Sample records for h2al2 confers unusual

  1. Kinetics of Al + H2O reaction: theoretical study.

    PubMed

    Sharipov, Alexander; Titova, Nataliya; Starik, Alexander

    2011-05-05

    Quantum chemical calculations were carried out to study the reaction of Al atom in the ground electronic state with H(2)O molecule. Examination of the potential energy surface revealed that the Al + H(2)O → AlO + H(2) reaction must be treated as a complex process involving two steps: Al + H(2)O → AlOH + H and AlOH + HAlO + H(2). Activation barriers for these elementary reaction channels were calculated at B3LYP/6-311+G(3df,2p), CBS-QB3, and G3 levels of theory, and appropriate rate constants were estimated by using a canonical variational theory. Theoretical analysis exhibited that the rate constant for the Al + H(2)O → products reaction measured by McClean et al. must be associated with the Al + H(2)O → AlOH + H reaction path only. The process of direct HAlOH formation was found to be negligible at a pressure smaller than 100 atm.

  2. Ab initio studies on Al(+)(H(2)O)(n), HAlOH(+)(H(2)O)(n-1), and the size-dependent H(2) elimination reaction.

    PubMed

    Siu, Chi-Kit; Liu, Zhi-Feng; Tse, John S

    2002-09-11

    We report computational studies on Al(+)(H(2)O)(n), and HAlOH(+)(H(2)O)(n-1), n = 6-14, by the density functional theory based ab initio molecular dynamics method, employing a planewave basis set with pseudopotentials, and also by conventional methods with Gaussian basis sets. The mechanism for the intracluster H(2) elimination reaction is explored. First, a new size-dependent insertion reaction for the transformation of Al(+)(H(2)O)(n), into HAlOH(+)(H(2)O)(n-1) is discovered for n > or = 8. This is because of the presence of a fairly stable six-water-ring structure in Al(+)(H(2)O)(n) with 12 members, including the Al(+). This structure promotes acidic dissociation and, for n > or = 8, leads to the insertion reaction. Gaussian based BPW91 and MP2 calculations with 6-31G* and 6-31G** basis sets confirmed the existence of such structures and located the transition structures for the insertion reaction. The calculated transition barrier is 10.0 kcal/mol for n = 9 and 7.1 kcal/mol for n = 8 at the MP2/6-31G** level, with zero-point energy corrections. Second, the experimentally observed size-dependent H(2) elimination reaction is related to the conformation of HAlOH(+)(H(2)O)(n-1), instead of Al(+)(H(2)O)(n). As n increases from 6 to 14, the structure of the HAlOH(+)(H(2)O)(n-1) cluster changes into a caged structure, with the Al-H bond buried inside, and protons produced in acidic dissociation could then travel through the H(2)O network to the vicinity of the Al-H bond and react with the hydride H to produce H(2). The structural transformation is completed at n = 13, coincident approximately with the onset of the H(2) elimination reaction. From constrained ab initio MD simulations, we estimated the free energy barrier for the H(2) elimination reaction to be 0.7 eV (16 kcal/mol) at n = 13, 1.5 eV (35 kcal/mol) at n = 12, and 4.5 eV (100 kcal/mol) at n = 8. The existence of transition structures for the H(2) elimination has also been verified by ab initio calculations

  3. Unusual hafnium-pyridylamido/ER(n) heterobimetallic adducts (ER(n) = ZnR2 or AlR3).

    PubMed

    Rocchigiani, Luca; Busico, Vincenzo; Pastore, Antonello; Talarico, Giovanni; Macchioni, Alceo

    2014-02-17

    NMR spectroscopy and DFT studies indicate that the Symyx/Dow Hf(IV)-pyridylamido catalytic system for olefin polymerization, [{N(-),N,CNph(-)}HfMe][B(C6F5)4] (1, Nph = naphthyl), interacts with ER(n) (E = Al or Zn, R = alkyl group) to afford unusual heterobimetallic adducts [{N(-),N}HfMe(μ-CNph)(μ-R)ER(n-1)][B(C6F5)4 in which the cyclometalated Nph acts as a bridge between Hf and E. (1)H VT (variable-temperature) EXSY NMR spectroscopy provides direct evidence of reversible alkyl exchanges in heterobimetallic adducts, with ZnR2 showing a higher tendency to participate in this exchange than AlR3. 1-Hexene/ERn competitive reactions with 1 at 240 K reveal that the formation of adducts is strongly favored over 1-hexene polymerization. Nevertheless, a slight increase in the temperature (to >265 K) initiates 1-hexene polymerization. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4: Calculated dehydrogenation enthalpy, including zero point energy, and the structure of the phonon spectra.

    PubMed

    Marashdeh, Ali; Frankcombe, Terry J

    2008-06-21

    The dehydrogenation enthalpies of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) have been calculated using density functional theory calculations at the generalized gradient approximation level. Harmonic phonon zero point energy (ZPE) corrections have been included using Parlinski's direct method. The dehydrogenation of Ca(AlH(4))(2) is exothermic, indicating a metastable hydride. Calculations for CaAlH(5) including ZPE effects indicate that it is not stable enough for a hydrogen storage system operating near ambient conditions. The destabilized combination of LiBH(4) with CaH(2) is a promising system after ZPE-corrected enthalpy calculations. The calculations confirm that including ZPE effects in the harmonic approximation for the dehydrogenation of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) has a significant effect on the calculated reaction enthalpy. The contribution of ZPE to the dehydrogenation enthalpies of Ca(AlH(4))(2) and CaAlH(5) calculated by the direct method phonon analysis was compared to that calculated by the frozen-phonon method. The crystal structure of CaAlH(5) is presented in the more useful standard setting of P2(1)c symmetry and the phonon density of states of CaAlH(5), significantly different to other common complex metal hydrides, is rationalized.

  5. Crystal structures of hydrates of simple inorganic salts. III. Water-rich aluminium halide hydrates: AlCl3 · 15H2O, AlBr3 · 15H2O, AlI3 · 15H2O, AlI3 · 17H2O and AlBr3 · 9H2O.

    PubMed

    Schmidt, Horst; Hennings, Erik; Voigt, Wolfgang

    2014-09-01

    Water-rich aluminium halide hydrate structures are not known in the literature. The highest known water content per Al atom is nine for the perchlorate and fluoride. The nonahydrate of aluminium bromide, stable pentadecahydrates of aluminium chloride, bromide and iodide, and a metastable heptadecahydrate of the iodide have now been crystallized from low-temperature solutions. The structures of these hydrates were determined and are discussed in terms of the development of cation hydration spheres. The pentadecahydrate of the chloride and bromide are isostructural. In AlI(3) · 15H2O, half of the Al(3+) cations are surrounded by two complete hydration spheres, with six H2O in the primary and 12 in the secondary. For the heptadecahydrate of aluminium iodide, this hydration was found for every Al(3+).

  6. Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4: Calculated dehydrogenation enthalpy, including zero point energy, and the structure of the phonon spectra

    NASA Astrophysics Data System (ADS)

    Marashdeh, Ali; Frankcombe, Terry J.

    2008-06-01

    The dehydrogenation enthalpies of Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4 have been calculated using density functional theory calculations at the generalized gradient approximation level. Harmonic phonon zero point energy (ZPE) corrections have been included using Parlinski's direct method. The dehydrogenation of Ca(AlH4)2 is exothermic, indicating a metastable hydride. Calculations for CaAlH5 including ZPE effects indicate that it is not stable enough for a hydrogen storage system operating near ambient conditions. The destabilized combination of LiBH4 with CaH2 is a promising system after ZPE-corrected enthalpy calculations. The calculations confirm that including ZPE effects in the harmonic approximation for the dehydrogenation of Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4 has a significant effect on the calculated reaction enthalpy. The contribution of ZPE to the dehydrogenation enthalpies of Ca(AlH4)2 and CaAlH5 calculated by the direct method phonon analysis was compared to that calculated by the frozen-phonon method. The crystal structure of CaAlH5 is presented in the more useful standard setting of P21/c symmetry and the phonon density of states of CaAlH5, significantly different to other common complex metal hydrides, is rationalized.

  7. Al-TiH2 Composite Foams Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Prasada Rao, A. K.; Oh, Y. S.; Ain, W. Q.; A, Azhari; Basri, S. N.; Kim, N. J.

    2016-02-01

    The work presented here in describes the synthesis of aluminum based titanium-hydride particulate composite by casting method and its foaming behavior of magnesium alloy. Results obtained indicate that the Al-10TiH2 composite can be synthesized successfully by casting method. Further, results also reveal that closed-cell magnesium alloy foam can be synthesized by using Al-10TiH2 composite as a foaming agent.

  8. The unusual chemical bonding and thermoelectric properties of a new type Zintl phase compounds Ba3Al2As4

    NASA Astrophysics Data System (ADS)

    Yang, Gui; Zhang, Guangbiao; Wang, Chao; Wang, Yuanxu

    2016-07-01

    Ba3Al2As4 exhibits an unusual anisotropic electrical conductivity, that is, the electrical conductivity along the chain is smaller than those along other two directions. The results is conflict with previous conclusion for Ca5M2Pn6. Earlier studies on Ca5M2Pn6 showed that a higher electrical conductivity could be obtained along the chain. The band decomposed charge density is used to explain such unusual behavior. Our calculations indicate the existence of a conductive pathway near the Fermi level is responsible for the electrons transport. Further, the Ba-As bonding of Ba3Al2As4 has some degree covalency which is novel for the Zintl compounds.

  9. Density functional theory study of 3R- and 2H-CuAlO2 under pressure

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Jun; Liu, Zheng-Tang; Feng, Li-Ping; Tian, Hao; Liu, Wen-Ting; Yan, Feng

    2010-10-01

    We present a first-principles density-functional theory based study of the impact of pressure on the structural and elastic properties of bulk 3R- and 2H-CuAlO2. The ground state properties of 3R- and 2H-CuAlO2 are obtained, which are in good agreement with previous experimental and theoretical data. The analysis of enthalpy variation with pressure indicates the phase transition pressure between 3R and 2H is 15.4 GPa. The independent elastic constants of 3R- and 2H-CuAlO2 are calculated. As the applied pressure increases, the calculations show the presences of mechanical instability at 26.2 and 27.8 GPa for 3R- and 2H-CuAlO2, which are possibly related with the phase transitions.

  10. Symmetry and topology code of the cluster self-assembly of framework MT structures of alumophosphates AlPO4(H2O)2 (metavariscite and variscite) and Al2(PO4)2(H2O)3 (APC)

    NASA Astrophysics Data System (ADS)

    Ilyushin, G. D.; Blatov, V. A.

    2017-03-01

    The supramolecular chemistry of alumophosphates, which form framework 3D MT structures from polyhedral AlO4(H2O)2 clusters with octahedral O coordination (of M polyhedra) and PO4 and AlO4 with tetrahedral O coordination (of T polyhedra), is considered. A combinatorial-topological modeling of the formation of possible types of linear (six types) and ring (two types) tetrapolyhedral cluster precursors M2T2 from MT monomers is carried out. Different versions of chain formation from linked (MT)2 rings (six types) are considered. The model, which has a universal character, has been used to simulate the cluster selfassembly of the crystal structure of AlPO4(H2O)2 minerals (metavariscite, m-VAR, and variscite, VAR) and zeolite [Al2(PO4)2(H2O)2] · H2O (APC). A tetrapolyhedral linear precursor is established for m-VAR and a ring precursor (MT)2 is established for VAR and APC. The symmetry and topology code of the processes of crystal structure self-assembly from cluster precursors is completely reconstructed. The functional role of the O-H···O hydrogen bonds is considered for the first time. The cluster self-assembly model explains the specific features of the morphogenesis of single crystals: m-VAR prisms, flattened VAR octahedra, and needleshaped APC square-base prisms.

  11. Synthesis, structure and NMR characterization of a new monomeric aluminophosphate [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4 containing four different types of monophosphates

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Li, Jiyang; Xu, Jun; Duan, Fangzheng; Deng, Feng; Xu, Ruren

    2009-03-01

    A new zero-dimensional (0D) aluminophosphate monomer [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4 (designated AlPO-CJ38) with Al/P ratio of 1/6 has been solvothermally prepared by using racemic cobalt complex dl-Co(en) 3Cl 3 as the template. The Al atom is octahedrally linked to six P atoms via bridging oxygen atoms, forming a unique [Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2] 6- monomer. Notably, there exists intramolecular symmetrical O⋯H⋯O bonds, which results in pseudo-4-rings stabilized by the strong H-bonding interactions. The structure is also featured by the existence of four different types of monophosphates that have been confirmed by 31P NMR and 1H NMR spectra. The crystal data are as follows: AlPO-CJ38, [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4, M = 1476.33, monoclinic, C2/ c (No. 15), a = 36.028(7) Å, b = 8.9877(18) Å, c = 16.006(3) Å, β = 100.68(3)°, U = 5093.2(18) Å 3,Z = 4, R1 = 0.0509 ( I > 2 σ( I)) and wR2 = 0.1074 (all data). CCDC number 689491.

  12. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    PubMed Central

    Yang, Jingbin; Li, Dongxu; Fang, Yuan

    2017-01-01

    C-A-S-H (CaO-Al2O3-SiO2-H2O) and N-A-S-H (Na2O-Al2O3-SiO2-H2O) have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O)/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH)2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH)2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali-activated materials. PMID

  13. Reduction Mechanisms of Cu2+-Doped Na2O-Al2O3-SiO2 Glasses during Heating in H2 Gas.

    PubMed

    Nogami, Masayuki; Quang, Vu Xuan; Ohki, Shinobu; Deguchi, Kenzo; Shimizu, Tadashi

    2018-01-25

    Controlling valence state of metal ions that are doped in materials has been widely applied for turning optical properties. Even though hydrogen has been proven effective to reduce metal ions because of its strong reducing capability, few comprehensive studies focus on practical applications because of the low diffusion rate of hydrogen in solids and the limited reaction near sample surfaces. Here, we investigated the reactions of hydrogen with Cu 2+ -doped Na 2 O-Al 2 O 3 -SiO 2 glass and found that a completely different reduction from results reported so far occurs, which is dominated by the Al/Na concentration ratio. For Al/Na < 1, Cu 2+ ions were reduced via hydrogen to metallic Cu, distributing in glass body. For Al/Na > 1, on the other hand, the reduction of Cu 2+ ions occurred simultaneously with the formation of OH bonds, whereas the reduced Cu metal moved outward and formed a metallic film on glass surface. The NMR and Fourier transform infrared results indicated that the Cu 2+ ions were surrounded by Al 3+ ions that formed AlO 4 , distorted AlO 4 , and AlO 5 units. The diffused H 2 gas reacted with the Al-O - ···Cu + units, forming Al-OH and metallic Cu, the latter of which moved freely toward glass surface and in return enhanced H 2 diffusion.

  14. Facile access to 2-acyloxy-, aryloxy- and alkenyloxy-2H-azirines via an SN2'-SN2' cascade in 2-halo-2H-azirines.

    PubMed

    Rostovskii, Nikolai V; Smetanin, Ilia A; Agafonova, Anastasiya V; Sakharov, Pavel A; Ruvinskaya, Julia O; Khlebnikov, Alexander F; Novikov, Mikhail S

    2018-05-02

    Various 2-oxygen-substituted 2H-azirine-2-carboxylic acid derivatives were synthesized in high yields under mild conditions from readily available precursors, 2-halo-2H-azirines and OH-reagents having pKa values in the range of 3-10. This reaction is the first example of substitution at the azirine carbon atom for which an unusual SN2'-SN2' cascade mechanism was revealed.

  15. (MnH9)2- salts with high hydrogen contents and unusual bonding: Density functional calculations

    NASA Astrophysics Data System (ADS)

    Gupta, Michèle; Gupta, Raju P.; Singh, D. J.

    2009-12-01

    The compounds BaReH9 and K2ReH9 are the prototypical members of a family of hydrides described as salts of (ReH9)2- anions. The structures reflect highly unusual chemistry with short H-H distances and at the same time very high ninefold coordination of Re by hydrogen atoms. This is of interest because of the resulting high hydrogen-to-metal ratios, 4.5 in BaReH9 and 3 in K2ReH9 . Here we use density functional calculations to investigate possible new members of this family including both Re and Mn compounds. We find that although SrReH9 and CaReH9 have not been synthesized these are very likely to be stable compounds that may be prepared in a similar manner as the Ba analog. We also find that the manganese counterparts, including K2MnH9 , are also likely to be stable and have thermodynamic properties consistent with requirements for hydrogen storage.

  16. Molecular and phenotypic characterization of Als1 and Als2 mutations conferring tolerance to acetolactate synthase herbicides in soybean

    PubMed Central

    Walter, Kay L; Strachan, Stephen D; Ferry, Nancy M; Albert, Henrik H; Castle, Linda A; Sebastian, Scott A

    2014-01-01

    BACKGROUND Sulfonylurea (SU) herbicides are effective because they inhibit acetolactate synthase (ALS), a key enzyme in branched-chain amino acid synthesis required for plant growth. A soybean line known as W4-4 was developed through rounds of seed mutagenesis and was demonstrated to have a high degree of ALS-based resistance to both post-emergence and pre-emergence applications of a variety of SU herbicides. This report describes the molecular and phenotypic characterization of the Als1 and Als2 mutations that confer herbicide resistance to SUs and other ALS inhibitors. RESULTS The mutations are shown to occur in two different ALS genes that reside on different chromosomes: Als1 (P178S) on chromosome 4 and Als2 (W560L) on chromosome 6 (P197S and W574L in Arabidopsis thaliana). CONCLUSION Although the Als1 and Als2 genes are unlinked, the combination of these two mutations is synergistic for improved tolerance of soybeans to ALS-inhibiting herbicides. © 2014 DuPont Pioneer. Pest Management Science published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:24425499

  17. Superconducting symmetries and magnetic responses of uranium heavy-fermion systems UBe13 and UPd2Al3

    NASA Astrophysics Data System (ADS)

    Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Aoki, Dai

    2018-05-01

    Low-temperature thermodynamic investigation for UBe13 and UPd2Al3 were performed in order to gain insight into their unusual ground states of 5 f electrons. Our heat-capacity data for the cubic UBe13 strongly suggest that nodal quasiparticles are absent and its superconducting (SC) gap is fully open over the Fermi surface. Moreover, two unusual thermodynamic anomalies are also observed in UBe13 at ∼ 3 T and ∼ 9 T; the lower-field anomaly is seen only in the SC mixed state by dc magnetization M (H) as well as heat-capacity C (H) , while the higher-field anomaly appears for C (H) in the normal phase above the upper critical field. On the other hand, field-orientation dependence of the heat capacity in the hexagonal UPd2Al3 shows a significantly anisotropic behavior of C (H) ∝H 1 / 2 , reflecting the nodal gap structure of this system. Our result strongly suggests the presence of a horizontal line node on the Fermi surface with heavy effective mass in UPd2Al3.

  18. Unusual reaction paths of SN2 nucleophile substitution reactions CH4 + H- → CH4 + H- and CH4 + F- → CH3F + H-: Quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Minyaev, Ruslan M.; Quapp, Wolfgang; Schmidt, Benjamin; Getmanskii, Ilya V.; Koval, Vitaliy V.

    2013-11-01

    Quantum chemical (CCSD(full)/6-311++G(3df,3pd), CCSD(T)(full)/6-311++G(3df,3pd)) and density function theory (B3LYP/6-311++G(3df,3pd)) calculations were performed for the SN2 nucleophile substitution reactions CH4 + H- → CH4 + H- and CH4 + F- → CH3F + H-. The calculated gradient reaction pathways for both reactions have an unusual behavior. An unusual stationary point of index 2 lies on the gradient reaction path. Using Newton trajectories for the reaction path, we can detect VRI point at which the reaction path branches.

  19. The Existence of a Designer Al=Al Double Bond in the LiAl2 H4- Cluster Formed by Electronic Transmutation.

    PubMed

    Lundell, Katie A; Zhang, Xinxing; Boldyrev, Alexander I; Bowen, Kit H

    2017-12-22

    The Al=Al double bond is elusive in chemistry. Herein we report the results obtained via combined photoelectron spectroscopy and ab initio studies of the LiAl 2 H 4 - cluster that confirm the formation of a conventional Al=Al double bond. Comprehensive searches for the most stable structures of the LiAl 2 H 4 - cluster have shown that the global minimum isomer I possesses a geometric structure which resembles that of Si 2 H 4 , demonstrating a successful example of the transmutation of Al atoms into Si atoms by electron donation. Theoretical simulations of the photoelectron spectrum discovered the coexistence of two isomers in the ion beam, including the one with the Al=Al double bond. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Visible light induced H2PO(4)(-) removal over CuAlO2 catalyst.

    PubMed

    Benreguia, N; Omeiri, S; Bellal, B; Trari, M

    2011-09-15

    The delafossite CuAlO(2) is successfully used for the visible light driven H(2)PO(4)(-) reduction. It is prepared from the nitrates decomposition in order to increase the ratio of reaction surface per given mass. CuAlO(2) is a narrow band gap semiconductor which exhibits a good chemical stability with a corrosion rate of 1.70 μmol year(-1) at neutral pH. The flat band potential (+0.25 V(SCE)) is determined from the Mott-Schottky characteristic. Hence, the conduction band, positioned at (-1.19 V(SCE)), lies below the H(2)PO(4)(-) level yielding a spontaneous reduction under visible illumination. The photocatalytic process is investigated under mild conditions and 30% conversion occurs in less than ~6h with a quantum efficiency of 0.04% under full light. The concentration decreases by a factor of 39% after a second cycle. The photoactivity follows a first order kinetic with a rate constant of 6.6 × 10(-2)h(-1). The possibility of identifying the reaction products via the intensity-potential characteristics is explored. The decrease of the conversion rate over illumination time is due to the competitive water reduction. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Irradiation effects and hydrogen behavior in H2+ and He+ implanted γ-LiAlO2 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Zhang, Jiandong; Kovarik, Libor

    2017-02-01

    Gamma-phase lithium aluminate (gamma-LiAlO2) is a breeder material for tritium, a necessary substance for strategic stockpile and fusion power systems. A fundamental study of structural evolution and tritium diffusion in gamma-LiAlO2 under displacive irradiation is needed to fully assess the material performance. This study utilizes ion implantation of protium (surrogate for tritium) and helium in gamma-LiAlO2 single crystals at elevated temperatures to emulate the irradiation effects. The results show that at 573 K there are two distinct disorder saturation stages to 1 dpa without full amorphization; overlapping implantation of H2+ and He+ ions suggests possible formation of gas bubbles. Formore » irradiation to 1E21 H+/m2 (0.36 dpa at peak) at 773 K, amorphization occurs at surface with H diffusion and dramatic Li loss; the microstructure contains bubbles and cubic LiAl5O8 precipitates with sizes up to 200 nm or larger. In addition, significant H diffusion and release are observed during thermal annealing.« less

  2. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks.

    PubMed

    Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing

    2015-01-01

    In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.

  3. Reaction paths in the system Al 2O 3-hBN-Y

    NASA Astrophysics Data System (ADS)

    Reichert, K.; Oreshina, O.; Cremer, R.; Neuschütz, D.

    2001-07-01

    As part of the investigations on the suitability of a new concept for a tailored fiber-matrix interface in sapphire fiber reinforced NiAl matrix composites for application as a high-temperature structural material, the interfacial reactions in the system alumina-hexagonal boron nitride-yttrium (Al 2O 3-hBN-Y) have been examined in the temperature range of 1100-1300°C. For this, alumina substrates were coated with hBN by means of CVD and subsequently with sputter deposited yttrium. Afterwards the samples were annealed for up to 16 h under inert atmosphere. Grazing incidence X-ray diffraction (GIXRD) served to analyze the phases formed by diffusion processes in the reaction zone. The peak intensities in these diffraction patterns were used to evaluate the sequence of phases formed due to diffusion and reaction. After the initial formation of YN and YB 2, the phases Y 2O 3, Al 2Y, and YB 4 were observed. Even longer annealing times or higher temperatures, respectively, led to the formation of the ternary oxides YAlO 3 and Y 3Al 5O 12 as well as metallic aluminum.

  4. Promotion effect of H2 on ethanol oxidation and NOx reduction with ethanol over Ag/Al2O3 catalyst.

    PubMed

    Yu, Yunbo; Li, Yi; Zhang, Xiuli; Deng, Hua; He, Hong; Li, Yuyang

    2015-01-06

    The catalytic partial oxidation of ethanol and selective catalytic reduction of NOx with ethanol (ethanol-SCR) over Ag/Al2O3 were studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS). The intermediates were identified by PIMS and their photoionization efficiency (PIE) spectra. The results indicate that H2 promotes the partial oxidation of ethanol to acetaldehyde over Ag/Al2O3, while the simultaneously occurring processes of dehydration and dehydrogenation were inhibited. H2 addition favors the formation of ammonia during ethanol-SCR over Ag/Al2O3, the occurrence of which creates an effective pathway for NOx reduction by direct reaction with NH3. Simultaneously, the enhancement of the formation of ammonia benefits its reaction with surface enolic species, resulting in producing -NCO species again, leading to enhancement of ethanol-SCR over Ag/Al2O3 by H2. Using VUV-PIMS, the reactive vinyloxy radical was observed in the gas phase during the NOx reduction by ethanol for the first time, particularly in the presence of H2. Identification of such a reaction occurring in the gas phase may be crucial for understanding the reaction pathway of HC-SCR over Ag/Al2O3.

  5. Engineering epitaxial γ-Al2O3 gate dielectric films on 4H-SiC

    NASA Astrophysics Data System (ADS)

    Tanner, Carey M.; Toney, Michael F.; Lu, Jun; Blom, Hans-Olof; Sawkar-Mathur, Monica; Tafesse, Melat A.; Chang, Jane P.

    2007-11-01

    The formation of epitaxial γ-Al2O3 thin films on 4H-SiC was found to be strongly dependent on the film thickness. An abrupt interface was observed in films up to 200 Å thick with an epitaxial relationship of γ-Al2O3(111)‖4H-SiC(0001) and γ-Al2O3(44¯0)‖4H-SiC(112¯0). The in-plane alignment between the film and the substrate is nearly complete for γ-Al2O3 films up to 115 Å thick, but quickly diminishes in thicker films. The films are found to be slightly strained laterally in tension; the strain increases with thickness and then decreases in films thicker than 200 Å, indicating strain relaxation which is accompanied by increased misorientation. By controlling the structure of ultrathin Al2O3 films, metal-oxide-semiconductor capacitors with Al2O3 gate dielectrics on 4H-SiC were found to have a very low leakage current density, suggesting suitability of Al2O3 for SiC device integration.

  6. Synthesis and characterization of two layered aluminophosphates, ( T) 2HAl 2P 3O 12 ( T=2-BuNH 3+) and ( T)H 2Al 2P 3O 12 ( T=pyH +)

    NASA Astrophysics Data System (ADS)

    Chippindale, Ann M.; Powell, Anthony V.; Bull, Lucy M.; Jones, Richard H.; Cheetham, Anthony K.; Thomas, John M.; Xu, Ruren

    1992-01-01

    Two new aluminophosphates, ( T) 2HAl 2P 3O 12 ( T=2-BuNH 3+) ( I) and ( T)H 2Al 2P 3O 12 ( T=pyH +) ( II) with the same framework stoichiometry but different layer structures have been prepared under nonaqueous conditions and the structures determined by single-crystal X-ray diffraction. Compound ( I) crystallizes in the monoclinic space group P2 1/ c ( Z=4), with lattice parameters a=9.261(1) b=8.365(6), c=27.119(4) Å, β=91.50(1)δ, and V=2100.1 Å 3 ( R=0.072 and R w=0.090). The structure consists of Al-and P-centered tetrahedra linked to form layers. Protonated 2-butylamine molecules are located in the interlayer spaces and hydrogen bonded to the layers through NH 3+ groups. Weak hydrophobic van der Waals' interactions between alkyl groups of the 2-BuNH 3+ cations hold the layers together. Compound ( II) crystallizes in the triclinic space group P-1 ( Z=2), with a=8.574(2), b=8.631(3), c=10.371(2) Å, α=81.84(3), β=87.53(2), γ=69.07(2)δ, and V=709.49Å 3 ( R=0.039 and R w=0.052). The structure contains tetrahedrally coordinated P atoms and both tetrahedral and trigonal pyramidal Al atoms linked to form layers which are held together through hydrogen bonding, creating cavities in which pyH + cations reside.

  7. Formation of gamma'-Ni3Al via the Peritectoid Reaction: gamma plus beta (+Al2O3) equals gamma'(+Al2O3)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8 - 32 at.%Al and temperature range T = 1400 - 1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma'-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3) = gamma + beta (+ Al2O3), at 1640 plus or minus 1 K and a liquid composition of 24.8 plus or minus 0.2 at.%Al (at an unknown oxygen content). The {gamma + beta + Al2O3} phase field is stable over the temperature range 1633 - 1640 K, and gamma'-Ni3Al forms via the peritectiod, gamma + beta (+ Al2O3) = gamma'(+ Al2O3), at 1633 plus or minus 1 K. This behavior is inconsistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma'-Ni3Al phase field.

  8. Confined NaAlH4 nanoparticles inside CeO2 hollow nanotubes towards enhanced hydrogen storage.

    PubMed

    Gao, Qili; Xia, Guanglin; Yu, Xuebin

    2017-10-05

    NaAlH 4 has been widely regarded as a potential hydrogen storage material due to its favorable thermodynamics and high energy density. The high activation energy barrier and high dehydrogenation temperature, however, significantly hinder its practical application. In this paper, CeO 2 hollow nanotubes (HNTs) prepared by a simple electrospinning technique are adopted as functional scaffolds to support NaAlH 4 nanoparticles (NPs) towards advanced hydrogen storage performance. The nanoconfined NaAlH 4 inside CeO 2 HNTs, synthesized via the infiltration of molten NaAlH 4 into the CeO 2 HNTs under high hydrogen pressure, exhibited significantly improved dehydrogenation properties compared with both bulk and ball-milled CeO 2 HNTs-catalyzed NaAlH 4 . The onset dehydrogenation temperature of the NaAlH 4 @CeO 2 composite was reduced to below 100 °C, with only one main dehydrogenation peak appearing at 130 °C, which is 120 °C and 50 °C lower than for its bulk counterpart and for the ball-milled CeO 2 HNTs-catalyzed NaAlH 4 , respectively. Moreover, ∼5.09 wt% hydrogen could be released within 30 min at 180 °C, while only 1.6 wt% hydrogen was desorbed from the ball-milled NaAlH 4 under the same conditions. This significant improvement is mainly attributed to the synergistic effects contributed by the CeO 2 HNTs, which could act as not only a structural scaffold to fabricate and confine the NaAlH 4 NPs, but also as an effective catalyst to enhance the hydrogen storage performance of NaAlH 4 .

  9. Intercalation and controlled release of 2,4-dichlorophenoxyacetic acid using rhombohedral [LiAl2(OH)6]Cl·xH2O

    NASA Astrophysics Data System (ADS)

    Ragavan, Anusha; Khan, Aamir I.; O'Hare, Dermot

    2006-05-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) has been fully intercalated into the rhombohedral polymorph of [LiAl2(OH)6]Cl·xH2O ([rhom-Li Al] LDH) by an ion exchange method. The controlled release of 2,4-D from the interlamellar spaces of [rhom-Li Al] LDH has been studied in a phosphate buffer, natural rainwater and deionised water. In buffer solution and rainwater, the intercalated herbicide is exchanged for anions in solution. In contrast, in deionised water the herbicide is released as part of the Li+/herbicide ion pair, leading to the formation of Al(OH)3 and the solvated ions.

  10. 2H and 27Al solid-state NMR study of the local environments in Al-doped 2-line ferrihydrite, goethite, and lepidocrocite

    DOE PAGES

    Kim, Jongsik; Ilott, Andrew J.; Middlemiss, Derek S.; ...

    2015-05-13

    Although substitution of aluminum into iron oxides and oxyhydroxides has been extensively studied, it is difficult to obtain accurate incorporation levels. Assessing the distribution of dopants within these materials has proven especially challenging because bulk analytical techniques cannot typically determine whether dopants are substituted directly into the bulk iron oxide or oxyhydroxide phase or if they form separate, minor phase impurities. These differences have important implications for the chemistry of these iron-containing materials, which are ubiquitous in the environment. In this work, 27Al and 2H NMR experiments are performed on series of Al-substituted goethite, lepidocrocite, and 2-line ferrihydrite in ordermore » to develop an NMR method to track Al substitution. The extent of Al substitution into the structural frameworks of each compound is quantified by comparing quantitative 27Al MAS NMR results with those from elemental analysis. Magnetic measurements are performed for the goethite series to compare with NMR measurements. Static 27Al spin–echo mapping experiments are used to probe the local environments around the Al substituents, providing clear evidence that they are incorporated into the bulk iron phases. As a result, predictions of the 2H and 27Al NMR hyperfine contact shifts in Al-doped goethite and lepidocrocite, obtained from a combined first-principles and empirical magnetic scaling approach, give further insight into the distribution of the dopants within these phases.« less

  11. Formation of gamma(sup prime)-Ni3Al via the Peritectoid Reaction: gamma + beta (+ Al2O3)=gamma(sup prime)(+ Al2O3)

    NASA Technical Reports Server (NTRS)

    Copeland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8-32 at.%Al and temperature range T=1400-1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma(sup prime)-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3)=gamma + Beta(+ Al2O3), at 1640 +/- 1 K and a liquid composition of 24.8 +/- 0.2 at.%al (at an unknown oxygen content). The {gamma + Beta (+Al2O3} phase field is stable over the temperature range 1633-1640 K, and gamma(sup prime)-Ni3Al forms via the peritectoid, gamma + Beta (+ Al2O3)=gamma(sup prime) (+ Al2O3), at 1633 +/- 1 K. This behavior is consistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady-state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma(sup prime)-Ni2Al phase field.

  12. Melting and subsolidus reactions in the system K2O-CaO-Al2O3-SiO2-H2O

    NASA Astrophysics Data System (ADS)

    Johannes, Wilhelm

    1980-09-01

    Beginning of melting and subsolidus relationships in the system K2O-CaO-Al2O3-SiO2-H2O have been experimentally investigated at pressures up to 20 kbars. The equilibria discussed involve the phases anorthite, sanidine, zoisite, muscovite, quartz, kyanite, gas, and melt and two invariant points: Point [Ky] with the phases An, Or, Zo, Ms, Qz, Vapor, and Melt; point [Or] with An, Zo, Ms, Ky, Qz, Vapor, and Melt. The invariant point [Ky] at 675° C and 8.7 kbars marks the lowest solidus temperature of the system investigated. At pressures above this point the hydrated phases zoisite and muscovite are liquidus phases and the solidus temperatures increase with increasing pressure. At 20 kbars beginning of melting occurs at 740 °C. The solidus temperatures of the quinary system K2O-CaO-Al2O3-SiO2-H2O are almost 60° C (at 20 kbars) and 170° C (at 2kbars) below those of the limiting quaternary system CaO-Al2O3-SiO2-H2O. The maximum water pressure at which anorthite is stable is lowered from 14 to 8.7 kbars in the presence of sanidine. The stability limits of anorthite+ vapor and anorthite+sanidine+vapor at temperatures below 700° C are almost parallel and do not intersect. In the wide temperature — pressure range at pressures above the reaction An+Or+Vapor = Zo+Ms+Qz and temperatures below the melting curve of Zo+Ms+Ky+Qz+Vapor, the feldspar assemblage anorthite+sanidine is replaced by the hydrated phases zoisite and muscovite plus quartz. CaO-Al2O3-SiO2-H2O. Knowledge of the melting relationships involving the minerals zoisite and muscovite contributes to our understanding of the melting processes occuring in the deeper parts of the crust. Beginning of melting in granites and granodiorites depends on the composition of plagioclase. The solidus temperatures of all granites and granodiorites containing plagioclases of intermediate composition are higher than those of the Ca-free alkali feldspar granite system and below those of the Na-free system discussed in this

  13. Diverse Reactivity of ECp* (E = Al, Ga) toward Low-Coordinate Transition Metal Amides [TM(N(SiMe3)2)2] (TM = Fe, Co, Zn): Insertion, Cp* Transfer, and Orthometalation.

    PubMed

    Weßing, Jana; Göbel, Christoph; Weber, Birgit; Gemel, Christian; Fischer, Roland A

    2017-03-20

    The reactivity of the carbenoid group 13 metal ligands ECp* (E = Al, Ga) toward low valent transition metal complexes [TM(btsa) 2 ] (TM = Fe, Co, Zn; btsa = bis(trimethylsilyl)amide) was investigated, revealing entirely different reaction patterns for E = Al and Ga. Treatment of [Co(btsa) 2 ] with AlCp* yields [Cp*Co(μ-H)(Al2 -(CH 2 SiMe 2 )NSiMe 3 )(btsa))] (1) featuring an unusual heterometallic bicyclic structure that results from the insertion of AlCp* into the TM-N bond with concomitant ligand rearrangement including C-H activation at one amide ligand. For [Fe(btsa) 2 ], complete ligand exchange gives FeCp* 2 , irrespective of the employed stoichiometric ratio of the reactants. In contrast, treatment of [TM(btsa) 2 ] (TM = Fe, Co) with GaCp* forms the 1:1 and 1:2 adducts [(GaCp*)Co(btsa) 2 ] (2) and [(GaCp*) 2 Fe(btsa) 2 ] (3), respectively. The tendency of AlCp* to undergo Cp* transfer to the TM center appears to be dependent on the nature of the TM center: For [Zn(btsa) 2 ], no Cp* transfer is observed on reaction with AlCp*; instead, the insertion product [Zn(Al2 -Cp*)(btsa)) 2 ] (4) is formed. In the reaction of [Co(btsa) 2 ] with the trivalent [Cp*AlH 2 ], transfer of the amide ligands without further ligand rearrangement is observed, leading to [Co(μ-H) 4 (Al2 -Cp*)(btsa)) 2 ] (5).

  14. Cyclic Oxidation Behavior and Durability of ODS-FeCrAl Alloys in H2O and CO2 rich environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N; Pint, Bruce A

    Cyclic oxidation testing was conducted at 1200 C in O2, dry air and in atmospheres rich in H2O and/or CO2 to simulate combustion environments. The oxidation rates were significantly higher in air + 10%H2O and a mixture of O2-buffered 50%H2O-50%CO2, leading to shorter times to breakaway oxidation. Curve fitting using the COSP cyclic oxidation program confirmed that the presence of H2O results in an increase of the alumina spallation rate. The use of specimen mass gain modeling associated with the characterization of pre-oxidized specimens and in particular the determination of the remaining Al content after exposure, will allow to accuratelymore » estimate the durability of oxide dispersion-strengthened (ODS) FeCrAl alloys in combustion environments.« less

  15. The effect of H2O on the adsorption of NO2 on γ-Al2O3: an in situ FTIR/MS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szanyi, Janos; Kwak, Ja Hun; Chimentao, Ricardo J.

    2007-02-15

    The effect of water on the adsorption of NO2 onto a γ-Al2O3 catalyst support surface was investigated using Fourier transform infrared spectroscopy (FTIR) and mass spectrometry (MS). Upon room temperature exposure of the alumina surface to small amounts of NO2, nitrites and nitrates are formed, and at higher NO2 doses only nitrates are observed. The surface nitrates formed were of bridging monodentate, bridging bidentate, and monodentate configuration. At elevated NO2 pressures, the surface hydroxyls were consumed in their reaction with NO2 giving primarily bridge-bound nitrates. A significant amount of weakly adsorbed N2O3 was seen as well. Exposure of the NO2-saturatedmore » γ-Al2O3 surface to H2O resulted in the desorption of some NO2 + NO as H2O interacted with the weakly-held N2O3, while the bridging monodentate surface nitrates converted into monodentate nitrates. The conversion of these oxide-bound nitrates to water-solvated nitrates was observed at high water doses when the presence of liquid-like water is expected on the surface. The addition of H2O to the NO2-saturated γ-Al2O3 did not affect the amount of NOx strongly adsorbed on the support surface. In particular, no NOx desorption was observed when the NO2-saturated sample was heated to 573K prior to room temperature H2O exposure. The effect of water is completely reversible; i.e., during TPD experiments following NO2 and H2O coadsorption, the same IR spectra were observed at temperatures above that required for H2O desorption as seen for NO2 adsorption only experiments.« less

  16. Time-dependent Enhanced Corrosion of Ti6Al4V in the Presence of H2O2 and Albumin.

    PubMed

    Zhang, Yue; Addison, Owen; Yu, Fei; Troconis, Brendy C Rincon; Scully, John R; Davenport, Alison J

    2018-02-16

    There is increasing concern regarding the biological consequences of metal release from implants. However, the mechanisms underpinning implant surface degradation, especially in the absence of wear, are often poorly understood. Here the synergistic effect of albumin and H 2 O 2 on corrosion of Ti6Al4V in physiological saline is studied with electrochemical methods. It is found that albumin induces a time-dependent dissolution of Ti6Al4V in the presence of H 2 O 2 in physiology saline. Potentiostatic polarisation measurements show that albumin supresses dissolution in the presence of H 2 O 2 at short times (<24 h) but over longer time periods (120 h) it significantly accelerates corrosion, which is attributed to albumin-catalysed dissolution of the corrosion product layer resulting in formation of a thinner oxide film. Dissolution of Ti6Al4V in the presence of albumin and H 2 O 2 in physiological saline is also found to be dependent on potential: the titanium ion release rate is found to be higher (0.57 µg/cm 2 ) at a lower potential (90 mV), where the oxide capacitance and resistance inferred from Electrochemical Impedance Spectroscopy also suggests a less resistant oxide film. The study highlights the importance of using more realistic solutions, and considering behaviour over longer time periods when testing corrosion resistance of metallic biomaterials.

  17. Attikaite, Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O, a new mineral species

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Pekov, I. V.; Zadov, A. E.

    2007-12-01

    Attikaite, a new mineral species, has been found together with arsenocrandalite, arsenogoyazite, conichalcite, olivenite, philipsbornite, azurite, malachite, carminite, beudantite, goethite, quartz, and allophane at the Christina Mine No. 132, Kamareza, Lavrion District, Attiki Prefecture (Attika), Greece. The mineral is named after the type locality. It forms spheroidal segregations (up to 0.3 mm in diameter) consisting of thin flexible crystals up to 3 × 20 × 80 μm in size. Its color is light blue to greenish blue, with a pale blue streak. The Mohs’ hardness is 2 to 2.5. The cleavage is eminent mica-like parallel to {001}. The density is 3.2(2) g/cm3 (measured in heavy liquids) and 3.356 g/cm3 (calculated). The wave numbers of the absorption bands in the infrared spectrum of attikaite are (cm-1; sh is shoulder; w is a weak band): 3525 sh, 3425, 3180, 1642, 1120 w, 1070 w, 1035 w, 900 sh, 874, 833, 820, 690 w, 645 w, 600 sh, 555, 486, 458, and 397. Attikaite is optically biaxial, negative, α = 1.642(2), β = γ = 1.644(2) ( X = c) 2 V means = 10(8)°, and 2 V calc = 0°. The new mineral is microscopically colorless and nonpleochroic. The chemical composition (electron microprobe, average over 4 point analyses, wt %) is: 0.17 MgO, 17.48 CaO, 0.12 FeO, 16.28 CuO, 10.61 Al2O3, 0.89 P2O5, 45.45 As2O5, 1.39 SO3, and H2O (by difference) 7.61, where the total is 100.00. The empirical formula calculated on the basis of (O,OH,H2O)22 is: Ca2.94Cu{1.93/2+} Al1.97Mg0.04Fe{0.02/2+} [(As3.74S0.16P0.12)Σ4.02O16.08](OH)3.87 · 2.05H2 O. The simplified formula is Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O. Attikaite is orthorhombic, space group Pban, Pbam or Pba2; the unit-cell dimensions are a = 10.01(1), b = 8.199(5), c = 22.78(1) Å, V = 1870(3) Å3, and Z = 4. In the result of the ignition of attikaite for 30 to 35 min at 128 140°, the H2O bands in the IR spectrum disappear, while the OH-group band is not modified; the weight loss is 4.3%, which approximately corresponds to two H2O

  18. Crystal-field-driven redox reactions: How common minerals split H2O and CO2 into reduced H2 and C plus oxygen

    NASA Technical Reports Server (NTRS)

    Freund, F.; Batllo, F.; Leroy, R. C.; Lersky, S.; Masuda, M. M.; Chang, S.

    1991-01-01

    It is difficult to prove the presence of molecular H2 and reduced C in minerals containing dissolved H2 and CO2. A technique was developed which unambiguously shows that minerals grown in viciously reducing environments contain peroxy in their crystal structures. The peroxy represent interstitial oxygen atoms left behind when the solute H2O and/or CO2 split off H2 and C as a result of internal redox reactions, driven by the crystal field. The observation of peroxy affirms the presence of H2 and reduced C. It shows that the solid state is indeed an unusual reaction medium.

  19. Evolution of resistive switching mechanism through H2O2 sensing by using TaOx-based material in W/Al2O3/TaOx/TiN structure

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Somsubhra; Panja, Rajeswar; Roy, Sourav; Roy, Anisha; Samanta, Subhranu; Dutta, Mrinmoy; Ginnaram, Sreekanth; Maikap, Siddheswar; Cheng, Hsin-Ming; Tsai, Ling-Na; Chang, Ya-Ling; Mahapatra, Rajat; Jana, Debanjan; Qiu, Jian-Tai; Yang, Jer-Ren

    2018-03-01

    Understanding of resistive switching mechanism through H2O2 sensing and improvement of switching characteristics by using TaOx-based material in W/Al2O3/TaOx/TiN structure have been reported for the first time. Existence of amorphous Al2O3/TaOx layer in the RRAM devices has been confirmed by transmission electron microscopy. By analyzing the oxidation states of Ta2+/Ta5+ for TaOx switching material and W0/W6+ for WOx layer at the W/TaOx interface through X-ray photoelectron spectroscopy and H2O2 sensing, the reduction-oxidation mechanism under Set/Reset occurs only in the TaOx layer for the W/Al2O3/TaOx/TiN structures. This leads to higher Schottky barrier height at the W/Al2O3 interface (0.54 eV vs. 0.46 eV), higher resistance ratio, and long program/erase endurance of >108 cycles with 100 ns pulse width at a low operation current of 30 μA. Stable retention of more than 104 s at 85 °C is also obtained. Using conduction mechanism and reduction-oxidation reaction, current-voltage characteristic has been simulated. Both TaOx and WOx membranes have high pH sensitivity values of 47.65 mV/pH and 49.25 mV/pH, respectively. Those membranes can also sense H2O2 with a low concentration of 1 nM in an electrolyte-insulator-semiconductor structure because of catalytic activity, while the Al2O3 membrane does not show sensing. The TaOx material in W/Al2O3/TaOx/TiN structure does not show only a path towards high dense, small size memory application with understanding of switching mechanism but also can be used for H2O2 sensors.

  20. An Investigation of Armenite, BaCa2Al6Si9O302H2O.H2O Molecules and H Bonding in Microporous Silicates

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Gatta, G.; Xue, X.; McIntyre, G.

    2012-12-01

    The crystal chemistry of armenite, ideally BaCa2Al6Si9O30.2H2O, a double-ring structure belonging to the milarite group, was studied to better understand the nature of extra-framework "Ca-oxygen-anion-H2O-molecule quasi-clusters" and H bonding behavior in microporous silicates. Neutron and X-ray single-crystal diffraction and IR powder and 1H NMR spectroscopic measurements were made. Four crystallographically independent Ca and H2O molecule sites were refined from the diffraction data, whereby both sites appear to have partial occupancies such that locally a Ca atom can have only a single H2O molecule bonded to it through an ion-dipole interaction. The Ca cation is further bonded to six O atoms of the framework forming a quasi cluster around it. The neutron results give the first static description of the protons in armenite, allowing bond distances and angles relating to the H2O molecules and H bonds to be determined. The IR spectrum of armenite is characterized in the OH-stretching region at RT by two broad bands at roughly 3470 and 3410 cm-1 and by a single H2O bending mode at 1654 cm-1. At 10 K four intense OH bands are located at 3479, 3454, 3401 and 3384 cm-1 and two H2O bending modes at 1650 and 1606 cm-1. The 1H MAS NMR spectrum shows a single strong resonance near 5.3 ppm and a smaller one near 2.7 ppm. The former can be assigned to H2O molecules bonded to Ca and the latter to weakly bonded H2O located at a site at the center of the structural double ring and it is partially occupied. The nature of H bonding in the microporous Ca-bearing zeolites scolecite, wairakite and epistilbite are also analyzed. The average OH stretching wavenumber shown by the IR spectra of armenite (~3435 cm-1) and scolecite (~3430 cm-1) are similar, while the average OH wavenumbers for wairakite (~3475 cm-1) and epistilbite (~3500 cm-1) are greater. In all cases the average OH stretching wavenumber is more similar to that of liquid water (~3400 cm-1) than of ice (~3220 cm-1). The

  1. Exploration of H2O-CO2 Solubility in Alkali Basalt at low-H2O

    NASA Astrophysics Data System (ADS)

    Roggensack, K.; Allison, C. M.; Clarke, A. B.

    2017-12-01

    A number of recent experimental studies have found conflicting evidence for and against the influence of H2O on CO2 solubility in basalt and alkali-rich mafic magma (e.g. Behrens et al., 2009; Shishkina et al., 2010;2014; Iacono-Marziano et al., 2012). Some of the uncertainty is due to the error with spectroscopic determination (FTIR) of carbon and the challenge of controlling H2O abundance in experiments. It's been widely observed that even experimental capsules without added H2O may produce hydrous glasses containing several wt.% H2O. We conducted fluid-saturated, mixed-fluid (H2O-CO2) experiments to determine the solubility in alkali basalt with particular emphasis on conditions at low-H2O. To limit possible H2O contamination, materials were dried prior to loading and experimental capsules were sealed under vacuum. Experiments were run using a piston-cylinder, in Pt (pre-soaked in Fe) or AuPd capsules and operating at pressures from 400 to 600 MPa. Post-run the capsules were punctured under vacuum and fluids were condensed, separated, and measured by mercury manometry. A comparison between two experiments run at the same temperature and pressure conditions but with different fluid compositions illustrates the correlation between carbonate and H2O solubility. Uncertainties associated with using concentrations calculated from FTIR data can be reduced by directly comparing analyses on wafers of similar thickness. We observe that the experiment with greater H2O absorbance also has a higher carbonate absorbance than the experiment with lower H2O absorbance. Since the experiments were run at the same pressure, the experiment with more water-rich fluid, and higher dissolved H2O, has lower CO2 fugacity, but surprisingly has higher dissolved CO2 content. Overall, the results show two distinct trends. Experiments conducted at low-H2O (0.5 to 0.8 wt.%) show lower dissolved CO2 than those conducted at moderate-H2O (2 to 3 wt.%) at similar CO2 fugacity. These data show that

  2. Chemical Bonding of AlH3 Hydride by Al-L2,3 Electron Energy-Loss Spectra and First-Principles Calculations

    PubMed Central

    Tatsumi, Kazuyoshi; Muto, Shunsuke; Ikeda, Kazutaka; Orimo, Shin-Ichi

    2012-01-01

    In a previous study, we used transmission electron microscopy and electron energy-loss (EEL) spectroscopy to investigate dehydrogenation of AlH3 particles. In the present study, we systematically examine differences in the chemical bonding states of Al-containing compounds (including AlH3) by comparing their Al-L2,3 EEL spectra. The spectral chemical shift and the fine peak structure of the spectra were consistent with the degree of covalent bonding of Al. This finding will be useful for future nanoscale analysis of AlH3 dehydrogenation toward the cell. PMID:28816996

  3. H2O Paradox and its Implications on H2O in Moon

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue

    2017-04-01

    second scenario is unlikely on Moon because there was unlikely plate tectonics, and because there is no similar H2O-rich transition zone or D" layer due to the much lower maximum pressure in Moon. In the third scenario, volatiles from an extralunar source would likely be lost from the high vacuum environment of the lunar surface, meaning that it would not impact on the H2O content estimation. [1] McDonough & Sun (1995) Chem. Geol. 120, 223. [2] Palme & O'Neill (2014) Treatise on Geochemistry 3, 1. [3] Zhang (2014) Treatise on Geochemistry 6, 37. [4] Zhang & Zindler (1989) JGR 94, 13719. [5] Hui et al. (2013) Nature Geosci. 6, 177. [6] Chen et al. (2015) EPSL 427, 37. [7] Albarede et al. (2015) MPS 50, 568. [8] Sobolev et al. (2016) Nature 531, 628. [9] Chyba (1987) Nature 330, 632. [10] Hartogh et al. (2011) Nature 478, 218. [11] Hui et al. (2016) Goldschmidt Conf. Abstr.

  4. Electronic, Optical and Thermoelectric Properties of 2H-CuAlO2: A First Principles Study

    NASA Astrophysics Data System (ADS)

    Bhamu, K. C.; Khenata, R.; Khan, Saleem Ayaz; Singh, Mangej; Priolkar, K. R.

    2016-01-01

    The electronic and optical properties of 2H-CuAlO2, including energy bands, density of states (DOS), optical dielectric behaviour, refractive index, absorption coefficient and optical conductivity, have been investigated within the framework of a full-potential linearized augmented plane wave scheme using different potentials. The direct and indirect band gaps for CuAlO2, computed using the Becke-Johnson potential, are estimated at 3.53 eV and 2.48 eV, respectively, which are in better agreement with the experimentally reported band gaps than those previously computed. The origin of energy bands is elucidated in terms of DOS, while the behaviour of the imaginary part of the dielectric constant is explained in terms of electronic transitions from valence bands to conduction bands. The computed value of the refractive index is 2.25 (1.94) for light perpendicular (parallel) to the c axis, in concordance with the available values. The overall shape of the spectral distribution for absorption coefficient and optical conductivity is also in accord with the reported data. The investigated thermoelectric properties indicate that CuAlO2 is a p-type semiconductor showing high effectiveness at low temperatures.

  5. Martinandresite, Ba2(Al4Si12O32)·10H2O, a new zeolite from Wasenalp, Switzerland

    NASA Astrophysics Data System (ADS)

    Chukanov, Nikita V.; Zubkova, Natalia V.; Meisser, Nicolas; Ansermet, Stefan; Weiss, Stefan; Pekov, Igor V.; Belakovskiy, Dmitriy I.; Vozchikova, Svetlana A.; Britvin, Sergey N.; Pushcharovsky, Dmitry Yu.

    2017-12-01

    The new zeolite martinandresite, ideally Ba2(Al4Si12O32)·10H2O, was discovered in the armenite locality of Wasenalp near the Isenwegg peak, Ganter valley, Simplon region, Switzerland. The associated minerals are armenite, quartz, dickite, and chlorite. Martinandresite forms tan-coloured blocky crystals up to 8 × 5 × 3.5 mm, their aggregates up to 6 cm across, as well as cruciform twins up to 3.5 mm. The major form is {010}; the subordinate forms are {100} and {001}. Indistinct cleavage is observed, presumably on (010) and in a direction across (010). The Mohs' hardness is 4½. Density measured by flotation in heavy liquids is 2.482(5) g/cm3. Density calculated using the empirical formula is equal to 2.495 g/cm3. Martinandresite is optically biaxial, negative, α = 1.500(2), β = 1.512(2), γ = 1.515(2) (λ = 589 nm). 2V (meas.) = 55(10)°. The IR spectrum is given. The chemical composition of martinandresite is (wt%; electron microprobe, H2O determined by the modified Penfield method): Na2O 0.37, K2O 0.12, BaO 21.55, Al2O3 15.03, SiO2 49.86, H2O 12.57, total 99.50. The empirical formula based on 16 atoms Si + Al pfu is Na0.17K0.04Ba2.00(Al4.19Si11.81O32)H19.85O9.93. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is orthorhombic, space group Pmmn, with a = 9.4640(5), b = 14.2288(6), c = 6.9940(4) Å, V = 941.82(8) Å3 and Z = 1. The crystal structure of martinandresite is unique and is based on the Al-Si-O tetrahedral framework containing four-, six- and eight-membered rings of tetrahedra. Si and Al are disordered between the two independent tetrahedral sites. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.98 (74) (001), 6.26 (83) (011), 5.61 (100) (101), 3.933 (60) (220, 031), 3.191 (50) (112), 3.170 (62) (041), 3.005 (79) (231, 141). Martinandresite is named after Martin Andres (b. 1965), the discoverer of the armenite locality of Wasenalp.

  6. Martinandresite, Ba2(Al4Si12O32)·10H2O, a new zeolite from Wasenalp, Switzerland

    NASA Astrophysics Data System (ADS)

    Chukanov, Nikita V.; Zubkova, Natalia V.; Meisser, Nicolas; Ansermet, Stefan; Weiss, Stefan; Pekov, Igor V.; Belakovskiy, Dmitriy I.; Vozchikova, Svetlana A.; Britvin, Sergey N.; Pushcharovsky, Dmitry Yu.

    2018-06-01

    The new zeolite martinandresite, ideally Ba2(Al4Si12O32)·10H2O, was discovered in the armenite locality of Wasenalp near the Isenwegg peak, Ganter valley, Simplon region, Switzerland. The associated minerals are armenite, quartz, dickite, and chlorite. Martinandresite forms tan-coloured blocky crystals up to 8 × 5 × 3.5 mm, their aggregates up to 6 cm across, as well as cruciform twins up to 3.5 mm. The major form is {010}; the subordinate forms are {100} and {001}. Indistinct cleavage is observed, presumably on (010) and in a direction across (010). The Mohs' hardness is 4½. Density measured by flotation in heavy liquids is 2.482(5) g/cm3. Density calculated using the empirical formula is equal to 2.495 g/cm3. Martinandresite is optically biaxial, negative, α = 1.500(2), β = 1.512(2), γ = 1.515(2) ( λ = 589 nm). 2 V (meas.) = 55(10)°. The IR spectrum is given. The chemical composition of martinandresite is (wt%; electron microprobe, H2O determined by the modified Penfield method): Na2O 0.37, K2O 0.12, BaO 21.55, Al2O3 15.03, SiO2 49.86, H2O 12.57, total 99.50. The empirical formula based on 16 atoms Si + Al pfu is Na0.17K0.04Ba2.00(Al4.19Si11.81O32)H19.85O9.93. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is orthorhombic, space group Pmmn, with a = 9.4640(5), b = 14.2288(6), c = 6.9940(4) Å, V = 941.82(8) Å3 and Z = 1. The crystal structure of martinandresite is unique and is based on the Al-Si-O tetrahedral framework containing four-, six- and eight-membered rings of tetrahedra. Si and Al are disordered between the two independent tetrahedral sites. The strongest lines of the powder X-ray diffraction pattern [ d, Å ( I, %) ( hkl)] are: 6.98 (74) (001), 6.26 (83) (011), 5.61 (100) (101), 3.933 (60) (220, 031), 3.191 (50) (112), 3.170 (62) (041), 3.005 (79) (231, 141). Martinandresite is named after Martin Andres (b. 1965), the discoverer of the armenite locality of Wasenalp.

  7. Alkaline hydrolysis of dimethyl terephthalate in the presence of [LiAl{sub 2}(OH){sub 6}]Cl.2H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei Lixu; Zhang Weifeng; Hu Meng

    2006-11-15

    The alkaline hydrolysis of dimethyl terephthalate (DMT) in the presence of [LiAl{sub 2}(OH){sub 6}]Cl has been investigated to demonstrate a possible application of anion exchange facility of layered double hydroxides (LDHs) to control chemical reactions. The results show that (i) in the alkaline hydrolysis of DMT in the presence of [LiAl{sub 2}(OH){sub 6}]Cl, most of the interlayer Cl{sup -} of [LiAl{sub 2}(OH){sub 6}]Cl is quickly replaced by OH{sup -} in the alkaline solution because the LDH host favors OH{sup -} more; (ii) the alkaline hydrolysis of DMT in the presence of [LiAl{sub 2}(OH){sub 6}]Cl is faster than the reaction ofmore » DMT and [LiAl{sub 2}(OH){sub 6}]OH; (iii) The hydrolysis of DMT in a buffer solution of pH{approx}8 takes longer time to reach equilibrium than the alkaline hydrolysis of DMT in the presence of [LiAl{sub 2}(OH){sub 6}]Cl. It is believed that the selective anion exchange chemistry of the LDH plays a key role in storage and controlled release of active reactant, that is, OH{sup -}, thus make the hydrolysis proceeds in a controlled way. - Graphical abstract: XRD patterns of the solid products of the alkaline hydrolysis of dimethyl terephthalate (DMT) in the presence of [LiAl{sub 2}(OH){sub 6}]Cl at 70 deg. C halted at different time, which shows that [LiAl{sub 2}(OH){sub 6}]Cl turns out to be [LiAl{sub 2}(OH){sub 6}]OH, and [LiAl{sub 2}(OH){sub 6}]{sub 2}TP forms gradually. In this reaction, the alkaline hydrolysis of DMT is controlled by replacement of Cl{sup -} in [LiAl{sub 2}(OH){sub 6}]Cl by OH{sup -}, and subsequent replacement of OH{sup -} in [LiAl{sub 2}(OH){sub 6}]OH by terephthalate anion.« less

  8. Mineral-solution equilibria—III. The system Na 2OAl 2O 3SiO 2H 2OHCl

    NASA Astrophysics Data System (ADS)

    Popp, Robert K.; Frantz, John D.

    1980-07-01

    Chemical equilibrium between sodium-aluminum silicate minerals and chloride bearing fluid has been experimentally determined in the range 500-700°C at 1 kbar, using rapid-quench hydrothermal methods and two modifications of the Ag + AgCl acid buffer technique. The temperature dependence of the thermodynamic equilibrium constant ( K) for the reaction NaAlSi 3O 8 + HCl o = NaCl o + 1/2Al 2SiO 5, + 5/2SiO 2 + 1/2H 2O Albite Andalusite Qtz. K = (a NaCl o) /(a H 2O ) 1/2/(a HCl o) can be described by the following equation: log k = -4.437 + 5205.6/ T( K) The data from this study are consistent with experimental results reported by MONTOYA and HEMLEY (1975) for lower temperature equilibria defined by the assemblages albite + paragonite + quartz + fluid and paragonite + andalusite + quartz + fluid. Values of the equilibrium constants for the above reactions were used to estimate the difference in Gibbs free energy of formation between NaCl o and HCl o in the range 400-700°C and 1-2 kbar. Similar calculations using data from phase equilibrium studies reported in the literature were made to determine the difference in Gibbs free energy of formation between KCl o and HCl o. These data permit modelling of the chemical interaction between muscovite + kspar + paragonite + albite + quartz assemblages and chloride-bearing hydrothermal fluids.

  9. Ultrafine Nanocrystalline CeO2@C-Containing NaAlH4 with Fast Kinetics and Good Reversibility for Hydrogen Storage.

    PubMed

    Zhang, Xin; Liu, Yongfeng; Wang, Ke; Li, You; Gao, Mingxia; Pan, Hongge

    2015-12-21

    A nanocrystalline CeO2@C-containing NaAlH4 composite is successfully synthesized in situ by hydrogenating a NaH-Al mixture doped with CeO2@C. Compared with NaAlH4 , the as-prepared CeO2@C-containing NaAlH4 composite, with a minor amount of excess Al, exhibits significantly improved hydrogen storage properties. The dehydrogenation onset temperature of the hydrogenated [NaH-Al-7 wt % CeO2@C]-0.04Al sample is 77 °C lower than that of the pristine sample because of a reduced kinetic barrier. More importantly, the dehydrogenated sample absorbs ∼4.7 wt % hydrogen within 35 min at 100°C and 10 MPa of hydrogen. Compositional and structural analyses reveal that CeO2 is converted to CeH2 during ball milling and that the newly formed CeH2 works with the excess of Al to synergistically improve the hydrogen storage properties of NaAlH4. Our findings will aid in the rational design of novel catalyst-doped complex hydride systems with low operating temperatures, fast kinetics, and long-term cyclability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Scalable cross-point resistive switching memory and mechanism through an understanding of H2O2/glucose sensing using an IrOx/Al2O3/W structure.

    PubMed

    Chakrabarti, Somsubhra; Maikap, Siddheswar; Samanta, Subhranu; Jana, Surajit; Roy, Anisha; Qiu, Jian-Tai

    2017-10-04

    The resistive switching characteristics of a scalable IrO x /Al 2 O 3 /W cross-point structure and its mechanism for pH/H 2 O 2 sensing along with glucose detection have been investigated for the first time. Porous IrO x and Ir 3+ /Ir 4+ oxidation states are observed via high-resolution transmission electron microscope, field-emission scanning electron spectroscopy, and X-ray photo-electron spectroscopy. The 20 nm-thick IrO x devices in sidewall contact show consecutive long dc cycles at a low current compliance (CC) of 10 μA, multi-level operation with CC varying from 10 μA to 100 μA, and long program/erase endurance of >10 9 cycles with 100 ns pulse width. IrO x with a thickness of 2 nm in the IrO x /Al 2 O 3 /SiO 2 /p-Si structure has shown super-Nernstian pH sensitivity of 115 mV per pH, and detection of H 2 O 2 over the range of 1-100 nM is also achieved owing to the porous and reduction-oxidation (redox) characteristics of the IrO x membrane, whereas a pure Al 2 O 3 /SiO 2 membrane does not show H 2 O 2 sensing. A simulation based on Schottky, hopping, and Fowler-Nordheim tunneling conduction, and a redox reaction, is proposed. The experimental I-V curve matches very well with simulation. The resistive switching mechanism is owing to O 2- ion migration, and the redox reaction of Ir 3+ /Ir 4+ at the IrO x /Al 2 O 3 interface through H 2 O 2 sensing as well as Schottky barrier height modulation is responsible. Glucose at a low concentration of 10 pM is detected using a completely new process in the IrO x /Al 2 O 3 /W cross-point structure. Therefore, this cross-point memory shows a method for low cost, scalable, memory with low current, multi-level operation, which will be useful for future highly dense three-dimensional (3D) memory and as a bio-sensor for the future diagnosis of human diseases.

  11. A Computational Investigation of the Oxidative Deboronation of BoroGlycine, H2N–CH2–B(OH)2, Using H2O and H2O2

    PubMed Central

    Larkin, Joseph D.; Markham, George D.; Milkevitch, Matt; Brooks, Bernard R.; Bock, Charles W.

    2014-01-01

    We report results from a computational investigation of the oxidative deboronation of BoroGlycine, H2N–CH2–B(OH)2, using H2O and H2O2 as the reactive oxygen species (ROS) to yield aminomethanol, H2N–CH2–OH; these results complement our study on the protodeboronation of BoroGlycine to produce methylamine, H2N–CH3 (Larkin et al. J. Phys. Chem. A, 111, 6489–6500, 2007). Second-order Møller-Plesset (MP2) perturbation theory with Dunning-Woon correlation-consistent (cc) basis sets were used for the calculations with comparisons made to results from Density Functional Theory (DFT) at the PBE1PBE/6-311++G(d,p)(cc-pVDZ) levels. The effects of a bulk aqueous environment were also incorporated into the calculations employing PCM and CPCM methodology. Using H2O as the ROS, the reaction H2O + H2N–CH2–B(OH)2H2N–CH2–OH + H–B(OH)2 was calculated to be endothermic, the value of ΔH2980 was +12.0 kcal/mol at the MP2(FC)/cc-pVTZ computational level in vacuo and +13.7 kcal/mol in PCM aqueous media; the corresponding value for the activation barrier, ΔH‡, was +94.3 kcal/mol relative to the separated reactants in vacuo and +89.9 kcal/mol in PCM aqueous media. In contrast, the reaction H2O2 + H2N–CH2–B(OH)2H2N–CH2–OH + B(OH)3 was calculated to be highly exothermic with a ΔH2980 value of −100.9 kcal/mol at the MP2(FC)/cc-pVTZ computational level in vacuo and −99.6 kcal/mol in CPCM aqueous media; the highest-energy transition state for the multi-step process associated with this reaction involved the rearrangement of H2N–CH2–B(OH)(OOH) to H2N–CH2–O–B(OH)2 with a ΔH‡ value of +23.2 kcal/mol in vacuo relative to the separated reactants. These computational results for BoroGlycine are in accord with the experimental observations for the deboronation of the FDA approved anti-cancer drug Bortezomib (Velcade™, PS-341) where it was found to be the principle deactivation pathway. (Labutti et al. Chem. Res. Toxicol., 19, 539–546

  12. Collisional Quenching of Highly-Excited H2 due to H2 Collisions

    NASA Astrophysics Data System (ADS)

    Wan, Yier; Yang, Benhui H.; Stancil, Phillip C.; Naduvalath, Balakrishnan; Forrey, Robert C.; This work was partially support by Hubble grant HST-AT-13899. We thank Kyle Walkerassistance with vrrmm.

    2017-06-01

    Collision-induced energy transfer involving H2 molecules are of significant interest, since H2 is the most abundant molecular species in the universe. Collisional de-excitation rate coefficients of the H2-H2 system are necessary to produce accurate models of astrophysical environments. However, accurate calculations of collisional energy transfer are still a challenging problem, especially for highly-excited H2 because a large number of levels must be included in the calculation.Currently, most data are limited to initial rotational levels j up to 8 or initial vibrational levels up to 3. The vast majority of these results involve some form of a reduced-dimensional approach which may be of questionable accuracy. A reliable and accurate four-dimensional PES computed by Patkowski et al. is used in this work along with two quantum scattering programs (MOLSCAT and vrrmm). Another accurate full-dimensional PES has been reported for the H2-H2 system by Hinde.Not all transitions will be explicitly calculated. A zero-energy scaling technique (ZEST) is used to estimate some intermediate transitions from calculated rate coefficients. New inelastic quenching cross section for para-H2+para-H2 collisions with initial level j= 10, 12, 14, 18, 24 are calculated. Calculations for other de-excitation transitions from higher initial levels and collisions involving other spin isomer of hydrogen, ortho-H2+para-H2, ortho-H2+ortho-H2 and para-H2+ortho-H2 are in progress. The coupled- states approximation is also applied to obtain cross sections at high energy.K. Patkowski, et al., J. Chem. Phys. 129, 094304 (2008).J. M. Hutson and S. Green, MOLSCAT Computer code, v14 (1994).K. Walker, 2013, VRRMM: Vibrational/Rotational Rich Man’s MOLSCAT v3.1.K. Walker, Song, L., Yang, B. H.,et al. 2015, ApJ, \\811,27.S. Green, J. Chem. Phys. 62, 2271 (1975).Flower, D. R., Roueff, E. 1998, J. Phys. B, 31, 2935.T. -G. Lee, N. Balakrishnan, R. C. Forrey, P. C. Stancil, G. Shaw, D. R. Schultz, and G. J

  13. Evaluation of the solubility constants of the hydrated solid phases in the H2O-Al2O3-SO3 ternary system

    NASA Astrophysics Data System (ADS)

    Teyssier, A.; Lagneau, V.; Schmitt, J. M.; Counioux, J. J.; Goutaudier, C.

    2017-04-01

    During the acid processing of aluminosilicate ores, the precipitation of a solid phase principally consisting of hydrated aluminium hydroxysulfates may be observed. The experimental study of the H2O-Al2O3-SO3 ternary system at 25 ∘C and 101 kPa enabled to describe the solid-liquid equilibra and to identify the nature, the composition and the solubility of the solid phases which may form during the acid leaching. To predict the appearance of these aluminium hydroxysulfates in more complex systems, their solubility constants were calculated by modelling the experimental solubility results, using a geochemical reaction modelling software, CHESS. A model for non-ideality correction, based on the B-dot equation, was used as it was suitable for the considered ion concentration range. The solubility constants of three out of four solid phases were calculated: 104.08 for jurbanite (Al(SO4)(OH).5H2O), 1028.09 for the solid T (Al8(SO4)5(OH)14.34H2O) and 1027.28 for the solid V (Al10(SO4)3(OH)24.20H2O). However the activity correction model was not suitable to determine the solubility constant of alunogen (Al2(SO4)3.15.8H2O), as the ion concentrations of the mixtures were too high and beyond the allowable limits of the model. Another ionic activity correction model, based on the Pitzer equation for example, must be applied to calculate the solubility constant of alunogen.

  14. Phase transition, crystal water and low thermal expansion behavior of Al{sub 22x}(ZrMg){sub x}W{sub 3}O{sub 12}·n(H{sub 2}O)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fang; Liu, Xiansheng; Song, Wenbo

    2014-10-15

    Al{sub 22x}(ZrMg){sub x}W{sub 3}O{sub 12} for 0≤x≤1.0 are synthesized to reduce the phase transition temperature of Al{sub 2}W{sub 3}O{sub 12}. It is found that the incorporation of (ZrMg){sup 6+} into the lattice of Al{sub 2}W{sub 3}O{sub 12} not only reduces its orthorhombic-to-monoclinic phase transition temperature but also elevates its softening temperature, broadening its applicable temperature range considerably. Al{sub 22x}(ZrMg){sub x}W{sub 3}O{sub 12} with x<0.5 exhibit low coefficients of thermal expansion (CTEs) and non-hygroscopicity, while those for x≥0.7 are obviously hygroscopic and the CETs decrease with increasing the content of (ZrMg){sup 6+} so that Al{sub 0.2}(ZrMg){sub 0.9}W{sub 3}O{sub 12} and ZrMgW{submore » 3}O{sub 12} exhibit negative thermal expansion. Temperature-dependent Raman spectroscopic study shows the hardening of W–O bonds above 373 K which is attributed to the release of crystal water. The effect of crystal water on the thermal expansion property is discussed based on the hydrogen bond between H in crystal water and electronegative O in Al(ZrMg)–O–W linkages. - Graphical abstract: (a and b) Temperature dependent Raman spectra of Al{sub 2−x}(ZrMg){sub x}W{sub 3}O{sub 12} (x=0.1, 0.2), (c and d) Building block of a unit cell of Al{sub 2−x}(ZrMg){sub x}W{sub 3}O{sub 12}·n(H{sub 2}O) and schematic showing the effect of crystal water on Al(Zr, Mg)–O–W linkages. - Highlights: • (ZrMg){sup 6+} reduces orthorhombic-to-monoclinic phase transition of Al{sub 2}W{sub 3}O{sub 12}. • The incorporation of (ZrMg){sup 6+} elevates the softening temperature of Al{sub 2}W{sub 3}O{sub 12}. • Al{sub 22x}(ZrMg){sub x}W{sub 3}O{sub 12} (x<0.5) exhibit low CTEs and non-hygroscopicity. • Al{sub 0.2}(ZrMg){sub 0.9}W{sub 3}O{sub 12}·0.8H{sub 2}O and ZrMgW{sub 3}O{sub 12}·2H{sub 2}O present NTE. • Hydrogen bond between H in H{sub 2}O and O in Al(ZrMg)–O–W affects thermal expansion.« less

  15. h -AlN-Mg(OH)2 van der Waals bilayer heterostructure: Tuning the excitonic characteristics

    NASA Astrophysics Data System (ADS)

    Bacaksiz, C.; Dominguez, A.; Rubio, A.; Senger, R. T.; Sahin, H.

    2017-02-01

    Motivated by recent studies that reported the successful synthesis of monolayer Mg (OH) 2 [Suslu et al., Sci. Rep. 6, 20525 (2016), 10.1038/srep20525] and hexagonal (h -)AlN [Tsipas et al., Appl. Phys. Lett. 103, 251605 (2013), 10.1063/1.4851239], we investigate structural, electronic, and optical properties of vertically stacked h -AlN and Mg (OH) 2 , through ab initio density-functional theory (DFT), many-body quasiparticle calculations within the GW approximation and the Bethe-Salpeter equation (BSE). It is obtained that the bilayer heterostructure prefers the A B' stacking having direct band gap at the Γ with Type-II band alignment in which the valance band maximum and conduction band minimum originate from different layer. Regarding the optical properties, the imaginary part of the dielectric function of the individual layers and heterobilayer are investigated. The heterobilayer possesses excitonic peaks, which appear only after the construction of the heterobilayer. The lowest three exciton peaks are analyzed in detail by means of band decomposed charge density and the oscillator strength. Furthermore, the wave function calculation shows that the first peak of the heterobilayer originates from spatially indirect exciton where the electron and hole localized at h -AlN and Mg (OH) 2 , respectively, which is important for the light harvesting applications.

  16. Structural Characterization of the Histone Variant macroH2A

    PubMed Central

    Chakravarthy, Srinivas; Gundimella, Sampath Kumar Y.; Caron, Cecile; Perche, Pierre-Yves; Pehrson, John R.; Khochbin, Saadi; Luger, Karolin

    2005-01-01

    macroH2A is an H2A variant with a highly unusual structural organization. It has a C-terminal domain connected to the N-terminal histone domain by a linker. Crystallographic and biochemical studies show that changes in the L1 loop in the histone fold region of macroH2A impact the structure and potentially the function of nucleosomes. The 1.6-Å X-ray structure of the nonhistone region reveals an α/β fold which has previously been found in a functionally diverse group of proteins. This region associates with histone deacetylases and affects the acetylation status of nucleosomes containing macroH2A. Thus, the unusual domain structure of macroH2A integrates independent functions that are instrumental in establishing a structurally and functionally unique chromatin domain. PMID:16107708

  17. H2O2/HCl and heat-treated Ti-6Al-4V stimulates pre-osteoblast proliferation and differentiation.

    PubMed

    Shi, Geng-sheng; Ren, Ling-fei; Wang, Lin-zhi; Lin, Hai-sheng; Wang, Sha-bin; Tong, Yong-qing

    2009-09-01

    The purpose of the present study was to evaluate the bioactivity of chemical treatment of titanium alloy (Ti-6Al-4V) in vitro. Smooth-surface discs of Ti-6Al-4V were used in this study. Sandblasted, dual acid-etched and H(2)O(2)/HCl heat-treated discs were set as test group, and sandblasted, dual acid-etched discs as control group. SEM and XRD analysis revealed a porous anatase gel layer on rough surface in the test group and a rough surface in the control group. Mouse pre-osteoblasts (MC3T3-E1 cells) were cultured on these 2 group discs, and then cell proliferation and differentiation were examined 4 days, 7 days, and 14 days after cell seeding. Cell proliferation was greatly stimulated at all time points when cultured in test group (P < .05). The alkaline phosphatase (ALP) activity and osteocalcin (OC) production were much higher in the test group compared with the control group at every time point investigated (P < .05). Furthermore, in the test group, the expressions of alkaline phosphatase-2, osteocalcin, and collagen type I alpha 1 mRNAs were significantly up-regulated as compared with those in the control group (P < .05 or P < .01). The results suggested that H(2)O(2)/HCl and heat-treatment might facilitate better integration of Ti-6Al-4V implants with bone.

  18. Nanostructural evolution and behavior of H and Li in ion-implanted γ-LiAlO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Zhang, Jiandong; Edwards, Danny J.

    In-situ He+ ion irradiation is performed under a helium ion microscope to study nanostructural evolution in polycrystalline gamma-LiAlO2 pellets. Various locations within a grain, across grain boundaries and at a cavity are selected. The results exhibit He bubble formation, grain-boundary cracking, nanoparticle agglomeration, increasing surface brightness with dose, and material loss from the surface. Similar brightening effects at grain boundaries are also observed under a scanning electron microscope. Li diffusion and loss from polycrystalline gamma-LiAlO2 is faster than its monocrystalline counterpart during H2+ ion implantation at elevated temperatures. There is also more significant H diffusion and release from polycrystalline pelletsmore » during thermal annealing of 300 K implanted samples. Grain boundaries and cavities could provide a faster pathway for H and Li diffusion. H release is slightly faster from the 573 K implanted monocrystalline gamma-LiAlO2 during annealing at 773 K. Metal hydrides could be formed preferentially along the grain boundaries to immobilize hydrogen.« less

  19. Infrared and EPR Spectroscopic Studies of 2-C 2H 2F and 1-C 2H 2F Radicals Isolated in Solid Argon

    NASA Astrophysics Data System (ADS)

    Goldschleger, I. U.; Akimov, A. V.; Misochko, E. Ya.; Wight, C. A.

    2001-02-01

    2-fluorovinyl radicals were generated in solid argon by solid-state chemical reactions of mobile F atoms with acetylene and its deuterated analogues. Highly resolved EPR spectra of the stabilized radicals CHF•CH, CDF•CD, CHF•CD, and CDF•CH were obtained for the first time. The observed spectra were assigned to cis-2-fluorovinyl radical based on excellent agreement between the measured (aF = 6.50, aβH = 3.86, aαH = 0.25 mT) hyperfine constants and those calculated using density functional (B3LYP) theory. Analogous experiments carried out using infrared spectroscopy yielded a complete assignment of the vibrational frequencies. An unusual reversible photochemical conversion is observed in which cis-2-fluorovinyl radicals can be partially converted to 1-fluorovinyl radicals by pulsed laser photolysis at 532 nm. Photolysis at 355 nm converts 1-fluorovinyl back to cis-2-fluorovinyl. High-resolution EPR and infrared spectra of 1-fluorovinyl were obtained for the first time. The measured hyperfine constants (aF = 13.71, aH1 = 4.21, aH2 = 1.16 mT) are in good agreement with calculated values.

  20. Metal Al produced by H2 plasma reduction of AlCl3: a thermodynamic and kinetic study on the plasma chemistry.

    PubMed

    Zheng, Jie; Sun, Bo; Yang, Rong; Song, Xubo; Li, Xingguo; Pu, Yikang

    2008-10-09

    In this paper we reported that low temperature plasma may reverse the direction of a chemical reaction. The thermodynamically forbidden reaction between H 2 and AlCl 3 was able to take place with the assistance of low temperature plasma, yielding metal Al. The plasma chemistry of the reaction was investigated by optical emission spectroscopy, which suggested that the dissociation of H 2 and AlCl 3 molecules by plasma led the reaction to a thermodynamically favorable one by creating reaction channels with low Gibbs free energy change. The addition of Ar promoted the reaction kinetics dramatically, which was attributed to the enhanced dissociation of AlCl 3 molecules by excited Ar species.

  1. Preparation of nanocomposite γ-Al2O3/polyethylene separator crosslinked by electron beam irradiation for lithium secondary battery

    NASA Astrophysics Data System (ADS)

    Nho, Young-Chang; Sohn, Joon-Yong; Shin, Junhwa; Park, Jong-Seok; Lim, Yoon-Mook; Kang, Phil-Hyun

    2017-03-01

    Although micro-porous membranes made of polyethylene (PE) offer excellent mechanical strength and chemical stability, they exhibit large thermal shrinkage at high temperature, which causes a short circuit between positive and negative electrodes in cases of unusual heat generation. We tried to develop a new technology to reduce the thermal shrinkage of PE separators by introducing γ-Al2O3 particles treated with coupling agent on PE separators. Nanocomposite γ-Al2O3/PE separators were prepared by the dip coating of polyethylene(PE) separators in γ-Al2O3/poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP)/crosslinker (1,3,5-trially-1,3,5-triazine-2,4,6(1 H,3 H,5 H)-trione (TTT) solution with humidity control followed by electron beam irradiation. γ-Al2O3/PVDF-HFP/TTT (95/5/2)-coated PE separator showed the highest electrolyte uptake (157%) and ionic conductivity (1.3 mS/cm). On the basis of the thermal shrinkage test, the nanocomposite γ-Al2O3/PE separators containing TTT irradiated by electron beam exhibited a higher thermal resistance. Moreover, a linear sweep voltammetry test showed that the irradiated nanocomposite γ-Al2O3/PE separators have electrochemical stabilities of up to 5.0 V. In a battery performance test, the coin cell assembled with γ-Al2O3/PVDF-HFP/TTT-coated PE separator showed excellent discharge cycle performance.

  2. A novel resistance gene, lnu(H), conferring resistance to lincosamides in Riemerella anatipestifer CH-2.

    PubMed

    Luo, Hong-Yan; Liu, Ma-Feng; Wang, Ming-Shu; Zhao, Xin-Xin; Jia, Ren-Yong; Chen, Shun; Sun, Kun-Feng; Yang, Qiao; Wu, Ying; Chen, Xiao-Yue; Biville, Francis; Zou, Yuan-Feng; Jing, Bo; Cheng, An-Chun; Zhu, De-Kang

    2018-01-01

    The Gram-negative bacterium Riemerella anatipestifer CH-2 is resistant to lincosamides, having a lincomycin (LCM) minimum inhibitory concentration (MIC) of 128 µg/mL. The G148_1775 gene of R. anatipestifer CH-2, designated lnu(H), encodes a 260-amino acid protein with ≤41% identity to other reported lincosamide nucleotidylyltransferases. Escherichia coli Rosetta TM (DE3) containing the pBAD24-lnu(H) plasmid showed four- and two-fold increases in the MICs of LCM and clindamycin (CLI), respectively. A kinetic assay of the purified Lnu(H) enzyme for LCM and CLI showed that the protein could inactive lincosamides. Mass spectrometry analysis demonstrated that the Lnu(H) enzyme catalysed adenylylation of lincosamides. In addition, an lnu(H) gene deletion strain exhibited 512- and 32-fold decreases in LCM and CLI MICs, respectively. The wild-type level of lincosamide resistance could be restored by complementation with a shuttle plasmid carrying the lnu(H) gene. The transformant R. anatipestifer ATCC 11845 [lnu(H)] acquired by natural transformation also exhibited high-level lincosamide resistance. Moreover, among 175 R. anatipestifer field isolates, 56 (32.0%) were positive for the lnu(H) gene by PCR. In conclusion, Lnu(H) is a novel lincosamide nucleotidylyltransferase that inactivates LCM and CLI by nucleotidylylation, thus conferring high-level lincosamide resistance to R. anatipestifer CH-2. Copyright © 2017. Published by Elsevier B.V.

  3. Explanation of the unusual temperature dependence of the atmospherically important OH + H(2)S --> H(2)O + HS reaction and prediction of the rate constant at combustion temperatures.

    PubMed

    Ellingson, Benjamin A; Truhlar, Donald G

    2007-10-24

    Rate constants for the OH + H2S --> H2O + HS reaction, which is important for both atmospheric chemistry and combustion, are calculated by direct dynamics with the M06-2X density functional using the MG3S basis set. Energetics are compared to high-level MCG3/3//MC-QCISD/3 wave function theory and to results obtained by other density functionals. We employ canonical variational transition-state theory with multidimensional tunneling contributions and scaled generalized normal-mode frequencies evaluated in redundant curvilinear coordinates with anharmonicity included in the torsion. The transition state has a quantum mechanically distinguishable, nonsuperimposable mirror image that corresponds to a separate classical reaction path; the effect of the multiple paths is examined through use of a symmetry number and by torsional methods. Calculations with the reference-potential Pitzer-Gwinn treatment of the torsional mode agree with experiment, within experimental scatter, and predict a striking temperature dependence of the activation energy, increasing from -0.1 kcal/mol at 200 K to 0.2, 1.0, 3.4, and 9.8 kcal/mol at 300, 500, 1000, and 2400 K. The unusual temperature dependence arises from a dynamical bottleneck at an energy below reactants, following an addition complex on the reaction path with a classical binding energy of 4.4 kcal/mol. As a way to check the mechanism, kinetic isotope effects of the OH + D2S and OD + D2S reactions have been predicted.

  4. Application of Symmetry-Broken H2-H2 Potential Energy Surface to Low Energy o-/p-H2+HD Collisions of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Sultanov, R. A.; Guster, D.; Adhukari, S. K.

    2011-05-01

    A possibility of correct description of non-symmetrical HD+H2 collision at low temperatures (T≤300 K) is considered by applying symmetrical H2-H2 potential energy surface (PES) [Diep, P. & Johnson, K. 2000, J. Chem. Phys. 113, 3480 (DJ PES)]. With the use of a special mathematical transformation technique, which was applied to this surface, and a quantum dynamical method we obtained a quite satisfactory agreement with previous results when another H2-H2 PES was used [Boothroyd, A.I. et al. 2002, J. Chem. Phys. 116, 666 (BMKP PES)].

  5. Hydrothermal synthesis, structural elucidation, spectroscopic studies, thermal behavior and luminescence properties of a new 3-d compound: FeAlF2(C10H8N2)(HPO4)2(H2O)

    NASA Astrophysics Data System (ADS)

    Bouzidia, Nabaa; Salah, Najet; Hamdi, Besma; Ben Salah, Abdelhamid

    2017-04-01

    The study of metal phosphate has been a proactive field of research thanks to its applied and scientific importance, especially in terms of the development of optical devices such as solid state lasers as well as optical fibers. The present paper seeks to investigate the synthesis, crystal structure, elemental analysis and properties of FeAlF2(C10H8N2)(HPO4)2(H2O) compound investigated by spectroscopic studies (FT-IR and FT-Raman), thermal behavior and luminescence. The Hirshfeld surface analysis and 2-D fingerprint plot have been performed to explore the behavior of these weak interactions and crystal cohesion. This investigation shows that the molecules are connected by hydrogen bonds of the type Osbnd H⋯O and Osbnd H⋯F. In addition, the 2,2'‒bipyridine ligand plays a significant role in the construction of 3-D supramolecular framework via π‒π stacking. FT‒IR and FT‒Raman spectra were used so as to ease the responsibilities of the vibration modes of the title compound. The thermal analysis (TGA) study shows a mass loss evolution as a temperature function. Finally, the optical properties were evaluated by photoluminescence spectroscopy.

  6. Lattice damage and Al-metal precipitation in 2.5 MeV-electron-irradiated AlH3

    NASA Astrophysics Data System (ADS)

    Zogal, O. J.; Vajda, P.; Beuneu, F.; Pietraszko, A.

    1998-04-01

    AlH3 powder was bombarded with energetic electrons at 20 K and at room temperature and investigated by EPR, NMR, X-ray diffractometry, and microwave dielectric-constant measurements. The EPR spectra of the irradiated powder and of a selected single crystal cuboid of ˜ {10^{ - 1}} mm edge show a complex asymmetric line centered at g = 2.009, with a Curie-like temperature dependence, attributed to radiation-induced color centers and/or their agglomerates. At the same time, the grains, which have become shiny black after irradiation, exhibit an increase of both the real and the imaginary part of ɛ. 27Al-NMR spectra of the irradiated powder present a Knight-shifted line at 1600(50) ppm, close to the position of bulk metallic Al, and corresponding to a concentration of c(Al) ˜ {10^{ - 1}}. In addition, the main hydride line differs from that before irradiation, demonstrating an alteration of environmental symmetry. The irradiation induces also a change in shape and width of the 1H-NMR line, another indication of symmetry change in the lattice. Finally, a refined X-ray single-crystal structure analysis of the irradiated cuboid indicates a change of structure from trigonal R -3 c to R -3, with a loss of mirror symmetry for the two Al sites caused by the introduction of Al-defects in the vicinity of one of them.

  7. Crystal chemistry of hydrous phases in the Al2O3-Fe2O3-H2O system: implications for water cycle in the deep lower mantle

    NASA Astrophysics Data System (ADS)

    Zhang, L.

    2016-12-01

    Hydrous minerals play an important role in the transportation and storage of water in the Earth's interior. Recently a pyrite-structured iron oxide (FeO2) (P-phase) was found stable at 76 GPa and 1800 K [1] and this discovery has brought new insights into the H2-O2 cycles in the deep mantle. In this study, we perform in situ synchrotron X-ray experiments in the Al2O3-Fe2O3-H2O system in a laser-heated diamond anvil cell (DAC) at P-T conditions in the deep lower mantle. The new results added more complexity to the H2-O2/H2O cycles in the deep lower mantle. The symmetry and unit-cell parameters of each phase in the run products were determined using the multigrain approach [2]. On the other hand, the d-H solid solution AlOOH-MgSiO2(OH)2 is the stable hydrous phase coexisting with bridgmanite or post-perovskite under equilibrium P-T conditions to the deepest lower mantle [3]. The detailed crystal chemistry of the newly found hydrous phases and its relations to the d-H phase have been investigated using both first-principles calculations and experiments, providing new understanding to the hydration mechanism and water storage in the deep mantle. It is worth mentioning that recent development in high pressure multigrain method has realized separation of each individual phase in a multiphase assemblage and even allowed in situ crystal structure determination of a minor phase in the assemblage contained in a DAC [4]. [1] Q. Hu, D. Y. Kim, W. Yang, L. Yang, Y. Meng, L. Zhang, and H. K. Mao, Nature 534, 241 (2016). [2] H. O. Sørensen et al., Zeitschrift für Kristallographie 227, 63 (2012). [3] I. Ohira, E. Ohtani, T. Sakai, M. Miyahara, N. Hirao, Y. Ohishi, and M. Nishijima, Earth and Planetary Science Letters 401, 12 (2014). [4] L. Zhang, D. Popov, Y. Meng, J. Wang, C. Ji, B. Li, and H.-k. Mao, American Mineralogist 101, 231 (2016).

  8. Isotope analysis of diamond-surface passivation effect of high-temperature H{sub 2}O-grown atomic layer deposition-Al{sub 2}O{sub 3} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiraiwa, Atsushi, E-mail: hiraiwa@aoni.waseda.jp, E-mail: qs4a-hriw@asahi-net.or.jp; Saito, Tatsuya; Matsumura, Daisuke

    2015-06-07

    The Al{sub 2}O{sub 3} film formed using an atomic layer deposition (ALD) method with trimethylaluminum as Al precursor and H{sub 2}O as oxidant at a high temperature (450 °C) effectively passivates the p-type surface conduction (SC) layer specific to a hydrogen-terminated diamond surface, leading to a successful operation of diamond SC field-effect transistors at 400 °C. In order to investigate this excellent passivation effect, we carried out an isotope analysis using D{sub 2}O instead of H{sub 2}O in the ALD and found that the Al{sub 2}O{sub 3} film formed at a conventional temperature (100 °C) incorporates 50 times more CH{sub 3} groups thanmore » the high-temperature film. This CH{sub 3} is supposed to dissociate from the film when heated afterwards at a higher temperature (550 °C) and causes peeling patterns on the H-terminated surface. The high-temperature film is free from this problem and has the largest mass density and dielectric constant among those investigated in this study. The isotope analysis also unveiled a relatively active H-exchange reaction between the diamond H-termination and H{sub 2}O oxidant during the high-temperature ALD, the SC still being kept intact. This dynamic and yet steady H termination is realized by the suppressed oxidation due to the endothermic reaction with H{sub 2}O. Additionally, we not only observed the kinetic isotope effect in the form of reduced growth rate of D{sub 2}O-oxidant ALD but found that the mass density and dielectric constant of D{sub 2}O-grown Al{sub 2}O{sub 3} films are smaller than those of H{sub 2}O-grown films. This is a new type of isotope effect, which is not caused by the presence of isotopes in the films unlike the traditional isotope effects that originate from the presence of isotopes itself. Hence, the high-temperature ALD is very effective in forming Al{sub 2}O{sub 3} films as a passivation and/or gate-insulation layer of high-temperature-operation diamond SC devices, and the

  9. Combustion synthesis of AlB2-Al2O3 composite powders with AlB2 nanowire structures

    NASA Astrophysics Data System (ADS)

    Yang, Pan; Xiao, Guoqing; Ding, Donghai; Ren, Yun; Yang, Shoulei; Lv, Lihua; Hou, Xing

    2018-05-01

    Using of Al and B2O3 powders as starting materials, and Mg-Al alloy as additives, AlB2-Al2O3 composite powders with AlB2 nanowire structures were successfully fabricated via combustion synthesis method in Ar atmosphere at a pressure of 1.5 MPa. The effect of different amount of Mg-Al alloy on the phase compositions and morphology of the combustion products was investigated. The results revealed that AlB2 and Al2O3 increased, whereas Al decreased with the content of Mg-Al alloy increasing. The impurities MgAl2O4 and AlB12 would exist in the sample with adding of 18 wt% Mg-Al alloy. Interestingly, FESEM/TEM/EDS results showed that AlB2 nanowires were observed in the products when the content of Mg-Al alloy is 6 wt% and 12 wt%. The more AlB2 nanowires can be found as the content of Mg-Al alloy increased. And the yield of AlB2 nanowires with the diameter of about 200 nanometers (nm) and the length up to several tens of micrometers (μm) in the combustion product is highest when the content of Mg-Al alloy is 12 wt%. The vapor, such as Mg-Al (g), B2O2 (g), AlO (g) and Al2O (g), produced during the process of combustion synthesis, reacted with each other to yield AlB2 nanowires by vapor-solid (VS) mechanism and the corresponding model was also proposed.

  10. New Optical Constants for Amorphous and Crystalline H2O-ice and H2O-mixtures.

    NASA Technical Reports Server (NTRS)

    Mastrapa, Rachel; Bernstein, Max; Sandford, Scott

    2006-01-01

    We will present the products of new laboratory measurements of ices relevant to Trans-Neptunian Objects. We have calculated the real and imaginary indices of refraction for amorphous and crystalline H2O-ice and also H2O-rich ices containing other molecular species. We create ice samples by condensing gases onto a cold substrate. We measure the thickness of the sample by reflecting a He-Ne laser off of the sample and counting interference fringes as it grows. We then collect transmission spectra of the samples in the wavelength range from 0.7-22 micrometers. Using the thickness and the transmission spectra of the ice we calculate the imaginary part of the index of refraction. We then use a Kramers-Kronig calculation to calculate the real part of the index of refraction (Berland et al. 1994; Hudgins et al. 1993). These optical constants can then be used to create model spectra for comparison to spectra from Solar System objects, including TNOs. We will summarize the difference between the amorphous and crystalline H2O-ice spectra. These changes include weakening of features and shifting of features to shorter wavelength. One important result is that the 2 pm feature is stronger in amorphous H2O ice than it is in crystalline H2O-ice. We will also discuss the changes seen when H2O is mixed with other components, including CO2, CH4, HCN, and NH3 (Bernstein et al. 2005; Bernstein et al. 2006).

  11. Tunneling chemical reactions D +H2→DH+H and D +DH→D2+H in solid D2-H2 and HD -H2 mixtures: An electron-spin-resonance study

    NASA Astrophysics Data System (ADS)

    Kumada, Takayuki

    2006-03-01

    Tunneling chemical reactions D +H2→DH+H and D +DH→D2+H in solid HD -H2 and D2-H2 mixtures were studied in the temperature range between 4 and 8K. These reactions were initiated by UV photolysis of DI molecules doped in these solids for 30s and followed by measuring the time course of electron-spin-resonance (ESR) intensities of D and H atoms. ESR intensity of D atoms produced by the photolysis decreases but that of H atoms increases with time. Time course of the D and H intensities has the fast and slow processes. The fast process, which finishes within ˜300s after the photolysis, is assigned to the reaction of D atom with one of its nearest-neighboring H2 molecules, D(H2)n(HD)12-n→H(H2)n-1(HD)13-n or D(H2)n(D2)12-n→H(HD )(H2)n-1(D2)12-n for 12⩾n⩾1. Rate constant for the D +H2 reaction between neighboring D atom-H2 molecule pair is determined to be (7.5±0.7)×10-3s-1 in solid HD -H2 and (1.3±0.3)×10-2s-1 in D2-H2 at 4.1K, which is very close to that calculated based on the theory of chemical reaction in gas phase by Hancock et al. [J. Chem. Phys. 91, 3492 (1989)] and Takayanagi and Sato [J. Chem. Phys. 92, 2862 (1990)]. This rate constant was found to be independent of temperature up to 7K within experimental error of ±30%. The slow process is assigned to the reaction of D atom produced in a cage fully surrounded by HD or D2 molecules, D(HD)12 or D(D2)12. This D atom undergoes the D +DH reaction with one of its nearest-neighboring HD molecules in solid HD -H2 or diffuses to the neighbor of H2 molecules to allow the D +H2 reaction in solid HD -H2 and D2-H2. The former is the main channel in solid HD -H2 below 6K where D atoms diffuse very slowly, whereas the latter dominates over the former above 6K. Rate for the reactions in the slow process is independent of temperature below 6K but increases with the increase in temperature above 6K. We found that the increase is due to the increase in hopping rate of D atoms to the neighbor of H2 molecules. Rate

  12. Isolation and structures of sulfonium salts derived from thioethers: [{o-C(6)H(4)(CH(2)SMe)(2)}H][NbF(6)] and [{[9]aneS(3)}H][NbF(6)].

    PubMed

    Jura, Marek; Levason, William; Reid, Gillian; Webster, Michael

    2009-10-07

    Two very unusual sulfonium salts, [{o-C(6)H(4)(CH(2)SMe)(2)}H][NbF(6)] and [{[9]aneS(3)}H][NbF(6)], obtained from reaction of the thioethers with NbF(5) in CH(2)Cl(2) solution, are reported and their structures described; the eight-coordinate tetrafluoro Nb(v) cation of the dithioether is obtained from the same reaction.

  13. Thermodynamic data of lawsonite and zoisite in the system CaO-Al2O3-SiO2-H2O based on experimental phase equilibria and calorimetric work

    NASA Astrophysics Data System (ADS)

    Grevel, Klaus-Dieter; Schoenitz, Mirko; Skrok, Volker; Navrotsky, Alexandra; Schreyer, Werner

    2001-08-01

    The enthalpy of drop-solution in molten 2PbO.B2O3 of synthetic and natural lawsonite, CaAl2(Si2O7)(OH)2.H2O, was measured by high-temperature oxide melt calorimetry. The enthalpy of formation determined for the synthetic material is ΔfHOxides=-168.7+/-3.4 kJ mol-1, or ΔfH0298=-4,872.5+/-4.0 kJ mol-1. These values are in reasonable agreement with previously published data, although previous calorimetric work yielded slightly more exothermic data and optimisation methods resulted in slightly less exothermic values. The equilibrium conditions for the dehydration of lawsonite to zoisite, kyanite and quartz/coesite at pressures and temperatures up to 5 GPa and 850 °C were determined by piston cylinder experiments. These results, other recent phase equilibrium data, and new calorimetric and thermophysical data for lawsonite and zoisite, Ca2Al3(SiO4)(Si2O7)O(OH), were used to constrain a mathematical programming analysis of the thermodynamic data for these two minerals in the chemical system CaO-Al2O3-SiO2-H2O (CASH). The following data for lawsonite and zoisite were obtained: ΔfH0298 (lawsonite)=-4,865.68 kJ mol-1 , S0298 (lawsonite)=229.27 J K-1 mol-1 , ΔfH0298 (zoisite)=-6,888.99 kJ mol-1 , S0298 (zoisite)=297.71 J K-1 mol-1 . Additionally, a recalculation of the bulk modulus of lawsonite yielded K=120.7 GPa, which is in good agreement with recent experimental work.

  14. [Influences of R2O-Al2O3-B2O3-SiO2 system glass and superfine alpha-Al2O3 on the sintering and phase transition of hydroxyapatite ceramics].

    PubMed

    Wang, Zhiqiang; Chen, Xiaoxu; Cai, Yingji; Lü, Bingling

    2003-06-01

    The effects of R2O-Al2O3-B2O3-SiO2 system glass and superfine alpha-Al2O3 on the sintering and phase transition of hydroxyapatite (HAP) ceramics were assessed. The results showed that alpha-Al2O3 impeded the sintering of HAP and raised the sintering temperature. When glass and alpha-Al2O3 were used together to reinforce HAP ceramics, better results could be obtained; the bending strength of multiphase HAP ceramics approached 106 MPa when 10% (wt) alpha-Al2O3 and 20%(wt) glass were used and sintered at 1200 for 1 h.

  15. Quantum and quasi-classical calculations for the S+ + H2(v, j) →SH+(v′, j′)+H reactive collisions

    PubMed Central

    Zanchet, Alexandre; Roncero, Octavio; Bulut, Niyazi

    2016-01-01

    State-to-state cross sections for the S+ + H2(v, j) → SH+ (v′, j′) + H endothermic reaction are obtained with quantum wave packet(WP) and quasi-classical (QCT) methods for different initial rovibrational H2(v, j) over a wide range of translation energies. Final state distribution as a function of the initial quantum number is obtained and discussed. Additionally, the effect of the internal excitation of H2 on the reactivity is carefully studied. It appears that energy transfer among modes is very inefficient, that vibrational energy is the most favorable for reaction and rotational excitation significantly enhance reactivity when vibrational energy is sufficient to reach the product. Special attention is also paid on an unusual discrepancy between classical and quantum dynamics for low rotational levels while agreement improves with rotational excitation of H2, An interesting resonant behaviour found in WP calculations is also discussed and is associated to the existence of roaming classical trajectories that enhance the reactivity of the title reaction. Finally, a comparison with the experimental results of Stowe et al.[1] for S+ + HD and S+ +D2 reactions, finding a reasonably good agreement with those results. PMID:27055725

  16. Prior infection of pigs with a recent human H3N2 influenza virus confers minimal cross-protection against a European swine H3N2 virus.

    PubMed

    Qiu, Yu; van der Meulen, Karen; Van Reeth, Kristien

    2013-11-01

    H3N2 influenza viruses circulating in humans and European pigs originate from the pandemic A/Hong Kong/68 virus. Because of slower antigenic drift in swine, the antigenic divergence between swine and human viruses has been increasing. It remains unknown to what extent this results in a reduced cross-protection between recent human and swine H3N2 influenza viruses. We examined whether prior infection of pigs with an old [A/Victoria/3/75 (A/Vic/75)] or a more recent [A/Wisconsin/67/05 (A/Wis/05)] human H3N2 virus protected against a European swine H3N2 virus [sw/Gent/172/08 (sw/Gent/08)]. Genetic and antigenic relationships between sw/Gent/08 and a selection of human H3N2 viruses were also assessed. After challenge with sw/Gent/08, all challenge controls had high virus titers in the entire respiratory tract at 3 days post-challenge and nasal virus excretion for 5-6 days. Prior infection with sw/Gent/08 or A/Vic/75 offered complete virological protection against challenge. Pigs previously inoculated with A/Wis/05 showed similar virus titers in the respiratory tract as challenge controls, but the mean duration of nasal shedding was 1·3 days shorter. Unlike sw/Gent/08- and A/Vic/75-inoculated pigs, A/Wis/05-inoculated pigs lacked cross-reactive neutralizing antibodies against sw/Gent/08 before challenge, but they showed a more rapid antibody response to sw/Gent/08 than challenge controls after challenge. Cross-protection and serological responses correlated with genetic and antigenic differences. Infection immunity to a recent human H3N2 virus confers minimal cross-protection against a European swine H3N2 virus. We discuss our findings with regard to the recent zoonotic infections of humans in the United States with a swine-origin H3N2 variant virus. © 2013 John Wiley & Sons Ltd.

  17. Rechargeable Al-CO2 Batteries for Reversible Utilization of CO2.

    PubMed

    Ma, Wenqing; Liu, Xizheng; Li, Chao; Yin, Huiming; Xi, Wei; Liu, Ruirui; He, Guang; Zhao, Xian; Luo, Jun; Ding, Yi

    2018-05-21

    The excessive emission of CO 2 and the energy crisis are two major issues facing humanity. Thus, the electrochemical reduction of CO 2 and its utilization in metal-CO 2 batteries have attracted wide attention because the batteries can simultaneously accelerate CO 2 fixation/utilization and energy storage/release. Here, rechargeable Al-CO 2 batteries are proposed and realized, which use chemically stable Al as the anode. The batteries display small discharge/charge voltage gaps down to 0.091 V and high energy efficiencies up to 87.7%, indicating an efficient battery performance. Their chemical reaction mechanism to produce the performance is revealed to be 4Al + 9CO 22Al 2 (CO 3 ) 3 + 3C, by which CO 2 is reversibly utilized. These batteries are envisaged to effectively and safely serve as a potential CO 2 fixation/utilization strategy with stable Al. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Broadening of spectral lines of CO2, N2O , H2CO, HCN, and H2S by pressure of gases dominant in planetary atmospheres (H2, He and CO2)

    NASA Astrophysics Data System (ADS)

    Samuels, Shanelle; Gordon, Iouli; Tan, Yan

    2018-01-01

    HITRAN1,2 is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in planetary atmospheres. The goal of this project is to add to the potential of the HITRAN database towards the exploration of the planetary atmospheres by including parameters describing broadening of spectral lines by H2, CO2, and He. These spectroscopic data are very important for the study of the hydrogen and helium-rich atmospheres of gas giants as well as rocky planets with volcanic activities, including Venus and Mars, since their atmospheres are dominated by CO2. First step in this direction was accomplished by Wilzewski et al.3 where this was done for SO2, NH3, HF, HCl, OCS and C2H2. The molecules investigated in this work were CO2, N2O, H2CO, HCN and H2S. Line-broadening coefficients, line shifts and temperature-dependence exponents for transitions of these molecules perturbed by H2, CO2 and He have been assembled from available peer-reviewed experimental and theoretical sources. The data was evaluated and the database was populated with these data and their extrapolations/interpolations using semi-empirical models that were developed to this end.Acknowledgements: Financial support from NASA PDART grant NNX16AG51G and the Smithsonian Astrophysical Observatory Latino Initiative Program from the Latino Initiatives Pool, administered by the Smithsonian Latino Center is gratefully acknowledged.References: 1. HITRAN online http://hitran.org/2. Gordon, I.E., Rothman, L.S., Hill, C., Kochanov, R.V., Tan, Y., et al., 2017. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. doi:10.1016/j.jqsrt.2017.06.0383. Wilzewski, J.S., Gordon, I.E., Kochanov, R. V., Hill, C., Rothman, L.S., 2016. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2. J. Quant. Spectrosc. Radiat

  19. Effect of H2O and CO2 on The Oxidation Behavior and Durability at High Temperature of ODS-FeCrAl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N; Rouaix-Vande Put, Aurelie; Pint, Bruce A

    Cyclic oxidation testing was conducted on alloy MA956 and two different batches of alloy PM2000 at 1100 and 1200 C in different atmospheres rich in O2, H2O and CO2. Compare to 1h cycle in dry O2, exposure in air + 10 vol.% H2O resulted in an increase of the oxidation rate and a decrease of the time to breakaway for both alloys at 1200 C, and a faster consumption of Al in the MA956 alloy. 1h cyclic testing in 50%CO2/50%H2O+0.75% O2 had less of an impact on the oxidation rate but led to an increased formation of voids for alloymore » MA956, which had an impact on the alloy creep resistance. At 1100 C, exposure in 50%CO2/50%H2O resulted in significant oxide spallation compared with oxidation in air, but it was not the case when 0.75% O2 was added to the CO2/H2O mixture as a buffer. The control of impurities levels drastically improved the PM2000 oxidation resistance.« less

  20. Design and syntheses of hybrid metal-organic materials based on K3[M(C2O4)3]·3H2O [M(III)=Fe, Al, Cr] metallotectons

    NASA Astrophysics Data System (ADS)

    Sun, Yayong; Zong, Yingxia; Ma, Haoran; Zhang, Ao; Liu, Kang; Wang, Debao; Wang, Wenqiang; Wang, Lei

    2016-05-01

    By using K3[M(C2O4)3]·3H2O [M(III)=Fe, Al, Cr] (C2O42-=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C2O4)2(H2O)2}2]·(H-L1)2·H2O 1, [Fe(C2O4)Cl2]·(H2-L2)0.5·(L2)0.5·H2O 2, [{Fe(C2O4)1.5Cl2}2]·(H-L3)43, [Fe2(C2O4)Cl8]·(H2-L4)2·2H2O 4, K[Al(C2O4)3]·(H2-L5)·2H2O 5, K[Al(C2O4)3]·(H-L6)2·2H2O 6, K[Cr(C2O4)3]·2H2O 7, Na[Fe(C2O4)3]·(H-L6)2·2H2O 8 (with L1=4-dimethylaminopyridine, L2=2,3,5,6-tetramethylpyrazine, L3=2-aminobenzimidazole, L4=1,4-bis-(1H-imidazol-1-yl)benzene, L5=1,4-bis((2-methylimidazol-1-yl)methyl)benzene, L6=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C2O4)2(H2O)2]- unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C2O4)Cl2]- anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe2(C2O4)3Cl4]4- unit. Compound 4 features distinct [Fe2(C2O4)Cl8]4- units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C2O4)3]3- units and K+ cations. The 1D chains are further extended into 3D antionic H-bonded framework through O-H···O H-bonds. Compounds 6-8 show 2D [KAl(C2O4)3]2- layer, [KCr(C2O4)3]2- layer and [NaFe(C2O4)3]2- layer, respectively.

  1. Influence of annealing environment on the ALD-Al2O3/4H-SiC interface studied through XPS

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Arshad, Muhammad; Saveda Suvanam, Sethu; Hallén, Anders

    2018-03-01

    The instability of Al2O3/4H-SiC interface at various process temperatures and ambient is investigated by the annealing of Al2O3/4H-SiC in low vacuum conditions as well as in N2 environments. Atomic layer deposited Al2O3 on a 4H-SiC substrate with 3, 6 and 10 nm of thicknesses is treated at 300, 500, 700 and 900 °C under the vacuum level of 10-1 torr. The as-deposited and annealed structures are analyzed using x-ray photoelectron spectroscopy. It is hypothesized that the minute quantity of oxygen present in low vacuum conditions diffuses through thin layers of Al2O3 and helps in forming SiO2 at the interface even at low temperatures (i.e. 300 °C), which plays a pivotal role in determining the electrical properties of the interface. It is also proved that the absence of oxygen in the ambient prevents the formation of SiO2 at low temperatures. Additionally, it is observed that Al-OH is present in as-deposited layers, which gradually reduces after annealing. However, at around 700 °C, the concentration of oxygen in the whole structure increases to maximum and reduces at 900 °C.

  2. Formation of epitaxial Al 2O 3/NiAl(1 1 0) films: aluminium deposition

    NASA Astrophysics Data System (ADS)

    Lykhach, Y.; Moroz, V.; Yoshitake, M.

    2005-02-01

    Structure of epitaxial Al 2O 3 layers formed on NiAl(1 1 0) substrates has been studied by means of reflection high-energy electron diffraction (RHEED). The elucidated structure was compared to the model suggested for 0.5 nm-thick Al 2O 3 layers [K. Müller, H. Lindner, D.M. Zehner, G. Ownby, Verh. Dtsch. Phys. Ges. 25 (1990) 1130; R.M. Jaeger, H. Kuhlenbeck, H.J. Freund, Surf. Sci. 259 (1991) 235]. The stepwise growth of Al 2O 3 film, involving deposition and subsequent oxidation of aluminium onto epitaxial 0.5 nm-thick Al 2O 3 layers, has been investigated. Aluminium was deposited at room temperature, whereas its oxidation took place during annealing at 1070 K. The Al 2O 3 thickness was monitored by means of Auger electron spectroscopy (AES). It was found that Al 2O 3 layer follows the structure of 0.5 nm thick Al 2O 3 film, although a tilting of Al 2O 3(1 1 1) surface plane with respect to NiAl(1 1 0) surface appeared after Al deposition.

  3. Effect of H2O and CO2 on The Oxidation Behavior and Durability at High Temperature of ODS-FeCrAl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N; Pint, Bruce A; Rouaix-Vande Put, Aurelie

    Cyclic oxidation testing was conducted on alloy MA956 and two different batches of alloy PM2000 at 1100 and 1200 C in different atmospheres rich in O2, H2O and CO2. Compared to 1h cycles in dry O2, exposure in air+10 vol.% H2O resulted in an increase of the oxidation rate and a decrease of the time to breakaway for all alloys at 1200 C, and a faster consumption of Al in the MA956 alloy. One hour cyclic testing in 49.25%CO2+50%H2O+0.75% O2 had a smaller effect on the oxidation rate but led to increased formation of voids in alloy MA956, which hadmore » an impact on the alloy creep resistance. At 1100 C, exposure in 50%CO2+50%H2O resulted in significant oxide spallation compared with oxidation in air, but this was not the case when 0.75% O2 was added to the CO2/H2O mixture as a buffer. The control of impurity levels drastically improved the oxidation resistance of PM2000.« less

  4. Infrared Spectroscopy of the H2/HD/D2-O2 Van Der Waals Complexes

    NASA Astrophysics Data System (ADS)

    Raston, Paul; Bunn, Hayley

    2016-06-01

    Hydrogen is the most abundant element in the universe and oxygen is the third, so understanding the interaction between the two in their different forms is important to understanding astrochemical processes. The interaction between H2 and O2 has been explored in low energy scattering experiments and by far infrared synchrotron spectroscopy of the van der Waals complex. The far infrared spectra suggest a parallel stacked average structure with seven bound rotationally excited states. Here, we present the far infrared spectrum of HD/D2-O2 and the mid infrared spectrum of H2-O2 at 80 K, recorded at the infrared beamline facility of the Australian Synchrotron. We observed 'sharp' peaks in the mid infrared region, corresponding to the end over end rotation of H2-O2, that are comparatively noisier than analogous peaks in the far infrared where the synchrotron light is brightest. The larger reduced mass of HD and D2 compared to H2 is expected to result in more rotational bound states and narrower bands. The latest results in our ongoing efforts to explore this system will be presented. Y. Kalugina, et al., Phys. Chem. Chem. Phys. 14, 16458 (2012) S. Chefdeville et al. Science 341, 1094 (2013) H. Bunn et al. ApJ 799, 65 (2015)

  5. A convective study of Al2O3-H2O and Cu- H2O nano-liquid films sprayed over a stretching cylinder with viscous dissipation

    NASA Astrophysics Data System (ADS)

    Alshomrani, Ali Saleh; Gul, Taza

    2017-11-01

    This study is related with the analysis of spray distribution considering a nanofluid thin layer over the slippery and stretching surface of a cylinder with thermal radiation. The distribution of the spray rate is designated as a function of the nanolayer thickness. The applied temperature used during spray phenomenon has been assumed as a reference temperature with the addition of the viscous dissipation term. The diverse behavior of the thermal radiation with magnetic and chemical reaction has been cautiously observed, which has consequences in causing variations in the spray distribution and heat transmission. Nanofluids have been used as water-based like Al2O3-H2O, Cu- H2O and have been examined under the consideration of momentum and thermal slip boundary conditions. The basic equations have been transformed into a set of nonlinear equations by using suitable variables for alteration. The approximate results of the problem have been achieved by using the optimal approach of the Homotopy Analysis Method (HAM). We demonstrate our results with the help of the numerical (ND-Solve) method. In addition, we found a close agreement of the two methods which is confirmed through graphs and tables. The rate of the spray pattern under the applied pressure term has also been obtained. The maximum cooling performance has been obtained by using the Cu water with the small values of the magnetic parameter and alumina for large values of the magnetic parameter. The outcomes of the Cu-water and Al2O3-H2O nanofluids have been linked to the published results in the literature. The impact of the physical parameters, like the skin friction coefficient, and the local Nusselt number have also been observed and compared with the published work. The momentum slip and thermal slip parameters, thermal radiation parameter, magnetic parameter and heat generation/absorption parameter effects on the spray rate have been calculated and discussed.

  6. Nevadaite, (Cu2+, Al, V3+)6 [Al8 (PO4)8 F8] (OH 2 (H2O)22, a new phosphate mineral species from the Gold Quarry mine, Carlin, Eureka County, Nevada: description and crystal structure

    USGS Publications Warehouse

    Cooper, M.A.; Hawthorne, F.C.; Roberts, Andrew C.; Foord, E.E.; Erd, Richard C.; Evans, H.T.; Jensen, M.C.

    2004-01-01

    Nevadaite, (Cu2+, ???, Al, V3+)6 (PO4)8 F8 (OH)2 (H2O)22, is a new supergene mineral species from the Gold Quarry mine, near Carlin, Eureka County, Nevada, U.S.A. Nevadaite forms radiating clusters to 1 mm of prismatic crystals, locally covering surfaces more that 2 cm across; individual crystals are elongate on [001] with a length:width ratio of > 10:1 and a maximum diameter of ???30 ??m. It also occurs as spherules and druses associated with colorless to purple-black fluellite, colorless wavellite, strengitevariscite, acicular maroon-to-red hewettite, and rare anatase, kazakhstanite, tinticite, leucophosphite, torbernite and tyuyamunite. Nevadaite is pale green to turquoise blue with a pale powder-blue streak and a vitreous luster; it does not fluoresce under ultra-violet light. It has no cleavage, a Mohs hardness of ???3, is brittle with a conchoidal fracture, and has measured and calculated densities of 2.54 and 2.55 g/cm3, respectively. Nevadaite is biaxial negative, with ?? 1.540, ?? 1.548, ?? 1.553, 2V(obs.) = 76??, 2V(calc.) = 76??, pleochroic with X pale greenish blue, Y very pale greenish blue, Z blue, and with absorption Z ??? X > Y and orientation X = c, Y = a, Z = b. Nevadaite is orthorhombic, space group P21mn, a 12.123(2), b 18.999(2), c 4.961(1) A?? , V 1142.8(2) A??3, Z = 1, a:b:c = 0.6391:1:0.2611. The strongest seven lines in the X-ray powder-diffraction pattern [d in A??(I)(hkl)] are: 6.077(10)(200), 5.618(9)(130), 9.535(8)(020), 2.983(6)(241), 3.430(4)(041), 2.661(4)(061 , and 1.844(4)(352). A chemical analysis with an electron microprobe gave P2O5 32.54, Al2O3 27.07, V2O3 4.24, Fe2O3 0.07, CuO 9.24, ZnO 0.11, F 9.22, H2O (calc.) 23.48, OH ??? F -3.88, sum 102.09 wt.%; the valence states of V and Fe, and the amount of H2O, were determined by crystal-structure analysis. The resulting empirical formula on the basis of 63.65 anions (including 21.65 H2O pfu) is (CU2+2.00 Zn0.02 V3+0.98 Fe3+0.01 Al1.15)??4.16 Al8 P7.90 O32 [F8.37 (OH 1.63]??10 (H2O

  7. Hydrogenation and Deuteration of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} on Cold Grains: A Clue to the Formation Mechanism of C{sub 2}H{sub 6} with Astronomical Interest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Hitomi; Kawakita, Hideyo; Hidaka, Hiroshi

    We quantitatively investigated the hydrogen addition reactions of acetylene (C{sub 2}H{sub 2}) and ethylene (C{sub 2}H{sub 4}) on amorphous solid water (ASW) at 10 and 20 K relevant to the formation of ethane (C{sub 2}H{sub 6}) on interstellar icy grains. We found that the ASW surface enhances the reaction rates for C{sub 2}H{sub 2} and C{sub 2}H{sub 4} by approximately a factor of 2 compared to those on the pure-solid C{sub 2}H{sub 2} and C{sub 2}H{sub 4} at 10 K, probably due to an increase in the sticking coefficient and adsorption energy of the H atoms on ASW. In contrastmore » to the previous proposal that the hydrogenation rate of C{sub 2}H{sub 4} is orders of magnitude larger than that of C{sub 2}H{sub 2}, the present results show that the difference in hydrogenation rates of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} is only within a factor of 3 on both the surfaces of pure solids and ASW. In addition, we found the small kinetic isotope effect for hydrogenation/deuteration of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} at 10 K, despite the requirement of quantum tunneling. At 20 K, the reaction rate of deuteration becomes even larger than that of hydrogenation. These unusual isotope effects might originate from a slightly larger number density of D atoms than H atoms on ASW at 20 K. The hydrogenation of C{sub 2}H{sub 2} is four times faster than CO hydrogenation and can produce C{sub 2}H{sub 6} efficiently through C{sub 2}H{sub 4} even in the environment of a dark molecular cloud.« less

  8. Many body calculations of the optoelectronic properties of h-AlN: from 3D to 2D

    NASA Astrophysics Data System (ADS)

    Kecik, Deniz; Bacaksiz, Cihan; Durgun, Engin; Senger, Tugrul

    Outstanding electronic and optical properties of graphene, h-BN, MoS2 etc. motivate the further discovery of novel 2D materials such as AlN, a III-V compound, with remarkable features for potential optoelectronic applications, due to its wide indirect band gap. The layer and strain dependent optoelectronic properties of the recently synthesized monolayer hexagonal AlN (h-AlN) were investigated using density functional and many body perturbation theories, where RPA and BSE were employed on top of the QPG0W0 method. The optical spectra of 1-4 layered h-AlN revealed prominent absorption beyond the visible light regime; absorbance within the UV range increasing with the number of layers. In addition, the applied tensile strain (1 - 7 %) was observed to gradually redshift the absorption spectra. While the many body corrections induced significant blueshift to the optical spectra, evidence of bound excitons were also found for the layered structures. Hence, the optoelectronic properties of layered h-AlN can be tuned by modifying their structure and applying strain, moreover are greatly altered when electron-hole interactions are considered. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Project No. 113T050).

  9. Unusually high critical current of clean P-doped BaFe2As2 single crystalline thin film

    NASA Astrophysics Data System (ADS)

    Kurth, F.; Tarantini, C.; Grinenko, V.; Hänisch, J.; Jaroszynski, J.; Reich, E.; Mori, Y.; Sakagami, A.; Kawaguchi, T.; Engelmann, J.; Schultz, L.; Holzapfel, B.; Ikuta, H.; Hühne, R.; Iida, K.

    2015-02-01

    Microstructurally clean, isovalently P-doped BaFe2As2 (Ba-122) single crystalline thin films have been prepared on MgO (001) substrates by molecular beam epitaxy. These films show a superconducting transition temperature (Tc) of over 30 K although P content is around 0.22, which is lower than the optimal one for single crystals (i.e., 0.33). The enhanced Tc at this doping level is attributed to the in-plane tensile strain. The strained film shows high transport self-field critical current densities (Jc) of over 6 MA/cm2 at 4.2 K, which are among the highest for Fe based superconductors (FeSCs). In-field Jc exceeds 0.1 MA/cm2 at μ 0 H = 35 T for H ‖ a b and μ 0 H = 18 T for H ‖ c at 4.2 K, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar Tc. Structural investigations reveal no defects or misoriented grains pointing to strong pinning centers. We relate this unexpected high Jc to a strong enhancement of the vortex core energy at optimal Tc, driven by in-plane strain and doping. These unusually high Jc make P-doped Ba-122 very favorable for high-field magnet applications.

  10. Electrical Conductivity of Cancrinite-Type Na8 - 2 x Ca x [Al6Si6O24][CO3] · 2H2O ( x ≤ 0.03) Crystals

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2018-05-01

    The electrical conductivity of crystals of artificial cancrinite Na8 - 2 x Ca x [Al6Si6O24][CO3] · 2H2O ( x ≤ 0.03) has been studied in the temperature range of 498-604 K. These crystals were grown by hydrothermal synthesis on a seed in the Na2O-Al2O3-SiO2-H2O system ( t = 380-420°C, P = 3 × 107-9 × 107 Pa). The ionic conductivity of a single-crystal sample (sp. gr. P63), measured along the crystallographic axis c, is low: σ = 8 × 10-7 S/cm at 300°C. The electric transport activation energy is E a = 0.81 ± 0.05 eV. The relationship between the ionic conductivity and specific features of the atomic structure of cancrinites is discussed.

  11. Al6H18: A baby crystal of γ-AlH3

    NASA Astrophysics Data System (ADS)

    Kiran, B.; Kandalam, Anil K.; Xu, Jing; Ding, Y. H.; Sierka, M.; Bowen, K. H.; Schnöckel, H.

    2012-10-01

    Using global-minima search methods based on the density functional theory calculations of (AlH3)n (n = 1-8) clusters, we show that the growth pattern of alanes for n ≥ 4 is dominated by structures containing hexa-coordinated Al atoms. This is in contrast to the earlier studies where either linear or ring structures of AlH3 were predicted to be the preferred structures in which the Al atoms can have a maximum of five-fold coordination. Our calculations also reveal that the Al6H18 cluster, with its hexa-coordination of the Al atoms, resembles the unit-cell of γ-AlH3, thus Al6H18 is designated as the "baby crystal." The fragmentation energies of the (AlH3)n (n = 2-8) along with the dimerization energies for even n clusters indicate an enhanced stability of the Al6H18 cluster. Both covalent (hybridization) and ionic (charge) contribution to the bonding are the driving factors in stabilizing the isomers containing hexa-coordinated Al atoms.

  12. Effects of H2 High-pressure Annealing on HfO2/Al2O3/In0.53Ga0.47As Capacitors: Chemical Composition and Electrical Characteristics.

    PubMed

    Choi, Sungho; An, Youngseo; Lee, Changmin; Song, Jeongkeun; Nguyen, Manh-Cuong; Byun, Young-Chul; Choi, Rino; McIntyre, Paul C; Kim, Hyoungsub

    2017-08-29

    We studied the impact of H 2 pressure during post-metallization annealing on the chemical composition of a HfO 2 /Al 2 O 3 gate stack on a HCl wet-cleaned In 0.53 Ga 0.47 As substrate by comparing the forming gas annealing (at atmospheric pressure with a H 2 partial pressure of 0.04 bar) and H 2 high-pressure annealing (H 2 -HPA at 30 bar) methods. In addition, the effectiveness of H 2 -HPA on the passivation of the interface states was compared for both p- and n-type In 0.53 Ga 0.47 As substrates. The decomposition of the interface oxide and the subsequent out-diffusion of In and Ga atoms toward the high-k film became more significant with increasing H 2 pressure. Moreover, the increase in the H 2 pressure significantly improved the capacitance‒voltage characteristics, and its effect was more pronounced on the p-type In 0.53 Ga 0.47 As substrate. However, the H 2 -HPA induced an increase in the leakage current, probably because of the out-diffusion and incorporation of In/Ga atoms within the high-k stack.

  13. CuAlO2 and CuAl2O4 thin films obtained by stacking Cu and Al films using physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Castillo-Hernández, G.; Mayén-Hernández, S.; Castaño-Tostado, E.; DeMoure-Flores, F.; Campos-González, E.; Martínez-Alonso, C.; Santos-Cruz, J.

    2018-06-01

    CuAlO2 and CuAl2O4 thin films were synthesized by the deposition of the precursor metals using the physical vapor deposition technique and subsequent annealing. Annealing was carried out for 4-6 h in open and nitrogen atmospheres respectively at temperatures of 900-1000 °C with control of heating and cooling ramps. The band gap measurements ranged from 3.3 to 4.5 eV. Electrical properties were measured using the van der Pauw technique. The preferred orientations of CuAlO2 and CuAl2O4 were found to be along the (1 1 2) and (3 1 1) planes, respectively. The phase percentages were quantified using a Rietveld refinement simulation and the energy dispersive X-ray spectroscopy indicated that the composition is very close to the stoichiometry of CuAlO2 samples and with excess of aluminum and deficiency of copper for CuAl2O4 respectively. High resolution transmission electron microscopy identified the principal planes in CuAlO2 and in CuAl2O4. Higher purities were achieved in nitrogen atmosphere with the control of the cooling ramps.

  14. Electrical characterization of amorphous Al2O3 dielectric films on n-type 4H-SiC

    NASA Astrophysics Data System (ADS)

    Khosa, R. Y.; Thorsteinsson, E. B.; Winters, M.; Rorsman, N.; Karhu, R.; Hassan, J.; Sveinbjörnsson, E. Ö.

    2018-02-01

    We report on the electrical properties of Al2O3 films grown on 4H-SiC by successive thermal oxidation of thin Al layers at low temperatures (200°C - 300°C). MOS capacitors made using these films contain lower density of interface traps, are more immune to electron injection and exhibit higher breakdown field (5MV/cm) than Al2O3 films grown by atomic layer deposition (ALD) or rapid thermal processing (RTP). Furthermore, the interface state density is significantly lower than in MOS capacitors with nitrided thermal silicon dioxide, grown in N2O, serving as the gate dielectric. Deposition of an additional SiO2 film on the top of the Al2O3 layer increases the breakdown voltage of the MOS capacitors while maintaining low density of interface traps. We examine the origin of negative charges frequently encountered in Al2O3 films grown on SiC and find that these charges consist of trapped electrons which can be released from the Al2O3 layer by depletion bias stress and ultraviolet light exposure. This electron trapping needs to be reduced if Al2O3 is to be used as a gate dielectric in SiC MOS technology.

  15. 10 CFR 501.2 - Prepetition conference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Prepetition conference. 501.2 Section 501.2 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND SANCTIONS General Provisions § 501.2 Prepetition conference. (a) Owners and operators of powerplants may request a prepetition...

  16. RRh2Al10 (R = Ce, Yb): New intermetallic compounds in the 1 : 2 : 10 stoichiometry series

    NASA Astrophysics Data System (ADS)

    Strydom, A. M.; Djoumessi, R. F.; Blinova, M.; Tursina, A.; Nesterenko, S.; Avzuragova, V.

    2018-05-01

    The orthorhombic, space group Cmcm YbFe2Al10 structure type series of compounds are known to form with practically the entire series of rare-earth elements R, but only with the three d - electron elements Fe, Ru, and Os. The Ce-derivatives in particular have been of much interest since the first reports of their highly unusual physical properties. Classified as Kondo insulators, CeRu2Al10 and CeOs2Al10 controversially order magnetically and with uncharacteristically high Néel temperatures of ≃ 28 K. CeFe2Al10 on the other hand shows pronounced semiconducting and Kondo features but remains paramagnetic. As part of our ongoing studies into the rich physics of this class of materials we have succeeded in synthesizing new members of the 1:2:10 stoichiometry involving the chemical element Rh for the first time. CeRh2Al10 is found to crystallize in the tetragonal system with space group I41 / amd . Yb Rh2Al10 on the other hand forms in the serial Cmcm orthorhombic structure type. We discuss important similarities between the two types. At 5.310 Å the shortest Ce-Ce distance is, likewise to the situation in CeRu2Al10 and CeOs2Al10 , also well above the Hill limit of 3.40 Å. Despite the cage-like structure and large rare-earth separation distances, this study reveals the onset of long-range magnetic ordering in CeRh2Al10 at 3.9 K. The magnetic ordering develops out of an incoherent Kondo state that dominates the electrical resistivity below about 40 K.

  17. Interannual observations and quantification of summertime H2O ice deposition on the Martian CO2 ice south polar cap

    USGS Publications Warehouse

    Brown, Adrian J.; Piqueux, Sylvain; Titus, Timothy N.

    2014-01-01

    The spectral signature of water ice was observed on Martian south polar cap in 2004 by the Observatoire pour l'Mineralogie, l'Eau les Glaces et l'Activite (OMEGA) ( Bibring et al., 2004). Three years later, the OMEGA instrument was used to discover water ice deposited during southern summer on the polar cap ( Langevin et al., 2007). However, temporal and spatial variations of these water ice signatures have remained unexplored, and the origins of these water deposits remains an important scientific question. To investigate this question, we have used observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter (MRO) spacecraft of the southern cap during austral summer over four Martian years to search for variations in the amount of water ice. We report below that for each year we have observed the cap, the magnitude of the H2O ice signature on the southern cap has risen steadily throughout summer, particularly on the west end of the cap. The spatial extent of deposition is in disagreement with the current best simulations of deposition of water ice on the south polar cap (Montmessin et al., 2007). This increase in water ice signatures is most likely caused by deposition of atmospheric H2O ice and a set of unusual conditions makes the quantification of this transport flux using CRISM close to ideal. We calculate a ‘minimum apparent‘ amount of deposition corresponding to a thin H2O ice layer of 0.2 mm (with 70% porosity). This amount of H2O ice deposition is 0.6–6% of the total Martian atmospheric water budget. We compare our ‘minimum apparent’ quantification with previous estimates. This deposition process may also have implications for the formation and stability of the southern CO2 ice cap, and therefore play a significant role in the climate budget of modern day Mars.

  18. The Stability of Hydrous Silicates in Earth's Lower Mantle: Experimental constraints from the System MgO-Al2O3-SiO2-H2O

    NASA Astrophysics Data System (ADS)

    Walter, M. J.; Thomson, A. R.; Wang, W.; Lord, O. T.; Kleppe, A. K.; Ross, J.; Kohn, S. C.

    2014-12-01

    Laser-heated diamond anvil cell experiments were performed at pressures from ~ 30 to 125 GPa on bulk compositions in the system MgO-Al2O3-SiO2-H2O (MASH) to constrain the stability of hydrous phases in Earth's lower mantle. Phase identification in run products by synchrotron powder diffraction reveals a consistent set of stability relations for the high-pressure, dense hydrous silicate phases D and H. Experiments show that aluminous phase D is stable to ~ 55 GPa. Aluminous phase H becomes stable at ~ 40 GPa and remains stable to higher pressures throughout the lower mantle depth range in both model peridotitic and basaltic lithologies. Preliminary FEG-probe analyses indicate that Phase H is alumina-rich at ~ 50 GPa, with only 5 to 10 wt% each of MgO and SiO2. Variations in ambient unit cell volumes show that Mg-perovskite becomes more aluminous with pressure throughout the pressure range studied, and that Phase H may become more Mg- and Si-rich with pressure. We also find that at pressures above ~ 90 GPa stishovite is replaced in Si-rich compositions by seifertite, at which point there is a corresponding increase in the Al-content of phase H. The melting curves of MASH compositions have been determined using thermal perturbations in power versus temperature curves, and are observed to be shallow with dT/dP slopes of ~ 4K/GPa. Our results show that hydrated peridotitic or basaltic compositions in the lower mantle should be partially molten at all depths along an adiabatic mantle geotherm. Aluminous Phase H will be stable in colder, hydrated subducting slabs, potentially to the core-mantle boundary. Thus, aluminous phase H is the primary vessel for transport of hydrogen to the deepest mantle, but hydrous silicate melt will be the host of hydrogen at ambient mantle temperatures.

  19. Empirical electronic polarizabilities: deviations from the additivity rule. I. M2+SO4·nH2O, blödite Na2M2+(SO4)2·4H2O, and kieserite-related minerals with sterically strained structures

    NASA Astrophysics Data System (ADS)

    Gagné, Olivier; Hawthorne, Frank; Shannon, Robert D.; Fischer, Reinhard X.

    2017-09-01

    Empirical electronic polarizabilities allow the prediction of total mineral polarizabilities and mean refractive indices of the vast majority of minerals and synthetic oxides. However, deviations from the valence-sum rule at cations in some minerals are associated with large deviations of observed from calculated total polarizabilities. We have identified several groups of minerals and compounds where deviations from the valence-sum rule at cations lead to polarizability deviations of 2-5%: M(SO4)·nH2O, n = 1-6, blödite-group minerals [Na2M2+(SO4)2·4H2O], and the kieserite-related minerals: isokite, panasqueiraite and tilasite. In these minerals, the environment of the M ions contains both O and H2O: Mg[O4(H2O)2] in kieserite, szmikite, and szomolnokite; Mg[O2(H2O)4] in starkeyite, ilesite, and rozenite, and Mg[(H2O)6] in hexahydrite. In compounds where the ligands are only H2O, deviations from the valence-sum rule at the M(H2O)6 groups are not accompanied by significant polarizability deviations. This is the case for epsomite, MgSO4·7H2O; bieberite, CoSO4·7H2O; goslarite, ZnSO4·7H2O, six silicofluorides, MSiF6·6H2O; eighteen Tutton's salts, M2M'(SO4)2·6H2O, where M = K, Rb, Cs and M' = Mg, Mn, Fe, Co, Ni, Cu, and Zn; and eleven MM'(SO4)2·12H2O alums, where M = Na, K, Rb and Cs, and M' = Al, Cr, Ga and In. This is also the case for the sulfates alunogen, Al2(SO4)3·17H2O and halotrichite, FeAl2(SO4)4·22H2O; three hydrated nitrates; one phosphate; three antimonates and two hydrated perchlorates. A possible explanation for this different behavior is that the bond-valence model treats O and H separately, whereas polarizability calculations treat the polarizability of the entire H2O molecule.

  20. Theory and X-ray Absorption Spectroscopy for Aluminum Coordination Complexes – Al K-Edge Studies of Charge and Bonding in (BDI)Al, (BDI)AlR2, and (BDI)AlX2 Complexes.

    PubMed

    Altman, Alison B; Pemmaraju, C D; Camp, Clément; Arnold, John; Minasian, Stefan G; Prendergast, David; Shuh, David K; Tyliszczak, Tolek

    2015-08-19

    Polarized aluminum K-edge X-ray absorption near edge structure (XANES) spectroscopy and first-principles calculations were used to probe electronic structure in a series of (BDI)Al, (BDI)AlX2, and (BDI)AlR2 coordination compounds (X = F, Cl, I; R = H, Me; BDI = 2,6-diisopropylphenyl-β-diketiminate). Spectral interpretations were guided by examination of the calculated transition energies and polarization-dependent oscillator strengths, which agreed well with the XANES spectroscopy measurements. Pre-edge features were assigned to transitions associated with the Al 3p orbitals involved in metal-ligand bonding. Qualitative trends in Al 1s core energy and valence orbital occupation were established through a systematic comparison of excited states derived from Al 3p orbitals with similar symmetries in a molecular orbital framework. These trends suggested that the higher transition energies observed for (BDI)AlX2 systems with more electronegative X(1-) ligands could be ascribed to a decrease in electron density around the aluminum atom, which causes an increase in the attractive potential of the Al nucleus and concomitant increase in the binding energy of the Al 1s core orbitals. For (BDI)Al and (BDI)AlH2 the experimental Al K-edge XANES spectra and spectra calculated using the eXcited electron and Core-Hole (XCH) approach had nearly identical energies for transitions to final state orbitals of similar composition and symmetry. These results implied that the charge distributions about the aluminum atoms in (BDI)Al and (BDI)AlH2 are similar relative to the (BDI)AlX2 and (BDI)AlMe2 compounds, despite having different formal oxidation states of +1 and +3, respectively. However, (BDI)Al was unique in that it exhibited a low-energy feature that was attributed to transitions into a low-lying p-orbital of b1 symmetry that is localized on Al and orthogonal to the (BDI)Al plane. The presence of this low-energy unoccupied molecular orbital on electron-rich (BDI)Al distinguishes

  1. Computation provides chemical insight into the diverse hydride NMR chemical shifts of [Ru(NHC)4(L)H]0/+ species (NHC = N-heterocyclic carbene; L = vacant, H2, N2, CO, MeCN, O2, P4, SO2, H-, F- and Cl-) and their [Ru(R2PCH2CH2PR2)2(L)H]+ congeners.

    PubMed

    Häller, L Jonas L; Mas-Marzá, Elena; Cybulski, Mateusz K; Sanguramath, Rajashekharayya A; Macgregor, Stuart A; Mahon, Mary F; Raynaud, Christophe; Russell, Christopher A; Whittlesey, Michael K

    2017-02-28

    Relativistic density functional theory calculations, both with and without the effects of spin-orbit coupling, have been employed to model hydride NMR chemical shifts for a series of [Ru(NHC) 4 (L)H] 0/+ species (NHC = N-heterocyclic carbene; L = vacant, H 2 , N 2 , CO, MeCN, O 2 , P 4 , SO 2 , H - , F - and Cl - ), as well as selected phosphine analogues [Ru(R 2 PCH 2 CH 2 PR 2 ) 2 (L)H] + (R = i Pr, Cy; L = vacant, O 2 ). Inclusion of spin-orbit coupling provides good agreement with the experimental data. For the NHC systems large variations in hydride chemical shift are shown to arise from the paramagnetic term, with high net shielding (L = vacant, Cl - , F - ) being reinforced by the contribution from spin-orbit coupling. Natural chemical shift analysis highlights the major orbital contributions to the paramagnetic term and rationalizes trends via changes in the energies of the occupied Ru d π orbitals and the unoccupied σ* Ru-H orbital. In [Ru(NHC) 4 (η 2 -O 2 )H] + a δ-interaction with the O 2 ligand results in a low-lying LUMO of d π character. As a result this orbital can no longer contribute to the paramagnetic shielding, but instead provides additional deshielding via overlap with the remaining (occupied) d π orbital under the L z angular momentum operator. These two effects account for the unusual hydride chemical shift of +4.8 ppm observed experimentally for this species. Calculations reproduce hydride chemical shift data observed for [Ru( i Pr 2 PCH 2 CH 2 P i Pr 2 ) 22 -O 2 )H] + (δ = -6.2 ppm) and [Ru(R 2 PCH 2 CH 2 PR 2 ) 2 H] + (ca. -32 ppm, R = i Pr, Cy). For the latter, the presence of a weak agostic interaction trans to the hydride ligand is significant, as in its absence (R = Me) calculations predict a chemical shift of -41 ppm, similar to the [Ru(NHC) 4 H] + analogues. Depending on the strength of the agostic interaction a variation of up to 18 ppm in hydride chemical shift is possible and this factor (that is not necessarily

  2. Experimental and theoretical characterization of ordered MAX phases Mo{sub 2}TiAlC{sub 2} and Mo{sub 2}Ti{sub 2}AlC{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anasori, Babak; A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104; Dahlqvist, Martin

    2015-09-07

    Herein, we report on the phase stabilities and crystal structures of two newly discovered ordered, quaternary MAX phases—Mo{sub 2}TiAlC{sub 2} and Mo{sub 2}Ti{sub 2}AlC{sub 3}—synthesized by mixing and heating different elemental powder mixtures of mMo:(3-m)Ti:1.1Al:2C with 1.5 ≤ m ≤ 2.2 and 2Mo: 2Ti:1.1Al:2.7C to 1600 °C for 4 h under Ar flow. In general, for m ≥ 2 an ordered 312 phase, (Mo{sub 2}Ti)AlC{sub 2}, was the majority phase; for m < 2, an ordered 413 phase (Mo{sub 2}Ti{sub 2})AlC{sub 3}, was the major product. The actual chemistries determined from X-ray photoelectron spectroscopy (XPS) are Mo{sub 2}TiAlC{sub 1.7} and Mo{sub 2}Ti{sub 1.9}Al{sub 0.9}C{sub 2.5}, respectively. High resolution scanning transmissionmore » microscopy, XPS and Rietveld analysis of powder X-ray diffraction confirmed the general ordered stacking sequence to be Mo-Ti-Mo-Al-Mo-Ti-Mo for Mo{sub 2}TiAlC{sub 2} and Mo-Ti-Ti-Mo-Al-Mo-Ti-Ti-Mo for Mo{sub 2}Ti{sub 2}AlC{sub 3}, with the carbon atoms occupying the octahedral sites between the transition metal layers. Consistent with the experimental results, the theoretical calculations clearly show that M layer ordering is mostly driven by the high penalty paid in energy by having the Mo atoms surrounded by C in a face-centered configuration, i.e., in the center of the M{sub n+1}X{sub n} blocks. At 331 GPa and 367 GPa, respectively, the Young's moduli of the ordered Mo{sub 2}TiAlC{sub 2} and Mo{sub 2}Ti{sub 2}AlC{sub 3} are predicted to be higher than those calculated for their ternary end members. Like most other MAX phases, because of the high density of states at the Fermi level, the resistivity measurement over 300 to 10 K for both phases showed metallic behavior.« less

  3. Tailored Engineering of an Unusual (C4 H9 NH3 )2 (CH3 NH3 )2 Pb3 Br10 Two-Dimensional Multilayered Perovskite Ferroelectric for a High-Performance Photodetector.

    PubMed

    Li, Lina; Sun, Zhihua; Wang, Peng; Hu, Weida; Wang, Sasa; Ji, Chengmin; Hong, Maochun; Luo, Junhua

    2017-09-25

    Two-dimensional (2D) layered hybrid perovskites have shown great potential in optoelectronics, owing to their unique physical attributes. However, 2D hybrid perovskite ferroelectrics remain rare. The first hybrid ferroelectric with unusual 2D multilayered perovskite framework, (C 4 H 9 NH 3 ) 2 (CH 3 NH 3 ) 2 Pb 3 Br 10 (1), has been constructed by tailored alloying of the mixed organic cations into 3D prototype of CH 3 NH 3 PbBr 3 . Ferroelectricity is created through molecular reorientation and synergic ordering of organic moieties, which are unprecedented for the known 2D multilayered hybrid perovskites. Single-crystal photodetectors of 1 exhibit fascinating performances, including extremely low dark currents (ca. 10 -12  A), large on/off current ratios (ca. 2.5×10 3 ), and very fast response rate (ca. 150 μs). These merits are superior to integrated detectors of other 2D perovskites, and compete with the most active CH 3 NH 3 PbI 3 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of H2O on the morphological changes of KNO3 formed on K2O/Al2O3 NOx storage materials: Fourier transform infra-red (FTIR) and time-resolved x-ray diffraction (TR-XRD) studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos

    Based on combined FTIR and XRD studies, we report here that H2O induces a morphological change of KNO3 species formed on model K2O/Al2O3 NOx storage-reduction catalysts. Specifically as evidenced by FTIR, the contact of H2O with NO2 pre-adsorbed on K2O/Al2O3 promotes the transformation from bidentate (surface-like) KNO3 species to ionic (bulk-like) ones irrespective of K loadings. Once H2O is removed from the sample, a reversible transformation into bidentate KNO3 is observed, demonstrating a significant dependence of H2O on such morphological changes. TR-XRD results show the formation of two different types of bulk KNO3 phases (orthorhomobic and rhombohedral) in an as-impregnatedmore » sample. Once H2O begins to desorb above 400 K, the former is transformed into the latter, resulting in the existence of only the rhombohedral KNO3 phase. On the basis of consistent FTIR and TR-XRD results, we propose a model for the morphological changes of KNO3 species with respect to NO2 adsorption/desorption, H2O and/or heat treatments. Compared with the BaO/Al2O3 system, K2O/Al2O3 shows some similarities with respect to the formation of bulk nitrates upon H2O contact. However, there are significant differences that originate from the lower melting temperature of KNO3 relative to Ba(NO3)2.« less

  5. Enhanced pH sensitivity of AlGaN/GaN ion-sensitive field effect transistor with Al2O3 synthesized by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Li, Liuan; Zhang, Tong; Liu, Xinke; Ao, Jin-Ping

    2018-01-01

    In this study, we evaluated the pH sensitivity enhancement of AlGaN/GaN ion-sensitive field-effect transistor (ISFET) coated by Al2O3 film on the sensing area utilizing atomic layer deposition (ALD). The presence of the Al2O3 film leads to an obvious reduction of surface state density as well as leakage current in the solution, which is beneficial for improving the stability of the ISFET. Furthermore, the sensitivity of the ISFET was improved to 57.8 mV/pH, which is very close to the Nernstian limit at room temperature. The pH sensitivity enhancement can be explained by the higher density of sensing site as well as better surface hydrophilicity.

  6. Post-deposition-annealing effect on current conduction in Al2O3 films formed by atomic layer deposition with H2O oxidant

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Matsumura, Daisuke; Okubo, Satoshi; Kawarada, Hiroshi

    2017-02-01

    Atomic-layer-deposition (ALD) Al2O3 films are promising as gate insulators of non-Si semiconductor devices. Although they allow relatively small leakage currents just after deposition, ALD Al2O3 films formed at low temperatures are subject to high temperature during fabrication or operation of devices. Therefore, the effect of post-deposition annealing (PDA) on the properties of Al2O3 films is investigated in this study. ALD Al2O3 films formed using H2O oxidant at low temperatures are compacted by PDA, but their mass density and dielectric constant remain approximately unchanged or slightly decrease owing to the desorption of methyl groups contained in the films as impurities. In accordance with these results, the wet etching rate of Al2O3 films is not much reduced by PDA. The conduction current in ALD Al2O3 films formed on Si is reduced by PDA and becomes smaller than that in films formed at the same ALD temperatures as those of PDA. The conduction current for PDA temperatures above 250 °C, however, increases and, accordingly, spoils the merit of low-temperature ALD. Therefore, given that the dielectric constant of annealed films remains low, high-temperature ALD is practically more significant than applying PDA to low-temperature ALD Al2O3 films from the viewpoint of leakage current under the same thermal budget. Space-charge-controlled field emission analysis revealed that, at the aforementioned threshold temperature, PDA abruptly increases the Al2O3/SiO2 interfacial dipoles and simultaneously reduces the amount of the positive charge near the interface. The so-called negative-charge buildup by PDA might be caused by this decrease in the positive charge.

  7. Presence of AmpC beta-lactamases, CSA-1, CSA-2, CMA-1, and CMA-2 conferring an unusual resistance phenotype in Cronobacter sakazakii and Cronobacter malonaticus.

    PubMed

    Müller, Andrea; Hächler, Herbert; Stephan, Roger; Lehner, Angelika

    2014-08-01

    Here we describe the presence of two very similar but unusual variants of AmpC cephalosporinase in each Cronobacter sakazakii and C. malonaticus isolates conferring resistance exclusively to first generation cephalosporins. During a survey on the antibiotic resistance patterns of C. sakazakii and C. malonaticus strains isolated from a milk powder production facility, originally two different phenotypes regarding the susceptibility/resistance for the two beta-lactam antibiotics ampicillin (amp) and cephalothin (ceph) were observed: (i) isolates being susceptible for both antibiotics (amp(S)/ceph(S)), and (ii) strains exhibiting susceptibility to ampicillin but resistance to cephalothin (amp(S)/ceph(R)). The latter phenotype (amp(S)/ceph(R)) was observed in the majority of the environmental strains from the facility. Analysis of whole genome sequences of C. sakazakii revealed a gene putatively coding for an AmpC beta-lactamase. Consequently, the ampC genes from both species and both phenotypes were subjected to a cloning approach. Surprisingly, when expressed in Escherichia coli, all transformants exhibited the amp(S)/ceph(R) phenotype regardless of (i) the phenotypic backgrounds or (ii) the AmpC amino acid sequences of the original strains from which the clones were derived. The novel AmpC beta-lactamases were designated CSA-1 and CSA-2 (from C. sakazakii) and CMA-1 and CMA-2 (from C. malonaticus). The observed variations in the minimum inhibitory concentration (MIC) levels for cephalothin (wt compared to transformants) suggest that this feature is a target of a yet unknown regulatory mechanism present in the natural Cronobacter background but absent in the neutral E. coli host.

  8. Synthesis and characterization of CuAlO(2) and AgAlO(2) delafossite oxides through low-temperature hydrothermal methods.

    PubMed

    Xiong, Dehua; Zeng, Xianwei; Zhang, Wenjun; Wang, Huan; Zhao, Xiujian; Chen, Wei; Cheng, Yi-Bing

    2014-04-21

    In this work, we present one-step low temperature hydrothermal synthesis of submicrometer particulate CuAlO2 and AgAlO2 delafossite oxides, which are two important p-type transparent conducting oxides. The synthesis parameters that affect the crystal formation processes and the product morphologies, including the selection of starting materials and their molar ratios, the pH value of precursors, the hydrothermal temperature, pressure, and reaction time, have been studied. CuAlO2 crystals have been synthesized from the starting materials of CuCl and NaAlO2 at 320-400 °C, and from Cu2O and Al2O3 at 340-400 °C, respectively. AgAlO2 crystals have been successfully synthesized at the low temperature of 190 °C, using AgNO3 and Al(NO3)3 as the starting materials and NaOH as the mineralizer. The detailed elemental compositions, thermal stability, optical properties, and synthesis mechanisms of CuAlO2 and AgAlO2 also have been studied. Noteworthy is the fact that both CuAlO2 and AgAlO2 can be stabilized up to 800 °C, and their optical transparency can reach 60%-85% in the visible range. Besides, it is believed the crystal formation mechanisms uncovered in the synthesis of CuAlO2 and AgAlO2 will prove insightful guildlines for the preparation of other delafossite oxides.

  9. 16. DETAIL, VERTICAL MEMBER L2U2 FROM BELOW AND EAST. UNUSUALLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL, VERTICAL MEMBER L2-U2 FROM BELOW AND EAST. UNUSUALLY SHAPED DESIGN REFLECTS COLUMN STRESSES ALSO NOTE LACING, WHICH COMPRISES ANGLES RATHER THAN COMMON FLAT BARS - Coraopolis Bridge, Spanning Ohio River back channel at Ferree Street & Grand Avenue, Coraopolis, Allegheny County, PA

  10. Crystalline and amorphous H2O on Charon

    NASA Astrophysics Data System (ADS)

    Dalle Ore, Cristina M.; Cruikshank, Dale P.; Grundy, Will M.; Ennico, Kimberly; Olkin, Catherine B.; Stern, S. Alan; Young, Leslie A.; Weaver, Harold A.

    2015-11-01

    Charon, the largest satellite of Pluto, is a gray-colored icy world covered mostly in H2O ice, with spectral evidence for NH3, as previously reported (Cook et al. 2007, Astrophys. J. 663, 1406-1419 Merlin, et al. 2010, Icarus, 210, 930; Cook, et al. 2014, AAS/Division for Planetary Sciences Meeting Abstracts, 46, #401.04). Images from the New Horizons spacecraft reveal a surface with terrains of widely different ages and a moderate degree of localized coloration. The presence of H2O ice in its crystalline form (Brown & Calvin 2000 Science 287, 107-109; Buie & Grundy 2000 Icarus 148, 324-339; Merlin et al, 2010) along with NH3 is consistent with a fresh surface.The phase of H2O ice is a key tracer of variations in temperature and physical conditions on the surface of outer Solar System objects. At Charon’s surface temperature H2O is expected to be amorphous, but ground-based observations (e.g., Merlin et al. 2010) show a clearly crystalline signature. From laboratory experiments it is known that amorphous H2O ice becomes crystalline at temperatures of ~130 K. Other mechanisms that can change the phase of the ice from amorphous to crystalline include micro-meteoritic bombardment (Porter et al. 2010, Icarus, 208, 492) or resurfacing processes such as cryovolcanism.New Horizons observed Charon with the LEISA imaging spectrometer, part of the Ralph instrument (Reuter, D.C., Stern, S.A., Scherrer, J., et al. 2008, Space Science Reviews, 140, 129). Making use of high spatial resolution (better than 10 km/px) and spectral resolving power of 240 in the wavelength range 1.25-2.5 µm, and 560 in the range 2.1-2.25 µm, we report on an analysis of the phase of H2O ice on parts of Charon’s surface with a view to investigate the recent history and evolution of this small but intriguing object.This work was supported by NASA’s New Horizons project.

  11. Removal of arsenic from water by Friedel's salt (FS: 3CaO·Al2O3·CaCl2·10H2O).

    PubMed

    Zhang, Danni; Jia, Yongfeng; Ma, Jiayu; Li, Zhibao

    2011-11-15

    Low levels of arsenic can be effectively removed from water by adsorption onto various materials and searching for low-cost, high-efficiency new adsorbents has been a hot topic in recent years. In the present study, the performance of Friedel's salt (FS: 3CaO·Al(2)O(3)·CaCl(2)·10H(2)O), a layered double hydroxide (LDHs), as an adsorbent for arsenic removal from aqueous solution was investigated. Friedel's salt was synthesized at lower temperature (50°C) compared to traditional autoclave methods by reaction of calcium chloride with sodium aluminate. Kinetic study revealed that adsorption of arsenate by Friedel's salt was fast in the first 12h and equilibrium was achieved within 48 h. The adsorption kinetics are well described by second-order Lageren equation. The adsorption capacity of the synthesized sorbent for arsenate at pH 4 and 7 calculated from Langmuir adsorption isotherms was 11.85 and 7.80 mg/g, respectively. Phosphate and silicate markedly decreased the removal of arsenate, especially at higher pH, but sulfate was found to suppress arsenate adsorption at lower pH and the adverse effect was disappeared at pH ≥ 6. Common metal cations (Ca(2+), Mg(2+)) enhanced arsenate adsorption. The results suggest that Friedel's salt is a potential cost-effective adsorbent for arsenate removal in water treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  13. 10 CFR 501.2 - Prepetition conference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Prepetition conference. 501.2 Section 501.2 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND SANCTIONS General Provisions... conference with OFE for the purpose of discussing the applicability of 10 CFR parts 503 and 504 to their...

  14. Vibrational Dynamics of Interfacial Water by Free Induction Decay Sum Frequency Generation (FID-SFG) at the Al2O3(1120)/H2O Interface.

    PubMed

    Boulesbaa, Abdelaziz; Borguet, Eric

    2014-02-06

    The dephasing dynamics of a vibrational coherence may reveal the interactions of chemical functional groups with their environment. To investigate this process at a surface, we employ free induction decay sum frequency generation (FID-SFG) to measure the time that it takes for free OH stretch oscillators at the charged (pH ≈ 13, KOH) interface of alumina/water (Al2O3/H2O) to lose their collective coherence. By employing noncollinear optical parametric amplification (NOPA) technology and nonlinear vibrational spectroscopy, we showed that the single free OH peak actually corresponds to two distinct oscillators oriented opposite to each other and measured the total dephasing time, T2, of the free OH stretch modes at the Al2O3/H2O interface with a sub-40 fs temporal resolution. Our results suggested that the free OH oscillators associated with interfacial water dephase on the time scale of 89.4 ± 6.9 fs, whereas the homogeneous dephasing of interfacial alumina hydroxyls is an order of magnitude slower.

  15. Mechanisms of immunity to Leishmania major infection in mice: the contribution of DNA vaccines coding for two novel sets of histones (H2A-H2B or H3-H4).

    PubMed

    Carrión, Javier

    2011-09-01

    The immune phenotype conferred by two different sets of histone genes (H2A-H2B or H3-H4) was assessed. BALB/c mice vaccinated with pcDNA3H2AH2B succumbed to progressive cutaneous leishmaniosis (CL), whereas vaccination with pcDNA3H3H4 resulted in partial resistance to Leishmania major challenge associated with the development of mixed T helper 1 (Th1)/Th2-type response and a reduction in parasite-specific Treg cells number at the site of infection. Therefore, the presence of histones H3 and H4 may be considered essential in the development of vaccine strategies against CL based on the Leishmania histones. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Quantum-tunneling isotope-exchange reaction H2+D-→HD +H-

    NASA Astrophysics Data System (ADS)

    Yuen, Chi Hong; Ayouz, Mehdi; Endres, Eric S.; Lakhamanskaya, Olga; Wester, Roland; Kokoouline, Viatcheslav

    2018-02-01

    The tunneling reaction H2+D-→HD +H- was studied in a recent experimental work at low temperatures (10, 19, and 23 K) by Endres et al. [Phys. Rev. A 95, 022706 (2017), 10.1103/PhysRevA.95.022706]. An upper limit of the rate coefficient was found to be about 10-18cm3 /s. In the present study, reaction probabilities are determined using the ABC program developed by Skouteris et al. [Comput. Phys. Commun. 133, 128 (2000), 10.1016/S0010-4655(00)00167-3]. The probabilities for ortho-H2 and para-H2 in their ground rovibrational states are obtained numerically at collision energies above 50 meV with the total angular momentum J =0 -15 and extrapolated below 50 meV using a WKB approach. Thermally averaged rate coefficients for ortho- and para-H2 are obtained; the largest one, for ortho-H2, is about 3.1 ×10-20cm3 /s, which agrees with the experimental results.

  17. Photochemical Generation of H_{2}NCNX, H_{2}NNCX, H_{2}NC(NX) (x = O, s) in Low-Temperature Matrices

    NASA Astrophysics Data System (ADS)

    Voros, Tamas; Lajgut, Gyozo Gyorgy; Magyarfalvi, Gabor; Tarczay, Gyorgy

    2017-06-01

    The [NH_{2}, C, N, O] and the [NH_{2}, C, N, S] systems were investigated by quantum-chemical computations and matrix-isolation spectroscopic methods. The equilibrium structures of the isomers and their relative energies were determined by CCSD(T) method. This was followed by the computation of the harmonic and anharmonic vibrational wavenumbers, infrared intensities, relative Raman activities and UV excitation energies. These computed data were used to assist the identification of products obtained by UV laser photolysis of 3,4-diaminofurazan, 3,4-diaminothiadiazole and 1,2,4-thiadiazole-3,5-diamine in low-temperature Ar and Kr matrices. Experimentally, first the precursors were studied by matrix-isolation IR and UV spectroscopic methods. Based on these UV spectra, different wavelengths were selected for photolysis. The irradiations, carried out by a tunable UV laser-light source, resulted in the decomposition of the precursors, and in the appearance of new bands in the IR spectra. Some of these bands were assigned to cyanamide (H_{2}NCN) and its isomer, the carbodiimide molecule (HNCNH), generated from H_{2}NCN. By the analysis of the relative absorbance vs. photolysis time curves, the other bands were grouped to three different species both for the O- and the S-containing systems. In the case of the O-containing isomers, these bands were assigned to the H_{2}NNCO:H_{2}NCN, and H_{2}NCNO:H_{2}NCN complexes, and to the ring-structure H_{2}NC(NO) isomer. In a similar way, the complexes of H_{2}NNCS and H_{2}NCNS with the H_{2}NCN, and H_{2}NC(NS) were also identified. 1,2,4-thiadiazole-3,5-diamine was also investigated in similar way like the above mentioned precursors. The results of this study also support the identification of the new S-containing isomers. Except for H_{2}NNCO and H_{2}NCNS, these molecules were not identified previously. It is expected that at least some of these species, like the methyl isocyanate (CH_{3}CNO) isomer, are present and could be

  18. Tunneling chemical reactions D+H{sub 2}{yields}DH+H and D+DH{yields}D{sub 2}+H in solid D{sub 2}-H{sub 2} and HD-H{sub 2} mixtures: An electron-spin-resonance study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumada, Takayuki

    2006-03-07

    Tunneling chemical reactions D+H{sub 2}{yields}DH+H and D+DH{yields}D{sub 2}+H in solid HD-H{sub 2} and D{sub 2}-H{sub 2} mixtures were studied in the temperature range between 4 and 8 K. These reactions were initiated by UV photolysis of DI molecules doped in these solids for 30 s and followed by measuring the time course of electron-spin-resonance (ESR) intensities of D and H atoms. ESR intensity of D atoms produced by the photolysis decreases but that of H atoms increases with time. Time course of the D and H intensities has the fast and slow processes. The fast process, which finishes within {approx}300more » s after the photolysis, is assigned to the reaction of D atom with one of its nearest-neighboring H{sub 2} molecules, D(H{sub 2}){sub n}(HD){sub 12-n}{yields}H(H{sub 2}){sub n-1}(HD){sub 13-n} or D(H{sub 2}){sub n}(D{sub 2}){sub 12-n}{yields}H(HD)(H{sub 2}){sub n-1}(D{sub 2}){sub 12-n} for 12{>=}n{>=}1. Rate constant for the D+H{sub 2} reaction between neighboring D atom-H{sub 2} molecule pair is determined to be (7.5{+-}0.7)x10{sup -3} s{sup -1} in solid HD-H{sub 2} and (1.3{+-}0.3)x10{sup -2} s{sup -1} in D{sub 2}-H{sub 2} at 4.1 K, which is very close to that calculated based on the theory of chemical reaction in gas phase by Hancock et al. [J. Chem. Phys. 91, 3492 (1989)] and Takayanagi and Sato [J. Chem. Phys. 92, 2862 (1990)]. This rate constant was found to be independent of temperature up to 7 K within experimental error of {+-}30%. The slow process is assigned to the reaction of D atom produced in a cage fully surrounded by HD or D{sub 2} molecules, D(HD){sub 12} or D(D{sub 2}){sub 12}. This D atom undergoes the D+DH reaction with one of its nearest-neighboring HD molecules in solid HD-H{sub 2} or diffuses to the neighbor of H{sub 2} molecules to allow the D+H{sub 2} reaction in solid HD-H{sub 2} and D{sub 2}-H{sub 2}. The former is the main channel in solid HD-H{sub 2} below 6 K where D atoms diffuse very slowly, whereas the latter dominates

  19. Development of Al2O3 fiber-reinforced Al2O3-based ceramics.

    PubMed

    Tanimoto, Yasuhiro; Nemoto, Kimiya

    2004-09-01

    The purpose of this study was to use a tape casting technique to develop an Al2O3 fiber-reinforced Al2O3-based ceramic material (Al2O3-fiber/Al2O3 composite) into a new type of dental ceramic. The Al2O3-based ceramic used a matrix consisting of 60 wt% Al2O3 powder and 40 wt% SiO2-B2O3 powder. The prepreg sheets of Al2O3-fiber/Al2O3 composite (in which uniaxially aligned Al2O3 fibers were infiltrated with the Al2O3-based matrix) were fabricated continuously using tape casting technique with a doctor blade system. Multilayer preforms of Al2O3-fiber/Al2O3 composite sheets were then sintered at a maximum temperature of 1000 degrees C under an atmospheric pressure in a furnace. The results showed that the shrinkage and bending properties of Al2O3-fiber/Al2O3 composite exceeded those of unreinforced Al2O3--hence demonstrating the positive effects of fiber reinforcement. In conclusion, the tape casting technique has been utilized to successfully develop a new type of dental ceramic material.

  20. Epitaxy of boron phosphide on AlN, 4H-SiC, 3C-SiC and ZrB2 substrates

    NASA Astrophysics Data System (ADS)

    Padavala, Balabalaji

    The semiconductor boron phosphide (BP) has many outstanding features making it attractive for developing various electronic devices, including neutron detectors. In order to improve the efficiency of these devices, BP must have high crystal quality along with the best possible electrical properties. This research is focused on growing high quality crystalline BP films on a variety of superior substrates like AlN, 4H-SiC, 3C-SiC and ZrB2 by chemical vapor deposition. In particular, the influence of various parameters such as temperature, reactant flow rates, and substrate type and its crystalline orientation on the properties of BP films were studied in detail. Twin-free BP films were produced by depositing on off-axis 4H-SiC(0001) substrate tilted 4° toward [11¯00] and crystal symmetry matched zincblende 3C-SiC. BP crystalline quality improved at higher deposition temperature (1200°C) when deposited on AlN, 4H-SiC, whereas increased strain in 3C-SiC and increased boron segregation in ZrB2 at higher temperatures limited the best deposition temperature to below 1200°C. In addition, higher flow ratios of PH 3 to B2H6 resulted in smoother films and improved quality of BP on all substrates. The FWHM of the Raman peak (6.1 cm -1), XRD BP(111) peak FWHM (0.18°) and peak ratios of BP(111)/(200) = 5157 and BP(111)/(220) = 7226 measured on AlN/sapphire were the best values reported in the literature for BP epitaxial films. The undoped films on AlN/sapphire were n-type with a highest electron mobility of 37.8 cm2/V˙s and a lowest carrier concentration of 3.15x1018 cm -3. Raman imaging had lower values of FWHM (4.8 cm-1 ) and a standard deviation (0.56 cm-1) for BP films on AlN/sapphire compared to 4H-SiC, 3C-SiC substrates. X-ray diffraction and Raman spectroscopy revealed residual tensile strain in BP on 4H-SiC, 3C-SiC, ZrB2/4H-SiC, bulk AlN substrates while compressive strain was evident on AlN/sapphire and bulk ZrB2 substrates. Among the substrates studied, Al

  1. On local structural changes in lizardite-1 T: {Si4+/Al3+}, {Si4+/Fe3+}, [Mg2+/Al3+], [Mg2+/Fe3+] substitutions

    NASA Astrophysics Data System (ADS)

    Scholtzová, Eva; Smrčok, Ľubomír

    2005-09-01

    Geometrical changes induced by cation substitutions {Si4+/Al3+}[Mg2+/Al3+], {2Si4+/2Al3+} [2Mg2+/2Al3+], {Si4+/Fe3+} [Mg2+/Al3+] or [Mg2+/Fe3+], where {} and [] indicate tetrahedral and octahedral sheet in lizardite 1 T, are studied by ab-initio quantum chemistry calculations. The majority of the models are based on the chemical compositions reported for various lizardite polytypes with the amount of Al in the tetrahedral sheets reported to vary from 3.5% to 8% in the 1 T and 2 H 1, up to 30% in the 2 H 2 polytype. Si4+ by Fe3+ substitution in the tetrahedral sheet with an Al3+ (Fe3+) in the role of a charge compensating cation in the octahedral sheet is also examined. The cation substitutions result in the geometrical changes in the tetrahedral sheets, while the octahedral sheets remain almost untouched. Substituted tetrahedra are tilted and their basal oxygens pushed down from the plane of basal oxygens. Ditrigonal deformation of tetrahedral sheets depends on the substituting cation and the degree of substitution.

  2. Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j').

    PubMed

    Weeks, David E; Niday, Thomas A; Yang, Sang H

    2006-10-28

    Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j') are calculated using the time dependent channel packet method (CPM). The calculation employs 1 2A', 2 2A', and 1 2A" adiabatic electronic potential energy surfaces determined by numerical computation at the multireference configuration-interaction level [M. H. Alexander, J. Chem. Phys. 99, 6041 (1993)]. The 1 2A' and 2 2A', adiabatic electronic potential energy surfaces are transformed to yield diabatic electronic potential energy surfaces that, when combined with the total B+H2 rotational kinetic energy, yield a set of effective potential energy surfaces [M. H. Alexander et al., J. Chem. Phys. 103, 7956 (1995)]. Within the framework of the CPM, the number of effective potential energy surfaces used for the scattering matrix calculation is then determined by the size of the angular momentum basis used as a representation. Twenty basis vectors are employed for these calculations, and the corresponding effective potential energy surfaces are identified in the asymptotic limit by the H2 rotor quantum numbers j=0, 2, 4, 6 and B electronic states 2Pja, ja=1/2, 3/2. Scattering matrix elements are obtained from the Fourier transform of the correlation function between channel packets evolving in time on these effective potential energy surfaces. For these calculations the H2 bond length is constrained to a constant value of req=1.402 a.u. and state to state scattering matrix elements corresponding to a total angular momentum of J=1/2 are discussed for j=0<-->j'=0,2,4 and 2P1/2<-->2P1/2, 2P3/2 over a range of total energy between 0.0 and 0.01 a.u.

  3. The synthesis and structure of a chiral 1D aluminophosphate chain compound: d-Co(en) 3[AlP 2O 8]·6.5H 2O

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Li, Jiyang; Yu, Jihong; Wang, Yu; Pan, Qinhe; Xu, Ruren

    2005-06-01

    A new chiral one-dimensional (1D) aluminophosphate chain compound [ d-Co(en) 3][AlP 2O 8]·6.5H 2O (designated AlPO-CJ22) has been hydrothermally synthesized by using the optically pure d-Co(en) 3I 3 complex as the template. Single-crystal structural analysis reveals that its structure is built up from alternating connection of AlO 4 and PO 2(=O 2) tetrahedra to form corner-shared Al 2P 2 four-membered ring (4-MR) chains. The d-Co(en) 33+ complex cations extended along the 2 1 screw axis interact with the inorganic chains through hydrogen-bonds of N⋯O atoms in a helical fashion. Optical rotation measurement shows that AlPO-CJ22 is chiral as with d-Co(en) 33+ complex cations. Crystal data: orthorhombic, I2 12 12 1, a=8.5573(8) Å, b=22.613(2) Å, c=22.605(2) Å, Z=8, R1=0.067, wR2=0.1291, and Flack parameter: -0.02(3). CCDC number: 254179.

  4. Microwave spectroscopy of the seeded binary and ternary clusters CO-(pH{sub 2}){sub 2}, CO-pH{sub 2}-He, CO-HD, and CO-(oD{sub 2}){sub N=1,2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raston, Paul L., E-mail: paul.raston@adelaide.edu.au; Jäger, Wolfgang

    We report the Fourier transform microwave spectra of the a-type J = 1-0 transitions of the binary and ternary CO-(pH{sub 2}){sub 2}, CO-pH{sub 2}-He, CO-HD, and CO-(oD{sub 2}){sub N=1,2} clusters. In addition to the normal isotopologue of CO for all clusters, we observed the transitions of the minor isotopologues, {sup 13}C{sup 16}O, {sup 12}C{sup 18}O, and {sup 13}C{sup 18}O, for CO-(pH{sub 2}){sub 2} and CO-pH{sub 2}-He. All transitions lie within 335 MHz of the experimentally or theoretically predicted values. In comparison to previously reported infrared spectra [Moroni et al., J. Chem. Phys. 122, 094314 (2005)], we are able to tentativelymore » determine the vibrational shift for CO-pH{sub 2}-He, in addition to its b-type J = 1-0 transition frequency. The a-type frequency of CO-pH{sub 2}-He is similar to that of CO-He{sub 2} [Surin et al., Phys. Rev. Lett. 101, 233401 (2008)], suggesting that the pH{sub 2} molecule has a strong localizing effect on the He density. Perturbation theory analysis of CO-oD{sub 2} reveals that it is approximately T-shaped, with an anisotropy of the intermolecular potential amounting to ∼9 cm{sup −1}.« less

  5. Kinetics of Valeric Acid Ketonization and Ketenization in Catalytic Pyrolysis on Nanosized SiO2 , γ-Al2 O3 , CeO2 /SiO2 , Al2 O3 /SiO2 and TiO2 /SiO2.

    PubMed

    Kulyk, Kostiantyn; Palianytsia, Borys; Alexander, John D; Azizova, Liana; Borysenko, Mykola; Kartel, Mykola; Larsson, Mats; Kulik, Tetiana

    2017-07-19

    Valeric acid is an important renewable platform chemical that can be produced efficiently from lignocellulosic biomass. Upgrading of valeric acid by catalytic pyrolysis has the potential to produce value added biofuels and chemicals on an industrial scale. Understanding the different mechanisms involved in the thermal transformations of valeric acid on the surface of nanometer-sized oxides is important for the development of efficient heterogeneously catalyzed pyrolytic conversion techniques. In this work, the thermal decomposition of valeric acid on the surface of nanoscale SiO 2 , γ-Al 2 O 3 , CeO 2 /SiO 2 , Al 2 O 3 /SiO 2 and TiO 2 /SiO 2 has been investigated by temperature-programmed desorption mass spectrometry (TPD MS). Fourier transform infrared spectroscopy (FTIR) has also been used to investigate the structure of valeric acid complexes on the oxide surfaces. Two main products of pyrolytic conversion were observed to be formed depending on the nano-catalyst used-dibutylketone and propylketene. Mechanisms of ketene and ketone formation from chemisorbed fragments of valeric acid are proposed and the kinetic parameters of the corresponding reactions were calculated. It was found that the activation energy of ketenization decreases in the order SiO 2 >γ-Al 2 O 3 >TiO 2 /SiO 2 >Al 2 O 3 /SiO 2 , and the activation energy of ketonization decreases in the order γ-Al 2 O 3 >CeO 2 /SiO 2 . Nano-oxide CeO 2 /SiO 2 was found to selectively catalyze the ketonization reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Kinetic modeling and transient DRIFTS–MS studies of CO 2 methanation over Ru/Al 2O 3 catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiang; Hong, Yongchun; Shi, Hui

    CO 2 methanation was investigated on 5% and 0.5% Ru/Al 2O 3 catalysts (Ru dispersions: ~18% and ~40%, respectively) by steady-state kinetic measurements and transient DRIFTS–MS. Methanation rates were higher over 5% Ru/Al 2O 3 than over 0.5% Ru/Al 2O 3. The measured activation energies, however, were lower on 0.5% Ru/Al 2O 3 than on 5% Ru/Al 2O 3. Transient DRIFTS–MS results demonstrated that direct CO 2 dissociation was negligible over Ru. CO 2 has to first react with surface hydroxyls on Al 2O 3 to form bicarbonates, which, in turn, react with adsorbed H on Ru to produce adsorbed formate species. Formates, most likely at the metal/oxide interface, can react rapidly with adsorbed H forming adsorbed CO, only a portion of which is reactive toward adsorbed H, ultimately leading to CH4 formation. The measured kinetics are fully consistent with a Langmuir–Hinshelwood type mechanism in which the H-assisted dissociation of the reactive CO* is the rate-determining step (RDS). The similar empirical rate expressions (r CH4 = kPmore » $$0.1\\atop{CO2}$$P$$0.3-0.5\\atop{H2}$$) and DRIFTS–MS results on the two catalysts under both transient and steady-state conditions suggest that the mechanism for CO 2 methanation does not change with Ru particle size under the studied experimental conditions. Kinetic modeling results further indicate that the intrinsic activation barrier for the RDS is slightly lower on 0.5% Ru/Al 2O 3 than on 5% Ru/Al 2O 3. Due to the presence of unreactive adsorbed CO under reaction conditions, the larger fraction of such surface sites that bind CO too strongly on 0.5% Ru/Al 2O 3 than on 5% Ru/Al 2O 3, as revealed by FTIR measurements, is regarded as the main reason for the lower rates for CO 2 methanation on 0.5% Ru/Al 2O 3. The catalyst preparation and catalytic measurements were supported by a Laboratory Directed Research and Development (LDRD) project. The authors gratefully acknowledge the financial support of this work by the US Department

  7. Effect of high density H 2 plasmas on InGaP/GaAs and AlGaAs/GaAs HEMTs

    NASA Astrophysics Data System (ADS)

    Ren, F.; Kopf, R. F.; Kuo, J. M.; Lothian, J. R.; Lee, J. W.; Pearton, S. J.; Shul, R. J.; Constantine, C.; Johnson, D.

    1998-05-01

    InGaP/GaAs and AlGaAs/GaAs high electron mobility transistors have been exposed to inductively coupled plasma or electron cyclotron resonance H 2 plasmas as a function of pressure, source power and rf chuck power. The transconductance, gate ideality factor and saturated drain-source current are all degraded by the plasma treatment. Two mechanisms are identified: passivation of Si dopants in the InGaP or AlGaAs donor layers by H 0 and lattice disorder created by H + and H 2+ ion bombardment. HEMTs are found to be more susceptible to plasma-induced degradation than heterojunction bipolar transistors.

  8. An internally consistent set of thermodynamic data for twentyone CaO-Al2O3-SiO2- H2O phases by linear parametric programming

    NASA Astrophysics Data System (ADS)

    Halbach, Heiner; Chatterjee, Niranjan D.

    1984-11-01

    The technique of linear parametric programming has been applied to derive sets of internally consistent thermodynamic data for 21 condensed phases of the quaternary system CaO-Al2O3-SiO2-H2O (CASH) (Table 4). This was achieved by simultaneously processing: a) calorimetric data for 16 of these phases (Table 1), and b) experimental phase equilibria reversal brackets for 27 reactions (Table 3) involving these phases. Calculation of equilibrium P-T curves of several arbitrarily picked reactions employing the preferred set of internally consistent thermodynamic data from Table 4 shows that the input brackets are invariably satisfied by the calculations (Fig. 2a). By contrast, the same equilibria calculated on the basis of a set of thermodynamic data derived by applying statistical methods to a large body of comparable input data (Haas et al. 1981; Hemingway et al. 1982) do not necessarily agree with the experimental reversal brackets. Prediction of some experimentally investigated phase relations not included into the linear programming input database also appears to be remarkably successful. Indications are, therefore, that the thermodynamic data listed in Table 4 may be used with confidence to predict geologic phase relations in the CASH system with considerable accuracy. For such calculated phase diagrams and their petrological implications, the reader's attention is drawn to the paper by Chatterjee et al. (1984).

  9. NQRS Data for AlDO2 [Al(OD)O] (Subst. No. 0032)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for AlDO2 [Al(OD)O] (Subst. No. 0032)

  10. H2O2 activation with biomimetic non-haem iron complexes and AcOH: connecting the g = 2.7 EPR signal with a visible chromophore.

    PubMed

    Makhlynets, Olga V; Oloo, Williamson N; Moroz, Yurii S; Belaya, Irina G; Palluccio, Taryn D; Filatov, Alexander S; Müller, Peter; Cranswick, Matthew A; Que, Lawrence; Rybak-Akimova, Elena V

    2014-01-21

    Mechanistic studies of H2O2 activation by complexes related to [(BPMEN)Fe(II)(CH3CN)2](2+) with electron-rich pyridines revealed that a new intermediate formed in the presence of acetic acid with a 465 nm visible band can be associated with an unusual g = 2.7 EPR signal. We postulate that this chromophore is an acylperoxoiron(III) intermediate.

  11. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    PubMed Central

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2014-01-01

    Background Arctium lappa (AL), Camellia sinensis (CS), Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG), and Vaccinium myrtillus (VM) are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (m)RNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results A noncytotoxic dose (200 μM) of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001) regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in vitro and in vivo investigation into molecular mechanisms modulated by herbal extracts should be undertaken to shed light on the development of novel

  12. An unusual caffeic acid derived bicyclic [2.2.2] octane lignan and other constituents from Cordia rufescens.

    PubMed

    do Vale, Ademir E; David, Jorge M; dos Santos, Edlene O; David, Juceni P; e Silva, Lidercia C R C; Bahia, Marcus V; Brandão, Hugo N

    2012-04-01

    This work reports isolation of an unusual lignan with a bicyclic [2.2.2] octene skeleton, named rufescenolide (1), from stems of Cordia rufescens, along with β-sitosterol, stigmasterol, syringaldehyde, 3-β-O-D-glucopyranosyl-sitosterol, methyl caffeate, 4-methoxy-protocatechuic acid and methyl rosmarinate. Structural characterizations employed IR spectroscopic, ESIHRMS and mono and dimensional NMR spectroscopy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. An unusual methylene aziridine refined in P2(1)/c and the nonstandard setting P2(1)/n.

    PubMed

    Feast, George C; Haestier, James; Page, Lee W; Robertson, Jeremy; Thompson, Amber L; Watkin, David J

    2009-12-01

    The unusual methylene aziridine 6-tert-butyl-3-oxa-2-thia-1-azabicyclo[5.1.0]oct-6-ene 2,2-dioxide, C(9)H(15)NO(3)S, was found to crystallize with two molecules in the asymmetric unit. The structure was solved in both the approximately orthogonal and the oblique settings of space group No. 14, viz. P2(1)/n and P2(1)/c, respectively. A comparison of these results clearly displayed an increase in the correlation between coordinates in the ac plane for the oblique cell. The increase in the corresponding covariances makes a significant contribution to the standard uncertainties of derived parameters, e.g. bond lengths. Since there is yet no CIF definition for the full variance-covariance matrix, there are clear advantages to reporting the structure in the nonstandard space-group setting.

  14. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-14

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  15. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-01

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  16. High-k dielectric Al2O3 nanowire and nanoplate field effect sensors for improved pH sensing

    PubMed Central

    Reddy, Bobby; Dorvel, Brian R.; Go, Jonghyun; Nair, Pradeep R.; Elibol, Oguz H.; Credo, Grace M.; Daniels, Jonathan S.; Chow, Edmond K. C.; Su, Xing; Varma, Madoo; Alam, Muhammad A.

    2011-01-01

    Over the last decade, field-effect transistors (FETs) with nanoscale dimensions have emerged as possible label-free biological and chemical sensors capable of highly sensitive detection of various entities and processes. While significant progress has been made towards improving their sensitivity, much is yet to be explored in the study of various critical parameters, such as the choice of a sensing dielectric, the choice of applied front and back gate biases, the design of the device dimensions, and many others. In this work, we present a process to fabricate nanowire and nanoplate FETs with Al2O3 gate dielectrics and we compare these devices with FETs with SiO2 gate dielectrics. The use of a high-k dielectric such as Al2O3 allows for the physical thickness of the gate dielectric to be thicker without losing sensitivity to charge, which then reduces leakage currents and results in devices that are highly robust in fluid. This optimized process results in devices stable for up to 8 h in fluidic environments. Using pH sensing as a benchmark, we show the importance of optimizing the device bias, particularly the back gate bias which modulates the effective channel thickness. We also demonstrate that devices with Al2O3 gate dielectrics exhibit superior sensitivity to pH when compared to devices with SiO2 gate dielectrics. Finally, we show that when the effective electrical silicon channel thickness is on the order of the Debye length, device response to pH is virtually independent of device width. These silicon FET sensors could become integral components of future silicon based Lab on Chip systems. PMID:21203849

  17. Astrochemistry in the Early Universe: Collisional Rates for H on H2

    NASA Technical Reports Server (NTRS)

    Lepp, S. H.; Archer, D.; Balakrishnan, N.

    2006-01-01

    We present preliminary results of a full quantum calculation of state to state cross sections for H on H2. These cross sections are calculated for v=0,4 j=0,15 for energies up to 3.0 eV. The cross sections are calculated on the BKMP2 potential surface (Boothroyd et al. 1996) with the ABC scattering code (Skouteris et al. 2000).

  18. Dachiardite-K, (K2Ca)(Al4Si20O48) · 13H2O, a new zeolite from Eastern Rhodopes, Bulgaria

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Encheva, S.; Petrov, P.; Pekov, I. V.; Belakovskiy, D. I.; Britvin, S. N.; Aksenov, S. M.

    2016-12-01

    Dachiardite-K (IMA No. 2015-041), a new zeolite, is a K-dominant member of the dachiardite series with the idealized formula (K2Ca)(Al4Si20O48) · 13H2O. It occurs in the walls of opal-chalcedony veinlets cutting hydrothermally altered effusive rocks of the Zvezdel paleovolcanic complex near the village of Austa, Momchilgrad Municipality, Eastern Rhodopes, Bulgaria. Chalcedony, opal, dachiardite-Ca, dachiardite-Na, ferrierite-Mg, ferrierite-K, clinoptilolite-Ca, clinoptilolite-K, mordenite, smectite, celadonite, calcite, and barite are associated minerals. The mineral forms radiated aggregates up to 8 mm in diameter consisting of split acicular individuals. Dachiardite-K is white to colorless. Perfect cleavage is observed on (100). D meas = 2.18(2), D calc = 2.169 g/cm3. The IR spectrum is given. Dachiardite-K is biaxial (+), α = 1.477 (calc), β = 1.478(2), γ = 1.481(2), 2 V meas = 65(10)°. The chemical composition (electron microprobe, mean of six point analyses, H2O determined by gravimetric method) is as follows, wt %: 4.51 K2O, 3.27 CaO, 0.41 BaO, 10.36 A12O3, 67.90 SiO2, 13.2 H2O, total is 99.65. The empirical formula is H26.23K1.71Ca1.04Ba0.05Al3.64Si20.24O61. The strongest reflections in the powder X-ray diffraction pattern [ d, Å (I, %) (hkl)] are: 9.76 (24) (001), 8.85 (58) (200), 4.870 (59) (002), 3.807 (16) (202), 3.768 (20) (112, 020), 3.457 (100) (220), 2.966 (17) (602). Dachiardite-K is monoclinic, space gr. C2/m, Cm or C2; the unit cell parameters refined from the powder X-ray diffraction data are: a = 18.670(8), b = 7.511(3), c = 10.231(4) Å, β = 107.79(3)°, V= 1366(1) Å3, Z = 1. The type specimen has been deposited in the Earth and Man National Museum, Sofia, Bulgaria, with the registration number 23927.

  19. Effects of inorganic acids and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process.

    PubMed

    Zhang, Jian; Xia, Yuguo; Zhang, Li; Chen, Dairong; Jiao, Xiuling

    2015-11-07

    In-depth understanding of the sol-gel process plays an essential role in guiding the preparation of new materials. Herein, the effects of different inorganic acids (HCl, HNO3 and H2SO4) and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process were studied based on experiments and density functional theory (DFT) calculations. In these experiments, the sol originating from the γ-AlOOH suspension was formed only with the addition of HCl and HNO3, but not with H2SO4. Furthermore, the DFT calculations showed that the strong adsorption of HSO4(-) on the surface of the γ-AlOOH particles, and the hydrogen in HSO4(-) pointing towards the solvent lead to an unstable configuration of electric double layer (EDL). In the experiment, the gelation time sequence of γ-AlOOH sol obtained by adding metal ions changed when the ionic strength was equal to or greater than 0.198 mol kg(-1). The DFT calculations demonstrated that the adsorption energy of hydrated metal ions on the γ-AlOOH surface can actually make a difference in the sol-gel process.

  20. Polarization and Fowler-Nordheim tunneling in anodized Al-Al2O3-Au diodes

    NASA Astrophysics Data System (ADS)

    Hickmott, T. W.

    2000-06-01

    Polarization in anodic Al2O3 films is measured by using quasi-dc current-voltage (I-V) curves of Al-Al2O3-Au diodes. A reproducible polarization state is established by applying a negative voltage to the Au electrode of a rectifying Al-Al2O3-Au diode. The difference between subsequent I-V curves with Au positive is a measure of polarization in the sample. The magnitude of polarization charge in Al2O3 depends on the anodizing electrolyte. Al2O3 films formed in H2O-based electrolytes have approximately ten times the polarization charge of Al2O3 films formed in ethylene glycol-based electrolyte. Anodizing conditions that produce greater polarizing charge in anodic Al2O3 result in voltage-time curves during anodization under galvanostatic conditions that are nonlinear. Anodic films with greater polarizing charge also have a greater apparent interface capacitance which is independent of Al2O3 thickness. I-V curves of Al-Al2O3-Au diodes for increasing voltage are dominated by polarization. I-V curves for decreasing voltage are reproducible and parallel but depend on the maximum current and voltage reached during the measurement. There is no single current corresponding to a given voltage. I-V curves for decreasing voltage are analyzed assuming that the conduction mechanism is Fowler-Nordheim (FN) tunneling. There is a qualitative difference between the FN tunneling parameters for Al2O3 films formed in H2O-based electrolytes and those formed in ethylene glycol-based electrolyte. For the former the value of the exponential term in the FN analysis increases as the value of maximum voltage and current in an I-V characteristic increases, while the value of the pre-exponential term is nearly constant. For the latter, the exponential term is nearly constant as maximum voltage and current increase, but the pre-exponential term decreases by about 5 decades. Thus polarization charge incorporated during formation of anodized Al2O3 strongly affects the formation of the insulating

  1. ALS LOX/H2 subscale coaxial injector testing

    NASA Technical Reports Server (NTRS)

    Dexter, Carol E.

    1991-01-01

    Tests of a 40K subscale LOX/H2 coaxial LOX swirl injector conducted without injector or chamber degradation are reported. Chamber pressures ranged from 1572 to 2355 psia with overall mixture ratios from 5.04 to 6.39. The highest characteristic velocities were measured when the mixture ratio across the injector face was uniform. Scarfing of the outer row LOX posts had the largest effect on chamber heating rates. As a result of the tests, the LSI design was modified to arrange the outer row LOX posts in a circular pattern, eliminate O/F biasing and fuel film cooling, and modify the interpropellant plate to allow for larger pressure differentials during the start and cutoff transients. Testing of a 100 K LOX/H2 coaxial LOX swirl injector involved chamber pressure ranging from 700 to 2500 psia with overall mixture ratios from 3.2 to 8.8. Stable combustion was observed to a fuel temperature of 90R and characteristic velocity efficiencies were good.

  2. Pressure-induced superconductivity in H2-containing hydride PbH4(H2)2

    PubMed Central

    Cheng, Ya; Zhang, Chao; Wang, Tingting; Zhong, Guohua; Yang, Chunlei; Chen, Xiao-Jia; Lin, Hai-Qing

    2015-01-01

    High pressure structure, stability, metallization, and superconductivity of PbH4(H2)2, a H2-containing compound combining one of the heaviest elements with the lightest element, are investigated by the first-principles calculations. The metallic character is found over the whole studied pressure range, although PbH4(H2)2 is metastable and easily decompose at low pressure. The decomposition pressure point of 133 GPa is predicted above which PbH4(H2)2 is stable both thermodynamically and dynamically with the C2/m symmetry. Interestedly, all hydrogen atoms pairwise couple into H2 quasi-molecules and remain this style up to 400 GPa in the C2/m structure. At high-pressure, PbH4(H2)2 tends to form the Pb-H2 alloy. The superconductivity of Tc firstly rising and then falling is observed in the C2/m PbH4(H2)2. The maximum of Tc is about 107 K at 230 GPa. The softening of intermediate-frequency phonon induced by more inserted H2 molecules is the main origin of the high Tc. The results obtained represent a significant step toward the understanding of the high pressure behavior of metallic hydrogen and hydrogen-rich materials, which is helpful for obtaining the higher Tc. PMID:26559369

  3. Hydrothermal Syntheses and Structures of Three-Dimensional Oxo-fluorovanadium Phosphates: [H 2N(C 2H 4) 2NH 2] 0.5[(VO) 4V(HPO 4) 2(PO 4) 2F 2(H 2O) 4] · 2H 2O and K 2[(VO) 3(PO 4) 2F 2(H 2O)] · H 2O

    NASA Astrophysics Data System (ADS)

    Bonavia, Grant; Haushalter, R. C.; Zubieta, Jon

    1996-11-01

    The hydrothermal reactions of FPO3H2with vanadium oxides result in the incorporation of fluoride into V-P-O frameworks as a consequence of metal-mediated hydrolysis of the fluorophosphoric acid to produce F-and PO3-4. By exploiting this convenient source of F-, two 3-dimensional oxo-fluorovanadium phosphate phases were isolated, [H2N(C2H4)2NH2]0.5[(VO)4V(HOP4)2(PO4)2F2(H2O)4) · 2H2O (1 · 2H2O) and K2[(VO)3(PO4)2F2(H2O)] · H2O (2 · H2O). Both anionic frameworks contain (VIVO)-F--phosphate layers, with confacial bioctahedral {(VIVO)2FO6} units as the fundamental motif. In the case of 1, the layers are linked through {VIIIO6} octahedra, while for 2 the interlayer connectivity is provided by edge-sharing {(VIVO)2F2O6} units. Crystal data are 1 · 2H2O, CH10FN0.5O13P2V2.5, monoclinicC2/m,a= 18.425(4) Å,c= 8.954(2) Å, β = 93.69(2)0,V= 1221.1(4) Å3,Z= 4,Dcalc= 2.423 g cm-3; 2 · H2O, H4F2K2O13P2V3, triclinicPoverline1,a= 7.298(1) Å,b= 8.929(2) Å,c = 10.090(2) Å, α = 104.50(2)0, β = 100.39(2)0, δ = 92.13(2)0,V= 623.8(3) Å3,Z= 2,Dcalc= 2.891 g cm-3.

  4. Comparing the Thermodynamic Behaviour of Al(1)+ZrO2(s) to Al(1)+Al2O3(s)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2004-01-01

    In an effort to better determine the thermodynamic properties of Al(g) and Al2O(g). the vapor in equilibrium with Al(l)+ZrO2(s) was compared to the vapor in equilibrium with Al(l)+Al2O3(s) over temperature range 1197-to-1509K. The comparison was made directly by Knudsen effusion-cell mass spectrometry with an instrument configured for a multiple effusion-cell vapor source (multi-cell KEMS). Second law enthalpies of vaporization of Al(g) and Al2O(g) together with activity measurements show that Al(l)+ZrO2(s) is thermodynamically equivalent to Al(l)+Al2O3(s), indicating Al(l) remained pure and Al2O3(s) was present in the ZrO2-cell. Subsequent observation of the Al(l)/ZrO2 and vapor/ZrO2 interfaces revealed a thin Al2O3-layer had formed, separating the ZrO2-cell from Al(l) and Al(g)+Al2O(g), effectively transforming it into an Al2O3 effusion-cell. This behavior agrees with recent observations made for Beta-NiAl(Pt) alloys measured in ZrO2 effusion-cell.

  5. Optimization of Al2O3/TiO2/Al 2O3 Multilayer Antireflection Coating With X-Ray Scattering Techniques

    NASA Astrophysics Data System (ADS)

    Li, Chao

    Broadband multilayer antireflection coatings (ARCs) are keys to improving solar cell efficiencies. The goal of this dissertation is to optimize the multilayer Al2O3/TiO2/Al2O 3 ARC designed for a III-V space multi-junction solar cell with understanding influences of post-annealing and varying deposition parameters on the optical properties. Accurately measuring optical properties is important in accessing optical performances of ARCs. The multilayer Al2O3/TiO 2/Al2O3 ARC and individual Al2O 3 and TiO2 layers were characterized by a novel X-ray reflectivity (XRR) method and a combined method of grazing-incidence small angle X-ray scattering (GISAXS), atomic force microscopy (AFM), and XRR developed in this study. The novel XRR method combining an enhanced Fourier analysis with specular XRR simulation effectively determines layer thicknesses and surface and interface roughnesses and/or grading with sub-nanometer precision, and densities less than three percent uncertainty. Also, the combined method of GISAXS, AFM, and XRR characterizes the distribution of pore size with one-nanometer uncertainty. Unique to this method, the diffuse scattering from surface and interface roughnesses is estimated with surface parameters (root mean square roughness sigma, lateral correlation length ξ, and Hurst parameter h) obtained from AFM, and layer densities, surface grading and interface roughness/grading obtained from specular XRR. It is then separated from pore scattering. These X-ray scattering techniques obtained consistent results and were validated by other techniques including optical reflectance, spectroscopic ellipsometry (SE), glancing incidence X-ray diffraction, transmission electron microscopy and energy dispersive X-ray spectroscopy. The ARCs were deposited by atomic layer deposition with standard parameters at 200 °C. The as-deposited individual Al2O3 layer on Si is porous and amorphous as indicated by the combined methods of GISAXS, AFM, and XRR. Both post

  6. Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al

    PubMed Central

    Zheng, Guoqiang; Zhang, Wenchao; Shen, Ruiqi; Ye, Jiahai; Qin, Zhichun; Chao, Yimin

    2016-01-01

    Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ∙g−1, where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research. PMID:26935405

  7. The effect of sulfate on aluminum concentrations in natural waters: some stability relations in the system Al2O3-SO3-H2O at 298 K

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    1982-01-01

    While gibbsite and kaolinite solubilities usually regulate aluminum concentrations in natural waters, the presence of sulfate can dramatically alter these solubilities under acidic conditions, where other, less soluble minerals can control the aqueous geochemistry of aluminum. The likely candidates include alunogen, Al2(SO4)3 ?? 17H2O, alunite, KAl3(SO4)2(OH)6, jurbanite, Al(SO4)(OH) ?? 5H2O, and basaluminite, Al4(SO4)(OH)10 ?? 5H2O. An examination of literature values shows that the log Ksp = -85.4 for alunite and log Ksp = -117.7 for basaluminite. In this report the log Ksp = -7.0 is estimated for alunogen and log Ksp = -17.8 is estimated for jurbanite. The solubility and stability relations among these four minerals and gibbsite are plotted as a function of pH and sulfate activity at 298 K. Alunogen is stable only at pH values too low for any natural waters (<0) and probably only forms as efflorescences from capillary films. Jurbanite is stable from pH < 0 up to the range of 3-5 depending on sulfate activity. Alunite is stable at higher pH values than jurbanite, up to 4-7 depending on sulfate activity. Above these pH limits gibbsite is the most stable phase. Basaluminite, although kinetically favored to precipitate, is metastable for all values of pH and sulfate activity. These equilibrium calculations predict that both sulfate and aluminum can be immobilized in acid waters by the precipitation of aluminum hydroxysulfate minerals. Considerable evidence supports the conclusion that the formation of insoluble aluminum hydroxy-sulfate minerals may be the cause of sulfate retention in soils and sediments, as suggested by Adams and Rawajfih (1977), instead of adsorption. ?? 1982.

  8. Ti{sub 2}AlN thin films synthesized by annealing of (Ti+Al)/AlN multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabioch, Thierry, E-mail: Thierry.cabioch@univ-poitiers.fr; Alkazaz, Malaz; Beaufort, Marie-France

    2016-08-15

    Highlights: • Epitaxial thin films of the MAX phase Ti{sub 2}AlN are obtained by thermal annealing. • A new metastable (Ti,Al,N) solid solution with the structure of α-T is evidenced. • The formation of the MAX phase occurs at low temperature (600 °C). - Abstract: Single-phase Ti{sub 2}AlN thin films were obtained by annealing in vacuum of (Ti + Al)/AlN multilayers deposited at room temperature by magnetron sputtering onto single-crystalline (0001) 4H-SiC and (0001) Al{sub 2}O{sub 3} substrates. In-situ X-ray diffraction experiments combined with ex-situ cross-sectional transmission electron microscopy observations reveal that interdiffusion processes occur in the multilayer at amore » temperature of ∼400 °C leading to the formation of a (Ti, Al, N) solid solution, having the hexagonal structure of α-Ti, whereas the formation of Ti{sub 2}AlN occurs at 550–600 °C. Highly oriented (0002) Ti{sub 2}AlN thin films can be obtained after an annealing at 750 °C.« less

  9. Chemical trend of superconducting transition temperature in hole-doped delafossite of CuAlO2, AgAlO2 and AuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi

    2012-12-01

    We have performed the first-principles calculations about the superconducting transition temperature Tc of hole-doped delafossite CuAlO2, AgAlO2 and AuAlO2. Calculated Tc are about 50 K (CuAlO2), 40 K (AgAlO2) and 3 K(AuAlO2) at maximum in the optimum hole-doping concentration. The low Tc of AuAlO2 is attributed to the weak electron-phonon interaction caused by the low covalency and heavy atomic mass.

  10. Analytic H I-to-H2 Photodissociation Transition Profiles

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Sternberg, Amiel

    2016-05-01

    We present a simple analytic procedure for generating atomic (H I) to molecular ({{{H}}}2) density profiles for optically thick hydrogen gas clouds illuminated by far-ultraviolet radiation fields. Our procedure is based on the analytic theory for the structure of one-dimensional H I/{{{H}}}2 photon-dominated regions, presented by Sternberg et al. Depth-dependent atomic and molecular density fractions may be computed for arbitrary gas density, far-ultraviolet field intensity, and the metallicity-dependent H2 formation rate coefficient, and dust absorption cross section in the Lyman-Werner photodissociation band. We use our procedure to generate a set of {{H}} {{I}}{-}{to}{-}{{{H}}}2 transition profiles for a wide range of conditions, from the weak- to strong-field limits, and from super-solar down to low metallicities. We show that if presented as functions of dust optical depth, the {{H}} {{I}} and {{{H}}}2 density profiles depend primarily on the Sternberg “α G parameter” (dimensionless) that determines the dust optical depth associated with the total photodissociated {{H}} {{I}} column. We derive a universal analytic formula for the {{H}} {{I}}{-}{to}{-}{{{H}}}2 transition points as a function of just α G. Our formula will be useful for interpreting emission-line observations of H I/{{{H}}}2 interfaces, for estimating star formation thresholds, and for sub-grid components in hydrodynamics simulations.

  11. Isotope effect in acetylene C2H2 and C2D2 rotations on Cu(001)

    NASA Astrophysics Data System (ADS)

    Shchadilova, Yulia E.; Tikhodeev, Sergei G.; Paulsson, Magnus; Ueba, Hiromu

    2014-04-01

    A comprehensive analysis of the elementary processes behind the scanning tunneling microscope controlled rotation of C2H2 and C2D2, isotopologues of a single acetylene molecule adsorbed on the Cu(001) surface, is given, with a focus on the isotope effects. With the help of density-functional theory we calculate the vibrational modes of C2H2 and C2D2 on Cu(001) and estimate the anharmonic couplings between them, using a simple strings-on-rods model. The probability of the elementary processes, nonlinear and combination band, is estimated using the Keldysh diagram technique. This allows us to clarify the main peculiarities and the isotope effects of the C2H2 and C2D2 on Cu(001) rotation, discovered in the pioneering work [B. C. Stipe et al., Phys. Rev. Lett. 81, 1263 (1998), 10.1103/PhysRevLett.81.1263], which have not been previously understood.

  12. Emission analysis of RE3+ (RE = Sm, Dy):B2O3-TeO2-Li2O-AlF3 glasses.

    PubMed

    Raju, C Nageswara; Sailaja, S; Kumari, S Pavan; Dhoble, S J; Kumar, V Ramesh; Ramanaiah, M V; Reddy, B Sudhakar

    2013-01-01

    This article reports on the optical properties of 0.5% mol of Sm(3+), Dy(3+) ion-doped B2O3-TeO2-Li2O-AlF3 (LiAlFBT) glasses. The glass samples were characterized by optical absorption and emission spectra. Judd-Ofelt theory was applied to analyze the optical absorption spectra and calculate the intensity parameters and radiative properties of the emission transitions. The emission spectra of Sm(3+) and Dy(3+):LiAlFBT glasses showed a bright reddish-orange emission at 598 nm ((4)G5/2 → (6)H7/2) and an intense yellow emission at 574 nm ((4)F9/2 → (6)H13/2), respectively. Full width at half maximum (FWHM), stimulated emission cross section, gain bandwidth and optical gain values were also calculated to extend the applications of the Sm(3+) and Dy(3+):LiAlFBT glasses. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Magnetic and structural instabilities in CePd 2Al 2 and LaPd 2Al 2

    NASA Astrophysics Data System (ADS)

    Chapon, L. C.; Goremychkin, E. A.; Osborn, R.; Rainford, B. D.; Short, S.

    2006-05-01

    We have investigated the crystal and magnetic structure of the RPd 2Al 2 compounds (R=La, Ce) by neutron powder diffraction (ND) and inelastic neutron scattering (INS). The ND study shows that both compounds undergo a structural phase transition from tetragonal to orthorhombic symmetry at 91.5 K (La) and 13.5 K (Ce). In the case of CePd 2Al 2 the crystal field excitation spectrum, which has an extra peak that cannot be explained by a standard crystal field model, indicates the presence of strong magneto-elastic coupling.

  14. Exploring external time-dependent sources of H2O into Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Lara, Luisa-Maria; Lellouch, Emmanuel; González, Marta; Moreno, Raphael; Rengel, Miriam

    2014-05-01

    Recent observations (Cottini et al., 2012, and Moreno et al., 2012) and steady-state photochemical modelling (Moreno et al., 2012; Dobrijevic et al., 2014) indicate that the amounts of CO2 and H2O in Titan's stratosphere imply relatively inconsistent values of the OH/H2O input flux. Moreno et al. (2012) proposed that the oxygen source is time-variable, whereas Dobrijevic et al. (2014) arrived to the same conclusion of Moreno et al. (2012) that the HSO (Herschel Space Observatory) measured H2O profile is'inconsistent" with the CO2 abundance. Furthermore, Dobrijevic et al. (2014) also found that reconciliation was possible if abundances reported by Cottini et al. (2012) are correct instead, though in this situation and for an Enceladus source, their model tended to overpredict the thermospheric abundance of H2O , compared to the upper limit by Cui et al. (2009). We attempt to reconcile the H2O and CO2 observed profiles in Titan's atmosphere by considering several time-dependent scenarios for the infux/evolution of oxygen species. To explore this, we use a time-dependent photochemical model of Titan's atmosphere to calculate effective lifetimes and the response of Titan's oxygen compounds to changes in the oxygen input flux. We consider a time-variable Enceladus source, as well as the evolution of material delivered by a cometary impact. We will show results on effective H2O and CO2 effective lifetimes, on the feasibility of time-variable Enceladus source, and on an additional H2O loss-to-the-haze. Regarding CO2, we will analyse its production following a cometary impact. A summary on viable scenarios to explain the H2O / CO2 puzzle will be given. References Moreno, R., Lellouch, E., Lara, L. M., et al. 2012, Icarus, 221, 753. Cottini, V., Nixon, C. A., Jennings, D. E., et al. 2012, Icarus, 220, 855. Cui, J., Yelle, R. V., Vuitton, V., et al. 2009, Icarus, 200, 581. Dobrijevic, M., Hébrard, E., Loison, J., and Hickson, K. 2014, Icarus, 228, 324.

  15. Evaluation of an Al, La Modified MgZn2Y2 Alloy

    DTIC Science & Technology

    2014-02-01

    Kinoshita, A.; Sugino, Y.; Yamasaki, M.; Kawamura, Y.; Yasuda, Y.; Umakoshi, Y. Plastic Deformation Behavior of Mg97Zn1Y2 Extruded Alloys . Transactions... Deformation between WE43-F and WE43-T5 Magnesium Alloys . In Magnesium Technology; 2011; 2011 TMS Annual Conference; Wim H. Sillekens, Sean R. Agnew, Neale R...Engineering and Engineering Science, University of North Carolina-Charlotte, Charlotte, NC. 14. ABSTRACT Magnesium alloys are of interest due to

  16. Depolarization currents in Al 2O 3 and MgAl 2O 4 oxides

    NASA Astrophysics Data System (ADS)

    Carvalhaes, R. P. M.; Rocha, M. S.; de Souza, S. S.; Blak, A. R.

    2004-06-01

    In the present work, dipole defects in γ-irradiated and thermally treated samples of Al 2O 3 and MgAl 2O 4 oxides are investigated, applying the thermally stimulated depolarisation currents technique (TSDC). The TSDC spectra of MgAl 2O 4 doped with Fe 2+, Fe 3+, Co 2+, Cr 3+ and Mn 2+ show four bands at 130 K, 160 K, 250 K and 320 K, and the spectra of Al 2O 3 doped with Mg 2+, Cr 3+ and Fe 3+ show bands between 230 K and 260 K. It has been observed that the bands at 130 K, 160 K and 250 K in MgAl 2O 4 spinel and that the 230 K and 240 K bands in Al 2O 3 are related to dipole defects. The other bands are possibly related to different types of charge storage mechanisms (space-charge and interfacial polarisation) or deal with distributions in activation energies and/or in relaxation times. A thermal decrease of the TSDC bands for heat treatments above 1000 K has been observed. In MgAl 2O 4 spinel, the 250 K band could be recovered after γ-irradiation and the two dipole peaks in Al 2O 3 were partially recovered. Thermal treatments affect the dipole aggregation processes in both oxides. Optical absorption (AO) results indicate that the presence of bands of water molecules in the infrared region obstructs the appearance of the TSDC bands in both Al 2O 3 and MgAl 2O 4. The 250 K peak in MgAl 2O 4 was correlated to V-type centres and the 250 K peak in Al 2O 3 to a substitutional Mg 2+ ion near a trapped hole localised on an adjacent oxygen ion.

  17. Stable Aluminum Metal-Organic Frameworks (Al-MOFs) for Balanced CO2 and Water Selectivity.

    PubMed

    Li, Haiwei; Feng, Xiao; Ma, Dou; Zhang, Mengxi; Zhang, Yuanyuan; Liu, Yi; Zhang, Jinwei; Wang, Bo

    2018-01-31

    Three new Al-MOFs in the formation of [Al 4 (OH) 2 (OCH 3 ) 4 (OH-BDC) 3 ]·xH 2 O (BIT-72), [Al 4 (OH) 2 (OCH 3 ) 4 (CH 3 -BDC) 3 ]·xH 2 O (BIT-73) and {Al 4 (OH) 2 (OCH 3 ) 4 [(CH 3 ) 2 -BDC] 3 }·xH 2 O (BIT-74) have been synthesized by assembling Al 3+ ion with terephthalic acid ions decorated with monohydroxyl, monomethyl or dimethyl groups, respectively. All of these three MOFs exhibit high stability in boiling water and acidic conditions. Among them, BIT-72 shows the highest surface area of 1618 m 2 ·g -1 and IAST CO 2 /N 2 selectivity of 48, while BIT-73 and BIT-74 present moderate IAST CO 2 /N 2 selectivity and much lower H 2 O capacity below P/P 0 = 0.3. The high CO 2 /N 2 selectivity together with alleviative H 2 O sorption at low water relative pressure may provide promising potential in postcombustion CO 2 capture.

  18. Anisotropic magnetocaloric response in AlFe 2B 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barua, R.; Lejeune, B. T.; Ke, L.

    Experimental investigations of the magnetocaloric response of the intermetallic layered AlFe 2B 2 compound along the principle axes of the orthorhombic cell were carried out using aligned plate-like crystallites with an anisotropic [101] growth habit. Results were confirmed to be consistent with density functional theory calculations. Field-dependent magnetization data confirm that the a-axis is the easy direction of magnetization within the (ac) plane. The magnetocrystalline anisotropy energy required to rotate the spin quantization vector from the c-to the a-axis direction is determined as K~0.9 MJ/m 3 at 50 K. Magnetic entropy change curves measured near the Curie transition temperature ofmore » 285 K reveal a large rotating magnetic entropy change of 1.3 J kg -1K -1 at μ 0H app = 2 T, consistent with large differences in magnetic entropy change ΔS mag measured along the a- and c-axes. Overall, this study provides insight of both fundamental and applied relevance concerning pathways for maximizing the magnetocaloric potential of AlFe 2B 2 for thermal management applications.« less

  19. Anisotropic magnetocaloric response in AlFe 2B 2

    DOE PAGES

    Barua, R.; Lejeune, B. T.; Ke, L.; ...

    2018-02-19

    Experimental investigations of the magnetocaloric response of the intermetallic layered AlFe 2B 2 compound along the principle axes of the orthorhombic cell were carried out using aligned plate-like crystallites with an anisotropic [101] growth habit. Results were confirmed to be consistent with density functional theory calculations. Field-dependent magnetization data confirm that the a-axis is the easy direction of magnetization within the (ac) plane. The magnetocrystalline anisotropy energy required to rotate the spin quantization vector from the c-to the a-axis direction is determined as K~0.9 MJ/m 3 at 50 K. Magnetic entropy change curves measured near the Curie transition temperature ofmore » 285 K reveal a large rotating magnetic entropy change of 1.3 J kg -1K -1 at μ 0H app = 2 T, consistent with large differences in magnetic entropy change ΔS mag measured along the a- and c-axes. Overall, this study provides insight of both fundamental and applied relevance concerning pathways for maximizing the magnetocaloric potential of AlFe 2B 2 for thermal management applications.« less

  20. Thermal O-H Bond Activation of Water as Mediated by Heteronuclear [Al2Mg2O5]•+: Evidence for Oxygen-Atom Scrambling.

    PubMed

    Geng, Caiyun; Li, Jilai; Weiske, Thomas; Schwarz, Helmut

    2018-06-25

    Mechanistic insight into the thermal O-H bond activation of water by the cubane-like, prototypical heteronuclear oxide cluster [Al 2 Mg 2 O 5 ] •+ has been derived from a combined experimental/computational study. Experiments in the highly diluted gas phase using Fourier transform ion-cyclotron resonance mass spectrometry show that hydrogen-atom abstraction from water by the cluster cation [Al 2 Mg 2 O 5 ] •+ occurs at ambient conditions accompanied by the liberation of an OH • radical. Due to a complete randomization of all oxygen atoms prior to fragmentation about 83% of the oxygen atoms of the hydroxyl radical released originate from the oxide cluster itself. The experimental findings are supported by detailed high-level quantum chemical calculations. The theoretical analysis reveals that the transfer of a formal hydrogen atom from water to the metal-oxide cation can proceed mechanistically via proton- or hydrogen-atom transfer exploiting different active sites of the cluster oxide. In addition to the unprecedented oxygen-atom scrambling, one of the more general and quite unexpected findings concerns the role of spin density at the hydrogen-acceptor oxide atom. While this feature is so crucial for [M-O] + /CH 4 couples, it is much less important in the O-H bond activation of water.

  1. Design and syntheses of hybrid metal–organic materials based on K{sub 3}[M(C{sub 2}O{sub 4}){sub 3}]·3H{sub 2}O [M(III)=Fe, Al, Cr] metallotectons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yayong; Zong, Yingxia; Ma, Haoran

    2016-05-15

    By using K{sub 3}[M(C{sub 2}O{sub 4}){sub 3}]·3H{sub 2}O [M(III)=Fe, Al, Cr] (C{sub 2}O{sub 4}{sup 2−}=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C_2O_4)_2(H_2O)_2}{sub 2}]·(H–L{sub 1}){sub 2H{sub 2}O 1, [Fe(C{sub 2}O{sub 4})Cl{sub 2}]·(H{sub 2}–L{sub 2}){sub 0.5}·(L{sub 2}){sub 0.5}·H{sub 2}O 2, [{Fe(C_2O_4)_1_._5Cl_2}{sub 2}]·(H–L{sub 3}){sub 4}3, [Fe{sub 2}(C{sub 2}O{sub 4})Cl{sub 8}]·(H{sub 2}–L{sub 4}){sub 22H{sub 2}O 4, K[Al(C{sub 2}O{sub 4}){sub 3}]·(H{sub 2}–L{sub 5})·2H{sub 2}O 5, K[Al(C{sub 2}O{sub 4}){sub 3}]·(H–L{sub 6}){sub 22H{sub 2}O 6, K[Cr(C{sub 2}O{sub 4}){sub 3}]·2H{sub 2}O 7, Na[Fe(C{sub 2}O{sub 4}){sub 3}]·(H–L{sub 6}){sub 22H{sub 2}O 8 (with L{sub 1}=4-dimethylaminopyridine, L{sub 2}=2,3,5,6-tetramethylpyrazine, L{sub 3}=2-aminobenzimidazole, L{sub 4}=1,4-bis-(1H-imidazol-1-yl)benzene, L{sub 5}=1,4-bis((2-methylimidazol-1-yl)methyl)benzene,more » L{sub 6}=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C{sub 2}O{sub 4}){sub 2}(H{sub 2}O){sub 2}]{sup −} unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C{sub 2}O{sub 4})Cl{sub 2}]{sup -} anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe{sub 2}(C{sub 2}O{sub 4}){sub 3}Cl{sub 4}]{sup 4−} unit. Compound 4 features distinct [Fe{sub 2}(C{sub 2}O{sub 4})Cl{sub 8}]{sup 4−} units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C{sub 2}O{sub 4}){sub 3}]{sup 3−} units and K{sup +} cations. The 1D chains are further extended into 3D antionic H-bonded framework through O–H···O H-bonds. Compounds 6–8 show 2D [KAl

  2. HIghMass—High H I Mass, H I-rich Galaxies at z ˜ 0: Combined H I and H2 Observations

    NASA Astrophysics Data System (ADS)

    Hallenbeck, Gregory; Huang, Shan; Spekkens, Kristine; Haynes, Martha P.; Giovanelli, Riccardo; Adams, Elizabeth A. K.; Brinchmann, Jarle; Carpenter, John; Chengalur, Jayaram; Hunt, Leslie K.; Masters, Karen L.; Saintonge, Amélie

    2016-12-01

    We present resolved {{H}} {{I}} and CO observations of three galaxies from the HIghMass sample, a sample of {{H}} {{I}}-massive ({M}{{H}{{I}}}\\gt {10}10 {M}⊙ ), gas-rich ({M}{{H}{{I}}} in the top 5% for their M *) galaxies identified in the ALFALFA survey. Despite their high gas fractions, these are not low-surface-brightness galaxies and have typical specific star formation rates (SFR/{M}* ) for their stellar masses. The three galaxies have normal SFRs for their {{{H}}}2 masses, but unusually short star formation efficiency scale lengths, indicating that the star formation bottleneck in these galaxies is in the conversion of {{H}} {{I}} to {{{H}}}2, not in converting {{{H}}}2 to stars. In addition, their dark matter spin parameters (λ) are above average, but not exceptionally high, suggesting that their star formation has been suppressed over cosmic time but is now becoming active, in agreement with prior Hα observations.

  3. Vibrational and relaxational contributions in disaccharide/H2O glass formers

    NASA Astrophysics Data System (ADS)

    Branca, C.; Magazù, S.; Maisano, G.; Migliardo, F.

    2001-12-01

    Among oligosaccharides, trehalose seems to be unique in nature as a bioprotector in drying and freezing processes. To understand the molecular mechanisms underlying the unusual bioprotective properties of trehalose in comparison with other disaccharides, the low-frequency dynamics of aqueous (H2O and D2O) mixtures of homologous disaccharides, trehalose, and sucrose has been studied by neutron scattering measurements carried out using the Mibemol spectrometer at the Laboratoire Leon Brillouin (LLB, Saclay). The principal aim of this work is to compare the relaxational versus low-energy vibrational contributions of sucrose/H2O and trehalose/H2O mixtures across the glass transition, in order to characterize, following a procedure first proposed by Sokolov and co-workers, the different ``fragile'' character of both the disaccharide/H2O mixtures.

  4. A study on electrical conductivity of chemosynthetic Al 2O 3-2SiO 2 geoploymer materials

    NASA Astrophysics Data System (ADS)

    Cui, Xue-Min; Zheng, Guang-Jian; Han, Yao-Cong; Su, Feng; Zhou, Ji

    Al 2O 3-2SiO 2 amorphous powders are synthesized by sol-gel method with tetraethoxysilane (TEOS) and aluminum nitrate (ANN) as the starting materials. The microstructure and phase structure of the powders are investigated by SEM and XRD analysis. Geopolymer materials samples are prepared by mechanically mixing stoichiometric amounts of calcined Al 2O 3-2SiO 2 powders and sodium silicate solutions to allow a mass ratio of Na 2O/Al 2O 3 = 0.4, 0.375, 0.35, 0.325, 0.288, 0.26, 0.23 or 0.2 separately, and finally to form a homogenous slurry at a fixed H 2O/Na 2O mole ratio = 11.7. The results show that the synthetic Al 2O 3-2SiO 2 powders have polycondensed property and their compressive strengthes are similar to that of nature metakaolin geopolymer materials. The results also show that the water consumption is not the main influencing factor on electrical conductivity of harden geopolymer materials but it can intensively affect the microstructure of geopolymer materials. In addition, the electrical conductivity of harden geopolymer sample is investigated, and the results show that the geopolymer materials have a high ionic electrical conductivity of about 1.5 × 10 -6 S cm -1 in air at room temperature.

  5. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  6. Internally consistent thermodynamic data for high-pressure and ultrahigh-pressure phases in the system CaO-MgO-Al2O3-SiO2-H2O

    NASA Astrophysics Data System (ADS)

    Grevel, K. D.

    2008-12-01

    In order to enable reliable calculations of phase relations among high-pressure phases the Berman [1] data set was augmented by data for the high-pressure phases stishovite (stv), topaz-OH (toz-OH), phase pi (pi), Mg-staurolite (Mg-st), Mg-sursassite (Mg-sur), and Mg-chloritoid (Mg-cld) using a similar optimization technique as described by Berman et al. [2]. The data of several other phases of the system CaO-MgO- Al2O3-SiO2-H2O obtained in the Berman data base were slightly refined to keep the consistency to the reversal brackets and the originally measured data: andalusite (and), clinochlore (chl), coesite (cs), diaspore (dsp), kaolinite (kln), kyanite (ky), lawsonite (lws), pyrophyllite (prl), sillimanite (sil), zoisite (zo). CP-data were kept constant [1] or estimated [3]. phase; ΔfH0298 (kJ mol-1); S0298 (J K-1 mol-1); V0298 (J K-1 mol-1); v1×105 (bar-1); v2×1012 (bar-2); v3×105 (K-1); v4×108 (K-2) and; -2589.857; 91.47; 5.146; -0.0653; 0.000; 2.291; 0.170 chl; -8903.532; 437.92; 21.000; -0.1328; 3.837; 2.142; 0.962 Mg-cld; -3551.657; 142.20; 6.874; -0.0692; 0.000; 2.544; 0.000 cs; -907.510; 39.63; 2.064; -0.0998; 1.823; 0.620; 0.960 dsp; -999.115; 35.22; 1.776; -0.0719; 0.629; 3.245; 0.684 kln; -4119.400; 204.18; 9.952; -0.1200; 0.000; 3.200; 0.000 ky; -2593.767; 82.71; 4.408; -0.0593; 1.021; 1.730; 0.787 lws; -4866.665; 228.04; 10.155; -0.0825; 0.000; 3.339; 0.000 Mg-sur; -13907.329; 608.39; 26.888; -0.0826; 0.923; 3.187; 0.087 pi; -9586.742; 403.23; 18.559; -0.0678; 0.000; 2.254; 0.000 prl; -5640.501; 239.43; 12.782; -0.1800; 0.000; 2.621; 0.000 sil; -2586.169; 95.40; 4.984; -0.0601; 1.341; 1.138; 0.605 Mg-st; -24998.289; 944.53; 44.260; -0.0579; 0.000; 2.017; 0.000 stv; -870.861; 25.59; 1.401; -0.0318; 0.000; 1.849; 0.000 toz-OH; -2885.939; 117.40; 5.352; -0.0630; 0.000; 1.938; 0.000 zo; -6889.494; 297.20; 13.565; -0.0695; 0.000; 2.752; 0.000 References [1] R.G. Berman, J. Petrol., 1988, 29, 445 [2] R.G. Berman et al., J. Petrol., 1986, 27, 1331 [3] R

  7. Increasing the Aromatic Selectivity of Quinoline Hydrogenolysis Using Pd/MOx–Al2O3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachrach, Mark; Morlanes-Sanchez, Natalia; Canlas, Christian P.

    2014-09-11

    Catalysts consisting of Pd nanoparticles supported on highly dispersed TiOx–Al2O3, TaOx–Al2O3, and MoOx–Al2O3 are studied for catalytic quinoline hydrogenation and selective C–N bond cleavage at 275 °C and 20 bar H2. The Pd/MOx–Al2O3 materials exhibit significantly greater aromatic product selectivity and thus 10–15 % less required H2 for a given level of denitrogenation relative to an unmodified Pd/Al2O3 catalyst.

  8. A novel organic–inorganic hybrid with Anderson type polyanions as building blocks: (C{sub 6}H{sub 10}N{sub 3}O{sub 2}){sub 2}Na(H{sub 2}O){sub 2}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]·6H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thabet, Safa, E-mail: safathabet@hotmail.fr; Ayed, Brahim, E-mail: brahimayed@yahoo.fr; Haddad, Amor

    Graphical abstract: Display Omitted Highlights: ► Synthesis of a novel inorganic–organic hybrid compound based on Anderson polyoxomolybdates. ► Characterization by X-ray diffraction, IR and UV–Vis spectroscopies of the new compound. ► Potential applications in catalysis, biochemical analysis and electrical conductivity of the organic–inorganic compound. -- Abstract: A new organic–inorganic hybrid compound based on Anderson polyoxomolybdates, (C{sub 6}H{sub 10}N{sub 3}O{sub 2}){sub 2}Na(H{sub 2}O){sub 2}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]·6H{sub 2}O (1) have been isolated by the conventional solution method and characterized by single-crystal X-ray diffraction, infrared, ultraviolet spectroscopy and Thermogravimetric Analysis (TGA). This compound crystallized in the triclinic system, space group P−1, withmore » a = 94.635(1) Å, b = 10.958(1) Å, c = 11.602(1) Å, α = 67.525(1)°, β = 71.049(1)°, γ = 70.124(1)° and Z = 1. The crystal structures of the compounds exhibit three-dimensional supramolecular assembly based on the extensive hydrogen bonding interactions between organic cations, sodium cations, water molecules and Anderson polyoxoanions. The infrared spectrum fully confirms the X-ray crystal structure and the UV spectrum of the title compound exhibits an absorption peak at 210 nm.« less

  9. Effect of atomic layer deposition temperature on current conduction in Al2O3 films formed using H2O oxidant

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Matsumura, Daisuke; Kawarada, Hiroshi

    2016-08-01

    To develop high-performance, high-reliability gate insulation and surface passivation technologies for wide-bandgap semiconductor devices, the effect of atomic layer deposition (ALD) temperature on current conduction in Al2O3 films is investigated based on the recently proposed space-charge-controlled field emission model. Leakage current measurement shows that Al2O3 metal-insulator-semiconductor capacitors formed on the Si substrates underperform thermally grown SiO2 capacitors at the same average field. However, using equivalent oxide field as a more practical measure, the Al2O3 capacitors are found to outperform the SiO2 capacitors in the cases where the capacitors are negatively biased and the gate material is adequately selected to reduce virtual dipoles at the gate/Al2O3 interface. The Al2O3 electron affinity increases with the increasing ALD temperature, but the gate-side virtual dipoles are not affected. Therefore, the leakage current of negatively biased Al2O3 capacitors is approximately independent of the ALD temperature because of the compensation of the opposite effects of increased electron affinity and permittivity in Al2O3. By contrast, the substrate-side sheet of charge increases with increasing ALD temperature above 210 °C and hence enhances the current of positively biased Al2O3 capacitors more significantly at high temperatures. Additionally, an anomalous oscillatory shift of the current-voltage characteristics with ALD temperature was observed in positively biased capacitors formed by low-temperature (≤210 °C) ALD. This shift is caused by dipoles at the Al2O3/underlying SiO2 interface. Although they have a minimal positive-bias leakage current, the low-temperature-grown Al2O3 films cause the so-called blisters problem when heated above 400 °C. Therefore, because of the absence of blistering, a 450 °C ALD process is presently the most promising technology for growing high-reliability Al2O3 films.

  10. Fabrication of an r-Al2Ti intermetallic matrix composite reinforced with α-Al2O3 ceramic by discontinuous mechanical milling for thermite reaction

    NASA Astrophysics Data System (ADS)

    Mosleh, A.; Ehteshamzadeh, M.; Taherzadeh Mousavian, R.

    2014-10-01

    In this study, a powder mixture with an Al/TiO2 molar ratio of 10/3 was used to form an r-Al2Ti intermetallic matrix composite (IMC) reinforced with α-Al2O3 ceramic by a novel milling technique, called discontinuous mechanical milling (DMM) instead of milling and ignition of the produced thermite. The results of energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) of samples with varying milling time indicate that this fabrication process requires considerable mechanical energy. It is shown that Al2Ti-Al2O3 IMC with small grain size was produced by DMM after 15 h of ball milling. Peaks for γ-TiAl as well as Al2Ti and Al2O3 are observed in XRD patterns after DMM followed by heat treatment. The microhardness of the DMM-treated composite produced after heat treatment was higher than Hv 700.

  11. CO2-dominated Atmosphere in Equilibrium with NH3-H2O Ocean: Application to Early Titan and Ocean Planets

    NASA Astrophysics Data System (ADS)

    Marounina, N.; Grasset, O.; Tobie, G.; Carpy, S.

    2015-12-01

    During the accretion of Titan, impact heating may have been sufficient to allow the global melting of water ice (Monteux et al. 2014) and the release of volatile compounds, with CO2 and NH3 as main constituents (Tobie et al. 2012). Thus, on primitive Titan, it is thought that a massive atmosphere was in contact with a global water ocean. Similar configurations may occur on temperate water-rich planets called ocean planets (Léger et al. 2004, Kitzmann et al. 2015).Due to its rather low solubility in liquid water, carbon dioxide is expected to be one of the major components in the atmosphere. The atmospheric amount of CO2 is a key parameter for assessing the thermal evolution of the planetary surface because of its strong greenhouse effect. However, ammonia significantly affects the solubility of CO2 in water and hence the atmosphere-ocean thermo-chemical equilibrium. For primitive Titan, estimating the mass, temperature and composition of the primitive atmosphere is important to determine mechanisms that led to the present-day N2-CH4 dominated atmosphere. Similarly, for ocean planets, the influence of ammonia on the atmospheric abundance in CO2 has consequences for the definition of the habitable zone.To investigate the atmospheric composition of the water-rich worlds for a wide range of initial compositions, we have developed a vapor-liquid equilibrium model of the NH3-CO2-H2O system, where we account for the non-ideal comportment of both vapor and liquid phases and the ion speciation of volatiles dissolved in the aqueous phase. We show that adding NH3 to the CO2-H2O binary system induces an efficient absorption of the CO2 in the liquid phase and thus a lower CO2 partial pressure in the vapor phase. Indeed, the CO2 partial pressure remains low for the CO2/NH3 ratio of liquid concentrations lower than 0.5.Assuming various initial compositions of Titan's global water ocean, we explore the thermal and compositional evolution of a massive primitive atmosphere using

  12. Crystal Structure of Cockroach Allergen Bla g 2, an Unusual Zinc Binding Aspartic Protease with a Novel Mode of Self-inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustchina, Alla; Li, Mi; Wunschmann, Sabina

    2010-07-19

    The crystal structure of Bla g 2 was solved in order to investigate the structural basis for the allergenic properties of this unusual protein. This is the first structure of an aspartic protease in which conserved glycine residues, in two canonical DTG triads, are substituted by different amino acid residues. Another unprecedented feature revealed by the structure is the single phenylalanine residue insertion on the tip of the flap, with the side-chain occupying the S1 binding pocket. This and other important amino acid substitutions in the active site region of Bla g 2 modify the interactions in the vicinity ofmore » the catalytic aspartate residues, increasing the distance between them to {approx}4 {angstrom} and establishing unique direct contacts between the flap and the catalytic residues. We attribute the absence of substantial catalytic activity in Bla g 2 to these unusual features of the active site. Five disulfide bridges and a Zn-binding site confer stability to the protein, which may contribute to sensitization at lower levels of exposure than other allergens.« less

  13. Influence of H 2O and H 2S on the composition, activity, and stability of sulfided Mo, CoMo, and NiMo supported on MgAl 2O 4 for hydrodeoxygenation of ethylene glycol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabros, Trine Marie Hartmann; Gaur, Abhijeet; Pintos, Delfina Garcia

    Here in this work, density functional theory (DFT), catalytic activity tests, and in-situ X-ray absorption spectroscopy (XAS) was performed to gain detailed insights into the activity and stability of MoS 2, Ni-MoS 2, and Co-MoS 2 catalysts used for hydrodeoxygenation (HDO) of ethylene glycol upon variation of the partial pressures of H 2O and H 2S. The results show high water tolerance of the catalysts and highlight the importance of promotion and H 2S level during HDO. DFT calculations unraveled that the active edge of MoS 2 could be stabilized against SO exchanges by increasing the partial pressure of Hmore » 2S or by promotion with either Ni or Co. The Mo, NiMo, and CoMo catalysts of the present study were all active and fairly selective for ethylene glycol HDO at 400 °C, 27 bar H 2, and 550–2200 ppm H 2S, and conversions of ≈50–100%. The unpromoted Mo/MgAl 2O 4 catalyst had a lower stability and activity per gram catalyst than the promoted analogues. The NiMo and CoMo catalysts produced ethane, ethylene, and C1 cracking products with a C 2/C 1 ratio of 1.5–2.0 at 550 ppm H 2S. This ratio of HDO to cracking could be increased to ≈2 at 2200 ppm H 2S which also stabilized the activity. Removing H 2S from the feed caused severe catalyst deactivation. Both DFT and catalytic activity tests indicated that increasing the H 2S concentration increased the concentration of SH groups on the catalyst, which correspondingly activated and stabilized the catalytic HDO performance. In-situ XAS further supported that the catalysts were tolerant towards water when exposed to increasing water concentration with H2O/H2S ratios up to 300 at 400–450 °C. Raman spectroscopy and XAS showed that MoS2 was present in the prepared catalysts as small and highly dispersed particles, probably owing to a strong interaction with the support. Linear combination fitting (LCF) analysis of the X-ray absorption near edge structure (XANES) spectra obtained during in-situ sulfidation

  14. Influence of H 2O and H 2S on the composition, activity, and stability of sulfided Mo, CoMo, and NiMo supported on MgAl 2O 4 for hydrodeoxygenation of ethylene glycol

    DOE PAGES

    Dabros, Trine Marie Hartmann; Gaur, Abhijeet; Pintos, Delfina Garcia; ...

    2017-12-10

    Here in this work, density functional theory (DFT), catalytic activity tests, and in-situ X-ray absorption spectroscopy (XAS) was performed to gain detailed insights into the activity and stability of MoS 2, Ni-MoS 2, and Co-MoS 2 catalysts used for hydrodeoxygenation (HDO) of ethylene glycol upon variation of the partial pressures of H 2O and H 2S. The results show high water tolerance of the catalysts and highlight the importance of promotion and H 2S level during HDO. DFT calculations unraveled that the active edge of MoS 2 could be stabilized against SO exchanges by increasing the partial pressure of Hmore » 2S or by promotion with either Ni or Co. The Mo, NiMo, and CoMo catalysts of the present study were all active and fairly selective for ethylene glycol HDO at 400 °C, 27 bar H 2, and 550–2200 ppm H 2S, and conversions of ≈50–100%. The unpromoted Mo/MgAl 2O 4 catalyst had a lower stability and activity per gram catalyst than the promoted analogues. The NiMo and CoMo catalysts produced ethane, ethylene, and C1 cracking products with a C 2/C 1 ratio of 1.5–2.0 at 550 ppm H 2S. This ratio of HDO to cracking could be increased to ≈2 at 2200 ppm H 2S which also stabilized the activity. Removing H 2S from the feed caused severe catalyst deactivation. Both DFT and catalytic activity tests indicated that increasing the H 2S concentration increased the concentration of SH groups on the catalyst, which correspondingly activated and stabilized the catalytic HDO performance. In-situ XAS further supported that the catalysts were tolerant towards water when exposed to increasing water concentration with H2O/H2S ratios up to 300 at 400–450 °C. Raman spectroscopy and XAS showed that MoS2 was present in the prepared catalysts as small and highly dispersed particles, probably owing to a strong interaction with the support. Linear combination fitting (LCF) analysis of the X-ray absorption near edge structure (XANES) spectra obtained during in-situ sulfidation

  15. Crack-healing function of metal/Al2O3 hybrid materials

    NASA Astrophysics Data System (ADS)

    Nanko, M.; Maruoka, D.; Nguyen, T. D.

    2011-10-01

    Nano-Ni/Al2O3 hybrid materials have the crack-healing function by thermal oxidation process such as 1200°C for 6 h in air. In this hybrid material system, crack was filled up by an oxidation product, NiAl2O4, via outward diffusion of cations along grain boundaries of Al2O3 matrix. Ni/Al2O3 with Y2O3 doping and SiC+Ni/Al2O3 nano-hybrid materials have similar crack-healing performance with better oxidation resistance at high temperatures than Ni/Al2O3 nano-hybrid materials. Mo/Al2O3 hybrid materials were studied on a candidate with crack-healing function via thermal oxidation process at temperatures as low as 700°C.

  16. Formation of CuAlO2 Film by Ultrasonic Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Iping, S.; Lockman, Zainovia; Hutagalung, S. D.; Kamsul, A.; Matsuda, Atsunori

    2011-10-01

    Smooth, crack free and homogenous CuAlO2 film was produced by chemical solution deposition process via spray pyrolysis technique on a cleaned Si substrate. The precursor solution used was comprised of a mixture of 45.87 mmol Cu(NO3)2.3H2O and 90 mmol Al(NO3)3.9H2O at ratio of Cu:Al = 1.2:1. The precursor solution was placed in a mist chamber and was atomized by a nebulizer to produce precursor mist. The precursor mist was then carried out by Ar gas and was sprayed onto a heated Si. Two main parameters were studied: the distance between the nozzle of the precursor mist chamber and the Si and the temperature of the Si substrate. It appears that from the XRD data, CuAlO2 can be detected for samples prepared by spraying the precursor mist at temperature of > 550 °C with distance between the nozzle and the substrate of 3cm. Reaction of the Cu and Al ions in the mist near the substrate may have promoted the crystallisation of CuAlO2.

  17. Esperanzaite, NaCa2Al2(As5+O4)2F4(OH)*2H2O, a new mineral species from the La Esperanza mine, Mexico: descriptive mineralogy and atomic arrangement

    USGS Publications Warehouse

    Foord, E.E.; Hughes, J.M.; Cureton, F.; Maxwell, C.H.; Falster, A.U.; Sommer, A.J.; Hlava, P.F.

    1999-01-01

    Esperanzaite, ideally NaCa2Al2(As5+O4)2F4(OH)??2H2O, Z = 2, is a new mineral species from the La Esperanza mine, Durango State, Mexico. The mineral occurs as blue-green botryoidal crystalline masses on rhyolite, with separate spheres up to 1.5 mm in diameter. The Mohs hardness is 4 1/2 , and the specific gravity, 3.24 (obs.) and 3.36(3) (calc.). Optical properties were measured in 589 nm light. Esperanzaite is biaxial (-), X = Y = Z = colorless, ?? 1.580(1), ?? 1.588(1), and ?? 1.593(1); 2V(obs) is 74(1)??and 2V(calc) is 76.3??. The dispersion is medium, r < v, and the optic axes are oriented according to a ?? Z = +50.5??, b = Y, c ?? X = +35??. The strongest five X-ray-diffraction maxima in the powder pattern [d in A??(I)(hkl)] are: 2.966(100)(131, 311, 031), 3.527(90)(220), 2.700(90)(221,002,040), 5.364(80)(001,020) and 4.796(80)(011). Esperanzaite is monoclinic, a 9.687(5), b 10.7379(6), c 5.5523(7) A??, ?? 105.32(1)??, space group P21/m. The atomic arrangement of esperanzaite was solved by direct methods and Fourier analysis (R = 0.032). The Fundamental Building Block (FBB) is formed of [001] stacks of heteropolyhedral tetramers; the tetramers are formed of two arsenate tetrahedra and two Al octahedra, corner-linked in four-member rings. The FBBs are linked by irregular Na??5 and Ca??8 polyhedra.

  18. Visible light CrO4(2-) reduction using the new CuAlO2/CdS hetero-system.

    PubMed

    Brahimi, R; Bessekhouad, Y; Nasrallah, N; Trari, M

    2012-06-15

    In this study, 64% of hexavalent chromium Cr(VI) reduction from the initial concentration (10(-4) M) is reported under visible light using the (CuAlO(2)/CdS) hetero-system. In this new hetero-system, low doped CuAlO(2) delafossite, synthesized by sol-gel works as an electrons reservoir with a wide space charge region (440 nm). In this case, the electron transfer to chromate is mediated via the hexagonal CdS variety, whose conduction band level is at -1.08 V with respect to the saturated calomel electrode which is more negative than the CrO(4)(2-)/Cr(3+) level. This high reduction rate is achieved under optimized pH and CuAlO(2) percentage. Moreover, salicylic acid gives the best performance among hole scavengers and CuAlO(2) approaches 100% photostability at pH 7.5. The photo-catalytic process follows a pseudo first order kinetic with a half life of 2h. The reaction products are identified by UV-visible spectrophotometry and linear voltametry at a platinum rotating electrode. The results reveal the presence of Cr(3+) after irradiation. Copyright © 2012. Published by Elsevier B.V.

  19. Experimental and theoretical kinetics for the H2O+ + H2/D2H3O+/H2DO+ + H/D reactions: observation of the rotational effect in the temperature dependence.

    PubMed

    Ard, Shaun G; Li, Anyang; Martinez, Oscar; Shuman, Nicholas S; Viggiano, Albert A; Guo, Hua

    2014-12-11

    Thermal rate coefficients for the title reactions computed using a quasi-classical trajectory method on an accurate global potential energy surface fitted to ∼81,000 high-level ab initio points are compared with experimental values measured between 100 and 600 K using a variable temperature selected ion flow tube instrument. Excellent agreement is found across the entire temperature range, showing a subtle, but unusual temperature dependence of the rate coefficients. For both reactions the temperature dependence has a maximum around 350 K, which is a result of H2O(+) rotations increasing the reactivity, while kinetic energy is decreasing the reactivity. A strong isotope effect is found, although the calculations slightly overestimate the kinetic isotope effect. The good experiment-theory agreement not only validates the accuracy of the potential energy surface but also provides more accurate kinetic data over a large temperature range.

  20. Structurally characterized 1,1,3,3-tetramethylguanidine solvated magnesium aryloxide complexes: [Mg(mu-OEt)(DBP)(H-TMG)]2, [Mg(mu-OBc)(DBP)(H-TMG)]2, [Mg(mu-TMBA)(DBP)(H-TMG)]2, [Mg(mu-DPP)(DBP)(H-TMG)]2, [Mg(BMP)2(H-TMG)2], [Mg(O-2,6-Ph2C6H3)2 (H-TMG)2].

    PubMed

    Monegan, Jessie D; Bunge, Scott D

    2009-04-06

    The synthesis and structural characterization of several 1,1,3,3-tetramethylguanidine (H-TMG) solvated magnesium aryloxide complexes are reported. Bu(2)Mg was successfully reacted with H-TMG, HOC(6)H(3)(CMe(3))(2)-2,6 (H-DBP), and either ethanol, a carboxylic acid, or diphenyl phosphate in a 1:1 ratio to yield the corresponding [Mg(mu-L)(DBP)(H-TMG)](2) where L = OCH(2)CH(3) (OEt, 1), O(2)CC(CH(3))(3) (OBc, 2), O(2)C(C(6)H(2)-2,4,6-(CH(3))(3)) (TMBA, 3), or O(2)P(OC(6)H(5))(2) (DPP, 4). Bu(2)Mg was also reacted with two equivalents of H-TMG and HOC(6)H(3)(CMe(3))-2-(CH(3))-6 (BMP) or HO-2,6-Ph(2)C(6)H(3) to yield [Mg(BMP)(2)(H-TMG)(2)] (5) and [Mg(O-2,6-Ph(2)C(6)H(3))(2)(H-TMG)(2)] (6). Compounds 1-6 were characterized by single-crystal X-ray diffraction. Polymerization of l- and rac-lactide with 1 was found to generate polylactide (PLA). A discussion concerning the relevance of compounds 2 - 4 to the structure of Mg-activated phosphatase enzymes is also provided. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and (1)H, (13)C and (31)P NMR studies.

  1. Effects of pH2O, pH2 and fO2 on the Diffusion of H-Bearing Species in Lunar Basalt and an Iron-Free Basaltic Analog at 1 atm

    NASA Astrophysics Data System (ADS)

    Newcombe, M. E.; Beckett, J. R.; Baker, M. B.; Newman, S.; Guan, Y.; Eiler, J. M.; Stolper, E. M.

    2016-12-01

    We have conducted water diffusion experiments in synthetic Apollo 15 "yellow glass" (LG) and an iron-free basaltic analog melt (AD) at 1 atm and 1350 °C over a range of fO2 conditions from IW-2.2 to IW+6.7 and over a range of pH2/pH2O from nominally zero to 10. The water concentrations measured in our quenched experimental glasses by SIMS and FTIR vary from a few ppm to 430 ppm. Many studies of water diffusion at higher water concentrations indicate that the apparent diffusivity of total water (D*water; see [1]) in silicate melts is highly concentration dependent at water contents >0.1 wt% (e.g., [1]). However, water concentration gradients in each of our AD and LG experiments are well described by models in which D*water is assumed to be constant. Best-fit values of D*water obtained for our AD and LG experiments are consistent with a modified speciation model [2] in which both molecular water and hydroxyl are allowed to diffuse, and in which hydroxyl is the dominant diffusing species at the low total water concentrations of our experiments. Water concentration gradients generated during hydration and dehydration experiments conducted simultaneously propagate approximately equal distances into the melt and have the same concentration of water dissolved in the melt at the melt-vapor interface, suggesting that hydration and dehydration are symmetric under the conditions of our experiments. Best-fit values of D*water for our LG experiments vary within a factor of 2 over a range of pH2/pH2O from 0.007 to 9.7 (a range of ƒO2 from IW-2.2 to IW+4.9) and a water concentration range from 80 ppm to 280 ppm. The relative insensitivity of D*water to variations in pH2 suggests that loss of H during the degassing of the lunar melts described by [3] was not primarily by loss of dissolved H2. The value of D*water chosen by [3] for modeling diffusive degassing of lunar volcanic glasses is within a factor of three of our measured value in LG melt at 1350 °C. [1] Zhang et al

  2. Utility of Lithium in Rare-Earth Metal Reduction Reactions to Form Nontraditional Ln2+ Complexes and Unusual [Li(2.2.2-cryptand)]1+ Cations.

    PubMed

    Huh, Daniel N; Darago, Lucy E; Ziller, Joseph W; Evans, William J

    2018-02-19

    The utility of lithium compared to other alkali metals in generating Ln 2+ rare-earth metal complexes via reduction of Ln 3+ precursors in reactions abbreviated as LnA 3 /M (Ln = rare-earth metal; A = anionic ligand; M = alkali metal) is described. Lithium reduction of Cp' 3 Ln (Cp' = C 5 H 4 SiMe 3 ; Ln = Y, Tb, Dy, Ho) under Ar in the presence of 2.2.2-cryptand (crypt) forms new examples of crystallographically characterizable Ln 2+ complexes of these metals, [Li(crypt)][Cp' 3 Ln]. In each complex, lithium is found in an N 2 O 4 donor atom coordination geometry that is unusual for the cryptand ligand. Magnetic susceptibility data on these new examples of nontraditional divalent lanthanide complexes are consistent with 4f n 5d 1 electronic configurations. The Dy and Ho complexes have exceptionally high single-ion magnetic moments, 11.35 and 11.67 μ B , respectively. Lithium reduction of Cp' 3 Y under N 2 at -35 °C forms the Y 2+ complex (Cp' 3 Y) 1- , which reduces dinitrogen upon warming to room temperature to generate the (N 2 ) 2- complex [Cp' 2 Y(THF)] 2 (μ-η 22 -N 2 ). These results provide insight on the factors that lead to reduced dinitrogen complexes and/or stable divalent lanthanide complexes as a function of the specific reducing agent and conditions.

  3. Applications of Novel Carbon/AlPO4 Hybrid-Coated H2Ti12O25 as a High-Performance Anode for Cylindrical Hybrid Supercapacitors.

    PubMed

    Lee, Jeong-Hyun; Lee, Seung-Hwan

    2016-10-26

    The hybrid supercapacitor using carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 /activated carbon is fabricated as a cylindrical cell and investigated against electrochemical performances. The hybrid coating shows that the conductivity for the electron and Li ion is superior and it prevented active material from HF attack. Consequently, carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 shows enhanced rate capability and long-term cycle life. Also, the hybrid coating inhibits swelling phenomenon caused by gas generated as decomposition reaction of electrolyte. Therefore, the hybrid supercapacitor using carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 /activated carbon can be applied to an energy storage system that requires a long-term life.

  4. g-C3N4/NiAl-LDH 2D/2D Hybrid Heterojunction for High-Performance Photocatalytic Reduction of CO2 into Renewable Fuels.

    PubMed

    Tonda, Surendar; Kumar, Santosh; Bhardwaj, Monika; Yadav, Poonam; Ogale, Satishchandra

    2018-01-24

    2D/2D interface heterostructures of g-C 3 N 4 and NiAl-LDH are synthesized utilizing strong electrostatic interactions between positively charged 2D NiAl-LDH sheets and negatively charged 2D g-C 3 N 4 nanosheets. This new 2D/2D interface heterojunction showed remarkable performance for photocatalytic CO 2 reduction to produce renewable fuels such as CO and H 2 under visible-light irradiation, far superior to that of either single phase g-C 3 N 4 or NiAl-LDH nanosheets. The enhancement of photocatalytic activity could be attributed mainly to the excellent interfacial contact at the heterojunction of g-C 3 N 4 /NiAl-LDH, which subsequently results in suppressed recombination, and improved transfer and separation of photogenerated charge carriers. In addition, the optimal g-C 3 N 4 /NiAl-LDH nanocomposite possessed high photostability after successive experimental runs with no obvious change in the production of CO from CO 2 reduction. Our findings regarding the design, fabrication and photophysical properties of 2D/2D heterostructure systems may find use in other photocatalytic applications including H 2 production and water purification.

  5. Adsorption of tetracycline on Fe (hydr)oxides: effects of pH and metal cation (Cu2+, Zn2+ and Al3+) addition in various molar ratios

    PubMed Central

    Hsu, Liang-Ching; Liu, Yu-Ting; Syu, Chien-Hui; Huang, Mei-Hsia; Teah, Heng Yi

    2018-01-01

    Iron (Fe) (hydr)oxides control the mobility and bioavailability of tetracycline (TC) in waters and soils. Adsorption of TC on Fe (hydr)oxides is greatly affected by polyvalent metals; however, impacts of molar metal/TC ratios on TC adsorptive behaviours on Fe (hydr)oxides remain unclear. Results showed that maximum TC adsorption on ferrihydrite and goethite occurred at pH 5–6. Such TC adsorption was generally promoted by the addition of Cu2+, Zn2+ and Al3+. The greatest increase in TC adsorption was found in the system with molar Cu/TC ratio of 3 due to the formation of Fe hydr(oxide)–Cu–TC ternary complexes. Functional groups on TC that were responsible for the complexation with Cu2+shifted from phenolic diketone groups at Cu/TC molar ratio < 1 to amide groups at Cu/TC molar ratio ≥ 1. For the addition of Al3+, the complexation only took place with phenolic diketone groups, resulting in the enhanced TC adsorption at a molar Al/TC ratio of 1. However, TC adsorption decreased for Al/TC molar ratio > 1 as excess Al3+ led to the competitive adsorption with Al/TC complexes. For the Zn2+ addition, no significant correlation was found between TC adsorption capacity and molar Zn/TC ratios. PMID:29657795

  6. Optic phonons and anisotropic thermal conductivity in hexagonal Ge 2Sb 2Te 5

    DOE PAGES

    Mukhopadhyay, Saikat; Lindsay, Lucas R.; Singh, David

    2016-11-16

    The lattice thermal conductivity ($κ$) of hexagonal Ge 2Sb 2Tesub>5 (h-GST) is studied via direct first-principles calculations. We find significant intrinsic anisotropy of ( $κ$ a/$κ$ c~2) of $κ$ in bulk h-GST along different transport directions. The dominant contribution to$κ$ is from optic phonons, ~75%. This is extremely unusual as the acoustic phonon modes carry most of the heat in typical semiconductors and insulators with small unit cells. Very recently, Lee et. al. observed anisotropic in GST thin films and attributed this to thermal resistance of amorphous regions near grain boundaries. However, our results suggest an additional strong intrinsic anisotropymore » for the pure hexagonal phase. This derives from bonding anisotropy along different crystal directions, specifically from weak interlayer coupling, which gives anisotropic phonon dispersions. The phonon spectrum of h-GST has very dispersive optic branches with higher group velocities along the a-axis as compared to flat optic bands along the c-axis. The importance of optic mode contributions for the thermal conductivity in low-$κ$ h-GST is unusual, and development of fundamental physical understanding of these contributions may be critical to better understanding of thermal conduction in other complex layered materials.« less

  7. Mechanism of CO 2 Hydrogenation on Pd/Al 2 O 3 Catalysts: Kinetics and Transient DRIFTS-MS Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiang; Shi, Hui; Kwak, Ja Hun

    The hydrogenation of CO 2 was investigated over a wide range of reaction conditions, using two Pd/γ-Al 2O 3 catalysts with different Pd loadings (5% and 0.5%) and dispersions (~11% and ~100%, respectively). Turnover rates for CO and CH 4 formation were both higher over 5% Pd/Al 2O 3 with a larger average Pd particle size than those over 0.5% Pd/Al 2O 3 with a smaller average particle size. The selectivity to methane (22-40%) on 5% Pd/Al 2O 3 was higher by a factor of 2-3 than that on 0.5% Pd/Al 2O 3. The drastically different rate expressions and apparentmore » energies of activation for CO and CH 4 formation lead us to conclude that reverse water gas shift and CO 2 methanation do not share the same rate-limiting step on Pd, and that the two pathways are probably catalyzed at different surface sites. Measured reaction orders in CO 2 and H 2 pressures were similar over the two catalysts, suggesting that the reaction mechanism for each pathway does not change with particle size. In accordance, the DRIFTS results reveal that the prevalent surface species and their evolution patterns are comparable on the two catalysts during transient and steady-state experiments, switching feed gases among CO 2, H 2 and CO 2+H 2. The DRIFTS and MS results also demonstrate that no direct dissociation of CO 2 takes place over the two catalysts, and that CO 2 has to first react with surface hydroxyls on the oxide support. The thus-formed bicarbonates react with dissociatively adsorbed hydrogen on Pd particles to produce adsorbed formate species (bifunctional catalyst: CO 2 activation on the oxide support, and H 2 dissociation on the metal particles). Formates near the Pd particles (most likely at the metal/oxide interface) can react rapidly with adsorbed H to produce CO, which then adsorbs on the metallic Pd particles. Two types of Pd sites are identified: one has a weak interaction with CO, which easily desorbs into gas phase at reaction temperatures, while the other interacts more

  8. Absence of Nrf2 or Its Selective Overexpression in Neurons and Muscle Does Not Affect Survival in ALS-Linked Mutant hSOD1 Mouse Models

    PubMed Central

    Vargas, Marcelo R.; Burton, Neal C.; Gan, Li; Johnson, Delinda A.; Schäfer, Matthias; Werner, Sabine; Johnson, Jeffrey A.

    2013-01-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2) governs the expression of antioxidant and phase II detoxifying enzymes. Nrf2 activation can prevent or reduce cellular damage associated with several types of injury in many different tissues and organs. Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons and subsequent muscular atrophy. We have previously shown that Nrf2 activation in astrocytes delays neurodegeneration in ALS mouse models. To further investigate the role of Nrf2 in ALS we determined the effect of absence of Nrf2 or its restricted overexpression in neurons or type II skeletal muscle fibers on symptoms onset and survival in mutant hSOD1 expressing mice. We did not observe any detrimental effect associated with the lack of Nrf2 in two different mutant hSOD1 animal models of ALS. However, restricted Nrf2 overexpression in neurons or type II skeletal muscle fibers delayed disease onset but failed to extend survival in hSOD1G93A mice. These results highlight the concept that not only the pharmacological target but also the cell type targeted may be relevant when considering a Nrf2-mediated therapeutic approach for ALS. PMID:23418589

  9. Absence of Nrf2 or its selective overexpression in neurons and muscle does not affect survival in ALS-linked mutant hSOD1 mouse models.

    PubMed

    Vargas, Marcelo R; Burton, Neal C; Kutzke, Jennifer; Gan, Li; Johnson, Delinda A; Schäfer, Matthias; Werner, Sabine; Johnson, Jeffrey A

    2013-01-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2) governs the expression of antioxidant and phase II detoxifying enzymes. Nrf2 activation can prevent or reduce cellular damage associated with several types of injury in many different tissues and organs. Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons and subsequent muscular atrophy. We have previously shown that Nrf2 activation in astrocytes delays neurodegeneration in ALS mouse models. To further investigate the role of Nrf2 in ALS we determined the effect of absence of Nrf2 or its restricted overexpression in neurons or type II skeletal muscle fibers on symptoms onset and survival in mutant hSOD1 expressing mice. We did not observe any detrimental effect associated with the lack of Nrf2 in two different mutant hSOD1 animal models of ALS. However, restricted Nrf2 overexpression in neurons or type II skeletal muscle fibers delayed disease onset but failed to extend survival in hSOD1(G93A) mice. These results highlight the concept that not only the pharmacological target but also the cell type targeted may be relevant when considering a Nrf2-mediated therapeutic approach for ALS.

  10. 75 FR 62002 - Airworthiness Directives; Pilatus Aircraft Ltd. Models PC-6, PC-6-H1, PC-6-H2, PC-6/350, PC-6/350...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... Limitations Section (ALS). For PC-6 models other than B2-H2 and B2- H4, no ALS at all is included in the AMM... and B2-H4 models. For PC-6 models other than B2-H2 and B2-H4, a new ALS document has been implemented... Limitations Section (ALS). For PC-6 models other than B2-H2 and B2- H4, no ALS at all is included in the AMM...

  11. Al/Cl2 molten salt battery

    NASA Technical Reports Server (NTRS)

    Giner, J.

    1972-01-01

    Molten salt battery has been developed with theoretical energy density of 5.2 j/kg (650 W-h/lb). Battery, which operates at 150 C, can be used in primary mode or as rechargeable battery. Battery has aluminum anode and chlorine cathode. Electrolyte is mixture of AlCl3, NaCl, and some alkali metal halide such as KCl.

  12. Terahertz Spectroscopy of CrH (X 6Σ+) and AlH (X 1Σ+)

    NASA Astrophysics Data System (ADS)

    Halfen, D. T.; Ziurys, L. M.

    2016-12-01

    New laboratory measurements of hydrides have been carried out using terahertz direct absorption spectroscopy. Spin components of the N=2≤ftarrow 1 transition of the free radical CrH (X 6Σ+) have been recorded in the range 730-734 GHz, as well as a new measurement of the J=2≤ftarrow 1 line of AlH (X 1Σ+) near 755 GHz. Both species were created in an AC discharge of H2, argon, and metal vapor. For CrH, the chromium source was Cr(CO)6, while AlH was produced from Al(CH3)3. The J=4.5≤ftarrow 3.5 and 3.5≤ftarrow 2.5 fine-structure components were recorded for CrH, each which consists of resolved proton hyperfine doublets. For AlH, the two main quadrupole components, F=4.5≤ftarrow 3.5 and 3.5≤ftarrow 2.5, of the J=2≤ftarrow 1 transition were observed as blended features. These data were analyzed with previous 1≤ftarrow 0 millimeter/submillimeter measurements with 6Σ and 1Σ Hamiltonians for chromium and aluminum hydrides, respectively, and rotational, fine-structure (CrH only), and hyperfine constants were derived. The new measurements have resulted in refined spectroscopic parameters for both species, as well as direct measurement of the respective 2≤ftarrow 1 rotational transitions. This work also resolves a 10 MHz discrepancy in the frequency of the AlH line. CrH and AlH have already been observed in the photospheres of stars via their electronic transitions. These data will facilitate their discovery at submillimeter/terahertz wavelengths in circumstellar envelopes and perhaps in diffuse clouds.

  13. Synthesis of H/Bentonite and Ni/Al2O3-bentonite and its application to produce biogasoline from nyamplung seed (Calophyllum inophillum Linn) oil by catalytic hydrocracking

    NASA Astrophysics Data System (ADS)

    Marini, A. T.; Wijaya, K.; Sasongko, N. A.

    2018-03-01

    Hydrocracking process of Nyamplung (Calophyllum inophillum Linn) seed oil to produce biogasoline using H/bentonite and Ni/Al2O3-bentonite that pillared by Al2O3 as catalyst had been conducted. Bentonite was activated by acidification using HF 1% and H2SO4 0.5 M. Ni metal was impregnated into bentonite with two steps reaction; therewas intercalation with Al2O3kegging ion and Ni metal impregnation using NiCl2 metal salt. Catalysts were characterized by infrared spectrophotometer (FTIR), X-ray diffraction (XRD), X-ray fluorescence (XRF), BET, TEM and ammonia adsorption. Hydrocracking reaction was variated by Ni/Al2O3-bentonite and H/bentonite with ratio catalyst/oil 1:100. Biocrude was prepared by extraction by using ethanol 96%. Hydrocracking oil products were further analyzed by GC-MS. The results show that the acidity of bentonite by activation using HF 1% and H2SO4 0.5 M has been increased from 62.58 to 64.62 mmol/g. Impregnation process also increased the acidity of bentonite from 62.58 to 64.89 mmol/g. Activation using HF 1% and H2SO4 0.5 M, intercalation by Al2O3 and impregnation by Ni metal were increasing the crystallinity, surface area, total volume pore and average pore size of bentonite. These techniques were also causeddealumination of bentonite. The hydrocracking process successfully synthesized hydrocarbons with a number of carbon chain between C5-C20 which include bio-gasoline group compounds. Moreover, catalytic processes by H/bentonite and Ni/Al2O3-bentonite also successfully produced 39.83% and 60.37% of biogasoline yields, respectively.

  14. Effect of inflammatory conditions and H2O2 on bare and coated Ti-6Al-4V surfaces: Corrosion behavior, metal ion release and Ca-P formation under long-term immersion in DMEM

    NASA Astrophysics Data System (ADS)

    Höhn, Sarah; Virtanen, Sannakaisa

    2015-12-01

    The surface oxide film and calcium-phosphate (Ca-P) formation on Ti-6Al-4V during long-term immersion in biological environments play a decisive role for the biocompatibility of the implant. Hence, the aim of the study was to evaluate the corrosion resistance, metal ion release and Ca-P formation in DMEM under physiological conditions at pH values of 7.4 and in comparison under simulated inflammatory conditions with pH 5 and in presence of H2O2. Furthermore, the influence of the immersion conditions was investigated on different surface treatments: on bare Ti-6Al-4V, after anodization, and for TiO2 nanoparticle (NP) and hydroxyapatite (HA)-incorporated TiO2-NP coatings. In the absence of H2O2, the impedance response indicated a stable thin oxide film and Ca-P formation after 28 days or 56 days depending on the coating, while under inflammatory conditions the Ca-P formation on the surface is time-delayed and dissolution of the anodized oxide layer as well as selective etching of the β-phase and phase boundaries in case of the bare alloy occur. Electrochemical impedance spectroscopy (EIS), however, indicates a good general corrosion behavior in all cases. The quantities of Ti, Al and V released from the bare and coated Ti-6Al-4V alloy markedly increased with decreasing pH (pH ≤ 5). Although the rapid increase of metal release was observed for all samples at pH 5, the quantities were significantly higher for the bare and anodized alloy than after coating with TiO2-NP or HA.

  15. Influence of LaSiOx passivation interlayer on band alignment between PEALD-Al2O3 and 4H-SiC determined by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Cheng, Xinhong; Zheng, Li; Shen, Lingyan; Zhang, Dongliang; Gu, Ziyue; Qian, Ru; Cao, Duo; Yu, Yuehui

    2018-01-01

    The influence of lanthanum silicate (LaSiOx) passivation interlayer on the band alignment between plasma enhanced atomic layer deposition (PEALD)-Al2O3 films and 4H-SiC was investigated by high resolution X-ray photoelectron spectroscopy (XPS). An ultrathin in situ LaSiOx interfacial passivation layer (IPL) was introduced between the Al2O3 gate dielectric and the 4H-SiC substrate to enhance the interfacial characteristics. The valence band offset (VBO) and corresponding conduction band offset (CBO) for the Al2O3/4H-SiC interface without any passivation were extracted to be 2.16 eV and 1.49 eV, respectively. With a LaSiOx IPL, a VBO of 1.79 eV and a CBO of 1.86 eV could be obtained across the Al2O3/4H-SiC interface. The difference in the band alignments was dominated by the band bending or band shift in the 4H-SiC substrate as a result of different interfacial layers (ILs) formed at the interface. This understanding of the physical details of the band alignment could be a good foundation for Al2O3/LaSiOx/4H-SiC heterojunctions applied in the 4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs).

  16. Rovibrational line-shape parameters for H2 in He and new H2-He potential energy surface

    NASA Astrophysics Data System (ADS)

    Thibault, Franck; Patkowski, Konrad; Żuchowski, Piotr S.; Jóźwiak, Hubert; Ciuryło, Roman; Wcisło, Piotr

    2017-11-01

    We report a new H2-He potential energy surface that, with respect to the previous one [Bakr et al.(2013)], covers much larger range of H2 stretching and exhibits more accurate asymptotic behavior for large separations between H2 and He. Close-coupling calculations performed on this improved potential energy surface allow us to provide line shape parameters for H2 between 5 and 2000 K for Raman isotropic Q lines and anisotropic Q lines (or electric quadrupole lines) and for vibrational bands from the ground up to v = 5 and rotational quantum numbers up to j = 5 . The parameters provided include the usual pressure -broadening and -shifting coefficients as well as the real and imaginary part of Dicke contribution to the Hess profile. The latter parameters can be readily implemented in other line-shape profiles like the most recent one of Hartmann and Tran.

  17. Large Diamagnetic Susceptibility from Petit Fermi Surfaces in LaV2Al20

    NASA Astrophysics Data System (ADS)

    Hirose, Takahiro; Okamoto, Yoshihiko; Yamaura, Jun-ichi; Hiroi, Zenji

    2015-11-01

    The large diamagnetic susceptibility of LaV2Al20 is studied by magnetization and de Haas-van Alphen (dHvA) oscillation measurements on single crystals as well as by Ti-for-V substitution (hole doping) experiments. Its origin is ascribed to a tiny holelike Fermi surface (FS) with a low Fermi temperature of 140 K and a small dHvA frequency of 19 T. The FS has a characteristic anisotropy that is approximated by six spheroidal hole pockets elongated along the cubic <001> directions with a minimum effective mass of 0.067 times the free electron mass. This characteristic FS can generate an unusually large Landau-Peierls diamagnetic susceptibility as observed experimentally in LaV2Al20.

  18. Deuteration and fluorination of 1,3-bis(2-phenylethyl)pyrimidine-2,4,6(1H,3H,5H)-trione to improve its pharmacokinetic properties.

    PubMed

    Xia, Guoyao; Benmohamed, Radhia; Morimoto, Richard I; Kirsch, Donald R; Silverman, Richard B

    2014-11-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons, leading to muscle weakness, paralysis, and death, most often from respiratory failure. Over 200 pyrimidine-2,4,6-trione (PYT) small molecules, which prevent aggregation and reduce the associated toxicity of mutant superoxide dismutase 1 (SOD1) found in patients with familial ALS, have been synthesized and tested. One of the compounds (1,3-bis(2-phenylethyl)pyrimidine-2,4,6(1H,3H,5H)-trione, (1) was previously found to have an excellent combination of potency efficacy, and some desirable pharmacokinetic properties. To improve the solubility and metabolic stability properties of this compound, deuterium and fluorine were introduced into 1. New analogs with better solubility, plasma stability, and human microsome stability were identified. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Unusual magnetoelectric memory and polarization reversal in the kagome staircase compound N i3V2O8

    NASA Astrophysics Data System (ADS)

    Liu, Y. J.; Wang, J. F.; He, Z. Z.; Lu, C. L.; Xia, Z. C.; Ouyang, Z. W.; Liu, C. B.; Chen, R.; Matsuo, A.; Kohama, Y.; Kindo, K.; Tokunaga, M.

    2018-05-01

    We study the electric polarization of the kagome staircase N i3V2O8 in magnetic fields up to 30 T and report a magnetoelectric memory effect controlled by bias electric fields. The explored ferroelectric phase in 19 -24 T is electrically controlled, whereas the ferroelectric phase in 2 -11 T exhibits unusual memory effects. We determine a characteristic critical magnetic field H3=11 T , below which strong memory exists and the polarization is frozen even in opposite bias fields. But when magnetic fields exceed H3, the frozen polarization is released and polarization reversal appears by tuning bias electric fields. We ascribe these phenomena to the pinning-depinning mechanism: nucleation and the accompanying pinning of chiral domain walls cooperatively induce the frozen behavior; the polarization reversal results from the depinning through the ferroelectrtic-to-paraelectric phase transition in high magnetic fields. Our experimental results reveal that the first-order phase transition plays an important role in these unusual memory effects.

  20. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    PubMed

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  1. Increasing the Aromatic Selectivity of Quinoline Hydrogenolysis Using Pd/MO x–Al 2O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachrach, Mark; Morlanes-Sanchez, Natalia; Canlas, Christian P.

    2014-09-11

    Catalysts consisting of Pd nanoparticles supported on highly dispersed TiO x–Al 2O 3, TaO x–Al 2O 3, and MoO x–Al 2O 3 are studied for catalytic quinoline hydrogenation and selective C–N bond cleavage at 275 °C and 20 bar H 2. Lastly, the Pd/MO x–Al 2O 3 materials exhibit significantly greater aromatic product selectivity and thus 10–15 % less required H 2 for a given level of denitrogenation relative to an unmodified Pd/Al 2O 3 catalyst.

  2. Temperature dependence of the dielectric response of anodized Al-Al2O3-metal capacitors

    NASA Astrophysics Data System (ADS)

    Hickmott, T. W.

    2003-03-01

    The temperature dependence of capacitance, CM, and conductance, GM, of Al-Al2O3-metal capacitors with Cu, Ag, and Au electrodes has been measured between 100 and 340 K at seven frequencies between 10 kHz and 1 MHz. Al2O3 films between 15 and 64 nm thick were formed by anodizing evaporated Al films in borate-glycol or borate-H2O electrolyte. The interface capacitance at the Al2O3-metal interface, CI, which is in series with the capacitance CD due to the Al2O3 dielectric, is determined from plots of 1/CM versus insulator thickness. CI is not fixed for a given metal-insulator interface but depends on the vacuum system used to deposit the metal electrode. CI is nearly temperature independent. When CI is taken into account the dielectric constant of Al2O3 determined from capacitance measurements is ˜8.3 at 295 K. The dielectric constant does not depend on anodizing electrolyte, insulator thickness, metal electrode, deposition conditions for the metal electrode or measurement frequency. By contrast, GM of Al-Al2O3-metal capacitors depends on both the deposition conditions of the metal and on the metal. For Al-Al2O3-Cu capacitors, GM is larger for capacitors with large values of 1/CI that result when Cu is evaporated in an oil-pumped vacuum system. For Al-Al2O3-Ag capacitors, GM does not depend on the Ag deposition conditions.

  3. Structural inheritance and difference between Ti 2AlC, Ti 3AlC 2  and Ti 5Al 2C 3 under pressure from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qing -He; Du, An; Yang, Ze -Jin

    The structural inheritance and difference between Ti 2AlC, Ti 3AlC 2 and Ti 5Al 2C 3 under pressure from first principles are studied. The results indicate that the lattice parameter a are almost the same within Ti 2AlC, Ti 3AlC 2 and Ti 5Al 2C 3, and the value of c in Ti 5Al 2C 3 is the sum of Ti 2AlC and Ti 3AlC 2 which is revealed by the covalently bonded chain in the electron density difference: Al–Ti–C–Ti–Al for Ti 2AlC, Al–Ti 2–C–Ti 1–C–Ti 2Al for Ti 3AlC 2 and Al–Ti 3–C 2–Ti 3–Al–Ti 2–C 1–Ti 1–C 1–Timore » 2Al for Ti 5Al 2C 3. The calculated axial compressibilities, volumetric shrinkage, elastic constant c 11, c 33/c 11 ratio, bulk modulus, shear modulus, and Young’s modulus of Ti 5Al 2C 3 are within the range of the end members (Ti 2AlC and Ti 3AlC 2) in a wide pressure range of 0–100 GPa. Only Ti 2AlC is isotropic crystal at about 50 GPa within the Ti–Al–C compounds. All of the Ti 3 d density of states curves of the three compounds move from lower energy to higher energy level with pressure increasing. The similarities of respective bond length, bond overlap population (Ti–C, Ti–Al and Ti–Ti), atom Mulliken charges under pressure as well as the electron density difference for the three compounds are discovered. Among the Ti–Al–C ternary compounds, Ti–Ti bond behaves least compressibility, whereas the Ti–Al bond is softer than that of Ti–C bonds, which can also been confirmed by the density of states and electron density difference. Bond overlap populations of Ti–Ti, Ti–C and Ti–Al indicate that the ionicity interaction becomes more and more stronger in the three structures as the pressure increasing. Lastly, Mulliken charges of Ti 1, Ti 2, Ti 3, C and Al are 0.65, 0.42, 0.39, –0.73, –0.04 at 0 GPa, respectively, which are consistent with the Pauling scale.« less

  4. Structural inheritance and difference between Ti 2AlC, Ti 3AlC 2  and Ti 5Al 2C 3 under pressure from first principles

    DOE PAGES

    Gao, Qing -He; Du, An; Yang, Ze -Jin

    2017-02-08

    The structural inheritance and difference between Ti 2AlC, Ti 3AlC 2 and Ti 5Al 2C 3 under pressure from first principles are studied. The results indicate that the lattice parameter a are almost the same within Ti 2AlC, Ti 3AlC 2 and Ti 5Al 2C 3, and the value of c in Ti 5Al 2C 3 is the sum of Ti 2AlC and Ti 3AlC 2 which is revealed by the covalently bonded chain in the electron density difference: Al–Ti–C–Ti–Al for Ti 2AlC, Al–Ti 2–C–Ti 1–C–Ti 2Al for Ti 3AlC 2 and Al–Ti 3–C 2–Ti 3–Al–Ti 2–C 1–Ti 1–C 1–Timore » 2Al for Ti 5Al 2C 3. The calculated axial compressibilities, volumetric shrinkage, elastic constant c 11, c 33/c 11 ratio, bulk modulus, shear modulus, and Young’s modulus of Ti 5Al 2C 3 are within the range of the end members (Ti 2AlC and Ti 3AlC 2) in a wide pressure range of 0–100 GPa. Only Ti 2AlC is isotropic crystal at about 50 GPa within the Ti–Al–C compounds. All of the Ti 3 d density of states curves of the three compounds move from lower energy to higher energy level with pressure increasing. The similarities of respective bond length, bond overlap population (Ti–C, Ti–Al and Ti–Ti), atom Mulliken charges under pressure as well as the electron density difference for the three compounds are discovered. Among the Ti–Al–C ternary compounds, Ti–Ti bond behaves least compressibility, whereas the Ti–Al bond is softer than that of Ti–C bonds, which can also been confirmed by the density of states and electron density difference. Bond overlap populations of Ti–Ti, Ti–C and Ti–Al indicate that the ionicity interaction becomes more and more stronger in the three structures as the pressure increasing. Lastly, Mulliken charges of Ti 1, Ti 2, Ti 3, C and Al are 0.65, 0.42, 0.39, –0.73, –0.04 at 0 GPa, respectively, which are consistent with the Pauling scale.« less

  5. Improved interface and electrical properties of atomic layer deposited Al2O3/4H-SiC

    NASA Astrophysics Data System (ADS)

    Suvanam, Sethu Saveda; Usman, Muhammed; Martin, David; Yazdi, Milad. G.; Linnarsson, Margareta; Tempez, Agnès; Götelid, Mats; Hallén, Anders

    2018-03-01

    In this paper we demonstrate a process optimization of atomic layer deposited Al2O3 on 4H-SiC resulting in an improved interface and electrical properties. For this purpose the samples have been treated with two pre deposition surface cleaning processes, namely CP1 and CP2. The former is a typical surface cleaning procedure used in SiC processing while the latter have an additional weak RCA1 cleaning step. In addition to the cleaning and deposition, the effects of post dielectric annealing (PDA) at various temperatures in N2O ambient have been investigated. Analyses by scanning electron microscopy show the presence of structural defects on the Al2O3 surface after annealing at 500 and 800 °C. These defects disappear after annealing at 1100 °C, possibly due to densification of the Al2O3 film. Interface analyses have been performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight medium energy ion scattering (ToF MEIS). Both these measurements show the formation of an interfacial SiOx (0 < x < 2) layer for both the CP1 and CP2, displaying an increased thickness for higher temperatures. Furthermore, the quality of the sub-oxide interfacial layer was found to depend on the pre deposition cleaning. In conclusion, an improved interface with better electrical properties is shown for the CP2 sample annealed at 1100 °C, resulting in lower oxide charges, strongly reduced flatband voltage and leakage current, as well as higher breakdown voltage.

  6. Tribological properties of thermally sprayed TiAl-Al2O3 composite coating

    NASA Astrophysics Data System (ADS)

    Salman, A.; Gabbitas, B.; Li, J.; Zhang, D.

    2009-08-01

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The results showed that the composite coating has lower wear rate at high temperature (700°C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  7. Effect of Er3+ concentration on the luminescence properties of Al2O3-ZrO2 powder

    NASA Astrophysics Data System (ADS)

    Clabel H., J. L.; Rivera, V. A. G.; Nogueira, I. C.; Leite, E. R.; Siu Li, M.; Marega, E.

    2016-12-01

    This manuscript reports on the effects of the luminescence properties of Er3+ on Al2O3-ZrO2 powder synthesized by the conventional solid-state method. The best conditions found for the calcinations were 1500 °C and 4 h. The structural dependence of the luminescence on Er3+:Al2O3-ZrO2 is associated with phase transformations of the Al2O3-ZrO2 host and presence of the OH group. Green and red emissions at room temperature from the 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 levels of Er3+ ions were observed under 482 nm pumping. The green-to-red emission intensity ratios and CIE chromaticity coordinates were determined from emission spectra for the evaluation of light emitted as a function of the Er3+ concentration. The Er3+ luminescence quenching due to group OH and variation in the Er3+ concentration plays an important role in the definition of the luminescent response.

  8. The synthesis and structure of a chiral 1D aluminophosphate chain compound: d-Co(en){sub 3}[AlP{sub 2}O{sub 8}].6.5H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Peng; Li Jiyang; Yu Jihong

    2005-06-15

    A new chiral one-dimensional (1D) aluminophosphate chain compound [d-Co(en){sub 3}][AlP{sub 2}O{sub 8}].6.5H{sub 2}O (designated AlPO-CJ22) has been hydrothermally synthesized by using the optically pure d-Co(en){sub 3}I{sub 3} complex as the template. Single-crystal structural analysis reveals that its structure is built up from alternating connection of AlO{sub 4} and PO{sub 2}(=O{sub 2}) tetrahedra to form corner-shared Al{sub 2}P{sub 2} four-membered ring (4-MR) chains. The d-Co(en){sub 3}{sup 3+} complex cations extended along the 2{sub 1} screw axis interact with the inorganic chains through hydrogen-bonds of N...O atoms in a helical fashion. Optical rotation measurement shows that AlPO-CJ22 is chiral as with d-Co(en){submore » 3}{sup 3+} complex cations. Crystal data: orthorhombic, I2{sub 1}2{sub 1}2{sub 1}, a=8.5573(8)A, b=22.613(2)A, c=22.605(2)A, Z=8, R{sub 1}=0.067, wR{sub 2}=0.1291, and Flack parameter: -0.02(3). CCDC number: 254179. -0.02(3). CCDC number: 254179.« less

  9. New cross sections for H on H2 collisional transitions

    NASA Astrophysics Data System (ADS)

    Zou, Qianxia

    2011-12-01

    The cross section for H on H2 collisions is important for astrophysics as well as our understanding of the simple chemical systems. This is the simplest atom-molecule cross section. With a new H3 potential surface by Mielke et al., we have modified the ABC code by Skouteris, Castillo and Manolopoulos to calculate new cross sections. These cross sections are compared to previous cross section calculations.

  10. Imaging spectroscopy of Mars in the thermal infrared: seasonal variations of H2O2 and mapping of the D/H ratio

    NASA Astrophysics Data System (ADS)

    Encrenaz, Therese; DeWitt, Curtis; Richter, Matthew; Greathouse, Thomas; Fouchet, Thierry; Lefevre, Franck; Montmessin, Franck; Forget, Francois; Bezard, Bruno; Atreya, Sushil

    2017-04-01

    Since 2002, we have been monitoring the spatial distribution and the seasonal variations of H2O2 on Mars, using high-resolution imaging spectroscopy with the Texas Echelon Cross Echelle Spectrograph (TEXES) at the Infrared Telescope Facility (IRTF) at Maunakea Observatory (Hawaii). These observations have shown that a better agreement with global climate models is obtained when heterogeneous chemistry is introduced in the photochemical model (Encrenaz et al. 2015, AA 578, A127). In addition, in April 2014, we have obtained a map of D/H on Mars using the Echelon Cross Echelle Spectrograph (EXES) aboard the stratospheric Observatory for Infrared Astronomy (SOFIA; Encrenaz et al. 2015, AA 586, A62). In 2016, new observations have been obtained on H2O2 with TEXES and on D/H with EXES, allowing us to better analyze the seasonal variations of these parameters. These data will be presented and compared with previous measurements.

  11. White LED based on CaAl2Si2O8:Eu2+ Mn2+ phosphor and CdS/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Shen, Changyu; Zhong, Chuan; Hou, Qianglong; Li, Ke

    2011-02-01

    Core/shell CdS/ZnS quantum dots (QDs) with the emission wavelength of 610nm, was synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. CaAl2Si2O8:Eu2+ Mn2+ phosphor was synthesized by high-temperature solid state reaction at 1290 °C for 2 hours under the H2 reducing atmosphere, and X-ray powder diffraction analysis confirmed the formation of it. It has two emission bands peaking at 420 nm and 580nm originated from the transition 5d to 4f of Eu2+ and 4T1-6A1 of Mn2+, respectively. Blends of CaAl2Si2O8:Eu2+,Mn2+ phosphor and CdS/ZnS QDs exhibited the prominent spectral evolution with an increasing content of QDs. A hybrid white LED, which combines a blue LED with the blend of CaAl2Si2O8:Eu2+ Mn2+ phosphor and QDs with a weight ratio of 2:1, with the CIE coordinate of (0.3183, 0.3036) and CRI of 85 was obtained.

  12. High pressure studies of A2Mo3O12 negative thermal expansion materials (A2=Al2, Fe2, FeAl, AlGa)

    NASA Astrophysics Data System (ADS)

    Young, Lindsay; Gadient, Jennifer; Gao, Xiaodong; Lind, Cora

    2016-05-01

    High pressure powder X-ray diffraction studies of several A2Mo3O12 materials (A2=Al2, Fe2, FeAl, and AlGa) were conducted up to 6-7 GPa. All materials adopted a monoclinic structure under ambient conditions, and displayed similar phase transition behavior upon compression. The initial isotropic compressibility first became anisotropic, followed by a small but distinct drop in cell volume. These patterns could be described by a distorted variant of the ambient pressure polymorph. At higher pressures, a distinct high pressure phase formed. Indexing results confirmed that all materials adopted the same high pressure phase. All changes were reversible on decompression, although some hysteresis was observed. The similarity of the high pressure cells to previously reported Ga2Mo3O12 suggested that this material undergoes the same sequence of transitions as all materials investigated in this paper. It was found that the transition pressures for all phase changes increased with decreasing radius of the A-site cations.

  13. Al2O3 Passivation Effect in HfO2·Al2O3 Laminate Structures Grown on InP Substrates.

    PubMed

    Kang, Hang-Kyu; Kang, Yu-Seon; Kim, Dae-Kyoung; Baik, Min; Song, Jin-Dong; An, Youngseo; Kim, Hyoungsub; Cho, Mann-Ho

    2017-05-24

    The passivation effect of an Al 2 O 3 layer on the electrical properties was investigated in HfO 2 -Al 2 O 3 laminate structures grown on indium phosphide (InP) substrate by atomic-layer deposition. The chemical state obtained using high-resolution X-ray photoelectron spectroscopy showed that interfacial reactions were dependent on the presence of the Al 2 O 3 passivation layer and its sequence in the HfO 2 -Al 2 O 3 laminate structures. Because of the interfacial reaction, the Al 2 O 3 /HfO 2 /Al 2 O 3 structure showed the best electrical characteristics. The top Al 2 O 3 layer suppressed the interdiffusion of oxidizing species into the HfO 2 films, whereas the bottom Al 2 O 3 layer blocked the outdiffusion of In and P atoms. As a result, the formation of In-O bonds was more effectively suppressed in the Al 2 O 3 /HfO 2 /Al 2 O 3 /InP structure than that in the HfO 2 -on-InP system. Moreover, conductance data revealed that the Al 2 O 3 layer on InP reduces the midgap traps to 2.6 × 10 12 eV -1 cm -2 (compared to that of HfO 2 /InP, that is, 5.4 × 10 12 eV -1 cm -2 ). The suppression of gap states caused by the outdiffusion of In atoms significantly controls the degradation of capacitors caused by leakage current through the stacked oxide layers.

  14. Quantum dynamics of the reaction H((2)S) + HeH(+)(X(1)Σ(+)) → H2(+)(X(2)Σg(+)) + He((1)S) from cold to hyperthermal energies: time-dependent wavepacket study and comparison with time-independent calculations.

    PubMed

    Gamallo, Pablo; Akpinar, Sinan; Defazio, Paolo; Petrongolo, Carlo

    2014-08-21

    We present the adiabatic quantum dynamics of the proton-transfer reaction H((2)S) + HeH(+)(X(1)Σ(+)) → H2(+)(X(2)Σg(+)) + He((1)S) on the HeH2(+) X̃(2)Σ(+) RMRCI6 (M = 6) PES of C. N. Ramachandran et al. ( Chem. Phys. Lett. 2009, 469, 26). We consider the HeH(+) molecule in the ground vibrational–rotational state and obtain initial-state-resolved reaction probabilities and the ground-state cross section σ0 and rate constant k0 by propagating time-dependent, coupled-channel, real wavepackets (RWPs) and performing a flux analysis. Three different wavepackets are propagated to describe the wide range of energies explored, from cold (0.0001 meV) to hyperthermal (1000 meV) collision energies, and in a temperature range from 0.01 to 2000 K. We compare our time-dependent results with the time-independent ones by D. De Fazio and S. Bovino et al., where De Fazio carried out benchmark coupled-channel calculations whereas Bovino et al. employed the negative imaginary potential and the centrifugal-sudden approximations. The RWP cross section is in good agreement with that by De Fazio, except at the lowest collision energies below ∼0.01 meV, where the former is larger than the latter. However, neither the RWP and De Fazio results possess the huge resonance in probability and cross section at 0.01 meV, found by Bovino et al., who also obtained a too low σ0 at high energies. Therefore, the RWP and De Fazio rate constants compare quite well, whereas that by Bovino et al. is in general lower.

  15. Czochralski growth of LaPd2Al2 single crystals

    NASA Astrophysics Data System (ADS)

    Doležal, P.; Rudajevová, A.; Vlášková, K.; Kriegner, D.; Václavová, K.; Prchal, J.; Javorský, P.

    2017-10-01

    The present study is focused on the preparation of single crystalline LaPd2Al2 by the Czochralski method. Differential scanning calorimetry (DSC) and energy dispersive X-ray spectroscopy (EDX) analyses reveal that LaPd2Al2 is an incongruently melting phase which causes difficulties for the preparation of single crystalline LaPd2Al2 by the Czochralski method. Therefore several non-stoichiometric polycrystalline samples were studied for its preparation. Finally the successful growth of LaPd2Al2 without foreign phases has been achieved by using a non-stoichiometric precursor with atomic composition 22:39:39 (La:Pd:Al). X-ray powder diffraction, EDX analysis and DSC were used for the characterisation. A single crystalline sample was separated from the ingot prepared by the Czochralski method using the non-stoichiometric precursor. The presented procedure for the preparation of pure single phase LaPd2Al2 could be modified for other incongruently melting phases.

  16. Room temperature radiolytic synthesized Cu@CuAlO(2)-Al(2)O(3) nanoparticles.

    PubMed

    Abedini, Alam; Saion, Elias; Larki, Farhad; Zakaria, Azmi; Noroozi, Monir; Soltani, Nayereh

    2012-01-01

    Colloidal Cu@CuAlO(2)-Al(2)O(3) bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a (60)Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO(2)-Al(2)O(3) nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO(2)-Al(2)O(3) nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation.

  17. Crystal and molecular structure of Sr{sub 2}(Edta) . 5H{sub 2}O, Sr{sub 2}(H{sub 2}Edta)(HCO{sub 3}){sub 2} . 4H{sub 2}O, and Sr{sub 2}(H{sub 2}Edta)Cl{sub 2} . 5H{sub 2}O strontium ethylenediaminetetraacetates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakova, I. N., E-mail: polyakova@igic.ras.ru; Poznyak, A. L.; Sergienko, V. S.

    2009-03-15

    Three Sr{sup 2+} compounds with the Edta{sup 4-} and H{sub 2}Edta{sup 2-} ligands-Sr{sub 2}(Edta) . 5H{sub 2}O (I), Sr{sub 2}(H{sub 2}Edta)(HCO{sub 3}){sub 2} . 4H{sub 2}O (II), and Sr{sub 2}(H{sub 2}Edta)Cl{sub 2} . 5H{sub 2}O (III)-are synthesized, and their crystal structures are studied. In I, the Sr(1) atom is coordinated by the hexadentate Edta{sup 4-} ligand following the 2N + 4O pattern and by two O atoms of the neighboring ligands, which affords the formation of zigzag chains. The Sr(2) atom forms bonds with O atoms of five water molecules and attaches itself to a chain via bonds with threemore » O atoms of the Edta{sup 4-} ligands. The Sr(1)-O and Sr(2)-O bond lengths fall in the ranges 2.520(2)-2.656(3) and 2.527(3)-2.683(2) A, respectively. The Sr(1)-N bonds are 2.702(3) and 2.743(3) A long. In II and III, the H{sub 2}Edta{sup 2-} anions have a centrosymmetric structure with the trans configuration of the planar ethylenediamine fragment. The N atoms are blocked by acid protons. In II, the environment of the Sr atom is formed by six O atoms of three H{sub 2}Edta ligands, two O atoms of water molecules, and an O atom of the bicarbonate ion, which is disordered over two positions. In III, the environment of the Sr atom includes six O atoms of four H{sub 2}Edta{sup 2-} ligands and three O atoms of water molecules. The coordination number of the Sr atoms is equal to 8 + 1. In II and III, the main bonds fall in the ranges 2.534(3)-2.732(2) and 2.482(2)-2.746(3) A, whereas the ninth bond is elongated to 2.937(3) and 3.055(3) A, respectively. In II, all the structural elements are linked into wavy layers. The O-H-O interactions contribute to the stabilization of the layer and link neighboring layers. In III, hydrated Sr{sup 2+} cations and H{sub 2}Edta{sup -} anions form a three-dimensional [Sr{sub 2}(H{sub 2}Edta)(H{sub 2}O){sub 3}]{sub n}{sup 2n+} framework. The Cl{sup -} anions are fixed in channels of the framework by hydrogen bonds with four water

  18. Unusual Oxidative Limitations for Al-MAX Phases

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2017-01-01

    Alumina-forming MAX phases are well-known for their excellent oxidation resistance, rivaling many metallic NiAl, NiCrAl, and FeCrAl counterparts and with upper temperature capability possible to approximately1400C. However a number of limitations have been emerging that need to be acknowledged to permit robust performance in demanding applications. Ti2AlC and Ti3AlC2 possess excellent scale adhesion, cyclic oxidation/moisture/volatility resistance, and TBC compatibility. However they are very sensitive to Al content and flux in order to maintain an exclusive Al2O3 scale without runaway oxidation of ubiquitous TiO2 transient scales. Accelerated oxidation has been shown to occur for Al-depleted, damaged, or roughened surfaces at temperatures less than 1200C. Conversely, Cr2AlC is less sensitive to transients, but exhibits volatile losses at 1200C or above if common Cr7C3 impurity phases are present. Poor scale adhesion is exhibited after oxidation at 1150C or above, where spallation occurs at the Cr7C3 (depletion zone) interface. Delayed spallation is significant and suggests a moisture-induced phenomenon similar to non-adherent metallic systems. Re-oxidation of this surface does not reproduce the initial pure Al2O3 behavior, but initiates a less-protective scale. Cr2AlC has also been shown to have good long term bonding with superalloys at 800C, but exhibits significant Beta-NiAl + Cr7C3 diffusion zones at 1100C and above. This may set limits on Cr2AlC as a high temperature TBC bond coat on Ni-based superalloys, while improving corrosion resistance in lower temperature applications.

  19. Experimental and theoretical investigations of the polar intermetallics SrPt{sub 3}Al{sub 2} and Sr{sub 2}Pd{sub 2}Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegemann, Frank; Benndorf, Christopher; Touzani, Rachid St.

    SrPt{sub 3}Al{sub 2}, a CaCu{sub 5} relative (P6/mmm; a = 566.29(3), c = 389.39(3) pm; wR{sub 2} = 0.0202, 121 F{sup 2} values, 9 parameters), and Sr{sub 2}Pd{sub 2}Al, isostructural to Ca{sub 2}Pt{sub 2}Ge (Fdd2; a = 1041.45(5), b = 1558.24(7), c = 604.37(3) pm; wR{sub 2} = 0.0291, 844 F{sup 2} values, 25 parameters) have been prepared from the elements. The crystal structures have been investigated by single crystal X-ray diffraction. Structural relaxation confirmed the electronic stability of SrPt{sub 3}Al{sub 2}, while orthorhombic Sr{sub 2}Pd{sub 2}Al might be a metastable polymorph as it is energetically competitive to its monoclinicmore » variant. Both compounds are predicted to be metallic conductors as their density-of-states (DOS) are non-zero at the Fermi level. COHP bonding analysis coupled with Bader effective charge analysis suggest that the title compounds are polar intermetallic phases in which strong Pt–Al and Pd–Al covalent bonds are present, while a significant electron transfer from Sr atoms to the [Pt{sub 3}Al{sub 2}]{sup δ–} or [Pd{sub 2}Al]{sup δ–} network is found. - Graphical abstract: Chains of Pd atoms in the crystal structure of Sr{sub 2}Pd{sub 2}Al get connected by Al atoms in the shape of a distorted tetrahedra. The band structure calculations confirm weak Pd–Pd interactions. - Highlights: • SrPt{sub 3}Al{sub 2} and Sr{sub 2}Pd{sub 2}Al discovered and crystallographically investigated. • DFT predicts the here reported orthorhombic Sr{sub 2}Pd{sub 2}Al to be competitive in energy to the presently unknown monoclinic Sr{sub 2}Pd{sub 2}Al. • Bader charge analysis indicates SrPt{sub 3}Al{sub 2} and Sr{sub 2}Pd{sub 2}Al are polar intermetallics.« less

  20. Atomic layer deposition of highly-doped Er:Al2O3 and Tm:Al2O3 for silicon-based waveguide amplifiers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Roenn, John; Karvonen, Lasse; Pyymäki-Perros, Alexander; Peyghambarian, Nasser; Lipsanen, Harri; Säynätjoki, Antti; Sun, Zhipei

    2016-05-01

    Recently, rare-earth doped waveguide amplifiers (REDWAs) have drawn significant attention as a promising solution to on-chip amplification of light in silicon photonics and integrated optics by virtue of their high excited state lifetime (up to 10 ms) and broad emission spectrum (up to 200 nm) at infrared wavelengths. In the family of rare-earths, at least erbium, holmium, thulium, neodymium and ytterbium have been demonstrated to be good candidates for amplifier operation at moderate concentrations (< 0.1 %). However, efficient amplifier operation in REDWAs is a very challenging task because high concentration of ions (<0.1%) is required in order to produce reasonable amplification over short device length. Inevitably, high concentration of ions leads to energy-transfer between neighboring ions, which results as decreased gain and increased noise in the amplifier system. It has been shown that these energy-transfer mechanisms in highly-doped gain media are inversely proportional to the sixth power of the distance between the ions. Therefore, novel fabrication techniques with the ability to control the distribution of the rare-earth ions within the gain medium are urgently needed in order to fabricate REDWAs with high efficiency and low noise. Here, we show that atomic layer deposition (ALD) is an excellent technique to fabricate highly-doped (<1%) RE:Al2O3 gain materials by using its nanoscale engineering ability to delicately control the incorporation of RE ions during the deposition. In our experiment, we fabricated Er:Al2O3 and Tm:Al2O3 thin films with ALD by varying the concentration of RE ions from 1% to 7%. By measuring the photoluminescence response of the fabricated samples, we demonstrate that it is possible to incorporate up to 5% of either Er- or Tm-ions in Al2O3 host before severe quenching occurs. We believe that this technique can be extended to other RE ions as well. Therefore, our results show the exceptionality of ALD as a deposition technique for

  1. Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings

    NASA Astrophysics Data System (ADS)

    Marszałek, Konstanty; Winkowski, Paweł; Jaglarz, Janusz

    2014-01-01

    Investigations of bilayer and trilayer Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings are presented in this paper. The oxide films were deposited on a heated quartz glass by e-gun evaporation in a vacuum of 5 × 10-3 [Pa] in the presence of oxygen. Depositions were performed at three different temperatures of the substrates: 100 °C, 200 °C and 300 °C. The coatings were deposited onto optical quartz glass (Corning HPFS). The thickness and deposition rate were controlled with Inficon XTC/2 thickness measuring system. Deposition rate was equal to 0.6 nm/s for Al2O3, 0.6 nm - 0.8 nm/s for HfO2 and 0.6 nm/s for SiO2. Simulations leading to optimization of the thin film thickness and the experimental results of optical measurements, which were carried out during and after the deposition process, have been presented. The optical thickness values, obtained from the measurements performed during the deposition process were as follows: 78 nm/78 nm for Al2O3/SiO2 and 78 nm/156 nm/78 nm for Al2O3/HfO2/SiO2. The results were then checked by ellipsometric technique. Reflectance of the films depended on the substrate temperature during the deposition process. Starting from 240 nm to the beginning of visible region, the average reflectance of the trilayer system was below 1 % and for the bilayer, minima of the reflectance were equal to 1.6 %, 1.15 % and 0.8 % for deposition temperatures of 100 °C, 200 °C and 300 °C, respectively.

  2. Testing the early Mars H2-CO2 greenhouse hypothesis with a 1-D photochemical model

    NASA Astrophysics Data System (ADS)

    Batalha, Natasha; Domagal-Goldman, Shawn D.; Ramirez, Ramses; Kasting, James F.

    2015-09-01

    A recent study by Ramirez et al. (Ramirez, R.M. et al. [2014]. Nat. Geosci. 7(1), 59-63. http://www.nature.com/doifinder/10.1038/ngeo2000 (accessed 16.09.14)) demonstrated that an atmosphere with 1.3-4 bar of CO2 and H2O, in addition to 5-20% H2, could have raised the mean annual and global surface temperature of early Mars above the freezing point of water. Such warm temperatures appear necessary to generate the rainfall (or snowfall) amounts required to carve the ancient martian valleys. Here, we use our best estimates for early martian outgassing rates, along with a 1-D photochemical model, to assess the conversion efficiency of CO, CH4, and H2S to CO2, SO2, and H2. Our outgassing estimates assume that Mars was actively recycling volatiles between its crust and interior, as Earth does today. H2 production from serpentinization and deposition of banded iron-formations is also considered. Under these assumptions, maintaining an H2 concentration of ˜1-2% by volume is achievable, but reaching 5% H2 requires additional H2 sources or a slowing of the hydrogen escape rate below the diffusion limit. If the early martian atmosphere was indeed H2-rich, we might be able to see evidence of this in the rock record. The hypothesis proposed here is consistent with new data from the Curiosity Rover, which show evidence for a long-lived lake in Gale Crater near Mt. Sharp. It is also consistent with measured oxygen fugacities of martian meteorites, which show evidence for progressive mantle oxidation over time.

  3. 27Al-NMR studies of the structural phase transition in LaPd2Al2

    NASA Astrophysics Data System (ADS)

    Aoyama, Taisuke; Kobayashi, Fumiaki; Kotegawa, Hisashi; Tou, Hideki; Doležal, Petr; Kriegner, Dominik; Javorský, Pavel; Uhlířová, Klára

    2018-05-01

    We performed 27Al-NMR measurements for the CaBe2Ge2 type single crystalline LaPd2Al2 in the temperature range from 100 K to 5 K to investigate the origin of the structural phase transition. We found that the line profile of the 27Al-NMR spectrum does not change entirely on passing through the structural phase transition at Tst. Meanwhile, the peak position of the central line slightly change (≈ 30 ppm) below 70 K, suggesting the orbital shift changes below Tst. The present 27Al-NMR studies evidence that the local electronic state at Al site is hardly affected by the structural phase transition.

  4. Room Temperature Radiolytic Synthesized Cu@CuAlO2-Al2O3 Nanoparticles

    PubMed Central

    Abedini, Alam; Saion, Elias; Larki, Farhad; Zakaria, Azmi; Noroozi, Monir; Soltani, Nayereh

    2012-01-01

    Colloidal Cu@CuAlO2-Al2O3 bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a 60Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO2-Al2O3 nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO2-Al2O3 nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation. PMID:23109893

  5. Cr6+-containing phases in the system CaO-Al2O3-CrO42--H2O at 23 °C

    NASA Astrophysics Data System (ADS)

    Pöllmann, Herbert; Auer, Stephan

    2012-01-01

    Synthesis and investigation of lamellar calcium aluminium hydroxy salts was performed to study the incorporation of chromate ions in the interlayer of lamellar calcium aluminium hydroxy salts. Different AFm-phases (calcium aluminate hydrate with alumina, ferric oxide, mono-anion phase) containing chromate were synthesized. These AFm-phases belong to the group of layered double hydroxides (LDHs). 3CaO·Al2O3·CaCrO4·nH2O and C3A·1/2Ca(OH)2·1/2CaCrO4·12H2O were obtained as pure phases and their different distinct interlayer water contents and properties determined. Solid solution of chromate-containing phases and tetracalcium-aluminate-hydrate (TCAH) were studied. The uptake of chromate into TCAH from solutions was proven. Chromate contents in solution decrease to <0.2 mg/l.

  6. Spectroscopic study of the benchmark Mn+-H2 complex.

    PubMed

    Dryza, Viktoras; Poad, Berwyck L J; Bieske, Evan J

    2009-05-28

    We have recorded the rotationally resolved infrared spectrum of the weakly bound Mn+-H2 complex in the H-H stretch region (4022-4078 cm(-1)) by monitoring Mn+ photodissociation products. The band center of Mn+-H2, the H-H stretch transition, is shifted by -111.8 cm(-1) from the transition of the free H2 molecule. The spectroscopic data suggest that the Mn+-H2 complex consists of a slightly perturbed H2 molecule attached to the Mn+ ion in a T-shaped configuration with a vibrationally averaged intermolecular separation of 2.73 A. Together with the measured Mn+...H2 binding energy of 7.9 kJ/mol (Weis, P.; et al. J. Phys. Chem. A 1997, 101, 2809.), the spectroscopic parameters establish Mn+-H2 as the most thoroughly characterized transition-metal cation-dihydrogen complex and a benchmark for calibrating quantum chemical calculations on noncovalent systems involving open d-shell configurations. Such systems are of possible importance for hydrogen storage applications.

  7. Synthesis and luminescent properties of Sr3Al2O5Cl2: Eu2+, Dy3+ rod-like nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Zhengliang; Zhang, Qiuhan; Rong, Meizhu; Tan, Huiying; Wang, Qin; Zhou, Qiang; Chen, Guo

    2016-08-01

    White long afterglow phosphor with nano-rods, Sr3Al2O5Cl2: Eu2+, Dy3+, has been successfully synthesized by the solid state reaction. Their structure, morphology, scanning electron microscopy, luminescent properties and long afterglow properties were investigated by X-ray diffraction, transmission electron microscopy luminescence spectra and the luminescence decay curve. The obtained phosphor Sr3Al2O5Cl2: Eu2+, Dy3+ exhibits two broad emission bands, which are located at ∼445 nm and ∼590 nm, respectively. White light can be observed from this phosphor with appropriate CIE values (x = 0.357, y = 0.332). The white afterglow duration of this phosphor is about 0.5 h (>0.35 mcd/m2).

  8. On the origin of high-temperature phenomena in Pt/Al2O3.

    PubMed

    Lisitsyn, Alexander S; Yakovina, Olga A

    2018-01-24

    Treatments of Pt/γ-Al 2 O 3 with H 2 under harsh conditions have long been known to strongly influence the properties of this important catalytic system, but the true causes of the high-temperature effects still remain unclear. We have performed a more detailed study of this issue, having used H 2 -TPD as a sensitive probe of metal-support interactions. The experimental results are in accordance with previous studies and demonstrate strong changes in adsorption and catalytic properties of Pt/γ-Al 2 O 3 after high-temperature H 2 treatments, as well as the possibility to reverse the changes, completely or in part, through O 2 and H 2 O treatments. Thorough examination has shown that such behaviour is an intrinsic property of Pt/γ-Al 2 O 3 and cannot be attributed to impurities or experimental artifacts. Moreover, there is no abrupt transition to a high-temperature state, but the system undergoes smooth and gradual changes upon increasing the H 2 -treatment temperature (T TR ), with the changes being already apparent at a T TR of ∼ 300 °C. The results suggest that hydrogen can generate oxygen vacancies on the surface of the support in close vicinity to the Pt particles, and the system appears under equilibrium to be kinetically driven by temperature and thermodynamically driven by the P H 2 /P H 2 O ratio or local concentration of surface hydroxyls near Pt particles. The generated vacancies change the properties of contacting particles, and the changes are most pronounced for sub-nanometric Pt clusters and single atoms. Implications of the phenomena for the synthesis, study, and use of Pt/γ-Al 2 O 3 and its related nanosystems are discussed.

  9. Photochemistry of the α-Al 2O 3-PETN interface

    DOE PAGES

    Tsyshevsky, Roman V.; Zverev, Anton; Mitrofanov, Anatoly; ...

    2016-02-29

    Optical absorption measurements are combined with electronic structure calculations to explore photochemistry of an α-Al 2O 3-PETN interface formed by a nitroester (pentaerythritol tetranitrate, PETN, C 5H 8N 4O 12) and a wide band gap aluminum oxide (α-Al 2O 3) substrate. The first principles modeling is used to deconstruct and interpret the α-Al 2O 3-PETN absorption spectrum that has distinct peaks attributed to surface F 0-centers and surfacePETN transitions. We predict the low energy α-Al 2O 3 F 0-centerPETN transition, producing the excited triplet state, and α-Al 2O 3 F- 0-centerPETN charge transfer, generating the PETN anion radical. This impliesmore » that irradiation by commonly used lasers can easily initiate photodecomposition of both excited and charged PETN at the interface. As a result, the feasible mechanism of the photodecomposition is proposed.« less

  10. Methodology Report for H2SModel

    DTIC Science & Technology

    2012-01-01

    thermochemical) cal (thermochemical/ cm2) curie degree (angl e ) degree Fahrenheit electron volt erg erg/second foot foot- pound- force gal l... Dosimetry ) model developed by Asgharian ([7, 10]) . First, transport of H2S in the lung is modeled by the area-averaged convective-diffusion equation...performance. Technical Report DNA TR 85 52, Defense Nuclear Agency, Washington, D.C. , 1984. [10] Asgharian, B., et al. Multiple Path Particle Dosimetry

  11. Interaction of Al with O2 exposed Mo2BC

    NASA Astrophysics Data System (ADS)

    Bolvardi, Hamid; Music, Denis; Schneider, Jochen M.

    2015-03-01

    A Mo2BC(0 4 0) surface was exposed to O2. The gas interaction was investigated using ab initio molecular dynamics and X-ray photoelectron spectroscopy (XPS) of air exposed surfaces. The calculations suggest that the most dominating physical mechanism is dissociative O2 adsorption whereby Mosbnd O, Osbnd Mosbnd O and Mo2sbnd Csbnd O bond formation is observed. To validate these results, Mo2BC thin films were synthesized utilizing high power pulsed magnetron sputtering and air exposed surfaces were probed by XPS. MoO2 and MoO3 bond formation is observed and is consistent with here obtained ab initio data. Additionally, the interfacial interactions of O2 exposed Mo2BC(0 4 0) surface with an Al nonamer is studied with ab initio molecular dynamics to describe on the atomic scale the interaction between this surface and Al to mimic the interface present during cold forming processes of Al based alloys. The Al nonamer was disrupted and Al forms chemical bonds with oxygen contained in the O2 exposed Mo2BC(0 4 0) surface. Based on the comparison of here calculated adsorption energy with literature data, Alsbnd Al bonds are shown to be significantly weaker than the Alsbnd O bonds formed across the interface. Hence, Alsbnd Al bond rupture is expected for a mechanically loaded interface. Therefore the adhesion of a residual Al on the native oxide layer is predicted. This is consistent with experimental observations. The data presented here may also be relevant for other oxygen containing surfaces in a contact with Al or Al based alloys for example during forming operations.

  12. The solubility of gold in H 2 O-H 2 S vapour at elevated temperature and pressure

    NASA Astrophysics Data System (ADS)

    Zezin, Denis Yu.; Migdisov, Artashes A.; Williams-Jones, Anthony E.

    2011-09-01

    This experimental study sheds light on the complexation of gold in reduced sulphur-bearing vapour, specifically, in H 2O-H 2S gas mixtures. The solubility of gold was determined in experiments at temperatures of 300, 350 and 365 °C and reached 2.2, 6.6 and 6.3 μg/kg, respectively. The density of the vapour varied from 0.02 to 0.22 g/cm 3, the mole fraction of H 2S varied from 0.03 to 0.96, and the pressure in the cell reached 263 bar. Statistically significant correlations of the amount of gold dissolved in the fluid with the fugacity of H 2O and H 2S permit the experimental data to be fitted to a solvation/hydration model. According to this model, the solubility of gold in H 2O-H 2S gas mixtures is controlled by the formation of sulphide or bisulphide species solvated by H 2S or H 2O molecules. Formation of gold sulphide species is favoured statistically over gold bisulphide species and thus the gold is interpreted to dissolve according to reactions of the form: Au(s)+(n+1)HS(g)=AuS·(HS)n(g)+H(g) Au(s)+HS(g)+mHO(g)=AuS·(HO)m(g)+H(g) Equilibrium constants for Reaction (A1) and the corresponding solvation numbers ( K A1 and n) were evaluated from the study of Zezin et al. (2007). The equilibrium constants as well as the hydration numbers for Reaction (A2) ( K A2 and m) were adjusted simultaneously by a custom-designed optimization algorithm and were tested statistically. The resulting values of log K A2 and m are -15.3 and 2.3 at 300 and 350 °C and -15.1 and 2.2 at 365 °C, respectively. Using the calculated stoichiometry and stability of Reactions (A1) and (A2), it is now possible to quantitatively evaluate the contribution of reduced sulphur species to the transport of gold in aqueous vapour at temperatures up to 365 °C. This information will find application in modelling gold ore-forming processes in vapour-bearing magmatic hydrothermal systems, notably those of epithermal environments.

  13. Characterization of CcSTOP1; a C2H2-type transcription factor regulates Al tolerance gene in pigeonpea.

    PubMed

    Daspute, Abhijit Arun; Kobayashi, Yuriko; Panda, Sanjib Kumar; Fakrudin, Bashasab; Kobayashi, Yasufumi; Tokizawa, Mutsutomo; Iuchi, Satoshi; Choudhary, Arbind Kumar; Yamamoto, Yoshiharu Y; Koyama, Hiroyuki

    2018-01-01

    Al-responsive citrate-transporting CcMATE1 function and its regulation by CcSTOP1 were analyzed using NtSTOP1 -KD tobacco- and pigeonpea hairy roots, respectively, CcSTOP1 binding sequence of CcMATE1 showed similarity with AtALMT1 promoter. The molecular mechanisms of Aluminum (Al) tolerance in pigeonpea (Cajanus cajan) were characterized to provide information for molecular breeding. Al-inducible citrate excretion was associated with the expression of MULTIDRUGS AND TOXIC COMPOUNDS EXCLUSION (CcMATE1), which encodes a citrate transporter. Ectopic expression of CcMATE1-conferred Al tolerance to hairy roots of transgenic tobacco with the STOP1 regulation system knocked down. This gain-of-function approach clearly showed CcMATE1 was involved in Al detoxification. The expression of CcMATE1 and another Al-tolerance gene, ALUMINUM SENSITIVE 3 (CcALS3), was regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (CcSTOP1) according to loss-of-function analysis of pigeonpea hairy roots in which CcSTOP1 was suppressed. An in vitro binding assay showed that the Al-responsive CcMATE1 promoter contained the GGNVS consensus bound by CcSTOP1. Mutation of GGNVS inactivated the Al-inducible expression of CcMATE1 in pigeonpea hairy roots. This indicated that CcSTOP1 binding to the promoter is critical for CcMATE1 expression. The STOP1 binding sites of both the CcMATE1 and AtALMT1 promoters contained GGNVS and a flanking 3' sequence. The GGNVS region was identical in both CcMATE1 and AtALMT1. By contrast, the 3' flanking sequence with binding affinity to STOP1 did not show similarity. Putative STOP1 binding sites with similar structures were also found in Al-inducible MATE and ALMT1 promoters in other plant species. The characterized Al-responsive CcSTOP1 and CcMATE1 genes will help in pigeonpea breeding in acid soil tolerance.

  14. Preparation and characterization of α-Al2O3 film by low temperature thermal oxidation of Al8Cr5 coating

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Xu, Bajin; Ling, Guoping

    2015-03-01

    In this paper, α-Al2O3 film was prepared by low temperature thermal oxidation of Al8Cr5 coating. The Al8Cr5 alloy coating was prepared on SUS430 stainless steel through a two-step approach including electrodepositing Cr/Al composite coating and subsequent heat treatment at 740 °C for 16 h. After mechanical polishing removal of voids on the surface, the Al8Cr5 coating was thermal oxidized at 720 °C in argon for 100 h. The samples were characterized by SEM, EDX, XRD, XPS and TEM. XPS detection on the surface of oxidized Al8Cr5 coating showed that the oxide film mainly consisted of Al2O3. TEM characterization of the oxide film showed that it was α-Al2O3 films ca. 110 nm. The formation of α-Al2O3 films at low temperature can be attributed to the formation of Cr2O3 nuclei at the initial stage of oxidation which lowers the nucleation energy barrier of α-Al2O3.

  15. Role of Exposure Atmospheres on Particle Coarsening and Phase Transformation of LiAlO 2

    DOE PAGES

    Heo, Su Jeong; Hu, Boxun; Uddin, Md Aman; ...

    2017-05-05

    The phase transformation and particle coarsening of lithium aluminate (α-LiAlO 2) in electrolyte are the major causes of degradation affecting the performance and the lifetime of the molten carbonate fuel cell (MCFC). The stability of LiAlO 2 has been studied in Li 2CO 3-Na 2CO 3 electrolyte under accelerated conditions in reducing and oxidizing gas atmospheres at temperatures of 650 and 750 for up to 500 hours. X-ray diffraction analyses show that the progressive transformation of α-LiAlO 2 to γ-LiAlO 2 phase proceeds with increasing temperature in lower P CO2 and lower P O2 environments. Spherical LiAlO 2 particles weremore » transformed to coarsened pyramid-shape particles in 4% H 2-3% H 2O-N 2 and 100% N 2 (~10 ppm P O2 ) atmospheres. Under CO 2-rich atmospheres (4% H 2-30% CO 2-N 2 and 70% air-30% CO 2), both phase and particle size remained unchanged at 650 and 750ºC. The selected area electron diffraction (SAED) pattern analysis indicated that the large pyramidal shape particles (~30 μm) were γ-LiAlO 2 phase. Experimental observations and related simulation results pertaining to particle coarsening and phase transformation behavior of LiAlO 2 are presented.« less

  16. Formation Mechanism of CuAlO2 Prepared by Rapid Thermal Annealing of Al2O3/Cu2O/Sapphire Sandwich Structure

    NASA Astrophysics Data System (ADS)

    Shih, C. H.; Tseng, B. H.

    Single-phase CuAlO2 films were successfully prepared by thin-film reaction of an Al2O3/Cu2O/sapphire sandwich structure. We found that the processing parameters, such as heating rate, holding temperature and annealing ambient, were all crucial to form CuAlO2 without second phases. Thermal annealing in pure oxygen ambient with a lower temperature ramp rate might result in the formation of CuAl2O4 in addition to CuAlO2, since part of Cu2O was oxidized to form CuO and caused the change in reaction path, i.e. CuO + Al2O3 → CuAl2O4. Typical annealing conditions successful to prepare single-phase CuAlO2 would be to heat the sample with a temperature rampt rate higher than 7.3 °C/sec and hold the temperature at 1100 °C in air ambient. The formation mechanism of CuAlO2 has also been studied by interrupting the reaction after a short period of annealing. TEM observations showed that the top Al2O3 layer with amorphous structure reacted immediately with Cu2O to form CuAlO2 in the early stage and then the remaining Cu2O reacted with the sapphire substrate.

  17. A comparative study of the Au + H{sub 2}, Au{sup +} + H{sub 2}, and Au{sup −} + H{sub 2} systems: Potential energy surfaces and dynamics of reactive collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorta-Urra, Anaís; Zanchet, Alexandre; Roncero, Octavio

    2015-04-21

    In order to study the Au{sup −} + H{sub 2} collision, a new global potential energy surface (PES) describing the ground electronic state of AuH{sub 2}{sup −} system is developed and compared with the PESs of the neutral [Zanchet et al., J. Chem. Phys. 132, 034301 (2010)] and cationic systems [Anaís et al., J. Chem. Phys. 135, 091102 (2011)]. We found that Au{sup −} − H{sub 2} presents a H-Au-H insertion minimum attributed to the stabilization of the LUMO 3b{sub 2} orbital, which can be considered as the preamble of the chemisorption well appearing in larger gold clusters. While themore » LUMO orbital is stabilized, the HOMO 6a{sub 1} is destabilized, creating a barrier at the geometry where the energy orbitals’ curves are crossing. In the anion, this HOMO is doubly occupied, while in the neutral system is half-filled and completely empty in the cation, explaining the gradual disappearance of the well and the barrier as the number of electrons decreases. The cation presents a well in the entrance channel partially explained by electrostatic interactions. The three systems’ reactions are highly endothermic, by 1.66, 2.79, and 3.23 eV for AuH, AuH{sup +}, and AuH{sup −} products, respectively. The reaction dynamics is studied using quasi-classical trajectory method for the three systems. The one corresponding to the anionic system is new in this work. Collision energies between 1.00 and 8.00 eV, measured for the cation, are in good agreement with the simulated cross section for the AuH{sup +}. It was also found that the total fragmentation, in three atoms, competes becoming dominant at sufficiently high energy. Here, we study the competition between the two different reaction pathways for the anionic, cationic, and neutral species, explaining the differences using a simple model based on the topology of the potential energy surfaces.« less

  18. Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate

    NASA Astrophysics Data System (ADS)

    Amanov, Auezhan; Pyun, Young-Sik

    2016-07-01

    In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.

  19. Effect of adsorbed films on friction of Al2O3-metal systems

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1976-01-01

    The kinetic friction of polycrystalline Al2O3 sliding on Cu, Ni, and Fe in ultrahigh vacuum was studied as a function of the surface chemistry of the metal. Clean metal surfaces were exposed to O2, Cl2, C2H4, and C2H3Cl, and the change in friction due to the adsorbed species was observed. Auger electron spectroscopy assessed the elemental composition of the metal surface. It was found that the systems exposed to Cl2 exhibited low friction, interpreted as the van der Waals force between the Al2O3 and metal chloride. The generation of metal oxide by oxygen exposures resulted in an increase in friction, interpreted as due to strong interfacial bonds established by reaction of metal oxide with Al2O3 to form the complex oxide (spinel). The only effect of C2H4 was to increase the friction of the Fe system, but C2H3Cl exposures decreases friction in both Ni and Fe systems, indicating the dominance of the chlorine over the ethylene complex on the surface

  20. Time-dependent quantum wave packet calculation for nonadiabatic F(2P3/2,2P1/2)+H2 reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Xie, Ting-Xian; Han, Ke-Li; Zhang, John Z. H.

    2003-12-01

    In this paper we present a time-dependent quantum wave packet calculation for the reaction of F(2P3/2,2P1/2)+H2 on the Alexander-Stark-Werner potential energy surface. The reaction probabilities and the integral cross sections for the reaction of F(2P3/2,2P1/2)+H2 (v=j=0) are computed using time-dependent quantum methods with the centrifugal sudden approximate. The results are compared with recent time-independent quantum calculations. The two-surface reaction probability for the initial ground spin-orbit state of J=0.5 is similar to the time-independent result obtained by Alexander et al. [J. Chem. Phys. 113, 11084 (2000)]. Our calculation also shows that electronic coupling has a relatively minor effect on the reactivity from the 2P3/2 state but a non-negligible one from the 2P1/2 state. By comparison with exact time-independent calculations, it is found that the Coriolis coupling plays a relatively minor role. In addition, most of the reactivity of the excited state of fluorine atom results from the spin-orbit coupling.

  1. Fretting Wear of Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2001-01-01

    An investigation was conducted to examine the wear behavior of gamma titanium aluminide (Ti-48Al-2Cr-2Nb in atomic percent) in contact with a typical nickel-base superalloy under repeated microscopic vibratory motion in air at temperatures from 296-823 K. The surface damage observed on the interacting surfaces of both Ti-48Al-2Cr-2Nb and superalloy consisted of fracture pits, oxides, metallic debris, scratches, craters, plastic deformation, and cracks. The Ti-48Al-2Cr-2Nb transferred to the superalloy at all fretting conditions and caused scuffing or galling. The increasing rate of oxidation at elevated temperatures led to a drop in Ti-48Al-2Cr-2Nb wear at 473 K. Mild oxidative wear was observed at 473 K. However, fretting wear increased as the temperature was increased from 473-823 K. At 723 and 823 K, oxide disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Ti-48Al-2Cr-2Nb wear generally decreased with increasing fretting frequency. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals. Keywords

  2. Highly enantioselective arylation of aldehydes and ketones using AlArEt(2)(THF) as aryl sources.

    PubMed

    Zhou, Shuangliu; Wu, Kuo-Hui; Chen, Chien-An; Gau, Han-Mou

    2009-05-01

    A series of AlArEt(2)(THF) (Ar = Ph (1a), 4-MeC(6)H(4) (1b), 4-MeOC(6)H(4) (1c), 4-Me(3)SiC(6)H(4) (1d), 2-naphthyl (1e)) were synthesized from reactions of AlEt(2)Br(THF) with ArMgBr. In CDCl(3) solution, the (1)H NMR spectra showed that AlArEt(2)(THF) compounds exist as a mixture of four species of formulas of AlAr(x)Et(3-x) (THF) (x = 0, 1, 2, or 3). AlArEt(2)(THF) compounds were found to be superior and atom-economic reagents for asymmetric aryl additions to organic carbonyls. Aryl additions of AlArEt(2)(THF) to aldehydes catalyzed by the titanium(IV) complex of (R)-H(8)-BINOL were efficient with a short reaction time of 1 h, affording aryl addition products as exclusive or main products in high yields and excellent enantioselectivities of up to 98% ee. Although ethyl additions to aldehydes occurred in minor extent, this study demonstrates that increasing the amount of AlArEt(2)(THF) from 1.2 to 1.4 or to 1.6 equiv significantly improved the aryl addition products of up to >99%. On the other hand, asymmetric arylations of AlArEt(2)(THF) to ketones employing a titanium(IV) catalyst of (S)-BINOL produced optically active tertiary alcohols exclusively in excellent enantioselectivities of up to 94% ee.

  3. H2 blockers

    MedlinePlus

    Peptic ulcer disease - H2 blockers; PUD - H2 blockers; Gastroesophageal reflux - H2 blockers; GERD - H2 blockers ... provider about your symptoms. If you have a peptic ulcer, your provider may prescribe H2 blockers along with ...

  4. Crystal structures of two 6-(2-hy-droxy-benzo-yl)-5H-thia-zolo[3,2-a]pyrimidin-5-ones.

    PubMed

    Gomes, Ligia R; Low, John Nicolson; Cagide, Fernando; Borges, Fernanda

    2015-07-01

    The title compounds, 6-(2-hy-droxy-benz-yl)-5H-thia-zolo[3,2-a]pyrimidin-5-one, C13H8N2O3S, (1), and 6-(2-hy-droxy-benz-yl)-3-methyl-5H-thia-zolo[3,2-a]pyrimidin-5-one, C14H10N2O3S, (2), were synthesized when a chromone-3-carb-oxy-lic acid, activated with (benzotriazol-1-yl-oxy)tripyrrolidinyl-phospho-nium hexa-fluorido-phosphate (PyBOP), was reacted with a primary heteromamine. Instead of the expected amidation, the unusual title thia-zolo-pyrimidine-5-one derivatives were obtained serendipitously and a mechanism of formation is proposed. Both compounds present an intra-molecular O-H⋯O hydrogen bond, which generates an S(6) ring. The dihedral angles between the heterocyclic moiety and the 2-hydroxybenzoyl ring are 55.22 (5) and 46.83 (6)° for (1) and (2), respectively. In the crystals, the mol-ecules are linked by weak C-H⋯O hydrogen bonds and π-π stacking inter-actions.

  5. Laboratory IR Detection of H2O, CO2 in Ion-Irradiated Ices Relevant to Europa

    NASA Technical Reports Server (NTRS)

    Moore, Marla H.; Hudson, R. L.

    1999-01-01

    Hydrogen peroxide has been identified on Europa (Carlson et al. 1999) based in part on the 3.50 micron absorption feature observed in Galileo NIMS spectra. The observed feature was fitted with laboratory reflectance spectra of H2O + H2O2. Since condensed phase molecules on Europa (H2O, CO2, SO2, and H2O2) are bombarded with a significant flux of energetic particles (H(+), O(n+), S(n+) and e-), we examined the proton irradiation of H2O at 80 K and the conditions for the IR detection of H2O2 near 3.5 microns. Contrary to expectations, H2O2 was not detected if pure H2O ice was irradiated at 80 K. This was an unexpected result since, H2O2 was detected if pure H2O was irradiated at 18 K. We find, however, that if H2O ice contains either O2 or CO2 then H2O2 is detected after irradiation at 80 K (Moore and Hudson, 1999). The source of O2 for the H2O ice on Europa could come from surface interactions with the tenuous oxygen atmosphere, or from the bombardment of the surface by O(n+).

  6. Ionizing Collisions of Electrons with Radical Species OH, H2 O2 and HO2; Theoretical Calculations

    NASA Astrophysics Data System (ADS)

    Joshipura, K. N.; Pandya, S. H.; Vaishnav, B. G.; Patel, U. R.

    2016-05-01

    In this paper we present our calculated total ionization cross sections (TICS) of electron impact on radical targets OH, H2 O2 and HO2 at energies from threshold to 2000 eV. Reactive species such as these pose difficulties in measurements of electron scattering cross sections. No measured data have been reported in this regard except an isolated TICS measurement on OH radical, and hence the present work on the title radicals hold significance. These radical species are present in an environment in which water molecules undergo dissociation (neutral or ionic) in interactions with photons or electrons. The embedding environments could be quite diverse, ranging from our atmosphere to membranes of living cells. Ionization of OH, H2 O2 or HO2 can give rise to further chemistry in the relevant bulk medium. Therefore, it is appropriate and meaningful to examine electron impact ionization of these radicals in comparison with that of water molecules, for which accurate da are available. For the OH target single-centre scattering calculations are performed by starting with a 4-term complex potential, that describes simultaneous elastic plus inelastic scattering. TICS are obtained from the total inelastic cross sections in the complex scattering potential - ionization contribution formalism , a well established method. For H2 O2 and HO2 targets, we employ the additivity rule with overlap or screening corrections. Detailed results will be presented in the Conference.

  7. Atomically Thin Al2O3 Films for Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Wilt, Jamie; Gong, Youpin; Gong, Ming; Su, Feifan; Xu, Huikai; Sakidja, Ridwan; Elliot, Alan; Lu, Rongtao; Zhao, Shiping; Han, Siyuan; Wu, Judy Z.

    2017-06-01

    Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M -I interface and a significantly enhanced barrier height compared to thermal AlOx . These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions.

  8. Laser photoelectron spectroscopy of MnH - 2, FeH - 2, CoH - 2, and NiH - 2: Determination of the electron affinities for the metal dihydrides

    NASA Astrophysics Data System (ADS)

    Miller, Amy E. S.; Feigerle, C. S.; Lineberger, W. C.

    1986-04-01

    The laser photoelectron spectra of MnH-2, FeH-2, CoH-2, and NiH-2 and the analogous deuterides are reported. Lack of vibrational structure in the spectra suggests that all of the dihydrides and their negative ions have linear geometries, and that the transitions observed in the spectra are due to the loss of nonbonding d electrons. The electron affinities for the metal dihydrides are determined to be 0.444±0.016 eV for MnH2, 1.049±0.014 eV for FeH2, 1.450±0.014 eV for CoH2, and 1.934±0.008 eV for NiH2. Electronic excitation energies are provided for excited states of FeH2, CoH2, and NiH2. Electron affinities and electronic excitation energies for the dideuterides are also reported. A limit on the electron affinity of CrH2 of ≥2.5 eV is determined. The electron affinities of the dihydrides directly correlate with the electron affinities of the high-spin states of the monohydrides, and with the electron affinities of the metal atoms. These results are in agreement with a qualitative model developed for bonding in the monohydrides.

  9. Degradation of paracetamol by advance oxidation processes using modified reticulated vitreous carbon electrodes with TiO(2) and CuO/TiO(2)/Al(2)O(3).

    PubMed

    Arredondo Valdez, H C; García Jiménez, G; Gutiérrez Granados, S; Ponce de León, C

    2012-11-01

    The degradation of paracetamol in aqueous solutions in the presence of hydrogen peroxide was carried out by photochemistry, electrolysis and photoelectrolysis using modified 100 pores per inch reticulated vitreous carbon electrodes. The electrodes were coated with catalysts such as TiO(2) and CuO/TiO(2)/Al(2)O(3) by electrophoresis followed by heat treatment. The results of the electrolysis with bare reticulated vitreous carbon electrodes show that 90% paracetamol degradation occurs in 4 h at 1.3 V vs. SCE, forming intermediates such as benzoquinone and carboxylic acids followed by their complete mineralisation. When the electrolysis was carried out with the modified electrodes such as TiO(2)/RVC, 90% degradation was achieved in 2 h while with CuO/TiO(2)/Al(2)O(3)/RVC, 98% degradation took only 1 h. The degradation was also carried out in the presence of UV reaching 95% degradation with TiO(2)/RVC/UV and 99% with CuO/TiO(2)/Al(2)O(3)/RVC/UV in 1 h. The reactions were followed by spectroscopy UV-Vis, HPLC and total organic carbon analysis. These studies show that the degradation of paracetamol follows a pseudo-first order reaction kinetics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Computational materials design of negative effective U system in the hole-doped Delafossite of CuAlO2, AgAlO2 and AuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Fukushima, Tetsuya; Uede, Hiroki; Katayama-Yoshida, Hiroshi

    2015-03-01

    In order to realize the super-high-TC superconductors (TC>1,000K) based on the general design rules for the negative Ueff system, we have performed computational materials design for theUeff<0 system in the hole-doped two-dimensional (2D) Delafossite CuAlO2, AgAlO2 and AuAlO2 from the first principles. We find the interesting chemical trend of TC in 2D and 3D systems; where the TC increases exponentially in the weak coupling regime (|Ueff (-0.44eV)|< W(2eV), W is the band width) for hole-doped CuFeS2, then the TC goes through a maximum when |Ueff (-4.88eV, -4.14eV)| ~ W (2.8eV, 3.5eV) for hole-doped AgAlO2 and AuAlO2, and the TC decreases with increasing |Ueff|in strong coupling regime, where |Ueff (-4.53eV)|> W(1.7eV) for hole-doped CuAlO2

  11. Influence of temperature on AC conductivity of nanocrystalline CuAlO2

    NASA Astrophysics Data System (ADS)

    Prakash, T.

    2012-07-01

    Nanocrystalline CuAlO2 was synthesized by mechanical alloying of Cu2O and α-Al2O3 powders in the molar ratio of 1:1 for 20 h in toluene medium with tungsten carbide balls and vials using planetary ball mill. The ball milling was carried out at 300 rpm with a ball to powder weight ratio of 10:1 and then annealed at 1373 K in a platinum crucible for 20 h to get CuAlO2 phase with average crystallite size 45 nm. Complex impedance spectroscopic measurement in the frequency region 1 Hz to 10 MHz between the temperatures 333 to 473 K was carried out for nanocrystalline CuAlO2 sample. The obtained complex impedance data was analyzed for AC conductivities, DC and AC conductivities correlations and crossover frequencies ( f co ). The BNN (Barton, Nakajima and Namikawa) relation was applied to understand the correlation between DC and AC conductivities. The observed experimental results were discussed in the paper.

  12. Reduced electron back-injection in Al2O3/AlOx/Al2O3/graphene charge-trap memory devices

    NASA Astrophysics Data System (ADS)

    Lee, Sejoon; Song, Emil B.; Min Kim, Sung; Lee, Youngmin; Seo, David H.; Seo, Sunae; Wang, Kang L.

    2012-12-01

    A graphene charge-trap memory is devised using a single-layer graphene channel with an Al2O3/AlOx/Al2O3 oxide stack, where the ion-bombarded AlOx layer is intentionally added to create an abundance of charge-trap sites. The low dielectric constant of AlOx compared to Al2O3 reduces the potential drop in the control oxide Al2O3 and suppresses the electron back-injection from the gate to the charge-storage layer, allowing the memory window of the device to be further extended. This shows that the usage of a lower dielectric constant in the charge-storage layer compared to that of the control oxide layer improves the memory performance for graphene charge-trap memories.

  13. [Composition diversity of lactic acid bacteria (LAB) community Al2 used for alfalfa silage].

    PubMed

    Wang, Xiao-Fen; Gao, Li-Juan; Yang, Hong-Yan; Wang, Wei-Dong; Cui, Zong-Jun

    2006-10-01

    Alfalfa is the most important forage grass that is difficult to ensile for good quality. Using silage inoculants are the important way for preservation of alfalfa silage. Through continuous restricted subcultivation, a lactic acid bacteria (LAB) community Al2 was selected from well-fermented alfalfa silage. Plate isolation and Denaturing Gradient Gel Electrophoresis (DGGE), construction of 16S rDNA clone library were used to identify the composition diversity of Al2 community, with 7 strains detected, and they were all belonged to Lactobacillus. The composition ratios of the 7 strains were 55.21%, 19.79%, 14.58%, 3.13%, 3.13%, 3.13%, 1.03% according to 16S rDNA clone library. Al2-1i, Al2-2i, Al2-3i, corresponding to L. plantarum (99.9%), L. kimchii (99.4%), L. farciminis (100%) were detected by plate isolation. Among 3 isolates, Al2-1i had the highest ability of dropping pH and producing lactic acid, and the amount of lactic acid was reach to 18g/L at 24h cultivated in MRS media. The ability of dropping pH and producing lactic acid of Al2-3i was the lowest. From DGGE profiles, the dominant strains in Al2 community were L. plantarum and L. kimchii. L. plantarum was detected during the whole process, and L. kimchii was detected in the later phase.

  14. Doping of AlH3 with alkali metal hydrides for enhanced decomposition kinetics

    NASA Astrophysics Data System (ADS)

    Sandrock, Gary; Reilly, James

    2005-03-01

    Aluminum hydride, AlH3, has inherently high gravimetric and volumetric properties for onboard vehiclular hydrogen storage (10 wt% H2 and 0.148 kg H2/L). Yet it has been widely neglected because of its kinetic limitations for low-temperature H2 desorption and the thermodynamic difficulties associated with recharging. This paper considers a scenario whereby doped AlH3 is decomposed onboard and recharged offboard. In particular, we show that particle size control and doping with small levels of alkali metal hydrides (e.g., LiH) results in accelerated H2 desorption rates nearly high enough to supply fuel-cell and ICE vehicles. The mechanism of enhanced H2 desorption is associated with the formation of alanate windows (e.g., LiAlH4) between the AlH3 particles and the external gas phase. These alanate windows can be doped with Ti to further enhance transparency, even to the point of accomplishing slow decomposition of AlH3 at room temperature. It is highly likely 2010 gravimetric and volumetric vehicular system targets (6 wt% H2 and 0.045 kg/L) can be met with AlH3. But a new, low-cost method of offboard regeneration of spent Al back to AlH3 is yet needed.

  15. Metamagnetism, sign reversal and low temperature magnetocaloric effect in single-crystalline EuV2Al20

    NASA Astrophysics Data System (ADS)

    Ramesh Kumar, K.; Nair, Harikrishnan S.; Bhattacharyya, A.; Thamizhavel, A.; Strydom, André M.

    2018-04-01

    The Frank-Kasper cage compound EuV2Al20 crystallizes in the cubic structure with Fd 3 ‾ m space group and exhibits unusual magnetic and transport properties. The system undergoes an antiferromagnetic transition below 5.6 K wherein the Eu2+ moments are aligned anti-parallel along 〈1 1 1〉 direction and the system exhibits a weak metamagetic transition at the field of 1 T. Arrott plots (M2 vs H / M) show a "S" shaped variation in the low fields below TN and the plausible reason for the occurrence of negative slope is discussed. Isothermal magnetic entropy change is estimated from both magnetization and heat capacity measurements invoking the Maxwell's thermodynamic relations. Temperature variation of ΔSm showed a weak negative minimum and a sign reversal at the field value of 1 T due to field induced metamagnetic transition. Universal master curve is constructed by rescaling the ΔSm vs T curves in the context of analysing the nature of the magnetic transition.

  16. Ca2 Al2 SiO7 :Ce3+ phosphors for mechanoluminescence dosimetry.

    PubMed

    Tiwari, Geetanjali; Brahme, Nameeta; Sharma, Ravi; Bisen, D P; Sao, Sanjay Kumar; Sahu, Ishwar Prasad

    2016-12-01

    A series of Ce 3+ ion single-doped Ca 2 Al 2 SiO 7 phosphors was synthesized by a combustion-assisted method at an initiating temperature of 600 °C. The samples were annealed at 1100 °C for 3 h and their X-ray diffraction patterns confirmed a tetragonal structure. The phase structure, particle size, surface morphology and elemental analysis were analyzed using X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy techniques. Thermoluminescence (TL) intensity increased with increase in ultraviolet (UV) light exposure time up to 15 min. With further increase in the UV irradiation time the TL intensity decreases. The increase in TL intensity indicates that trap concentration increased with UV exposure time. A broad peak at 121 °C suggested the existence of a trapping level. The peak of mechanoluminescence (ML) intensity versus time curve increased linearly with increasing impact velocity of the moving piston. Mechanoluminescence intensity increased with increase in UV irradiation time up to 15 min. Under UV-irradiation excitation, the TL and ML emission spectra of Ca 2 Al 2 SiO 7 :Ce 3+ phosphor showed the characteristic emission of Ce 3+ peaking at 400 nm (UV-violet) and originating from the Ce 3+ transitions of 5d-4f ( 2 F 5/2 and 2 F 7/2 ). The photoluminescence (PL) emission spectra for Ca 2 Al 2 SiO 7 :Ce 3+ were similar to the ML/TL emission spectra. The mechanism of ML excitation and the suitability of the Ca 2 Al 2 SiO 7 :Ce 3+ phosphor for radiation dosimetry are discussed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Orientation relationship of eutectoid FeAl and FeAl2.

    PubMed

    Scherf, A; Kauffmann, A; Kauffmann-Weiss, S; Scherer, T; Li, X; Stein, F; Heilmaier, M

    2016-04-01

    Fe-Al alloys in the aluminium range of 55-65 at.% exhibit a lamellar microstructure of B2-ordered FeAl and triclinic FeAl 2 , which is caused by a eutectoid decomposition of the high-temperature Fe 5 Al 8 phase, the so-called ∊ phase. The orientation relationship of FeAl and FeAl 2 has previously been studied by Bastin et al. [ J. Cryst. Growth (1978 ▸), 43 , 745] and Hirata et al. [ Philos. Mag. Lett. (2008 ▸), 88 , 491]. Since both results are based on different crystallographic data regarding FeAl 2 , the data are re-evaluated with respect to a recent re-determination of the FeAl 2 phase provided by Chumak et al. [ Acta Cryst. (2010 ▸), C 66 , i87]. It is found that both orientation relationships match subsequent to a rotation operation of 180° about a 〈112〉 crystallographic axis of FeAl or by applying the inversion symmetry of the FeAl 2 crystal structure as suggested by the Chumak data set. Experimental evidence for the validity of the previously determined orientation relationships was found in as-cast fully lamellar material (random texture) as well as directionally solidified material (∼〈110〉 FeAl || solidification direction) by means of orientation imaging microscopy and global texture measurements. In addition, a preferential interface between FeAl and FeAl 2 was identified by means of trace analyses using cross sectioning with a focused ion beam. On the basis of these habit planes the orientation relationship between the two phases can be described by ([Formula: see text]01) FeAl || (114)[Formula: see text] and [111] FeAl || [1[Formula: see text]0][Formula: see text]. There is no evidence for twinning within FeAl lamellae or alternating orientations of FeAl lamellae. Based on the determined orientation and interface data, an atomistic model of the structure relationship of Fe 5 Al 8 , FeAl and FeAl 2 in the vicinity of the eutectoid decomposition is derived. This model is analysed with respect to the strain which has to be

  18. 2. GORGE HIGH DAM. UNUSUALLY HIGH WATER IN GORGE LAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GORGE HIGH DAM. UNUSUALLY HIGH WATER IN GORGE LAKE DUE TO THE COMBINATION OF UNIT 24 BEING DOWN FOR REWINDING AND TWO UNITS COMING ON LINE UNEXPECTEDLY AT ROSS POWERHOUSE LED TO WATER FLOWING OVER THE SPILLGATES. EACH GATE IF 47 FEET WIDE AND 50 FEET HIGH, 1989. - Skagit Power Development, Gorge High Dam, On Skagit River, 2.9 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  19. Second CLIPS Conference Proceedings, volume 2

    NASA Technical Reports Server (NTRS)

    Giarratano, Joseph (Editor); Culbert, Christopher J. (Editor)

    1991-01-01

    Papers presented at the 2nd C Language Integrated Production System (CLIPS) Conference held at the Lyndon B. Johnson Space Center (JSC) on 23-25 September 1991 are documented in these proceedings. CLIPS is an expert system tool developed by the Software Technology Branch at NASA JSC and is used at over 4000 sites by government, industry, and business. During the three days of the conference, over 40 papers were presented by experts from NASA, Department of Defense, other government agencies, universities, and industry.

  20. Study of the H2O/Al2O3 Interface and the Acting Mechanism of Water in the Working Electrolyte

    NASA Astrophysics Data System (ADS)

    Jia, Ming; Li, Qiang; Li, Lixiang; Cao, Liang; Yang, Juan; Zhou, Xiangyang; Ai, Liang

    2018-04-01

    Using a working electrolyte containing mixed solvents of ethylene glycol and N,N-dimethylformamide, this paper presents a study of the reactions on the H2O/Al2O3 interface with sum frequency vibrational spectroscopy and the effects of different water content on the performance of the working electrolyte and an aluminum electrolytic capacitor and summarizes the rules of the variations in the performance parameters of the working electrolyte and aluminum electrolytic capacitor with respect to the water content. The results demonstrate that, when the water content is increased from 2.5 to 15%, the conductivity of the working electrolyte increased by 930 μS/cm, and the sparking voltage decreased by 27 V. Also, the increased water content causes lower oxidation efficiency and lower thermal stability. The leakage current of the aluminum electrolytic capacitor after high-temperature storage increases with an increase in the water content, and the attenuation rate of capacitor's the low-temperature capacitance decreases with an increase in the water content.

  1. Reappraising the structures and distribution of metabolites from black aspergilli containing uncommon 2-benzyl-4H-pyran-4-one and 2-benzylpyridin-4(1H)-one systems

    PubMed Central

    Henrikson, Jon C.; Ellis, Trevor K.; King, Jarrod B.; Cichewicz, Robert H.

    2011-01-01

    To date, natural products containing 2-benzyl-4H-pyran-4-one and 2-benzylpyridin-4(1H)-one substructures have been encountered in relatively few fungi outside of the black aspergilli clade. While exploring the occurrence of these compounds among Aspergillus spp., it was determined that the structures of the unusual furopyrrols tensidols A and B (5 and 6) and JBIR-86 and JBIR-87 (9 and 10) were incorrect and should be reassigned as 2-benzyl-4H-pyran-4-ones (7, 8, 11e, and 12, respectively). The origin of the unique N-phenyl groups in the 2-benzylpyridin-4(1H)-ones nygerones A and B (1 and 2) was also examined and it was established that N-phenylamides added to the culture medium were suitable substrates for generating these metabolites; however, this phenomenon remained limited to a single fungus in our collection (Aspergillus niger ATCC 1015). A variety of 2-benzyl-4H-pyran-4-ones and 2-benzylpyridin-4(1H)-ones were detected among the black aspergilli, but only pestalamide B (13) was found in all eleven of the tested strains. These metabolites, as well as a group of synthetic analogues demonstrated weak antifungal activity against several Candida strains, Aspergillus flavus, and Aspergillus fumigatus. PMID:21854017

  2. Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst.

    PubMed

    Nagaoka, Katsutoshi; Eboshi, Takaaki; Takeishi, Yuma; Tasaki, Ryo; Honda, Kyoko; Imamura, Kazuya; Sato, Katsutoshi

    2017-04-01

    Ammonia has been suggested as a carbon-free hydrogen source, but a convenient method for producing hydrogen from ammonia with rapid initiation has not been developed. Ideally, this method would require no external energy input. We demonstrate hydrogen production by exposing ammonia and O 2 at room temperature to an acidic RuO 2 /γ-Al 2 O 3 catalyst. Because adsorption of ammonia onto the catalyst is exothermic, the catalyst bed is rapidly heated to the catalytic ammonia autoignition temperature, and subsequent oxidative decomposition of ammonia produces hydrogen. A differential calorimeter combined with a volumetric gas adsorption analyzer revealed a large quantity of heat evolved both with chemisorption of ammonia onto RuO 2 and acidic sites on the γ-Al 2 O 3 and with physisorption of multiple ammonia molecules.

  3. Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst

    PubMed Central

    Nagaoka, Katsutoshi; Eboshi, Takaaki; Takeishi, Yuma; Tasaki, Ryo; Honda, Kyoko; Imamura, Kazuya; Sato, Katsutoshi

    2017-01-01

    Ammonia has been suggested as a carbon-free hydrogen source, but a convenient method for producing hydrogen from ammonia with rapid initiation has not been developed. Ideally, this method would require no external energy input. We demonstrate hydrogen production by exposing ammonia and O2 at room temperature to an acidic RuO2/γ-Al2O3 catalyst. Because adsorption of ammonia onto the catalyst is exothermic, the catalyst bed is rapidly heated to the catalytic ammonia autoignition temperature, and subsequent oxidative decomposition of ammonia produces hydrogen. A differential calorimeter combined with a volumetric gas adsorption analyzer revealed a large quantity of heat evolved both with chemisorption of ammonia onto RuO2 and acidic sites on the γ-Al2O3 and with physisorption of multiple ammonia molecules. PMID:28508046

  4. SrAl2O4:Eu2+ (1%) luminescence under UV, VUV and electron beam excitation

    NASA Astrophysics Data System (ADS)

    Nazarov, M.; Mammadova, S.; Spassky, D.; Vielhauer, S.; Abdullayeva, S.; Huseynov, A.; Jabbarov, R.

    2018-01-01

    This paper reports the luminescence properties of nanosized SrAl2O4:Eu2+ (1%) phosphors. The samples were prepared by combustion method at 600 °C, followed by annealing of the resultant combustion ash at 1000 °C in a reductive (Ar + H2) atmosphere. X-ray diffraction (XRD), photo luminescence (PL) and cathodoluminescence (CL) analysis and thermal stimulated luminescence (TSL) method were applied to characterize the phosphor. For the first time a peak at 375 nm was observed in CL spectra of SrAl2O4:Eu2+ (1%) nanophosphors. Luminescence excitation spectra analysis have shown that this peak is related to crystal defects. Also in TSL curve one strong peak was observed in the region above room temperature (T = 325 K), which is attributed to lattice defects, namely oxygen vacancies. A green LED was fabricated by the combination of the SrAl2O4:Eu2+ (1%) nanosized phosphor and a 365 nm UV InGaN chip.

  5. Calculations on the rate of the ion-molecule reaction between NH3(+) and H2

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Defrees, D. J.; Talbi, D.; Pauzat, F.; Koch, W.

    1991-01-01

    The rate coefficient for the ion-molecule reaction NH3(+) + H2 yields NH4(+) + H has been calculated as a function of temperature with the use of the statistical phase space approach. The potential surface and reaction complex and transition state parameters used in the calculation have been taken from ab initio quantum chemical calculations. The calculated rate coefficient has been found to mimic the unusual temperature dependence measured in the laboratory, in which the rate coefficient decreases with decreasing temperature until 50-100 K and then increases at still lower temperatures. Quantitative agreement between experimental and theoretical rate coefficients is satisfactory given the uncertainties in the ab initio results and in the dynamics calculations. The rate coefficient for the unusual three-body process NH3(+) + H2 + He yields NH4(+) + H + He has also been calculated as a function of temperature and the result found to agree well with a previous laboratory determination.

  6. Role of CeO2 promoter in NiO/α-Al2O3 catalyst for dry reforming of methane

    NASA Astrophysics Data System (ADS)

    Loc, Luu Cam; Phuong, Phan Hong; Tri, Nguyen

    2017-09-01

    A series of Ni/α-Al2O3 (NiAl) catalysts promoted by CeO2 was prepared by co-impregnation methods with content of (NiO+CeO2) being in the range of 10-30 wt%. The NiO:CeO2 weight ratio was fluctuated at 1:1, 1:2 and 1:3. Several techniques, including X-ray powder diffraction (XRD), Hydrogen temperature-programmed reduction (H2-TPR), and transmission electron microscopy (TEM) were used to investigate catalysts' physico-chemical properties. The activity of these catalysts in dry reforming of CH4 was investigated at temperature range of 550-800 °C. The results revealed that the most suitable CeO2 promoted Ni catalyst contained 20 wt% of (NiO+CeO2) and NiO:CeO2 weight ratio of 1:2. The best catalytic performance of catalyst [20(1Ni2Ce)Al] due to a better reducibility resulted in a higher amount of free small particle NiO. At 700 °C and CH4:CO2 molar ratio of 1:1, the conversion of CH4 and CO2 on the most suitable CeO2 promoted Ni catalyst reached 86% and 67%, respectively; H2 and CO selectivity of 90% and H2:CO molar ratio of 1.15 were obtained. Being similar to MgO [1], promoter CeO2 could improve catalytic activity of Ni/α-Al2O3 catalyst at a lower range of temperature. Besides, both MgO and CeO2 had a great impact on improving coke resistance of Ni catalysts. At higher temperature, the role of CeO2 as well as MgO in preventing coke formation on catalyst was clarified by temperature-programmed oxidation (TPO) technique. Coke amount formed after 30-h TOS on 20(1Ni2Ce) catalyst was found to be 22.18 mgC/gcat, being less than on non-promoted catalyst (36.75 mgC/gcat), but more than on 20(1Ni2Mg)Al one (5.25 mgC/gcat).

  7. Elevated Temperature Solid Particle Erosion Performance of Plasma-Sprayed Co-based Composite Coatings with Additions of Al2O3 and CeO2

    NASA Astrophysics Data System (ADS)

    Nithin, H. S.; Desai, Vijay; Ramesh, M. R.

    2017-11-01

    In this paper, investigation into solid particle erosion behavior of atmospheric plasma-sprayed composite coating of CoCrAlY reinforced with Al2O3 and CeO2 oxides on Superni 76 at elevated temperature of 600 °C is presented. Alumina particles are used as erodent at two impact angles of 30° and 90°. The microstructure, porosity, hardness, toughness and adhesion properties of the as-sprayed coatings are studied. The effects of temperature and phase transformation in the coatings during erosion process are analyzed using XRD and EDS techniques. Optical profilometer is used for accurate elucidation of erosion volume loss. CoCrAlY/CeO2 coating showed better erosion resistance with a volume loss of about 50% of what was observed in case of CoCrAlY/Al2O3/YSZ coating. Lower erosion loss is observed at 90° as compared to 30° impact angle. The erosion mechanism evaluated using SEM micrograph revealed that the coatings experienced ductile fracture exhibiting severe deformation with unusual oxide cracks. Reinforced metal oxides provide shielding effect for erodent impact, enabling better erosion resistance. The oxidation of the coating due to high-temperature exposure reforms erosion process into oxidation-modified erosion process.

  8. TES/Aura L2 Water Vapor (H2O) Limb V6 (TL2H2OL)

    Atmospheric Science Data Center

    2018-03-01

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access: OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  9. Boosted surface acidity in TiO2 and Al2O3-TiO2 nanotubes as catalytic supports

    NASA Astrophysics Data System (ADS)

    Camposeco, R.; Castillo, S.; Mejía-Centeno, Isidro; Navarrete, J.; Nava, N.

    2015-11-01

    In this study, titanate nanotubes (NT) and titanate nanotubes with alumina (NT-Al) were studied as solid acid catalytic supports to show the relationship between the kind of acidity and catalytic activity. The supports were characterized by XRD, TEM, FTIR, XPS, and tested in the SCR-NO with NH3. It was found that the amount of Brönsted acid sites was maintained and the Lewis acid sites were significantly affected by the addition of alumina (1, 3, 5 and 10 wt.%); such acidity was higher than that of the titanate nanotubes (NT) by two-fold. To confirm the formation of titanate nanotubes and titanate nanotubes with alumina, transmission electron microscopy (TEM) was used. X-ray diffraction (XRD) revealed the formation of the H2Ti4O9·H2O phase. All NT and NT-Al supports presented catalytic activity to remove NO with NH3 under lean conditions, confirming the presence of an important amount of Brönsted and Lewis acid sites in both NT and NT-Al supports.

  10. First principles study of gallium cleaning for hydrogen-contaminated α-Al2O3(0001) surfaces.

    PubMed

    Yang, Rui; Rendell, Alistair P

    2013-05-15

    The use of gallium for cleaning hydrogen-contaminated Al2O3 surfaces is explored by performing first principles density functional calculations of gallium adsorption on a hydrogen-contaminated Al-terminated α-Al2O3(0001) surface. Both physisorbed and chemisorbed H-contaminated α-Al2O3(0001) surfaces with one monolayer (ML) gallium coverage are investigated. The thermodynamics of gallium cleaning are considered for a variety of different asymptotic products, and are found to be favorable in all cases. Physisorbed H atoms have very weak interactions with the Al2O3 surface and can be removed easily by the Ga ML. Chemisorbed H atoms form stronger interactions with the surface Al atoms. Bonding energy analysis and departure simulations indicate, however, that chemisorbed H atoms can be effectively removed by the Ga ML. Copyright © 2013 Wiley Periodicals, Inc.

  11. TES/Aura L2 Water Vapor (H2O) Limb V6 (TL2H2OLS)

    Atmospheric Science Data Center

    2018-03-01

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access:  OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  12. COS Observations of Molecular H2 at z = 0.248

    NASA Astrophysics Data System (ADS)

    Kruse, Ethan; Tumlinson, J.; Thom, C.; Sembach, K.

    2011-01-01

    We present HST/COS observations of a QSO sightline through the halo of two merging galaxies at z = 0.25 at impact parameter 90 kpc. This sightline presents the first example of strong H2 absorption features in our large COS survey of galaxy halo gas at low redshift (COS-Halos, Tumlinson et al.). COS spectra reveal a sub-DLA at z = 0.2478 which splits into two components separated by 70 km/s. One component appears to contain more high-ionization states and less neutral H I while the other favors neutral atoms and contains a strong H2 signature (J = 0-3) along with the majority of the H I. Aside from H2 we detect O I, N I and N II, Si II and Si III, and C II. We find a total H2 column density of N(H2) = 16.89 and an H2 fraction of f_{H2} = 0.0034. Fitting the unblended H2 lines from 0-0 to 15-0 to a curve of growth we find a best fit with b = 11.8 km s-1. Due to the full saturation of all Lyman lines, we are unable to separate the H I column density into the two components and therefore cannot get a direct metallicity for either cloud. However through Cloudy modelling we are able to estimate a H I column density and ionization correction in each component and therefore obtain an approximate metallicity through O I absorption. This system shows similar features to a portion of the Magellanic Stream studied by Sembach et al. 2006. Both sightlines have comparable H I and H2 columns, H2 excitation temperatures, and similar metallicities, suggesting this sightline could be a distant counterpart to the Magellanic Stream, perhaps stripped from an unseen companion galaxy to the two merger partners.

  13. A Layered Solution Crystal Growth Technique and the Crystal Structure of (C 6H 5C 2H 4NH 3) 2PbCl 4

    NASA Astrophysics Data System (ADS)

    Mitzi, D. B.

    1999-07-01

    Single crystals of the organic-inorganic perovskite (C6H5C2H4NH3)2PbCl4 have been grown at room temperature using a layered solution approach. The bottom solution layer, contained within a long straight tube, consists of PbCl2 dissolved in concentrated aqueous HCl. A less dense layer of methanol is carefully placed on top of the HCl/PbCl2 solution using a syringe. Finally, a stoichiometric quantity of C6H5C2H4NH2 (relative to the PbCl2) is added to the top of the column. As the layers slowly diffuse together, well-formed crystals of (C6H5C2H4NH3)2PbCl4 appear near the interface between the HCl/PbCl2 and C6H5C2H4NH2 solutions. The thick, plate-like crystals are well suited for X-ray crystallography studies. Room temperature intensity data were refined using a triclinic (Poverline1) cell (a=11.1463(3) Å, b=11.2181(3) Å, c=17.6966(5) Å, α= 99.173(1)°, β=104.634(1)°, γ=89.999(1)°, V=2111.8(1) Å3, Z=4, Rf/Rw=0.031/0.044). The organic-inorganic layered perovskite structure features well-ordered sheets of corner-sharing distorted PbCl6 octahedra separated by bilayers of phenethylammonium cations. Tilting and rotation of the PbCl6 octahedra within the perovskite sheets, coupled with organic cation ordering, leads to the unusual in-sheet 2ap×2ap superstructure, where ap is the lattice constant for the ideal cubic perovskite.

  14. Novel role of TRPV2 in promoting the cytotoxicity of H2O2-mediated oxidative stress in human hepatoma cells.

    PubMed

    Ma, Wenbo; Li, Caiyue; Yin, Shikui; Liu, Jingxin; Gao, Chao; Lin, Zuoxian; Huang, Rongqi; Huang, Jufang; Li, Zhiyuan

    2015-12-01

    Oxidative stress is important for the initiation and progression of cancers, which confers the cells with a survival advantage by inducing oxidative adaption and drug resistance. Therefore, developing strategies to promote oxidative stress-induced cytotoxicity could be important for cancer therapy. Herein, we found that H2O2-mediated oxidative stress increases TRPV2 expression in human hepatoma (HepG2 and Huh-7) cells. This occurred at the mRNA and protein levels in a dose-dependent manner. The significance of TRPV2 in promoting H2O2-induced cell death was demonstrated in gain and loss of function studies with overexpression and knockdown of TRPV2, respectively. Mechanistically, H2O2-induced cell death involves inhibition of pro-survival signaling proteins (Akt, Nrf2) and activation of pro-death signaling proteins (p38, JNK1). Overexpression of TRPV2 in H2O2-treated hepatoma cells aggravates the inhibition of Akt and Nrf2, while it enhances the activation of p38 and JNK1 at the early stage of cell death. Interestingly, increased expression of TRPV2 in HepG2 cells improved the efficacy of stress-associated chemicals to induce cell death. Our findings suggest that TRPV2 acts as an important enhancer for H2O2-induced cytotoxicity. This process occurred by the inhibition of Akt and Nrf2 as well as the early activation of p38 and JNK1. These findings have important implications for inhibition of oxidative adaption and drug resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Unusual superconducting state at 49 K in electron-doped CaFe2As2 at ambient pressure

    PubMed Central

    Lv, Bing; Deng, Liangzi; Gooch, Melissa; Wei, Fengyan; Sun, Yanyi; Meen, James K.; Xue, Yu-Yi; Lorenz, Bernd; Chu, Ching-Wu

    2011-01-01

    We report the detection of unusual superconductivity up to 49 K in single crystalline CaFe2As2 via electron-doping by partial replacement of Ca by rare-earth. The superconducting transition observed suggests the possible existence of two phases: one starting at 49 K, which has a low critical field < 4 Oe, and the other at 21 K, with a much higher critical field > 5 T. Our observations are in strong contrast to previous reports of doping or pressurizing layered compounds AeFe2As2 (or Ae122), where Ae = Ca, Sr, or Ba. In Ae122, hole-doping has been previously observed to generate superconductivity with a transition temperature (Tc) only up to 38 K and pressurization has been reported to produce superconductivity with a Tc up to 30 K. The unusual 49 K phase detected will be discussed. PMID:21911404

  16. Mineral storage of CO2/H2S gas mixture injection in basaltic rocks

    NASA Astrophysics Data System (ADS)

    Clark, D. E.; Gunnarsson, I.; Aradottir, E. S.; Oelkers, E. H.; Sigfússon, B.; Snæbjörnsdottír, S. Ó.; Matter, J. M.; Stute, M.; Júlíusson, B. M.; Gíslason, S. R.

    2017-12-01

    Carbon capture and storage is one solution to reducing CO2 emissions in the atmosphere. The long-term geological storage of buoyant supercritical CO2 requires high integrity cap rock. Some of the risk associated with CO2 buoyancy can be overcome by dissolving CO2 into water during its injection, thus eliminating its buoyancy. This enables injection into fractured rocks, such as basaltic rocks along oceanic ridges and on continents. Basaltic rocks are rich in divalent cations, Ca2+, Mg2+ and Fe2+, which react with CO2 dissolved in water to form stable carbonate minerals. This possibility has been successfully tested as a part of the CarbFix CO2storage pilot project at the Hellisheiði geothermal power plant in Iceland, where they have shown mineralization occurs in less than two years [1, 2]. Reykjavik Energy and the CarbFix group has been injecting a mixture of CO2 and H2S at 750 m depth and 240-250°C since June 2014; by 1 January 2016, 6290 tons of CO2 and 3530 tons of H2S had been injected. Once in the geothermal reservoir, the heat exchange and sufficient dissolution of the host rock neutralizes the gas-charged water and saturates the formation water respecting carbonate and sulfur minerals. A thermally stable inert tracer was also mixed into the stream to monitor the subsurface transport and to assess the degree of subsurface carbonation and sulfide precipitation [3]. Water and gas samples have been continuously collected from three monitoring wells and geochemically analyzed. Based on the results, mineral saturation stages have been defined. These results and tracer mass balance calculations are used to evaluate the rate and magnitude of CO2 and H2S mineralization in the subsurface, with indications that mineralization of carbon and sulfur occurs within months. [1] Gunnsarsson, I., et al. (2017). Rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur. Manuscript submitted for publication. [2] Matter, J., et al. (2016). Rapid

  17. Terminal NiII-OH/-OH2 complexes in trigonal bipyramidal geometries derived from H2O.

    PubMed

    Lau, Nathanael; Sano, Yohei; Ziller, Joseph W; Borovik, A S

    2017-03-29

    The preparation and characterization of two Ni II complexes are described, a terminal Ni II -OH complex with the tripodal ligand tris[(N)-tertbutylureaylato)-N-ethyl)]aminato ([H 3 buea] 3- ) and a terminal Ni II -OH 2 complex with the tripodal ligand N , N ', N ″-[2,2',2″-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzenesulfonamido) ([MST] 3- ). For both complexes, the source of the -OH and -OH 2 ligand is water. The salts K 2 [Ni II H 3 buea(OH)] and NMe 4 [Ni II MST(OH 2 )] were characterized using perpendicular-mode X-band electronic paramagnetic resonance, Fourier transform infrared, UV-visible spectroscopies, and its electrochemical properties were evaluated using cyclic voltammetry. The solid state structures of these complexes determined by X-ray diffraction methods reveal that they adopt a distorted trigonal bipyramidal geometry, an unusual structure for 5-coordinate Ni II complexes. Moreover, the Ni II -OH and Ni II -OH 2 units form intramolecular hydrogen bonding networks with the [H 3 buea] 3- and [MST] 3- ligands. The oxidation chemistry of these complexes was explored by treating the high-spin Ni II compounds with one-electron oxidants. Species were formed with S = 1/2 spin ground states that are consistent with formation of monomeric Ni III species. While the formation of Ni III -OH complexes cannot be ruled out, the lack of observable O-H vibrations from the putative Ni-OH units suggest the possibility that other high valent Ni species are formed.

  18. Effect of pH and aging time on the kinetic dissociation of 243Am(III) from humic acid-coated gamma-Al2O3: a chelating resin exchange study.

    PubMed

    Wang, Xiangke; Chen, Changlun; Du, Jinzhou; Tan, Xiaoli; Di, Xu; Yu, Shaoming

    2005-09-15

    The chelating resin was studied to assess its influence on metal availability and mobility in the environment. The association of organic-inorganic colloid-borne trace elements was investigated in this work. The radionuclide 243Am(III) was chosen as the representative and chemical homologue for trivalent lanthanide and actinide ions present in radioactive nuclear waste. The kinetic dissociation behavior of 243Am(III) from humic acid-coated gamma-Al2O3 was studied at pH values of 4.0 +/- 0.1, 5.0 +/- 0.2, and 6.0 +/- 0.2 with a contact time of 2 days after the addition of a chelating cation exchanger resin. The concentrations of the components were: 243Am(III) 3.0 x 10(-7) mol/L, gamma-Al2O3 0.5 g/L, HA 10 mg/L (pH 4.0 +/- 0.1, 5.0 +/- 0.2, and 6.0 +/- 0.2) and 50 mg/L (pH 6.0 +/- 0.2), respectively. The kinetics of dissociation of 243Am(III) after different equilibration time with humic acid-coated gamma-Al2O3 was also investigated at pH 5.0 +/- 0.2. The experiments were carried out in air and at ambient temperature. The results suggest that the fraction of irreversible bonding of radionuclides to HA-coated Al2O3 increases with increasing pH and is independent of aging time. The assumption of two different 243Am(III)-HA-Al2O3 species, with "fast" and "slow" dissociation kinetics, is required to explain the experimental results. 243Am(III) species present on HA-Al2O3 colloids moves from the "fast" to the "slow" dissociating sites with the increase of aging time.

  19. On the role of the termolecular reactions 2O2 + H22HO2 and 2O2 + H2H + HO2 + O2 in formation of the first radicals in hydrogen combustion: ab initio predictions of energy barriers.

    PubMed

    Monge-Palacios, M; Rafatijo, Homayoon

    2017-01-18

    We have investigated the role of termolecular reactions in the early chemistry of hydrogen combustion. We performed molecular chemical dynamics simulations using ReaxFF in LAMMPS to identify potential initial reactions for a 1 : 4 mixture of H 2  : O 2 in the NVT ensemble at density 276.3 kg m -3 and ∼3000 K (∼4000 atm) and ∼4000 K (∼5000 atm), and then characterized the saddle points for those reactions using ab initio methods: CCSD(T) = FC/cc-pVTZ//MP2/6-31G, CCSD(T) = FULL/aug-cc-pVTZ//CCSD = FC/cc-pVTZ and CASSCF MP2/6-31G//MP2/6-31G. The main initial reaction is H 2 + O 2H + HO 2 , frequently occurring in the presence of a second O 2 as a third body; that is, 2O 2 + H 2H + HO 2 + O 2 . The second most frequent reaction is 2O 2 + H 22HO 2 . We found three saddle points on the triplet PES of these termolecular reactions: one for 2O 2 + H 2H + HO 2 + O 2 and two for 2O 2 + H 22HO 2 . In the latter case, one has a symmetric structure consistent with simultaneous formation of two HO 2 and the other corresponds to a bimolecular reaction between O 2 and H 2 that is "interrupted" by a second O 2 before going to completion. The classical barrier height of the symmetric saddle point for 2O 2 + H 22HO 2 is 49.8 kcal mol -1 . The barrier to H 2 + O 2H + HO 2 is 58.9 kcal mol -1 . The termolecular reaction will be competitive with H 2 + O 2H + HO 2 only at sufficiently high pressures.

  20. 18 CFR 300.2 - Informal conference.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS CONFIRMATION AND APPROVAL OF THE RATES OF FEDERAL POWER MARKETING ADMINISTRATIONS General Provisions § 300.2 Informal conference. The..., with respect to the appropriate form and content of such application. ...

  1. 18 CFR 300.2 - Informal conference.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS CONFIRMATION AND APPROVAL OF THE RATES OF FEDERAL POWER MARKETING ADMINISTRATIONS General Provisions § 300.2 Informal conference. The..., with respect to the appropriate form and content of such application. ...

  2. 18 CFR 300.2 - Informal conference.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS CONFIRMATION AND APPROVAL OF THE RATES OF FEDERAL POWER MARKETING ADMINISTRATIONS General Provisions § 300.2 Informal conference. The..., with respect to the appropriate form and content of such application. ...

  3. 18 CFR 300.2 - Informal conference.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS CONFIRMATION AND APPROVAL OF THE RATES OF FEDERAL POWER MARKETING ADMINISTRATIONS General Provisions § 300.2 Informal conference. The..., with respect to the appropriate form and content of such application. ...

  4. 18 CFR 300.2 - Informal conference.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS CONFIRMATION AND APPROVAL OF THE RATES OF FEDERAL POWER MARKETING ADMINISTRATIONS General Provisions § 300.2 Informal conference. The..., with respect to the appropriate form and content of such application. ...

  5. Effect of powder reactivity on fabrication and properties of NiAl/Al2O3 composite coated on cast iron using spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Beyhaghi, Maryam; Kiani-Rashid, Ali-Reza; Kashefi, Mehrdad; Khaki, Jalil Vahdati; Jonsson, Stefan

    2015-07-01

    Powder mixtures of Ni, NiO and Al are ball milled for 1 and 10 h. X-ray diffractometry and differential thermal analysis show that while ball milling for 1 h produced mechanically activated powder; 10 h ball milling produced NiAl and Al2O3 phases. Dense NiAl/Al2O3 composite coatings are formed on gray cast iron substrate by spark plasma sintering (SPS) technique. The effect of powder reactivity on microstructure, hardness and scratch hardness of NiAl/Al2O3 coatings after SPS is discussed. Results show that in the coating sample made of mechanically activated powder in situ synthesis of NiAl/Al2O3 composite coating is fulfilled and a thicker well-formed diffusion bond layer at the interface between coating and substrate is observed. The diffusion of elements across the bond layers and phase evolution in the bond layers were investigated. No pores or cracks were observed at the interface between coating layer and substrate in any of samples. Higher Vickers hardness and scratch hardness values in coating made of 10 h ball milled powder than in coating fabricated from 1 h ball milled powder are attributed to better dispersion of Al2O3 reinforcement particles in NiAl matrix and nano-crystalline structure of NiAl matrix. Scratched surface of coatings did not reveal any cracking or spallation at coating-substrate interface indicating their good adherence at test conditions.

  6. Studies on two-gap superconductivity in 2H-NbS2

    NASA Astrophysics Data System (ADS)

    Kačmarčík, J.; Pribulová, Z.; Marcenat, C.; Klein, T.; Rodière, P.; Cario, L.; Samuely, P.

    2010-12-01

    We present the ac-calorimetry measurements of superconducting 2H-NbS2 in the temperature range down to 0.6 K and magnetic fields up to 8 T. The temperature and magnetic field dependence of the electronic specific heat consistently indicate existence of two superconducting energy gaps in the system - one of them with the coupling ratio below the BCS weak-coupling limit and the other above that value. These results support previous findings by scanning tunneling microscopy and spectroscopy measurements [I. Guillamón, H. Suderow, S. Vieira, L. Cario, et al., Phys. Rev. Lett. 101 (2008) 166407] of two pronounced features in density of states related to a two-gap superconductivity in this system.

  7. Full-dimensional, high-level ab initio potential energy surfaces for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2} with application to hydrogen clathrate hydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homayoon, Zahra; Conte, Riccardo; Qu, Chen

    2015-08-28

    New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H{sub 2}(H{sub 2}O) two-body and H{sub 2}(H{sub 2}O){sub 2} three-body potentials. The database for H{sub 2}(H{sub 2}O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are comparedmore » to computationally faster ones obtained via “purified” symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H{sub 2}, H{sub 2}O, and (H{sub 2}O){sub 2}, to obtain full PESs for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2}. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H{sub 2}(H{sub 2}O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathrate hydrates, illustrated for H{sub 2}@(H{sub 2}O){sub 20}. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H{sub 2} from the calculated equilibrium structure.« less

  8. Novel 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives: a patent review (2008 - 2011).

    PubMed

    Ferreira, Vitor F; da Rocha, David R; da Silva, Fernando C; Ferreira, Patrícia G; Boechat, Núbia A; Magalhães, Jorge L

    2013-03-01

    The triazoles represent a class of five-membered heterocyclic compounds of great importance for the preparation of new drugs with diverse biological activities because they may present several structural variations with the same numbers of carbon and nitrogen atoms. Due to the success of various triazoles that entered the pharmaceutical market and are still being used in medicines, many companies and research groups have shown interest in developing new methods of synthesis and biological evaluation of potential uses for these compounds. In this review, the authors explored aspects of patents for the 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole families, including prototypes being considered in clinical studies between 2008 and 2011. The triazoles have been studied for over a century as an important class of heterocyclic compounds and still attract considerable attention due to their broad range of biological activities. More recently, there has been considerable interest in the development of novel triazoles with anti-inflammatory, antiplatelet, antimicrobial, antimycobacterial, antitumoral and antiviral properties and activity against several neglected diseases. This review emphasizes recent perspective and advances in the therapeutically active 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivative patents between 2008 and 2011, covering the development of new chemical entities and new pharmaceuticals. Many studies have focused on these compounds as target structures and evaluated them in several biological targets. The preparation of 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives brings to light several issues. There is a need to find new, more efficient preparations for these triazoles that take into consideration current issues in green chemistry, energy saving and sustainability. New diseases are discovered and new viruses and bacteria continue to challenge mankind, so it is imperative to find new prototypes for these

  9. Nano SnO 2-Al 2O 3 mixed oxide and SnO 2-Al 2O 3-carbon composite oxides as new and novel electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, M.; Venugopal, N.; Raja, K. Phani; Rao, M. Mohan

    New nano-materials like SnO 2-Al 2O 3 and SnO 2-Al 2O 3-carbon were synthesized by a single step hydrothermal method in searching for novel mixed oxides with high electrochemical double layer capacitance. A SnO 2-Al 2O 3-carbon sample was calcined at 600 °C and tested for its performance. The source of carbon was tetrapropyl ammonium hydroxide. The capacitive behavior of SnO 2 was compared to the performance of SnO 2-Al 2O 3, SnO 2-Al 2O 3-carbon and calcined SnO 2-Al 2O 3-carbon using the techniques of cyclic voltammetry, double potential step, chronopotentiometry and E-log I polarization. In 0.1 M NaCl solutions, SnO 2-Al 2O 3 gave the best performance with a value of 119 Fg -1 and cycled 1000 times. The nano-material mixed oxides were characterized by TEM, XRD, ICP-AES and SEM-EDAX.

  10. Electron Capture in Slow Collision of He^2++H : Revisited

    NASA Astrophysics Data System (ADS)

    Krstic, Ps

    2003-05-01

    Very early experimental data (Fite et al. al., Proc. R. Soc. A 268, 527 (1962)) for He^2++H, recent ORNL measurements for Ne^2+ + H and our theoretical estimates suggest that the electron capture cross sections for these strongly exoergic collision systems drop slower toward low collision energies than expected from previous theories. We perform a theoretical study to establish and understand the true nature of this controversy. The calculations are based on the Hidden Crossings MOCC method, augmented with rotational and turning point effects.

  11. Structural and morphological characterization of Mg{sub 0.8}Al{sub 0.2}(OH){sub 2}Cl{sub 0.2} hydrotalcite produced by mechanochemistry method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahami, Abbas, E-mail: fahami@txstate.edu; Beall, Gary W., E-mail: gb11@txstate.edu; Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589

    2016-01-15

    Chlorine intercalated Mg–Al layered double hydroxides (Mg–Al–Cl–LDH) with a chemical formula Mg{sub 0.8}Al{sub 0.2}(OH){sub 2}Cl{sub 0.2} were successfully produced by the one-step mechanochemistry method and subsequent water washing followed by drying in oven for 1 h at 80 °C. The samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT–IR), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), elemental mapping analysis, transmission electron microscopy (TEM), X-ray fluorescence (XRF), and the differential thermogravimetric analysis (DTGA). Results revealed that the structural characteristics of Mg–Al–Cl–LDH were affected strongly by milling time. At the beginning of milling (up to 1more » h), Hydrotalcite (HT) and Brucite were the dominant phases, while the progressive mechanical activation was completed as milling time increased, which resulted in the formation of nanostructured Mg–Al–Cl–LDH. Based on XRD and FTIR data, Mg{sub 0.8}Al{sub 0.2}(OH){sub 2}Cl{sub 0.2} with high purity was obtained at 5 h milling. The interlayer spacing of LDH is also strongly influenced by milling time so that it escalated from 7.737±0.001 to 8.005±0.002 (1–15 h) and then decreased to 7.937±0.001 for 20 h milled sample. Electron microscopic observation displayed that the final product had hexagonal platelet structure with lateral dimension of 20–100 nm. Therefore, the synthesis of Mg{sub 0.8}Al{sub 0.2}(OH){sub 2}Cl{sub 0.2} via mechanochemistry owing to simplicity and versatility can be a promising candidate for use in catalyst carriers, drug delivery, and gene delivery. - Graphical Abstract: TEM image of milled sample (Mg–Al–Cl–LDH). - Highlights: • Chlorine intercalated LDH was synthesized by a facile solid-state process. • Structural features of products were influenced strongly by the milling time. • XRD and FTIR spectra suggested predominant Mg

  12. Mouse HLA-DPA homologue H2-Pa: A pseudogene that maps between H2-Pb and H2-Oa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arimura, Y.; Koda, T.; Kishi, M.

    1996-12-31

    The major histocompatibility complex (MHC) class II subregion contains several subclasses of genes. The classical class II genes, HLA-DP, DQ, and DR homologues, present antigens directly to CD4{sup +} T cells. HLA-DM homologues facilitate the efficacy and transport of antigens to the cell surface by removing the CLIP peptides from the classical class II molecules. HLA-DNA/DOB homologues show unusual expression patterns and limited polymorphism, but their function is yet to be elucidated. 15 refs., 2 figs.

  13. Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang

    2014-01-01

    The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2 solutions is governed by coordination competition of Cl− and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+ both in a tetra­hedral coordination with Cl− and in an octa­hedral environment defined by five water mol­ecules and one Cl− shared with the [ZnCl4]2− unit. Thus, these two different types of Zn2+ cations form isolated units with composition [Zn2Cl4(H2O)5] (penta­aqua-μ-chlorido-tri­chlorido­di­zinc). The trihydrate {hexa­aqua­zinc tetra­chlorido­zinc, [Zn(H2O)6][ZnCl4]}, consists of three different Zn2+ cations, one of which is tetra­hedrally coordinated by four Cl− anions. The two other Zn2+ cations are each located on an inversion centre and are octa­hedrally surrounded by water mol­ecules. The [ZnCl4] tetra­hedra and [Zn(H2O)6] octa­hedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexa­aqua­zinc tetra­chlorido­zinc trihydrate, [Zn(H2O)6][ZnCl4]·3H2O}, consists of isolated octa­hedral [Zn(H2O)6] and tetra­hedral [ZnCl4] units, as well as additional lattice water mol­ecules. O—H⋯O hydrogen bonds between the water mol­ecules as donor and ZnCl4 tetra­hedra and water mol­ecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures. PMID:25552980

  14. Facile synthesis of flake-like TiO2/C nano-composites for photocatalytic H2 evolution under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Yan, Baolin; Zhou, Juan; Liang, Xiaoyu; Song, Kainan; Su, Xintai

    2017-01-01

    The production of H2 by photocatalytic water splitting has become a promising approach for clean, economical, and renewable evolution of H2 by using solar energy. In spite of tremendous efforts, the present challenge for materials scientists is to build a highly active photocatalytic system with high efficiency and low cost. Here we report a facile method for the preparation of TiO2/C nano-flakes, which was used as an efficient visible-light photocatalyst for H2 evolution. This composite material was prepared by using a phase-transfer strategy combined with salt-template calcination treatment. The results showed that anatase TiO2 nanoparticles with the diameter of ∼10 nm were uniformly dispersed on the carbon nano-flakes. In addition, the samples prepared at 600 °C (denoted as T600) endowed a larger surface area of 196 m2 g-1 and higher light absorption, resulting in enhanced photocatalytic activity. Further, the T600 product reached a high H2 production rate of 57.2 μmol h-1 under visible-light irradiation. This unusual photocatalytic activity arose from the positive synergetic effect between the TiO2 and carbon in this hybrid catalyst. This work highlights the potential of TiO2/C nano-flakes in the field of photocatalytic H2 evolution under visible-light irradiation.

  15. Observations of H2O in Titan's atmosphere with Herschel

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Lellouch, E.; Lara, L. M.; Courtin, R.; Hartogh, P.; Rengel, M.

    2012-04-01

    Disk averaged observations of several H2O far infrared lines in Titan’s atmosphere were performed with the Herschel Space Observatory, as part of the guaranteed time key program "Water and related chemistry in the Solar System" (HssO, see Hartogh et al 2011). Two instruments were used: (i) HIFI, a heterodyne instrument (R~ 106 ) in the sub-millimeter, which measured the H2O(110-101) rotational transition at 557 GHz on June 10 and Dec. 31, 2010 (ii) PACS, a photoconductor spectrometer (R~103) which measured three water lines at 108.1, 75.4 and 66.4 microns on June 22, 2010. Additional PACS measurements at 66.4 microns on Dec. 15 and 22, 2010 and on July 09, 2011, do not show any significant line intensity variation with time, nor between the leading/trailing sides (i.e. longitude). Spectra were analyzed with a line-by-line radiative transfer code accounting for spherical geometry (Moreno et al. 2011). This model considers the H2O molecular opacity from JPL catalog (Pickett et al. 1998) and also includes collision-induced opacities N2-N2, N2-CH4 and CH4-CH4 (Borysow and Frommhold 1986, 1987, Borysow and Tang 1993). Far infrared aerosol opacities derived by CIRS were included, following Anderson and Samuelson (2011) for their vertical distribution and spectral dependencies. Analysis of the 557 GHz narrow line (FWHM ~ 2 MHz) indicates that it originates at altitudes above 300 km, while lines measured with PACS probe mainly deeper levels (80-150 km). The HIFI and PACS observations are fitted simultaneously, considering a vertical distribution of H2O mixing ratio which follows a power law dependency q=q0(P/P0)n, where q0 is the mixing ratio at some reference pressure level P0, taken near the expected condensation level. Model fits will be presented, and compared with previously proposed H2O vertical distributions. We show in particular that both the steep profile proposed by Lara et al. (1996) (and adopted by Coustenis et al. (1998) to model the first detection of H2O

  16. Anisotropic electrical and lattice transport properties of ordered quaternary phases Cr2TiAlC2 and Mo2TiAlC2: A first principles study

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Ding, Y. C.; Xiao, B.; Cheng, Y. H.

    2016-11-01

    Electrical conductivities of Cr2TiAlC2 and Mo2TiAlC2 in a and c directions are calculated from semi-classic Boltzmann transport theory. The values are found to be σa = 5.68 ×105 S /m (6.56 ×105 S /m) and σc = 2.15 ×105 S /m (2.69 ×105 S /m) for Cr2TiAlC2 (Mo2TiAlC2) at 300 K. Using the phonon-mode Debye temperature and Slack-model, the lattice thermal conductivities in the two directions are also evaluated, and the values are κa = 18.71 W /m K (16.11 W/m K) and κc = 0.48 W /m K (0.25 W /m K) for Cr2TiAlC2 (Mo2TiAlC2) at room temperature. The anisotropy in lattice thermal conductivity is found to be stronger than that of electrical conductivity. The predicted Seebeck coefficients and thermoelectric figure of merit (ZT) indicate that they are poor thermoelectric materials. Due to the relatively high conductivities, they might be used to fabricate high temperature conductive components in aerospace industry. In addition, our results in a direction have the direct implications for the relevant properties of MXenes (Cr2TiC2 and Mo2TiC2), produced from their bulk phases.

  17. High pressure studies of A{sub 2}Mo{sub 3}O{sub 12} negative thermal expansion materials (A{sub 2}=Al{sub 2}, Fe{sub 2}, FeAl, AlGa)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Lindsay; Gadient, Jennifer; Gao, Xiaodong

    2016-05-15

    High pressure powder X-ray diffraction studies of several A{sub 2}Mo{sub 3}O{sub 12} materials (A{sub 2}=Al{sub 2}, Fe{sub 2}, FeAl, and AlGa) were conducted up to 6–7 GPa. All materials adopted a monoclinic structure under ambient conditions, and displayed similar phase transition behavior upon compression. The initial isotropic compressibility first became anisotropic, followed by a small but distinct drop in cell volume. These patterns could be described by a distorted variant of the ambient pressure polymorph. At higher pressures, a distinct high pressure phase formed. Indexing results confirmed that all materials adopted the same high pressure phase. All changes were reversiblemore » on decompression, although some hysteresis was observed. The similarity of the high pressure cells to previously reported Ga{sub 2}Mo{sub 3}O{sub 12} suggested that this material undergoes the same sequence of transitions as all materials investigated in this paper. It was found that the transition pressures for all phase changes increased with decreasing radius of the A-site cations. - Graphical abstract: Overlay of variable pressure X-ray diffraction data of Al{sub 2}Mo{sub 3}O{sub 12} collected in a diamond anvil cell. Both subtle and discontinuous phase transitions are clearly observed. - Highlights: • The high pressure behavior of A{sub 2}Mo{sub 3}O{sub 12} (A=Al, Fe, (AlGa), (AlFe)) was studied. • All compounds undergo the same sequence of pressure-induced phase transitions. • The phase transition pressures correlate with the average size of the A-site cation. • All transitions were reversible with hysteresis. • Previously studied Ga{sub 2}Mo{sub 3}O{sub 12} undergoes the same sequence of transitions.« less

  18. Quantification and kinetics of H2 generation during hydrothermal serpentinisation experiments

    NASA Astrophysics Data System (ADS)

    Castelain, Teddy; Fauguerolles, Colin; Villeneuve, Johan; Pichavant, Michel

    2013-04-01

    experiment, and relate H2 production with the mineralogical composition of products of the serpentinisation reaction. The possible influence of the oxidation of the Ti cell on the H2 production will be also checked by using a Au bag instead of a Ti cell. However, from our results, it appears that H2 generation via serpentinisation is surprisingly rapid. [1] ] J.-L. Charlou et al., Chem. Geol., 191, 2002. [2] C. Mével, C.R. Geosc., 335, 2003. [3] M. Cannat et al., Geophys. Mono. Series, 188, 2010. [4] D.G. Allen, and W.E. Jr Seyfried, Geochim. Cosmochim. Acta 67 (8), 2003. [5] M.E. Berndt, et al., Geology 24 (4), 1996. [6] W.E. Seyfried,et al., Geochim. Cosmochim. Acta 71, 2007.

  19. Evaluation of Ti-48Al-2Cr-2Nb Under Fretting Conditions

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.; Raj, Sai V.

    2001-01-01

    The fretting behavior of Ti-48Al-2Cr-2Nb (y-TiAl) in contact with the nickel-base superalloy 718 was examined in air at temperatures from 296 to 823 K (23 to 550 C). The interfacial adhesive bonds between Ti-48Al-2Cr-2Nb and superalloy 718 were generally stronger than the cohesive bonds within Ti-48Al-2Cr-2Nb. The failed Ti-48Al-2Cr-2Nb debris subsequently transferred to the superalloy 718. In reference experiments conducted with Ti-6Al-4V against superalloy 718 under identical fretting conditions, the degree of transfer was greater for Ti-6A1-4V than for Ti-48Al-2Cr-2Nb. Wear of Ti-48Al-2Cr-2Nb generally decreased with increasing fretting frequency. The increasing rate of oxidation at elevated temperatures led to a drop in wear at 473 K. However, fretting wear increased as the temperature was increased from 473 to 823 K. At 723 and 823 K, oxide film disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals.

  20. Effect of atomic layer deposition temperature on current conduction in Al{sub 2}O{sub 3} films formed using H{sub 2}O oxidant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiraiwa, Atsushi, E-mail: hiraiwa@aoni.waseda.jp, E-mail: qs4a-hriw@asahi-net.or.jp; Matsumura, Daisuke; Kawarada, Hiroshi, E-mail: kawarada@waseda.jp

    To develop high-performance, high-reliability gate insulation and surface passivation technologies for wide-bandgap semiconductor devices, the effect of atomic layer deposition (ALD) temperature on current conduction in Al{sub 2}O{sub 3} films is investigated based on the recently proposed space-charge-controlled field emission model. Leakage current measurement shows that Al{sub 2}O{sub 3} metal-insulator-semiconductor capacitors formed on the Si substrates underperform thermally grown SiO{sub 2} capacitors at the same average field. However, using equivalent oxide field as a more practical measure, the Al{sub 2}O{sub 3} capacitors are found to outperform the SiO{sub 2} capacitors in the cases where the capacitors are negatively biased andmore » the gate material is adequately selected to reduce virtual dipoles at the gate/Al{sub 2}O{sub 3} interface. The Al{sub 2}O{sub 3} electron affinity increases with the increasing ALD temperature, but the gate-side virtual dipoles are not affected. Therefore, the leakage current of negatively biased Al{sub 2}O{sub 3} capacitors is approximately independent of the ALD temperature because of the compensation of the opposite effects of increased electron affinity and permittivity in Al{sub 2}O{sub 3}. By contrast, the substrate-side sheet of charge increases with increasing ALD temperature above 210 °C and hence enhances the current of positively biased Al{sub 2}O{sub 3} capacitors more significantly at high temperatures. Additionally, an anomalous oscillatory shift of the current-voltage characteristics with ALD temperature was observed in positively biased capacitors formed by low-temperature (≤210 °C) ALD. This shift is caused by dipoles at the Al{sub 2}O{sub 3}/underlying SiO{sub 2} interface. Although they have a minimal positive-bias leakage current, the low-temperature-grown Al{sub 2}O{sub 3} films cause the so-called blisters problem when heated above 400 °C. Therefore, because of the absence of blistering

  1. Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance.

    PubMed

    Abdulagatov, A I; Yan, Y; Cooper, J R; Zhang, Y; Gibbs, Z M; Cavanagh, A S; Yang, R G; Lee, Y C; George, S M

    2011-12-01

    Al(2)O(3) and TiO(2) atomic layer deposition (ALD) were employed to develop an ultrathin barrier film on copper to prevent water corrosion. The strategy was to utilize Al(2)O(3) ALD as a pinhole-free barrier and to protect the Al(2)O(3) ALD using TiO(2) ALD. An initial set of experiments was performed at 177 °C to establish that Al(2)O(3) ALD could nucleate on copper and produce a high-quality Al(2)O(3) film. In situ quartz crystal microbalance (QCM) measurements verified that Al(2)O(3) ALD nucleated and grew efficiently on copper-plated quartz crystals at 177 °C using trimethylaluminum (TMA) and water as the reactants. An electroplating technique also established that the Al(2)O(3) ALD films had a low defect density. A second set of experiments was performed for ALD at 120 °C to study the ability of ALD films to prevent copper corrosion. These experiments revealed that an Al(2)O(3) ALD film alone was insufficient to prevent copper corrosion because of the dissolution of the Al(2)O(3) film in water. Subsequently, TiO(2) ALD was explored on copper at 120 °C using TiCl(4) and water as the reactants. The resulting TiO(2) films also did not prevent the water corrosion of copper. Fortunately, Al(2)O(3) films with a TiO(2) capping layer were much more resilient to dissolution in water and prevented the water corrosion of copper. Optical microscopy images revealed that TiO(2) capping layers as thin as 200 Å on Al(2)O(3) adhesion layers could prevent copper corrosion in water at 90 °C for ~80 days. In contrast, the copper corroded almost immediately in water at 90 °C for Al(2)O(3) and ZnO films by themselves on copper. Ellipsometer measurements revealed that Al(2)O(3) films with a thickness of ~200 Å and ZnO films with a thickness of ~250 Å dissolved in water at 90 °C in ~10 days. In contrast, the ellipsometer measurements confirmed that the TiO(2) capping layers with thicknesses of ~200 Å on the Al(2)O(3) adhesion layers protected the copper for ~80 days in

  2. 76 FR 5467 - Airworthiness Directives; Pilatus Aircraft Ltd. Models PC-6, PC-6-H1, PC-6-H2, PC-6/350, PC-6/350...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... models does not include a Chapter 04 in the Airworthiness Limitations Section (ALS). For PC-6 models other than B2-H2 and B2- H4, no ALS at all is included in the AMM. With the latest Revision 12 of the... other than B2-H2 and B2-H4, a new ALS document has been implemented as well. These documents include the...

  3. Unusual Characteristics of the DNA Binding Domain of Epigenetic Regulatory Protein MeCP2 Determine Its Binding Specificity

    PubMed Central

    2015-01-01

    The protein MeCP2 mediates epigenetic regulation by binding methyl-CpG (mCpG) sites on chromatin. MeCP2 consists of six domains of which one, the methyl binding domain (MBD), binds mCpG sites in duplex DNA. We show that solution conditions with physiological or greater salt concentrations or the presence of nonspecific competitor DNA is necessary for the MBD to discriminate mCpG from CpG with high specificity. The specificity for mCpG over CpG is >100-fold under these solution conditions. In contrast, the MBD does not discriminate hydroxymethyl-CpG from CpG. The MBD is unusual among site-specific DNA binding proteins in that (i) specificity is not conferred by the enhanced affinity for the specific site but rather by suppression of its affinity for generic DNA, (ii) its specific binding to mCpG is highly electrostatic, and (iii) it takes up as well as displaces monovalent cations upon DNA binding. The MBD displays an unusually high affinity for single-stranded DNA independent of modification or sequence. In addition, the MBD forms a discrete dimer on DNA via a noncooperative binding pathway. Because the affinity of the second monomer is 1 order of magnitude greater than that of nonspecific binding, the MBD dimer is a unique molecular complex. The significance of these results in the context of neuronal function and development and MeCP2-related developmental disorders such as Rett syndrome is discussed. PMID:24828757

  4. Expansion of antimonato polyoxovanadates with transition metal complexes: (Co(N3C5H15)2)2[{Co(N3C5H15)2}V15Sb6O42(H2O)]·5H2O and (Ni(N3C5H15)2)2[{Ni(N3C5H15)2}V15Sb6O42(H2O)]·8H2O.

    PubMed

    Antonova, Elena; Näther, Christian; Kögerler, Paul; Bensch, Wolfgang

    2012-02-20

    Two new polyoxovanadates (Co(N(3)C(5)H(15))(2))(2)[{Co(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·5H(2)O (1) and (Ni(N(3)C(5)H(15))(2))(2)[{Ni(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·8H(2)O (2) (N(3)C(5)H(15) = N-(2-aminoethyl)-1,3-propanediamine) were synthesized under solvothermal conditions and structurally characterized. In both structures the [V(15)Sb(6)O(42)(H(2)O)](6-) shell displays the main structural motif, which is strongly related to the {V(18)O(42)} archetype cluster. Both compounds crystallize in the triclinic space group P1 with a = 14.3438(4), b = 16.6471(6), c = 18.9186(6) Å, α = 87.291(3)°, β = 83.340(3)°, γ = 78.890(3)°, and V = 4401.4(2) Å(3) (1) and a = 14.5697(13), b = 15.8523(16), c = 20.2411(18) Å, α = 86.702(11)°, β = 84.957(11)°, γ = 76.941(11)°, and V = 4533.0(7) Å(3) (2). In the structure of 1 the [V(15)Sb(6)O(42)(H(2)O)](6-) cluster anion is bound to a [Co(N(3)C(5)H(15))(2)](2+) complex via a terminal oxygen atom. In the Co(2+)-centered complex, one of the amine ligands coordinates in tridentate mode and the second one in bidentate mode to form a strongly distorted CoN(5)O octahedron. Similarly, in compound 2 an analogous NiN(5)O complex is joined to the [V(15)Sb(6)O(42)(H(2)O)](6-) anion via the same attachment mode. A remarkable difference between the two compounds is the orientation of the noncoordinated propylamine group leading to intermolecular Sb···O contacts in 1 and to Sb···N interactions in 2. In the solid-state lattices of 1 and 2, two additional [M(N(3)C(5)H(15))(2)](2+) complexes act as countercations and are located between the [{M(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)](4-) anions. Between the anions and cations strong N-H···O hydrogen bonds are observed. In both compounds the clusters are stacked along the b axis in an ABAB fashion with cations and water molecules occupying the space between the clusters. Magnetic characterization demonstrates that the Ni(2+) and Co(2+) cations do not

  5. Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H{sub 2}O{sub 2} as foaming agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducman, V., E-mail: vilma.ducman@zag.si; Korat, L.

    Recent innovations in geopolymer technology have led to the development of various different types of geopolymeric products, including highly porous geopolymer-based foams, which are formed by the addition of foaming agents to a geopolymer fly-ash based matrix. These agents decompose, or react with the liquid matrix or oxygen in the matrix, resulting in the release of gases which form pores prior to the hardening of the gel. The hardened structure has good mechanical and thermal properties, and can therefore be used for applications in acoustic panels and in lightweight pre-fabricated components for thermal insulation purposes. This study presents the resultsmore » of the pore-forming process in the case when two different foaming agents, i.e. aluminium powder amounting to 0.07, 0.13 and 0.20 mass. % and H{sub 2}O{sub 2} amounting to 0.5, 1.0, 1.5 and 2.0 mass. %, were added to a fly-ash geopolymer matrix. The physical, mechanical, and microstructural properties of the thus obtained foams, and the effects of the type and amount of the added foaming agent, are presented and discussed. Highly porous structures were obtained in the case of both of the investigated foaming agents, with overall porosities up to 59% when aluminium powder was added, and of up 48% when H{sub 2}O{sub 2} was added. In the latter case, when 2% of the H{sub 2}O{sub 2} foaming agent was added, finer pores (with diameters up to 500 μm) occurred in the structure, whereas somewhat larger pores (some had diameters greater than 1 mm) occurred when the same amount of aluminium powder was added. The mechanical properties of the investigated foams depended on their porosity. In the case of highly porous structures a compressive strength of 3.3 MPa was nevertheless achieved for the samples containing 0.2% of aluminium powder, and 3.7 MPa for those containing 2.0% of H{sub 2}O{sub 2}. - Highlights: • Preparation of geopolymer foams based on fly ash with the addition of Al powder or H{sub 2}O{sub 2

  6. PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats.

    PubMed

    Yu, Zhenming; Zhu, Yongqing; Chen-Plotkin, Alice S; Clay-Falcone, Dana; McCluskey, Leo; Elman, Lauren; Kalb, Robert G; Trojanowski, John Q; Lee, Virginia M-Y; Van Deerlin, Vivianna M; Gitler, Aaron D; Bonini, Nancy M

    2011-03-29

    Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressive disease leading to paralysis and death. Recently, intermediate length polyglutamine (polyQ) repeats of 27-33 in ATAXIN-2 (ATXN2), encoding the ATXN2 protein, were found to increase risk for ALS. In ATXN2, polyQ expansions of ≥ 34, which are pure CAG repeat expansions, cause spinocerebellar ataxia type 2. However, similar length expansions that are interrupted with other codons, can present atypically with parkinsonism, suggesting that configuration of the repeat sequence plays an important role in disease manifestation in ATXN2 polyQ expansion diseases. Here we determined whether the expansions in ATXN2 associated with ALS were pure or interrupted CAG repeats, and defined single nucleotide polymorphisms (SNPs) rs695871 and rs695872 in exon 1 of the gene, to assess haplotype association. We found that the expanded repeat alleles of 40 ALS patients and 9 long-repeat length controls were all interrupted, bearing 1-3 CAA codons within the CAG repeat. 21/21 expanded ALS chromosomes with 3CAA interruptions arose from one haplotype (GT), while 18/19 expanded ALS chromosomes with <3CAA interruptions arose from a different haplotype (CC). Moreover, age of disease onset was significantly earlier in patients bearing 3 interruptions vs fewer, and was distinct between haplotypes. These results indicate that CAG repeat expansions in ATXN2 associated with ALS are uniformly interrupted repeats and that the nature of the repeat sequence and haplotype, as well as length of polyQ repeat, may play a role in the neurological effect conferred by expansions in ATXN2.

  7. Synthesis of furfural from xylose, xylan, and biomass using AlCl3·6H2O in biphasic media via xylose isomerization to xylulose.

    PubMed

    Yang, Yu; Hu, Chang-Wei; Abu-Omar, Mahdi M

    2012-02-13

    Furfural was prepared in high yields (75 %) from the reaction of xylose in a water-tetrahydrofuran biphasic medium containing AlCl(3)·6H2O and NaCl under microwave heating at 140 °C. The reaction profile revealed the formation of xylulose as an intermediate en route to the dehydration product (furfural). The reaction under these conditions reached completion in 45 min. The aqueous phase containing AlCl(3)·6H(2)O and NaCl could be recycled multiple times (>5) without any loss of activity or selectivity for furfural. Extension of this biphasic reaction system to include xylan as the starting material afforded furfural in 64 % yield. The use of corn stover, pinewood, switchgrass, and poplar gave furfural in 55, 38, 56, and 64 % yield, respectively, at 160 °C. Even though AlCl(3)·6H(2)O did not affect the conversion of crystalline cellulose, moderate yields of the by-product 5-hydroxymethylfurfural (HMF) were noted. The highest HMF yield of 42 % was obtained from pinewood. The coproduction of HMF and furfural from biomass was attributed to the weakening of the cellulose network in the biomass, as a result of hemicellulose hydrolysis. The multifunctional capacity of AlCl(3)·6H(2)O (hemicellulose hydrolysis, xylose isomerization, and xylulose dehydration) in combination with its ease of recyclability make it an attractive candidate/catalyst for the selective synthesis of furfural from various biomass feedstocks. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 48 CFR 42.503-2 - Postaward conference procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Postaward conference procedure. 42.503-2 Section 42.503-2 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT CONTRACT ADMINISTRATION AND AUDIT SERVICES Postaward Orientation 42.503-2 Postaward...

  9. Ab initio and transition state theory study of the OH + HO2H2O + O2(3Σg-)/O2(1Δg) reactions: yield and role of O2(1Δg) in H2O2 decomposition and in combustion of H2.

    PubMed

    Monge-Palacios, M; Sarathy, S Mani

    2018-02-07

    Reactions of hydroxyl (OH) and hydroperoxyl (HO 2 ) are important for governing the reactivity of combustion systems. We performed post-CCSD(T) ab initio calculations at the W3X-L//CCSD = FC/cc-pVTZ level to explore the triplet ground-state and singlet excited-state potential energy surfaces of the OH + HO 2H 2 O + O 2 ( 3 Σ g - )/O 2 ( 1 Δ g ) reactions. Using microcanonical and multistructural canonical transition state theories, we calculated the rate constant for the triplet and singlet channels over the temperature range 200-2500 K, represented by k(T) = 3.08 × 10 12 T 0.07  exp(1151/RT) + 8.00 × 10 12 T 0.32  exp(-6896/RT) and k(T) = 2.14 × 10 6 T 1.65  exp(-2180/RT) in cm 3 mol -1 s -1 , respectively. The branching ratios show that the yield of singlet excited oxygen is small (<0.5% below 1000 K). To ascertain the importance of singlet oxygen channel, our new kinetic information was implemented into the kinetic model for hydrogen combustion recently updated by Konnov (Combust. Flame, 2015, 162, 3755-3772). The updated kinetic model was used to perform H 2 O 2 thermal decomposition simulations for comparison against shock tube experiments performed by Hong et al. (Proc. Combust. Inst., 2013, 34, 565-571), and to estimate flame speeds and ignition delay times in H 2 mixtures. The simulation predicted a larger amount of O 2 ( 1 Δ g ) in H 2 O 2 decomposition than that predicted by Konnov's original model. These differences in the O 2 ( 1 Δ g ) yield are due to the use of a higher ab initio level and a more sophisticated methodology to compute the rate constant than those used in previous studies, thereby predicting a significantly larger rate constant. No effect was observed on the rate of the H 2 O 2 decomposition and on the flame speeds and ignition delay times of different H 2 -oxidizer mixtures. However, if the oxidizer is seeded with O 3 , small differences appear in the flame speed. Given that O 2 ( 1 Δ g ) is much more reactive than O

  10. Mars - Remote spectral identification of H2O frost and mineral hydrate

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.; Clark, R. N.; Mccord, T. B.

    1978-01-01

    A reflectance spectrum (0.62-2.6 microns) of Mars (integral disk) is obtained using a newly developed IR spectrometer at the 2.25 m telescope on Mauna Kea, Hawaii. Details of the instrument, observations, and data reduction are presented. Several distinct absorption features are evident that were apparently caused by H2O, but the positions and intensities of the features are quite unusual. In summary, the regolith is probably not as desiccated and dehydrated as the full disk reflectance spectrum and Viking soil analyses would suggest. The surface materials become desiccated and dehydrated as a result of solar UV effects and because of the relative adsorption and desorption rates during the strong diurnal cycling. There may be significant amounts of H2O at depth, and in the Solis Lacus region the H2O reservoir may extend to within a few centimeters of the surface. The Solis Lacus region may therefore be an important target for future Mars landing or sample return mission.

  11. Phylogeography of influenza A H5N1 clade 2.2.1.1 in Egypt

    PubMed Central

    2013-01-01

    Background Influenza A H5N1 has killed millions of birds and raises serious public health concern because of its potential to spread to humans and cause a global pandemic. While the early focus was in Asia, recent evidence suggests that Egypt is a new epicenter for the disease. This includes characterization of a variant clade 2.2.1.1, which has been found almost exclusively in Egypt. We analyzed 226 HA and 92 NA sequences with an emphasis on the H5N1 2.2.1.1 strains in Egypt using a Bayesian discrete phylogeography approach. This allowed modeling of virus dispersion between Egyptian governorates including the most likely origin. Results Phylogeography models of hemagglutinin (HA) and neuraminidase (NA) suggest Ash Sharqiyah as the origin of virus spread, however the support is weak based on Kullback–Leibler values of 0.09 for HA and 0.01 for NA. Association Index (AI) values and Parsimony Scores (PS) were significant (p-value < 0.05), indicating that dispersion of H5N1 in Egypt was geographically structured. In addition, the Ash Sharqiyah to Al Gharbiyah and Al Fayyum to Al Qalyubiyah routes had the strongest statistical support. Conclusion We found that the majority of routes with strong statistical support were in the heavily populated Delta region. In particular, the Al Qalyubiyah governorate appears to represent a popular location for virus transition as it represented a large portion of branches in both trees. However, there remains uncertainty about virus dispersion to and from this location and thus more research needs to be conducted in order to examine this. Phylogeography can highlight the drivers of H5N1 emergence and spread. This knowledge can be used to target public health efforts to reduce morbidity and mortality. For Egypt, future work should focus on using data about vaccination and live bird markets in phylogeography models to study their impact on H5N1 diffusion within the country. PMID:24325606

  12. Method of Preparing Monoclinic BaO.Al2O3.2SiO2

    DTIC Science & Technology

    Monoclinic celsian (BaO.Al2O3.2SiO2) is produced by heating a stoichiometric, powder mixture of BaCO3 (or BaC2O4), Al2O3, and SiO2 (preferably SiO2 gel) with monoclinic celsian seeds at from 1250 deg C to 1500 deg C.

  13. Growth mechanism of Al2O3 film on an organic layer in plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lee, J. Y.; Kim, D. W.; Kang, W. S.; Lee, J. O.; Hur, M.; Han, S. H.

    2018-01-01

    Differences in the physical and chemical properties of Al2O3 films on a Si wafer and a C x H y layer were investigated in the case of plasma-enhanced atomic layer deposition. The Al2O3 film on the Si had a sharper interface and lower thickness than the Al2O3 film on the C x H y . The amount of carbon-impurity near the interface was larger for Al2O3 on the C x H y than for Al2O3 on the Si. In order to understand these differences, the concentrations of Al, O, C, and Si atoms through the Al2O3 films were evaluated by using x-ray photoelectron spectroscopy (XPS) depth profiling. The emission intensities of CO molecule were analyzed for different numbers of deposition cycles, by using time-resolved optical emission spectroscopy (OES). Finally, a growth mechanism for Al2O3 on an organic layer was proposed, based on the XPS and OES results for the Si wafer and the C x H y layer.

  14. Predictions of thermomagnetic properties of Laves phase compounds: TbAl2, GdAl2 and SmAl2 performed with ATOMIC MATTERS MFA computation system

    NASA Astrophysics Data System (ADS)

    Michalski, Rafał; Zygadło, Jakub

    2018-04-01

    Recent calculations of properties of TbAl2 GdAl2 and SmAl2 single crystals, performed with our new computation system called ATOMIC MATTERS MFA are presented. We applied localized electron approach to describe the thermal evolution of Fine Electronic Structure of Tb3+, Gd3+ and Sm3+ ions over a wide temperature range and estimate Magnetocaloric Effect (MCE). Thermomagnetic properties of TbAl2, GdAl2 and SmAl2 were calculated based on the fine electronic structure of the 4f8, 4f7 and 4f5 electronic configuration of the Tb3+ and Gd3+ and Sm3+ ions, respectively. Our calculations yielded: magnetic moment value and direction; single-crystalline magnetization curves in zero field and in external magnetic field applied in various directions m(T,Bext); the 4f-electronic components of specific heat c4f(T,Bext); and temperature dependence of the magnetic entropy and isothermal entropy change with external magnetic field - ΔS(T,Bext). The cubic universal CEF parameters values used for all CEF calculations was taken from literature and recalculated for universal cubic parameters set for the RAl2 series: A4 = +7.164 Ka04 and A6 = -1.038 Ka06. Magnetic properties were found to be anisotropic due to cubic Laves phase C15 crystal structure symmetry. These studies reveal the importance of multipolar charge interactions when describing thermomagnetic properties of real 4f electronic systems and the effectiveness of an applied self-consistent molecular field in calculations for magnetic phase transition simulation.

  15. Full-dimensional quantum dynamics study of the H{sub 2} + C{sub 2}HH + C{sub 2}H{sub 2} reaction on an ab initio potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liuyang; University of Chinese Academy of Sciences, Beijing 100049; Shao, Kejie

    2016-05-21

    This work performs a time-dependent wavepacket study of the H{sub 2} + C{sub 2}HH + C{sub 2}H{sub 2} reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H{sub 2} + C{sub 2}H↔H + C{sub 2}H{sub 2}, H + C{sub 2}H{sub 2} → HCCH{sub 2}, and HCCH{sub 2} radial isomerization reaction regions. The reaction dynamics of H{sub 2} + C{sub 2}HH + C{sub 2}H{sub 2} are investigated using full-dimensional quantum dynamics method. The initial-state selected reactionmore » probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H{sub 2} vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C{sub 2}H slightly inhibits the reaction. The excitations of two stretching modes of C{sub 2}H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values.« less

  16. Higgs-mode radiance and charge-density-wave order in 2 H -NbSe2

    NASA Astrophysics Data System (ADS)

    Grasset, Romain; Cea, Tommaso; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Cario, Laurent; Benfatto, Lara; Méasson, Marie-Aude

    2018-03-01

    Despite being usually considered two competing phenomena, charge-density wave and superconductivity coexist in few systems, the most emblematic one being the transition-metal dichalcogenide 2 H -NbSe2 . This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp subgap mode emerging below the superconducting temperature is still under debate. In this work we use external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique, we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge-density-wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density wave and superconductivity in 2 H -NbSe2 involve mutual electronic degrees of freedom. These findings fill the knowledge gap on the electronic mechanisms at play in transition-metal dichalcogenides, a crucial step to fully exploit their properties in few-layer systems optimized for device applications.

  17. Experimental studies on equilibrium adsorption isosteres and determination of the thermodynamic quantities of polar media on alumina Al2O3

    NASA Astrophysics Data System (ADS)

    Yonova, Albena

    2017-03-01

    The present work is a revieif of theoretical and experimental study on the adsorption performance of the adsorbent Alumina (Al2O3) used in the adsorption system. An experimental investigation on the equilibrium adsorption isosteres at low pressure (< 1 atm) of working pairs Al2O3/H2O and Al2O3/C2H6O2 is carried out. The isovolume measurement method is adopted in the test setup to directly measure the saturated vapor pressures of working pairs at vapor-liquid equilibrium (dG=0 and dμi=0). Quantity adsorbed is determined from pressure, volume and temperature using gas law. The isosteric heat of adsorption is calculated from the slope of the plot of lnP versus 1/T different amounts of adsorbate onto adsorbent as follows: 0,01 vol% Al2O3/H2O; 0,03 vol% Al2O3/H2O; 0,1 vol% Al2O3/H2O; 0,01 vol% Al2O3/C2H6O2; 0,03 vol% Al2O3/C2H6O2; 0,1 vol% Al2O3/C2H6O2. This study shows that adsorption working pair Al2O3 C2H6O2 has better adsorption performances than those of the A2O3/H2O. Surface acidity! is a most important property! far both adsorption and catalysis and therefore is examined structure of active sites of alumina surface. Thermodynamic parameters such as isosteric heat of adsorption, isosteric enthalpy and entropy of adsorption are critical design variables in estimating the performance and predicting the mechanism of an adsorption process and are also one of the basic requirements for the characterization and optimization of an adsorption process

  18. Tribological Properties of Ti(Al,O)/Al2O3 Composite Coating by Thermal Spraying

    NASA Astrophysics Data System (ADS)

    Salman, Asma; Gabbitas, Brian; Cao, Peng; Zhang, Deliang

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity air fuel (HVAF) thermally sprayed wear resistant Ti(Al,O)/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting and dummy blocks aluminium extrusion. A feedstock of Ti(Al,O)/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity air-fuel (HVAF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The wear resistance of the coating was investigated by a tribometer using a spherical ended alumina pin as a counter body under dry and lubricating conditions. The results showed that composite coating has lower wear rate at high temperature than at room temperature without using lubricant. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  19. The H I-to-H2 Transition in a Turbulent Medium

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Burkhart, Blakesley; Sternberg, Amiel

    2017-07-01

    We study the effect of density fluctuations induced by turbulence on the H I/H2 structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H I/H2 balance calculations. We derive atomic-to-molecular density profiles and the H I column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H I/H2 density profiles are strongly perturbed in turbulent gas, the mean H I column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends on (a) the radiation intensity-to-mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H I PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H I in the Perseus molecular cloud. We show that a narrow observed H I PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.

  20. Back-clocking of Fe2+/Fe1+ spin states in a H2-producing catalyst by advanced EPR

    NASA Astrophysics Data System (ADS)

    Stathi, Panagiota; Mitrikas, George; Sanakis, Yiannis; Louloudi, Maria; Deligiannakis, Yiannis

    2013-10-01

    A mononuclear Fe-(P(PPh2)3) ((P(PPh2)3) = tris[2-diphenylphospino)ethyl]phosphine) catalyst was studied in situ under catalytic conditions using advanced electron paramagnetic resonance (EPR) techniques. Fe-(P(PPh2)3) efficiently catalyses H2 production using HCOOH as substrate. Dual-mode continuous-wave (CW) EPR, used to study the initial Fe2+(S = 2) state, shows that the complex is characterised by a - rather small - zero field splitting parameter Δ = 0.45 cm-1 and geff = 8.0. In the presence of HCOOH substrate the complex evolves and a unique Fe1+(S = 1/2) state is trapped. The Fe1+ atom is coordinated by four 31P nuclei in a pseudo-C3 symmetry. Only a small fraction of the Fe1+ spin density is delocalised onto the 31P atoms. Four-pulse electron spin echo envelope modulation (ESEEM) and two-dimensional hyperfine sublevel correlation spectroscopy (2D-HYSCORE) data reveal the existence of two types of 1H couplings. One corresponds to weak, purely dipolar coupling, tentatively assigned to phenyl protons. The most important is a - rather unusual - 1H coupling with negative Aiso (-2.75 MHz) and strong dipolar part (T = 5.5 MHz). This 1H is located on the pseudo-C3 symmetry axis of the Fe1+-(P(PPh2)3-HCOO- complex where one substrate molecule, formate anion, is coordinated on the Fe1+ atom.

  1. H2 Emission Nebulosity Associated with KH 15D

    NASA Astrophysics Data System (ADS)

    Tokunaga, A. T.; Dahm, S.; Gässler, W.; Hayano, Yutaka; Hayashi, Masahiko; Iye, Masanori; Kanzawa, Tomio; Kobayashi, Naoto; Kamata, Yukiko; Minowa, Yosuke; Nedachi, Ko; Oya, Shin; Pyo, Tae-Soo; Saint-Jacques, D.; Terada, Hiroshi; Takami, Hideki; Takato, Naruhisa

    2004-01-01

    An H2 emission filament is found in close proximity to the unique object KH 15D using the adaptive optics system of the Subaru Telescope. The morphology of the filament, the presence of spectroscopic outflow signatures observed by Hamilton et al., and the detection of extended H2 emission from KH 15D by Deming, Charbonneau, & Harrington suggest that this filament arises from shocked H2 in an outflow. The filament extends about 15" to the north of KH 15D. Based on data collected at Subaru Telescope, which is operated by the National AstronomiObservatory of Japan.

  2. Natural co-infection of influenza A/H3N2 and A/H1N1pdm09 viruses resulting in a reassortant A/H3N2 virus.

    PubMed

    Rith, Sareth; Chin, Savuth; Sar, Borann; Y, Phalla; Horm, Srey Viseth; Ly, Sovann; Buchy, Philippe; Dussart, Philippe; Horwood, Paul F

    2015-12-01

    Despite annual co-circulation of different subtypes of seasonal influenza, co-infections between different viruses are rarely detected. These co-infections can result in the emergence of reassortant progeny. We document the detection of an influenza co-infection, between influenza A/H3N2 with A/H1N1pdm09 viruses, which occurred in a 3 year old male in Cambodia during April 2014. Both viruses were detected in the patient at relatively high viral loads (as determined by real-time RT-PCR CT values), which is unusual for influenza co-infections. As reassortment can occur between co-infected influenza A strains we isolated plaque purified clonal viral populations from the clinical material of the patient infected with A/H3N2 and A/H1N1pdm09. Complete genome sequences were completed for 7 clonal viruses to determine if any reassorted viruses were generated during the influenza virus co-infection. Although most of the viral sequences were consistent with wild-type A/H3N2 or A/H1N1pdm09, one reassortant A/H3N2 virus was isolated which contained an A/H1N1pdm09 NS1 gene fragment. The reassortant virus was viable and able to infect cells, as judged by successful passage in MDCK cells, achieving a TCID50 of 10(4)/ml at passage number two. There is no evidence that the reassortant virus was transmitted further. The co-infection occurred during a period when co-circulation of A/H3N2 and A/H1N1pdm09 was detected in Cambodia. It is unclear how often influenza co-infections occur, but laboratories should consider influenza co-infections during routine surveillance activities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Oblique angle deposition-induced anisotropy in Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Brock, J.; Khan, M.; Eid, K. F.

    2018-06-01

    A series of Co2FeAl Heusler alloy films, fabricated on Si/SiO2 substrates by magnetron sputtering-oblique angle deposition technique, have been investigated by magnetization and transport measurements. The morphology and magnetic anisotropy of the films strongly depended on the deposition angle. While the film deposited at zero degree (i.e. normal incidence) did not show any anisotropy, the films deposited at higher angles showed unusually strong in-plane anisotropy that increased with deposition angle. The enhanced anisotropy was well-reflected in the direction-dependent magnetization and the coercivity of the films that increased dramatically from 30 Oe to 490 Oe. In a similar vein, the electrical resistivity of the films also increased drastically, especially for deposition angles larger than 60°. These anisotropic effects and their relation to the morphology of the films are discussed.

  4. Microstructure and properties of Ti-Al intermetallic/Al2O3 layers produced on Ti6Al2Mo2Cr titanium alloy by PACVD method

    NASA Astrophysics Data System (ADS)

    Sitek, R.; Bolek, T.; Mizera, J.

    2018-04-01

    The paper presents investigation of microstructure and corrosion resistance of the multi-component surface layers built of intermetallic phases of the Ti-Al system and an outer Al2O3 ceramic sub-layer. The layers were produced on a two phase (α + β) Ti6Al2Mo2Cr titanium alloy using the PACVD method with the participation of trimethylaluminum vapors. The layers are characterized by a high surface hardness and good corrosion, better than that of these materials in the starting state. In order to find the correlation between their structure and properties, the layers were subjected to examinations using optical microscopy, X-ray diffraction analysis (XRD), surface analysis by XPS, scanning electron microscopy (SEM), and analyses of the chemical composition (EDS). The properties examined included: the corrosion resistance and the hydrogen absorptiveness. Moreover growth of the Al2O3 ceramic layer and its influence on the residual stress distribution was simulated using finite element method [FEM]. The results showed that the produced layer has amorphous-nano-crystalline structure, improved corrosion resistance and reduces the permeability of hydrogen as compared with the base material of Ti6Al2Mo2Cr -titanium alloy.

  5. Crack-resistant Al2O3-SiO2 glasses.

    PubMed

    Rosales-Sosa, Gustavo A; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-04-07

    Obtaining "hard" and "crack-resistant" glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3 • 40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.

  6. Crack-resistant Al2O3-SiO2 glasses

    NASA Astrophysics Data System (ADS)

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-04-01

    Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.

  7. Rate and Selectivity Control in Thioether and Alkene Oxidation with H 2 O 2 over Phosphonate-Modified Niobium(V)-Silica Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornburg, Nicholas E.; Notestein, Justin M.

    Supported metal oxide catalysts are versatile materials for liquid-phase oxidations, including alkene epoxidation and thioether sulfoxidation with H2O2. Periodic trends in H2O2 activation was recently demonstrated for alkene epoxidation, highlighting Nb-SiO2 as a more active and selective catalyst than Ti-SiO2. Three representative catalysts are studied consisting of NbV, TiIV, and ZrIV on silica, each made through a molecular precursor approach that yields highly dispersed oxide sites, for thioanisole oxidation by H2O2. Initial rates trend Nb>Ti>>Zr, as for epoxidation, and Nb outperforms Ti for a number of other thioethers. In contrast, selectivity to sulfoxide vs. sulfone trends Ti>Nb>>Zr at all conversions.more » Modifying the Nb-SiO2 catalyst with phenylphosphonic acid does not completely remove sulfoxidation reactivity, as it did for photooxidation and epoxidation, and results in an unusual material active for sulfoxidation but neither epoxidation nor overoxidation to the sulfone.« less

  8. Modifying the Surface of γ-Al2 O3 with Y2 Sn2 O7 Pyrochlore: Monolayer Dispersion Behaviour of Composite Oxides.

    PubMed

    Xu, Xianglan; Liu, Fang; Tian, Jinshu; Peng, Honggen; Liu, Wenming; Fang, Xiuzhong; Zhang, Ning; Wang, Xiang

    2017-06-20

    To investigate the dispersion behaviour of composite oxides on supports, and to obtain better supports for Pd for CO oxidation, a series of Y 2 Sn 2 O 7 /Al 2 O 3 composite oxides with different Y 2 Sn 2 O 7 loadings were prepared by a deposition-precipitation method. XRD and X-ray photoelectron spectroscopic extrapolation methods revealed that, similar to single-component metal oxides, composite oxides can also disperse spontaneously on support surfaces to form a monolayer with a certain capacity. The monolayer dispersion capacity/threshold for Y 2 Sn 2 O 7 on the surface of γ-Al 2 O 3 is 0.109 mmol per 100 m 2 γ-Al 2 O 3 , corresponding to 7.2 wt % Y 2 Sn 2 O 7 loading. This is the first work to demonstrate monolayer dispersion of a composite oxide on a support. After combining Y 2 Sn 2 O 7 with γ-Al 2 O 3 , active oxygen species can be introduced onto the catalyst surfaces. Thus, the interaction between Pd and the support is strengthened, the dispersion of Pd is improved in comparison with the single-component Y 2 Sn 2 O 7 support, and a synergistic effect is induced between Pd and the composite support, which is beneficial to catalyst activity. By tuning the γ-Al 2 O 3 surface with different amounts of pyrochlore Y 2 Sn 2 O 7 , CO oxidation activity on 1 % Pd/Y 2 Sn 2 O 7 /Al 2 O 3 was improved. These findings may provide new insights into the design and preparation of effective supported noble metal catalysts with lower contents of noble metals. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural, optical, and thermal properties of MAX-phase Cr2AlB2

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hong; Cui, Hong-Ling; Zhang, Rui-Zhou

    2018-04-01

    First-principles calculations of the structural, optical, and thermal properties of Cr2AlB2 are performed using the pseudopotential plane-wave method within the generalized gradient approximation (GGA). Calculation of the elastic constant and phonon dispersion indicates that Cr2AlB2 is mechanically and thermodynamically stable. Analysis of the band structure and density of states indicates that Cr2AlB2 is metallic. The thermal properties under increasing temperature and pressure are investigated using the quasi-harmonic Debye model. The results show that anharmonic effects on Cr2AlB2 are important at low temperature and high pressure. The calculated equilibrium primitive cell volume is 95.91 Å3 at T = 300 K, P = 0 GPa. The ability of Cr2AlB2 to resist volume changes becomes weaker with increasing temperature and stronger with increasing pressure. Analysis of optical properties of Cr2AlB2 shows that the static dielectric function of Cr2AlB2 is 53.1, and the refractive index n 0 is 7.3. If the incident light has a frequency exceeding 16.09 eV, which is the plasma frequency of Cr2AlB2, Cr2AlB2 changes from metallic to dielectric material.

  10. Microwave dielectric properties of CaCu3Ti4O12-Al2O3 composite

    NASA Astrophysics Data System (ADS)

    Rahman, Mohd Fariz Ab; Abu, Mohamad Johari; Karim, Saniah Ab; Zaman, Rosyaini Afindi; Ain, Mohd Fadzil; Ahmad, Zainal Arifin; Mohamed, Julie Juliewatty

    2016-07-01

    (1-x)CaCu3Ti4O12 + (x)Al2O3 composite (0 ≤ x ≤0.25) was prepared via conventional solid-state reaction method. The fabrication of sample was started with synthesizing stoichiometric CCTO from CaCO3, CuO and TiO2 powders, then wet-mixed in deionized water for 24 h. The process was continued with calcined CCTO powder at 900 °C for 12 h before sintered at 1040 °C for 10 h. Next, the calcined CCTO powder with different amount of Al2O3 were mixed for 24 h, then palletized and sintered at 1040 °C for 10. X-ray diffraction analysis on the sintered samples showed that CCTO powder was in a single phase, meanwhile the trace of secondary peaks which belong to CaAl2O4 and Corundum (Al2O3) could be observed in the other samples Scanning electron microscopy analysis showed that the grain size of the sample is firstly increased with addition of Al2O3 (x = 0.01), then become smaller with the x > 0.01. Microwave dielectric properties showed that the addition of Al2O3 (x = 0.01) was remarkably reduced the dielectric loss while slightly increased the dielectric permittivity. However, further addition of Al2O3 was reduced both dielectric loss and permittivity at least for an order of magnitude.

  11. The Usability of Boric Acid as an Alternative Foaming Agent on the Fabrication of Al/Al2O3 Composite Foams

    NASA Astrophysics Data System (ADS)

    Yaman, Bilge; Onuklu, Eren; Korpe, Nese O.

    2017-09-01

    Pure Al and alumina (2, 5, 10 wt.% Al2O3)-added Al composite foams were fabricated through powder metallurgy technique, where boric acid (H3BO3) is employed as a new alternative foaming agent. It is aimed to determine the effects of boric acid on the foaming behavior and cellular structure and also purposed to develop the mechanical properties of Al foams by addition of Al2O3. Al and Al composite foams with porosity fraction in the range of 46-53% were achieved by sintering at 620 °C for 2 h. Cell morphology was characterized using a combination of stereomicroscope equipped with image analyzer and scanning electron microscopy. Microhardness values were measured via using Vickers indentation technique. Quasi-static compression tests were performed at strain rate of 10-3 s-1. Compressive strength and energy absorption of the composite foams enhanced not only by the increasing weight fraction of alumina, but also by the usage of boric acid which leads to formation of boron oxide (B2O3) acting as a binder in obtaining dense cell walls. The results revealed that the boric acid has outstanding potential as foaming agent in the fabrication of Al and Al composite foams by providing improved mechanical properties.

  12. Unusual 2:3:2 complex of DABCO mono-betaine with HCl and H 2O studied by X-ray diffraction, DFT calculations and spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Barczyński, P.; Dega-Szafran, Z.; Katrusiak, A.; Perdoch, W.; Szafran, M.

    2009-12-01

    DABCO mono-betaine (1,4-diazabicyclo[2.2.2]octane-1-acetate) forms a complex with HCl and water in the ratio 2:3:2. The crystals are triclinic, space group P1¯. Two non-equivalent molecules of protonated DABCO mono-betaines form a homoconjugated cation through the short and asymmetric O·H·O hydrogen bond of 2.470(3) Å. Two chloride anions are involved in the N-H···Cl hydrogen bonds of 3.049(2) and 3.023(3) Å. The third chloride anion is solvated by the water molecules. The molecules of bis(1,4-diazoniumbicyclo[2.2.2]octane-1-acetate) trihydrochloride dihydrate are linked into comb-like chains by the hydrogen bond formed between water molecules of the neighboring complexes; the O(W)-H···O(W) distance is 2.920(5) Å. FTIR spectrum shows several broad bands attributed to the νO-H, νN-H and νO·H·O vibrations. The structure of three bis(1,4-diazoniumbicyclo[2.2.2]octane-1-acetate) hydrochlorides are optimized at the B3LYP/6-31G(d,p) level of theory and a theoretical IR spectrum is calculated. The values of p Ka of DABCO, DABCO mono- and di-betaines are determined by the potentiometric titration of their hydrohalides.

  13. Performance characterization of CNTs and γ-Al2O3 supported cobalt catalysts in Fischer-Tropsch reaction

    NASA Astrophysics Data System (ADS)

    Ali, Sardar; Zabidi, Noor Asmawati Mohd; Subbarao, Duvvuri

    2014-10-01

    Catalysts were prepared via a wet impregnation method. Different physicochemical properties of the samples were revealed by transmission electron microscope (TEM), temperature programmed reduction (H2-TPR) and carbon dioxide desorption (CO2-desorption). Fischer-Tropsch reaction (FTS) was carried out in a fixed-bed microreactor at 220°C and 1 atm, with H2/ CO = 2v / v and space velocity, SV of 12L/g.h for 5 h. Various characterization techniques revealed that there was a stronger interaction between Co and Al2O3 support compared to that of CNTs support. CNTs support increased the reducibility and decreased Co particle size. A significant increase in % CO conversion and FTS reaction rate was observed over CNTs support compared to that of Co / Al2O3. Co/CNTs resulted in higher C5+ hydrocarbons selectivity compared to that of Co / Al2O3 catalyst. CNTs are a better support for Co compared to Al2O3.

  14. Negative charge trapping effects in Al{sub 2}O{sub 3} films grown by atomic layer deposition onto thermally oxidized 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilirò, Emanuela, E-mail: emanuela.schiliro@imm.cnr.it; Dipartimento di Scienze Chimiche, Università degli Studi di Catania, and INSTM udr Catania, viale Andrea Doria 6, 95125, Catania; Lo Nigro, Raffaella

    This letter reports on the negative charge trapping in Al{sub 2}O{sub 3} thin films grown by atomic layer deposition onto oxidized silicon carbide (4H-SiC). The films exhibited a permittivity of 8.4, a breakdown field of 9.2 MV/cm and small hysteresis under moderate bias cycles. However, severe electron trapping inside the Al{sub 2}O{sub 3} film (1 × 10{sup 12} cm{sup −2}) occurs upon high positive bias stress (>10 V). Capacitance-voltage measurements at different temperatures and stress conditions have been used to determine an activation energy of 0.1 eV. The results provide indications on the possible nature of the trapping defects and,more » hence, on the strategies to improve this technology for 4H-SiC devices.« less

  15. First principles Study on Transparent High-Tc Superconductivity in hole-doped Delafossite CuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi

    2012-02-01

    The CuAlO2 is the transparent p-type conductor without any intentional doping. Transparent superdoncutivity and high thermoelectric power are suggested in p-type CuAlO2 [1]. Katayama-Yoshida et al. proposed that it may cause a strong electron-phonon interaction and a superconductivity. But, the calculation of superconducting critical temperature Tc is not performed. We performed the first principles calculation about the Tc of hole-doped CuAlO2 by shifting the Fermi level rigidly. In lightly hole-doped CuAlO2, the Fermi level is located at Cu and O anti-bonding band. The electrons of this band strongly interact with the A1L1 phonon mode because the direction of O-Cu-O dumbbell is parallel to the oscillation direction of the A1L1 phonon mode. As a result, Tc of lightly hole-doped CuAlO2 is about 50 K. We also discuss the materials design to enhance the Tc based on the charge-excitation-induced negative effective U system.[4pt] [1] H. Katayama-Yoshida, T. Koyanagi, H. Funashima, H. Harima, A. Yanase: Solid State Communication 126 (2003) 135. [0pt] [2] A. Nakanishi and H. Katayama-Yoshida: Solid State Communication, in printing. (arXiv:1107.2477v3

  16. Atomistic simulation study of influence of Al2O3-Al interface on dislocation interaction and prismatic loop formation during nano-indentation on Al2O3-coated aluminum.

    PubMed

    Mishra, Srishti; Meraj, Md; Pal, Snehanshu

    2018-06-19

    A large-scale molecular dynamics (MD) simulation of nano-indentation was carried out to provide insight into the influence of the Al-Al 2 O 3 interface on dislocation evolution and deformation behavior of Al substrate coated with Al 2 O 3 thin film. Adaptive common neighbor analysis (a-CNA), centro-symmetry parameter (CSP) estimation, and dislocation extraction algorithm (DXA) were implemented to represent structural evolution during nano-indentation deformation. The absence of elastic regime was observed in the P-h curve for this simulated nano-indentation test of Al 2 O 3 thin film coated Al specimen. The displacement of oxygen atoms from Al 2 O 3 to Al partly through the interface greatly influences the plastic deformation behavior of the specimen during nano-indentation. Prismatic dislocation loops, which are formed due to pinning of Shockley partials (1/6 < 112>) by Stair-rod (1/6 < 110>) and Hirth dislocation (1/3 < 001>), were observed in all cases studied in this work. Pile-up of atoms was also observed and the extent of the pile-up was found to vary with the test temperature. A distorted stacking fault tetrahedron (SFT) is formed when a nano-indentation test is carried out at 100 K. The presence of a prismatic dislocation loop, SFT and dislocation forest caused strain hardening and, consequently, there is an increase in hardness as indentation depth increases. Graphical abstract Figure illustrates nano-indentation model set up along with load vs. depth curve and distorted stacking fault tetrahedron.

  17. Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3.

    PubMed

    Zhang, Guozhen; Wu, Hao; Chen, Chao; Wang, Ti; Yue, Jin; Liu, Chang

    2015-01-01

    Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3 dielectrics have been fabricated on indium tin oxide-coated polyethylene naphthalate substrates by atomic layer deposition. A capacitance density of 7.8 fF/μm(2) at 10 KHz was obtained, corresponding to a dielectric constant of 26.3. Moreover, a low leakage current density of 3.9 × 10(-8) A/cm(2) at 1 V has been realized. Bending test shows that the capacitors have better performances in concave conditions than in convex conditions. The capacitors exhibit an average optical transmittance of about 70% in visible range and thus open the door for applications in transparent and flexible integrated circuits.

  18. Hyperfine excitation of C2H and C2D by para-H2

    NASA Astrophysics Data System (ADS)

    Dumouchel, Fabien; Lique, François; Spielfiedel, Annie; Feautrier, Nicole

    2017-10-01

    The [C2H]/[C2D] abundance ratio is a useful tool to explore the physical and chemical conditions of cold molecular clouds. Hence, an accurate determination of both the C2H and C2D abundances is of fundamental interest. Due to the low density of the interstellar medium, the population of the energy levels of the molecules is not at local thermodynamical equilibrium. Thus, the accurate modelling of the emission spectra requires the calculation of collisional rate coefficients with the most abundant interstellar species. Hence, we provide rate coefficients for the hyperfine excitation of C2H and C2D by para-H2(j=0), the most abundant collisional partner in cold molecular clouds. State-to-state rate coefficients between the lowest levels were computed for temperatures ranging from 5 to 80 K. For both isotopologues, the Δj = ΔF propensity rule is observed. The comparison between C2H and C2D rate coefficients shows that differences by up to a factor of two exist, mainly for Δj = ΔN = 1 transitions. The new rate coefficients will significantly help in the interpretation of recent observed spectra.

  19. Disappearance of superconductivity in the solid solution between (Ca4Al2O6)(Fe2As2) and (Ca4Al2O6)(Fe2P2) superconductors.

    PubMed

    Shirage, Parasharam M; Kihou, Kunihiro; Lee, Chul-Ho; Takeshita, Nao; Eisaki, Hiroshi; Iyo, Akira

    2012-09-19

    The effect of alloying the two perovskite-type iron-based superconductors (Ca(4)Al(2)O(6))(Fe(2)As(2)) and (Ca(4)Al(2)O(6))(Fe(2)P(2)) was examined. While the two stoichiometric compounds possess relatively high T(c)'s of 28 and 17 K, respectively, their solid solutions of the form (Ca(4)Al(2)O(6))(Fe(2)(As(1-x)P(x))(2)) do not show superconductivity over a wide range from x = 0.50 to 0.95. The resultant phase diagram is thus completely different from those of other typical iron-based superconductors such as BaFe(2)(As,P)(2) and LaFe(As,P)O, in which superconductivity shows up when P is substituted for As in the non-superconducting "parent" compounds. Notably, the solid solutions in the non-superconducting range exhibit resistivity anomalies at temperatures of 50-100 K. The behavior is reminiscent of the resistivity kink commonly observed in various non-superconducting parent compounds that signals the onset of antiferromagnetic/orthorhombic long-range order. The similarity suggests that the suppression of the superconductivity in the present case also has a magnetic and/or structural origin.

  20. The H2A.Z/H2B dimer is unstable compared to the dimer containing the major H2A isoform.

    PubMed

    Placek, Brandon J; Harrison, L Nicole; Villers, Brooke M; Gloss, Lisa M

    2005-02-01

    The nucleosome, the basic fundamental repeating unit of chromatin, contains two H2A/H2B dimers and an H3/H4 tetramer. Modulation of the structure and dynamics of the nucleosome is an important regulation mechanism of DNA-based chemistries in the eukaryotic cell, such as transcription and replication. One means of altering the properties of the nucleosome is by incorporation of histone variants. To provide insights into how histone variants may impact the thermodynamics of the nucleosome, the stability of the heterodimer between the H2A.Z variant and H2B was determined by urea-induced denaturation, monitored by far-UV circular dichroism, intrinsic Tyr fluorescence intensity, and anisotropy. In the absence of stabilizing agents, the H2A.Z/H2B dimer is only partially folded. The stabilizing cosolute, trimethylamine-N-oxide (TMAO) was used to promote folding of the unstable heterodimer. The equilibrium stability of the H2A.Z/H2B dimer is compared to that of the H2A/H2B dimer. The equilibrium folding of both histone dimers is highly reversible and best described by a two-state model, with no detectable equilibrium intermediates populated. The free energies of unfolding, in the absence of denaturant, of H2A.Z/H2B and H2A/H2B are 7.3 kcal mol(-1) and 15.5 kcal mol(-1), respectively, in 1 M TMAO. The H2A.Z/H2B dimer is the least stable histone fold characterized to date, while H2A/H2B appears to be the most stable. It is speculated that this difference in stability may contribute to the different biophysical properties of nucleosomes containing the major H2A and the H2A.Z variant.

  1. Proceedings of the NASA Conference on Space Telerobotics, volume 2

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.

  2. Als2 mRNA splicing variants detected in KO mice rescue severe motor dysfunction phenotype in Als2 knock-down zebrafish.

    PubMed

    Gros-Louis, Francois; Kriz, Jasna; Kabashi, Edor; McDearmid, Jonathan; Millecamps, Stéphanie; Urushitani, Makoto; Lin, Li; Dion, Patrick; Zhu, Qinzhang; Drapeau, Pierre; Julien, Jean-Pierre; Rouleau, Guy A

    2008-09-01

    Recessive ALS2 mutations are linked to three related but slightly different neurodegenerative disorders: amyotrophic lateral sclerosis, hereditary spastic paraplegia and primary lateral sclerosis. To investigate the function of the ALS2 encoded protein, we generated Als2 knock-out (KO) mice and zAls2 knock-down zebrafish. The Als2(-/-) mice lacking exon 2 and part of exon 3 developed mild signs of neurodegeneration compatible with axonal transport deficiency. In contrast, zAls2 knock-down zebrafish had severe developmental abnormalities, swimming deficits and motor neuron perturbation. We identified, by RT-PCR, northern and western blotting novel Als2 transcripts in mouse central nervous system. These Als2 transcripts were present in Als2 null mice as well as in wild-type littermates and some rescued the zebrafish phenotype. Thus, we speculate that the newly identified Als2 mRNA species prevent the Als2 KO mice from developing severe neurodegenerative disease and might also regulate the severity of the motor neurons phenotype observed in ALS2 patients.

  3. A study of Pd/SO4/ZrO2/Al2O3 catalysts in n-hexane isomerization

    NASA Astrophysics Data System (ADS)

    Dzhikiya, O. V.; Smolikov, M. D.; Kazantsev, K. V.; Yablokova, S. S.; Kireeva, T. V.; Paukshtis, E. A.; Gulyaeva, T. I.; Belyi, A. S.

    2017-08-01

    The effect of palladium concentration in a range from 0.02 to 1.6 wt.% on characteristics of n-hexane isomerization was studied. The (O2-Hchem) titration and O2 chemisorption study revealed that palladium in Pd/SO4/ZrO2/Al2O3 systems adsorbs hydrogen in a ratio H/Pds = 1.13-1.65 at./at. Investigation of the charge state of the metal by IR spectroscopy of adsorbed CO showed the presence of both the metallic (Pd0) and charged palladium species. Pd/SO4/ZrO2/Al2O3 catalysts with charged palladium atoms exhibit high activity and selectivity in n-hexane isomerization.

  4. New localized/delocalized emitting state of Eu 2+ in orange-emitting hexagonal EuAl 2O 4

    DOE PAGES

    Liu, Feng; Meltzer, Richard S.; Li, Xufan; ...

    2014-11-18

    Eu 2+-activated phosphors are being widely used in illuminations and displays. Some of these phosphors feature an extremely broad and red-shifted Eu 2+ emission band; however, convincing explanation of this phenomenon is lacking. Here we report a new localized/delocalized emitting state of Eu 2+ ions in a new hexagonal EuAl 2O 4 phosphor whose Eu 2+ luminescence exhibits a very large bandwidth and an extremely large Stokes shift. At 77 K, two luminescent sites responsible for 550 nm and 645 nm broadband emissions are recognized, while at room temperature only the 645 nm emission band emits. The 645 nm emissionmore » exhibits a typical radiative lifetime of 1.27 μs and an unusually large Stokes shift of 0.92 eV. We identify the 645 nm emission as originating from a new type of emitting state whose composition is predominantly that of localized 4f 65d character but which also contains a complementary component with delocalized conduction-band-like character. This investigation gives new insights into a unique type of Eu 2+ luminescence in solids whose emission exhibits both a very large bandwidth and an extremely large Stokes shift.« less

  5. Temperature-dependent OSL properties of nano-phosphors LiAlO2:C and α-Al2O3:C

    NASA Astrophysics Data System (ADS)

    Agarwal, Mini; Garg, Sandeep K.; Asokan, K.; Kumar, Pratik

    2018-06-01

    The present study focuses on the synthesis and characterization of carbon doped nano-phosphors, LiAlO2 and α-Al2O3 and their temperature-dependent optically stimulated luminescence (TA-OSL) characteristics in the temperature ranges of 25-350 °C. These nano-phosphors with the carbon concentration of 0.01 mol% exhibits high luminescent intensity for LiAlO2:C in the low dose range of 1 mGy-7 Gy and for α-Al2O3:C in the range of 100 mGy-1 kGy. Both these nano-phosphors are of polycrystalline in nature, having grain size 15-50 nm as confirmed by the X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM), respectively. The maximum TA-OSL intensities are observed at 125 °C for LiAlO2:C and 200 °C for Al2O3:C, and reveal the presence of deep defect centres. The Arrhenius analysis shows the activation energies Ea = 0.06 ± 0.02 eV for LiAlO2:C and Ea = 0.04 ± 0.01 eV, & Eb = 0.48 ± 0.07 eV for Al2O3:C. The TA-OSL and OSL characteristics are discussed with special reference to the medical and high radiation dosimetry. These compounds, LiAlO2:C and α-Al2O3:C, are non-toxic, robust and are potential candidates for reusable dosimetry.

  6. Competitive Al3+ Inhibition of Net Mg2+ Uptake by Intact Lolium multiflorum Roots 1

    PubMed Central

    Rengel, Zdenko; Robinson, Donald L.

    1989-01-01

    Aluminum impairs uptake of Mg2+, but the mechanisms of this inhibition are not understood. The depletion technique was used to monitor net Mg2+ uptake from nutrient solution by intact, 23-day-old plants of ryegrass (Lolium multiflorum Lam., cv Gulf and Wilo). Activities of Mg2+ and monomeric Al species in nutrient solution were calculated and used as the basis for expressing the results. The kinetics of net Mg2+ absorption was resolved into (a) a transpiration-dependent uptake component, (b) a metabolically mediated, discontinuous saturable component that is Al3+ sensitive and p-chloromercuribenzene sulfonic acid (PCMBS) resistant, and (c) a linear, carbonyl cyanide m-chlorophenylhydrazone resistant, Al3+ sensitive component that might be a type of facilitated diffusion. Lowering the pH from 6.0 to 4.2 exerted a noncompetitive inhibition of net Mg2+ uptake, while aluminum at 6.6 micromolar Al3+ activity exerted competitive inhibition of net Mg2+ uptake at pH 4.2. The Al3+-induced effect was obvious after 30 minutes. Cultivar-specific ability to retain a higher affinity for Mg2+ by postulated transport proteins in the presence of Al3+ might be one of the mechanisms of differential Al tolerance among ryegrass cultivars. PMID:16667193

  7. Special hydrogen bonds observed in two monovalent metal carboxylate-phosphinates: {NaH(Phsbnd PO2sbnd C2H4sbnd COOH)2}∞ and {[KH(Phsbnd PO2sbnd C2H4sbnd COOH)2H2O}∞

    NASA Astrophysics Data System (ADS)

    Zhao, Cui-Cui; Zhang, Jian-Wei; Zhou, Zhong-Gao; Du, Zi-Yi

    2013-02-01

    The addition of strong base such as sodium hydroxide or potassium hydroxide to the aqueous solution of (2-carboxyethyl)(phenyl)phosphinic acid afforded two novel monovalent metal carboxylate-phosphinates, namely, {NaH(Phsbnd PO2sbnd C2H4sbnd COOH)2}∞ (1) and {[KH(Phsbnd PO2sbnd C2H4sbnd COOH)2H2O}∞ (2). They represent the first examples of phosphinate containing short, symmetric or almost symmetric O⋯H⋯O hydrogen bonds.

  8. Al{sub 2}TiO{sub 5}-Al{sub 2}O{sub 3}-TiO{sub 2} nanocomposite: Structure, mechanical property and bioactivity studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalita, Samar Jyoti, E-mail: Samar.Kalita@und.nodak.edu; Somani, Vikas

    2010-12-15

    Novel biomaterials are of prime importance in tissue engineering. Here, we developed novel nanostructured Al{sub 2}TiO{sub 5}-Al{sub 2}O{sub 3}-TiO{sub 2} composite as a biomaterial for bone repair. Initially, nanocrystalline Al{sub 2}O{sub 3}-TiO{sub 2} composite powder was synthesized by a sol-gel process. The powder was cold compacted and sintered at 1300-1500 {sup o}C to develop nanostructured Al{sub 2}TiO{sub 5}-Al{sub 2}O{sub 3}-TiO{sub 2} composite. Nano features were retained in the sintered structures while the grains showed irregular morphology. The grain-growth and microcracking were prominent at higher sintering temperatures. X-ray diffraction peak intensity of {beta}-Al{sub 2}TiO{sub 5} increased with increasing temperature. {beta}-Al{sub 2}TiO{submore » 5} content increased from 91.67% at 1300 {sup o}C to 98.83% at 1500 {sup o}C, according to Rietveld refinement. The density of {beta}-Al{sub 2}TiO{sub 5} sintered at 1300 {sup o}C, 1400 {sup o}C and 1500 {sup o}C were computed to be 3.668 g cm{sup -3}, 3.685 g cm{sup -3} and 3.664 g cm{sup -3}, respectively. Nanocrystalline grains enhanced the flexural strength. The highest flexural strength of 43.2 MPa was achieved. Bioactivity and biomechanical properties were assessed in simulated body fluid. Electron microscopy confirmed the formation of apatite crystals on the surface of the nanocomposite. Spectroscopic analysis established the presence of Ca and P ions in the crystals. Results throw light on biocompatibility and bioactivity of {beta}-Al{sub 2}TiO{sub 5} phase, which has not been reported previously.« less

  9. POx/Al2O3 stacks: Highly effective surface passivation of crystalline silicon with a large positive fixed charge

    NASA Astrophysics Data System (ADS)

    Black, Lachlan E.; Kessels, W. M. M. Erwin

    2018-05-01

    Thin-film stacks of phosphorus oxide (POx) and aluminium oxide (Al2O3) are shown to provide highly effective passivation of crystalline silicon (c-Si) surfaces. Surface recombination velocities as low as 1.7 cm s-1 and saturation current densities J0s as low as 3.3 fA cm-2 are obtained on n-type (100) c-Si surfaces passivated by 6 nm/14 nm thick POx/Al2O3 stacks deposited in an atomic layer deposition system and annealed at 450 °C. This excellent passivation can be attributed in part to an unusually large positive fixed charge density of up to 4.7 × 1012 cm-2, which makes such stacks especially suitable for passivation of n-type Si surfaces.

  10. Organic-Free, ZnO-Assisted Synthesis of Zeolite FAU with Tunable SiO2 /Al2 O3 Molar Ratio.

    PubMed

    Guo, Ya; Sun, Tianjun; Gu, Yiming; Liu, Xiaowei; Ke, Quanli; Wang, Shudong

    2018-05-04

    Zeolite FAU with tunable SiO 2 /Al 2 O 3 molar ratio has been successfully synthesized in the absence of organic structure-directing agents (OSDA). Specifically, the addition of zinc species contributes to the feasible and effective adjustment of the framework SiO 2 /Al 2 O 3 molar ratio between about 4 and 6 depending on the amount of zinc species added in the batch composition. In contrast, a typical OSDA such as tetramethylammonium hydroxide (TMAOH) has a limited effect on the SiO 2 /Al 2 O 3 molar ratio of the zeolite. The role of zinc species is essential for the crystallization of zeolite FAU with a higher SiO 2 /Al 2 O 3 molar ratio under the particular synthesis conditions. It is speculated that zinc species may suppress the incorporation of aluminum into the aluminosilicate framework, which is due to the Coulombic repulsive interaction. A higher SiO 2 /Al 2 O 3 molar ratio is also found to be accompanied by a lower CO 2 adsorption heat for CO 2 /CH 4 separation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fabrication and mechanical properties of Al2O3/SiC/ZrO2 functionally graded material by electrophoretic deposition.

    PubMed

    Askari, E; Mehrali, M; Metselaar, I H S C; Kadri, N A; Rahman, Md M

    2012-08-01

    This study describes the synthesis of Al(2)O(3)/SiC/ZrO(2) functionally graded material (FGM) in bio-implants (artificial joints) by electrophoretic deposition (EPD). A suitable suspension that was based on 2-butanone was applied for the EPD of Al(2)O(3)/SiC/ZrO(2), and a pressureless sintering process was applied as a presintering. Hot isostatic pressing (HIP) was used to densify the deposit, with beneficial mechanical properties after 2 h at 1800 °C in Ar atmosphere. The maximum hardness in the outer layer (90 vol.% Al(2)O(3)+10 vol.% SiC) and maximum fracture toughness in the core layer (75 vol.% Al(2)O(3)+10 vol.% SiC + 15 vol.% ZrO(2)) composite were 20.8±0.3 GPa and 8±0.1 MPa m(1/2), respectively. The results, when compared with results from Al(2)O(3)/ZrO(2) FGM, showed that SiC increased the compressive stresses in the outer layers, while the inner layers were under a residual tensile stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Unusual negative magnetoresistance in Bi2Se3-ySy topological insulator under perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Singh, Rahul; Gangwar, Vinod K.; Daga, D. D.; Singh, Abhishek; Ghosh, A. K.; Kumar, Manoranjan; Lakhani, A.; Singh, Rajeev; Chatterjee, Sandip

    2018-03-01

    The magneto-transport properties of Bi2Se3-ySy were investigated. Magnetoresistance (MR) decreases with an increase in the S content, and finally, for 7% (i.e., y = 0.21) S doping, the magnetoresistance becomes negative. This negative MR is unusual as it is observed when a magnetic field is applied in the perpendicular direction to the plane of the sample. The magneto-transport behavior shows the Shubnikov-de Haas (SdH) oscillation, indicating the coexistence of surface and bulk states. The negative MR has been attributed to the non-trivial bulk conduction.

  13. Behavior of Al2O3 and SiO2 with heating in a Cl2 + CO stream

    NASA Technical Reports Server (NTRS)

    Shchetinin, L. K.

    1984-01-01

    Differential thermal analysis (DTA) and Thermogravimetric analysis (TGA) were used to study the chlorination of alpha-Al2O3, gamma-Al2O3 and amorphous SiO2 in a Cl + CO stream, for the preparation of AlCl3 and SiCl4. The chlorination starting temperatures were 235 deg for Al2O3 and 680 deg for SiO2. The chlorination of alpha- and gamma-Al2O3 takes place via the formation of AlOCl as an intermediate product, and its subsequent dissociation at 480 to 560 deg, according to 3AlOCl yields AlCl3 + Al2O3. The chlorination activation energies are given for the three oxides.

  14. [Ph(3)PCH(2)Ph](2)[Zn(3)(tp)(3)Cl(2)] and Ni(3)(tma)(2)(H(2)O)(8): two unusual claylike frameworks of metal-polycarboxylate coordination polymers (tp = terephthalate, tma = trimesate).

    PubMed

    Yang, Guo-Dong; Dai, Jing-Cao; Lian, Yun-Xia; Wu, Wen-Shi; Lin, Jian-Ming; Hu, Sheng-Min; Sheng, Tian-Lu; Fu, Zhi-Yong; Wu, Xin-Tao

    2007-09-17

    Two new compounds, [Ph3PCH2Ph]2[Zn3(tp)3Cl2] (1) and Ni3(tma)2(H2O)8 (2) (tp = terephthalate, tma = trimesate), are metal-polycarboxylate coordination polymers prepared by similar hydrothermal synthesis techniques. X-ray single-crystal structural analysis shows that both compounds crystallize in the 2D claylike lamellar architectures, in which 1 possesses the interlayer [Ph3PCH2Ph]+ exchangeable cation and has been confirmed by PXRD patterns. 1 (C74H56Cl2O12P2Zn3) belongs to monoclinic P21/c, Z = 2 (a = 18.956(1) A, b = 10.2697(5) A, c = 17.067(1) A, beta = 99.486(4) degrees ). 2 (C18H22O20Ni3) is attributed to triclinic P, Z = 1 (a = 6.6643(8) A, b = 9.622(1) A, c = 10.089(1) A, alpha = 112.675(2) degrees , beta = 94.007(1) degrees, gamma = 106.411(2) degrees ). Linear metal trinuclear clusters bridged by rigid linear tp ligands for 1 and trigonal tma ligands for 2 give rise to a novel 2D 6-linked (3,6) topological anionic network in 1 and an interesting 2D 3,6-linked molybdenite topological neutral network in 2, respectively. Both compounds exhibit intense fluorescent emission bands at 410 nm (lambda(exc) = 355 nm) for 1 and 398 nm (lambda(exc) = 300 nm) for 2 in the solid state at room temperature.

  15. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    PubMed

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  16. Synthesis of Copper-Based Nanostructured Catalysts on SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 Supports for NO Reduction.

    PubMed

    Namkhang, Pornpan; Kongkachuichay, Paisan

    2015-07-01

    The selective catalytic reduction of NO over a series of Cu-based catalysts supported on modified silica including SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 prepared via a sol-gel process and a flame spray pyrolysis (FSP) was studied. The prepared catalysts were characterized by means of TEM, XRD, XRF, TPR, and nitrogen physisorption measurement techniques, to determine particle diameter, morphology, crystallinity, phase composition, copper reducibility, surface area, and pore size of catalysts. The particles obtained from sol-gel method were almost spherical while the particles obtained from the FSP were clearly spherical and non-porous nanosized particles. The effects of Si:Al, Si:Ti, and Si:Zr molar ratio of precursor were identified as the domain for different crystalline phase of materials. It was clearly seen that a high SiO2 content inhibited the crystallization of materials. The BET surface area of catalysts obtained from sol-gel method was higher than that from the FSP and it shows that surface area increased with increasing SiO2 molar ratio due to high surface area from SiO2. The catalyst performances were tested for the selective catalytic reduction of NO with H2. It was found that the catalyst prepared over 7 wt% Cu on Si02-Al2O3 support was the most active compared with the others which converted NO as more than 70%. Moreover, the excess copper decreased the performance of NO reduction, due to the formation of CuO agglomeration covered on the porous silica as well as the alumina surface, preventing the direct contact of CO2 and AL2O3.

  17. Analysis of grain boundary phase devitrification of Y2O3- and Al2O3-doped Si3N4

    NASA Technical Reports Server (NTRS)

    Hench, L. L.; Vaidyanathan, P. N.

    1983-01-01

    The present study has the objective to show that a Fourier Transform IR (FTIR) spectrometer in a single-beam reflection mode can be used for direct comparison of fractured vs nonfractured Si3N4 surfaces. This can be done because the FTIR method permits a digital summation of nearly 1000 scans of the fracture surface. Commercial-grade Si3N4, Y2O3, and Al2O3 were used in the study. The samples were heat treated in a vacuum induction heating furnace at either 1000 C for 10 h or 1200 C for 10 h each. Use of Fourier transform IR reflection spectroscopic analysis and X-ray diffraction shows that 10 h at 1200 C is sufficient to devitrify the amorphous grain boundary phase of Si3N4 containing 15 percent Y2O3 + 2 percent Al2O3 densification aids.

  18. First CLIPS Conference Proceedings, volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The topics of volume 2 of First CLIPS Conference are associated with following applications: quality control; intelligent data bases and networks; Space Station Freedom; Space Shuttle and satellite; user interface; artificial neural systems and fuzzy logic; parallel and distributed processing; enchancements to CLIPS; aerospace; simulation and defense; advisory systems and tutors; and intelligent control.

  19. Synthesis of zinc sulfide nanoparticles during zinc oxidization by H2S and H2S/H2O supercritical fluids

    NASA Astrophysics Data System (ADS)

    Vostrikov, A. A.; Fedyaeva, O. N.; Sokol, M. Ya.; Shatrova, A. V.

    2014-12-01

    Formation of zinc sulfide nanoparticles was detected during interaction of bulk samples with hydrogen sulfide at supercritical parameters. Synthesis proceeds with liberation of H2 by the reaction nZn + nH2S = (ZnS) n + nH2. It has been found by the X-ray diffraction method, scanning electron microscopy, and mass spectrometry that the addition of water stimulates coupled reactions of nanoparticle synthesis nZn + nH2O = (ZnO) n + nH2 and (ZnO) n + nH2S = (ZnS) n + nH2O and brings about an increase in the synthesis rate and morphological changes of (ZnS) n nanoparticles.

  20. Measurements of the Activity of dissolved H2O in an Andesite Melt

    NASA Astrophysics Data System (ADS)

    Moore, G. M.; Touran, J. P.; Pu, X.; Kelley, K. A.; Cottrell, E.; Ghiorso, M. S.

    2016-12-01

    The large effect of dissolved H2O on the physical and chemical nature of silicate melts, and its role in driving volcanism, is well known and underscores the importance of this volatile component. A complete understanding of the chemical behavior of dissolved H2O in silicate melts requires the quantification of its thermodynamic activity as a function of pressure, temperature, and melt composition, particularly at low H2O contents (i.e. at under-saturated conditions). Knowledge of the activity of H2O in silicate melts at H2O-undersaturated conditions will improve our understanding of hydrous phase equilibria, as well as our models of physical melt properties. Measurement of the activity of any silicate melt component, much less that of a volatile component such as H2O, is a difficult experimental task however. By using a modified double capsule design (Matjuschkin et al, 2015) to control oxygen fugacity in piston cylinder experiments, along with high precision X-ray absorption techniques (XANES) to measure iron oxidation state in silicate glasses (Cottrell et al, 2009), we are able to constrain the H2O activity in silicate melts at under-saturated conditions. Preliminary results on an andesite melt with low H2O content (3 wt%) have been shown (Moore et al, 2016) to match predicted H2O activity values calculated using the H2O equation of state of Duan and Zhang (1996) and the H2O solubility model of Ghiorso and Gualda (2015). More recent results on the same andesite melt containing approximately 5 wt% H2O however show a large negative deviation from the predicted values. Reversal experiments involving an oxidized starting material are ongoing, as well as further characterization of the samples to detect the presence of possible contaminants that would induce reduction of the melt beyond that related to the H2O activity (e.g. graphite contamination).

  1. Al13-pillared anatase TiO2 as a cathode for a lithium battery

    NASA Astrophysics Data System (ADS)

    Sun, X. D.; Ma, C. L.; Wang, Y. D.; Li, H. D.

    2004-11-01

    Al13-pillared anatase TiO2 is used as a cathode of a lithium battery for the first time. First, a layered titanium dioxide with cationic surfactant ions of cetyltrimethylammonium (CTA+) in the interlayers is synthesized by self-assembly. Then, pillared TiO2 is obtained by exchange of polyoxo cations of aluminium, [Al13O4(OH)24(H2O)12]7+, with CTA+ and subsequent calcination at 300 °C for 1 h in the air. Powder x-ray diffraction (XRD), transmission electron microscopy (TEM) and surface area (BET) methods are used to characterize the layered and pillared forms of titanium dioxide. A lithium battery with the Al13-pillared TiO2 as the cathode and Li metal foil as the anode is studied within the 1-2.2 V voltage range. The specific capacity of the closed button cell (size 2025) that is delivered on the initial discharge reached 191.4 mA h g-1 at the rate of 25 mA g-1. The cell shows good cycling performance over 50 cycles.

  2. Simple preparations of Pd6Cl12, Pt6Cl12, and Qn[Pt2Cl8+n], n=1, 2 (Q=TBA+, PPN+) and structural characterization of [TBA][Pt2Cl9] and [PPN]2[Pt2Cl10].C7H8.

    PubMed

    Dell'Amico, Daniela Belli; Calderazzo, Fausto; Marchetti, Fabio; Ramello, Stefano; Samaritani, Simona

    2008-02-04

    The hexanuclear Pd6Cl12, i.e., the crystal phase classified as beta-PdCl2, was obtained by reacting [TBA]2[Pd2Cl6] with AlCl3 (or FeCl3) in CH2Cl2. The action of AlCl3 on PtCl42-, followed by digestion of the resulting solid in 1,2-C2H4Cl2 (DCE), CHCl3, or benzene, produced Pt6Cl12.DCE, Pt6Cl12.CHCl3, or Pt6Cl12.C6H6, respectively. Treating [TBA]2[PtCl6] with a slight excess of AlCl3 afforded [TBA][Pt2Cl9], whose anion was established crystallographically to be constituted by two "PtCl6" octahedra sharing a face. Dehydration of H2PtCl6.nH2O with SOCl2 gave an amorphous compound closely analyzing as PtCl4, reactive with [Q]Cl in SOCl2 to yield [Q][Pt2Cl9] or [Q]2[Pt2Cl10], depending on the [Q]Cl/Pt molar ratio (Q=TBA+, PPN+). A single-crystal X-ray diffraction study has shown [PPN]2[Pt2Cl10].C7H8 to contain dinuclear anions formed by two edge-sharing PtCl6 octahedra.

  3. The stability of annite+quartz: reversed experimental data for the reaction 2 annite+3 quartz=2 sanidine+3 fayalite +2 H2O

    NASA Astrophysics Data System (ADS)

    Dachs, E.; Benisek, Artur

    1995-10-01

    Reversals for the reaction 2 annite+3 quartz=2 sanidine+3 fayalite+2 H2O have been experimentally determined in cold-seal pressure vessels at pressures of 2, 3, 4 and 5 kbar, limiting annite +quartz stability towards higher temperatures. The equilibrium passes through the temperature intervals 500 540° C (2 kbar), 550 570° C (3 kbar), 570 590° C (4 kbar) and 590 610° C (5 kbar). Starting materials for most experiments were mixtures of synthetic annite +fayalite+sanidine+quartz and in some runs annite+quartz alone. Microprobe analyses of the reacted mixtures showed that the annites deviate slightly from their ideal Si/Al ratio (Si per formula unit ranges between 2.85 and 2.92, AlVI between 0.06 and 0.15). As determined by Mössbauer spectroscopy, the Fe3+ content of annite in the assemblage annite+fayalite +sanidine+quartz is around 5 7%. The experimental data were used to extract the thermodynamic standard state enthalpy and entropy of annite as follows: H 0 f, Ann =-5125.896±8.319 [kJ/mol] and S 0 Ann=432.62±8.89 [J/mol/K] (consistent with the Holland and Powell 1990 data set), and H 0 f,Ann =-5130.971±7.939 [kJ/mol] and S 0 Ann=424.02±8.39 [J/mol/K] (consistent with the TWEEQ data base, Berman 1991). The preceeding values are close to the standard state properties derived from hydrogen sensor data of the redox reaction annite=sanidine+magnetite+ H 2 (Dachs 1994). The experimental half-reversal of Eugster and Wones (1962) on the annite +quartz breakdown reaction could not be reproduced experimentally (formation of annite from sanidine+fayalite+quartz at 540° C/1.035 kbar/magnetite-iron buffer) and probable reasons for this discrepancy remain unclear. The extracted thermodynamic standard state properties of annite were used to calculate annite and annite+quartz stabilities for pressures between 2 and 5 kbar.

  4. Turbulence in Supercritical O2/H2 and C7H16/N2 Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Okong'o, Nora

    2003-01-01

    This report presents a study of numerical simulations of mixing layers developing between opposing flows of paired fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence. The simulations were performed for two different fluid pairs O2/H2 and C7H16/N2 at similar reduced initial pressures (reduced pressure is defined as pressure divided by critical pressure). Thermodynamically, O2/H2 behaves more nearly like an ideal mixture and has greater solubility, relative to C7H16/N2, which departs strongly from ideality. Because of a specified smaller initial density stratification, the C7H16/N2 layers exhibited greater levels of growth, global molecular mixing, and turbulence. However, smaller density gradients at the transitional state for the O2/H2 system were interpreted as indicating that locally, this system exhibits enhanced mixing as a consequence of its greater solubility and closer approach to ideality. These thermodynamic features were shown to affect entropy dissipation, which was found to be larger for O2/H2 and concentrated in high-density-gradient-magnitude regions that are distortions of the initial density-stratification boundary. In C7H16/N2, the regions of largest dissipation were found to lie in high-density-gradient-magnitude regions that result from mixing of the two fluids.

  5. Origin of flatband voltage shift and unusual minority carrier generation in thermally grown GeO2/Ge metal-oxide-semiconductor devices

    NASA Astrophysics Data System (ADS)

    Hosoi, Takuji; Kutsuki, Katsuhiro; Okamoto, Gaku; Saito, Marina; Shimura, Takayoshi; Watanabe, Heiji

    2009-05-01

    Improvement in electrical properties of thermally grown GeO2/Ge metal-oxide-semiconductor (MOS) capacitors, such as significantly reduced flatband voltage (VFB) shift, small hysteresis, and minimized minority carrier response in capacitance-voltage (C-V) characteristics, has been demonstrated by in situ low temperature vacuum annealing prior to gate electrode deposition. Thermal desorption analysis has revealed that not only water but also hydrocarbons are easily infiltrated into GeO2 layers during air exposure and desorbed at around 300 °C, indicating that organic molecules within GeO2/Ge MOS structures are possible origins of electrical defects. The inversion capacitance, indicative of minority carrier generation, increases with air exposure time for Au/GeO2/Ge MOS capacitors, while maintaining an interface state density (Dit) of about a few 1011 cm-2 eV-1. Unusual increase in inversion capacitance was found to be suppressed by Al2O3 capping (Au/Al2O3/GeO2/Ge structures). This suggests that electrical defects induced outside the Au electrode by infiltrated molecules may enhance the minority carrier generation, and thus acting as a minority carrier source just like MOS field-effect transistors.

  6. Primary squamous cell carcinoma of the breast with unusual basal-HER2 phenotype.

    PubMed

    Shui, Ruohong; Li, Anqi; Yang, Fei; Zhou, Xiaoyan; Yu, Baohua; Xu, Xiaoli; Yang, Wentao

    2014-01-01

    To report three cases of primary squamous cell carcinoma of the breast with an unusual "basal-HER2" phenotype. Clinical data were analyzed. Morphological features were observed. Immunohistochemical study for ER, PR, HER2, Ki-67, CK 5/6, CK10/13, CK14, EGFR, P63 and FISH detection of HER2 gene amplification were performed. Three patients were all female with 26, 57 and 66 years old. The tumors were 3 cm, 4 cm and 5 cm in size respectively. Morphologically, all three tumors were pure squamous cell carcinoma and entirely composed metaplastic squamous cells. Two tumors were moderately differentiated and one was poorly differentiated. All three patients were positive for P63 or CK10/13. All three tumors exhibited basal-HER2 phenotype: negative for ER and PR, positive for HER2 protein and HER2 gene amplification, and positive for at least two basal markers. SCC with basal-HER2 phenotype is an extremely rare subset of breast carcinoma. Since it may have worse prognosis than typical basal-like SCC, recognization of this unusual SCC in routine work may have obvious clinical significance.

  7. Interdiffusion behavior of U3Si2 with FeCrAl via diffusion couple studies

    NASA Astrophysics Data System (ADS)

    Hoggan, Rita E.; He, Lingfeng; Harp, Jason M.

    2018-04-01

    Uranium silicide (U3Si2) is a candidate to replace uranium oxide (UO2) as light water reactor (LWR) fuel because of its higher thermal conductivity and higher fissile density relative to the current standard, UO2. A class of Fe, Cr, Al alloys collectively known as FeCrAl alloys that have superior mechanical and oxidation resistance are being considered as an alternative to the standard Zirconium based LWR cladding. The interdiffusion behavior between FeCrAl and U3Si2 is investigated in this study. Commercially available FeCrAl, along with U3Si2 pellets were placed in diffusion couples. Individual tests were ran at temperatures ranging from 500 °C to 1000 °C for 30 h and 100 h. The interdiffusion was analyzed with an optical microscope, scanning electron microscope, and transmission electron microscope. Uniform and planar interdiffusion layers along the material interface were illustrated with backscatter electron micrographs and energy-dispersive X-ray spectroscopy. Electron diffraction was used to validate phases present in the system, including distinct U2Fe3Si/UFe2 and UFeSi layers at the material interface. U and Fe diffused far into the FeCrAl and U3Si2 matrix, respectively, in the higher temperature tests. No interaction was observed at 500 °C for 30 h.

  8. Atmospheric H2O2 measurement: comparison of cold trap method with impinger bubbling method

    NASA Technical Reports Server (NTRS)

    Sakugawa, H.; Kaplan, I. R.

    1987-01-01

    Collection of atmospheric H2O2 was performed by a cold trap method using dry ice-acetone as the refrigerant. The air was drawn by a pump into a glass gas trap immersed in the dry ice-acetone slush in a dewar flask at a flow rate of 2.5 l min-1 for approximately 2 h. Collection efficiency was > 99% and negligible interferences by O3, SO2 or organic matter with the collected H2O2 in the trap were observed. This method was compared with the air impinger bubbling method which has been previously described (Kok et al., 1978a, b, Envir. Sci. Technol. 12, 1072-1080). The measured total peroxide (H2O2 + organic peroxide) values in a series of aim samples collected by the impinger bubbling method (0.06-3.7 ppb) were always higher than those obtained by the cold trap method (0.02-1.2 ppb). Laboratory experiments suggest that the difference in values between the two methods probably results from the aqueous phase generation of H2O2 and organic peroxide in the impinger solution by a reaction of atmospheric O3 with olefinic and aromatic compounds. If these O3-organic compound reactions which occur in the impinger also occur in aqueous droplets in the atmosphere, the process could be very important for aqueous phase generation of H2O2 in clouds and rainwater.

  9. Solid state coordination chemistry: structural consequences of variations in tether length in the oxovanadium-copper-bisterpy-[O3P(CH2)nPO3]4- system, n= 1-6 (bisterpy = 2,2':4',4'':2'',2'''-quarterpyridyl-6',6''-di-2-pyridine).

    PubMed

    Ouellette, Wayne; Koo, Bon-Kweon; Burkholder, Eric; Golub, Vladimir; O'Connor, C J; Zubieta, Jon

    2004-05-21

    Hydrothermal reactions of Na3VO4, an appropriate Cu(II) source, bisterpy and an organodiphosphonate, H2O3P(CH2)nPO3H2 (n = 1-6) yielded a family of materials of the type [Cu2(bisterpy)]4+/VxOy(n-)/[O3P(CH2)nPO3]4-. This family of bimetallic oxides is characterized by an unusual structural diversity. The oxides [[Cu2(bisterpy)]V2O4[O3PCH2PO3H]2] (1), [[Cu2(bisterpy)(H2O)]VO2[O3P(CH2)3PO3][HO3P(CH2)3PO3H2

  10. Crystal Structures and Thermal Properties of Two Transition-Metal Compounds {[Ni(DNI)2(H2O)3][Ni(DNI)2 (H2O)4]}·6H2O and Pb(DNI)2(H2O)4 (DNI = 2,4-Dinitroimidazolate)

    PubMed Central

    Zhang, Guo-Fang; Cai, Mei-Yu; Jing, Ping; He, Chong; Li, Ping; Zhao, Feng-Qi; Li, Ji-Zhen; Fan, Xue-Zhong; Ng, Seik Weng

    2010-01-01

    Two transition-metal compounds derived from 2,4-dinitroimidazole, {[Ni(DNI)2(H2O)3][Ni(DNI)2 (H2O)4]}·6H2O, 1, and Pb(DNI)2(H2O)4, 2, were characterized by elemental analysis, FT-IR, TG-DSC and X-ray single-crystal diffraction analysis. Crystal data for 1: monoclinic, space group C2/c, a = 26.826(3), b = 7.7199(10), c = 18.579(2) Å, β = 111.241(2)° and Z = 4; 2: monoclinic, space group C2/c, a = 6.5347(6), b = 17.1727(17), c = 14.1011(14) Å, β = 97.7248(10) and Z = 4. Compound 1 contains two isolated nickel centers in its structure, one being six-coordinate and another five-coordinate. The structure of 2 contains a lead (II) center surrounded by two chelating DNI ligands and four water molecules in distorted square-antiprism geometry. The abundant hydrogen bonds in two compounds link the molecules into three-dimensional network and stabilize the molecules. The TG-DSC analysis reveals that the first step is the loss of water molecules and the final residue is the corresponding metal oxides and carbon. PMID:20526419

  11. Application of the method of images on electrostatic phenomena in aqueous Al2O3 and ZrO2 suspensions.

    PubMed

    Cordelair, Jens; Greil, Peter

    2003-09-15

    A new solution for the Poisson equation for the diffuse part of the double layer around spherical particles will be presented. The numerical results are compared with the solution of the well-known DLVO theory. The range of the diffuse layer differs considerably in the two theories. Also, the inconsistent representation of the surface and diffuse layer charge in the DLVO theory do not occur in the new theory. Experimental zeta potential measurements were used to determine the charge of colloidal Al2O3 and ZrO2 particles. It is shown that the calculated charge can be interpreted as a superposition of independent H+ and OH- adsorption isotherms. The corresponding Langmuir adsorption isotherms are taken to model the zeta potential dependence on pH. In the vicinity of the isoelectric point the model fits well with the experimental data, but at higher ion concentrations considerable deviations occur. The deviations are discussed. Furthermore, the numerical results for the run of the potential in the diffuse part of the double layer were used to determine the electrostatic interaction potential between the particles in correlation with the zeta potential measurements. The corresponding total interaction potentials, including the van der Waals attraction, were taken to calculate the coagulation half-life for a suspension with a particle loading of 2 vol%. It is shown that stability against coagulation is maintained for Al2O3 particles in the pH region between 3.3 and 7 and for ZrO2 only around pH 5. Stability against flocculation can be achieved in the pH regime between 4.5 and 7 for Al2O3, while the examined ZrO2 particles are not stable against flocculation in aqueous suspensions.

  12. Very Long Term Oxidation of Ti-48Al-2Cr-2Nb at 704 C In Air

    NASA Technical Reports Server (NTRS)

    Locci, I. E.; Brady, M. P.; MacKay, R. A.; Smith, J. W.

    1997-01-01

    Introduction Titanium aluminides are of great interest for intermediate-temperature (600 C - 850 C) aerospace and power generation applications because of their high specific properties. Replacement of conventional superalloys by titanium aluminides offers the potential of significant weight savings. Extensive development efforts over the past IO years have led to the identification of y (TiAl) + alpha(sub 2) (Ti3Al) alloys, such as the G.E. alloy Ti48Al-2Cr-2Nb (all composition in at. %), which offer a balance of room temperature mechanical properties and high-temperature strength retention. The two phase gamma + alpha(sub 2) class of titanium aluminides also offers superior oxidation and embrittlement resistance compared to the alpha(sub 2) and orthorhombic classes of titanium aluminides. However, environmental durability is still a major concern. Significant progress has recently been made in understanding the fundamental aspects of the oxidation behavior of binary gamma + alpha(sub 2) Ti-Al alloys. However, most of this work has concentrated on short term (less than 1000 hours), high temperature (900 C - 1000 C) exposures. Also little data are available in the literature regarding the oxidation behavior of the quaternary and higher order gamma + alpha(sub 2) engineering alloys. This is especially true for the very long-term, low temperature conditions likely to be experienced during engineering applications. The present work addresses this regime to fill this gap by characterizing the oxidation behavior of Ti48Al-2Cr-2Nb for periods up to 9000 h at 704 C in air.

  13. Combustion synthesized copper-ion substituted FeAl2O4 (Cu0.1Fe0.9Al2O4): A superior catalyst for methanol steam reforming compared to its impregnated analogue

    NASA Astrophysics Data System (ADS)

    Maiti, Sayantani; Llorca, Jordi; Dominguez, Montserrat; Colussi, Sara; Trovarelli, Alessandro; Priolkar, Kaustubh R.; Aquilanti, Giuliana; Gayen, Arup

    2016-02-01

    A series of copper ion substituted MAl2O4 (M = Mg, Mn, Fe and Zn) spinels is prepared by a single step solution combustion synthesis (SCS) and tested for methanol steam reforming (MSR). The copper ion substituted Cu0.1Fe0.9Al2O4 appears to be the most active, showing ∼98% methanol conversion at 300 °C with ∼5% CO selectivity at GHSV = 30,000 h-1 and H2O:CH3OH = 1.1. The analogous impregnated catalyst, CuO (10 at%)/FeAl2O4, is found to be much less active. These materials are characterized by XRD, H2-TPR, BET, HRTEM, XPS and XANES analyses. Spinel phase formation is highly facilitated upon Cu-ion substitution and Cu loading beyond 10 at% leads to the formation of CuO as an additional phase. The ionic substitution of copper in FeAl2O4 leads to the highly crystalline SCS catalyst containing Cu2+ ion sites that are shown to be more active than the dispersed CuO nano-crystallites on the FeAl2O4 impregnated catalyst, despite its lower surface area. The as prepared SCS catalyst contains also a portion of copper as Cu1+ that increases when subjected to reforming atmosphere. The MSR activity of the SCS catalyst decreases with time-on-stream due to the sintering of catalyst crystallites as established from XPS and HRTEM analyses.

  14. The H i-to-H{sub 2} Transition in a Turbulent Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bialy, Shmuel; Sternberg, Amiel; Burkhart, Blakesley, E-mail: shmuelbi@mail.tau.ac.il

    2017-07-10

    We study the effect of density fluctuations induced by turbulence on the H i/H{sub 2} structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H i/H{sub 2} balance calculations. We derive atomic-to-molecular density profiles and the H i column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H i/H{sub 2} density profiles are strongly perturbed in turbulent gas, the mean H i column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends onmore » (a) the radiation intensity–to–mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H i PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H i in the Perseus molecular cloud. We show that a narrow observed H i PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.« less

  15. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  16. Properties of blue emitting CaAl2O4:Eu2+, Nd3+ phosphor by optimizing the amount of flux and fuel

    NASA Astrophysics Data System (ADS)

    Wako, A. H.; Dejene, B. F.; Swart, H. C.

    2014-04-01

    Long afterglow CaAl2O4:0.03Eu2+, 0.03Nd3+ phosphor was prepared by solution-combustion synthesis. The active role of boric acid (H3BO3) as a flux in enhancing the Eu2+ photoluminescence and the effect of a varied amount of urea (CO (NH2)2) as a fuel on the morphological, structural and photoluminescent (PL) properties of the CaAl2O4:0.03Eu2+, 0.03Nd3+ systems were investigated. The results of X-ray diffraction, scanning electron microscopy, and PL spectra revealed the influence of the dosage of urea and hence the heated process on the crystallinity, morphology, and luminescence of the phosphor. The addition of H3BO3 favoured the formation of a monoclinic CaAl2O4 phase while the variation of the amount of CO (NH2)2 showed mixed phases although still predominantly monoclinic. Both H3BO3 and CO(NH2)2 to some extent influence the luminescence intensity of the obtained phosphor but unlike the case of CO(NH2)2, the presence of H3BO3 did not evidently shift the emission peak due to no obvious change in the energy level difference of the 4f-5d levels. The broad blue emissions consisting mainly of symmetrical bands having maxima between 440 and 445 nm originate from the energy transitions between the ground state (4f7) and the excited state (4f65d1) of the Eu2+ ions while the narrow emissions in the red region (600-630 nm) arise from the 5D0→7F2 transitions of the remnant unreduced Eu3+ions. Higher concentrations of H3BO3 (0.228 mol and 0.285 mol) reduce both intensity and lifetime of the phosphor. The optimized content of H3BO3 was 0.171 mol for the obtained phosphor with the best optical properties.

  17. Beneficial effects of substituting trivalent ions in the B-site of La0.5Sr0.5Mn1-xAxO3 (A = Al, Ga, Sc) on the thermochemical generation of CO and H2 from CO2 and H2O.

    PubMed

    Dey, Sunita; Naidu, B S; Rao, C N R

    2016-02-14

    The effect of substitution of Al(3+), Ga(3+) and Sc(3+) ions in the Mn(3+) site of La0.5Sr0.5MnO3 on the thermochemical splitting of CO2 to generate CO has been studied in detail. Both La0.5Sr0.5Mn1-xGaxO3 and La0.5Sr0.5Mn1-xScxO3 give high yields of O2 and generate CO more efficiently than La0.5Sr0.5Mn1-xAlxO3 or the parent La0.5Sr0.5MnO3. Substitution of even 5% Sc(3+) (x = 0.05) results in a remarkable improvement in performance. Thus La0.5Sr0.5Mn0.95Sc0.05O3 produces 417 μmol g(-1) of O2 and 545 μmol g(-1) of CO, respectively, i.e. 2 and 1.7 times more O2 and CO than La0.5Sr0.5MnO3. This manganite also generates H2 satisfactorily by the thermochemical splitting of H2O.

  18. Cross section data sets for electron collisions with H2, O2, CO, CO2, N2O and H2O

    NASA Astrophysics Data System (ADS)

    Anzai, K.; Kato, H.; Hoshino, M.; Tanaka, H.; Itikawa, Y.; Campbell, L.; Brunger, M. J.; Buckman, S. J.; Cho, H.; Blanco, F.; Garcia, G.; Limão-Vieira, P.; Ingólfsson, O.

    2012-02-01

    We review earlier cross section data sets for electron-collisions with H2, O2, CO, CO2, H2O and N2O, updated here by experimental results for their electronic states. Based on our recent measurements of differential cross sections for the electronic states of those molecules, integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis and then assessed against theory (BE f-scaling [Y.-K. Kim, J. Chem. Phys. 126, 064305 (2007)]). As they now represent benchmark electronic state cross sections, those ICSs for the above molecules are added into the original cross section sets taken from the data reviews for H2, O2, CO2 and H2O (the Itikawa group), and for CO and N2O (the Zecca group).

  19. A THEORETICAL INVESTIGATION OF RADIOLYTIC H2 GENERATION FROM SOLIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westbrook, M.; Sindelar, R.; Fisher, D.

    2012-02-01

    Hydrogen generation from materials in nuclear materials storage is of critical interest due to the potential for pressurization and/or flammability issues. Studies have focused on aqueous systems or those with minor amounts of physisorbed water, since conventional knowledge identifies the radiolytic decomposition of water as the source of H{sub 2} gas. Furthermore, the approach to characterize gas generation is typically strictly empirical, relying on determination of G-values from which production in systems is estimated. Interestingly, exploratory work at SRNL1 on gamma exposure to fully-dried solids with chemically-bound water that are typical of those produced on aluminium-clad nuclear fuel in reactormore » and post-discharge storage has shown a profound production of hydrogen (as the sole gaseous species) from fully dried boehmite ({gamma}-AlOOH or Al{sub 2}O{sub 3} {center_dot} H{sub 2}O) powders and no observable hydrogen from gibbsite ({gamma}-Al(OH){sub 3} or Al{sub 2}O{sub 3} {center_dot} 3H{sub 2}O) under gamma irradiation from cobalt-60. This observation is significant in that gibbsite is known to thermally decompose at 80 C whereas boehmite is stable to 400 C. Radiation damage can have various effects on solids, including heating, bond breaking, and rearrangements in the bonding structure. For example, a molecule can be ionized resulting in the generation of free electrons which can, in turn, ionize another molecule. Alternately, reactive radical species such as {lg_bullet}OH or cation species may be formed, which can go on to change bonding structures.« less

  20. Influence of the Organic Species and Oxoanion in the Synthesis of two Uranyl Sulfate Hydrates, (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 ­(H 2 O)]·7H 2 O and (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 (H 2 O)]·4H 2 O, and a Uranyl Selenate-Selenite [C 5 H 6 N][(UO 2 )(SeO 4 )(HSeO 3 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Wylie, Ernest M.; Burns, Peter C.

    2012-08-08

    Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)]·7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)]·4H2O (NDUS1), and one uranyl selenate-selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L-cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4)more » Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two-dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two-dimensional uranyl selenate-selenite sheets with a U/Se ratio of 1/2. In-situ reaction of the L-cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L-cystine, balancing the charge of the sheets.« less

  1. The TREM2 variant p.R47H is a risk factor for sporadic amyotrophic lateral sclerosis

    PubMed Central

    Cady, Janet; Koval, Erica D.; Benitez, Bruno A.; Zaidman, Craig; Jockel-Balsarotti, Jennifer; Allred, Peggy; Baloh, Robert H.; Ravits, John; Simpson, Ericka; Appel, Stanley H.; Pestronk, Alan; Goate, Alison M.; Miller, Timothy M.; Cruchaga, Carlos; Harms, Matthew B.

    2014-01-01

    Importance Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which microglia play a significant and active role. Recently, a rare missense variant (p.R47H) in the microglial activating gene TREM2 was found to increase the risk of several neurodegenerative diseases, including Alzheimer’s disease. Whether the p.R47H variant is a risk factor for ALS is not currently known. Objective To determine if p.R47H (rs75932628) in TREM2 is a risk factor for ALS and assess whether TREM2 expression is dysregulated in disease. Design, setting, and participants 923 sporadic ALS subjects and 1854 normal controls self-reported as non-Hispanic white were collected from ALS clinics in the United States and genotyped for the p.R47H variant in TREM2. Clinical data was obtained on ALS subjects for genotype/phenotype correlations. Expression of TREM2 was measured by quantitative PCR and compared in spinal cord from 18 ALS subjects, 12 neurologically normal controls, as well as from wildtype and transgenic SOD1G93A mice. Main outcome measures Minor allele frequency of rs75932628 and relative expression of TREM2. Results The TREM2 variant p. R47H was more common in subject with ALS than in controls and is therefore a significant risk factor for ALS (OR=2.40; 95%CI=1.29-4.15; p=4.1×10-3). Furthermore, TREM2 expression was increased in spinal cords from ALS patients and SOD1G93A mice (p=2.8×10-4, p=2.8×10-9 respectively), confirming dysregulated TREM2 in disease. TREM2 expression in human spinal cord was negatively correlated with survival (p=0.04), but not other phenotypic aspects of disease. Conclusion and relevance This study demonstrates that the TREM2 p.R47H variant is a potent risk factor for sporadic amyotrophic lateral sclerosis. These findings identify the first genetic influence on neuro-inflammation in ALS and highlight the TREM2 signaling pathway as a therapeutic target in ALS and other neurodegenerative diseases. PMID:24535663

  2. The catalytic effects of H2CO3, CH3COOH, HCOOH and H2O on the addition reaction of CH2OO + H2O → CH2(OH)OOH

    NASA Astrophysics Data System (ADS)

    Zhang, Tianlei; Lan, Xinguang; Wang, Rui; Roy, Soumendra; Qiao, Zhangyu; Lu, Yousong; Wang, Zhuqing

    2018-07-01

    The addition reaction of CH2OO + H2O → CH2(OH)OOH without and with X (X = H2CO3, CH3COOH and HCOOH) and H2O was studied at CCSD(T)/6-311+ G(3df,2dp)//B3LYP/6-311+G(2d,2p) level of theory. Our results show that X can catalyse CH2OO + H2O → CH2(OH)OOH reaction both by increasing the number of rings, and by adding the size of the ring in which ring enlargement by COOH moiety of X inserting into CH2OO...H2O is favourable one. Water-assisted CH2OO + H2O → CH2(OH)OOH can occur by H2O moiety of (H2O)2 or the whole (H2O)2 forming cyclic structure with CH2OO, where the latter form is more favourable. Because the concentration of H2CO3 is unknown, the influence of CH3COOH, HCOOH and H2O were calculated within 0-30 km altitude of the Earth's atmosphere. The results calculated within 0-5 km altitude show that H2O and HCOOH have obvious effect on enhancing the rate with the enhancement factors are, respectively, 62.47%-77.26% and 0.04%-1.76%. Within 5-30 km altitude, HCOOH has obvious effect on enhancing the title rate with the enhancement factor of 2.69%-98.28%. However, compared with the reaction of CH2OO + HCOOH, the rate of CH2OO...H2O + HCOOH is much slower.

  3. Volatile (H2O, CO2) and Halogen (Cl) Systematics of SMAR MORB (44-52.5 ° S)

    NASA Astrophysics Data System (ADS)

    le Roux, P. J.; le Roex, A. P.; Hauri, E. H.

    2013-12-01

    New SIMS volatile (H2O, CO2) and halogen (Cl) concentration data are presented for fresh MORB glasses (>6wt% MgO) from the slow-spreading southern Mid-Atlantic Ridge (SMAR; 44-52.5 ° S). This data set complements previous data from the faster-spreading northern East Pacific Rise (EPR; 8-10 ° N and 12-14 ° N; le Roux et al., 2006). The selected MORB samples span the previously observed compositional range between enriched and depleted mantle source regions along this section of the SMAR (le Roux et al., 2002b), as well as the range of magma crystallization characteristics (le Roux et al., 2002a). The pre-eruption transit of MORB magmas through the upper oceanic crust can potentially result in compositional contamination through assimilation of e.g. sea-water altered crustal material and/or saline brines. This would most-noticeable through significant addition of sea-water derived Cl to a magma, resulting in excess Cl concentrations and elevated Cl/Nb ratios (>50) in erupted MORB lavas (le Roux et al., 2006; Michael & Cornell, 1998). Dissolved H2O (0.12-0.61wt%) and CO2 (69-230ppm) concentrations in the MORB glass samples provide pressure estimates of eruption initiation, and therefore the final crustal depth at which significant magma compositional modification occurred (Dsat; le Roux et al., 2006). Unlike the northern EPR region, no geophysical data are available for this section of the SMAR. A comparison of Dsat with the depth of imaged magma chambers, similar to results from the northern EPR (le Roux et al., 2006), is therefore not directly possible. However, estimates of the calculated pressures of MORB magma crystallization for these SMAR samples (le Roux et al., 2002a) can be compared with Dsat. The dissolved H2O and CO2 contents of the SMAR basalts are consistent with slow magma ascent allowing degassing to keep pace with decompression (Dsat 0-550m.b.s.l.). Observed Cl contents (15-170ppm) of these SMAR basalts are well-correlated with Nb and indicate the

  4. New metal-organic frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2] . 4H2O

    NASA Astrophysics Data System (ADS)

    Weng, Sheng-Feng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-04-01

    Two novel materials, [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La(1a), Ce(1b)) and [Ce2(C2O4)(C6H6O7)2] . 4H2O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1¯ (No. 2); compound 2 crystallized in monoclinic space group P21/c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of CuII ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d1 excited state and two levels of the 4f1 ground state (2F5/2 and 2F7/2). Compounds 1b and 2 containing CeIII ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers.

  5. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Ertl, G.; Alefeld, G.; Youdelis, W.; Radd, H.; Oertle, G.; Siegel, Edward

    2011-03-01

    "H2O H2O everywhere; ne'er a drop to drink"[Coleridge(1798)]; now: "H2 H2 everywhere; STILL ne'er a drop to drink": ONLY H2 (or methane CH4) can be FLYING-WATER(F-W) chemical-rain-in-pipelines Hindenberg-effect (H2-UP;H2O-DOWN): {O/H2O}=[16]/[18] 90 % ; O already in air uphill; NO H2O pumping need! In global-warming driven H2O-starved glacial-melting world, rescue is possible ONLY by Siegel [{3rd Intl. Conf. Alt.-Energy }(1980)-vol.5/p.459!!!] Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating-system. Rosenfeld[Science 315,1396(3/9/2007)]-Biello [Sci.Am.(3/9/2007)] crucial geomorph-ology which ONLY maximal-buoyancy H2 can exploit, to again make "Mountains into Fountains", ``upthrust rocks trapping the clouds to precipitate their rain/snow/H2O'': "terraforming"(and ocean-rebasificaton!!!) Siegel proprietary magnetic-hydrogen-valve (MHV) permits H2 flow in already in-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Science 300,1740(2003)] dire warning of global-pandemics (cancers/ blindness/famine) Hydrogen-economy CATASTROPHIC H2 ozone-layer destruction sobering cavat to dangerous H2-automotion-economy panacea hype!!!

  6. Seventh Copper Mountain Conference on Multigrid Methods. Part 2

    NASA Technical Reports Server (NTRS)

    Melson, N. Duane (Editor); Manteuffel, Tom A. (Editor); McCormick, Steve F. (Editor); Douglas, Craig C. (Editor)

    1996-01-01

    The Seventh Copper Mountain Conference on Multigrid Methods was held on April 2-7, 1995 at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The vibrancy and diversity in this field are amply expressed in these important papers, and the collection clearly shows the continuing rapid growth of the use of multigrid acceleration techniques.

  7. Ortho-para interconversion in cation-water complexes: The case of V+(H2O) and Nb+(H2O) clusters.

    PubMed

    Ward, T B; Miliordos, E; Carnegie, P D; Xantheas, S S; Duncan, M A

    2017-06-14

    Vanadium and niobium cation-water complexes, V + (H 2 O) and Nb + (H 2 O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O-H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 3:1 intensity ratios for K = odd:even levels for independent ortho:para nuclear spin states are missing for some complexes. We relied on highly correlated internally contracted multi-reference configuration interaction and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to the quasi-C 2v symmetry with a significant probability off the C 2 axis, thus explaining the reduced A values. Both vanadium and niobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 10 6 s -1 ).

  8. Ortho-para interconversion in cation-water complexes: The case of V+(H2O) and Nb+(H2O) clusters

    NASA Astrophysics Data System (ADS)

    Ward, T. B.; Miliordos, E.; Carnegie, P. D.; Xantheas, S. S.; Duncan, M. A.

    2017-06-01

    Vanadium and niobium cation-water complexes, V+(H2O) and Nb+(H2O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O-H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 3:1 intensity ratios for K = odd:even levels for independent ortho:para nuclear spin states are missing for some complexes. We relied on highly correlated internally contracted multi-reference configuration interaction and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to the quasi-C2v symmetry with a significant probability off the C2 axis, thus explaining the reduced A values. Both vanadium and niobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 106 s-1).

  9. Ortho-para interconversion in cation-water complexes: The case of V + (H 2 O) and Nb + (H 2 O) clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, T. B.; Miliordos, E.; Carnegie, P. D.

    Vanadium and niobium cation-water complexes, V+(H2O) and Nb+(H2O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O–H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 1:3 intensity ratios for K = even:odd levels for independent ortho:para nuclearmore » spin states are missing for some complexes. We relied on highly correlated internally contracted Multi-Reference Configuration Interaction (icMRCI) and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to quasi-C2v symmetry with significant probability off the C2 axis, thus explaining the reduced A values. Both vanadium and iobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 106 sec-1).« less

  10. H2MBH2 and M(μ-H)2BH2 Molecules Isolated in Solid Argon: Interelement M-B and M-H-B Bonds (M = Ge, Sn).

    PubMed

    Zhao, Jie; Beckers, Helmut; Huang, Tengfei; Wang, Xuefeng; Riedel, Sebastian

    2018-02-19

    Laser-ablated boron atoms react with GeH 4 molecules to form novel germylidene borane H 2 GeBH 2 , which undergoes a photochemical rearrangement to the germanium tetrahydroborate Ge(μ-H) 2 BH 2 upon irradiation with light of λ = 405 nm. For comparison, the boron atom reactions with SnH 4 only gave the tin tetrahydroborate Sn(μ-H) 2 BH 2 . Infrared matrix-isolation spectroscopy with deuterium substitution and the state-of-the-art quantum-chemical calculations are used to identify these species in solid argon. A planar structure of H 2 GeBH 2 with an electron-deficient B-Ge bond with a partial multiple bond character (bond order = 1.5) is predicted by quantum-chemical calculations. In the case of M(μ-H) 2 BH 2 (M = Ge, Sn) two 3c-2e B-H-M hydrogen bridged bonds are formed by donation of electrons from the B-H σ-bonds into empty p-orbitals of M.

  11. Hydrodeoxygenation of p -Cresol over Pt/Al 2 O 3 Catalyst Promoted by ZrO 2 , CeO 2 , and CeO 2 –ZrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weiyan; Wu, Kui; Liu, Pengli

    2016-07-20

    ZrO 2-Al 2O 3 and CeO 2-Al 2O 3 were prepared by a co-precipitation method and selected as supports for Pt catalysts. The effects of CeO 2 and ZrO 2 on the surface area and Brønsted acidity of Pt/Al 2O 3 were studied. In the hydrodeoxygenation (HDO) of p-cresol, the addition of ZrO 2 promoted the direct deoxygenation activity on Pt/ZrOO 2-Al 2O 3 via Caromatic-O bond scission without benzene ring saturation. Pt/CeOO 2-Al 2O 3 exhibited higher deoxygenation extent than Pt/Al 2O 3 due to the fact that Brønsted acid sites on the catalyst surface favored the adsorption ofmore » p-cresol. With the advantages of CeO 2 and ZrO 2 taken into consideration, CeO 2-ZrOO 2-Al 2O 3 was prepared, leading to the highest HDO activity of Pt/CeO 2-ZrOO 2-Al 2O 3. The deoxygenation extent for Pt/CeO 2-ZrOO 2-Al 2O 3 was 48.4% and 14.5% higher than that for Pt/ZrO2O 2-Al 2O 3 and Pt/CeOO 2-Al 2O 3, respectively.« less

  12. Visible photoelectrochemical water splitting into H 2 and O 2 in a dye-sensitized photoelectrosynthesis cell

    DOE PAGES

    Alibabaei, Leila; Sherman, Benjamin D.; Norris, Michael R.; ...

    2015-04-27

    A hybrid strategy for solar water splitting is exploited here based on a dye-sensitized photoelectrosynthesis cell (DSPEC) with a mesoporous SnO 2/TiO 2 core/shell nanostructured electrode derivatized with a surface-bound Ru(II) polypyridyl-based chromophore–catalyst assembly. The assembly, [(4,4’-(PO 3H 2) 2bpy) 2Ru(4-Mebpy-4’-bimpy)Ru(tpy)(OH 2)] 4+ ([RuaII-RubII-OH 2] 4+, combines both a light absorber and a water oxidation catalyst in a single molecule. It was attached to the TiO 2 shell by phosphonate-surface oxide binding. The oxide-bound assembly was further stabilized on the surface by atomic layer deposition (ALD) of either Al 2O 3 or TiO 2 overlayers. Illumination of the resulting fluorine-dopedmore » tin oxide (FTO)|SnO 2/TiO 2|-[Ru a II-Ru b II-OH 2] 4+(Al 2O 3 or TiO 2) photoanodes in photoelectrochemical cells with a Pt cathode and a small applied bias resulted in visible-light water splitting as shown by direct measurements of both evolved H 2 and O 2. The performance of the resulting DSPECs varies with shell thickness and the nature and extent of the oxide overlayer. Use of the SnO 2/TiO 2 core/shell compared with nanoITO/TiO 2 with the same assembly results in photocurrent enhancements of ~5. In conclusion, systematic variations in shell thickness and ALD overlayer lead to photocurrent densities as high as 1.97 mA/cm 2 with 445-nm, ~90-mW/cm 2 illumination in a phosphate buffer at pH 7.« less

  13. C 1 s ionization in C sub 2 H sub 2 studied by asymmetric ( e ,2 e ) experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avaldi, L.; Camilloni, R.; Stefani, G.

    1990-01-01

    The dynamics of core ionization by electron impact is investigated through the measurement of the triply differential cross section of the C {sigma}1{ital s} orbital in the molecule C{sub 2}H{sub 2}. The ({ital e},2{ital e}) experiments have been performed under asymmetric conditions and at small scattering angles, with a scattered electron energy of 1500 eV and low energies of the ejected electrons (9.6 and 41.0 eV). The measured angular distributions are characterized by large-size recoil lobes, breaking of the symmetry around the momentum-transfer direction, and unusual deviations of the maxima of the recoil peaks towards smaller deflection angles. In themore » ({ital e},2{ital e}) energy spectrum a shift is observed in the position of the C {sigma}1{ital s} peak with respect to the expected value as measured by x-ray photoelectron spectroscopy. The amplitude of the shift amounts to 0.46{plus minus}0.23 eV at 9.6 eV excess energy, and it is too large to be explained only in terms of postcollision interactions.« less

  14. Crack-resistant Al2O3–SiO2 glasses

    PubMed Central

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-01-01

    Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3–(100–x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3–SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses. PMID:27053006

  15. Effect of AlB2 on the P-threshold in Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Wu, Yuying; Liu, Xiangfa

    2018-06-01

    The nucleation of primary Si in Al-Si alloys has been investigated in this work. It was found that there was a threshold concentration of P, below which AlP can not heterogeneous nucleate primary Si in Al-12 wt%Si alloy. AlB2 can not nucleate primary Si directly, but the presence of AlB2 may assist the nucleation of AlP leading to the nucleation of primary Si particles. In addition, with addition of AlB2, the nucleation efficiency of AlP can be improved in Al-18 wt%Si alloy. The orientation relationship between AlB2 and AlP has been calculated, and the adsorption model for AlB2 and AlP was proposed in this work.

  16. Finite Forward Acceptance Angles for Single Electron Capture by ^3He^2+ Ions in He and H_2

    NASA Astrophysics Data System (ADS)

    Mawhorter, Rj; Greenwood, J.; Smith; Chutjian, A.

    2004-05-01

    Perhaps surprisingly, electron capture scattering angles of a few degrees or more are observed for slow ions impacting light targets. Gas cells must be designed with this in mind. Indeed the difference between small acceptance angle results(W.L. Nutt, et al., J. Phys. B 8), 1457 (1978) and the larger acceptance-angle studies of both Kusakabe, et al.(T. Kusakabe, et al., J. Phys. Soc. Japan 59), 1218 (1990) and our group at JPL (presented here; energy range 0.33-4.67 keV/amu) for ^3He^2+ in H2 can be ascribed to this effect. Olson and Kimura(R. E. Olson and M. Kimura, J. Phys. B 15), 4231 (1982) have modeled the problem theoretically. We use existing differential cross section data(D. Bordenave-Montesquieu and R. Dagnac, J. Phys. B 27), 543 1994) for both H_2/ D2 and ^4He targets to calculate realistic acceptance angles. The resulting small total cross section corrections provide reliable absolute results for these benchmark systems. This work was carried out at JPL/Caltech, and was supported through agreement with NASA.

  17. Mo2NiB2-type Sm2Co2Al and Sm2Co2Ga compounds: Magnetic properties and giant low-temperature coercivity

    NASA Astrophysics Data System (ADS)

    Morozkin, A. V.; Garshev, A. V.; Yapaskurt, V. O.; Yao, Jinlei; Nirmala, R.; Quezado, S.; Malik, S. K.

    2018-04-01

    The magnetic ordering of Mo2NiB2-type Sm2Co2Al and Sm2Co2Ga (Immm, No. 71, oI10) compounds has been established using bulk magnetic measurements. Polycrystalline Sm2Co2Al and Sm2Co2Ga undergo ferromagnetic transitions (TC) at 50 K and 62 K, respectively, and low-temperature field induced transitions (Tm) around 14 K and 16 K (in a field of 10 kOe), respectively. Between TC and Tm Sm2Co2Al and Sm2Co2Ga are soft ferromagnets. Below Tm Sm2Co2Al and Sm2Co2Ga exhibit permanent magnet properties with a residual magnetization per samarium of 0.38 μB and 0.36 μB, respectively, and a large coercive field of 69 kOe and 72 kOe, respectively, at 5 K. The magnetocaloric effects of Sm2Co2Al and Sm2Co2Ga were calculated in terms of isothermal magnetic entropy change and they reach maximum values of -1.62 J/kg K and -1.31 J/kg K for a field change of 50 kOe at 50 K and 58 K, respectively. Low temperature magnetic ordering with enhanced anisotropy in Sm2Co2Al and Sm2Co2Ga is accompanied by a positive magnetocaloric effect with isothermal magnetic entropy changes of +1.63 J/kg K and +1.06 J/kg K for a field change of 50 kOe at 10 K and 8 K, respectively. The magnetocaloric effects of Sm2Co2Al and Sm2Co2Ga were calculated in terms of isothermal magnetic entropy change and they reach maximum values of -1.62 J/kg K and -1.31 J/kg K for a field change of 50 kOe at 50 K and 58 K, respectively. Low temperature magnetic ordering with enhanced anisotropic effects in Sm2Co2Al and Sm2Co2Ga is accompanied by a positive magnetocaloric effect with isothermal magnetic entropy changes of +1.63 J/kg K and +1.06 J/kg K for a field change of 50 kOe at 10 K and 8 K, respectively.

  18. Macroscopic and spectroscopic investigations on Eu(III) and Cm(III) sorption onto bayerite (β-Al(OH)3) and corundum (α-Al2O3).

    PubMed

    Kupcik, Tomas; Rabung, Thomas; Lützenkirchen, Johannes; Finck, Nicolas; Geckeis, Horst; Fanghänel, Thomas

    2016-01-01

    The interaction of trivalent Cm and Eu with the aluminum hydroxide bayerite (β-Al(OH)3) and the aluminum oxide corundum (α-Al2O3) was investigated by batch sorption experiments and time resolved laser fluorescence spectroscopy (TRLFS). The experimental methods for both polymorphs show similar pH dependent sorption behavior at trace metal ion concentrations (∼10(-7) M), i.e. similar Eu sorption edges and nearly identical Cm speciation between pH=3 and 13. In this pH range the Cm aquo ion as well as the Cm(III) surface species surface⋯Cm(OH)x(H2O)(5-x) (x=0, 1, 2) can be distinguished by TRLFS. The similar sorption data point to a (surface) transformation of the thermodynamically unstable Al2O3 surface into bayerite, in agreement with the similar isoelectric points obtained for both minerals (pH(IEP)=8.6-8.8). The pH dependent surface charge is most likely due to the protonation/deprotonation of singly coordinated Al-OH surface groups, prevailing on the edge planes of the rod-like bayerite crystals and the surface of the colloidal Al2O3 particles. These surface groups are also believed to act as ligands for lanthanide/actinide(III) surface complexation. In contrast to the similar sorption behavior at trace metal ion concentrations, discrepancies are observed at higher Eu levels. While similar sorption edges occur up to 7×10(-7) M Eu for corundum, the pH edge on bayerite is gradually shifted to higher pH values in this Eu concentration range. The latter behavior may be related either to the existence of multiple sorption sites with different sorption affinities, or to the influence of an additional amorphous Al-phase, forming in the course of the bayerite synthesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The reaction of H2O2 with NO2 and NO

    NASA Technical Reports Server (NTRS)

    Gray, D.; Lissi, E.; Heicklen, J.

    1972-01-01

    The reactions of NO and NO2 with H2O2 have been examined at 25 C. Reaction mixtures were monitored by continuously bleeding through a pinhole into a monopole mass spectrometer. NO2 was also monitored by its optical absorption in the visible part of the spectrum. Reaction mixtures containing initially 1.5 - 2.5 torr of NO2 and 0.8 - 1.4 torr of H2O2 or 1 - 12 torr of NO and 0.5 - 1.5 torr of H2O2 were studied. The H2O2 - NO reaction was complex. There was an induction period followed by a marked acceleration in reactant removal. The final products of the reaction, NO2, probably H2O, and possibly HONO2 were produced mainly after all the H2O2 was removed. The HONO intermediate was shown to disproportionate to NO2 + NO + H2O in a relatively slow first order reaction. The acceleration in H2O2 removal after the NO - H2O2 reaction is started is caused by NO2 catalysis.

  20. Atomic-layer-deposited Al2O3-HfO2-Al2O3 dielectrics for metal-insulator-metal capacitor applications

    NASA Astrophysics Data System (ADS)

    Ding, Shi-Jin; Zhu, Chunxiang; Li, Ming-Fu; Zhang, David Wei

    2005-08-01

    Atomic-layer-deposited Al2O3-HfO2-Al2O3 dielectrics have been investigated to replace conventional silicon oxide and nitride for radio frequency and analog metal-insulator-metal capacitors applications. In the case of 1-nm-Al2O3, sufficiently good electrical performances are achieved, including a high dielectric constant of ˜17, a small dissipation factor of 0.018 at 100kHz, an extremely low leakage current of 7.8×10-9A/cm2 at 1MV/cm and 125°C, perfect voltage coefficients of capacitance (74ppm/V2 and 10ppm/V). The quadratic voltage coefficient of capacitance decreases with the applied frequency due to the change of relaxation time with different carrier mobility in insulator, and correlates with the dielectric composition and thickness, which is of intrinsic property owing to electric field polarization. Furthermore, the conduction mechanism of the AHA dielectrics is also discussed, indicating the Schottky emission dominated at room temperature.

  1. Derivation of force field parameters for SnO2-H2O surface systems from plane-wave density functional theory calculations.

    PubMed

    Bandura, A V; Sofo, J O; Kubicki, J D

    2006-04-27

    Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.

  2. Fabrication and characterization of nano-Y2O3 and Al2O3 dispersed W-Ni alloys by mechanical alloying and pressureless conventional sintering

    NASA Astrophysics Data System (ADS)

    Talekar, V. R.; Patra, A.; Karak, S. K.

    2018-03-01

    Nano Y2O3 and Al2O3 dispersed W-Ni alloys with nominal composition of W89Ni10 (Y2O3)1 (alloy A), W89Ni10 (Al2O3)1 (alloy B) were mechanically alloyed for 10 h followed by compaction at 0.5 GPa pressure with 5 min of dwell time and conventional sintering at 1400°C with 2 h soaking time in Ar atmosphere with Ar flow rate of 100 ml/min. The microstructure of milled and sintered alloy was investigated using X-ray Diffraction (XRD), Scanning electron Microscopy (SEM), Energy dispersive spectroscopy (EDS) and Elemental mapping. Minimum crystallite size of 31.9 nm and maximum lattice strain, dislocation density of 0.23%, 9.12(1016/m2) respectively was found in alloy A at 10 h of milling. Uneven and coarse particles at 0 h of milling converted to elongated flake shape at 10 h of milling. Bimodal (fine and coarse) particle size distribution is revealed in both the alloys and minimum particle size of 0.69 μm is achieved in 10 h milled alloy A. Evidences of formation of intermetallic phases like Y2WO6, Y6WO12 and Y10W2O21 in sintered alloy A and Al2(WO4)3, NiAl10O16, NiAl2O4 and AlWO4 in sintered alloy B were revealed by XRD pattern and SEM micrograph. Minimum grain size of 1.50 μm was recorded in sintered alloy A. Both faceted and spherical W matrix is evident in both the alloys which suggests occurrence of both solid phase and liquid phase sintering. Maximum % relative sintered density and hardness of 85.29% and 5.13 GPa respectively was found in alloy A. Wear study at 20N force at 25 rpm for 15 min on ball on plate wear tester revealed that minimum wear depth (48.99 μm) and wear track width (272 μm) was found for alloy A as compared to alloy B.

  3. HI-to-H2 Transitions in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Sternberg, Amiel; Lee, Min-Young; Le Petit, Franck; Roueff, Evelyne

    2015-08-01

    We use the Sternberg et al. theory for interstellar atomic to molecular hydrogen (H i-to-H2) conversion to analyze H i-to-H2 transitions in five (low-mass) star-forming and dark regions in the Perseus molecular cloud, B1, B1E, B5, IC348, and NGC1333. The observed H i mass surface densities of 6.3-9.2 {M}⊙ {{pc}}-2 are consistent with H i-to-H2 transitions dominated by H i-dust shielding in predominantly atomic envelopes. For each source, we constrain the dimensionless parameter α G, and the ratio {I}{UV}/n, of the FUV intensity to hydrogen gas density. We find α G values from 5.0 to 26.1, implying characteristic atomic hydrogen densities 11.8-1.8 cm-3, for {I}{UV}≈ 1 appropriate for Perseus. Our analysis implies that the dusty H i shielding layers are probably multiphased, with thermally unstable UNM gas in addition to cold CNM within the 21 cm kinematic radius.

  4. Catalytic activity of CuOn-La2O3/gamma-Al2O3 for microwave assisted ClO2 catalytic oxidation of phenol wastewater.

    PubMed

    Bi, Xiaoyi; Wang, Peng; Jiang, Hong

    2008-06-15

    In order to develop a catalyst with high activity and stability for microwave assisted ClO2 catalytic oxidation, we prepared CuOn-La2O3/gamma-Al2O3 by impregnation-deposition method, and determined its properties using BET, XRF, XPS and chemical analysis techniques. The test results show that, better thermal ability of gamma-Al2O3 and high loading of Cu in the catalyst can be achieved by adding La2O3. The microwave assisted ClO2 catalytic oxidation process with CuOn-La2O3/gamma-Al2O3 used as catalyst was also investigated, and the results show that the catalyst has an excellent catalytic activity in treating synthetic wastewater containing 100 mg/L phenol, and 91.66% of phenol and 50.35% of total organic carbon (TOC) can be removed under the optimum process conditions. Compared with no catalyst process, CuOn-La2O3/gamma-Al2O3 can effectively degrade contaminants in short reaction time and with low oxidant dosage, extensive pH range. The comparison of phenol removal efficiency in the different process indicates that microwave irradiation and catalyst work together to oxidize phenol effectively. It can therefore be concluded from results and discussion that CuOn-La2O3/gamma-Al2O3 is a suitable catalyst in microwave assisted ClO2 catalytic oxidation process.

  5. The rate of the reaction between CN and C2H2 at interstellar temperatures.

    PubMed

    Woon, D E; Herbst, E

    1997-03-01

    The rate coefficient for the important interstellar reaction between CN and C2H2 has been calculated as a function of temperature between 10 and 300 K. The potential surface for this reaction has been determined through ab initio quantum chemical techniques; the potential exhibits no barrier in the entrance channel but does show a small exit channel barrier, which lies below the energy of reactants. Phase-space calculations for the reaction dynamics, which take the exit channel barrier into account, show the same unusual temperature dependence as determined by experiment, in which the rate coefficient at first increases as the temperature is reduced below room temperature and then starts to decrease as the temperature drops below 50-100 K. The agreement between theory and experiment provides strong confirmation that the reaction occurs appreciably at cool interstellar temperatures.

  6. Modulus, strength and thermal exposure studies of FP-Al2O3/aluminum and FP-Al2O3/magnesium composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.

    1981-01-01

    The mechanical properties of FP-Al2O3 fiber reinforced composites prepared by liquid infiltration techniques are improved. A strengthening addition, magnesium, was incorporated with the aluminum-lithium matrix alloy usually selected for these composites because of its good wetting characteristics. This ternary composite, FP-Al2O3/Al-(2-3)Li-(3-5)Mg, showed improved transverse strength compared with FP-Al2O3/Al-(2-3)Li composites. The lower axial strengths found for the FP-Al2O3/Al-(2-3)Li-(3-5)Mg composites were attributed to fabrication related defects. Another technique was the use of Ti/B coated FP-Al2O3 fibers in the composites. This coating is readily wet by molten aluminum and permitted the use of more conventional aluminum alloys in the composites. However, the anticipated improvements in the axial and transverse strengths were not obtained due to poor bonding between the fiber coating and the matrix. A third approach studied to improve the strengths of FP-Al2O3 reinforced composites was the use of magnesium alloys as matrix materials. While these alloys wet fibers satisfactorily, the result indicated that the magnesium alloy composites used offered no axial strength or modulus advantage over FP-Al2O3/Al-(2-3)Li composites.

  7. Iridium Ziegler-Type Hydrogenation Catalysts Made from [(1,5-COD)Ir( -O2C8H15)]2 and AlEt3: Spectroscopic and Kinetic Evidence for the Irn Species Present and for Nanoparticles as the Fastest Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alley, W.; Hamdemir, I; Wang, Q

    2010-01-01

    Ziegler-type hydrogenation catalysts, those made from a group 8-10 transition metal precatalyst and an AlR{sub 3} cocatalyst, are often used for large scale industrial polymer hydrogenation; note that Ziegler-type hydrogenation catalysts are not the same as Ziegler-Natta polymerization catalysts. A review of prior studies of Ziegler-type hydrogenation catalysts (Alley et al. J. Mol. Catal. A: Chem. 2010, 315, 1-27) reveals that a {approx}50 year old problem is identifying the metal species present before, during, and after Ziegler-type hydrogenation catalysis, and which species are the kinetically best, fastest catalysts-that is, which species are the true hydrogenation catalysts. Also of significant interestmore » is whether what we have termed 'Ziegler nanoclusters' are present and what their relative catalytic activity is. Reported herein is the characterization of an Ir Ziegler-type hydrogenation catalyst, a valuable model (vide infra) for the Co-based industrial Ziegler-type hydrogenation catalyst, made from the crystallographically characterized [(1,5-COD)Ir({mu}-O{sub 2}C{sub 8}H{sub 15})]{sub 2} precatalyst plus AlEt{sub 3}. Characterization of this Ir model system is accomplished before and after catalysis using a battery of physical methods including Z-contrast scanning transmission electron microscopy (STEM), high resolution (HR)TEM, and X-ray absorption fine structure (XAFS) spectroscopy. Kinetic studies plus Hg(0) poisoning experiments are then employed to probe which species are the fastest catalysts. The main findings herein are that (i) a combination of the catalyst precursors [(1,5-COD)Ir({mu}-O{sub 2}C{sub 8}H{sub 15})]{sub 2} and AlEt{sub 3} gives catalytically active solutions containing a broad distribution of Ir{sub n} species ranging from monometallic Ir complexes to nanometer scale, noncrystalline Ir{sub n} nanoclusters (up to Ir{sub {approx}100} by Z-contrast STEM) with the estimated mean Ir species being 0.5-0.7 nm, Ir{sub {approx}4

  8. The Effect of N2 Photoabsorption Cross Section Resolution on C2H6 Production in Titan’s Ionosphere

    NASA Astrophysics Data System (ADS)

    Luspay-Kuti, Adrienn; Mandt, Kathleen E.; Plessis, Sylvain; Greathouse, Thomas K.

    2014-11-01

    Titan’s rich organic chemistry begins with the photochemistry of only two molecules: N2 and CH4. The details on how higher-order hydrocarbons and nitriles are formed from these molecules have key implications for both the structure and evolution of Titan’s atmosphere, and for its surface-atmosphere interactions. Of high importance is the production of C2H6, which is a sink for CH4, and a main component in the polar lakes. Results of photochemical models, though, may be sensitive to the choice of input parameters, such as the N2 photoabsorption cross section resolution, as previously shown for nitrogen (Liang et al. (2007) ApJL 664, 115-118), and CH4 (Lavvas et al. (2011) Icarus 213, 233-251). Here we investigate the possibility of the same effect on the production rates of C2H6. We modeled production and loss rates, as well as mixing ratio and density profiles between an altitude of 600 and 1600 km for low and high resolution N2 cross sections via a coupled ion-neutral-thermal model (De La Haye et al. (2008) Icarus 197, 110-136; Mandt et al. (2012) JGR 117, E10006). Our results show a clear impact of photoabsorption cross section resolution used on all neutral and ion species contributing to C2H6 production. The magnitude of the influence varies amongst species. Ethane production profiles exhibit a significant increase with better resolution; a factor of 1.2 between 750 and 950 km, and a factor of 1.1 in the total column-integrated production rate. These values are lower limits, as additional reactions involving C2H5 not included in the model may also contribute to the production rates. The clear effect on C2H6 (which is not a parent molecule, nor does it bear nitrogen) may have important implications for other molecules in Titan’s atmosphere as well. The possible non-negligible impact of an isotope of nitrogen may argue for the inclusion of isotopes in photochemical models. For future analysis, development of a more efficient and streamlined model called

  9. Response of Cr and Cr-Al coatings on Zircaloy-2 to high temperature steam

    NASA Astrophysics Data System (ADS)

    Zhong, Weicheng; Mouche, Peter A.; Heuser, Brent J.

    2018-01-01

    The oxidation behavior of chromium (Cr) and chromium-aluminum (CrAl) coatings with various compositions deposited on Zircaloy-2 to 700 °C high-temperature steam (HTS) exposure has been investigated. CrAl coatings with higher Al compositions demonstrate lower oxidation weight gain. A layer of γ-alumina developed on the CrAl coatings with Al composition over 43 at%, while Al2O3 and Cr2O3 developed on CrAl coatings with Al composition below 33 at%. Oxidation of Zircaloy-2 substrate was inhibited by the 1um coatings to 20 h HTS exposure. Coating constituent elements diffused into the substrate and formed intermetallic phases with the Zircaloy substrate. Thicker layers of intermetallic phases developed on the coatings with higher Al composition. The intermetallic phases included Fe and Ni, indicating the dissolution of second phase particles (SPPs) during HTS exposure.

  10. Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5

    USGS Publications Warehouse

    Majzlan, J.; Navrotsky, A.; McCleskey, R. Blaine; Alpers, Charles N.

    2006-01-01

    Enthalpies of formation of ferricopiapite [nominally Fe4.67(SO4)6(OH)2 (H2O)20]. coquimbite [Fe2(SO4)3(H2O)9], rhomboclase [(H3O)Fe(SO4)2 (H2O)3], and Fe2(SO4)3(H2O)5 were measured by acid (5 N HCl) solution calorimetry. The samples were characterized by wet chemical analyses and synchrotron powder X-ray diffraction (XRD). The refinement of XRD patterns gave lattice parameters, atomic positions, thermal factors, and occupancies of the sites. The calculated formulae differ slightly from the nominal compositions: Fe4.78(SO4)6 (OH)2.34(H2O)20.71 (ferricopiapite), (Fe1.47Al0.53)(SO4)3 (H2O)9.65 (coquimbite), (H3O)1.34Fe(SO4)2.17 (H2O)3.06 (rhomboclase), and Fe2(SO4)3 (H2O)5.03. All thermodynamic data are given per mole of these formulae. The measured standard enthalpies (in kJ/mol) of formation from the elements (crystalline Fe, Al, S, and ideal gases O2 and H2) at T = 298.15 K are -4115.8??4.1 [Fe2(SO4)3 (H2O)5.03], -12045.1??9.2 (ferricopiapite), -5738.4??3.3 (coquimbite), and -3201.1??2.6 (rhomboclase). Standard entropy (S??) was estimated as a sum of entropies of oxide, hydroxide, and sulfate components. The estimated S?? (in J/mol.K) values for the iron sulfates are 488.2 [Fe2(SO4)3 (H2O)5.03], 1449.2 (ferricopiapite), 638.3 (coquimbite), and 380.1 (rhomboclase). The calculated Gibbs free energies of formation (in kJ/mol) are -3499.7??4.2 [Fe2(SO4)3 (H2O)5.03], -10089.8??9.3 (ferricopiapite), -4845.6??3.3 (coquimbite), and -2688.0??2.7 (rhomboclase). These results combined with other available thermodynamic data allow construction of mineral stability diagrams in the FeIII2(SO4)3-FeII SO4-H2O system. One such diagram is provided, indicating that the order of stability of ferric sulfate minerals with decreasing pH in the range of 1.5 to -0.5 is: hydronium jarosite, ferricopiapite, and rhomboclase. ?? 2006 E. Schweizerbart'sche Verlagsbuchhandlung.

  11. Infrared spectra of seeded hydrogen clusters: (para-H2)N-N2O and (ortho-H2)N-N2O, N = 2-13.

    PubMed

    Tang, Jian; McKellar, A R W

    2005-09-15

    High-resolution infrared spectra of clusters containing para-H2 and/or ortho-H2 and a single nitrous oxide molecule are studied in the 2225-cm(-1) region of the upsilon1 fundamental band of N2O. The clusters are formed in pulsed supersonic jet expansions from a cooled nozzle and probed using a tunable infrared diode laser spectrometer. The simple symmetric rotor-type spectra generally show no resolved K structure, with prominent Q-branch features for ortho-H2 but not para-H2 clusters. The observed vibrational shifts and rotational constants are reported. There is no obvious indication of superfluid effects for para-H2 clusters up to N=13. Sharp transitions due to even larger clusters are observed, but no definite assignments are possible. Mixed (para-H2)N-(ortho-H2)M-N2O cluster line positions can be well predicted by linear interpolation between the corresponding transitions of the pure clusters.

  12. Problems in shortening the time to confirmation of ALS diagnosis: lessons from the 1st Consensus Conference, Chicago, May 1998.

    PubMed

    Brooks, B R

    2000-03-01

    The 2nd Consensus Conference (Versailles) on the early diagnosis of amyotrophic lateral sclerosis (ALS) developed themes identified at the 1st Consensus Conference (Chicago) on defining optimal management in ALS. These themes included describing the problems and limitations in current diagnostic practices, identifying consequences of early diagnosis on patient management, establishing recommendations to help healthcare personnel achieve the early diagnosis and proposing solutions to facilitate early diagnosis of ALS. Lessons from the ISIS Survey and the 1st Consensus Conference focused on the variability of the first-contact physician, supply factors for specialists and variability of application of medical techniques. The recently introduced concept of 'ALS health states or stages' was reviewed in terms of ongoing and potential prospective studies. The relative contribution of neuroimaging or clinical neurophysiological investigations to accelerating the diagnosis of ALS in clinical practice was debated. The role of a common ALS knowledge-base among patients, initial healthcare providers, diagnosing neurologists and confirming neurologists was critically appraised with regard to simplified 'ALS diagnostic algorithm', 'ten aphorisms in the diagnosis of ALS' and 'ALS axioms of referral'. Refining this ALS knowledge-base is required to identify a minimum dataset required for the evaluation and diagnosis of ALS.

  13. Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses

    PubMed Central

    Nang, Nguyen Tai; Song, Byung Min; Kang, Young Myong; Kim, Heui Man; Kim, Hyun Soo; Seo, Sang Heui

    2012-01-01

    Please cite this paper as: Nang et al. (2013) Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses. Influenza and Other Respiratory Viruses 7(2) 120–131. Background  The highly pathogenic H5N1 and H9N2 influenza viruses are endemic in many countries around the world and have caused considerable economic loss to the poultry industry. Objectives  We aimed to study whether a live attenuated H5N1 vaccine comprising internal genes from a cold‐adapted H9N2 influenza virus could protect chickens from infection by both H5N1 and H9N2 viruses. Methods  We developed a cold‐adapted H9N2 vaccine virus expressing hemagglutinin and neuraminidase derived from the highly pathogenic H5N1 influenza virus using reverse genetics. Results and Conclusions  Chickens immunized with the vaccine were protected from lethal infections with homologous and heterologous H5N1 or H9N2 influenza viruses. Specific antibody against H5N1 virus was detected up to 11 weeks after vaccination (the endpoint of this study). In vaccinated chickens, IgA and IgG antibody subtypes were induced in lung and intestinal tissue, and CD4+ and CD8+ T lymphocytes expressing interferon‐gamma were induced in the splenocytes. These data suggest that a live attenuated H5N1 vaccine with cold‐adapted H9N2 internal genes can protect chickens from infection with H5N1 and H9N2 influenza viruses by eliciting humoral and cellular immunity. PMID:22487301

  14. Photoionization Models of the H_2 Emission of the Narrow Line Region of AGNs

    NASA Astrophysics Data System (ADS)

    Aleman, I.; Gruenwald, R.

    2011-05-01

    The excitation mechanism of the narrow line region (NLR) of AGNs is still an open question. Excitation by UV radiation from O and B stars, x-rays from the central black hole, shock from supernovae or jets, or a combination of these mechanisms have been suggested. In the present work, we use photoionization models to study the excitation mechanisms of the H_2 infrared emission lines in the NLR. In the literature, analyzes of the H_2 emission have been done assuming that the molecules is present only in neutral regions (photodissociation regions, x-ray-dominated regions, or shocks; Veilleux et al. 1997, Krabbe et al. 2000, Rigopoulou et al. 2002, Rodriguez-Ardila et al. 2004, 2005, and Davies et al. 2005). However, they are not conclusive. In previous work (Aleman & Gruenwald 2004, 2011), we show that the H_2 emission from the ionized region of PNe can be significant for planetary nebulae (PNe) with hot central stars (T⋆ > 150000 K). Such stars produce copious amounts of high energy photons, which create an extended partially ionized region that favors the H_2 survival. The conditions in the NLR are similar to those in PNe with hot central stars, so we can expect that the H_2 emission might also be important. We obtain and analyze a grid of photoionization models for different NRL parameters. We study the resulting H_2 density and emission, as well as, the formation, destruction, excitation, and de-excitation mechanisms. The higher values observed for the H_2 1-0 S(1)/Brγ ratio cannot be reproduced by our models. The calculated ratios are between 10^-8 and 10^-1, while the observational ration can be as high as 10. The calculated ratio is strongly anti-correlated with the ionization parameter (U) and only models with U<10-3 result in ratios inside the observational range. We show that the NLR is an environment more hostile to the H_2 molecule than the ionized region of PNe. Another interesting result of our calculations is that the H_2 formation on grain surfaces

  15. Characterization of ZrO2 and (ZrO2)x(Al2O3)1-X thin films on Si substrates: effect of the Al2O3 component

    NASA Astrophysics Data System (ADS)

    Vitanov, P.; Harizanova, A.; Ivanova, T.

    2014-05-01

    ZrO2 and (ZrO2)x(Al2O3)1-x films were deposited by the sol-gel technique on Si substrates. The effect of the Al2O3 additive on the film surface morphology was studied by atomic force microscopy (AFM). The mixed oxide films showed a smoother morphology and lower values of the root-mean-square (RMS) roughness compared to ZrO2. Further, FTIR spectra indicated that ZrO2 underwent crystallization. The electrical measurements of the MIS structure revealed that the presence of Al2O3 and the amorphization affects its dielectric properties. The MIS structure with (ZrO2)x(Al2O3)1-x showed a lower fixed charge (~ 6×1010 cm-2) and an interface state density in the middle of the band gap of 6×1011 eV-1 cm-2). The dielectric constant measured was 22, with the leakage current density decreasing to 2×10-8 A cm-2 at 1×106 V cm-1.

  16. Aging behavior of an in-situ TiB{sub 2}/Al-Cu-Li-x matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yanwei; Hong, Tianran; Geng, Jiwei

    Transmission electron microscopy, differential scanning calorimetry and hardness tests have been performed on an in-situ TiB{sub 2}/Al-3.3Cu-1.0Li-0.60Mg-0.40Ag-0.14Zr-0.13Si composite to study its aging behavior at 175 °C. A cubic phase suspected to be the σ (Al{sub 5}Cu{sub 6}Mg{sub 2}) phase or its variant is precipitated at all aging stages studied, and this phase is not typically observed in the Al-Cu-Li alloys. The primary hardening (aging for 3 h) phases consist of δ′ (Al{sub 3}Li), β′ (Al{sub 3}Zr) and the cubic phase. After aging for 18 h, all precipitates including T{sub 1} (Al{sub 2}CuLi), S (Al{sub 2}CuMg), θ′ (Al{sub 2}Cu), δ′, β′more » and the cubic phase have appeared, and the formation of T{sub 1} and S results in a rapid increase in hardness. With prolonging of aging time, the apparent coarsening of T{sub 1} and S results in a decline in hardness. - Highlights: •The aging behavior of an in-situ TiB{sub 2}/Al-Cu-Li-x composite was studied. •A cubic phase suspected to be σ (Al{sub 5}Cu{sub 6}Mg{sub 2}) or its variant was precipitated. •The hardness change was dominated by the evolution of T{sub 1} (Al{sub 2}CuLi) and S (Al{sub 2}CuMg).« less

  17. Calculation of the vapor-saturated liquidus for the NaCl-CO2-H2O system

    USGS Publications Warehouse

    Barton, P.B.; I-Ming, C.

    1993-01-01

    The polybaric liquidus surface for the H2O-rich corner of the NaCl-CO2-H2O ternary is calculated, relying heavily on 1. (1) a Henry's law equation for CO2 in brines (modified from Drummond, 1981), 2. (2) the assumption that the contributions of dissolved NaCl and CO2 in lowering the activity of H2O are additive, and 3. (3) data on the CO2 clathrate solid solution (nominally CO2 ?? 7.3H2O, but ranging from 5.75 to 8 or 9 H2O) from Bozzo et al. (1975). The variation with composition of the activity of CO2??7.3H2O, or any other composition within the clathrate field, is small, thereby simplifying the calculations appreciably. Ternary invariant points are 1. (1) ternary eutectic at -21.5??C, with ice + clathrate + hydrohalite NaCl-??H2O + brine mNaCl = 5.15, mco2 = 0.22 + vapor Ptotal ??? Pco2 = 5.7 atm; 2. (2) peritectic at -9.6??C, with clathrate + hydrohalite + liquid CO2 + brine mNaCl = 5.18, mco2 = 0.55 + vapor (Ptotal ??? Pco2 = 26.47 atm); and 3. (3) peritectic slightly below +0.1 ??C, with halite + hydrohalite + liquid CO2 + brine (mNaCl ??? 5.5, mco2 ??? 0.64) + vapor (Ptotal ??? Pco2 ??? 34 atm). CO2 isobars have been contoured on the ternary liquidus and also on the 25??C isotherm. An important caveat regarding the application of this information to the interpretation of the freezing-thawing behavior of fluid inclusions is that metastable behavior is a common characteristic of the clathrate. ?? 1993.

  18. Electron Trap Energy Distribution in ALD Al2O3, LaAl4Ox, and GdyAl2-yO3 Layers on Silicon

    NASA Astrophysics Data System (ADS)

    Wang, W. C.; Badylevich, M.; Adelmann, C.; Swerts, J.; Kittl, J. A.; Afanas'ev, V. V.

    2012-12-01

    The energy distribution of electron trap density in atomic layer deposited Al2O3, LaAl4Ox and GdyAl2-yO3 insulating layers was studied by using the exhaustive photodepopulation spectroscopy. Upon filling the traps by electron tunneling from Si substrate, a broad energy distribution of trap levels in the energy range 2-4 eV is found in all studied insulators with trap densities in the range of 1012 cm-2eV-1. The incorporation of La and Gd cations reduces the trap density in aluminate layers as compared to Al2O3. Crystallization of the insulator by the post-deposition annealing is found to increase the trap density while the energy distribution remains unchanged. The similar trap spectra in the Al2O3 and La or Gd aluminate layers suggest the common nature of the traps, probably originating from imperfections in the AlOx sub-network.

  19. Hydrotalcite-based CeNiAl mixed oxides for SO2 adsorption and oxidation.

    PubMed

    Zhao, Ling; Kang, Qi; Guan, Xiongfei; Martyniuk, Christopher J

    2018-06-05

    The impact of Ce on SO 2 adsoption and oxidation was studied over a series of flower-like hydrotalcite-based CeNiAl mixed oxides. Combined with XRD, BET, pyridine chemisorption, CO 2 -TPD, XPS and H 2 -TPR results, it revealed that introduction of Ce into NiAlO generates new centers for oxygen storage and release, promotes the enhancement of Lewis acid strength, increases weakly and strongly alkaline sites, and increases ability for SO 2 adsorption and oxidation. Furthermore, in situ Fourier transform infrared spectroscopy revealed that adsorbed SO 2 molecules formed surface bidentate binuclear sulfate. Taken together, we propose that the addition of Ce 4+ to NiAlO acts to improve this compound as major adsorbent for SO 2 .

  20. A vibrational spectroscopic study of the phosphate mineral vantasselite Al4(PO4)3(OH)3·9H2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Scholz, Ricardo; Belotti, Fernanda Maria; López, Andrés; Theiss, Frederick L.

    2015-08-01

    We have studied the phosphate mineral vantasselite Al4(PO4)3(OH)3·9H2O using a combination of SEM with EDX and Raman and infrared spectroscopy. Qualitative chemical analysis shows Al, Fe and P. Raman bands at 1013 and 1027 cm-1 are assigned to the PO43- ν1 symmetric stretching mode. The observation of two bands suggests the non-equivalence of the phosphate units in the vantasselite structure. Raman bands at 1051, 1076 and 1090 cm-1 are attributed to the PO43- ν3 antisymmetric stretching vibration. A comparison is made with the spectroscopy of wardite. Strong infrared bands at 1044, 1078, 1092, 1112, 1133, 1180 and 1210 cm-1 are attributed to the PO43- ν3 antisymmetric stretching mode. Some of these bands may be due to δAl2OH deformation modes. Vibrational spectroscopy offers a mechanism for the study of the molecular structure of vantasselite.

  1. The lowest ionization potentials of Al2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Barnes, Leslie A.; Taylor, Peter R.

    1988-01-01

    Potential curves for the lowest two electronic states (X 2 sigma g + and A 2 pi u) of Al2(+) were computed using complete active space SCF/multireference CI wave functions and large Gaussian basis sets. The lowest observable vertical ionization potential (to Al2(+) X 2 sigma g +) of the Al2 X 3 pi u ground state is calculated to occur around 6.1 eV, in excellent agreement with the experimental range of 6.0 to 6.42 eV obtained in recent cluster ionization studies by Cox and co-workers. The second vertical ionization potential (to Al2(+) A 2 pi u) occurs near 6.4 eV, also within the experimental range. The adiabatic IP of 5.90 eV is in good agreement with the value of 5.8 to 6.1 eV deduced by Hanley and co-workers from the difference in thresholds between collision induced dissociation processes of Al3(+). The computed IP values are somewhat larger than those deduced from branching ratios in cluster fragmentation experiments by Jarrold and co-workers. The observation of an ionization threshold below 6.42 eV is shown to be incompatible with an Al2 ground electronic state assignment of 3 sigma g -, but the separation between the two lowest states of Al2 is so small that it is likely that both are populated in the experiments, so that this does not provide unambiguous support for the recent theoretical assignment of the ground state as 3 pi u.

  2. First principles investigation of high pressure behavior of FeOOH-AlOOH-phase H (MgSiO4H2) system.

    NASA Astrophysics Data System (ADS)

    Tsuchiya, J.; Thompson, E. C.; Tsuchiya, T.; Nishi, M.; Kuwayama, Y.

    2017-12-01

    It has been believed that water is carried into the deep Earth's interior by hydrous minerals such as the dense hydrous magnesium silicates (DHMSs) in the descending cold plate. A numbers of researches have been conducted so far about the high pressure behaviors of DHMSs. In recent years, we found new DHMS, phase H, at lower mantle pressure condition and the solid solution between phase H and d-AlOOH has been proposed as the most important carrier of water in the deepest part of Earth's mantle (Tsuchiya 2013 GRL, Nishi et al. 2014 Nature Geo., Ohira et al. 2014 EPSL). However, those hydrous minerals are actually not denser than surrounding (dry) mantle minerals (Tsuchiya and Mookherjee 2015 Scientific Reports) and the gravitational stability in deeper part of the Earth is questionable. Therefore, the effects of denser element such as Fe on the stability of DHMS are intimately connected to the ability of transportation of water into Earth's deep interiors. In order to assess the effect of Fe on the phase relation of phase H and d-AlOOH, we first investigated the high pressure behavior of the end-member composition of this system, the e-FeOOH. We have found the new high pressure transformation of FeOOH in the lower mantle conditions both theoretically and experimentally(Nishi et al. 2017 Nature). Here we show high pressure structures and the physical properties of FeOOH-AlOOH-phase H system using first principles calculation and discuss the possible geophysical implications of these phases.

  3. 2nd International Conference on Rheology and Modeling of Materials (IC-RMM2)

    NASA Astrophysics Data System (ADS)

    2017-01-01

    Understanding the rheological properties of materials and their rheological behaviors during their manufacturing processes and in their applications in many cases can help to increase the efficiency and competitiveness not only of the finished goods and products but the organizations and societies also. The more scientific supported and prepared organizations develop more competitive products with better thermal, mechanical, physical, chemical and biological properties and the leading companies apply more competitive equipment and technology processes. The aims of the 2nd International Conference on Rheology and Modeling of Materials (ic-rmm2) and the parallel organized symposiums of the 1st International Symposium on Powder Injection Molding (is-pim1) and the 1st International Symposium on Rheology and Fracture of Solids (is-rfs1) are the followings: Promote new methods and results of scientific research in the fields of modeling and measurements of rheological properties and behavior of materials under processing and applications; Change information between the theoretical and applied sciences as well as technical and technological implantations. Promote the communication and collaboration between the scientists, researchers and engineers of different disciplines, different nations, countries and continents. The international conference ic-rmm2 and symposiums of is-pim1 and is-rfs1 provide a platform among the leading international scientists, researchers, PhD students and engineers for discussing recent achievements in measurement, modeling and application of rheology in materials technology and materials science of liquids, melts, solids, crystals and amorphous structures. Among thr major fields of interest are the influence of materials structures, mechanical stresses, temperatures, deformation speeds and shear rates on rheological and physical properties, phase transformation of foams, foods, polymers, plastics and other competitive materials like ceramics

  4. Analysis of SAW properties in ZnO/AlxGa1-xN/c-Al2O3 structures.

    PubMed

    Chen, Ying; Emanetoglu, Nuri William; Saraf, Gaurav; Wu, Pan; Lu, Yicheng; Parekh, Aniruddh; Merai, Vinod; Udovich, Eric; Lu, Dong; Lee, Dong S; Armour, Eric A; Pophristic, Milan

    2005-07-01

    Piezoelectric thin films on high acoustic velocity nonpiezoelectric substrates, such as ZnO, AlN, or GaN deposited on diamond or sapphire substrates, are attractive for high frequency and low-loss surface acoustic wave devices. In this work, ZnO films are deposited on AlxGa1-xN/c-Al2O3 (0 < or = chi < or = 1) substrates using the radio frequency (RF) sputtering technique. In comparison with a single AlxGa1-xN layer deposited on c-Al2O3 with the same total film thickness, a ZnO/AlxGa1-xN/c-Al2O3 multilayer structure provides several advantages, including higher order wave modes with higher velocity and larger electromechanical coupling coefficient (K2). The surface acoustic wave (SAW) velocities and coupling coefficients of the ZnO/AlxGa1-xN/c-Al2O3 structure are tailored as a function of the Al mole percentage in AlxGa1-xN films, and as a function of the ZnO (h1) to AlxGa1-xN (h2) thickness ratio. It is found that a wide thickness-frequency product (hf) region in which coupling is close to its maximum value, K(2)max, can be obtained. The K(2)max of the second order wave mode (h1 = h2) is estimated to be 4.3% for ZnO/GaN/c-Al2O3, and 3.8% for ZnO/AlN/c-Al2O3. The bandwidth of second and third order wave modes, in which the coupling coefficient is within +/- 0.3% of K(2)max, is calculated to be 820 hf for ZnO/GaN/c-Al2O3, and 3620 hf for ZnO/AlN/c-Al2O3. Thus, the hf region in which the coupling coefficient is close to the maximum value broadens with increasing Al content, while K(2)max decreases slightly. When the thickness ratio of AlN to ZnO increases, the K(2)max and hf bandwidth of the second and third higher wave modes increases. The SAW test devices are fabricated and tested. The theoretical and experimental results of velocity dispersion in the ZnO/AlxGa1-xN/c-Al2O3 structures are found to be well matched.

  5. A potential energy surface for the process H2 + H2O yielding H + H + H2O - Ab initio calculations and analytical representation

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1991-01-01

    Extensive ab initio calculations on the ground state potential energy surface of H2 + H2O were performed using a large contracted Gaussian basis set and a high level of correlation treatment. An analytical representation of the potential energy surface was then obtained which reproduces the calculated energies with an overall root-mean-square error of only 0.64 mEh. The analytic representation explicitly includes all nine internal degrees of freedom and is also well behaved as the H2 dissociates; it thus can be used to study collision-induced dissociation or recombination of H2. The strategy used to minimize the number of energy calculations is discussed, as well as other advantages of the present method for determining the analytical representation.

  6. Thermoluminescence and optically stimulated luminescence properties of Dy3+-doped CaO-Al2O3-B2O3-based glasses

    NASA Astrophysics Data System (ADS)

    Yahaba, T.; Fujimoto, Y.; Yanagida, T.; Koshimizu, M.; Tanaka, H.; Saeki, K.; Asai, K.

    2017-02-01

    We developed Dy3+-doped CaO-Al2O3-B2O3 based glasses with Dy concentrations of 0.5, 1.0, and 2.0 mol% using a melt-quenching technique. The as-synthesized glasses were applicable as materials exhibiting thermoluminescence (TL) and optically stimulated luminescence (OSL). The optical and radiation response properties of the glasses were characterized. In the photoluminescence (PL) spectra, two emission bands due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ were observed at 480 and 580 nm. In the OSL spectra, the emission band due to the 4F9/2 → 6H15/2 transition of Dy3+ was observed. Excellent TL and OSL responses were observed for dose ranges of 0.1-90 Gy. In addition, TL fading behavior was better than that of OSL in term of the long-time storage. These results indicate that the Dy3+-doped CaO-Al2O3-B2O3-based glasses are applicable as TL materials.

  7. Requirements for functional models of the iron hydrogenase active site: D2/H2O exchange activity in ((mu-SMe)(mu-pdt)[Fe(CO)2(PMe3)]2+)[BF4-].

    PubMed

    Georgakaki, Irene P; Miller, Matthew L; Darensbourg, Marcetta Y

    2003-04-21

    Hydrogen uptake in hydrogenase enzymes can be assayed by H/D exchange reactivity in H(2)/D(2)O or H(2)/D(2)/H(2)O mixtures. Diiron(I) complexes that serve as structural models for the active site of iron hydrogenase are not active in such isotope scrambling but serve as precursors to Fe(II)Fe(II) complexes that are functional models of [Fe]H(2)ase. Using the same experimental protocol as used previously for ((mu-H)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)(+)), 1-H(+) (Zhao et al. J. Am. Chem. Soc. 2001, 123, 9710), we now report the results of studies of ((mu-SMe)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)(+)), 1-SMe(+), toward H/D exchange. The 1-SMe(+) complex can take up H(2) and catalyze the H/D exchange reaction in D(2)/H(2)O mixtures under photolytic, CO-loss conditions. Unlike 1-H(+), it does not catalyze H(2)/D(2) scrambling under anhydrous conditions. The molecular structure of 1-SMe(+) involves an elongated Fe.Fe separation, 3.11 A, relative to 2.58 A in 1-H(+). It is proposed that the strong SMe(-) bridging ligand results in catalytic activity localized on a single Fe(II) center, a scenario that is also a prominent possibility for the enzyme active site. The single requirement is an open site on Fe(II) available for binding of D(2) (or H(2)), followed by deprotonation by the external base H(2)O (or D(2)O).

  8. Optimization of MgF2-deposition temperature for far UV Al mirrors.

    PubMed

    De Marcos, Luis V Rodríguez; Larruquert, Juan I; Méndez, José A; Gutiérrez-Luna, Nuria; Espinosa-Yáñez, Lucía; Honrado-Benítez, Carlos; Chavero-Royán, José; Perea-Abarca, Belén

    2018-04-02

    Progress towards far UV (FUV) coatings with enhanced reflectance is invaluable for future space missions, such as LUVOIR. This research starts with the procedure developed to enhance MgF 2 -protected Al reflectance through depositing MgF 2 on a heated aluminized substrate [Quijada et al., Proc. SPIE 8450, 84502H (2012)] and it establishes the optimum deposition temperature of the MgF 2 protective film for Al mirrors with a reflectance as high as ~90% at 121.6 nm. Al films were deposited at room temperature and protected with a MgF 2 film deposited at various temperatures ranging from room temperature to 350°C. It has been found that mirror reflectance in the short FUV range continuously increases with MgF 2 deposition temperature up to 250°C, whereas reflectance decreases at temperatures of 300°C and up. The short-FUV reflectance of mirrors deposited at 250°C only slightly decreased over time by less than 1%, compared to a larger decay for standard coatings prepared at room temperature. Al mirrors protected with MgF 2 deposited at room temperature that were later annealed displayed a similar reflectance enhancement that mirrors protected at high temperatures. MgF 2 and Al roughness as well as MgF 2 density were analyzed by x-ray grazing incidence reflectometry. A noticeable reduction in both Al and MgF 2 roughness, as well as an increase of MgF 2 density, were measured for films deposited at high temperatures. On the other hand, it was found a strong correlation between the protective-layer deposition temperature (or post-deposition annealing temperature) and the pinhole open area in Al films, which could be prevented with a somewhat thicker Al film.

  9. Partial oxidation of dimethyl ether using the structured catalyst Rh/Al2O3/Al prepared through the anodic oxidation of aluminum.

    PubMed

    Yu, B Y; Lee, K H; Kim, K; Byun, D J; Ha, H P; Byun, J Y

    2011-07-01

    The partial oxidation of dimethyl ether (DME) was investigated using the structured catalyst Rh/Al2O3/Al. The porous Al2O3 layer was synthesized on the aluminum plate through anodic oxidation in an oxalic-acid solution. It was observed that about 20 nm nanopores were well developed in the Al2O3 layer. The thickness of Al2O3 layer can be adjusted by controlling the anodizing time and current density. After pore-widening and hot-water treatment, the Al2O3/Al plate was calcined at 500 degrees C for 3 h. The obtained delta-Al2O3 had a specific surface area of 160 m2/g, making it fit to be used as a catalyst support. A microchannel reactor was designed and fabricated to evaluate the catalytic activity of Rh/Al2O3/Al in the partial oxidation of DME. The structured catalyst showed an 86% maximum hydrogen yield at 450 degrees C. On the other hand, the maximum syngas yield by a pack-bed-type catalyst could be attained by using a more than fivefold Rh amount compared to that used in the structured Rh/Al2O3/Al catalyst.

  10. High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 DBR backside reflector.

    PubMed

    Guo, Hao; Zhang, Xiong; Chen, Hongjun; Zhang, Peiyuan; Liu, Honggang; Chang, Hudong; Zhao, Wei; Liao, Qinghua; Cui, Yiping

    2013-09-09

    GaN-based light-emitting diodes (LEDs) on patterned sapphire substrate (PSS) with patterned composite SiO(2)/Al(2)O(3) passivation layers and TiO(2)/Al(2)O(3) distributed Bragg reflector (DBR) backside reflector have been proposed and fabricated. Highly passivated Al(2)O(3) layer deposited on indium tin oxide (ITO) layer with excellent uniformity and quality has been achieved with atomic layer deposition (ALD) technology. With a 60 mA current injection, an enhancement of 21.6%, 59.7%, and 63.4% in the light output power (LOP) at 460 nm wavelength was realized for the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers, the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers and Ag mirror + 3-pair TiO(2)/SiO(2) DBR backside reflector, and the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layer and Ag mirror + 3-pair ALD-grown TiO(2)/Al(2)O(3) DBR backside reflector as compared with the conventional LED only with a single SiO(2) passivation layer, respectively.

  11. Influence of different aluminum salts on the photocatalytic properties of Al doped TiO2 nanoparticles towards the degradation of AO7 dye.

    PubMed

    Luo, Jin-Ling; Wang, Shi-Fa; Liu, Wei; Tian, Cheng-Xiang; Wu, Ju-Wei; Zu, Xiao-Tao; Zhou, Wei-Lie; Yuan, Xiao-Dong; Xiang, Xia

    2017-08-14

    Three kinds of Al-TiO 2 samples and pure TiO 2 samples were synthesized via a modified polyacrylamide gel route using different aluminum salts, including Al 2 (SO 4 ) 3 ∙18H 2 O, AlCl 3 , and Al(NO 3 ) 3 ∙9H 2 O under identical conditions. The influence of different aluminum salts on the phase purity, morphologies, thermal stability of anatase and photocatalytic properties of the as-prepared Al-TiO 2 nanoparticles were studied. The energy gap (Eg) of Al-TiO 2 nanoparticles decreases due to Al ion doping into TiO 2 . The photocatalytic activities of the Al-TiO 2 samples were investigated by the degradation of acid orange 7 dye in aqueous solution under simulated solar irradiation. The Al-TiO 2 nanoparticles prepared from Al(NO 3 ) 3 ∙9H 2 O exhibit the best photocatalytic activity among the four kinds of samples, followed in turn by the Al-TiO 2 nanoparticles prepared with AlCl 3 , Al 2 (SO 4 ) 3 ∙18H 2 O and pure TiO 2 . The different performances are attributed to complex effects of Eg, particle size, surface morphology, phase purity and the defect sites of the Al-TiO 2 nanoparticles.

  12. Miscibility of amorphous ZrO2-Al2O3 binary alloy

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Richard, O.; Bender, H.; Caymax, M.; De Gendt, S.; Heyns, M.; Young, E.; Roebben, G.; Van Der Biest, O.; Haukka, S.

    2002-04-01

    Miscibility is a key factor for maintaining the homogeneity of the amorphous structure in a ZrO2-Al2O3 binary alloy high-k dielectric layer. In the present work, a ZrO2/Al2O3 laminate thin layer has been prepared by atomic layer chemical vapor deposition on a Si (100) wafer. This layer, with artificially induced inhomogeneity (lamination), enables one to study the change in homogeneity of the amorphous phase in the ZrO2/Al2O3 system during annealing. High temperature grazing incidence x-ray diffraction (HT-XRD) was used to investigate the change in intensity of the constructive interference peak of the x-ray beams which are reflected from the interfaces of ZrO2/Al2O3 laminae. The HT-XRD spectra show that the intensity of the peak decreases with an increase in the anneal temperature, and at 800 °C, the peak disappears. The same samples were annealed by a rapid thermal process (RTP) at temperatures between 700 and 1000 °C for 60 s. Room temperature XRD of the RTP annealed samples shows a similar decrease in peak intensity. Transmission electronic microscope images confirm that the laminate structure is destroyed by RTP anneals and, just below the crystallization onset temperature, a homogeneous amorphous ZrAlxOy phase forms. The results demonstrate that the two artificially separated phases, ZrO2 and Al2O3 laminae, tend to mix into a homogeneous amorphous phase before crystallization. This observation indicates that the thermal stability of ZrO2-Al2O3 amorphous phase is suitable for high-k applications.

  13. Photoelectron spectroscopic study of the hydrated nucleoside anions: Uridine(-)(H(2)O)(n=0-2), cytidine(-)(H(2)O)(n=0-2), and thymidine(-)(H(2)O)(n=0,1).

    PubMed

    Li, Xiang; Wang, Haopeng; Bowen, Kit H

    2010-10-14

    The hydrated nucleoside anions, uridine(-)(H(2)O)(n=0-2), cytidine(-)(H(2)O)(n=0-2), and thymidine(-)(H(2)O)(n=0,1), have been prepared in beams and studied by anion photoelectron spectroscopy in order to investigate the effects of a microhydrated environment on parent nucleoside anions. Vertical detachment energies (VDEs) were measured for all eight anions, and from these, estimates were made for five sequential anion hydration energies. Excellent agreement was found between our measured VDE value for thymidine(-)(H(2)O)(1) and its calculated value in the companion article by S. Kim and H. F. Schaefer III.

  14. Photoelectron spectroscopic study of the hydrated nucleoside anions: Uridine-(H2O)n=0-2, cytidine-(H2O)n=0-2, and thymidine-(H2O)n=0,1

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Wang, Haopeng; Bowen, Kit H.

    2010-10-01

    The hydrated nucleoside anions, uridine-(H2O)n=0-2, cytidine-(H2O)n=0-2, and thymidine-(H2O)n=0,1, have been prepared in beams and studied by anion photoelectron spectroscopy in order to investigate the effects of a microhydrated environment on parent nucleoside anions. Vertical detachment energies (VDEs) were measured for all eight anions, and from these, estimates were made for five sequential anion hydration energies. Excellent agreement was found between our measured VDE value for thymidine-(H2O)1 and its calculated value in the companion article by S. Kim and H. F. Schaefer III.

  15. Chlorogenic acid analogues from Gynura nepalensis protect H9c2 cardiomyoblasts against H2O2-induced apoptosis

    PubMed Central

    Yu, Bang-wei; Li, Jin-long; Guo, Bin-bin; Fan, Hui-min; Zhao, Wei-min; Wang, He-yao

    2016-01-01

    Aim: Chlorogenic acid has shown protective effect on cardiomyocytes against oxidative stress-induced damage. Herein, we evaluated nine caffeoylquinic acid analogues (1–9) isolated from the leaves of Gynura nepalensis for their protective effect against H2O2-induced H9c2 cardiomyoblast damage and explored the underlying mechanisms. Methods: H9c2 cardiomyoblasts were exposed to H2O2 (0.3 mmol/L) for 3 h, and cell viability was detected with MTT assay. Hoechst 33342 staining was performed to evaluate cell apoptosis. MMPs (mitochondrial membrane potentials) were measured using a JC-1 assay kit, and ROS (reactive oxygen species) generation was measured using CM-H2 DCFDA. The expression levels of relevant proteins were detected using Western blot analysis. Results: Exposure to H2O2 markedly decreased the viability of H9c2 cells and catalase activity, and increased LDH release and intracellular ROS production; accompanied by a loss of MMP and increased apoptotic rate. Among the 9 chlorogenic acid analogues as well as the positive control drug epigallocatechin gallate (EGCG) tested, compound 6 (3,5-dicaffeoylquinic acid ethyl ester) was the most effective in protecting H9c2 cells from H2O2-induced cell death. Pretreatment with compound 6 (1.56–100 μmol/L) dose-dependently alleviated all the H2O2-induced detrimental effects. Moreover, exposure to H2O2 significantly increased the levels of Bax, p53, cleaved caspase-8, and cleaved caspase-9, and decreased the level of Bcl-2, resulting in cell apoptosis. Exposure to H2O2 also significantly increased the phosphorylation of p38, JNK and ERK in the H9c2 cells. Pretreatment with compound 6 (12.5 and 25 μmol/L) dose-dependently inhibited the H2O2-induced increase in the level of cleaved caspase-9 but not of cleaved caspase-8. It also dose-dependently suppressed the H2O2-induced phosphorylation of JNK and ERK but not that of p38. Conclusion: Compound 6 isolated from the leaves of Gynura nepalensis potently protects H9c2

  16. Selective Adsorption Resonances in the Scattering of n-H2 p-H2 n-D2 and o-D2 from Ag(111)

    NASA Astrophysics Data System (ADS)

    Yu, Chien-Fan; Whaley, K. Birgitta; Hogg, Charles S.; Sibener, Steven J.

    1983-12-01

    Diffractive and rotationally mediated selective adsorption scattering resonances are reported for n-H2 p-H2 n-D2 and o-D2 on Ag(111). Small resonance shifts and line-width differences are observed between n-H2 and p-H2 indicating a weak orientation dependence of the laterally averaged H2/Ag(111) potential. The p-H2 and o-D2 levels were used to determine the isotropic component of this potential, yielding a well depth of ~ 32 meV.

  17. Ternary recombination of H3+, H2D+, HD2+, and D3+ with electrons in He/Ar/H2/D2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Kalosi, Abel; Dohnal, Petr; Plasil, Radek; Johnsen, Rainer; Glosik, Juraj

    2016-09-01

    The temperature dependence of the ternary recombination rate coefficients of H2D+ and HD2+ ions has been studied in the temperature range of 80-150 K at pressures from 500 to 1700 Pa in a stationary afterglow apparatus equipped with a cavity ring-down spectrometer. Neutral gas mixtures consisting of He/Ar/H2/D2 (with typical number densities 1017 /1014 /1014 /1014 cm-3) were employed to produce the desired ionic species and their fractional abundances were monitored as a function of helium pressure and the [D2]/[H2] ratio of the neutral gas. In addition, the translational and the rotational temperature and the ortho to para ratio were monitored for both H2D+ and HD2+ ions. A fairly strong pressure dependence of the effective recombination rate coefficient was observed for both ion species, leading to ternary recombination rate coefficients close to those previously found for (helium assisted) ternary recombination of H3+ and D3+. Work supported by: Czech Science Foundation projects GACR 14-14649P, GACR 15-15077S, GACR P209/12/0233, and by Charles University in Prague Project Nr. GAUK 692214.

  18. Effect of N2 annealing on AlZrO oxide

    NASA Astrophysics Data System (ADS)

    Pétry, J.; Richard, O.; Vandervorst, W.; Conard, T.; Chen, J.; Cosnier, V.

    2003-07-01

    In the path to the introduction of high-k dielectric into integrated circuit components, a large number of challenges has to be solved. Subsequent to the film deposition, the high-k film is exposed to additional high-temperature anneals for polycrystalline Si activation but also to improve its own electrical properties. Hence, concerns can be raised regarding the thermal stability of these stacks upon annealing. In this study, we investigated the effect of N2 annealing (700 to 900 °C) of atomic layer chemical vapor deposition AlZrO layers using x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOFSIMS), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The effect of the Si surface preparation [H-Si, 0.5 nm rapid thermal oxide (RTO), Al2O3] on the modification of the high-k oxide and the interfacial layer upon annealing was also analyzed. Compositional changes can be observed for all temperature and surface preparations. In particular, we observe a segregation of Al(oxide) toward the surface of the mixed oxide. In addition, an increase of the Si concentration in the high-k film itself can be seen with a diffusion profile extending toward the surface of the film. On the other hand, the modification of the interfacial layer is strongly dependent on the system considered. In the case of mixed oxide grown on 0.5 nm RTO, no differences are observed between the as-deposited layer and the layer annealed at 700 °C. At 800 °C, a radical change occurs: The initial RTO layer seems to be converted into a mixed layer composed of the initial SiO2 and Al2O3 coming from the mixed oxide, however without forming an Al-silicate layer. A similar situation is found for anneals at 900 °C, as well. When grown on 1.5 nm Al2O3 on 0.5 nm RTO, the only difference with the previous system is the observation of an Al-silicate fraction in the interfacial layer for the as-deposited and 700 °C annealed samples

  19. Oxidation Resistance of Materials Based on Ti3AlC2 Nanolaminate at 600 °C in Air

    NASA Astrophysics Data System (ADS)

    Ivasyshyn, Andrij; Ostash, Orest; Prikhna, Tatiana; Podhurska, Viktoriya; Basyuk, Tatiana

    2016-08-01

    The oxidation behavior of Ti3AlC2-based materials had been investigated at 600 °C in static air for 1000 h. It was shown that the intense increase of weight gain per unit surface area for sintered material with porosity of 22 % attributed to oxidation of the outer surface of the specimen and surfaces of pores in the bulk material. The oxidation kinetics of the hot-pressed Ti3AlC2-based material with 1 % porosity remarkably increased for the first 15 h and then slowly decreased. The weight gain per unit surface area for this material was 1.0 mg/cm2 after exposition for 1000 h. The intense initial oxidation of Ti3AlC2-based materials can be eliminated by pre-oxidation treatment at 1200 °C in air for 2 h. As a result, the weight gain per unit surface area for the pre-oxidized material did not exceed 0.11 mg/cm2 after 1000 h of exposition at 600 °C in air. It was demonstrated that the oxidation resistance of Ti3AlC2-based materials can be significantly improved by niobium addition.

  20. First principle study of UHTC ternary diboride, Cr2AlB2

    NASA Astrophysics Data System (ADS)

    Rastogi, Anugya; Rajpoot, Priyanka; Verma, U. P.

    2018-04-01

    In this paper ab-initio study of the structural, electronic and optical properties of ternary metal boride Cr2AlB2 using full potential linear augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). The study of structural properties shows that Cr2AlB2 is metallic in nature and have orthorhombic crystal structure. The optical properties show that it possess anisotropic behavior, which have wide applications in electricity production through concentration of solar power (CSP) technology. To the best of our knowledge, theoretical study of the optical properties of Cr2AlB2 is reported for the first time.

  1. Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production

    NASA Astrophysics Data System (ADS)

    Liao, Chun-fa; Jiao, Yun-fen; Wang, Xu; Cai, Bo-qing; Sun, Qiang-chao; Tang, Hao

    2017-09-01

    Metal Sm has been widely used in making Al-Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al-Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant (CVCC) technique was used to measure the conductivity for the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 electrolysis medium in the temperature range from 905 to 1055°C. The temperature ( t) and the addition of Al2O3 ( W(Al2O3)), Sm2O3 ( W(Sm2O3)), and a combination of Al2O3 and Sm2O3 into the basic fluoride system were examined with respect to their effects on the conductivity ( κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature ( t) and decreases with the addition of Al2O3 or Sm2O3 or both. We concluded that the optimal operation conditions for Al-Sm intermediate alloy production in the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 system are W(Al2O3) + W(Sm2O3) = 3wt%, W(Al2O3): W(Sm2O3) = 7:3, and a temperature of 965 to 995°C, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.

  2. Rotational Spectroscopy of the NH3-H2 Molecular Complex

    NASA Astrophysics Data System (ADS)

    Surin, L. A.; Tarabukin, I. V.; Schlemmer, S.; Breier, A. A.; Giesen, T. F.; McCarthy, M. C.; van der Avoird, A.

    2017-03-01

    We report the first high resolution spectroscopic study of the NH3-H2 van der Waals molecular complex. Three different experimental techniques, a molecular beam Fourier transform microwave spectrometer, a millimeter-wave intracavity jet OROTRON spectrometer, and a submillimeter-wave jet spectrometer with multipass cell, were used to detect pure rotational transitions of NH3-H2 in the wide frequency range from 39 to 230 GHz. Two nuclear spin species, (o)-NH3-(o)-H2 and (p)-NH3-(o)-H2, have been assigned as carriers of the observed lines on the basis of accompanying rovibrational calculations performed using the ab initio intermolecular potential energy surface (PES) of Maret et al. The experimental spectra were compared with the theoretical bound state results, thus providing a critical test of the quality of the NH3-H2 PES, which is a key issue for reliable computations of the collisional excitation and de-excitation of ammonia in the dense interstellar medium.

  3. On the entropy of glaucophane Na2Mg3Al2Si8O22(OH)2

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.; Gillet, P.; Reynard, B.

    1991-01-01

    The heat capacity of glaucophane from the Sesia-Lanza region of Italy having the approximate composition (Na1.93Ca0.05Fe0.02) (Mg2.60Fe0.41) (Al1.83Fe0.15Cr0.01) (Si7.92Al0.08)O22(OH)2 was measured by adiabatic calorimetry between 4.6 and 359.4 K. After correcting the Cp0data to values for ideal glaucophane, Na2Mg3Al2Si8O22(OH)2 the third-law entropy S2980-S00was calculated to be 541.2??3.0 J??mol-1??K-1. Our value for S2980-S00is 12.0 J??mol-1??K-1 (2.2%) smaller than the value of Likhoydov et al. (1982), 553.2??3.0, is within 6.2 J??mol-1??K-1 of the value estimated by Holland (1988), and agrees remarkably well with the value calculated by Gillet et al. (1989) from spectroscopic data, 539 J??mol-1??K-1. ?? 1991 Springer-Verlag.

  4. Equilibrium aluminium hydroxo-oxalate phases during initial clay formation; H +-Al 3+-oxalic acid-Na + system

    NASA Astrophysics Data System (ADS)

    Bilinski, Halka; Horvath, Laszlo; Ingri, Nils; Sjöberg, Staffan

    1986-09-01

    The conditions necessary for initial clay formation have been studied in different model systems comprising different organic acids besides Si and Al. In the present paper the solid phases and the precipitation boundary characterizing the subsystem H +-Al 3+-oxalic acid (H 2L) are discussed. pH and tyndallometric measurements were performed in an ionic medium of 0.6 M Na(Cl) at 25 °C. The two phases Al 3(OH) 7(C 2O 4) · 3H 2O (phase I) and NaAl(OH) 2(C 2O 4) · 3H 2O (phase II) determine the precipitation boundary. The following formation constants for the two phases were deduced: lgβ1 = lg([ Al3+] -3[ H2C2O4] -1[ H+] 9 = -21.87 ± 0.08 and lgβ11 = lg([ Al3+] -1[ H2C2O4] -1[ H+] 4 = -5.61 ± 0.06. Phase I exists in the range [ Al] tot≥ 10 -4.4moldm-3,[ H2C2O4] tot ≥ 10 -4.9moldm-3 and at pH < 6.8, thus being a possible precipitate in oxalic-rich natural waters. The more soluble sodium phase is unlikely to exist in natural waters. The two phases are metastable relative to crystalline gibbsite and may be considered as the first precipitation step in the transition from aqueous Al oxalates down to stable Al hydroxide. Model calculations illustrating these competing hydrolysis-complexation reactions are discussed in terms of predominance and speciation diagrams. The solid phases have been characterized by X-ray analysis of powders, TGA and IR spectra, and tentative structures are proposed. Phase I seems to be an octahedral layer structure, in which 3/5 of the octahedral sites between two close packed oxygen sheets are occupied by Al 3+ and the oxalate ion acts as a bridge ligand between two aluminium atoms. Phase II forms a more open sheet structure and has ion exchange properties. Powder data for a phase crystallized from the studied solution after a year are also presented. This phase, Na 4Al 2(OH) 2(C 2O 4) 4 · 10H 2O, supports the results from the equilibrium analysis of recent solution data by SJöBERG and ÖHMAN (1985), who have found the dinuclear

  5. On the combustion mechanisms of ZrH2 in double-base propellant.

    PubMed

    Yang, Yanjing; Zhao, Fengqi; Yuan, Zhifeng; Wang, Ying; An, Ting; Chen, Xueli; Xuan, Chunlei; Zhang, Jiankan

    2017-12-13

    Metal hydrides are regarded as a series of promising hydrogen-supplying fuel for solid rocket propellants. Their effects on the energetic and combustion performances of propellants are closely related to their reaction mechanisms. Here we report a first attempt to determine the reaction mechanism of ZrH 2 , a high-density metal hydride, in the combustion of a double-base propellant to evaluate its potential as a fuel. ZrH 2 is determined to possess good resistance to oxidation by nitrocellulose and nitroglycerine. Thus its combustion starts with dehydrogenation to generate H 2 and metallic Zr. Subsequently, the newly formed Zr and H 2 participate in the combustion and, especially, Zr melts and then combusts on the burning surface which favors the heat feedback to the propellant. This phenomenon is completely different from the combustion behavior of the traditional fuel Al, where the Al particles are ejected off the burning surface of the propellant to get into the luminous flame zone to burn. The findings in this work validate the potential of ZrH 2 as a hydrogen-supplying fuel for double-base propellants.

  6. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Lyons, M.; Siegel, E.

    2010-03-01

    ``Water water everywhere; ne'er a drop to drink''[Coleridg(1798)]; now:``Hydrogen hydrogen everywhere;STILL ne'er a drop to drink'': ONLY H2 can be ``FLYING-WATER''/``chemical-rain-in-pipelines''/ ``Hindenberg-effect (H2-UP;H2O-DOWN): atomic-weights ratio: O/H2O=[16]/[18]˜90%; O already in air uphill; NO H2O pumping need! In water-starved glacial-melting world, rescue ONLY by Siegel[3rd Intl.Conf.Alt.Energy,Hemisphere/Springer(1980)- vol.5/ p.459]Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating- system. Rosenfeld[Sci.315,1396(3/9/2007)]-Biello[Sci.Am.(3/9/ 2007)]crucial geomorphology which ONLY maximal-buoyancy light- est-element H2 can exploit, to again make ``Mountains into Fount- ains": Siegel ``terra-forming''(and ocean-rebasificaton!!!) long pre-``Holdren''-``Ciccerine" ``geo-enginering'', only via Siegel proprietary magnetic-hydrogen-valve permits H2 flow in already in-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Sci.300,1740(03)]global-pandemics (cancers/blindness/famine)dire-warning about H2-(ALONE)economy CATASTROPHIC H2 ozone-layer destruction sobering cavat to dangerous H2-automotion-economy panacea hype!

  7. 2nd Gen FeCrAl ODS Alloy Development For Accident-Tolerant Fuel Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N.; Massey, Caleb P.; Edmondson, Philip D.

    Extensive research at ORNL aims at developing advanced low-Cr high strength FeCrAl alloys for accident tolerant fuel cladding. One task focuses on the fabrication of new low Cr oxide dispersion strengthened (ODS) FeCrAl alloys. The first Fe-12Cr-5Al+Y 2O 3 (+ ZrO 2 or TiO 2) ODS alloys exhibited excellent tensile strength up to 800 C and good oxidation resistance in steam up to 1400 C, but very limited plastic deformation at temperature ranging from room to 800 C. To improve alloy ductility, several fabrication parameters were considered. New Fe-10-12Cr-6Al gas-atomized powders containing 0.15 to 0.5wt% Zr were procured and ballmore » milled for 10h, 20h or 40h with Y2O3. The resulting powder was then extruded at temperature ranging from 900 to 1050 C. Decreasing the ball milling time or increasing the extrusion temperature changed the alloy grain size leading to lower strength but enhanced ductility. Small variations of the Cr, Zr, O and N content did not seem to significantly impact the alloy tensile properties, and, overall, the 2nd gen ODS FeCrAl alloys showed significantly better ductility than the 1st gen alloys. Tube fabrication needed for fuel cladding will require cold or warm working associated with softening heat treatments, work was therefore initiated to assess the effect of these fabrications steps on the alloy microstructure and properties. This report has been submitted as fulfillment of milestone M3FT 16OR020202091 titled, Report on 2nd Gen FeCrAl ODS Alloy Development for the Department of Energy Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program.« less

  8. Microgravity Materials Science Conference 2000. Volume 2

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 2 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference %%,its to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance

  9. Stepwise mechanism and H2O-assisted hydrolysis in atomic layer deposition of SiO2 without a catalyst.

    PubMed

    Fang, Guo-Yong; Xu, Li-Na; Wang, Lai-Guo; Cao, Yan-Qiang; Wu, Di; Li, Ai-Dong

    2015-01-01

    Atomic layer deposition (ALD) is a powerful deposition technique for constructing uniform, conformal, and ultrathin films in microelectronics, photovoltaics, catalysis, energy storage, and conversion. The possible pathways for silicon dioxide (SiO2) ALD using silicon tetrachloride (SiCl4) and water (H2O) without a catalyst have been investigated by means of density functional theory calculations. The results show that the SiCl4 half-reaction is a rate-determining step of SiO2 ALD. It may proceed through a stepwise pathway, first forming a Si-O bond and then breaking Si-Cl/O-H bonds and forming a H-Cl bond. The H2O half-reaction may undergo hydrolysis and condensation processes, which are similar to conventional SiO2 chemical vapor deposition (CVD). In the H2O half-reaction, there are massive H2O molecules adsorbed on the surface, which can result in H2O-assisted hydrolysis of the Cl-terminated surface and accelerate the H2O half-reaction. These findings may be used to improve methods for the preparation of SiO2 ALD and H2O-based ALD of other oxides, such as Al2O3, TiO2, ZrO2, and HfO2.

  10. Stepwise mechanism and H2O-assisted hydrolysis in atomic layer deposition of SiO2 without a catalyst

    NASA Astrophysics Data System (ADS)

    Fang, Guo-Yong; Xu, Li-Na; Wang, Lai-Guo; Cao, Yan-Qiang; Wu, Di; Li, Ai-Dong

    2015-02-01

    Atomic layer deposition (ALD) is a powerful deposition technique for constructing uniform, conformal, and ultrathin films in microelectronics, photovoltaics, catalysis, energy storage, and conversion. The possible pathways for silicon dioxide (SiO2) ALD using silicon tetrachloride (SiCl4) and water (H2O) without a catalyst have been investigated by means of density functional theory calculations. The results show that the SiCl4 half-reaction is a rate-determining step of SiO2 ALD. It may proceed through a stepwise pathway, first forming a Si-O bond and then breaking Si-Cl/O-H bonds and forming a H-Cl bond. The H2O half-reaction may undergo hydrolysis and condensation processes, which are similar to conventional SiO2 chemical vapor deposition (CVD). In the H2O half-reaction, there are massive H2O molecules adsorbed on the surface, which can result in H2O-assisted hydrolysis of the Cl-terminated surface and accelerate the H2O half-reaction. These findings may be used to improve methods for the preparation of SiO2 ALD and H2O-based ALD of other oxides, such as Al2O3, TiO2, ZrO2, and HfO2.

  11. Isomerization, Perturbations, Calculations and the S_{1} State of C_{2}H_{2}

    NASA Astrophysics Data System (ADS)

    Baraban, J. H.; Changala, P. B.; Berk, J. R. P.; Field, R. W.; Stanton, J. F.; Merer, A. J.

    2013-06-01

    Preliminary analysis of the energy region of the cis-trans isomerization transition state on the S_{1} surface of C_{2}H_{2} has revealed novel patterns and surprising perturbations, including unusually large (and high-order) anharmonicities, as well as K-staggerings of several vibrational levels. These effects complicate the analysis considerably, and require new models and calculations to account for and predict features of the observed spectra. The ˜{A}-˜{X} spectrum of acetylene has been studied both experimentally and theoretically for almost a century, and this cycle of unexpected phenomena eliciting innovative responses is found throughout its history. Especially in the last ten years, progress in understanding the S_{1} state rovibrational level structure and cis-trans isomerization has been accelerated by combining the information available from both ab initio computation and spectroscopic observations. The resulting dialogue has then frequently suggested fruitful avenues for further experiments and calculations. Current challenges and recent results in understanding the cis-trans isomerization transition state region will be discussed in this context.

  12. Facile synthesis of hierarchical porous γ-Al2O3 hollow microspheres for water treatment.

    PubMed

    Li, Mingyang; Si, Zhichun; Wu, Xiaodong; Weng, Duan; Kang, Feiyu

    2014-03-01

    Hierarchical porous γ-Al2O3 hollow microspheres were synthesized by a modified spray drying method. Ageing the precipitated precursor and spray-drying assisted by NH4Cl salts are considered as two key steps for the synthesis of γ-Al2O3 hollow microspheres. The mechanism of the formation of hierarchical porous γ-Al2O3 hollow microsphere was proposed involving phase transformation from aluminum hydroxide to laminar boehmite during ageing and a following self-assembling process with NH4Cl as the template during spray drying. The meso-/macro-pores in γ-Al2O3 mainly arise from the stacking of the laminar boehmites which are obtained by ageing the precipitated precursors at 90°C. NH4Cl, which was the byproduct from the reaction between AlCl3·6H2O and NH3·H2O, was demonstrated to be an excellent template to act as the core and the barrier for separation of laminar boehmites. No extra NH4Cl was added. The as-synthesized hierarchical porous γ-Al2O3 hollow microsphere presented remarkably higher adsorption capacity, which is thirty times higher adsorption rate for Congo Red than the solid microsphere containing only small mesopores. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Microbial H2 cycling does not affect δ2H values of ground water

    USGS Publications Warehouse

    Landmeyer, J.E.; Chapelle, F.H.; Bradley, P.M.

    2000-01-01

    Stable hydrogen-isotope values of ground water (δ2H) and dissolved hydrogen concentrations (H(2(aq)) were quantified in a petroleum-hydrocarbon contaminated aquifer to determine whether the production/consumption of H2 by subsurface microorganisms affects ground water &delta2H values. The range of &delta2H observed in monitoring wells sampled (-27.8 ‰c to -15.5 ‰c) was best explained, however, by seasonal differences in recharge temperature as indicated using ground water δ18O values, rather than isotopic exchange reactions involving the microbial cycling of H2 during anaerobic petroleum-hydrocarbon biodegradation. The absence of a measurable hydrogen-isotope exchange between microbially cycled H2 and ground water reflects the fact that the amount of H2 available from the anaerobic decomposition of petroleum hydrocarbons is small relative to the amount of hydrogen present in water, even though milligram per liter concentrations of readily biodegradable contaminants are present at the study site. Additionally, isotopic fractionation calculations indicate that in order for H2 cycling processes to affect δ2H values of ground water, relatively high concentrations of H2 (>0.080 M) would have to be maintained, considerably higher than the 0.2 to 26 nM present at this site and characteristic of anaerobic conditions in general. These observations suggest that the conventional approach of using δ2H and δ18O values to determine recharge history is appropriate even for those ground water systems characterized by anaerobic conditions and extensive microbial H2 cycling.

  14. Performance and Long-Term Stability of Pd/PSS and Pd/Al2O3 Membranes for Hydrogen Separation

    PubMed Central

    Liguori, Simona; Iulianelli, Adolfo; Dalena, Francesco; Pinacci, Pietro; Drago, Francesca; Broglia, Maria; Huang, Yan; Basile, Angelo

    2014-01-01

    The present work is focused on the investigation of the performance and long-term stability of two composite palladium membranes under different operating conditions. One membrane (Pd/porous stainless steel (PSS)) is characterized by a ~10 µm-thick palladium layer on a porous stainless steel substrate, which is pretreated by means of surface modification and oxidation; the other membrane (Pd/Al2O3) is constituted by a ~7 µm-thick palladium layer on an asymmetric microporous Al2O3 substrate. The operating temperature and pressure ranges, used for studying the performance of these two kinds of membranes, are 350–450 °C and 200–800 kPa, respectively. The H2 permeances and the H2/N2 selectivities of both membranes were investigated and compared with literature data. At 400 °C and 200 kPa as pressure difference, Pd/PSS and Pd/Al2O3 membranes exhibited an H2/N2 ideal selectivity equal to 11700 and 6200, respectively, showing stability for 600 h. Thereafter, H2/N2 selectivity of both membranes progressively decreased and after around 2000 h, dropped dramatically to 55 and 310 for the Pd/PSS and Pd/Al2O3 membranes, respectively. As evidenced by Scanning Electron Microscope (SEM) analyses, the pinholes appear on the whole surface of the Pd/PSS membrane and this is probably due to release of sulphur from the graphite seal rings. PMID:24957126

  15. 48 CFR 242.503-2 - Post-award conference procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Post-award conference procedure. 242.503-2 Section 242.503-2 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT CONTRACT ADMINISTRATION AND AUDIT SERVICES...

  16. Frequency Comb Assisted IR Measurements of H_3^+, H_2D^+ and D_2H^+ Transitions

    NASA Astrophysics Data System (ADS)

    Jusko, Pavol; Asvany, Oskar; Schlemmer, Stephan

    2016-06-01

    We present recent measurements of the fundamental transitions of H_3^+, H_2D^+ and D_2H^+ in a 4 K 22-pole trap by action spectroscopic techniques. Either Laser Induced Inhibition of Cluster Growth (He attachment at T≈4 K), endothermic reaction of H_3^+ with O_2, or deuterium exchange has been used as measurement scheme. We used a 3 μm optical parametric oscillator coupled to a frequency comb in order to achieve accuracy generally below 1 MHz. Five transitions of H_3^+, eleven of H_2D^+ and ten of D_2H^+ were recorder in our spectral range. We compare our H_3^+ results with two previous frequency comb assisted works. Moreover, accurate determination of the frequency allows us to predict pure rotational transitions for H_2D^+ and D_2H^+ in the THz range. P. Jusko, C. Konietzko, S. Schlemmer, O. Asvany, J. Mol. Spec. 319 (2016) 55 O. Asvany, S. Brünken, L. Kluge, S. Schlemmer, Appl. Phys. B 114 (2014) 203 O. Asvany, J. Krieg, S. Schlemmer, Rev. Sci. Instr. 83 (2012) 093110 J.N. Hodges, A.J. Perry, P.A. Jenkins, B.M. Siller, B.J. McCall, J. Chem. Phys. 139 (2013) 164201 H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, J.-T. Shy, Phys. Rev. Lett. 109 (2012) 263002

  17. The mechanism for water exchange in [UO(2)(H(2)O)(5)](2+) and [UO(2)(oxalate)(2)(H(2)O)](2-), as studied by quantum chemical methods.

    PubMed

    Vallet, V; Wahlgren, U; Schimmelpfennig, B; Szabó, Z; Grenthe, I

    2001-12-05

    The mechanisms for the exchange of water between [UO(2)(H(2)O)(5)](2+), [UO(2)(oxalate)(2)(H(2)O)](2)(-)(,) and water solvent along dissociative (D), associative (A) and interchange (I) pathways have been investigated with quantum chemical methods. The choice of exchange mechanism is based on the computed activation energy and the geometry of the identified transition states and intermediates. These quantities were calculated both in the gas phase and with a polarizable continuum model for the solvent. There is a significant and predictable difference between the activation energy of the gas phase and solvent models: the energy barrier for the D-mechanism increases in the solvent as compared to the gas phase, while it decreases for the A- and I-mechanisms. The calculated activation energy, Delta U(++), for the water exchange in [UO(2)(H(2)O)(5)](2+) is 74, 19, and 21 kJ/mol, respectively, for the D-, A-, and I-mechanisms in the solvent, as compared to the experimental value Delta H(++) = 26 +/- 1 kJ/mol. This indicates that the D-mechanism for this system can be ruled out. The energy barrier between the intermediates and the transition states is small, indicating a lifetime for the intermediate approximately 10(-10) s, making it very difficult to distinguish between the A- and I-mechanisms experimentally. There is no direct experimental information on the rate and mechanism of water exchange in [UO(2)(oxalate)(2)(H(2)O)](2-) containing two bidentate oxalate ions. The activation energy and the geometry of transition states and intermediates along the D-, A-, and I-pathways were calculated both in the gas phase and in a water solvent model, using a single-point MP2 calculation with the gas phase geometry. The activation energy, Delta U(++), in the solvent for the D-, A-, and I-mechanisms is 56, 12, and 53 kJ/mol, respectively. This indicates that the water exchange follows an associative reaction mechanism. The geometry of the A- and I-transition states for both [UO

  18. Stimulation of H(2)O(2) generation by calcium in brain mitochondria respiring on alpha-glycerophosphate.

    PubMed

    Tretter, Laszlo; Takacs, Katalin; Kövér, Kinga; Adam-Vizi, Vera

    2007-11-15

    It has been reported recently (Tretter et al., 2007b) that in isolated guinea pig brain mitochondria supported by alpha-glycerophosphate (alpha-GP) reactive oxygen species (ROS) are produced through the reverse electron transport (RET) in the respiratory chain and by alpha-glycerophosphate dehydrogenase (alpha-GPDH). We studied the effect of calcium on the generation of H(2)O(2) as measured by the Amplex Red fluorescent assay in this model. H(2)O(2) production in alpha-GP-supported mitochondria was increased significantly in the presence of 100, 250, and 500 nM Ca(2+), respectively. In addition, Ca(2+) enhanced the membrane potential, the rate of oxygen consumption, and the NAD(P)H autofluorescence in these mitochondria. Direct measurement of alpha-GPDH activity showed that Ca(2+) stimulated the enzyme by decreasing the Km for alpha-GP. In those mitochondria where RET was eliminated by the Complex I inhibitor rotenone (2 microM) or due to depolarization by ADP (1 mM), the rate of H(2)O(2) formation was smaller and the stimulation of H(2)O(2) generation by Ca(2+) was prevented partly, but the stimulatory effect of Ca(2+) was still significant. These data indicate that in alpha-GP-supported mitochondria activation of alpha-GPDH by Ca(2+) leads to an accelerated RET-mediated ROS generation as well as to a stimulated ROS production by alpha-GPDH.

  19. Theoretical Study of the H2-ML(+) Binding Energies

    NASA Technical Reports Server (NTRS)

    Maitre, Philippe; Bauschlicher, Charles W., Jr.

    1993-01-01

    The cooperative ligand effects are studied in MLH2(+) and the results are compared to the recent experiments of Kemper et al. The bonding in these compounds is principally electrostatic in origin; however, ligand to metal and metal to ligand donations are important, especially for H2. We show that differences arise among the vanadium, cobalt, and copper complexes which are due to 3d donation to H2. Electron correlation is required to describe the dative interaction, and we find that second order Moller-Plesset perturbation theory (MP2) yields a good description of these systems compared with higher levels of correlation (such as the modified coupled pair functional and coupled cluster approaches) and experiment. However, obtaining quantitative results requires higher levels of theory than MP2.

  20. Esperanzaite, NaCa(2)Al(2)(As(5+)O(4))[As(5+)O(3)(OH)](OH)(2)F(4)(H(2)O), A New Mineral From Mina La Esperanza, Mexico: Descriptive Mineralogy and Atomic Arrangement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cureton, F.; Falster, A.U.; Foord, E.E.

    1998-11-09

    Esperanzaite, ideally NaCazA12(As5+0.i)[As5+03 (OH)] (OH)2FJH20), Z =2, is a new mineral from the Mina h Esperarq Durango State, Mexico. The mineral occurs as blue-green botryoidal crystalline masses on rhyolite, with separate spheres up to 1.5 mm Y Deceased in diameter. Mobs hardness is 4.5, specific gravity 3.240h, and 3.36( 3)C.IC. Optical properties were measured in 589 nm light. Esperanzaite is biaxial (-), .Y= Y = Z= colorless, a 1.580(1), ~ 1.588( 1), and y 1.593(1 ); 2V0hs is 74(1 ~ and 2 }'CUIC is 76.3". Dispersion is medium, r < v, and optic axes are oriented as a A Zmore » = +50.5o, b = Y, c P. X = +35". The five strongest X-ray diffraction maxima in the powder pattern are (~ /, hk~: 2.966,100, 13 i, 31 i, 031 ; 3.527,90, 220; 2.700,90,221,002, 040; 5.364>80, 001, 020; 4.796,80,011. Esperanzaite is monoclinic, u 9.687(5), b 10.7379(6), c 5.5523(7)& ~ 105.32( 1 )", space group P21/nz. The atomic arrangement of esperanzaite was solved by Direct Methods and Fourier analysis (R= 0.03 1). The Fundamental Building Block is formed of stacks of heteropolyhedral tetramers; the tetramers are formed of two arsenate tetrahedral and two Al octahedra, comer-linked in 4-member rings. The Fundamental Building Blocks are linked by irregular lda~j and Ca@ polyhedra.« less

  1. The pressure dependence of physical properties of (W2/3Ti1/3)3AlC2 and its counterpart W3AlC2 by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Yefei; Sun, Liang; Xing, Jiandong; Ma, Shengqiang; Zheng, Qiaoling; Liu, Yangzhen

    2017-12-01

    First-principles calculations based on density functional theory (DFT) were used to investigate the mechanical properties, elastic anisotropy, electronic structure, optical properties and thermodynamic properties of a new quaternary MAX phase (W2/3Ti1/3)3AlC2 and its counterpart W3AlC2 under hydrostatic pressure. The results indicate that the volumetric shrinkage of (W2/3Ti1/3)3AlC2 is faster than that of axial shrinkage under hydrostatic pressure. The stress-strain method and Voigt-Reuss-Hill approximation were used to calculate elastic constants and moduli, respectively. These compounds are mechanically stable under hydrostatic pressure. Moreover, the moduli of (W2/3Ti1/3)3AlC2 and W3AlC2 increase with an increase in pressure. The anisotropic indexes and surface constructions of bulk and Young’s moduli were used to illustrate the mechanical anisotropy under hydrostatic pressure. Electronic structure and optical property of (W2/3Ti1/3)3AlC2 and W3AlC2 have also been discussed. The results of Debye temperature reveal that the covalent bonds among atoms in (W2/3Ti1/3)3AlC2 may be stronger than that of W3AlC2. The heat capacity, Cp-Cv, and thermal expansion coefficient of (W2/3Ti1/3)3AlC2 and W3AlC2 were discussed in the ranges of 0-30 GPa and 0-2000 K using quasi-harmonic Debye model considering the phonon effects.

  2. Micropore Formation of [Zn2(Oxac) (Taz)2]·(H2O)2.5 via CO2 Adsorption.

    PubMed

    Zubir, Moondra; Hamasaki, Atom; Iiyama, Taku; Ohta, Akira; Ohki, Hiroshi; Ozeki, Sumio

    2017-01-24

    As-synthesized [Zn 2 (Oxac) (Taz) 2 ]·(H 2 O) 2.5 , referred to as ZOTW 2.5 , was prepared from aqueous methanol solutions of Zn 5 (CO 3 ) 2 (OH) 6 and two kinds of ligands of 1,2,4-triazole (Taz) and oxalic acid (Oxac) at 453 K for 12 h. The crystal structure was determined by the Rietveld method. As-synthesized ZOTW 2.5 was pretreated at 383 K and 1 mPa for t pt h, ZOTW x (t pt h). ZOTW x (≥3h) showed a type I adsorption isotherm for N 2 at 77 K having a saturation amount (V s ) of 180 mg/g, but that pretreated shortly showed only 1/10 in V s . CO 2 was adsorbed at 303 K in sigmoid on nonporous ZOTW x (≤2h) and in Langmuir-type on ZOTW x (≥3h) to reach the adsorption amount of 120 mg/g at 700 Torr. N 2 adsorption on ZOTW x (≤2h)deCO 2 , degassed after CO 2 adsorption on ZOTW x (≤2h), was promoted 5-fold from 180 mg/g on ZOTW x (t pt h) and ZOTW x (≥3h)deCO 2 up to ca. 1000 mg/g. The interaction of CO 2 and H 2 O molecules in micropores may lead to a new route for micropore formation.

  3. Hyperfine excitation of C2H in collisions with ortho- and para-H2

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-06-01

    Accurate estimation of the abundance of the ethynyl (C2H) radical requires accurate radiative and collisional rate coefficients. Hyperfine-resolved rate coefficients for (de-)excitation of C2H in collisions with ortho- and para-H2 are presented in this work. These rate coefficients were computed in time-independent close-coupling quantum scattering calculations that employed a potential energy surface recently computed at the coupled-clusters level of theory that describes the interaction of C2H with H2. Rate coefficients for temperatures from 10 to 300 K were computed for all transitions among the first 40 hyperfine energy levels of C2H in collisions with ortho- and para-H2. These rate coefficients were employed in simple radiative transfer calculations to simulate the excitation of C2H in typical molecular clouds.

  4. Experimentally determined solidi in the Ca-bearing granite system NaAlSi3O8-CaAl2Si2O8-KAlSi3O8-SiO2-H2O-CO2

    USGS Publications Warehouse

    Bohlen, S.R.; Eckert, J.O.; Hankins, W.B.

    1995-01-01

    The phase relationships of melting of synthetic granite in the presence of an H2O-CO2 fluid were determined. These results provide constraints on the maximum temperatures of regional metamorphism attainable in vapor-saturated metapelitic and quartzofeldspathic rocks that escaped widespread melting. At pressures below 10 kbar, a fluid phase of XH2O = 0.75, 0.5, and 0.25 limits temperatures to below ~700-725, ~800-825, and ~850-875??C, respectively. As a consequence, the formation of granulite does not require CO2 concentrations in a coexisting fluid to exceed an XCO2 of 0.25-0.5. -from Authors

  5. Calculated electric dipole moment of NiH X2Delta

    NASA Technical Reports Server (NTRS)

    Walch, S.; Bauschlicher, C. W., Jr.; Langhoff, S. R.

    1985-01-01

    A calculated dipole moment of 2.39 D at R sub e = 2.79 a sub 0 is reported, obtained from complete active space SCF/configuration interaction calculations plus one natural orbital iteration. The calculation is in good agreement with the experimental value of 2.4 + or - 0.1 D measured for the lowest vibrational level. In agreement with Gray et al. (1985), it is found that the dipole moment is strongly correlated with the 3d electron population; the good agreement with experiment thus provides verification of the mixed state model of NiH. It is concluded that the electric dipole moment of NiH is a sensitive test of the quality of the NiH wave function.

  6. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  7. Newly synthesized MgAl2Ge2: A first-principles comparison with its silicide and carbide counterparts

    NASA Astrophysics Data System (ADS)

    Tanveer Karim, A. M. M.; Hadi, M. A.; Alam, M. A.; Parvin, F.; Naqib, S. H.; Islam, A. K. M. A.

    2018-06-01

    Using plane-wave pseudopotential density functional theory (DFT), the first-principle calculations are performed to investigate the structural aspects, mechanical behaviors and electronic features of the newly synthesized CaAl2Si2-prototype intermetallic compound, MgAl2Ge2 for the first time and the results are compared with those calculated for its silicide and carbide counterparts MgAl2Si2 and MgAl2C2. The calculated lattice constants agree fairly well with their corresponding experimental values. The estimated elastic tensors satisfy the mechanical stability conditions for MgAl2Ge2 along with MgAl2Si2 and MgAl2C2. The level of elastic anisotropy increases following the sequence of X-elements Ge → Si → C. MgAl2Ge2 and MgAl2Si2 are expected to be ductile and damage tolerant, while MgAl2C2 is a brittle one. MgAl2Ge2 and MgAl2Si2 should exhibit better thermal shock resistance and low thermal conductivity and accordingly these can be used as thermal barrier coating (TBC) materials. The Debye temperature of MgAl2Ge2 is lowest among three intermetallic compounds. MgAl2Ge2 and MgAl2Si2 should exhibit metallic conductivity; while the dual characters of weak-metals and semiconductors are expected for MgAl2C2. The values of theoretical Vickers hardness for MgAl2Ge2, MgAl2Si2, and MgAl2C2 are 3.3, 2.7, and 7.7 GPa, respectively, indicating that these three intermetallics are soft and easily machinable.

  8. Epitaxial growth of γ-Al{sub 2}O{sub 3} on Ti{sub 2}AlC(0001) by reactive high-power impulse magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eklund, Per, E-mail: perek@ifm.liu.se; Frodelius, Jenny; Hultman, Lars

    2014-01-15

    Al{sub 2}O{sub 3} was deposited by reactive high-power impulse magnetron sputtering at 600 °C onto pre-deposited Ti{sub 2}AlC(0001) thin films on α-Al{sub 2}O{sub 3}(0001) substrates. The Al{sub 2}O{sub 3} was deposited to a thickness of 65 nm and formed an adherent layer of epitaxial γ-Al{sub 2}O{sub 3}(111) as shown by transmission electron microscopy. The demonstration of epitaxial growth of γ-Al{sub 2}O{sub 3} on Ti{sub 2}AlC(0001) open prospects for growth of crystalline alumina as protective coatings on Ti{sub 2}AlC and related nanolaminated materials. The crystallographic orientation relationships are γ-Al{sub 2}O{sub 3}(111)//Ti{sub 2}AlC(0001) (out-of-plane) and γ- Al {sub 2}O{sub 3}(22{sup ¯}0)// Timore » {sub 2} AlC (112{sup ¯}0) (in-plane) as determined by electron diffraction. Annealing in vacuum at 900 °C resulted in partial decomposition of the Ti{sub 2}AlC by depletion of Al and diffusion into and through the γ-Al{sub 2}O{sub 3} layer.« less

  9. Optical and electronic properties of 2 H -Mo S2 under pressure: Revealing the spin-polarized nature of bulk electronic bands

    NASA Astrophysics Data System (ADS)

    Brotons-Gisbert, Mauro; Segura, Alfredo; Robles, Roberto; Canadell, Enric; Ordejón, Pablo; Sánchez-Royo, Juan F.

    2018-05-01

    Monolayers of transition-metal dichalcogenide semiconductors present spin-valley locked electronic bands, a property with applications in valleytronics and spintronics that is usually believed to be absent in their centrosymmetric (as the bilayer or bulk) counterparts. Here we show that bulk 2 H -Mo S2 hides a spin-polarized nature of states determining its direct band gap, with the spin sequence of valence and conduction bands expected for its single layer. This relevant finding is attained by investigating the behavior of the binding energy of A and B excitons under high pressure, by means of absorption measurements and density-functional-theory calculations. These results raise an unusual situation in which bright and dark exciton degeneracy is naturally broken in a centrosymmetric material. Additionally, the phonon-assisted scattering process of excitons has been studied by analyzing the pressure dependence of the linewidth of discrete excitons observed at the absorption coefficient edge of 2 H -Mo S2 . Also, the pressure dependence of the indirect optical transitions of bulk 2 H -Mo S2 has been analyzed by absorption measurements and density-functional-theory calculations. These results reflect a progressive closure of the indirect band gap as pressure increases, indicating that metallization of bulk Mo S2 may occur at pressures higher than 26 GPa.

  10. Effects of nano-YAG (Y 3Al 5O 12) crystallization on the structure and photoluminescence properties of Nd 3+-doped K 2O-SiO 2-Y 2O 3-Al 2O 3 glasses

    NASA Astrophysics Data System (ADS)

    Tarafder, Anal; Molla, Atiar Rahaman; Karmakar, Basudeb

    2010-10-01

    Nd 3+-doped precursor glass in the K 2O-SiO 2-Y 2O 3-Al 2O 3 (KSYA) system was prepared by the melt-quench technique. The transparent Y 3Al 5O 12 (YAG) glass-ceramics were derived from this glass by a controlled crystallization process at 750 °C for 5-100 h. The formation of YAG crystal phase, size and morphology with progress of heat-treatment was examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Fourier transformed infrared reflectance spectroscopy (FT-IRRS). The crystallite sizes obtained from XRD are found to increase with heat-treatment time and vary in the range 25-40 nm. The measured photoluminescence spectra have exhibited emission transitions of 4F 3/2 → 4I J ( J = 9/2, 11/2 and 13/2) from Nd 3+ ions upon excitation at 829 nm. It is observed that the photoluminescence intensity and excited state lifetime of Nd 3+ ions decrease with increase in heat-treatment time. The present study indicates that the incorporation of Nd 3+ ions into YAG crystal lattice enhance the fluorescence performance of the glass-ceramic nanocomposites.

  11. Coupling catalytic hydrolysis and oxidation on Mn/TiO2-Al2O3 for HCN removal

    NASA Astrophysics Data System (ADS)

    Wang, Langlang; Wang, Xueqian; Cheng, Jinhuan; Ning, Ping; Lin, Yilong

    2018-05-01

    The manganese-modified titania-alumina (Mn/TiO2-Al2O3) catalyst synthesized by sol-gol method was used to remove hydrogen cyanide (HCN) from simulated flue gas. Further, effects of the mass ratios of Ti/Al, Mn loading, calcination temperature, and relative humidity on HCN conversion efficiency and catalytic activity were systematically investigated. The results indicated that the Mn/TiO2-Al2O3 catalyst exhibited significantly enhanced HCN removal efficiency, and the maximum yield of N2 increased to 68.02% without the participation of water vapor. When water vapor was added into the flue gas, the yield of N2 decreased and the formation of NOx was also inhibited. The XRD and XPS results indicated that Mn was mainly present in the form of Mn2+, Mn3+, and Mn4+ on the surface of catalyst and chemisorbed oxygen played a major role in the HCN catalytic oxidation process. The results of DSC-TGA analysis and H2-TPR indicated that the catalyst also exhibited a good thermal and chemical stability. NH3-TPD and CO2-TPD indicated that the surface of the catalyst mainly contained acidic sites. During the reaction, part of NH3 was adsorbed by Brönsted and Lewis acid sites. NH3 adsorbed on Lewis acid sites participated in NH3-SCR, which reduced the amount of NOx produced and resulted in a high N2 yield.

  12. Performance characterization of CNTs and γ-Al{sub 2}O{sub 3} supported cobalt catalysts in Fischer-Tropsch reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Sardar, E-mail: alikhan-635@yahoo.com; Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my

    2014-10-24

    Catalysts were prepared via a wet impregnation method. Different physicochemical properties of the samples were revealed by transmission electron microscope (TEM), temperature programmed reduction (H{sub 2}-TPR) and carbon dioxide desorption (CO{sub 2}-desorption). Fischer-Tropsch reaction (FTS) was carried out in a fixed-bed microreactor at 220°C and 1 atm, with H{sub 2}/CO = 2v/v and space velocity, SV of 12L/g.h for 5 h. Various characterization techniques revealed that there was a stronger interaction between Co and Al{sub 2}O{sub 3} support compared to that of CNTs support. CNTs support increased the reducibility and decreased Co particle size. A significant increase in % CO conversion andmore » FTS reaction rate was observed over CNTs support compared to that of Co/Al{sub 2}O{sub 3}. Co/CNTs resulted in higher C{sub 5+} hydrocarbons selectivity compared to that of Co/Al{sub 2}O{sub 3} catalyst. CNTs are a better support for Co compared to Al{sub 2}O{sub 3}.« less

  13. Computational materials design of attractive Fermion system with large negative effective Ueff in the hole-doped Delafossite of CuAlO2, AgAlO2 and AuAlO2: Charge-excitation induced Ueff < 0

    NASA Astrophysics Data System (ADS)

    Nakanishi, A.; Fukushima, T.; Uede, H.; Katayama-Yoshida, H.

    2015-12-01

    On the basis of general design rules for negative effective U(Ueff) systems by controlling purely-electronic and attractive Fermion mechanisms, we perform computational materials design (CMD®) for the negative Ueff system in hole-doped two-dimensional (2D) Delafossite CuAlO2, AgAlO2 and AuAlO2 by ab initio calculations with local density approximation (LDA) and self-interaction corrected-LDA (SIC-LDA). It is found that the large negative Ueff in the hole-doped attractive Fermion systems for CuAlO2 (UeffLDA = - 4.53 eV and UeffSIC-LDA = - 4.20 eV), AgAlO2 (UeffLDA = - 4.88 eV and UeffSIC-LDA = - 4.55 eV) and AuAlO2 (UeffLDA = - 4.14 eV and UeffSIC-LDA = - 3.55 eV). These values are 10 times larger than that in hole-doped three-dimensional (3D) CuFeS2 (Ueff = - 0.44 eV). For future calculations of Tc and phase diagram by quantum Monte Carlo simulations, we propose the negative Ueff Hubbard model with the anti-bonding single π-band model for CuAlO2, AgAlO2 and AuAlO2 using the mapped parameters obtained from ab initio electronic structure calculations. Based on the theory of negative Ueff Hubbard model (Noziéres and Schmitt-Rink, 1985), we discuss |Ueff| dependence of superconducting critical temperature (Tc) in the 2D Delafossite of CuAlO2, AgAlO2 and AuAlO2 and 3D Chalcopyrite of CuFeS2, which shows the interesting chemical trend, i.e., Tc increases exponentially (Tc ∝ exp [ - 1 / | Ueff | ]) in the weak coupling regime | Ueff(- 0.44 eV) | < W(∼ 2 eV) (where W is the band width of the negative Ueff Hubbard model) for the hole-doped CuFeS2, and then Tc goes through a maximum when | Ueff(- 4.88 eV , - 4.14 eV) | ∼ W(2.8 eV , 3.5 eV) for the hole-doped AgAlO2 and AuAlO2, and finally Tc decreases with increasing |Ueff| in the strong coupling regime, where | Ueff(- 4.53 eV) | > W(1.7 eV) , for the hole-doped CuAlO2.

  14. Uptake properties of Ni2+ by nCaO.Al2O3.2SiO2 (n=1-4) prepared from solid-state reaction of kaolinite and calcite.

    PubMed

    Jha, Vinay Kumar; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi; MacKenzie, Kenneth J D

    2005-08-31

    A series of nCaO.Al2O3.2SiO2 samples (n=1-4) were prepared by solid-state reaction of mechanochemically treated mixtures of kaolinite and calcite fired at 600-1000 degrees C for 24 h. All the samples were X-ray amorphous after firing at 600-800 degrees C but had crystallized by 900 degrees C. The main crystalline phases were anorthite (n=1), gehlenite (n=2 and 3) and larnite (n=4). The uptake of Ni2+ by nCaO.Al2O3.2SiO2 samples fired at 800 and 900 degrees C was investigated at room temperature using solutions with initial Ni2+ concentrations of 0.1-50 mmol/l. Amorphous samples (fired at 800 degrees C) showed a higher Ni2+ uptake capacity than crystalline samples (fired at 900 degrees C). Ni2+ uptake was found to increase with increasing of CaO content. Amorphous 4CaO.Al2O3.2SiO2 showed the highest Ni2+ uptake capacity (about 9 mmol/g). The Ni2+ uptake abilities of the present samples are higher than those of other materials reported in the literature. Since the sorbed Ni2+/released Ca2+ ratios of these samples are close to unity, ion replacement of Ni2+ for Ca2+ is thought to be the principal mechanism of Ni2+ uptake by the present samples.

  15. Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal Hydride (TiH2, ZrH2, MgH2, and/or CaH2) Composite Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon; Xu, Yimin; Shaw, Wendy J.

    2012-04-19

    Ammonia borane (AB = NH3BH3) is one of the most attractive materials for chemical hydrogen storage due to its high hydrogen contents of 19.6 wt.%, however, impurity levels of borazine, ammonia and diborane in conjunction with foaming and exothermic hydrogen release calls for finding ways to mitigate the decomposition reactions. In this paper we present a solution by mixing AB with metal hydrides (TiH2, ZrH2, MgH2 and CaH2) which have endothermic hydrogen release in order to control the heat release and impurity levels from AB upon decomposition. The composite materials were prepared by mechanical ball milling, and their H2 releasemore » properties were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The formation of volatile products from decomposition side reactions, such as borazine (N3B3H6) was determined by mass spectrometry (MS). Sieverts type pressure-composition-temperature (PCT) gas-solid reaction instrument was adopted to observe the kinetics of the H2 release reactions of the combined systems and neat AB. In situ 11B MAS-NMR revealed a destabilized decomposition pathway. We found that by adding specific metal hydrides to AB we can eliminate the impurities and mitigate the heat release.« less

  16. Nb2O5-γ-Al2O3 nanofibers as heterogeneous catalysts for efficient conversion of glucose to 5-hydroxymethylfurfural

    NASA Astrophysics Data System (ADS)

    Jiao, Huanfeng; Zhao, Xiaoliang; Lv, Chunxiao; Wang, Yijun; Yang, Dongjiang; Li, Zhenhuan; Yao, Xiangdong

    2016-09-01

    One-dimensional γ-Al2O3 nanofibers were modified with Nb2O5 to be used as an efficient heterogeneous catalyst to catalyze biomass into 5-hydroxymethylfurfural (5-HMF). At low Nb2O5 loading, the niobia species were well dispersed on γ-Al2O3 nanofiber through Nb-O-Al bridge bonds. The interaction between Nb2O5 precursor and γ-Al2O3 nanofiber results in the niobia species with strong Lewis acid sites and intensive Brønsted acid sites, which made 5-HMF yield from glucose to reach the maximum 55.9~59.0% over Nb2O5-γ-Al2O3 nanofiber with a loading of 0.5~1 wt% Nb2O5 at 150 °C for 4 h in dimethyl sulfoxide. However, increasing Nb2O5 loading could lead to the formation of two-dimensional polymerized niobia species, three-dimensional polymerized niobia species and crystallization, which significantly influenced the distribution and quantity of the Lewis acid sites and Brönst acid sites over Nb2O5-γ-Al2O3 nanofiber. Lewis acid site Nbδ+ played a key role on the isomerization of glucose to fructose, while Brønsted acid sites are more active for the dehydration of generated fructose to 5-HMF. In addition, the heterogeneous Nb2O5-γ-Al2O3 nanofiber catalyst with suitable ratio of Lewis acid to Brönsted sites should display an more excellent catalytic performance in the conversion of glucose to 5-HMF.

  17. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT ETERNAL Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Wignall, J.; Lyons, Marv; Ertl, G.; Alefeld, Georg; Youdelis, W.; Radd, H.; Oertle, G.; Siegel, Edward

    2013-03-01

    ''H2O H2O everywhere; ne'er a drop to drink''[Coleridge(1798)] now: ''H2 H2 everywhere; STILL ne'er a drop to drink'': ONLY H2 (or methane CH4) can be FLYING-WATER(F-W) chemical-rain-in-pipelines Hindenberg-effect (H2-UP;H2O-DOWN): { ∖{}O/H2O{ ∖}} =[16]/[18] ∖sim 90{ ∖%} O already in air uphill; NO H2O pumping need! In global-warming driven H2O-starved glacial-melting world, rescue is possible ONLY by Siegel [ ∖underline {3rd Intl. Conf. Alt.-Energy }(1980)-vol.5/p.459!!!] Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating-system. Rosenfeld[Science 315,1396(3/9/2007)]-Biello [Sci.Am.(3/9 /2007)] crucial geomorphology which ONLY maximal-buoyancy H2 can exploit, to again make ''Mountains into Fountains'', ``upthrust rocks trapping the clouds to precipitate their rain/snow/H2O'': ''terraforming''(and ocean-rebasificaton!!!) ONLY VIA Siegel[APS March MTGS.:1960s-2000ss) DIFFUSIVE-MAGNETORESISTANCE (DMR) proprietary MAGNETIC-HYDROGEN-VALVE(MHV) ALL-IMPORTANT PRECLUDED RADIAL-diffusion, permitting ONLY AXIAL-H2-BALLISTIC-flow (``G.A''.''/DoE''/''Terrapower''/''Intellectual-Ventures''/ ''Gileland''/ ''Myhrvold''/''Gates'' ``ARCHIMEDES'') in ALREADY IN-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Science 300,1740(2003)] dire warning of global-pandemics (cancers/ blindness/ famine)

  18. Experimental study of H2SO4 aerosol nucleation at high ionization levels

    NASA Astrophysics Data System (ADS)

    Tomicic, Maja; Bødker Enghoff, Martin; Svensmark, Henrik

    2018-04-01

    One hundred and ten direct measurements of aerosol nucleation rate at high ionization levels were performed in an 8 m3 reaction chamber. Neutral and ion-induced particle formation from sulfuric acid (H2SO4) was studied as a function of ionization and H2SO4 concentration. Other species that could have participated in the nucleation, such as NH3 or organic compounds, were not measured but assumed constant, and the concentration was estimated based on the parameterization by Gordon et al. (2017). Our parameter space is thus [H2SO4] = 4×106 - 3×107 cm-3, [NH3+ org] = 2.2 ppb, T = 295 K, RH = 38 %, and ion concentrations of 1700-19 000 cm-3. The ion concentrations, which correspond to levels caused by a nearby supernova, were achieved with gamma ray sources. Nucleation rates were directly measured with a particle size magnifier (PSM Airmodus A10) at a size close to critical cluster size (mobility diameter of ˜ 1.4 nm) and formation rates at a mobility diameter of ˜ 4 nm were measured with a CPC (TSI model 3775). The measurements show that nucleation increases by around an order of magnitude when the ionization increases from background to supernova levels under fixed gas conditions. The results expand the parameterization presented in Dunne et al. (2016) and Gordon et al. (2017) (for [NH3 + org] = 2.2 ppb and T = 295 K) to lower sulfuric acid concentrations and higher ion concentrations. The results make it possible to expand the parameterization presented in Dunne et al. (2016) and Gordon et al. (2017) to higher ionization levels.

  19. Evaluation to the effect of B2O3-La2O3-SrO-Na2O-Al2O3 bonding agent on Ti6Al4V-porcelain bonding.

    PubMed

    Zhao, C Q; Wu, S Q; Lu, Y J; Gan, Y L; Guo, S; Lin, J J; Huang, T T; Lin, J X

    2016-10-01

    Low-fusing bonding agents have been widely applied in Ti-ceramics restorations. As an important category, borate bonding agents have great potentials in increasing Ti-porcelain bonding. The purpose of this study is to evaluate the effect of borate bonding agent with addition of Na2O and Al2O3 on Ti6Al4V-porcelain bonding. The thermal properties of borate bonding agent, such as glass transition temperature (Tg) and crystallization peak temperature (Tp), were investigated to establish the sintering process. And the coefficient of thermal expansion (CTE) was to evaluate the matching effect of porcelain to Ti6Al4V. The bond strength was analyzed by the three point bending test. The microscopic morphology of the borate bonding agent surface after sintering, the interface of Ti-borate bonding agent-porcelain, and the fracture mode after porcelains fracture, were studied to assess the influence of borate bonding agent on Ti6Al4V-ceramics. With the addition of Na2O and Al2O3, the porcelain residues were observed increased indication on the Ti6Al4V surface after porcelain fracture and the bond strength was acquired the maximum (49.45MPa) in the bonding agent composition of 75.70B2O3-5.92La2O3-11.84SrO-4.67Na2O-1.87Al2O3. Those results suggest that borate bonding agent is an effective way to improve the Ti6Al4V-ceramics bond strength. And the addition of Na2O and Al2O3 strengthen this effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Development of in-Situ Al-Si/CuAl2 Metal Matrix Composites: Microstructure, Hardness, and Wear Behavior

    PubMed Central

    Tash, Mahmoud M.; Mahmoud, Essam R. I.

    2016-01-01

    In the present work, in-situ metal matrix composites were fabricated through squeeze casting. The copper particles were dispersed with different weight percentages (3%, 6%, 10%, and 15%) into Al-12% Si piston alloy. Also, heat treatments were performed at 380 °C and 450 °C for holding times of 6 and 18 h. The microstructures, X-ray diffractometer (XRD) pattern, hardness, and wear characteristics were evaluated. The results showed that these copper particles have reacted with the aluminum under all of the aforementioned processing conditions resulting in the formation of fine copper aluminide intermetallics. Most of the intermetallics were CuAl2, while AlCu appeared in a small ratio. Additionally, these intermetallics were homogenously distributed within the alloy matrix with up to 6% Cu addition. The amounts of those intermetallics increased after performing heat treatment. Most of these intermetallics were CuAl2 at 380 °C, while the Cu-rich intermetallics appeared at 450 °C. Increasing the holding time to 18 h, however, led to grain coarsening and resulted in the formation of some cracks. The hardness of the resulting composite materials was improved. The hardness value reached to about 170 HV after heat treating at 380 °C for 8 h. The wear resistance of the resulting composite materials was remarkably improved, especially at lower additions of Cu and at the lower heat treatment temperature. PMID:28773564

  1. Non-Potassic Melts In CMAS-CO2-H2O-K2O Model Peridotite

    NASA Astrophysics Data System (ADS)

    Buisman, I.; Walter, M. J.; Keshav, S.

    2009-12-01

    relations become isobarically invariant. In contrast, the solidus in CMAS-CO2-H2O at 30 kbar is at 1000C. Above 1100C, phlogopite is no longer in equilibrium with the phase assemblage. In all the experimental charges, capsules were pierced, and a hydrous solution was seen escaping. When tested with litmus paper, in all cases at 25-50 kbar, this solution was determined to be highly basic (pH>10). Upon evaporation of the hydrous solution, a white precipitate was left behind around the piercing on the capsule wall. In CMAS-CO2-H2O, the fluid was found to be almost neutral (pH 7-8). The melt present in our experiments is carbonatitic in nature and does not contain any significant amounts of K2O. This contradicts a recent study on K2O in a natural composition (Foley et al, 2009) where carbonatitic melt had up to 13 wt% of K2O. Significantly, since K2O is perhaps all in the fluid, source regions for potassic magmas in the Earth’s mantle could not be created by metasomatism of alkali-rich, carbonatitic melts.

  2. Electrical characterization of 4H-SiC metal-oxide-semiconductor structure with Al2O3 stacking layers as dielectric

    NASA Astrophysics Data System (ADS)

    Chang, P. K.; Hwu, J. G.

    2018-02-01

    Interface defects and oxide bulk traps conventionally play important roles in the electrical performance of SiC MOS device. Introducing the Al2O3 stack grown by repeated anodization of Al films can notably lower the leakage current in comparison to the SiO2 structure, and enhance the minority carrier response at low frequency when the number of Al2O3 layers increase. In addition, the interface quality is not deteriorated by the stacking of Al2O3 layers because the stacked Al2O3 structure grown by anodization possesses good uniformity. In this work, the capacitance equivalent thickness (CET) of stacking Al2O3 will be up to 19.5 nm and the oxidation process can be carried out at room temperature. For the Al2O3 gate stack with CET 19.5 nm on n-SiC substrate, the leakage current at 2 V is 2.76 × 10-10 A/cm2, the interface trap density at the flatband voltage is 3.01 × 1011 eV-1 cm-2, and the effective breakdown field is 11.8 MV/cm. Frequency dispersion and breakdown characteristics may thus be improved as a result of the reduction in trap density. The Al2O3 stacking layers are capable of maintaining the leakage current as low as possible even after constant voltage stress test, which will further ameliorate reliability characteristics.

  3. High-pressure structural behavior of hydrogarnet, katoite Ca3Al2(O4H4)3

    NASA Astrophysics Data System (ADS)

    Kyono, A.; Kato, M.; Sano-Furukawa, A.; Machida, S. I.; Hattori, T.

    2016-12-01

    High-pressure structural behavior of hydrogarnet, katoite Ca3Al2(O4H4)3, was investigated using single-crystal synchrotron x-ray diffraction, Raman spectroscopic, and neutron diffraction analyses. The high-pressure single-crystal synchrotron x-ray diffraction was performed at BL10A, Photon Factory, KEK, Japan. With compression, the a lattice parameter decreased continuously from 12.565 (1) Å to 12.226 (3) Å up to 7.1 GPa. A fit to the Birch-Murnaghan equation of state (EoS) based on the P-V data gives K0 = 56.0 (6) GPa, K' = 4.3 (1), and V0 = 1984.2 (5) Å3, which were consistent with the previous study by Lager et al. (2002). Weak reflections forbidden by the systematic absence of hk0 with k, l = 2n were observed at 5.5 GPa and their intensities became stronger as increasing pressure. The pattern change of systematic absence implies phase transformation from space group Ia-3d to its non-centrosymmetric space group I-43d. High-pressure Raman spectroscopic study was performed up to 8.3 GPa at room temperature. The pressure dependence of lattice modes showed a positive pressure shifts, whereas that of OH stretching vibration mode was changed negative above 5.1 GPa. The change indicates that the strength of hydrogen bonding turns to increase above 5.1 GPa. High-pressure and high-temperature neutron diffraction study was performed with six-axis large volume press, ATSUHIME, at BL11 (PLANET), J-PARC, Japan. At a pressure of approximately 8 GPa, the a lattice parameter increased with temperature, but neither thermal decomposition nor dehydroxylation process occurred up to 1123 K. The crystal structure of katoite was determined by Rietveld method using neutron diffraction data with the space group I-43d. The volume of dodecahedral site containing Ca cations and that of octahedral site occupied by Al cations remained almost constant with temperature, but two crystallographically inequivalent tetrahedral sites which were caused by phase transformation behaved differently

  4. Nucleoplasmin Binds Histone H2A-H2B Dimers through Its Distal Face*

    PubMed Central

    Ramos, Isbaal; Martín-Benito, Jaime; Finn, Ron; Bretaña, Laura; Aloria, Kerman; Arizmendi, Jesús M.; Ausió, Juan; Muga, Arturo; Valpuesta, José M.; Prado, Adelina

    2010-01-01

    Nucleoplasmin (NP) is a pentameric chaperone that regulates the condensation state of chromatin extracting specific basic proteins from sperm chromatin and depositing H2A-H2B histone dimers. It has been proposed that histones could bind to either the lateral or distal face of the pentameric structure. Here, we combine different biochemical and biophysical techniques to show that natural, hyperphosphorylated NP can bind five H2A-H2B dimers and that the amount of bound ligand depends on the overall charge (phosphorylation level) of the chaperone. Three-dimensional reconstruction of NP/H2A-H2B complex carried out by electron microscopy reveals that histones interact with the chaperone distal face. Limited proteolysis and mass spectrometry indicate that the interaction results in protection of the histone fold and most of the H2A and H2B C-terminal tails. This structural information can help to understand the function of NP as a histone chaperone. PMID:20696766

  5. Polycomb Repressive Complex 2 Confers BRG1 Dependency on the CIITA Locus.

    PubMed

    Abou El Hassan, Mohamed; Yu, Tao; Song, Lan; Bremner, Rod

    2015-05-15

    CIITA (or MHC2TA) coordinates constitutive and IFN-γ-induced expression of MHC class II genes. IFN-γ responsiveness of CIITA requires BRG1 (SMARCA4), the ATPase engine of the chromatin remodeling SWI/SNF complex (also called BAF). SWI/SNF is defective in many human cancers, providing a mechanism to explain IFN-γ resistance. BRG1 dependency is mediated through remote elements. Short CIITA reporters lacking these elements respond to IFN-γ, even in BRG1-deficient cells, suggesting that BRG1 counters a remote repressive influence. The nature of this distal repressor is unknown, but it would represent a valuable therapeutic target to reactivate IFN-γ responsiveness in cancer. In this article, we show that the polycomb repressive complex 2 (PRC2) components EZH2 and SUZ12, as well as the associated histone mark H3K27me3, are codetected at interenhancer regions across the CIITA locus. IFN-γ caused a BRG1-dependent reduction in H3K27me3, associated with nucleosome displacement. SUZ12 knockdown restored IFN-γ responsiveness in BRG1-null cells, and it mimicked the ability of BRG1 to induce active histone modifications (H3K27ac, H3K4me) at the -50-kb enhancer. Thus, PRC2 confers BRG1 dependency on the CIITA locus. Our data suggest that, in addition to its known roles in promoting stemness and proliferation, PRC2 may inhibit immune surveillance, and it could be targeted to reactivate CIITA expression in SWI/SNF deficient cancers. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. High Temperature Mechanical Characterization and Analysis of Al2O3 /Al2O3 Composition

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Jaskowiak, Martha H.

    1999-01-01

    Sixteen ply unidirectional zirconia coated single crystal Al2O3 fiber reinforced polycrystalline Al2O3 was tested in uniaxial tension at temperatures to 1400 C in air. Fiber volume fractions ranged from 26 to 31%. The matrix has primarily open porosity of approximately 40%. Theories for predicting the Young's modulus, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of Al2O3/Al2O3 composites. The composite exhibited pseudo tough behavior (increased area under the stress/strain curve relative to monolithic alumina) from 22 to 1400 C. The rule-of-mixtures provides a good estimate of the Young's modulus of the composite using the constituent properties from room temperature to approximately 1200 C for short term static tensile tests in air. The ACK theory provides the best approximation of the first matrix cracking stress while accounting for residual stresses at room temperature. Difficulties in determining the fiber/matrix interfacial shear stress at high temperatures prevented the accurate prediction of the first matrix cracking stress above room temperature. The theory of Cao and Thouless, based on Weibull statistics, gave the best prediction for the composite ultimate tensile strength.

  7. Unraveling the Origin of Structural Disorder in High Temperature Transition Al2O3: Structure of θ-Al2O3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovarik, Libor; Bowden, Mark E.; Shi, Dachuan

    The crystallography of transition Al2O3 has been extensively studied in the past due to the advantageous properties of the oxide in catalytic and a range of other technological applications. However, existing crystallographic models are insufficient to describe the structure of many important Al2O3 polymorphs due to their highly disordered nature. In this work, we investigate structure and disorder in high-temperature treated transition Al2O3, and provide a structural description for θ-Al2O3 by using a suite of complementary imaging, spectroscopy and quantum calculation techniques. Contrary to current understanding, our high-resolution imaging shows that θ-Al2O3 is a disordered composite phase of at leastmore » two different end members. By correlating imaging and spectroscopy results with DFT calculations, we propose a model that describes θ-Al2O3 as a disordered intergrowth of two crystallographic variants at the unit cell level. One variant is based on β-Ga2O3, and the other on a monoclinic phase that is closely-related to δ-Al2O3. The overall findings and interpretations afford new insight into the origin of poor crystallinity in transition Al2O3, and also provide new perspectives on structural complexity that can emerge from intergrowth of closely related structural polymorphs.« less

  8. Partially etched Ti3AlC2 as a promising high capacity Lithium-ion battery anode.

    PubMed

    Chen, Xifan; Zhu, Yuanzhi; Zhu, Xiaoquan; Peng, Wenchao; Li, Yang; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2018-06-25

    MXenes, a family of two-dimensional transition-metal carbide and nitride materials, are supposed to be the promising materials in energy storage because of the high electronic conductivity, hydrophilic surfaces and low diffusion barriers. MXenes are generally prepared by removing the "A" elements (A = Al, Si, Sn, etc.) from their corresponding MAX phases by using hydrofluoric acid (HF) and the other etching agents, despite the fact that these "A" elements usually have great volumetric and gravimetric capacities. Herein, we studied the etching progress of Ti3AlC2 and evaluated their anode performance in Lithium-ion batteries. We found that a partially etched sample (0.5h-peTi3C2Tx) showed much higher capacity (160 mA h g-1, 331.6 mA h cm-3 at 1C) when compared with the fully etched Ti3C2Tx (110 mA h g-1, 190.3 mA h cm-3 at 1C). Besides, a 99% capacity retention was observed even after 1000 cycles in the 0.5h-peTi3C2Tx anode. This interesting result can be explained, at least in part, by the alloying of the residue Al element during lithiation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The electron affinity of Al13H cluster: high level ab initio study

    NASA Astrophysics Data System (ADS)

    Moc, Jerzy

    2014-11-01

    Al13H clusters have been considered candidates for cluster assembled materials. Here we have carried out benchmark calculations for the Al13H cluster, both neutral and anionic, with the aim of verifying the nature of stationary points on the potential energy surface, studying dynamics of H atom and determining an adiabatic electron affinity. A range of correlated methods applied include second-order perturbation theory (MP2), spin-component-scaled MP2, coupled electron pair (CEPA) and coupled cluster singles and doubles with perturbative triple corrections (CCSD(T)). These methods are used in combination with the correlation consistent basis sets through aug-cc-pVTZ including extrapolation to the complete basis set (CBS) limit. Performance of several different flavours of density functional theory (DFT) such as generalised gradient approximation (GGA), hybrid GGA, meta-GGA and hybrid-meta-GGA is assessed with respect to the ab initio correlated reference data. The harmonic force constant analysis is systematically performed with the MP2 and DFT methods. The MP2 results show that for neutral Al13H only the hollow structure is a potential energy minimum, with the bridged structure being a transition state for the H shift from the hollow site to the adjacent hollow site. The CCSD(T)/aug-cc-pVTZ (CCSD(T)/CBS) estimate of the energy barrier to this H shift is 2.6 (2.9) kcal/mol, implying that the H atom movement over the Al13H cluster surface is facile. By contrast, the DFT force constant analysis results suggest additional terminal and bridged minima structures. For the anion Al13H-, exhibiting 'stiffer' potential energy surface compared to the neutral, the existence of the hollow and terminal isomers is consistent with the earlier photoelectron spectroscopy assignment. The adiabatic electron affinity of Al13H is determined to be 2.00 and 1.95 eV (the latter including the ΔZPE correction) based on the CCSD(T) energies extrapolated to the CBS limit, whereas the

  10. Thermodynamic and transport properties of frozen and reacting pH2-oH2 mixtures

    NASA Technical Reports Server (NTRS)

    Carter, H. G.; Bullock, R. E.

    1972-01-01

    Application of experimental state data and spectroscopic term values shows that the thermodynamic and transport properties of reacting pH2-oH2 mixtures are considerably different than those of chemically frozen pH2 at temperatures below 300 R. Calculated H-S data also show that radiation-induced pH2-oH2 equilibration at constant enthalpy produces a temperature drop of at least 28 R, corresponding to an ideal shaft work loss of 15% or more for a turbine operating downstream from the point of conversion. Aside from differences in thermodynamic and transport properties, frozen pH2-oH2 mixtures may differ from pure pH2 on a purely hydrodynamical basis.

  11. Electrochemical and solid-state NMR studies on LiCoO 2 coated with Al 2O 3 derived from carboxylate-alumoxane

    NASA Astrophysics Data System (ADS)

    Fey, George T. K.; Kao, H. M.; Muralidharan, P.; Kumar, T. P.; Cho, Y. D.

    The surface of LiCoO 2 cathodes was coated with various wt.% of Al 2O 3 derived from methoxyethoxy acetate-alumoxane (MEA-alumoxane) by a mechano-thermal coating procedure, followed by calcination at 723 K in air for 10 h. The structure and morphology of the surface modified LiCoO 2 samples have been characterized with XRD, SEM, EDS, TEM, BET, XPS/ESCA and solid-state 27Al magic angle spinning (MAS) NMR techniques. The Al 2O 3 coating forms a thin layer on the surface of the core material with an average thickness of 20 nm. The corresponding 27Al MAS NMR spectrum basically exhibited the same characteristics as the spectrum for pristine Al 2O 3 derived from MEA-alumoxane, indicating that the local environment of aluminum atoms was not significantly changed at coating levels below 1 wt.%. This provides direct evidence that Al 2O 3 was on the surface of the core materials. The LiCoO 2 coated with 1 wt.% Al 2O 3 sustained continuous cycle stability 13 times longer than pristine LiCoO 2. A comparison of the electrochemical impedance behavior of the pristine and coated materials revealed that the failure of pristine cathode performance is associated with an increase in the particle-particle resistance upon continuous cycling. Coating improved the cathode performance by suppressing the characteristic structural phase transitions (hexagonal to monoclinic to hexagonal) that occur in pristine LiCoO 2 during the charge-discharge processes.

  12. Oxidation of Al2O3 continuous fiber-reinforced/NiAl composites

    NASA Technical Reports Server (NTRS)

    Doychak, J.; Nesbitt, J. A.; Noebe, R. D.; Bowman, R. R.

    1992-01-01

    The 1200 C and 1300 C isothermal and cyclic oxidation behavior of Al2O3 continuous fiber-reinforced/NiAl composites were studied. Oxidation resulted in formation of Al2O3 external scales in a similar manner as scales formed on monolithic NiAl. The isothermal oxidation of an Al2O3/NiAl composite resulted in oxidation of the matrix along the fiber/matrix interface near the fiber ends. This oxide acted as a wedge between the fiber and the matrix, and, under cyclic oxidation conditions, led to further oxidation along the fiber lengths and eventual cracking of the composite. The oxidation behavior of composites in which the Al2O3 fibers were sputter coated with nickel prior to processing was much more severe. This was attributed to open channels around the fibers which formed during processing, most likely as a result of the diffusion of the nickel coating into the matrix.

  13. Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent: Comparison with chitosan/Al2O3/Fe3O4 beads.

    PubMed

    Bozorgpour, Farahnaz; Ramandi, Hossein Fasih; Jafari, Pooya; Samadi, Saman; Yazd, Shabnam Sharif; Aliabadi, Majid

    2016-12-01

    In the present study the chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibrous adsorbent was prepared by electrospinning process and its application for the removal of nitrate and phosphate were compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite bead adsorbent. The influence of Al 2 O 3 /Fe 3 O 4 composite content, pH, contact time, nitrate and phosphate initial concentrations and temperature on the nitrate and phosphate sorption using synthesized bead and nanofibrous adsorbents was investigated in a single system. The reusability of chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers after five sorption-desorption cycles were carried out. The Box-Behnken design was used to investigate the interaction effects of adsorbent dosage, nitrate and phosphate initial concentrations on the nitrate and phosphate removal efficiency. The pseudo-second-order kinetic model and known Freundlich and Langmuir isotherm models were used to describe the kinetic and equilibrium data of nitrate and phosphate sorption using chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers. The influence of other anions including chloride, fluoride and sulphate on the sorption efficiency of nitrate and phosphate was examined. The obtained results revealed the higher potential of chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibers for nitrate and phosphate compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite beads. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate.

    PubMed

    Takagiwa, Shota; Kanasugi, Osamu; Nakamura, Kentaro; Kushida, Masahito

    2016-04-01

    In order to apply vertically-aligned carbon nanotubes (VA-CNTs) to a new Pt supporting material of polymer electrolyte fuel cell (PEFC), number density and outer diameter of CNTs must be controlled independently. So, we employed Langmuir-Blodgett (LB) technique for depositing CNT growth catalysts. A Fe nanoparticle (NP) was used as a CNT growth catalyst. In this study, we tried to thicken VA-CNT carpet height and inhibit thermal aggregation of Fe NPs by using Al2O3/Al/SiO2/Si substrate. Fe NP LB films were deposited on three typed of substrates, SiO2/Si, as-deposited Al2O3/Al/SiO2/Si and annealed Al2O3/Al/SiO2/Si at 923 K in Ar atmosphere of 16 Pa. It is known that Al2O3/Al catalyzes hydrocarbon reforming, inhibits thermal aggregation of CNT growth catalysts and reduces CNT growth catalysts. It was found that annealed Al2O3/Al/SiO2/Si exerted three effects more strongly than as-deposited Al2O3/Al/SiO2/Si. VA-CNTs were synthesized from Fe NPs-C16 LB films by thermal chemical vapor deposition (CVD) method. As a result, at the distance between two nearest CNTs 28 nm or less, VA-CNT carpet height on annealed Al2O3/Al/SiO2/Si was about twice and ten times thicker than that on SiO2/Si and that on as-deposited Al2O3/Al/SiO2/Si, respectively. Moreover, distribution of CNT outer diameter on annealed Al2O3/Al/SiO2/Si was inhibited compared to that on SiO2/Si. These results suggest that since thermal aggregation of Fe NPs is inhibited, catalyst activity increases and distribution of Fe NP size is inhibited.

  15. Electron spin resonance of (CO 2 H)CH 2 CH 2 CH(CO 2 H) in irradiated glutaric acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horsfield, A.; Morton, J. R.; Whiffen, D. H.

    It is concluded from electron spin resonance spectra that the radical (CO 2 H)CH 2 CH 2 CH(CO 2 H) remains trapped in a glutaric acid crystal after gamma -irradiation. This radical is found in two different conformations. Approximate hyperfine coupling constants are given for each, although exact interpretation is hindered by the overlapping of spectra. Reasons for the formation of the two forms of the radical are discussed.

  16. H2+, HeH and H2: Approximating potential curves, calculating rovibrational states

    NASA Astrophysics Data System (ADS)

    Olivares-Pilón, Horacio; Turbiner, Alexander V.

    2018-06-01

    Analytic consideration of the Bohr-Oppenheimer (BO) potential curves for diatomic molecules is proposed: accurate analytic interpolation for a potential curve consistent with its rovibrational spectra is found. It is shown that in the BO approximation for four lowest electronic states 1 sσg and 2 pσu, 2 pπu and 3 dπg of H2+, the ground state X2Σ+ of HeH and the two lowest states 1 Σg+ and 3 Σu+ of H2, the potential curves can be analytically interpolated in full range of internuclear distances R with not less than 4-5-6 s.d. Approximation based on matching the Laurant-type expansion at small R and a combination of the multipole expansion with one-instanton type contribution at large distances R is given by two-point Padé approximant. The position of minimum, when exists, is predicted within 1% or better. For the molecular ion H2+ in the Lagrange mesh method, the spectra of vibrational, rotational and rovibrational states (ν , L) associated with 1 sσg and 2 pσu, 2 pπu and 3 dπg potential curves are calculated. In general, it coincides with spectra found via numerical solution of the Schrödinger equation (when available) within six s.d. It is shown that 1 sσg curve contains 19 vibrational states (ν , 0) , while 2 pσu curve contains a single one (0 , 0) and 2 pπu state contains 12 vibrational states (ν , 0) . In general, 1 sσg electronic curve contains 420 rovibrational states, which increases up to 423 when we are beyond BO approximation. For the state 2 pσu the total number of rovibrational states (all with ν = 0) is equal to 3, within or beyond Bohr-Oppenheimer approximation. As for the state 2 pπu within the Bohr-Oppenheimer approximation the total number of the rovibrational bound states is equal to 284. The state 3 dπg is repulsive, no rovibrational state is found. It is confirmed in Lagrange mesh formalism the statement that the ground state potential curve of the heteronuclear molecule HeH does not support rovibrational states. Accurate

  17. Contribution of the pre-ionized H2 and the ionized H2+ subsystems to the HHG Spectra of H2 in intense laser fields

    NASA Astrophysics Data System (ADS)

    Iravani, Hossein; Sabzyan, Hassan; Vafaee, Mohsen; Buzari, Behnaz

    2018-04-01

    Contributions of the pre-ionized H2 (PI-H2) and ionized {{{H}}}2+ subsystems of the two-electron H2 system to its high-order harmonic generation in eight-cycle sin2-like ultrafast intense laser pulses are calculated and analyzed based on the solution of the time-dependent Schrödinger equation for the one-dimensional two-electronic H2 system with fixed nuclei. The laser pulses have λ = 390 and 532 nm wavelengths and I = 1 × 1014, 5 × 1014, 1 × 1015 and 5 × 1015 W cm‑2 intensities. It is found that at the two lower intensities, the PI-H2 subsystem dominantly produces the HHG spectra. However, at the two higher intensities, both PI-H2 and ionized {{{H}}}2+ subsystems contribute comparably to the HHG spectra. In the {{{H}}}2+ subsystem, the symmetry of the populations of {{{H}}}2+(I) and {{{H}}}2+(II) regions (left and right regions of {{{H}}}2+ subsystem) is broken by increasing the laser intensity. Complex patterns and even harmonics also appear at these two higher intensities. For instance, at 1 × 1015 W cm‑2 intensity and λ = 532 nm wavelength, the even harmonics are appeared near cutoff region. Interestingly, at 5 × 1015 W cm‑2 intensity and λ = 390 nm wavelength, the even harmonics replaced by the odd harmonics with red shift. At λ = 390 and 532 nm wavelengths and I = 1 × 1015 intensity, the two-electron cutoffs corresponding to nonsequential double-recombination with maximum return kinetic energy of 4.70Up are detected. The HHG spectra of the whole H2 system obtained with and without nuclear dynamics treated classically are approximately similar. However, at 1 × 1015 W cm‑2 intensity and λ = 532 nm wavelength, if we take into account nuclear dynamics, the even harmonics which are appeared near cutoff region, replaced by the odd harmonics with blue shift.

  18. Vibrational and thermodynamic properties of Ar, N2, O2, H2 and CO adsorbed and condensed into (H,Na)-Y zeolite cages as studied by variable temperature IR spectroscopy.

    PubMed

    Gribov, Evgueni N; Cocina, Donato; Spoto, Giuseppe; Bordiga, Silvia; Ricchiardi, Gabriele; Zecchina, Adriano

    2006-03-14

    The adsorption of Ar, H2, O2, N2 and CO on (H,Na)-Y zeolite (Si/Al = 2.9, H+/Na+ approximately 5) has been studied at variable-temperature (90-20 K) and sub-atmospheric pressure (0-40 mbar) by FTIR spectroscopy. Unprecedented filling conditions of the zeolite cavities were attained, which allowed the investigation of very weakly adsorbed species and of condensed, liquid-like or solid-like, phases. Two pressure regimes were singled out, characterized by: (i) specific interaction at low pressure of the probe molecules (P) with the internal Brønsted and Lewis sites, and (ii) multilayer adsorption at higher pressure. In the case of CO the perturbation of the protonic sites located inside the sodalite cages was also observed. As the molecule is too large to penetrate the sodalite cage, the perturbation is thought to involve a proton jump tunneling mechanism. The adsorption energy for the (HF)OH...P (P = Ar, H2, O2, N2 and CO) specific interaction involving the high frequency Brønsted acid sites exposed in the supercages was derived following the VTIR (variable temperature infrared spectroscopy) method described by E. Garrone and C. Otero Areán (Chem. Soc. Rev., 2005, 34, 846).

  19. Capture and dissociation in the complex-forming CH + H2 → CH2 + H, CH + H2 reactions.

    PubMed

    González, Miguel; Saracibar, Amaia; Garcia, Ernesto

    2011-02-28

    The rate coefficients for the capture process CH + H(2)→ CH(3) and the reactions CH + H(2)→ CH(2) + H (abstraction), CH + H(2) (exchange) have been calculated in the 200-800 K temperature range, using the quasiclassical trajectory (QCT) method and the most recent global potential energy surface. The reactions, which are of interest in combustion and in astrochemistry, proceed via the formation of long-lived CH(3) collision complexes, and the three H atoms become equivalent. QCT rate coefficients for capture are in quite good agreement with experiments. However, an important zero point energy (ZPE) leakage problem occurs in the QCT calculations for the abstraction, exchange and inelastic exit channels. To account for this issue, a pragmatic but accurate approach has been applied, leading to a good agreement with experimental abstraction rate coefficients. Exchange rate coefficients have also been calculated using this approach. Finally, calculations employing QCT capture/phase space theory (PST) models have been carried out, leading to similar values for the abstraction rate coefficients as the QCT and previous quantum mechanical capture/PST methods. This suggests that QCT capture/PST models are a good alternative to the QCT method for this and similar systems.

  20. Calculations of thermal radiation transfer of C2H2 and C2H4 together with H2O, CO2, and CO in a one-dimensional enclosure using LBL and SNB models

    NASA Astrophysics Data System (ADS)

    Qi, Chaobo; Zheng, Shu; Zhou, Huaichun

    2017-08-01

    Generally, the involvement of hydrocarbons such as C2H4 and its derivative C2H2 in thermal radiation has not been accounted in the numerical simulation of their flames, which may cause serious error for estimation of temperature in the early stage of combustion. At the first, the Statistical Narrow-Band (SNB) model parameters for C2H2 and C2H4 are generated from line by line (LBL) calculations. The distributions of the concentrations of radiating gases such as H2O, CO2, CO, C2H2 and C2H4, and the temperature along the centerline of a laminar ethylene/air diffusion flame were chosen to form a one-dimensional, planar enclosure to be tested in this study. Thermal radiation transfer in such an enclosure was calculated using the LBL approach and the SNB model, most of the relative errors are less than 8% and the results of these two models shows an excellent agreement. Below the height of 20 mm, which is the early stage of the flame, the average fraction contributed by C2H2 and C2H4 in the radiative heat source is 33.8%, while that by CO is only 5.8%. This result indicates that the involvement of C2H2 and C2H4 in radiation heat transfer needs to be taken into account in the numerical modeling of the ethylene/air diffusion flame, especially in the early stage of combustion.