2.7 x 10 to the minus 2nd power/cu Nm) the corrosion rates were high, the kinetics obeyed a linear rate equation, and the scales consisted mainly of sulfide phases similar to those observed from pure sulfication. At low sulfur potentials (P sub S sub 2 less than or equal to 0.19 x 10 to the minus 2nd power/cu Nm) the corrosion rates were low, the kinetics obeyed a parabolic rate equation, and scales consisted mainly of oxide phases.

  11. Relative Importance of H2 and H2S as Energy Sources for Primary Production in Geothermal Springs▿ †

    PubMed Central

    D'Imperio, Seth; Lehr, Corinne R.; Oduro, Harry; Druschel, Greg; Kühl, Michael; McDermott, Timothy R.

    2008-01-01

    Geothermal waters contain numerous potential electron donors capable of supporting chemolithotrophy-based primary production. Thermodynamic predictions of energy yields for specific electron donor and acceptor pairs in such systems are available, although direct assessments of these predictions are rare. This study assessed the relative importance of dissolved H2 and H2S as energy sources for the support of chemolithotrophic metabolism in an acidic geothermal spring in Yellowstone National Park. H2S and H2 concentration gradients were observed in the outflow channel, and vertical H2S and O2 gradients were evident within the microbial mat. H2S levels and microbial consumption rates were approximately three orders of magnitude greater than those of H2. Hydrogenobaculum-like organisms dominated the bacterial component of the microbial community, and isolates representing three distinct 16S rRNA gene phylotypes (phylotype = 100% identity) were isolated and characterized. Within a phylotype, O2 requirements varied, as did energy source utilization: some isolates could grow only with H2S, some only with H2, while others could utilize either as an energy source. These metabolic phenotypes were consistent with in situ geochemical conditions measured using aqueous chemical analysis and in-field measurements made by using gas chromatography and microelectrodes. Pure-culture experiments with an isolate that could utilize H2S and H2 and that represented the dominant phylotype (70% of the PCR clones) showed that H2S and H2 were used simultaneously, without evidence of induction or catabolite repression, and at relative rate differences comparable to those measured in ex situ field assays. Under in situ-relevant concentrations, growth of this isolate with H2S was better than that with H2. The major conclusions drawn from this study are that phylogeny may not necessarily be reliable for predicting physiology and that H2S can dominate over H2 as an energy source in terms of

  12. FRET ratiometric probes reveal the chiral-sensitive cysteine-dependent H2S production and regulation in living cells

    NASA Astrophysics Data System (ADS)

    Wei, Lv; Yi, Long; Song, Fanbo; Wei, Chao; Wang, Bai-Fan; Xi, Zhen

    2014-04-01

    Hydrogen sulfide (H2S) is an endogenously produced gaseous signalling molecule with multiple biological functions. In order to visualize and quantify the endogenous in situ production of H2S in living cells, here we developed two new sulphide ratiometric probes (SR400 and SR550) based on fluorescence resonance energy transfer (FRET) strategy for live capture of H2S. The FRET-based probes show excellent selectivity toward H2S in a high thiol background under physiological buffer. The probe can be used to in situ visualize cysteine-dependent H2S production in a chiral-sensitive manner in living cells. The ratiometric imaging studies indicated that D-Cys induces more H2S production than that of L-Cys in mitochondria of human embryonic kidney 293 cells (HEK293). The cysteine mimics propargylglycine (PPG) has also been found to inhibit the cysteine-dependent endogenous H2S production in a chiral-sensitive manner in living cells. D-PPG inhibited D-Cys-dependent H2S production more efficiently than L-PPG, while, L-PPG inhibited L-Cys-dependent H2S production more efficiently than D-PPG. Our bioimaging studies support Kimura's discovery of H2S production from D-cysteine in mammalian cells and further highlight the potential of D-cysteine and its derivatives as an alternative strategy for classical H2S-releasing drugs.

  13. H2@Scale: Technical and Economic Potential of Hydrogen as an Energy Intermediate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark F; Jadun, Paige; Pivovar, Bryan S

    The H2@Scale concept is focused on developing hydrogen as an energy carrier and using hydrogen's properties to improve the national energy system. Specifically hydrogen has the abilities to (1) supply a clean energy source for industry and transportation and (2) increase the profitability of variable renewable electricity generators such as wind turbines and solar photovoltaic (PV) farms by providing value for otherwise potentially-curtailed electricity. Thus the concept also has the potential to reduce oil dependency by providing a low-carbon fuel for fuel cell electric vehicles (FCEVs), reduce emissions of carbon dioxide and pollutants such as NOx, and support domestic energymore » production, manufacturing, and U.S. economic competitiveness. The analysis reported here focuses on the potential market size and value proposition for the H2@Scale concept. It involves three analysis phases: 1. Initial phase estimating the technical potential for hydrogen markets and the resources required to meet them; 2. National-scale analysis of the economic potential for hydrogen and the interactions between willingness to pay by hydrogen users and the cost to produce hydrogen from various sources; and 3. In-depth analysis of spatial and economic issues impacting hydrogen production and utilization and the markets. Preliminary analysis of the technical potential indicates that the technical potential for hydrogen use is approximately 60 million metric tons (MMT) annually for light duty FCEVs, heavy duty vehicles, ammonia production, oil refining, biofuel hydrotreating, metals refining, and injection into the natural gas system. The technical potential of utility-scale PV and wind generation independently are much greater than that necessary to produce 60 MMT / year hydrogen. Uranium, natural gas, and coal reserves are each sufficient to produce 60 MMT / year hydrogen in addition to their current uses for decades to centuries. National estimates of the economic potential of

  14. Xenobiotic metal-induced autoimmunity: mercury and silver differentially induce antinucleolar autoantibody production in susceptible H-2s, H-2q and H-2f mice

    PubMed Central

    Hansson, M; Abedi-Valugerdi, M

    2003-01-01

    Xenobiotic-metals such as mercury (Hg) and silver (Ag) induce an H-2 linked antinucleolar autoantibody (ANolA) production in susceptible mice. The mechanism for induction of ANolA synthesis is not well understood. However, it has been suggested that both metals interact with nucleolar proteins and reveal cryptic self-peptides to nontolerant autoreactive T cells, which in turn stimulate specific autoreactive B cells. In this study, we considered this suggestion and asked if mercury and silver display, if not identical, similar cryptic self-peptides, they would induce comparable ANolA responses in H-2 susceptible mice. We analysed the development of ANolA production in mercury- and/or silver-treated mice of H-2s, H-2q and H-2f genotypes. We found that while mercury stimulated ANolA synthesis in all strains tested, silver induced ANolA responses of lower magnitudes in only H-2s and H-2q mice, but not in H-2f mice. Resistance to silver in H-2f mice was independent of the dosage/time-period of silver-treatment and non-H-2 genes. Further studies showed that F1 hybrid crosses between silver-susceptible A.SW (H-2s) and -resistant A.CA (H-2f) mice were resistant to silver, but not mercury with regard to ANolA production. Additionally, the magnitudes of mercury-induced ANolA responses in the F1 hybrids were lower than those of their parental strains. The above differential ANolA responses to mercury and silver can be explained by various factors, including the different display of nucleolar cryptic peptides by these xenobiotics, determinant capture and coexistence of different MHC molecules. Our findings also suggest that the ability of a xenobiotic metal merely to create cryptic self-peptides may not be sufficient for the induction of an ANolA response. PMID:12605692

  15. Towards a Quantum Dynamical Study of the H_2O+H_2O Inelastic Collision: Representation of the Potential and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Ndengue, Steve Alexandre; Dawes, Richard

    2017-06-01

    Water, an essential ingredient of life, is prevalent in space and various media. H_2O in the gas phase is the major polyatomic species in the interstellar medium (ISM) and a primary target of current studies of collisional dynamics. In recent years a number of theoretical and experimental studies have been devoted to H_2O-X (with X=He, H_2, D_2, Ar, ?) elastic and inelastic collisions in an effort to understand rotational distributions of H_2O in molecular clouds. Although those studies treated several abundant species, no quantum mechanical calculation has been reported to date for a nonlinear polyatomic collider. We present in this talk the preliminary steps toward this goal, using the H_2O molecule itself as our collider, the very accurate MB-Pol surface to describe the intermolecular interaction and the MultiConfiguration Time Dependent (MCTDH) algorithm to study the dynamics. One main challenge in this effort is the need to express the Potential Energy Surface (PES) in a sum-of-products form optimal for MCTDH calculations. We will describe how this was done and present preliminary results of state-to-state probabilities.

  16. The Interplay of Proton, Electron, and Metabolite Supply for Photosynthetic H2 Production in Chlamydomonas reinhardtii*

    PubMed Central

    Doebbe, Anja; Keck, Matthias; La Russa, Marco; Mussgnug, Jan H.; Hankamer, Ben; Tekçe, Ercan; Niehaus, Karsten; Kruse, Olaf

    2010-01-01

    To obtain a detailed picture of sulfur deprivation-induced H2 production in microalgae, metabolome analyses were performed during key time points of the anaerobic H2 production process of Chlamydomonas reinhardtii. Analyses were performed using gas chromatography coupled to mass spectrometry (GC/MS), two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GCxGC-TOFMS), lipid and starch analysis, and enzymatic determination of fermentative products. The studies were designed to provide a detailed metabolite profile of the solar Bio-H2 production process. This work reports on the differential analysis of metabolic profiles of the high H2-producing strain Stm6Glc4 and the wild-type cc406 (WT) before and during the H2 production phase. Using GCxGC-TOFMS analysis the number of detected peaks increased from 128 peaks, previously detected by GC/MS techniques, to ∼1168. More detailed analysis of the anaerobic H2 production phase revealed remarkable differences between wild-type and mutant cells in a number of metabolic pathways. Under these physiological conditions the WT produced up to 2.6 times more fatty acids, 2.2 times more neutral lipids, and up to 4 times more fermentation products compared with Stm6Glc4. Based on these results, specific metabolic pathways involving the synthesis of fatty acids, neutral lipids, and fermentation products during anaerobiosis in C. reinhardtii have been identified as potential targets for metabolic engineering to further enhance substrate supply for the hydrogenase(s) in the chloroplast. PMID:20581114

  17. Rovibrational line-shape parameters for H2 in He and new H2-He potential energy surface

    NASA Astrophysics Data System (ADS)

    Thibault, Franck; Patkowski, Konrad; Żuchowski, Piotr S.; Jóźwiak, Hubert; Ciuryło, Roman; Wcisło, Piotr

    2017-11-01

    We report a new H2-He potential energy surface that, with respect to the previous one [Bakr et al.(2013)], covers much larger range of H2 stretching and exhibits more accurate asymptotic behavior for large separations between H2 and He. Close-coupling calculations performed on this improved potential energy surface allow us to provide line shape parameters for H2 between 5 and 2000 K for Raman isotropic Q lines and anisotropic Q lines (or electric quadrupole lines) and for vibrational bands from the ground up to v = 5 and rotational quantum numbers up to j = 5 . The parameters provided include the usual pressure -broadening and -shifting coefficients as well as the real and imaginary part of Dicke contribution to the Hess profile. The latter parameters can be readily implemented in other line-shape profiles like the most recent one of Hartmann and Tran.

  18. A Tale of Two Gases: Isotope Effects Associated with the Enzymatic Production of H2 and N2O

    NASA Astrophysics Data System (ADS)

    Yang, H.; Gandhi, H.; Kreuzer, H. W.; Moran, J.; Hill, E. A.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.; Hegg, E. L.

    2014-12-01

    Stable isotopes can provide considerable insight into enzymatic mechanisms and fluxes in various biological processes. In our studies, we used stable isotopes to characterize both enzyme-catalyzed H2 and N2O production. H2 is a potential alternative clean energy source and also a key metabolite in many microbial communities. Biological H2 production is generally catalyzed by hydrogenases, enzymes that combine protons and electrons to produce H2 under anaerobic conditions. In our study, H isotopes and fractionation factors (α) were used to characterize two types of hydrogenases: [FeFe]- and [NiFe]-hydrogenases. Due to differences in the active site, the α associated with H2 production for [FeFe]- and [NiFe]-hydrogenases separated into two distinct clusters (αFeFe > αNiFe). The calculated kinetic isotope effects indicate that hydrogenase-catalyzed H2 production has a preference for light isotopes, consistent with the relative bond strengths of O-H and H-H bonds. Interestingly, the isotope effects associated with H2 consumption and H2-H2O exchange reactions were also characterized, but in this case no specific difference was observed between the different enzymes. N2O is a potent greenhouse gas with a global warming potential 300 times that of CO2, and the concentration of N2O is currently increasing at a rate of ~0.25% per year. Thus far, bacterial and fungal denitrification processes have been identified as two of the major sources of biologically generated N2O. In this study, we measured the δ15N, δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom in N2O) of N2O generated by purified fungal P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum. We observed normal isotope effects for δ18O and δ15Nα, and inverse isotope effects for bulk δ15N (the average of Nα and Nβ) and δ15Nβ. The observed isotope effects have been used in conjunction with DFT calculations to provide important insight into the mechanism of P450nor. Similar

  19. Highly accurate potential energy surface for the He-H2 dimer

    NASA Astrophysics Data System (ADS)

    Bakr, Brandon W.; Smith, Daniel G. A.; Patkowski, Konrad

    2013-10-01

    A new highly accurate interaction potential is constructed for the He-H2 van der Waals complex. This potential is fitted to 1900 ab initio energies computed at the very large-basis coupled-cluster level and augmented by corrections for higher-order excitations (up to full configuration interaction level) and the diagonal Born-Oppenheimer correction. At the vibrationally averaged H-H bond length of 1.448736 bohrs, the well depth of our potential, 15.870 ± 0.065 K, is nearly 1 K larger than the most accurate previous studies have indicated. In addition to constructing our own three-dimensional potential in the van der Waals region, we present a reparameterization of the Boothroyd-Martin-Peterson potential surface [A. I. Boothroyd, P. G. Martin, and M. R. Peterson, J. Chem. Phys. 119, 3187 (2003)] that is suitable for all configurations of the triatomic system. Finally, we use the newly developed potentials to compute the properties of the lone bound states of 4He-H2 and 3He-H2 and the interaction second virial coefficient of the hydrogen-helium mixture.

  20. The influence of slaughterhouse waste on fermentative H{sub 2} production from food waste: Preliminary results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boni, Maria Rosaria; Sbaffoni, Silvia; Tuccinardi, Letizia, E-mail: letizia.tuccinardi@uniroma1.it

    Highlights: • Co-digestion process finalized to bio-H{sub 2} production was tested in batch tests. • Slaughterhouse waste (SHW) and food waste (FW) were co-digested in different proportions. • The presence of SHW affected the H{sub 2} production from FW. • When SHW ranging between 50% and 70% the H{sub 2} production is improved. • SHW percentages above 70%, led to a depletion in H{sub 2} production. - Abstract: The aim of this study was to evaluate the influence of slaughterhouse waste (SHW; essentially the skin, fats, and meat waste of pork, poultry, and beef) in a fermentative co-digestion process formore » H{sub 2} production from pre-selected organic waste taken from a refectory (food waste [FW]). Batch tests under mesophilic conditions were conducted in stirred reactors filled with different proportions of FW and SHW. The addition of 60% and 70% SHW to a mixture of SHW and FW improved H{sub 2} production compared to that in FW only, reaching H{sub 2}-production yields of 145 and 109 ml gVS{sub 0}{sup -1}, respectively, which are 1.5–2 times higher than that obtained with FW alone. Although the SHW ensured a more stable fermentative process due to its high buffering capacity, a depletion of H{sub 2} production occurred when SHW fraction was higher than 70%. Above this percentage, the formation of foam and aggregated material created non-homogenous conditions of digestion. Additionally, the increasing amount of SHW in the reactors may lead to an accumulation of long chain fatty acids (LCFAs), which are potentially toxic for anaerobic microorganisms and may inhibit the normal evolution of the fermentative process.« less

  1. Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons.

    PubMed

    Gao, Shuang; Li, Guo-Dong; Liu, Yipu; Chen, Hui; Feng, Liang-Liang; Wang, Yun; Yang, Min; Wang, Dejun; Wang, Shan; Zou, Xiaoxin

    2015-02-14

    One of the main barriers blocking sustainable hydrogen production is the use of expensive platinum-based catalysts to produce hydrogen from water. Herein we report the cost-effective synthesis of catalytically active, nitrogen-doped, cobalt-encased carbon nanotubes using inexpensive starting materials-urea and cobalt chloride hexahydrate (CoCl2·6H2O). Moreover, we show that the as-obtained nanocarbon material exhibits a remarkable electrocatalytic activity toward the hydrogen evolution reaction (HER); and thus it can be deemed as a potential alternative to noble metal HER catalysts. In particular, the urea-derived carbon nanotubes synthesized at 900 °C (denoted as U-CNT-900) show a superior catalytic activity for HER with low overpotential and high current density in our study. Notably also, U-CNT-900 has the ability to operate stably at all pH values (pH 0-14), and even in buffered seawater (pH 7). The possible synergistic effects between carbon-coated cobalt nanoparticles and the nitrogen dopants can be proposed to account for the HER catalytic activity of U-CNT-900. Given the high natural abundance, ease of synthesis, and high catalytic activity and durability in seawater, this U-CNT-900 material is promising for hydrogen production from water in industrial applications.

  2. Steroid profiling in H295R cells to identify chemicals potentially disrupting the production of adrenal steroids.

    PubMed

    Strajhar, Petra; Tonoli, David; Jeanneret, Fabienne; Imhof, Raphaella M; Malagnino, Vanessa; Patt, Melanie; Kratschmar, Denise V; Boccard, Julien; Rudaz, Serge; Odermatt, Alex

    2017-04-15

    The validated OECD test guideline 456 based on human adrenal H295R cells promotes measurement of testosterone and estradiol production as read-out to identify potential endocrine disrupting chemicals. This study aimed to establish optimal conditions for using H295R cells to detect chemicals interfering with the production of key adrenal steroids. H295R cells' supernatants were characterized by liquid chromatography-mass spectrometry (LC-MS)-based steroid profiling, and the influence of experimental conditions including time and serum content was assessed. Steroid profiles were determined before and after incubation with reference compounds and chemicals to be tested for potential disruption of adrenal steroidogenesis. The H295R cells cultivated according to the OECD test guideline produced progestins, glucocorticoids, mineralocorticoids and adrenal androgens but only very low amounts of testosterone. However, testosterone contained in Nu-serum was metabolized during the 48h incubation. Thus, inclusion of positive and negative controls and a steroid profile of the complete medium prior to the experiment (t=0h) was necessary to characterize H295R cells' steroid production and indicate alterations caused by exposure to chemicals. Among the tested chemicals, octyl methoxycinnamate and acetyl tributylcitrate resembled the corticosteroid induction pattern of the positive control torcetrapib. Gene expression analysis revealed that octyl methoxycinnamate and acetyl tributylcitrate enhanced CYP11B2 expression, although less pronounced than torcetrapib. Further experiments need to assess the toxicological relevance of octyl methoxycinnamate- and acetyl tributylcitrate-induced corticosteroid production. In conclusion, the extended profiling and appropriate controls allow detecting chemicals that act on steroidogenesis and provide initial mechanistic evidence for prioritizing chemicals for further investigations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation.

    PubMed

    Rakowski DuBois, M; DuBois, Daniel L

    2009-12-21

    The conversion of solar energy to fuels in both natural and artificial photosynthesis requires components for both light-harvesting and catalysis. The light-harvesting component generates the electrochemical potentials required to drive fuel-generating reactions that would otherwise be thermodynamically uphill. This Account focuses on work from our laboratories on developing molecular electrocatalysts for CO(2) reduction and for hydrogen production. A true analog of natural photosynthesis will require the ability to capture CO(2) from the atmosphere and reduce it to a useful fuel. Work in our laboratories has focused on both aspects of this problem. Organic compounds such as quinones and inorganic metal complexes can serve as redox-active CO(2) carriers for concentrating CO(2). We have developed catalysts for CO(2) reduction to form CO based on a [Pd(triphosphine)(solvent)](2+) platform. Catalytic activity requires the presence of a weakly coordinating solvent molecule that can dissociate during the catalytic cycle and provide a vacant coordination site for binding water and assisting C-O bond cleavage. Structures of [NiFe] CO dehydrogenase enzymes and the results of studies on complexes containing two [Pd(triphosphine)(solvent)](2+) units suggest that participation of a second metal in CO(2) binding may also be required for achieving very active catalysts. We also describe molecular electrocatalysts for H(2) production and oxidation based on [Ni(diphosphine)(2)](2+) complexes. Similar to palladium CO(2) reduction catalysts, these species require the optimization of both first and second coordination spheres. In this case, we use structural features of the first coordination sphere to optimize the hydride acceptor ability of nickel needed to achieve heterolytic cleavage of H(2). We use the second coordination sphere to incorporate pendant bases that assist in a number of important functions including H(2) binding, H(2) cleavage, and the transfer of protons between

  4. Characterization of a real time H2O2 monitor for use in studies on H2O2 production by antibodies and cells.

    PubMed

    Sharma, Harish A; Balcavage, Walter X; Waite, Lee R; Johnson, Mary T; Nindl, Gabi

    2003-01-01

    It was recently shown that antibodies catalyze a reaction between water and ultraviolet light (UV) creating singlet oxygen and ultimately H2O2. Although the in vivo relevance of these antibody reactions is unclear, it is interesting that among a wide variety of non-antibody proteins tested, the T cell receptor is the only protein with similar capabilities. In clinical settings UV is believed to exert therapeutic effects by eliminating inflammatory epidermal T cells and we hypothesized that UV-triggered H2O2 production is involved in this process. To test the hypothesis we developed tools to study production of H2O2 by T cell receptors with the long-term goal of understanding, and improving, UV phototherapy. Here, we report the development of an inexpensive, real time H2O2 monitoring system having broad applicability. The detector is a Clark oxygen electrode (Pt, Ag/AgCl) modified to detect UV-driven H2O2 production. Modifications include painting the electrode black to minimize UV effects on the Ag/AgCl electrode and the use of hydrophilic, large pore Gelnots electrode membranes. Electrode current was converted to voltage and then amplified and recorded using a digital multimeter coupled to a PC. A reaction vessel with a quartz window was developed to maintain constant temperature while permitting UV irradiation of the samples. The sensitivity and specificity of the system and its use in cell-free and cell-based assays will be presented. In a cellfree system, production of H2O2 by CD3 antibodies was confirmed using our real time H2O2 monitoring method. Additionally we report the finding that splenocytes and Jurkat T cells also produce H2O2 when exposed to UV light.

  5. Full-dimensional quantum dynamics study of the H{sub 2} + C{sub 2}HH + C{sub 2}H{sub 2} reaction on an ab initio potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liuyang; University of Chinese Academy of Sciences, Beijing 100049; Shao, Kejie

    2016-05-21

    This work performs a time-dependent wavepacket study of the H{sub 2} + C{sub 2}HH + C{sub 2}H{sub 2} reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H{sub 2} + C{sub 2}H↔H + C{sub 2}H{sub 2}, H + C{sub 2}H{sub 2} → HCCH{sub 2}, and HCCH{sub 2} radial isomerization reaction regions. The reaction dynamics of H{sub 2} + C{sub 2}HH + C{sub 2}H{sub 2} are investigated using full-dimensional quantum dynamics method. The initial-state selected reactionmore » probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H{sub 2} vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C{sub 2}H slightly inhibits the reaction. The excitations of two stretching modes of C{sub 2}H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values.« less

  6. A comparative study of the Au + H{sub 2}, Au{sup +} + H{sub 2}, and Au{sup −} + H{sub 2} systems: Potential energy surfaces and dynamics of reactive collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorta-Urra, Anaís; Zanchet, Alexandre; Roncero, Octavio

    2015-04-21

    In order to study the Au{sup −} + H{sub 2} collision, a new global potential energy surface (PES) describing the ground electronic state of AuH{sub 2}{sup −} system is developed and compared with the PESs of the neutral [Zanchet et al., J. Chem. Phys. 132, 034301 (2010)] and cationic systems [Anaís et al., J. Chem. Phys. 135, 091102 (2011)]. We found that Au{sup −} − H{sub 2} presents a H-Au-H insertion minimum attributed to the stabilization of the LUMO 3b{sub 2} orbital, which can be considered as the preamble of the chemisorption well appearing in larger gold clusters. While themore » LUMO orbital is stabilized, the HOMO 6a{sub 1} is destabilized, creating a barrier at the geometry where the energy orbitals’ curves are crossing. In the anion, this HOMO is doubly occupied, while in the neutral system is half-filled and completely empty in the cation, explaining the gradual disappearance of the well and the barrier as the number of electrons decreases. The cation presents a well in the entrance channel partially explained by electrostatic interactions. The three systems’ reactions are highly endothermic, by 1.66, 2.79, and 3.23 eV for AuH, AuH{sup +}, and AuH{sup −} products, respectively. The reaction dynamics is studied using quasi-classical trajectory method for the three systems. The one corresponding to the anionic system is new in this work. Collision energies between 1.00 and 8.00 eV, measured for the cation, are in good agreement with the simulated cross section for the AuH{sup +}. It was also found that the total fragmentation, in three atoms, competes becoming dominant at sufficiently high energy. Here, we study the competition between the two different reaction pathways for the anionic, cationic, and neutral species, explaining the differences using a simple model based on the topology of the potential energy surfaces.« less

  7. Enhanced photo-fermentative H2 production using Rhodobacter sphaeroides by ethanol addition and analysis of soluble microbial products

    PubMed Central

    2014-01-01

    Background Biological fermentation routes can provide an environmentally friendly way of producing H2 since they use renewable biomass as feedstock and proceed under ambient temperature and pressure. In particular, photo-fermentation has superior properties in terms of achieving high H2 yield through complete degradation of substrates. However, long-term H2 production data with stable performance is limited, and this data is essential for practical applications. In the present work, continuous photo-fermentative H2 production from lactate was attempted using the purple non-sulfur bacterium, Rhodobacter sphaeroides KD131. As a gradual drop in H2 production was observed, we attempted to add ethanol (0.2% v/v) to the medium. Results As continuous operation went on, H2 production was not sustained and showed a negligible H2 yield (< 0.5 mol H2/mol lactateadded) within two weeks. Electron balance analysis showed that the reason for the gradual drop in H2 production was ascribed to the increase in production of soluble microbial products (SMPs). To see the possible effect of ethanol addition, a batch test was first conducted. The presence of ethanol significantly increased the H2 yield from 1.15 to 2.20 mol H2/mol lactateadded, by suppressing the production of SMPs. The analysis of SMPs by size exclusion chromatography showed that, in the later period of fermentation, more than half of the low molecular weight SMPs (< 1 kDa) were consumed and used for H2 production when ethanol had been added, while the concentration of SMPs continuously increased in the absence of ethanol. It was found that the addition of ethanol facilitated the utilization of reducing power, resulting in an increase in the cellular levels of NAD+ and NADP+. In continuous operation, ethanol addition was effective, such that stable H2 production was attained with an H2 yield of 2.5 mol H2/mol lactateadded. Less than 15% of substrate electrons were used for SMP production, whereas 35% were used in

  8. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration.

    PubMed

    Zhu, Xiuping; Hatzell, Marta C; Logan, Bruce E

    2014-04-08

    Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO 2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H 2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H 2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO 2 absorbed and 4 mg of CO 2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO 2 fixed as insoluble carbonates. Considering the additional economic benefits of H 2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO 2 sequestration.

  9. Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics.

    PubMed

    Wang, Mei; Chen, Lin; Li, Xueqiang; Sun, Licheng

    2011-12-28

    The research on structural and functional biomimics of the active site of [FeFe]-hydrogenases is in an attempt to elucidate the mechanisms of H(2)-evolution and uptake at the [FeFe]-hydrogenase active site, and to learn from Nature how to create highly efficient H(2)-production catalyst systems. Undoubtedly, it is a challenging, arduous, and long-term work. In this perspective, the progresses in approaches to photochemical H(2) production using mimics of the [FeFe]-hydrogenase active site as catalysts in the last three years are reviewed, with emphasis on adjustment of the redox potentials and hydrophilicity of the [FeFe]-hydrogenase active site mimics to make them efficient catalysts for H(2) production. With gradually increasing understanding of the chemistry of the [FeFe]-hydrogenases and their mimics, more bio-inspired proton reduction catalysts with significantly improved efficiency of H(2) production will be realized in the future. This journal is © The Royal Society of Chemistry 2011

  10. The influence of slaughterhouse waste on fermentative H2 production from food waste: preliminary results.

    PubMed

    Boni, Maria Rosaria; Sbaffoni, Silvia; Tuccinardi, Letizia

    2013-06-01

    The aim of this study was to evaluate the influence of slaughterhouse waste (SHW; essentially the skin, fats, and meat waste of pork, poultry, and beef) in a fermentative co-digestion process for H2 production from pre-selected organic waste taken from a refectory (food waste [FW]). Batch tests under mesophilic conditions were conducted in stirred reactors filled with different proportions of FW and SHW. The addition of 60% and 70% SHW to a mixture of SHW and FW improved H2 production compared to that in FW only, reaching H2-production yields of 145 and 109 ml g VS 0(-1), respectively, which are 1.5-2 times higher than that obtained with FW alone. Although the SHW ensured a more stable fermentative process due to its high buffering capacity, a depletion of H2 production occurred when SHW fraction was higher than 70%. Above this percentage, the formation of foam and aggregated material created non-homogenous conditions of digestion. Additionally, the increasing amount of SHW in the reactors may lead to an accumulation of long chain fatty acids (LCFAs), which are potentially toxic for anaerobic microorganisms and may inhibit the normal evolution of the fermentative process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Age-related differences in cigarette smoke extract-induced H2O2 production by lung endothelial cells.

    PubMed

    Downs, Charles A; Montgomery, David W; Merkle, Carrie J

    2011-11-01

    Cigarette smoke causes oxidative stress in the lung resulting in injury and disease. The purpose of this study was to determine if there were age-related differences in cigarette smoke extract (CSE)-induced production of reactive species in single and co-cultures of alveolar epithelial type I (AT I) cells and microvascular endothelial cells harvested from the lungs (MVECLs) of neonatal, young and old male Fischer 344 rats. Cultures of AT I cells and MVECLs grown separately (single culture) and together (co-culture) were exposed to CSE (1, 10, 50, 100%). Cultures were assayed for the production of intracellular reactive oxygen species (ROS), hydroxyl radical (OH), peroxynitrite (ONOO(-)), nitric oxide (NO) and extracellular hydrogen peroxide (H(2)O(2)). Single and co-cultures of AT I cells and MVECLs from all three ages produced minimal intracellular ROS in response to CSE. All ages of MVECLs produced H(2)O(2) in response to CSE, but young MVECLs produced significantly less H(2)O(2) compared to neonatal and old MVECLs. Interestingly, when grown as a co-culture with age-matched AT I cells, neonatal and old MVECLs demonstrated ~50% reduction in H(2)O(2) production in response to CSE. However, H(2)O(2) production in young MVECLs grown as a co-culture with young AT I cells did not change with CSE exposure. To begin investigating for a potential mechanism to explain the reduction in H(2)O(2) production in the co-cultures, we evaluated single and co-cultures for extracellular total antioxidant capacity. We also performed gene expression profiling specific to oxidant and anti-oxidant pathways. The total antioxidant capacity of the AT I cell supernatant was ~5 times greater than that of the MVECLs, and when grown as a co-culture and exposed to CSE (≥ 10%), the total antioxidant capacity of the supernatant was reduced by ~50%. There were no age-related differences in total antioxidant capacity of the cell supernatants. Gene expression profiling found eight genes to be

  12. H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors.

    PubMed

    Lee, Kuo-Shing; Lo, Yung-Sheng; Lo, Yung-Chung; Lin, Ping-Jei; Chang, Jo-Shu

    2003-01-01

    Packed-bed bioreactors containing activated carbon as support carrier were used to produce H2 anaerobically from a sucrose-limiting medium while acclimated sewage sludge was used as the H2 producer. The effects of bed porosity (epsilon(b)) and substrate loading rate on H2 fermentation were examined using packed beds with epsilon(b) of 70-90% being operated at hydraulic retention times (HRT) of 0.5-4 h. Higher epsilon(b) and lower HRT favored H2 production. With 20 g COD l(-1) of sucrose in the feed, the optimal H2 production rate (7.4 l h(-1) l(-1)) was obtained when the bed with epsilon(b) = 90% was operated at HRT = 0.5 h. Flocculation of cells enhanced the retention of sludge for stable operations of the bioreactor at low HRTs. The gas products resulting from fermentative H2 production consisted of 30-40% H2 and 60-70% CO2. Butyric acid was the primary soluble product, followed by propionic acid and valeric acid.

  13. Optimization of intermolecular potential parameters for the CO2/H2O mixture.

    PubMed

    Orozco, Gustavo A; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2014-10-02

    Monte Carlo simulations in the Gibbs ensemble were used to obtain optimized intermolecular potential parameters to describe the phase behavior of the mixture CO2/H2O, over a range of temperatures and pressures relevant for carbon capture and sequestration processes. Commonly used fixed-point-charge force fields that include Lennard-Jones 12-6 (LJ) or exponential-6 (Exp-6) terms were used to describe CO2 and H2O intermolecular interactions. For force fields based on the LJ functional form, changes of the unlike interactions produced higher variations in the H2O-rich phase than in the CO2-rich phase. A major finding of the present study is that for these potentials, no combination of unlike interaction parameters is able to adequately represent properties of both phases. Changes to the partial charges of H2O were found to produce significant variations in both phases and are able to fit experimental data in both phases, at the cost of inaccuracies for the pure H2O properties. By contrast, for the Exp-6 case, optimization of a single parameter, the oxygen-oxygen unlike-pair interaction, was found sufficient to give accurate predictions of the solubilities in both phases while preserving accuracy in the pure component properties. These models are thus recommended for future molecular simulation studies of CO2/H2O mixtures.

  14. Supersaturation of dissolved H(2) and CO (2) during fermentative hydrogen production with N(2) sparging.

    PubMed

    Kraemer, Jeremy T; Bagley, David M

    2006-09-01

    Dissolved H(2) and CO(2) were measured by an improved manual headspace-gas chromatographic method during fermentative H(2) production with N(2) sparging. Sparging increased the yield from 1.3 to 1.8 mol H(2)/mol glucose converted, although H(2) and CO(2) were still supersaturated regardless of sparging. The common assumption that sparging increases the H(2) yield because of lower dissolved H(2) concentrations may be incorrect, because H(2) was not lowered into the range necessary to affect the relevant enzymes. More likely, N(2) sparging decreased the rate of H(2) consumption via lower substrate concentrations.

  15. Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production.

    PubMed

    Pang, Huan; Wei, Chengzhen; Li, Xuexue; Li, Guochang; Ma, Yahui; Li, Sujuan; Chen, Jing; Zhang, Jiangshan

    2014-01-06

    Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H2 production. Different morphologies of NiS2 nanostructures show different electrochemical and cocatalytic enhancing H2 production activities. Benefited novel nanostructures, NiS2 nanocube electrodes show a large specific capacitance (695 F g(-1) at 1.25 A g(-1)) and excellent cycling performance (the retention 93.4% of initial specific capacitance after 3000 cycles). More importantly, NiS2 nanospheres show highly cocatalytic enhancing photocatalytic for H2 evolution, in which the photocatalytic H2 production is up to 3400 μmol during 12 hours under irradiation of visible light (λ>420 nm) with an average H2 production rate of 283 μmol h(-1).

  16. Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Pang, Huan; Wei, Chengzhen; Li, Xuexue; Li, Guochang; Ma, Yahui; Li, Sujuan; Chen, Jing; Zhang, Jiangshan

    2014-01-01

    Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H2 production. Different morphologies of NiS2 nanostructures show different electrochemical and cocatalytic enhancing H2 production activities. Benefited novel nanostructures, NiS2 nanocube electrodes show a large specific capacitance (695 F g-1 at 1.25 A g-1) and excellent cycling performance (the retention 93.4% of initial specific capacitance after 3000 cycles). More importantly, NiS2 nanospheres show highly cocatalytic enhancing photocatalytic for H2 evolution, in which the photocatalytic H2 production is up to 3400 μmol during 12 hours under irradiation of visible light (λ>420 nm) with an average H2 production rate of 283 μmol h-1.

  17. Gas-phase hydrogen atom abstraction reactions of S- with H2, CH4, and C2H6

    NASA Astrophysics Data System (ADS)

    Angel, Laurence A.; Dogbevia, Moses K.; Rempala, Katarzyna M.; Ervin, Kent M.

    2003-11-01

    Reaction cross sections, product axial velocity distributions, and potential energy surfaces are presented for the hydrogen atom abstraction reactions S-+RH→R+HS- (R=H, CH3, C2H5) as a function of collision energy. The observed threshold energy, E0, for S-+H2H+HS- agrees with the reaction endothermicity, ΔrH0. At low collision energies, the H+HS- products exhibit symmetric, low-recoil-velocity scattering, consistent with statistical reaction behavior. The S-+CH4→CH3+HS- and S-+C2H6→C2H5+HS reactions, in contrast, show large excess threshold energies when compared to ΔrH0. The excess energies are partly explained by a potential energy barrier separating products from reactants. However, additional dynamical constraints must account for more than half of the excess threshold energy. The observed behavior seems to be general for collisional activation of anion-molecule reactions that proceed through a tight, late transition state. For RH=CH4 and C2H6, the HS- velocity distributions show anisotropic backward scattering at low collision energies indicating small impact parameters and a direct rebound reaction mechanism. At higher collision energies, there is a transition to HS- forward scattering and high velocities consistent with grazing collisions and a stripping mechanism.

  18. Surpassing the current limitations of high purity H2 production in microbial electrolysis cell (MECs): Strategies for inhibiting growth of methanogens.

    PubMed

    Kadier, Abudukeremu; Kalil, Mohd Sahaid; Chandrasekhar, Kuppam; Mohanakrishna, Gunda; Saratale, Ganesh Dattatraya; Saratale, Rijuta Ganesh; Kumar, Gopalakrishnan; Pugazhendhi, Arivalagan; Sivagurunathan, Periyasamy

    2018-02-01

    Microbial electrolysis cells (MECs) are perceived as a potential and promising innovative biotechnological tool that can convert carbon-rich waste biomass or wastewater into hydrogen (H 2 ) or other value-added chemicals. Undesired methane (CH 4 ) producing H 2 sinks, including methanogens, is a serious challenge faced by MECs to achieve high-rate H 2 production. Methanogens can consume H 2 to produce CH 4 in MECs, which has led to a drop of H 2 production efficiency, H 2 production rate (HPR) and also a low percentage of H 2 in the produced biogas. Organized inference related to the interactions of microbes and potential processes has assisted in understanding approaches and concepts for inhibiting the growth of methanogens and profitable scale up design. Thus, here in we review the current developments and also the improvements constituted for the reduction of microbial H 2 losses to methanogens. Firstly, the greatest challenge in achieving practical applications of MECs; undesirable microorganisms (methanogens) growth and various studied techniques for eliminating and reducing methanogens activities in MECs were discussed. Additionally, this extensive review also considers prospects for stimulating future research that could help to achieve more information and would provide the focus and path towards MECs as well as their possibilities for simultaneously generating H 2 and waste remediation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Kinetics of D/H Isotope Exchange Between H2 and H2O and Potential use of Isotope Geothermometry on Plume Data from Enceladus

    NASA Astrophysics Data System (ADS)

    Pester, N.; Conrad, M.; Stolper, D.; DePaolo, D.

    2018-05-01

    Using experimental data, we develop kinetic models that asses the potential to apply H2-H2O isotope geothermometry towards the plume chemistry of Enceladus, such that we might elucidate the T-structure in the liquid ocean beneath the icy shell.

  20. Antioxidative potential of Duranta repens (Linn.) fruits against H2O2 induced cell death in vitro.

    PubMed

    Khan, Md Asaduzzaman; Rahman, Mohammad Mijanur; Tania, Mousumi; Shoshee, Nusrat Fatima; Xu, Ai-hua; Chen, Han-chun

    2013-01-01

    The effects of Duranta repens fruits were investigated on H2O2 induced oxidative cell death to evaluate its antioxidative potential in vitro. HEK293T cells were treated with different concentrations [0-1000 µg/ ml] of ethanol extract (E-Ex) and methanol extract (M-Ex) of D. repens for 24h, and then treated with 100 µM H2O2 for 24h. Cell viability, antioxidant parameters of cells, and antioxidant constituents of the extracts were determined. Treatment with limited dose of E-Ex or M-Ex increased the survival rate of H2O2-treated HEK293T cells, however the extra-high dose showed growth inhibitory effect. Treatment with E-Ex or M-Ex protected cellular lipid per-oxidation. In vitro analyses showed the 2,2-diphenyl-1-picrylhydrazyl and H2O2 scavenging activities as well as reducing potential of the extracts. We report here that the limited dose of E-Ex and M-Ex possess antioxidative potential, which can protect H2O2-induced oxidative cell damage.

  1. Diastereoisomers of 2-benzyl-2, 3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol: potential anti-inflammatory agents.

    PubMed

    Sheridan, Helen; Walsh, John J; Cogan, Carina; Jordan, Michael; McCabe, Tom; Passante, Egle; Frankish, Neil H

    2009-10-15

    The synthesis and biological activity of the novel diastereoisomers of 2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol is reported. The 2,2-coupled indane dimers were synthesised by coupling of the silyl enol ether of 1-indanone with the dimethyl ketal of 2-indanone. The coupled product was directly alkylated to give the racemic ketone which was reduced to the diastereoisomeric alcohols. The alcohols were separated and their relative stereochemistry was established by X-ray crystallography. These molecules demonstrate significant anti-inflammatory activity in vivo and in vitro and may represent a new class of anti-inflammatory agent.

  2. Production of Excess CO2 relative to methane in peatlands: a new H2 sink

    NASA Astrophysics Data System (ADS)

    Wilson, R.; Woodcroft, B. J.; Varner, R. K.; Tyson, G. W.; Tfaily, M. M.; Sebestyen, S.; Saleska, S. R.; Rogers, K.; Rich, V. I.; McFarlane, K. J.; Kostka, J. E.; Kolka, R. K.; Keller, J.; Iversen, C. M.; Hodgkins, S. B.; Hanson, P. J.; Guilderson, T. P.; Griffiths, N.; de La Cruz, F.; Crill, P. M.; Chanton, J.; Bridgham, S. D.; Barlaz, M.

    2015-12-01

    Methane is generated as the end product of anaerobic organic matter degradation following a series of reaction pathways including fermentation and syntrophy. Along with acetate and CO2, syntrophic reactions generate H2 and are only thermodynamically feasible when coupled to an exothermic reaction that consumes H2. The usual model of organic matter degradation in peatlands has assumed that methanogenesis is that exothermic H2-consuming reaction. If correct, this paradigm should ultimately result in equimolar production of CO2 and methane from the degradation of the model organic compound cellulose: i.e. C6H12O6 à 3CO2 + 3CH4. However, dissolved gas measurement and modeling results from field and incubation experiments spanning peatlands across the northern hemisphere have failed to demonstrate equimolar production of CO2 and methane. Instead, in a flagrant violation of thermodynamics, these studies show a large bias favoring CO2 production over methane generation. In this talk, we will use an array of complementary analytical techniques including FT-IR, cellulose and lignin measurements, 13C-NMR, fluorescence spectroscopy, and ultra-high resolution mass spectrometry to describe organic matter degradation within a peat column and identify the important degradation mechanisms. Hydrogenation was the most common transformation observed in the ultra-high resolution mass spectrometry data. From these results we propose a new mechanism for consuming H2 generated during CO2 production, without concomitant methane formation, consistent with observed high CO2/CH4 ratios. While homoacetogenesis is a known sink for H2 in these systems, this process also consumes CO2 and therefore does not explain the excess CO2 measured in field and incubation samples. Not only does the newly proposed mechanism consume H2 without generating methane, but it also yields enough energy to balance the coupled syntrophic reactions, thereby restoring thermodynamic order. Schematic of organic matter

  3. Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production

    PubMed Central

    Pang, Huan; Wei, Chengzhen; Li, Xuexue; Li, Guochang; Ma, Yahui; Li, Sujuan; Chen, Jing; Zhang, Jiangshan

    2014-01-01

    Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H2 production. Different morphologies of NiS2 nanostructures show different electrochemical and cocatalytic enhancing H2 production activities. Benefited novel nanostructures, NiS2 nanocube electrodes show a large specific capacitance (695 F g−1 at 1.25 A g−1) and excellent cycling performance (the retention 93.4% of initial specific capacitance after 3000 cycles). More importantly, NiS2 nanospheres show highly cocatalytic enhancing photocatalytic for H2 evolution, in which the photocatalytic H2 production is up to 3400 μmol during 12 hours under irradiation of visible light (λ>420 nm) with an average H2 production rate of 283 μmol h−1. PMID:24389929

  4. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  5. Aniracetam attenuates H2O2-induced deficiency of neuron viability, mitochondria potential and hippocampal long-term potentiation of mice in vitro.

    PubMed

    Wang, Yong-Fu; Li, Chao-Cui; Cai, Jing-Xia

    2006-09-01

    Objective It is known that free radicals are involved in neurodegeneration and cognitive dysfunction, as seen in Alzheimer' s disease (AD) and aging. The present study examines the protective effects of aniracetam against H2O2-induced toxicity to neuron viability, mitochondria potential and hippocampal long-term potentiation (LTP). Methods Tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) was used to detect neuronal viability. MitoTracker Red (CMX Ros), a fluorescent stain for mitochondria, was used to measure mitochondria potential. Electrophysiological technique was carried out to record hippocampal LTP. Results H2O2 exposure impaired the viability of neurons, reduced mitochondria potential, and decreased LTP in the CA1 region of hippocampus. These deficient effects were significantly rescued by pre-treatment with aniracetam (10-100 mu mol/L). Conclusion These results indicate that aniracetam has a strong neuroprotective effect against H2O2-induced toxicity, which could partly explain the mechanism of its clinical application in neurodegenerative diseases.

  6. Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures

    NASA Astrophysics Data System (ADS)

    Akple, Maxwell Selase; Low, Jingxiang; Wageh, S.; Al-Ghamdi, Ahmed. A.; Yu, Jiaguo; Zhang, Jun

    2015-12-01

    As a clean and renewable solar H2-production system to address the increasing global environmental crisis and energy demand, photocatalytic hydrogen production from water splitting using earth abundant materials has received a lot of attention. In this study, WS2-graphitic carbon nitride (g-C3N4) composites were prepared using WO3 and thiourea as precursors through a gas-solid reaction. Different amount of WS2 were loaded on g-C3N4 to form the heterostructures and the composite samples exhibited enhanced photocatalytic activity for H2 production under visible light. The composite sample with 0.01 wt% WS2 exhibited the highest H2-production rate of 101 μmol g-1 h-1, which was even better than that of the Pt-C3N4 sample with the same loading content. The high photocatalytic activity was attributed to the formation of heterojunction between g-C3N4 and WS2 cocatalyst which allowed for effective separation of photogenerated charge carriers. This work showed the possibility for the utilization of low cost WS2 as an efficient cocatalyst to promote the photocatalytic H2 production of g-C3N4.

  7. Determination of Trace Metals, Moisture, pH and Assessment of Potential Toxicity of Selected Smokeless Tobacco Products

    PubMed Central

    Prabhakar, V.; Jayakrishnan, G.; Nair, S. V.; Ranganathan, B.

    2013-01-01

    The characterization and classification of smokeless tobacco products has been a continuously evolving process. This is based on a number of different parameters like nicotine content, moisture content, amount of heavy metals, pH, and in vitro cytotoxicity assays. Their contexts often vary between countries, research institutions, and legal requirements. The categorisation of these products is quite challenging due to the diffused sample sizes, diverse array of branded products on offer, and the absence of a centralized manufacturing facility. This study aims at a systematic classification of 10 smokeless tobacco product samples from the retail market based on their potential toxicity upon long-term use. The estimation of potential toxicity follows a well-established method that employs the concentration of toxic metals in the different samples. The potential toxicity as well as heavy metal concentrations of the smokeless tobacco products analysed was found to be much higher than acceptable limits. For instance, the levels of lead, cadmium, copper and zinc of 2.5, 1, 4 and 23 ppm, respectively, are well above their recommended limits. The results from the study indicate that chronic use of smokeless tobacco products is a significant health risk, especially in the vulnerable population. Further studies of this nature will help establish a toxicological fingerprint on the diverse class of products that floods the market now. PMID:24082341

  8. QM/MM Investigation of Substrate and Product Specificities of Suv4-20h2: How Does This Enzyme Generate Dimethylated H4K20 from Monomethylated Substrate?

    PubMed

    Qian, Ping; Guo, Haobo; Wang, Liang; Guo, Hong

    2017-06-13

    Protein lysine methyltransferases (PKMTs) catalyze the methylation of lysine residues on histone proteins in the regulation of chromatin structure and gene expression. In contrast to many other PKMTs for which unmodified lysine is the methylation target, the enzymes in the Suv4-20 family are able to generate dimethylated product (H4K20me2) based exclusively on the monomethylated H4K20 substrate (H4K20me1). The origin of such substrate/product specificity is still not clear. Here, molecular dynamics (MD) and free energy (potential of mean force) simulations are undertaken using quantum mechanical/molecular mechanical (QM/MM) potentials to understand the substrate/product specificities of Suv4-20h2, a member of the Suv4-20 family. The free energy barriers for mono-, di-, and trimethylation in Suv4-20h2 obtained from the simulations are found to be well correlated with the specificities observed experimentally with the allowed dimethylation based on the H4K20me1 substrate and prohibited monomethylation and trimethylation based on H4K20 and H4K20me2, respectively. It is demonstrated that the reason for the relatively efficient dimethylation is an effective transition state (TS) stabilization through strengthening the CH···O interactions as well as the presence of a cation-π interaction at the transition state. The simulations also show that the failures of Suv4-20h2 to catalyze monomethylation and trimethylation are due, respectively, to a less effective TS stabilization and inability of the reactant complex containing H4K20me2 to adopt a reactive (near attack) configuration for methyl transfer. The results suggest that care must be exercised in the prediction of the substrate specificity based only on the existence of near attack configurations in substrate complexes.

  9. Suppressors of Superoxide-H2O2 Production at Site IQ of Mitochondrial Complex I Protect against Stem Cell Hyperplasia and Ischemia-Reperfusion Injury.

    PubMed

    Brand, Martin D; Goncalves, Renata L S; Orr, Adam L; Vargas, Leonardo; Gerencser, Akos A; Borch Jensen, Martin; Wang, Yves T; Melov, Simon; Turk, Carolina N; Matzen, Jason T; Dardov, Victoria J; Petrassi, H Michael; Meeusen, Shelly L; Perevoshchikova, Irina V; Jasper, Heinrich; Brookes, Paul S; Ainscow, Edward K

    2016-10-11

    Using high-throughput screening we identified small molecules that suppress superoxide and/or H 2 O 2 production during reverse electron transport through mitochondrial respiratory complex I (site I Q ) without affecting oxidative phosphorylation (suppressors of site I Q electron leak, "S1QELs"). S1QELs diminished endogenous oxidative damage in primary astrocytes cultured at ambient or low oxygen tension, showing that site I Q is a normal contributor to mitochondrial superoxide-H 2 O 2 production in cells. They diminished stem cell hyperplasia in Drosophila intestine in vivo and caspase activation in a cardiomyocyte cell model driven by endoplasmic reticulum stress, showing that superoxide-H 2 O 2 production by site I Q  is involved in cellular stress signaling. They protected against ischemia-reperfusion injury in perfused mouse heart, showing directly that superoxide-H 2 O 2 production by site I Q is a major contributor to this pathology. S1QELs are tools for assessing the contribution of site I Q to cell physiology and pathology and have great potential as therapeutic leads. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production.

    PubMed

    Foo, Wei Jian; Zhang, Chun; Ho, Ghim Wei

    2013-01-21

    Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu(2)O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO(2) catalyst has enhanced the photocatalytic H(2) production. Comparatively, H(2) treatment produces well-dispersed Cu nanoparticles with thin oxide shells that show the highest H(2) production amongst the samples. The relatively higher photocatalytic performance is deemed to result from reduced structural defects, higher surface area and dispersivity as well as favorable charge transfer, which inhibits recombination. The Cu nanoparticles are shown to be a promising alternative to noble metal-loaded TiO(2) catalyst systems due to their low cost and high performance in photocatalytic applications.

  11. Improving EGSB reactor performance for simultaneous bioenergy and organic acid production from cheese whey via continuous biological H2 production.

    PubMed

    Ramos, Lucas Rodrigues; Silva, Edson Luiz

    2017-07-01

    To evaluate the influence of hydraulic retention time (HRT) and cheese whey (CW) substrate concentration (15 and 25 g lactose l -1 ) on the performance of EGSB reactors (R15 and R25, respectively) for H 2 production. A decrease in the HRT from 8 to 4 h favored the H 2 yield and H 2 production rate (HPR) in R15, with maximum values of 0.86 ± 0.11 mmol H 2 g COD -1 and 0.23 ± 0.024 l H 2 h -1 l -1 , respectively. H 2 production in R25 was also favored at a HRT of 4 h, with maximum yield and HPR values of 0.64 ± 0.023 mmol H 2 g COD -1 and 0.31 ± 0.032 l H 2 h -1 l -1 , respectively. The main metabolites produced were butyric, acetic and lactic acids. The EGSB reactor was evaluated as a viable acidogenic step in the two-stage anaerobic treatment of CW for the increase of COD removal efficiency and biomethane production.

  12. Increased photosystem II stability promotes H2 production in sulfur-deprived Chlamydomonas reinhardtii

    PubMed Central

    Volgusheva, Alena; Styring, Stenbjörn; Mamedov, Fikret

    2013-01-01

    Photobiological H2 production is an attractive option for renewable solar fuels. Sulfur-deprived cells of Chlamydomonas reinhardtii have been shown to produce hydrogen with the highest efficiency among photobiological systems. We have investigated the photosynthetic reactions during sulfur deprivation and H2 production in the wild-type and state transition mutant 6 (Stm6) mutant of Chlamydomonas reinhardtii. The incubation period (130 h) was dissected into different phases, and changes in the amount and functional status of photosystem II (PSII) were investigated in vivo by electron paramagnetic resonance spectroscopy and variable fluorescence measurements. In the wild type it was found that the amount of PSII is decreased to 25% of the original level; the electron transport from PSII was completely blocked during the anaerobic phase preceding H2 formation. This block was released during the H2 production phase, indicating that the hydrogenase withdraws electrons from the plastoquinone pool. This partly removes the block in PSII electron transport, thereby permitting electron flow from water oxidation to hydrogenase. In the Stm6 mutant, which has higher respiration and H2 evolution than the wild type, PSII was analogously but much less affected. The addition of the PSII inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea revealed that ∼80% of the H2 production was inhibited in both strains. We conclude that (i) at least in the earlier stages, most of the electrons delivered to the hydrogenase originate from water oxidation by PSII, (ii) a faster onset of anaerobiosis preserves PSII from irreversible photoinhibition, and (iii) mutants with enhanced respiratory activity should be considered for better photobiological H2 production. PMID:23589846

  13. Thermophilic, anaerobic co-digestion of microalgal biomass and cellulose for H2 production.

    PubMed

    Carver, Sarah M; Hulatt, Chris J; Thomas, David N; Tuovinen, Olli H

    2011-07-01

    Microalgal biomass has been a focus in the sustainable energy field, especially biodiesel production. The purpose of this study was to assess the feasibility of treating microalgal biomass and cellulose by anaerobic digestion for H2 production. A microbial consortium, TC60, known to degrade cellulose and other plant polymers, was enriched on a mixture of cellulose and green microalgal biomass of Dunaliella tertiolecta, a marine species, or Chlorella vulgaris, a freshwater species. After five enrichment steps at 60°C, hydrogen yields increased at least 10% under all conditions. Anaerobic digestion of D. tertiolecta and cellulose by TC60 produced 7.7 mmol H2/g volatile solids (VS) which were higher than the levels (2.9-4.2 mmol/g VS) obtained with cellulose and C. vulgaris biomass. Both microalgal slurries contained satellite prokaryotes. The C. vulgaris slurry, without TC60 inoculation, generated H2 levels on par with that of TC60 on cellulose alone. The biomass-fed anaerobic digestion resulted in large shifts in short chain fatty acid concentrations and increased ammonium levels. Growth and H2 production increased when TC60 was grown on a combination of D. tertiolecta and cellulose due to nutrients released from algal cells via lysis. The results indicated that satellite heterotrophs from C. vulgaris produced H2 but the Chlorella biomass was not substantially degraded by TC60. To date, this is the first study to examine H2 production by anaerobic digestion of microalgal biomass. The results indicate that H2 production is feasible but higher yields could be achieved by optimization of the bioprocess conditions including biomass pretreatment.

  14. Reactions of electronically excited molecular nitrogen with H2 and H2O molecules: theoretical study

    NASA Astrophysics Data System (ADS)

    Pelevkin, Alexey V.; Sharipov, Alexander S.

    2018-05-01

    Comprehensive quantum chemical analysis with the usage of the second-order perturbation multireference XMCQDPT2 approach was carried out to study the processes in the   +  H2 and   +  H2O systems. The energetically favorable reaction pathways have been revealed based on the exploration of potential energy surfaces. It has been shown that the reactions   +  H2 and   +  H2O occur with small activation barriers and, primarily, lead to the formation of N2H  +  H and N2H  +  OH products, respectively. Further, the interaction of these species could give rise to the ground state and H2 (or H2O) products, however, the estimations, based on RRKM theory and dynamic reaction coordinate calculations, exhibited that the   +  H2 and   +  H2O reactions lead to the dissociative quenching predominately. Appropriate rate constants for revealed reaction channels have been estimated by using a canonical variational theory and capture approximation. Corresponding three-parameter Arrhenius expressions for the temperature range T  =  300  ‑  3000 K were reported.

  15. How light-harvesting semiconductors can alter the bias of reversible electrocatalysts in favor of H2 production and CO2 reduction.

    PubMed

    Bachmeier, Andreas; Wang, Vincent C C; Woolerton, Thomas W; Bell, Sophie; Fontecilla-Camps, Juan C; Can, Mehmet; Ragsdale, Stephen W; Chaudhary, Yatendra S; Armstrong, Fraser A

    2013-10-09

    The most efficient catalysts for solar fuel production should operate close to reversible potentials, yet possess a bias for the fuel-forming direction. Protein film electrochemical studies of Ni-containing carbon monoxide dehydrogenase and [NiFeSe]-hydrogenase, each a reversible electrocatalyst, show that the electronic state of the electrode strongly biases the direction of electrocatalysis of CO2/CO and H(+)/H2 interconversions. Attached to graphite electrodes, these enzymes show high activities for both oxidation and reduction, but there is a marked shift in bias, in favor of CO2 or H(+) reduction, when the respective enzymes are attached instead to n-type semiconductor electrodes constructed from CdS and TiO2 nanoparticles. This catalytic rectification effect can arise for a reversible electrocatalyst attached to a semiconductor electrode if the electrode transforms between semiconductor- and metallic-like behavior across the same narrow potential range (<0.25 V) that the electrocatalytic current switches between oxidation and reduction.

  16. Mineralization of Basalts in the CO 2-H 2O-H 2S System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

    2013-05-10

    Basalt samples representing five different formations were immersed in water equilibrated with supercritical carbon dioxide containing 1% hydrogen sulfide (H2S) at reservoir conditions (100 bar, 90°C) for up to 3.5 years. Surface coatings in the form of pyrite and metal cation substituted carbonates were identified as reaction products associated with all five basalts. In some cases, high pressure tests contained excess H2S, which produced the most corroded basalts and largest amount of secondary products. In comparison, tests containing limited amounts of H2S appeared least reacted with significantly less concentrations of reaction products. In all cases, pyrite appeared to precede carbonation,more » and in some instances, was observed in the absence of carbonation such as in cracks, fractures, and within the porous glassy mesostasis. Armoring reactions from pyrite surface coatings observed in earlier shorter duration tests were found to be temporary with carbonate mineralization observed with all the basalts tested in these long duration experiments. Geochemical simulations conducted with the geochemical code EQ3/6 accurately predicted early pyrite precipitation followed by formation of carbonates. Reactivity with H2S was correlated with measured Fe(II)/Fe(III) ratios in the basalts with more facile pyrite formation occurring with basalts containing more Fe(III) phases. These experimental and modeling results confirm potential for long term sequestration of acid gas mixtures in continental flood basalt formations.« less

  17. A new ab initio potential energy surface for the Ne-H 2 interaction

    NASA Astrophysics Data System (ADS)

    Lique, François

    2009-03-01

    A new accurate three-dimensional potential energy surface for the Ne-H 2 system, which explicitly takes into account the r-dependence of the H 2 vibration, was determined from ab initio calculations. It was obtained with the single and double excitation coupled-cluster method with noniterative perturbational treatment of triple excitation [CCSD(T)]. Calculations was been performed using the augmented correlation-consistent polarized quintuple zeta basis set (aug-cc-pV5Z) for the three atoms. We checked the accuracy of the present ab initio calculations. We have determined, using the new Ne-H 2 potential energy surface, differential cross-sections for the rotational excitation of the H 2 and D 2 molecules in collision with Ne and we have compared them with experimental results of Faubel et al. [M. Faubel, F.A. Gianturco, F. Ragnetti, L.Y. Rusin, F. Sondermann, U. Tappe, J.P. Toennies, J. Chem. Phys. 101 (1994) 8800]. The overall agreement confirms that the new potential energy surface can be used for the simulation of molecular collisions and/or molecular spectroscopy of the van der Waals complex Ne-H 2.

  18. Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111)

    DOE PAGES

    Xiao, Hai; Cheng, Tao; Goddard, William A.; ...

    2015-12-30

    Energy and environmental concerns demand development of more efficient and selective electrodes for electrochemical reduction of CO 2 to form fuels and chemicals. Since Cu is the only pure metal exhibiting reduction to form hydrocarbon chemicals, we focus here on the Cu (111) electrode. We present a methodology for density functional theory calculations to obtain accurate onset electrochemical potentials with explicit constant electrochemical potential and pH effects using implicit solvation. We predict the atomistic mechanisms underlying electrochemical reduction of CO, finding that (1) at acidic pH, the C 1 pathway proceeds through COH to CHOH to form CH 4 whilemore » C 2 (C 3) pathways are kinetically blocked; (2) at neutral pH, the C 1 and C 2 (C 3) pathways share the COH common intermediate, where the branch to C-C coupling is realized by a novel CO-COH pathway; and (3) at high pH, early C-C coupling through adsorbed CO dimerization dominates, suppressing the C 1 pathways by kinetics, thereby boosting selectivity for multi-carbon products.« less

  19. "Plug-and-Play" potentials: Investigating quantum effects in (H2)2-Li+-benzene

    NASA Astrophysics Data System (ADS)

    D'Arcy, Jordan H.; Kolmann, Stephen J.; Jordan, Meredith J. T.

    2015-08-01

    Quantum and anharmonic effects are investigated in (H2)2-Li+-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials, using rigid-body diffusion Monte Carlo (RBDMC) simulations. The potential-energy surface (PES) is calculated as a modified Shepard interpolation of M05-2X/6-311+G(2df,p) electronic structure data. The RBDMC simulations yield zero-point energies (ZPE) and probability density histograms that describe the ground-state nuclear wavefunction. Binding a second H2 molecule to the H2-Li+-benzene complex increases the ZPE of the system by 5.6 kJ mol-1 to 17.6 kJ mol-1. This ZPE is 42% of the total electronic binding energy of (H2)2-Li+-benzene and cannot be neglected. Our best estimate of the 0 K binding enthalpy of the second H2 to H2-Li+-benzene is 7.7 kJ mol-1, compared to 12.4 kJ mol-1 for the first H2 molecule. Anharmonicity is found to be even more important when a second (and subsequent) H2 molecule is adsorbed; use of harmonic ZPEs results in significant error in the 0 K binding enthalpy. Probability density histograms reveal that the two H2 molecules are found at larger distance from the Li+ ion and are more confined in the θ coordinate than in H2-Li+-benzene. They also show that both H2 molecules are delocalized in the azimuthal coordinate, ϕ. That is, adding a second H2 molecule is insufficient to localize the wavefunction in ϕ. Two fragment-based (H2)2-Li+-benzene PESs are developed. These use a modified Shepard interpolation for the Li+-benzene and H2-Li+-benzene fragments, and either modified Shepard interpolation or a cubic spline to model the H2-H2 interaction. Because of the neglect of three-body H2, H2, Li+ terms, both fragment PESs lead to overbinding of the second H2 molecule by 1.5 kJ mol-1. Probability density histograms, however, indicate that the wavefunctions for the two H2 molecules are effectively identical on the "full" and fragment PESs. This suggests that the 1.5 kJ mol-1 error is

  20. "Plug-and-Play" potentials: Investigating quantum effects in (H2)2-Li(+)-benzene.

    PubMed

    D'Arcy, Jordan H; Kolmann, Stephen J; Jordan, Meredith J T

    2015-08-21

    Quantum and anharmonic effects are investigated in (H2)2-Li(+)-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials, using rigid-body diffusion Monte Carlo (RBDMC) simulations. The potential-energy surface (PES) is calculated as a modified Shepard interpolation of M05-2X/6-311+G(2df,p) electronic structure data. The RBDMC simulations yield zero-point energies (ZPE) and probability density histograms that describe the ground-state nuclear wavefunction. Binding a second H2 molecule to the H2-Li(+)-benzene complex increases the ZPE of the system by 5.6 kJ mol(-1) to 17.6 kJ mol(-1). This ZPE is 42% of the total electronic binding energy of (H2)2-Li(+)-benzene and cannot be neglected. Our best estimate of the 0 K binding enthalpy of the second H2 to H2-Li(+)-benzene is 7.7 kJ mol(-1), compared to 12.4 kJ mol(-1) for the first H2 molecule. Anharmonicity is found to be even more important when a second (and subsequent) H2 molecule is adsorbed; use of harmonic ZPEs results in significant error in the 0 K binding enthalpy. Probability density histograms reveal that the two H2 molecules are found at larger distance from the Li(+) ion and are more confined in the θ coordinate than in H2-Li(+)-benzene. They also show that both H2 molecules are delocalized in the azimuthal coordinate, ϕ. That is, adding a second H2 molecule is insufficient to localize the wavefunction in ϕ. Two fragment-based (H2)2-Li(+)-benzene PESs are developed. These use a modified Shepard interpolation for the Li(+)-benzene and H2-Li(+)-benzene fragments, and either modified Shepard interpolation or a cubic spline to model the H2-H2 interaction. Because of the neglect of three-body H2, H2, Li(+) terms, both fragment PESs lead to overbinding of the second H2 molecule by 1.5 kJ mol(-1). Probability density histograms, however, indicate that the wavefunctions for the two H2 molecules are effectively identical on the "full" and fragment PESs. This suggests that

  1. Effects on H(-) production in a multicusp ion source by mixture of H2 with H2O, NH3, CH4, N2H4, and SF6

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Chutjian, A.; Leung, K. N.

    1987-01-01

    Effects of H(-) production in a multicusp ion source are measured by separately mixing with hydrogen small amounts (0.33-10 percent) of water, ammonia, methane, and hydrazine these are molecules which produce large amounts of H(-) via dissociative attachment (DA) resonances at higher electron energies. The mixing was done in a separate reservoir, with careful measurement of individual pressures. Experimental enhancements of 1.4 and less were observed, whereas calculated enhancements, using accurate DA cross sections for ground-state H2, should have produced factors of 1.5, 3.0, 1.3, and 2.4 enhancements for water, ammonia methane, and hydrazine, respectively, at a mean electron energy of 1.0 eV in the extraction region. The difference is accounted for by including, in the enhancement calculation, vibrationally and rotationally excited H2 molecules, with v-double prime = 5-11, and J-double prime = 0-5, and the large DA cross sections for the excited H2 (v-double prime, J-double prime). The relative populations of H2 (v-double prime, J-double prime) thus obtained are found to be substantially smaller than those predicted by theoretical calculations. The effect on H(-) current was also studied by mixing small amounts of SF6 with H2. A 1.5 percent mixture was found to reduce the H(-) output by one half.

  2. State-to-State integral cross section for the H+H2O-->H2+OH abstraction reaction.

    PubMed

    Zhang, Dong H; Xie, Daiqian; Yang, Minghui; Lee, Soo-Y

    2002-12-31

    The initial state selected time-dependent wave-packet method was extended to calculate the state-to-state integral cross section for the title reaction with H2O in the ground rovibrational state on the potential energy surface of Yang, Zhang, Collins, and Lee. One OH bond length was fixed in the study, which is justifiable for the abstraction reaction, but the remaining 5 degrees of freedom were treated exactly. It was found that the H2 molecule is produced vibrationally cold for collision energy up to 1.6 eV. The OH rotation takes away about 4% of total available energy in the products, while the fraction of energy going to H2 rotation increases with collision energy to about 20% at 1.6 eV.

  3. Impact of climate change on maize potential productivity and the potential productivity gap in southwest China

    NASA Astrophysics Data System (ADS)

    He, Di; Wang, Jing; Dai, Tong; Feng, Liping; Zhang, Jianping; Pan, Xuebiao; Pan, Zhihua

    2014-12-01

    The impact of climate change on maize potential productivity and the potential productivity gap in Southwest China (SWC) are investigated in this paper. We analyze the impact of climate change on the photosynthetic, light-temperature, and climatic potential productivity of maize and their gaps in SWC, by using a crop growth dynamics statistical method. During the maize growing season from 1961 to 2010, minimum temperature increased by 0.20°C per decade ( p < 0.01) across SWC. The largest increases in average and minimum temperatures were observed mostly in areas of Yunnan Province. Growing season average sunshine hours decreased by 0.2 h day-1 per decade ( p < 0.01) and total precipitation showed an insignificant decreasing trend across SWC. Photosynthetic potential productivity decreased by 298 kg ha-1 per decade ( p < 0.05). Both light-temperature and climatic potential productivity decreased ( p < 0.05) in the northeast of SWC, whereas they increased ( p < 0.05) in the southwest of SWC. The gap between light-temperature and climatic potential productivity varied from 12 to 2729 kg ha-1, with the high value areas centered in northern and southwestern SWC. Climatic productivity of these areas reached only 10%-24% of the light-temperature potential productivity, suggesting that there is great potential to increase the maize potential yield by improving water management in these areas. In particular, the gap has become larger in the most recent 10 years. Sensitivity analysis shows that the climatic potential productivity of maize is most sensitive to changes in temperature in SWC. The findings of this study are helpful for quantification of irrigation water requirements so as to achieve maximum yield potentials in SWC.

  4. Can perchlorates be transformed to hydrogen peroxide (H2O2) products by cosmic rays on the Martian surface?

    NASA Astrophysics Data System (ADS)

    Crandall, Parker B.; Góbi, Sándor; Gillis-Davis, Jeffrey; Kaiser, Ralf I.

    2017-09-01

    Due to their oxidizing properties, perchlorates (ClO4-) are suggested by the planetary science community to play a vital role in the scarcity of organics on the Martian surface. However, alternative oxidation agents such as hydrogen peroxide (H2O2) have received surprisingly little attention. In this study, samples of magnesium perchlorate hexahydrate (Mg(ClO4)2 · 6H2O) were exposed to monoenergetic electrons and D2+ ions separately, sequentially, and simultaneously to probe the effects of galactic cosmic ray exposure of perchlorates and the potential incorporation of hydrogen (deuterium) into these minerals. The experiments were carried out under ultrahigh-vacuum conditions at 50 K, after which the samples were slowly heated to 300 K while the subliming products were monitored by a quadrupole mass spectrometer. In all cases, molecular oxygen (O2) was detected upon the onset of irradiation and also during the warmup phase. In case of a simultaneous D2+-electron exposure, deuterated water (D2O) and deuterium peroxide (D2O2) were also detected in the warmup phase, whereas only small amounts of D2O2 were found after an exclusive D2+ irradiation. These experiments yield the first data identifying hydrogen peroxide as a potential product in the interaction of cosmic rays with perchlorates in the Martian regolith revealing that perchlorates are capable of producing multiple oxidizing agents (O2 and D2O2) that may account for the destruction of organics on the Martian surface.

  5. Probing the kinetic energy-release dynamics of H-atom products from the gas-phase reaction of O(3P) with vinyl radical C2H3.

    PubMed

    Jang, Su-Chan; Choi, Jong-Ho

    2014-11-21

    The gas-phase radical-radical reaction dynamics of ground-state atomic oxygen O((3)P) with vinyl radicals C2H3 has been studied by combining the results of vacuum-ultraviolet laser-induced fluorescence spectroscopy in a crossed beam configuration with ab initio calculations. The two radical reactants O((3)P) and C2H3 were produced by photolysis of NO2 and supersonic flash pyrolysis of C2H3I, respectively. Doppler profile analysis of the kinetic energy release of the nascent H-atom products from the title reaction O((3)P) + C2H3→ H((2)S) + CH2CO (ketene) revealed that the average translational energy of the products and the average fraction of the total available energy were 7.03 ± 0.30 kcal mol(-1) and 7.2%. The empirical data combined with CBS-QB3 level ab initio theory and statistical calculations demonstrated that the title oxygen-hydrogen exchange reaction is a major reaction channel, through an addition-elimination mechanism involving the formation of a short-lived, dynamical complex on the doublet potential energy surface. On the basis of systematic comparison with several exchange reactions of hydrocarbon radicals, the observed kinetic energy release can be explained in terms of the weak impulse at the moment of decomposition in the loose transition state with a product-like geometry and a small reverse barrier along the exit channel.

  6. A new global analytical potential energy surface of NaH2+ system and dynamical calculation for H(2S) + NaH+(X2Σ+) → Na+(1S) + H2(X1Σg+) reaction

    NASA Astrophysics Data System (ADS)

    Yuan, Meiling; Li, Wentao; Yuan, Jiuchuang

    2018-05-01

    A new global potential energy surface (PES) of the NaH2+ system is constructed by fitting 27,621 ab initio energy points with the neural network method. The root mean square error of the new PES is only 4.1609 × 10-4 eV. Based on the new PES, dynamical calculations have been performed using the time-dependent quantum wave packet method. These results are then compared with the H(2S) + LiH+(X2Σ+) → Li+(1S) + H2(X1Σg+) reaction. The direct abstract mechanism is found to play an important role in the reaction because only forward scattering signals on the differential cross section results for all calculated collision energies.

  7. Low Cost High-H 2 Syngas Production for Power and Liquid Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S. James

    2015-07-31

    This report summarizes the technical progress made of the research project entitled “Low Cost High-H2 Syngas Production for Power and Liquid Fuels,” under DOE Contract No. DE-FE-0011958. The period of performance was October 1, 2013 through July 30, 2015. The overall objectives of this project was to determine the technical and economic feasibility of a systems approach for producing high hydrogen syngas from coal with the potential to reduce significantly the cost of producing power, chemical-grade hydrogen or liquid fuels, with carbon capture to reduce the environmental impact of gasification. The project encompasses several areas of study and the resultsmore » are summarized here. (1) Experimental work to determine the technical feasibility of a novel hybrid polymer/metal H2-membrane to recover pure H2 from a coal-derived syngas was done. This task was not successful. Membranes were synthesized and show impermeability of any gases at required conditions. The cause of this impermeability was most likely due to the densification of the porous polymer membrane support made from polybenzimidazole (PBI) at test temperatures above 250 °C. (2) Bench-scale experimental work was performed to extend GTI's current database on the University of California Sulfur Recovery Process-High Pressure (UCSRP-HP) and recently renamed Sulfur Removal and Recovery (SR2) process for syngas cleanup including removal of sulfur and other trace contaminants, such as, chlorides and ammonia. The SR2 process tests show >90% H2S conversion with outlet H2S concentrations less than 4 ppmv, and 80-90% ammonia and chloride removal with high mass transfer rates. (3) Techno-economic analyses (TEA) were done for the production of electric power, chemical-grade hydrogen and diesel fuels, from a mixture of coal- plus natural gas-derived syngas using the Aerojet Rocketdyne (AR) Advanced Compact coal gasifier and a natural gas partial oxidation reactor (POX) with SR2 technology. Due to the

  8. PEM Electrolysis H2A Production Case Study Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Brian; Colella, Whitney; Moton, Jennie

    2013-12-31

    This report documents the development of four DOE Hydrogen Analysis (H2A) case studies for polymer electrolyte membrane (PEM) electrolysis. The four cases characterize PEM electrolyzer technology for two hydrogen production plant sizes (Forecourt and Central) and for two technology development time horizons (Current and Future).

  9. F + H2 collisions on two electronic potential energy surfaces - Quantum-mechanical study of the collinear reaction

    NASA Technical Reports Server (NTRS)

    Zimmerman, I. H.; Baer, M.; George, T. F.

    1979-01-01

    Collinear quantum calculations are carried out for reactive F + H2 collisions on two electronic potential energy surfaces. The resulting transmission and reflection probabilities exhibit much greater variation with energy than single-surface studies would lead us to anticipate. Transmission to low-lying product channels is increased by orders of magnitude by the presence of the second surface; however, branching ratios among product states are found to be independent of the initial electronic state of the reactants. These apparently contradictory aspects of the calculation are discussed and a tentative explanation put forward to resolve them.

  10. Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Wang, Hongbo; Zeuschner, Janek; Eremets, Mikhail; Troyan, Ivan; Willams, Jonathan

    2016-01-01

    Carbonic acid (H2CO3) forms in small amounts when CO2 dissolves in H2O, yet decomposes rapidly under ambient conditions of temperature and pressure. Despite its fleeting existence, H2CO3 plays an important role in the global carbon cycle and in biological carbonate-containing systems. The short lifetime in water and presumed low concentration under all terrestrial conditions has stifled study of this fundamental species. Here, we have examined CO2/H2O mixtures under conditions of high pressure and high temperature to explore the potential for reaction to H2CO3 inside celestial bodies. We present a novel method to prepare solid H2CO3 by heating CO2/H2O mixtures at high pressure with a CO2 laser. Furthermore, we found that, contrary to present understanding, neutral H2CO3 is a significant component in aqueous CO2 solutions above 2.4 GPa and 110 °C as identified by IR-absorption and Raman spectroscopy. This is highly significant for speciation of deep C-O-H fluids with potential consequences for fluid-carbonate-bearing rock interactions. As conditions inside subduction zones on Earth appear to be most favorable for production of aqueous H2CO3, a role in subduction related phenomena is inferred.

  11. Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature

    PubMed Central

    Wang, Hongbo; Zeuschner, Janek; Eremets, Mikhail; Troyan, Ivan; Willams, Jonathan

    2016-01-01

    Carbonic acid (H2CO3) forms in small amounts when CO2 dissolves in H2O, yet decomposes rapidly under ambient conditions of temperature and pressure. Despite its fleeting existence, H2CO3 plays an important role in the global carbon cycle and in biological carbonate-containing systems. The short lifetime in water and presumed low concentration under all terrestrial conditions has stifled study of this fundamental species. Here, we have examined CO2/H2O mixtures under conditions of high pressure and high temperature to explore the potential for reaction to H2CO3 inside celestial bodies. We present a novel method to prepare solid H2CO3 by heating CO2/H2O mixtures at high pressure with a CO2 laser. Furthermore, we found that, contrary to present understanding, neutral H2CO3 is a significant component in aqueous CO2 solutions above 2.4 GPa and 110 °C as identified by IR-absorption and Raman spectroscopy. This is highly significant for speciation of deep C–O–H fluids with potential consequences for fluid-carbonate-bearing rock interactions. As conditions inside subduction zones on Earth appear to be most favorable for production of aqueous H2CO3, a role in subduction related phenomena is inferred. PMID:26813580

  12. Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature.

    PubMed

    Wang, Hongbo; Zeuschner, Janek; Eremets, Mikhail; Troyan, Ivan; Willams, Jonathan

    2016-01-27

    Carbonic acid (H2CO3) forms in small amounts when CO2 dissolves in H2O, yet decomposes rapidly under ambient conditions of temperature and pressure. Despite its fleeting existence, H2CO3 plays an important role in the global carbon cycle and in biological carbonate-containing systems. The short lifetime in water and presumed low concentration under all terrestrial conditions has stifled study of this fundamental species. Here, we have examined CO2/H2O mixtures under conditions of high pressure and high temperature to explore the potential for reaction to H2CO3 inside celestial bodies. We present a novel method to prepare solid H2CO3 by heating CO2/H2O mixtures at high pressure with a CO2 laser. Furthermore, we found that, contrary to present understanding, neutral H2CO3 is a significant component in aqueous CO2 solutions above 2.4 GPa and 110 °C as identified by IR-absorption and Raman spectroscopy. This is highly significant for speciation of deep C-O-H fluids with potential consequences for fluid-carbonate-bearing rock interactions. As conditions inside subduction zones on Earth appear to be most favorable for production of aqueous H2CO3, a role in subduction related phenomena is inferred.

  13. The HCO+-H2 van der Waals interaction: Potential energy and scattering

    NASA Astrophysics Data System (ADS)

    Massó, H.; Wiesenfeld, L.

    2014-11-01

    We compute the rigid-body, four-dimensional interaction potential between HCO+ and H2. The ab initio energies are obtained at the coupled-cluster single double triple level of theory, corrected for Basis Set Superposition Errors. The ab initio points are fit onto the spherical basis relevant for quantum scattering. We present elastic and rotationally inelastic coupled channels scattering between low lying rotational levels of HCO+ and para-/ortho-H2. Results are compared with similar earlier computations with He or isotropic para-H2 as the projectile. Computations agree with earlier pressure broadening measurements.

  14. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate.

    PubMed

    Yang, Yi; Lu, Xinglin; Jiang, Jin; Ma, Jun; Liu, Guanqi; Cao, Ying; Liu, Weili; Li, Juan; Pang, Suyan; Kong, Xiujuan; Luo, Congwei

    2017-07-01

    The frequent detection of sulfamethoxazole (SMX) in wastewater and surface waters gives rise of concerns about their ecotoxicological effects and potential risks to induce antibacterial resistant genes. UV/hydrogen peroxide (UV/H 2 O 2 ) and UV/persulfate (UV/PDS) advanced oxidation processes have been demonstrated to be effective for the elimination of SMX, but there is still a need for a deeper understanding of product formations. In this study, we identified and compared the transformation products of SMX in UV, UV/H 2 O 2 and UV/PDS processes. Because of the electrophilic nature of SO 4 - , the second-order rate constant for the reaction of sulfate radical (SO 4 - ) with the anionic form of SMX was higher than that with the neutral form, while hydroxyl radical (OH) exhibited comparable reactivity to both forms. The direct photolysis of SMX predominately occurred through cleavage of the NS bond, rearrangement of the isoxazole ring, and hydroxylation mechanisms. Hydroxylation was the dominant pathway for the reaction of OH with SMX. SO 4 - favored attack on NH 2 group of SMX to generate a nitro derivative and dimeric products. The presence of bicarbonate in UV/H 2 O 2 inhibited the formation of hydroxylated products, but promoted the formation of the nitro derivative and the dimeric products. In UV/PDS, bicarbonate increased the formation of the nitro derivative and the dimeric products, but decreased the formation of the hydroxylated dimeric products. The different effect of bicarbonate on transformation products in UV/H 2 O 2 vs. UV/PDS suggested that carbonate radical (CO 3 - ) oxidized SMX through the electron transfer mechanism similar to SO 4 - but with less oxidation capacity. Additionally, SO 4 - and CO 3 - exhibited higher reactivity to the oxazole ring than the isoxazole ring of SMX. Ecotoxicity of transformation products was estimated by ECOSAR program based on the quantitative structure-activity relationship analysis as well as by experiments using

  15. Investigating the potential for subsurface primary production fueled by serpentinization

    NASA Astrophysics Data System (ADS)

    Brazelton, W. J.; Nelson, B. Y.; Schrenk, M. O.

    2011-12-01

    Ultramafic rocks in the Earth's mantle represent a tremendous reservoir of carbon and reducing power. Tectonic uplift of these materials into the crust can result in serpentinization, a highly exothermic geochemical reaction that releases hydrogen gas (H2) and promotes the abiogenic synthesis of organic molecules. The extent and activity of microbial communities in serpentinite-hosted subsurface habitats is almost entirely unknown, but they clearly have great potential to host extensive sunlight-independent primary production fueled by H2 and abiotic carbon compounds. We have been testing this hypothesis at several sites of serpentinization around the globe utilizing a suite of techniques including metagenomics, 16S rRNA pyrotag sequencing, and stable isotope tracing experiments. All four of our study sites, which include deep-sea hydrothermal vents, terrestrial alkaline springs, and continental drill holes, are characteristically low in archaeal and bacterial genetic diversity. In carbonate chimneys of the Lost City hydrothermal field (Mid-Atlantic Ridge), for example, a single archaeal phylotype dominates the biofilm community. Stable isotope tracing experiments indicated that these archaeal biofilms are capable of both production and anaerobic oxidation of methane at 80C and pH 10. Both production and oxidation were stimulated by H2, suggesting a possible syntrophic relationship among cells within the biofilm. Preliminary results from similar stable isotope tracing experiments at terrestrial alkaline seeps at the Tablelands Ophiolite (Newfoundland), Ligurian springs (Italy), and McLaughlin Reserve (California) have indicated the potential for microbial activity fueled by H2 and acetate. Furthermore, recent metagenomic sequencing of fluids from the Tablelands and Ligurian springs have revealed genomic potential for chemolithotrophy powered by iron reduction with H2. In summary, these data support the potential for extensive microbial activity fueled by

  16. In-vivo electrochemical monitoring of H2O2 production induced by root-inoculated endophytic bacteria in Agave tequilana leaves.

    PubMed

    Lima, Alex S; Prieto, Kátia R; Santos, Carla S; Paula Valerio, Hellen; Garcia-Ochoa, Evelyn Y; Huerta-Robles, Aurora; Beltran-Garcia, Miguel J; Di Mascio, Paolo; Bertotti, Mauro

    2018-01-15

    A dual-function platinum disc microelectrode sensor was used for in-situ monitoring of H 2 O 2 produced in A. tequilana leaves after inoculation of their endophytic bacteria (Enterobacter cloacae). Voltammetric experiments were carried out from 0.0 to -1.0V, a potential range where H 2 O 2 is electrochemically reduced. A needle was used to create a small cavity in the upper epidermis of A. tequilana leaves, where the fabricated electrochemical sensor was inserted by using a manual three-dimensional micropositioner. Control experiments were performed with untreated plants and the obtained electrochemical results clearly proved the formation of H 2 O 2 in the leaves of plants 3h after the E. cloacae inoculation, according to a mechanism involving endogenous signaling pathways. In order to compare the sensitivity of the microelectrode sensor, the presence of H 2 O 2 was detected in the root hairs by 3,3-diaminobenzidine (DAB) stain 72h after bacterial inoculation. In-situ pH measurements were also carried out with a gold disc microelectrode modified with a film of iridium oxide and lower pH values were found in A. tequilana leaves treated with bacteria, which may indicate the plant produces acidic substances by biosynthesis of secondary metabolites. This microsensor could be an advantageous tool for further studies on the understanding of the mechanism of H 2 O 2 production during the plant-endophyte interaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Towards universal potentials for (H2)2 and isotopic variants: post-Born-Oppenheimer contributions.

    PubMed

    Diniz, Leonardo G; Mohallem, José R

    2008-06-07

    Adiabatic corrections are evaluated for the interaction of two hydrogen molecules (H(2))(2) and isotopic variants. Their contribution to the cluster formation amount up to 10% of the interaction energy. Added to the best ab initio Born-Oppenheimer isotropic potential, they correct especially its short range repulsive part. Calculations of second virial coefficients are improved in general, with an impressive agreement with experiments for gaseous D(2) in a large range of temperatures. The potentials are available in both analytical and numerical forms.

  18. Biogeochemistry of dihydrogen (H2).

    PubMed

    Hoehler, Tori M

    2005-01-01

    Hydrogen has had an important and evolving role in Earth's geo- and biogeochemistry, from prebiotic to modern times. On the earliest Earth, abiotic sources of H2 were likely stronger than in the present. Volcanic out-gassing and hydrothermal circulation probably occurred at several times the modern rate, due to presumably higher heat flux. The H2 component of volcanic emissions was likely buffered close to the modern value by an approximately constant mantle oxidation state since 3.9 billion years ago, and may have been higher before that, if the early mantle was more reducing. The predominantly ultramafic character of the early, undifferentiated crust could have led to increased serpentinization and release of H2 by hydrothermal circulation, as in modern ultramafic-hosted vents. At the same time, the reactive atmospheric sink for H2 was likely weaker. Collectively, these factors suggest that steady state levels of H2 in the prebiotic atmosphere were 3-4 orders of magnitude higher than at present, and possibly higher still during transient periods following the delivery of Fe and Ni by large impact events. These elevated levels had direct or indirect impacts on the redox state of the atmosphere, the radiation budget, the production of aerosol hazes, and the genesis of biochemical precursor compounds. The early abiotic cycling of H2 helped to establish the environmental and chemical context for the origins of life on Earth. The potential for H2 to serve as a source of energy and reducing power, and to afford a means of energy storage by the establishment of proton gradients, could have afforded it a highly utilitarian role in the earliest metabolic chemistry. Some origin of life theories suggest the involvement of H2 in the first energy-generating metabolism, and the widespread and deeply-branching nature of H2-utilization in the modern tree of life suggests that it was at least a very early biochemical innovation. The abiotic production of H2 via several mechanisms

  19. Potential of the polymer poly-[2-(tert-butylamino) methylstyrene] as antimicrobial packaging material for meat products.

    PubMed

    Dohlen, S; Braun, C; Brodkorb, F; Fischer, B; Ilg, Y; Kalbfleisch, K; Lorenz, R; Robers, O; Kreyenschmidt, M; Kreyenschmidt, J

    2016-10-01

    The objective of the study was to investigate the antimicrobial potential of a new SAM(®) polymer poly(TBAMS) as packaging material for meat products. The influence of temperature, time and product factors on the antimicrobial activity of poly(TBAMS) against different bacteria was determined using a modified test method based on the Japanese Industrial Standard 2801:2000. Results showed a significant reduction in bacterial counts on poly(TBAMS) compared with the reference material of several meat-specific micro-organisms after 24 h at 7°C. Bacterial counts of Staphylococcus aureus, Listeria monocytogenes, Lactobacillus spp., Brochothrix thermosphacta and Escherichia coli were reduced by >4·0 log10  units. Pseudomonas fluorescens was less sensitive to poly(TBAMS) within 24 h between 2 and 7°C. Prolonging the storage time to 48 h, however, resulted in an increased reduction rate. Furthermore, antimicrobial activity was also observed if meat components in the form of meat extract, meat juice or bovine serum albumin protein were present. Antimicrobial activity was also achieved if inoculated with mixed cultures. Poly(TBAMS) showed antimicrobial properties under conditions typical for meat supply chains. Poly(TBAMS) bears a high potential to increase safety and shelf life of meat products. © 2016 The Society for Applied Microbiology.

  20. Characterization of cellulolytic enzymes and bioH2 production from anaerobic thermophilic Clostridium sp. TCW1.

    PubMed

    Lo, Yung-Chung; Huang, Chi-Yu; Cheng, Chieh-Lun; Lin, Chiu-Yue; Chang, Jo-Shu

    2011-09-01

    A thermophilic anaerobic bacterium Clostridium sp. TCW1 was isolated from dairy cow dung and was used to produce hydrogen from cellulosic feedstock. Extracellular cellulolytic enzymes produced from TCW1 strain were identified as endoglucanases (45, 53 and 70 kDa), exoglucanase (70 kDa), xylanases (53 and 60 kDa), and β-glucosidase (45 kDa). The endoglucanase and xylanase were more abundant. The optimal conditions for H2 production and enzyme production of the TCW1 strain were the same (60 °C, initial pH 7, agitation rate of 200 rpm). Ten cellulosic feedstock, including pure or natural cellulosic materials, were used as feedstock for hydrogen production by Clostridium strain TCW1 under optimal culture conditions. Using filter paper at 5.0 g/L resulted in the most effective hydrogen production performance, achieving a H2 production rate and yield of 57.7 ml/h/L and 2.03 mol H2/mol hexose, respectively. Production of cellulolytic enzyme activities was positively correlated with the efficiency of dark-H2 fermentation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Bradykinin-potentiating PEPTIDE-10C, an argininosuccinate synthetase activator, protects against H2O2-induced oxidative stress in SH-SY5Y neuroblastoma cells.

    PubMed

    Querobino, Samyr Machado; Ribeiro, César Augusto João; Alberto-Silva, Carlos

    2018-05-01

    Bradykinin-potentiating peptides (BPPs - 5a, 7a, 9a, 10c, 11e, and 12b) of Bothrops jararaca (Bj) were described as argininosuccinate synthase (AsS) activators, improving l-arginine availability. Agmatine and polyamines, which are l-arginine metabolism products, have neuroprotective properties. Here, we investigated the neuroprotective effects of low molecular mass fraction from Bj venom (LMMF) and two synthetic BPPs (BPP-10c, H 2 O 2 -induced oxidative stress. The neuroprotective effects against H 2 O 2 -induced were analyzed by reactive oxygen species (ROS - DCFH) production; lipid peroxidation (TBARS); intracellular GSH; AsS, iNOS, and NF-kB expressions; nitrite levels (Griess); mitochondrial membrane potential (TMRM); and antioxidant activity (DPPH). Analysis of variance followed by Tukey's post hoc test were calculated for statistical comparisons. Pre-treatment with both BPPs significantly reduced cell death induced by H 2 O 2 , but BPP-10c showed higher protective capacity than BPP-12b. LMMF pretreatment was unable to prevent the reduction of cell viability caused by H 2 O 2 . The neuroprotective mechanism of BPP-10c against oxidative stress was investigated. BPP-10c reduced ROS generation and lipid peroxidation in relation to cells treated only with H 2 O 2 . BBP-10c increased AsS expression and was not neuroprotective in the presence of MDLA, a specific inhibitor of AsS. BPP-10c reduced iNOS expression and nitrate levels but decreased NF-kB expression. Furthermore, BPP-10c protected the mitochondrial membrane against oxidation. Overall, we demonstrated for the first time neuroprotective mechanisms of BPPs against oxidative stress, opening new perspectives to the study and application of these peptides for the treatment of neurodegenerative diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Injection of sodium borohydride and nzvi solutions into homogeneous sands: H2 gas production and implications

    NASA Astrophysics Data System (ADS)

    Mohammed, O.; Mumford, K. G.; Sleep, B. E.

    2016-12-01

    Gases are commonly introduced into the subsurface via external displacement (drainage). However, gases can also be produced by internal drainage (exsolution). One example is the injection of reactive solutions for in situ groundwater remediation, such as nanoscale zero-valent iron (nzvi), which produces hydrogen gas (H2). Effective implementation of nzvi requires an understanding of H2 gas generation and dynamics, and their effects on aqueous permeability, contaminant mass transfer and potential flow diversion. Several studies have reported using excess sodium borohydride (NaBH4) in nzvi applications to promote complete reaction and to ensure uniform nzvi particle growth, which also produces H2 gas. The aim of this study was to visualize and quantify H2 produced by exsolution from the injection of NaBH4 and nzvi solutions into homogeneous sands, and to investigate the reduction of hydraulic conductivity caused by the H2 gas and the subsequent increase in hydraulic conductivity as the gas dissolved. Bench-scale experiments were performed using cold (4 °C) NaBH4 solutions injected in sand packed in a 22 cm × 34 cm × 1 cm flow cell. The injected solution was allowed to warm to room temperature, for controlled production of a uniform distribution of exsolved gas. A light transmission method was used to quantify gas production and dissolution over time. The results indicate a reduction of hydraulic conductivity due to the existence of H2 and increased hydraulic conductivity as H2 gas dissolves, which could be represented using traditional relative permeability expressions. Additional experiments were performed in the flow cell to compare H2 gas exsolving from nzvi and NaBH4 solutions injected as either a point injection or a well injection. The results indicated greater amounts of H2 gas produced when injecting nzvi solutions prepared with high concentrations of excess NaBH4. H2 gas pooling at the top of the flow cell, and H2 gas trapped near the injection point

  3. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures

    DOE PAGES

    Dutta, Arnab; DuBois, Daniel L.; Roberts, John A.; ...

    2014-11-18

    Hydrogenases interconvert H2 and protons at high rates and with high energy efficiencies, providing inspiration for the development of molecular catalysts. Studies designed to determine how the protein scaffold can influence a catalytically active site has led to the synthesis of amino acid derivatives, [Ni(PCy2NAmino acid2)2]2+ (CyAA), of [Ni(PR2NR'2)2]2+ complexes. It is shown that these CyAA derivatives can catalyze fully reversible H2 production/oxidation, a feature reminiscent of enzymes. The reversibility is achieved in acidic aqueous solutions, 0.25% H2/Ar, and elevated temperatures (tested up to 348 K) for the glycine (CyGly), arginine (CyArg), and arginine methyl ester (CyArgOMe) derivatives. As expectedmore » for a reversible process, the activity is dependent upon H2 and proton concentration. CyArg is significantly faster in both directions than the other two derivatives (~300 s-1 H2 production and 20 s-1 H2 oxidation; pH=1, 348 K). The significantly slower rates for CyArgOMe (35 s-1 production and 7 s-1 oxidation) compared to CyArg suggests an important role for the COOH group during catalysis. That CyArg is faster than CyGly (3 s-1 production and 4 s-1 oxidation under the same conditions) suggests that the additional structural features imparted by the guanidinium groups facilitate fast and reversible H2 addition/release. These observations demonstrate that appended, outer coordination sphere amino acids work in synergy with the active site and can play an equally important role for synthetic molecular electrocatalysts as the protein scaffold does for redox active enzymes. This work was funded by the Office of Science Early Career Research Program through the US DOE, BES (AD, WJS), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US DOE, BES (DLD, JASR). PNNL is operated by Battelle for the US DOE.« less

  4. A proposal for climate stability on H2-greenhouse planets

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.

    2015-12-01

    A terrestrial planet in an orbit far outside of the standard habitable zone could maintain surface liquid water as a result of H2-H2 collision-induced absorption by a thick H2 atmosphere. Without a stabilizing climate feedback, however, habitability would be accidental and likely brief. We propose a stabilizing climate feedback for such a planet that requires only biological production of H2 to balance net loss to space that has some optimal temperature, and operates less efficiently at higher temperatures. A stable feedback is possible on such a planet through which a perturbation increasing temperature decreases H2 production, which decreases H2 greenhouse warming and therefore temperature. The potential of such a feedback makes H2-warmed planets more attractive astrobiological targets.

  5. Progesterone amplifies oxidative stress signal and promotes NO production via H2O2 in mouse kidney arterial endothelial cells.

    PubMed

    Yuan, Xiao-Hua; Fan, Yang-Yang; Yang, Chun-Rong; Gao, Xiao-Rui; Zhang, Li-Li; Hu, Ying; Wang, Ya-Qin; Jun, Hu

    2016-01-01

    The role of progesterone on the cardiovascular system is controversial. Our present research is to specify the effect of progesterone on arterial endothelial cells in response to oxidative stress. Our result showed that H2O2 (150 μM and 300 μM) induced cellular antioxidant response. Glutathione (GSH) production and the activity of Glutathione peroxidase (GPx) were increased in H2O2-treated group. The expression of glutamate cysteine ligase catalytic subunit (GCLC) and modifier subunit (GCLM) was induced in response to H2O2. However, progesterone absolutely abolished the antioxidant response through increasing ROS level, inhibiting the activity of Glutathione peroxidase (GPx), decreasing GSH level and reducing expression of GClC and GCLM. In our study, H2O2 induced nitrogen monoxide (NO) production and endothelial nitric oxide synthase (eNOS) expression, and progesterone promoted H2O2-induced NO production. Progesterone increased H2O2-induced expression of hypoxia inducible factor-α (HIFα) which in turn regulated eNOS expression and NO synthesis. Further study demonstrated that progesterone increased H2O2 concentration of culture medium which may contribute to NO synthesis. Exogenous GSH decreased the content of H2O2 of culture medium pretreated by progesterone combined with H2O2 or progesterone alone. GSH also inhibited expression of HIFα and eNOS, and abolished NO synthesis. Collectively, our study demonstrated for the first time that progesterone inhibited cellular antioxidant effect and increased oxidative stress, promoted NO production of arterial endothelial cells, which may be due to the increasing H2O2 concentration and amplified oxidative stress signal. Copyright © 2015. Published by Elsevier Ltd.

  6. Thyrotropin-induced hydrogen peroxide production in FRTL-5 thyroid cells is mediated not by adenosine 3',5'-monophosphate, but by Ca2+ signaling followed by phospholipase-A2 activation and potentiated by an adenosine derivative.

    PubMed

    Kimura, T; Okajima, F; Sho, K; Kobayashi, I; Kondo, Y

    1995-01-01

    The production of hydrogen peroxide (H2O2) as an essential process for iodide organification is a key reaction in TSH-induced thyroid hormone synthesis. Here we characterize the signal transduction pathway involved in TSH-induced H2O2 production in FRTL-5 thyroid cells. At higher than 1 nM TSH, N6-(L-2-phenylisopropyl)adenosine (PIA), an adenosine receptor agonist having, by itself, no influence on H2O2 generation, potentiated this TSH action, whereas the TSH increase and PIA addition reduced cAMP accumulation. RO 20-1724, a phosphodiesterase inhibitor, amplified the TSH-induced cAMP accumulation, but did not change H2O2 generation in the whole range of TSH used. Ca(2+)-mobilizing agonists, GTP and ATP, also induced H2O2 production without stimulating cAMP accumulation. Chelation of intracellular Ca2+ markedly inhibited the TSH action, but intracellular Ca2+ increases by either thapsigargin or ionomycin mimicking it. All of the findings show the participation of Ca2+, but not cAMP, in the action of TSH. Desensitization of protein kinase-C (PKC) did not influence the receptor-mediated H2O2 production, suggesting the reduced importance of PKC activation compared to Ca2+ signaling to the reaction. A rise in intracellular Ca2+ independent of receptor activation also induced H2O2 production as well as arachidonate release, and both were potentiated by PIA. In addition, inhibitors of phospholipase-A2 and the arachidonate metabolic pathway depressed H2O2 generation, suggesting the participation of an arachidonate cascade in the Ca(2+)-dependent H2O2 production. Lipoxygenase inhibitors depressed the Ca2+ action without influencing arachidonate release, suggesting the involvement of a lipoxygenase product(s) of arachidonate in the Ca(2+)-signaling mechanism. In conclusion, in FRTL-5 cells, TSH-induced H2O2 production is mediated not by cAMP, but by the phospholipase-C/Ca2+ cascade, possibly followed by the Ca(2+)-dependent phospholipase-A2/arachidonate cascade. PIA

  7. F + H/sub 2/ potential energy surface: the ecstasy and the agony

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, H.F. III

    1985-12-05

    This account surveys 14 years of more or less continuing theoretical research on the FH/sub 2/ potential energy hypersurface. Early encouragement concerning the ability of theory to reliably characterize the entrance barrier for F + H/sub 2/ ..-->.. FH + H has more recently been sobered by the realization that very high levels of theory are required for this task. The importance of zero-point vibrational corrections and tunneling corrections in reliable predictions of the same activation energy is discussed. In contrast, the barrier height of H + FH ..-->.. HF + H three-center exchange stands as a prominent early successmore » of ab initio molecular electronic structure theory. 90 references, 4 figures, 6 tables.« less

  8. Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Saoudi, Fethi; Chiha, Mahdi

    2010-06-15

    Central events of the ultrasonic action are the cavitation bubbles that can be considered as microreactors. Adiabatic collapse of cavitation bubbles leads to the formation of reactive species such as hydroxyl radicals (*OH), hydrogen peroxide (H(2)O(2)) and hydroperoxyl radicals (HOO*). Several chemical methods were used to detect the production of these reactive moieties in sonochemistry. In this work, the influence of several operational parameters on the sonochemistry dosimetries namely KI oxidation, Fricke reaction and H(2)O(2) production using 300 kHz ultrasound was investigated. The main experimental parameters showing significant effect in KI oxidation dosimetry were initial KI concentration, acoustic power and pH. The solution temperature showed restricted influence on KI oxidation. The acoustic power and liquid temperature highly affected Fricke reaction dosimetry. Operational conditions having important influence on H(2)O(2) formation were acoustic power, solution temperature and pH. For the three tested dosimetries, the sonochemical efficiency was independent of liquid volume. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Degradation of 5-FU by means of advanced (photo)oxidation processes: UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2--Comparison of transformation products, ready biodegradability and toxicity.

    PubMed

    Lutterbeck, Carlos Alexandre; Wilde, Marcelo Luís; Baginska, Ewelina; Leder, Christoph; Machado, Ênio Leandro; Kümmerer, Klaus

    2015-09-15

    The present study investigates the degradation of the antimetabolite 5-fluorouracil (5-FU) by three different advanced photo oxidation processes: UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. Prescreening experiments varying the H2O2 and TiO2 concentrations were performed in order to set the best catalyst concentrations in the UV/H2O2 and UV/TiO2 experiments, whereas the UV/Fe(2+)/H2O2 process was optimized varying the pH, Fe(2+) and H2O2 concentrations by means of the Box-Behnken design (BBD). 5-FU was quickly removed in all the irradiation experiments. The UV/Fe(2+)/H2O2 and UV/TiO2 processes achieved the highest degree of mineralization, whereas the lowest one resulted from the UV/H2O2 treatment. Six transformation products were formed during the advanced (photo)oxidation processes and identified using low and high resolution mass spectrometry. Most of them were formed and further eliminated during the reactions. The parent compound of 5-FU was not biodegraded, whereas the photolytic mixture formed in the UV/H2O2 treatment after 256 min showed a noticeable improvement of the biodegradability in the closed bottle test (CBT) and was nontoxic towards Vibrio fischeri. In silico predictions showed positive alerts for mutagenic and genotoxic effects of 5-FU. In contrast, several of the transformation products (TPs) generated along the processes did not provide indications for mutagenic or genotoxic activity. One exception was TP with m/z 146 with positive alerts in several models of bacterial mutagenicity which could demand further experimental testing. Results demonstrate that advanced treatment can eliminate parent compounds and its toxicity. However, transformation products formed can still be toxic. Therefore toxicity screening after advanced treatment is recommendable. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Pleurotus giganteus (Berk. Karun & Hyde), the giant oyster mushroom inhibits NO production in LPS/H2O2 stimulated RAW 264.7 cells via STAT 3 and COX-2 pathways.

    PubMed

    Baskaran, Asweni; Chua, Kek Heng; Sabaratnam, Vikineswary; Ravishankar Ram, Mani; Kuppusamy, Umah Rani

    2017-01-13

    Pleurotus giganteus (Berk. Karunarathna and K.D. Hyde), has been used as a culinary mushroom and is known to have medicinal properties but its potential as an anti-inflammatory agent to mitigate inflammation triggered diseases is untapped. In this study, the molecular mechanism underlying the protective effect of ethanol extract of P. giganteus (EPG) against lipopolysaccharide (LPS) and combination of LPS and hydrogen peroxide (H 2 O 2 )-induced inflammation on RAW 264.7 macrophages was investigated. The effect of EPG on nitric oxide (NO) production as an indicator of inflammation in RAW 264.7 macrophages was estimated based on Griess reaction that measures nitrite level. The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), NF-kB activating protein (NKAP), signal transducer and activator of transcription 3 protein (STAT 3) and glutathione peroxidase (GPx) genes were assessed using real time reverse transcription polymerase chain reaction (RT-PCR) approach. EPG (10 μg/ml) showed the highest reduction in the LPS-induced NO production in RAW 264.7 macrophages and significantly suppressed (p < 0.05) the expression iNOS, STAT 3 and COX-2. There was a significant increase (p < 0.05) in combination of LPS and H 2 O 2 - induced iNOS production when compared to the LPS-induced iNOS production in RAW 264.7 macrophages and this concurred with the NO production which was attenuated by EPG at 10 μg/ml. A significant (p < 0.05) down regulation was observed in the combination of LPS and H 2 O 2 -induced iNOS and GPx expression by EPG. Our data suggest that the anti-inflammatory activity of EPG is mediated via the suppression of the STAT 3 and COX-2 pathways and can serve as potential endogenous antioxidant stimulant.

  11. Tracking the energy flow in the hydrogen exchange reaction OH + H2O → H2O + OH.

    PubMed

    Zhu, Yongfa; Ping, Leilei; Bai, Mengna; Liu, Yang; Song, Hongwei; Li, Jun; Yang, Minghui

    2018-05-09

    The prototypical hydrogen exchange reaction OH + H2O → H2O + OH has attracted considerable interest due to its importance in a wide range of chemically active environments. In this work, an accurate global potential energy surface (PES) for the ground electronic state was developed based on ∼44 000 ab initio points at the level of UCCSD(T)-F12a/aug-cc-pVTZ. The PES was fitted using the fundamental invariant-neural network method with a root mean squared error of 4.37 meV. The mode specific dynamics was then studied by the quasi-classical trajectory method on the PES. Furthermore, the normal mode analysis approach was employed to calculate the final vibrational state distribution of the product H2O, in which a new scheme to acquire the Cartesian coordinates and momenta of each atom in the product molecule from the trajectories was proposed. It was found that, on one hand, excitation of either the symmetric stretching mode or the asymmetric stretching mode of the reactant H2O promotes the reaction more than the translational energy, which can be rationalized by the sudden vector projection model. On the other hand, the relatively higher efficacy of exciting the symmetric stretching mode than that of the asymmetric stretching mode is caused by the prevalence of the indirect mechanism at low collision energies and the stripping mechanism at high collision energies. In addition, the initial collision energy turns ineffectively into the vibrational energy of the products H2O and OH while a fraction of the energy transforms into the rotational energy of the product H2O. Fundamental excitation of the stretching modes of H2O results in the product H2O having the highest population in the fundamental state of the asymmetric stretching mode, followed by the ground state and the fundamental state of the symmetric stretching mode.

  12. A continuous [15O]H2O production and infusion system for PET imaging

    NASA Astrophysics Data System (ADS)

    Sajjad, Munawwar; Liow, Jeih-San

    1999-06-01

    A system for continuous production and infusion of [15O]H2O has been designed for PET cerebral blood flow studies. The injection system consists of a four-port-two-position valve, two Horizon Nxt infusion pumps, and a sterile 50 ml vial. The variation of the production of [15O]H2O was <1%. The variation of activity delivered measured by scanner counts during the steady state period was <2%.

  13. Peroxisomal fatty acid oxidation as detected by H2O2 production in intact perfused rat liver.

    PubMed Central

    Foerster, E C; Fährenkemper, T; Rabe, U; Graf, P; Sies, H

    1981-01-01

    1. H2O2 formation associated with the metabolism of added fatty acids was quantitatively determined in isolated haemoglobin-free perfused rat liver (non-recirculating system) by two different methods. 2. Organ spectrophotometry of catalase Compound I [Sies & Chance (1970) FEBS Lett. 11, 172-176] was used to detect H2O2 formation (a) by steady-state titration with added hydrogen donor, methanol or (b) by comparison of fatty-acid responses with those of the calibration compound, urate. 3. In the use of the peroxidatic reaction of catalase, [14C]methanol was added as hydrogen donor at an optimal concentration of 1 mM in the presence of 0.2 mM-L-methionine, and 14CO2 production rates were determined. 4. Results obtained by the different methods were similar. 5. The yield of H2O2 formation, expressed as the rate of H2O2 formation in relation to the rate of fatty-acid supply, was less than 1.0 in all cases, indicating that, regardless of chain length, less than one acetyl unit was formed per mol of added fatty acid by the peroxisomal system. In particular, the standard substrate used with isolated peroxisomal preparations (C16:0 fatty acid) gave low yield (close to zero). Long-chain monounsaturated fatty acids exhibit a relatively high yield of H2O2 formation. 6. The hypolipidaemic agent bezafibrate led to slightly increased yields for most of the acids tested, but the yield with oleate was decreased to one-half the original yield. 7. It is concluded that in the intact isolated perfused rat liver the assayable capacity for peroxisomal beta-oxidation is used to only a minor degree. However, the observed rates of H2O2 production with fatty acids can account for a considerable share of the endogenous H2O2 production found in the intact animal. PMID:7317011

  14. Increased H2CO production in the outer disk around HD 163296

    NASA Astrophysics Data System (ADS)

    Carney, M. T.; Hogerheijde, M. R.; Loomis, R. A.; Salinas, V. N.; Öberg, K. I.; Qi, C.; Wilner, D. J.

    2017-09-01

    Context. The gas and dust in circumstellar disks provide the raw materials to form planets. The study of organic molecules and their building blocks in such disks offers insight into the origin of the prebiotic environment of terrestrial planets. Aims: We aim to determine the distribution of formaldehyde, H2CO, in the disk around HD 163296 to assess the contribution of gas- and solid-phase formation routes of this simple organic. Methods: Three formaldehyde lines were observed (H2CO 303-202, H2CO 322-221, and H2CO 321-220) in the protoplanetary disk around the Herbig Ae star HD 163296 with ALMA at 0.5″ (60 AU) spatial resolution. Different parameterizations of the H2CO abundance were compared to the observed visibilities, using either a characteristic temperature, a characteristic radius or a radial power law index to describe the H2CO chemistry. Similar models were applied to ALMA Science Verification data of C18O. In each scenario, χ2 minimization on the visibilities was used to determine the best-fit model in each scenario. Results: H2CO 303-202 was readily detected via imaging, while the weaker H2CO 322-221 and H2CO 321-220 lines required matched filter analysis to detect. H2CO is present throughout most of the gaseous disk, extending out to 550 AU. An apparent 50 AU inner radius of the H2CO emission is likely caused by an optically thick dust continuum. The H2CO radial intensity profile shows a peak at 100 AU and a secondary bump at 300 AU, suggesting increased production in the outer disk. In all modeling scenarios, fits to the H2CO data show an increased abundance in the outer disk. The overall best-fit H2CO model shows a factor of two enhancement beyond a radius of 270 ± 20 AU, with an inner abundance (relative to H2) of 2 - 5 × 10-12. The H2CO emitting region has a lower limit on the kinetic temperature of T> 20 K. The C18O modeling suggests an order of magnitude depletion of C18O in the outer disk and an abundance of 4 - 12 × 10-8 in the inner disk

  15. A nine-dimensional ab initio global potential energy surface for the H2O+ + H2H3O+ + H reaction

    NASA Astrophysics Data System (ADS)

    Li, Anyang; Guo, Hua

    2014-06-01

    An accurate full-dimensional global potential energy surface (PES) is developed for the title reaction. While the long-range interactions in the reactant asymptote are represented by an analytical expression, the interaction region of the PES is fit to more than 81 000 of ab initio points at the UCCSD(T)-F12b/AVTZ level using the permutation invariant polynomial neural network approach. Fully symmetric with respect to permutation of all four hydrogen atoms, the PES provides a faithful representation of the ab initio points, with a root mean square error of 1.8 meV or 15 cm-1. The reaction path for this exoergic reaction features an attractive and barrierless entrance channel, a submerged saddle point, a shallow H4O+ well, and a barrierless exit channel. The rate coefficients for the title reaction and kinetic isotope effect have been determined on this PES using quasi-classical trajectories, and they are in good agreement with available experimental data. It is further shown that the H2O+ rotational enhancement of reactivity observed experimentally can be traced to the submerged saddle point. Using our recently proposed Sudden Vector Projection model, we demonstrate that a rotational degree of freedom of the H2O+ reactant is strongly coupled with the reaction coordinate at this saddle point, thus unraveling the origin of the pronounced mode specificity in this reaction.

  16. RNAi Knock-Down of LHCBM1, 2 and 3 Increases Photosynthetic H2 Production Efficiency of the Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Oey, Melanie; Ross, Ian L.; Stephens, Evan; Steinbeck, Janina; Wolf, Juliane; Radzun, Khairul Adzfa; Kügler, Johannes; Ringsmuth, Andrew K.; Kruse, Olaf; Hankamer, Ben

    2013-01-01

    Single cell green algae (microalgae) are rapidly emerging as a platform for the production of sustainable fuels. Solar-driven H2 production from H2O theoretically provides the highest-efficiency route to fuel production in microalgae. This is because the H2-producing hydrogenase (HYDA) is directly coupled to the photosynthetic electron transport chain, thereby eliminating downstream energetic losses associated with the synthesis of carbohydrate and oils (feedstocks for methane, ethanol and oil-based fuels). Here we report the simultaneous knock-down of three light-harvesting complex proteins (LHCMB1, 2 and 3) in the high H2-producing Chlamydomonas reinhardtii mutant Stm6Glc4 using an RNAi triple knock-down strategy. The resultant Stm6Glc4L01 mutant exhibited a light green phenotype, reduced expression of LHCBM1 (20.6% ±0.27%), LHCBM2 (81.2% ±0.037%) and LHCBM3 (41.4% ±0.05%) compared to 100% control levels, and improved light to H2 (180%) and biomass (165%) conversion efficiencies. The improved H2 production efficiency was achieved at increased solar flux densities (450 instead of ∼100 µE m−2 s−1) and high cell densities which are best suited for microalgae production as light is ideally the limiting factor. Our data suggests that the overall improved photon-to-H2 conversion efficiency is due to: 1) reduced loss of absorbed energy by non-photochemical quenching (fluorescence and heat losses) near the photobioreactor surface; 2) improved light distribution in the reactor; 3) reduced photoinhibition; 4) early onset of HYDA expression and 5) reduction of O2-induced inhibition of HYDA. The Stm6Glc4L01 phenotype therefore provides important insights for the development of high-efficiency photobiological H2 production systems. PMID:23613840

  17. The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2 O production.

    PubMed

    Blum, Jan-Michael; Su, Qingxian; Ma, Yunjie; Valverde-Pérez, Borja; Domingo-Félez, Carlos; Jensen, Marlene Mark; Smets, Barth F

    2018-05-01

    Nitrous oxide (N 2 O) is emitted during microbiological nitrogen (N) conversion processes, when N 2 O production exceeds N 2 O consumption. The magnitude of N 2 O production vs. consumption varies with pH and controlling net N 2 O production might be feasible by choice of system pH. This article reviews how pH affects enzymes, pathways and microorganisms that are involved in N-conversions in water engineering applications. At a molecular level, pH affects activity of cofactors and structural elements of relevant enzymes by protonation or deprotonation of amino acid residues or solvent ligands, thus causing steric changes in catalytic sites or proton/electron transfer routes that alter the enzymes' overall activity. Augmenting molecular information with, e.g., nitritation or denitrification rates yields explanations of changes in net N 2 O production with pH. Ammonia oxidizing bacteria are of highest relevance for N 2 O production, while heterotrophic denitrifiers are relevant for N 2 O consumption at pH > 7.5. Net N 2 O production in N-cycling water engineering systems is predicted to display a 'bell-shaped' curve in the range of pH 6.0-9.0 with a maximum at pH 7.0-7.5. Net N 2 O production at acidic pH is dominated by N 2 O production, whereas N 2 O consumption can outweigh production at alkaline pH. Thus, pH 8.0 may be a favourable pH set-point for water treatment applications regarding net N 2 O production. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity

    NASA Astrophysics Data System (ADS)

    Meng, Aiyun; Zhu, Bicheng; Zhong, Bo; Zhang, Liuyang; Cheng, Bei

    2017-11-01

    Photocatalytic H2 evolution, which utilizes solar energy via water splitting, is a promising route to deal with concerns about energy and environment. Herein, a direct Z-scheme TiO2/CdS binary hierarchical photocatalyst was fabricated via a successive ionic layer adsorption and reaction (SILAR) technique, and photocatalytic H2 production was measured afterwards. The as-prepared TiO2/CdS hybrid photocatalyst exhibited noticeably promoted photocatalytic H2-production activity of 51.4 μmol h-1. The enhancement of photocatalytic activity was ascribed to the hierarchical structure, as well as the efficient charge separation and migration from TiO2 nanosheets to CdS nanoparticles (NPs) at their tight contact interfaces. Moreover, the direct Z-scheme photocatalytic reaction mechanism was demonstrated to elucidate the improved photocatalytic performance of TiO2/CdS composite photocatalyst. The photoluminescence (PL) analysis of hydroxyl radicals were conducted to provide clues for the direct Z-scheme mechanism. This work provides a facile route for the construction of redox mediator-free Z-scheme photocatalytic system for photocatalytic water splitting.

  19. Protein kinase G–regulated production of H2S governs oxygen sensing

    PubMed Central

    Yuan, Guoxiang; Vasavda, Chirag; Peng, Ying-Jie; Makarenko, Vladislav V.; Raghuraman, Gayatri; Nanduri, Jayasri; Gadalla, Moataz M.; Semenza, Gregg L.; Kumar, Ganesh K.; Snyder, Solomon H.; Prabhakar, Nanduri R.

    2015-01-01

    Reflexes initiated by the carotid body, the principal O2-sensing organ, are critical for maintaining cardio-respiratory homeostasis during hypoxia. O2 sensing by the carotid body requires carbon monoxide (CO) generation by heme oxygenase-2 (HO-2) and hydrogen sulfide (H2S) synthesis by cystathionine-γ-lyase (CSE). We report that O2 stimulated the generation of CO, but not that of H2S, and required two cysteine residues in the heme regulatory motif (Cys265 and Cys282) of HO-2. CO stimulated protein kinase G (PKG)–dependent phosphorylation of Ser377 of CSE, inhibiting the production of H2S. Hypoxia decreased the inhibition of CSE by reducing CO generation resulting in increased H2S, which stimulated carotid body neural activity. In carotid bodies from mice lacking HO-2, compensatory increased abundance of nNOS (neuronal nitric oxide synthase) mediated O2 sensing through PKG-dependent regulation of H2S by nitric oxide. These results provide a mechanism for how three gases work in concert in the carotid body to regulate breathing. PMID:25900831

  20. Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl

    PubMed Central

    Cortese-Krott, Miriam M.; Kuhnle, Gunter G. C.; Dyson, Alex; Fernandez, Bernadette O.; Grman, Marian; DuMond, Jenna F.; Barrow, Mark P.; McLeod, George; Nakagawa, Hidehiko; Ondrias, Karol; Nagy, Péter; King, S. Bruce; Saavedra, Joseph E.; Keefer, Larry K.; Singer, Mervyn; Kelm, Malte; Butler, Anthony R.; Feelisch, Martin

    2015-01-01

    Experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide (H2S) signaling pathways are intimately intertwined, with mutual attenuation or potentiation of biological responses in the cardiovascular system and elsewhere. The chemical basis of this interaction is elusive. Moreover, polysulfides recently emerged as potential mediators of H2S/sulfide signaling, but their biosynthesis and relationship to NO remain enigmatic. We sought to characterize the nature, chemical biology, and bioactivity of key reaction products formed in the NO/sulfide system. At physiological pH, we find that NO and sulfide form a network of cascading chemical reactions that generate radical intermediates as well as anionic and uncharged solutes, with accumulation of three major products: nitrosopersulfide (SSNO−), polysulfides, and dinitrososulfite [N-nitrosohydroxylamine-N-sulfonate (SULFI/NO)], each with a distinct chemical biology and in vitro and in vivo bioactivity. SSNO− is resistant to thiols and cyanolysis, efficiently donates both sulfane sulfur and NO, and potently lowers blood pressure. Polysulfides are both intermediates and products of SSNO− synthesis/decomposition, and they also decrease blood pressure and enhance arterial compliance. SULFI/NO is a weak combined NO/nitroxyl donor that releases mainly N2O on decomposition; although it affects blood pressure only mildly, it markedly increases cardiac contractility, and formation of its precursor sulfite likely contributes to NO scavenging. Our results unveil an unexpectedly rich network of coupled chemical reactions between NO and H2S/sulfide, suggesting that the bioactivity of either transmitter is governed by concomitant formation of polysulfides and anionic S/N-hybrid species. This conceptual framework would seem to offer ample opportunities for the modulation of fundamental biological processes governed by redox switching and sulfur trafficking. PMID:26224837

  1. Evolutionary trajectories and diagnostic challenges of potentially zoonotic avian influenza viruses H5N1 and H9N2 co-circulating in Egypt.

    PubMed

    Naguib, Mahmoud M; Arafa, Abdel-Satar A; El-Kady, Magdy F; Selim, Abdullah A; Gunalan, Vithiagaran; Maurer-Stroh, Sebastian; Goller, Katja V; Hassan, Mohamed K; Beer, Martin; Abdelwhab, E M; Harder, Timm C

    2015-08-01

    In Egypt, since 2006, descendants of the highly pathogenic avian influenza virus (HP AIV) H5N1 of clade 2.2 continue to cause sharp losses in poultry production and seriously threaten public health. Potentially zoonotic H9N2 viruses established an endemic status in poultry in Egypt as well and co-circulate with HP AIV H5N1 rising concerns of reassortments between H9N2 and H5N1 viruses along with an increase of mixed infections of poultry. Nucleotide sequences of whole genomes of 15 different isolates (H5N1: 7; H9N2: 8), and of the hemagglutinin (HA) and neuraminidase (NA) encoding segments of nine further clinical samples (H5N1: 2; H9N2: 7) from 2013 and 2014 were generated and analysed. The HA of H5N1 viruses clustered with clade 2.2.1 while the H9 HA formed three distinguishable subgroups within cluster B viruses. BEAST analysis revealed that H9N2 viruses are likely present in Egypt since 2009. Several previously undescribed substituting mutations putatively associated with host tropism and virulence modulation were detected in different proteins of the analysed H9N2 and H5N1 viruses. Reassortment between HP AIV H5N1 and H9N2 is anticipated in Egypt, and timely detection of such events is of public health concern. As a rapid tool for detection of such reassortants discriminative SYBR-Green reverse transcription real-time PCR assays (SG-RT-qPCR), targeting the internal genes of the Egyptian H5N1 and H9N2 viruses were developed for the rapid screening of viral RNAs from both virus isolates and clinical samples. However, in accordance to Sanger sequencing, no reassortants were found by SG-RT-qPCR. Nevertheless, the complex epidemiology of avian influenza in poultry in Egypt will require sustained close observation. Further development and continuing adaptation of rapid and cost-effective screening assays such as the SG-RT-qPCR protocol developed here are at the basis of efforts for improvement the currently critical situation. Copyright © 2015 Elsevier B.V. All

  2. Multi-Omic Dynamics Associate Oxygenic Photosynthesis with Nitrogenase-Mediated H2 Production in Cyanothece sp. ATCC 51142.

    PubMed

    Bernstein, Hans C; Charania, Moiz A; McClure, Ryan S; Sadler, Natalie C; Melnicki, Matthew R; Hill, Eric A; Markillie, Lye Meng; Nicora, Carrie D; Wright, Aaron T; Romine, Margaret F; Beliaev, Alexander S

    2015-11-03

    To date, the proposed mechanisms of nitrogenase-driven photosynthetic H2 production by the diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 have assumed that reductant and ATP requirements are derived solely from glycogen oxidation and cyclic-electron flow around photosystem I. Through genome-scale transcript and protein profiling, this study presents and tests a new hypothesis on the metabolic relationship between oxygenic photosynthesis and nitrogenase-mediated H2 production in Cyanothece 51142. Our results show that net-positive rates of oxygenic photosynthesis and increased expression of photosystem II reaction centers correspond and are synchronized with nitrogenase expression and H2 production. These findings provide a new and more complete view on the metabolic processes contributing to the energy budget of photosynthetic H2 production and highlight the role of concurrent photocatalytic H2O oxidation as a participating process.

  3. Graphene oxide and H2 production from bioelectrochemical graphite oxidation.

    PubMed

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-11-17

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES.

  4. Hollow Fibers Networked with Perovskite Nanoparticles for H2 Production from Heavy Oil

    PubMed Central

    Jeon, Yukwon; Park, Dae-Hwan; Park, Joo-Il; Yoon, Seong-Ho; Mochida, Isao; Choy, Jin-Ho; Shul, Yong-Gun

    2013-01-01

    Design of catalytic materials has been highlighted to build ultraclean use of heavy oil including liquid-to-gas technology to directly convert heavy hydrocarbons into H2–rich gas fuels. If the H2 is produced from such heavy oil through high-active and durable catalysts in reforming process that is being constructed in hydrogen infrastructure, it will be addressed into renewable energy systems. Herein, the three different hollow fiber catalysts networked with perovskite nanoparticles, LaCr0.8Ru0.2O3, LaCr0.8Ru0.1Ni0.1O3, and LaCr0.8Ni0.2O3 were prepared by using activated carbon fiber as a sacrificial template for H2 production from heavy gas oil reforming. The most important findings were arrived at: (i) catalysts had hollow fibrous architectures with well-crystallized structures, (ii) hollow fibers had a high specific surface area with a particle size of ≈50 nm, and (iii) the Ru substituted ones showed high efficiency for H2 production with substantial durability under high concentrations of S, N, and aromatic compounds. PMID:24104596

  5. Hollow Fibers Networked with Perovskite Nanoparticles for H2 Production from Heavy Oil

    NASA Astrophysics Data System (ADS)

    Jeon, Yukwon; Park, Dae-Hwan; Park, Joo-Il; Yoon, Seong-Ho; Mochida, Isao; Choy, Jin-Ho; Shul, Yong-Gun

    2013-10-01

    Design of catalytic materials has been highlighted to build ultraclean use of heavy oil including liquid-to-gas technology to directly convert heavy hydrocarbons into H2-rich gas fuels. If the H2 is produced from such heavy oil through high-active and durable catalysts in reforming process that is being constructed in hydrogen infrastructure, it will be addressed into renewable energy systems. Herein, the three different hollow fiber catalysts networked with perovskite nanoparticles, LaCr0.8Ru0.2O3, LaCr0.8Ru0.1Ni0.1O3, and LaCr0.8Ni0.2O3 were prepared by using activated carbon fiber as a sacrificial template for H2 production from heavy gas oil reforming. The most important findings were arrived at: (i) catalysts had hollow fibrous architectures with well-crystallized structures, (ii) hollow fibers had a high specific surface area with a particle size of ~50 nm, and (iii) the Ru substituted ones showed high efficiency for H2 production with substantial durability under high concentrations of S, N, and aromatic compounds.

  6. Hollow fibers networked with perovskite nanoparticles for H2 production from heavy oil.

    PubMed

    Jeon, Yukwon; Park, Dae-Hwan; Park, Joo-Il; Yoon, Seong-Ho; Mochida, Isao; Choy, Jin-Ho; Shul, Yong-Gun

    2013-10-09

    Design of catalytic materials has been highlighted to build ultraclean use of heavy oil including liquid-to-gas technology to directly convert heavy hydrocarbons into H2-rich gas fuels. If the H2 is produced from such heavy oil through high-active and durable catalysts in reforming process that is being constructed in hydrogen infrastructure, it will be addressed into renewable energy systems. Herein, the three different hollow fiber catalysts networked with perovskite nanoparticles, LaCr(0.8)Ru(0.2)O3, LaCr(0.8)Ru(0.1)Ni(0.1)O3, and LaCr(0.8)Ni(0.2)O3 were prepared by using activated carbon fiber as a sacrificial template for H2 production from heavy gas oil reforming. The most important findings were arrived at: (i) catalysts had hollow fibrous architectures with well-crystallized structures, (ii) hollow fibers had a high specific surface area with a particle size of ≈50 nm, and (iii) the Ru substituted ones showed high efficiency for H2 production with substantial durability under high concentrations of S, N, and aromatic compounds.

  7. Molecular Cobalt Catalysts for O 2 Reduction: Low-Overpotential Production of H 2 O 2 and Comparison with Iron-Based Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yu-Heng; Pegis, Michael L.; Mayer, James M.

    A series of mononuclear pseudo-macrocyclic cobalt complexes have been investigated as catalysts for O2 reduction. Each of these complexes, with CoIII/II reduction potentials that span nearly 400 mV, mediate highly selective two- electron reduction of O2 to H2O2 (93–99%) using decamethylferrocene (Fc*) as the reductant and acetic acid as the proton source. Kinetic studies reveal that the rate exhibits a first- order dependence on [Co] and [AcOH], but no dependence on [O2] or [Fc*]. A linear correlation is observed between log(TOF) vs. E1/2(CoIII/II) for the different cobalt complexes (TOF = turnover frequency). The thermodynamic potential for+ O2 reduction to H2O2more » was estimated by measuring the H /H2 open-circuit potential under the reaction conditions. This value provides the basis for direct assessment of the thermodynamic efficiency of the different catalysts and shows that H2O2 is formed with overpotentials as low as 90 mV. These results are compared with a recently reported series of Fe-porphyrin complexes, which catalyze four-electron reduction of O2 to H2O. The data show that the TOFs of the Co complexes exhibit a shallower dependence on E1/2(MIII/II) than the Fe complexes. This behavior, which underlies the low overpotential, is rationalized on the basis of the catalytic rate law.« less

  8. Synthesis and biological evaluation of 2-fluoro and 3-trifluoromethyl-phenyl-piperazinylalkyl derivatives of 1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione as potential antidepressant agents.

    PubMed

    Zagórska, Agnieszka; Bucki, Adam; Kołaczkowski, Marcin; Siwek, Agata; Głuch-Lutwin, Monika; Starowicz, Gabriela; Kazek, Grzegorz; Partyka, Anna; Wesołowska, Anna; Słoczyńska, Karolina; Pękala, Elżbieta; Pawłowski, Maciej

    2016-01-01

    A series of 2-fluoro and 3-trifluoromethylphenylpiperazinylalkyl derivatives of 1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione (4-21) were synthesized and evaluated for their serotonin (5-HT 1A /5-HT 7 ) receptor affinity and phosphodiesterase (PDE4B and PDE10A) inhibitor activity. The study enabled the identification of potent 5-HT 1A , 5-HT 7 and mixed 5-HT 1A /5-HT 7 receptor ligands with weak inhibitory potencies for PDE4B and PDE10A. The tests have been completed with the determination of lipophilicity and metabolic stability using micellar electrokinetic chromatography (MEKC) system and human liver microsomes (HLM) model. In preliminary pharmacological in vivo studies, selected compound 8-(5-(4-(2-fluorophenyl)piperazin-1-yl)pentyl)-1,3,7-trimethyl-1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione (9) behaved as a potential antidepressant in forced swim test (FST) in mice. Moreover, potency of antianxiety effects evoked by 9 (2.5 mg/kg) is greater than that of the reference anxiolytic drug, diazepam. Molecular modeling revealed that fluorinated arylpiperazinylalkyl derivatives of 1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione have major significance for the provision of lead compounds for antidepressant and/or anxiolytic application.

  9. Depletion of H2S during obesity enhances store-operated Ca2+ entry in adipose tissue macrophages to increase cytokine production.

    PubMed

    Velmurugan, Gopal V; Huang, Huiya; Sun, Hongbin; Candela, Joseph; Jaiswal, Mukesh K; Beaman, Kenneth D; Yamashita, Megumi; Prakriya, Murali; White, Carl

    2015-12-15

    The increased production of proinflammatory cytokines by adipose tissue macrophages (ATMs) contributes to chronic, low-level inflammation during obesity. We found that obesity in mice reduced the bioavailability of the gaseous signaling molecule hydrogen sulfide (H2S). Steady-state, intracellular concentrations of H2S were lower in ATMs isolated from mice with diet-induced obesity than in ATMs from lean mice. In addition, the intracellular concentration of H2S in the macrophage cell line RAW264.7 was reduced during an acute inflammatory response evoked by the microbial product lipopolysaccharide (LPS). Reduced intracellular concentrations of H2S led to increased Ca(2+) influx through the store-operated Ca(2+) entry (SOCE) pathway, which was prevented by the exogenous H2S donor GYY4137. Furthermore, GYY4137 inhibited the Orai3 channel, a key component of the SOCE machinery. The enhanced production of proinflammatory cytokines by RAW264.7 cells and ATMs from obese mice was reduced by exogenous H2S or by inhibition of SOCE. Together, these data suggest that the depletion of macrophage H2S that occurs during acute (LPS-induced) or chronic (obesity) inflammation increases SOCE through disinhibition of Orai3 and promotes the production of proinflammatory cytokines. Copyright © 2015, American Association for the Advancement of Science.

  10. Fourfold Clusters of Rovibrational Energies in H2Te Studied With an Ab Initio Potential Energy Function

    NASA Technical Reports Server (NTRS)

    Jensen, Per; Li, Yan; Hirsch, Gerhard; Buenker, Robert J.; Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    We report an ab initio investigation of the cluster effect (i.e., the formation of nearly degenerate, four member groups of rotation-vibration energy levels at higher J and K(sub a). values) in the H2Te molecule. The potential energy function has been calculated ab initio at a total of 334 molecular geometries by means of the CCSD(T) method where the (1s-4f) core electrons of Te were described by an effective core potential. The values of the potential energy function obtained cover the region up to around 10,000/cm above the equilibrium energy. On the basis of the ab initio potential, the rotation-vibration energy spectra of H2Te-130 and its deuterated isotopomers have been calculated with the MORBID (Morse Oscillator Rigid Bender Internal Dynamics) Hamiltonian and computer program. In particular, we have calculated the rotational energy manifolds for J less than or = 40 in the vibrational ground state, the upsilon(sub 2) state, the "first triad" (the upsilon(sub l)/upsilon(sub 3)/2upsilon(sub 2) interacting vibrational states), and the "second triad" (the upsilon(sub 1) + upsilon(sub 2/upsilon(sub 2) + upsilon(sub 3)/3upsilon(sub 2) states) of H2Te-130. We find that the cluster formation in H2Te is very similar to those of of H2Se and H2S, which we have studied previously. However, contrary to semiclassical predictions, we do not determine any significant displacement of the clusters towards lower J values relative to H2Se. Hence the experimental observation of the cluster states in H2Te will be at least as difficult as in H2Se.

  11. Protective effect of Dendrobium officinale polysaccharides on H2O2-induced injury in H9c2 cardiomyocytes.

    PubMed

    Zhao, Xiaoyan; Dou, Mengmeng; Zhang, Zhihao; Zhang, Duoduo; Huang, Chengzhi

    2017-10-01

    The preliminary studies have shown that Dendrobium officinale possessed therapeutic effects on hypertension and atherosclerosis. Studies also reported that Dendrobium officinale polysaccharides showed antioxidant capabilities. However, little is known about its effects on myocardial cells under oxidative stress. The present study was designed to study the protective effect of Dendrobium officinale polysaccharides against H 2 O 2 -induced oxidative stress in H9c2 cells. MTT assay was carried out to determine the cell viability of H9c2 cells when pretreated with Dendrobium officinale polysaccharides. Fluorescent microscopy measurements were performed for evaluating the apoptosis in H9c2 cells. Furthermore, effects of Dendrobium officinale polysaccharides on the activities of antioxidative indicators (malondialdehyde, superoxide dismutase), reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) levels were analyzed. Dendrobium officinale polysaccharides attenuated H 2 O 2 -induced cell death, as determined by the MTT assay. Dendrobium officinale polysaccharides decreased malondialdehyde levels, increased superoxide dismutase activities, and inhibited the generation of intracellular ROS. Moreover, pretreatment with Dendrobium officinale polysaccharides also inhibited apoptosis and increased the MMP levels in H9c2 cells. These results suggested the protective effects of Dendrobium officinale polysaccharides against H 2 O 2 -induced injury in H9c2 cells. The results also indicated the anti-oxidative capability of Dendrobium officinale polysaccharides. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Assessment of degradation byproducts and NDMA formation potential during UV and UV/H2O2 treatment of doxylamine in the presence of monochloramine.

    PubMed

    Farré, Maria José; Radjenovic, Jelena; Gernjak, Wolfgang

    2012-12-04

    UV-C radiation is the U.S. EPA recommended technology to remove N-nitrosodimethylamine (NDMA) during drinking and recycled water production. Frequently, H(2)O(2) is added to the treatment to remove other recalcitrant compounds and to prevent NDMA reformation. However, the transformation of NDMA precursors during the UV and UV/H(2)O(2) process and the consequences for NDMA formation potential are currently not well understood, in particular in the presence of monochloramine. In this study, doxylamine has been chosen as a model compound to elucidate its degradation byproducts in the UV and UV/H(2)O(2) process and correlate those with changes to the NDMA formation potential. This study shows that during UV treatment in the presence and absence of monochloramine, NDMA formation potential can be halved. However, an increase of more than 30% was observed when hydrogen peroxide was added. Ultrafast liquid chromatography coupled to quadrupole-linear ion trap mass spectrometer was used for screening and structural elucidation of degradation byproducts identifying 21 chemical structures from the original parent compound. This work shows that further oxidation of NDMA precursors does not necessarily lead to a decrease in NDMA formation potential. Degradation byproducts with increased electron density in the vicinity of the dimethylamino moiety, for example induced by hydroxylation, may have a higher yield of nucleophilic substitution and subsequent NDMA formation compared to the parent compound during chloramination. This work demonstrates the need to consider the formation of oxidation byproducts and associated implications for the control and management of NDMA formation in downstream processes and distribution when integrating oxidative treatments into a treatment train generating either drinking water or recycled water for potable reuse.

  13. Multi-omic dynamics associate oxygenic photosynthesis with nitrogenase-mediated H 2 production in Cyanothece sp. ATCC 51142

    DOE PAGES

    Bernstein, Hans C.; Charania, Moiz A.; McClure, Ryan S.; ...

    2015-11-03

    This study combines transcriptomic and proteomic profiling to provide new insights on the metabolic relationship between oxygenic photosynthesis and nitrogenase-mediated H 2 production in the model cyanobacterium, Cyanothece sp. ATCC 51142. To date, the proposed mechanisms used to describe the energy metabolism processes that support H 2 production in Cyanothece 51142 have assumed that ATP and reductant requirements are derived solely from glycogen oxidation and/or cyclic-electron flow around photosystem I. The results from this study present and test an alternative hypothesis by showing that net-positive rates of oxygenic photosynthesis and increased expression of photosystem II reaction centers correspond and aremore » synchronized with nitrogenase expression and H 2 production. These findings provide a new and more complete view on the metabolic processes contributing to the energy budget of photosynthetic H 2 production and highlight the likely role of photocatalytic H 2O oxidation as a major participating process.« less

  14. Classical Trajectory Study of Collision Energy Transfer between Ne and C2H2 on a Full Dimensional Accurate Potential Energy Surface.

    PubMed

    Liu, Yang; Huang, Yin; Ma, Jianyi; Li, Jun

    2018-02-15

    Collision energy transfer plays an important role in gas phase reaction kinetics and relaxation of excited molecules. However, empirical treatments are generally adopted for the collisional energy transfer in the master equation based approach. In this work, classical trajectory approach is employed to investigate the collision energy transfer dynamics in the C 2 H 2 -Ne system. The entire potential energy surface is described as the sum of the C 2 H 2 potential and interaction potential between C 2 H 2 and Ne. It is highlighted that both parts of the entire potential are highly accurate. In particular, the interaction potential is fit to ∼41 300 configurations determined at the level of CCSD(T)-F12a/cc-pCVTZ-F12 with the counterpoise correction. Collision energy transfer dynamics are then carried out on this benchmark potential and the widely used Lennard-Jones and Buckingham interaction potentials. Energy transfers and related probability densities at different collisional energies are reported and discussed.

  15. Potential risks from UV/H2O2 oxidation and UV photocatalysis: A review of toxic, assimilable, and sensory-unpleasant transformation products.

    PubMed

    Wang, Wen-Long; Wu, Qian-Yuan; Huang, Nan; Xu, Zi-Bin; Lee, Min-Yong; Hu, Hong-Ying

    2018-05-15

    UV based advanced oxidation processes (UV-AOPs) that efficiently eliminate organic pollutants during water treatment have been the subject of numerous investigations. Most organic pollutants are not completely mineralized during UV-AOPs but are partially oxidized into transformation products (TPs), thereby adding complexity to the treated water and posing risks to humans, ecological systems, and the environment. While the degradation kinetics and mechanisms of pollutants have been widely documented, there is little information about the risks associated with TPs. In this review, we have collated recent knowledge about the harmful TPs that are generated in UV/H 2 O 2 and UV photocatalysis, two UV-AOPs that have been studied extensively. Toxic and assimilable TPs were ubiquitously observed in more than 80% of UV-AOPs of organic pollutants, of which the toxicity and assimilability levels changed with variations in the reaction conditions, such as the UV fluence and oxidant dosage. Previous studies and modeling assessments showed that toxic and assimilable TPs may be generated during hydroxylation, dealkylation, decarboxylation, and deamination. Among various reactions, TPs generated from dealkylation and decarboxylation were generally less and more toxic than the parent pollutants, respectively; TPs generated from decarboxylation and deamination were generally less and more assimilable than the parent pollutants, respectively. There is also potential concern about the sensory-unpleasant TPs generated by oxidations and subsequent metabolism of microorganisms. In this overview, we stress the need to include both the concentrations of organic pollutants and the evaluations of the risks from TPs for the quality assessments of the water treated by UV-AOPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. A DFT/HF study of the potential energy surface of protonated ethane C2H7+

    NASA Astrophysics Data System (ADS)

    Hrusak, Jan; Zabka, Jan; Dolejsek, Zdenek; Herman, Zdenek

    1997-11-01

    Structures and energies of several isomers of the C2H7+ cation have been calculated using the parametrized B3LYP HF/DFT method. The B3LYP/6-31G** geometries of the individual isomers are of at least the same quality as the MP2/6-31G** results. The zero-point-energy corrected relative stabilities of the individual C2H7+ isomers are in excellent agreement with the much more costly MP4SDTQ/6-31G** MO calculations. A structure with a linear C---H---C skeleton and a CC distance of about 2.5 A was found to be a higher order saddle point on the PES resulting from curve crossing between the reactant and product channels CH3+ + CH4; this finding is of importance in interpreting the experimental results on the hydride ion transfer between CH3+ and CH4. The calculations are also consistent with the earlier experimental results on the formation of the products C2H5+ + H2.

  17. Graphene oxide and H2 production from bioelectrochemical graphite oxidation

    PubMed Central

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-01-01

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES. PMID:26573014

  18. Phylogenetic and functional potential links pH and N2O emissions in pasture soils.

    PubMed

    Samad, Md Sainur; Biswas, Ambarish; Bakken, Lars R; Clough, Timothy J; de Klein, Cecile A M; Richards, Karl G; Lanigan, Gary J; Morales, Sergio E

    2016-10-26

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N 2 O and N 2 emissions. Soil pH regulates the reduction of N 2 O to N 2 , however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N 2 O emission ratio (N 2 O/(NO + N 2 O + N 2 )) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N 2 O emission ratio and community changes. Soil pH was negatively associated with N 2 O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir &nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N 2 O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N 2 O emission ratio through more efficient conversion of N 2 O to N 2 .

  19. Phylogenetic and functional potential links pH and N2O emissions in pasture soils

    NASA Astrophysics Data System (ADS)

    Samad, M. D. Sainur; Biswas, Ambarish; Bakken, Lars R.; Clough, Timothy J.; de Klein, Cecile A. M.; Richards, Karl G.; Lanigan, Gary J.; Morales, Sergio E.

    2016-10-01

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N2O and N2 emissions. Soil pH regulates the reduction of N2O to N2, however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N2O emission ratio (N2O/(NO + N2O + N2)) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N2O emission ratio and community changes. Soil pH was negatively associated with N2O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir & nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N2O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N2O emission ratio through more efficient conversion of N2O to N2.

  20. Phylogenetic and functional potential links pH and N2O emissions in pasture soils

    PubMed Central

    Samad, M. d. Sainur; Biswas, Ambarish; Bakken, Lars R.; Clough, Timothy J.; de Klein, Cecile A. M.; Richards, Karl G.; Lanigan, Gary J.; Morales, Sergio E.

    2016-01-01

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N2O and N2 emissions. Soil pH regulates the reduction of N2O to N2, however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N2O emission ratio (N2O/(NO + N2O + N2)) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N2O emission ratio and community changes. Soil pH was negatively associated with N2O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir & nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N2O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N2O emission ratio through more efficient conversion of N2O to N2. PMID:27782174

  1. State of the art for ab initio vs empirical potentials for HeH+ (2e-), BeH+ (4e-), BeH (5e-), Li2 (6e-) and BH (6e-)

    NASA Astrophysics Data System (ADS)

    Dattani, Nike

    For large internuclear distances, the potential energy between two atoms is known analytically, based on constants that are calculated from atomic ab initio rather than molecular ab initio. This analytic form can be built into models for molecular potentials that are fitted to spectroscopic data. Such empirical potentials constitute the most accurate molecular potentials known. For HeH+, and BeH+, the long-range form of the potential is based only on the polarizabilities for He and H respectively, for which we have included up to 4th order QED corrections. For BeH, the best ab initio potential matches all but one observed vibrational spacing to < 1 cm- accuracy, and for Li2 the discrepancy in the spacings is < 0.08 cm-1 for all vibrational levels. But experimental methods such as photoassociation require the absolute energies, not spacings, and these are still several in several cm-1 disagreement. So empirical potentials are still the only reliable way to predict energies for few-electron systems. We also give predictions for various unobserved ''halo nucleonic molecules'' containing the ''halo'' isotopes: 6,8He, 11Li, 11,14Be and 8 , 17 , 19B.

  2. Supercritical water gasification of biomass for H2 production: process design.

    PubMed

    Fiori, Luca; Valbusa, Michele; Castello, Daniele

    2012-10-01

    The supercritical water gasification (SCWG) of biomass for H(2) production is analyzed in terms of process development and energetic self-sustainability. The conceptual design of a plant is proposed and the SCWG process involving several substrates (glycerol, microalgae, sewage sludge, grape marc, phenol) is simulated by means of AspenPlus™. The influence of various parameters - biomass concentration and typology, reaction pressure and temperature - is analyzed. The process accounts for the possibility of exploiting the mechanical energy of compressed syngas (later burned to sustain the SCWG reaction) through expansion in turbines, while purified H(2) is fed to fuel cells. Results show that the SCWG reaction can be energetically self-sustained if minimum feed biomass concentrations of 15-25% are adopted. Interestingly, the H(2) yields are found to be maximal at similar feed concentrations. Finally, an energy balance is performed showing that the whole process could provide a net power of about 150 kW(e)/(1000 kg(feed)/h). Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. The Effect of N2 Photoabsorption Cross Section Resolution on C2H6 Production in Titan’s Ionosphere

    NASA Astrophysics Data System (ADS)

    Luspay-Kuti, Adrienn; Mandt, Kathleen E.; Plessis, Sylvain; Greathouse, Thomas K.

    2014-11-01

    Titan’s rich organic chemistry begins with the photochemistry of only two molecules: N2 and CH4. The details on how higher-order hydrocarbons and nitriles are formed from these molecules have key implications for both the structure and evolution of Titan’s atmosphere, and for its surface-atmosphere interactions. Of high importance is the production of C2H6, which is a sink for CH4, and a main component in the polar lakes. Results of photochemical models, though, may be sensitive to the choice of input parameters, such as the N2 photoabsorption cross section resolution, as previously shown for nitrogen (Liang et al. (2007) ApJL 664, 115-118), and CH4 (Lavvas et al. (2011) Icarus 213, 233-251). Here we investigate the possibility of the same effect on the production rates of C2H6. We modeled production and loss rates, as well as mixing ratio and density profiles between an altitude of 600 and 1600 km for low and high resolution N2 cross sections via a coupled ion-neutral-thermal model (De La Haye et al. (2008) Icarus 197, 110-136; Mandt et al. (2012) JGR 117, E10006). Our results show a clear impact of photoabsorption cross section resolution used on all neutral and ion species contributing to C2H6 production. The magnitude of the influence varies amongst species. Ethane production profiles exhibit a significant increase with better resolution; a factor of 1.2 between 750 and 950 km, and a factor of 1.1 in the total column-integrated production rate. These values are lower limits, as additional reactions involving C2H5 not included in the model may also contribute to the production rates. The clear effect on C2H6 (which is not a parent molecule, nor does it bear nitrogen) may have important implications for other molecules in Titan’s atmosphere as well. The possible non-negligible impact of an isotope of nitrogen may argue for the inclusion of isotopes in photochemical models. For future analysis, development of a more efficient and streamlined model called

  4. Characterization of Photochemical Processes for H2 Production by CdS Nanorod-[FeFe] Hydrogenase Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, K. A.; Wilker, M. B.; Boehm, M.

    2012-03-28

    We have developed complexes of CdS nanorods capped with 3-mercaptopropionic acid (MPA) and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) that photocatalyze reduction of H{sup +} to H{sub 2} at a CaI turnover frequency of 380-900 s{sup -1} and photon conversion efficiencies of up to 20% under illumination at 405 nm. In this paper, we focus on the compositional and mechanistic aspects of CdS:CaI complexes that control the photochemical conversion of solar energy into H{sub 2}. Self-assembly of CdS with CaI was driven by electrostatics, demonstrated as the inhibition of ferredoxin-mediated H{sub 2} evolution by CaI. Production of H{sub 2} by CdS:CaImore » was observed only under illumination and only in the presence of a sacrificial donor. We explored the effects of the CdS:CaI molar ratio, sacrificial donor concentration, and light intensity on photocatalytic H{sub 2} production, which were interpreted on the basis of contributions to electron transfer, hole transfer, or rate of photon absorption, respectively. Each parameter was found to have pronounced effects on the CdS:CaI photocatalytic activity. Specifically, we found that under 405 nm light at an intensity equivalent to total AM 1.5 solar flux, H{sub 2} production was limited by the rate of photon absorption ({approx}1 ms{sup -1}) and not by the turnover of CaI. Complexes were capable of H{sub 2} production for up to 4 h with a total turnover number of 106 before photocatalytic activity was lost. This loss correlated with inactivation of CaI, resulting from the photo-oxidation of the CdS capping ligand MPA.« less

  5. The effect of pH on N2O production under aerobic conditions in a partial nitritation system.

    PubMed

    Law, Yingyu; Lant, Paul; Yuan, Zhiguo

    2011-11-15

    Ammonia-oxidising bacteria (AOB) are a major contributor to nitrous oxide (N(2)O) emissions during nitrogen transformation. N(2)O production was observed under both anoxic and aerobic conditions in a lab-scale partial nitritation system operated as a sequencing batch reactor (SBR). The system achieved 55 ± 5% conversion of the 1g NH(4)(+)-N/L contained in a synthetic anaerobic digester liquor to nitrite. The N(2)O emission factor was 1.0 ± 0.1% of the ammonium converted. pH was shown to have a major impact on the N(2)O production rate of the AOB enriched culture. In the investigated pH range of 6.0-8.5, the specific N(2)O production was the lowest between pH 6.0 and 7.0 at a rate of 0.15 ± 0.01 mg N(2)O-N/h/g VSS, but increased with pH to a maximum of 0.53 ± 0.04 mg N(2)O-N/h/g VSS at pH 8.0. The same trend was also observed for the specific ammonium oxidation rate (AOR) with the maximum AOR reached at pH 8.0. A linear relationship between the N(2)O production rate and AOR was observed suggesting that increased ammonium oxidation activity may have promoted N(2)O production. The N(2)O production rate was constant across free ammonia (FA) and free nitrous acid (FNA) concentrations of 5-78 mg NH(3)-N/L and 0.15-4.6 mg HNO(2)-N/L, respectively, indicating that the observed pH effect was not due to changes in FA or FNA concentrations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Quinone 1 e – and 2 e – /2 H + Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huynh, Mioy T.; Anson, Colin W.; Cavell, Andrew C.

    Quinones participate in diverse electron transfer and proton-coupled electron transfer processes in chemistry and biology. An experimental study of common quinones reveals a non-linear correlation between the 1 e – and 2 e –/2 H + reduction potentials. This unexpected observation prompted a computational study of 128 different quinones, probing their 1 e – reduction potentials, pKa values, and 2 e –/2 H + reduction potentials. The density functional theory calculations reveal an approximately linear correlation between these three properties and an effective Hammett constant associated with the quinone substituent(s). However, deviations from this linear scaling relationship are evident formore » quinones that feature halogen substituents, charged substituents, intramolecular hydrogen bonding in the hydroquinone, and/or sterically bulky substituents. These results, particularly the different substituent effects on the 1 e – versus 2 e – /2 H + reduction potentials, have important implications for designing quinones with tailored redox properties.« less

  7. Comparison of [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+ as Electrocatalysts for H2 Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedner, Eric S.; Helm, Monte L.

    The complexes [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+, where PPh2NPh2 is 1,5-diphenyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane, are compared as electrocatalysts for H2 production under identical experimental conditions. With [(DMF)H]+ as the acid in acetonitrile solution, [Pd(PPh2NPh2)2]2+ afforded a turnover frequency (TOF) of 230 s-1 for formation of H2 under dry conditions and a TOF of 640 s-1 when H2O was added. These rates are similar to the TOF’s of 590 s-1 (dry) and 720 s-1 (wet) that were previously measured for [Ni(PPh2NPh2)2(CH3CN)]2+ using [(DMF)H]+. The [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+ complexes both exhibited large current enhancements when treated with trifluoroacetic acid (TFA). At a TFA concentration of 1.8 M,more » TOF values of 5670 s-1 and 2060 s-1 were measured for [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+, respectively. The fast rates observed using TFA are, in part, attributed to homoconjugation of TFA in acetonitrile solutions, which decreases the effective pKa of the acid. In support of this hypothesis, dramatically lower rates of H2 production were observed using p anisidinium, which has a pKa comparable to TFA but does not homoconjugate significantly in acetonitrile solutions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is oper-ated by Battelle for the U.S. Department of Energy.« less

  8. Electrochemiluminescent pH sensor measured by the emission potential of TiO2 nanocrystals and its biosensing application.

    PubMed

    Liu, Xuan; Wang, Nianyue; Zhao, Wei; Jiang, Hui

    2015-02-01

    This work reports for the first time a potential-based nano-electrochemiluminescent (ECL) pH sensor, using anatase TiO2 nanocrystals (NCs) as the ECL probe. The first ECL peak potential of the TiO2 NCs shifted negatively with increasing pH, showing a linear range from -0.47 V (vs Ag/AgCl) at pH 3 to -1.06 V at pH 10. This phenomenon was attributed to the absorption of 'potential-determining ions' of OH(-) on the surface of TiO2 NCs, leading to larger impedance of the electron injection. Other common 'potential-determining ions', such as phosphate, induced a slight potential shift of 0.03 V at a concentration of 0.1 M. Using urease as an enzyme model, a urea biosensor was developed by the simultaneous modification of urease and TiO2 NCs on indium-tin oxide (ITO) electrodes. The biosensor, measured on the basis of the pH increase caused by the enzyme catalysis reaction, had a linear range of 0.01-2.0 mM, with a potential shift of 0.175 V. The as-prepared pH sensor, which has simple construction procedures and acceptable sensitivity and selectivity, may provide new avenues for the construction of ECL bioanalytical methodologies. Copyright © 2014 John Wiley & Sons, Ltd.

  9. H2O2 Production in Species of the Lactobacillus acidophilus Group: a Central Role for a Novel NADH-Dependent Flavin Reductase

    PubMed Central

    Hertzberger, Rosanne; Arents, Jos; Dekker, Henk L.; Pridmore, R. David; Gysler, Christof; Kleerebezem, Michiel

    2014-01-01

    Hydrogen peroxide production is a well-known trait of many bacterial species associated with the human body. In the presence of oxygen, the probiotic lactic acid bacterium Lactobacillus johnsonii NCC 533 excretes up to 1 mM H2O2, inducing growth stagnation and cell death. Disruption of genes commonly assumed to be involved in H2O2 production (e.g., pyruvate oxidase, NADH oxidase, and lactate oxidase) did not affect this. Here we describe the purification of a novel NADH-dependent flavin reductase encoded by two highly similar genes (LJ_0548 and LJ_0549) that are conserved in lactobacilli belonging to the Lactobacillus acidophilus group. The genes are predicted to encode two 20-kDa proteins containing flavin mononucleotide (FMN) reductase conserved domains. Reductase activity requires FMN, flavin adenine dinucleotide (FAD), or riboflavin and is specific for NADH and not NADPH. The Km for FMN is 30 ± 8 μM, in accordance with its proposed in vivo role in H2O2 production. Deletion of the encoding genes in L. johnsonii led to a 40-fold reduction of hydrogen peroxide formation. H2O2 production in this mutant could only be restored by in trans complementation of both genes. Our work identifies a novel, conserved NADH-dependent flavin reductase that is prominently involved in H2O2 production in L. johnsonii. PMID:24487531

  10. Development of a Rhodobacter capsulatus self-reporting model system for optimizing light-dependent, [FeFe]-hydrogenase-driven H 2 production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wecker, Matt S. A.; Beaton, Stephen E.; Chado, Robert A.

    The photosynthetic bacterium Rhodobacter capsulatus normally photoproduces H 2 as a by-product of its nitrogenase-catalyzed nitrogen-fixing activity. Such H 2 production, however, is expensive from a metabolic perspective, requiring nearly four times as many photons as the equivalent algal hydrogenase-based system. Here we report the insertion of a Clostridium acetobutylicum [FeFe]-hydrogenase and its three attendant hydrogenase assembly proteins into an R. capsulatus strain lacking its native uptake hydrogenase. Further, this strain is modified to fluoresce upon sensing H 2. The resulting strain photoproduces H 2 and self-reports its own H 2 production through fluorescence. Furthermore, this model system represents amore » unique method of developing hydrogenase-based H 2 production in R. capsulatus, may serve as a powerful system for in vivo directed evolution of hydrogenases and hydrogenase-associated genes, and provides a means of screening for increased metabolic production of H 2.« less

  11. Development of a Rhodobacter capsulatus self-reporting model system for optimizing light-dependent, [FeFe]-hydrogenase-driven H 2 production

    DOE PAGES

    Wecker, Matt S. A.; Beaton, Stephen E.; Chado, Robert A.; ...

    2016-08-17

    The photosynthetic bacterium Rhodobacter capsulatus normally photoproduces H 2 as a by-product of its nitrogenase-catalyzed nitrogen-fixing activity. Such H 2 production, however, is expensive from a metabolic perspective, requiring nearly four times as many photons as the equivalent algal hydrogenase-based system. Here we report the insertion of a Clostridium acetobutylicum [FeFe]-hydrogenase and its three attendant hydrogenase assembly proteins into an R. capsulatus strain lacking its native uptake hydrogenase. Further, this strain is modified to fluoresce upon sensing H 2. The resulting strain photoproduces H 2 and self-reports its own H 2 production through fluorescence. Furthermore, this model system represents amore » unique method of developing hydrogenase-based H 2 production in R. capsulatus, may serve as a powerful system for in vivo directed evolution of hydrogenases and hydrogenase-associated genes, and provides a means of screening for increased metabolic production of H 2.« less

  12. H2 cycling and microbial bioenergetics in anoxic sediments

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The simple biochemistry of H2 is central to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. In anoxic sediments, the great majority of microbial redox processes involve H2 as a reactant, product, or potential by-product, and the thermodynamics of these processes are thus highly sensitive to fluctuations in environmental H2 concentrations. In turn, H2 concentrations are controlled by the activity of H2-consuming microorganisms, which efficiently utilize this substrate down to levels which correspond to their bioenergetic limitations. Consequently, any environmental change which impacts the thermodynamics of H2-consuming organisms is mirrored by a corresponding change in H2 concentrations. This phenomenon is illustrated in anoxic sediments from Cape Lookout Bight, NC, USA: H2 concentrations are controlled by a suite of environmental parameters (e.g., temperature, sulfate concentrations) in a fashion which can be quantitatively described by a simple thermodynamic model. These findings allow us to calculate the apparent minimum quantity of biologically useful energy in situ. We find that sulfate reducing bacteria are not active at energy yields below -18 kJ per mole sulfate, while methanogenic archaea exhibit a minimum close to -10 kJ per mole methane.

  13. Quantum chemical study of the mechanism of reaction between NH (X 3sigma-) and H2, H2O, and CO2 under combustion conditions.

    PubMed

    Mackie, John C; Bacskay, George B

    2005-12-29

    Reactions of ground-state NH (3sigma-) radicals with H2, H2O, and CO2 have been investigated quantum chemically, whereby the stationary points of the appropriate reaction potential energy surfaces, that is, reactants, products, intermediates, and transition states, have been identified at the G3//B3LYP level of theory. Reaction between NH and H2 takes place via a simple abstraction transition state, and the rate coefficient for this reaction as derived from the quantum chemical calculations, k(NH + H2) = (1.1 x 10(14)) exp(-20.9 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K, is found to be in good agreement with experiment. For reaction between triplet NH and H2O, no stable intermediates were located on the triplet reaction surface although several stable species were found on the singlet surface. No intersystem crossing seam between triplet NH + H2O and singlet HNO + H2 (the products of lowest energy) was found; hence there is no evidence to support the existence of a low-energy pathway to these products. A rate coefficient of k(NH + H2O) = (6.1 x 10(13)) exp(-32.8 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K for the reaction NH (3sigma-) + H2O --> NH2 (2B) + OH (2pi) was derived from the quantum chemical results. The reverse rate coefficient, calculated via the equilibrium constant, is in agreement with values used in modeling the thermal de-NO(x) process. For the reaction between triplet NH and CO2, several stable intermediates on both triplet and singlet reaction surfaces were located. Although a pathway from triplet NH + CO2 to singlet HNO + CO involving intersystem crossing in an HN-CO2 adduct was discovered, no pathway of sufficiently low activation energy was discovered to compare with that found in an earlier experiment [Rohrig, M.; Wagner, H. G. Proc. Combust. Inst. 1994, 25, 993.].

  14. Thermoelectric properties of 2H-CuGaO2 for device applications: A first principle TB-mBJ potential study

    NASA Astrophysics Data System (ADS)

    Bhamu, K. C.; Praveen, C. S.

    2017-12-01

    Here we report the structural, electronic, optical, and thermoelectric properties of delafossite type 2H-CuGaO2 using first principles calculations. The present calculation predict an indirect band gap of 1.20 eV and a direct band gap of 3.48 eV. A detailed analysis of the electronic structure is provided based on atom and orbital projected density of states. Frequency dependent dielectric functions, refractive index, and absorption coefficient as a function of photon energy are discussed. The thermoelectric properties with power factor, and the figure of merit are reported as a function of chemical potential in the region ± 0.195 (μ -EF) eV at constant temperature of 300 and 800 K. The thermoelectric properties shows that 2H-CuGaO2 could be potential candidate for engineering devises operating at high temperature for the chemical potential in the range of ± 0.055 (μ -EF) eV and beyond this range the thermoelectric performance of 2H-CuGaO2 get reduced.

  15. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  16. Structure and Kinetic Analysis of H2S Production by Human Mercaptopyruvate Sulfurtransferase*

    PubMed Central

    Yadav, Pramod Kumar; Yamada, Kazuhiro; Chiku, Taurai; Koutmos, Markos; Banerjee, Ruma

    2013-01-01

    Mercaptopyruvate sulfurtransferase (MST) is a source of endogenous H2S, a gaseous signaling molecule implicated in a wide range of physiological processes. The contribution of MST versus the other two H2S generators, cystathionine β-synthase and γ-cystathionase, has been difficult to evaluate because many studies on MST have been conducted at high pH and have used varied reaction conditions. In this study, we have expressed, purified, and crystallized human MST in the presence of the substrate 3-mercaptopyruvate (3-MP). The kinetics of H2S production by MST from 3-MP was studied at pH 7.4 in the presence of various physiological persulfide acceptors: cysteine, dihydrolipoic acid, glutathione, homocysteine, and thioredoxin, and in the presence of cyanide. The crystal structure of MST reveals a mixture of the product complex containing pyruvate and an active site cysteine persulfide (Cys248-SSH) and a nonproductive intermediate in which 3-MP is covalently linked via a disulfide bond to an active site cysteine. The crystal structure analysis allows us to propose a detailed mechanism for MST in which an Asp-His-Ser catalytic triad is positioned to activate the nucleophilic cysteine residue and participate in general acid-base chemistry, whereas our kinetic analysis indicates that thioredoxin is likely to be the major physiological persulfide acceptor for MST. PMID:23698001

  17. Kinetics of Al + H2O reaction: theoretical study.

    PubMed

    Sharipov, Alexander; Titova, Nataliya; Starik, Alexander

    2011-05-05

    Quantum chemical calculations were carried out to study the reaction of Al atom in the ground electronic state with H(2)O molecule. Examination of the potential energy surface revealed that the Al + H(2)O → AlO + H(2) reaction must be treated as a complex process involving two steps: Al + H(2)O → AlOH + H and AlOH + H → AlO + H(2). Activation barriers for these elementary reaction channels were calculated at B3LYP/6-311+G(3df,2p), CBS-QB3, and G3 levels of theory, and appropriate rate constants were estimated by using a canonical variational theory. Theoretical analysis exhibited that the rate constant for the Al + H(2)O → products reaction measured by McClean et al. must be associated with the Al + H(2)O → AlOH + H reaction path only. The process of direct HAlOH formation was found to be negligible at a pressure smaller than 100 atm.

  18. Attempts To Catalyze the Electrochemical CO2-to-Methanol Conversion by Biomimetic 2e(-) + 2H(+) Transferring Molecules.

    PubMed

    Saveant, Jean-Michel; Tard, Cédric

    2016-01-27

    In the context of the electrochemical and photochemical conversion of CO2 to liquid fuels, one of the most important issues of contemporary energy and environmental issues, the possibility of pushing the reduction beyond the CO and formate level and catalytically generate products such as methanol is particularly attractive. Biomimetic 2e(-) + 2H(+) is often viewed as a potential hydride donor. This has been the object of a recent interesting attempt (J. Am. Chem. Soc. 2014, 136, 14007) in which 6,7-dimethyl-4-hydroxy-2-mercaptopteridine was reported as a catalyst of the electrochemical conversion of CO2 to methanol and formate, based on cyclic voltammetric, (13)C NMR, IR, and GC analyses. After checking electrolysis at the reported potential and at a more negative potential to speed up the reaction, it appears, on (1)H NMR and gas chromatographic grounds, that there is neither catalysis nor methanol and nor formate production. (1)H NMR (with H2O presaturation) brings about an unambiguous answer to the eventual production of methanol and formate, much more so than (13)C NMR, which can even be misleading when no internal standard is used as in the above-mentioned paper. IR analysis is even less conclusive. Use of a GC technique with sufficient sensitivity confirmed the lack of methanol formation. The direct or indirect hydride transfer electrochemical reduction of CO2 to formate and to methanol remains an open question. Original ideas and efforts such as those discussed here are certainly worth tempting. However, in view of the importance of the stakes, it appears necessary to carefully check reports in this area.

  19. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery

    PubMed Central

    Elshafie, Abdulkadir E.; Joshi, Sanket J.; Al-Wahaibi, Yahya M.; Al-Bemani, Ali S.; Al-Bahry, Saif N.; Al-Maqbali, Dua’a; Banat, Ibrahim M.

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13–15% salinity, pH range of 2–12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery. PMID:26635782

  20. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery.

    PubMed

    Elshafie, Abdulkadir E; Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Al-Bahry, Saif N; Al-Maqbali, Dua'a; Banat, Ibrahim M

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery.

  1. Influence of Background H2O on the Collision-Induced Dissociation Products Generated from [UO2NO3]+

    NASA Astrophysics Data System (ADS)

    Van Stipdonk, Michael J.; Iacovino, Anna; Tatosian, Irena

    2018-04-01

    Developing a comprehensive understanding of the reactivity of uranium-containing species remains an important goal in areas ranging from the development of nuclear fuel processing methods to studies of the migration and fate of the element in the environment. Electrospray ionization (ESI) is an effective way to generate gas-phase complexes containing uranium for subsequent studies of intrinsic structure and reactivity. Recent experiments by our group have demonstrated that the relatively low levels of residual H2O in a 2-D, linear ion trap (LIT) make it possible to examine fragmentation pathways and reactions not observed in earlier studies conducted with 3-D ion traps (Van Stipdonk et al. J. Am. Soc. Mass Spectrom. 14, 1205-1214, 2003). In the present study, we revisited the dissociation of complexes composed of uranyl nitrate cation [UVIO2(NO3)]+ coordinated by alcohol ligands (methanol and ethanol) using the 2-D LIT. With relatively low levels of background H2O, collision-induced dissociation (CID) of [UVIO2(NO3)]+ primarily creates [UO2(O2)]+ by the ejection of NO. However, CID (using He as collision gas) of [UVIO2(NO3)]+ creates [UO2(H2O)]+ and UO2 + when the 2-D LIT is used with higher levels of background H2O. Based on the results presented here, we propose that product ion spectrum in the previous experiments was the result of a two-step process: initial formation of [UVIO2(O2)]+ followed by rapid exchange of O2 for H2O by ion-molecule reaction. Our experiments illustrate the impact of residual H2O in ion trap instruments on the product ions generated by CID and provide a more accurate description of the intrinsic dissociation pathway for [UVIO2(NO3)]+. [Figure not available: see fulltext.

  2. A five-dimensional potential-energy surface for the rotational excitation of SO2 by H2 at low temperatures

    NASA Astrophysics Data System (ADS)

    Spielfiedel, A.; Senent, M.-L.; Dayou, F.; Balança, C.; Cressiot-Vincent, L.; Faure, A.; Wiesenfeld, L.; Feautrier, N.

    2009-07-01

    The SO2 molecule is detected in a large variety of astronomical objects, notably molecular clouds and star-forming regions. An accurate modeling of the observations needs a very good knowledge of the collisional excitation rates with H2 because of competition between collisional and radiative processes that excite and quench the different rotational levels of SO2. We report here a five-dimensional, rigid-body, interaction potential for SO2-H2. As a first application, we present rate constants for excitation/de-excitation of the 31 first levels of SO2 by para-H2 at low temperatures. Propensity rules are discussed.

  3. Collisions of slow polyatomic ions with surfaces: dissociation and chemical reactions of C2H2+*, C2H3+, C2H4+*, C2H5+, and their deuterated variants C2D2+* and C2D4+* on room-temperature and heated carbon surfaces.

    PubMed

    Jasík, Juraj; Zabka, Jan; Feketeova, Linda; Ipolyi, Imre; Märk, Tilmann D; Herman, Zdenek

    2005-11-17

    Interaction of C2Hn+ (n = 2-5) hydrocarbon ions and some of their isotopic variants with room-temperature and heated (600 degrees C) highly oriented pyrolytic graphite (HOPG) surfaces was investigated over the range of incident energies 11-46 eV and an incident angle of 60 degrees with respect to the surface normal. The work is an extension of our earlier research on surface interactions of CHn+ (n = 3-5) ions. Mass spectra, translational energy distributions, and angular distributions of product ions were measured. Collisions with the HOPG surface heated to 600 degrees C showed only partial or substantial dissociation of the projectile ions; translational energy distributions of the product ions peaked at about 50% of the incident energy. Interactions with the HOPG surface at room temperature showed both surface-induced dissociation of the projectiles and, in the case of radical cation projectiles C2H2+* and C2H4+*, chemical reactions with the hydrocarbons on the surface. These reactions were (i) H-atom transfer to the projectile, formation of protonated projectiles, and their subsequent fragmentation and (ii) formation of a carbon chain build-up product in reactions of the projectile ion with a terminal CH3-group of the surface hydrocarbons and subsequent fragmentation of the product ion to C3H3+. The product ions were formed in inelastic collisions in which the translational energy of the surface-excited projectile peaked at about 32% of the incident energy. Angular distributions of reaction products showed peaking at subspecular angles close to 68 degrees (heated surfaces) and 72 degrees (room-temperature surfaces). The absolute survival probability at the incident angle of 60 degrees was about 0.1% for C2H2+*, close to 1% for C2H4+* and C2H5+, and about 3-6% for C2H3+.

  4. Theoretical studies of the potential surface for the F - H2 greater than HF + H reaction

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Walch, Stephen, P.; Langhoff, Stephen R.; Taylor, Peter R.; Jaffe, Richard L.

    1987-01-01

    The F + H2 yields HF + H potential energy hypersurface was studied in the saddle point and entrance channel regions. Using a large (5s 5p 3d 2f 1g/4s 3p 2d) atomic natural orbital basis set, a classical barrier height of 1.86 kcal/mole was obtained at the CASSCF/multireference CI level (MRCI) after correcting for basis set superposition error and including a Davidson correction (+Q) for higher excitations. Based upon an analysis of the computed results, the true classical barrier is estimated to be about 1.4 kcal/mole. The location of the bottleneck on the lowest vibrationally adiabatic potential curve was also computed and the translational energy threshold determined from a one-dimensional tunneling calculation. Using the difference between the calculated and experimental threshold to adjust the classical barrier height on the computed surface yields a classical barrier in the range of 1.0 to 1.5 kcal/mole. Combining the results of the direct estimates of the classical barrier height with the empirical values obtained from the approximation calculations of the dynamical threshold, it is predicted that the true classical barrier height is 1.4 + or - 0.4 kcal/mole. Arguments are presented in favor of including the relatively large +Q correction obtained when nine electrons are correlated at the CASSCF/MRCI level.

  5. Preservation of H2 production activity in nanoporous latex coatings of Rhodopseudomonas palustris CGA009 during dry storage at ambient temperatures

    PubMed Central

    Piskorska, M; Soule, T; Gosse, J L; Milliken, C; Flickinger, M C; Smith, G W; Yeager, C M

    2013-01-01

    Summary To assess the applicability of latex cell coatings as an ‘off-the-shelf’ biocatalyst, the effect of osmoprotectants, temperature, humidity and O2 on preservation of H2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H2 production. Beyond 2 weeks of storage, sorbitol-treated coatings lost all H2 production activity, whereas considerable H2 production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H2 (0–0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27–53% of their H2 production activity after 8 weeks of storage. When stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state. PMID:23331993

  6. Induction of a Torpor-Like State by 5’-AMP Does Not Depend on H2S Production

    PubMed Central

    Dugbartey, George J.; Bouma, Hjalmar R.; Strijkstra, Arjen M.; Boerema, Ate S.; Henning, Robert H.

    2015-01-01

    Background Therapeutic hypothermia is used to reduce ischemia/reperfusion injury (IRI) during organ transplantation and major surgery, but does not fully prevent organ injury. Interestingly, hibernating animals undergo repetitive periods of low body temperature called ‘torpor’ without signs of organ injury. Recently, we identified an essential role of hydrogen sulfide (H2S) in entrance into torpor and preservation of kidney integrity during hibernation. A torpor-like state can be induced pharmacologically by injecting 5’-Adenosine monophosphate (5’-AMP). The mechanism by which 5’-AMP leads to the induction of a torpor-like state, and the role of H2S herein, remains to be unraveled. Therefore, we investigated whether induction of a torpor-like state by 5-AMP depends on H2S production. Methods To study the role of H2S on the induction of torpor, amino-oxyacetic acid (AOAA), a non-specific inhibitor of H2S, was administered before injection with 5'-AMP to block endogenous H2S production in Syrian hamster. To assess the role of H2S on maintenance of torpor induced by 5’-AMP, additional animals were injected with AOAA during torpor. Key Results During the torpor-like state induced by 5’-AMP, the expression of H2S- synthesizing enzymes in the kidneys and plasma levels of H2S were increased. Blockade of these enzymes inhibited the rise in the plasma level of H2S, but neither precluded torpor nor induced arousal. Remarkably, blockade of endogenous H2S production was associated with increased renal injury. Conclusions Induction of a torpor-like state by 5’-AMP does not depend on H2S, although production of H2S seems to attenuate renal injury. Unraveling the mechanisms by which 5’-AMP reduces the metabolism without organ injury may allow optimization of current strategies to limit (hypothermic) IRI and improve outcome following organ transplantation, major cardiac and brain surgery. PMID:26295351

  7. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    PubMed

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  8. Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments.

    PubMed

    Kim, Ilho; Yamashita, Naoyuki; Tanaka, Hiroaki

    2009-10-01

    Photodegradation characteristics of pharmaceuticals and personal care products (PPCPs) and the effectiveness of H(2)O(2) addition for PPCPs photodegradation during UV treatment were examined in this study. Average k (1st order rate constant) value for all the PPCPs investigated increased by a factor of 1.3 by H(2)O(2) addition during UV treatment using biologically treated water (TW) spiked with the 30 PPCPs. Therefore, the effectiveness of H(2)O(2) addition for PPCPs removal during UV treatment in real wastewater treatment process was expected. It could be also known that H(2)O(2) addition would improve photodegradation rates of PPCPs highly resistant for UV treatment such as DEET, ethenzamide and theophylline. UV dose required for 90% degradation of each PPCP was calculated from k values obtained in UV and UV/H(2)O(2) treatment experiments using TW spiked with 30 PPCPs. For UV treatment, UV dose required for degrading each PPCP by 90% of initial concentration ranged from 38 mJ cm(-2) to 5644 mJ cm(-2), indicating that most of PPCPs will not be removed sufficiently in UV disinfection process in wastewater treatment plant. For UV/H(2)O(2) treatment, all the PPCPs except seven PPCPs including cyclophosphamide and 2-QCA were degraded by more than 90% by UV irradiation for 30 min (UV dose: 691 mJ cm(-2)), indicating that H(2)O(2) addition during UV treatment will be highly effective for improving the degradation of PPCPs by UV, even though much higher UV dose is still necessary comparing to for UV disinfection.

  9. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production

    PubMed Central

    Rau, Greg H.; Carroll, Susan A.; Bourcier, William L.; Singleton, Michael J.; Smith, Megan M.; Aines, Roger D.

    2013-01-01

    We experimentally demonstrate the direct coupling of silicate mineral dissolution with saline water electrolysis and H2 production to effect significant air CO2 absorption, chemical conversion, and storage in solution. In particular, we observed as much as a 105-fold increase in OH− concentration (pH increase of up to 5.3 units) relative to experimental controls following the electrolysis of 0.25 M Na2SO4 solutions when the anode was encased in powdered silicate mineral, either wollastonite or an ultramafic mineral. After electrolysis, full equilibration of the alkalized solution with air led to a significant pH reduction and as much as a 45-fold increase in dissolved inorganic carbon concentration. This demonstrated significant spontaneous air CO2 capture, chemical conversion, and storage as a bicarbonate, predominantly as NaHCO3. The excess OH− initially formed in these experiments apparently resulted via neutralization of the anolyte acid, H2SO4, by reaction with the base mineral silicate at the anode, producing mineral sulfate and silica. This allowed the NaOH, normally generated at the cathode, to go unneutralized and to accumulate in the bulk electrolyte, ultimately reacting with atmospheric CO2 to form dissolved bicarbonate. Using nongrid or nonpeak renewable electricity, optimized systems at large scale might allow relatively high-capacity, energy-efficient (<300 kJ/mol of CO2 captured), and inexpensive (<$100 per tonne of CO2 mitigated) removal of excess air CO2 with production of carbon-negative H2. Furthermore, when added to the ocean, the produced hydroxide and/or (bi)carbonate could be useful in reducing sea-to-air CO2 emissions and in neutralizing or offsetting the effects of ongoing ocean acidification. PMID:23729814

  10. Ab initio potential energy and dipole moment surfaces of the F(-)(H2O) complex.

    PubMed

    Kamarchik, Eugene; Toffoli, Daniele; Christiansen, Ove; Bowman, Joel M

    2014-02-05

    We present full-dimensional, ab initio potential energy and dipole moment surfaces for the F(-)(H2O) complex. The potential surface is a permutationally invariant fit to 16,114 coupled-cluster single double (triple)/aVTZ energies, while the dipole surface is a covariant fit to 11,395 CCSD(T)/aVTZ dipole moments. Vibrational self-consistent field/vibrational configuration interaction (VSCF/VCI) calculations of energies and the IR-spectrum are presented both for F(-)(H2O) and for the deuterated analog, F(-)(D2O). A one-dimensional calculation of the splitting of the ground state, due to equivalent double-well global minima, is also reported. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Photo-biohydrogen production potential of Rhodobacter capsulatus-PK from wheat straw

    PubMed Central

    2013-01-01

    Background Biotechnological exploitation of lignocellulosic biomass is promising for sustainable and environmentally sound energy provision strategy because of the abundant availability of the renewable resources. Wheat straw (WS) comprising of 75-80% cellulose and hemicellulose is one of widely available, inexpensive and renewable lignocellulosic biomass types. The cellulosic and hemicellulose substrate can be hydrolyzed into monomeric sugars by chemical and/or biological methods. Results This study examined comparative potential of dilute acid and pre-ammonia pretreated and enzymatically hydrolyzed wheat straw (WS) for hydrogen production by purple non sulfur bacterium Rhodobacter capsulatus-PK. Gas production became noticeable after 14 h of inoculation in WS pretreated with 4% H2SO4. The detoxified liquid hydrolyzate (DLH) after overliming attained a production level of 372 mL-H2/L after 16 h under illumination of 120-150 W/m2 at 30 ± 2.0°C. Whereas the non-detoxified acid pretreated hydrolyzate (NDLH) of WS could produce only upto 254 mL-H2/L after 21 h post inoculation. Evolution of H2 became observable just after 10 ± 2.0 h of inoculation by employing 48 h age inoculum on the WS pretreated with 30% ammonia, hydrolyzed with cellulase 80 FPU/g and β-glucosidase 220 CbU/ml at 50°C. Upto 712 ml/L of culture was measured with continuous shaking for 24 h. The 47.5% and 64.2% higher hydrogen volume than the DLH and NDLH substrates, respectively appeared as a function of significantly higher monomeric sugar contents of the enzymatically hydrolyzed substrate and lesser/zero amounts of toxic derivatives including pH reducing agents. Conclusion Photofermentative hydrogen production from lignocellulosic waste is a feasible approach for eco-friendly sustainable supply of bioenergy in a cost-effective way. Results of this study provide new insight for addressing biotechnological exploitation of abundantly available and low-cost cellulosic substrates

  12. Selective Adsorption Resonances in the Scattering of n-H2 p-H2 n-D2 and o-D2 from Ag(111)

    NASA Astrophysics Data System (ADS)

    Yu, Chien-Fan; Whaley, K. Birgitta; Hogg, Charles S.; Sibener, Steven J.

    1983-12-01

    Diffractive and rotationally mediated selective adsorption scattering resonances are reported for n-H2 p-H2 n-D2 and o-D2 on Ag(111). Small resonance shifts and line-width differences are observed between n-H2 and p-H2 indicating a weak orientation dependence of the laterally averaged H2/Ag(111) potential. The p-H2 and o-D2 levels were used to determine the isotropic component of this potential, yielding a well depth of ~ 32 meV.

  13. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization.

    PubMed

    Pan, Xiaofang; Angelidaki, Irini; Alvarado-Morales, Merlin; Liu, Houguang; Liu, Yuhong; Huang, Xu; Zhu, Gefu

    2016-10-01

    For evaluating the methanogenesis from typical methanogenic precursors (formate, acetate and H2/CO2), CH4 production kinetics were investigated at 37±1°C in batch anaerobic digestion tests and stimulated by modified Gompertz model. The results showed that maximum methanation rate from formate, acetate and H2/CO2 were 19.58±0.49, 42.65±1.17 and 314.64±3.58NmL/gVS/d in digested manure system and 6.53±0.31, 132.04±3.96 and 640.16±19.92NmL/gVS/d in sewage sludge system during second generation incubation. Meanwhile the model could not fit well in granular sludge system, while the rate of formate methanation was faster than from H2/CO2 and acetate. Considering both the kinetic results and microbial assay we could conclude that H2/CO2 methanation was the fastest methanogenic step in digested manure and sewage sludge system with Methanomicrobiales as dominant methanogens, while granular sludge with Methanobacteriales as dominant methanogens contributed to the fastest formate methanation. Copyright © 2016. Published by Elsevier Ltd.

  14. Synchrotron Photoionization Mass Spectrometry Measurements of Kinetics and Product Formation in the Allyl Radical (H2CCHCH2)Self Reaction

    NASA Technical Reports Server (NTRS)

    Selby, Talitha M.; Melini, giovanni; Goulay, Fabien; Leone, Stephen R.; Fahr, Askar; Taatjes, Craig A.; Osborn, David L.

    2008-01-01

    Product channels for the self-reaction of the resonance-stabilized allyl radical, C3H5 + C3H5, have been studied with isomeric specificity at temperatures from 300-600 K and pressures from 1-6 Torr using time-resolved multiplexed photoionization mass spectrometry. Under these conditions 1,5-hexadiene was the only C6H10 product isomer detected. The lack of isomerization of the C6H10 product is in marked contrast to the C6H6 product in the related C3H3 + C3H3 reaction, and is due to the more saturated electronic structure of the C6H10 system. The disproportionation product channel, yielding allene + propene, was also detected, with an upper limit on the branching fraction relative to recombination of 0.03. Analysis of the allyl radical decay at 298 K yielded a total rate coefficient of (2.7 +/- 0.8) x 10(exp -11) cu cm/molecule/s, in good agreement with pre.vious experimental measurements using ultraviolet kinetic absorption spectroscopy and a recent theoretical determination using variable reaction coordinate transition state theory. This result provides independent indirect support for the literature value of the allyl radical ultraviolet absorption cross-section near 223 nm.

  15. Low levels of iron enhance UV/H2O2 efficiency at neutral pH.

    PubMed

    Ulliman, Sydney L; McKay, Garrett; Rosario-Ortiz, Fernando L; Linden, Karl G

    2018-03-01

    While the presence of iron is generally not seen as favorable for UV-based treatment systems due to lamp fouling and decreased UV transmittance, we show that low levels of iron can lead to improvements in the abatement of chemicals in the UV-hydrogen peroxide advanced oxidation process. The oxidation potential of an iron-assisted UV/H 2 O 2 (UV 254  + H 2 O 2  + iron) process was evaluated at neutral pH using iron levels below USEPA secondary drinking water standards (<0.3 mg/L). Para-chlorobenzoic acid (pCBA) was used as a hydroxyl radical (HO) probe to quantify HO steady state concentrations. Compounds degraded by different mechanisms including, carbamazepine (CBZ, HO oxidation) and N-nitrosodimethylamine (NDMA, direct photolysis), were used to investigate the effect of iron on compound degradation for UV/H 2 O 2 systems. The effects of iron species (Fe 2+ and Fe 3+ ), iron concentration (0-0.3 mg/L), H 2 O 2 concentration (0-10 mg/L) and background water matrix (low-carbon tap (LCT) and well water) on HO production and compound removal were examined. Iron-assisted UV/H 2 O 2 efficiency was most influenced by the target chemical and the water matrix. Added iron to UV/H 2 O 2 was shown to increase the steady-state HO concentration by approximately 25% in all well water scenarios. While CBZ removal was unchanged by iron addition, 0.3 mg/L iron improved NDMA removal rates in both LCT and well water matrices by 15.1% and 4.6% respectively. Furthermore, the combination of UV/Fe without H 2 O 2 was also shown to enhance NDMA removal when compared to UV photolysis alone indicating the presence of degradation pathways other than HO oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Salt at concentrations relevant to meat processing enhances Shiga toxin 2 production in Escherichia coli O157:H7.

    PubMed

    Harris, Shaun M; Yue, Wan-Fu; Olsen, Sarena A; Hu, Jia; Means, Warrie J; McCormick, Richard J; Du, Min; Zhu, Mei-Jun

    2012-10-15

    Escherichia coli (E. coli) O157:H7 remains a major food safety concern associated with meat, especially beef products. Shiga toxins (Stx) are key virulence factors produced by E. coli O157:H7 that are responsible for hemorrhagic colitis and Hemolytic Uremic Syndrome. Stx are heat stable and can be absorbed after oral ingestion. Despite the extensive study of E. coli O157:H7 survival during meat processing, little attention is paid to the production of Stx during meat processing. The objective of this study was to elucidate the effect of salt, an essential additive to processed meat, at concentrations relevant to meat processing (0%, 1%, 2%, 3%, W/V) on Stx2 production and Stx2 prophage induction by E. coli O157:H7 strains. For both E. coli O157:H7 86-24 and EDL933 strains, including 2% salt in LB broth decreased (P<0.05) E. coli O157:H7 population, but increased (P<0.05) Stx2 production (as measured relative to Log(10)CFU) compared to that of the control (1% salt). Supplementing 3% salt decreased (P<0.05) both E. coli O157:H7 number and Stx2 production. Quantitative RT-PCR indicated that stx2 mRNA expression in culture media containing 2% salt was greatly increased (P<0.05) compared to other salt concentrations. Consistent with enhanced Stx2 production and stx2 expression, the 2% salt group had highest lambdoid phage titer and stx2 prophage induction among all salt treatments. RecA is a key mediator of bacterial response to stress, which mediates prophage activation. Quantitative RT-PCR further indicated that recA mRNA expression was higher in both 2% and 3% salt than that of 0% and 1% salt treatments, indicating that stress was involved in enhanced Stx2 production. In conclusion, salt at the concentration used for meat processing enhances Stx production, a process linked to bacterial stress response and lambdoid prophage induction. Published by Elsevier B.V.

  17. Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2S

    NASA Astrophysics Data System (ADS)

    Chaudhari, Nilima S.; Warule, Sambhaji S.; Dhanmane, Sushil A.; Kulkarni, Milind V.; Valant, Matjaz; Kale, Bharat B.

    2013-09-01

    Nitrogen-doped TiO2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO2 with a thickness of ~2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m2 g-1). The N-TiO2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H2S and production of hydrogen under solar light. The maximum hydrogen evolution obtained is higher than other known N-TiO2 systems. It is noteworthy that photohydrogen production using the unique marigold flowers of N-TiO2 from abundant H2S under solar light is hitherto unattempted. The proposed synthesis method can also be utilized to design other hierarchical nanostructured N-doped metal oxides.Nitrogen-doped TiO2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO2 with a thickness of ~2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m2 g-1). The N-TiO2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H2S and

  18. Improved photobio-H2 production regulated by artificial miRNA targeting psbA in green microalga Chlamydomonas reinhardtii.

    PubMed

    Li, Hui; Liu, Yanmei; Wang, Yuting; Chen, Meirong; Zhuang, Xiaoshan; Wang, Chaogang; Wang, Jiangxin; Hu, Zhangli

    2018-01-01

    Sulfur-deprived cultivation of Chlamydomonas reinhardtii , referred as "two-stage culture" transferring the cells from regular algal medium to sulfur-deplete one, has been extensively studied to improve photobio-H 2 production in this green microalga. During sulfur-deprivation treatment, the synthesis of a key component of photosystem II complex, D1 protein, was inhibited and improved photobio-H 2 production could be established in C. reinhardtii . However, separation of algal cells from a regular liquid culture medium to a sulfur-deprived one is not only a discontinuous process, but also a cost- and time-consuming operation. More applicable and economic alternatives for sustained H 2 production by C. reinhardtii are still highly required. In the present study, a significant improvement in photobio-H 2 production was observed in the transgenic green microalga C. reinhardtii , which employed a newly designed strategy based on a heat-inducible artificial miRNA (amiRNA) expression system targeting D1-encoded gene, psbA . A transgenic algal strain referred as "amiRNA-D1" has been successfully obtained by transforming the expression vector containing a heat-inducible promoter. After heat shock conducted in the same algal cultures, the expression of amiRNA-D1 was detected increased 15-fold accompanied with a 73% decrease of target gene psbA . More interestingly, this transgenic alga accumulated about 60% more H 2 content than the wild-type strain CC-849 at the end of 7-day cultivation. The photobio-H 2 production in the engineered transgenic alga was significantly improved. Without imposing any nutrient-deprived stress, this novel strategy provided a convenient and efficient way for regulation of photobio-H 2 production in green microalga by simply "turn on" the expression of a designed amiRNA.

  19. Degradation mechanisms of Microcystin-LR during UV-B photolysis and UV/H2O2 processes: Byproducts and pathways.

    PubMed

    Moon, Bo-Ram; Kim, Tae-Kyoung; Kim, Moon-Kyung; Choi, Jaewon; Zoh, Kyung-Duk

    2017-10-01

    The removal and degradation pathways of microcystin-LR (MC-LR, [M+H] +  = 995.6) in UV-B photolysis and UV-B/H 2 O 2 processes were examined using liquid chromatography-tandem mass spectrometry. The UV/H 2 O 2 process was more efficient than UV-B photolysis for MC-LR removal. Eight by-products were newly identified in the UV-B photolysis ([M+H] +  = 414.3, 417.3, 709.6, 428.9, 608.6, 847.5, 807.4, and 823.6), and eleven by-products were identified in the UV-B/H 2 O 2 process ([M+H] +  = 707.4, 414.7, 429.3, 445.3, 608.6, 1052.0, 313.4, 823.6, 357.3, 245.2, and 805.7). Most of the MC-LR by-products had lower [M+H] + values than the MC-LR itself during both processes, except for the [M+H] + value of 1052.0 during UV-B photolysis. Based on identified by-products and peak area patterns, we proposed potential degradation pathways during the two processes. Bond cleavage and intramolecular electron rearrangement by electron pair in the nitrogen atom were the major reactions during UV-B photolysis and UV-B/H 2 O 2 processes, and hydroxylation by OH radical and the adduct formation reaction between the produced by-products were identified as additional pathways during the UV-B/H 2 O 2 process. Meanwhile, the degradation by-products identified from MC-LR during UV-B/H 2 O 2 process can be further degraded by increasing H 2 O 2 dose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Rotational excitations in para-H2+para-H2 collisions: full- and reduced-dimensional quantum wave packet studies comparing different potential energy surfaces.

    PubMed

    Otto, Frank; Gatti, Fabien; Meyer, Hans-Dieter

    2008-02-14

    We study the process of rotational excitation in the collisions of para-H(2) with para-H(2) by propagating wave packets with the multiconfiguration time-dependent Hartree (MCTDH) algorithm. Transition probabilities are then calculated by the method of Tannor and Weeks based on time-correlation functions. Calculations were carried out up to a total angular momentum of J=70 to compute integral cross sections up to 1.2 eV in collision energy and thermal rate coefficients from 100 to 3000 K. The process is studied on the full-dimensional potential energy surface of Boothroyd-Martin-Keogh-Peterson (BMKP) as well as on the rigid rotor surface of Diep and Johnson. We test the validity of the rigid rotor approximation by also considering two rigid rotor restrictions of the BMKP potential energy surface (PES). Additionally, we investigate a variant of the BMKP PES suggested by Pogrebnya and Clary [Chem. Phys. Lett. 363, 523 (2002)] with reduced anisotropy. We compare our results with previous theoretical data for the cross sections and with experimental data for the rate coefficients at low temperatures.

  1. Enhanced bioenergy recovery from oil-extracted microalgae residues via two-step H2/CH4 or H2/butanol anaerobic fermentation.

    PubMed

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Wu, Shu-Hsien

    2016-03-01

    Algae-based biodiesel is considered a promising alternative energy; therefore, the treatment of microalgae residues would be necessary. Anaerobic processes can be used for treating oil-extracted microalgae residues (OMR) and at the same time for recovering bioenergy. In this study, anaerobic batch experiments were conducted to evaluate the potential of recovering bioenergy, in the forms of butanol, H2, or CH4, from pretreated OMR. Using pretreated OMR as the only substrate, a butanol yield of 0.086 g/g-carbohydrate was obtained at carbohydrate of 40 g/L. With supplemented butyrate, a highest butanol yield of 0.192 g/g-carbohydrate was achieved at pretreated OMR containing 25 g/L of carbohydrate with 15 g/L of butyrate addition, attaining the highest energy yield of 3.92 kJ/g-OMR and energy generation rate of 0.65 kJ/g-OMR/d. CH4 production from pretreated OMR attained an energy yield of 8.83 kJ/g-OMR, but energy generation rate required further improvement. H2 production alone from pretreated OMR might not be attractive regarding energy yield, but it attained a superb energy generation rate of 0.68 kJ/g-OMR/d by combining H2 production from pretreated OMR and butanol production from pretreated OMR with supplementary butyrate from H2 fermentation supernatant. This study demonstrated an integrated system as an option for treating OMR and recovering bioenergy. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Particle Generation And Evolution In Silane (SiH4)/Acetylene (C2H2) Flames In Microgravity

    NASA Technical Reports Server (NTRS)

    Keil, D. G.

    2003-01-01

    The objective of this experimental program is to advance the understanding of the coupling of particle formation with gas phase combustion processes. The work utilizes the unique SiH4/C2H2 combustion system which generates particulate products ranging from high purity, white SiC to carbonaceous soot depending on equivalence ratio (Ref. 1). A goal of this work is to identify gas phase or particle formation processes that provide the enthalpy release needed to drive the combustion wave, and to locate the steps of the particle formation process that determine SiC stoichiometry and crystallinity. In a real sense, these SiH4/C2H2 flames act like highly sooty hydrocarbon flames, but with simpler chemistry. This simplification is expected to allow them to be used as surrogates to advance understanding of soot formation in such rich hydrocarbon flames. It is also expected that this improved understanding of SiC particle generation and evolution in these self-sustaining flames will advance the commercial potential of the flame process for the generation of high purity SiC powders.

  3. Effect of pH on H2O2 production in the radiolysis of water.

    PubMed

    Roth, Olivia; LaVerne, Jay A

    2011-02-10

    The yields of hydrogen peroxide have been measured in the radiolysis of aqueous solutions of acrylamide, bromide, nitrate, and air in the pH range of 1-13. Hydrogen peroxide is the main stable oxidizing species formed in the radiolysis of water, and its long-term yield is found to be very sensitive to the system used in the measurements. Experiments with γ-irradiation combined with model calculations show that the primary yields of hydrogen peroxide are nearly independent of pH in the range of 2-12. Slightly higher primary yields are suggested at very low pH in particular when O(2) is present, while the yields seem to decrease at very high pH. Irradiations were performed with 5 MeV H ions, 5 MeV He ions, and 10 MeV C ions to evaluate the intratrack and homogeneous kinetic contributions to H(2)O(2) formation with different ions. Many of the trends in hydrogen peroxide yields with pH observed with γ-irradiations are observed with irradiation by the heavy ions. The lower yields of radicals in the homogeneous phase with the heavier ions tend to minimize the effects of radicals on the hydrogen peroxide yields at long times.

  4. The correlated molecular electrostatic potential and electric field of 2 (1H)-pyrimidone and 2-hydroxypyrimidine

    NASA Astrophysics Data System (ADS)

    Leś, Andrzej; Adamowicz, Ludwik

    1991-06-01

    The molecular electrostatic potential and molecular electric field have been estimated by means of the expectation values of the respective one-electron operators. We used the molecular density matrix that includes the electron correlation effects up to the second-order of the many body perturbation theory. The results show that around the 2(1H)-pyrimidone molecule one may distinguish the electrophilic and nucleophilic regions, the latter characterized by two potential minima of -2.9 V. In the tautomeric form, 2-hydroxypyrimidine, a third potential minimum of -2.1 V appears close to the N1 nitrogen atom. For both molecules strong orientational forces acting on polar solvents are predicted in the vicinity of oxygen (O7) and nitrogen (N3) atoms. The electron correlation effects do not significantly alter the SCF values of the electrostatic potential and electric field at the distances within the van der Waals envelope of the pyrimidine bases. At larger distances, however, the correlation correction is significant, particularly in the direction facing the proton transfer path.

  5. Full-dimensional global potential energy surfaces describing abstraction and exchange for the H + H{sub 2}S reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Dandan; Li, Jun, E-mail: jli15@cqu.edu.edu

    2016-07-07

    For the H + H{sub 2}S system, ∼34 000 data points are sampled over a large configuration space including both abstraction and exchange channels, and calculated at the level of explicitly correlated unrestricted coupled cluster method with singles, doubles, and perturbative triples excitations with the augmented correlation-consistent polarized triple zeta basis set (UCCSD(T)-F12a/aug-cc-pVTZ). The data set was fit using the newly proposed permutation invariant polynomial-neural network (PIP-NN) method with three different vectors as the input: two redundant sets of PIPs, one with the maximum order four (PES-I) and one with the maximum order three (PES-II), and nine non-redundant PIPs (PES-III). Allmore » these PESs show small fitting errors and essentially the same performance in representing the title system. Various kinetics and dynamical properties are calculated using the tunneling corrected transition state theory and quasi-classical trajectory, and compared with available experimental results. At a collision energy of 10 kcal/mol, both the H{sub 2} and SH products are found to be internally cold, with ∼20% of H{sub 2} at its first vibrational excited state, while SH is essentially a spectator. The angular distributions of the products are mainly in backward with considerable contributions from sideway direction. In addition, analytical partial derivatives of any PIP-NN PES with respect to the coordinates of atoms are derived by making use of the monomial symmetrization algorithm [Z. Xie and J. M. Bowman, J. Chem. Theory Comput. 6, 26–34 (2010)]. It can not only accelerate the evaluation of the derivatives, but also improve the energy convergence significantly.« less

  6. Potential surface for the collinear collision of Ne and H/sub 2//sup +/. [eendoergicity, surface parametrization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, E.F.; Siu, A.K.Q.; Chapman, F.M. Jr.

    1976-09-01

    A potential energy surface for the Ne--H/sub 2//sup +/ reaction has been obtained in the LCAO--MO--SCF approximation. Analysis of the surface indicates that the reaction Ne+H/sub 2//sup +/..-->..NeH/sup +/+H should proceed with an endoergicity of 12 kcal/mole, in agreement with the experimental results of Chupka and Russell. Several procedures for parameterizing a diatomics-in-molecules (DIM) representation of the NeH/sub 2//sup +/ surface are considered. The results show that an accurate representation of the SCF surface can be obtained from the DIM model using a minimum of diatomic and triatomic data. (AIP)

  7. Loss of retrovirus production in JB/RH melanoma cells transfected with H-2Kb and TAP-1 genes.

    PubMed

    Li, M; Xu, F; Muller, J; Huang, X; Hearing, V J; Gorelik, E

    1999-01-20

    JB/RH1 melanoma cells, as well as other melanomas of C57BL/6 mice (B16 and JB/MS), express a common melanoma-associated antigen (MAA) encoded by an ecotropic melanoma-associated retrovirus (MelARV). JB/RH1 cells do not express the H-2Kb molecules due to down-regulation of the H-2Kb and TAP-1 genes. When JB/RH1 cells were transfected with the H-2Kb and cotransfected with the TAP-1 gene, it resulted in the appearance of H-2Kb molecules and an increase in their immunogenicity, albeit they lost expression of retrovirus-encoded MAA recognized by MM2-9B6 mAb. Loss of MAA was found to result from a complete and stable elimination of ecotropic MelARV production in the H-2Kb/TAP-1-transfected JB/RH1 cells. Northern blot analysis showed no differences in ecotropic retroviral messages in MelARV-producing and -nonproducing melanoma cells, suggesting that loss of MelARV production was not due to down-regulation of MelARV transcription. Southern blot analysis revealed several rearrangements in the proviral DNA of H-2Kb-positive JB/RH1 melanoma cells. Sequence analysis of the ecotropic proviral DNA from these cells showed numerous nucleotide substitutions, some of which resulted in the appearance of a novel intraviral PstI restriction site and the loss of a HindIII restriction site in the pol region. PCR amplification of the proviral DNAs indicates that an ecotropic provirus found in the H-2Kb-positive cells is novel and does not preexist in the parental H-2Kb-negative melanoma cells. Conversely, the ecotropic provirus of the parental JB/RH1 cells was not amplifable from the H-2Kb-positive cells. Our data indicate that stable loss of retroviral production in the H-2Kb/TAP-1-transfected melanoma cells is probably due to the induction of recombination between a productive ecotropic MelARV and a defective nonecotropic provirus leading to the generation of a defective ecotropic provirus and the loss of MelARV production and expression of the retrovirus-encoded MAA. Copyright 1999

  8. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets.

    PubMed

    Qi, Lifang; Yu, Jiaguo; Jaroniec, Mietek

    2011-05-21

    CdS-sensitized Pt/TiO(2) nanosheets with exposed (001) facets were prepared by hydrothermal treatment of a Ti(OC(4)H(9))(4)-HF-H(2)O mixed solution followed by photochemical reduction deposition of Pt nanoparticles (NPs) on TiO(2) nanosheets (TiO(2) NSs) and chemical bath deposition of CdS NPs on Pt/TiO(2) NSs, successively. The UV and visible-light driven photocatalytic activity of the as-prepared samples was evaluated by photocatalytic H(2) production from lactic acid aqueous solution under UV and visible-light (λ ≥ 420 nm) irradiation. It was shown that no photocatalytic H(2)-production activity was observed on the pure TiO(2) NSs under UV and/or visible-light irradiation. Deposition of CdS NPs on Pt/TiO(2) NSs caused significant enhancement of the UV and visible-light photocatalytic H(2)-production rates. The morphology of TiO(2) particles had also significant influence on the visible-light H(2)-production activity. Among TiO(2) NSs, P25 and the NPs studied, the CdS-sensitized Pt/TiO(2) NSs show the highest photocatalytic activity (13.9% apparent quantum efficiency obtained at 420 nm), exceeding that of CdS-sensitized Pt/P25 by 10.3% and that of Pt/NPs by 1.21%, which can be attributed to the combined effect of several factors including the presence of exposed (001) facets, surface fluorination and high specific surface area. After many replication experiments of the photocatalytic hydrogen production in the presence of lactic acid, the CdS-sensitized Pt/TiO(2) NSs did not show great loss in the photocatalytic activity, confirming that the CdS/Pt/TiO(2) NSs system is stable and not photocorroded. © The Owner Societies 2011

  9. Advanced oxidation chemistry of paracetamol. UV/H(2)O(2)-induced hydroxylation/degradation pathways and (15)N-aided inventory of nitrogenous breakdown products.

    PubMed

    Vogna, Davide; Marotta, Raffaele; Napolitano, Alessandra; D'Ischia, Marco

    2002-08-23

    The advanced oxidation chemistry of the antipyretic drug paracetamol (1) with the UV/H(2)O(2) system was investigated by an integrated methodology based on (15)N-labeling and GC-MS, HPLC, and 2D (1)H, (13)C, and (15)N NMR analysis. Main degradation pathways derived from three hydroxylation steps, leading to 1,4-hydroquinone/1,4-benzoquinone, 4-acetylaminocatechol and, to a much lesser extent, 4-acetylaminoresorcine. Oxidation of the primary aromatic intermediates, viz. 4-acetylaminocatechol, 1,4-hydroquinone, 1,4-benzoquinone, and 1,2,4-benzenetriol, resulted in a series of nitrogenous and non-nitrogenous degradation products. The former included N-acetylglyoxylamide, acetylaminomalonic acid, acetylaminohydroxymalonic acid, acetylaminomaleic acid, diastereoisomeric 2-acetylamino-3-hydroxybutanedioic acids, 2-acetylaminobutenedioic acid, 3-acetylamino-4-hydroxy-2-pentenedioic acid, and 2,4-dihydroxy-3-acetylamino-2-pentenedioic acid, as well as two muconic and hydroxymuconic acid derivatives. (15)N NMR spectra revealed the accumulation since the early stages of substantial amounts of acetamide and oxalic acid monoamide. These results provide the first insight into the advanced oxidation chemistry of a 4-aminophenol derivative by the UV/H(2)O(2) system, and highlight the investigative potential of integrated GC-MS/NMR methodologies based on (15)N-labeling to track degradation pathways of nitrogenous species.

  10. Investigation of the highest bound ro-vibrational states of H+ 3, DH+ 2, HD+ 2, D+ 3, and T+ 3: use of a non-direct product basis to compute the highest allowed J > 0 states

    NASA Astrophysics Data System (ADS)

    Jaquet, Ralph

    2013-09-01

    A Lanczos algorithm with a non-direct product basis was used to compute energy levels of H+ 3, H2D+, D2H+, D+ 3, and T+ 3 with J values as large as 46, 53, 66, 66, and 81. The energy levels are based on a modified potential surface of M. Pavanello et al. that is better adapted to the ab initio energies near the dissociation limit.

  11. Production of a bioemulsifier with potential application in the food industry.

    PubMed

    Campos, Jenyffer M; Stamford, Tânia L M; Sarubbo, Leonie A

    2014-03-01

    Biosurfactants are of considerable interest due to their biodegradability, low degree of toxicity, and diverse applications. However, the high production costs involved in the acquisition of biosurfactants underscore the need for optimization of the production process to enable viable application on an industrial scale. The aims of the present study were to select a species of Candida that produces a biosurfactant with the greatest emulsifying potential and to investigate the influence of components of the production medium and cultivation conditions. Candida utilis achieved the lowest surface tension (35.53 mN/m), best emulsification index (73%), and highest yield (12.52 g/l) in a medium containing waste canola frying oil as the carbon source and ammonium nitrate as the nitrogen source. The best combination of medium components and cultivation conditions was 6% (w/v) glucose, 6% (w/v) waste canola frying oil, 0.2% (w/v) ammonium nitrate, 0.3% (w/v) yeast extract, 150 rpm, 1% inoculum (w/v), and 88 h of fermentation. The greatest biosurfactant production and the lowest surface tension were achieved in the first 24 h of production, and the maximum biomass production was recorded at 72 h. The biosurfactant produced from C. utilis under the conditions investigated in the present study has a potential to be a bioemulsifier for application in the food industry.

  12. Investigation on LiBH4-CaH2 composite and its potential for thermal energy storage.

    PubMed

    Li, Yang; Li, Ping; Qu, Xuanhui

    2017-01-31

    The LiBH 4 /CaH 2 composite are firstly studied as Concentrating Solar Power Thermal Storage Material. The LiBH 4 /CaH 2 composite according to the stoichiometric ratio are synthesized by high-energy ball milling method. The kinetics, thermodynamics and cycling stability of LiBH 4 /CaH 2 composite are investigated by XRD (X-ray diffraction), DSC (Differential scanning calorimeter) and TEM (Transmission electron microscope). The reaction enthalpy of LiBH 4 /CaH 2 composite is almost 60 kJ/mol H 2 and equilibrium pressure is 0.482 MPa at 450 °C. The thermal storage density of LiBH 4 /CaH 2 composite is 3504.6 kJ/kg. XRD results show that the main phase after dehydrogenation is LiH and CaB 6 . The existence of TiCl 3 and NbF 5 can effectively enhance the cycling perfomance of LiBH 4 /CaH 2 composite, with 6-7 wt% hydrogen capacity after 10 cycles. The high thermal storage density, high working temperature and low equilibrium pressure make LiBH 4 /CaH 2 composite a potential thermal storage material.

  13. Chlorogenic acid analogues from Gynura nepalensis protect H9c2 cardiomyoblasts against H2O2-induced apoptosis

    PubMed Central

    Yu, Bang-wei; Li, Jin-long; Guo, Bin-bin; Fan, Hui-min; Zhao, Wei-min; Wang, He-yao

    2016-01-01

    Aim: Chlorogenic acid has shown protective effect on cardiomyocytes against oxidative stress-induced damage. Herein, we evaluated nine caffeoylquinic acid analogues (1–9) isolated from the leaves of Gynura nepalensis for their protective effect against H2O2-induced H9c2 cardiomyoblast damage and explored the underlying mechanisms. Methods: H9c2 cardiomyoblasts were exposed to H2O2 (0.3 mmol/L) for 3 h, and cell viability was detected with MTT assay. Hoechst 33342 staining was performed to evaluate cell apoptosis. MMPs (mitochondrial membrane potentials) were measured using a JC-1 assay kit, and ROS (reactive oxygen species) generation was measured using CM-H2 DCFDA. The expression levels of relevant proteins were detected using Western blot analysis. Results: Exposure to H2O2 markedly decreased the viability of H9c2 cells and catalase activity, and increased LDH release and intracellular ROS production; accompanied by a loss of MMP and increased apoptotic rate. Among the 9 chlorogenic acid analogues as well as the positive control drug epigallocatechin gallate (EGCG) tested, compound 6 (3,5-dicaffeoylquinic acid ethyl ester) was the most effective in protecting H9c2 cells from H2O2-induced cell death. Pretreatment with compound 6 (1.56–100 μmol/L) dose-dependently alleviated all the H2O2-induced detrimental effects. Moreover, exposure to H2O2 significantly increased the levels of Bax, p53, cleaved caspase-8, and cleaved caspase-9, and decreased the level of Bcl-2, resulting in cell apoptosis. Exposure to H2O2 also significantly increased the phosphorylation of p38, JNK and ERK in the H9c2 cells. Pretreatment with compound 6 (12.5 and 25 μmol/L) dose-dependently inhibited the H2O2-induced increase in the level of cleaved caspase-9 but not of cleaved caspase-8. It also dose-dependently suppressed the H2O2-induced phosphorylation of JNK and ERK but not that of p38. Conclusion: Compound 6 isolated from the leaves of Gynura nepalensis potently protects H9c2

  14. Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j').

    PubMed

    Weeks, David E; Niday, Thomas A; Yang, Sang H

    2006-10-28

    Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j') are calculated using the time dependent channel packet method (CPM). The calculation employs 1 2A', 2 2A', and 1 2A" adiabatic electronic potential energy surfaces determined by numerical computation at the multireference configuration-interaction level [M. H. Alexander, J. Chem. Phys. 99, 6041 (1993)]. The 1 2A' and 2 2A', adiabatic electronic potential energy surfaces are transformed to yield diabatic electronic potential energy surfaces that, when combined with the total B+H2 rotational kinetic energy, yield a set of effective potential energy surfaces [M. H. Alexander et al., J. Chem. Phys. 103, 7956 (1995)]. Within the framework of the CPM, the number of effective potential energy surfaces used for the scattering matrix calculation is then determined by the size of the angular momentum basis used as a representation. Twenty basis vectors are employed for these calculations, and the corresponding effective potential energy surfaces are identified in the asymptotic limit by the H2 rotor quantum numbers j=0, 2, 4, 6 and B electronic states 2Pja, ja=1/2, 3/2. Scattering matrix elements are obtained from the Fourier transform of the correlation function between channel packets evolving in time on these effective potential energy surfaces. For these calculations the H2 bond length is constrained to a constant value of req=1.402 a.u. and state to state scattering matrix elements corresponding to a total angular momentum of J=1/2 are discussed for j=0<-->j'=0,2,4 and 2P1/2<-->2P1/2, 2P3/2 over a range of total energy between 0.0 and 0.01 a.u.

  15. A polysaccharide of Dendrobium officinale ameliorates H2O2-induced apoptosis in H9c2 cardiomyocytes via PI3K/AKT and MAPK pathways.

    PubMed

    Zhang, Jing-Yi; Guo, Ying; Si, Jin-Ping; Sun, Xiao-Bo; Sun, Gui-Bo; Liu, Jing-Jing

    2017-11-01

    Dendrobium officinale is one valuable traditional Chinese medicine, which has skyscraping medicinal value. Polysaccharide is the main active ingredient in D. officinale; its antioxidant activity is a hot research topic nowadays. Oxidative stress plays an important role in the pathological progress of a variety of cardiovascular disease, as one of key factors of cardiomyocyte apoptosis. This research adopts a model of H 2 O 2 induction-H9c2 cardiomyocytes apoptosis, aiming to study the effect of Dendrobium officinale Polysaccharide (DOP-GY) for cardiomyocyte apoptosis caused by oxidative stress and its possible mechanism. Our results showed that pretreatment of DOP-GY (low dose: 6.25μg/mL, medium dose: 12.5μg/mL, high dose: 25μg/mL) followed by a 2h incubation with 200μM H 2 O 2 elevated the survival rate, cutted the LDH leakage, reduced lipid peroxidation damage, improved the activity of the endogenous antioxidant enzymes. In addition, the pretreatment of DOP-GY significantly inhibited the production of ROS, declined of the mitochondrial membrane potential, down-regulated pro-apoptosis protein and up-regulated anti-apoptosis protein. The protective effect was correlated with the PI3K/Akt and MAPK signal pathway. Collectively, these observations suggest that DOY-GY has the potential to exert cardioprotective effects against H 2 O 2 -induced H9c2 cardiomyocyte apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Room temperature stable COx-free H2 production from methanol with magnesium oxide nanophotocatalysts

    PubMed Central

    Liu, Zhengqing; Yin, Zongyou; Cox, Casandra; Bosman, Michel; Qian, Xiaofeng; Li, Na; Zhao, Hongyang; Du, Yaping; Li, Ju; Nocera, Daniel G.

    2016-01-01

    Methanol, which contains 12.6 weight percent hydrogen, is a good hydrogen storage medium because it is a liquid at room temperature. However, by releasing the hydrogen, undesirable CO and/or CO2 byproducts are formed during catalytic fuel reforming. We show that alkaline earth metal oxides, in our case MgO nanocrystals, exhibit stable photocatalytic activity for CO/CO2-free H2 production from liquid methanol at room temperature. The performance of MgO nanocrystals toward methanol dehydrogenation increases with time and approaches ~320 μmol g−1 hour−1 after a 2-day photocatalytic reaction. The COx-free H2 production is attributed to methanol photodecomposition to formaldehyde, photocatalyzed by surface electronic states of unique monodispersed, porous MgO nanocrystals, which were synthesized with a novel facile colloidal chemical strategy. An oxygen plasma treatment allows for the removal of organic surfactants, producing MgO nanocrystals that are well dispersible in methanol. PMID:28508036

  17. Contributions of the [NiFe]- and [FeFe]-hydrogenase to H2 production in Shewanella oneidensis MR-1 as revealed by isotope ratio analysis of evolved H2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreuzer, Helen W.; Hill, Eric A.; Moran, James J.

    2014-03-01

    Shewanella oneidensis MR-1 encodes both a [NiFe]- and an [FeFe]-hydrogenase. While the output of these proteins has been characterized in mutant strains expressing only one of the enzymes, the contribution of each to H2 synthesis in the wild-type organism is not clear. Here we use stable isotope analysis of H2 in the culture headspace, along with transcription data and measurements of the concentrations of gases in the headspace, to characterize H2 production in the wild-type strain. After most of the O2 in the headspace had been consumed, H2 was produced and then consumed by the bidirectional [NiFe]-hydrogenase. Once the culturesmore » were completely anaerobic, a new burst of H2 synthesis catalyzed by both enzymes took place. Our data is consistent with the hypothesis that at this point in the culture cycle, a pool of electrons is shunted toward both hydrogenases in the wild-type organism, but that in the absence of one of the hydrogenases, the flux is redirected to the available enzyme. To our knowledge, this is the first use of stable isotope analysis of a metabolic product to elucidate substrate flux through two alternative enzymes in the same cellular system.« less

  18. Pregnancy Augments VEGF-Stimulated In Vitro Angiogenesis and Vasodilator (NO and H2S) Production in Human Uterine Artery Endothelial Cells.

    PubMed

    Zhang, Hong-Hai; Chen, Jennifer C; Sheibani, Lili; Lechuga, Thomas J; Chen, Dong-Bao

    2017-07-01

    Augmented uterine artery (UA) production of vasodilators, including nitric oxide (NO) and hydrogen sulfide (H2S), has been implicated in pregnancy-associated and agonist-stimulated rise in uterine blood flow that is rate-limiting to pregnancy health. Developing a human UA endothelial cell (hUAEC) culture model from main UAs of nonpregnant (NP) and pregnant (P) women for testing a hypothesis that pregnancy augments endothelial NO and H2S production and endothelial reactivity to vascular endothelial growth factor (VEGF). Main UAs from NP and P women were used for developing hUAEC culture models. Comparisons were made between NP- and P-hUAECs in in vitro angiogenesis, activation of cell signaling, expression of endothelial NO synthase (eNOS) and H2S-producing enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase, and NO/H2S production upon VEGF stimulation. NP- and P-hUAECs displayed a typical cobblestone-like shape in culture and acetylated low-density lipoprotein uptake, stained positively for endothelial and negatively for smooth muscle markers, maintained key signaling proteins during passage, and had statistically significant greater eNOS and CBS proteins in P- vs NP-hUAECs. Treatment with VEGF stimulated in vitro angiogenesis and eNOS protein and NO production only in P-hUEACs and more robust cell signaling in P- vs NP-hUAECs. VEGF stimulated CBS protein expression, accounting for VEGF-stimulated H2S production in hUAECs. Comparisons between NP- and P-hUAECs reveal that pregnancy augments VEGF-stimulated in vitro angiogenesis and NO/H2S production in hUAECs, showing that the newly established hUAEC model provides a critical in vitro tool for understanding human uterine hemodynamics. Copyright © 2017 Endocrine Society

  19. Characterization of the product radical structure in the Co(II)-product radical pair state of coenzyme B12-dependent ethanolamine deaminase by using three-pulse 2H ESEEM spectroscopy.

    PubMed

    Warncke, Kurt

    2005-03-08

    Molecular structural features of the product radical in the Co(II)-product radical pair catalytic intermediate state in coenzyme B(12)- (adenosylcobalamin-) dependent ethanolamine deaminase from Salmonella typhimurium have been characterized by using X-band three-pulse electron spin-echo envelope modulation (ESEEM) spectroscopy in the disordered solid state. The Co(II)-product radical pair state was prepared by cryotrapping holoenzyme during steady-state turnover on excess 1,1,2,2-(2)H(4)-aminoethanol or natural abundance, (1)H(4)-aminoethanol. Simulation of the (2)H/(1)H quotient ESEEM (obtained at two microwave frequencies, 8.9 and 10.9 GHz) from the interaction of the unpaired electron localized at C2 of the product radical with nearby (2)H nuclei requires four types of coupled (2)H, which are assigned as follows: (a) a single strongly coupled (effective dipole distance, r(eff) = 2.3 A) (2)H in the C5' methyl group of 5'-deoxyadenosine, (b) two weakly coupled (r(eff) = 4.2 A) (2)H in the C5' methyl group, (c) one (2)H coupling from a beta-(2)H bonded to C1 of the product radical (isotropic hyperfine coupling, A(iso) = 4.7 MHz), and (d) a second type of C1 beta-(2)H coupling (A(iso) = 7.7 MHz). The two beta-(2)H couplings are proposed to arise from two C1-C2 rotamer states of the product radical that are present in approximately equal proportion. A model is presented, in which C5' is positioned at a distance of 3.3 A from C2, which is comparable with the C1-C5' distance in the Co(II)-substrate radical pair intermediate. Therefore, the C5'methyl group remains in close (van der Waals) contact with the substrate and product radical species during the radical rearrangement step of the catalytic cycle, and the C5' center is the sole mediator of radical pair recombination in ethanolamine deaminase.

  20. Lactobacillus Species Identification, H2O2 Production, and Antibiotic Resistance and Correlation with Human Clinical Status

    PubMed Central

    Felten, Annie; Barreau, Claude; Bizet, Chantal; Lagrange, Philippe Henri; Philippon, Alain

    1999-01-01

    Lactobacilli recovered from the blood, cerebrospinal fluid, respiratory tract, and gut of 20 hospitalized immunocompromised septic patients were analyzed. Biochemical carbohydrate fermentation and total soluble cell protein profiles were used to identify the species. Hydrogen peroxide production was measured. Susceptibility to 19 antibiotics was tested by a diffusion method, and the MICs of benzylpenicillin, amoxicillin, imipenem, erythromycin, vancomycin, gentamicin, and levofloxacin were determined. A small number of species produced H2O2, and antibiotic susceptibilities were species related. Eighteen (90%) of the isolates were L. rhamnosus, one was L. paracasei subsp. paracasei, and one was L. crispatus. L. rhamnosus, L. paracasei subsp. paracasei isolates, and the type strains were neither H2O2 producers nor vancomycin susceptible (MICs, ≥256 μg/ml). L. crispatus, as well as most of the type strains of lactobacilli which belong to the L. acidophilus group, was an H2O2 producer and vancomycin susceptible (MICs, <4 μg/ml). PMID:9986841

  1. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils

    PubMed Central

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH. PMID:26397367

  2. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    PubMed

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH.

  3. Ground and excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters: Insight into the electronic structure of the [Fe(H2O)6]2+ – [Fe(H2O)6]3+ complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miliordos, Evangelos; Xantheas, Sotiris S.

    We report the ground and low lying electronically excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters using multi-configuration electronic structure theory. In particular, we have constructed the Potential Energy Curves (PECs) with respect to the iron-oxygen distance when removing all water ligands at the same time from the cluster minima and established their correlation to the long range dissociation channels. Due to the fact that both the second and third ionization potentials of iron are larger than the one for water, the ground state products asymptotically correlate with dissociation channels that are repulsive in nature at large separations as theymore » contain at least one H2O+ fragment and a positive metal center. The most stable equilibrium structures emanate – via intersections and/or avoided crossings – from the channels consisting of the lowest electronic states of Fe2+(5D; 3d6) or Fe3+(6S; 3d5) and six neutral water molecules. Upon hydration, the ground state of Fe2+(H2O)6 is a triply (5Tg) degenerate one with the doubly (5Eg) degenerate state lying slightly higher in energy. Similarly, Fe3+(H2O)6 has a ground state of 6Ag symmetry under Th symmetry. We furthermore examine a multitude of electronically excited states of many possible spin multiplicities, and report the optimized geometries for several selected states. The PECs for those cases are characterized by a high density of states. Focusing on the ground and the first few excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters, we studied their mutual interaction in the gas phase. We obtained the optimal geometries of the Fe2+(H2O)6 – Fe3+(H2O)6 gas phase complex for different Fe–Fe distances. For distances shorter than 6.0 Å, the water molecules in the respective first solvation shells located between the two metal centers were found to interact via weak hydrogen bonds. We examined a total of ten electronic states for this complex, including those corresponding to the

  4. Promotion effect of nickel loaded on CdS for photocatalytic H2 production in lactic acid solution

    NASA Astrophysics Data System (ADS)

    Chen, Shu; Chen, Xiaoping; Jiang, Qizhong; Yuan, Jian; Lin, Caifang; Shangguan, Wenfeng

    2014-10-01

    Low-cost Ni modified CdS was prepared via a hydrothermal reduction method. The hydrogen production activity of CdS loaded with 5 wt% Ni under visible light was even higher than that of the one loaded with 0.5 wt% Pt. The highest H2 evolution rate (3004.8 μmol h-1) occurred when the concentration of sacrificial agent (lactic acid) was 50 vol%. The nickel can quickly transfer excited electrons and enhance the photocatalytic H2 production activity. It was also found that the hydrogen evolution in this system was generated steadily from both water and lactic acid.

  5. A New Global Potential Energy Surface for the Hydroperoxyl Radical, HO2: Reaction Coefficients for H + O2 and Vibrational Splittings for H Atom Transfer

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new analytic global potential energy surface describing the hydroperoxyl radical system H((sup 2)S) + O2(X (sup 3)Sigma((sup -)(sub g))) (reversible reaction) HO2 ((X-tilde) (sup 2)A'') (reversible reaction) O((sup 3)P) + O H (X (sup 2)Pi) has been fitted using the ab initio complete active space SCF (self-consistent-field)/externally contracted configuration interaction (CASSCF/CCI) energy calculations of Walch and Duchovic. Results of quasiclassical trajectory studies to determine the rate coefficients of the forward and reverse reactions at combustion temperatures will be presented. In addition, vibrational energy levels were calculated using the quantum DVR-DGB (discrete variable representation-distributed Gaussian basis) method and the splitting due to H atom migration is investigated. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.

  6. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-14

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  7. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-01

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  8. DFT studies on the mechanism of the reaction of C2H5S with NO2

    NASA Astrophysics Data System (ADS)

    Tang, Yi-Zhen; Sun, Hao; Pan, Ya-Ru; Pan, Xiu-Mei; Wang, Rong-Shun

    The mechanisms for the reaction of C2H5S with NO2 are investigated at the QCISD(T)/6-311++G(d, p)//B3LYP/6-311++G(d, p) level on both single and triple potential energy surfaces. The geometries, vibrational frequencies and zero-point energy (ZPE) corrections of all stationary points involved in the title reaction are calculated at the B3LYP/6-311++G(d, p) level. The results show that the reaction is more predominant on the single potential energy surface, while it is negligible on the triple potential energy surface. Without barrier height in the whole process, the major channel is R ? C2H5SONO (IM1 and IM2) ? P1 (C2H5SO+NO). With much heat released in the formation of C2H5SNO2 (IM3) and the transition state involved in the subsequent step more stable than reactants, P4 (CH3CHS + t-HONO) is subdominant product energetically.

  9. Collisions of excited Na atoms with H/sub 2/ molecules. I. Ab initio potential energy surfaces and qualitative discussion of the quenching process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botschwina, P.; Meyer, W.; Hertel, I.V.

    Potential energy surfaces have been calculated for the four lowest electronic states of Na (3 /sup 2/S, 3 /sup 2/P)+H/sub 2/(/sup 1/..sigma../sup +//sub g/) by means of the RHF--SCF and PNO--CEPA methods. For the so-called quenching process of Na (3 /sup 2/P) by H/sub 2/ at low initial translational energies (E--VRT energy transfer) the energetically most favorable path occurs in C/sub 2v/ symmetry, since: at intermediate Na--H/sub 2/ separation: the A /sup 2/B/sub 2/ potential energy surface is attractive. From the CEPA calculations, the crossing point of minimal energy between the X /sup 2/A/sub 1/ and A /sup 2/B/sub 2/more » surfaces is obtained at R/sub c/ = 3.57 a.u. and r/sub c/ = 2.17 a.u. with an energy difference to the asymptotic limit (R = infinity, r = r/sub e/) of -0.06 eV. It is thus classically accessible without any initial translational energy, but at low initial translational energies (approx.0.1 eV) quenching will be efficient only for arrangements of collision partners close to C/sub 2v/ symmetry. There is little indication of an avoiding crossing with an ionic intermediate correlating asymptotically with Na/sup +/ and H/sub 2//sup -/ as was assumed in previous discussions of the quenching process. The dependence of the total quenching cross sections on the initial translational energy is discussed by means of the ''absorbing sphere'' model, taking the initial zero-point vibrational energy of the hydrogen molecule into account. New experimental data of the product channel distribution in H/sub 2/ for center-of-mass forward scattering are presented. The final vibrational states v' = 3, 2, 1, and 0 of H/sub 2/ are populated to about 26%, 61%, 13%, and 0%, respectively. The observed distributions in H/sub 2/ (and D/sub 2/) may be rationalized by simple dynamic considerations on the basis of the calculated surfaces.« less

  10. pH-dependent reduction potentials and proton-coupled electron transfer mechanisms in hydrogen-producing nickel molecular electrocatalysts.

    PubMed

    Horvath, Samantha; Fernandez, Laura E; Appel, Aaron M; Hammes-Schiffer, Sharon

    2013-04-01

    The nickel-based P2(Ph)N2(Bn) electrocatalysts comprised of a nickel atom and two 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane ligands catalyze H2 production in acetonitrile. Recent electrochemical experiments revealed a linear dependence of the Ni(II/I) reduction potential on pH with a slope of 57 mV/pH unit, implicating a proton-coupled electron transfer (PCET) process with the same number of electrons and protons transferred. The combined theoretical and experimental studies herein provide an explanation for this pH dependence in the context of the overall proposed catalytic mechanism. In the proposed mechanisms, the catalytic cycle begins with a series of intermolecular proton transfers from an acid to the pendant amine ligand and electrochemical electron transfers to the nickel center to produce the doubly protonated Ni(0) species, a precursor to H2 evolution. The calculated Ni(II/I) reduction potentials of the doubly protonated species are in excellent agreement with the experimentally observed reduction potential in the presence of strong acid, suggesting that the catalytically active species leading to the peak observed in these cyclic voltammetry (CV) experiments is doubly protonated. The Ni(I/0) reduction potential was found to be slightly more positive than the Ni(II/I) reduction potential, indicating that the Ni(I/0) reduction occurs spontaneously after the Ni(II/I) reduction, as implied by the experimental observation of a single CV peak. These results suggest that the PCET process observed in the CV experiments is a two-electron/two-proton process corresponding to an initial double protonation followed by two reductions. On the basis of the experimental and theoretical data, the complete thermodynamic scheme and the Pourbaix diagram were generated for this catalyst. The Pourbaix diagram, which identifies the most thermodynamically stable species at each reduction potential and pH value, illustrates that this catalyst undergoes

  11. Electron transport chain dysfunction by H(2)O (2) is linked to increased reactive oxygen species production and iron mobilization by lipoperoxidation: studies using Saccharomyces cerevisiae mitochondria.

    PubMed

    Cortés-Rojo, Christian; Estrada-Villagómez, Mirella; Calderón-Cortés, Elizabeth; Clemente-Guerrero, Mónica; Mejía-Zepeda, Ricardo; Boldogh, Istvan; Saavedra-Molina, Alfredo

    2011-04-01

    The mitochondrial electron transport chain (ETC) contains thiol groups (-SH) which are reversibly oxidized to modulate ETC function during H(2)O(2) overproduction. Since deleterious effects of H(2)O(2) are not limited to -SH oxidation, due to the formation of other H(2)O(2)-derived species, some processes like lipoperoxidation could enhance the effects of H(2)O(2) over ETC enzymes, disrupt their modulation by -SH oxidation and increase superoxide production. To verify this hypothesis, we tested the effects of H(2)O(2) on ETC activities, superoxide production and iron mobilization in mitochondria from lipoperoxidation-resistant native yeast and lipoperoxidation-sensitized yeast. Only complex III activity from lipoperoxidation-sensitive mitochondria exhibited a higher susceptibility to H(2)O(2) and increased superoxide production. The recovery of ETC activity by the thiol reductanct β-mercaptoethanol (BME) was also altered at complex III, and a role was attributed to lipoperoxidation, the latter being also responsible for iron release. A hypothetical model linking lipoperoxidation, increased complex III damage, superoxide production and iron release is given.

  12. A new ab initio potential energy surface for the collisional excitation of HCN by para- and ortho-H2

    NASA Astrophysics Data System (ADS)

    Denis-Alpizar, Otoniel; Kalugina, Yulia; Stoecklin, Thierry; Vera, Mario Hernández; Lique, François

    2013-12-01

    We present a new four-dimensional potential energy surface for the collisional excitation of HCN by H2. Ab initio calculations of the HCN-H2 van der Waals complex, considering both molecules as rigid rotors, were carried out at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12a] level of theory using an augmented correlation-consistent triple zeta (aVTZ) basis set. The equilibrium structure is linear HCN-H2 with the nitrogen pointing towards H2 at an intermolecular separation of 7.20 a0. The corresponding well depth is -195.20 cm-1. A secondary minimum of -183.59 cm-1 was found for a T-shape configuration with the H of HCN pointing to the center of mass of H2. We also determine the rovibrational energy levels of the HCN-para-H2 and HCN-ortho-H2 complexes. The calculated dissociation energies for the para and ortho complexes are 37.79 cm-1 and 60.26 cm-1, respectively. The calculated ro-vibrational transitions in the HCN-H2 complex are found to agree by more than 0.5% with the available experimental data, confirming the accuracy of the potential energy surface.

  13. Quantum Mechanical Determination of Potential Energy Surfaces for TiO and H2O

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.

    1996-01-01

    We discuss current ab initio methods for determining potential energy surfaces, in relation to the TiO and H2O molecules, both of which make important contributions to the opacity of oxygen-rich stars. For the TiO molecule we discuss the determination of the radiative lifetimes of the excited states and band oscillator strengths for both the triplet and singlet band systems. While the theoretical radiative lifetimes for TiO agree well with recent measurements, the band oscillator strengths differ significantly from those currently employed in opacity calculations. For the H2O molecule we discuss the current results for the potential energy and dipole moment ground state surfaces generated at NASA Ames. We show that it is necessary to account for such effects as core-valence Correlation energy to generate a PES of near spectroscopic accuracy. We also describe how we solve the ro-vibrational problem to obtain the line positions and intensities that are needed for opacity sampling.

  14. Carbonate control of H2 and CH4 production in serpentinization systems at elevated P-Ts

    USGS Publications Warehouse

    Jones, L. Camille; Rosenbauer, Robert; Goldsmith, Jonas I.; Oze, Christopher

    2010-01-01

    Serpentinization of forsteritic olivine results in the inorganic synthesis of molecular hydrogen (H2) in ultramafic hydrothermal systems (e.g., mid-ocean ridge and forearc environments). Inorganic carbon in those hydrothermal systems may react with H2 to produce methane (CH4) and other hydrocarbons or react with dissolved metal ions to form carbonate minerals. Here, we report serpentinization experiments at 200°C and 300 bar demonstrating Fe2+ being incorporated into carbonates more rapidly than Fe2+ oxidation (and concomitant H2 formation) leading to diminished yields of H2 and H2-dependent CH4. In addition, carbonate formation is temporally fast in carbonate oversaturated fluids. Our results demonstrate that carbonate chemistry ultimately modulates the abiotic synthesis of both H2 and CH4 in hydrothermal ultramafic systems and that ultramafic systems present great potential for CO2-mineral sequestration.

  15. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    PubMed Central

    Yang, Jingbin; Li, Dongxu; Fang, Yuan

    2017-01-01

    C-A-S-H (CaO-Al2O3-SiO2-H2O) and N-A-S-H (Na2O-Al2O3-SiO2-H2O) have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O)/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH)2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH)2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali-activated materials. PMID

  16. Urothelium muscarinic activation phosphorylates CBSSer227 via cGMP/PKG pathway causing human bladder relaxation through H2S production

    PubMed Central

    d’Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Fusco, Ferdinando; Russo, Annapina; Pagliara, Valentina; Tramontano, Teresa; Donnarumma, Erminia; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2016-01-01

    The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-β-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser227 following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders. PMID:27509878

  17. Recombinant production of enzymatically active male contraceptive drug target hTSSK2 - Localization of the TSKS domain phosphorylated by TSSK2.

    PubMed

    Shetty, Jagathpala; Sinville, Rondedrick; Shumilin, Igor A; Minor, Wladek; Zhang, Jianhai; Hawkinson, Jon E; Georg, Gunda I; Flickinger, Charles J; Herr, John C

    2016-05-01

    The testis-specific serine/threonine kinase 2 (TSSK2) has been proposed as a candidate male contraceptive target. Development of a selective inhibitor for this kinase first necessitates the production of highly purified, soluble human TSSK2 and its substrate, TSKS, with high yields and retention of biological activity for crystallography and compound screening. Strategies to produce full-length, soluble, biologically active hTSSK2 in baculovirus expression systems were tested and refined. Soluble preparations of TSSK2 were purified by immobilized-metal affinity chromatography (IMAC) followed by gel filtration chromatography. The biological activities of rec.hTSSK2 were verified by in vitro kinase and mobility shift assays using bacterially produced hTSKS (isoform 2), casein, glycogen synthase peptide (GS peptide) and various TSKS peptides as target substrates. Purified recombinant hTSSK2 showed robust kinase activity in the in vitro kinase assay by phosphorylating hTSKS isoform 2 and casein. The ATP Km values were similar for highly and partially purified fractions of hTSSK2 (2.2 and 2.7 μM, respectively). The broad spectrum kinase inhibitor staurosporine was a potent inhibitor of rec.hTSSK2 (IC50 = 20 nM). In vitro phosphorylation experiments carried out with TSKS (isoform 1) fragments revealed particularly strong phosphorylation of a recombinant N-terminal region representing aa 1-150 of TSKS, indicating that the N-terminus of human TSKS is phosphorylated by human TSSK2. Production of full-length enzymatically active recombinant TSSK2 kinase represents the achievement of a key benchmark for future discovery of TSSK inhibitors as male contraceptive agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Observation of H displacement and H2 elimination channels in the reaction of O(3P) with 1-butene from crossed beams and theoretical studies

    NASA Astrophysics Data System (ADS)

    Caracciolo, Adriana; Vanuzzo, Gianmarco; Balucani, Nadia; Stranges, Domenico; Cavallotti, Carlo; Casavecchia, Piergiorgio

    2017-09-01

    We report preliminary combined experimental/theoretical results on O(3P) + 1-butene reaction dynamics with focus on atomic hydrogen displacement and molecular hydrogen elimination channels. Dynamics and relative yield of the ethylvinoxy + H and ethylketene + H2 product channels are characterized in crossed beam experiments. Stationary points and energetics of triplet/singlet C4H8O potential energy surfaces (PESs) are calculated at CCSD(T)/CBS and CASPT2 level. O(3P) attack occurs on both unsaturated C-atoms with preference for the less substituted one leading, among other products, to C2H5CHCHO + H via an exit barrier on the triplet PES, and to C2H5CHCO + H2 via a very high exit barrier on the singlet PES following intersystem crossing.

  19. A Key Role for Apoplastic H2O2 in Norway Spruce Phenolic Metabolism.

    PubMed

    Laitinen, Teresa; Morreel, Kris; Delhomme, Nicolas; Gauthier, Adrien; Schiffthaler, Bastian; Nickolov, Kaloian; Brader, Günter; Lim, Kean-Jin; Teeri, Teemu H; Street, Nathaniel R; Boerjan, Wout; Kärkönen, Anna

    2017-07-01

    Apoplastic events such as monolignol oxidation and lignin polymerization are difficult to study in intact trees. To investigate the role of apoplastic hydrogen peroxide (H 2 O 2 ) in gymnosperm phenolic metabolism, an extracellular lignin-forming cell culture of Norway spruce ( Picea abies ) was used as a research model. Scavenging of apoplastic H 2 O 2 by potassium iodide repressed lignin formation, in line with peroxidases activating monolignols for lignin polymerization. Time-course analyses coupled to candidate substrate-product pair network propagation revealed differential accumulation of low-molecular-weight phenolics, including (glycosylated) oligolignols, (glycosylated) flavonoids, and proanthocyanidins, in lignin-forming and H 2 O 2 -scavenging cultures and supported that monolignols are oxidatively coupled not only in the cell wall but also in the cytoplasm, where they are coupled to other monolignols and proanthocyanidins. Dilignol glycoconjugates with reduced structures were found in the culture medium, suggesting that cells are able to transport glycosylated dilignols to the apoplast. Transcriptomic analyses revealed that scavenging of apoplastic H 2 O 2 resulted in remodulation of the transcriptome, with reduced carbon flux into the shikimate pathway propagating down to monolignol biosynthesis. Aggregated coexpression network analysis identified candidate enzymes and transcription factors for monolignol oxidation and apoplastic H 2 O 2 production in addition to potential H 2 O 2 receptors. The results presented indicate that the redox state of the apoplast has a profound influence on cellular metabolism. © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. Augmented H2S production via cystathionine-beta-synthase upregulation plays a role in pregnancy-associated uterine vasodilation.

    PubMed

    Sheibani, Lili; Lechuga, Thomas J; Zhang, Honghai; Hameed, Afshan; Wing, Deborah A; Kumar, Sathish; Rosenfeld, Charles R; Chen, Dong-Bao

    2017-03-01

    Endogenous hydrogen sulfide (H2S) synthesized via metabolizing L-cysteine by cystathionine-beta-synthase (CBS) and cystathionine-gamma-lyase (CSE) is a potent vasodilator and angiogenic factor. The objectives of this study were to determine if human uterine artery (UA) H2S production increases with augmented expression and/or activity of CBS and/or CSE during the menstrual cycle and pregnancy and whether exogenous H2S dilates UA. Uterine arteries from nonpregnant (NP) premenopausal proliferative (pPRM) and secretory (sPRM) phases of the menstrual cycle and pregnant (P) women were studied. H2S production was measured by the methylene blue assay. CBS and CSE mRNAs were assessed by quantitative real-time PCR, and proteins were assessed by immunoblotting and semiquantitative immunofluorescence microscopy. Effects of H2S on rat UA relaxation were determined by wire myography ex vivo. H2S production was greater in NP pPRM and P than NP sPRM UAs and inhibited by the specific CBS but not CSE inhibitor. CBS but not CSE mRNA and protein were greater in NP pPRM and P than NP sPRM UAs. CBS protein was localized to endothelium and smooth muscle and its levels were in a quantitative order of P >NP UAs of pPRM>sPRM. CSE protein was localized in UA endothelium and smooth muscle with no difference among groups. A H2S donor relaxed P > NP UAs but not mesentery artery. Thus, human UA H2S production is augmented with endothelium and smooth muscle CBS upregulation, contributing to UA vasodilation in the estrogen-dominant physiological states in the proliferative phase of the menstrual cycle and pregnancy. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. H2@Scale Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark

    2017-07-12

    'H2@Scale' is a concept based on the opportunity for hydrogen to act as an intermediate between energy sources and uses. Hydrogen has the potential to be used like the primary intermediate in use today, electricity, because it too is fungible. This presentation summarizes the H2@Scale analysis efforts performed during the first third of 2017. Results of technical potential uses and supply options are summarized and show that the technical potential demand for hydrogen is 60 million metric tons per year and that the U.S. has sufficient domestic resources to meet that demand. A high level infrastructure analysis is also presentedmore » that shows an 85% increase in energy on the grid if all hydrogen is produced from grid electricity. However, a preliminary spatial assessment shows that supply is sufficient in most counties across the U.S. The presentation also shows plans for analysis of the economic potential for the H2@Scale concept. Those plans involve developing supply and demand curves for potential hydrogen generation options and as compared to other options for use of that hydrogen.« less

  2. Potential energy surfaces related to the ion-molecule reaction C/sup +/ + H/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liskow, D.H.; Bender, C.F.; Schaefer, H.F. III

    1974-10-01

    The C/sup +/ + H/sub 2/ ion-molecule reaction has been studied by several experimental groups and appears likely to become the focal point of much experimental and theoretical activity. Ab initio self-consistent-field and configuration interaction calculations have accordingly been carried out for this system. A double zeta basis set of contracted Gaussian functions was employed and as many as 648 configurations included. For isosceles triangle configurations (C/sub 2V/ point group) the /sup 2/A/sub 1/, /sup 2/B/sub 1/, and /sup 2/B/sub 2/ potential surfaces were considered, while for linear geometries (C/sub infinity V) the /sup 2/..sigma../sup +/ and /sup 2/PI surfacesmore » were studied. For general (C/sub S/) geometry, the lowest /sup 2/A' potential surface was considered. Properties reported include minimum energy paths and energy profiles for the various processes considered. The intuitive correlation diagram of Mahan and Sloane is given qualitative reliability. Pathways to CH/sub 2//sup +/ complex formation are shown to depend crucially on the C/sub S/ potential surface.« less

  3. CO2 controlled flocculation of microalgae using pH responsive cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Eyley, Samuel; Vandamme, Dries; Lama, Sanjaya; van den Mooter, Guy; Muylaert, Koenraad; Thielemans, Wim

    2015-08-01

    Cellulose nanocrystals were grafted with imidazole functionalities up to DS 0.06 using a one-pot functionalization strategy. The resulting nanocrystals were shown to have a pH responsive surface charge which was found to be positive below pH 6 and negative above pH 7. These imidazolyl cellulose nanocrystals were tested for flocculation of Chlorella vulgaris using CO2 to induce flocculation. Up to 90% flocculation efficiency was achieved with 200 mg L-1 dose. Furthermore, the modified cellulose nanocrystals showed good compatibility with the microalgae during cultivation, giving potential for the production of reversible flocculation systems.Cellulose nanocrystals were grafted with imidazole functionalities up to DS 0.06 using a one-pot functionalization strategy. The resulting nanocrystals were shown to have a pH responsive surface charge which was found to be positive below pH 6 and negative above pH 7. These imidazolyl cellulose nanocrystals were tested for flocculation of Chlorella vulgaris using CO2 to induce flocculation. Up to 90% flocculation efficiency was achieved with 200 mg L-1 dose. Furthermore, the modified cellulose nanocrystals showed good compatibility with the microalgae during cultivation, giving potential for the production of reversible flocculation systems. Electronic supplementary information (ESI) available: Spectra for all products. See DOI: 10.1039/C5NR03853G

  4. Effects of pH and Carbon Source on Synechococcus PCC 7002 Cultivation: Biomass and Carbohydrate Production with Different Strategies for pH Control.

    PubMed

    De Farias Silva, Carlos Eduardo; Sforza, Eleonora; Bertucco, Alberto

    2017-02-01

    Synechococcus PCC 7002 is an interesting species in view of industrial production of carbohydrates. The cultivation performances of this species are strongly affected by the pH of the medium, which also influences the carbohydrate accumulation. In this work, different methods of pH control were analyzed, in order to obtain a higher production of both Synechococcus biomass and carbohydrates. To better understand the influence of pH on growth and carbohydrate productivity, manual and automatic pH regulation in CO 2 and bicarbonate system were applied. The pH value of 8.5 resulted the best to achieve both of these goals. From an industrial point of view, an alternative way to maintain the pH practically constant during the entire period of cultivation is the exploitation of the bicarbonate-CO 2 buffer system, with the double aim to maintain the pH in the viability range and also to provide the amount of carbon required by growth. In this condition, a high concentration of biomass (6 g L -1 ) and carbohydrate content (around 60 %) were obtained, which are promising in view of a potential use for bioethanol production. The chemical equilibrium of C-N-P species was also evaluated by applying the ionic balance equations, and a relation between the sodium bicarbonate added in the medium and the equilibrium value of pH was discussed.

  5. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Wang, Denghui; He, Guangying; Shao, Shanshan; Zhang, Jubing; Zhong, Zhaoping

    2011-03-01

    Biomass fast pyrolysis is one of the most promising technologies for biomass utilization. In order to increase its economic potential, pyrolysis gas is usually recycled to serve as carrier gas. In this study, biomass fast pyrolysis was carried out in a fluidized bed reactor using various main pyrolysis gas components, namely N(2), CO(2), CO, CH(4) and H(2), as carrier gases. The atmosphere effects on product yields and oil fraction compositions were investigated. Results show that CO atmosphere gave the lowest liquid yield (49.6%) compared to highest 58.7% obtained with CH(4). CO and H(2) atmospheres converted more oxygen into CO(2) and H(2)O, respectively. GC/MS analysis of the liquid products shows that CO and CO(2) atmospheres produced less methoxy-containing compounds and more monofunctional phenols. The higher heating value of the obtained bio-oil under N(2) atmosphere is only 17.8 MJ/kg, while that under CO and H(2) atmospheres increased to 23.7 and 24.4 MJ/kg, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad; Tahir, Beenish; Saidina Amin, Nor Aishah; Alias, Hajar

    2016-12-01

    Photocatalytic CO2 reduction by H2O and/or H2 reductant to selective fuels over Cu-promoted In2O3/TiO2 photocatalyst has been investigated. The samples, prepared via a simple and direct sol-gel method, were characterized by XRD, SEM, TEM, XPS, N2 adsorption-desorption, UV-vis diffuse reflectance, Raman and PL spectroscopy. Cu and In loaded into TiO2, oxidized as Cu2+ and In3+, promoted efficient separation of photo-generated electron/hole pairs (e-/h+). The results indicate that the reduction rate of CO2 by H2O to CH4 approached to 181 μmol g-1 h-1 using 0.5% Cu-3% In2O3/TiO2 catalyst, a 1.53 fold higher than the production rate over the 3% In2O3/TiO2 and 5 times the amount produced over the pure TiO2. In addition, Cu was found to promote efficient production of CH3OH and yield rate reached to 68 μmol g-1 h-1 over 1% Cu-3% In2O3/TiO2 catalyst. This improvement was attributed to charge transfer property and suppressed recombination rate by Cu-metal. More importantly, H2 reductant was less favorable for CH4 production, yet a significant amount of CH4 and CH3OH were obtained using a mixture of H2O/H2 reductant. Therefore, Cu-loaded In2O3/TiO2 catalyst has shown to be capable for methanol production, whereas product selectivity was greatly depending on the amount of Cu-loading and the type of reductant. A photocatalytic reaction mechanism was proposed to understand the experimental results over the Cu-loaded In2O3/TiO2 catalyst.

  7. Photolysis of water for H2 production with the use of biological and artificial catalysts

    NASA Astrophysics Data System (ADS)

    Hall, D. O.; Adams, M. W. W.; Morris, P.; Rao, K. K.

    1980-02-01

    An aqueous mixture of chloroplasts, hydrogenase and electron transfer catalyst on illumination liberates H2, the source of the H atoms being water. The rate and duration of H2 production from such a system depends on the stability of chloroplast and hydrogenase activities in light and oxygen. Both chloroplasts and hydrogenases can be stabilized to a certain degree by immobilization in gels or by incubation in bovine serum albumin. Natural electron carriers of hydrogenases are ferredoxin, cytochrome c3 and NAD. Viologen dyes and synthetic iron-sulphur particles (Jeevanu) can substitute for the biological carriers. Methyl viologen, photoreduced in the presence of chloroplasts, can liberate H2 in combination with Pt (Adam's catalyst). An aqueous solution of proflavine can be photoreduced in the presence of organic electron donors such as EDTA, cysteine, dithiothreitol, etc.; the reduced proflavine can subsequently liberate H2 with MV-Pt, MV-hydrogenase, ferredoxin-hydrogenase or cytochrome-hydrogenase systems.

  8. Novel Process of Simultaneous Removal of Nitric Oxide and Sulfur Dioxide Using a Vacuum Ultraviolet (VUV)-Activated O2/H2O/H2O2 System in A Wet VUV-Spraying Reactor.

    PubMed

    Liu, Yangxian; Wang, Qian; Pan, Jianfeng

    2016-12-06

    A novel process for NO and SO 2 simultaneous removal using a vacuum ultraviolet (VUV, with 185 nm wavelength)-activated O 2 /H 2 O/H 2 O 2 system in a wet VUV-spraying reactor was developed. The influence of different process variables on NO and SO 2 removal was evaluated. Active species (O 3 and ·OH) and liquid products (SO 3 2- , NO 2 - , SO 4 2- , and NO 3 - ) were analyzed. The chemistry and routes of NO and SO 2 removal were investigated. The oxidation removal system exhibits excellent simultaneous removal capacity for NO and SO 2 , and a maximum removal of 96.8% for NO and complete SO 2 removal were obtained under optimized conditions. SO 2 reaches 100% removal efficiency under most of test conditions. NO removal is obviously affected by several process variables. Increasing VUV power, H 2 O 2 concentration, solution pH, liquid-to-gas ratio, and O 2 concentration greatly enhances NO removal. Increasing NO and SO 2 concentration obviously reduces NO removal. Temperature has a dual impact on NO removal, which has an optimal temperature of 318 K. Sulfuric acid and nitric acid are the main removal products of NO and SO 2 . NO removals by oxidation of O 3 , O·, and ·OH are the primary routes. NO removals by H 2 O 2 oxidation and VUV photolysis are the complementary routes. A potential scaled-up removal process was also proposed initially.

  9. The H+n-C5H12/n-C6H14→H2(v',j')+C5H11/C6H13 reactions: State-to-state dynamics and models of energy disposal

    NASA Astrophysics Data System (ADS)

    Picconatto, Carl A.; Srivastava, Abneesh; Valentini, James J.

    2001-03-01

    The rovibrational state distributions for the H2 product of the H+n-C5H12/n-C6H14→H2+C5H11/C6H13 reactions at 1.6 eV collision energy are reported. The results are compared to measurements made on the kinematically and energetically similar H+RH→H2+R (RH=CH4, C2H6, and C3H8) reactions as well as the atom-diatom reactions H+HX→H2+X(HX=HCl, HBr). For the title reactions, as for all the comparison reactions, the product appears in few of the energetically accessible states. This is interpreted as the result of a kinematic constraint on the product translational energy. Characteristic of the H+RH reactions we have previously studied, the title reactions show increasing rotational excitation of the H2 product with increasing vibrational excitation of it, a correlation that gets stronger as the size of the alkane increases. Trends and variations in the product energy disposal are analyzed and explained by a localized reaction model. This model predicates a truncation of the opacity function due to competing reactive sites in the polyatomic alkane reactant, and a relaxation of the otherwise tight coupling of energy and angular momentum conservation, because the polyatomic alkyl radical product is a sink for angular momentum.

  10. Visible light induced H2PO(4)(-) removal over CuAlO2 catalyst.

    PubMed

    Benreguia, N; Omeiri, S; Bellal, B; Trari, M

    2011-09-15

    The delafossite CuAlO(2) is successfully used for the visible light driven H(2)PO(4)(-) reduction. It is prepared from the nitrates decomposition in order to increase the ratio of reaction surface per given mass. CuAlO(2) is a narrow band gap semiconductor which exhibits a good chemical stability with a corrosion rate of 1.70 μmol year(-1) at neutral pH. The flat band potential (+0.25 V(SCE)) is determined from the Mott-Schottky characteristic. Hence, the conduction band, positioned at (-1.19 V(SCE)), lies below the H(2)PO(4)(-) level yielding a spontaneous reduction under visible illumination. The photocatalytic process is investigated under mild conditions and 30% conversion occurs in less than ~6h with a quantum efficiency of 0.04% under full light. The concentration decreases by a factor of 39% after a second cycle. The photoactivity follows a first order kinetic with a rate constant of 6.6 × 10(-2)h(-1). The possibility of identifying the reaction products via the intensity-potential characteristics is explored. The decrease of the conversion rate over illumination time is due to the competitive water reduction. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Insights into genetic diversity and biological propensities of potentially zoonotic avian influenza H9N2 viruses circulating in Egypt.

    PubMed

    Naguib, Mahmoud M; Arafa, Abdel-Satar; Parvin, Rokshana; Beer, Martin; Vahlenkamp, Thomas; Harder, Timm C

    2017-11-01

    Low pathogenic avian influenza (LPAI) H9N2 viruses have established endemic status in Egyptian poultry populations since 2012. Recently, four cases of human H9N2 virus infections in Egypt demonstrated the zoonotic potential of these viruses. Egyptian H9N2 viruses obtained from 2011 to 2014 phylogenetically grouped into three clusters (1-3) within subclade B of the G1 lineage. Antigenically, a close clustering of the Egyptian H9N2 viruses with other recent G1-B like H9N2 strains and a significant antigenic distance from viruses outside the G1-B lineage was evident. Recent Egyptian LPAIV H9N2 showed a tendency to increased binding with erythrocytes expressing α 2,6-linked sialic acid which correlated with the Q226L amino acid substitution at the receptor binding unit of the hemagglutinin (Q234L, H9 numbering). Sequence analyses of the N2 neuraminidase (NA) revealed substitutions in the NA hemadsorption site similar to the N2 of prepandemic H3N2/1968, but no distinct antigenic or functional characteristics of the H9N2 NA associated with increased zoonotic potential could be identified. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Room temperature stable CO x -free H2 production from methanol with magnesium oxide nanophotocatalysts.

    PubMed

    Liu, Zhengqing; Yin, Zongyou; Cox, Casandra; Bosman, Michel; Qian, Xiaofeng; Li, Na; Zhao, Hongyang; Du, Yaping; Li, Ju; Nocera, Daniel G

    2016-09-01

    Methanol, which contains 12.6 weight percent hydrogen, is a good hydrogen storage medium because it is a liquid at room temperature. However, by releasing the hydrogen, undesirable CO and/or CO 2 byproducts are formed during catalytic fuel reforming. We show that alkaline earth metal oxides, in our case MgO nanocrystals, exhibit stable photocatalytic activity for CO/CO 2 -free H 2 production from liquid methanol at room temperature. The performance of MgO nanocrystals toward methanol dehydrogenation increases with time and approaches ~320 μmol g -1 hour -1 after a 2-day photocatalytic reaction. The CO x -free H 2 production is attributed to methanol photodecomposition to formaldehyde, photocatalyzed by surface electronic states of unique monodispersed, porous MgO nanocrystals, which were synthesized with a novel facile colloidal chemical strategy. An oxygen plasma treatment allows for the removal of organic surfactants, producing MgO nanocrystals that are well dispersible in methanol.

  13. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the fifth quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes

  14. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the seventh quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes

  15. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision 21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the second annual technical progress report for the Vision 21 AGC program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting

  16. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the third quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes

  17. Alternative Energy: Production of H2 by Radiolysis of Water in the Rocky Cores of Icy Bodies

    NASA Astrophysics Data System (ADS)

    Bouquet, Alexis; Glein, Christopher R.; Wyrick, Danielle; Waite, J. Hunter

    2017-05-01

    We applied a model of radiolysis in earthly rock-water mixtures to several known or suspected ocean worlds: Enceladus, Ceres, Europa, Titania, Oberon, Pluto, and Charon. In this model, radiation emitted by the long-lived radionuclides (40K, 232Th, 235U, and 238U) contained in the ordinary chondrite-like rocks is partly absorbed by the water permeating the material of each body’s core. The physical and chemical processes that follow release molecular hydrogen (H2), which is a molecule of astrobiological interest. We compared the calculated production of H2 by radiolysis in each body’s core to published estimates of production by serpentinization. This study presents production calculations over 4.5 Gyr for several values of rock porosity. We found that radiolysis can produce H2 quantities equivalent to a few percent of what is estimated from serpentinization. Higher porosity, which is unlikely at the scale of a body’s entire core but possible just under the seafloor, can increase radiolytic production by almost an order of magnitude. The products of water radiolysis also include several oxidants, allowing for production of life-sustaining sulfates. Though previously unrecognized in this capacity, radiolysis in an ocean world’s outer core could be a fundamental agent in generating the chemical energy that could support life.

  18. Palladium-tin catalysts for the direct synthesis of H 2O 2 with high selectivity

    DOE PAGES

    Freakley, Simon J.; He, Qian; Harrhy, Jonathan H.; ...

    2016-02-25

    The direct synthesis of hydrogen peroxide (H 2O 2 ) from H 2 and O 2 represents a potentially atom-efficient alternative to the current industrial indirect process. We show that the addition of tin to palladium catalysts coupled with an appropriate heat treatment cycle switches off the sequential hydrogenation and decomposition reactions, enabling selectivities of >95% toward H 2O 2 . This effect arises from a tin oxide surface layer that encapsulates small Pd-rich particles while leaving larger Pd-Sn alloy particles exposed. In conclusion, we show that this effect is a general feature for oxide-supported Pd catalysts containing an appropriatemore » second metal oxide component, and we set out the design principles for producing high-selectivity Pd-based catalysts for direct H 2O 2 production that do not contain gold.« less

  19. Radical-molecule reaction C3H+H2O: a mechanistic study.

    PubMed

    Dong, Hao; Ding, Yi-Hong; Sun, Chia-Chung

    2005-02-08

    Despite the importance of the C(3)H radical in both combustion and interstellar space, the reactions of C(3)H toward stable molecules have never been studied. In this paper, we report our detailed mechanistic study on the radical-molecule reaction C(3)H+H(2)O at the Becke's three parameter Lee-Yang-Parr-B3LYP6-311G(d,p) and coupled cluster with single, double, and triple excitations-CCSD(T)6-311G(2d,p) (single-point) levels. It is shown that the C(3)H+H(2)O reaction initially favors formation of the carbene-insertion intermediates HCCCHOH (1a,1b) rather than the direct H- or OH-abstraction process. Subsequently, the isomers (1a,1b) can undergo a direct H- extrusion to form the well-known product propynal HCCCHO (P(5)). Highly competitively, (1a,1b) can take the successive 1,4- and 1,2-H-shift interconversion to isomer H(2)CCCHO(2a,2b) and then to isomer H(2)CCHCO(3a,3b), which can finally take a direct C-C bond cleavage to give product C(2)H(3) and CO (P(1)). The other products are kinetically much less feasible. With the overall entrance barrier 10.6 kcal/mol, the title reaction can be important in postburning processes. Particularly, our calculations suggest that the title reaction may play a role in the formation of the intriguing interstellar molecule, propynal HCCCHO. The calculated results will also be useful for the analogous C(3)H reactions such as with ammonia and alkanes.

  20. Mechanisms for the Production of Fast HI from Dissociation of H2 on Saturn

    NASA Astrophysics Data System (ADS)

    Liu, Xianming; Johnson, Paul; Malone, Charles; Young, Jason; Kanik, Isik; Shemansky, Donald

    2010-05-01

    Images of the Saturn system obtained by the Cassini UVIS at a pixel resolution of 0.1 × 0.1 Saturn radii (Rs) reveal atomic hydrogen in ballistic and escaping trajectories sourced at the top of the thermosphere, primarily in the southern sunlit hemisphere. The main feature in the image is a distinctive H Lyman-α plume structure with FWHM of 0.56 Rs at the exobase sub-solar limb at ~ -13.5° latitude constituting the core of the distributed outward flow of atomic hydrogen from the sunlit hemisphere, with a counterpart on the anti-solar side peaking near the equator above the exobase limb. The structure of the image indicates that part of the out-flowing population is sub-orbital and re-enters the thermosphere in ~ 5 hour time scale. A larger and more broadly distributed component fills the magnetosphere to beyond 45 Rs in the orbital plane and 20 Rs latitudinally above and below the plane in an asymmetric distribution in local time. Molecular hydrogen emission in extreme and far ultraviolet regions collected with the H Lyman-α into the image mosaic reveals a distinctive resonance property correlated with the atomic hydrogen plume and shows a strong deviation of H2 X 1Σg+ from local thermodynamic equilibrium in the main source region. The inferred approximate globally averaged energy deposition at the top of the thermosphere from the production of the hot atomic hydrogen accounts for the measured atmospheric temperature. Possible processes for the fast atomic hydrogen formation from dissociation of H2 include the excitation of singlet-ungerade states and doubly excited states by photons and electrons, and the excitation of the singlet-gerade and triplet states by electrons, and chemical reactions involving the formation and dissociative recombination of H3+. Based on the available laboratory measurements and quantum mechanics calculations, the assessment of various mechanisms for H2 - H production, especially those producing H atoms with sufficient energy to

  1. Gas Production at Comet 67P/Churyumov-Gerasimenko as Measured by the ROSINA Instrument: Long Term Trends and Correlations with H2O and CO2

    NASA Astrophysics Data System (ADS)

    Hansen, K. C.; Altwegg, K.; Berthelier, J. J.; Combi, M. R.; De Keyser, J.; Fiethe, B.; Fougere, N.; Fuselier, S. A.; Gombosi, T. I.; Huang, Z.; Rubin, M.; Tenishev, V.; Toth, G.; Tzou, C. Y.

    2017-12-01

    The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument onboard the Rosetta spacecraft measured the in situ gas density of comet 67P/Churyumov-Gerasimenko during the full perihelion passage of the comet within 3.5au. During this time, ROSINA sampled the neutral coma, measuring the broad range of cometary species including both the major constituents such as H2O, CO2, CO as well as many other species that are interesting to the general astrophysical community, such as O2, Xe, Si and even amino acids. Many of these species are hard to detect and therefore measurements are limited to when the spacecraft was close to the comet or the production rate was high. In contrast, in this work we will consider species that are most easily measured due to either their higher production rates or the ease with which their mass peaks are located (H2O, CO2, CO, O2, 18OH, HDO, OCS, SO2, H2S, CN, HCN, NH3, CH4, C2H2, C2H3, CH3OH and F). The advantage of examining these species is that we are able to present measurements over the entire perihelion passage at reasonably high time resolution. In this work we will present two important results. First, we will examine the long-term trend and heliocentric distance dependence of the production of these species over the entire perihelion passage of 67P. Second we will consider the correlation of the production of each species with the production of H2O and CO2. The study will consider both the long term correspondence between production of different species as well as the shorter term correlation.

  2. Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria.

    PubMed

    Tretter, Laszlo; Takacs, Katalin; Hegedus, Vera; Adam-Vizi, Vera

    2007-02-01

    Characteristics of reactive oxygen species (ROS) production in isolated guinea-pig brain mitochondria respiring on alpha-glycerophosphate (alpha-GP) were investigated and compared with those supported by succinate. Mitochondria established a membrane potential (DeltaPsi(m)) and released H(2)O(2) in parallel with an increase in NAD(P)H fluorescence in the presence of alpha-GP (5-40 mm). H(2)O(2) formation and the increase in NAD(P)H level were inhibited by rotenone, ADP or FCCP, respectively, being consistent with a reverse electron transfer (RET). The residual H(2)O(2) formation in the presence of FCCP was stimulated by myxothiazol in mitochondria supported by alpha-GP, but not by succinate. ROS under these conditions are most likely to be derived from alpha-GP-dehydrogenase. In addition, huge ROS formation could be provoked by antimycin in alpha-GP-supported mitochondria, which was prevented by myxothiazol, pointing to the generation of ROS at the quinol-oxidizing center (Q(o)) site of complex III. FCCP further stimulated the production of ROS to the highest rate that we observed in this study. We suggest that the metabolism of alpha-GP leads to ROS generation primarily by complex I in RET, and in addition a significant ROS formation could be ascribed to alpha-GP-dehydrogenase in mammalian brain mitochondria. ROS generation by alpha-GP at complex III is evident only when this complex is inhibited by antimycin.

  3. Hyperfine excitation of C2H in collisions with ortho- and para-H2

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-06-01

    Accurate estimation of the abundance of the ethynyl (C2H) radical requires accurate radiative and collisional rate coefficients. Hyperfine-resolved rate coefficients for (de-)excitation of C2H in collisions with ortho- and para-H2 are presented in this work. These rate coefficients were computed in time-independent close-coupling quantum scattering calculations that employed a potential energy surface recently computed at the coupled-clusters level of theory that describes the interaction of C2H with H2. Rate coefficients for temperatures from 10 to 300 K were computed for all transitions among the first 40 hyperfine energy levels of C2H in collisions with ortho- and para-H2. These rate coefficients were employed in simple radiative transfer calculations to simulate the excitation of C2H in typical molecular clouds.

  4. Calculational and Experimental Investigations of the Pressure Effects on Radical - Radical Cross Combinations Reactions: C2H5 + C2H3

    NASA Technical Reports Server (NTRS)

    Fahr, Askar; Halpern, Joshua B.; Tardy, Dwight C.

    2007-01-01

    Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance

  5. Two-component, ab initio potential energy surface for CO2-H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both.

    PubMed

    Wang, Qingfeng Kee; Bowman, Joel M

    2017-10-28

    We report an ab initio, full-dimensional, potential energy surface (PES) for CO 2 -H 2 O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D 0 , of 787 cm -1 is obtained using that ZPE, D e , and the rigorous ZPEs of the monomers. Using a benchmark D e , D 0 is 758 cm -1 . Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO 2 hydrate clathrate CO 2 (H 2 O) 20 (5 12 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO 2 .

  6. A probe for NADH and H2O2 amperometric detection at low applied potential for oxidase and dehydrogenase based biosensor applications.

    PubMed

    Ricci, Francesco; Amine, Aziz; Moscone, Danila; Palleschi, Giuseppe

    2007-01-15

    Modified screen-printed electrodes for amperometric detection of H(2)O(2) and nicotinamide adenine dinucleotide (NADH) at low applied potential are presented in this paper. The sensors are obtained by modifying the working electrode surface with Prussian Blue, a well known electrochemical mediator for H(2)O(2) reduction. The coupling of this sensor with phenazine methosulfate (PMS) in the working solution gives the possibility of measuring both NAD(P)H and H(2)O(2). PMS reacts with NADH producing PMSH, which in the presence of oxygen, gives an equimolar amount of H(2)O(2). This allows the measurement of both analytes with similar sensitivity (357 mA mol(-1)L cm(-2) for H(2)O(2) and 336 mA mol(-1)L cm(-2) for NADH) and LOD (5x10(-7)mol L(-1) for H(2)O(2) and NADH) and opens the possibility of a whole series of biosensor applications. In this paper, results obtained with a variety of dehydrogenase enzymes (alcohol, malic, lactate, glucose, glycerol and glutamate) for the detection of enzymatic substrates or enzymatic activity are presented demonstrating the suitability of the proposed method for future biosensor applications.

  7. Urothelium muscarinic activation phosphorylates CBS(Ser227) via cGMP/PKG pathway causing human bladder relaxation through H2S production.

    PubMed

    d'Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Fusco, Ferdinando; Russo, Annapina; Pagliara, Valentina; Tramontano, Teresa; Donnarumma, Erminia; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2016-08-11

    The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-β-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser(227) following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders.

  8. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells.

    PubMed

    Sim, Junyoung; An, Junyeong; Elbeshbishy, Elsayed; Ryu, Hodon; Lee, Hyung-Sool

    2015-11-01

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2O2 conversion efficiency was negligible at 0.3-12%. Current density decreased for passive O2 diffusion to the cathode, but H2O2 conversion efficiency increased by 65%. An MEC equipped with a gas diffusion cathode was operated with acetate medium and domestic wastewater, which presented relatively high H2O2 conversion efficiency from 36% to 47%, although cathode overpotential was fluctuated. Due to different current densities, the maximum H2O2 production rate was 141 mg H2O2/L-h in the MEC fed with acetate medium, but it became low at 6 mg H2O2/L-h in the MEC fed with the wastewater. Our study clearly indicates that improving anodic current density and mitigating membrane fouling would be key parameters for large-scale H2O2-MECs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The Relationship of HCN, C2H6, & H2O in Comets: A Key Clue to Origins?

    NASA Astrophysics Data System (ADS)

    Mumma, Michael J.; Charnley, Steven B.; Cordiner, Martin; Paganini, Lucas; Villanueva, Geronimo Luis

    2017-10-01

    Background: HCN, C2H6, and H2O are three of the best characterized volatiles in comets. It is often assumed that all three are primary volatiles, native to the nucleus. Here, we compare their properties in 26 comets (9 JFC and 17 Oort-cloud), making 6 points:1. Both HCN and C2H6 are poor proxies for water production. The production rate ratio (Q-ratio) of each trace gas relative to water varies by a factor of six among these comets.2. All 26 comets have Q-ratios HCN/C2H6 > 0.1. In 18 comets the Q-ratios HCN/H2O and C2H6/H2O are correlated, with a mean ratio of 0.33. In 6 comets undergoing complete disruption, this Q-ratio exceeds 0.5.3. Q-ratios HCN/C2H6 are not correlated with Q(H2O), nor are they correlated with dynamical class (Oort cloud vs. JFC).4. The nucleus-centered rotational temperatures measured for H2O and other primary species (C2H6, CH3OH) usually agree within error, but those for HCN are often slightly cooler. Could this mean that HCN is not fully developed in the warm near-nucleus region, and instead is at least in part a product species?5. With its strong dipole moment and H-bonding character, HCN should be linked more strongly in the nuclear ice to other molecules with similar properties (H2O, CH3OH), but instead its spatial release in some comets seems strongly coupled to volatiles that lack a dipole moment and thus do not form H-bonds (methane, ethane). Is HCN produced in part from an apolar precursor?6. ALMA maps of HCN and the dust continuum show a slight displacement in their centroids. Is this the signature of extended production of HCN?HCN as a product species: Points 4-6 suggest that HCN may have a significant distributed source. The astrochemical species ammonium cyanide is a strong candidate for this HCN precursor; at moderately low temperatures (< 200K) NH4CN is a stable solid, but it dissociates into HCN and NH3 when warmed. Disruption could eject macroscopic solid NH4CN into the coma where subsequent warming and release could augment

  10. Tribulus terrestris (Linn.) Attenuates Cellular Alterations Induced by Ischemia in H9c2 Cells Via Antioxidant Potential.

    PubMed

    Reshma, P L; Lekshmi, V S; Sankar, Vandana; Raghu, K G

    2015-06-01

    Tribulus terrestris L. was evaluated for its cardioprotective property against myocardial ischemia in a cell line model. Initially, methanolic extract was prepared and subjected to sequential extraction with various solvents. The extract with high phenolic content (T. terrestris L. ethyl acetate extract-TTME) was further characterized for its chemical constituents and taken forward for evaluation against cardiac ischemia. HPLC analysis revealed the presence of phenolic compounds like caffeic acid (12.41 ± 0.22 mg g(-1)), chlorogenic acid (0.52 ± 0.06 mg g(-1)) and 4-hydroxybenzoic acid (0.60 ± 0.08 mg g(-1)). H9c2 cells were pretreated with TTME (10, 25, 50 and 100 µg/ml) for 24 h before the induction of ischemia. Then ischemia was induced by exposing cells to ischemia buffer, in a hypoxic chamber, maintained at 0.1% O2, 95% N2 and 5% CO2, for 1 h. A significant (p ≤ 0.05) increase in reactive oxygen species generation (56%), superoxide production (18%), loss of plasma membrane integrity, dissipation of transmembrane potential, permeability transition pore opening and apoptosis had been observed during ischemia. However, pretreatment with TTME was found to significantly (p ≤ 0.05) attenuate the alterations caused by ischemia. The overall results of this study partially reveal the scientific basis of the use of T. terrestris L. in the traditional system of medicine for heart diseases. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parag Kulkarni; Jie Guan; Raul Subia

    In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOEmore » NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of

  12. High light harvesting efficiency CuInS2 quantum dots/TiO2/MoS2 photocatalysts for enhanced visible light photocatalytic H2 production.

    PubMed

    Yuan, Yong-Jun; Fang, Gaoliang; Chen, Daqin; Huang, Yanwei; Yang, Ling-Xia; Cao, Da-Peng; Wang, Jingjing; Yu, Zhen-Tao; Zou, Zhi-Gang

    2018-04-24

    Expanding the photoresponse range of TiO2-based photocatalysts is of great interest for photocatalytic H2 production. Herein, noble-metal-free CuInS2 quantum dots were employed as a novel inorganic dye to expand the visible light absorption of TiO2/MoS2 for solar H2 generation. The as-prepared CuInS2/TiO2/MoS2 photocatalysts exhibit broad absorption from the ultraviolet to near-infrared region. Under visible light irradiation (λ > 420 nm), the CuInS2/TiO2/MoS2 photocatalyst with 0.6 mmol g-1 CuInS2 and 0.5 wt% MoS2 showed the highest H2 evolution rate with a value of 1034 μmol h-1 g-1. Moreover, a considerable H2 evolution rate of 141 μmol h-1 g-1 was obtained under the irradiation of the optimized CuInS2/TiO2/MoS2 photocatalyst with >500 nm light. The reaction mechanism of the CuInS2/TiO2/MoS2 photocatalyst for photocatalytic H2 evolution was investigated in detail by photoluminescence decay study, and the results showed that the photoexcited electrons of CuInS2 can be transferred efficiently through TiO2 to MoS2 and then react with the absorbed protons to generate H2. The reported sensitization strategy tremendously improves the visible light absorption capacity and the photocatalytic performance of TiO2-based photocatalysts.

  13. Rate Constant and RRKM Product Study for the Reaction Between CH3 and C2H3 at T = 298K

    NASA Technical Reports Server (NTRS)

    Thorn, R. Peyton, Jr.; Payne, Walter A., Jr.; Chillier, Xavier D. F.; Stief, Louis J.; Nesbitt, Fred L.; Tardy, D. C.

    2000-01-01

    The total rate constant k1 has been determined at P = 1 Torr nominal pressure (He) and at T = 298 K for the vinyl-methyl cross-radical reaction CH3 + C2H3 yields products. The measurements were performed in a discharge flow system coupled with collision-free sampling to a mass spectrometer operated at low electron energies. Vinyl and methyl radicals were generated by the reactions of F with C2H4 and CH4, respectively. The kinetic studies were performed by monitoring the decay of C2H3 with methyl in excess, 6 < |CH3|(sub 0)/|C2H3|(sub 0) < 21. The overall rate coefficient was determined to be k1(298 K) = (1.02 +/- 0.53)x10(exp -10) cubic cm/molecule/s with the quoted uncertainty representing total errors. Numerical modeling was required to correct for secondary vinyl consumption by reactions such as C2H3 + H and C2H3 + C2H3. The present result for k1 at T = 298 K is compared to two previous studies at high pressure (100-300 Torr He) and to a very recent study at low pressure (0.9-3.7 Torr He). Comparison is also made with the rate constant for the similar reaction CH3 + C2H5 and with a value for k1 estimated by the geometric mean rule employing values for k(CH3 + CH3) and k(C2H3 + C2H3). Qualitative product studies at T = 298 K and 200 K indicated formation of C3H6, C2H2, and C2H5 as products of the combination-stabilization, disproportionation, and combination-decomposition channels, respectively, of the CH3 + C2H3 reaction. We also observed the secondary C4H8 product of the subsequent reaction of C3H5 with excess CH3; this observation provides convincing evidence for the combination-decomposition channel yielding C3H5 + H. RRKM calculations with helium as the deactivator support the present and very recent experimental observations that allylic C-H bond rupture is an important path in the combination reaction. The pressure and temperature dependencies of the branching fractions are also predicted.

  14. Ion chemistry of 1H-1,2,3-triazole.

    PubMed

    Ichino, Takatoshi; Andrews, Django H; Rathbone, G Jeffery; Misaizu, Fuminori; Calvi, Ryan M D; Wren, Scott W; Kato, Shuji; Bierbaum, Veronica M; Lineberger, W Carl

    2008-01-17

    A combination of experimental methods, photoelectron-imaging spectroscopy, flowing afterglow-photoelectron spectroscopy and the flowing afterglow-selected ion flow tube technique, and electronic structure calculations at the B3LYP/6-311++G(d,p) level of density functional theory (DFT) have been employed to study the mechanism of the reaction of the hydroxide ion (HO-) with 1H-1,2,3-triazole. Four different product ion species have been identified experimentally, and the DFT calculations suggest that deprotonation by HO- at all sites of the triazole takes place to yield these products. Deprotonation of 1H-1,2,3-triazole at the N1-H site gives the major product ion, the 1,2,3-triazolide ion. The 335 nm photoelectron-imaging spectrum of the ion has been measured. The electron affinity (EA) of the 1,2,3-triazolyl radical has been determined to be 3.447 +/- 0.004 eV. This EA and the gas-phase acidity of 2H-1,2,3-triazole are combined in a negative ion thermochemical cycle to determine the N-H bond dissociation energy of 2H-1,2,3-triazole to be 112.2 +/- 0.6 kcal mol-1. The 363.8 nm photoelectron spectroscopic measurements have identified the other three product ions. Deprotonation of 1H-1,2,3-triazole at the C5 position initiates fragmentation of the ring structure to yield a minor product, the ketenimine anion. Another minor product, the iminodiazomethyl anion, is generated by deprotonation of 1H-1,2,3-triazole at the C4 position, followed by N1-N2 bond fission. Formation of the other minor product, the 2H-1,2,3-triazol-4-ide ion, can be rationalized by initial deprotonation of 1H-1,2,3-triazole at the N1-H site and subsequent proton exchanges within the ion-molecule complex. The EA of the 2H-1,2,3-triazol-4-yl radical is 1.865 +/- 0.004 eV.

  15. Towards Sustainable H2 Production: Rational Design of Hydrophobic Triphenylamine-based Dyes for Sensitized Ethanol Photoreforming.

    PubMed

    Dessì, Alessio; Monai, Matteo; Bessi, Matteo; Montini, Tiziano; Calamante, Massimo; Mordini, Alessandro; Reginato, Gianna; Trono, Cosimo; Fornasiero, Paolo; Zani, Lorenzo

    2018-02-22

    Donor-acceptor dyes are a well-established class of photosensitizers, used to enhance visible-light harvesting in solar cells and in direct photocatalytic reactions, such as H 2 production by photoreforming of sacrificial electron donors (SEDs). Amines-typically triethanolamine (TEOA)-are commonly employed as SEDs in such reactions. Dye-sensitized photoreforming of more sustainable, biomass-derived alcohols, on the other hand, was only recently reported by using methanol as the electron donor. In this work, several rationally designed donor-acceptor dyes were used as sensitizers in H 2 photocatalytic production, comparing the efficiency of TEOA and EtOH as SEDs. In particular, the effect of hydrophobic chains in the spacer and/or the donor unit of the dyes was systematically studied. The H 2 production rates were higher when TEOA was used as SED, whereas the activity trends depended on the SED used. The best performance was obtained with TEOA by using a sensitizer with just one bulky hydrophobic moiety, propylenedioxythiophene, placed on the spacer unit. In the case of EtOH, the best-performing sensitizers were the ones featuring a thiazolo[5,4-d]thiazole internal unit, needed for enhancing light harvesting, and carrying alkyl chains on both the donor part and the spacer unit. The results are discussed in terms of reaction mechanism, interaction with the SED, and structural/electrochemical properties of the sensitizers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. UV/H2O2 and UV/PDS Treatment of Trimethoprim and Sulfamethoxazole in Synthetic Human Urine: Transformation Products and Toxicity.

    PubMed

    Zhang, Ruochun; Yang, Yongkui; Huang, Ching-Hua; Li, Na; Liu, Hang; Zhao, Lin; Sun, Peizhe

    2016-03-01

    Elimination of pharmaceuticals in source-separated human urine is a promising approach to minimize the pharmaceuticals in the environment. Although the degradation kinetics of pharmaceuticals by UV/H2O2 and UV/peroxydisulfate (PDS) processes has been investigated in synthetic fresh and hydrolyzed urine, comprehensive evaluation of the advanced oxidation processes (AOPs), such as product identification and toxicity testing, has not yet been performed. This study identified the transformation products of two commonly used antibiotics, trimethoprim (TMP) and sulfamethoxazole (SMX), by UV/H2O2 and UV/PDS in synthetic urine matrices. The effects of reactive species, including •OH, SO4(•-), CO3(•-), and reactive nitrogen species, on product generation were investigated. Multiple isomeric transformation products of TMP and SMX were observed, especially in the reaction with hydroxyl radical. SO4(•-) and CO3(•-) reacted with pharmaceuticals by electron transfer, thus producing similar major products. The main reactive species deduced on the basis of product generation are in good agreement with kinetic simulation of the advanced oxidation processes. A strain identified as a polyphosphate-accumulating organism was used to investigate the antimicrobial activity of the pharmaceuticals and their products. No antimicrobial property was detected for the transformation products of either TMP or SMX. Acute toxicity employing luminescent bacterium Vibrio qinghaiensis indicated 20-40% higher inhibitory effect of TMP and SMX after treatment. Ecotoxicity was estimated by quantitative structure-activity relationship analysis using ECOSAR.

  17. Preparation and characterization of magnetic CsH{sub 2}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} nanocatalysts for biodiesel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feyzi, Mostafa, E-mail: Dalahoo2011@yahoo.com; Nanoscience and Nanotechnology Research Center; Nourozi, Leila

    Graphical abstract: In this study, a series of magnetic CsH{sub 2}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} nanocatalysts were prepared and tested for biodiesel production. The best operational conditions were CH3OH/oil = 12/1 at 60 °C with mechanical stirring, the biodiesel yield reaches to 81% in 4 h. Also notably, recovery of the catalyst can be achieved easily with the help of an external magnet with no need for expensive ultracentrifugation. - Highlights: • Effects of preparation conditions for biodiesel production were studied. • The CsH{sub 2}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} catalyst is efficient catalyst for biodiesel production. • The reaction conditions were foundmore » methanol/oil = 12/1, T = 60 °C. - Abstract: The magnetic CsH{sub 2}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} nanocatalysts were prepared via combination of sol–gel and impregnation methods. The effects of different H{sub 3}PW{sub 12}O{sub 40}/(Fe–SiO{sub 2}) weight percentage, loading of Cs as a promotor and calcination conditions on the catalytic performance has been studied. It was found that the catalyst with H{sub 3}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} = 4 wt.% and Cs = 2 wt.% is an optimal catalyst for biodiesel production. The activity of optimal catalyst was studied in different operational conditions. The best operational conditions were CH{sub 3}OH/oil = 12/1 at 60 °C with mechanical stirring rate of 500 rpm and the biodiesel yield reaches to 81% in 4 h. Characterization of catalysts was carried out by using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM), N{sub 2} adsorption–desorption measurements methods, Thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC)« less

  18. Anaerobic biodegradability of Category 2 animal by-products: methane potential and inoculum source.

    PubMed

    Pozdniakova, Tatiana A; Costa, José C; Santos, Ricardo J; Alves, M M; Boaventura, Rui A R

    2012-11-01

    Category 2 animal by-products that need to be sterilized with steam pressure according Regulation (EC) 1774/2002 are studied. In this work, 2 sets of experiments were performed in mesophilic conditions: (i) biomethane potential determination testing 0.5%, 2.0% and 5.0% total solids (TS), using sludge from the anaerobic digester of a wastewater treatment plant as inoculum; (ii) biodegradability tests at a constant TS concentration of 2.0% and different inoculum sources (digested sludge from a wastewater treatment plant; granular sludge from an upflow anaerobic sludge blanket reactor; leachate from a municipal solid waste landfill; and sludge from the slaughterhouse wastewater treatment anaerobic lagoon) to select the more adapted inoculum to the substrate in study. The higher specific methane production was of 317 mL CH(4)g(-1) VS(substrate) for 2.0% TS. The digested sludge from the wastewater treatment plant led to the lowest lag-phase period and higher methane potential rate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Mechanism of VHF H2 plasma production at high pressures

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-Chen; Chiu, Kuo-Feng; Chen, Chia-Fu; Lien, Cheng-Yang; Tsai, Yu-Jer; Lien, Ting-Kuei; Ogiwara, Kohei; Uchino, Kiichiro; Kawai, Yoshinobu

    2016-06-01

    A VHF H2 plasma was produced by a narrow-gap discharge at high pressures, and the plasma parameters were examined with the Langmuir probe. A bi-Maxwellian electron distribution was observed near the discharge electrode at a discharge gap of 10 mm, while a Maxwellian distribution was seen near the center. When the discharge gap was 15 mm, electrons had a Maxwellian distribution independent of the position. It was found that there must be a threshold in the discharge gap for stochastic heating to occur. The plasma potential near the discharge electrode was higher than that near the center of the interelectrode gap, suggesting the existence of negative ions. The simulation using the plasma hybrid code was carried out. The spatial profiles of the density and temperature of electrons were similar to the experimental results. The plasma potential had a hill-like profile that was quite different from the measured one. The negative ion density was negligible.

  20. A new ab initio potential energy surface for the collisional excitation of HCN by para- and ortho-H{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denis-Alpizar, Otoniel, E-mail: otonieldenisalpizar@gmail.com; Departamento de Física, Universidad de Matanzas, Matanzas 40100; Kalugina, Yulia

    We present a new four-dimensional potential energy surface for the collisional excitation of HCN by H{sub 2}. Ab initio calculations of the HCN–H{sub 2} van der Waals complex, considering both molecules as rigid rotors, were carried out at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12a] level of theory using an augmented correlation-consistent triple zeta (aVTZ) basis set. The equilibrium structure is linear HCN–H{sub 2} with the nitrogen pointing towards H{sub 2} at an intermolecular separation of 7.20 a{sub 0}. The corresponding well depth is −195.20 cm{sup −1}. A secondary minimum of −183.59 cm{sup −1}more » was found for a T-shape configuration with the H of HCN pointing to the center of mass of H{sub 2}. We also determine the rovibrational energy levels of the HCN–para-H{sub 2} and HCN–ortho-H{sub 2} complexes. The calculated dissociation energies for the para and ortho complexes are 37.79 cm{sup −1} and 60.26 cm{sup −1}, respectively. The calculated ro-vibrational transitions in the HCN–H{sub 2} complex are found to agree by more than 0.5% with the available experimental data, confirming the accuracy of the potential energy surface.« less

  1. H9N2 low pathogenic avian influenza in Pakistan (2012-2015).

    PubMed

    Lee, Dong-Hun; Swayne, David E; Sharma, Poonam; Rehmani, Shafqat Fatima; Wajid, Abdul; Suarez, David L; Afonso, Claudio

    2016-01-01

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have been reported since 2010. Because novel genotypes of Pakistani H9N2 contain mammalian host-specific markers, recent surveillance is essential to better understand any continuing public health risk. Here the authors report on four new H9N2 LPAIVs, three from 2015 and one from 2012. All of the viruses tested in this study belonged to Middle East B genetic group of G1 lineage and had PAKSSR/G motif at the haemagglutinin cleavage site. The mammalian host-specific markers at position 226 in the haemagglutinin receptor-binding site and internal genes suggest that Pakistan H9N2 viruses are still potentially infectious for mammals. Continued active surveillance in poultry and mammals is needed to monitor the spread and understand the potential for zoonotic infection by these H9N2 LPAIVs.

  2. Zero-point energy conservation in classical trajectory simulations: Application to H2CO

    NASA Astrophysics Data System (ADS)

    Lee, Kin Long Kelvin; Quinn, Mitchell S.; Kolmann, Stephen J.; Kable, Scott H.; Jordan, Meredith J. T.

    2018-05-01

    A new approach for preventing zero-point energy (ZPE) violation in quasi-classical trajectory (QCT) simulations is presented and applied to H2CO "roaming" reactions. Zero-point energy may be problematic in roaming reactions because they occur at or near bond dissociation thresholds and these channels may be incorrectly open or closed depending on if, or how, ZPE has been treated. Here we run QCT simulations on a "ZPE-corrected" potential energy surface defined as the sum of the molecular potential energy surface (PES) and the global harmonic ZPE surface. Five different harmonic ZPE estimates are examined with four, on average, giving values within 4 kJ/mol—chemical accuracy—for H2CO. The local harmonic ZPE, at arbitrary molecular configurations, is subsequently defined in terms of "projected" Cartesian coordinates and a global ZPE "surface" is constructed using Shepard interpolation. This, combined with a second-order modified Shepard interpolated PES, V, allows us to construct a proof-of-concept ZPE-corrected PES for H2CO, Veff, at no additional computational cost to the PES itself. Both V and Veff are used to model product state distributions from the H + HCO → H2 + CO abstraction reaction, which are shown to reproduce the literature roaming product state distributions. Our ZPE-corrected PES allows all trajectories to be analysed, whereas, in previous simulations, a significant proportion was discarded because of ZPE violation. We find ZPE has little effect on product rotational distributions, validating previous QCT simulations. Running trajectories on V, however, shifts the product kinetic energy release to higher energy than on Veff and classical simulations of kinetic energy release should therefore be viewed with caution.

  3. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios.

    PubMed

    Ferreira, Ana F; Ortigueira, Joana; Alves, Luís; Gouveia, Luísa; Moura, Patrícia; Silva, Carla

    2013-09-01

    This paper presents a life cycle inventory of biohydrogen production by Clostridium butyricum through the fermentation of the whole Scenedesmus obliquus biomass. The main purpose of this work was to determine the energy consumption and CO2 emissions during the production of hydrogen. This was accomplished through the fermentation of the microalgal biomass cultivated in an outdoor raceway pond and the preparation of the inoculum and culture media. The scale-up scenarios are discussed aiming for a potential application to a fuel cell hybrid taxi fleet. The H2 yield obtained was 7.3 g H2/kg of S. obliquus dried biomass. The results show that the production of biohydrogen required 71-100 MJ/MJ(H2) and emitted about 5-6 kg CO2/MJ(H2). Other studies and production technologies were taken into account to discuss an eventual process scale-up. Increased production rates of microalgal biomass and biohydrogen are necessary for bioH2 to become competitive with conventional production pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Production of reactive oxygen (H2O2) and nitrogen (NO) intermediates and tnf-α in mice genetically selected for high (H) and low (L) antibody response and experimentally infected with Leptospira serovar pomona

    PubMed Central

    Haanwinckel, Maria Cristina Santos; de Oliveira, Silvio Luis

    2011-01-01

    The aim of the present study was to evaluate the activity of macrophages, and the production of TNF-α and antibodies against experimental infection by Leptospira serovar Pomona in mice genetically selected for High (H) or Low (L) humoral immune response. To evaluate macrophagic activity, peritoneal and splenic lavages were performed for determination of oxygen (H2O2) and nitrogen (NO) intermediates. The production of the tumor necrosis factor (TNF-α) was investigated through bioassays in serum and homogenates of splenic and hepatic cells of control and infected animals, as was as specific antibodies production. The immune response against serovar Pomona in those lines, was characterized by high antibody production, especially in later periods of the infectious process, whereas values of bacterial recovery in culture medium were lower. The production of reactives oxygen and nitrogen intermediate, also helped to eliminate Leptospira Pomona in both lines; H2O2 production an important factor in HIV-A, as well as NO production in LIV-A, especially in later post-inoculation periods. The same was detected for TNF-α. Results suggest that such lines could be an important model to investigate the pathogenesis and the immune response of animals against the several Leptospira serovars. PMID:24031688

  5. Ab initio chemical kinetics for SiH3 reactions with Si(x)H2x+2 (x = 1-4).

    PubMed

    Raghunath, P; Lin, M C

    2010-12-30

    Gas-phase kinetics and mechanisms of SiH(3) reactions with SiH(4), Si(2)H(6), Si(3)H(8), and Si(4)H(10), processes of relevance to a-Si thin-film deposition, have been investigated by ab initio molecular orbital and transition-state theory (TST) calculations. Geometric parameters of all the species involved in the title reactions were optimized by density functional theory at the B3LYP and BH&HLYP levels with the 6-311++G(3df,2p) basis set. The potential energy surface of each reaction was refined at the CCSD(T)/6-311++G(3df,2p) level of theory. The results show that the most favorable low energy pathways in the SiH(3) reactions with these silanes occur by H abstraction, leading to the formation of SiH(4) + Si(x)H(2x+1) (silanyl) radicals. For both Si(3)H(8) and n-Si(4)H(10) reactions, the lowest energy barrier channels take place by secondary Si-H abstraction, yielding SiH(4) + s-Si(3)H(7) and SiH(4) + s-Si(4)H(9), respectively. In the i-Si(4)H(10) reaction, tertiary Si-H abstraction has the lowest barrier producing SiH(4) + t-Si(4)H(9). In addition, direct SiH(3)-for-X substitution reactions forming Si(2)H(6) + X (X = H or silanyls) can also occur, but with significantly higher reaction barriers. A comparison of the SiH(3) reactions with the analogous CH(3) reactions with alkanes has been made. The rate constants for low-energy product channels have been calculated for the temperature range 300-2500 K by TST with Eckart tunneling corrections. These results, together with predicted heats of formation of various silanyl radicals and Si(4)H(10) isomers, have been tabulated for modeling of a-Si:H film growth by chemical vapor deposition.

  6. Observations of molecular hydrogen (H2) mixing ratio and stable isotopic composition at the Cabauw tall tower; very depleted source signature suggests microbial H2 production in Dutch pasture soil.

    NASA Astrophysics Data System (ADS)

    Batenburg, Anneke; Popa, Elena; Vermeulen, Alex; van den Bulk, Pim; Jongejan, Piet; Fisher, Rebecca; Lowry, Dave; Nisbet, Euan; Röckmann, Thomas

    2017-04-01

    obtain a realistic picture of the uncertainty of the result. This showed a wide distribution with more than 99 % of the values below -400 ‰, suggesting that the H2 cycle at Cabauw is under the influence of a source mix that is much more D-depleted than currently accepted values for fossil fuel combustion. Since microbial production of very D-depleted H2 has been observed previously at Cabauw, we consider it likely that this contributes to the low apparent source signature. A comparison of the samples from different sampling heights shows that there is a significant shift to lower δD(H2) values at the lower sampling levels. This shows that the uptake of H2 by the soil, which preferentially removes "light" H2, is relatively weak at the site. It also points again to local to regional microbial production of H2, and possibly to differences between national vehicle fleets.

  7. Calculations of rate constants for the three-body recombination of H2 in the presence of H2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    1988-01-01

    A new global potential energy hypersurface for H2 + H2 is constructed and quasiclassical trajectory calculations performed using the resonance complex theory and energy transfer mechanism to estimate the rate of three body recombination over the temperature range 100 to 5000 K. The new potential is a faithful representation of ab initio electron structure calculations, is unchanged under the operation of exchanging H atoms, and reproduces the accurate H3 potential as one H atom is pulled away. Included in the fitting procedure are geometries expected to be important when one H2 is near or above the dissociation limit. The dynamics calculations explicitly include the motion of all four atoms and are performed efficiently using a vectorized variable-stepsize integrator. The predicted rate constants are approximately a factor of two smaller than experimental estimates over a broad temperature range.

  8. Radiative charge transfer in He+ + H2 collisions in the milli- to nano-electron-volt range: A theoretical study within state-to-state and optical potential approaches

    NASA Astrophysics Data System (ADS)

    Mrugała, Felicja; Kraemer, Wolfgang P.

    2013-03-01

    The paper presents a theoretical study of the low-energy dynamics of the radiative charge transfer (RCT) reaction He+(^{2}S) + H2(X ^{1}Σ +g) rArr He(^{1}S) + H2+(X 2Σ +g)+hν extending our previous studies on radiative association of HeH2+ [F. Mrugała, V. Špirko, and W. P. Kraemer, J. Chem. Phys. 118, 10547 (2003), 10.1063/1.1573184; F. Mrugała and W. P. Kraemer, J. Chem. Phys. 122, 224321 (2005), 10.1063/1.1924453]. The calculations account for the vibrational and rotational motions of the H2/H_2^+ diatomics and for the atom-diatom complex formation in the reactant and the product channels of the RCT reaction. Continuum states of He+ + H2(v = 0, j = 0) in the collision energy range ˜10-7-18.6 meV and all quasi-bound states of the He+ - H2(para; v = 0) complex formed in this range are taken into account. Close-coupling calculations are performed to determine rates of radiative transitions from these states to the continuum and quasi-bound states of the He + H+2 system in the energy range extending up to ˜0.16 eV above the opening of the HeH+ + H arrangement channel. From the detailed state-to-state calculated characteristics global functions of the RCT reaction, such as cross-section σ(E), emission intensity I(ν, T), and rate constant k(T) are derived, and are presented together with their counterparts for the radiative association (RA) reaction He+(2S) + H_2(X ^{1}Σ +g) rArr HeH2+(X ^{2}A^' })+ hν. The rate constant kRCT is approximately 20 times larger than kRA at the considered temperatures, 0.1 μK-50 K. Formation of rotational Feshbach resonances in the reactant channel plays an important role in both reactions. Transitions mediated by these resonances contribute more than 70% to the respective rates. An extension of the one-dimensional optical potential model is developed to allow inclusion of all three vibrational modes in the atom-diatom system. This three-dimensional optical potential model is used to check to which extent the state

  9. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum

    DOE PAGES

    Biswas, Ranjita; Zheng, Tianyong; Olson, Daniel G.; ...

    2015-02-12

    The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H2, and amino acids that compete with ethanol production for carbon and electrons. Elimination of H2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl-CoA reduction to ethanol. C. thermocellum encodes four hydrogenases and rather than delete each individually, we targeted a hydrogenase maturase gene (hydG), involved in converting the three [FeFe] hydrogenase apoenzymes into holoenzymes. Further deletion of the [NiFe]more » hydrogenase (ech) resulted in a mutant that functionally lacks all four hydrogenases. H2 production in hydG ech was undetectable and ethanol yield increased nearly 2-fold compared to wild type. Interestingly, mutant growth improved upon the addition of acetate, which led to increased expression of genes related to sulfate metabolism, suggesting these mutants may use sulfate as a terminal electron acceptor to balance redox reactions. Genomic analysis of hydG revealed a mutation in adhE, resulting in a strain with both NADH- and NADPH-dependent alcohol dehydrogenase activities. While this same adhE mutation is found in ethanol tolerant C. thermocellum strain E50C, hydG and hydG ech are not more ethanol tolerant than wild type, illustrating the complicated interactions between redox balancing and ethanol tolerance in C. thermocellum. The dramatic increase in ethanol production here suggests that targeting protein post-translational modification is a promising new approach for inactivation of multiple enzymes simultaneously for metabolic engineering.« less

  10. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons.

    PubMed

    Huber, G W; Shabaker, J W; Dumesic, J A

    2003-06-27

    Hydrogen (H2) was produced by aqueous-phase reforming of biomass-derived oxygenated hydrocarbons at temperatures near 500 kelvin over a tin-promoted Raney-nickel catalyst. The performance of this non-precious metal catalyst compares favorably with that of platinum-based catalysts for production of hydrogen from ethylene glycol, glycerol, and sorbitol. The addition of tin to nickel decreases the rate of methane formation from C-O bond cleavage while maintaining the high rates of C-C bond cleavage required for hydrogen formation.

  11. Two-component, ab initio potential energy surface for CO2H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both

    NASA Astrophysics Data System (ADS)

    Wang, Qingfeng Kee; Bowman, Joel M.

    2017-10-01

    We report an ab initio, full-dimensional, potential energy surface (PES) for CO2H2O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D0, of 787 cm-1 is obtained using that ZPE, De, and the rigorous ZPEs of the monomers. Using a benchmark De, D0 is 758 cm-1. Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO2 hydrate clathrate CO2(H2O)20(512 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO2.

  12. An Accurate Potential Energy Surface for H2O

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    We have carried out extensive high quality ab initio electronic structure calculations of the ground state potential energy surface (PES) and dipole moment function (DMF) for H2O. A small adjustment is made to the PES to improve the agreement of line positions from theory and experiment. The theoretical line positions are obtained from variational ro-vibrational calculations using the exact kinetic energy operator. For the lines being fitted, the root-mean-square error was reduced from 6.9 to 0.08 /cm. We were then able to match 30,092 of the 30,117 lines from the HITRAN 96 data base to theoretical lines, and 80% of the line positions differed less than 0.1 /cm. About 3% of the line positions in the experimental data base appear to be incorrect. Theory predicts the existence of many additional weak lines with intensities above the cutoff used in the data base. To obtain results of similar accuracy for HDO, a mass dependent correction to the PH is introduced and is parameterized by simultaneously fitting line positions for HDO and D2O. The mass dependent PH has good predictive value for T2O and HTO. Nonadiabatic effects are not explicitly included. Line strengths for vibrational bands summed over rotational levels usually agree well between theory and experiment, but individual line strengths can differ greatly. A high temperature line list containing about 380 million lines has been generated using the present PES and DMF

  13. Photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 in the VUV region

    NASA Technical Reports Server (NTRS)

    Xia, T. J.; Chien, T. S.; Wu, C. Y. Robert; Judge, D. L.

    1991-01-01

    Using synchrotron radiation as a continuum light source, the photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 have been measured from their respective ionization thresholds to 1060 A. The vibrational constants associated with the nu(2) totally symmetric, out-of-plane bending vibration of the ground electronic state of PH3(+) have been obtained. The cross sections and quantum yields for producing neutral products through photoexcitation of these molecules in the given spectral regions have also been determined. In the present work, autoionization processes were found to be less important than dissociation and predissociation processes in NH3, PH3, and C2H4. Several experimental techniques have been employed in order to examine the various possible systematic errors critically.

  14. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the tenth quarterly technical progress report for the Vision 21 UFP

  15. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL

  16. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program

  17. A Key Role for Apoplastic H2O2 in Norway Spruce Phenolic Metabolism1[OPEN

    PubMed Central

    Laitinen, Teresa

    2017-01-01

    Apoplastic events such as monolignol oxidation and lignin polymerization are difficult to study in intact trees. To investigate the role of apoplastic hydrogen peroxide (H2O2) in gymnosperm phenolic metabolism, an extracellular lignin-forming cell culture of Norway spruce (Picea abies) was used as a research model. Scavenging of apoplastic H2O2 by potassium iodide repressed lignin formation, in line with peroxidases activating monolignols for lignin polymerization. Time-course analyses coupled to candidate substrate-product pair network propagation revealed differential accumulation of low-molecular-weight phenolics, including (glycosylated) oligolignols, (glycosylated) flavonoids, and proanthocyanidins, in lignin-forming and H2O2-scavenging cultures and supported that monolignols are oxidatively coupled not only in the cell wall but also in the cytoplasm, where they are coupled to other monolignols and proanthocyanidins. Dilignol glycoconjugates with reduced structures were found in the culture medium, suggesting that cells are able to transport glycosylated dilignols to the apoplast. Transcriptomic analyses revealed that scavenging of apoplastic H2O2 resulted in remodulation of the transcriptome, with reduced carbon flux into the shikimate pathway propagating down to monolignol biosynthesis. Aggregated coexpression network analysis identified candidate enzymes and transcription factors for monolignol oxidation and apoplastic H2O2 production in addition to potential H2O2 receptors. The results presented indicate that the redox state of the apoplast has a profound influence on cellular metabolism. PMID:28522458

  18. Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal Hydride (TiH2, ZrH2, MgH2, and/or CaH2) Composite Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon; Xu, Yimin; Shaw, Wendy J.

    2012-04-19

    Ammonia borane (AB = NH3BH3) is one of the most attractive materials for chemical hydrogen storage due to its high hydrogen contents of 19.6 wt.%, however, impurity levels of borazine, ammonia and diborane in conjunction with foaming and exothermic hydrogen release calls for finding ways to mitigate the decomposition reactions. In this paper we present a solution by mixing AB with metal hydrides (TiH2, ZrH2, MgH2 and CaH2) which have endothermic hydrogen release in order to control the heat release and impurity levels from AB upon decomposition. The composite materials were prepared by mechanical ball milling, and their H2 releasemore » properties were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The formation of volatile products from decomposition side reactions, such as borazine (N3B3H6) was determined by mass spectrometry (MS). Sieverts type pressure-composition-temperature (PCT) gas-solid reaction instrument was adopted to observe the kinetics of the H2 release reactions of the combined systems and neat AB. In situ 11B MAS-NMR revealed a destabilized decomposition pathway. We found that by adding specific metal hydrides to AB we can eliminate the impurities and mitigate the heat release.« less

  19. A theoretical investigation into the strength of N-NO2 bonds, ring strain and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX.

    PubMed

    Wang, Bao-Guo; Ren, Fu-de; Shi, Wen-Jing

    2015-11-01

    Changes in N-NO2 bond strength, ring strain energy and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX were investigated using DFT-B3LYP and MP2(full) methods with the 6-311++G(2df,2p) and aug-cc-pVTZ basis sets. Analysis of electron density shifts was also carried out. The results indicate that H-bonding energy correlates well with the increment of ring strain energy. Upon complex formation, the strength of the N-NO2 trigger-bond is enhanced, suggesting reduced sensitivity, while judged by the increased ring strain energy, sensitivity is increased. However, some features of the molecular surface electrostatic potential, such as a local maximum above the N-NO2 bond and ring, σ + (2) and electrostatic balance parameter ν, remain essentially unchanged upon complex formation, and only a small change in the impact sensitivity h 50 is suggested. It is not sufficient to determine sensitivity solely on the basis of trigger bond or ring strain; as a global feature of a molecule, the molecular surface electrostatic potential is available to help judge the change of sensitivity in H-bonded complexes. Graphical Abstract The strengthened N-NO2 bond suggests reduced sensitivity, while it is reverse by theincreased ring strain energy upon the complex formation. However, the molecular surfaceelectrostatic potential (V S) shows the little change of h 50. The V S should be taken into accountin the analysis of explosive sensitivity in the H-bonded complex.

  20. Converged three-dimensional quantum mechanical reaction probabilities for the F + H2 reaction on a potential energy surface with realistic entrance and exit channels and comparisons to results for three other surfaces

    NASA Technical Reports Server (NTRS)

    Lynch, Gillian C.; Halvick, Philippe; Zhao, Meishan; Truhlar, Donald G.; Yu, Chin-Hui; Kouri, Donald J.; Schwenke, David W.

    1991-01-01

    Accurate three-dimensional quantum mechanical reaction probabilities are presented for the reaction F + H2 yields HF + H on the new global potential energy surface 5SEC for total angular momentum J = 0 over a range of translational energies from 0.15 to 4.6 kcal/mol. It is found that the v-prime = 3 HF vibrational product state has a threshold as low as for v-prime = 2.

  1. Spectroscopic investigations (FT-IR, UV, 1H and 13C NMR) and DFT/TD-DFT calculations of potential analgesic drug 2-[2-(dimethylamino)ethyl]-6-methoxy-4-(pyridin-2-yl)-1(2H)-phthalazinone

    NASA Astrophysics Data System (ADS)

    Sroczyński, Dariusz; Malinowski, Zbigniew

    2017-12-01

    The theoretical molecular geometry and the IR, UV, 1H and 13C NMR spectroscopic properties of 2-[2-(dimethylamino)ethyl]-6-methoxy-4-(pyridin-2-yl)-1(2H)-phthalazinone with the previously demonstrated in vivo analgesic activity were characterized. The conformational analysis, performed using the molecular mechanics method with the General AMBER Force Field (GAFF) and the Density Functional Theory (DFT) approach with the B3LYP hybrid functional and the 6-31 + g(d) basis sets, allowed to determine the most stable rotamer. The theoretical molecular geometry of this conformer was then calculated at the B3LYP/6-311++g(d,p) level of theory, and its phthalazinone core was compared with the experimental geometry of 1(2H)-phthalazinone. The calculated vibrational frequencies and the potential energy distribution enabled to assign the theoretical vibrational modes to the experimental FT-IR bands. The UV spectrum calculated with the Time-Dependent Density Functional Theory (TD-DFT) method in methanol identified the main electronic transitions and their character. 1H and 13C NMR chemical shifts simulated by the Gauge-Independent Atomic Orbital (GIAO) method in chloroform confirmed the previous assignment of the experimental resonance signals. The stability of the molecule was considered taking into account the hyperconjugation and electron density delocalization effects evaluated by the Natural Bond Orbital (NBO) method. The calculated spatial distribution of molecular electrostatic potential made possible to estimate the regions with nucleophilic and electrophilic properties. The results of the potentiodynamic polarization measurements were also indicated the corrosion inhibition activity of the title compound on 100Cr6 bearing steel in 1 mol dm-3 HCl solution.

  2. Potential denitrification and nitrous oxide production in the sediments of the Seine River Drainage Network (France).

    PubMed

    Garnier, Josette A; Mounier, Emmanuelle M; Laverman, Anniet M; Billen, Gilles F

    2010-01-01

    To investigate bottom sediment denitrification at the scale of the Seine drainage network, a semi-potential denitrification assay was used in which river sediments (and riparian soils) were incubated for a few hours under anaerobic conditions with non limiting nitrate concentrations. This method allowed the nitrous oxide (N(2)O) concentration in the headspace, as well as the nitrate, nitrite, and ammonium concentrations to be determined during incubation. The rates at which nitrate decreased and N(2)O increased were then used to assess the potential denitrification activity and associated N(2)O production in the Seine River Basin. We observed a longitudinal pattern characterized by a significant increase of the potential rate of denitrification from upstream sectors to large downstream rivers (orders 7-8), from approximately 3.3 to 9.1 microg NO(3)(-)-N g(-1) h(-1), respectively, while the N(2)O production rates was the highest both in headwaters and in large order rivers (0.14 and 0.09 N(2)O-N g(-1) h(-1), respectively) and significantly lower in the intermediate sectors (0.01 and 0.03 N(2)O-N g(-1) h(-1)). Consequently, the ratio N(2)O production:NO(3) reduction was found to reach 5% in headstreams, whereas it averaged 1.2% in the rest of the drainage network, an intermediate percentage being found for the riparian soils. Finally, the ignition loss of sediments, together with other redundant variables (particulate organic carbon content: g C 100 g(-1) dry weight [dw], moisture: g water 100 g(-1) dw, sediment size <50 mum: g material size <50 mum 100 g(-1) dw) were found to control these activities. However, the biodegradability of organic matter must be measured to better understand the factor controlling denitrification and its associated N(2)O production.

  3. In vivo imaging of reactive oxygen species in mouse brain by using [3H]Hydromethidine as a potential radical trapping radiotracer

    PubMed Central

    Abe, Kohji; Takai, Nozomi; Fukumoto, Kazumi; Imamoto, Natsumi; Tonomura, Misato; Ito, Miwa; Kanegawa, Naoki; Sakai, Katsunori; Morimoto, Kenji; Todoroki, Kenichiro; Inoue, Osamu

    2014-01-01

    To assess reactive oxygen species (ROS) production by detecting the fluorescent oxidation product, hydroethidine has been used extensively. The present study was undertaken to evaluate the potential of the hydroethidine derivative as a radiotracer to measure in vivo brain ROS production. [3H]-labeled N-methyl-2,3-diamino-6-phenyl-dihydrophenanthridine ([3H]Hydromethidine) was synthesized, and evaluated using in vitro radical-induced oxidization and in vivo brain ROS production model. In vitro studies have indicated that [3H]Hydromethidine is converted to oxidized products by a superoxide radical (O2•−) and a hydroxyl radical (OH•−) but not hydrogen peroxide (H2O2). In vivo whole-body distribution study showed that [3H]Hydromethidine rapidly penetrated the brain and then was washed out in normal mice. Microinjection of sodium nitroprusside (SNP) into the brain was performed to produce ROS such as OH•− via Fenton reaction. A significant accumulation of radioactivity immediately after [3H]Hydromethidine injection was seen in the side of the brain treated with SNP (5 and 20 nmol) compared with that in the contralateral side. These results indicated that [3H]Hydromethidine freely penetrated into the brain where it was rapidly converted to oxidized forms, which were trapped there in response to the production of ROS. Thus, [3H]Hydromethidine should be useful as a radical trapping radiotracer in the brain. PMID:25227606

  4. Potential-pH Diagrams.

    ERIC Educational Resources Information Center

    Barnum, Dennis W.

    1982-01-01

    Potential-pH diagrams show the domains of redoxpotential and pH in which major species are most stable. Constructing such diagrams provides students with opportunities to decide what species must be considered, search literature for equilibrium constants and free energies of formation, and practice in using the Nernst equation. (Author/JN)

  5. N2O production in the Fe(II)(EDTA)-NO reduction process: the effects of carbon source and pH.

    PubMed

    Chen, Jun; Wang, Lei; Zheng, Ji; Chen, Jianmeng

    2015-07-01

    Chemical absorption-biological reduction (BioDeNOx), which uses Fe(II)(EDTA) as a complexing agent for promoting the mass transfer efficiency of NO from gas to water, is a promising technology for removing nitric oxide (NO) from flue gases. The carbon source and pH are important parameters for Fe(II)(EDTA)-NO (the production of absorption) reduction and N2O emissions from BioDeNOx systems. Batch tests were performed to evaluate the effects of four different carbon sources (i.e., methanol, ethanol, sodium acetate, and glucose) on Fe(II)(EDTA)-NO reduction and N2O emissions at an initial pH of 7.2 ± 0.2. The removal efficiency of Fe(II)(EDTA)-NO was 93.9%, with a theoretical rate of 0.77 mmol L(-1) h(-1) after 24 h of operation. The highest N2O production was 0.025 mmol L(-1) after 3 h when glucose was used as the carbon source. The capacities of the carbon sources to enhance the activity of the Fe(II)(EDTA)-NO reductase enzyme decreased in the following order based on the C/N ratio: glucose > ethanol > sodium acetate > methanol. Over the investigated pH range of 5.5-8.5, the Fe(II)(EDTA)-NO removal efficiency was highest at a pH of 7.5, with a theoretical rate of 0.88 mmol L(-1) h(-1). However, the N2O production was lowest at a pH of 8.5. The primary effect of pH on denitrification resulted from the inhibition of nosZ in acidic conditions.

  6. Continuous Production of Biorenewable, Polymer‐Grade Lactone Monomers through Sn‐β‐Catalyzed Baeyer–Villiger Oxidation with H2O2

    PubMed Central

    Yakabi, Keiko; Mathieux, Thibault; Milne, Kirstie; López‐Vidal, Eva M.; Buchard, Antoine

    2017-01-01

    Abstract The Baeyer–Villiger oxidation is a key transformation for sustainable chemical synthesis, especially when H2O2 and solid materials are employed as oxidant and catalyst, respectively. 4‐substituted cycloketones, which are readily available from renewables, present excellent platforms for Baeyer–Villiger upgrading. Such substrates exhibit substantially higher levels of activity and produce lactones at higher levels of lactone selectivity at all values of substrate conversion, relative to non‐substituted cyclohexanone. For 4‐isopropyl cyclohexanone, which is readily available from β‐pinene, continuous upgrading was evaluated in a plug‐flow reactor. Excellent selectivity (85 % at 65 % conversion), stability, and productivity were observed over 56 h, with over 1000 turnovers (mol product per mol Sn) being achieved with no loss of activity. A maximum space–time yield that was almost twice that for non‐substituted cyclohexanone was also obtained for this substrate [1173 vs. 607 g(product) kg(catalyst)−1 cm−3 h−1]. The lactone produced is also shown to be of suitable quality for ring opening polymerization. In addition to demonstrating the viability of the Sn‐β/H2O2 system to produce renewable lactone monomers suitable for polymer applications, the substituted alkyl cyclohexanones studied also help to elucidate steric, electronic, and thermodynamic elements of this transformation in greater detail than previously achieved. PMID:28804968

  7. Novel 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives: a patent review (2008 - 2011).

    PubMed

    Ferreira, Vitor F; da Rocha, David R; da Silva, Fernando C; Ferreira, Patrícia G; Boechat, Núbia A; Magalhães, Jorge L

    2013-03-01

    The triazoles represent a class of five-membered heterocyclic compounds of great importance for the preparation of new drugs with diverse biological activities because they may present several structural variations with the same numbers of carbon and nitrogen atoms. Due to the success of various triazoles that entered the pharmaceutical market and are still being used in medicines, many companies and research groups have shown interest in developing new methods of synthesis and biological evaluation of potential uses for these compounds. In this review, the authors explored aspects of patents for the 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole families, including prototypes being considered in clinical studies between 2008 and 2011. The triazoles have been studied for over a century as an important class of heterocyclic compounds and still attract considerable attention due to their broad range of biological activities. More recently, there has been considerable interest in the development of novel triazoles with anti-inflammatory, antiplatelet, antimicrobial, antimycobacterial, antitumoral and antiviral properties and activity against several neglected diseases. This review emphasizes recent perspective and advances in the therapeutically active 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivative patents between 2008 and 2011, covering the development of new chemical entities and new pharmaceuticals. Many studies have focused on these compounds as target structures and evaluated them in several biological targets. The preparation of 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives brings to light several issues. There is a need to find new, more efficient preparations for these triazoles that take into consideration current issues in green chemistry, energy saving and sustainability. New diseases are discovered and new viruses and bacteria continue to challenge mankind, so it is imperative to find new prototypes for these

  8. Hexafluoroisopropanol mediated benign synthesis of 2H-pyrido[1,2-a]pyrimidin-2-ones by using a domino protocol.

    PubMed

    Alsharif, Zakeyah; Ali, Mohamad Akbar; Alkhattabi, Hessa; Jones, Derika; Delancey, Evan; Ravikumar, P C; Alam, Mohammad A

    2017-12-21

    Domino strategy has been used for the synthesis of 2H-pyrido[1,2-a]pyrimidin-2-ones. Four sequential reactions: aza-Michael addition, water elimination, intramolecular acyl substitution, and [1,3]-H shift were observed in this domino protocol. Hexafluoroisopropanol is used as a promotor and recyclable solvent in this cascade process. Availability of inexpensive 2-aminopyridines and wide variety of Michael acceptors such as commercially available acrylates and unactivated Baylis-Hillman adducts makes this methodology a huge reservoir of novel fused N-heterocycles as bioactive and potential therapeutic agents. The reaction mechanism has been proposed and rationalized by density functional theory calculation. Products are obtained up to 95% yield.

  9. Phylogenetic Evidence for H2 based Electron Bifurcation In Early Life

    NASA Astrophysics Data System (ADS)

    Adams, M. W.; Boyd, E. S.; Schut, G.; Peters, J.

    2012-12-01

    Energy conservation is a fundamental underpinning of all life and is accomplished by electron transport phosphorylation and/or substrate level phosphorylation. A third mechanism, known as flavin-based electron bifurcation, has recently been established as a mechanism by which life can conserve energy. In this mechanism, a flavin-containing multienzyme complex catalyzes the thermodynamically unfavorable reduction of low potential ferredoxin using electron donors with higher potentials, such as NAD(P)H or H2. Such endergonic reactions are driven forward through the simultaneous oxidation of the electron donor with higher potential acceptors such as NAD+ or heterodisulfide. Membrane associated energy converting [NiFe]hydrogenases (Ech, Eha) link the oxidation of ferredoxin with the production of H2 and in the process conserve energy in the form of an ion (Na+/H+) gradient. Ech/Eha exhibit a modular composition represented by a Na+/H+ antiporter domain and a [NiFe] hydrogenase domain. In addition, Ech/Eha can be accompanied by a formate dehyrogenase, carbon monoxide dehydrogenase, or an FAD/NAD(P)H module that enables coupling with these substrates. Representatives of Ech/Eha have been identified among anaerobic Archaea and Bacteria, including deeply rooted methanogens, sulfur-reducing Crenarcheota/Euryarchaeota as well as Thermotogae. Ech exhibit extensive homology to a number of subunits within the NADH quinone oxidoreductase or complex I family (Nuo, Fpo). Metabolically, Ech generally couple the oxidation of carbon monooxide, formate or ferredoxin to the production of H2. In contrast, the Eha complex couples the translocation of Na+ and the oxidation of H2 to the reduction of ferredoxin, which is then available for the reduction of CO2 in methanogens. In the case of Eha, the gradient of Na+/H+ produced through translocation coupled to ferredoxin oxidation can in be used to drive the phosphorylation of ADP via an ATP synthase complex, thereby representing one of the

  10. Facile synthesis of flake-like TiO2/C nano-composites for photocatalytic H2 evolution under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Yan, Baolin; Zhou, Juan; Liang, Xiaoyu; Song, Kainan; Su, Xintai

    2017-01-01

    The production of H2 by photocatalytic water splitting has become a promising approach for clean, economical, and renewable evolution of H2 by using solar energy. In spite of tremendous efforts, the present challenge for materials scientists is to build a highly active photocatalytic system with high efficiency and low cost. Here we report a facile method for the preparation of TiO2/C nano-flakes, which was used as an efficient visible-light photocatalyst for H2 evolution. This composite material was prepared by using a phase-transfer strategy combined with salt-template calcination treatment. The results showed that anatase TiO2 nanoparticles with the diameter of ∼10 nm were uniformly dispersed on the carbon nano-flakes. In addition, the samples prepared at 600 °C (denoted as T600) endowed a larger surface area of 196 m2 g-1 and higher light absorption, resulting in enhanced photocatalytic activity. Further, the T600 product reached a high H2 production rate of 57.2 μmol h-1 under visible-light irradiation. This unusual photocatalytic activity arose from the positive synergetic effect between the TiO2 and carbon in this hybrid catalyst. This work highlights the potential of TiO2/C nano-flakes in the field of photocatalytic H2 evolution under visible-light irradiation.

  11. Natural products modulating the hERG channel: heartaches and hope.

    PubMed

    Kratz, Jadel M; Grienke, Ulrike; Scheel, Olaf; Mann, Stefan A; Rollinger, Judith M

    2017-08-02

    Covering: 1996-December 2016The human Ether-à-go-go Related Gene (hERG) channel is a voltage-gated potassium channel playing an essential role in the normal electrical activity in the heart. It is involved in the repolarization and termination of action potentials in excitable cardiac cells. Mutations in the hERG gene and hERG channel blockage by small molecules are associated with increased risk of fatal arrhythmias. Several drugs have been withdrawn from the market due to hERG channel-related cardiotoxicity. Moreover, as a result of its notorious ligand promiscuity, this ion channel has emerged as an important antitarget in early drug discovery and development. Surprisingly, the hERG channel blocking profile of natural compounds present in frequently consumed botanicals (i.e. dietary supplements, spices, and herbal medicinal products) is not routinely assessed. This comprehensive review will address these issues and provide a critical compilation of hERG channel data for isolated natural products and extracts over the past two decades (1996-2016). In addition, the review will provide (i) a solid basis for the molecular understanding of the physiological functions of the hERG channel, (ii) the translational potential of in vitro/in vivo results to cardiotoxicity in humans, (iii) approaches for the identification of hERG channel blockers from natural sources, (iv) future perspectives for cardiac safety guidelines and their applications within phytopharmaceuticals and dietary supplements, and (v) novel applications of hERG channel modulation (e.g. as a drug target).

  12. Effect of redox potential and pH on TNT transformation in soil-water slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, C.B.; Brannon, J.M.; Hayes, C.A.

    1997-10-01

    The presence of 2,4,6-trinitrotoluene (TNT) and its transformation products in surface soil, the vadose zone, and ground water can present serious environmental problems. This situation is exacerbated because the processes that control the mobility and transformation of TNT are not well understood. The objective of this study was to determine the effects of redox potential (Eh) and pH on the fate and transformation of TNT in soil. An initial investigation of soil components responsible for the observed TNT transformation was also conducted. Laboratory investigations consisted of testing at four separate redox potentials and four pH levels. An 18:1 (water:soil) suspensionmore » spiked with 100 {micro}g/g TNT was used. Results indicated that TNT was unstable under all redox and pH conditions, and was least stable under highly reducing conditions at all four pH values. Greater amounts of TNT were incorporated into soil organic matter under anaerobic than under aerobic conditions. Results of the soil component study indicated that the presence of Fe{sup +2} sorbed to clay surfaces may account for the rapid disappearance of TNT at reduced redox potentials. TNT in ground water moving into areas of intense reduction would not persist for long, but would undergo transformation and binding by soil organic matter.« less

  13. First-principles binary diffusion coefficients for H, H 2 and four normal alkanes + N 2

    DOE PAGES

    Jasper, Ahren W.; Kamarchik, Eugene; Miller, James A.; ...

    2014-09-30

    Collision integrals related to binary (dilute gas) diffusion are calculated classically for six species colliding with N 2. The most detailed calculations make no assumptions regarding the complexity of the potential energy surface, and the resulting classical collision integrals are in excellent agreement with previous semiclassical results for H + N 2 and H 2 + N 2 and with recent experimental results for C n H 2n+2 + N 2, n = 2–4. The detailed classical results are used to test the accuracy of three simplifying assumptions typically made when calculating collision integrals: (1) approximating the intermolecular potential asmore » isotropic, (2) neglecting the internal structure of the colliders (i.e., neglecting inelasticity), and (3) employing unphysical R –12 repulsive interactions. The effect of anisotropy is found to be negligible for H + N 2 and H 2 + N 2 (in agreement with previous quantum mechanical and semiclassical results for systems involving atomic and diatomic species) but is more significant for larger species at low temperatures. For example, the neglect of anisotropy decreases the diffusion coefficient for butane + N 2 by 15% at 300 K. The neglect of inelasticity, in contrast, introduces only very small errors. Approximating the repulsive wall as an unphysical R –12 interaction is a significant source of error at all temperatures for the weakly interacting systems H + N 2 and H 2 + N 2, with errors as large as 40%. For the normal alkanes in N 2, which feature stronger interactions, the 12/6 Lennard–Jones approximation is found to be accurate, particularly at temperatures above –700 K where it predicts the full-dimensional result to within 5% (although with somewhat different temperature dependence). Overall, the typical practical approach of assuming isotropic 12/6 Lennard–Jones interactions is confirmed to be suitable for combustion applications except for weakly interacting systems, such as H + N 2. For these systems, anisotropy

  14. H2@Scale Resource and Market Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark

    The 'H2@Scale' concept is based on the potential for wide-scale utilization of hydrogen as an energy intermediate where the hydrogen is produced from low cost energy resources and it is used in both the transportation and industrial sectors. H2@Scale has the potential to address grid resiliency, energy security, and cross-sectoral emissions reductions. This presentation summarizes the status of an ongoing analysis effort to quantify the benefits of H2@Scale. It includes initial results regarding market potential, resource potential, and impacts of when electrolytic hydrogen is produced with renewable electricity to meet the potential market demands. It also proposes additional analysis effortsmore » to better quantify each of the factors.« less

  15. Stimulation of H(2)O(2) generation by calcium in brain mitochondria respiring on alpha-glycerophosphate.

    PubMed

    Tretter, Laszlo; Takacs, Katalin; Kövér, Kinga; Adam-Vizi, Vera

    2007-11-15

    It has been reported recently (Tretter et al., 2007b) that in isolated guinea pig brain mitochondria supported by alpha-glycerophosphate (alpha-GP) reactive oxygen species (ROS) are produced through the reverse electron transport (RET) in the respiratory chain and by alpha-glycerophosphate dehydrogenase (alpha-GPDH). We studied the effect of calcium on the generation of H(2)O(2) as measured by the Amplex Red fluorescent assay in this model. H(2)O(2) production in alpha-GP-supported mitochondria was increased significantly in the presence of 100, 250, and 500 nM Ca(2+), respectively. In addition, Ca(2+) enhanced the membrane potential, the rate of oxygen consumption, and the NAD(P)H autofluorescence in these mitochondria. Direct measurement of alpha-GPDH activity showed that Ca(2+) stimulated the enzyme by decreasing the Km for alpha-GP. In those mitochondria where RET was eliminated by the Complex I inhibitor rotenone (2 microM) or due to depolarization by ADP (1 mM), the rate of H(2)O(2) formation was smaller and the stimulation of H(2)O(2) generation by Ca(2+) was prevented partly, but the stimulatory effect of Ca(2+) was still significant. These data indicate that in alpha-GP-supported mitochondria activation of alpha-GPDH by Ca(2+) leads to an accelerated RET-mediated ROS generation as well as to a stimulated ROS production by alpha-GPDH.

  16. Microbial H2 cycling does not affect δ2H values of ground water

    USGS Publications Warehouse

    Landmeyer, J.E.; Chapelle, F.H.; Bradley, P.M.

    2000-01-01

    Stable hydrogen-isotope values of ground water (δ2H) and dissolved hydrogen concentrations (H(2(aq)) were quantified in a petroleum-hydrocarbon contaminated aquifer to determine whether the production/consumption of H2 by subsurface microorganisms affects ground water &delta2H values. The range of &delta2H observed in monitoring wells sampled (-27.8 ‰c to -15.5 ‰c) was best explained, however, by seasonal differences in recharge temperature as indicated using ground water δ18O values, rather than isotopic exchange reactions involving the microbial cycling of H2 during anaerobic petroleum-hydrocarbon biodegradation. The absence of a measurable hydrogen-isotope exchange between microbially cycled H2 and ground water reflects the fact that the amount of H2 available from the anaerobic decomposition of petroleum hydrocarbons is small relative to the amount of hydrogen present in water, even though milligram per liter concentrations of readily biodegradable contaminants are present at the study site. Additionally, isotopic fractionation calculations indicate that in order for H2 cycling processes to affect δ2H values of ground water, relatively high concentrations of H2 (>0.080 M) would have to be maintained, considerably higher than the 0.2 to 26 nM present at this site and characteristic of anaerobic conditions in general. These observations suggest that the conventional approach of using δ2H and δ18O values to determine recharge history is appropriate even for those ground water systems characterized by anaerobic conditions and extensive microbial H2 cycling.

  17. Alternative Energy: Production of H{sub 2} by Radiolysis of Water in the Rocky Cores of Icy Bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouquet, Alexis; Waite, J. Hunter; Glein, Christopher R.

    We applied a model of radiolysis in earthly rock–water mixtures to several known or suspected ocean worlds: Enceladus, Ceres, Europa, Titania, Oberon, Pluto, and Charon. In this model, radiation emitted by the long-lived radionuclides ({sup 40}K, {sup 232}Th, {sup 235}U, and {sup 238}U) contained in the ordinary chondrite-like rocks is partly absorbed by the water permeating the material of each body’s core. The physical and chemical processes that follow release molecular hydrogen (H{sub 2}), which is a molecule of astrobiological interest. We compared the calculated production of H{sub 2} by radiolysis in each body’s core to published estimates of productionmore » by serpentinization. This study presents production calculations over 4.5 Gyr for several values of rock porosity. We found that radiolysis can produce H{sub 2} quantities equivalent to a few percent of what is estimated from serpentinization. Higher porosity, which is unlikely at the scale of a body’s entire core but possible just under the seafloor, can increase radiolytic production by almost an order of magnitude. The products of water radiolysis also include several oxidants, allowing for production of life-sustaining sulfates. Though previously unrecognized in this capacity, radiolysis in an ocean world’s outer core could be a fundamental agent in generating the chemical energy that could support life.« less

  18. (1)H MRS: a potential biomarker of in utero placental function.

    PubMed

    Macnaught, Gillian; Gray, Calum; Walker, Jane; Simpson, Mary; Norman, Jane; Semple, Scott; Denison, Fiona

    2015-10-01

    The placenta is a temporary organ that is essential for a healthy pregnancy. It performs several important functions, including the transport of nutrients, the removal of waste products and the metabolism of certain substances. Placental disorders have been found to account for over 50% of stillbirths. Despite this, there are currently no methods available to directly and non-invasively assess placental function in utero. The primary aim of this pilot study was to investigate the use of (1)H MRS for this purpose. (1)H MRS offers the possibility to detect several placental metabolites, including choline, lipids and the amino acids glutamine and glutamate (Glx), which are vital to fetal development and placental function. Here, in utero placental spectra were acquired from nine small for gestational age (SGA) pregnancies, a cohort who are at increased risk of perinatal morbidity and mortality, and from nine healthy gestation-matched pregnancies. All subjects were between 26 and 39 weeks of gestation. Placenta Glx, choline and lipids at 1.3 and 0.9 ppm were quantified as amplitude ratios to that of intrinsic H2O. Wilcoxon signed rank tests indicated a significant difference in Glx/H2O (p = 0.024) between the two groups, but not in choline/H2O (p = 0.722) or in either lipid/H2O ratio (1.3 ppm, p = 0.813; 0.9 ppm, p = 0.058). This study has demonstrated that (1)H MRS has potential for the detection of placental metabolites in utero. This warrants further investigation as a tool for the monitoring of placental function. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Identification of combinatorial host-specific signatures with a potential to affect host adaptation in influenza A H1N1 and H3N2 subtypes.

    PubMed

    Khaliq, Zeeshan; Leijon, Mikael; Belák, Sándor; Komorowski, Jan

    2016-07-29

    The underlying strategies used by influenza A viruses (IAVs) to adapt to new hosts while crossing the species barrier are complex and yet to be understood completely. Several studies have been published identifying singular genomic signatures that indicate such a host switch. The complexity of the problem suggested that in addition to the singular signatures, there might be a combinatorial use of such genomic features, in nature, defining adaptation to hosts. We used computational rule-based modeling to identify combinatorial sets of interacting amino acid (aa) residues in 12 proteins of IAVs of H1N1 and H3N2 subtypes. We built highly accurate rule-based models for each protein that could differentiate between viral aa sequences coming from avian and human hosts. We found 68 host-specific combinations of aa residues, potentially associated to host adaptation on HA, M1, M2, NP, NS1, NEP, PA, PA-X, PB1 and PB2 proteins of the H1N1 subtype and 24 on M1, M2, NEP, PB1 and PB2 proteins of the H3N2 subtypes. In addition to these combinations, we found 132 novel singular aa signatures distributed among all proteins, including the newly discovered PA-X protein, of both subtypes. We showed that HA, NA, NP, NS1, NEP, PA-X and PA proteins of the H1N1 subtype carry H1N1-specific and HA, NA, PA-X, PA, PB1-F2 and PB1 of the H3N2 subtype carry H3N2-specific signatures. M1, M2, PB1-F2, PB1 and PB2 of H1N1 subtype, in addition to H1N1 signatures, also carry H3N2 signatures. Similarly M1, M2, NP, NS1, NEP and PB2 of H3N2 subtype were shown to carry both H3N2 and H1N1 host-specific signatures (HSSs). To sum it up, we computationally constructed simple IF-THEN rule-based models that could distinguish between aa sequences of avian and human IAVs. From the rules we identified HSSs having a potential to affect the adaptation to specific hosts. The identification of combinatorial HSSs suggests that the process of adaptation of IAVs to a new host is more complex than previously suggested

  20. Noble-metal-free carbon nanotube-Cd0.1Zn0.9S composites for high visible-light photocatalytic H2-production performance

    NASA Astrophysics Data System (ADS)

    Yu, Jiaguo; Yang, Bin; Cheng, Bei

    2012-03-01

    Visible light photocatalytic H2 production from water splitting using solar light is of great importance from the viewpoint of solar energy conversion and storage. In this study, a novel visible-light-driven photocatalyst multiwalled carbon nanotube modified Cd0.1Zn0.9S solid solution (CNT/Cd0.1Zn0.9S) was prepared by a simple hydrothermal method. The prepared samples exhibited enhanced photocatalytic H2-production activity under visible light. CNT content had a great influence on photocatalytic activity and an optimum amount of CNT was determined to be ca. 0.25 wt%, at which the CNT/Cd0.1Zn0.9S displayed the highest photocatalytic activity under visible light, giving an H2-production rate of 78.2 μmol h-1 with an apparent quantum efficiency (QE) of 7.9% at 420 nm, even without any noble metal cocatalysts, exceeding that of pure Cd0.1Zn0.9S by more than 3.3 times. The enhanced photocatalytic activity was due to CNT as an excellent electron acceptor and transporter, thus reducing the recombination of charge carriers and enhancing the photocatalytic activity. Furthermore, the prepared sample was photostable and no photocorrosion was observed after photocatalytic recycling. Our findings demonstrated that CNT/Cd0.1Zn0.9S composites were a promising candidate for the development of high-performance photocatalysts in photocatalytic H2 production. This work not only shows a possibility for the utilization of low cost CNT as a substitute for noble metals (such as Pt) in the photocatalytic H2-production but also for the first time shows a significant enhancement in the H2-production activity by using metal-free carbon materials as effective co-catalysts.

  1. Mannose-binding lectin contributes to deleterious inflammatory response in pandemic H1N1 and avian H9N2 infection.

    PubMed

    Ling, Man To; Tu, Wenwei; Han, Yan; Mao, Huawei; Chong, Wai Po; Guan, Jing; Liu, Ming; Lam, Kwok Tai; Law, Helen K W; Peiris, J S Malik; Takahashi, K; Lau, Yu Lung

    2012-01-01

    Mannose-binding lectin (MBL) is a pattern-recognition molecule, which functions as a first line of host defense. Pandemic H1N1 (pdmH1N1) influenza A virus caused massive infection in 2009 and currently circulates worldwide. Avian influenza A H9N2 (H9N2/G1) virus has infected humans and has the potential to be the next pandemic virus. Antiviral function and immunomodulatory role of MBL in pdmH1N1 and H9N2/G1 virus infection have not been investigated. In this study, MBL wild-type (WT) and MBL knockout (KO) murine models were used to examine the role of MBL in pdmH1N1 and H9N2/G1 virus infection. Our study demonstrated that in vitro, MBL binds to pdmH1N1 and H9N2/G1 viruses, likely via the carbohydrate recognition domain of MBL. Wild-type mice developed more severe disease, as evidenced by a greater weight loss than MBL KO mice during influenza virus infection. Furthermore, MBL WT mice had enhanced production of proinflammatory cytokines and chemokines compared with MBL KO mice, suggesting that MBL could upregulate inflammatory responses that may potentially worsen pdmH1N1 and H9N2/G1 virus infections. Our study provided the first in vivo evidence that MBL may be a risk factor during pdmH1N1 and H9N2/G1 infection by upregulating proinflammatory response.

  2. Co-modification of amorphous-Ti(IV) hole cocatalyst and Ni(OH)2 electron cocatalyst for enhanced photocatalytic H2-production performance of TiO2

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Lu, Yanggang; Wang, Xuefei; Yu, Huogen

    2017-01-01

    Highly efficient TiO2 photocatalysts co-modified by amorphous-Ti(IV) hole cocatalyst and Ni(OH)2 electron cocatalyst (referred to as Ni(OH)2-Ti(IV)/TiO2) were prepared by facile two-step process which was the initial formation of amorphous Ti(IV) on the TiO2 surface via hydrolysis method and the following formation of Ni(OH)2 via precipitation reaction. It was found that the Ni(OH)2-Ti(IV)/TiO2 showed obviously high hydrogen-production performance. When the amount of Ni(OH)2 and Ti(IV) was 1 wt% and 0.1 wt%, respectively, the hydrogen-production rate of the resultant Ni(OH)2-Ti(IV)/TiO2 reached 7280.04 μmol h-1 g-1, which was significantly higher than that of TiO2, Ti(IV)/TiO2 and Ni(OH)2/TiO2 by a factor of 215, 63 and 1.8, respectively. Moreover, it was found that Ni(OH)2-Ti(IV)/TiO2 photocatalyst preserved a steady and highly efficient H2-production performance during repeated tests and also exhibited a high transient photocurrent density. The enhanced hydrogen-production performance of Ni(OH)2-Ti(IV)/TiO2 can be attributed to the synergistic effect of Ti(IV) hole cocatalyst and Ni(OH)2 electron cocatalyst to simultaneously accelerate the interfacial transfer of photogenerated holes and electrons. The present surface modification of dual cocatalysts can be regarded as one of the ideal strategies for the preparation of highly efficient hydrogen-production materials in view of their abundance, low cost and facile method.

  3. Theoretical Kinetics Analysis for $$\\dot{H}$$ Atom Addition to 1,3-Butadiene and Related Reactions on the $$\\dot{C}$$ 4H 7 Potential Energy Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Klippenstein, Stephen J.; Zhou, Chong-Wen

    The oxidation chemistry of the simplest conjugated hydrocarbon, 1,3-butadiene, can provide a first step in understanding the role of poly-unsaturated hydrocarbons in combustion and, in particular, an understanding of their contribution towards soot formation. Based on our previous work on propene and the butene isomers (1-, 2- and isobutene), it was found that the reaction kinetics of H-atom addition to the C=C double bond plays a significant role in fuel consumption kinetics and influences the predictions of high-temperature ignition delay times, product species concentrations and flame speed measurements. In this study, the rate constants and thermodynamic properties formore » $$\\dot{H}$$-atom addition to 1,3-butadiene and related reactions on the $$\\dot{C}$$ 4H 7 potential energy surface have been calculated using two different series of quantum chemical methods and two different kinetic codes. Excellent agreement is obtained between the two different kinetics codes. The calculated results including zero point energies, single point energies, rate constants, barrier heights and thermochemistry are systematically compared among the two quantum chemical methods. 1-methylallyl ($$\\dot{C}$$ 4H 71-3) and 3-buten-1- yl ($$\\dot{C}$$ 4H 71-4) radicals and C 2H 4 + $$\\dot{C}$$2H3 are found to be the most important channels and reactivity promoting products, respectively. We calculated that terminal addition is dominant (> 80%) compared to internal $$\\dot{H}$$-atom addition at all temperatures in the range 298 – 2000 K. However, this dominance decreases with increasing temperature. The calculated rate constants for the bimolecular reaction C 4H 6 + $$\\dot{H}$$ → products and C 2H 4 + $$\\dot{C}$$ 2H 3 → products are in excellent agreement with both experimental and theoretical results from the literature. For selected C 4 species the calculated thermochemical values are also in good agreement with literature data. In addition, the rate constants for H

  4. Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PAA), chlorine dioxide (ClO2) and their by-products hydrogen peroxide (H2O2) and chlorite (ClO2-).

    PubMed

    Chhetri, Ravi Kumar; Baun, Anders; Andersen, Henrik Rasmus

    2017-05-01

    Environmental effect evaluation of disinfection of combined sewer overflow events with alternative chemical disinfectants requires that the environmental toxicity of the disinfectants and the main by-products of their use are known. Many disinfectants degrade quickly in water which should be included in the evaluation of both their toxicity as determined in standardized tests and their possible negative effect in the water environment. Here we evaluated according to the standardized ISO 8692 test the toxicity towards the green microalgae, Pseudokirchneriella subcapitata, of three disinfectants: performic acid (PFA), peracetic acid (PAA) and chlorine dioxide (ClO 2 ) as well as two by-products of their use: hydrogen peroxide (H 2 O 2 ) and chlorite. All of the five chemicals investigated showed clear toxicity to the algae with well-defined dose response curves. The EC 50 values ranged from 0.16 to 2.9mg/L based on nominal concentrations leading to the labeling of the chemicals as either toxic or very toxic. The five investigated chemicals decreased in toxicity in the order chlorine dioxide, performic acid, peracetic acid, chlorite and hydrogen peroxide. The stability of the chemicals increased in the same order as the toxicity decrease. This indicates that even though ClO 2 has the highest environmental hazard potential, it may still be suitable as an alternative disinfectant due to its rapid degradation in water. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Hydrogen peroxide production is not primarily increased in human myotubes established from type 2 diabetic subjects.

    PubMed

    Minet, A D; Gaster, M

    2011-09-01

    Increased oxidative stress and mitochondrial dysfunction have been implicated in the development of insulin resistance in type 2 diabetes. To date, it is unknown whether increased mitochondrial reactive oxygen species (ROS) production in skeletal muscle from patients with type 2 diabetes is primarily increased or a secondary adaptation to environmental, lifestyle, and hormonal factors. This study investigates whether ROS production is primarily increased in isolated diabetic myotubes. Mitochondrial membrane potential, hydrogen peroxide (H(2)O(2)), superoxide, and mitochondrial mass were determined in human myotubes precultured under normophysiological conditions. Furthermore, the corresponding ATP synthesis was measured in isolated mitochondria. Muscle biopsies were taken from 10 lean subjects, 10 obese subjects, and 10 subjects with type 2 diabetes; satellite cells were isolated, cultured, and differentiated to myotubes. Mitochondrial mass, membrane potential/mitochondrial mass, and superoxide-production/mitochondrial mass were not different between groups. In contrast, H(2)O(2) production/mitochondrial mass and ATP production were significantly reduced in diabetic myotubes compared to lean controls (P < 0.05). The ATP/H(2)O(2) ratios were not significantly different between groups. Our result indicates that the ROS production is not primarily increased in diabetic myotubes but rather is reduced. Moreover, the comparable ATP/H(2)O(2) ratios indicate that the reduced ROS production in diabetic myotubes parallels the reduced ATP production because ROS production in diabetic myotubes must be considered to be in a proportion comparable to lean. Thus, the increased ROS production seen in skeletal muscle of type 2 diabetic patients is an adaptation to the in vivo conditions.

  6. Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity.

    PubMed

    Zhang, Jun; Qiao, Shi Zhang; Qi, Lifang; Yu, Jiaguo

    2013-08-07

    Production of hydrogen from photocatalytic water splitting has become an attractive research area due to the possibility of converting solar energy into green chemical energy. In this study, novel NiS nanoparticle (NP) modified CdS nanorod (NR) p-n junction photocatalysts were prepared by a simple two-step hydrothermal method. Even without the Pt co-catalyst, the as-prepared NiS NP-CdS NR samples exhibited enhanced visible-light photocatalytic activity and good stability for H2-production. The optimal NiS loading content was determined to be 5 mol%, and the corresponding H2-production rate reached 1131 μmol h(-1) g(-1), which is even higher than that of the optimized Pt-CdS NRs. It is believed that the assembly of p-type NiS NPs on the surface of n-type CdS NRs could form a large number of p-n junctions, which could effectively reduce the recombination rates of electrons and holes, thus greatly enhancing the photocatalytic activity. This work not only shows a possibility for the utilization of low cost NiS nanoparticles as a substitute for noble metals (such as Pt) in the photocatalytic H2-production but also provides a new insight into the design and fabrication of other new p-n junction photocatalysts for enhancing H2-production activity.

  7. Effect of pH fermentation on production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis method

    NASA Astrophysics Data System (ADS)

    Arif, A. R.; Natsir, H.; Rohani, H.; Karim, A.

    2018-03-01

    Bioethanol is one of the alternative energy sourced from natural products containing carbohydrates through hydrolysis and fermentation process. Jackfruit seeds is one of the feedstock that contain high carbohydrate content but less utilized. The aims of this study to determine the effect of pH hydrolysis in the process of production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis (SHF) method. The hydrolysis process uses H2SO4 as a hydrolyzing agent. The fermentation process used Saccharomyces cereviceae as a fermentor with a variation of pH 2,3 4 and 5 for 70 hours. The results showed that glucose content of 75% and pH 3 was the optimum pH of fermentation with the content of bioethanol 57.94%. The fermentation stage has an important role in increasing the levels of glucose and bioethanol in linear. The content of glucose and bioethanol of jackfruit seeds showed a great potential for development as the feedstock in bioethanol production.

  8. Recovery of Active and Efficient Photocatalytic H 2 Production for CdSe Quantum Dots

    DOE PAGES

    Burke, Rebeckah; Cogan, Nicole M. Briglio; Oi, Aidan; ...

    2018-05-07

    Recently, colloidal semiconductor quantum dots (QDs) have shown great promise as photocatalysts for the production of chemical fuels by sunlight. Here, the efficiency of photocatalytic hydrogen (H 2) production for integrated systems of large diameter (4.4 nm) CdSe QDs as light harvesting nanoparticles with varying concentrations of nickel-dihydrolipoic acid (Ni-DHLA) small molecule catalysts was measured. While exhibiting excellent robustness and longevity, the efficiency of H 2 production for equimolar catalyst and QDs was relatively poor. However, the efficiency was found to increase substantially with increasing Ni-DHLA:QD molar ratios Surprisingly, this high activity was only observed with the use of 3-mercaptopropionicmore » acid (MPA) ligands, while CdSe QDs capped with dihydrolipoic acid (DHLA) exhibited poor performance in comparison, indicating that the QD capping ligand has a substantial impact on the catalytic performance. Finally, ultrafast transient absorption spectroscopic measurements of the electron transfer (ET) dynamics show fast ET to the catalyst. Importantly, an increase in ET efficiency is observed as the catalyst concentration is increased. Together, these results suggest that for these large QDs, tailoring the QD surface environment for facile ET and increasing catalyst concentrations increases the probability of ET from QDs to Ni-DHLA, overcoming the relatively small driving force for ET and decreased surface electron density for large diameter QDs.« less

  9. Recovery of Active and Efficient Photocatalytic H 2 Production for CdSe Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Rebeckah; Cogan, Nicole M. Briglio; Oi, Aidan

    Recently, colloidal semiconductor quantum dots (QDs) have shown great promise as photocatalysts for the production of chemical fuels by sunlight. Here, the efficiency of photocatalytic hydrogen (H 2) production for integrated systems of large diameter (4.4 nm) CdSe QDs as light harvesting nanoparticles with varying concentrations of nickel-dihydrolipoic acid (Ni-DHLA) small molecule catalysts was measured. While exhibiting excellent robustness and longevity, the efficiency of H 2 production for equimolar catalyst and QDs was relatively poor. However, the efficiency was found to increase substantially with increasing Ni-DHLA:QD molar ratios Surprisingly, this high activity was only observed with the use of 3-mercaptopropionicmore » acid (MPA) ligands, while CdSe QDs capped with dihydrolipoic acid (DHLA) exhibited poor performance in comparison, indicating that the QD capping ligand has a substantial impact on the catalytic performance. Finally, ultrafast transient absorption spectroscopic measurements of the electron transfer (ET) dynamics show fast ET to the catalyst. Importantly, an increase in ET efficiency is observed as the catalyst concentration is increased. Together, these results suggest that for these large QDs, tailoring the QD surface environment for facile ET and increasing catalyst concentrations increases the probability of ET from QDs to Ni-DHLA, overcoming the relatively small driving force for ET and decreased surface electron density for large diameter QDs.« less

  10. Potentiation of the gastric antisecretory activity of histamine H2-receptor antagonists by clebopride.

    PubMed

    Fernández, A G; Massingham, R; Roberts, D J

    1988-05-01

    The substituted benzamide, clebopride, at doses (0.03-3 mg kg-1 i.p.) that were without effect per se on the secretion of gastric acid in pylorus ligated (Shay) rats, potentiated the antisecretory effects of the histamine H2 receptor antagonists cimetidine and ranitidine in this model but not those of the muscarine receptor antagonist pirenzepine nor those of the proton pump inhibitor omeprazole. By contrast, clebopride was without influence on the inhibitory effects of cimetidine on pentagastrin-induced secretion in perfused stomach (Ghosh and Schild) preparations in anaesthetized rats. The significance of these findings is discussed in relation to the previously described potentiating effects of clebopride on the anti-ulcer activity of cimetidine in various experimental models, and the potential beneficial effects of such combined therapy in the clinic.

  11. Capture and dissociation in the complex-forming CH + H2 → CH2 + H, CH + H2 reactions.

    PubMed

    González, Miguel; Saracibar, Amaia; Garcia, Ernesto

    2011-02-28

    The rate coefficients for the capture process CH + H(2)→ CH(3) and the reactions CH + H(2)→ CH(2) + H (abstraction), CH + H(2) (exchange) have been calculated in the 200-800 K temperature range, using the quasiclassical trajectory (QCT) method and the most recent global potential energy surface. The reactions, which are of interest in combustion and in astrochemistry, proceed via the formation of long-lived CH(3) collision complexes, and the three H atoms become equivalent. QCT rate coefficients for capture are in quite good agreement with experiments. However, an important zero point energy (ZPE) leakage problem occurs in the QCT calculations for the abstraction, exchange and inelastic exit channels. To account for this issue, a pragmatic but accurate approach has been applied, leading to a good agreement with experimental abstraction rate coefficients. Exchange rate coefficients have also been calculated using this approach. Finally, calculations employing QCT capture/phase space theory (PST) models have been carried out, leading to similar values for the abstraction rate coefficients as the QCT and previous quantum mechanical capture/PST methods. This suggests that QCT capture/PST models are a good alternative to the QCT method for this and similar systems.

  12. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments

    PubMed Central

    Hernsdorf, Alex W; Amano, Yuki; Miyakawa, Kazuya; Ise, Kotaro; Suzuki, Yohey; Anantharaman, Karthik; Probst, Alexander; Burstein, David; Thomas, Brian C; Banfield, Jillian F

    2017-01-01

    Geological sequestration in deep underground repositories is the prevailing proposed route for radioactive waste disposal. After the disposal of radioactive waste in the subsurface, H2 may be produced by corrosion of steel and, ultimately, radionuclides will be exposed to the surrounding environment. To evaluate the potential for microbial activities to impact disposal systems, we explored the microbial community structure and metabolic functions of a sediment-hosted ecosystem at the Horonobe Underground Research Laboratory, Hokkaido, Japan. Overall, we found that the ecosystem hosted organisms from diverse lineages, including many from the phyla that lack isolated representatives. The majority of organisms can metabolize H2, often via oxidative [NiFe] hydrogenases or electron-bifurcating [FeFe] hydrogenases that enable ferredoxin-based pathways, including the ion motive Rnf complex. Many organisms implicated in H2 metabolism are also predicted to catalyze carbon, nitrogen, iron and sulfur transformations. Notably, iron-based metabolism is predicted in a novel lineage of Actinobacteria and in a putative methane-oxidizing ANME-2d archaeon. We infer an ecological model that links microorganisms to sediment-derived resources and predict potential impacts of microbial activity on H2 consumption and retardation of radionuclide migration. PMID:28350393

  13. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments.

    PubMed

    Hernsdorf, Alex W; Amano, Yuki; Miyakawa, Kazuya; Ise, Kotaro; Suzuki, Yohey; Anantharaman, Karthik; Probst, Alexander; Burstein, David; Thomas, Brian C; Banfield, Jillian F

    2017-08-01

    Geological sequestration in deep underground repositories is the prevailing proposed route for radioactive waste disposal. After the disposal of radioactive waste in the subsurface, H 2 may be produced by corrosion of steel and, ultimately, radionuclides will be exposed to the surrounding environment. To evaluate the potential for microbial activities to impact disposal systems, we explored the microbial community structure and metabolic functions of a sediment-hosted ecosystem at the Horonobe Underground Research Laboratory, Hokkaido, Japan. Overall, we found that the ecosystem hosted organisms from diverse lineages, including many from the phyla that lack isolated representatives. The majority of organisms can metabolize H 2 , often via oxidative [NiFe] hydrogenases or electron-bifurcating [FeFe] hydrogenases that enable ferredoxin-based pathways, including the ion motive Rnf complex. Many organisms implicated in H 2 metabolism are also predicted to catalyze carbon, nitrogen, iron and sulfur transformations. Notably, iron-based metabolism is predicted in a novel lineage of Actinobacteria and in a putative methane-oxidizing ANME-2d archaeon. We infer an ecological model that links microorganisms to sediment-derived resources and predict potential impacts of microbial activity on H 2 consumption and retardation of radionuclide migration.

  14. Arsenite oxidation by H 2O 2 in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pettine, Maurizio; Campanella, Luigi; Millero, Frank J.

    1999-09-01

    The rates of the oxidation of As( III) with H 2O 2 were measured in NaCl solutions as a function of pH (7.5-10.3), temperature (10-50C) and ionic strength ( I = 0.01-4). The rate of the oxidation of As( III) with H 2O 2 can be described by the general expression: d[As( III)]/ dt = k[As( III)] [H 2O 2] where k (mol/L -1 min -1) can be determined from (σ = ±0.12) log k=5.29+1.41 pH-0.57 I+1.40 I0.5-4898/ T. The effect of pH on the rates indicates that the reaction is due to AsO( OH) 2-+ H2O2k 1→productsAsO2( OH) 2-+ H2O2k 2products, AsO33-+ H2O2k 3→products where k = k1 α AsO(OH) 2- + k2 α AsO 2(OH) 2- + k3 α AsO 3 3- and α i are the molar fraction of species i. The values of k1 = 42 ± 20, k2 = (8 ± 1) × 10 4, and k3 = (72 ± 18) × 10 6 mol/L -1 min -1 were found at 25C and I = 0.01 mol/L. The undissociated As(OH) 3 does not react with H 2O 2. The effect of ionic strength on the rate constants has been attributed to the effect of ionic strength on the speciation of As( III). The rate expression has been shown to be valid for NaClO 4 solutions, northern Adriatic sea waters, and Tiber River waters. The cations Fe 2+ and Cu 2+ were found to exert a catalytic effect on the rates. Cu 2+ plays a role at concentration levels (>0.1 μmol/L) which are typical of polluted aquatic systems, while Fe 2+ is important at levels which may be found in lacustrine environments (>5-10 μmol/L). The reaction of As( III) with H 2O 2 may play a role in marine and lacustrine surface waters limiting the accumulation of As( III) resulting from biologically mediated reduction processes of As( V).

  15. Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene

    1996-01-01

    Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.

  16. Photodissociation dynamics of gaseous CpCo(CO)2 and ligand exchange reactions of CpCoH2 with C3H4, C3H6, and NH3.

    PubMed

    Oana, Melania; Nakatsuka, Yumiko; Albert, Daniel R; Davis, H Floyd

    2012-05-31

    The photodissociation dynamics of CpCo(CO)(2) was studied in a molecular beam using photofragment translational energy spectroscopy with 157 nm photoionization detection of the metallic products. At 532 and 355 nm excitation, the dominant one-photon channel involved loss of a single CO ligand producing CpCoCO. The product angular distributions were isotropic, and a large fraction of excess energy appeared as product vibrational excitation. Production of CpCO + 2CO resulted from two-photon absorption processes. The two-photon dissociation of mixtures containing CpCo(CO)(2) and H(2) at the orifice of a pulsed nozzle was used to produce a novel 16-electron unsaturated species, CpCoH(2). Transition metal ligand exchange reactions, CpCoH(2) + L → CpCoL + H(2) (L = propyne, propene, or ammonia), were studied under single-collision conditions for the first time. In all cases, ligand exchange occurred via 18-electron association complexes with lifetimes comparable to their rotational periods. Although ligand exchange reactions were not detected from CpCoH(2) collisions with methane or propane (L = CH(4) or C(3)H(8)), a molecular beam containing CpCoCH(4) was produced by photolysis of mixtures containing CpCo(CO)(2) and CH(4).

  17. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  18. Solar kerosene from H2O and CO2

    NASA Astrophysics Data System (ADS)

    Furler, P.; Marxer, D.; Scheffe, J.; Reinalda, D.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A.

    2017-06-01

    The entire production chain for renewable kerosene obtained directly from sunlight, H2O, and CO2 is experimentally demonstrated. The key component of the production process is a high-temperature solar reactor containing a reticulated porous ceramic (RPC) structure made of ceria, which enables the splitting of H2O and CO2 via a 2-step thermochemical redox cycle. In the 1st reduction step, ceria is endo-thermally reduced using concentrated solar radiation as the energy source of process heat. In the 2nd oxidation step, nonstoichiometric ceria reacts with H2O and CO2 to form H2 and CO - syngas - which is finally converted into kerosene by the Fischer-Tropsch process. The RPC featured dual-scale porosity for enhanced heat and mass transfer: mm-size pores for volumetric radiation absorption during the reduction step and μm-size pores within its struts for fast kinetics during the oxidation step. We report on the engineering design of the solar reactor and the experimental demonstration of over 290 consecutive redox cycles for producing high-quality syngas suitable for the processing of liquid hydrocarbon fuels.

  19. Analytical W-He and H-He interatomic potentials for a W-H-He system

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Chun; Shu, Xiaolin; Liu, Yi-Nan; Yu, Yi; Gao, F.; Lu, Guang-Hong

    2012-07-01

    We have constructed W-He and H-He analytical bond-order potentials for a W-H-He system. In combination with the previously self-developed W-H potential [X.-C. Li, X. Shu, Y.-N. Liu, F. Gao, G.-H. Lu, J. Nucl. Mater. 408 (2011) 12] and the Hartree-Fock-dispersion pair potential (Aziz-potential) for He-He interactions, we demonstrate that such potentials behave well for reproducing various properties of the W-H-He system such as defect formation energies, structural properties, and diffusion barriers. Such potentials can be employed to model both the He behaviours and the H-He synergetic effects in the W-H-He system.

  20. H2S and volatile fatty acids elimination by biofiltration: clean-up process for biogas potential use.

    PubMed

    Ramírez-Sáenz, D; Zarate-Segura, P B; Guerrero-Barajas, C; García-Peña, E I

    2009-04-30

    In the present work, the main objective was to evaluate a biofiltration system for removing hydrogen sulfide (H(2)S) and volatile fatty acids (VFAs) contained in a gaseous stream from an anaerobic digestor (AD). The elimination of these compounds allowed the potential use of biogas while maintaining the methane (CH(4)) content throughout the process. The biodegradation of H(2)S was determined in the lava rock biofilter under two different empty bed residence times (EBRT). Inlet loadings lower than 200 g/m(3)h at an EBRT of 81 s yielded a complete removal, attaining an elimination capacity (EC) of 142 g/m(3)h, whereas at an EBRT of 31 s, a critical EC of 200 g/m(3)h was reached and the EC obtained exhibited a maximum value of 232 g/m(3)h. For 1500 ppmv of H(2)S, 99% removal was maintained during 90 days and complete biodegradation of VFAs was observed. A recovery of 60% as sulfate was obtained due to the constant excess of O(2) concentration in the system. Acetic and propionic acids as a sole source of carbon were also evaluated in the bioreactor at different inlet loadings (0-120 g/m(3)h) obtaining a complete removal (99%) for both. Microcosms biodegradation experiments conducted with VFAs demonstrated that acetic acid provided the highest biodegradation rate.

  1. Photochemical Generation of H_{2}NCNX, H_{2}NNCX, H_{2}NC(NX) (x = O, s) in Low-Temperature Matrices

    NASA Astrophysics Data System (ADS)

    Voros, Tamas; Lajgut, Gyozo Gyorgy; Magyarfalvi, Gabor; Tarczay, Gyorgy

    2017-06-01

    The [NH_{2}, C, N, O] and the [NH_{2}, C, N, S] systems were investigated by quantum-chemical computations and matrix-isolation spectroscopic methods. The equilibrium structures of the isomers and their relative energies were determined by CCSD(T) method. This was followed by the computation of the harmonic and anharmonic vibrational wavenumbers, infrared intensities, relative Raman activities and UV excitation energies. These computed data were used to assist the identification of products obtained by UV laser photolysis of 3,4-diaminofurazan, 3,4-diaminothiadiazole and 1,2,4-thiadiazole-3,5-diamine in low-temperature Ar and Kr matrices. Experimentally, first the precursors were studied by matrix-isolation IR and UV spectroscopic methods. Based on these UV spectra, different wavelengths were selected for photolysis. The irradiations, carried out by a tunable UV laser-light source, resulted in the decomposition of the precursors, and in the appearance of new bands in the IR spectra. Some of these bands were assigned to cyanamide (H_{2}NCN) and its isomer, the carbodiimide molecule (HNCNH), generated from H_{2}NCN. By the analysis of the relative absorbance vs. photolysis time curves, the other bands were grouped to three different species both for the O- and the S-containing systems. In the case of the O-containing isomers, these bands were assigned to the H_{2}NNCO:H_{2}NCN, and H_{2}NCNO:H_{2}NCN complexes, and to the ring-structure H_{2}NC(NO) isomer. In a similar way, the complexes of H_{2}NNCS and H_{2}NCNS with the H_{2}NCN, and H_{2}NC(NS) were also identified. 1,2,4-thiadiazole-3,5-diamine was also investigated in similar way like the above mentioned precursors. The results of this study also support the identification of the new S-containing isomers. Except for H_{2}NNCO and H_{2}NCNS, these molecules were not identified previously. It is expected that at least some of these species, like the methyl isocyanate (CH_{3}CNO) isomer, are present and could be

  2. Preservation of H 2 production activity in nanoporous latex coatings of Rhodopseudomonas palustris CGA009 during dry storage at ambient temperatures: Preservation of R.palustris latex coatings

    DOE PAGES

    Piskorska, M.; Soule, T.; Gosse, J. L.; ...

    2013-07-21

    To assess the applicability of latex cell coatings as an ‘off-the-shelf’ biocatalyst, the effect of osmoprotectants, temperature, humidity and O 2 on preservation of H 2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H 2 production. Beyond 2 weeks of storage, sorbitol-treated coatings lost all H 2 production activity, whereas considerable H 2 production was still detected in sucrose- and trehalose-stabilized coatings. We stored the coatings at a relative humidity level which significantly impacts themore » recovery and subsequent rates of H 2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H 2 (0–0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27–53% of their H 2 production activity after 8 weeks of storage. Furthermore, when stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H 2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Ultimately, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.« less

  3. Kinetics and dynamics of the C(3P) + H2O reaction on a full-dimensional accurate triplet state potential energy surface.

    PubMed

    Li, Jun; Xie, Changjian; Guo, Hua

    2017-08-30

    A full dimensional accurate potential energy surface (PES) for the C( 3 P) and H 2 O reaction is developed based on ∼34 000 data points calculated at the level of the explicitly correlated unrestricted coupled cluster method with single, double, and perturbative triple excitations with the augmented correlation-consistent polarized triple zeta basis set (CCSD(T)-F12a/AVTZ). The PES is invariant with respect to the permutation of the two hydrogen atoms and the total root mean square error (RMSE) of the fit is only 0.31 kcal mol -1 . The PES features two barriers in the entrance channel and several potential minima, as well as multiple product channels. The rate coefficients of this reaction calculated using a transition-state theory and quasi-classical trajectory (QCT) method are small near room temperature, consistent with experiments. The reaction dynamics is also investigated with QCT on the new PES, which found that the reactivity is constrained by the entrance barriers and the final product branching is not statistical.

  4. Rotational state modification and fast ortho-para conversion of H2 trapped within the highly anisotropic potential of Pd(210)

    NASA Astrophysics Data System (ADS)

    Ohno, S.; Ivanov, D.; Ogura, S.; Wilde, M.; Arguelles, E. F.; Diño, W. A.; Kasai, H.; Fukutani, K.

    2018-02-01

    The rotational state and ortho-para conversion of H2 on a Pd(210) surface is investigated with rotational-state-selective temperature-programmed desorption (RS-TPD) and theoretical calculations. The isotope dependence of TPD shows a higher desorption energy for D2 than that for H2, which is ascribed to the rotational and zero-point vibrational energies. The RS-TPD data show that the desorption energy of H2(J =1 ) (J : rotational quantum number) is higher than that of H2(J =0 ). This is due to the orientationally anisotropic potential confining the adsorbed H2, which is in agreement with theoretical calculations. Furthermore, the H2 desorption intensity ratio in J =1 and J =0 indicates fast ortho-para conversion in the adsorption state, which we estimate to be of the order of 1 s.

  5. Quantitative Relationships between Photosynthetic, Nitrogen Fixing, and Fermentative H2 Metabolism in a Photosynthetic Microbial Mat

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Albert, Daniel B.; Bebout, Brad M.; Turk, Kendra A.; DesMarais, David J.

    2004-01-01

    The ultimate potential of any microbial ecosystem to contribute chemically to its environment - and therefore, to impact planetary biogeochemistry or to generate recognizable biosignatures - depends not only on the individual metabolic capabilities of constituent organisms, but also on how those capabilities are expressed through interactions with neighboring organisms. This is particularly important for microbial mats, which compress an extremely broad range of metabolic potential into a small and dynamic system. H2 participates in many of these metabolic processes, including the major elemental cycling processes of photosynthesis, nitrogen fixation, sulfate reduction, and fermentation, and may therefore serve as a mediator of microbial interactions within the mat system. Collectively, the requirements of energy, electron transfer, and biomass element stoichiometry suggest quantitative relationships among the major element cycling processes, as regards H2 metabolism We determined experimentally the major contributions to 32 cycling in hypersaline microbial mats from Baja California, Mexico, and compared them to predicted relationships. Fermentation under dark, anoxic conditions is quantitatively the most important mechanism of H2 production, consistent with expectations for non-heterocystous mats such as those under study. Up to 16% of reducing equivalents fixed by photosynthesis during the day may be released by this mechanism. The direct contribution of nitrogen fixation to H2 production is small in comparison, but this process may indirectly stimulate substantial H2 generation, by requiring higher rates of fermentation. Sulfate reduction, aerobic consumption, diffusive and ebulitive loss, and possibly H2-based photoreduction of CO2 serve as the principal H2 sinks. Collectively, these processes interact to create an orders-of-magnitude daily variation in H2 concentrations and fluxes, and thereby in the oxidation-reduction potential that is imposed on microbial

  6. The human leukocyte antigen G promotes trophoblast fusion and β-hCG production through the Erk1/2 pathway in human choriocarcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji-meng; State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101; Zhao, Hong-xi

    2013-05-10

    Highlights: •HLA-G expression promotes BeWo cells fusion and fusogenic gene expression. •HLA-G is capable of inducing β-hCG production in human choriocarcinoma cell lines. •Up-regulation of β-hCG production by HLA-G is mediated via the Erk1/2 pathway. -- Abstract: The human leukocyte antigen G (HLA-G) is expressed on the fetal–maternal interface and plays a role in protecting fetal-derived trophoblasts from the maternal immune response, allowing trophoblasts to invade the uterus. However, HLA-G also possesses immune suppressing-independent functions. We found that HLA-G expressing BeWo choriocarcinoma cells increased cell–cell fusion compared to control BeWo cells under forskolin treatment. Regardless of forskolin treatment, the expressionmore » of fusogenic gene mRNAs, including syncytin-1, the transcription factor glial cell missing 1 (Gcm1), and beta human chorionic gonadotropin (β-hCG) were elevated. HLA-G up-regulates β-hCG production in human choriocarcinoma cells because HLA-G knockdown in JEG-3 cells induces a dramatic decrease in β-hCG compared with control cells. The defect in β-hCG production in HLA-G knocked-down cells could not be completely overcome by stimulating hCG production through increasing intracellular cAMP levels. HLA-G expressing cells have increased phosphorylation levels for extracellular signal-regulated kinase1/2 (Erk1/2) in BeWo cells. The Erk1/2 pathway is inactivated after the inhibition of HLA-G expression in JEG-3 cells. Finally, Erk1/2 inhibition was able to suppress the increased hCG production induced by HLA-G expression. Together, these data suggest novel roles for HLA-G in regulating β-hCG production via the modulation of the Erk1/2 pathway and by inducing trophoblast cell fusion.« less

  7. A review of developmental and reproductive toxicity of CS2 and H2 S generated by the pesticide sodium tetrathiocarbonate.

    PubMed

    Silva, Marilyn

    2013-04-01

    Sodium tetrathiocarbonate (STTC) is an example of a pesticide that when prepared for use in aqueous solution releases two toxic products carbon disulfide (CS2 ) (active ingredient) and hydrogen sulfide (H2 S) in ambient air in equimolar concentrations resulting in potential exposure to workers and bystanders. CS2 and H2 S are pollutants that are generated from several pesticides as well as in industrial settings. Registrant submitted reports and open literature studies for STTC, CS2 and H2 S were reviewed. Previous reports suggest that CS2 was a concern as a developmental and reproductive toxicant. H2 S was also examined since it is a neurotoxicant and potentially harmful to developing fetuses. STTC did not induce developmental or reproductive effects in animal studies. CS2 was a developmental neurobehavioral toxin in rat pups (inhalation no observed effect level [NOEL]=0.01 ppm). Reproductive effects occurred in male and female factory workers after CS2 exposure (NOEL=1 ppm). H2 S had developmental effects in rats at doses at or above those observed for nasal pathology (NOEL=10 ppm) but was not a reproductive or developmental toxin in humans. The database for CS2 indicates a strong potential for developmental neurotoxicity in animals at low doses but it is lacking in acceptable, well-performed studies. There is also a lack of studies performed with CS2 and H2 S as a mixture. © 2013 Wiley Periodicals, Inc.

  8. Exploring the dynamics of reaction N((2)D)+C2H4 with crossed molecular-beam experiments and quantum-chemical calculations.

    PubMed

    Lee, Shih-Huang; Chin, Chih-Hao; Chen, Wei-Kan; Huang, Wen-Jian; Hsieh, Chu-Chun

    2011-05-14

    We conducted the title reaction using a crossed molecular-beam apparatus, quantum-chemical calculations, and RRKM calculations. Synchrotron radiation from an undulator served to ionize selectively reaction products by advantage of negligibly small dissociative ionization. We observed two products with gross formula C(2)H(3)N and C(2)H(2)N associated with loss of one and two hydrogen atoms, respectively. Measurements of kinetic-energy distributions, angular distributions, low-resolution photoionization spectra, and branching ratios of the two products were carried out. Furthermore, we evaluated total branching ratios of various exit channels using RRKM calculations based on the potential-energy surface of reaction N((2)D)+C(2)H(4) established with the method CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p)+ZPE[B3LYP/6-311G(d,p)]. The combination of experimental and computational results allows us to reveal the reaction dynamics. The N((2)D) atom adds to the C=C π-bond of ethene (C(2)H(4)) to form a cyclic complex c-CH(2)(N)CH(2) that directly ejects a hydrogen atom or rearranges to other intermediates followed by elimination of a hydrogen atom to produce C(2)H(3)N; c-CH(2)(N)CH+H is the dominant product channel. Subsequently, most C(2)H(3)N radicals, notably c-CH(2)(N)CH, further decompose to CH(2)CN+H. This work provides results and explanations different from the previous work of Balucani et al. [J. Phys. Chem. A, 2000, 104, 5655], indicating that selective photoionization with synchrotron radiation as an ionization source is a good choice in chemical dynamics research.

  9. Mannose-Binding Lectin Contributes to Deleterious Inflammatory Response in Pandemic H1N1 and Avian H9N2 Infection

    PubMed Central

    Ling, Man To; Tu, Wenwei; Han, Yan; Mao, Huawei; Chong, Wai Po; Guan, Jing; Liu, Ming; Lam, Kwok Tai; Law, Helen K. W.; Peiris, J. S. Malik; Takahashi, K.

    2012-01-01

    Background. Mannose-binding lectin (MBL) is a pattern-recognition molecule, which functions as a first line of host defense. Pandemic H1N1 (pdmH1N1) influenza A virus caused massive infection in 2009 and currently circulates worldwide. Avian influenza A H9N2 (H9N2/G1) virus has infected humans and has the potential to be the next pandemic virus. Antiviral function and immunomodulatory role of MBL in pdmH1N1 and H9N2/G1 virus infection have not been investigated. Methods. In this study, MBL wild-type (WT) and MBL knockout (KO) murine models were used to examine the role of MBL in pdmH1N1 and H9N2/G1 virus infection. Results. Our study demonstrated that in vitro, MBL binds to pdmH1N1 and H9N2/G1 viruses, likely via the carbohydrate recognition domain of MBL. Wild-type mice developed more severe disease, as evidenced by a greater weight loss than MBL KO mice during influenza virus infection. Furthermore, MBL WT mice had enhanced production of proinflammatory cytokines and chemokines compared with MBL KO mice, suggesting that MBL could upregulate inflammatory responses that may potentially worsen pdmH1N1 and H9N2/G1 virus infections. Conclusions. Our study provided the first in vivo evidence that MBL may be a risk factor during pdmH1N1 and H9N2/G1 infection by upregulating proinflammatory response. PMID:22080095

  10. Identification of Unsaturated and 2H Polyfluorocarboxylate Homologous Series and Their Detection in Environmental Samples and as Polymer Degradation Products

    EPA Science Inventory

    A pair of homologous series of polyfluorinated degradation products have been identified, both having structures similar to perfluorocarboxylic acids but (i) having a H substitution for F on the α carbon for 2H polyfluorocarboxylic acids (2HPFCAs) and (ii) bearing a double ...

  11. Visible light photocatalytic H2-production activity of wide band gap ZnS nanoparticles based on the photosensitization of graphene

    NASA Astrophysics Data System (ADS)

    Wang, Faze; Zheng, Maojun; Zhu, Changqing; Zhang, Bin; Chen, Wen; Ma, Li; Shen, Wenzhong

    2015-08-01

    Visible light photocatalytic H2 production from water splitting is considered an attractive way to solve the increasing global energy crisis in modern life. In this study, a series of zinc sulfide nanoparticles and graphene (GR) sheet composites were synthesized by a two-step hydrothermal method, which used zinc chloride, sodium sulfide, and graphite oxide (GO) as the starting materials. The as-prepared ZnS-GR showed highly efficient visible light photocatalytic activity in hydrogen generation. The morphology and structure of the composites obtained by transmission electron microscope and x-ray diffraction exhibited a small crystallite size and a good interfacial contact between the ZnS nanoparticles and the two-dimensional (2D) GR sheet, which were beneficial for the photocatalysis. When the content of the GR in the catalyst was 0.1%, the ZG0.1 sample exhibited the highest H2-production rate of 7.42 μmol h-1 g-1, eight times more than the pure ZnS sample. This high visible-light photocatalytic H2 production activity is attributed to the photosensitization of GR. Irradiated by visible light, the electrons photogenerated from GR transfer to the conduction band of ZnS to participate in the photocatalytic process. This study presents the visible-light photocatalytic activity of wide bandgap ZnS and its application in H2 evolution.

  12. Visible light photocatalytic H2-production activity of wide band gap ZnS nanoparticles based on the photosensitization of grapheme.

    PubMed

    Wang, Faze; Zheng, Maojun; Zhu, Changqing; Zhang, Bin; Chen, Wen; Ma, Li; Shen, Wenzhong

    2015-08-28

    Visible light photocatalytic H(2) production from water splitting is considered an attractive way to solve the increasing global energy crisis in modern life. In this study, a series of zinc sulfide nanoparticles and graphene (GR) sheet composites were synthesized by a two-step hydrothermal method, which used zinc chloride, sodium sulfide, and graphite oxide (GO) as the starting materials. The as-prepared ZnS-GR showed highly efficient visible light photocatalytic activity in hydrogen generation. The morphology and structure of the composites obtained by transmission electron microscope and x-ray diffraction exhibited a small crystallite size and a good interfacial contact between the ZnS nanoparticles and the two-dimensional (2D) GR sheet,which were beneficial for the photocatalysis. When the content of the GR in the catalyst was 0.1%, the ZG0.1 sample exhibited the highest H(2)-production rate of 7.42 μmol h(−1) g(−1), eight times more than the pure ZnS sample. This high visible-light photocatalytic H(2) production activity is attributed to the photosensitization of GR. Irradiated by visible light, the electrons photogenerated from GR transfer to the conduction band of ZnS to participate in the photocatalytic process. This study presents the visible-light photocatalytic activity of wide bandgap ZnS and its application in H(2) evolution.

  13. Potential antimicrobial agents from triazole-functionalized 2H-benzo[b][1,4]oxazin-3(4H)-ones.

    PubMed

    Bollu, Rajitha; Banu, Saleha; Bantu, Rajashaker; Reddy, A Gopi; Nagarapu, Lingaiah; Sirisha, K; Kumar, C Ganesh; Gunda, Shravan Kumar; Shaik, Kamal

    2017-12-01

    A series of substituted triazole functionalized 2H-benzo[b][1,4]oxazin-3(4H)-ones were synthesized by employing click chemistry and further characterized based on 1 H NMR, 13 C NMR, IR and mass spectral studies. All the synthesized derivatives were screened for their in vitro antimicrobial activities. Further, molecular docking studies were accomplished to explore the binding interactions between 1,2,3-triazol-4-yl-2H-benzo[b][1,4]oxazin-3(4H)-one and the active site of Staphylococcus aureus (CrtM) dehydrosqualene synthase (PDB ID: 2ZCS). These docking studies revealed that the synthesized derivatives showed high binding energies and strong H-bond interactions with the dehydrosqualene synthase validating the observed antimicrobial activity data. Based on antimicrobial activity and docking studies, the compounds 9c, 9d and 9e were identified as promising antimicrobial leads. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Genome tailoring powered production of isobutanol in continuous CO2/H2 blend fermentation using engineered acetogen biocatalyst.

    PubMed

    Gak, Eugene; Tyurin, Michael; Kiriukhin, Michael

    2014-05-01

    The cell energy fraction that powered maintenance and expression of genes encoding pro-phage elements, pta-ack cluster, early sporulation, sugar ABC transporter periplasmic proteins, 6-phosphofructokinase, pyruvate kinase, and fructose-1,6-disphosphatase in acetogen Clostridium sp. MT871 was re-directed to power synthetic operon encoding isobutanol biosynthesis at the expense of these genes achieved via their elimination. Genome tailoring decreased cell duplication time by 7.0 ± 0.1 min (p < 0.05) compared to the parental strain, with intact genome and cell duplication time of 68 ± 1 min (p < 0.05). Clostridium sp. MT871 with tailored genome was UVC-mutated to withstand 6.1 % isobutanol in fermentation broth to prevent product inhibition in an engineered commercial biocatalyst producing 5 % (674.5 mM) isobutanol during two-step continuous fermentation of CO2/H2 gas blend. Biocatalyst Clostridium sp. MT871RG- 11IBR6 was engineered to express six copies of synthetic operon comprising optimized synthetic format dehydrogenase, pyruvate formate lyase, acetolactate synthase, acetohydroxyacid reductoisomerase, 2,3-dihydroxy-isovalerate dehydratase, branched-chain alpha-ketoacid decarboxylase gene, aldehyde dehydrogenase, and alcohol dehydrogenase, regaining cell duplication time of 68 ± 1 min (p < 0.05) for the parental strain. This is the first report on isobutanol production by an engineered acetogen biocatalyst suitable for commercial manufacturing of this chemical/fuel using continuous fermentation of CO2/H2 blend thus contributing to the reversal of global warming.

  15. Light induced changes of internal pH in a barnacle photoreceptor and the effect of internal pH on the receptor potential.

    PubMed Central

    Brown, H M; Meech, R W

    1979-01-01

    1. Intracellular pH (pH1) was measured in Balanus photoreceptors using pH-sensitive glass micro-electrodes. The average pH1 of twelve photoreceptors which had been dark adapted for at least 30 min was 7.3 +/- 0.07 (S.D.). 2. Illumination reduced the recorded pH1 by as much as 0.2 pH unit. The change in pH1 was graded with light intensity. 3. When the cells were exposed to CO2 in the dark, pH1 declined monophasically. Saline equilibrated with 2% CO2; 98% O2 produced a steady reduction in pH1 of about 0.25 unit in 2--3 min. The buffering capacity of the receptor cell cytoplasm calculated from such experiments is approximately 15 slykes. 4. In the presence of HCO3-1, CO2 saline produced smaller, biphasic changes in pH1. 5. The membrane depolarization produced by a bright flash (depolarizing receptor potential) was reversibly reduced in the presence of external CO2 or by injection of H+. Iontophoretic injection of HCO2- increased the amplitude of the receptor potential. 6. In individual cells there was a close correlation between the amplitude of the receptor potential and pH1. 7. Saline equilibrated with CO2 reduced the light induced current (recorded under voltage-clamp) by 40--50% without affecting its reversal potential. 8. Exposure of the receptor to 95% CO2 saline for several minutes (pH0 5.5) not only abolished the receptor potential but also reversibly decreased the K conductance of the membrane in the dark. These effects were not reproduced by pH0 5.5 buffered saline or by a 5 min exposure to saline equilibrated with N2. 9. It is suggested that changes in pH1 induced by light modulate the sensitivity of the receptor under physiological conditions. PMID:43890

  16. Bioelectrochemical sulphate reduction on batch reactors: Effect of inoculum-type and applied potential on sulphate consumption and pH.

    PubMed

    Gacitúa, Manuel A; Muñoz, Enyelbert; González, Bernardo

    2018-02-01

    Microbial electrolysis batch reactor systems were studied employing different conditions, paying attention on the effect that biocathode potential has on pH and system performance, with the overall aim to distinguish sulphate reduction from H 2 evolution. Inocula from pure strains (Desulfovibrio paquesii and Desulfobacter halotolerans) were compared to a natural source conditioned inoculum. The natural inoculum possess the potential for sulphate reduction on serum bottles experiments due to the activity of mutualistic bacteria (Sedimentibacter sp. and Bacteroides sp.) that assist sulphate-reducing bacterial cells (Desulfovibrio sp.) present in the consortium. Electrochemical batch reactors were monitored at two different potentials (graphite-bar cathodes poised at -900 and -400mV versus standard hydrogen electrode) in an attempt to isolate bioelectrochemical sulphate reduction from hydrogen evolution. At -900mV all inocula were able to reduce sulphate with the consortium demonstrating superior performance (SO 4 2- consumption: 25.71gm -2 day -1 ), despite the high alkalinisation of the media. At -400mV only the pure Desulfobacter halotolerans inoculated system was able to reduce sulphate (SO 4 2- consumption: 17.47gm -2 day -1 ) and, in this potential condition, pH elevation was less for all systems, confirming direct (or at least preferential) bioelectrochemical reduction of sulphate over H 2 production. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Parag Kulkarni; Wei Wei

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research is developing an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE was awarded a contract frommore » U.S. DOE NETL to develop the UFP technology. Work on the Phase I program started in October 2000, and work on the Phase II effort started in April 2005. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions with an estimated efficiency higher than IGCC with conventional CO2 separation. The Phase I R&D program established the feasibility of the integrated UFP technology through lab-, bench- and pilot-scale testing and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The Phase I effort integrated experimental testing, modeling and preliminary economic studies to demonstrate the UFP technology. The Phase II effort will focus on three high-risk areas: economics, sorbent attrition and lifetime, and product gas quality for turbines. The economic analysis will include estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs

  18. Theoretical studies of potential energy surface and rotational spectra of Xe -H2O van der Waals complex

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Yang, Minghui

    2008-11-01

    In this work we report an ab initio intermolecular potential energy surface and theoretical spectroscopic studies for Xe -H2O complex. The ab initio energies are calculated with CCSD(T) method and large basis sets (aug-cc-pVQZ for H and O and aug-cc-pVQZ-PP for Xe) augmented by a {3s3p2d2f1g} set of bond functions. This potential energy surface has a global minimum corresponding to a planar and nearly linear hydrogen bonded configuration with a well depth of 192.5cm-1 at intermolecular distance of 4.0Å, which is consistent with the previous determined potential by Wen and Jäger [J. Phys. Chem. A 110, 7560 (2006)]. The bound state calculations have been performed for the complex by approximating the water molecule as a rigid rotor. The theoretical rotational transition frequencies, isotopic shifts, nuclear quadrupole coupling constants, and structure parameters are in good agreement with the experimental observed values. The wavefunctions are analyzed to understand the dynamics of the ground and the first excited states.

  19. Direct Dynamics Simulation of the Thermal 3CH2 + 3O2 Reaction. Rate Constant and Product Branching Ratios.

    PubMed

    Lakshmanan, Sandhiya; Pratihar, Subha; Machado, Francisco B C; Hase, William L

    2018-05-31

    The reaction of 3 CH 2 with 3 O 2 is of fundamental importance in combustion, and the reaction is complex as a result of multiple extremely exothermic product channels. In the present study, direct dynamics simulations were performed to study the reaction on both the singlet and triplet potential energy surfaces (PESs). The simulations were performed at the UM06/6-311++G(d,p) level of theory. Trajectories were calculated at a temperature of 300 K, and all reactive trajectories proceeded through the carbonyl oxide Criegee intermediate, CH 2 OO, on both the singlet and triplet PESs. The triplet surface leads to only one product channel, H 2 CO + O( 3 P), while the singlet surface leads to eight product channels with their relative importance as CO + H 2 O > CO + OH + HH 2 CO + O( 1 D) > HCO + OH ∼ CO 2 + H 2 ∼ CO + H 2 + O( 1 D) > CO 2 + H + H > HCO + O( 1 D) + H. The reaction on the singlet PES is barrierless, consistent with experiment, and the total rate constant on the singlet surface is (0.93 ± 0.22) × 10 -12 cm 3 molecule -1 s -1 in comparison to the recommended experimental rate constant of 3.3 × 10 -12 cm 3 molecule -1 s -1 . The simulation product yields for the singlet PES are compared with experiment, and the most significant differences are for H, CO 2 , and H 2 O. The reaction on the triplet surface is also barrierless, inconsistent with experiment. A discussion is given of the need for future calculations to address (1) the barrier on the triplet PES for 3 CH 2 + 3 O 2 → 3 CH 2 OO, (2) the temperature dependence of the 3 CH 2 + 3 O 2 reaction rate constant and product branching ratios, and (3) the possible non-RRKM dynamics of the 1 CH 2 OO Criegee intermediate.

  20. LiOH - H2O2 - H2O trinary system study for the selection of optimal conditions of lithium peroxide synthesis

    NASA Astrophysics Data System (ADS)

    Nefedov, R. A.; Ferapontov, Yu A.; Kozlova, N. P.

    2016-01-01

    Using solubility method the decay kinetics of peroxide products contained in liquid phase of LiOH - H2O2 - H2O trinary system with 2 to 6% by wt hydrogen peroxide content in liquid phase in 21 to 33 °C temperature range has been studied. Conducted studies have allowed to determine temperature and concentration limits of solid phase existence of Li2O2·H2O content, distinctness of which has been confirmed using chemical and qualitative X- ray phase analysis. Stabilizing effect of solid phase of Li2O2·H2O content on hydrogen peroxide decay contained in liquid phase of LiOH - H2O2 - H2O trinary system under conditions of experiments conducted has been shown.

  1. Enzymatic Production of Ascorbic Acid-2-phosphate by Recombinant Acid Phosphatase.

    PubMed

    Zheng, Kai; Song, Wei; Sun, Anran; Chen, Xiulai; Liu, Jia; Luo, Qiuling; Wu, Jing

    2017-05-24

    In this study, an environmentally friendly and efficient enzymatic method for the synthesis of l-ascorbic acid-2-phosphate (AsA-2P) from l-ascorbic acid (AsA) was developed. The Pseudomonas aeruginosa acid phosphatase (PaAPase) was expressed in Escherichia coli BL21. The optimal temperature, optimal pH, K m , k cat , and catalytic efficiency of recombinant PaAPase were 50 °C, 5.0, 93 mM, 4.2 s -1 , and 2.7 mM -1 min -1 , respectively. The maximal dry cell weight and PaAPase phosphorylating activity reached 8.5 g/L and 1127.7 U/L, respectively. The highest AsA-2P concentration (50.0 g/L) and the maximal conversion (39.2%) were obtained by incubating 75 g/L intact cells with 88 g/L AsA and 160 g/L sodium pyrophosphate under optimal conditions (0.1 mM Ca 2+ , pH 4.0, 30 °C) for 10 h; the average AsA-2P production rate was 5.0 g/L/h, and the AsA-2P production system was successfully scaled up to a 7.5 L fermenter. Therefore, the enzymatic process showed great potential for production of AsA-2P in industry.

  2. Theoretical mechanistic study on the ion-molecule reaction of SiCN+/SiNC+ with H2O.

    PubMed

    Wang, Jian; Ding, Yi-hong; Sun, Chia-chung

    2005-02-15

    The gas-phase ion-molecule reactions play very important roles in interstellar and in plasma chemistry. Motivated by recent astrophysical detection of the SiCN/SiNC radicals and laboratory characterization of some SiCN-containing species, we carried out a detailed potential energy survey on the SiCN+/SiNC(+) + H2O reaction at the Becke's three-parameter Lee-Yang-Parr-B3LYP/6-311G(d,p) and coupled cluster with single, double, and triple excitations-CCSD(T)/6-311 + G(2df,p) (single-point) levels as an attempt towards understanding the SiCN+/SiNC+ reaction mechanisms. In contrast to the carbene-featured analogous CCN+/CNC(+) + H2X (X=O,S) reactions, the title reaction SiCN+/SiNC(+) + H2O are not associated with any competitive silylene-insertion characters. Moreover, the -CN <--> -NC interconversion has a low barrier and plays an important role in determining the final product distributions. This is also in marked difference from the CCN+/CNC+ reaction. It is shown that the isomeric sila-cations SiCN+ and SiNC+ can both react with H2O to barrierlessly generate the major product P1 HOSi(+) + HCN and the minor one P3 HOSi(+) + HNC, whereas other low-lying products such as P2 SiNCO(+) + H2, and P(0) H2NSi(+) + CO are kinetically unfeasible. The high efficiency of the SiCN+/SiNC+ reaction towards H2O and the potential importance of SiCN+/SiNC+ ion chemistry in interstellar and SiCN-based microelectric and photoelectric processes strongly appeals for future laboratory investigations on the SiCN+/SiNC+ chemical reactivity.

  3. Role of chemical interaction between MgH2 and TiO2 additive on the hydrogen storage behavior of MgH2

    NASA Astrophysics Data System (ADS)

    Pukazhselvan, D.; Nasani, Narendar; Sandhya, K. S.; Singh, Budhendra; Bdikin, Igor; Koga, Nobuaki; Fagg, Duncan Paul

    2017-10-01

    The present study explores how the additive titania chemically reacts with magnesium hydride and influences the dehydrogenation of MgH2. Quantitative X - ray diffraction study of ball milled MgH2 + xTiO2 (x = 0.25, 0.33, 0.5 and 1) suggests that Ti substituted MgO is the main reaction product in all the product powders. Convincing evidence is obtained to conclude that Ti dissolution in MgO makes a dramatic behavioral change to MgO; passive MgO turns as an active in-built catalyst. The analysis correlating the dehydrogenation kinetics, composition of in-situ catalyst and sample durability suggests that effectiveness of Ti substituted MgO (MgxTiyOx+y) as a catalyst for MgH2 depends on the concentration of Ti in MgxTiyOx+y rock salt. These observations are immensely helpful for understanding the hydrogen desorption mechanism of metal oxide additives loaded MgH2 system.

  4. Measurements of ion-molecule reactions of He plus, H plus, HeH plus with H sub 2 and D sub 2

    NASA Technical Reports Server (NTRS)

    Johnsen, R.; Biondi, M. A.

    1974-01-01

    A drift tube mass spectrometer apparatus has been used to determine the rate coefficient, energy dependence and product ions of the reaction He(+) +H2. The total rate coefficient at 300 K is 1.1 plus or minus 0.1) 10 to minus 13th power cu cm/sec. The reaction proceeds principally by dissociative charge transfer to produce H(+), with the small remainder going by charge transfer to produce H2(+) and by atom rearrangement to produce HeH(+). The rate coefficient increases slowly with increasing ion mean energy, reaching a value of 2.8 x ten to the minus 13th power cu cm sec at 0.18 eV. The corresponding reaction with deuterium, He(+) + D2, exhibits a value (5 plus or minus 1) x 10 to the minus 14th cu cm/sec at 300K. The reaction rates for conversion of H(+) and HeH(+) to H3(+) on collisions with H2 molecules are found to agree well with results of previous investigations.

  5. Pressure-induced superconductivity in H2-containing hydride PbH4(H2)2

    PubMed Central

    Cheng, Ya; Zhang, Chao; Wang, Tingting; Zhong, Guohua; Yang, Chunlei; Chen, Xiao-Jia; Lin, Hai-Qing

    2015-01-01

    High pressure structure, stability, metallization, and superconductivity of PbH4(H2)2, a H2-containing compound combining one of the heaviest elements with the lightest element, are investigated by the first-principles calculations. The metallic character is found over the whole studied pressure range, although PbH4(H2)2 is metastable and easily decompose at low pressure. The decomposition pressure point of 133 GPa is predicted above which PbH4(H2)2 is stable both thermodynamically and dynamically with the C2/m symmetry. Interestedly, all hydrogen atoms pairwise couple into H2 quasi-molecules and remain this style up to 400 GPa in the C2/m structure. At high-pressure, PbH4(H2)2 tends to form the Pb-H2 alloy. The superconductivity of Tc firstly rising and then falling is observed in the C2/m PbH4(H2)2. The maximum of Tc is about 107 K at 230 GPa. The softening of intermediate-frequency phonon induced by more inserted H2 molecules is the main origin of the high Tc. The results obtained represent a significant step toward the understanding of the high pressure behavior of metallic hydrogen and hydrogen-rich materials, which is helpful for obtaining the higher Tc. PMID:26559369

  6. Modeling the Interaction of H2 on Root Exudate Degradation and Methanogenesis in Wetland Sediments

    NASA Astrophysics Data System (ADS)

    Pal, D. S.; Jaffe, P. R.

    2014-12-01

    CH4 is produced in wetland sediments from the microbial degradation of organic carbon through multiple fermentation steps and methanogenesis pathways. There are many potential sources of carbon for methananogenesis; in vegetated wetland sediments, microbial communities consume root exudates as a major source of organic carbon. In many methane models propionate is used as a model carbon molecule. This simple sugar is fermented into acetate and H2, acetate is transformed to methane and CO2 while the H2 and CO2 is synthesized to form an additional CH4 molecule. The hydrogenotrophic pathway involves the equilibrium of two dissolved gases, CH4 and H2. In an effort to limit CH4 emissions from wetlands, there has been growing interest in finding ways to limit plant transport of soil gases through root systems. While this may decrease the direct emissions of methane, there is little understanding about how H2 dynamics may feedback into overall methane production. Since H2 is used in methane production and produced in propionate fermentation, increased subsurface H2 concentrations can simultaneously inhibit propionate fermentation and acetate production and enhance hydrogenotrophic methanogenesis. For this study, we incubated soil samples from vegetated wetland sediments with propionate or acetate and four different hydrogen concentrations. The headspaces from these incubations were simultaneously analyzed for H2 and CH4 at multiple time points over two months. The comparison of methane production between different hydrogen concentrations and different carbon sources can indicate which process is most affected by increased hydrogen concentrations. The results from this study were combined with a newly formulated steady-state model of propionate degradation and formation of methane, that also accounts for the venting off both gases via plants. The resulting model indicates how methane production and emissions would be affected by plant volatilization.

  7. A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis

    NASA Astrophysics Data System (ADS)

    Menon, Vikram; Fu, Qingxi; Janardhanan, Vinod M.; Deutschmann, Olaf

    2015-01-01

    High temperature co-electrolysis of H2O and CO2 offers a promising route for syngas (H2, CO) production via efficient use of heat and electricity. The performance of a SOEC during co-electrolysis is investigated by focusing on the interactions between transport processes and electrochemical parameters. Electrochemistry at the three-phase boundary is modeled by a modified Butler-Volmer approach that considers H2O electrolysis and CO2 electrolysis, individually, as electrochemically active charge transfer pathways. The model is independent of the geometrical structure. A 42-step elementary heterogeneous reaction mechanism for the thermo-catalytic chemistry in the fuel electrode, the dusty gas model (DGM) to account for multi-component diffusion through porous media, and a plug flow model for flow through the channels are used in the model. Two sets of experimental data are reproduced by the simulations, in order to deduce parameters of the electrochemical model. The influence of micro-structural properties, inlet cathode gas velocity, and temperature are discussed. Reaction flow analysis is performed, at OCV, to study methane production characteristics and kinetics during co-electrolysis. Simulations are carried out for configurations ranging from simple one-dimensional electrochemical button cells to quasi-two-dimensional co-flow planar cells, to demonstrate the effectiveness of the computational tool for performance and design optimization.

  8. Acid Lipase from Candida viswanathii: Production, Biochemical Properties, and Potential Application

    PubMed Central

    de Almeida, Alex Fernando; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (Y L/S = 1.381 g/g), lipase yield (Y L/S = 6.892 U/g), and biomass productivity (P X = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (Y L/S) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties. PMID:24350270

  9. Potential of potassium hydroxide pretreatment of switchgrass for fermentable sugar production.

    PubMed

    Sharma, Rajat; Palled, Vijaykumar; Sharma-Shivappa, Ratna R; Osborne, Jason

    2013-02-01

    Chemical pretreatment of lignocellulosic biomass has been extensively investigated for sugar generation and subsequent fuel production. Alkaline pretreatment has emerged as one of the popular chemical pretreatment methods, but most attempts thus far have utilized NaOH for the pretreatment process. This study aimed at investigating the potential of potassium hydroxide (KOH) as a viable alternative alkaline reagent for lignocellulosic pretreatment based on its different reactivity patterns compared to NaOH. Performer switchgrass was pretreated at KOH concentrations of 0.5-2% for varying treatment times of 6-48 h, 6-24 h, and 0.25-1 h at 21, 50, and 121 °C, respectively. The pretreatments resulted in the highest percent sugar retention of 99.26% at 0.5%, 21 °C, 12 h while delignification up to 55.4% was observed with 2% KOH, 121 °C, 1 h. Six pretreatment conditions were selected for subsequent enzymatic hydrolysis with Cellic CTec2® for sugar generation. The pretreatment condition of 0.5% KOH, 24 h, 21 °C was determined to be the most effective as it utilized the least amount of KOH while generating 582.4 mg sugar/g raw biomass for a corresponding percent carbohydrate conversion of 91.8%.

  10. Inhibition of untransformed prostaglandin H(2) production and stretch-induced contraction of rabbit pulmonary arteries by indoxam, a selective secretory phospholipase A(2) inhibitor.

    PubMed

    Tanabe, Yoshiyuki; Saito, Maki; Morikawa, Yuki; Kamataki, Akihisa; Sawai, Takashi; Hirose, Masamichi; Nakayama, Koichi

    2011-01-01

    Involvement of secretory phospholipase A(2) (sPLA(2)) in the stretch-induced production of untransformed prostaglandin H(2) (PGH(2)) in the endothelium of rabbit pulmonary arteries was investigated. The stretch-induced contraction was significantly inhibited by indoxam, a selective inhibitor for sPLA(2), and NS-398, a selective inhibitor for cyclooxygenase-2 (COX-2). Indoxam inhibited the RGD-sensitive-integrin-independent production of untransformed PGH(2), but did not affect the RGD-sensitive-integrin-dependent production of thromboxane A(2) (TXA(2)). These results suggest that the stretch-induced contraction and untransformed PGH(2) production was mediated by sPLA(2)-COX-2 pathway, making it a new possible target for pharmacological intervention of pulmonary artery contractility.

  11. Chlorobium limicola forma thiosulfatophilum: Biocatalyst in the Production of Sulfur and Organic Carbon from a Gas Stream Containing H2S and CO2

    PubMed Central

    Cork, Douglas J.; Garunas, Ruta; Sajjad, Ashfaq

    1983-01-01

    Chlorobium limicola forma thiosulfatophilum (ATCC 17092) was grown in a 1-liter continuously stirred tank reactor (800-ml liquid volume) at pH 6.8, 30°C, saturated light intensity, and a gas flow rate of 23.6 ml/min from a gas cylinder blend consisting of 3.9 mol% H2S, 9.2 mol% CO2, 86.4 mol% N2, and 0.5 mol% H2. This is the first demonstration of photoautotrophic growth of a Chlorobium sp. on a continuous inorganic gas feed. A significant potential exists for applying this photoautotrophic process to desulfurization and CO2 fixation of gases containing acidic components (H2S and CO2). PMID:16346255

  12. H2A Biomethane Model Documentation and a Case Study for Biogas From Dairy Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saur, G.; Jalalzadeh, A.

    2010-12-01

    The new H2A Biomethane model was developed to estimate the levelized cost of biomethane by using the framework of the vetted original H2A models for hydrogen production and delivery. For biomethane production, biogas from sources such as dairy farms and landfills is upgraded by a cleanup process. The model also estimates the cost to compress and transport the product gas via the pipeline to export it to the natural gas grid or any other potential end-use site. Inputs include feed biogas composition and cost, required biomethane quality, cleanup equipment capital and operations and maintenance costs, process electricity usage and costs,more » and pipeline delivery specifications.« less

  13. Green synthesis and anticancer potential of chalcone linked-1,2,3-triazoles.

    PubMed

    Yadav, Pinki; Lal, Kashmiri; Kumar, Ashwani; Guru, Santosh Kumar; Jaglan, Sundeep; Bhushan, Shashi

    2017-01-27

    A series of chalcone linked-1,2,3-triazoles was synthesized via cellulose supported copper nanoparticle catalyzed click reaction in water. The structures of all the compounds were analyzed by IR, NMR and Mass spectral techniques. All the synthesized products were subjected to 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay against a panel of four human cancer cell lines (MCF-7, MIA-Pa-Ca-2, A549, HepG2) to check their anticancer potential. Compound 6h was found to be most active against all the tested cancer cell lines with IC 50 values in the range of 4-11 μM and showed better or comparable activity to the reference drug against all the tested cell lines. Cell cycle analysis revealed that compound 6h induces apoptosis and G2/S arrest in MIA-Pa-Ca-2 cells. Compound 6h triggers mitochondrial potential loss in pancreatic cancer MIA-Pa-Ca-2 cells. Further, Compound 6h also triggers caspase-3 and PARP-1 cleavage, which increases in dose dependent manner. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Implications from distinct sulfate-reducing bacteria populations between cattle manure and digestate in the elucidation of H2S production during anaerobic digestion of animal slurry.

    PubMed

    St-Pierre, Benoit; Wright, André-Denis G

    2017-07-01

    Biogas produced from the anaerobic digestion of animal slurry consists mainly of methane (CH 4 ) and carbon dioxide (CO 2 ), but also includes other minor gases, such as hydrogen sulfide (H 2 S). Since it can act as a potent corrosive agent and presents a health hazard even at low concentrations, H 2 S is considered an undesirable by-product of anaerobic digestion. Sulfate-reducing bacteria (SRBs) have been identified as the main biological source of H 2 S in a number of natural, biological, and human-made habitats, and thus represent likely candidate microorganisms responsible for the production of H 2 S in anaerobic manure digesters. Phylogenetically, SRBs form a divergent group of bacteria that share a common anaerobic respiration pathway that allows them to use sulfate as a terminal electron acceptor. While the composition and activity of SRBs have been well documented in other environments, their metabolic potential remains largely uncharacterized and their populations poorly defined in anaerobic manure digesters. In this context, a combination of in vitro culture-based studies and DNA-based approaches, respectively, were used to gain further insight. Unexpectedly, only low to nondetectable levels of H 2 S were produced by digestate collected from a manure biogas plant documented to have persistently high concentrations of H 2 S in its biogas (2000-3000 ppm). In contrast, combining digestate with untreated manure (a substrate with comparatively lower sulfate and SRB cell densities than digestate) was found to produce elevated H 2 S levels in culture. While a 16S rRNA gene-based community composition approach did not reveal likely candidate SRBs in digestate or untreated manure, the use of the dsrAB gene as a phylogenetic marker provided more insight. In digestate, the predominant SRBs were found to be uncharacterized species likely belonging to the genus Desulfosporosinus (Peptococcaceae, Clostridiales, Firmicutes), while Desulfovibrio-related SRBs

  15. Isolation and identification of a novel Candida sp. H2 producing D-arabitol and optimization of D-arabitol production.

    PubMed

    Song, Weibin; Lin, Yanqing; Hu, Haiyan; Xie, Zhipeng; Zhang, Jianguo

    2011-03-01

    To isolate a new osmophilic yeast for producing D-arabitol and research its optimal fermentation conditions for highest yield of D-arabitol from glucose. The isolated strain was characterized by electron microscopy, Biolog (GN) test, G + C content measurement and 26S rDNA D1/D2 domain sequences analysis. The purified fermentation product was identified by IR, 1H-NMR, 13C-NMR, MS and optical rotation analysis. Then the fermentation conditions for D-arabitol production were optimized. A new osmophilic yeast was isolated and identified as Candida sp. H2. Through the single factor experiment,the optimum conditions of 250 g/L glucose,10 g/L yeast extract, initial pH 6.0, 35 degrees C of culture temperature, 200 r/min of agitation, 200 mL medium in a 1000 mL flask of broth content, 1% (v/v) of inoculum size, 96 h of fermentation time were achieved. Based on the conditions above,weight yield of 35% (86.55 g D-arabitol from 250 g glucose) was obtained and 10% higher than the conditions not optimized. Candida sp. H2 was a novel strain for producing D-arabitol and valuable for further study.

  16. The reaction of H2O2 with NO2 and NO

    NASA Technical Reports Server (NTRS)

    Gray, D.; Lissi, E.; Heicklen, J.

    1972-01-01

    The reactions of NO and NO2 with H2O2 have been examined at 25 C. Reaction mixtures were monitored by continuously bleeding through a pinhole into a monopole mass spectrometer. NO2 was also monitored by its optical absorption in the visible part of the spectrum. Reaction mixtures containing initially 1.5 - 2.5 torr of NO2 and 0.8 - 1.4 torr of H2O2 or 1 - 12 torr of NO and 0.5 - 1.5 torr of H2O2 were studied. The H2O2 - NO reaction was complex. There was an induction period followed by a marked acceleration in reactant removal. The final products of the reaction, NO2, probably H2O, and possibly HONO2 were produced mainly after all the H2O2 was removed. The HONO intermediate was shown to disproportionate to NO2 + NO + H2O in a relatively slow first order reaction. The acceleration in H2O2 removal after the NO - H2O2 reaction is started is caused by NO2 catalysis.

  17. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils

    PubMed Central

    Qu, Zhi; Wang, Jingguo; Almøy, Trygve; Bakken, Lars R

    2014-01-01

    China is the world's largest producer and consumer of fertilizer N, and decades of overuse has caused nitrate leaching and possibly soil acidification. We hypothesized that this would enhance the soils' propensity to emit N2O from denitrification by reducing the expression of the enzyme N2O reductase. We investigated this by standardized oxic/anoxic incubations of soils from five long-term fertilization experiments in different regions of China. After adjusting the nitrate concentration to 2 mM, we measured oxic respiration (R), potential denitrification (D), substrate-induced denitrification, and the denitrification product stoichiometry (NO, N2O, N2). Soils with a history of high fertilizer N levels had high N2O/(N2O+N2) ratios, but only in those field experiments where soil pH had been lowered by N fertilization. By comparing all soils, we found a strong negative correlation between pH and the N2O/(N2O+N2) product ratio (r2 = 0.759, P < 0.001). In contrast, the potential denitrification (D) was found to be a linear function of oxic respiration (R), and the ratio D/R was largely unaffected by soil pH. The immediate effect of liming acidified soils was lowered N2O/(N2O+N2) ratios. The results provide evidence that soil pH has a marginal direct effect on potential denitrification, but that it is the master variable controlling the percentage of denitrified N emitted as N2O. It has been known for long that low pH may result in high N2O/(N2O+N2) product ratios of denitrification, but our documentation of a pervasive pH-control of this ratio across soil types and management practices is new. The results are in good agreement with new understanding of how pH may interfere with the expression of N2O reductase. We argue that the management of soil pH should be high on the agenda for mitigating N2O emissions in the future, particularly for countries where ongoing intensification of plant production is likely to acidify the soils. PMID:24249526

  18. Combined Spectroscopic and Electrochemical Detection of a Ni I ---H-N Bonding Interaction with Relevance to Electrocatalytic H 2 Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochem, Amélie; O'Hagan, Molly; Wiedner, Eric S.

    2015-06-03

    The [Ni(P R 2N R' 2) 2] 2+ family of complexes are exceptionally active catalysts for proton reduction to H 2. In this manuscript, we explore the first protonation step of the proposed catalytic cycle by using a catalytically inactive Ni I complex possessing a sterically demanding variation of the ligand. Due to the paramagnetic nature of the Ni I oxidation state, the protonated Ni I intermediate has been characterized through a combination of cyclic voltammetry, electron nuclear double resonance (ENDOR) spectroscopy, and hyperfine sublevel correlation (HYSCORE) spectroscopy. Both the electrochemical and spectroscopic studies indicate that the NiI complex ismore » protonated at a pendant amine that is endo to Ni, which suggests the presence of an intramolecular Ni I---HN bonding interaction. Using density functional theory, the hydrogen bond was found to involve three doubly-occupied, localized molecular orbitals: the 3d xz, 3d z2, and 3d yz orbitals of nickel. These studies provide the first direct experimental evidence for this critical catalytic intermediate, and implications for catalytic H 2 production are discussed.« less

  19. Role of Na/sub 2/S in anoxygenic photosynthesis and H/sub 2/ production in the cyanobacterium Nostoc Muscorum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fry, I.; Robinson, A.E.; Spath, S.

    1984-09-28

    Na/sub 2/S is known to support anoxygenic photosynthesis in some strains of cyanobacteria and to stimulate H/sub 2/ production in N/sub 2/ fixing filaments of Nostoc muscorum. We have shown electron transfer between Na/sub 2/S and Photosystem I to be dependent on cytochrome b/sub 559/ which was detected only in vegetative cells. An electron mediator was required to support Na/sub 2/S driven nitrogenase activity in isolated heterocysts. Na/sub 2/S was also found to deplete the ATP pool, probably by inhibiting electron transfer from Photosystem I. 14 references, 4 figures.

  20. Effect of UV and UV/H2O2 in the presence of chloramines on NDMA formation potential of tramadol.

    PubMed

    Radjenovic, Jelena; Farré, Maria José; Gernjak, Wolfgang

    2012-08-07

    This study evaluates the effect of UV-C and UV-C/H(2)O(2) in the presence of chloramines on the N-nitrosodimethylamine formation potential (NDMA FP) of tramadol as a model precursor. The experiments were performed at high initial concentrations of TMDL (i.e., 20 mg/L) in order to elucidate the structures of TMDL byproducts. Twenty-four byproducts were identified in UV-C, UV-C/monochloramine, and UV/H(2)O(2)/monochloramine oxidation of tramadol using MS(3) capabilities of a hybrid quadrupole-linear ion trap mass spectrometer, combined with online hydrogen/deuterium (H/D) exchange experiments. Oxidative cleavage of methoxy and methoxybenzene moiety, O-demethylation, hydroxylation, and cyclohexane ring-opening were identified as major reaction mechanisms of tramadol in UV oxidation. Addition of monochloramine decreased the degradation rates of tramadol and its byproducts and yielded several monochlorinated derivatives. The oxidation rates were significantly enhanced in the presence of H(2)O(2), and byproducts of oxidative benzene ring-opening were detected. The majority of the identified byproducts are likely to have a higher NDMA FP than the parent compound due to a reduced steric hindrance and/or insertion of electron-donating hydroxyl groups in the N,N-dimethylamine side chain. This was confirmed by the results of NDMA FP tests, which showed that the formation of NDMA was enhanced up to four times depending on the process conditions in UV alone and in UV and UV/H(2)O(2) in the presence of monochloramine. Prolonged oxidation by hydroxyl radicals in UV/H(2)O(2)/monochloramine process mineralized some of the byproducts and slightly reduced the NDMA FP at the end of the treatment. The obtained degradation pathway of tramadol allowed the correlation of changes in NDMA FP during oxidation with its major oxidative transformation reactions. This manuscript demonstrates the significance of oxidation byproducts as NDMA precursors and emphasizes the need for their

  1. Relationship Between Redox Potential, Disinfectant, and pH in Drinking Water

    EPA Science Inventory

    This work will examine the effects of pH and oxidant type (chlorine [Cl2], oxygen [O2], hydrogen peroxide [H2O2], monochloramine [MCA], and potassium permanganate [KMnO4]) and concentration (mg/L) on the redox potential of buffered test water. Also, the effects of incrementing ir...

  2. Effects of Antibiotics on Shiga Toxin 2 Production and Bacteriophage Induction by Epidemic Escherichia coli O104:H4 Strain

    PubMed Central

    Bielaszewska, Martina; Idelevich, Evgeny A.; Zhang, Wenlan; Bauwens, Andreas; Schaumburg, Frieder; Mellmann, Alexander; Peters, Georg

    2012-01-01

    The role of antibiotics in treatment of enterohemorrhagic Escherichia coli (EHEC) infections is controversial because of concerns about triggering hemolytic-uremic syndrome (HUS) by increasing Shiga toxin (Stx) production. During the recent large EHEC O104:H4 outbreak, antibiotic therapy was indicated for some patients. We tested a diverse panel of antibiotics to which the outbreak strain is susceptible to interrogate the effects of subinhibitory antibiotic concentrations on induction of stx2-harboring bacteriophages, stx2 transcription, and Stx2 production in this emerging pathogen. Ciprofloxacin significantly increased stx2-harboring phage induction and Stx2 production in outbreak isolates (P values of <0.001 to <0.05), while fosfomycin, gentamicin, and kanamycin insignificantly influenced them (P > 0.1) and chloramphenicol, meropenem, azithromycin, rifaximin, and tigecycline significantly decreased them (P ≤ 0.05). Ciprofloxacin and chloramphenicol significantly upregulated and downregulated stx2 transcription, respectively (P < 0.01); the other antibiotics had insignificant effects (P > 0.1). Meropenem, azithromycin, and rifaximin, which were used for necessary therapeutic or prophylactic interventions during the EHEC O104:H4 outbreak, as well as tigecycline, neither induced stx2-harboring phages nor increased stx2 transcription or Stx2 production in the outbreak strain. These antibiotics might represent therapeutic options for patients with EHEC O104:H4 infection if antibiotic treatment is inevitable. We await further analysis of the epidemic to determine if usage of these agents was associated with an altered risk of developing HUS. PMID:22391549

  3. Carbon storage potential increases with increasing ratio of C4 to C3 grass cover and soil productivity in restored tallgrass prairies.

    PubMed

    Spiesman, Brian J; Kummel, Herika; Jackson, Randall D

    2018-02-01

    Long-term soil carbon (C) storage is essential for reducing CO 2 in the atmosphere. Converting unproductive and environmentally sensitive agricultural lands to grasslands for bioenergy production may enhance C storage. However, a better understanding of the interacting effects of grass functional composition (i.e., relative abundance of C 4 and C 3 grass cover) and soil productivity on C storage will help guide sustainable grassland management. Our objective was to examine the relationship between grass functional composition and potential C storage and how it varies with potential soil productivity. We estimated C inputs from above- and belowground net primary productivity (ANPP and BNPP), and heterotrophic respiration (R H ) to calculate net ecosystem production (NEP), a measure of potential soil C storage, in grassland plots of relatively high- and low-productivity soils spanning a gradient in the ratio of C 4 to C 3 grass cover (C 4 :C 3 ). NEP increased with increasing C 4 :C 3 , but only in potentially productive soils. The positive relationship likely stemmed from increased ANPP, rather than BNPP, which was possibly related to efficient resource-use and physiological/anatomical advantages of C 4 plants. R H was negatively correlated with C 4 :C 3 , possibly because of changes in microclimate or plant-microbe interactions. It is possible that in potentially productive soils, C storage can be enhanced by favoring C 4 over C 3 grasses through increased ANPP and BNPP and reduced R H . Results also suggest that potential C storage gains from C 4 productivity would not be undermined by a corresponding increase in R H .

  4. Bioinspired Design and Computational Prediction of Iron Complexes with Pendant Amines for the Production of Methanol from CO2 and H2.

    PubMed

    Chen, Xiangyang; Yang, Xinzheng

    2016-03-17

    Inspired by the active site structure of [FeFe]-hydrogenase, we built a series of iron dicarbonyl diphosphine complexes with pendant amines and predicted their potentials to catalyze the hydrogenation of CO2 to methanol using density functional theory. Among the proposed iron complexes, [(P(tBu)2N(tBu)2H)FeH(CO)2(COOH)](+) (5COOH) is the most active one with a total free energy barrier of 23.7 kcal/mol. Such a low barrier indicates that 5COOH is a very promising low-cost catalyst for high-efficiency conversion of CO2 and H2 to methanol under mild conditions. For comparison, we also examined Bullock's Cp iron diphosphine complex with pendant amines, [(P(tBu)2N(tBu)2H)FeHCp(C5F4N)](+) (5Cp-C5F4N), as a catalyst for hydrogenation of CO2 to methanol and obtained a total free energy barrier of 27.6 kcal/mol, which indicates that 5Cp-C5F4N could also catalyze the conversion of CO2 and H2 to methanol but has a much lower efficiency than our newly designed iron complexes.

  5. Fluoresence cross section of the H2O(+) A 2A1(0,7,0) produced through photoionization of H2O

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. Robert; Hwang, M. Y.

    1988-01-01

    The cross section for the production of the H2O(+) A 2A1(0,7,0) - X 2B1(0,0,0) fluorescence through photoionization of H2O was measured in the 14.5-20.5 eV region. The maximum quantum yield is 1.4 x 10 to the -3rd at 16.5 eV.

  6. Production, Characterization, and Flocculation Mechanism of Cation Independent, pH Tolerant, and Thermally Stable Bioflocculant from Enterobacter sp. ETH-2

    PubMed Central

    Tang, Wei; Song, Liyan; Li, Dou; Qiao, Jing; Zhao, Tiantao; Zhao, Heping

    2014-01-01

    Synthetic high polymer flocculants, frequently utilized for flocculating efficiency and low cost, recently have been discovered as producing increased risk to human health and the environment. Development of a more efficient and environmentally sound alternative flocculant agent is investigated in this paper. Bioflocculants are produced by microorganisms and may exhibit a high rate of flocculation activity. The bioflocculant ETH-2, with high flocculating activity (2849 mg Kaolin particle/mg ETH-2), produced by strain Enterobacter sp. isolated from activated sludge, was systematically investigated with regard to its production, characterization, and flocculation mechanism. Analyses of microscopic observation, zeta potential and ETH-2 structure demonstrates the bridging mechanism, as opposed to charge neutralization, was responsible for flocculation of the ETH-2. ETH-2 retains high molecular weight (603 to 1820 kDa) and multi-functional groups (hydroxyl, amide and carboxyl) that contributed to flocculation. Polysaccharides mainly composed of mannose, glucose, and galactose, with a molar ratio of 1∶2.9∶9.8 were identified as the active constituents in bioflocculant. The structure of the long backbone with active sites of polysaccharides was determined as a primary basis for the high flocculation activity. Bioflocculant ETH-2 is cation independent, pH tolerant, and thermally stable, suggesting a potential fit for industrial application. PMID:25485629

  7. Enhanced poly(γ-glutamic acid) production by H2 O2 -induced reactive oxygen species in the fermentation of Bacillus subtilis NX-2.

    PubMed

    Tang, Bao; Zhang, Dan; Li, Sha; Xu, Zongqi; Feng, Xiaohai; Xu, Hong

    2016-09-01

    Effects of reactive oxygen species (ROS) on cell growth and poly(γ-glutamic acid) (γ-PGA) synthesis were studied by adding hydrogen peroxide to a medium of Bacillus subtilis NX-2. After optimizing the addition concentration and time of H 2 O 2 , a maximum concentration of 33.9 g/L γ-PGA was obtained by adding 100 µM H 2 O 2 to the medium after 24 H. This concentration was 20.6% higher than that of the control. The addition of diphenyleneiodonium chloride (ROS inhibitor) can interdict the effect of H 2 O 2 -induced ROS. Transcriptional levels of the cofactors and relevant genes were also determined under ROS stress to illustrate the possible metabolic mechanism contributing to the improve γ-PGA production. The transcriptional levels of genes belonging to the tricarboxylic acid cycle and electron transfer chain system were significantly increased by ROS, which decreased the NADH/NAD + ratio and increased the ATP levels, thereby providing more reducing power and energy for γ-PGA biosynthesis. The enhanced γ-PGA synthetic genes also directly promoted the formation of γ-PGA. This study was the first to use the ROS control strategy for γ-PGA fermentation and provided valuable information on the possible mechanism by which ROS regulated γ-PGA biosynthesis in B. subtilis NX-2. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  8. Oscillatory shear stress stimulates endothelial production of O2- from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion

    NASA Technical Reports Server (NTRS)

    Hwang, Jinah; Saha, Aniket; Boo, Yong Chool; Sorescu, George P.; McNally, J. Scott; Holland, Steven M.; Dikalov, Sergei; Giddens, Don P.; Griendling, Kathy K.; Harrison, David G.; hide

    2003-01-01

    Arterial regions exposed to oscillatory shear (OS) in branched arteries are lesion-prone sites of atherosclerosis, whereas those of laminar shear (LS) are relatively well protected. Here, we examined the hypothesis that OS and LS differentially regulate production of O2- from the endothelial NAD(P)H oxidase, which, in turn, is responsible for their opposite effects on a critical atherogenic event, monocyte adhesion. We used aortic endothelial cells obtained from C57BL/6 (MAE-C57) and p47phox-/- (MAE-p47-/-) mice, which lack a component of NAD(P)H oxidase. O2- production was determined by dihydroethidium staining and an electron spin resonance using an electron spin trap methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine. Chronic exposure (18 h) to an arterial level of OS (+/- 5 dynes/cm2) increased O2- (2-fold) and monocyte adhesion (3-fold) in MAE-C57 cells, whereas chronic LS (15 dynes/cm2, 18 h) significantly decreased both monocyte adhesion and O2- compared with static conditions. In contrast, neither LS nor OS were able to induce O2- production and monocyte adhesion to MAE-p47-/-. Treating MAE-C57 with a cell-permeable superoxide dismutase compound, polyethylene glycol-superoxide dismutase, also inhibited OS-induced monocyte adhesion. In addition, over-expressing p47phox in MAE-p47-/- restored OS-induced O2- production and monocyte adhesion. These results suggest that chronic exposure of endothelial cells to OS stimulates O2- and/or its derivatives produced from p47phox-dependent NAD(P)H oxidase, which, in turn, leads to monocyte adhesion, an early and critical atherogenic event.

  9. H2@Scale Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pivovar, Bryan

    2017-03-31

    Final report from the H2@Scale Workshop held November 16-17, 2016, at the National Renewable Energy Laboratory in Golden, Colorado. The U.S. Department of Energy's National Renewable Energy Laboratory hosted a technology workshop to identify the current barriers and research needs of the H2@Scale concept. H2@Scale is a concept regarding the potential for wide-scale impact of hydrogen produced from diverse domestic resources to enhance U.S. energy security and enable growth of innovative technologies and domestic industries. Feedback received from a diverse set of stakeholders at the workshop will guide the development of an H2@Scale roadmap for research, development, and early stagemore » demonstration activities that can enable hydrogen as an energy carrier at a national scale.« less

  10. H2S protects against methionine-induced oxidative stress in brain endothelial cells.

    PubMed

    Tyagi, Neetu; Moshal, Karni S; Sen, Utpal; Vacek, Thomas P; Kumar, Munish; Hughes, William M; Kundu, Soumi; Tyagi, Suresh C

    2009-01-01

    Homocysteine (Hcy) causes cerebrovascular dysfunction by inducing oxidative stress. However, to date, there are no strategies to prevent Hcy-induced oxidative damage. Hcy is an H2S precursor formed from methionine (Met) metabolism. We aimed to investigate whether H2S ameliorated Met-induced oxidative stress in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to Met treatment in the presence or absence of NaHS (donor of H2S). Met-induced cell toxicity increased the levels of free radicals in a concentration-dependent manner. Met increased NADPH-oxidase-4 (NOX-4) expression and mitigated thioredxion-1(Trx-1) expression. Pretreatment of bEnd3 with NaHS (0.05 mM) attenuated the production of free radicals in the presence of Met and protected the cells from oxidative damage. Furthermore, NaHS enhanced inhibitory effects of apocynin, N-acetyl-l-cysteine (NAC), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), Nomega-nitro-l-arginine methyl ester (L-NAME) on ROS production and redox enzymes levels induced by Met. In conclusion, the administration of H2S protected the cells from oxidative stress induced by hyperhomocysteinemia (HHcy), which suggested that NaHS/H2S may have therapeutic potential against Met-induced oxidative stress.

  11. H3Λ and ‾ Λ bar 3H production in Pb-Pb collisions at √{sNN} = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Chunhui, Z.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadlovska, S.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Luz, P. H. F. N. D.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Masui, H.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seeder, K. S.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2016-03-01

    The production of the hypertriton nuclei H3Λ and ‾ Λ bar 3H has been measured for the first time in Pb-Pb collisions at √{sNN} = 2.76 TeV with the ALICE experiment at LHC. The pT-integrated H3Λ yield in one unity of rapidity, dN / dy ×B . R . (H3Λ →3He ,π-) = (3.86 ± 0.77 (stat.) ± 0.68 (syst.)) ×10-5 in the 0-10% most central collisions, is consistent with the predictions from a statistical thermal model using the same temperature as for the light hadrons. The coalescence parameter B3 shows a dependence on the transverse momentum, similar to the B2 of deuterons and the B3 of 3He nuclei. The ratio of yields S3 =H3Λ / (3He × Λ / p) was measured to be S3 = 0.60 ± 0.13 (stat.) ± 0.21 (syst.) in 0-10% centrality events; this value is compared to different theoretical models. The measured S3 is compatible with thermal model predictions. The measured H3Λ lifetime, τ =181-39+54 (stat.) ± 33 (syst.) ps is in agreement within 1σ with the world average value.

  12. Producing and quantifying enriched para-H2.

    PubMed

    Tom, Brian A; Bhasker, Siddhartha; Miyamoto, Yuki; Momose, Takamasa; McCall, Benjamin J

    2009-01-01

    The production of enriched para-H(2) is useful for many scientific applications, but the technology for producing and measuring para-H(2) is not yet widespread. In this note and in the accompanying auxiliary material, we describe the design, construction, and use of a versatile standalone converter that is capable of producing para-H(2) enrichments of up to > or = 99.99% at continuous flow rates of up to 0.4 SLM. We also discuss para-H(2) storage and back conversion rates, and improvements to three techniques (thermal conductance, NMR, and solid hydrogen impurity spectroscopy) used to quantify the para-H(2) enrichment.

  13. pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer.

    PubMed

    Babauta, Jerome T; Nguyen, Hung Duc; Harrington, Timothy D; Renslow, Ryan; Beyenal, Haluk

    2012-10-01

    The limitation of pH inside electrode-respiring biofilms is a well-known concept. However, little is known about how pH and redox potential are affected by increasing current inside biofilms respiring on electrodes. Quantifying the variations in pH and redox potential with increasing current is needed to determine how electron transfer is tied to proton transfer within the biofilm. In this research, we quantified pH and redox potential variations in electrode-respiring Geobacter sulfurreducens biofilms as a function of respiration rates, measured as current. We also characterized pH and redox potential at the counter electrode. We concluded that (1) pH continued to decrease in the biofilm through different growth phases, showing that the pH is not always a limiting factor in a biofilm and (2) decreasing pH and increasing redox potential at the biofilm electrode were associated only with the biofilm, demonstrating that G. sulfurreducens biofilms respire in a unique internal environment. Redox potential inside the biofilm was also compared to the local biofilm potential measured by a graphite microelectrode, where the tip of the microelectrode was allowed to acclimatize inside the biofilm. Copyright © 2012 Wiley Periodicals, Inc.

  14. In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential

    PubMed Central

    Muñoz-Medina, José Esteban; Sánchez-Vallejo, Carlos Javier; Méndez-Tenorio, Alfonso; Monroy-Muñoz, Irma Eloísa; Angeles-Martínez, Javier; Santos Coy-Arechavaleta, Andrea; Santacruz-Tinoco, Clara Esperanza; González-Ibarra, Joaquín; Anguiano-Hernández, Yu-Mei; González-Bonilla, César Raúl; Ramón-Gallegos, Eva; Díaz-Quiñonez, José Alberto

    2015-01-01

    The unpredictable, evolutionary nature of the influenza A virus (IAV) is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2) in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2) and in one of the main aviary subtypes responsible for zoonosis (H5N1). For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB) and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years) and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques. PMID:26346523

  15. A full-dimensional potential energy surface and quantum dynamics of inelastic collision process for H2-HF

    NASA Astrophysics Data System (ADS)

    Yang, Dongzheng; Huang, Jing; Zuo, Junxiang; Hu, Xixi; Xie, Daiqian

    2018-05-01

    A full-dimensional ab initio potential energy surface for the H2-HF van der Waals complex was constructed by employing the coupled-cluster singles and doubles with noniterative inclusion of connected triples with augmented correlation-consistent polarised valence quadruple-zeta basis set plus bond functions. Using the improved coupled-states approximation including the nearest neighbor Coriolis couplings, we calculated the state-to-state scattering dynamics for pure rotational and ro-vibrational energy transfer processes. For pure rotational energy transfer, our results showed a different dynamical behavior for para-H2 and ortho-H2 in collision with hydrogen fluoride (HF), which is consistent with the previous study. Interestingly, some strong resonant peaks were presented in the cross sections for ro-vibrational energy transfer. In addition, the calculated vibrational-resolved rate constant is in agreement with the experimental results reported by Bott et al. These dynamics data can be further applied to the numerical simulation of HF chemical lasers.

  16. New cross sections for H on H2 collisional transitions

    NASA Astrophysics Data System (ADS)

    Zou, Qianxia

    2011-12-01

    The cross section for H on H2 collisions is important for astrophysics as well as our understanding of the simple chemical systems. This is the simplest atom-molecule cross section. With a new H3 potential surface by Mielke et al., we have modified the ABC code by Skouteris, Castillo and Manolopoulos to calculate new cross sections. These cross sections are compared to previous cross section calculations.

  17. On the role of the termolecular reactions 2O2 + H22HO2 and 2O2 + H2H + HO2 + O2 in formation of the first radicals in hydrogen combustion: ab initio predictions of energy barriers.

    PubMed

    Monge-Palacios, M; Rafatijo, Homayoon

    2017-01-18

    We have investigated the role of termolecular reactions in the early chemistry of hydrogen combustion. We performed molecular chemical dynamics simulations using ReaxFF in LAMMPS to identify potential initial reactions for a 1 : 4 mixture of H 2  : O 2 in the NVT ensemble at density 276.3 kg m -3 and ∼3000 K (∼4000 atm) and ∼4000 K (∼5000 atm), and then characterized the saddle points for those reactions using ab initio methods: CCSD(T) = FC/cc-pVTZ//MP2/6-31G, CCSD(T) = FULL/aug-cc-pVTZ//CCSD = FC/cc-pVTZ and CASSCF MP2/6-31G//MP2/6-31G. The main initial reaction is H 2 + O 2H + HO 2 , frequently occurring in the presence of a second O 2 as a third body; that is, 2O 2 + H 2H + HO 2 + O 2 . The second most frequent reaction is 2O 2 + H 22HO 2 . We found three saddle points on the triplet PES of these termolecular reactions: one for 2O 2 + H 2H + HO 2 + O 2 and two for 2O 2 + H 22HO 2 . In the latter case, one has a symmetric structure consistent with simultaneous formation of two HO 2 and the other corresponds to a bimolecular reaction between O 2 and H 2 that is "interrupted" by a second O 2 before going to completion. The classical barrier height of the symmetric saddle point for 2O 2 + H 22HO 2 is 49.8 kcal mol -1 . The barrier to H 2 + O 2H + HO 2 is 58.9 kcal mol -1 . The termolecular reaction will be competitive with H 2 + O 2H + HO 2 only at sufficiently high pressures.

  18. Influence of the Organic Species and Oxoanion in the Synthesis of two Uranyl Sulfate Hydrates, (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 ­(H 2 O)]·7H 2 O and (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 (H 2 O)]·4H 2 O, and a Uranyl Selenate-Selenite [C 5 H 6 N][(UO 2 )(SeO 4 )(HSeO 3 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Wylie, Ernest M.; Burns, Peter C.

    2012-08-08

    Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)]·7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)]·4H2O (NDUS1), and one uranyl selenate-selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L-cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4)more » Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two-dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two-dimensional uranyl selenate-selenite sheets with a U/Se ratio of 1/2. In-situ reaction of the L-cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L-cystine, balancing the charge of the sheets.« less

  19. Ab initio study of C + H3+ reactions

    NASA Technical Reports Server (NTRS)

    Talbi, D.; DeFrees, D. J.

    1991-01-01

    The reaction C + H3+ --> CH(+) + H2 is frequently used in models of dense interstellar cloud chemistry with the assumption that it is fast, i.e. there are no potential energy barriers inhibiting it. Ab initio molecular orbital study of the triplet CH3+ potential energy surface (triplet because the reactant carbon atom is a ground state triplet) supports this hypothesis. The reaction product is 3 pi CH+; the reaction is to exothermic even though the product is not in its electronic ground state. No path has been found on the potential energy surface for C + H3+ --> CH2(+) + H reaction.

  20. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes.

    PubMed

    Robledo-Narváez, Paula N; Muñoz-Páez, Karla M; Poggi-Varaldo, Hector M; Ríos-Leal, Elvira; Calva-Calva, Graciano; Ortega-Clemente, L Alfredo; Rinderknecht-Seijas, Noemí; Estrada-Vázquez, Carlos; Ponce-Noyola, M Teresa; Salazar-Montoya, J Alfredo

    2013-10-15

    Hydrogen is a valuable clean energy source, and its production by biological processes is attractive and environmentally sound and friendly. In México 5 million tons/yr of agroindustrial wastes are generated; these residues are rich in fermentable organic matter that can be used for hydrogen production. On the other hand, batch, intermittently vented, solid substrate fermentation of organic waste has attracted interest in the last 10 years. Thus the objective of our work was to determine the effect of initial total solids content and initial pH on H2 production in batch fermentation of a substrate that consisted of a mixture of sugarcane bagasse, pineapple peelings, and waste activated sludge. The experiment was a response surface based on 2(2) factorial with central and axial points with initial TS (15-35%) and initial pH (6.5-7.5) as factors. Fermentation was carried out at 35 °C, with intermittent venting of minireactors and periodic flushing with inert N2 gas. Up to 5 cycles of H2 production were observed; the best treatment in our work showed cumulative H2 productions (ca. 3 mmol H2/gds) with 18% and 6.65 initial TS and pH, respectively. There was a significant effect of TS on production of hydrogen, the latter decreased with initial TS increase from 18% onwards. Cumulative H2 productions achieved in this work were higher than those reported for organic fraction of municipal solid waste (OFMSW) and mixtures of OFMSW and fruit peels waste from fruit juice industry, using the same process. Specific energetic potential due to H2 in our work was attractive and fell in the high side of the range of reported results in the open literature. Batch dark fermentation of agrowastes as practiced in our work could be useful for future biorefineries that generate biohydrogen as a first step and could influence the management of this type of agricultural wastes in México and other countries and regions as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A new analytical potential energy surface for the singlet state of He{sub 2}H{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Jingjuan; Zhang Qinggang; Yang Chuanlu

    2012-03-07

    The analytic potential energy surface (APES) for the exchange reaction of HeH{sup +} (X{sup 1}{Sigma}{sup +}) + He at the lowest singlet state 1{sup 1}A{sup /} has been built. The APES is expressed as Aguado-Paniagua function based on the many-body expansion. Using the adaptive non-linear least-squares algorithm, the APES is fitted from 15 682 ab initio energy points calculated with the multireference configuration interaction calculation with a large d-aug-cc-pV5Z basis set. To testify the new APES, we calculate the integral cross sections for He + H{sup +}He (v= 0, 1, 2, j= 0) {yields} HeH{sup +}+ He by means ofmore » quasi-classical trajectory and compare them with the previous result in literature.« less

  2. Ro-vibrational spectrum of H2O-Ne in the ν2 H2O bending region: A combined ab initio and experimental investigation

    NASA Astrophysics Data System (ADS)

    Liu, Xunchen; Hou, Dan; Thomas, Javix; Li, Hui; Xu, Yunjie

    2016-12-01

    High resolution ro-vibrational transitions of the H2O-Ne complex in the ν2 bending region of H2O at 6 μm have been measured using a rapid scan infrared spectrometer based on an external cavity quantum cascade laser and an astigmatic multipass optical cell. To aid the spectral assignment, a four-dimension potential energy surface of H2O-Ne which depends on the intramolecular bending coordinate of the H2O monomer and the three intermolecular vibrational coordinates has been constructed and the rovibrational transitions have been calculated. Three ortho and two para H2O-20Ne bands have been identified from the experimental spectra. Some weaker transitions belonging to H2O-22Ne have also been identified experimentally. Spectroscopic fits have been performed for both the experimental and theoretical transition frequencies using a simple pseudo-diatomic Hamiltonian including both Coriolis coupling and Fermi resonance terms. The experimental and theoretical spectroscopic constants thus obtained have been compared. Further improvements needed in the potential energy surface and the related spectral simulation have been discussed.

  3. Quantum dynamics study of H+NH3-->H2+NH2 reaction.

    PubMed

    Zhang, Xu Qiang; Cui, Qian; Zhang, John Z H; Han, Ke Li

    2007-06-21

    We report in this paper a quantum dynamics study for the reaction H+NH3-->NH2+H2 on the potential energy surface of Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The quantum dynamics calculation employs the semirigid vibrating rotor target model [J. Z. H. Zhang, J. Chem. Phys. 111, 3929 (1999)] and time-dependent wave packet method to propagate the wave function. Initial state-specific reaction probabilities are obtained, and an energy correction scheme is employed to account for zero point energy changes for the neglected degrees of freedom in the dynamics treatment. Tunneling effect is observed in the energy dependency of reaction probability, similar to those found in H+CH4 reaction. The influence of rovibrational excitation on reaction probability and stereodynamical effect are investigated. Reaction rate constants from the initial ground state are calculated and are compared to those from the transition state theory and experimental measurement.

  4. Temperature-dependent kinetic measurements and quasi-classical trajectory studies for the OH(+) + H2/D2H2O(+)/HDO(+) + H/D reactions.

    PubMed

    Martinez, Oscar; Ard, Shaun G; Li, Anyang; Shuman, Nicholas S; Guo, Hua; Viggiano, Albert A

    2015-09-21

    We have measured the temperature-dependent kinetics for the reactions of OH(+) with H2 and D2 using a selected ion flow tube apparatus. Reaction occurs via atom abstraction to result in H2O(+)/HDO(+) + H/D. Room temperature rate coefficients are in agreement with prior measurements and resulting temperature dependences are T(0.11) for the hydrogen and T(0.25) for the deuterated reactions. This work is prompted in part by recent theoretical work that mapped a full-dimensional global potential energy surface of H3O(+) for the OH(+) + H2H + H2O(+) reaction [A. Li and H. Guo, J. Phys. Chem. A 118, 11168 (2014)], and reported results of quasi-classical trajectory calculations, which are extended to a wider temperature range and initial rotational state specification here. Our experimental results are in excellent agreement with these calculations which accurately predict the isotope effect in addition to an enhancement of the reaction rate constant due to the molecular rotation of OH(+). The title reaction is of high importance to astrophysical models, and the temperature dependence of the rate coefficients determined here should now allow for better understanding of this reaction at temperatures more relevant to the interstellar medium.

  5. Combined valence bond-molecular mechanics potential-energy surface and direct dynamics study of rate constants and kinetic isotope effects for the H + C2H6 reaction.

    PubMed

    Chakraborty, Arindam; Zhao, Yan; Lin, Hai; Truhlar, Donald G

    2006-01-28

    This article presents a multifaceted study of the reaction H+C(2)H(6)-->H(2)+C(2)H(5) and three of its deuterium-substituted isotopologs. First we present high-level electronic structure calculations by the W1, G3SX, MCG3-MPWB, CBS-APNO, and MC-QCISD/3 methods that lead to a best estimate of the barrier height of 11.8+/-0.5 kcal/mol. Then we obtain a specific reaction parameter for the MPW density functional in order that it reproduces the best estimate of the barrier height; this yields the MPW54 functional. The MPW54 functional, as well as the MPW60 functional that was previously parametrized for the H+CH(4) reaction, is used with canonical variational theory with small-curvature tunneling to calculate the rate constants for all four ethane reactions from 200 to 2000 K. The final MPW54 calculations are based on curvilinear-coordinate generalized-normal-mode analysis along the reaction path, and they include scaled frequencies and an anharmonic C-C bond torsion. They agree with experiment within 31% for 467-826 K except for a 38% deviation at 748 K; the results for the isotopologs are predictions since these rate constants have never been measured. The kinetic isotope effects (KIEs) are analyzed to reveal the contributions from subsets of vibrational partition functions and from tunneling, which conspire to yield a nonmonotonic temperature dependence for one of the KIEs. The stationary points and reaction-path potential of the MPW54 potential-energy surface are then used to parametrize a new kind of analytical potential-energy surface that combines a semiempirical valence bond formalism for the reactive part of the molecule with a standard molecular mechanics force field for the rest; this may be considered to be either an extension of molecular mechanics to treat a reactive potential-energy surface or a new kind of combined quantum-mechanical/molecular mechanical (QM/MM) method in which the QM part is semiempirical valence bond theory; that is, the new potential

  6. Effect of simethicone on lactulose-induced H2 production and gastrointestinal symptoms.

    PubMed

    Friis, H; Bodé, S; Rumessen, J J; Gudmand-Høyer, E

    1991-01-01

    The results of studies of the effect of simethicone on abdominal gas-related symptoms have been contradictory. In a randomized, double-blind cross-over study, 10 healthy volunteers were given 30 g lactulose and 600 mg simethicone or placebo. End-expiratory breath samples were collected and analyzed for H2 and gastrointestinal symptoms registered. There were no differences in biochemical parameters or symptom score between simethicone and placebo. In contrast to previous studies, we used a sufficiently large dose of lactulose to produce gastrointestinal symptoms, a higher dose of simethicone and placebo tablets containing the same additives as the simethicone tablets. There was no demonstrable effect of simethicone on symptoms or intestinal gas production caused by carbohydrate malabsorption.

  7. Visible-Light-Driven Valorization of Biomass Intermediates Integrated with H2 Production Catalyzed by Ultrathin Ni/CdS Nanosheets.

    PubMed

    Han, Guanqun; Jin, Yan-Huan; Burgess, R Alan; Dickenson, Nicholas E; Cao, Xiao-Ming; Sun, Yujie

    2017-11-08

    Photocatalytic upgrading of crucial biomass-derived intermediate chemicals (i.e., furfural alcohol, 5-hydroxymethylfurfural (HMF)) to value-added products (aldehydes and acids) was carried out on ultrathin CdS nanosheets (thickness ∼1 nm) decorated with nickel (Ni/CdS). More importantly, simultaneous H 2 production was realized upon visible light irradiation under ambient conditions utilizing these biomass intermediates as proton sources. The remarkable difference in the rates of transformation of furfural alcohol and HMF to their corresponding aldehydes in neutral water was observed and investigated. Aided by theoretical computation, it was rationalized that the slightly stronger binding affinity of the aldehyde group in HMF to Ni/CdS resulted in the lower transformation of HMF to 2,5-diformylfuran compared to that of furfural alcohol to furfural. Nevertheless, photocatalytic oxidation of furfural alcohol and HMF under alkaline conditions led to complete transformation to the respective carboxylates with concomitant production of H 2 .

  8. High-Throughput Biosensor Discriminates Between Different Algal H 2-Photoproducing Strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wecker, Matt S. A.; Maria L. Ghirardi

    2014-02-27

    A number of species of microalgae and cyanobacteria photosynthetically produce H 2 gas by coupling water oxidation with the reduction of protons to molecular hydrogen, generating renewable energy from sunlight and water. Photosynthetic H 2 production, however, is transitory, and there is considerable interest in increasing and extending it for commercial applications. Here we report a Petri-plate version of our previous, microplate-based assay that detects photosynthetic H 2 production by algae. The assay consists of an agar overlay of H 2-sensing Rhodobacter capsulatus bacteria carrying a green fluorescent protein that responds to H 2 produced by single algal colonies inmore » the bottom agar layer. The assay distinguishes between algal strains that photoproduce H 2 at different levels under high light intensities, and it does so in a simple, inexpensive, and high-throughput manner. The assay will be useful for screening both natural populations and mutant libraries for strains having increased H 2 production, and useful for identifying various genetic factors that physiologically or genetically alter algal hydrogen production.« less

  9. On the mechanism of high product selectivity for HCOOH using Pb in CO2 electroreduction.

    PubMed

    Back, Seoin; Kim, Jun-Hyuk; Kim, Yong-Tae; Jung, Yousung

    2016-04-14

    While achieving high product selectivity is one of the major challenges of the CO2 electroreduction technology in general, Pb is one of the few examples with high selectivity that produces formic acid almost exclusively (versus H2, CO, or other byproducts). In this work, we study the mechanism of CO2 electroreduction reactions using Pb to understand the origin of high formic acid selectivity. In particular, we first assess the proton-assisted mechanism proposed in the literature using density functional calculations and find that it cannot fully explain the previous selectivity experiments for the Pb electrode. We then suggest an alternative proton-coupled-electron-transfer mechanism consistent with existing observations, and further validate a new mechanism by experimentally measuring and comparing the onset potentials for CO2 reduction vs. H2 production. We find that the origin of a high selectivity of the Pb catalyst for HCOOH production over CO and H2 lies in the strong O-affinitive and weak C-, H-affinitive characteristics of Pb, leading to the involvement of the *OCHO species as a key intermediate to produce HCOOH exclusively and preventing unwanted H2 production at the same time.

  10. Mutational Analysis of the Stability of the H2A and H2B Histone Monomers

    PubMed Central

    Stump, Matthew R.; Gloss, Lisa M.

    2008-01-01

    The eukaryotic histone heterodimer H2A-H2B folds through an obligatory dimeric intermediate that forms in a nearly diffusion-limited association reaction in the stopped-flow dead time. It is unclear whether there is partial folding of the isolated monomers before association. To address the possible contributions of structure in the monomers to the rapid association, we characterized H2A and H2B monomers in the absence of their heterodimeric partner. By far-UV circular dichroism, the H2A and H2B monomers are 15% and 31% helical, respectively—significantly less than observed in X-ray crystal structures. Acrylamide quenching of the intrinsic Tyr fluorescence was indicative of tertiary structure. The H2A and H2B monomers exhibit free energies of unfolding of 2.5 and 2.9 kcal mol−1, respectively; at 10 μM, the sum of the stability of the monomers is ~60% of the stability of the native dimer. The helical content, stability and m values indicate that H2B has a more stable, compact structure than H2A. The monomer m values are larger than expected for the extended histone fold motif, suggesting that the monomers adopt an overly-collapsed structure. Stopped-flow refolding—initiated from urea-denatured monomers or the partially folded monomers populated at low denaturant concentrations—yielded essentially identical rates, indicating that monomer folding is productive in the rapid association and folding of the heterodimer. A series of Ala and Gly mutations were introduced into H2A and H2B to probe the importance of helix propensity on the structure and stability of the monomers. The mutational studies show that the central α-helix of the histone fold, which makes extensive inter-monomer contacts, is structured in H2B but only partially folded in H2A. PMID:18976667

  11. Dissociative attachment of electrons with Si2H6

    NASA Technical Reports Server (NTRS)

    Krishnakumar, E.; Srivastava, S. K.; Iga, I.

    1991-01-01

    Cross-sections for the production of negative ion fragments by electron attachment to Si2H6 and ion pair formation from it have been measured by utilizing the crossed electron beam-molecular beam collision technique. The negative ions are mass-analyzed by employing a quadrupole mass spectrometer. There are serious disagreements between the present and two previously published results. In the present paper cross-section values, appearance potentials, and the various channels of dissociation for the formation of negative monosilane fragments are presented.

  12. 2-Bromo-1,4-naphthoquinone: a potentially improved substitute of menadione in Apatone™ therapy

    PubMed Central

    Graciani, F.S.; Ximenes, V.F.

    2012-01-01

    Apatone™, a combination of menadione (2-methyl-1,4-naphthoquinone, VK3) and ascorbic acid (vitamin C, VC) is a new strategy for cancer treatment. Part of its effect on tumor cells is related to the cellular pro-oxidative imbalance provoked by the generation of hydrogen peroxide (H2O2) through naphthoquinone redox cycling. In this study, we attempted to find new naphthoquinone derivatives that would increase the efficiency of H2O2 production, thereby potentially increasing its efficacy for cancer treatment. The presence of an electron-withdrawing group in the naphthoquinone moiety had a direct effect on the efficiency of H2O2 production. The compound 2-bromo-1,4-naphthoquinone (BrQ), in which the bromine atom substituted the methyl group in VK3, was approximately 10- and 19-fold more efficient than VK3 in terms of oxygen consumption and H2O2 production, respectively. The ratio [H2O2]produced / [naphthoquinone]consumed was 68 ± 11 and 5.8 ± 0.2 (µM/µM) for BrQ and VK3, respectively, indicating a higher efficacy of BrQ as a catalyst for the autoxidation of ascorbic acid. Both VK3 and BrQ reacted with glutathione (GSH), but BrQ was the more effective substrate. Part of GSH was incorporated into the naphthoquinone, producing a nucleophilic substitution product (Q-SG). The depletion of BrQ by GSH did not prevent its redox capacity since Q-SG was also able to catalyze the production of reactive oxygen species. VK3/VC has already been submitted to clinical trials for the treatment of prostate cancer and has demonstrated promising results. However, replacement of VK3 with BrQ will open new lines of investigation regarding this approach to cancer treatment. PMID:22584645

  13. Investigation of antioxidant potential of peptide fractions from the Tra Catfish by-product-derived hydrolysate using Alcalase® 2.4 L FG

    NASA Astrophysics Data System (ADS)

    Vo, Tam D. L.; Chung, Duy T. M.; Doan, Kien T.; Le, Duy T.; Trinh, Hung V.

    2017-09-01

    In this study, the antioxidant capacity of peptide fractions isolated from the Tra Catfish (Pangasius hypophthalmus) by-product-derived proteolysate using ultrafiltration centrifugal devices with 5 distinct molecular-weight cutoffs (MWCOs) of 1 kDa, 3 kDa, 5 kDa, 10 kDa, and 30 kDa was investigated. Firstly, the chemical composition of the Tra Catfish by-products was analyzed. The result showed that the Tra Catfish by-products contained 58.5% moisture, 33.9% crude protein, 50.1% crude lipid and 15.8% ash (on dry weight basis). Secondly, the effects of hydrolysis time, enzyme content on the antioxidant potential of the proteolysate were studied using DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical scavenging method (DPPH• SM) and FRAP (Ferric Reducing Antioxidant Potential) method. Alcalase® 2.4 L FG was used for hydrolysis. The result of antioxidant activity of the hydrolysate showed that the 50% DPPH• inhibition concentration (IC50) of the hydrolysate reached about 6775 µg/mL which was 1645-fold higher than that of vitamin C and 17-fold higher than that of BHT (ButylatedHydroxytoluene) with the degree of hydrolysis (DH) of the hydrolysate of 14.6% when hydrolysis time was 5 hours, enzyme/substrate (E/S) ratio was 30 U/g protein, hydrolysis temperature was 55°C, and pH was 7.5. The antioxidant potential of hydrolysate using FRAP method reached about 52.12 µM Trolox equivalent which was 53-fold and 18-fold lower than those of vitamin C and BHT, respectively, when the hydrolysis time was 5 h, enzyme/substrate ratio was 30 U/g protein, temperature was 500C, and pH level was 8. Next, the proteolysate was further fractionated using MWCOs of 1 kDa, 3 kDa, 5 kDa, 10 kDa, and 30 kDa and the peptide fractions were investigated for their antioxidant activity. The result showed that the <1 kDa fraction showed strongest antioxidant activity with the IC50 of 1313.31 ± 50.65 µg/mL and FRAP value of 906.90 ± 44.32 µM Trolox equivalent. The second strongest fraction

  14. Non-adiabatic couplings and dynamics in proton transfer reactions of Hn+ systems: application to H2+H2+→H+H3+ collisions

    PubMed Central

    Sanz-Sanz, Cristina; Aguado, Alfredo; Roncero, Octavio; Naumkin, Fedor

    2016-01-01

    Analytical derivatives and non-adiabatic coupling matrix elements are derived for Hn+ systems (n=3, 4 and 5). The method uses a generalized Hellmann-Feynman theorem applied to a multi-state description based on diatomics-in-molecules (for H3+) or triatomics-in-molecules (for H4+ and H5+) formalisms, corrected with a permutationally invariant many-body term to get high accuracy. The analytical non-adiabatic coupling matrix elements are compared with ab initio calculations performed at multi-reference configuration interaction level. These magnitudes are used to calculate H2(v′=0,j′=0)+H2+(v,j=0) collisions, to determine the effect of electronic transitions using a molecular dynamics method with electronic transitions. Cross sections for several initial vibrational states of H2+ are calculated and compared with the available experimental data, yielding an excellent agreement. The effect of vibrational excitation of H2+ reactant, and its relation with non-adiabatic processes are discussed. Also, the behavior at low collisional energies, in the 1 meV-0.1 eV interval, of interest in astrophysical environments, are discussed in terms of the long range behaviour of the interaction potential which is properly described within the TRIM formalism. PMID:26696058

  15. Neuroligin-3 protects retinal cells from H2O2-induced cell death via activation of Nrf2 signaling.

    PubMed

    Li, Xiu-Miao; Huang, Dan; Yu, Qing; Yang, Jian; Yao, Jin

    2018-05-25

    Intensified oxidative stress can cause severe damage to human retinal pigment epithelium (RPE) cells and retinal ganglion cells (RGCs). The potential effect of neuroligin-3 (NLGN3) against the process is studied here. Our results show that NLGN3 efficiently inhibited hydrogen peroxide (H 2 O 2 )-induced death and apoptosis in human RPE cells and RGCs. H 2 O 2 -induced reactive oxygen species (ROS) production, lipid peroxidation and DNA damage in retinal cells were alleviated by NLGN3. NLGN3 activated nuclear-factor-E2-related factor 2 (Nrf2) signaling, enabling Nrf2 protein stabilization, nuclear translocation and expression of key anti-oxidant enzymes (HO1, NOQ1 and GCLC) in RPE cells and RGCs. Further results demonstrate that NLGN3 activated Akt-mTORC1 signaling in retinal cells. Conversely, Akt-mTORC1 inhibitors (RAD001 and LY294002) reduced NLGN3-induced HO1, NOQ1 and GCLC mRNA expression. Significantly, Nrf2 silencing by targeted shRNAs reversed NLGN3-induced retinal cytoprotection against H 2 O 2 . We conclude that NLGN3 activates Nrf2 signaling to protect human retinal cells from H 2 O 2 . NLGN3 could be further tested as a valuable retinal protection agent. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Ab initio calculation of reaction energies. III. Basis set dependence of relative energies on the FH2 and H2CO potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Frisch, Michael J.; Binkley, J. Stephen; Schaefer, Henry F., III

    1984-08-01

    The relative energies of the stationary points on the FH2 and H2CO nuclear potential energy surfaces relevant to the hydrogen atom abstraction, H2 elimination and 1,2-hydrogen shift reactions have been examined using fourth-order Møller-Plesset perturbation theory and a variety of basis sets. The theoretical absolute zero activation energy for the F+H2→FH+H reaction is in better agreement with experiment than previous theoretical studies, and part of the disagreement between earlier theoretical calculations and experiment is found to result from the use of assumed rather than calculated zero-point vibrational energies. The fourth-order reaction energy for the elimination of hydrogen from formaldehyde is within 2 kcal mol-1 of the experimental value using the largest basis set considered. The qualitative features of the H2CO surface are unchanged by expansion of the basis set beyond the polarized triple-zeta level, but diffuse functions and several sets of polarization functions are found to be necessary for quantitative accuracy in predicted reaction and activation energies. Basis sets and levels of perturbation theory which represent good compromises between computational efficiency and accuracy are recommended.

  17. H2O2 Synthesis Induced by Irradiation of H2O with Energetic H(+) and Ar(+) Ions at Various Temperatures

    NASA Technical Reports Server (NTRS)

    Baragiola, R. A.; Loeffler, M. J.; Raut, U.; Vidal, R. A.; Carlson, R. W.

    2004-01-01

    The detection of H2O2 on Jupiter's icy satellite Europa by the Galileo NIMS instrument presented a strong evidence for the importance of radiation effects on icy surfaces. A few experiments have investigated whether solar flux of protons incident on Europa ice could cause a significant if any H2O2 production. These published results differ as to whether H2O2 can be formed by ions impacting water at temperatures near 80 K, which are appropriate to Europa. This discrepancy may be a result of the use of different incident ion energies, different vacuum conditions, or different ways of processing the data. The latter possibility comes about from the difficulty of identifying the 3.5 m peroxide OH band on the long wavelength wing of the much stronger water 3.1 m band. The problem is aggravated by using straight line baselines to represent the water OH band with a curvature, in the region of the peroxide band, that increases with temperature. To overcome this problem, we use polynomial baselines that provide good fits to the water band and its derivative.

  18. Suppression of antioxidant Nrf-2 and downstream pathway in H9c2 cells by advanced glycation end products (AGEs) via ERK phosphorylation.

    PubMed

    Ko, Shun-Yao; Chang, Shu-Shing; Lin, I-Hsuan; Chen, Hong-I

    2015-11-01

    Diabetic cardiomyopathy is related to oxidative stress and correlated with the presence of advanced glycation end products (AGEs). In a clinical setting, AGEs can be detected in patients presenting diabetic cardiomyopathy; however, the underlying mechanism has yet to be elucidated. In our previous study, AGEs increase cell hypertrophy via ERK phosphorylation in a process closely related to ROS production. Thus, we propose that AGEs regulate the antioxidant gene nuclear factor-erythroid 2-related factor (Nrf-2). In H9c2 cells treated with AGEs, the expression of Nrf-2 was reduced; however, ERK phosphorylation was shown to increase. Treatment with H2O2 was also shown to increase Nrf-2 and ERK phosphorylation. In cells pretreatment with ROS scavenger NAC, the effects of H2O2 were reduced; however, the effects of the AGEs remained largely unchanged. Conversely, when cells were pretreated with PD98059 (ERK inhibitor), the expression of Nrf-2 was recovered following treatment with AGEs. Our results suggest that AGEs inhibit Nrf-2 via the ERK pathway; however, this influence is partly associated with ROS. Our finding further indicated that AGEs possess both ROS-dependent and ROS-independent pathways, resulting in a reduction in Nrf-2. This report reveals an important mechanism underlying the regulation of diabetic cardiomyopathy progression by AGEs. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  19. Process contribution evaluation for COD removal and energy production from molasses wastewater in a BioH2-BioCH4-MFC-integrated system.

    PubMed

    Yun, Jeonghee; Lee, Yun-Yeong; Choi, Hyung Joo; Cho, Kyung-Suk

    2017-01-01

    In this study, a three-stage-integrated process using the hydrogenic process (BioH 2 ), methanogenic process (BioCH 4 ), and a microbial fuel cell (MFC) was operated using molasses wastewater. The contribution of individual processes to chemical oxygen demand (COD) removal and energy production was evaluated. The three-stage integration system was operated at molasses of 20 g-COD L -1 , and each process achieved hydrogen production rate of 1.1 ± 0.24 L-H 2 L -1 day -1 , methane production rate of 311 ± 18.94 mL-CH 4 L -1 day -1 , and production rate per electrode surface area of 10.8 ± 1.4 g m -2 day -1 . The three-stage integration system generated energy production of 32.32 kJ g-COD -1 and achieved COD removal of 98 %. The contribution of BioH 2 , BioCH 4 , and the MFC reactor was 20.8, 72.2, and, 7.0 % of the total COD removal, and 18.7, 81.2, and 0.16 % of the total energy production, respectively. The continuous stirred-tank reactor BioH 2 at HRT of 1 day, up-flow anaerobic sludge blanket BioCH 4 at HRT of 2 days, and MFC reactor at HRT of 3 days were decided in 1:2:3 ratios of working volume under hydraulic retention time consideration. This integration system can be applied to various configurations depending on target wastewater inputs, and it is expected to enhance energy recovery and reduce environmental impact of the final effluent.

  20. Channel sialic acids limit hERG channel activity during the ventricular action potential.

    PubMed

    Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S

    2013-02-01

    Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

  1. Evidence of the hydrogen release mechanism in bulk MgH2

    PubMed Central

    Nogita, Kazuhiro; Tran, Xuan Q.; Yamamoto, Tomokazu; Tanaka, Eishi; McDonald, Stuart D.; Gourlay, Christopher M.; Yasuda, Kazuhiro; Matsumura, Syo

    2015-01-01

    Hydrogen has the potential to power much of the modern world with only water as a by-product, but storing hydrogen safely and efficiently in solid form such as magnesium hydride remains a major obstacle. A significant challenge has been the difficulty of proving the hydriding/dehydriding mechanisms and, therefore, the mechanisms have long been the subject of debate. Here we use in situ ultra-high voltage transmission electron microscopy (TEM) to directly verify the mechanisms of the hydride decomposition of bulk MgH2 in Mg-Ni alloys. We find that the hydrogen release mechanism from bulk (2 μm) MgH2 particles is based on the growth of multiple pre-existing Mg crystallites within the MgH2 matrix, present due to the difficulty of fully transforming all Mg during a hydrogenation cycle whereas, in thin samples analogous to nano-powders, dehydriding occurs by a ‘shrinking core' mechanism. PMID:25677421

  2. Potential of biogenic hydrogen production for hydrogen driven remediation strategies in marine environments.

    PubMed

    Hosseinkhani, Baharak; Hennebel, Tom; Boon, Nico

    2014-09-25

    Fermentative production of bio-hydrogen (bio-H2) from organic residues has emerged as a promising alternative for providing the required electron source for hydrogen driven remediation strategies. Unlike the widely used production of H2 by bacteria in fresh water systems, few reports are available regarding the generation of biogenic H2 and optimisation processes in marine systems. The present research aims to optimise the capability of an indigenous marine bacterium for the production of bio-H2 in marine environments and subsequently develop this process for hydrogen driven remediation strategies. Fermentative conversion of organics in marine media to H2 using a marine isolate, Pseudoalteromonas sp. BH11, was determined. A Taguchi design of experimental methodology was employed to evaluate the optimal nutritional composition in batch tests to improve bio-H2 yields. Further optimisation experiments showed that alginate-immobilised bacterial cells were able to produce bio-H2 at the same rate as suspended cells over a period of several weeks. Finally, bio-H2 was used as electron donor to successfully dehalogenate trichloroethylene (TCE) using biogenic palladium nanoparticles as a catalyst. Fermentative production of bio-H2 can be a promising technique for concomitant generation of an electron source for hydrogen driven remediation strategies and treatment of organic residue in marine ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Comparison of the growth of Escherichia coli O157: H7 and O104: H4 during sprouting and microgreen production from contaminated radish seeds.

    PubMed

    Xiao, Zhenlei; Nou, Xiangwu; Luo, Yanguang; Wang, Qin

    2014-12-01

    Both sprouts and microgreens are popular tender produce items, typically grown and harvested in indoor facilities which allow a higher degree of control compared to open field production. While sprouts, which have frequently been implicated in foodborne illness outbreaks, are the subject of numerous national and international standards for their production and distribution, there is a lack of data pertaining to the microbiological safety of microgreens. In this study, sprouts and microgreens were produced from radish seeds inoculated with Escherichia coli O157: H7 or O104: H4 and E. coli populations on the harvested products compared to assess the potentials of product contamination from contaminated seeds during sprouting and microgreen production. Both E. coli O157:H7 and O104:H4 grew rapidly during sprouting, reaching levels of 5.8-8.1 log cfu/g and 5.2-7.3 log cfu/g, respectively, depending on the initial inoculation levels of the seeds (1.5-4.6 log cfu/g and 0.8-4.3 log cfu/g on radish seeds, respectively). In comparison, E. coli O157:H7 and O104:H4 populations on harvested microgreens ranged from 0.8 to 4.5 log cfu/g and from 0.6 to 4.0 log cfu/g, respectively. Although harvested microgreens carried significantly less (P < 0.001) E. coli than sprouts germinated from seeds inoculated at the same levels, proliferation of E. coli O157:H7 and O104:H4 occurred during both sprouting and microgreen growth. Published by Elsevier Ltd.

  4. Potential of biohydrogen production from effluents of citrus processing industry using anaerobic bacteria from sewage sludge.

    PubMed

    Torquato, Lilian D M; Pachiega, Renan; Crespi, Marisa S; Nespeca, Maurílio Gustavo; de Oliveira, José Eduardo; Maintinguer, Sandra I

    2017-01-01

    Citrus crops are among the most abundant crops in the world, which processing is mainly based on juice extraction, generating large amounts of effluents with properties that turn them into potential pollution sources if they are improperly discarded. This study evaluated the potential for bioconversion of effluents from citrus-processing industry (wastewater and vinasse) into hydrogen through the dark fermentation process, by applying anaerobic sewage sludge as inoculum. The inoculum was previously heat treated to eliminate H 2 -consumers microorganisms and improve its activity. Anaerobic batch reactors were operated in triplicate with increasing proportions (50, 80 and 100%) of each effluent as substrate at 37°C, pH 5.5. Citrus effluents had different effects on inoculum growth and H 2 yields, demonstrated by profiles of acetic acid, butyric acid, propionic acid and ethanol, the main by-products generated. It was verified that there was an increase in the production of biogas with the additions of either wastewater (7.3, 33.4 and 85.3mmolL -1 ) or vinasse (8.8, 12.7 and 13.4mmolL -1 ) in substrate. These effluents demonstrated remarkable energetic reuse perspectives: 24.0MJm -3 and 4.0MJm -3 , respectively. Besides promoting the integrated management and mitigation of anaerobic sludge and effluents from citrus industry, the biohydrogen production may be an alternative for the local energy supply, reducing the operational costs in their own facilities, while enabling a better utilization of the biological potential contained in sewage sludges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Copper nanoparticle ensembles for selective electroreduction of CO 2 to C 2-C 3 products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dohyung; Kley, Christopher S.; Li, Yifan

    Direct conversion of carbon dioxide to multicarbon products remains as a grand challenge in electrochemical CO 2 reduction. Various forms of oxidized copper have been demonstrated as electrocatalysts that still require large overpotentials. Here in this paper, we show that an ensemble of Cu nanoparticles (NPs) enables selective formation of C 2–C 3 products at low overpotentials. Densely packed Cu NP ensembles underwent structural transformation during electrolysis into electrocatalytically active cube-like particles intermixed with smaller nanoparticles. Ethylene, ethanol, and n-propanol are the major C 2–C 3 products with onset potential at -0.53 V (vs. reversible hydrogen electrode, RHE) and Cmore » 2–C 3 faradaic efficiency (FE) reaching 50% at only -0.75 V. Thus, the catalyst exhibits selective generation of C 2–C 3 hydrocarbons and oxygenates at considerably lowered overpotentials in neutral pH aqueous media. In addition, this approach suggests new opportunities in realizing multicarbon product formation from CO 2, where the majority of efforts has been to use oxidized copper-based materials. Robust catalytic performance is demonstrated by 10 h of stable operation with C 2–C 3 current density 10 mA/cm 2 (at -0.75 V), rendering it attractive for solar-to-fuel applications. Lastly, Tafel analysis suggests reductive CO coupling as a rate determining step for C 2 products, while n-propanol (C 3) production seems to have a discrete pathway.« less

  6. Copper nanoparticle ensembles for selective electroreduction of CO 2 to C 2-C 3 products

    DOE PAGES

    Kim, Dohyung; Kley, Christopher S.; Li, Yifan; ...

    2017-09-18

    Direct conversion of carbon dioxide to multicarbon products remains as a grand challenge in electrochemical CO 2 reduction. Various forms of oxidized copper have been demonstrated as electrocatalysts that still require large overpotentials. Here in this paper, we show that an ensemble of Cu nanoparticles (NPs) enables selective formation of C 2–C 3 products at low overpotentials. Densely packed Cu NP ensembles underwent structural transformation during electrolysis into electrocatalytically active cube-like particles intermixed with smaller nanoparticles. Ethylene, ethanol, and n-propanol are the major C 2–C 3 products with onset potential at -0.53 V (vs. reversible hydrogen electrode, RHE) and Cmore » 2–C 3 faradaic efficiency (FE) reaching 50% at only -0.75 V. Thus, the catalyst exhibits selective generation of C 2–C 3 hydrocarbons and oxygenates at considerably lowered overpotentials in neutral pH aqueous media. In addition, this approach suggests new opportunities in realizing multicarbon product formation from CO 2, where the majority of efforts has been to use oxidized copper-based materials. Robust catalytic performance is demonstrated by 10 h of stable operation with C 2–C 3 current density 10 mA/cm 2 (at -0.75 V), rendering it attractive for solar-to-fuel applications. Lastly, Tafel analysis suggests reductive CO coupling as a rate determining step for C 2 products, while n-propanol (C 3) production seems to have a discrete pathway.« less

  7. Communication: A simple full range analytical potential for H{sub 2} b{sup 3}∑{sub u}{sup +}, H–He {sup 2}∑{sup +}, and He{sub 2} {sup 1}∑{sub g}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warnecke, Sascha; Toennies, J. Peter, E-mail: jtoenni@gwdg.de; Tang, K. T.

    The Tang-Toennies potential for the weakly interacting systems H{sub 2} b{sup 3}Σ{sub u}{sup +}, H–He {sup 2}Σ{sup +}, and He{sub 2} {sup 1}Σ{sub g}{sup +} is extended down to the united atom limit of vanishing internuclear distance. A simple analytic expression connects the united atom limiting potential with the Tang-Toennies potential in the well region. The new potential model is compared with the most recent ab initio calculations for all three systems. The agreement is better than 20% (H{sub 2} and He{sub 2}) or comparable with the differences in the available ab initio calculations (H–He) over six orders of magnitudemore » corresponding to the entire range of internuclear distances.« less

  8. Impact of a potential glycosylation site at neuraminidase amino acid 264 of influenza A/H9N2 virus.

    PubMed

    Shao, Hongxia; Zhou, Xiaoxiang; Fan, Zhonglei; Wan, Zhimin; Qian, Kun; Perez, Daniel; Qin, Aijian; Ye, Jianqiang

    2016-11-30

    To determine the role of the potential glycosylation site NA264N, which has been shown to be prevalent in recent Chinese H9N2 isolates, four reverse genetic viruses, rgWS1-NA264N, rgWS1-NA264H, rgBJ-NA264H and rgBJ-NA264N, were rescued. Growth kinetics showed that viruses with NA264H grew faster than viruses with NA264N. Mouse studies revealed that rgBJ-NA264H replicated to a significantly higher titer than rgBJ-NA264N at 3dpi. Notably, in contact chickens, rgBJ-NA264H and rgWS1-NA264H shed significantly more virus than rgBJ-NA264N at 6dpi from the larynx and rgWS1-NA264N at 4dpi from the cloaca, respectively. The present study demonstrates that NA264N affects viral replication of H9N2. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Short belt-like Ca 2 B 2 O 5 ·H 2 O nanostructures: Hydrothermal formation, FT-IR, thermal decomposition, and optical properties

    NASA Astrophysics Data System (ADS)

    Zhu, Wancheng; Zhang, Xiao; Wang, Xiaoli; Zhang, Heng; Zhang, Qiang; Xiang, Lan

    2011-10-01

    Uniform high crystallinity short belt-like Ca 2B 2O 5·H 2O nanostructures (nanobelts) were facilely synthesized through a room temperature coprecipitation of CaCl 2, H 3BO 3, and NaOH solutions, followed by a mild hydrothermal treatment (180 °C, 12.0 h). By a preferential growth parallel to the (1 0 0) planes, Ca 2B 2O 5·H 2O nanobelts with a length of 1-5 μm, a width of 100-400 nm, and a thickness of 55-90 nm were obtained. The calcination of the nanobelts at 500 °C for 2.0 h led to short Ca 2B 2O 5 nanobelts with well preserved 1D morphology. Calcination at 800 °C led to a mixture of Ca 2B 2O 5 and Ca 3B 2O 6. The products were with belt-like and quasi-polyhedron morphology, while they turned into pore-free micro-rod like and polyhedron morphology when the calcination was taken in the presence of NaCl. NaCl assisted high temperature calcination at 900 °C promoted the formation of Ca 3B 2O 6 in the products. When dispersed in deionized water or absolute ethanol, the Ca 2B 2O 5·H 2O nanobelts and Ca 2B 2O 5 nanobelts showed good transparency from the ultraviolet to the visible region. The as-synthesized Ca 2B 2O 5·H 2O and Ca 2B 2O 5 nanobelts can be employed as novel metal borate nanomaterials for further potential applications in the area of glass fibers, antiwear additive, ceramic coatings, and so on.

  10. Decreased N2O reduction by low soil pH causes high N2O emissions in a riparian ecosystem.

    PubMed

    Van den Heuvel, R N; Bakker, S E; Jetten, M S M; Hefting, M M

    2011-05-01

    Quantification of harmful nitrous oxide (N(2)O) emissions from soils is essential for mitigation measures. An important N(2)O producing and reducing process in soils is denitrification, which shows deceased rates at low pH. No clear relationship between N(2)O emissions and soil pH has yet been established because also the relative contribution of N(2)O as the denitrification end product decreases with pH. Our aim was to show the net effect of soil pH on N(2)O production and emission. Therefore, experiments were designed to investigate the effects of pH on NO(3)(-) reduction, N(2)O production and reduction and N(2) production in incubations with pH values set between 4 and 7. Furthermore, field measurements of soil pH and N(2)O emissions were carried out. In incubations, NO(3)(-) reduction and N(2) production rates increased with pH and net N(2)O production rate was highest at pH 5. N(2)O reduction to N(2) was halted until NO(3)(-) was depleted at low pH values, resulting in a built up of N(2)O. As a consequence, N(2)O:N(2) production ratio decreased exponentially with pH. N(2)O reduction appeared therefore more important than N(2)O production in explaining net N(2)O production rates. In the field, a negative exponential relationship for soil pH against N(2)O emissions was observed. Soil pH could therefore be used as a predictive tool for average N(2)O emissions in the studied ecosystem. The occurrence of low pH spots may explain N(2)O emission hotspot occurrence. Future studies should focus on the mechanism behind small scale soil pH variability and the effect of manipulating the pH of soils. © 2011 Blackwell Publishing Ltd.

  11. An AB Initio Study of SbH_2 and BiH_2: the Renner Effect, Spin-Orbit Coupling, Local Mode Vibrations and Rovibronic Energy Level Clustering in SbH_2

    NASA Astrophysics Data System (ADS)

    Ostojic, Bojana; Schwerdtfeger, Peter; Bunker, Phil; Jensen, Per

    2016-06-01

    We present the results of ab initio calculations for the lower electronic states of the Group 15 (pnictogen) dihydrides, SbH_2 and BiH_2. For each of these molecules the two lowest electronic states become degenerate at linearity and are therefore subject to the Renner effect. Spin-orbit coupling is also strong in these two heavy-element containing molecules. For the lowest two electronic states of SbH_2, we construct the three dimensional potential energy surfaces and corresponding dipole moment and transition moment surfaces by multi-reference configuration interaction techniques. Including both the Renner effect and spin-orbit coupling, we calculate term values and simulate the rovibrational and rovibronic spectra of SbH_2. Excellent agreement is obtained with the results of matrix isolation infrared spectroscopic studies and with gas phase electronic spectroscopic studies in absorption [1,2]. For the heavier dihydride BiH_2 we calculate bending potential curves and the spin-orbit coupling constant for comparison. For SbH_2 we further study the local mode vibrational behavior and the formation of rovibronic energy level clusters in high angular momentum states. [1] X. Wang, P. F. Souter and L. Andrews, J. Phys. Chem. A 107, 4244-4249 (2003) [2] N. Basco and K. K. Lee, Spectroscopy Letters 1, 13-15 (1968)

  12. Recombinant-phospholipase A2 production and architecture of inclusion bodies are affected by pH in Escherichia coli.

    PubMed

    Calcines-Cruz, Carlos; Olvera, Alejandro; Castro-Acosta, Ricardo M; Zavala, Guadalupe; Alagón, Alejandro; Trujillo-Roldán, Mauricio A; Valdez-Cruz, Norma A

    2018-03-01

    Aggregation of recombinant proteins into inclusion bodies (IBs) is the major drawback of heterologous expression in Escherichia coli. Here, we evaluated the effects of a pH shift after expression induction on recombinant phospholipase A2 production and its aggregation in IBs in E. coli Origami™, as compared to cultures with pH maintained at 7.5 or uncontrolled pH. Cultures shifted from 7.5 to pH 6.5 or 8.5 produced ∼15-25% less biomass as compared with those kept at 7.5 or without pH control. The cultures shifted to pH 8.5 showed a ∼50% higher yield of acetate per biomass, and the rPLA2 yield was improved 2.4-fold. Purified IBs formed at pH 8.5 containing ∼50% of rPLA2, were more susceptible to proteinase-K cleavage and bound less thioflavin-T, indicating lower amyloid content, with the concomitant enrichment of α-helical and random-coil secondary structures, as demonstrated by FTIR. Moreover, only one IB per cell was formed at pH 8.5; instead, more than two were observed under the other culture pH conditions. Nevertheless, under uncontrolled pH conditions, ∼300nm larger IBs were observed. Our work presents evidence of the usefulness of recombinant protein expression cultivated at pH 8.5 allowing the reduction of amyloid content in IBs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure

    PubMed Central

    Niu, Mengliang; Huang, Yuan; Sun, Shitao; Sun, Jingyu; Cao, Haishun; Shabala, Sergey

    2018-01-01

    Abstract Plant salt tolerance can be improved by grafting onto salt-tolerant rootstocks. However, the underlying signaling mechanisms behind this phenomenon remain largely unknown. To address this issue, we used a range of physiological and molecular techniques to study responses of self-grafted and pumpkin-grafted cucumber plants exposed to 75 mM NaCl stress. Pumpkin grafting significantly increased the salt tolerance of cucumber plants, as revealed by higher plant dry weight, chlorophyll content and photochemical efficiency (Fv/Fm), and lower leaf Na+ content. Salinity stress resulted in a sharp increase in H2O2 production, reaching a peak 3 h after salt treatment in the pumpkin-grafted cucumber. This enhancement was accompanied by elevated relative expression of respiratory burst oxidase homologue (RBOH) genes RbohD and RbohF and a higher NADPH oxidase activity. However, this increase was much delayed in the self-grafted plants, and the difference between the two grafting combinations disappeared after 24 h. The decreased leaf Na+ content of pumpkin-grafted plants was achieved by higher Na+ exclusion in roots, which was driven by the Na+/H+ antiporter energized by the plasma membrane H+-ATPase, as evidenced by the higher plasma membrane H+-ATPase activity and higher transcript levels for PMA and SOS1. In addition, early stomatal closure was also observed in the pumpkin-grafted cucumber plants, reducing water loss and maintaining the plant’s hydration status. When pumpkin-grafted plants were pretreated with an NADPH oxidase inhibitor, diphenylene iodonium (DPI), the H2O2 level decreased significantly, to the level found in self-grafted plants, resulting in the loss of the salt tolerance. Inhibition of the NADPH oxidase-mediated H2O2 signaling in the root also abolished a rapid stomatal closure in the pumpkin-grafted plants. We concluded that the pumpkin-grafted cucumber plants increase their salt tolerance via a mechanism involving the root-sourced respiratory

  14. H2S Protects Against Methionine–Induced Oxidative Stress in Brain Endothelial Cells

    PubMed Central

    Tyagi, Neetu; Moshal, Karni S.; Sen, Utpal; Vacek, Thomas P.; Kumar, Munish; Hughes, William M.; Kundu, Soumi

    2009-01-01

    Abstract Homocysteine (Hcy) causes cerebrovascular dysfunction by inducing oxidative stress. However, to date, there are no strategies to prevent Hcy-induced oxidative damage. Hcy is an H2S precursor formed from methionine (Met) metabolism. We aimed to investigate whether H2S ameliorated Met-induced oxidative stress in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to Met treatment in the presence or absence of NaHS (donor of H2S). Met-induced cell toxicity increased the levels of free radicals in a concentration-dependent manner. Met increased NADPH-oxidase-4 (NOX-4) expression and mitigated thioredxion-1(Trx-1) expression. Pretreatment of bEnd3 with NaHS (0.05 mM) attenuated the production of free radicals in the presence of Met and protected the cells from oxidative damage. Furthermore, NaHS enhanced inhibitory effects of apocynin, N-acetyl-l-cysteine (NAC), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), Nω-nitro-l-arginine methyl ester (L-NAME) on ROS production and redox enzymes levels induced by Met. In conclusion, the administration of H2S protected the cells from oxidative stress induced by hyperhomocysteinemia (HHcy), which suggested that NaHS/H2S may have therapeutic potential against Met-induced oxidative stress. Antioxid. Redox Signal. 11, 25–33. PMID:18837652

  15. Hydrogen atom abstraction from aldehydes - OH + H2CO and O + H2CO

    NASA Technical Reports Server (NTRS)

    Dupuis, M.; Lester, W. A., Jr.

    1984-01-01

    The essential features of the potential energy surfaces governing hydrogen abstraction from formaldehyde by oxygen atom and hydroxyl radical have been characterized with ab inito multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) wave functions. The results are consistent with a very small activation energy for the OH + H2CO reaction, and an activation energy of a few kcal/mol for the O + H2CO reaction. In the transition state structure of both systems, the attacking oxygen atom is nearly collinear with the attacked CH bond.

  16. Ca2+-associated triphasic pH changes in mitochondria during brown adipocyte activation.

    PubMed

    Hou, Yanyan; Kitaguchi, Tetsuya; Kriszt, Rókus; Tseng, Yu-Hua; Raghunath, Michael; Suzuki, Madoka

    2017-08-01

    Brown adipocytes (BAs) are endowed with a high metabolic capacity for energy expenditure due to their high mitochondria content. While mitochondrial pH is dynamically regulated in response to stimulation and, in return, affects various metabolic processes, how mitochondrial pH is regulated during adrenergic stimulation-induced thermogenesis is unknown. We aimed to reveal the spatial and temporal dynamics of mitochondrial pH in stimulated BAs and the mechanisms behind the dynamic pH changes. A mitochondrial targeted pH-sensitive protein, mito-pHluorin, was constructed and transfected to BAs. Transfected BAs were stimulated by an adrenergic agonist, isoproterenol. The pH changes in mitochondria were characterized by dual-color imaging with indicators that monitor mitochondrial membrane potential and heat production. The mechanisms of pH changes were studied by examining the involvement of electron transport chain (ETC) activity and Ca 2+ profiles in mitochondria and the intracellular Ca 2+ store, the endoplasmic reticulum (ER). A triphasic mitochondrial pH change in BAs upon adrenergic stimulation was revealed. In comparison to a thermosensitive dye, we reveal that phases 1 and 2 of the pH increase precede thermogenesis, while phase 3, characterized by a pH decrease, occurs during thermogenesis. The mechanism of pH increase is partially related to ETC. In addition, the pH increase occurs concurrently with an increase in mitochondrial Ca 2+ . This Ca 2+ increase is contributed to by an influx from the ER, and it is further involved in mitochondrial pH regulation. We demonstrate that an increase in mitochondrial pH is implicated as an early event in adrenergically stimulated BAs. We further suggest that this pH increase may play a role in the potentiation of thermogenesis.

  17. Enhanced visible-light-driven photocatalytic H2-production activity of CdS-loaded TiO2 microspheres with exposed (001) facets

    NASA Astrophysics Data System (ADS)

    Gao, Bifen; Yuan, Xia; Lu, Penghui; Lin, Bizhou; Chen, Yilin

    2015-12-01

    CdS-loaded TiO2 microspheres with highly exposed (001) facets were prepared by hydrothermal treatment of a TiF4-HCl-H2O mixed solution followed by a chemical bath deposition of CdS onto TiO2 microspheres. The crystal structure, surficial micro-structure and photo-absorption property of the samples were characterized by XRD, FE-SEM, TEM and UV-vis diffuse reflectance spectroscopy, etc. The as-prepared samples exhibited superior visible-light-driven photocatalytic H2-production activity from lactic acid aqueous solution in comparison with CdS-sensitized TiO2 nanoparticles, whose surface was dominated by (101) facets. Photoelectrochemical measurement confirmed that (001) facet is beneficial for the transfer of photo-generated electron from CdS to TiO2 microsphere, which led to the unexpected high photocatalytic activity of CdS-loaded TiO2 microspheres.

  18. An endogenous microRNA (miRNA1166.1) can regulate photobio-H2 production in eukaryotic green alga Chlamydomonas reinhardtii.

    PubMed

    Wang, Yuting; Zhuang, Xiaoshan; Chen, Meirong; Zeng, Zhiyong; Cai, Xiaoqi; Li, Hui; Hu, Zhangli

    2018-01-01

    Hydrogen photoproduction from green microalgae is regarded as a promising alternative solution for energy problems. However, the simultaneous oxygen evolution from microalgae can prevent continuous hydrogen production due to the hypersensitivity of hydrogenases to oxygen. Sulfur deprivation can extend the duration of algal hydrogen production, but it is uneconomical to alternately culture algal cells in sulfur-sufficient and sulfur-deprived media. In this study, we developed a novel way to simulate sulfur-deprivation treatment while constantly maintaining microalgal cells in sulfur-sufficient culture medium by overexpressing an endogenous microRNA (miR1166.1). Based on our previous RNA-seq analysis in the model green alga Chlamydomonas reinhardtii , three endogenous miRNAs responsive to sulfur deprivation (cre-miR1166.1, cre-miR1150.3, and cre-miR1158) were selected. Heat-inducible expression vectors containing the selected miRNAs were constructed and transformed into C. reinhardtii . Comparison of H 2 production following heat induction in the three transgenic strains and untransformed control group identified miR1166.1 as the best candidate for H 2 production regulation. Moreover, enhanced photobio-H 2 production was observed with repeated induction of miR1166.1 expression. This study is the first to identify a physiological function of endogenous miR1166.1 and to show that a natural miRNA can regulate hydrogen photoproduction in the unicellular model organism C. reinhardtii .

  19. DFT simulation on H2 adsorption over Ni-decorated defective h-BN nanosheets

    NASA Astrophysics Data System (ADS)

    Zhou, Xuan; Chu, Wei; Zhou, Yanan; Sun, Wenjing; Xue, Ying

    2018-05-01

    Nickel doped defective h-BN nanosheets and their potential application on hydrogen storage were explored by density functional theory (DFT) calculation. Three types of defective h-BN (SW defect, VB and VN substrates) were modeled. In comparison with the SW defect, the B or N vacancy can improve the interaction between Ni atom and h-BN nanosheet strikingly. Furthermore, the Ni-doped SW defect sheet shows chemisorption on H2 molecules, and the Hsbnd H bond is partially dissociated. While on the VB sheet, Ni adatom interacts with H2 in the range of physisorption. However, the Ni-functionalized VN sheet exhibits a desirable adsorption on H2, and the corresponding energy varies from -0.40 to -0.51 eV, which is favorable for H2 adsorption and release at ambient conditions. As a result, the VN substrate is expected to a desirable support for H2 storage. Our work provides an insight into H2 storage on Ni-functionalized defective h-BN monolayer.

  20. Total reaction cross sections of electronic state-specified transition metal cations: V + +C2H6, C3H8, and C2H4 at 0.2 eV

    NASA Astrophysics Data System (ADS)

    Sanders, Lary; Hanton, Scott D.; Weisshaar, James C.

    1990-03-01

    We describe a crossed beam experiment which measures total cross sections for reaction of electronic state-specified V+ with small hydrocarbons at well-defined collision energy E=0.2 eV. The V+ state distribution created at each ionizing wavelength is directly measured by angle-integrated photoelectron spectroscopy (preceding paper). Reactant and product ions are collected and analyzed by pulsed time-of-flight mass spectrometry following a reaction time of 6 μs. Tests of the performance of the apparatus are described in detail. Our experiment defines the reactant V+ electronic state distribution and the collision energy much more precisely than previous work. For all three hydrocarbons C2H6, C3H8, and C2H4, H2 elimination products dominate at 0.2 eV. We observe a dramatic dependence of cross section on the V+ electronic term. The second excited term 3d34s(3F) is more reactive than either lower energy quintet term 3d4(5D) or 3d34s(5F) by a factor of ≥270, 80, and ≥6 for the C2H6, C3H8, and C2H4 reactions, respectively. The 3d34s(3F) reaction cross sections at 0.2 eV are 20±11 Å2, 37±19 Å2, and 2.7±1.6 Å2, respectively, compared with Langevin cross sections of ˜80 Å2. For the C2H6 and C3H8 reactions, cross sections are independent of initial spin-orbit level J within the 3F term to the limits of our accuracy. Comparison with earlier work by Armentrout and co-workers shows that electronic excitation to d3s(3F) is far more effective at promoting H2 elimination than addition of the same total kinetic energy to reactants. Electron spin is clearly a key determinant of V+ reactivity with small hydrocarbons. We suggest that triplet V+ reacts much more efficiently than quintet V+ because of its ability to conserve total electron spin along paths to insertion in a C-H bond of the hydrocarbon.

  1. Energy of the quasi-free electron in H{sub 2}, D{sub 2}, and O{sub 2}: Probing intermolecular potentials within the local Wigner-Seitz model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, C. M., E-mail: cherice.evans@qc.cuny.edu; Krynski, Kamil; Streeter, Zachary

    2015-12-14

    We present for the first time the quasi-free electron energy V{sub 0}(ρ) for H{sub 2}, D{sub 2}, and O{sub 2} from gas to liquid densities, on noncritical isotherms and on a near critical isotherm in each fluid. These data illustrate the ability of field enhanced photoemission (FEP) to determine V{sub 0}(ρ) accurately in strongly absorbing fluids (e.g., O{sub 2}) and fluids with extremely low critical temperatures (e.g., H{sub 2} and D{sub 2}). We also show that the isotropic local Wigner-Seitz model for V{sub 0}(ρ) — when coupled with thermodynamic data for the fluid — can yield optimized parameters for intermolecularmore » potentials, as well as zero kinetic energy electron scattering lengths.« less

  2. Room-Temperature Wet Chemical Synthesis of Au NPs/TiH2/Nanocarved Ti Self-Supported Electrocatalysts for Highly Efficient H2 Generation.

    PubMed

    Amin, Mohammed A; Fadlallah, Sahar A; Alosaimi, Ghaida S; Ahmed, Emad M; Mostafa, Nasser Y; Roussel, Pascal; Szunerits, Sabine; Boukherroub, Rabah

    2017-09-06

    Self-supported electrocatalysts are a new class of materials exhibiting high catalytic performance for various electrochemical processes and can be directly equipped in energy conversion devices. We present here, for the first time, sparse Au NPs self-supported on etched Ti (nanocarved Ti substrate self-supported with TiH 2 ) as promising catalysts for the electrochemical generation of hydrogen (H 2 ) in KOH solutions. Cleaned, as-polished Ti substrates were etched in highly concentrated sulfuric acid solutions without and with 0.1 M NH 4 F at room temperature for 15 min. These two etching processes yielded a thin layer of TiH 2 (the corrosion product of the etching process) self-supported on nanocarved Ti substrates with different morphologies. While F - -free etching process led to formation of parallel channels (average width: 200 nm), where each channel consists of an array of rounded cavities (average width: 150 nm), etching in the presence of F - yielded Ti surface carved with nanogrooves (average width: 100 nm) in parallel orientation. Au NPs were then grown in situ (self-supported) on such etched surfaces via immersion in a standard gold solution at room temperature without using stabilizers or reducing agents, producing Au NPs/TiH 2 /nanostructured Ti catalysts. These materials were characterized by scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS), grazing incidence X-ray diffraction (GIXRD), and X-ray photoelectron spectroscopy (XPS). GIXRD confirmed the formation of Au 2 Ti phase, thus referring to strong chemical interaction between the supported Au NPs and the substrate surface (also evidenced from XPS) as well as a titanium hydride phase of chemical composition TiH 2 . Electrochemical measurements in 0.1 M KOH solution revealed outstanding hydrogen evolution reaction (HER) electrocatalytic activity for our synthesized catalysts, with Au NPs/TiH 2 /nanogrooved Ti catalyst being the best one among them. It exhibited fast kinetics

  3. Production of mannanase from Bacillus Subtilis LBF-005 and its potential for manno-oligosaccharides production

    NASA Astrophysics Data System (ADS)

    Yopi, Rahmani, Nanik; Jannah, Alifah Mafatikhul; Nugraha, Irfan Pebi; Ramadana, Roni Masri

    2017-11-01

    Endo-β-1, 4-mannanase is the key enzymes for randomly hydrolyzing the β-1,4-linkages within the mannan backbone releasing manno-oligosaccharides (MOS). A marine bacterium of Bacillus subtilis LBF-005 was reported have ability to produce endo-type mannanase. The aims of this research were to compare commercial biomass Locust Bean Gum (LBG) and raw biomass contaning mannan as carbon source for mannanase production from Bacillus subtilis LBF-005, to analyze the optimum condition of mannanase production, and to find out the potential of the mannanase for MOS production. Bacillus subtilis LBF-005 was cultivated in Artificial Sea Water (ASW) medium contain NaCl and various mannan biomass as carbon source for mannanase production. The cells were grown in submerged fermentation. The maximum enzyme activity was obtained with porang potato as a substrate with concentration 1%, pH medium 8, and incubation temperature 50°C with an enzyme activity of 37.7 U/mL. The mainly MOS product released by crude mannanase produced by Bacillus subtilis LBF-005 were mannobiose (M2), mannotriose (M3), mannotetraose (M4), and mannopentaose (M5).

  4. Hydrogen production by photoelectrolytic decomposition of H2O using solar energy

    NASA Technical Reports Server (NTRS)

    Rauh, R. D.; Alkaitis, S. A.; Buzby, J. M.; Schiff, R.

    1980-01-01

    Photoelectrochemical systems for the efficient decomposition of water are discussed. Semiconducting d band oxides which would yield the combination of stability, low electron affinity, and moderate band gap essential for an efficient photoanode are sought. The materials PdO and Fe-xRhxO3 appear most likely. Oxygen evolution yields may also be improved by mediation of high energy oxidizing agents, such as CO3(-). Examination of several p type semiconductors as photocathodes revealed remarkable stability for p-GaAs, and also indicated p-CdTe as a stable H2 photoelectrode. Several potentially economical schemes for photoelectrochemical decomposition of water were examined, including photoelectrochemical diodes and two stage, four photon processes.

  5. Rate contants for CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H and CF{sub 3}H + H {yields} CF{sub 3} + H{sub 2} reactions in the temperature range 1100-1600 K.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hranisavljevic, J.; Michael, V.; Chemistry

    1998-09-24

    The shock tube technique coupled with H-atom atomic resonance absorption spectrometry has been used to study the reactions (1) CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H and (2) CF{sub 3}H + H{yields} CF{sub 3} + H{sub 2} over the temperature ranges 1168-1673 K and 1111-1550 K, respectively. The results can be represented by the Arrhenius expressions k1 = 2.56 x 10{sup -11} exp(-8549K/T) and k2 = 6.13 x 10{sup -11} exp(-7364K/T), both in cm3 molecule-1 s-1. Equilibrium constants were calculated from the two Arrhenius expressions in the overlapping temperature range, and good agreement was obtained with themore » literature values. The rate constants for reaction 2 were converted into rate constants for reaction 1 using literature equilibrium constants. These data are indistinguishable from direct k1 measurements, and an Arrhenius fit for the joint set is k{sub 1} = 1.88 x 10{sup -11} exp(-8185K/T) cm3 molecule-1 s-1. The CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H reaction was further modeled using conventional transition-state theory, which included ab initio electronic structure determinations of reactants, transition state, and products.« less

  6. Tetrodotoxin Blockade on Canine Cardiac L-Type Ca2+ Channels Depends on pH and Redox Potential

    PubMed Central

    Hegyi, Bence; Komáromi, István; Kistamás, Kornél; Ruzsnavszky, Ferenc; Váczi, Krisztina; Horváth, Balázs; Magyar, János; Bányász, Tamás; Nánási, Péter P.; Szentandrássy, Norbert

    2013-01-01

    Tetrodotoxin (TTX) is believed to be one of the most selective inhibitors of voltage-gated fast Na+ channels in excitable tissues. Recently, however, TTX has been shown to block L-type Ca2+ current (ICa) in canine cardiac cells. In the present study, the TTX-sensitivity of ICa was studied in isolated canine ventricular myocytes as a function of (1) channel phosphorylation, (2) extracellular pH and (3) the redox potential of the bathing medium using the whole cell voltage clamp technique. Fifty-five micromoles of TTX (IC50 value obtained under physiological conditions) caused 60% ± 2% inhibition of ICa in acidic (pH = 6.4), while only a 26% ± 2% block in alkaline (pH = 8.4) milieu. Similarly, the same concentration of TTX induced 62% ± 6% suppression of ICa in a reductant milieu (containing glutathione + ascorbic acid + dithiothreitol, 1 mM each), in contrast to the 31% ± 3% blockade obtained in the presence of a strong oxidant (100 μM H2O2). Phosphorylation of the channel protein (induced by 3 μM forskolin) failed to modify the inhibiting potency of TTX; an IC50 value of 50 ± 4 μM was found in forskolin. The results are in a good accordance with the predictions of our model, indicating that TTX binds, in fact, to the selectivity filter of cardiac L-type Ca channels. PMID:23771047

  7. Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.

    PubMed

    Takemae, Nobuhiro; Nguyen, Tung; Ngo, Long Thanh; Hiromoto, Yasuaki; Uchida, Yuko; Pham, Vu Phong; Kageyama, Tsutomu; Kasuo, Shizuko; Shimada, Shinichi; Yamashita, Yasutaka; Goto, Kaoru; Kubo, Hideyuki; Le, Vu Tri; Van Vo, Hung; Do, Hoa Thi; Nguyen, Dang Hoang; Hayashi, Tsuyoshi; Matsuu, Aya; Saito, Takehiko

    2013-04-01

    The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.

  8. Physical and chemical effects on crystalline H2O2 induced by 20 keV protons.

    PubMed

    Loeffler, M J; Baragiola, R A

    2009-03-21

    We present laboratory studies on radiation chemistry, sputtering, and amorphization of crystalline H(2)O(2) induced by 20 keV protons at 80 K. We used infrared spectroscopy to identify H(2)O, O(3), and possibly HO(3), measure the fluence dependence of the fraction of crystalline and amorphous H(2)O(2) and of the production of H(2)O and destruction of H(2)O(2). Furthermore, using complementary techniques, we observe that the sputtering yield depends on fluence due to the buildup of O(2) radiation products in the sample. In addition, we find that the effective cross sections for the destruction of hydrogen peroxide and the production of water are very high compared to radiation chemical processes in water even though the fluence dependence of amorphization is nearly the same for the two materials. This result is consistent with a model of fast cooling of a liquid track produced by each projectile ion rather than with the disorder produced by the formation of radiolytic products.

  9. Effect of Sodium Chloride and pH on Enterotoxin B Production

    PubMed Central

    Genigeorgis, Constantin; Sadler, Walter W.

    1966-01-01

    Genigeorgis, Constantin (University of California, Davis), and Walter W. Sadler. Effect of sodium chloride and pH on enterotoxin B production. J. Bacteriol. 92:1383–1387. 1966.—The growth and production of enterotoxin B by Staphylococcus aureus strain S-6 in Brain Heart Infusion broth with 2 to 16% sodium chloride and an initial pH of 5.1 to 6.9 was studied during a 10-day incubation period at 37 C. Growth was good at pH 6.9 and with a 16% concentration of salt, but no cells survived after 10 days of incubation at pH 5.1 and with a 16% concentration of salt. With geldiffusion technique, enterotoxin B was detected in broth with pH 6.9 and up to 10% salt or pH 5.1 and up to 4% salt. Growth and enterotoxin production were better when pH was increased and salt concentration was decreased. The dependence of toxin production on the interaction of these two factors was demonstrated. PMID:5924269

  10. Photodegradation of the antineoplastic cyclophosphamide: a comparative study of the efficiencies of UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2 processes.

    PubMed

    Lutterbeck, Carlos Alexandre; Machado, Ênio Leandro; Kümmerer, Klaus

    2015-02-01

    Anticancer drugs are harmful substances that can have carcinogenic, mutagenic, teratogenic, genotoxic, and cytotoxic effects even at low concentrations. More than 50 years after its introduction, the alkylating agent cyclophosphamide (CP) is still one of the most consumed anticancer drug worldwide. CP has been detected in water bodies in several studies and is known as being persistent in the aquatic environment. As the traditional water and wastewater treatment technologies are not able to remove CP from the water, different treatment options such as advanced oxidation processes (AOPs) are under discussion to eliminate these compounds. The present study investigated the degradation of CP by three different AOPs: UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. The light source was a Hg medium-pressure lamp. Prescreening tests were carried out and afterwards experiments based on the optimized conditions were performed. The primary elimination of the parent compounds and the detection of transformation products (TPs) were monitored with LC-UV-MS/MS analysis, whereas the degree of mineralization was monitored by measuring the dissolved organic carbon (DOC). Ecotoxicological assays were carried out with the luminescent bacteria Vibrio fischeri. CP was completely degraded in all treatments and UV/Fe(2+)/H2O2 was the fastest process, followed by UV/H2O2 and UV/TiO2. All the reactions obeyed pseudo-first order kinetics. Considering the mineralization UV/Fe(2+)/H2O2 and UV/TiO2 were the most efficient process with mineralization degrees higher than 85%, whereas UV/H2O2 achieved 72.5% of DOC removal. Five transformation products were formed during the reactions and identified. None of them showed significant toxicity against V. fischeri. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Production of rhamnolipids by Pseudomonas aeruginosa is inhibited by H2S but resumes in a co-culture with P. stutzeri: applications for microbial enhanced oil recovery.

    PubMed

    Zhao, Feng; Ma, Fang; Shi, Rongjiu; Zhang, Jie; Han, Siqin; Zhang, Ying

    2015-09-01

    Sulfate-reducing bacteria and H2S exist widely in oil production systems, and in situ production of rhamnolipids is promising for microbial enhanced oil recovery (MEOR). However, information of the effect of S(2-) on rhamnolipids production is scarce. Two facultative anaerobic rhamnolipids-producing bacterial strains, Pseudomonas aeruginosa SG and WJ-1, were used. Above 10 mg S(2-)/l, both cell growth and rhamnolipids production were inhibited. A large inoculum (9%, v/v) failed to completely relieve the inhibitory effect of 10 mg S(2-)/l. Below 30 mg S(2-)/l, both strains resumed rhamnolipid production through co-culturing with the denitrifying and sulphide-removing strain Pseudomonas stutzeri DQ1. H2S has a direct but reversible inhibitory effect on rhamnolipids production. Control of H2S in oilfields is indispensable to MEOR, and the co-culture method is effective in restoring rhamnolipid production in presence of S(2-).

  12. Potential restrictions for CO2 sequestration sites due to shale and tight gas production.

    PubMed

    Elliot, T R; Celia, M A

    2012-04-03

    Carbon capture and geological sequestration is the only available technology that both allows continued use of fossil fuels in the power sector and reduces significantly the associated CO(2) emissions. Geological sequestration requires a deep permeable geological formation into which captured CO(2)can be injected, and an overlying impermeable formation, called a caprock, that keeps the buoyant CO(2) within the injection formation. Shale formations typically have very low permeability and are considered to be good caprock formations. Production of natural gas from shale and other tight formations involves fracturing the shale with the explicit objective to greatly increase the permeability of the shale. As such, shale gas production is in direct conflict with the use of shale formations as a caprock barrier to CO(2) migration. We have examined the locations in the United States where deep saline aquifers, suitable for CO(2) sequestration, exist, as well as the locations of gas production from shale and other tight formations. While estimated sequestration capacity for CO(2) sequestration in deep saline aquifers is large, up to 80% of that capacity has areal overlap with potential shale-gas production regions and, therefore, could be adversely affected by shale and tight gas production. Analysis of stationary sources of CO(2) shows a similar effect: about two-thirds of the total emissions from these sources are located within 20 miles of a deep saline aquifer, but shale and tight gas production could affect up to 85% of these sources. These analyses indicate that colocation of deep saline aquifers with shale and tight gas production could significantly affect the sequestration capacity for CCS operations. This suggests that a more comprehensive management strategy for subsurface resource utilization should be developed.

  13. Synthesis, biological evaluation and docking analysis of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones as potential cyclooxygenase-2 (COX-2) inhibitors.

    PubMed

    Grover, Jagdeep; Kumar, Vivek; Sobhia, M Elizabeth; Jachak, Sanjay M

    2014-10-01

    As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3a-d, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50's in 1.79-4.35μM range; COX-2 selectivity index (SI)=6.8-16.7 range). Compound 3b emerged as most potent (COX-2 IC50=1.79μM; COX-1 IC50 >30μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5h) in comparison to celecoxib (51.44% inhibition of edema at 5h) in carrageenan-induced rat paw edema assay. Structure-activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A facile synthesis of Zn(x)Cd(1-x)S/CNTs nanocomposite photocatalyst for H2 production.

    PubMed

    Wang, Lei; Yao, Zhongping; Jia, Fangzhou; Chen, Bin; Jiang, Zhaohua

    2013-07-21

    The sulfide solid solution has become a promising and important visible-light-responsive photocatalyst for hydrogen production nowadays. Zn(x)Cd(1-x)S/CNT nanocomposites were synthesized to improve the dispersion, adjust the energy band gap, and enhance the separation of the photogenerated electrons and holes. The as-prepared photocatalysts were characterized by scanning electron-microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance spectra (UV-visible), respectively. And the effects of CNTs on structure, composition and optical absorption property of the sulfide solid solutions were investigated along with their inherent relationships. For Zn0.83Cd0.17S/CNTs, sulfide solid solution is assembled along the CNTs orderly, with a diameter of 100 nm or so. XPS analysis shows that there is bonding effect between the solid solutions and the CNTs due to the strong adsorption of Zn(2+) and Cd(2+) on the surface of CNTs. There are two obvious absorption edges for Zn0.83Cd0.17S/CNTs, corresponding to two kinds of sulfide solid solutions with different molar ratios of Zn/Cd. The hybridization of solid solutions with CNTs makes the absorption spectrum red shift. The photocatalytic property was evaluated by splitting Na2S + Na2SO3 solution into H2, and the highest rate of H2 evolution of 6.03 mmol h(-1) g(-1) was achieved over Zn0.83Cd0.17S/CNTs. The high activity of photocatalytic H2 production is attributed to the following factors: (1) the optimum band gap and a moderate position of the conduction band (which needs to match the irradiation spectrum of the Xe lamp best), (2) the efficient separation of photogenerated electrons and holes by hybridization, and (3) the improvement of the dispersion of nanocomposites by assembling along the CNTs as well.

  15. Ascorbate accumulation during sulphur deprivation and its effects on photosystem II activity and H2 production of the green alga Chlamydomonas reinhardtii.

    PubMed

    Nagy, Valéria; Vidal-Meireles, André; Tengölics, Roland; Rákhely, Gábor; Garab, Győző; Kovács, László; Tóth, Szilvia Z

    2016-07-01

    In nature, H2 production in Chlamydomonas reinhardtii serves as a safety valve during the induction of photosynthesis in anoxia, and it prevents the over-reduction of the photosynthetic electron transport chain. Sulphur deprivation of C. reinhardtii also triggers a complex metabolic response resulting in the induction of various stress-related genes, down-regulation of photosynthesis, the establishment of anaerobiosis and expression of active hydrogenase. Photosystem II (PSII) plays dual role in H2 production because it supplies electrons but the evolved O2 inhibits the hydrogenase. Here, we show that upon sulphur deprivation, the ascorbate content in C. reinhardtii increases about 50-fold, reaching the mM range; at this concentration, ascorbate inactivates the Mn-cluster of PSII, and afterwards, it can donate electrons to tyrozin Z(+) at a slow rate. This stage is followed by donor-side-induced photoinhibition, leading to the loss of charge separation activity in PSII and reaction centre degradation. The time point at which maximum ascorbate concentration is reached in the cell is critical for the establishment of anaerobiosis and initiation of H2 production. We also show that ascorbate influenced H2 evolution via altering the photosynthetic electron transport rather than hydrogenase activity and starch degradation. © 2015 John Wiley & Sons Ltd.

  16. Proteomic and metabolomic analysis of H2O2-induced premature senescent human mesenchymal stem cells.

    PubMed

    Kim, Ji-Soo; Kim, Eui-Jin; Kim, Hyun-Jung; Yang, Ji-Young; Hwang, Geum-Sook; Kim, Chan-Wha

    2011-06-01

    Stress induced premature senescence (SIPS) occurs after exposure to many different sublethal stresses including H(2)O(2), hyperoxia, or tert-butylhydroperoxide. Human mesenchymal stem cells (hMSCs) exhibit limited proliferative potential in vitro, the so-called Hayflick limit. According to the free-radical theory, reactive oxygen species (ROS) might be the candidates responsible for senescence and age-related diseases. H(2)O(2) may be responsible for the production of high levels of ROS, in which the redox balance is disturbed and the cells shift into a state of oxidative stress, which subsequently leads to premature senescence with shortening telomeres. H(2)O(2) has been the most commonly used inducer of SIPS, which shares features of replicative senescence (RS) including a similar morphology, senescence-associated β-galactosidase activity, cell cycle regulation, etc. Therefore, in this study, the senescence of hMSC during SIPS was confirmed using a range of different analytical methods. In addition, we determined five differentially expressed spots in the 2-DE map, which were identified as Annexin A2 (ANXA2), myosin light chain 2 (MLC2), peroxisomal enoyl-CoA hydratase 1 (ECH1), prosomal protein P30-33K (PSMA1) and mutant β-actin by ESI-Q-TOF MS/MS. Also, proton ((1)H) nuclear magnetic resonance spectroscopy (NMR) was used to elucidate the difference between metabolites in the control and hMSCs treated with H(2)O(2). Among these metabolites, choline and leucine were identified by (1)H-NMR as up-regulated metabolites and glycine and proline were identified as down-regulated metabolites. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Time-dependent Enhanced Corrosion of Ti6Al4V in the Presence of H2O2 and Albumin.

    PubMed

    Zhang, Yue; Addison, Owen; Yu, Fei; Troconis, Brendy C Rincon; Scully, John R; Davenport, Alison J

    2018-02-16

    There is increasing concern regarding the biological consequences of metal release from implants. However, the mechanisms underpinning implant surface degradation, especially in the absence of wear, are often poorly understood. Here the synergistic effect of albumin and H 2 O 2 on corrosion of Ti6Al4V in physiological saline is studied with electrochemical methods. It is found that albumin induces a time-dependent dissolution of Ti6Al4V in the presence of H 2 O 2 in physiology saline. Potentiostatic polarisation measurements show that albumin supresses dissolution in the presence of H 2 O 2 at short times (<24 h) but over longer time periods (120 h) it significantly accelerates corrosion, which is attributed to albumin-catalysed dissolution of the corrosion product layer resulting in formation of a thinner oxide film. Dissolution of Ti6Al4V in the presence of albumin and H 2 O 2 in physiological saline is also found to be dependent on potential: the titanium ion release rate is found to be higher (0.57 µg/cm 2 ) at a lower potential (90 mV), where the oxide capacitance and resistance inferred from Electrochemical Impedance Spectroscopy also suggests a less resistant oxide film. The study highlights the importance of using more realistic solutions, and considering behaviour over longer time periods when testing corrosion resistance of metallic biomaterials.

  18. Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2).

    PubMed

    Oh, Byung-Taek; Seo, Young-Suk; Sudhakar, Dega; Choe, Ji-Hyun; Lee, Sang-Myeong; Park, Youn-Jong; Cho, Min

    2014-08-30

    The presence of endotoxin in water environments may pose a serious public health hazard. We investigated the effectiveness of advanced oxidative processes (AOP: O3/H2O2 and UV/H2O2) in the oxidative degradation of endotoxin. In addition, we measured the release of endotoxin from Escherichia coli following typical disinfection methods, such as chlorine, ozone alone and UV, and compared it with the use of AOPs. Finally, we tested the AOP-treated samples in their ability to induce tumor necrosis factor alpha (TNF-α) in mouse peritoneal macrophages. The production of hydroxyl radical in AOPs showed superior ability to degrade endotoxin in buffered solution, as well as water samples from Korean water treatment facilities, with the ozone/H2O2 being more efficient compared to UV/H2O2. In addition, the AOPs proved effective not only in eliminating E. coli in the samples, but also in endotoxin degradation, while the standard disinfection methods lead to the release of endotoxin following the bacteria destruction. Furthermore, in the experiments with macrophages, the AOPs-deactivated endotoxin lead to the smallest induction of TNF-α, which shows the loss of inflammation activity, compared to ozone treatment alone. In conclusion, these results suggest that AOPs offer an effective and mild method for endotoxin degradation in the water systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Direct N2H4/H2O2 Fuel Cells Powered by Nanoporous Gold Leaves

    PubMed Central

    Yan, Xiuling; Meng, Fanhui; Xie, Yun; Liu, Jianguo; Ding, Yi

    2012-01-01

    Dealloyed nanoporous gold leaves (NPGLs) are found to exhibit high electrocatalytic properties toward both hydrazine (N2H4) oxidation and hydrogen peroxide (H2O2) reduction. This observation allows the implementation of a direct hydrazine-hydrogen peroxide fuel cell (DHHPFC) based on these novel porous membrane catalysts. The effects of fuel and oxidizer flow rate, concentration and cell temperature on the performance of DHHPFC are systematically investigated. With a loading of ~0.1 mg cm−2 Au on each side, an open circuit voltage (OCV) of 1.2 V is obtained at 80°C with a maximum power density 195 mW cm−2, which is 22 times higher than that of commercial Pt/C electrocatalyst at the same noble metal loading. NPGLs thus hold great potential as effective and stable electrocatalysts for DHHPFCs. PMID:23230507

  20. Improvement of the intracellular environment for enhancing l-arginine production of Corynebacterium glutamicum by inactivation of H2O2-forming flavin reductases and optimization of ATP supply.

    PubMed

    Man, Zaiwei; Rao, Zhiming; Xu, Meijuan; Guo, Jing; Yang, Taowei; Zhang, Xian; Xu, Zhenghong

    2016-11-01

    l-arginine, a semi essential amino acid, is an important amino acid in food flavoring and pharmaceutical industries. Its production by microbial fermentation is gaining more and more attention. In previous work, we obtained a new l-arginine producing Corynebacterium crenatum (subspecies of Corynebacterium glutamicum) through mutation breeding. In this work, we enhanced l-arginine production through improvement of the intracellular environment. First, two NAD(P)H-dependent H 2 O 2 -forming flavin reductases Frd181 (encoded by frd1 gene) and Frd188 (encoded by frd2) in C. glutamicum were identified for the first time. Next, the roles of Frd181 and Frd188 in C. glutamicum were studied by overexpression and deletion of the encoding genes, and the results showed that the inactivation of Frd181 and Frd188 was beneficial for cell growth and l-arginine production, owing to the decreased H 2 O 2 synthesis and intracellular reactive oxygen species (ROS) level, and increased intracellular NADH and ATP levels. Then, the ATP level was further increased by deletion of noxA (encoding NADH oxidase) and amn (encoding AMP nucleosidase), and overexpression of pgk (encoding 3-phosphoglycerate kinase) and pyk (encoding pyruvate kinase), and the l-arginine production and yield from glucose were significantly increased. In fed-batch fermentation, the l-arginine production and yield from glucose of the final strain reached 57.3g/L and 0.326g/g, respectively, which were 49.2% and 34.2% higher than those of the parent strain, respectively. ROS and ATP are important elements of the intracellular environment, and l-arginine biosynthesis requires a large amount of ATP. For the first time, we enhanced l-arginine production and yield from glucose through reducing the H 2 O 2 synthesis and increasing the ATP supply. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Histamine H2 receptor trafficking: role of arrestin, dynamin, and clathrin in histamine H2 receptor internalization.

    PubMed

    Fernandez, Natalia; Monczor, Federico; Baldi, Alberto; Davio, Carlos; Shayo, Carina

    2008-10-01

    Agonist-induced internalization of G protein-coupled receptors (GPCRs) has been implicated in receptor desensitization, resensitization, and down-regulation. In the present study, we sought to establish whether the histamine H2 receptor (H2r) agonist amthamine, besides promoting receptor desensitization, induced H2r internalization. We further studied the mechanisms involved and its potential role in receptor resensitization. In COS7 transfected cells, amthamine induced H2r time-dependent internalization, showing 70% of receptor endocytosis after 60-min exposure to amthamine. Agonist removal led to the rapid recovery of resensitized receptors to the cell surface. Similar results were obtained in the presence of cycloheximide, an inhibitor of protein synthesis. Treatment with okadaic acid, an inhibitor of the protein phosphatase 2A (PP2A) family of phosphatases, reduced the recovery of both H2r membrane sites and cAMP response. Arrestin 3 but not arrestin 2 overexpression reduced both H2r membrane sites and H2r-evoked cAMP response. Receptor cotransfection with dominant-negative mutants for arrestin, dynamin, Eps15 (a component of the clathrin-mediated endocytosis machinery), or RNA interference against arrestin 3 abolished both H2r internalization and resensitization. Similar results were obtained in U937 cells endogenously expressing H2r. Our findings suggest that amthamine-induced H2r internalization is crucial for H2r resensitization, processes independent of H2r de novo synthesis but dependent on PP2A-mediated dephosphorylation. Although we do not provide direct evidence for H2r interaction with beta-arrestin, dynamin, and/or clathrin, our results support their involvement in H2r endocytosis. The rapid receptor recycling to the cell surface and the specific involvement of arrestin 3 in receptor internalization further suggest that the H2r belongs to class A GPCRs.

  2. Vertical observation of molecular hydrogen and carbon monoxide: Implication for non-photochemical H2 production at ocean surface and subsurface

    NASA Astrophysics Data System (ADS)

    Kawagucci, S.; Narita, T.; Obata, H.; Ogawa, H.; Gamo, T.

    2009-12-01

    concentration were observed. Apparently different vertical distributions between H2 and CO concentration were revealed at all the observed stations. At a station where N-nutrient was depleted through surface mixed layer, H2 was supersaturated at the surface while CO concentration was constant through the depths. In contrast, at another station where some amount of terrestrial humic matter was introduced into the surface, H2 concentration was constantly undersaturated through the depth while vertical distribution of CO concentration showed the highest at the surface and exponentially decreased to deep. These facts suggest that H2 production involved with nitrogen fixation played an important role for H2 behavior in ocean water while photochemical H2 production would be a minor process. In addition to the surface, H2 supersaturation accoumpanied with little CO concentration rise were observed at depths just below the mixed layer in pycnocline with Chlorophyll maximum.

  3. Tunneling chemical reactions D +H2→DH+H and D +DH→D2+H in solid D2-H2 and HD -H2 mixtures: An electron-spin-resonance study

    NASA Astrophysics Data System (ADS)

    Kumada, Takayuki

    2006-03-01

    Tunneling chemical reactions D +H2→DH+H and D +DH→D2+H in solid HD -H2 and D2-H2 mixtures were studied in the temperature range between 4 and 8K. These reactions were initiated by UV photolysis of DI molecules doped in these solids for 30s and followed by measuring the time course of electron-spin-resonance (ESR) intensities of D and H atoms. ESR intensity of D atoms produced by the photolysis decreases but that of H atoms increases with time. Time course of the D and H intensities has the fast and slow processes. The fast process, which finishes within ˜300s after the photolysis, is assigned to the reaction of D atom with one of its nearest-neighboring H2 molecules, D(H2)n(HD)12-n→H(H2)n-1(HD)13-n or D(H2)n(D2)12-n→H(HD )(H2)n-1(D2)12-n for 12⩾n⩾1. Rate constant for the D +H2 reaction between neighboring D atom-H2 molecule pair is determined to be (7.5±0.7)×10-3s-1 in solid HD -H2 and (1.3±0.3)×10-2s-1 in D2-H2 at 4.1K, which is very close to that calculated based on the theory of chemical reaction in gas phase by Hancock et al. [J. Chem. Phys. 91, 3492 (1989)] and Takayanagi and Sato [J. Chem. Phys. 92, 2862 (1990)]. This rate constant was found to be independent of temperature up to 7K within experimental error of ±30%. The slow process is assigned to the reaction of D atom produced in a cage fully surrounded by HD or D2 molecules, D(HD)12 or D(D2)12. This D atom undergoes the D +DH reaction with one of its nearest-neighboring HD molecules in solid HD -H2 or diffuses to the neighbor of H2 molecules to allow the D +H2 reaction in solid HD -H2 and D2-H2. The former is the main channel in solid HD -H2 below 6K where D atoms diffuse very slowly, whereas the latter dominates over the former above 6K. Rate for the reactions in the slow process is independent of temperature below 6K but increases with the increase in temperature above 6K. We found that the increase is due to the increase in hopping rate of D atoms to the neighbor of H2 molecules. Rate

  4. Validation of GC-IRMS techniques for δ13C and δ2H CSIA of organophosphorus compounds and their potential for studying the mode of hydrolysis in the environment.

    PubMed

    Wu, Langping; Kümmel, Steffen; Richnow, Hans H

    2017-04-01

    Compound-specific stable isotope analysis (CSIA) is among the most promising tools for studying the fate of organic pollutants in the environment. However, the feasibility of multidimensional CSIA was limited by the availability of a robust method for precise isotope analysis of heteroatom-bearing organic compounds. We developed a method for δ 13 C and δ 2 H analysis of eight organophosphorus compounds (OPs) with different chemical properties. In particular, we aimed to compare high-temperature conversion (HTC) and chromium-based HTC (Cr/HTC) units to explore the limitations of hydrogen isotope analysis of heteroatom-bearing compounds. Analysis of the amount dependency of the isotope values (linearity analysis) of OPs indicated that the formation of HCl was a significant isotope fractionation process leading to inaccurate δ 2 H analysis in HTC. In the case of nonchlorinated OPs, by-product formation of HCN, H 2 S, or PH 3 in HTC was observed but did not affect the dynamic range of reproducible isotope values above the limit of detection. No hydrogen-containing by-products were found in the Cr/HTC process by use of ion trap mass spectrometry analysis. The accuracy of gas chromatography - isotope ratio mass spectrometry was validated in comparison with elemental analyzer - isotope ratio mass spectrometry. Dual-isotope fractionation yielded Λ values of 0 ± 0 at pH 7, 7 ± 1 at pH 9, and 30 ± 6 at pH 12, indicating the potential of 2D CSIA to characterize the hydrolysis mechanisms of OPs. This is the first report on the combination of δ 2 H and δ 13 C isotope analysis of OPs, and this is the first study providing a systematic evaluation of HTC and Cr/HTC for hydrogen isotope analysis using OPs as target compounds. Graphical Abstract Comparison of δ 2 H measurement of non-chlorinated and chlorinated OPs via GC-Cr/HTC-IRMS and GC-HTC-IRMS system.

  5. In-situ regeneration of activated carbon with electric potential swing desorption (EPSD) for the H2S removal from biogas.

    PubMed

    Farooq, M; Almustapha, M N; Imran, M; Saeed, M A; Andresen, John M

    2018-02-01

    In-situ regeneration of a granular activated carbon was conducted for the first time using electric potential swing desorption (EPSD) with potentials up to 30 V. The EPSD system was compared against a standard non-potential system using a fixed-bed reactor with a bed of 10 g of activated carbon treating a gas mixture with 10,000 ppm H 2 S. Breakthrough times, adsorption desorption volume, capacities, effect of regeneration and desorption kinetics were investigated. The analysis showed that desorption of H 2 S using the new EPSD system was 3 times quicker compared with the no potential system. Hence, physical adsorption using EPSD over activated carbon is efficient, safe and environmental friendly and could be used for the in-situ regeneration of granular activated carbon without using a PSA and/or TSA system. Additionally, adsorption and desorption cycles can be obtained with a classical two column system, which could lead towards a more efficient and economic biogas to biomethane process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: Applications for microbial enhanced oil recovery.

    PubMed

    Zhao, Feng; Zhou, Ji-Dong; Ma, Fang; Shi, Rong-Jiu; Han, Si-Qin; Zhang, Jie; Zhang, Ying

    2016-05-01

    Sulfate-reducing bacteria (SRB) are widely existed in oil production system, and its H2S product inhibits rhamnolipid producing bacteria. In-situ production of rhamnolipid is promising for microbial enhanced oil recovery. Inhibition of SRB, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl were investigated. Strain Rhl can simultaneously remove S(2-) (>92%) and produce rhamnolipid (>136mg/l) under S(2-) stress below 33.3mg/l. Rhl reduced the SRB numbers from 10(9) to 10(5)cells/ml, and the production of H2S was delayed and decreased to below 2mg/l. Rhl also produced rhamnolipid and removed S(2-) under laboratory simulated oil reservoir conditions. High-throughput sequencing data demonstrated that addition of strain Rhl significantly changed the original microbial communities of oilfield production water and decreased the species and abundance of SRB. Bioaugmentation of strain Rhl in oilfield is promising for simultaneous control of SRB, removal of S(2-) and enhance oil recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. MARVEL analysis of the rotational-vibrational states of the molecular ions H2D+ and D2H+.

    PubMed

    Furtenbacher, Tibor; Szidarovszky, Tamás; Fábri, Csaba; Császár, Attila G

    2013-07-07

    Critically evaluated rotational-vibrational line positions and energy levels, with associated critically reviewed labels and uncertainties, are reported for two deuterated isotopologues of the H3(+) molecular ion: H2D(+) and D2H(+). The procedure MARVEL, standing for Measured Active Rotational-Vibrational Energy Levels, is used to determine the validated levels and lines and their self-consistent uncertainties based on the experimentally available information. The spectral ranges covered for the isotopologues H2D(+) and D2H(+) are 5.2-7105.5 and 23.0-6581.1 cm(-1), respectively. The MARVEL energy levels of the ortho and para forms of the ions are checked against ones determined from accurate variational nuclear motion computations employing the best available adiabatic ab initio potential energy surfaces of these isotopologues. The number of critically evaluated, validated and recommended experimental (levels, lines) are (109, 185) and (104, 136) for H2D(+) and D2H(+), respectively. The lists of assigned MARVEL lines and levels and variational levels obtained for H2D(+) and D2H(+) as part of this study are deposited in the ESI to this paper.

  8. Constant serum levels of secreted asialoglycoprotein receptor sH2a and decrease with cirrhosis

    PubMed Central

    Benyair, Ron; Kondratyev, Maria; Veselkin, Elena; Tolchinsky, Sandra; Shenkman, Marina; Lurie, Yoav; Lederkremer, Gerardo Z

    2011-01-01

    AIM: To investigate the existence and levels of sH2a, a soluble secreted form of the asialoglycoprotein receptor in human serum. METHODS: Production of recombinant sH2a and development of a monoclonal antibody and an enzyme-linked immunosorbent assay (ELISA). This assay was used to determine the presence and concentration of sH2a in human sera of individuals of both sexes and a wide range of ages. RESULTS: The recombinant protein was produced successfully and a specific ELISA assay was developed. The levels of sH2a in sera from 62 healthy individuals varied minimally (147 ± 19 ng/mL). In contrast, 5 hepatitis C patients with cirrhosis showed much decreased sH2a levels (50 ± 9 ng/mL). CONCLUSION: Constant sH2a levels suggest constitutive secretion from hepatocytes in healthy individuals. This constant level and the decrease with cirrhosis suggest a diagnostic potential. PMID:22219600

  9. From the Cover: Manganese Stimulates Mitochondrial H2O2 Production in SH-SY5Y Human Neuroblastoma Cells Over Physiologic as well as Toxicologic Range

    PubMed Central

    Fernandes, Jolyn; Hao, Li; Bijli, Kaiser M.; Chandler, Joshua D.; Orr, Michael; Hu, Xin; Jones, Dean P.

    2017-01-01

    Manganese (Mn) is an abundant redox-active metal with well-characterized mitochondrial accumulation and neurotoxicity due to excessive exposures. Mn is also an essential co-factor for the mitochondrial antioxidant protein, superoxide dismutase-2 (SOD2), and the range for adequate intake established by the Institute of Medicine Food and Nutrition Board is 20% of the interim guidance value for toxicity by the Agency for Toxic Substances and Disease Registry, leaving little margin for safety. To study toxic mechanisms over this critical dose range, we treated human neuroblastoma SH-SY5Y cells with a series of MnCl2 concentrations (from 0 to 100 μM) and measured cellular content to compare to human brain Mn content. Concentrations ≤10 μM gave cellular concentrations comparable to literature values for normal human brain, whereas concentrations ≥50 μM resulted in values comparable to brains from individuals with toxic Mn exposures. Cellular oxygen consumption rate increased as a function of Mn up to 10 μM and decreased with Mn dose ≥50 μM. Over this range, Mn had no effect on superoxide production as measured by aconitase activity or MitoSOX but increased H2O2 production as measured by MitoPY1. Consistent with increased production of H2O2, SOD2 activity, and steady-state oxidation of total thiol increased with increasing Mn. These findings have important implications for Mn toxicity by re-directing attention from superoxide anion radical to H2O2-dependent mechanisms and to investigation over the entire physiologic range to toxicologic range. Additionally, the results show that controlled Mn exposure provides a useful cell manipulation for toxicological studies of mitochondrial H2O2 signaling. PMID:27701121

  10. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fourteenth quarterly technical progress report for the UFP

  11. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on Aspen Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the third annual technical progress report for the UFP program supported by U.S. DOE NETL (Contract No

  12. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the thirteenth quarterly technical progress report for the UFP program, which is

  13. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program has determined the feasibility of the integrated UFP technology through pilot-scale testing, and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrated experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fifteenth quarterly technical progress report for the UFP program

  14. Enhanced photocatalytic H2 production of Mn0.5Cd0.5S solid solution through loading transition metal sulfides XS (X = Mo, Cu, Pd) cocatalysts

    NASA Astrophysics Data System (ADS)

    Zhai, Huishan; Liu, Xiaolei; Wang, Peng; Huang, Baibiao; Zhang, Qianqian

    2018-02-01

    Development of highly efficient cocatalyst is important towards photocatalytic H2 production. Herein, a series of transition metal sulfides XS (X = Mo, Cu, Pd) as cocatalysts have been successfully grown on Mn0.5Cd0.5S photocatalyst through photo-reduction or in-situ deposition method, respectively. Among them, the maximum production of H2 obtained from MoS2/Mn0.5Cd0.5S, CuxS/Mn0.5Cd0.5S (1 ≤ x ≤ 2) and PdS/Mn0.5Cd0.5S samples were 197, 347 and 614 μmol/h, which were around 6.5, 11.5 and 20.3 times than pristine Mn0.5Cd0.5S. MoS2/Mn0.5Cd0.5S heterostructure can facilitate electron transfer from Mn0.5Cd0.5S to MoS2 and MoS2 as active site for H2 production, p-n junction constructed between Mn0.5Cd0.5S and CuxS can efficiently separate the photo-generated carriers and PdS as a hole acceptor can accelerate the consume of photo-generated holes to enhance the photocatalytic H2 production. The effective charge transfer was further proved by the weaker PL intensity and stronger photocurrent density relative to that of Mn0.5Cd0.5S alone. This work demonstrated that transition metal sulfides XS (X = Mo, Cu, Pd) are efficient cocatalysts to improve the H2 production performance of Mn0.5Cd0.5S photocatalyst.

  15. Improved specific energy Ni-H2 cell

    NASA Astrophysics Data System (ADS)

    Miller, L.

    1985-07-01

    Design optimization activities which have evolved and validated the necessary technology to produce Ni-H2 battery cells exhibiting a specific energy of 75-80 Whr/Kg (energy density approximately 73 Whr/L are summarized. Final design validation is currently underway with the production of battery cells for qualification and life testing. The INTELSAT type Ni-H2 battery cell design has been chosen for expository purposes. However, it should be recognized portions of the improved technology could be applied to the Air Force type Ni-H2 battery cell design with equal benefit.

  16. Improved Specific Energy Ni-h2 Cell

    NASA Technical Reports Server (NTRS)

    Miller, L.

    1985-01-01

    Design optimization activities which have evolved and validated the necessary technology to produce Ni-H2 battery cells exhibiting a specific energy of 75-80 Whr/Kg (energy density approximately 73 Whr/L are summarized. Final design validation is currently underway with the production of battery cells for qualification and life testing. The INTELSAT type Ni-H2 battery cell design has been chosen for expository purposes. However, it should be recognized portions of the improved technology could be applied to the Air Force type Ni-H2 battery cell design with equal benefit.

  17. Generation of H2, O2, and H2O2 from water by the use of intense femtosecond laser pulses and the possibility of laser sterilization

    NASA Astrophysics Data System (ADS)

    Chin, S. L.; Lagacé, S.

    1996-02-01

    An intense femtosecond Ti-sapphire laser pulse was focused into water, leading to self-focusing. Apart from generating a white light (supercontinuum), the intense laser field in the self-focusing regions of the laser pulse dissociated the water molecules, giving rise to hydrogen and oxygen gas as well as hydrogen peroxide. Our analysis shows that the formation of free radicals O, H, and OH preceded the formation of the stable products of H2, O2, and H2O2. Because O radicals and H2O2 are strong oxydizing agents, one can take advantage of this phenomenon to design a laser scheme for sterilization in medical and biological applications.

  18. A Brown Mesoporous TiO2-x /MCF Composite with an Extremely High Quantum Yield of Solar Energy Photocatalysis for H2 Evolution.

    PubMed

    Xing, Mingyang; Zhang, Jinlong; Qiu, Bocheng; Tian, Baozhu; Anpo, Masakazu; Che, Michel

    2015-04-24

    A brown mesoporous TiO2-x /MCF composite with a high fluorine dopant concentration (8.01 at%) is synthesized by a vacuum activation method. It exhibits an excellent solar absorption and a record-breaking quantum yield (Φ = 46%) and a high photon-hydrogen energy conversion efficiency (η = 34%,) for solar photocatalytic H2 production, which are all higher than that of the black hydrogen-doped TiO2 (Φ = 35%, η = 24%). The MCFs serve to improve the adsorption of F atoms onto the TiO2 /MCF composite surface, which after the formation of oxygen vacancies by vacuum activation, facilitate the abundant substitution of these vacancies with F atoms. The decrease of recombination sites induced by high-concentration F doping and the synergistic effect between lattice Ti(3+)-F and surface Ti(3+)-F are responsible for the enhanced lifetime of electrons, the observed excellent absorption of solar light, and the photocatalytic production of H2 for these catalysts. The as-prepared F-doped composite is an ideal solar light-driven photocatalyst with great potential for applications ranging from the remediation of environmental pollution to the harnessing of solar energy for H2 production. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Si-H induced synthesis of Si/Cu2O nanowire arrays for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Zhang, Shaoyang; She, Guangwei; Li, Shengyang; Mu, Lixuan; Shi, Wensheng

    2018-01-01

    We report a facile and low-cost method to synthesize Si/Cu2O heterojunction nanowire arrays, without SiOx, at the Si/Cu2O interface. The reductive Si-H bonds on the surface of Si nanowires plays a key role in situ by reducing Cu(II) ions to Cu2O nanocubes and avoiding the SiOx interface layer. Different pH values would vary the electrochemical potential of reactions and as a result, different products would be formed. Utilized as a photoanode for water splitting, Si/Cu2O nanowire arrays exhibit good photoelectrochemical performance.

  20. A Secreted Form of the Asialoglycoprotein Receptor, sH2a, as a Novel Potential Noninvasive Marker for Liver Fibrosis

    PubMed Central

    Lurie, Yoav; Ron, Efrat; Santo, Moshe; Reif, Shimon; Elashvili, Irma; Bar, Lana; Lederkremer, Gerardo Z.

    2011-01-01

    Background and Aim The human asialoglycoprotein receptor is a membrane heterooligomer expressed exclusively in hepatocytes. A soluble secreted form, sH2a, arises, not by shedding at the cell surface, but by intracellular cleavage of its membrane-bound precursor, which is encoded by an alternatively spliced form of the receptor H2 subunit. Here we determined and report that sH2a, present at constant levels in serum from healthy individuals is altered upon liver fibrosis, reflecting the status of hepatocyte function. Methods We measured sH2a levels in serum using a monoclonal antibody and an ELISA assay that we developed, comparing with routine liver function markers. We compared blindly pretreatment serum samples from a cohort of 44 hepatitis C patients, which had METAVIR-scored biopsies, with 28 healthy individuals. Results sH2a levels varied minimally for the healthy individuals (150±21 ng/ml), whereas the levels deviated from this normal range increasingly in correlation with fibrosis stage. A simple algorithm combining sH2a levels with those of alanine aminotransferase allowed prediction of fibrosis stage, with a very high area under the ROC curve of 0.86. Conclusions sH2a has the potential to be a uniquely sensitive and specific novel marker for liver fibrosis and function. PMID:22096539

  1. Potential Application of Anaerobic Extremophiles for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    During substrate fermentation many anaerobes produce the hydrogen as a waste product, which often regulates the growth of the cultures as an inhibitor. In nature the hydrogen is usually removed from the ecosystem due to its physical properties or by consumption of hydrogen by secondary anaerobes, which sometimes behave as competitors for electron donors as is seen in the classical example in anaerobic microbial communities via the interaction between methanogens and sulfate- or sulfur- reducers. It was demonstrated previously on mixed cultures of anaerobes at neutral pH that bacterial hydrogen production could provide an alternative energy source. But at neutral pH the original cultures can easily be contaminated by methanogens, a most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and the cultivation of human pathogens on a global scale is very dangerous. In our laboratory, experiments with obligately alkaliphilic bacteria that excrete hydrogen as the end metabolic product were performed at different temperature regimes. Mesophilic and moderately thermophilic bacterial cultures have been studied and compared for the most effective hydrogen production. For high-mineralized media with pH 9.5-10.0 not many methanogens are known to exist. Furthermore, the development of pathogenic contaminant microorganisms is virtually impossible: carbonate-saturated solutions are used as antiseptics in medicine. Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as most safe process for global Scale industry in future. Here we present experimental data on the rates of hydrogen productivity for mesophilic, alkaliphilic, obligately anaerobic bacterium Spirocheta americana ASpG1 and moderately thermophilic, alkaliphilic, facultative anaerobe Anoxybacillus pushchinoensis K1 and

  2. Self-Driven Photoelectrochemical Splitting of H2S for S and H2 Recovery and Simultaneous Electricity Generation.

    PubMed

    Luo, Tao; Bai, Jing; Li, Jinhua; Zeng, Qingyi; Ji, Youzhi; Qiao, Li; Li, Xiaoyan; Zhou, Baoxue

    2017-11-07

    A novel, facile self-driven photoelectrocatalytic (PEC) system was established for highly selective and efficient recovery of H 2 S and simultaneous electricity production. The key ideas were the self-bias function between a WO 3 photoanode and a Si/PVC photocathode due to their mismatched Fermi levels and the special cyclic redox reaction mechanism of I - /I 3 - . Under solar light, the system facilitated the separation of holes in the photoanode and electrons in the photocathode, which then generated electricity. Cyclic redox reactions were produced in the photoanode region as follows: I - was transformed into I 3 - by photoholes or hydroxyl radicals, H 2 S was oxidized to S by I 3 - , and I 3 - was then reduced to I - . Meanwhile, H + was efficiently converted to H 2 in the photocathode region. In the system, H 2 S was uniquely oxidized to sulfur but not to polysulfide (S x n- ) because of the mild oxidation capacity of I 3 - . High recovery rates for S and H 2 were obtained up to ∼1.04 mg h -1 cm -1 and ∼0.75 mL h -1 cm -1 , respectively, suggesting that H 2 S was completely converted into H 2 and S. In addition, the output power density of the system reached ∼0.11 mW cm -2 . The proposed PEC-H 2 S system provides a self-sustaining, energy-saving method for simultaneous H 2 S treatment and energy recovery.

  3. Ferrocenes as potential chemotherapeutic drugs: Synthesis, cytotoxic activity, reactive oxygen species production and micronucleus assay

    PubMed Central

    Pérez, Wanda I.; Soto, Yarelys; Ortíz, Carmen; Matta, Jaime; Meléndez, Enrique

    2014-01-01

    Three new ferrocene complexes were synthesized with 4-(1H-pyrrol-1-yl)phenol group appended to one of the Cp ring. These are: 1,1′-4-(1H-pyrrol-1-yl)phenyl ferrocenedicarboxylate, (“Fc-(CO2-Ph-4-Py)2”), 1,4-(1H-pyrrol-1-yl)phenyl, 1′-carboxyl ferrocenecarboxylate (“Fc-(CO2-Ph-4-Py)CO2H”) and 4-(1H-pyrrol-1-yl)phenyl ferroceneacetylate (“Fc-CH2CO2-Ph-4-Py”). The new species were characterized by standard analytical methods. Cyclic voltammetry experiments showed that Fc-CH2CO2-Ph-4-Py has redox potential very similar to the Fc/Fc+ redox couple whereas Fc-(CO2-Ph-4-Py)2 and Fc-(CO2-Ph-4-Py)CO2H have redox potentials of over 400 mV higher than Fc/Fc+ redox couple. The in vitro studies on Fc-(CO2-Ph-4-Py)2 and Fc-(CO2-Ph-4-Py)CO2H revealed that these two compounds have moderate anti-proliferative activity on MCF-7 breast cancer cell line. In contrast Fc-CH2CO2-Ph-4-Py which displayed low anti-proliferative activity. In the HT-29 colon cancer cell line, the new species showed low anti-proliferaive activity. Cytokinesis-block micronucleus assay (CBMN) was performed on these ferrocenes and it was determined they induce micronucleus formation on binucleated cells and moderate genotoxic effects on the MCF-7 breast cancer cell line. There is a correlation between the IC50 values of the ferrocenes and the amount of micronucleus formation activity on binucleated cells and the reactive oxygen species (ROS) production on MCF-7 cell line. PMID:25555734

  4. Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium.

    PubMed

    Gao, Hanyang; Xue, Chen; Hu, Guoxin; Zhu, Kunxu

    2017-07-01

    In this research, three kinds of graphene quantum dots (GQDs)-pristine graphene quantum dots (PGQDs), expanded graphene quantum dots (EGQDs) and graphene oxide quantum dots (GOQDs)-were produced from natural graphite, expanded graphite, and oxide graphite respectively in an ultrasound-assisted supercritical CO 2 (scCO 2 )/H 2 O system. The effects of aqueous solution content ratio, system pressure, and ultrasonic power on the yields of different kinds of GQDs were investigated. According to these experiment results, the combination of the intense knocking force generated from high-pressure acoustic cavitation in a scCO 2 /H 2 O system and the superior penetration ability of scCO 2 was considered to be the key to the successful exfoliation of such tiny pieces from bulk graphite. An interesting result was found that, contrary to common experience, the yield of PGQDs from natural graphite was much higher than that of GOQDs from graphite oxide. Based on the experimental analysis, the larger interlayer resistance of natural graphite, which hindered the insertion of scCO 2 molecules, and the hydrophobic property of natural graphite surface, which made the planar more susceptible to the attack of ultrasonic collapsing bubbles, were deduced to be the two main reasons for this result. The differences in characteristics among the three kinds of GQDs were also studied and compared in this research. In our opinion, this low-cost and time-saving method may provide an alternative green route for the production of various kinds of GQDs, especially PGQDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H2O2 production and transcriptional alteration

    PubMed Central

    2011-01-01

    Background Enormous work has shown that polyamines are involved in a variety of physiological processes, but information is scarce on the potential of modifying disease response through genetic transformation of a polyamine biosynthetic gene. Results In the present work, an apple spermidine synthase gene (MdSPDS1) was introduced into sweet orange (Citrus sinensis Osbeck 'Anliucheng') via Agrobacterium-mediated transformation of embryogenic calluses. Two transgenic lines (TG4 and TG9) varied in the transgene expression and cellular endogenous polyamine contents. Pinprick inoculation demonstrated that the transgenic lines were less susceptible to Xanthomonas axonopodis pv. citri (Xac), the causal agent of citrus canker, than the wild type plants (WT). In addition, our data showed that upon Xac attack TG9 had significantly higher free spermine (Spm) and polyamine oxidase (PAO) activity when compared with the WT, concurrent with an apparent hypersensitive response and the accumulation of more H2O2. Pretreatment of TG9 leaves with guazatine acetate, an inhibitor of PAO, repressed PAO activity and reduced H2O2 accumulation, leading to more conspicuous disease symptoms than the controls when both were challenged with Xac. Moreover, mRNA levels of most of the defense-related genes involved in synthesis of pathogenesis-related protein and jasmonic acid were upregulated in TG9 than in the WT regardless of Xac infection. Conclusion Our results demonstrated that overexpression of the MdSPDS1 gene prominently lowered the sensitivity of the transgenic plants to canker. This may be, at least partially, correlated with the generation of more H2O2 due to increased production of polyamines and enhanced PAO-mediated catabolism, triggering hypersensitive response or activation of defense-related genes. PMID:21439092

  6. Characterization of mussel H2A.Z.2: a new H2A.Z variant preferentially expressed in germinal tissues from Mytilus.

    PubMed

    Rivera-Casas, Ciro; González-Romero, Rodrigo; Vizoso-Vazquez, Ángel; Cheema, Manjinder S; Cerdán, M Esperanza; Méndez, Josefina; Ausió, Juan; Eirin-Lopez, Jose M

    2016-10-01

    Histones are the fundamental constituents of the eukaryotic chromatin, facilitating the physical organization of DNA in chromosomes and participating in the regulation of its metabolism. The H2A family displays the largest number of variants among core histones, including the renowned H2A.X, macroH2A, H2A.B (Bbd), and H2A.Z. This latter variant is especially interesting because of its regulatory role and its differentiation into 2 functionally divergent variants (H2A.Z.1 and H2A.Z.2), further specializing the structure and function of vertebrate chromatin. In the present work we describe, for the first time, the presence of a second H2A.Z variant (H2A.Z.2) in the genome of a non-vertebrate animal, the mussel Mytilus. The molecular and evolutionary characterization of mussel H2A.Z.1 and H2A.Z.2 histones is consistent with their functional specialization, supported on sequence divergence at promoter and coding regions as well as on varying gene expression patterns. More precisely, the expression of H2A.Z.2 transcripts in gonadal tissue and its potential upregulation in response to genotoxic stress might be mirroring the specialization of this variant in DNA repair. Overall, the findings presented in this work complement recent reports describing the widespread presence of other histone variants across eukaryotes, supporting an ancestral origin and conserved role for histone variants in chromatin.

  7. Oxygen vacancy rich Cu2O based composite material with nitrogen doped carbon as matrix for photocatalytic H2 production and organic pollutant removal.

    PubMed

    Lu, Lele; Xu, Xinxin; Yan, Jiaming; Shi, Fa-Nian; Huo, Yuqiu

    2018-02-06

    A nitrogen doped carbon matrix supported Cu 2 O composite material (Cu/Cu2O@NC) was fabricated successfully with a coordination polymer as precursor through calcination. In this composite material, Cu 2 O particles with a size of about 6-10 nm were dispersed evenly in the nitrogen doped carbon matrix. After calcination, some coordinated nitrogen atoms were doped in the lattice of Cu 2 O and replace oxygen atoms, thus generating a large number of oxygen vacancies. In Cu/Cu2O@NC, the existence of oxygen vacancies has been confirmed by electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS). Under visible light irradiation, Cu/Cu2O@NC exhibits excellent H 2 production with the rate of 379.6 μmol h -1 g -1 . Its photocatalytic activity affects organic dyes, such as Rhodamine B (RhB) and methyl orange (MO). In addition to photocatalysis, Cu/Cu2O@NC also exhibits striking catalytic activity in reductive conversion of 4-nitrophenol to 4-aminophenol with in presence of sodium borohydride (NaBH 4 ). The conversion efficiency reaches almost 100% in 250 s with the quantity of Cu/Cu2O@NC as low as 5 mg. The outstanding H 2 production and organic pollutants removal are attributed to the oxygen vacancy. We expect that Cu/Cu2O@NC will find its way as a new resource for hydrogen energy as well as a promising material in water purification.

  8. Phylogeography and Evolutionary History of Reassortant H9N2 Viruses with Potential Human Health Implications ▿ †

    PubMed Central

    Fusaro, Alice; Monne, Isabella; Salviato, Annalisa; Valastro, Viviana; Schivo, Alessia; Amarin, Nadim Mukhles; Gonzalez, Carlos; Ismail, Mahmoud Moussa; Al-Ankari, Abdu-Rahman; Al-Blowi, Mohamed Hamad; Khan, Owais Ahmed; Maken Ali, Ali Safar; Hedayati, Afshin; Garcia Garcia, Juan; Ziay, Ghulam M.; Shoushtari, Abdolhamid; Al Qahtani, Kassem Nasser; Capua, Ilaria; Holmes, Edward C.; Cattoli, Giovanni

    2011-01-01

    Avian influenza viruses of the H9N2 subtype have seriously affected the poultry industry of the Far and Middle East since the mid-1990s and are considered one of the most likely candidates to cause a new influenza pandemic in humans. To understand the genesis and epidemiology of these viruses, we investigated the spatial and evolutionary dynamics of complete genome sequences of H9N2 viruses circulating in nine Middle Eastern and Central Asian countries from 1998 to 2010. We identified four distinct and cocirculating groups (A, B, C, and D), each of which has undergone widespread inter- and intrasubtype reassortments, leading to the generation of viruses with unknown biological properties. Our analysis also suggested that eastern Asia served as the major source for H9N2 gene segments in the Middle East and Central Asia and that in this geographic region within-country evolution played a more important role in shaping viral genetic diversity than migration between countries. The genetic variability identified among the H9N2 viruses was associated with specific amino acid substitutions that are believed to result in increased transmissibility in mammals, as well as resistance to antiviral drugs. Our study highlights the need to constantly monitor the evolution of H9N2 viruses in poultry to better understand the potential risk to human health posed by these viruses. PMID:21680519

  9. Experimental and theoretical investigation of homogeneous gaseous reaction of CO2(g) + nH2O(g) + nNH3(g) → products (n = 1, 2).

    PubMed

    Li, Zhuangjie; Zhang, Baoquan

    2012-09-13

    Decreasing CO2 emissions into the atmosphere is key for reducing global warming. To facilitate the CO2 emission reduction efforts, our laboratory conducted experimental and theoretical investigations of the homogeneous gaseous reaction of CO2(g) + nH2O(g) + nNH3(g) → (NH4)HCO3(s)/(NH4)2CO3(s) (n = 1 and 2) using Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy and ab initio molecular orbital theory. Our FTIR-ATR experimental results indicate that (NH4)2CO3(s) and (NH4)HCO3(s) are formed as aerosol particulate matter when carbon dioxide reacts with ammonia and water in the gaseous phase at room temperature. Ab initio study of this chemical system suggested that the reaction may proceed through formation of NH3·H2O(g), NH3·CO2(g), and CO2·H2O(g) complexes. Subsequent complexes, NH3·H2O·CO2 and (NH3)2·H2O·CO2, can be formed by adding gaseous reactants to the NH3·H2O(g), NH3·CO2(g), and CO2·H2O(g) complexes, respectively. The NH3·H2O·CO2 and (NH3)2·H2O·CO2 complexes can then be rearranged to produce (NH4)HCO3 and (NH4)2CO3 as final products via a transition state, and the NH3 molecule acts as a medium accepting and donating hydrogen atoms in the rearrangement process. Our computational results also reveal that the presence of an additional water molecule can reduce the activation energy of the rearrangement process. The high activation energy predicted in the present work suggests that the reaction is kinetically not favored, and our experimental observation of (NH4)HCO3(s) and (NH4)2CO3(s) may be attributed to the high concentrations of reactants increasing the reaction rate of the title reactions in the reactor.

  10. Morphology-dependent optical absorption and conduction properties of photoelectrochemical photocatalysts for H2 production: A case study

    NASA Astrophysics Data System (ADS)

    Huda, Muhammad N.; Turner, John A.

    2010-06-01

    Efficient photoelectrochemical H2 production by solar irradiation depends not only on the photocatalyst's band gap and its band-edge positions but also on the detailed electronic nature of the bands, such as the localization or delocalization of the band edges and their orbital characteristics. These determine the carrier transport properties, reactivity, light absorption strength, etc. and significantly impact the material's efficiency as a photoconverter. The localization or delocalization of the band edges may arise either due to the orbital nature of the bands or the structural morphology of the material. A recent experimental report on a photocatalyst based on s /p orbitals showed very poor performance for H2 production despite the delocalized nature of the s /p bands as compared to the d-bands of transition metal oxides. It is then important to examine whether this poor performance is inherent to these materials or rather arises from some experimental limitations. A theoretical analysis by first-principle methods is well suited to shed light on this question.

  11. The first potential energy surfaces for the C{sub 6}H{sup −}–H{sub 2} and C{sub 6}H{sup −}–He collisional systems and their corresponding inelastic cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Kyle M., E-mail: kyle.walker@univ-lehavre.fr; Dumouchel, Fabien, E-mail: fabien.dumouchel@univ-lehavre.fr; Lique, François, E-mail: francois.lique@univ-lehavre.fr

    2016-07-14

    Molecular anions have recently been detected in the interstellar and circumstellar media. Accurate modeling of their abundance requires calculations of collisional data with the most abundant species that are usually He atoms and H{sub 2} molecules. In this paper, we focus on the collisional excitation of the first observed molecular anion, C{sub 6}H{sup −}, by He and H{sub 2}. Theoretical calculations of collisional cross sections rely generally on ab initio interaction potential energy surfaces (PESs). Hence, we present here the first PESs for the C{sub 6}H{sup −}–H{sub 2} and C{sub 6}H{sup −}–He van der Waals systems. The ab initio energymore » data for the surfaces were computed at the explicitly correlated coupled cluster with single, double, and scaled perturbative triple excitations level of theory. The method of interpolating moving least squares was used to construct 4D and 2D analytical PESs from these data. Both surfaces are characterized by deep wells and large anisotropies. Analytical models of the PESs were used in scattering calculations to obtain cross sections for low-lying rotational transitions. As could have been anticipated, important differences exist between the He and H{sub 2} cross sections. Conversely, no significant differences exist between the collisions of C{sub 6}H{sup −} with the two species of H{sub 2} (para- and ortho-H{sub 2}). We expect that these new data will help in accurately determining the abundance of the C{sub 6}H{sup −} anions in space.« less

  12. Biodiesel production potential of wastewater treatment high rate algal pond biomass.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2016-12-01

    This study investigates the year-round production potential and quality of biodiesel from wastewater treatment high rate algal pond (WWT HRAP) biomass and how it is affected by CO 2 addition to the culture. The mean monthly pond biomass and lipid productivities varied between 2.0±0.3 and 11.1±2.5gVSS/m 2 /d, and between 0.5±0.1 and 2.6±1.1g/m 2 /d, respectively. The biomass fatty acid methyl esters were highly complex which led to produce low-quality biodiesel so that it cannot be used directly as a transportation fuel. Overall, 0.9±0.1g/m 2 /d (3.2±0.5ton/ha/year) low-quality biodiesel could be produced from WWT HRAP biomass which could be further increased to 1.1±0.1g/m 2 /d (4.0ton/ha/year) by lowering culture pH to 6-7 during warm summer months. CO 2 addition, had little effect on both the biomass lipid content and profile and consequently did not change the quality of biodiesel. Copyright © 2016. Published by Elsevier Ltd.

  13. Strategy for pH control and pH feedback-controlled substrate feeding for high-level production of L-tryptophan by Escherichia coli.

    PubMed

    Cheng, Li-Kun; Wang, Jian; Xu, Qing-Yang; Zhao, Chun-Guang; Shen, Zhi-Qiang; Xie, Xi-Xian; Chen, Ning

    2013-05-01

    Optimum production of L-tryptophan by Escherichia coli depends on pH. Here, we established conditions for optimizing the production of L-tryptophan. The optimum pH range was 6.5-7.2, and pH was controlled using a three-stage strategy [pH 6.5 (0-12 h), pH 6.8 (12-24 h), and pH 7.2 (24-38 h)]. Specifically, ammonium hydroxide was used to adjust pH during the initial 24 h, and potassium hydroxide and ammonium hydroxide (1:2, v/v) were used to adjust pH during 24-38 h. Under these conditions, NH4 (+) and K(+) concentrations were kept below the threshold for inhibiting L-tryptophan production. Optimization was also accomplished using ratios (v/v) of glucose to alkali solutions equal to 4:1 (5-24 h) and 6:1 (24-38 h). The concentration of glucose and the pH were controlled by adjusting the pH automatically. Applying a pH-feedback feeding method, the steady-state concentration of glucose was maintained at approximately 0.2 ± 0.02 g/l, and acetic acid accumulated to a concentration of 1.15 ± 0.03 g/l, and the plasmid stability was 98 ± 0.5 %. The final, optimized concentration of L-tryptophan was 43.65 ± 0.29 g/l from 52.43 ± 0.38 g/l dry cell weight.

  14. Interaction—Induced Spectroscopy of H2 in the Fullerenes

    NASA Astrophysics Data System (ADS)

    Lewis, John Courtenay; Herman, Roger M.

    2006-11-01

    Carbon nanostructures of various sorts have been the subject of intensive research since their discoveries in the latter part of the 20th century. Much of this research has been motivated by the intrinsic interest of these structures, though their potential as hydrogen storage media has also attracted attention. It was realized that the carbon-hydrogen interactions in these media would induce dipole moments which might lead to observable absorption of infrared spectra, and this work will be reviewed and extended in this paper. The fundamental vibration-rotation spectrum, of H2 in a fcc C60 lattice (fullerite) at room temperature was first observed by S. A. FitzGerald and coworkers, who have subsequently extended their observations to near liquid nitrogen temperatures. Herman and Lewis have discussed the theoretical aspects of H2 in carbon nanotube bundles and in fullerite. We have developed a detailed theory for the spectrum of H2 in fullerite. This theory assumes that the H2 - C potential can be accurately approximated by an exp-6 potential, the parameters of which are then obtained by fitting the line frequencies in FitzGerald's spectra. We have also obtained a model for the H2 induced dipole moment based on the calculations of Frommhold and coworkers on the induced dipole in H2 - He. With one adjustable parameter this model gives a good account of the observed intensities. In work to date the line width has been taken as an empirical parameter. However, the line width is in principal determinable from the H2 - C potential and induced dipole moment, together with the known properties of the phonon modes in fullerite. We conclude this paper with a discussion of the line width problem for H2 in fullerite.

  15. On the ultraviolet photodissociation of H2Te

    NASA Astrophysics Data System (ADS)

    Alekseyev, Aleksey B.; Liebermann, Heinz-Peter; Wittig, Curt

    2004-11-01

    The photodissociation of H2Te through excitation in the first absorption band is investigated by means of multireference spin-orbit configuration interaction (CI) calculations. Bending potentials for low-lying electronic states of H2Te are obtained in C2v symmetry for Te-H distances fixed at the ground state equilibrium value of 3.14a0, as well as for the minimum energy path constrained to R1=R2. Asymmetric cuts of potential energy surfaces for excited states (at R1=3.14a0 and θ=90.3°) are obtained for the first time. It is shown that vibrational structure in the 380-400 nm region of the long wavelength absorption tail is due to transitions to 3A', which has a shallow minimum at large HTe-H separations. Transitions to this state are polarized in the molecular plane, and this state converges to the excited TeH(2Π1/2)+H(2S) limit. These theoretical data are in accord with the selectivity toward TeH(2Π1/2) relative to TeH(2Π3/2) that has been found experimentally for 355 nm H2Te photodissociation. The calculated 3A'←X˜A' transition dipole moment increases rapidly with HTe-H distance; this explains the observation of 3A' vibrational structure for low vibrational levels, despite unfavorable Franck-Condon factors. According to the calculated vertical energies and transition moment data, the maximum in the first absorption band at ≈245 nm is caused by excitation to 4A″, which has predominantly 21A″ (1B1 in C2v symmetry) character.

  16. Astrochemistry in the Early Universe: Collisional Rates for H on H2

    NASA Technical Reports Server (NTRS)

    Lepp, S. H.; Archer, D.; Balakrishnan, N.

    2006-01-01

    We present preliminary results of a full quantum calculation of state to state cross sections for H on H2. These cross sections are calculated for v=0,4 j=0,15 for energies up to 3.0 eV. The cross sections are calculated on the BKMP2 potential surface (Boothroyd et al. 1996) with the ABC scattering code (Skouteris et al. 2000).

  17. Quantum and quasiclassical dynamics of the multi-channel H + H2S reaction.

    PubMed

    Qi, Ji; Lu, Dandan; Song, Hongwei; Li, Jun; Yang, Minghui

    2017-03-28

    The prototypical multi-channel reaction H + H 2 S → H 2 + SH/H + H 2 S has been investigated using the full-dimensional quantum scattering and quasi-classical trajectory methods to unveil the underlying competition mechanism between different product channels and the mode specificity. This reaction favors the abstraction channel over the exchange channel. For both channels, excitations in the two stretching modes promote the reaction with nearly equal efficiency and are more efficient than the bending mode excitation. However, they are all less efficient than the translational energy. In addition, the experimentally observed non-Arrhenius temperature dependence of the thermal rate constants is reasonably reproduced by the quantum dynamics calculations, confirming that the non-Arrhenius behavior is caused by the pronounced quantum tunneling.

  18. Direct observation of forward-scattering oscillations in the H+HD→H2+D reaction

    NASA Astrophysics Data System (ADS)

    Yuan, Daofu; Yu, Shengrui; Chen, Wentao; Sang, Jiwei; Luo, Chang; Wang, Tao; Xu, Xin; Casavecchia, Piergiorgio; Wang, Xingan; Sun, Zhigang; Zhang, Dong H.; Yang, Xueming

    2018-06-01

    Accurate measurements of product state-resolved angular distributions are central to fundamental studies of chemical reaction dynamics. Yet, fine quantum-mechanical structures in product angular distributions of a reactive scattering process, such as the fast oscillations in the forward-scattering direction, have never been observed experimentally and the nature of these oscillations has not been fully explored. Here we report the crossed-molecular-beam experimental observation of these fast forward-scattering oscillations in the product angular distribution of the benchmark chemical reaction, H + HD → H2 + D. Clear oscillatory structures are observed for the H2(v' = 0, j' = 1, 3) product states at a collision energy of 1.35 eV, in excellent agreement with the quantum-mechanical dynamics calculations. Our analysis reveals that the oscillatory forward-scattering components are mainly contributed by the total angular momentum J around 28. The partial waves and impact parameters responsible for the forward scatterings are also determined from these observed oscillations, providing crucial dynamics information on the transient reaction process.

  19. Probiotic potentials of yeasts isolated from some cereal-based Nigerian traditional fermented food products.

    PubMed

    Ogunremi, O R; Sanni, A I; Agrawal, R

    2015-09-01

    To determine the starter culture and multifunctional potentials of yeast strains from some cereal-based Nigerian traditional fermented food products. Yeast isolates were screened for enzyme production and identified by sequencing the D1/D2 region of 26S rDNA. Pichia kluyveri LKC17, Issatchenkia orientalis OSL11, Pichia kudriavzevii OG32, Pichia kudriavzevii ROM11 and Candida tropicalis BOM21 exhibited the highest protease, lipase and phytase activity. They were selected and further evaluated for gastrointestinal survival and adherence ability. Although strain-specific, they retained viability at 37°C and showed survival at pH 2·0., I. orientalis OSL11 showed the highest survival at 2% bile salts concentration and P. kudriavzevii ROM11 showed the least survival. The yeast strains showed strong autoaggregation ability (81·24-91·85%) and hydrophobicity to n-hexadecane (33·61-42·30%). The highest co-aggregation ability was detected for P. kudriavzevii OG32 and Escherichia coli (71·57%). All the yeast strains removed cholesterol in the range of 49·03-74·05% over 48 h and scavenged for free radicals in methanol reaction system. In this study, we isolated new yeast strains with multifunctional potentials that can be used as functional starter cultures to produce cereal-based probiotic products. The development of probiotic yeast strains as starter culture to improve the quality attributes and confer functional value on cereal-based traditional fermented foods is beneficial. © 2015 The Society for Applied Microbiology.

  20. H2O2 production rate in Lactobacillus johnsonii is modulated via the interplay of a heterodimeric flavin oxidoreductase with a soluble 28 Kd PAS domain containing protein

    PubMed Central

    Valladares, Ricardo B.; Graves, Christina; Wright, Kaitlyn; Gardner, Christopher L.; Lorca, Graciela L.; Gonzalez, Claudio F.

    2015-01-01

    Host and commensals crosstalk, mediated by reactive oxygen species (ROS), has triggered a growing scientific interest to understand the mechanisms governing such interaction. However, the majority of the scientific studies published do not evaluate the ROS production by commensals bacteria. In this context we recently showed that Lactobacillus johnsonii N6.2, a strain of probiotic value, modulates the activity of the critical enzymes 2,3-indoleamine dioxygenase via H2O2 production. L. johnsonii N6.2 by decreasing IDO activity, is able to modify the tryptophan/kynurenine ratio in the host blood with further systemic consequences. Understanding the mechanisms of H2O2 production is critical to predict the probiotic value of these strains and to optimize bacterial biomass production in industrial processes. We performed a transcriptome analysis to identify genes differentially expressed in L. johnsonii N6.2 cells collected from cultures grown under different aeration conditions. Herein we described the biochemical characteristics of a heterodimeric FMN reductase (FRedA/B) whose in vitro activity is controlled by LjPAS protein with a typical Per-Arnst-Sim (PAS) sensor domain. Interestingly, LjPAS is fused to the FMN reductase domains in other lactobacillaceae. In L. johnsonii, LjPAS is encoded by an independent gene which expression is repressed under anaerobic conditions (>3 fold). Purified LjPAS was able to slow down the FRedA/B initial activity rate when the holoenzyme precursors (FredA, FredB, and FMN) were mixed in vitro. Altogether the results obtained suggest that LjPAS module regulates the H2O2 production helping the cells to minimize oxidative stress in response to environmental conditions. PMID:26236298

  1. H2O2 production rate in Lactobacillus johnsonii is modulated via the interplay of a heterodimeric flavin oxidoreductase with a soluble 28 Kd PAS domain containing protein.

    PubMed

    Valladares, Ricardo B; Graves, Christina; Wright, Kaitlyn; Gardner, Christopher L; Lorca, Graciela L; Gonzalez, Claudio F

    2015-01-01

    Host and commensals crosstalk, mediated by reactive oxygen species (ROS), has triggered a growing scientific interest to understand the mechanisms governing such interaction. However, the majority of the scientific studies published do not evaluate the ROS production by commensals bacteria. In this context we recently showed that Lactobacillus johnsonii N6.2, a strain of probiotic value, modulates the activity of the critical enzymes 2,3-indoleamine dioxygenase via H2O2 production. L. johnsonii N6.2 by decreasing IDO activity, is able to modify the tryptophan/kynurenine ratio in the host blood with further systemic consequences. Understanding the mechanisms of H2O2 production is critical to predict the probiotic value of these strains and to optimize bacterial biomass production in industrial processes. We performed a transcriptome analysis to identify genes differentially expressed in L. johnsonii N6.2 cells collected from cultures grown under different aeration conditions. Herein we described the biochemical characteristics of a heterodimeric FMN reductase (FRedA/B) whose in vitro activity is controlled by LjPAS protein with a typical Per-Arnst-Sim (PAS) sensor domain. Interestingly, LjPAS is fused to the FMN reductase domains in other lactobacillaceae. In L. johnsonii, LjPAS is encoded by an independent gene which expression is repressed under anaerobic conditions (>3 fold). Purified LjPAS was able to slow down the FRedA/B initial activity rate when the holoenzyme precursors (FredA, FredB, and FMN) were mixed in vitro. Altogether the results obtained suggest that LjPAS module regulates the H2O2 production helping the cells to minimize oxidative stress in response to environmental conditions.

  2. Structure of [M + H - H(2)O](+) from protonated tetraglycine revealed by tandem mass spectrometry and IRMPD spectroscopy.

    PubMed

    Bythell, Benjamin J; Dain, Ryan P; Curtice, Stephanie S; Oomens, Jos; Steill, Jeffrey D; Groenewold, Gary S; Paizs, Béla; Van Stipdonk, Michael J

    2010-04-22

    Multiple-stage tandem mass spectrometry and collision-induced dissociation were used to investigate loss of H(2)O or CH(3)OH from protonated versions of GGGX (where X = G, A, and V), GGGGG, and the methyl esters of these peptides. In addition, wavelength-selective infrared multiple photon dissociation was used to characterize the [M + H - H(2)O](+) product derived from protonated GGGG and the major MS(3) fragment, [M + H - H(2)O - 29](+) of this peak. Consistent with the earlier work [ Ballard , K. D. ; Gaskell , S. J. J. Am. Soc. Mass Spectrom. 1993 , 4 , 477 - 481 ; Reid , G. E. ; Simpson , R. J. ; O'Hair , R. A. J. Int. J. Mass Spectrom. 1999 , 190/191 , 209 -230 ], CID experiments show that [M + H - H(2)O](+) is the dominant peak generated from both protonated GGGG and protonated GGGG-OMe. This strongly suggests that the loss of the H(2)O molecule occurs from a position other than the C-terminal free acid and that the product does not correspond to formation of the b(4) ion. Subsequent CID of [M + H - H(2)O](+) supports this proposal by resulting in a major product that is 29 mass units less than the precursor ion. This is consistent with loss of HN horizontal lineCH(2) rather than loss of carbon monoxide (28 mass units), which is characteristic of oxazolone-type b(n) ions. Comparison between experimental and theoretical infrared spectra for a group of possible structures confirms that the [M + H - H(2)O](+) peak is not a substituted oxazolone but instead suggests formation of an ion that features a five-membered ring along the peptide backbone, close to the amino terminus. Additionally, transition structure calculations and comparison of theoretical and experimental spectra of the [M + H - H(2)O - 29](+) peak also support this proposal.

  3. Xylary pH and Reduction Potential Levels of Iron-stressed Silver Maple (Acer saccharinum L.) 1

    PubMed Central

    Morris, Robert L.; Swanson, Bert T.

    1980-01-01

    Xylary fluid pH and reduction potentials were measured on silver maple (Acer saccharinum L.) grown under Fe and pH stress. Although pH and reduction potential (millivolt/59.2) varied significantly in the nutrient solution, xylary pH and reduction potential remained constant. It was concluded that changes in the pH and reduction potential in the xylary fluid of silver maple are not responsible for iron chlorosis. PMID:16661196

  4. Numerically Exact Calculation of Rovibrational Levels of Cl^-H_2O

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2014-06-01

    Large amplitude vibrations of Van der Waals clusters are important because they reveal large regions of a potential energy surface (PES). To calculate spectra of Van der Waals clusters it is common to use an adiabatic approximation. When coupling between intra- and inter-molecular coordinates is important non-adiabatic coupling cannot be neglected and it is therefore critical to develop and test theoretical methods that couple both types of coordinates. We have developed new product basis and contracted basis Lanczos methods for Van der Waals complexes and tested them by computing rovibrational energy levels of Cl^-H_2O. The new product basis is made of functions of the inter-monomer distance, Wigner functions that depend on Euler angles specifying the orientation of H_2O with respect to a frame attached to the inter-monomer Jacobi vector, basis functions for H_2O vibration, and Wigner functions that depend on Euler angles specifying the orientation of the inter-monomer Jacobi vector with respect to a space-fixed frame. An advantage of this product basis is that it can be used to make an efficient contracted basis by replacing the vibrational basis functions for the monomer with monomer vibrational wavefunctions. Due to weak coupling between intra- and inter-molecular coordinates, only a few tens of monomer vibrational wavefunctions are necessary. The validity of the two new methods is established by comparing energy levels with benchmark rovibrational levels obtained with polyspherical coordinates and spherical harmonic type basis functions. For all bases, product structure is exploited to calculate eigenvalues with the Lanczos algorithm. For Cl^-H_2O, we are able, for the first time, to compute accurate splittings due to tunnelling between the two equivalent C_s minima. We use the PES of Rheinecker and Bowman (RB). Our results are in good agreement with experiment for the five fundamental bands observed. J. Rheinecker and J. M. Bowman, J. Chem. Phys. 124 131102

  5. Plant Aquaporin AtPIP1;4 Links Apoplastic H2O2 Induction to Disease Immunity Pathways.

    PubMed

    Tian, Shan; Wang, Xiaobing; Li, Ping; Wang, Hao; Ji, Hongtao; Xie, Junyi; Qiu, Qinglei; Shen, Dan; Dong, Hansong

    2016-07-01

    Hydrogen peroxide (H2O2) is a stable component of reactive oxygen species, and its production in plants represents the successful recognition of pathogen infection and pathogen-associated molecular patterns (PAMPs). This production of H2O2 is typically apoplastic but is subsequently associated with intracellular immunity pathways that regulate disease resistance, such as systemic acquired resistance and PAMP-triggered immunity. Here, we elucidate that an Arabidopsis (Arabidopsis thaliana) aquaporin (i.e. the plasma membrane intrinsic protein AtPIP1;4) acts to close the cytological distance between H2O2 production and functional performance. Expression of the AtPIP1;4 gene in plant leaves is inducible by a bacterial pathogen, and the expression accompanies H2O2 accumulation in the cytoplasm. Under de novo expression conditions, AtPIP1;4 is able to mediate the translocation of externally applied H2O2 into the cytoplasm of yeast (Saccharomyces cerevisiae) cells. In plant cells treated with H2O2, AtPIP1;4 functions as an effective facilitator of H2O2 transport across plasma membranes and mediates the translocation of externally applied H2O2 from the apoplast to the cytoplasm. The H2O2-transport role of AtPIP1;4 is essentially required for the cytoplasmic import of apoplastic H2O2 induced by the bacterial pathogen and two typical PAMPs in the absence of induced production of intracellular H2O2 As a consequence, cytoplasmic H2O2 quantities increase substantially while systemic acquired resistance and PAMP-triggered immunity are activated to repress the bacterial pathogenicity. By contrast, loss-of-function mutation at the AtPIP1;4 gene locus not only nullifies the cytoplasmic import of pathogen- and PAMP-induced apoplastic H2O2 but also cancels the subsequent immune responses, suggesting a pivotal role of AtPIP1;4 in apocytoplastic signal transduction in immunity pathways. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. Assessing the potential for measuring Europa's tidal Love number h2 using radar sounder and topographic imager data

    NASA Astrophysics Data System (ADS)

    Steinbrügge, G.; Schroeder, D. M.; Haynes, M. S.; Hussmann, H.; Grima, C.; Blankenship, D. D.

    2018-01-01

    The tidal Love number h2 is a key geophysical measurement for the characterization of Europa's interior, especially of its outer ice shell if a subsurface ocean is present. We performed numerical simulations to assess the potential for estimating h2 using altimetric measurements with a combination of radar sounding and stereo imaging data. The measurement principle exploits both delay and Doppler information in the radar surface return in combination with topography from a digital terrain model (DTM). The resulting radar range measurements at cross-over locations can be used in combination with radio science Doppler data for an improved trajectory solution and for estimating the h2 Love number. Our simulation results suggest that the absolute accuracy of h2 from the joint analysis of REASON (Radar for Europa Assessment and Sounding: Ocean to Near-surface) surface return and EIS (Europa Imaging System) DTM data will be in the range of 0.04-0.17 assuming full radio link coverage. The error is controlled by the SNR budget and DTM quality, both dependent on the surface properties of Europa. We estimate that this would unambiguously confirm (or reject) the global ocean hypothesis and, in combination with a nominal radio-science based measurement of the tidal Love number k2, constrain the thickness of Europa's outer ice shell to up to ±15 km.

  7. Candidate Water Vapor Lines to Locate the H2O Snowline through High-dispersion Spectroscopic Observations. III. Submillimeter H2 16O and H2 18O Lines

    NASA Astrophysics Data System (ADS)

    Notsu, Shota; Nomura, Hideko; Walsh, Catherine; Honda, Mitsuhiko; Hirota, Tomoya; Akiyama, Eiji; Millar, T. J.

    2018-03-01

    In this paper, we extend the results presented in our former papers on using ortho-{{{H}}}2{}16{{O}} line profiles to constrain the location of the H2O snowline in T Tauri and Herbig Ae disks, to include submillimeter para-{{{H}}}2{}16{{O}} and ortho- and para-{{{H}}}2{}18{{O}} lines. Since the number densities of the ortho- and para-{{{H}}}2{}18{{O}} molecules are about 560 times smaller than their 16O analogs, they trace deeper into the disk than the ortho-{{{H}}}2{}16{{O}} lines (down to z = 0, i.e., the midplane). Thus these {{{H}}}2{}18{{O}} lines are potentially better probes of the position of the H2O snowline at the disk midplane, depending on the dust optical depth. The values of the Einstein A coefficients of submillimeter candidate water lines tend to be lower (typically <10‑4 s‑1) than infrared candidate water lines. Thus in the submillimeter candidate water line cases, the local intensity from the outer optically thin region in the disk is around 104 times smaller than that in the infrared candidate water line cases. Therefore, in the submillimeter lines, especially {{{H}}}2{}18{{O}} and para-{{{H}}}2{}16{{O}} lines with relatively lower upper state energies (∼a few 100 K) can also locate the position of the H2O snowline. We also investigate the possibility of future observations with ALMA to identify the position of the water snowline. There are several candidate water lines that trace the hot water gas inside the H2O snowline in ALMA Bands 5–10.

  8. Hydrothermal Syntheses and Structures of Three-Dimensional Oxo-fluorovanadium Phosphates: [H 2N(C 2H 4) 2NH 2] 0.5[(VO) 4V(HPO 4) 2(PO 4) 2F 2(H 2O) 4] · 2H 2O and K 2[(VO) 3(PO 4) 2F 2(H 2O)] · H 2O

    NASA Astrophysics Data System (ADS)

    Bonavia, Grant; Haushalter, R. C.; Zubieta, Jon

    1996-11-01

    The hydrothermal reactions of FPO3H2with vanadium oxides result in the incorporation of fluoride into V-P-O frameworks as a consequence of metal-mediated hydrolysis of the fluorophosphoric acid to produce F-and PO3-4. By exploiting this convenient source of F-, two 3-dimensional oxo-fluorovanadium phosphate phases were isolated, [H2N(C2H4)2NH2]0.5[(VO)4V(HOP4)2(PO4)2F2(H2O)4) · 2H2O (1 · 2H2O) and K2[(VO)3(PO4)2F2(H2O)] · H2O (2 · H2O). Both anionic frameworks contain (VIVO)-F--phosphate layers, with confacial bioctahedral {(VIVO)2FO6} units as the fundamental motif. In the case of 1, the layers are linked through {VIIIO6} octahedra, while for 2 the interlayer connectivity is provided by edge-sharing {(VIVO)2F2O6} units. Crystal data are 1 · 2H2O, CH10FN0.5O13P2V2.5, monoclinicC2/m,a= 18.425(4) Å,c= 8.954(2) Å, β = 93.69(2)0,V= 1221.1(4) Å3,Z= 4,Dcalc= 2.423 g cm-3; 2 · H2O, H4F2K2O13P2V3, triclinicPoverline1,a= 7.298(1) Å,b= 8.929(2) Å,c = 10.090(2) Å, α = 104.50(2)0, β = 100.39(2)0, δ = 92.13(2)0,V= 623.8(3) Å3,Z= 2,Dcalc= 2.891 g cm-3.

  9. Stoichiometry and possible mechanism of SiH/sub 4/-O/sub 2/ explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, J.R.; Famil-Ghiriha, J.; Ring, M.A.

    1987-04-01

    The products of silane-O/sub 2/ mixture explosions vary with mixture composition. For O/sub 2/-rich mixtures (>70% O/sub 2/), the products are H/sub 2/O and SiO/sub 2/. As the mixtures become richer in silane, H/sub 2/ replaces H/sub 2/O as a final product. For very SiH/sub 4/-rich mixtures (>70% SiH/sub 4/), the products are H/sub 2/, SiO/sub x/, and Si. The fact that silane is totally consumed in silane-rich mixtures (70-90% silane) demonstrates that solid particle formation (SiO/sub 2/, SiO, and Si) occurs very rapidly and that the accompanying heat release is essential to drive the reactions to completion. It ismore » also clear that the explosion of a silane-rich mixture is primarily a thermal explosion of silane. Effects due to problems associated with upper pressure limit measurements and mechanistic aspects of the SiH/sub 4/-O/sub 2/ explosion reaction are discussed.« less

  10. A bond-order potential for the Al–Cu–H ternary system

    DOE PAGES

    Zhou, X. W.; Ward, D. K.; Foster, M. E.

    2018-02-27

    Al-Based Al–Cu alloys have a very high strength to density ratio, and are therefore important materials for transportation systems including vehicles and aircrafts. These alloys also appear to have a high resistance to hydrogen embrittlement, and as a result, are being explored for hydrogen related applications. To enable fundamental studies of mechanical behavior of Al–Cu alloys under hydrogen environments, we have developed an Al–Cu–H bond-order potential according to the formalism implemented in the molecular dynamics code LAMMPS. Our potential not only fits well to properties of a variety of elemental and compound configurations (with coordination varying from 1 to 12)more » including small clusters, bulk lattices, defects, and surfaces, but also passes stringent molecular dynamics simulation tests that sample chaotic configurations. Careful studies verified that this Al–Cu–H potential predicts structural property trends close to experimental results and quantum-mechanical calculations; in addition, it properly captures Al–Cu, Al–H, and Cu–H phase diagrams and enables simulations of H 2 dissociation, chemisorption, and absorption on Al–Cu surfaces.« less

  11. A bond-order potential for the Al–Cu–H ternary system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X. W.; Ward, D. K.; Foster, M. E.

    Al-Based Al–Cu alloys have a very high strength to density ratio, and are therefore important materials for transportation systems including vehicles and aircrafts. These alloys also appear to have a high resistance to hydrogen embrittlement, and as a result, are being explored for hydrogen related applications. To enable fundamental studies of mechanical behavior of Al–Cu alloys under hydrogen environments, we have developed an Al–Cu–H bond-order potential according to the formalism implemented in the molecular dynamics code LAMMPS. Our potential not only fits well to properties of a variety of elemental and compound configurations (with coordination varying from 1 to 12)more » including small clusters, bulk lattices, defects, and surfaces, but also passes stringent molecular dynamics simulation tests that sample chaotic configurations. Careful studies verified that this Al–Cu–H potential predicts structural property trends close to experimental results and quantum-mechanical calculations; in addition, it properly captures Al–Cu, Al–H, and Cu–H phase diagrams and enables simulations of H 2 dissociation, chemisorption, and absorption on Al–Cu surfaces.« less

  12. The H I-to-H2 Transition in a Turbulent Medium

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Burkhart, Blakesley; Sternberg, Amiel

    2017-07-01

    We study the effect of density fluctuations induced by turbulence on the H I/H2 structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H I/H2 balance calculations. We derive atomic-to-molecular density profiles and the H I column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H I/H2 density profiles are strongly perturbed in turbulent gas, the mean H I column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends on (a) the radiation intensity-to-mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H I PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H I in the Perseus molecular cloud. We show that a narrow observed H I PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.

  13. Three-dimensional ruthenium-doped TiO 2 sea urchins for enhanced visible-light-responsive H 2 production

    DOE PAGES

    Nguyen-Phan, Thuy -Duong; Luo, Si; Vovchok, Dimitriy; ...

    2016-05-23

    Here, three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO 2 hierarchical architectures composed of radially aligned, densely-packed TiO 2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyzes the formation of the 3D urchin structure and drives the enhanced photocatalytic H 2 production under visible light irradiation, not possible on undoped and bulk rutile TiO 2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m 2 g –1 but alsomore » induces enhanced photoresponse in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti 3+, significantly below the conduction band of TiO 2, and ruthenium species act as electron donors/acceptors that accelerate the photogenerated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.« less

  14. A combined crossed-beam and theoretical study of the reaction dynamics of O(3P) + C2H3 → C2H2 + OH: Analysis of the nascent OH products with the preferential population of the Π(A') component

    NASA Astrophysics Data System (ADS)

    Park, Min-Jin; Jang, Su-Chan; Choi, Jong-Ho

    2012-11-01

    The gas-phase reaction dynamics of ground-state atomic oxygen [O(3P) from the photo-dissociation of NO2] with vinyl radicals [C2H3 from the supersonic flash pyrolysis of vinyl iodide, C2H3I] has been investigated using a combination of high-resolution laser-induced fluorescence spectroscopy in a crossed-beam configuration and ab initio calculations. Unlike the previous gas-phase bulk kinetic experiments by Baulch et al. [J. Phys. Chem. Ref. Data 34, 757 (2005)], 10.1063/1.1748524, a new exothermic channel of O(3P) + C2H3 → C2H2 + OH (X 2Π: υ″ = 0) has been identified for the first time, and the population analysis shows bimodal nascent rotational distributions of OH products with low- and high-N″ components with a ratio of 2.4:1. No spin-orbit propensities were observed, and the averaged ratios of Π(A')/Π(A″) were determined to be 1.66 ± 0.27. On the basis of computations at the CBS-QB3 theory level and comparison with prior theory, the microscopic mechanisms responsible for the nascent populations can be understood in terms of two competing dynamical pathways: a direct abstraction process in the low-N″ regime as the major pathway and an addition-complex forming process in the high-N″ regime as the minor pathway. Particularly, during the bond cleavage process of the weakly bound van der Waals complex C2H2—OH, the characteristic pathway from the low dihedral-angle geometry was consistent with the observed preferential population of the Π(A') component in the nascent OH products. A molecular-level discussion of the reactivity, mechanism, and dynamical features of the title reaction are presented together with a comparison to gas-phase oxidation reactions of a series of prototypical hydrocarbon radicals.

  15. A combined crossed-beam and theoretical study of the reaction dynamics of O(3P) + C2H3 → C2H2 + OH: analysis of the nascent OH products with the preferential population of the Π(A') component.

    PubMed

    Park, Min-Jin; Jang, Su-Chan; Choi, Jong-Ho

    2012-11-28

    The gas-phase reaction dynamics of ground-state atomic oxygen [O((3)P) from the photo-dissociation of NO(2)] with vinyl radicals [C(2)H(3) from the supersonic flash pyrolysis of vinyl iodide, C(2)H(3)I] has been investigated using a combination of high-resolution laser-induced fluorescence spectroscopy in a crossed-beam configuration and ab initio calculations. Unlike the previous gas-phase bulk kinetic experiments by Baulch et al. [J. Phys. Chem. Ref. Data 34, 757 (2005)], a new exothermic channel of O((3)P) + C(2)H(3) → C(2)H(2) + OH (X (2)Π: υ" = 0) has been identified for the first time, and the population analysis shows bimodal nascent rotational distributions of OH products with low- and high-N" components with a ratio of 2.4:1. No spin-orbit propensities were observed, and the averaged ratios of Π(A('))∕Π(A") were determined to be 1.66 ± 0.27. On the basis of computations at the CBS-QB3 theory level and comparison with prior theory, the microscopic mechanisms responsible for the nascent populations can be understood in terms of two competing dynamical pathways: a direct abstraction process in the low-N" regime as the major pathway and an addition-complex forming process in the high-N" regime as the minor pathway. Particularly, during the bond cleavage process of the weakly bound van der Waals complex C(2)H(2)-OH, the characteristic pathway from the low dihedral-angle geometry was consistent with the observed preferential population of the Π(A') component in the nascent OH products. A molecular-level discussion of the reactivity, mechanism, and dynamical features of the title reaction are presented together with a comparison to gas-phase oxidation reactions of a series of prototypical hydrocarbon radicals.

  16. VTST/MT studies of the catalytic mechanism of C-H activation by transition metal complexes with [Cu2(μ-O2)], [Fe2(μ-O2)] and Fe(IV)-O cores based on DFT potential energy surfaces.

    PubMed

    Kim, Yongho; Mai, Binh Khanh; Park, Sumin

    2017-04-01

    High-valent Cu and Fe species, which are generated from dioxygen activation in metalloenzymes, carry out the functionalization of strong C-H bonds. Understanding the atomic details of the catalytic mechanism has long been one of the main objectives of bioinorganic chemistry. Large H/D kinetic isotope effects (KIEs) were observed in the C-H activation by high-valent non-heme Cu or Fe complexes in enzymes and their synthetic models. The H/D KIE depends significantly on the transition state properties, such as structure, energies, frequencies, and shape of the potential energy surface, when the tunneling effect is large. Therefore, theoretical predictions of kinetic parameters such as rate constants and KIEs can provide a reliable link between atomic-level quantum mechanical mechanisms and experiments. The accurate prediction of the tunneling effect is essential to reproduce the kinetic parameters. The rate constants and HD/KIE have been calculated using the variational transition-state theory including multidimensional tunneling based on DFT potential energy surfaces along the reaction coordinate. Excellent agreement was observed between the predicted and experimental results, which assures the validity of the DFT potential energy surfaces and, therefore, the proposed atomic-level mechanisms. The [Cu 2 (μ-O) 2 ], [Fe 2 (μ-O) 2 ], and Fe(IV)-oxo species were employed for C-H activation, and their role as catalysts was discussed at an atomic level.

  17. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation.

    PubMed

    Zhang, Zhenting; Xie, Yuejiao; He, Xiaolan; Li, Xinli; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2016-11-17

    Lignocellulose is one of the most abundant renewable feedstocks that has attracted considerable attention as a substrate for biofuel and biochemical production. One such biochemical product, lactic acid, is an important fermentation product because of its great potential for the production of biodegradable and biocompatible polylactic acid. High-titer lactic acid production from lignocellulosic materials has been achieved recently; however, it requires biodetoxification or results in large amounts of waste washing water. In this study, we employed two alkaline pretreatment methods and compared their effects on lactic acid fermentation of pretreated corncob by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile conditions. The lactic acid titer, yield, and productivity from 16% (w/w) NaOH-pretreated and washed corncob were 122.99 g/L, 0.77 g/g corncob, and 1.37 g/L/h, respectively, and from 16% NH 3 -H 2 O 2 -pretreated and washed corncob were 118.60 g/L, 0.74 g/g corncob, and 1.32 g/L/h, respectively. Importantly, the lactic acid titer, yield, and productivity from 18.4% NH 3 -H 2 O 2 -pretreated and unwashed corncob by using fed-batch simultaneous saccharification and fermentation reached 79.47 g/L, 0.43 g/g corncob, and 1.10 g/L/h, respectively, demonstrating that this method is possible for industrial applications and saves washing water.

  18. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation

    PubMed Central

    Zhang, Zhenting; Xie, Yuejiao; He, Xiaolan; Li, Xinli; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2016-01-01

    Lignocellulose is one of the most abundant renewable feedstocks that has attracted considerable attention as a substrate for biofuel and biochemical production. One such biochemical product, lactic acid, is an important fermentation product because of its great potential for the production of biodegradable and biocompatible polylactic acid. High-titer lactic acid production from lignocellulosic materials has been achieved recently; however, it requires biodetoxification or results in large amounts of waste washing water. In this study, we employed two alkaline pretreatment methods and compared their effects on lactic acid fermentation of pretreated corncob by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile conditions. The lactic acid titer, yield, and productivity from 16% (w/w) NaOH-pretreated and washed corncob were 122.99 g/L, 0.77 g/g corncob, and 1.37 g/L/h, respectively, and from 16% NH3-H2O2-pretreated and washed corncob were 118.60 g/L, 0.74 g/g corncob, and 1.32 g/L/h, respectively. Importantly, the lactic acid titer, yield, and productivity from 18.4% NH3-H2O2-pretreated and unwashed corncob by using fed-batch simultaneous saccharification and fermentation reached 79.47 g/L, 0.43 g/g corncob, and 1.10 g/L/h, respectively, demonstrating that this method is possible for industrial applications and saves washing water. PMID:27853308

  19. Emission characteristics of VOCs emitted from consumer and commercial products and their ozone formation potential.

    PubMed

    Dinh, Trieu-Vuong; Kim, Su-Yeon; Son, Youn-Suk; Choi, In-Young; Park, Seong-Ryong; Sunwoo, Young; Kim, Jo-Chun

    2015-06-01

    The characteristics of volatile organic compounds (VOCs) emitted from several consumer and commercial products (body wash, dishwashing detergent, air freshener, windshield washer fluid, lubricant, hair spray, and insecticide) were studied and compared. The spray products were found to emit the highest amount of VOCs (~96 wt%). In contrast, the body wash products showed the lowest VOC contents (~1.6 wt%). In the spray products, 21.6-96.4 % of the VOCs were propane, iso-butane, and n-butane, which are the components of liquefied petroleum gas. Monoterpene (C10H16) was the dominant component of the VOCs in the non-spray products (e.g., body wash, 53-88 %). In particular, methanol was present with the highest amount of VOCs in windshield washer fluid products. In terms of the number of carbon, the windshield washer fluids, lubricants, insecticides, and hair sprays comprised >95 % of the VOCs in the range C2-C5. The VOCs in the range C6-C10 were predominantly found in the body wash products. The dishwashing detergents and air fresheners contained diverse VOCs from C2 to C11. Besides comprising hazardous VOCs, VOCs from consumer products were also ozone precursors. The ozone formation potential of the consumer and commercial spray products was estimated to be higher than those of liquid and gel materials. In particular, the hair sprays showed the highest ozone formation potential.

  20. Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism.

    PubMed

    Chen, Ke; Wang, Ding; Du, Wei Ting; Han, Zhi-Bo; Ren, He; Chi, Ying; Yang, Shao Guang; Zhu, Delin; Bayard, Francis; Han, Zhong Chao

    2010-06-01

    Human umbilical-cord-derived mesenchymal stem cells (hUC-MSCs) constitute an attractive alternative to bone-marrow-derived MSCs for potential clinical applications because of easy preparation and lower risk of viral contamination. In this study, both proliferation of human peripheral blood mononuclear cells (hPBMCs) and their IFN-gamma production in response to mitogenic or allogeneic stimulus were effectively inhibited by hUC-MSCs. Co-culture experiments in transwell systems indicated that the suppression was largely mediated by soluble factor(s). Blocking experiments identified prostaglandin E(2) (PGE(2)) as the major factor, because inhibition of PGE(2) synthesis almost completely mitigated the immunosuppressive effects, whereas neutralization of TGF-beta, IDO, and NO activities had little effects. Moreover, the inflammatory cytokines, IFN-gamma and IL-1beta, produced by hPBMCs upon activation notably upregulated the expression of cyclooxygenase-2 (COX-2) and the production of PGE(2) by hUC-MSCs. In conclusion, our data have demonstrated for the first time the PGE(2)-mediated mechanism by which hUC-MSCs exert their immunomodulatory effects. Copyright 2010 Elsevier Inc. All rights reserved.