Sample records for h2fuel bus program

  1. TITLE: Environmental, health, and safety issues offuel cells in transportation. Volume 1: Phosphoricacid fuel-cell buses

    NASA Astrophysics Data System (ADS)

    Ring, Shan

    1994-12-01

    The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase 1 of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, through a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase 3. After completing Phase 2, DOE plans a comprehensive performance testing program (Phase H1) to verify that the buses meet stringent transit industry requirements. The Phase 3 study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.

  2. Environmental, health, and safety issues of fuel cells in transportation. Volume 1: Phosphoric acid fuel-cell buses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ring, S

    1994-12-01

    The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase I of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, throughmore » a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase III. After completing Phase II, DOE plans a comprehensive performance testing program (Phase HI) to verify that the buses meet stringent transit industry requirements. The Phase III study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.« less

  3. Savannah River bus project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, W.A.

    1998-08-01

    The H2Fuel Bus is the world`s first hybrid hydrogen electric transit bus. It was developed through a public/private partnership involving several leading technology and industrial organizations in the Southeast, with primary funding and program management provided by the Department of Energy. The primary goals of the project are to gain valuable information on the technical readiness and economic viability of hydrogen buses and to enhance the public awareness and acceptance of emerging hydrogen technologies. The bus has been operated by the transit agency in Augusta, Georgia since April, 1997. It employs a hybrid IC engine/battery/electric drive system, with onboard hydrogenmore » fuel storage based on the use of metal hydrides. Initial operating results have demonstrated an overall energy efficiency (miles per Btu) of twice that of a similar diesel-fueled bus and an operating range twice that of an all-battery powered electric bus. Tailpipe emissions are negligible, with NOx less than 0.2 ppm. Permitting, liability and insurance issues were addressed on the basis of extensive risk assessment and safety analyses, with the inherent safety characteristic of metal hydride storage playing a major role in minimizing these concerns. Future plans for the bus include continued transit operation and use as a national testbed, with potential modifications to demonstrate other hydrogen technologies, including fuel cells.« less

  4. 77 FR 27277 - FTA Supplemental Fiscal Year 2012 Apportionments, Allocations, and Program Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... allocates Section 5309 Bus and Bus Facilities funds to bus testing and the Fuel Cell program. Tables... Fuel Cell program. FTA will issue a supplemental notice at a later date if additional contract... allocated CA, GA, MA E2012-BUSP-018 Fuel Cell Bus Program..... $13,500,000 PA E2012-BUSP-019 Bus Testing 3...

  5. National fuel cell bus program : proterra fuel cell hybrid bus report, Columbia demonstration.

    DOT National Transportation Integrated Search

    2011-10-01

    This report summarizes the experience and early results from a fuel cell bus demonstration funded by the Federal Transit Administration (FTA) under the National Fuel Cell Bus Program. A team led by the Center for Transportation and the Environment an...

  6. American Fuel Cell Bus Project : First Analysis Report

    DOT National Transportation Integrated Search

    2013-06-01

    This report summarizes the experience and early results from the American Fuel Cell Bus Project, a fuel cell electric bus demonstration funded by the Federal Transit Administration (FTA) under the National Fuel Cell Bus Program. A team led by CALSTAR...

  7. American fuel cell bus project : first analysis report.

    DOT National Transportation Integrated Search

    2013-06-01

    This report summarizes the experience and early results from the American Fuel Cell Bus Project, a fuel cell electric bus demonstration : funded by the Federal Transit Administration (FTA) under the National Fuel Cell Bus Program. A team led by CALST...

  8. Massachusetts Fuel Cell Bus Project: Demonstrating a Total Transit Solution for Fuel Cell Electric Buses in Boston

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Federal Transit Administration's National Fuel Cell Bus Program focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solution for fuel cell electric buses that includes one bus and an on-site hydrogen generation station for the Massachusetts Bay Transportation Authority (MBTA). A team consisting of ElDorado National, BAE Systems, and Ballard Power Systems built the fuel cell electric bus, and Nuvera is providing its PowerTap on-site hydrogen generator to provide fuel for the bus.

  9. Demonstrating a Total Transit Solution for Fuel Cell Electric Buses in Boston

    DOT National Transportation Integrated Search

    2017-05-01

    The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solu...

  10. Analysis, operation and maintenance of a fuel cell/battery series-hybrid bus for urban transit applications

    NASA Astrophysics Data System (ADS)

    Bubna, Piyush; Brunner, Doug; Gangloff, John J.; Advani, Suresh G.; Prasad, Ajay K.

    The fuel cell hybrid bus (FCHB) program was initiated at the University of Delaware in 2005 to demonstrate the viability of fuel cell vehicles for transit applications and to conduct research and development to facilitate the path towards their eventual commercialization. Unlike other fuel cell bus programs, the University of Delaware's FCHB design features a battery-heavy hybrid which offers multiple advantages in terms of cost, performance and durability. The current fuel cell hybrid bus is driven on a regular transit route at the University of Delaware. The paper describes the baseline specifications of the bus with a focus on the fuel cell and the balance of plant. The fuel cell/battery series-hybrid design is well suited for urban transit routes and provides key operational advantages such as hydrogen fuel economy, efficient use of the fuel cell for battery recharging, and regenerative braking. The bus is equipped with a variety of sensors including a custom-designed cell voltage monitoring system which provide a good understanding of bus performance under normal operation. Real-time data collection and analysis have yielded key insights for fuel cell bus design optimization. Results presented here illustrate the complex flow of energy within the various subsystems of the fuel cell hybrid bus. A description of maintenance events has been included to highlight the issues that arise during general operation. The paper also describes several modifications that will facilitate design improvements in future versions of the bus. Overall, the fuel cell hybrid bus demonstrates the viability of fuel cells for urban transit applications in real world conditions.

  11. Connecticut Nutmeg Fuel Cell Bus Project : Demonstrating Advanced-Design Hybrid Fuel Cell Buses in Connecticut

    DOT National Transportation Integrated Search

    2011-07-01

    The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. The Northeast Advanced Vehicle Consortium (NAVC) is one of three non-profit consortia chosen to ...

  12. Developing and Demonstrating the Next-Generation Fuel Cell Electric Bus Made in America

    DOT National Transportation Integrated Search

    2012-02-01

    The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. CALSTART is one of three non-profit consortia chosen to manage projects competitively selected u...

  13. Connecticut nutmeg fuel cell bus project : first analysis report.

    DOT National Transportation Integrated Search

    2012-07-01

    This report summarizes the experience and early results from a fuel cell bus demonstration funded by the Federal Transit Administra-tion (FTA) under the National Fuel Cell Bus Program (NFCBP). A team led by the Northeast Advanced Vehicle Consortium a...

  14. National Fuel Cell Bus Program: Accelerated Testing Evaluation Report #2, Alameda-Contra Costa Transit District (AC Transit) and Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, L.; Chandler, K.

    2010-06-01

    This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006, comparing similar diesel buses operating from the same depot. It covers November 2007 through February 2010. Results include implementation experience, fueling station operation, evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and road calls), and a summary of achievements and challenges encountered during the demonstration.

  15. How to Cut Costs by Saving School Bus Fuel.

    ERIC Educational Resources Information Center

    Seiff, Hank

    A program started in Washington County, Maryland in 1980 has been successful in saving school bus fuel and bringing down transportation costs incurred by its fleet of 200 buses. Driver training and motivation, as well as a partial transfer to diesel buses, are at the heart of the program. The drivers are taught five fuel saving techniques: cut…

  16. National Fuel Cell Bus Program: Accelerated Testing Evaluation Report and Appendices, Alameda-Contra Costa Transit District (AC Transit)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, K.; Eudy, L.

    2009-01-01

    This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006 compared to similar diesel buses operating from the same depot. This evaluation report includes results from November 2007 through October 2008. Evaluation results include implementation experience, fueling station operation, fuel cell bus operations at Golden Gate Transit, and evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and roadcalls).

  17. Technology Validation: Fuel Cell Bus Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie

    This presentation describing the FY 2016 accomplishments for the National Renewable Energy Laboratory's Fuel Cell Bus Evaluations project was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, June 7, 2016.

  18. King County Metro Battery Electric Bus Demonstration—Preliminary Project Results

    DOT National Transportation Integrated Search

    2017-05-01

    The U.S. Federal Transit Administration (FTA) funds a variety of research projects that support the commercialization of zero-emission bus technology. Recent programs include the National Fuel Cell Bus program, the Transit Investments for Greenhouse ...

  19. Hydrogen-oxygen driven Zero Emissions bus drives around KSC Visitor Complex

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Zero Emissions (ZE) transit bus passes a mock-up orbiter named Explorer on a trek through the KSC Visitor Complex. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product 'exhaust' from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. The ZE bus is being used on tour routes at the KSC Visitor Complex for two days to introduce the public to the concept.

  20. Diesel Bus Performance Simulation Program

    DOT National Transportation Integrated Search

    1979-04-01

    A diesel bus performance computer simulation program was developed. This program provides information on acceleration, velocity, horsepower, distance traveled, and fuel consumption as a function of time from the originating station. The program was w...

  1. Hydrogen-oxygen driven Zero Emissions bus draws attention at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    KSC workers, with Center Director Roy Bridges (at right next to bus), head for the open door of the Zero Emissions (ZE) transit bus and a ride around the center. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product 'exhaust' from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. Available to employees for viewing and a ride, the ZE bus is also being used on tour routes at the KSC Visitor Complex Oct. 26-27.

  2. FTA fuel cell bus program : research accomplishments through 2011.

    DOT National Transportation Integrated Search

    2012-03-01

    Prepared by the Federal Transit Administration (FTA) Office of Research, Demonstration, and Innovation (TRI), this report summarizes the accomplishments of fuel-cell-transit-bus-related research and demonstrations projects supported by FTA through 20...

  3. KSC-99pp1251

    NASA Image and Video Library

    1999-10-25

    KSC workers, with Center Director Roy Bridges (at right next to bus), head for the open door of the Zero Emissions (ZE) transit bus and a ride around the center. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product "exhaust" from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. Available to employees for viewing and a ride, the ZE bus is also being used on tour routes at the KSC Visitor Complex Oct. 26-27

  4. Hydrogen-oxygen driven Zero Emissions bus draws attention at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    KSC employees, along with Center Director Roy Bridges (second from left), view the hydrogen-oxygen driven engine powering a Zero Emissions (ZE) transit bus. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product 'exhaust' from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. Available for viewing by employees, the ZE bus is also being used on tour routes at the KSC Visitor Complex Oct. 26-27.

  5. Hydrogen-oxygen driven Zero Emissions bus draws attention at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On view in front of the Headquarters Building, the Zero Emissions (ZE) transit bus attracts an interested group of employees, including Center Director Roy Bridges (second from left in foreground). Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product 'exhaust' from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. Available for viewing by employees, the ZE bus is also being used on tour routes at the KSC Visitor Complex Oct. 26-27.

  6. Hydrogen-oxygen driven Zero Emissions bus draws attention at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In front of the Headquarters Building at KSC, Center Director Roy Bridges (left) looks at the hydrogen-oxygen driven engine powering a Zero Emissions (ZE) transit bus. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by- product 'exhaust' from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. Available for viewing by employees, the ZE bus is also being used on tour routes at the KSC Visitor Complex Oct. 26-27.

  7. Bus industry market study. Report -- Task 3.2: Fuel cell/battery powered bus system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalbowitz, M.

    1992-06-02

    In support of the commercialization of fuel cells for transportation, Georgetown University, as a part of the DOE/DOT Fuel Cell Transit Bus Program, conducted a market study to determine the inventory of passenger buses in service as of December, 1991, the number of buses delivered in 1991 and an estimate of the number of buses to be delivered in 1992. Short term and long term market projections of deliveries were also made. Data was collected according to type of bus and the field was divided into the following categories which are defined in the report: transit buses, school buses, commercialmore » non-transit buses, and intercity buses. The findings of this study presented with various tables of data collected from identified sources as well as narrative analysis based upon interviews conducted during the survey.« less

  8. KSC-99pp1248

    NASA Image and Video Library

    1999-10-25

    In front of the Headquarters Building at KSC, Center Director Roy Bridges (left) looks at the hydrogen-oxygen driven engine powering a Zero Emissions (ZE) transit bus. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product "exhaust" from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. Available for viewing by employees, the ZE bus is also being used on tour routes at the KSC Visitor Complex Oct. 26-27

  9. KSC-99pp1249

    NASA Image and Video Library

    1999-10-25

    KSC employees, along with Center Director Roy Bridges (second from left), view the hydrogen-oxygen driven engine powering a Zero Emissions (ZE) transit bus. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product "exhaust" from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. Available for viewing by employees, the ZE bus is also being used on tour routes at the KSC Visitor Complex Oct. 26-27

  10. KSC-99pp1253

    NASA Image and Video Library

    1999-10-25

    The Zero Emissions (ZE) transit bus passes a mock-up orbiter named Explorer on a trek through the KSC Visitor Complex. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product "exhaust" from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. The ZE bus is being used on tour routes at the KSC Visitor Complex for two days to introduce the public to the concept

  11. Hydrogen-oxygen driven Zero Emissions bus drives around KSC Visitor Complex

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Zero Emissions (ZE) transit bus tours the KSC Visitor Complex for a test ride. In the background are a mock-up orbiter named Explorer (left) and a stack of solid rocket boosters and external tank (right), typically used on Shuttle launches. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product 'exhaust' from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. The ZE bus is being used on tour routes at the KSC Visitor Complex for two days to introduce the public to the concept.

  12. SunLine Test Drives Hydrogen Bus

    DOT National Transportation Integrated Search

    2003-08-01

    SunLine collaborated with the U.S. Department of Energys (DOE) Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program on the evaluation of the 30-foot hybrid fuel cell bus that was developed by ThunderPower LLC, a joint venture by Tho...

  13. KSC-99pp1250

    NASA Image and Video Library

    1999-10-25

    On view in front of the Headquarters Building, the Zero Emissions (ZE) transit bus attracts an interested group of employees, including Center Director Roy Bridges (second from left in foreground). Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product "exhaust" from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. Available for viewing by employees, the ZE bus is also being used on tour routes at the KSC Visitor Complex Oct. 26-27

  14. American Fuel Cell Bus Project Evaluation. Second Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew

    2015-09-01

    This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Administration's (FTA's) National Fuel Cell Bus Program. Through the non-profit consortia CALSTART, a team led by SunLine Transit Agency and BAE Systems developed a new fuel cell electric bus for demonstration. SunLine added two more AFCBs to its fleet in 2014 and another in 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE) and DOE'smore » National Renewable Energy Laboratory to evaluate the buses in revenue service. This report summarizes the performance results for the buses through June 2015.« less

  15. KSC-99pp1252

    NASA Image and Video Library

    1999-10-25

    The Zero Emissions (ZE) transit bus tours the KSC Visitor Complex for a test ride. In the background are a mock-up orbiter named Explorer (left) and a stack of solid rocket boosters and external tank (right), typically used on Shuttle launches. Provided by dbb fuel cell engines inc. of Vancouver, Canada, the ZE bus was brought to KSC as part of the Center's Alternative Fuel Initiatives Program. The bus uses a Proton Exchange Membrane fuel cell in which hydrogen and oxygen, from atmospheric air, react to produce electricity that powers an electric motor drive system. The by-product "exhaust" from the fuel cell is water vapor, thus zero harmful emissions. A typical diesel-powered bus emits more than a ton of harmful pollutants from its exhaust every year. The ZE bus is being used on tour routes at the KSC Visitor Complex for two days to introduce the public to the concept

  16. 77 FR 60172 - Clean Fuels Grant Program, Augmented With Discretionary Bus and Bus Facilities Program Funds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    .... Grantees are reminded that the 90% provision for biodiesel buses is not available this year, as the... was highlighted in FTA's January 2012 Apportionment Notice, Section III (C). Biodiesel buses remain...

  17. NREL Fuel Cell Bus Analysis Finds Fuel Economy to be 1.4 Times Higher than

    Science.gov Websites

    Diesel | News | NREL Fuel Cell Bus Analysis Finds Fuel Economy to be 1.4 Times Higher than Diesel NREL Fuel Cell Bus Analysis Finds Fuel Economy to be 1.4 Times Higher than Diesel December 2, 2016 NREL has published a new report showing that the average fuel economy of fuel cell electric buses from

  18. Alternative Fuels Data Center

    Science.gov Websites

    Alternative Fuel Vehicle (AFV) Revolving Loan Program The Mississippi Alternative Fuel School Bus and Municipal Motor Vehicle Revolving Loan Program provides zero-interest loans for public school districts and municipalities to cover the incremental cost to purchase alternative fuel school buses and

  19. Detroit Commuter Hydrogen Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Jerry; Prebo, Brendan

    2010-07-31

    This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibilitymore » of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.« less

  20. Proton exchange membrane fuel cell system diagnosis based on the signed directed graph method

    NASA Astrophysics Data System (ADS)

    Hua, Jianfeng; Lu, Languang; Ouyang, Minggao; Li, Jianqiu; Xu, Liangfei

    The fuel-cell powered bus is becoming the favored choice for electric vehicles because of its extended driving range, zero emissions, and high energy conversion efficiency when compared with battery-operated electric vehicles. In China, a demonstration program for the fuel cell bus fleet operated at the Beijing Olympics in 2008 and the Shanghai Expo in 2010. It is necessary to develop comprehensive proton exchange membrane fuel cell (PEMFC) diagnostic tools to increase the reliability of these systems. It is especially critical for fuel-cell city buses serving large numbers of passengers using public transportation. This paper presents a diagnostic analysis and implementation study based on the signed directed graph (SDG) method for the fuel-cell system. This diagnostic system was successfully implemented in the fuel-cell bus fleet at the Shanghai Expo in 2010.

  1. Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas

    NASA Astrophysics Data System (ADS)

    Stempien, J. P.; Chan, S. H.

    2017-02-01

    Fuel cell- and battery-based public bus technologies are reviewed and compared for application in tropical urban areas. This paper scrutinizes the reported literature on fuel cell bus, fuel cell electric bus, battery electric bus, hybrid electric bus, internal combustion diesel bus and compressed natural gas bus. The comparison includes the capital and operating costs, fuel consumption and fuel cycle emissions. To the best of authors knowledge, this is the first study to holistically compare hydrogen and battery powered buses, which is the original contribution of this paper. Moreover, this is the first study to focus on supplying hydrogen and electricity from fossil resources, while including the associated emissions. The study shows that compressed natural gas and hybrid electric buses appear to be the cheapest options in terms of total cost of ownership, but they are unable to meet the EURO VI emissions' standard requirement. Only fuel cell based buses have the potential to achieve the emissions' standard when the fuel cycle based on fossil energy was considered. Fuel cell electric buses are identified as a technology allowing for the largest CO2 emission reduction, making ∼61% decrease in annual emissions possible.

  2. Transit bus applications of lithium ion batteries : progress and prospects

    DOT National Transportation Integrated Search

    2012-12-31

    This report provides an overview of diverse transit bus applications of advanced Lithium Ion Batteries (LIBs). The report highlights and illustrates several FTA programs that fostered the successful development, demonstration, and deployment of fuel-...

  3. In-use fuel economy of hybrid-electric school buses in Iowa.

    PubMed

    Hallmark, Shauna; Sperry, Bob; Mudgal, Abhisek

    2011-05-01

    Although it is much safer and more fuel-efficient to transport children to school in buses than in private vehicles, school buses in the United States still consume 822 million gal of diesel fuel annually, and school transportation costs can account for a significant portion of resource-constrained school district budgets. Additionally, children in diesel-powered school buses may be exposed to higher levels of particulates and other pollutants than children in cars. One solution to emission and fuel concerns is use of hybrid-electric school buses, which have the potential to reduce emissions and overall lifecycle costs compared with conventional diesel buses. Hybrid-electric technologies are available in the passenger vehicle market as well as the transit bus market and have a track record indicating fuel economy and emissions benefits. This paper summarizes the results of an in-use fuel economy evaluation for two plug-in hybrid school buses deployed in two different school districts in Iowa. Each school district selected a control bus with a route similar to that of the hybrid bus. Odometer readings, fuel consumption, and maintenance needs were recorded for each bus. The buses were deployed in 2008 and data were collected through May 2010. Fuel consumption was calculated for each school district. In Nevada, IA, the overall average fuel economy was 8.23 mpg for the hybrid and 6.35 mpg for the control bus. In Sigourney, IA, the overall average fuel economy was 8.94 mpg for the hybrid and 6.42 mpg for the control bus. The fuel consumption data were compared for the hybrid and control buses using a Wilcoxon signed rank test. Results indicate that fuel economy for the Nevada hybrid bus was 29.6% better than for the Nevada control bus, and fuel economy for the Sigourney hybrid bus was 39.2% higher than for the Sigourney control bus. Both differences were statistically significant.

  4. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnitt, R.; Gonder, J.

    The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30%more » to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.« less

  5. Evaluation guidelines for bus rapid transit demonstration projects

    DOT National Transportation Integrated Search

    2002-02-01

    The Federal Transit Administration's (FTA) Bus Rapid Transit Demonstration Program is supporting demonstrations of Bus Rapid Transit (BRT) in selected cities across the United States. The US BRT Demonstration Program aims to adapt the principles of h...

  6. Bluetooth wireless monitoring, diagnosis and calibration interface for control system of fuel cell bus in Olympic demonstration

    NASA Astrophysics Data System (ADS)

    Hua, Jianfeng; Lin, Xinfan; Xu, Liangfei; Li, Jianqiu; Ouyang, Minggao

    With the worldwide deterioration of the natural environment and the fossil fuel crisis, the possible commercialization of fuel cell vehicles has become a hot topic. In July 2008, Beijing started a clean public transportation plan for the 29th Olympic games. Three fuel cell city buses and 497 other low-emission vehicles are now serving the Olympic core area and Beijing urban areas. The fuel cell buses will operate along a fixed bus line for 1 year as a public demonstration of green energy vehicles. Due to the specialized nature of fuel cell engines and electrified power-train systems, measurement, monitoring and calibration devices are indispensable. Based on the latest Bluetooth wireless technology, a novel Bluetooth universal data interface was developed for the control system of the fuel cell city bus. On this platform, a series of wireless portable control auxiliary systems have been implemented, including wireless calibration, a monitoring system and an in-system programming platform, all of which are ensuring normal operation of the fuel cell buses used in the demonstration.

  7. 40 CFR 86.093-2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...-11 and 86.093-35. Centrally fueled bus means a bus that is refueled at least 75 percent of the time...

  8. 40 CFR 86.093-2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...-11 and 86.093-35. Centrally fueled bus means a bus that is refueled at least 75 percent of the time...

  9. Clean air program : design guidelines for bus transit systems using hydrogen as an alternative fuel

    DOT National Transportation Integrated Search

    1999-04-01

    Alternative fuels such as Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG), and alcohol fuels (methanol, and ethanol) are already being used in commercial vehicles and transit buses in revenue service. Hydrogen...

  10. Clean Air Program : Design Guidelines for Bus Transit Systems Using Alcohol Fuel (Methanol and Ethanol) as an Alternative Fuel

    DOT National Transportation Integrated Search

    1996-08-01

    Although there are over one thousand transit buses in revenue service in the U.S. that are powered by alternative fuels, there are no comprehensive guidelines for the safe design and operation of alternative fuel facilities and vehicles for transit s...

  11. Alternative Fuels Data Center

    Science.gov Websites

    Light-Duty Alternative Fuel Vehicle Rebates Clean Vehicle and Infrastructure Grants Clean Fleet Grants Clean School Bus Program Clean Vehicle Replacement Vouchers Diesel Fuel Blend Tax Exemption Idle Reduction Weight Exemption Natural Gas Vehicle (NGV) Weight Exemption Utility/Private Incentives Plug-In

  12. Clean Air Program : Design Guidelines for Bus Transit Systems Using Liquefied Natural Gas (LNG) as an Alternative Fuel

    DOT National Transportation Integrated Search

    1997-03-01

    The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including Liquefied Natural Gas (LNG), Compressed Natural Gas (CNG), Liquefied Petroleum Gas (LPG), and Methanol/Ethanol, are already being used. At present, t...

  13. Clean air program : design guidelines for bus transit systems using electric and hybrid electric propulsion as an alternative fuel

    DOT National Transportation Integrated Search

    2003-03-01

    The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including : Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG), and : Methanol/Ethanol, are already being used. At presen...

  14. Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation Team, DRAFT

    DOT National Transportation Integrated Search

    2003-10-29

    The objective of the DOE/NREL evaluation program is to provide comprehensive, unbiased evaluation results of advanced technology vehicle development and operations, evaluation of hydrogen infrastructure development and operation, and descriptions of ...

  15. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, L.; Chandler, K.

    2013-01-01

    SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and helpmore » determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.« less

  16. National Fuel Cell Bus Program : Accelerated Testing Report, AC Transit

    DOT National Transportation Integrated Search

    2009-01-01

    This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006 compared to similar diesel buses operating from the same depot. This evaluation report includes results from November 2007 throu...

  17. Alternative Fuel Transit Bus Evaluation Program Results

    DOT National Transportation Integrated Search

    1996-05-06

    The objective of this program, which is supported by the U.S. Department of : Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to : provide an unbiased and comprehensive comparison of transit buses operating on : alternative f...

  18. Speed limiter integrated fatigue analyzer (SLIFA) for speed and fatigue control on diesel engine truck and bus

    NASA Astrophysics Data System (ADS)

    Wahyudi, Haris; Pranoto, Hadi; Leman, A. M.; Sebayang, Darwin; Baba, I.

    2017-09-01

    Every second, the number of road traffic deaths is increased globally with millions more sustaining severe injuries and living with long-term adverse health consequences. Jakarta alone in year 2015 had recorded 556 people died due to road accidents, approximately reached 6.231 road accident cases. The identified major contributory factors of such unfortunate events are both driver fatigue and over speeding habit especially related to the driving of truck and bus. This paper presents the idea on how to control the electronic system from input fuel system of injection pump and the combustion chamber engine will control the valve solenoid in injection pump which can lock and fuel will stop for moment, and speed limit can be success, by using sensor heart rate we can input reduce speed limit when fatigue detection driver. Integration process this tool can be relevant when Speed Limiter Integrated Fatigue Analyser (SLIFA) trial in the diesel engine for truck and bus, the result of this research Speed Limiter Integrated Fatigue Analyser (SLIFA) able to control speed of diesel engine for truck and bus almost 30km/h, 60km/h, and until 70 km/h. The installation of the sensor heart rate as the input speed limit SLIFA would work when the driver is detected to be in the fatigue condition. We make Speed Limiter Integrated Fatigue Analyser (SLIFA) for control and monitoring system for diesel engine in truck and bus. Speed Limiter Integrated Fatigue Analyser (SLIFA) system can save the historical of the speed record, fatigue, rpm, and body temperature of the driver.

  19. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus Preliminary Evaluation Results

    DOT National Transportation Integrated Search

    2008-10-16

    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The report discusses the planned fuel cell bus demonstration and equipment us...

  20. Transit Bus Fuel Economy and Performance Simulation

    DOT National Transportation Integrated Search

    1984-01-01

    This report presents the results of bus simulation studies to determine the effects of various design and operating parameters on bus fuel economy and performance. The bus components are first described in terms of how they are modeled. Then a variat...

  1. American Fuel Cell Bus Project Evaluation : Third Report

    DOT National Transportation Integrated Search

    2017-05-01

    This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses (FCEB) operating in the Coachella Valley area of California. The AFCB, built on an ElDorado National-California 40-foot Axess bus p...

  2. Fuel Cell Electric Bus Evaluations | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    . Transit Fleets: Current Status 2017, L. Eudy and M. Post (November 2017) Zero Emission Bay Area (ZEBA ) Fuel Cell Bus Demonstration Results: Sixth Report, L. Eudy, M. Post, and M. Jeffers (September 2017 2017) American Fuel Cell Bus Project Evaluation: Third Report, L. Eudy, M. Post, and M. Jeffers (May

  3. Webinar May 17: Fuel Cell Electric Bus Progress Toward Meeting Technical

    Science.gov Websites

    Targets | News | NREL Webinar May 17: Fuel Cell Electric Bus Progress toward Meeting Technical Targets Webinar May 17: Fuel Cell Electric Bus Progress toward Meeting Technical Targets May 14, 2018 The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office will present a live webinar titled

  4. Development of a School Bus Fuel System Integrity Compliance Procedure. Final Report.

    ERIC Educational Resources Information Center

    Morrow, G. W.; Johnson, N. B.

    This report presents a program that derived a compliance test procedure for school buses with a gross vehicle weight of 10,000 pounds or greater. The objective of this program was to evaluate Fuel System Integrity (FMVSS 301) in relation to school buses, conduct a limited state-of-the-art survey and run full-scale dynamic tests to produce an…

  5. Fuel Cell Hybrid Bus Lands at Hickam AFB

    DOT National Transportation Integrated Search

    2004-09-22

    A FUEL CELL HYBRID ELECTRIC BUS was unveiled at Honolulus Hickam Air Force Base (Hickam AFB) in February 2004, becoming the first fuel cell vehicle in Hawaii and the first in the U.S. Air Force. The 30-foot flight crew shuttle bus will undergo 1 y...

  6. Voluntary Truck and Bus Fuel-Economy-Program marketing plan. Final technical report, September 29, 1980-January 29, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntarymore » program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.« less

  7. Alternative Fuels Data Center

    Science.gov Websites

    School Bus Clean School Bus is a public-private partnership that focuses on reducing children's exposure to harmful diesel exhaust by limiting school bus idling, implementing pollution reduction technologies, improving route logistics, and switching to clean fuels. Clean School Bus is part of the U.S

  8. Missouri Soybean Association Biodiesel Demonstration Project: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludwig, Dale; Hamilton, Jill

    The Missouri Soybean Association (MSA) and the National Biodiesel Board (NBB) partnered together to implement the MSA Biodiesel Demonstration project under a United States Department of Energy (DOE) grant. The goal of this project was to provide decision makers and fleet managers with information that could lead to the increased use of domestically produced renewable fuels and could reduce the harmful impacts of school bus diesel exhaust on children. This project was initiated in September 2004 and completed in April 2011. The project carried out a broad range of activities organized under four areas: 1. Petroleum and related industry educationmore » program for fuel suppliers; 2. Fleet evaluation program using B20 with a Missouri school district; 3. Outreach and awareness campaign for school district fleet managers; and 4. Support of ongoing B20 Fleet Evaluation Team (FET) data collection efforts with existing school districts. Technical support to the biodiesel industry was also provided through NBB’s Troubleshooting Hotline. The hotline program was established in 2008 to troubleshoot fuel quality issues and help facilitate smooth implementation of the RFS and is described in greater detail under Milestone A.1 - Promote Instruction and Guidance on Best Practices. As a result of this project’s efforts, MSA and NBB were able to successfully reach out to and support a broad spectrum of biodiesel users in Missouri and New England. The MSA Biodiesel Demonstration was funded through a FY2004 Renewable Energy Resources Congressional earmark. The initial focus of this project was to test and evaluate biodiesel blends coupled with diesel oxidation catalysts as an emissions reduction technology for school bus fleets in the United States. The project was designed to verify emissions reductions using Environmental Protection Agency (EPA) protocols, then document – with school bus fleet experience – the viability of utilizing B20 blends. The fleet experience was expected to support ongoing industry efforts to collect existing data and to increase awareness and knowledge among school district fleet managers. However, three years into the project, the original intent of the engine verification was no longer deemed by equipment manufacturers to be of sufficient economic interest to enter into a partnership. In response, MSA requested a project extension and re-scope to eliminate the aftermarket equipment verification and replace it with a petroleum education program. The revised project maintained four task areas with the following modifications. The first component was directed at increasing national compliance with newly initiated state level fuel blend mandates through a distributor education program. Component two was modified to eliminate the verification element and, instead, document operational data from biodiesel use in a district school bus fleet. Components three and four were unchanged and maintained their purpose of expanding upon the existing knowledge base of biodiesel use in school bus fleets.« less

  9. Alternative Fuels Data Center

    Science.gov Websites

    School Bus Replacement Grant Program The Ohio Environmental Protection Agency (EPA) supports the purchase of replacement school buses in eligible Ohio counties through the Diesel Emission Reduction Grant program. Purchases are also supported with state allocated grant funding from the U.S. Environmental

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew; Jeffers, Matthew

    This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB, which was developed as part of the Federal Transit Administration's (FTA) National Fuel Cell Bus Program, was delivered to SunLine in November 2011 and was put in revenue service in mid-December 2011. Two new AFCBs with an upgraded design were delivered in June/July of 2014 and a third new AFCB was delivered in February 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE)more » and DOE's National Renewable Energy Laboratory to evaluate the buses in revenue service. This report covers the performance of the AFCBs from July 2015 through December 2016.« less

  11. Support and power-plant documentation for the gas-turbine-powered-bus demonstration program. Final report, 1 January 1980-30 September 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigro, D.N.; Stewart, R.G.; Apple, S.A.

    1982-03-01

    The operational experience obtained for the GT404-4 gas turbine engines in the Intercity and Intracity Bus Demonstration Programs is described for the period January 1980 through September 1981. Support for the engines and automatic transmissions involved in this program provided engineering and field service, spare parts and tools, training, and factory overhauls. The Greyhound (intercity) coaches accumulated 183,054 mi (294,595 km) and 5154 hr of total operation. The Baltimore Transit (intracity) coaches accumulated 40,567 mi (65,285 km) and 1840 hr of total operation. In service, the turbine-powered Greyhound and Transit coaches achieved approximately 25% and 40% lower fuel mileage, respectively,more » than did the production diesel-powered coaches. The gas turbine engine will require the advanced ceramic development currently being sponsored by the DOE and NASA to achieve fuel economy equivalent not only to that of today's diesel engines but also to the projected fuel economy of the advanced diesel engines of the 1990s. Sufficient experience was not achieved with the coaches prior to the start of service to identify and eliminate many of the problems associated with the startup of new equipment. Because of these problems, the mean miles between incident were unacceptably low. The future gas turbine system should be developed sufficiently to establish satisfactory durability prior to evaluation in revenue service. Commercialization of the gas turbine bus engine remains a viable goal for the future.« less

  12. Support and power plant documentation for the gas turbine powered bus demonstration program

    NASA Technical Reports Server (NTRS)

    Nigro, D. N.; Stewart, R. G.; Apple, S. A.

    1982-01-01

    The operational experience obtained for the GT404-4 gas turbine engines in the intercity and intracity Bus Demonstration Programs is described for the period January 1980 through September 1981. Support for the engines and automatic transmissions involved in this program provided engineering and field service, spare parts and tools, training, and factory overhauls. the Greyhound (intercity) coaches accumulated 183,054 mi (294,595 km) and 5154 hr of total operation. The Baltimore Transit (intracity) coaches accumulated 40,567 mi (65,285 km) and 1840 hr of total operation. In service, the turbine powered Greyhound and Transit coaches achieved approximately 25% and 40% lower fuel mileage, respectively, than did the production diesel powered coaches. The gas turbine engine will require the advanced ceramic development currently being sponsored by the DOE and NASA to achieve fuel economy equivalent not only to that of today's diesel engines but also to the projected fuel economy of the advanced diesel engines of the 1990s. Sufficient experience was not achieved with the coaches prior to the start of service to identify and eliminate many of the problems associated with the startup of new equipment. Because of these problems, the mean miles between incident were unacceptably low. The future gas turbine system should be developed sufficiently to establish satisfactory durability prior to evaluation in revenue service. Commercialization of the gas turbine bus engine remains a viable goal for the future.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, K.; Eudy, L.

    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report.

  14. Compressed natural gas bus safety: a quantitative risk assessment.

    PubMed

    Chamberlain, Samuel; Modarres, Mohammad

    2005-04-01

    This study assesses the fire safety risks associated with compressed natural gas (CNG) vehicle systems, comprising primarily a typical school bus and supporting fuel infrastructure. The study determines the sensitivity of the results to variations in component failure rates and consequences of fire events. The components and subsystems that contribute most to fire safety risk are determined. Finally, the results are compared to fire risks of the present generation of diesel-fueled school buses. Direct computation of the safety risks associated with diesel-powered vehicles is possible because these are mature technologies for which historical performance data are available. Because of limited experience, fatal accident data for CNG bus fleets are minimal. Therefore, this study uses the probabilistic risk assessment (PRA) approach to model and predict fire safety risk of CNG buses. Generic failure data, engineering judgments, and assumptions are used in this study. This study predicts the mean fire fatality risk for typical CNG buses as approximately 0.23 fatalities per 100-million miles for all people involved, including bus passengers. The study estimates mean values of 0.16 fatalities per 100-million miles for bus passengers only. Based on historical data, diesel school bus mean fire fatality risk is 0.091 and 0.0007 per 100-million miles for all people and bus passengers, respectively. One can therefore conclude that CNG buses are more prone to fire fatality risk by 2.5 times that of diesel buses, with the bus passengers being more at risk by over two orders of magnitude. The study estimates a mean fire risk frequency of 2.2 x 10(-5) fatalities/bus per year. The 5% and 95% uncertainty bounds are 9.1 x 10(-6) and 4.0 x 10(-5), respectively. The risk result was found to be affected most by failure rates of pressure relief valves, CNG cylinders, and fuel piping.

  15. Electrical contact structures for solid oxide electrolyte fuel cell

    DOEpatents

    Isenberg, Arnold O.

    1984-01-01

    An improved electrical output connection means is provided for a high temperature solid oxide electrolyte type fuel cell generator. The electrical connection of the fuel cell electrodes to the electrical output bus, which is brought through the generator housing to be connected to an electrical load line maintains a highly uniform temperature distribution. The electrical connection means includes an electrode bus which is spaced parallel to the output bus with a plurality of symmetrically spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation means provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high temperatures regions of the fuel cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.

  16. Study on emission characteristics of hybrid bus under driving cycles in typical Chinese city

    NASA Astrophysics Data System (ADS)

    Xie, Yongdong; Xu, Guangju

    2017-09-01

    In this study, hybrid city bus was taken as the research object, through the vehicle drum test, the vehicle emissions of hybrid bus, the transient emissions of gas pollutants, as well as the particle size and number distribution were surveyed. The results of the studies are listed as follows: First, compared to traditional fuel bus, hybrid bus could reduce about 44% of the NOx emissions, 33% of the total hydrocarbon emissions, and 51% of the particles emissions. Furthermore, the distribution of particles number concentration of test vehicle became high in middle and low in both sides. More specifically, the particle number concentration was mainly concentrated in the range from 0.021 to 0.755μm, the maximum was 0.2μm, and particle size of particulate matter (PM) less than 1.2μm accounted for 95% of the total number concentration. Particulate mass concentration was increased with increment of particle size, and the maximum of particulate mass (PM) concentration was 6.2μm. On average, whether traditional fuel bus or hybrid bus, the particle size of particulate matter(PM) less than 2.5μm accounted for more than 98% in the particles emission. It is found that the particles are more likely to deposit to the lung, respiratory bronchioles and alveoli, causing respiratory and lung diseases. Therefore, how to control the PM emissions of hybrid bus is the key factor of the study.

  17. Alternative Fuels Data Center: Arizona Transportation Data for Alternative

    Science.gov Websites

    Additions and Updates Plug-In Electric Vehicle (PEV) Charging Rate Incentive - Tucson Electric Power (TEP School Bus/Vehicle Incentive, and Green Jobs Outreach Program Heavy-Duty Natural Gas Drayage Truck

  18. Baseline Testing of the Hybrid Electric Transit Bus

    NASA Technical Reports Server (NTRS)

    Brown, Jeffrey C.; Eichenberg, Dennis J.; Thompson, William K.

    1999-01-01

    A government, industry and academic cooperative has developed a Hybrid Electric Transit Bus (HETB). Goals of the program include doubling the fuel economy of city transit buses currently in service, and reducing emissions to one-tenth of EPA standards. Unique aspects of the vehicle's power system include the use of ultra-capacitors for the energy storage system and the planned use of a natural gas fueled turbogenerator, to be developed from a small jet engine. At over 17000 kg gross weight, this is the largest vehicle to use ultra-capacitor energy storage. A description of the HETB, the results of performance testing, and future vehicle development plans are the subject of this report.

  19. Liquefied natural gas fuel use : basic training manual

    DOT National Transportation Integrated Search

    1994-05-01

    The Urban Mass Transportation Administration's Alternative Fuel Initiative and the Environmental Protection Agency's 1991 regulations on transit bus exhaust emissions has resulted in a number of alternative fueled transit bus research and demonstrati...

  20. Compressed natural gas fuel use training manual

    DOT National Transportation Integrated Search

    1992-09-01

    The Urban Mass Transportation Administration (UMTA) Alternative Fuel Initiative and the Environmental Protection Agency (EPA) 1991 regulations on transit bus exhaust emissions has resulted in a number of alternative fueled transit bus demonstrations....

  1. Hydrogen powered bus

    ScienceCinema

    Glass, Bob; Mathis, Mike; Cochran, Ron; Garback, John

    2018-06-08

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  2. COMPARISON OF PARALLEL AND SERIES HYBRID POWERTRAINS FOR TRANSIT BUS APPLICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Daw, C Stuart; Smith, David E

    2016-01-01

    The fuel economy and emissions of both conventional and hybrid buses equipped with emissions aftertreatment were evaluated via computational simulation for six representative city bus drive cycles. Both series and parallel configurations for the hybrid case were studied. The simulation results indicate that series hybrid buses have the greatest overall advantage in fuel economy. The series and parallel hybrid buses were predicted to produce similar CO and HC tailpipe emissions but were also predicted to have reduced NOx tailpipe emissions compared to the conventional bus in higher speed cycles. For the New York bus cycle (NYBC), which has the lowestmore » average speed among the cycles evaluated, the series bus tailpipe emissions were somewhat higher than they were for the conventional bus, while the parallel hybrid bus had significantly lower tailpipe emissions. All three bus powertrains were found to require periodic active DPF regeneration to maintain PM control. Plug-in operation of series hybrid buses appears to offer significant fuel economy benefits and is easily employed due to the relatively large battery capacity that is typical of the series hybrid configuration.« less

  3. Research on fuel cell and battery hybrid bus system parameters based on ADVISOR

    NASA Astrophysics Data System (ADS)

    Lai, Lianfeng; Lu, Youwen; Guo, Weiwei; Lin, Yuxiang; Xie, Yichun; Zheng, Liping; Chen, Wei; Liang, Boshan

    2018-06-01

    This paper aims at the fuel cell and battery hybrid automobile, based on one bus parameters, considers their own characteristics of fuel cell and battery and power demand when automobiles start, accelerate, climb, brake and other different working conditions, calculate the hybrid bus system parameters that match the fuel cell/battery., and ADVISOR is used is to verify simulation. The results show that the parameters of power drive system of this electric automobile are reasonable, and can meet the requirements of dynamic design indexes.

  4. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitchcock, David

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fuelingmore » infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations, and regenerative braking for battery charging. It uses a 19.3 kW Ballard PEM fuel cell, will store 12.6 kg of hydrogen at 350 Bar, and includes a 60 kWh battery storage system. The objectives of the project included the following: (a) To advance commercialization of hydrogen-powered transit buses and supporting infrastructure; (b) To provide public outreach and education by showcasing the operation of a 22-foot fuel cell hybrid shuttle bus and Texas first hydrogen fueling infrastructure; and (c) To showcase operation of zero-emissions vehicle for potential transit applications. As mentioned above, the project successfully demonstrated an early vehicle technology, the Ebus plug-in hybrid fuel cell bus, and that success has led to the acquisition of a more advanced vehicle that can take advantage of the same fueling infrastructure. Needed hydrogen station improvements have been identified that will enhance the capabilities of the fueling infrastructure to serve the new bus and to meet the transit agency needs. Over the course of this project, public officials, local government staff, and transit operators were engaged in outreach and education activities that acquainted them with the real world operation of a fuel cell bus and fueling infrastructure. Transit staff members in the Dallas/Ft. Worth region were invited to a workshop in Arlington, Texas at the North Central Texas Council of Governments to participate in a workshop on hydrogen and fuel cells, and to see the fuel cell bus in operation. The bus was trucked to the meeting for this purpose so that participants could see and ride the bus. Austin area transit staff members visited the fueling site in Austin to be briefed on the bus and to participate in a fueling demonstration. This led to further meetings to determine how a fuel cell bus and fueling station could be deployed at Capital Metro Transit. Target urban regions that expressed additional interest during the project in response to the outreach meetings and showcase events include San Antonio and Austin, Texas. In summary, the project objectives were achieved in the following ways: Through presentations and papers provided to a variety of audiences in multiple venues, the project team fulfilled its goal of providing education and outreach on hydrogen technology to statewide audiences. The project team generated interest that exists well beyond the completion of the project, and indeed, helped to generate financial support for a subsequent hydrogen vehicle project in Austin. The University of Texas, Center for ElectroMechanics operated the fuel cell-electric Ebus vehicle for over 13,000 miles in Austin, Texas in a variety of routes and loading configurations. The project took advantage of prior efforts that created a hydrogen fueling station and fuel cell electric-hybrid bus and continued to verify their technical foundation, while informing and educating potential future users of how these technologies work.« less

  5. American Fuel Cell Bus Project Evaluation : Second Report

    DOT National Transportation Integrated Search

    2015-09-01

    This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses (FCEB) operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Admini...

  6. Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries

    Science.gov Websites

    school bus Michigan Transports Students in Hybrid Electric School Buses Jan. 4, 2014 Photo of a natural of a school bus. California School District Creates First-of-Its-Kind Zero-Emissions Bus Dec. 20 , 2014 Photo of an electric car. College Students Engineer Efficient Vehicles in EcoCAR 2 Competition Aug

  7. Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems

    NASA Astrophysics Data System (ADS)

    Ally, Jamie; Pryor, Trevor

    The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

  8. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results : Third Report

    DOT National Transportation Integrated Search

    2014-05-01

    This report presents results of a demonstration of 12 fuel cell electric buses (FCEB) operating in Oakland, California. The FCEBs have a fuel cell dominant hybrid electric propulsion system in a series configuration. The bus manufacturerVan Hool...

  9. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration : Second Results Report

    DOT National Transportation Integrated Search

    2012-07-04

    This report presents results of a demonstration of 12 new fuel cell electric buses (FCEB) operating in Oakland, California. The FCEBs have a fuel cell dominant hybrid electric propulsion system in a series configuration. The bus manufacturerVan Ho...

  10. Manifold, bus support and coupling arrangement for solid oxide fuel cells

    DOEpatents

    Parry, G.W.

    1988-04-21

    Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperature resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC. 11 figs.

  11. Methanol use training manual

    DOT National Transportation Integrated Search

    1990-01-01

    The Urban Mass Transportation Administration (UMTA) Alternative Fuels initiative (AFI) and the Environmental Protection Ageny (EPA) 1991 regulations on transit bus exhaust emissions has resulted in a number of alternative fueled transit bus demonstra...

  12. Clean Air Program : cylinder issues associated with alternative fuels

    DOT National Transportation Integrated Search

    1999-01-01

    A number of incidents of compressed natural gas (CNG) cylinder leaks have occurred while transit buses were either in service or at a bus maintenance facility. This study was initiated to determine the degree to which cylinder problems still exist in...

  13. Comparison of Parallel and Series Hybrid Power Trains for Transit Bus Applications

    DOE PAGES

    Gao, Zhiming; Daw, C. Stuart; Smith, David E.; ...

    2016-08-01

    The fuel economy and emissions of conventional and hybrid buses equipped with emissions after treatment were evaluated via computational simulation for six representative city bus drive cycles. Both series and parallel configurations for the hybrid case were studied. The simulation results indicated that series hybrid buses have the greatest overall advantage in fuel economy. The series and parallel hybrid buses were predicted to produce similar carbon monoxide and hydrocarbon tailpipe emissions but were also predicted to have reduced tailpipe emissions of nitrogen oxides compared with the conventional bus in higher speed cycles. For the New York bus cycle, which hasmore » the lowest average speed among the cycles evaluated, the series bus tailpipe emissions were somewhat higher than they were for the conventional bus; the parallel hybrid bus had significantly lower tailpipe emissions. All three bus power trains were found to require periodic active diesel particulate filter regeneration to maintain control of particulate matter. Finally, plug-in operation of series hybrid buses appears to offer significant fuel economy benefits and is easily employed because of the relatively large battery capacity that is typical of the series hybrid configuration.« less

  14. Comparison of Parallel and Series Hybrid Power Trains for Transit Bus Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Daw, C. Stuart; Smith, David E.

    The fuel economy and emissions of conventional and hybrid buses equipped with emissions after treatment were evaluated via computational simulation for six representative city bus drive cycles. Both series and parallel configurations for the hybrid case were studied. The simulation results indicated that series hybrid buses have the greatest overall advantage in fuel economy. The series and parallel hybrid buses were predicted to produce similar carbon monoxide and hydrocarbon tailpipe emissions but were also predicted to have reduced tailpipe emissions of nitrogen oxides compared with the conventional bus in higher speed cycles. For the New York bus cycle, which hasmore » the lowest average speed among the cycles evaluated, the series bus tailpipe emissions were somewhat higher than they were for the conventional bus; the parallel hybrid bus had significantly lower tailpipe emissions. All three bus power trains were found to require periodic active diesel particulate filter regeneration to maintain control of particulate matter. Finally, plug-in operation of series hybrid buses appears to offer significant fuel economy benefits and is easily employed because of the relatively large battery capacity that is typical of the series hybrid configuration.« less

  15. Real life testing of a Hybrid PEM Fuel Cell Bus

    NASA Astrophysics Data System (ADS)

    Folkesson, Anders; Andersson, Christian; Alvfors, Per; Alaküla, Mats; Overgaard, Lars

    Fuel cells produce low quantities of local emissions, if any, and are therefore one of the most promising alternatives to internal combustion engines as the main power source in future vehicles. It is likely that urban buses will be among the first commercial applications for fuel cells in vehicles. This is due to the fact that urban buses are highly visible for the public, they contribute significantly to air pollution in urban areas, they have small limitations in weight and volume and fuelling is handled via a centralised infrastructure. Results and experiences from real life measurements of energy flows in a Scania Hybrid PEM Fuel Cell Concept Bus are presented in this paper. The tests consist of measurements during several standard duty cycles. The efficiency of the fuel cell system and of the complete vehicle are presented and discussed. The net efficiency of the fuel cell system was approximately 40% and the fuel consumption of the concept bus is between 42 and 48% lower compared to a standard Scania bus. Energy recovery by regenerative braking saves up 28% energy. Bus subsystems such as the pneumatic system for door opening, suspension and brakes, the hydraulic power steering, the 24 V grid, the water pump and the cooling fans consume approximately 7% of the energy in the fuel input or 17% of the net power output from the fuel cell system. The bus was built by a number of companies in a project partly financed by the European Commission's Joule programme. The comprehensive testing is partly financed by the Swedish programme "Den Gröna Bilen" (The Green Car). A 50 kW el fuel cell system is the power source and a high voltage battery pack works as an energy buffer and power booster. The fuel, compressed hydrogen, is stored in two high-pressure stainless steel vessels mounted on the roof of the bus. The bus has a series hybrid electric driveline with wheel hub motors with a maximum power of 100 kW. Hybrid Fuel Cell Buses have a big potential, but there are still many issues to consider prior to full-scale commercialisation of the technology. These are related to durability, lifetime, costs, vehicle and system optimisation and subsystem design. A very important factor is to implement an automotive design policy in the design and construction of all components, both in the propulsion system as well as in the subsystems.

  16. 49 CFR 393.65 - All fuel systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... towing it while the combination of vehicles is in motion; and (6) No part of the fuel system of a bus... enclosed in a protective housing must not extend more than 2 inches below the fuel tank or its sump. Diesel...

  17. 49 CFR 393.65 - All fuel systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... towing it while the combination of vehicles is in motion; and (6) No part of the fuel system of a bus... enclosed in a protective housing must not extend more than 2 inches below the fuel tank or its sump. Diesel...

  18. 49 CFR 393.65 - All fuel systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... towing it while the combination of vehicles is in motion; and (6) No part of the fuel system of a bus... enclosed in a protective housing must not extend more than 2 inches below the fuel tank or its sump. Diesel...

  19. 49 CFR 393.65 - All fuel systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... towing it while the combination of vehicles is in motion; and (6) No part of the fuel system of a bus... enclosed in a protective housing must not extend more than 2 inches below the fuel tank or its sump. Diesel...

  20. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew; Jeffers, Matthew

    This report, published annually, summarizes the progress of fuel cell electric bus development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. Funding for this effort is provided by the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy and by the U.S. Department of Transportation's Federal Transit Administration. The 2016 summary results primarily focus on the most recent year for each demonstration, from August 2015 through Julymore » 2016. The results for these buses account for more than 550,000 miles traveled and 59,500 hours of fuel cell power system operation. The primary results presented in the report are from three demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus Project at SunLine Transit Agency in California; and American Fuel Cell Bus Project at the University of California at Irvine.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, K.; Eudy, L.

    This report provides preliminary results from a National Renewable Energy Laboratory evaluation of a protoptye fuel cell transit bus operating at Connecticut Transit in Hartford. Included are descriptions of the planned fuel cell bus demonstration and equipment; early results and agency experience are also provided.

  2. Clean air program : design guidelines for bus transit systems using compressed natural gas as an alternative fuel

    DOT National Transportation Integrated Search

    1996-06-01

    This report documents design guidelines for the safe use of Compressed Natural Gas (CNG). The report is designed to provide guidance, information on safe industry practices, applicable national codes and standards, and reference data that transit age...

  3. NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2010-11-01

    This fact sheet describes the National Renewable Energy Laboratory's (NREL's) accomplishments in showcasing a Ford hydrogen-powered internal combustion engine (H2ICE) bus at The Taste of Colorado festival in Denver. NREL started using its U.S. Department of Energy-funded H2ICE bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. In September 2010, NREL featured the bus at The Taste of Colorado. This was the first major outreach event for the bus. NREL's educational brochure, vehicle wrap designs, and outreach efforts serve as a model for other organizations with DOE-funded H2ICE buses. Workmore » was performed by the Hydrogen Education Group and Market Transformation Group in the Hydrogen Technologies and Systems Center.« less

  4. Physical and Chemical Characterization of Real-World Particle Number and Mass Emissions from City Buses in Finland.

    PubMed

    Pirjola, Liisa; Dittrich, Aleš; Niemi, Jarkko V; Saarikoski, Sanna; Timonen, Hilkka; Kuuluvainen, Heino; Järvinen, Anssi; Kousa, Anu; Rönkkö, Topi; Hillamo, Risto

    2016-01-05

    Exhaust emissions of 23 individual city buses at Euro III, Euro IV and EEV (Enhanced Environmentally Friendly Vehicle) emission levels were measured by the chasing method under real-world conditions at a depot area and on the normal route of bus line 24 in Helsinki. The buses represented different technologies from the viewpoint of engines, exhaust after-treatment systems (ATS) and fuels. Some of the EEV buses were fueled by diesel, diesel-electric, ethanol (RED95) and compressed natural gas (CNG). At the depot area the emission factors were in the range of 0.3-21 × 10(14) # (kg fuel)(-1), 6-40 g (kg fuel)(-1), 0.004-0.88 g (kg fuel)(-1), 0.004-0.56 g (kg fuel)(-1), 0.01-1.2 g (kg fuel)(-1), for particle number (EFN), nitrogen oxides (EFNOx), black carbon (EFBC), organics (EFOrg), and particle mass (EFPM1), respectively. The highest particulate emissions were observed from the Euro III and Euro IV buses and the lowest from the ethanol and CNG-fueled buses, which emitted BC only during acceleration. The organics emitted from the CNG-fueled buses were clearly less oxidized compared to the other bus types. The bus line experiments showed that lowest emissions were obtained from the ethanol-fueled buses whereas large variation existed between individual buses of the same type indicating that the operating conditions by drivers had large effect on the emissions.

  5. Transit bus life cycle cost and year 2007 emissions estimation.

    DOT National Transportation Integrated Search

    2007-06-01

    The report presents a study of transit bus life cycle cost (LCC) analysis, and projected transit bus emissions and fuel economy for 2007 : model year buses. It covers four bus types: diesel buses using ultra low sulfur diesel (ULSD), diesel buses usi...

  6. Public transit research: Rail, bus, and new technology, 1991. Transportation Research Record

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassabian, N.C.; Tobias, A.G.; Crayton, L.

    1991-01-01

    The report contains: Image of Rail Transit; Train Operations Computer Simulation Case Study: Single-Tracking Operations for Philadelphia's Market-Frankford Subway Elevated Rail Rapid Transit Line; Transit Railcar Quantities: Scale Economies; Evaluation of Training Programs in Rail Transit: Its Role and Status; Methodology for Evaluating Out-of-Direction Bus Route Segments; Integration of Fixed- and Flexible-Route Bus Systems; Downtown Space for Buses--The Manhattan Experience; Implications of Transit Drug Testing and Maintenance Service Procurement for Small Urban and Rural Systems; Challenges for Integration of Alternative Fuels in the Transit Industry; Short History of the Transbay Transit Terminal and the Relocation of the San Francisco Greyhoundmore » Depot Thereto; Airport Development with Automated People Mover Systems; Review of Four Alternative Airport Terminal Passenger Mobility Systems.« less

  7. From Seat Belts to Safe Brakes, Here's the Latest School Bus News.

    ERIC Educational Resources Information Center

    Zakariya, Sally Banks

    1985-01-01

    Provides an update on emerging safety issues, new technological developments, and upcoming regulations that could affect school transportation programs. Two new sets of federal regulations to watch for will govern underground fuel storage tanks and hazardous materials, and restrict asbestos in vehicle brake linings. (MD)

  8. Alternative Fuels Data Center

    Science.gov Websites

    Clean School Bus Program Any school district or charter school may receive a grant through the Texas Commission on Environmental Quality (TCEQ) to pay for the incremental costs to replace school equipment, and other emissions reduction technologies in qualified school buses. Furthermore, funds may also

  9. BC Transit Fuel Cell Bus Project : Evaluation Results Report

    DOT National Transportation Integrated Search

    2014-02-02

    British Columbia Transit (BC Transit) has been leading a demonstration of fuel cell electric buses (FCEB) in Whistler, Canada, since early 2010. This 20-bus demonstration was introduced during the 2010 Winter Olympic Games and is the worlds larges...

  10. Activities of four bus terminals of Semarang City gateway and the related GHG emission

    NASA Astrophysics Data System (ADS)

    Huboyo, H. S.; Wardhana, I. W.; Sutrisno, E.; Wangi, L. S.; Lina, R. A.

    2018-01-01

    The activities of the bus terminal, including loading-unloading passengers, bus idling, and bus movements at the terminal, will emit GHG’s emission. This research analyzes GHG emission from four terminals, i.e., Mangkang, Terboyo, Penggaron, and Sukun in Semarang City. The emission was estimated by observing detail activities of public transport means, especially for moving and idling time. The emission was calculated by Tier 2 method based on the vehicle type as well as fuel consumption. The highest CO2e during vehicle movements at Sukun area was contributed by large bus about 2.08 tons/year, while at Terboyo terminal was contributed by medium bus about 347.97 tons/year. At Mangkang terminals, the highest emission for vehicle movements was attributed by medium bus as well of about 53.18 tons/year. At last, Penggaron terminal’s highest GHG emission was attributed by BRT about 26.47 tons/year. During idling time, the highest contributor to CO2e was the large bus at the three terminals, i.e., Sukun of 43.53 tons/year, Terboyo of 196.56 tons/year, and Mangkang of 84.26 tons/year, while at Penggaron, BRT dominated with CO2e of 26.47 tons/year. The management of public transport in terminals is crucial to mitigate the emission related to bus terminals activities.

  11. 25 CFR 170.152 - What transit facilities and activities are eligible for IRR Program funding?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and... facilities that incorporate other community services; (h) Passenger shelters, bus stop signs, and similar...

  12. 25 CFR 170.152 - What transit facilities and activities are eligible for IRR Program funding?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and... facilities that incorporate other community services; (h) Passenger shelters, bus stop signs, and similar...

  13. 25 CFR 170.152 - What transit facilities and activities are eligible for IRR Program funding?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and... facilities that incorporate other community services; (h) Passenger shelters, bus stop signs, and similar...

  14. 25 CFR 170.152 - What transit facilities and activities are eligible for IRR Program funding?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and... facilities that incorporate other community services; (h) Passenger shelters, bus stop signs, and similar...

  15. Fuel Cell Transit Buses : ThunderPower Bus Evaluation at SunLine Transit Agency

    DOT National Transportation Integrated Search

    2003-11-01

    This report provides an overview of the ThunderPower fuel cell bus demonstration at SunLine Transit Agency in Thousand Palms, California. Under contract with the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory (NREL) evaluat...

  16. FUEL CELL BUS DEMONSTRATION IN MEXICO CITY

    EPA Science Inventory

    The report discusses the performance of a cull-size, zero-emission, Proton Exchange Membrane (PEM) fuel-cell-powered transit bus in the atmospheric environment of Mexico City. To address the air quality problems caused by vehicle emissions in Mexico City, a seminar on clean vehic...

  17. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report

    DOT National Transportation Integrated Search

    2013-01-01

    SunLine Transit Agency provides public transit services to the Coachella Valley area of California. SunLine has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technol...

  18. Electric bus systems.

    DOT National Transportation Integrated Search

    2017-04-01

    Pure electric buses (EBs) offer an alternative fuel for the nations transit bus systems. To : evaluate EBs in a transit setting, this project investigated the five electric bus fleet of the : StarMetro transit system of the city of Tallahassee, FL...

  19. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation : Third Results Report

    DOT National Transportation Integrated Search

    2012-05-01

    SunLine Transit Agency provides public transit services to the Coachella Valley area of California. SunLine has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. This report describes operations at SunLine for a prototype f...

  20. Energy management strategy based on fuzzy logic for a fuel cell hybrid bus

    NASA Astrophysics Data System (ADS)

    Gao, Dawei; Jin, Zhenhua; Lu, Qingchun

    Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus.

  1. Alternative Fuels Data Center: Pennsylvania Transportation Data for

    Science.gov Websites

    /TTIwZrpNGf4 Video thumbnail for Pennsylvania School Buses Run on Natural Gas Pennsylvania School Buses Run on Network, Clean School Bus/Vehicle Incentive, and Green Jobs Outreach Program Independence National Partnership for Promoting Natural Gas Vehicles Ready to Roll! - Southeastern Pennsylvania's Regional Electric

  2. Emission inventory estimation of an intercity bus terminal.

    PubMed

    Qiu, Zhaowen; Li, Xiaoxia; Hao, Yanzhao; Deng, Shunxi; Gao, H Oliver

    2016-06-01

    Intercity bus terminals are hotspots of air pollution due to concentrated activities of diesel buses. In order to evaluate the bus terminals' impact on air quality, it is necessary to estimate the associated mobile emission inventories. Since the vehicles' operating condition at the bus terminal varies significantly, conventional calculation of the emissions based on average emission factors suffers the loss of accuracy. In this study, we examined a typical intercity bus terminal-the Southern City Bus Station of Xi'an, China-using a multi-scale emission model-(US EPA's MOVES model)-to quantity the vehicle emission inventory. A representative operating cycle for buses within the station is constructed. The emission inventory was then estimated using detailed inputs including vehicle ages, operating speeds, operating schedules, and operating mode distribution, as well as meteorological data (temperature and humidity). Five functional areas (bus yard, platforms, disembarking area, bus travel routes within the station, and bus entrance/exit routes) at the terminal were identified, and the bus operation cycle was established using the micro-trip cycle construction method. Results of our case study showed that switching to compressed natural gas (CNG) from diesel fuel could reduce PM2.5 and CO emissions by 85.64 and 6.21 %, respectively, in the microenvironment of the bus terminal. When CNG is used, tail pipe exhaust PM2.5 emission is significantly reduced, even less than brake wear PM2.5. The estimated bus operating cycles can also offer researchers and policy makers important information for emission evaluation in the planning and design of any typical intercity bus terminals of a similar scale.

  3. Developing a Natural Gas-Powered Bus Rapid Transit Service. A Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, George

    2015-11-01

    The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largestmore » rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.« less

  4. Developing a Natural Gas-Powered Bus Rapid Transit Service: A Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, G.

    2015-11-03

    The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largestmore » rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.« less

  5. 26 CFR 48.6421-3 - Time for filing claim for credit or payment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... respect to gasoline used in a qualified business use or as a fuel in an aircraft (other than aircraft in noncommercial aviation) or in § 48.6421-2 with respect to gasoline used either in an intercity or local bus... public or in school bus transportation operations, shall cover only gasoline used during the taxable year...

  6. 26 CFR 48.6421-3 - Time for filing claim for credit or payment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... respect to gasoline used in a qualified business use or as a fuel in an aircraft (other than aircraft in noncommercial aviation) or in § 48.6421-2 with respect to gasoline used either in an intercity or local bus... public or in school bus transportation operations, shall cover only gasoline used during the taxable year...

  7. Emissions of toxic pollutants from compressed natural gas and low sulfur diesel-fueled heavy-duty transit buses tested over multiple driving cycles.

    PubMed

    Kado, Norman Y; Okamoto, Robert A; Kuzmicky, Paul A; Kobayashi, Reiko; Ayala, Alberto; Gebel, Michael E; Rieger, Paul L; Maddox, Christine; Zafonte, Leo

    2005-10-01

    The number of heavy-duty vehicles using alternative fuels such as compressed natural gas (CNG) and new low-sulfur diesel fuel formulations and equipped with after-treatment devices are projected to increase. However, few peer-reviewed studies have characterized the emissions of particulate matter (PM) and other toxic compounds from these vehicles. In this study, chemical and biological analyses were used to characterize the identifiable toxic air pollutants emitted from both CNG and low-sulfur-diesel-fueled heavy-duty transit buses tested on a chassis dynamometer over three transient driving cycles and a steady-state cruise condition. The CNG bus had no after-treatment, and the diesel bus was tested first equipped with an oxidation catalyst (OC) and then with a catalyzed diesel particulate filter (DPF). Emissions were analyzed for PM, volatile organic compounds (VOCs; determined on-site), polycyclic aromatic hydrocarbons (PAHs), and mutagenic activity. The 2000 model year CNG-fueled vehicle had the highest emissions of 1,3-butadiene, benzene, and carbonyls (e.g., formaldehyde) of the three vehicle configurations tested in this study. The 1998 model year diesel bus equipped with an OC and fueled with low-sulfur diesel had the highest emission rates of PM and PAHs. The highest specific mutagenic activities (revertants/microg PM, or potency) and the highest mutagen emission rates (revertants/mi) were from the CNG bus in strain TA98 tested over the New York Bus (NYB) driving cycle. The 1998 model year diesel bus with DPF had the lowest VOCs, PAH, and mutagenic activity emission. In general, the NYB driving cycle had the highest emission rates (g/mi), and the Urban Dynamometer Driving Schedule (UDDS) had the lowest emission rates for all toxics tested over the three transient test cycles investigated. Also, transient emissions were, in general, higher than steady-state emissions. The emissions of toxic compounds from an in-use CNG transit bus (without an oxidation catalyst) and from a vehicle fueled with low-sulfur diesel fuel (equipped with DPF) were lower than from the low-sulfur diesel fueled vehicle equipped with OC. All vehicle configurations had generally lower emissions of toxics than an uncontrolled diesel engine. Tunnel backgrounds (measurements without the vehicle running) were measured throughout this study and were helpful in determining the incremental increase in pollutant emissions. Also, the on-site determination of VOCs, especially 1,3-butadiene, helped minimize measurement losses due to sample degradation after collection.

  8. Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In

    Science.gov Websites

    gas vehicle District of Columbia's Government Fleet Uses a Wide Variety of Alternative Fuels Dec. 5 . Maryland County Fleet Uses Wide Variety of Alternative Fuels Jan. 17, 2015 Photo of a school bus Diego Feb. 2, 2013 Photo of neighborhood electric vehicle Mammoth Cave National Park Uses Only

  9. Analysis of a diesel-electric hybrid urban bus system

    NASA Astrophysics Data System (ADS)

    Marr, W. W.; Sekar, R. R.; Ahlheim, M. C.

    A hybrid bus powered by a diesel engine and a battery pack was analyzed over an idealized bus-driving cycle in Chicago. Three hybrid configurations, two parallel and one series, were evaluated. The results indicate that the fuel economy of a hybrid bus, taking into account the regenerative braking, is comparable with that of a conventional diesel bus. Life-cycle costs are slightly higher because of the added weight and cost of the battery.

  10. Effects of biodiesel on emissions of a bus diesel engine.

    PubMed

    Kegl, Breda

    2008-03-01

    This paper discusses the influence of biodiesel on the injection, spray, and engine characteristics with the aim to reduce harmful emissions. The considered engine is a bus diesel engine with injection M system. The injection, fuel spray, and engine characteristics, obtained with biodiesel, are compared to those obtained with mineral diesel (D2) under various operating regimes. The considered fuel is neat biodiesel from rapeseed oil. Its density, viscosity, surface tension, and sound velocity are determined experimentally and compared to those of D2. The obtained results are used to analyze the most important injection, fuel spray, and engine characteristics. The injection characteristics are determined numerically under the operating regimes, corresponding to the 13 mode ESC test. The fuel spray is obtained experimentally under peak torque condition. Engine characteristics are determined experimentally under 13 mode ESC test conditions. The results indicate that, by using biodiesel, harmful emissions (NO(x), CO, smoke and HC) can be reduced to some extent by adjusting the injection pump timing properly.

  11. Stand-alone containment analysis of Phébus FPT tests with ASTEC and MELCOR codes: the FPT-2 test.

    PubMed

    Gonfiotti, Bruno; Paci, Sandro

    2018-03-01

    During the last 40 years, many studies have been carried out to investigate the different phenomena occurring during a Severe Accident (SA) in a Nuclear Power Plant (NPP). Such efforts have been supported by the execution of different experimental campaigns, and the integral Phébus FP tests were probably some of the most important experiments in this field. In these tests, the degradation of a Pressurized Water Reactor (PWR) fuel bundle was investigated employing different control rod materials and burn-up levels in strongly or weakly oxidizing conditions. From the findings on these and previous tests, numerical codes such as ASTEC and MELCOR have been developed to analyze the evolution of a SA in real NPPs. After the termination of the Phébus FP campaign, these two codes have been furthermore improved to implement the more recent findings coming from different experimental campaigns. Therefore, continuous verification and validation is still necessary to check that the new improvements introduced in such codes allow also a better prediction of these Phébus tests. The aim of the present work is to re-analyze the Phébus FPT-2 test employing the updated ASTEC and MELCOR code versions. The analysis focuses on the stand-alone containment aspects of this test, and three different spatial nodalizations of the containment vessel (CV) have been developed. The paper summarizes the main thermal-hydraulic results and presents different sensitivity analyses carried out on the aerosols and fission products (FP) behavior. When possible, a comparison among the results obtained during this work and by different authors in previous work is also performed. This paper is part of a series of publications covering the four Phébus FP tests using a PWR fuel bundle: FPT-0, FPT-1, FPT-2, and FPT-3, excluding the FPT-4 one, related to the study of the release of low-volatility FP and transuranic elements from a debris bed and a pool of melted fuel.

  12. Fuzzy control based engine sizing optimization for a fuel cell/battery hybrid mini-bus

    NASA Astrophysics Data System (ADS)

    Kim, Minjin; Sohn, Young-Jun; Lee, Won-Yong; Kim, Chang-Soo

    The fuel cell/battery hybrid vehicle has been focused for the alternative engine of the existing internal-combustion engine due to the following advantages of the fuel cell and the battery. Firstly, the fuel cell is highly efficient and eco-friendly. Secondly, the battery has the fast response for the changeable power demand. However, the competitive efficiency of the hybrid fuel cell vehicle is necessary to successfully alternate the conventional vehicles with the fuel cell hybrid vehicle. The most relevant factor which affects the overall efficiency of the hybrid fuel cell vehicle is the relative engine sizing between the fuel cell and the battery. Therefore the design method to optimize the engine sizing of the fuel cell hybrid vehicle has been proposed. The target system is the fuel cell/battery hybrid mini-bus and its power distribution is controlled based on the fuzzy logic. The optimal engine sizes are determined based on the simulator developed in this paper. The simulator includes the several models for the fuel cell, the battery, and the major balance of plants. After the engine sizing, the system efficiency and the stability of the power distribution are verified based on the well-known driving schedule. Consequently, the optimally designed mini-bus shows good performance.

  13. Manifold, bus support and coupling arrangement for solid oxide fuel cells

    DOEpatents

    Parry, Gareth W.

    1989-01-01

    Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperture resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. The piping thus forms a manfold for directing fuel and air to each module in a string and makes electrical contact with the module's anode and cathode to conduct the DC power generated by the SOFC. The piping also provides structureal support for each individual module and maintains each string of modules as a structurally integral unit for ensuring high strength in a large 3-dimensional array of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC.

  14. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew; Gikakis, Christina

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including FCEB developers, transit agencies, and system integrators, have expressed the value of this annual status report, which provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. The annual status report tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. Themore » 2015 summary results primarily focus on the most recent year for each demonstration, from August 2014 through July 2015. The results for these buses account for more than 1,045,000 miles traveled and 83,000 hours of fuel cell power system operation. The primary results presented in the report are from two demonstrations of fuel-cell-dominant bus designs: the Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California and the American Fuel Cell Bus Project at SunLine Transit Agency in California.« less

  15. Development and Commissioning Results of the Hybrid Sensor Bus Engineering Qualification Model

    NASA Astrophysics Data System (ADS)

    Hurni, Andreas; Putzer, Phillipp; Roner, Markus; Gurster, Markus; Hulsemeyer, Christian; Lemke, Norbert M. K.

    2016-08-01

    In order to reduce mass, AIT effort and overall costs of classical point-to-point wired temperature sensor harness on-board spacecraft OHB System AGhas introduced the Hybrid Sensor Bus (HSB) system which interrogates sensors connected in a bus architecture. To use the advantages of electrical as wellas of fiber-optical sensing technologies, HSB is designed as a modular measurement system interrogating digital sensors connected on electricalsensor buses based on I2C and fiber-optical sensor buses based on fiber Bragg grating (FBG) sensors inscribed in optical fibers. Fiber-optical sensor bus networks on-board satellites are well suited for temperature measurement due to low mass, electro-magnetic insensitivity and the capability to embed them inside structure parts. The lightweight FBG sensors inscribed in radiation tolerant fibers can reach every part of the satellite. HSB has been developed in the frame of the ESA ARTES program with European and German co- funding and will be verified as flight demonstrator on- board the German Heinrich Hertz satellite (H2Sat).In this paper the Engineering Qualification Model (EQM) development of HSB and first commissioning results are presented. For the HSB development requirements applicable for telecommunication satellite platforms have been considered. This includes an operation of at least 15 years in a geostationary orbit.In Q3/2016 the qualification test campaign is planned to be carried out. The HSB EQM undergoes a full qualification according to ECSS. The paper concludes with an outlook regarding this HSB flight demonstrator development and its in-orbit verification (IOV) on board H2Sat.

  16. Morphology of single inhalable particle inside public transit biodiesel fueled bus.

    PubMed

    Shandilya, Kaushik K; Kumar, Ashok

    2010-01-01

    In an urban-transit bus, fueled by biodiesel in Toledo, Ohio, single inhalable particle samples in October 2008 were collected and detected by scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS). Particle size analysis found bimodal distribution at 0.2 and 0.5 microm. The particle morphology was characterized by 14 different shape clusters: square, pentagon, hexagon, heptagon, octagon, nonagon, decagon, agglomerate, sphere, triangle, oblong, strip, line or stick, and unknown, by quantitative order. The square particles were common in the samples. Round and triangle particles are more, and pentagon, hexagon, heptagon, octagon, nonagon, decagon, strip, line or sticks are less. Agglomerate particles were found in abundance. The surface of most particles was coarse with a fractal edge that can provide a suitable chemical reaction bed in the polluted atmospheric environment. The three sorts of surface patterns of squares were smooth, semi-smooth, and coarse. The three sorts of square surface patterns represented the morphological characteristics of single inhalable particles in the air inside the bus in Toledo. The size and shape distribution results were compared to those obtained for a bus using ultra low sulfur diesel.

  17. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, M. P.; McCormick, R. L.; Sindler, P.

    2012-10-01

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level hadmore » the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.« less

  18. Aerodynamic study of state transport bus using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Kanekar, Siddhesh; Thakre, Prashant; Rajkumar, E.

    2017-11-01

    The main purpose of this study was to develop the aerodynamic study of a Maharashtra state road transport bus. The rising fuel price and strict government regulations makes the road transport uneconomical now days. With the objective of increasing fuel efficiency and reducing the emission of harmful exhaust gases. It has been proven experimentally that vehicle consumes almost 40% of the available useful engine power to overcome the drag resistance. This provides us a huge scope to study the influence of aerodynamic drag. The initial of the project was to identify the drag coefficient of the existing ordinary type model called “Parivartan” from ANSYS fluent. After preliminary analysis of the existing model corresponding changes are made in such a way that their implementation should be possible at workshop level. The simulation of the air flow over the bus was performed in two steps: design on SolidWorks CAD and ANSYS (FLUENT) is used as a virtual analysis tool to estimate the drag coefficient of the bus. We have used the turbulence models k-ε Realizable having a better approximation of the actual result. Around 28% improvement in the drag coefficient is achieved by CFD driven changes in the bus design. Coefficient of drag is improved by 28% and fuel efficiency increased by 20% by CFD driven changes.

  19. On-road pollutant emission and fuel consumption characteristics of buses in Beijing.

    PubMed

    Wang, Aijuan; Ge, Yunshan; Tan, Jianwei; Fu, Mingliang; Shah, Asad Naeem; Ding, Yan; Zhao, Hong; Liang, Bin

    2011-01-01

    On-road emission and fuel consumption (FC) levels for Euro III and IV buses fueled on diesel and compressed natural gas (CNG) were compared, and emission and FC characteristics of buses were analyzed based on approximately 28,700 groups of instantaneous data obtained in Beijing using a portable emissions measurement system (PEMS). The experimental results revealed that NOx and PM emissions from CNG buses were decreased by 72.0% and 82.3% respectively, compared with Euro IV diesel buses. Similarly, these emissions were reduced by 75.2% and 96.3% respectively, compared with Euro III diesel buses. In addition, CO2, CO, HC, NOx, PM emissions and FC of Euro IV diesel buses were reduced by 26.4%, 75.2%, 73.6%, 11.4%, 79.1%, and 26.0%, respectively, relative to Euro III diesel buses. The CO2, CO, HC, NOx, PM emissions and FC factors all decreased with bus speed increased, while increased as bus acceleration increased. At the same time, the emission/FC rates as well as the emission/FC factors exhibited a strong positive correlation with the vehicle specific power (VSP). They all were the lowest when VSP < 0, and then rapidly increased as VSP increased. Furthermore, both the emission/FC rates and emission/FC factors were the highest at accelerations, higher at cruise speeds, and the lowest at decelerations for non-idling buses. These results can provide a base reference to further estimate bus emission and FC inventories in Beijing.

  20. Empirical membrane lifetime model for heavy duty fuel cell systems

    NASA Astrophysics Data System (ADS)

    Macauley, Natalia; Watson, Mark; Lauritzen, Michael; Knights, Shanna; Wang, G. Gary; Kjeang, Erik

    2016-12-01

    Heavy duty fuel cells used in transportation system applications such as transit buses expose the fuel cell membranes to conditions that can lead to lifetime-limiting membrane failure via combined chemical and mechanical degradation. Highly durable membranes and reliable predictive models are therefore needed in order to achieve the ultimate heavy duty fuel cell lifetime target of 25,000 h. In the present work, an empirical membrane lifetime model was developed based on laboratory data from a suite of accelerated membrane durability tests. The model considers the effects of cell voltage, temperature, oxygen concentration, humidity cycling, humidity level, and platinum in the membrane using inverse power law and exponential relationships within the framework of a general log-linear Weibull life-stress statistical distribution. The obtained model is capable of extrapolating the membrane lifetime from accelerated test conditions to use level conditions during field operation. Based on typical conditions for the Whistler, British Columbia fuel cell transit bus fleet, the model predicts a stack lifetime of 17,500 h and a membrane leak initiation time of 9200 h. Validation performed with the aid of a field operated stack confirmed the initial goal of the model to predict membrane lifetime within 20% of the actual operating time.

  1. Particle emission from heavy-duty engine fuelled with blended diesel and biodiesel.

    PubMed

    Martins, Leila Droprinchinski; da Silva Júnior, Carlos Roberto; Solci, Maria Cristina; Pinto, Jurandir Pereira; Souza, Davi Zacarias; Vasconcellos, Pérola; Guarieiro, Aline Lefol Nani; Guarieiro, Lílian Lefol Nani; Sousa, Eliane Teixeira; de Andrade, Jailson B

    2012-05-01

    In this study, particulate matter (PM) were characterized from a place impacted by heavy-duty vehicles (Bus Station) fuelled with diesel/biodiesel fuel blend (B3) in the city of Londrina, Brazil. Sixteen priority polycyclic aromatic hydrocarbons (PAH) concentrations were analyzed in the samples by their association with atmospheric PM, mass size distributions and major ions (fluorite, chloride, bromide, nitrate, phosphate, sulfate, nitrite, oxalate; fumarate, formate, succinate and acetate; lithium, sodium, potassium, magnesium, calcium and ammonium). Results indicate that major ions represented 21.2% particulate matter mass. Nitrate, sulfate, and ammonium, respectively, presented the highest concentration levels, indicating that biodiesel may also be a significant source for these ions, especially nitrate. Dibenzo[a,h]anthracene and indeno[1,2,3,-cd]pyrene were the main PAH found, and a higher fraction of PAH particles was found in diameters lower than 0.25 μm in Londrina bus station. The fine and ultrafine particles were dominant among the PM evaluated, suggesting that biodiesel decreases the total PAH emission. However, it does also increase the fraction of fine and ultrafine particles when compared to diesel.

  2. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew B

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. This annual status report combines results from all FCEB demonstrations, tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. These data and analyses help provide needed information to guide future early-stage researchmore » and development. The 2017 summary results primarily focus on the most recent year for each demonstration, from August 2016 through July 2017. The primary results presented in the report are from five demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus (AFCB) Project at SunLine Transit Agency in California; AFCB Project at the University of California at Irvine; AFCB Project at Orange County Transportation Authority; and AFCB Project at Massachusetts Bay Transportation Authority.« less

  3. Power-balancing instantaneous optimization energy management for a novel series-parallel hybrid electric bus

    NASA Astrophysics Data System (ADS)

    Sun, Dongye; Lin, Xinyou; Qin, Datong; Deng, Tao

    2012-11-01

    Energy management(EM) is a core technique of hybrid electric bus(HEB) in order to advance fuel economy performance optimization and is unique for the corresponding configuration. There are existing algorithms of control strategy seldom take battery power management into account with international combustion engine power management. In this paper, a type of power-balancing instantaneous optimization(PBIO) energy management control strategy is proposed for a novel series-parallel hybrid electric bus. According to the characteristic of the novel series-parallel architecture, the switching boundary condition between series and parallel mode as well as the control rules of the power-balancing strategy are developed. The equivalent fuel model of battery is implemented and combined with the fuel of engine to constitute the objective function which is to minimize the fuel consumption at each sampled time and to coordinate the power distribution in real-time between the engine and battery. To validate the proposed strategy effective and reasonable, a forward model is built based on Matlab/Simulink for the simulation and the dSPACE autobox is applied to act as a controller for hardware in-the-loop integrated with bench test. Both the results of simulation and hardware-in-the-loop demonstrate that the proposed strategy not only enable to sustain the battery SOC within its operational range and keep the engine operation point locating the peak efficiency region, but also the fuel economy of series-parallel hybrid electric bus(SPHEB) dramatically advanced up to 30.73% via comparing with the prototype bus and a similar improvement for PBIO strategy relative to rule-based strategy, the reduction of fuel consumption is up to 12.38%. The proposed research ensures the algorithm of PBIO is real-time applicability, improves the efficiency of SPHEB system, as well as suite to complicated configuration perfectly.

  4. Design and modelling of high gain DC-DC converters for fuel cell hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Elangovan, D.; Karthigeyan, V.; Subhanu, B.; Ashwin, M.; Arunkumar, G.

    2017-11-01

    Transportation (Diesel and petrol internal combustion engine vehicles) approximately contributes to 25.5% of total CO2 emission. Thus diesel and petrol engine vehicles are the most dominant contributors of CO2 emission which leads global warming which causes climate change. The problem of CO2 emission and global warming can be reduced by focusing on renewable energy vehicles. Out of the available renewable energy sources fuel cell is the only source which has reasonable efficiency and can be used in vehicles. But the main disadvantage of fuel cell is its slow response time. So energy storage systems like batteries and super capacitors are used in parallel with the fuel cell. Fuel cell is used during steady state vehicle operation while during transient conditions like starting, acceleration and braking batteries and super capacitors can supply or absorb energy. In this paper a unidirectional fuel cell DC-DC converter and bidirectional energy storage system DC-DC converter is proposed, which can interface dc sources at different voltage levels to the dc bus and also it can independently control the power flow from each energy source to the dc bus and vice versa. The proposed converters are designed and simulated using PSIM version 9.1.1 and gate pulse pattern, input and output voltage waveforms of the converters for steady state operation are studied.

  5. 78 FR 17995 - Agency Information Collection Activity Under OMB Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... collections: 49 U.S.C. Section 5337--State of Good Repair Program 49 U.S.C. Section 5339--Bus and Bus... on a quarterly basis. The information submitted ensures FTA's compliance with applicable federal laws. Title: 49 U.S.C. Section 5339--Bus and Bus Facilities Program. Abstract: 49 U.S.C. 5339--Bus and Bus...

  6. Development and Implementation of a Bus Driver Training Program.

    ERIC Educational Resources Information Center

    Buchovecky, John G.

    A bus driver training program was developed and implemented in a rural school district in an effort to improve the driving skills of the bus drivers. The program was tailored to meet the needs of the bus drivers and utilized various community agencies for demonstration and teaching purposes. The subject areas included in the program were driver…

  7. Digital Autonomous Terminal Access Communication (DATAC) system

    NASA Technical Reports Server (NTRS)

    Novacki, Stanley M., III

    1987-01-01

    In order to accommodate the increasing number of computerized subsystems aboard today's more fuel efficient aircraft, the Boeing Co. has developed the DATAC (Digital Autonomous Terminal Access Control) bus to minimize the need for point-to-point wiring to interconnect these various systems, thereby reducing total aircraft weight and maintaining an economical flight configuration. The DATAC bus is essentially a local area network providing interconnections for any of the flight management and control systems aboard the aircraft. The task of developing a Bus Monitor Unit was broken down into four subtasks: (1) providing a hardware interface between the DATAC bus and the Z8000-based microcomputer system to be used as the bus monitor; (2) establishing a communication link between the Z8000 system and a CP/M-based computer system; (3) generation of data reduction and display software to output data to the console device; and (4) development of a DATAC Terminal Simulator to facilitate testing of the hardware and software which transfer data between the DATAC's bus and the operator's console in a near real time environment. These tasks are briefly discussed.

  8. Sparkling Science Programs.

    ERIC Educational Resources Information Center

    Allen, Denise

    1995-01-01

    Reviews five compact disc-read only memory (CD-ROM) products and one video series that focus on science projects: (1) "Body Park" (Virtual Entertainment); (2) "The Magic School Bus Explores the Solar System" (Microsoft); (3) "The Magic School Bus Explores the Human Body" (Microsoft); (4) "Science Curriculum Assistance Program" (Demco); and (5)…

  9. School Bus Maintenance. Bulletin, 1948, No. 2

    ERIC Educational Resources Information Center

    Featherston, E. Glenn

    1948-01-01

    This bulletin is one in the series on pupil transportation issued by the Office of Education. Its purpose is to furnish information and guidance for local school administrators and others who are concerned with school bus maintenance. Programs of school bus maintenance vary among the 48 States. Presumably all contract vehicles are maintained by…

  10. Measurement and comparison of Bangkok diesel bus emissions and performance using on-board equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnette, A.D.; Kishan, S.; Wangwongwatana, S.

    1997-12-31

    An on-board measurement system was assembled and used to compare the emissions and performance of buses in Bangkok, Thailand under actual driving conditions. Three similar buses were compared: one using an engine without special emissions control design, one with an engine meeting Euro 1 standards, and one with an engine meeting Euro 2 standards. As the buses drove their routes, second-by-second data were collected for engine rpm, throttle position, vehicle speed, exhaust concentrations of hydrocarbons, carbon monoxide, carbon dioxide, oxygen, nitric oxide, and exhaust opacity. Vehicle performance data were calculated using algorithms developed during previous driving studies in Bangkok. Grammore » per liter of fuel used emission factors were developed for gaseous pollutants using combustion calculations and these were translated into gram per kilometer traveled emission factors using the fuel efficiency data for the buses. Smoke data were left in terms of opacity. Test results are designed to be used to compare the cost benefit of upgrading buses with no emissions controls to Euro 1 or Euro 2 technologies. Ongoing tests will help bus companies determine the benefit of incremental improvements to bus engines and other emissions reduction strategies.« less

  11. Variability of particle number emissions from diesel and hybrid diesel-electric buses in real driving conditions.

    PubMed

    Sonntag, Darrell B; Gao, H Oliver; Holmén, Britt A

    2008-08-01

    A linear mixed model was developed to quantify the variability of particle number emissions from transit buses tested in real-world driving conditions. Two conventional diesel buses and two hybrid diesel-electric buses were tested throughout 2004 under different aftertreatments, fuels, drivers, and bus routes. The mixed model controlled the confounding influence of factors inherent to on-board testing. Statistical tests showed that particle number emissions varied significantly according to the after treatment, bus route, driver, bus type, and daily temperature, with only minor variability attributable to differences between fuel types. The daily setup and operation of the sampling equipment (electrical low pressure impactor) and mini-dilution system contributed to 30-84% of the total random variability of particle measurements among tests with diesel oxidation catalysts. By controlling for the sampling day variability, the model better defined the differences in particle emissions among bus routes. In contrast, the low particle number emissions measured with diesel particle filters (decreased by over 99%) did not vary according to operating conditions or bus type but did vary substantially with ambient temperature.

  12. Digital Systems Validation Handbook. Volume 2. Chapter 18. Avionic Data Bus Integration Technology

    DTIC Science & Technology

    1993-11-01

    interaction between a digital data bus and an avionic system. Very Large Scale Integration (VLSI) ICs and multiversion software, which make up digital...1984, the Sperry Corporation developed a fault tolerant system which employed multiversion programming, voting, and monitoring for error detection and...formulate all the significant behavior of a system. MULTIVERSION PROGRAMMING. N-version programming. N-VERSION PROGRAMMING. The independent coding of a

  13. An Optimization Model for the Selection of Bus-Only Lanes in a City.

    PubMed

    Chen, Qun

    2015-01-01

    The planning of urban bus-only lane networks is an important measure to improve bus service and bus priority. To determine the effective arrangement of bus-only lanes, a bi-level programming model for urban bus lane layout is developed in this study that considers accessibility and budget constraints. The goal of the upper-level model is to minimize the total travel time, and the lower-level model is a capacity-constrained traffic assignment model that describes the passenger flow assignment on bus lines, in which the priority sequence of the transfer times is reflected in the passengers' route-choice behaviors. Using the proposed bi-level programming model, optimal bus lines are selected from a set of candidate bus lines; thus, the corresponding bus lane network on which the selected bus lines run is determined. The solution method using a genetic algorithm in the bi-level programming model is developed, and two numerical examples are investigated to demonstrate the efficacy of the proposed model.

  14. 75 FR 52054 - Bus and Bus Facilities Discretionary Program Funds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... engaged in public transportation, or private non-profit organizations. FOR FURTHER INFORMATION CONTACT... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Bus and Bus Facilities Discretionary... program announcement of project selections. SUMMARY: The U.S. Department of Transportation's (DOT) Federal...

  15. Relative importance of school bus-related microenvironments to children's pollutant exposure.

    PubMed

    Behrentz, Eduardo; Sabin, Lisa D; Winer, Arthur M; Fitz, Dennis R; Pankratz, David V; Colome, Steven D; Fruin, Scott A

    2005-10-01

    Real-time concentrations of black carbon, particle-bound polycyclic aromatic hydrocarbons, nitrogen dioxide, and fine particulate counts, as well as integrated and real-time fine particulate matter (PM2.5) mass concentrations were measured inside school buses during long commutes on Los Angeles Unified School District bus routes, at bus stops along the routes, at the bus loading/unloading zone in front of the selected school, and at nearby urban "background" sites. Across all of the pollutants, mean concentrations during bus commutes were higher than in any other microenvironment. Mean exposures (mean concentration times time spent in a particular microenvironment) in bus commutes were between 50 and 200 times greater than those for the loading/unloading microenvironment, and 20-40 times higher than those for the bus stops, depending on the pollutant. Although the analyzed school bus commutes represented only 10% of a child's day, on average they contributed one-third of a child's 24-hr overall black carbon exposure during a school day. For species closely related to vehicle exhaust, the within- cabin exposures were generally dominated by the effect of surrounding traffic when windows were open and by the bus's own exhaust when windows were closed. Low-emitting buses generally exhibited high concentrations only when traveling behind a diesel vehicle, whereas high-emitting buses exhibited high concentrations both when following other diesel vehicles and when idling without another diesel vehicle in front of the bus. To reduce school bus commute exposures, we recommend minimizing commute times, avoiding caravanning with other school buses, using the cleanest buses for the longest bus routes, maintaining conventional diesel buses to eliminate visible emissions, and transitioning to cleaner fuels and advanced particulate control technologies as soon as possible.

  16. MAP Propulsion System Thermal Design

    NASA Technical Reports Server (NTRS)

    Mosier, Carol L.

    2003-01-01

    The propulsion system of the Microwave Anisotropy Probe (MAP) had stringent requirements that made the thermal design unique. To meet instrument stability requirements the system had to be designed to keep temperatures of all components within acceptable limits without heater cycling. Although the spacecraft remains at a fixed 22 sun angle at L2, the variations in solar constant, property degradation, and bus voltage range all significantly affect the temperature. Large portions of the fuel lines are external to the structure and all components are mounted to non-conductive composite structure. These two facts made the sensitivity to the MLI effective emissivity and bus temperature very high. Approximately two years prior to launch the propulsion system was redesigned to meet MAP requirements. The new design utilized hardware that was already installed in order to meet schedule constraints. The spacecraft design and the thermal requirements were changed to compensate for inadequacies of the existing hardware. The propulsion system consists of fuel lines, fill and drain lines/valve, eight thrusters, a HXCM, and a propulsion tank. A voltage regulator was added to keep critical components within limits. Software was developed to control the operational heaters. Trim resistors were put in series with each operational heater circuits and the tank survival heater. A highly sophisticated test program, which included real time model correlation, was developed to determine trim resistors sizes. These trim resistors were installed during a chamber break and verified during thermal balance testing.

  17. Exposure to particles and nitrogen dioxide among taxi, bus and lorry drivers.

    PubMed

    Lewné, Marie; Nise, Gun; Lind, Marie-Louise; Gustavsson, Per

    2006-03-01

    The aims of this study have been to investigate the occurrence of systematic differences in the personal exposure to motor exhaust between different groups of taxi, bus and lorry drivers, and to study if these are influenced by the choice of exposure indicator. We used one indicator of the gaseous phase, nitrogen dioxide (NO(2)), and one of the particle phase (measured by DataRAM), of the exhausts. A total of 121 drivers were included in the study: 39 taxi drivers, 42 bus drivers and 40 lorry drivers. Personal measurements were performed during one working day. Nitrogen dioxide was measured with passive diffusive samplers and particles with Data-RAM, a logging instrument using nephelometric monitoring. The instrument measures particles between 0.1 and 10 microm in size. The average exposure to NO(2) for lorry drivers was 68 microg/m(3); for bus drivers 60 microg/m(3) and for taxi drivers 48 microg/m(3). For particles the exposure was 57 microg/m(3) for lorry drivers, 44 microg/m(3) for bus drivers and 26 microg/m(3) for taxi drivers. The result remained unchanged when exposures were adjusted for variation in urban background levels of NO(2) and particulate matter with an aerodynamic diameter <10 microm (PM(10)). Lorry drivers experienced the highest exposure and taxi drivers the lowest with bus drivers in an intermediate position, regardless of whether NO(2) or particles were used as exposure indicator. The levels of both NO(2) and particles were higher for bus drivers in the city than for them driving in the suburbs. Using diesel or petrol as a fuel for taxis had no influence on the exposure for the drivers, indicating that the taxi drivers' exposure mainly depends on exhaust from surrounding traffic.

  18. 75 FR 20034 - Over-the-Road Bus Accessibility Program Grants: Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Over-the-Road Bus Accessibility... ``Over-the-Road Bus Accessibility Program Grants,'' extends the application deadline, and allows... comply with the terms and conditions of the Special Warranty for the Over-the-Road Bus Accessibility...

  19. The effect of commuting microenvironment on commuter exposures to vehicular emission in Hong Kong

    NASA Astrophysics Data System (ADS)

    Chan, L. Y.; Chan, C. Y.; Qin, Y.

    Vehicular exhaust emission has gradually become the major air pollution source in modern cities and traffic related exposure is found to contribute significantly to total human exposure level. A comprehensive survey was conducted from November 1995 to July 1996 in Hong Kong to assess the effect of traffic-induced air pollution inside different commuting microenvironments on commuter exposure. Microenvironmental monitoring is performed for six major public commuting modes (bus, light bus, MTR, railway, tram, ferry), plus private car and roadside pavement. Traffic-related pollutants, CO, NO x, THC and O 3 were selected as the target pollutants. The results indicate that commuter exposure is highly influenced by the choice of commuting microenvironment. In general, the exposure level in decreasing order of measured pollutant level for respective commuting microenvironments are: private car, the group consisting light bus, bus, tram and pavement, MTR and train, and finally ferry. In private car, the CO level is several times higher than that in the other microenvironments with a trip averaged of 10.1 ppm and a maximum of 24.9 ppm. Factors such as the body position of the vehicle, intake point of the ventilation system, fuel used, ventilation, transport mode, road and driving conditions were used in the analysis. Inter-microenvironment, intra-microenvironment and temporal variation of CO concentrations were used as the major indicator. The low body position and low intake point of the ventilation system of the private car are believed to be the cause of higher intake of exhaust of other vehicles and thus result in high pollution level in this microenvironment. Compared with other metropolis around the world and the Hong Kong Air Quality Objectives (HKAQO), exposure levels of commuter to traffic-related air pollution in Hong Kong are relatively low for most pollutants measured. Only several cases of exceedence of HKAQO by NO 2 were recorded. The strong prevailing wind plus the channeling effect created by the harbor, the fuel used, the relative abundance of new cars and the successful implementation of the vehicle emission control program are factors that compensate the effect of the emission source strength and thus lead to low exposure levels.

  20. V.C.3 Technology Validation : Fuel Cell Bus Evaluations

    DOT National Transportation Integrated Search

    2005-01-06

    Based on the results of this analysis and the response from the project partners, the SunLine demonstration was deemed to be a success. Although it was a prototype (or pre-commercial) vehicle, the ThunderPower bus operated in revenue service at a rel...

  1. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the tenth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting January 1, 2003 and ending March 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less

  2. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less

  3. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2003 and ending June 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less

  4. Fuel Cell Buses in U.S. Transit Fleets : Current Status 2014

    DOT National Transportation Integrated Search

    2014-12-03

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including d...

  5. Chattanooga SmartBus Project : phase 2 evaluation report

    DOT National Transportation Integrated Search

    2008-06-10

    This report presents the results of Phase II of the national evaluation of the Chattanooga Area Regional Transportation Authoritys (CARTAs) SmartBus Project. The Smartbus Project is a comprehensive transit ITS program for the city of Chattanoog...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan

    This study evaluates the costs and benefits associated with the use of a stationary-wireless- power-transfer-enabled plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep was performed over many different battery sizes, charging power levels, and number/location of bus stop charging stations. The net present cost was calculated for each vehicle design and provided the basis for design evaluation. In all cases, given the assumed economic conditions, the conventional bus achieved the lowest net present cost while the optimal plug-in hybrid electric bus scenario beat out the hybridmore » electric comparison scenario. The study also performed parameter sensitivity analysis under favorable and high unfavorable market penetration assumptions. The analysis identifies fuel saving opportunities with plug-in hybrid electric bus scenarios at cumulative net present costs not too dissimilar from those for conventional buses.« less

  7. Solid Polymer Electrolyte (SPE) fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The overall objectives of the Phase IV Solid Polymer Electrolyte Fuel Cell Technology Program were to: (1) establish fuel cell life and performance at temperatures, pressures and current densities significantly higher than those previously demonstrated; (2) provide the ground work for a space energy storage system based on the solid polymer electrolyte technology (i.e., regenerative H2/O2 fuel cell); (3) design, fabricate and test evaluate a full-scale single cell unit. During this phase, significant progress was made toward the accomplishment of these objectives.

  8. 75 FR 5847 - Section 5309 Bus and Bus Facilities Livability Initiative and Urban Circulator Program Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... Livability Initiative and Urban Circulator Program Grants AGENCY: Federal Transit Administration (FTA), DOT. ACTION: Notice to Extend Application Deadline for the Bus and Bus Facilities and Urban Circulator..., Transportation Equity Act: A Legacy for Users (SAFETEA-LU), Public Law 109-59, August 10, 2005. The Urban...

  9. Information management system study results. Volume 2: IMS study results appendixes

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Computer systems program specifications are presented for the modular space station information management system. These are the computer program contract end item, data bus system, data bus breadboard, and display interface adapter specifications. The performance, design, tests, and qualification requirements are established for the implementation of the information management system. For Vol. 1, see N72-19972.

  10. Propane Update.

    ERIC Educational Resources Information Center

    Brantner, Max

    1984-01-01

    Reports on a northern Illinois school bus fleet converted to propane fuel in 1981 and 1982. Includes tables showing, first, total annual fuel costs before and after conversion and, second, fuel efficiency for 16 buses using propane and three using gasoline. Notes precautions for propane use. (MCG)

  11. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017

    DOT National Transportation Integrated Search

    2017-11-01

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...

  12. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016

    DOT National Transportation Integrated Search

    2016-11-01

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...

  13. Report on Hydrogen Bus Demonstrations Worldwide, 2002-2007.

    DOT National Transportation Integrated Search

    2009-03-01

    Between 2002 and 2007 more than 20 cities in the United States, Europe, China, Japan and Australia have demonstrated buses powered by fuel cells or hydrogen-fueled internal combustion engines, as well as a variety of fueling and related technologies....

  14. Fuel Cell Buses in U.S. Transit Fleets : Current Status 2015

    DOT National Transportation Integrated Search

    2015-12-01

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...

  15. Impact of compressed natural gas fueled buses on street pavements

    DOT National Transportation Integrated Search

    1995-07-01

    Federal Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of : 1992 (EPACT), together with other state regulations have encouraged or mandated : transit systems to use alternative fuels to power bus fleets. Among such fuels, : compres...

  16. Annoyance evaluation and the effect of noise on the health of bus drivers.

    PubMed

    Bruno, Portela S; Marcos, Queiroga R; Amanda, Constantini; Paulo, Zannin H T

    2013-01-01

    In the present study, we evaluated annoyance and the effects of noise on the health of bus drivers. For that, 200 bus drivers from a public transport company participated in a cross-sectional study. Annoyance and effects on health was measured with analog scale: Sleep quality, occurrence of tinnitus, headache, irritation, and annoyance from bus engine, traffic, and passengers. Data of age and working time of bus drivers also were obtained. For noise exposure, LA eq was evaluated in 80 buses. Statistical analysis consisted of mean, standard deviation, minimum, and maximum, Kruskal-Wallis test with post-hoc Dunn, one-way ANOVA with post-hoc Tukey and Spearman's correlation coefficient. Results indicate three groups of bus drivers (not annoyed: (N.A.), a little annoyed (L.A.) and highly annoyed (H.A.)). The group H.A. was younger and with less working time in relation to others, with a significant difference only for age. Regarding sleep quality, there was no significant difference. For results on the occurrence of tinnitus, headache and irritation after work, group H.A. had significantly higher means. Result of annoyance to the bus engine was significantly higher in H.A. than in L.A. and N.A. Annoyance to traffic and passengers, no significant differences were found, but the highest results were found for L.A., followed by H.A. and N.A. Equivalent sound pressure level in buses was above of the limit for occupational comfort. It was concluded that bus drivers has considerable level of noise annoyance and some health effects are perceived. The noise is a factor discomfort ergonomic that may cause effects on health of bus drivers. This study aims to evaluate annoyance and the effects of noise on the health of bus drivers. Cross-sectional study with buses and bus drivers. For that, 200 bus drivers from a public transport company participated in a cross-sectional study. Annoyance and effects on health was measured with analog scale: Sleep quality, occurrence of tinnitus, headache, irritation and annoyance from bus engine, traffic, and passengers. Data of age and working time of bus drivers also were obtained. For noise exposure, LA eq was evaluated in 80 buses. Statistical analysis consisted of mean, standard deviation, minimum and maximum, Kruskal-Wallis test with post-hoc Dunn, one-way ANOVA with post-hoc Tukey and Spearman's correlation coefficient. Results indicate three groups of bus drivers (N.A., a L.A. and H.A.). The group H.A. was younger and with less working time in relation to others, with a significant difference only for age. Regarding sleep quality, there was no significant difference. For results on the occurrence of tinnitus, headache and irritation after work, group H.A. had significantly higher means. Result of annoyance to the bus engine was significantly higher in H.A. than in L.A. and N.A. Annoyance to traffic and passengers, no significant differences were found, but the highest results were found for L.A., followed by H.A. and N.A. Equivalent sound pressure level in buses was above of the limit for occupational comfort. It was concluded that bus drivers has considerable level of noise annoyance and some health effects are perceived.

  17. Designing a New National Household Travel Survey : Innovations in Collecting and Analyzing Long-distance Travel Information

    DOT National Transportation Integrated Search

    2013-10-21

    As part of its commitment to clean vehicle technologies, the City of Burbank tests a fuel cell bus in its mass transit system. BurbankBus, which provides transit services in and around the City of Burbank, California, has four fixedroute transit line...

  18. Hydrogen and Fuel Cell Transit Bus Evaluations : Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration

    DOT National Transportation Integrated Search

    2008-05-01

    This document describes the hydrogen transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportations Federal Transit Administration (...

  19. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the fifth quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending December 31, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab- and bench-scale experimental testing, pilot-scale design, and economic studies.« less

  20. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the seventh quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2002 and ending June 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab-/bench-scale experimental testing and pilot-scale design.« less

  1. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the third quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2001 and ending June 30, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, objectives of this program, and provides a summary of program activities covering program management and progress in first year tasks including lab- and bench-scale design, facilities preparation, and engineering studies.« less

  2. Advanced Intelligent System Application to Load Forecasting and Control for Hybrid Electric Bus

    NASA Technical Reports Server (NTRS)

    Momoh, James; Chattopadhyay, Deb; Elfayoumy, Mahmoud

    1996-01-01

    The primary motivation for this research emanates from providing a decision support system to the electric bus operators in the municipal and urban localities which will guide the operators to maintain an optimal compromise among the noise level, pollution level, fuel usage etc. This study is backed up by our previous studies on study of battery characteristics, permanent magnet DC motor studies and electric traction motor size studies completed in the first year. The operator of the Hybrid Electric Car must determine optimal power management schedule to meet a given load demand for different weather and road conditions. The decision support system for the bus operator comprises three sub-tasks viz. forecast of the electrical load for the route to be traversed divided into specified time periods (few minutes); deriving an optimal 'plan' or 'preschedule' based on the load forecast for the entire time-horizon (i.e., for all time periods) ahead of time; and finally employing corrective control action to monitor and modify the optimal plan in real-time. A fully connected artificial neural network (ANN) model is developed for forecasting the kW requirement for hybrid electric bus based on inputs like climatic conditions, passenger load, road inclination, etc. The ANN model is trained using back-propagation algorithm employing improved optimization techniques like projected Lagrangian technique. The pre-scheduler is based on a Goal-Programming (GP) optimization model with noise, pollution and fuel usage as the three objectives. GP has the capability of analyzing the trade-off among the conflicting objectives and arriving at the optimal activity levels, e.g., throttle settings. The corrective control action or the third sub-task is formulated as an optimal control model with inputs from the real-time data base as well as the GP model to minimize the error (or deviation) from the optimal plan. These three activities linked with the ANN forecaster proving the output to the GP model which in turn produces the pre-schedule of the optimal control model. Some preliminary results based on a hypothetical test case will be presented for the load forecasting module. The computer codes for the three modules will be made available fe adoption by bus operating agencies. Sample results will be provided using these models. The software will be a useful tool for supporting the control systems for the Electric Bus project of NASA.

  3. COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    COROLLER, P; PLASSAT, G

    2003-08-24

    Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typicallymore » have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus networks.« less

  4. School Bus Driver Instructional Program. Instructor's Guide.

    ERIC Educational Resources Information Center

    Department of Transportation, Washington, DC. National Highway Safety Bureau.

    A standardized and comprehensive school bus driver instructional program has been developed under contract with the Federal Government. The course has been organized to provide in one package a program for developing the minimum skills and knowledge needed by the school bus driver instructor, as well as those supplemental skills and knowledge…

  5. Improved Evolutionary Programming with Various Crossover Techniques for Optimal Power Flow Problem

    NASA Astrophysics Data System (ADS)

    Tangpatiphan, Kritsana; Yokoyama, Akihiko

    This paper presents an Improved Evolutionary Programming (IEP) for solving the Optimal Power Flow (OPF) problem, which is considered as a non-linear, non-smooth, and multimodal optimization problem in power system operation. The total generator fuel cost is regarded as an objective function to be minimized. The proposed method is an Evolutionary Programming (EP)-based algorithm with making use of various crossover techniques, normally applied in Real Coded Genetic Algorithm (RCGA). The effectiveness of the proposed approach is investigated on the IEEE 30-bus system with three different types of fuel cost functions; namely the quadratic cost curve, the piecewise quadratic cost curve, and the quadratic cost curve superimposed by sine component. These three cost curves represent the generator fuel cost functions with a simplified model and more accurate models of a combined-cycle generating unit and a thermal unit with value-point loading effect respectively. The OPF solutions by the proposed method and Pure Evolutionary Programming (PEP) are observed and compared. The simulation results indicate that IEP requires less computing time than PEP with better solutions in some cases. Moreover, the influences of important IEP parameters on the OPF solution are described in details.

  6. Bus-Programmable Slave Card

    NASA Technical Reports Server (NTRS)

    Hall, William A.

    1990-01-01

    Slave microprocessors in multimicroprocessor computing system contains modified circuit cards programmed via bus connecting master processor with slave microprocessors. Enables interactive, microprocessor-based, single-loop control. Confers ability to load and run program from master/slave bus, without need for microprocessor development station. Tristate buffers latch all data and information on status. Slave central processing unit never connected directly to bus.

  7. Commuter exposure to black carbon particles on diesel buses, on bicycles and on foot: a case study in a Brazilian city.

    PubMed

    Targino, Admir Créso; Rodrigues, Marcos Vinicius C; Krecl, Patricia; Cipoli, Yago Alonso; Ribeiro, João Paulo M

    2018-01-01

    Commuting in urban environments accounts for a large fraction of the daily dose of inhaled air pollutants, especially in countries where vehicles have old technologies or run on dirty fuels. We measured black carbon (BC) concentrations during bus, walk and bicycle commutes in a Brazilian city and found a large spatial variability across the surveyed area, with median values between 2.5 and 12.0 μg m -3 . Traffic volume on roadways (especially the number of heavy-duty diesel vehicles), self-pollution from the bus tailpipe, number of stops along the route and displacement speed were the main drivers of air pollution on the buses. BC concentrations increased abruptly at or close to traffic signals and bus stops, causing in-cabin peaks as large as 60.0 μg m -3 . BC hotspots for the walk mode coincided with the locations of bus stops and traffic signals, whilst measurements along a cycle lane located 12 m from the kerb were less affected. The median BC concentrations of the two active modes were significantly lower than the concentrations inside the bus, with a bus/walk and bus/bicycle ratios of up to 6. However, the greater inhalation rates of cyclist and pedestrians yielded larger doses (2.6 and 3.5 μg on a 1.5-km commute), suggesting that the greater physical effort during the active commute may outweigh the reduction in exposure due to the shift from passive to active transport modes.

  8. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision 21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the second annual technical progress report for the Vision 21 AGC program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending September 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less

  9. Summary of Fuel Cell Programs at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla

    2000-01-01

    The objective of this program is to develop passive ancillary component technology to be teamed with a hydrogen-oxygen unitized regenerative fuel cell (URFC) stack to form a revolutionary new regenerative fuel cell energy (RFC) storage system for aerospace applications. Replacement of active RFC ancillary components with passive components minimizes parasitic power losses and allows the RFC to operate as a H2/O2 battery. The goal of this program is to demonstrate an integrated passive lkW URFC system.

  10. Ohio's First Electrolysis-Based Hydrogen Fueling Station

    NASA Technical Reports Server (NTRS)

    Demattia, Brianne

    2014-01-01

    Presentation to the earth day coalition describing efforts with NASA GRC and Cleveland RTA on Ohio's hydrogen fueling station and bus demonstration. Project background and goals, challenges and successes, and current status.

  11. Emission comparison of urban bus engine fueled with diesel oil and 'biodiesel' blend.

    PubMed

    Turrio-Baldassarri, Luigi; Battistelli, Chiara L; Conti, Luigi; Crebelli, Riccardo; De Berardis, Barbara; Iamiceli, Anna Laura; Gambino, Michele; Iannaccone, Sabato

    2004-07-05

    The chemical and toxicological characteristics of emissions from an urban bus engine fueled with diesel and biodiesel blend were studied. Exhaust gases were produced by a turbocharged EURO 2 heavy-duty diesel engine, operating in steady-state conditions on the European test 13 mode cycle (ECE R49). Regulated and unregulated pollutants, such as carcinogenic polycyclic aromatic hydrocarbons (PAHs) and nitrated derivatives (nitro-PAHs), carbonyl compounds and light aromatic hydrocarbons were quantified. Mutagenicity of the emissions was evaluated by the Salmonella typhimurium/mammalian microsome assay. The effect of the fuels under study on the size distribution of particulate matter (PM) was also evaluated. The use of biodiesel blend seems to result in small reductions of emissions of most of the aromatic and polyaromatic compounds; these differences, however, have no statistical significance at 95% confidence level. Formaldehyde, on the other hand, has a statistically significant increase of 18% with biodiesel blend. In vitro toxicological assays show an overall similar mutagenic potency and genotoxic profile for diesel and biodiesel blend emissions. The electron microscopy analysis indicates that PM for both fuels has the same chemical composition, morphology, shape and granulometric spectrum, with most of the particles in the range 0.06-0.3 microm.

  12. [Development and evaluation of a small group-based cardiocerebrovascular disease prevention education program for male bus drivers].

    PubMed

    Kim, Eun Young; Hwang, Seon Young

    2012-06-01

    This study was conducted to examine effects of a small group-based cardiocerebrovascular disease (CVD) prevention education program on knowledge, stage of change and health behavior among male bus drivers with CVD risk factors. A non-equivalent control group pretest-posttest design was used. Participants were 68 male bus drivers recruited from two urban bus companies. Participants from the two groups were selected by matching age, education and risk factors. Experimental group (n=34) received a small group-based CVD prevention education program 8 times over 6 weeks and 3 times through telephone interviews at 2-week intervals. Data were collected between December, 2010 and March, 2011, and were analyzed using chi-square test, t-test, and repeated measure analysis of variance with SPSS/Win18.0. Experimental group showed significantly higher scores in CVD prevention knowledge (p<.001) and health behavior (p<.001) at 6 and 12 weeks after intervention. Participants in pre-contemplation and contemplation stages made progress to contemplation and action. This was significantly better at 6 and 12 weeks after intervention (p<.001). Results suggest that small group-based education programs for CVD prevention are effective in increasing knowledge, stage of change, and health behavior to prevent CVD among male bus drivers with CVD risk.

  13. Investigation, quantification, and recommendations : performance of alternatively fueled buses.

    DOT National Transportation Integrated Search

    2014-08-01

    The goal of this project was to continue consistent collection and reporting of data on the performance and costs of alternatively fueled public transit vehicles in the U.S. transit fleet in order to keep the Bus Fuels Fleet Evaluation Tool (BuFFeT; ...

  14. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2011

    DOT National Transportation Integrated Search

    2011-11-11

    his report is the fifth in a series of annual status reports that summarize the progress resulting from fuel cell transit bus demonstrations in the United States and provide a discussion of the achievements and challenges of fuel cell propulsion in t...

  15. Fuel Cell Buses in U.S. Transit Fleets : Current Status 2012

    DOT National Transportation Integrated Search

    2012-11-12

    This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The repo...

  16. Fuel Cell Buses in U.S. Transit Fleets : Current Status 2013

    DOT National Transportation Integrated Search

    2013-12-01

    This report is the seventh in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. This r...

  17. 49 CFR 393.83 - Exhaust systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... combustible part of the motor vehicle. (b) No exhaust system shall discharge to the atmosphere at a location... gasoline engine shall discharge to the atmosphere at or within 6 inches forward of the rearmost part of the bus. (d) The exhaust system of a bus using fuels other than gasoline shall discharge to the atmosphere...

  18. 49 CFR 393.83 - Exhaust systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... combustible part of the motor vehicle. (b) No exhaust system shall discharge to the atmosphere at a location... gasoline engine shall discharge to the atmosphere at or within 6 inches forward of the rearmost part of the bus. (d) The exhaust system of a bus using fuels other than gasoline shall discharge to the atmosphere...

  19. 49 CFR 393.83 - Exhaust systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... combustible part of the motor vehicle. (b) No exhaust system shall discharge to the atmosphere at a location... gasoline engine shall discharge to the atmosphere at or within 6 inches forward of the rearmost part of the bus. (d) The exhaust system of a bus using fuels other than gasoline shall discharge to the atmosphere...

  20. [Particle emission characteristics of diesel bus fueled with bio-diesel].

    PubMed

    Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei

    2013-10-01

    With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg).

  1. Alternative Fuels Data Center: San Diego Prepares for Electric Vehicles in

    Science.gov Websites

    Fleet Uses a Wide Variety of Alternative Fuels Dec. 5, 2015 Photo of a Coca-Cola alternative-fuel truck Alternative Fuel Vehicles July 15, 2015 Photo of a bus. Maryland County Fleet Uses Wide Variety of Alternative vehicle Mammoth Cave National Park Uses Only Alternative Fuel Vehicles Dec. 1, 2012 Frito-Lay Delivers

  2. Design Guidelines for Bus Transit Systems Using Liquefied Petroleum Gas (LPG) as an Alternative Fuel.

    DOT National Transportation Integrated Search

    1996-09-01

    The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including Liquefied Petroleum Gas (LPG), Compressed Natural Gas (CNG), and Methanol/Ethanol, are already being used in buses. At present, there do not exist co...

  3. Tracking costs of alternatively fueled buses in Florida - phase II.

    DOT National Transportation Integrated Search

    2013-04-01

    The goal of this project is to continue collecting and reporting the data on the performance and costs of alternatively fueled public transit vehicles in the state in a consistent manner in order to keep the Bus Fuels Fleet Evaluation Tool (BuFFeT) c...

  4. Training Manual for School Bus Drivers Transporting the Handicapped. [A Resource Manual for the Development and Evaluation of Special Programs for Exceptional Students, Volume IV-A].

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Bureau of Education for Exceptional Students.

    One of a series designed to help Florida school districts provide special programs for exceptional children, the training packet is intended to be used in a 2-day training session for school bus drivers who transport handicapped students. The manual includes a brief introduction to five disability areas (physical impairments, visual impairments,…

  5. Development and evaluation of a pedestrian safety training program for elementary school bus riders

    DOT National Transportation Integrated Search

    1994-12-01

    The objective of this study was to develop and evaluate a comprehensive pedestrian safety program for elementary (kindergarten through grade 6) school bus riders. Existing materials, crash data and state laws/regulations on school bus pedestrian safe...

  6. Modeling transit bus fuel consumption on the basis of cycle properties.

    PubMed

    Delgado, Oscar F; Clark, Nigel N; Thompson, Gregory J

    2011-04-01

    A method exists to predict heavy-duty vehicle fuel economy and emissions over an "unseen" cycle or during unseen on-road activity on the basis of fuel consumption and emissions data from measured chassis dynamometer test cycles and properties (statistical parameters) of those cycles. No regression is required for the method, which relies solely on the linear association of vehicle performance with cycle properties. This method has been advanced and examined using previously published heavy-duty truck data gathered using the West Virginia University heavy-duty chassis dynamometer with the trucks exercised over limited test cycles. In this study, data were available from a Washington Metropolitan Area Transit Authority emission testing program conducted in 2006. Chassis dynamometer data from two conventional diesel buses, two compressed natural gas buses, and one hybrid diesel bus were evaluated using an expanded driving cycle set of 16 or 17 different driving cycles. Cycle properties and vehicle fuel consumption measurements from three baseline cycles were selected to generate a linear model and then to predict unseen fuel consumption over the remaining 13 or 14 cycles. Average velocity, average positive acceleration, and number of stops per distance were found to be the desired cycle properties for use in the model. The methodology allowed for the prediction of fuel consumption with an average error of 8.5% from vehicles operating on a diverse set of chassis dynamometer cycles on the basis of relatively few experimental measurements. It was found that the data used for prediction should be acquired from a set that must include an idle cycle along with a relatively slow transient cycle and a relatively high speed cycle. The method was also applied to oxides of nitrogen prediction and was found to have less predictive capability than for fuel consumption with an average error of 20.4%.

  7. Integer programming model for optimizing bus timetable using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wihartiko, F. D.; Buono, A.; Silalahi, B. P.

    2017-01-01

    Bus timetable gave an information for passengers to ensure the availability of bus services. Timetable optimal condition happened when bus trips frequency could adapt and suit with passenger demand. In the peak time, the number of bus trips would be larger than the off-peak time. If the number of bus trips were more frequent than the optimal condition, it would make a high operating cost for bus operator. Conversely, if the number of trip was less than optimal condition, it would make a bad quality service for passengers. In this paper, the bus timetabling problem would be solved by integer programming model with modified genetic algorithm. Modification was placed in the chromosomes design, initial population recovery technique, chromosomes reconstruction and chromosomes extermination on specific generation. The result of this model gave the optimal solution with accuracy 99.1%.

  8. Economical launching and accelerating control strategy for a single-shaft parallel hybrid electric bus

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Song, Jian; Li, Liang; Li, Shengbo; Cao, Dongpu

    2016-08-01

    This paper presents an economical launching and accelerating mode, including four ordered phases: pure electrical driving, clutch engagement and engine start-up, engine active charging, and engine driving, which can be fit for the alternating conditions and improve the fuel economy of hybrid electric bus (HEB) during typical city-bus driving scenarios. By utilizing the fast response feature of electric motor (EM), an adaptive controller for EM is designed to realize the power demand during the pure electrical driving mode, the engine starting mode and the engine active charging mode. Concurrently, the smoothness issue induced by the sequential mode transitions is solved with a coordinated control logic for engine, EM and clutch. Simulation and experimental results show that the proposed launching and accelerating mode and its control methods are effective in improving the fuel economy and ensure the drivability during the fast transition between the operation modes of HEB.

  9. Improving School Bus Driver Performance.

    ERIC Educational Resources Information Center

    Farmer, Ernest

    This reference source is intended to assist the school bus driver training instructor in course preparation. Instructional units for program planning each contain pertinent course questions, a summary, and evaluation questions. Unit 1, "Introduction to the School Bus Driver Training Program," focuses on basic course objectives and…

  10. Experimental and statistical analyses to characterize in-vehicle fine particulate matter behavior inside public transit buses operating on B20-grade biodiesel fuel

    NASA Astrophysics Data System (ADS)

    Vijayan, Abhilash; Kumar, Ashok

    2010-11-01

    This paper presents results from an in-vehicle air quality study of public transit buses in Toledo, Ohio, involving continuous monitoring, and experimental and statistical analyses to understand in-vehicle particulate matter (PM) behavior inside buses operating on B20-grade biodiesel fuel. The study also focused on evaluating the effects of vehicle's fuel type, operating periods, operation status, passenger counts, traffic conditions, and the seasonal and meteorological variation on particulates with aerodynamic diameter less than 1 micron (PM 1.0). The study found that the average PM 1.0 mass concentrations in B20-grade biodiesel-fueled bus compartments were approximately 15 μg m -3, while PM 2.5 and PM 10 concentration averages were approximately 19 μg m -3 and 37 μg m -3, respectively. It was also observed that average hourly concentration trends of PM 1.0 and PM 2.5 followed a "μ-shaped" pattern during transit hours. Experimental analyses revealed that the in-vehicle PM 1.0 mass concentrations were higher inside diesel-fueled buses (10.0-71.0 μg m -3 with a mean of 31.8 μg m -3) as compared to biodiesel buses (3.3-33.5 μg m -3 with a mean of 15.3 μg m -3) when the windows were kept open. Vehicle idling conditions and open door status were found to facilitate smaller particle concentrations inside the cabin, while closed door facilitated larger particle concentrations suggesting that smaller particles were originating outside the vehicle and larger particles were formed within the cabin, potentially from passenger activity. The study also found that PM 1.0 mass concentrations at the back of bus compartment (5.7-39.1 μg m -3 with a mean of 28.3 μg m -3) were higher than the concentrations in the front (5.7-25.9 μg m -3 with a mean of 21.9 μg m -3), and the mass concentrations inside the bus compartment were generally 30-70% lower than the just-outside concentrations. Further, bus route, window position, and time of day were found to affect the in-vehicle PM concentrations significantly. Overall, the in-vehicle PM 1.0 concentrations inside the buses operating on B20-grade biodiesel ranged from 0.7 μg m -3 to 243 μg m -3, with a median of 11.6 μg m -3. Statistical models developed to study the effects of vehicle operation and ambient conditions on in-vehicle PM concentrations suggested that while open door status was the most important influencing variable for finer particles and higher passenger activity resulted in higher coarse particles concentrations inside the vehicle compartments, ambient PM concentrations contributed to all PM fractions inside the bus irrespective of particle size.

  11. 75 FR 74134 - State of Good Repair Bus and Bus Facilities Discretionary Program Funds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... public agencies, private companies engaged in public transportation, or private non-profit organizations... public transportation bus fleet, infrastructure, and equipment in a state of good repair. Grantees... DEPARTMENT OF TRANSPORTATION Federal Transit Administration State of Good Repair Bus and Bus...

  12. Alternative Fuels Data Center: School Bus Idle Reduction Strategies

    Science.gov Websites

    , teachers, parents, and children to learn about air quality and diesel emissions. Recognizes the positive fuel, reduce engine wear and tear, protect the health of drivers and children, and improve air quality

  13. 76 FR 68819 - State of Good Repair Bus and Bus Facilities Discretionary Program Funds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... that are public agencies, private companies engaged in public transportation, or private non-profit... Table 1 will provide funds to help maintain the nation's public transportation bus fleet, infrastructure... DEPARTMENT OF TRANSPORTATION Federal Transit Administration State of Good Repair Bus and Bus...

  14. 77 FR 5295 - Over-the-Road Bus Accessibility Program Announcement of Project Selections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Over-the-Road Bus Accessibility...-Road Bus (OTRB) Accessibility Program, authorized by Section 3038 of the Transportation Equity Act for... of over-the-road buses to help finance the incremental capital and training costs of complying with...

  15. Ultrafine PM emissions from natural gas, oxidation-catalyst diesel, and particle-trap diesel heavy-duty transit buses.

    PubMed

    Holmén, Britt A; Ayala, Alberto

    2002-12-01

    This paper addresses how current technologies effective for reducing PM emissions of heavy-duty engines may affect the physical characteristics of the particles emitted. Three in-use transit bus configurations were compared in terms of submicron particle size distributions using simultaneous SMPS measurements under two dilution conditions, a minidiluter and the legislated constant volume sampler (CVS). The compressed natural gas (CNG)-fueled and diesel particulate filter (DPF)-equipped diesel configurations are two "green" alternatives to conventional diesel engines. The CNG bus in this study did not have an oxidation catalyst whereas the diesel configurations (with and without particulate filter) employed catalysts. The DPF was a continuously regenerating trap (CRT). Particle size distributions were collected between 6 and 237 nm using 2-minute SMPS scans during idle and 55 mph steady-state cruise operation. Average particle size distributions collected during idle operation of the diesel baseline bus operating on ultralow sulfur fuel showed evidence for nanoparticle growth under CVS dilution conditions relative to the minidiluter. The CRT effectively reduced both accumulation and nuclei mode concentrations by factors of 10-100 except under CVS dilution conditions where nuclei mode concentrations were measured during 55 mph steady-state cruise that exceeded baseline diesel concentrations. The CVS data suggest some variability in trap performance. The CNG bus had accumulation mode concentrations 10-100x lower than the diesel baseline but often displayed large nuclei modes, especially under CVS dilution conditions. Partly this may be explained by the lack of an oxidation catalyst on the CNG, but differences between the minidiluter and CVS size distributions suggest that dilution ratio, temperature-related wall interactions, and differences in tunnel background between the diluters contributed to creating nanoparticle concentrations that sometimes exceeded diesel baseline concentrations when driving under load. The results do not support use of CVS dilution methodology for ultrafine particle sampling, and, despite attention to collection of tunnel blanks in this study, results indicate that a protocol needs to be determined and prescribed for taking into account tunnel blank "emissions" to obtain meaningful comparisons between different technologies. Of critical importance is determining how temperature differences between tunnel blank and test cycle sampling compare in terms of background particle numbers. Total particle number concentrations for the minidiluter sampling point were not significantly different for the two alternative technologies when considering all the steady-cycle data collected. Concentrations ranged from 0.8 to 3 x 10(6) for the baseline bus operating on ultralow sulfur fuel, from 0.5 to 9 x 10(4) for the diesel bus equipped with the CRT filter, and from 1 to 8 x 10(4) particles/cc for the CNG bus.

  16. Hydrogen Learning for Local Leaders – H2L3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serfass, Patrick

    The Hydrogen Learning for Local Leaders program, H2L3, elevates the knowledge about hydrogen by local government officials across the United States. The program reaches local leaders directly through “Hydrogen 101” workshops and webinar sessions; the creation and dissemination of a unique report on the hydrogen and fuel cell market in the US, covering 57 different sectors; and support of the Hydrogen Student Design Contest, a competition for interdisciplinary teams of university students to design hydrogen and fuel cell systems based on technology that’s currently commercially available.

  17. Software-Controlled Caches in the VMP Multiprocessor

    DTIC Science & Technology

    1986-03-01

    programming system level that Processors is tuned for the VMP design. In this vein, we are interested in exploring how far the software support can go to ...handled in software, analogously to the handling agement of the shared program state is familiar and of virtual memory page faults. Hardware support for...ensure good behavior, as opposed to how Each cache miss results in bus traffic. Table 2 pro- vides the bus cost for the "average" cache miss. Fig

  18. Bus Testing Program

    DOT National Transportation Integrated Search

    1993-01-01

    The Bus Testing Program of the Federal Transit Administration was established in response to the requirements of the Surface Transportation and Uniform Relocation Assistance Act (STURAA) of 1987. Under the program, testing is required on all new mode...

  19. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Sixth Report

    DOT National Transportation Integrated Search

    2017-09-01

    This report presents results of a demonstration of fuel cell electric buses (FCEBs) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration that includes 13 advanced-d...

  20. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2008

    DOT National Transportation Integrated Search

    2008-12-01

    In September 2007, the U.S. Department of Energys (DOE) National Renewable Energy Laboratory (NREL) published a report that reviewed past and present fuel cell bus technology development and implementation in the United States. That report reviewe...

  1. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results : Fourth Report

    DOT National Transportation Integrated Search

    2015-07-04

    This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 12 advanced-...

  2. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results : Fifth Report

    DOT National Transportation Integrated Search

    2016-06-01

    This report presents results of a demonstration of fuel cell electric buses (FCEBs) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 13 advanced...

  3. Small satellites (MSTI-3) for remote sensing: pushing the limits of sensor and bus technology

    NASA Astrophysics Data System (ADS)

    Jeffrey, William; Fraser, James C.; Gobel, Richard W.; Matlock, Richard S.; Schneider, Garret L.

    1995-01-01

    The miniature sensor technology integration (MSTI) program sponsored by the United States Department of Defense (DoD) exploits advances in sensor and small satellite bus technology for theater and national missile defense. MSTI-1 and MSTI-2 were used to demonstrate the capability of the common bus and to build up the integration and management infrastructure to allow for `faster, better, cheaper' missions. MSTI-3 is the newest of the MSTI series and the first to fully exploit the developed infrastructure. Given the foundation laid down by MSTI-1 and MSTI-2, MSTI-3's mission is totally science-driven and demonstrates the quality of science possible from a small satellite in low earth orbit. The MSTI-3 satellite will achieve bus and payload performance historically attributable only to much larger satellites -- while maintaining the cost and schedule advantages inherent in small systems. The MSTI program illustrates the paradigm shift that is beginning to occur and has the mantra: `faster, better, cheaper.' The disciples of smallsat technology have adopted this mantra as a goal -- whereas the MSTI program is demonstrating its reality. The new paradigm illustrated by MSTI-3 bases its foundation on a development philosophy coined the `Three Golden Truths of Small Satellites.' First, bus and payload performance do not need to be sacrificed by a smallsat. Second, big science can be done with a smallsat. And third, a quick timeline minimizes budget exposure and increases the likelihood of a hardware program as opposed to a paper study. These themes are elaborated using MSTI-3 as an example of the tremendous potential small satellites have for making space science more affordable and accessible to a large science community.

  4. Measuring In-Cabin School Bus Tailpipe and Crankcase PM2.5: A New Dual Tracer Method.

    PubMed

    Ireson, Robert G; Ondov, John M; Zielinska, Barbara; Weaver, Christopher S; Easter, Michael D; Lawson, Douglas R; Hesterberg, Thomas W; Davey, Mark E; Liu, L-J Sally

    2011-05-01

    Exposures of occupants in school buses to on-road vehicle emissions, including emissions from the bus itself, can be substantially greater than those in outdoor settings. A dual tracer method was developed and applied to two school buses in Seattle in 2005 to quantify in-cabin fine particulate matter (PM 2.5 ) concentrations attributable to the buses' diesel engine tailpipe (DPM tp ) and crankcase vent (PM ck ) emissions. The new method avoids the problem of differentiating bus emissions from chemically identical emissions of other vehicles by using a fuel-based organometallic iridium tracer for engine exhaust and by adding deuterated hexatriacontane to engine oil. Source testing results showed consistent PM:tracer ratios for the primary tracer for each type of emissions. Comparisons of the PM:tracer ratios indicated that there was a small amount of unburned lubricating oil emitted from the tailpipe; however, virtually no diesel fuel combustion products were found in the crankcase emissions. For the limited testing conducted here, although PM ck emission rates (averages of 0.028 and 0.099 g/km for the two buses) were lower than those from the tailpipe (0.18 and 0.14 g/km), in-cabin PM ck concentrations averaging 6.8 μg/m 3 were higher than DPM tp (0.91 μg/m 3 average). In-cabin DPM tp and PM ck concentrations were significantly higher with bus windows closed (1.4 and 12 μg/m 3 , respectively) as compared with open (0.44 and 1.3 μg/m 3 , respectively). For comparison, average closed- and open-window in-cabin total PM 2.5 concentrations were 26 and 12 μg/m 3 , respectively. Despite the relatively short in-cabin sampling times, very high sensitivities were achieved, with detection limits of 0.002 μg/m 3 for DPM tp and 0.05 μg/m 3 for PM ck . [Box: see text].

  5. Measuring in-cabin school bus tailpipe and crankcase PM2.5: a new dual tracer method.

    PubMed

    Ireson, Robert G; Ondov, John M; Zielinska, Barbara; Weaver, Christopher S; Easter, Michael D; Lawson, Douglas R; Hesterberg, Thomas W; Davey, Mark E; Liu, L-J Sally

    2011-05-01

    Exposures of occupants in school buses to on-road vehicle emissions, including emissions from the bus itself, can be substantially greater than those in outdoor settings. A dual tracer method was developed and applied to two school buses in Seattle in 2005 to quantify in-cabin fine particulate matter (PM2.5) concentrations attributable to the buses' diesel engine tailpipe (DPMtp) and crankcase vent (PMck) emissions. The new method avoids the problem of differentiating bus emissions from chemically identical emissions of other vehicles by using a fuel-based organometallic iridium tracer for engine exhaust and by adding deuterated hexatriacontane to engine oil. Source testing results showed consistent PM:tracer ratios for the primary tracer for each type of emissions. Comparisons of the PM:tracer ratios indicated that there was a small amount of unburned lubricating oil emitted from the tailpipe; however, virtually no diesel fuel combustion products were found in the crankcase emissions. For the limited testing conducted here, although PMck emission rates (averages of 0.028 and 0.099 g/km for the two buses) were lower than those from the tailpipe (0.18 and 0.14 g/km), in-cabin PMck concentrations averaging 6.8 microg/m3 were higher than DPMtp (0.91 microg/m3 average). In-cabin DPMtp and PMck concentrations were significantly higher with bus windows closed (1.4 and 12 microg/m3, respectively) as compared with open (0.44 and 1.3 microg/m3, respectively). For comparison, average closed- and open-window in-cabin total PM2.5 concentrations were 26 and 12 microg/m3, respectively. Despite the relatively short in-cabin sampling times, very high sensitivities were achieved, with detection limits of 0.002 microg/m3 for DPMtp and 0.05 microg/m3 for PMck.

  6. 40 CFR 80.502 - What definitions apply for purposes of this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (h) Marine diesel engine. For the purposes of this subpart I only, marine diesel engine means a diesel engine installed on a Category 1 (C1) or Category 2 (C2) marine vessel. [69 FR 39168, June 29... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...

  7. A software bus for thread objects

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Li, Dehuai

    1995-01-01

    The authors have implemented a software bus for lightweight threads in an object-oriented programming environment that allows for rapid reconfiguration and reuse of thread objects in discrete-event simulation experiments. While previous research in object-oriented, parallel programming environments has focused on direct communication between threads, our lightweight software bus, called the MiniBus, provides a means to isolate threads from their contexts of execution by restricting communications between threads to message-passing via their local ports only. The software bus maintains a topology of connections between these ports. It routes, queues, and delivers messages according to this topology. This approach allows for rapid reconfiguration and reuse of thread objects in other systems without making changes to the specifications or source code. A layered approach that provides the needed transparency to developers is presented. Examples of using the MiniBus are given, and the value of bus architectures in building and conducting simulations of discrete-event systems is discussed.

  8. MIL-STD-1553 dynamic bus controller/remote terminal hybrid set

    NASA Astrophysics Data System (ADS)

    Friedman, S. N.

    This paper describes the performance, physical and electrical requirements of a Dual Redundant BUS Interface Unit (BIU) acting as a BUS Controller Interface Unit (BCIU) or Remote Terminal Unit (RTU) between a Motorola 68000 VME BUS and MIL-STD-1553B Multiplex Data Bus. A discussion of how the BIU Hybrid set is programmed, and operates as a BCIU or RTU, will be included. This paper will review Dynamic Bus Control and other Mode Code capabilities. The BIU Hybrid Set interfaces to a 68000 Microprocessor with a VME Bus using programmed I/O transfers. This special interface will be discussed along with the internal Dual Access Memory (4K x 16) used to support the data exchanges between the CPU and the BIU Hybrid Set. The hybrid set's physical size and power requirements will be covered. This includes the present Double Eurocard the BIU function is presently being offered on.

  9. BC Transit Fuel Cell Bus Project Evaluation Results : Second Report

    DOT National Transportation Integrated Search

    2014-09-01

    Beginning in 2009, British Columbia Transit (BC Transit) led a project to conduct a 5-year demonstration of 20 fuel cell electric buses (FCEB) in Whistler, Canada. The FCEB fleet was introduced during the 2010 Winter Olympic Games and operated throug...

  10. Fuel Cell Buses in U.S. Transit Fleets : Summary of Experiences and Current Status

    DOT National Transportation Integrated Search

    2007-09-01

    This report reviews past and present fuel cell bus technology development and implementation, specifically focusing on experiences and progress in the United States. This review encompasses results from the U.S. Department of Energy (DOE)/National Re...

  11. Alternative Fuels Data Center: Natural Gas Fuels School Buses and Refuse

    Science.gov Websites

    Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In

  12. Alternative Fuels Data Center: South Florida Fleet Fuels with Propane

    Science.gov Websites

    Alternative Fuel Use and Public Transit Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Electric Vehicles March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus in Michigan June 3

  13. Alternative Fuels Data Center: EV Battery Recycling

    Science.gov Websites

    Battery Recycling Find out how one entrepreneur is working on new uses for old plug-in electric vehicle vehicle District of Columbia's Government Fleet Uses a Wide Variety of Alternative Fuels Dec. 5, 2015 . Maryland County Fleet Uses Wide Variety of Alternative Fuels Jan. 17, 2015 Photo of a school bus

  14. Hydrogen production from bio-fuels using precious metal catalysts

    NASA Astrophysics Data System (ADS)

    Pasel, Joachim; Wohlrab, Sebastian; Rotov, Mikhail; Löhken, Katrin; Peters, Ralf; Stolten, Detlef

    2017-11-01

    Fuel cell systems with integrated autothermal reforming unit require active and robust catalysts for H2 production. Thus, an experimental screening of catalysts for autothermal reforming of commercial biodiesel fuel was performed. Catalysts consisted of a monolithic cordierite substrate, an oxide support (γ-Al2O3) and Pt, Ru, Ni, PtRh and PtRu as active phase. Experiments were run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. Fresh and aged catalysts were characterized by temperature programmed methods and thermogravimetry to find correlations with catalytic activity and stability.

  15. Bias of averages in life-cycle footprinting of infrastructure: truck and bus case studies.

    PubMed

    Taptich, Michael N; Horvath, Arpad

    2014-11-18

    The life-cycle output (e.g., level of service) of infrastructure systems heavily influences their normalized environmental footprint. Many studies and tools calculate emission factors based on average productivity; however, the performance of these systems varies over time and space. We evaluate the appropriate use of emission factors based on average levels of service by comparing them to those reflecting a distribution of system outputs. For the provision of truck and bus services where fuel economy is assumed constant over levels of service, emission factor estimation biases, described by Jensen's inequality, always result in larger-than-expected environmental impacts (3%-400%) and depend strongly on the variability and skew of truck payloads and bus ridership. Well-to-wheel greenhouse gas emission factors for diesel trucks in California range from 87 to 1,500 g of CO2 equivalents per ton-km, depending on the size and type of trucks and the services performed. Along a bus route in San Francisco, well-to-wheel emission factors ranged between 53 and 940 g of CO2 equivalents per passenger-km. The use of biased emission factors can have profound effects on various policy decisions. If average emission rates must be used, reflecting a distribution of productivity can reduce emission factor biases.

  16. Short-range evaluation of air pollution near bus and railway stations.

    PubMed

    Corfa, E; Maury, F; Segers, P; Fresneau, A; Albergel, A

    2004-12-01

    In the early morning, during workdays, intensive activity is observed at both bus and railway stations. This particular time is critical because of the combination of three factors: (1) simultaneous departure of many buses and trains, (2) cold engines, and, quite frequently, (3) stable meteorological conditions. In our approach, we use ARIA Local, a simulation package applying CFD tools to air pollution modeling, to study different scenarios. The CFD model used in this study is the MERCURE model, developed by Electricite de France. For a bus station, we simulate a typical morning peak hour situation and study in detail how the pollution is accumulated in the station courtyard and the impact on the close vicinity. Two scenarios are presented: one with classical diesel engine and one with buses using AQUAZOL or NGV fuel. The definition of the sources inside the Eulerian grid is described as static linear sources. The total emission is averaged over the mean path driven by the bus from the bus stop to the exit of the bus station. For a railway station, we simulate a situation in a real railway station within the city of Paris. The emission from a diesel "locomotive" and its impact on air quality is computed and compared to the impact of other nonmobile emissions. In this case, the definition of sources is described as mobile point sources following the trajectory of the train. These two scenarios are discussed in an urban context, taking into account the flow around buildings and different meteorological conditions.

  17. School bus pollution and changes in the air quality at schools: a case study.

    PubMed

    Li, Chunlei; Nguyen, Quyen; Ryan, Patrick H; Lemasters, Grace K; Spitz, Henry; Lobaugh, Megan; Glover, Samuel; Grinshpun, Sergey A

    2009-05-01

    Millions of children attending US schools are exposed to traffic-related air pollutants, including health-relevant ultrafine aerosols generated from school buses powered with diesel fuel. This case study was established in a midwestern (USA) metropolitan area to determine the concentration and elemental composition of aerosol in the vicinity of a public school during morning hours when the bus traffic in and out of the adjacent depot was especially intense. Simultaneous measurements were performed at a control site. The ambient aerosol was first characterized in real time using a particle size selective aerosol spectrometer and then continuously monitored at each site with a real-time non-size-selective instrument that detected particles of 20 nm to >1 microm. In addition, air samples were collected with PM2.5 Harvard Impactors and analyzed for elemental composition using the X-ray fluorescence technique (for 38 elements) and thermal-optical transmittance (for carbon). The measurements were conducted during two seasons: in March at ambient temperature around 0 degrees C and in May when it ranged mostly between 10 and 20 degrees C. The particle number concentration at the test site exhibited high temporal variability while it was time independent at the control site. Overall, the aerosol particle count at the school was 4.7 +/- 1.0 times (March) and 2.2 +/- 0.4 times (May) greater than at the control site. On some days, a 15 min-averaged particle number concentration showed significant correlation with the number of school bus arrivals and departures during these time intervals. On other days, the correlation was less than statistically significant. The 3 h time-averaged particle concentrations determined in the test site on days when the school buses operated were found to be more than two-fold greater (on average) than those measured on bus-free days at the same location, and this difference was statistically significant. Overall, the data suggest a possible association between the number of detected aerosol particles and the school bus traffic intensity. Analysis of the filter samples collected at the school site between 6:00 and 9:00 AM revealed higher concentrations of elemental carbon as compared to the control site (2.8 +/- 0.9 times in March and 3.1 +/- 1.1 times in May). The data collected in this case study suggest that school buses significantly contribute to exposure of children to aerosol pollutants (including diesel exhaust particles) in the school vicinity.

  18. Methodology for measurement of diesel particle size distributions from a city bus working in real traffic conditions

    NASA Astrophysics Data System (ADS)

    Armas, O.; Gómez, A.; Mata, C.

    2011-10-01

    The study of particulate matter (PM) and nitrogen oxides emissions of diesel engines is nowadays a necessary step towards pollutant emission reduction. For a complete evaluation of PM emissions and its size characterization, one of the most challenging goals is to adapt the available techniques and the data acquisition procedures to the measurement and to propose a methodology for the interpretation of instantaneous particle size distributions (PSD) of combustion-derived particles produced by a vehicle during real driving conditions. In this work, PSD from the exhaust gas of a city bus operated in real driving conditions with passengers have been measured. For the study, the bus was equipped with a rotating disk diluter coupled to an air supply thermal conditioner (with an evaporating tube), the latter being connected to a TSI Engine Exhaust Particle Sizer spectrometer. The main objective of this work has been to propose an alternative procedure for evaluating the influence of several transient sequences on PSD emitted by a city bus used in real driving conditions with passengers. The transitions studied were those derived from the combination of four possible sequences or categories during real driving conditions: idle, acceleration, deceleration with fuel consumption and deceleration without fuel consumption. The analysis methodology used in this work proved to be a useful tool for a better understanding of the phenomena related to the determination of PSD emitted by a city bus during real driving conditions with passengers.

  19. High pressure autothermal reforming in low oxygen environments

    NASA Astrophysics Data System (ADS)

    Reese, Mark A.; Turn, Scott Q.; Cui, Hong

    Recent interest in fuel cells has led to the conceptual design of an ocean floor, fuel cell-based, power generating station fueled by methane from natural gas seeps or from the controlled decomposition of methane hydrates. Because the dissolved oxygen concentration in deep ocean water is too low to provide adequate supplies to a fuel processor and fuel cell, oxygen must be stored onboard the generating station. A lab scale catalytic autothermal reformer capable of operating at pressures of 6-50 bar was constructed and tested. The objective of the experimental program was to maximize H 2 production per mole of O 2 supplied (H 2(out)/O 2(in)). Optimization, using oxygen-to-carbon (O 2/C) and water-to-carbon (S/C) ratios as independent variables, was conducted at three pressures using bottled O 2. Surface response methodology was employed using a 2 2 factorial design. Optimal points were validated using H 2O 2 as both a stored oxidizer and steam source. The optimal experimental conditions for maximizing the moles of H 2(out)/O 2(in) occurred at a S/C ratio of 3.00-3.35 and an O 2/C ratio of 0.44-0.48. When using H 2O 2 as the oxidizer, the moles of H 2(out)/O 2(in) increased ≤14%. An equilibrium model was also used to compare experimental and theoretical results.

  20. A tank-to-wheel analysis tool for energy and emissions studies in road vehicles.

    PubMed

    Silva, C M; Gonçalves, G A; Farias, T L; Mendes-Lopes, J M C

    2006-08-15

    Currently, oil based fuels are the primary energy source of road transport. The growing need for oil independence and CO(2) mitigation has lead to the increasing importance of alternative fuel usage. CO(2) is produced not only as the fuel is used in the vehicle (tank-to-wheel contribution), but also upstream, from the fuel extraction to the refueling station (well-to-tank contribution), and the life cycle of the fuel production (well-to-wheel contribution) must be considered in order to analyse the global impact of the fuel utilization. A road vehicle tank-to-wheel analysis tool that may be integrated with well-to-tank models was developed in the present study. The integration in a demonstration case study allowed to perform a life cycle assessment concerning the utilization of diesel and natural gas fuels in a specific network line of a bus transit company operating in the city of Porto, Portugal.

  1. Listing of New Bus Technology Applications

    DOT National Transportation Integrated Search

    1983-12-01

    The New Bus Equipment Introduction program is designed to demonstrate innovative features on transit buses and encourage the adoption of innovative features that enhance productivity. New bus demonstrations and purchases have been catalogued for the ...

  2. Alternative Fuels Data Center: Baton Rouge School District Adds Propane

    Science.gov Websites

    Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus Michigan Transports Students Vehicles June 8, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Alternative Fuels Oct. 16, 2010 Propane Buses Save Money for Virginia Schools Feb. 25, 2010 MedCorp Fuels

  3. Alternative Fuels Data Center: Boston Public Schools Moves to Propane

    Science.gov Websites

    Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus to Alternative Fuel Vehicles June 8, 2012 Natural Gas School Buses Help Kansas City Save Money Nov National Park Commits to Alternative Fuels Oct. 16, 2010 Propane Buses Save Money for Virginia Schools Feb

  4. Alternative Fuels Data Center: San Diego Leads in Promoting EVs

    Science.gov Websites

    of a school bus Michigan Transports Students in Hybrid Electric School Buses Jan. 4, 2014 Photo of San Diego Leads in Promoting EVs to someone by E-mail Share Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Facebook Tweet about Alternative Fuels Data Center: San Diego Leads in

  5. Method for in-use measurement and evaluation of the activity, fuel use, electricity use, and emissions of a plug-in hybrid diesel-electric school bus.

    PubMed

    Choi, Hyung-Wook; Frey, H Christopher

    2010-05-01

    The purpose of this study is to demonstrate a methodology for characterizing at high resolution the energy use and emissions of a plug-in parallel-hybrid diesel-electric school bus (PHSB) to support assessments of sensitivity to driving cycles and comparisons to a conventional diesel school bus (CDSB). Data were collected using onboard instruments for a first-of-a-kind prototype PHSB and a CDSB of the same chassis and engine, operated on actual school bus routes. The engine load was estimated on the basis of vehicle specific power (VSP) and an empirically derived relationship between VSP and engine manifold absolute pressure (MAP). VSP depends on speed, acceleration, and road grade. For the PHSB, the observed electrical discharge or recharge to the traction motor battery was characterized on the basis of VSP. The energy use and emission rates of the PHSB from tailpipe and electricity use were estimated for five real-world driving cycles and compared to the engine fuel use and emissions of the CDSB. The PHSB had the greatest advantage on arterial routes and less advantage on highway or local routes. The coupled VSP-MAP modeling approach enables assessment of a wide variety of driving conditions and comparisons of vehicles with different propulsion technologies.

  6. Characterization of real gas properties for space shuttle main engine fuel turbine and performance calculations

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.

    1986-01-01

    Real thermodynamic and transport properties of hydrogen, steam, the SSME mixture, and air are developed. The SSME mixture properties are needed for the analysis of the space shuttle main engine fuel turbine. The mixture conditions for the gases, except air, are presented graphically over a temperature range from 800 to 1200 K, and a pressure range from 1 to 500 atm. Air properties are given over a temperature range of 320 to 500 K, which are within the bounds of the thermodynamics programs used, in order to provide mixture data which is more easily checked (than H2/H2O). The real gas property variation of the SSME mixture is quantified. Polynomial expressions, needed for future computer analysis, for viscosity, Prandtl number, and thermal conductivity are given for the H2/H2O SSME fuel turbine mixture at a pressure of 305 atm over a range of temperatures from 950 to 1140 K. These conditions are representative of the SSME turbine operation. Performance calculations are presented for the space shuttle main engine (SSME) fuel turbine. The calculations use the air equivalent concept. Progress towards obtaining the capability to evaluate the performance of the SSME fuel turbine, with the H2/H2O mixture, is described.

  7. Alternative Energy Busing

    ERIC Educational Resources Information Center

    LaFee, Scott

    2012-01-01

    In recent years, school districts have converted portions of their bus fleets to cleaner-burning, sometimes cheaper, alternative fossil fuels, such as compressed natural gas or propane. Others have adopted biodiesel, which combines regular diesel with fuel derived from organic sources, usually vegetable oils or animal fats. The number of biodiesel…

  8. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration : First Results Report

    DOT National Transportation Integrated Search

    2011-08-01

    In response to the California Air Resources Board (CARB) rule for transit agencies in the state, five San Francisco Bay Area transit agencies have joined together to demonstrate the largest fleet of fuel cell buses in the United States. The Zero Emis...

  9. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fourteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting January 1, 2004 and ending March 31, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale shakedown and performance testing, program management and technology transfer.« less

  10. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on Aspen Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the third annual technical progress report for the UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending September 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, bench-scale experimental testing, process modeling, pilot-scale system design and assembly, and program management.« less

  11. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the thirteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL under Contract No. DE-FC26-00FT40974. This report summarizes program accomplishments for the period starting October 1, 2003 and ending December 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, pilot-scale demonstration and program management and technology transfer.« less

  12. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program has determined the feasibility of the integrated UFP technology through pilot-scale testing, and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrated experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fifteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting April 1, 2004 and ending June 30, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale testing, kinetic modeling, program management and technology transfer.« less

  13. Design, development, and evaluation of truck and bus driver wellness programs

    DOT National Transportation Integrated Search

    2000-06-01

    In May 1997, the Federal Motor Carrier Safety Administration (FMCSA) began a research project to design, develop, and evaluate a model truck and bus driver wellness program. This wellness program was developed to provide a resource for addressing tru...

  14. Survey of transit bus maintenance programs in Virginia.

    DOT National Transportation Integrated Search

    1981-01-01

    Transit bus maintenance practices as used by thirteen small and medium-sized transit systems in Virginia were cataloged. Different approaches to maintenance were investigated and the current condition of transit bus maintenance was determined. Factor...

  15. Traffic safety facts 1993 : school buses

    DOT National Transportation Integrated Search

    1994-01-01

    A school bus-related crash is a crash which involves, either directly or indirectly, a school bus-type vehicle, or a vehicle functioning as a school bus, transporting children to or from school or school-related activities. Since 1983, 1,572 people h...

  16. Traffic safety facts 1995 : school buses

    DOT National Transportation Integrated Search

    1996-01-01

    A school bus-related crash is a crash which involves, either directly or indirectly, a school bus-type vehicle, or a vehicle functioning as a school bus, transporting children to or from school or school-related activities. Since 1985, 1,478 people h...

  17. Traffic safety facts 1994 : school buses

    DOT National Transportation Integrated Search

    1995-01-01

    A school bus-related crash is a crash which involves, either directly or indirectly, a school bus-type vehicle, or a vehicle functioning as a school bus, transporting children to or from school or school-related activities. Since 1984, 1,517 people h...

  18. Traffic safety facts 2000 : school buses

    DOT National Transportation Integrated Search

    2001-01-01

    A school bus-related crash is a crash which involves, either directly or indirectly, a school bus-type vehicle, or a vehicle functioning as a school bus, transporting children to or from school or school-related activities. Since 1990, 1,450 people h...

  19. Traffic safety facts 1996 : school buses

    DOT National Transportation Integrated Search

    1997-01-01

    A school bus-related crash is a crash which involves, either directly or indirectly, a school bus-type vehicle, or a vehicle functioning as a school bus, transporting children to or from school or school-related activities. Since 1986, 1,458 people h...

  20. Traffic safety facts 1998 : school buses

    DOT National Transportation Integrated Search

    1999-01-01

    A school bus-related crash is a crash which involves, either directly or indirectly, a school bus-type vehicle, or a vehicle functioning as a school bus, transporting children to or from school or school-related activities. Since 1988, 1,409 people h...

  1. Traffic safety facts 1999 : school buses

    DOT National Transportation Integrated Search

    2000-01-01

    A school bus-related crash is a crash which involves, either directly or indirectly, a school bus-type vehicle, or a vehicle functioning as a school bus, transporting children to or from school or school-related activities. Since 1989, 1,445 people h...

  2. Bus Rapid Transit Demonstration Program

    DOT National Transportation Integrated Search

    1998-12-31

    This report was prepared by the Federal Transit Administration's (FTA) Office of Research, Demonstration and Innovation. It describes the FTA's Bus Rapid Transit Demonstration Program, designed to provide funding and support to transit agencies engag...

  3. Effect of Variation of Speed Limits on Intercity Bus Fuel Consumption, Coach and Driver Utilization, and Corporate Profitability

    DOT National Transportation Integrated Search

    1975-11-01

    The effect of speed limit and passenger load on fuel consumption was determined using actual intercity buses with simulated passenger loads over different types of terrain. In addition to road tests, laboratory type measurements were made on four int...

  4. 76 FR 37309 - Parts and Accessories Necessary for Safe Operation; Application for Exemption From the Natural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ... self-addressed, stamped envelope or postcard or print the acknowledgement page that appears after... vehicle fuel systems using compressed natural gas, and applies to passenger cars, multipurpose passenger... vehicle fuel containers, and applies to each passenger car, multipurpose passenger vehicle, truck, and bus...

  5. Alternative Fuels Data Center: Latest Additions

    Science.gov Websites

    . May 2018 Foothill Transit Agency Battery Electric Bus Progress Report, Data Period Focus: Jan. 2017 Utility Vehicles Autonomy-Enabled Fuel Savings for Military Vehicles: Report on 2016 Aberdeen Test Center Report 2016 Survey of Non-Starch Alcohol and Renewable Hydrocarbon Biofuels Producers Ethanol Strong

  6. East Tennessee Hydrogen Initiative: Task II - Transition of Bus Transit to Hydrogen: A Case Study of a Medium Sized Transit Agency

    DOT National Transportation Integrated Search

    2010-12-01

    The current climate crisis and recent world events, including a global economic crisis and growing concerns over the availability and cost of petroleum fuels, has sparked a global interest in developing alternative, sustainable, clean fuel technologi...

  7. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Gikakis, Christina

    2013-12-01

    This report is the seventh in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The report also provides a snapshot of current FCEB performance results from August 2012 through July 2013 for five FCEB demonstrations at four transit agencies.

  8. Chattanooga SmartBus Project : phase III evaluation report

    DOT National Transportation Integrated Search

    2009-12-01

    This report presents the results of Phase III of the national evaluation of the Chattanooga Area Regional Transportation Authoritys (CARTA) SmartBus Project. The SmartBus Project is a comprehensive transit ITS program for the city of Chattanooga, ...

  9. COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowell, D.; Parsley, W.; Bush,C

    2003-08-24

    Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particlemore » number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.« less

  10. Avionic Data Bus Integration Technology

    DTIC Science & Technology

    1991-12-01

    address the hardware-software interaction between a digital data bus and an avionic system. Very Large Scale Integration (VLSI) ICs and multiversion ...the SCP. In 1984, the Sperry Corporation developed a fault tolerant system which employed multiversion programming, voting, and monitoring for error... MULTIVERSION PROGRAMMING. N-version programming. 226 N-VERSION PROGRAMMING. The independent coding of a number, N, of redundant computer programs that

  11. Polymer electrolyte fuel cells for transportation applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, T.E.; Wilson, M.S.; Garzon, F.H.

    1993-01-01

    The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received incrming attention during the last few years. This increased attention has been fueled by a combination of significant technical advances in this field and by the initiation of some projects for the demonstration of a complete, PEFC-based power system in a bus or in a passenger car. Such demonstration pretieds reflect an increased faith of industry in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential Nevertheless, large scalemore » transportation applications of PEFCs requim a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve cost effective, highly performing PEFC stack and power system. We describe in this contribution some recent results of work performed within the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed transportation applications of PEFCs.« less

  12. Polymer electrolyte fuel cells for transportation applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, T.E.; Wilson, M.S.; Garzon, F.H.

    1993-03-01

    The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received incrming attention during the last few years. This increased attention has been fueled by a combination of significant technical advances in this field and by the initiation of some projects for the demonstration of a complete, PEFC-based power system in a bus or in a passenger car. Such demonstration pretieds reflect an increased faith of industry in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential Nevertheless, large scalemore » transportation applications of PEFCs requim a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve cost effective, highly performing PEFC stack and power system. We describe in this contribution some recent results of work performed within the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed transportation applications of PEFCs.« less

  13. The Status of Spacecraft Bus and Platform Technology Development under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultralightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These inspace propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  14. The status of spacecraft bus and platform technology development under the NASA ISPT program

    NASA Astrophysics Data System (ADS)

    Anderson, D. J.; Munk, M. M.; Pencil, E.; Dankanich, J.; Glaab, L.; Peterson, T.

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN& C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultra-lightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicabilit- to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  15. The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John; Glaab, Louis J.

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) and 3) electric propulsion. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  16. A program downloader and other utility software for the DATAC bus monitor unit

    NASA Technical Reports Server (NTRS)

    Novacki, Stanley M., III

    1987-01-01

    A set or programs designed to facilitate software testing on the DATAC Bus Monitor is described. By providing a means to simplify program loading, firmware generation, and subsequent testing of programs, the overhead involved in software evaluation is reduced and that time is used more productively in performance, analysis and improvement of current software.

  17. Empirical investigation of topological and weighted properties of a bus transport network from China

    NASA Astrophysics Data System (ADS)

    Shu-Min, Feng; Bao-Yu, Hu; Cen, Nie; Xiang-Hao, Shen; Yu-Sheng, Ci

    2016-03-01

    Many bus transport networks (BTNs) have evolved into directed networks. A new representation model for BTNs is proposed, called directed-space P. The bus transport network of Harbin (BTN-H) is described as a directed and weighted complex network by the proposed representation model and by giving each node weights. The topological and weighted properties are revealed in detail. In-degree and out-degree distributions, in-weight and out-weight distributions are presented as an exponential law, respectively. There is a strong relation between in-weight and in-degree (also between out-weight and out-degree), which can be fitted by a power function. Degree-degree and weight-weight correlations are investigated to reveal that BTN-H has a disassortative behavior as the nodes have relatively high degree (or weight). The disparity distributions of out-degree and in-degree follow an approximate power-law. Besides, the node degree shows a near linear increase with the number of routes that connect to the corresponding station. These properties revealed in this paper can help public transport planners to analyze the status quo of the BTN in nature. Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA110304).

  18. Montana intercity bus service study.

    DOT National Transportation Integrated Search

    2011-12-01

    Intercity bus service funding from the Federal Transit Administration (FTAs) Section 5311(f) program is a part : of the larger 5311 program known as Formula Grants for Other than Urbanized Areas. The S.5311(f), requires : that 15% of the total 531...

  19. Measuring self-pollution in school buses using a tracer gas technique

    NASA Astrophysics Data System (ADS)

    Behrentz, Eduardo; Fitz, Dennis R.; Pankratz, David V.; Sabin, Lisa D.; Colome, Steven D.; Fruin, Scott A.; Winer, Arthur M.

    A potentially important, but inadequately studied, source of children's exposure to pollutants during school bus commutes is the introduction of a bus's own exhaust into the passenger compartment. We developed and applied a method to determine the amount of a bus's own exhaust penetrating into the cabin in a study of six in-use school buses over a range of routes, roadway types, fuels, and emission control technologies. A tracer gas, SF 6, was metered into the bus's exhaust system using a mass flow controller whose flow rate was logged by a data acquisition system and processed with the concurrent real-time pollutant measurement data. At the same time, the SF 6 concentration inside the bus was measured using an AeroVironment CTA-1000 continuous analyzer connected to a series of solenoids that switched the sample inlet between the front and rear of the bus cabin. To account for a baseline drift of the CTA-1000, SF 6-free air was also drawn through a line located outside at the front of the bus. Although this third sample line generally provided a reference zero value, it also showed that under certain wind conditions (i.e., wind from the rear) when the bus was stopped and was idling, significant amounts of the bus's own exhaust reached this location at the front of the bus. Self-pollution, the percentage of a bus's own exhaust that can be found inside its cabin, was a function of bus type and age, and a strong function of window position (i.e., open or closed). We estimated up to 0.3% of the air inside the cabin was from the bus's own exhaust in older buses, approximately 10 times the percentage observed for newer buses, and 25% of the black carbon concentration variance was explained by the buses' self-pollution. Analysis of the tracer gas concentrations provided a powerful tool for identifying potentially high-exposure conditions.

  20. Alternative Fuels Data Center: Smart Car Shopping

    Science.gov Websites

    vehicle charging stations. Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Natural Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus in Michigan June 3

  1. Alternative Fuels Data Center

    Science.gov Websites

    , certain buses, or commercial vehicles that are powered by an alternative fuel, if the vehicles obtain an (GVW) Type of Vehicle Decal Fee 18,000 pounds (lbs.) or less Passenger, School Bus, or Commercial $75 vehicles, buses, or commercial motor vehicles that are powered by compressed natural gas (CNG), liquefied

  2. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas.

    PubMed

    Jalava, Pasi I; Aakko-Saksa, Päivi; Murtonen, Timo; Happo, Mikko S; Markkanen, Ari; Yli-Pirilä, Pasi; Hakulinen, Pasi; Hillamo, Risto; Mäki-Paakkanen, Jorma; Salonen, Raimo O; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2012-09-29

    One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used - rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590 + cat or 100% HVO. The emission PM sample from the CNG bus possessed the weakest genotoxic potency but had the strongest oxidative potency of all the fuel and catalyst combinations. The use of 100% HVO fuel had slightly weaker and 100% RME somewhat stronger emission PM induced ROS production, when compared to EN590. The harmfulness of the exhaust emissions from vehicle engines cannot be determined merely on basis of the emitted PM mass. The study conditions and the engine type significantly affect the toxicity of the emitted particles. The selected fuels and DOC + POC catalyst affected the PM emission from the heavy EURO IV engine both qualitative and quantitative ways, which influenced their toxicological characteristics. The plain HVO fuel performed very well in emission reduction and in lowering the overall toxicity of emitted PM, but the 30% blend of HVO in EN590 was no better in this respect than the plain EN590. The HVO with a DOC + POC catalyst in the EURO IV engine, performed best with regard to changes in exhaust emissions. However some of the toxicological parameters were significantly increased even with these low emissions.

  3. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas

    PubMed Central

    2012-01-01

    Background One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used − rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. Results High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590 + cat or 100% HVO. The emission PM sample from the CNG bus possessed the weakest genotoxic potency but had the strongest oxidative potency of all the fuel and catalyst combinations. The use of 100% HVO fuel had slightly weaker and 100% RME somewhat stronger emission PM induced ROS production, when compared to EN590. Conclusions The harmfulness of the exhaust emissions from vehicle engines cannot be determined merely on basis of the emitted PM mass. The study conditions and the engine type significantly affect the toxicity of the emitted particles. The selected fuels and DOC + POC catalyst affected the PM emission from the heavy EURO IV engine both qualitative and quantitative ways, which influenced their toxicological characteristics. The plain HVO fuel performed very well in emission reduction and in lowering the overall toxicity of emitted PM, but the 30% blend of HVO in EN590 was no better in this respect than the plain EN590. The HVO with a DOC + POC catalyst in the EURO IV engine, performed best with regard to changes in exhaust emissions. However some of the toxicological parameters were significantly increased even with these low emissions. PMID:23021308

  4. 40 CFR 86.348-79 - Alternative to fuel H/C analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission... average H/C ratios are used for all calculations. (1) #1B1 Diesel: 1:93 (2) #1B2 Diesel: 1:80 (3) Gasoline...

  5. PORE STRUCTURE OF SOOT DEPOSITS FROM SEVERAL COMBUSTION SOURCES. (R825303)

    EPA Science Inventory

    Abstract

    Soot was harvested from five combustion sources: a dodecane flame, marine and bus diesel engines, a wood stove, and an oil furnace. The soots ranged from 20% to 90% carbon by weight and molar C/H ratios from 1 to 7, the latter suggesting a highly condensed aro...

  6. Changes in baseline concussion assessment scores following a school bus crash.

    PubMed

    Poland, Kristin M; McKay, Mary Pat; Zonfrillo, Mark R; Barth, Thomas H; Kaminski, Ronald

    2016-09-01

    The objective of this article is to present concussion assessment data for 30 male athletes prior to and after being involved in a large school bus crash. The athletes on the bus, all male and aged 14-18 years, were participants in their school's concussion management program that included baseline and postinjury testing using Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT). This case study described changes in concussion assessment scores for 30 male athletes following a primarily frontal school bus crash. Data from the school's concussion management program, including baseline test data and postinjury assessment data, were reviewed. Athletes who required multiple postinjury assessments by the program were identified as having had significant cognitive changes as a result of the bus crash. Twenty-nine of 30 athletes were injured. One had lumbar compression fractures; others had various lacerations, abrasions, contusions, sprains, and nasal fractures. ImPACT data (postcrash) were available for all 30 athletes and 28 had available precrash baseline data. A total of 16 athletes (53.3%) had significant cognitive changes indicated by changes in their concussion assessment scores, some of which took months to improve. This case study highlights a unique opportunity to evaluate concussion assessment data from 30 male athletes involved in a high-speed school bus crash. Further, these data provide additional insight into assessing the effectiveness of current school bus occupant protection systems.

  7. Installation of Ohio's First Electrolysis-Based Hydrogen Fueling Station

    NASA Technical Reports Server (NTRS)

    Scheidegger, Brianne T.; Lively, Michael L.

    2012-01-01

    This paper describes progress made towards the installation of a hydrogen fueling station in Northeast Ohio. In collaboration with several entities in the Northeast Ohio area, the NASA Glenn Research Center is installing a hydrogen fueling station that uses electrolysis to generate hydrogen on-site. The installation of this station is scheduled for the spring of 2012 at the Greater Cleveland Regional Transit Authority s Hayden bus garage in East Cleveland. This will be the first electrolysis-based hydrogen fueling station in Ohio.

  8. Trim Transportation Fuel Costs.

    ERIC Educational Resources Information Center

    Black, J. Dickson

    1982-01-01

    The change from gasoline power to compressed natural gas for 34 school buses in Bentonville (Arkansas) has saved the school district money, reduced its maintenance needs, and increased bus safety. (MLF)

  9. A qualitative analysis of bus simulator training on transit incidents : a case study in Florida.

    DOT National Transportation Integrated Search

    2013-06-01

    The purpose of this research was to track and observe three Florida public transit agencies as they incorporated and integrated computer-based transit bus simulators into their existing bus operator training programs. In addition to the three Florida...

  10. Commuters' exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route.

    PubMed

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-06-01

    Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. The aim of our study was to assess differences in commuters' exposure to traffic-related air pollution related to transport mode, route, and fuel type. We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter

  11. Hybrid Electric Transit Bus

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A.

    1997-01-01

    A government, industry, and university cooperative is developing an advanced hybrid electric city transit bus. Goals of this effort include doubling the fuel economy compared to current buses and reducing emissions to one-tenth of current EPA standards. Unique aspects of the vehicle's power system include the use of ultra-capacitors as an energy storage system, and a planned natural gas fueled turbogenerator developed from a small jet engine. Power from both the generator and energy storage system is provided to a variable speed electric motor attached to the rear axle. At over 15000 kg gross weight, this is the largest vehicle of its kind ever built using ultra-capacitor energy storage. This paper describes the overall power system architecture, the evolution of the control strategy, and its performance over industry standard drive cycles.

  12. NASA's Involvement in Technology Development and Transfer: The Ohio Hybrid Bus Project

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A.

    1997-01-01

    A government and industry cooperative is using advanced power technology in a city transit bus that will offer double the fuel economy, and reduce emissions to one tenth of government standards. The heart of the vehicle's power system is a natural gas fueled generator unit. Power from both the generator and an advanced energy storage system is provided to a variable speed electric motor attached to the rear drive axle. A unique aspect of the vehicle's design is its use of "super" capacitors for recovery of energy during braking. This is the largest vehicle ever built using this advanced energy recovery technology. This paper describes the project goals and approach, results of its system performance modeling, and the status of the development team's effort.

  13. Overview of drug and alcohol use among large truck and bus drivers, 2011–13.

    DOT National Transportation Integrated Search

    2016-12-01

    This report provides a broad overview of drug and alcohol usage among large truck and bus drivers for 201113. Data sources for the overview are: testing results from motor carrier drug testing programs, roadside inspections on large trucks and bus...

  14. Alternate Fuel Cycle Technologies/Thorium Fuel Cycle Technology Programs. Quarterly report for period 1 April--30 June 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondra, B.L.

    1978-08-01

    Voloxidation and dissolution studies: rotary-kiln heat-transfer tests are under way using a small rotary kiln along with the development of a mathematical model to determine kiln-heat-flux profiles necessary to maintain a desired temperature gradient. The erosion/corrosion test for evaluating materials of construction is operational. Fuel from a BWR (Big Rock Point) yielded more fine solid residue on dissolution than in previous tests with PWR fuel. Two additional parametric voloxidation tests with H.B. Robinson fuel compared air vs pure oxygen atmospheres at 550{sup 0}C; overall tritium release and subsequent fuel dissolution were equivalent. Thorium dissolution studies: the dissolution rate of thoriamore » in fluoride-catalyzed 8 to 14 M HNO{sub 3} (100{sup 0}C) was max between 0.04 to 0.06 M HF; at higher fluoride concentrations, ThF{sub 4}.5H{sub 2}O precipitated. The rate of zircaloy dissolution continued to increase with increasing fluoride concentration. Stainless-steel-clad (Th,U)0{sub 2} fuel rods irradiated in the NRX reactor were sheared, voloxidized, and dissolved. {le}10% of the tritium was released during voloxidation in air at 600{sup 0}C. Carbon-14 removal from off-gas and fixation: carbon dioxide removal with Linde 13X molecular sieves to less than 100 ppB was experimentally verified using 300 ppM CO in air. Decontamination factors from 3000 to 7500 were obtained for CO{sub 2} removal in the gas-slurry stirred-tank reactor with CA(OH){sub 2}.or Ba(0H){sub 2}/sup .8H2O./. With Ba(OH){sub 2}.H{sub 2}0{sup 2} in a fixed-bed column, decontamination factors of about 30,000 were obtained.« less

  15. An Exploratory Research and Development Program Leading to Specifications for Aviation Turbine Fuel from Whole Crude Shale Oil. Part V.

    DTIC Science & Technology

    1982-03-01

    Velocity LP Linear Program LP Sep Low Pressure Separator Mo Molybdenum N2 Nitrogen Gas NA Not Available NH3 Ammonia Gas xiv LIST OF SYMBOLS AND...part, is present as heterocyclic compounds. It is reduced to ammonia and re- moved as such or the heterocyclic compounds are saturated to basic nitro...the carbon-nitrogen bond and then removing the nitrogen from the amine as ammonia .(4) -2- ------- C5HI 1 NH2 +H2 -5l H . - 2C5H2 + NH3 N N H It can be

  16. Alternative Fuels Data Center: Indiana Sanitation Department Plans to

    Science.gov Websites

    Money With Propane Vans Feb. 1, 2014 Photo of a school bus Michigan Transports Students in Hybrid Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In

  17. Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas

    Science.gov Websites

    reduce petroleum use and save money. For information about this project, contact Eastern Pennsylvania Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus Michigan Transports Students Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels

  18. 77 FR 71865 - Over-the-Road Bus Accessibility Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Over-the-Road Bus Accessibility Grant... selection of projects to be funded under Fiscal Year (FY) 2012 appropriations for the Over-the-Road Bus...-road buses to help finance the incremental capital and training costs of complying with DOT's over-the...

  19. 76 FR 8811 - FTA Fiscal Year 2011 Apportionments, Allocations and Program Information: Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... Apportionments) and Table 10 (Prior Year Unobligated Section 5309 Bus and Bus Related Equipment and Facilities... DEPARTMENT OF TRANSPORTATION Federal Transit Administration FTA Fiscal Year 2011 Apportionments... titled ``FTA Fiscal Year 2011 Apportionments, Allocations and Program Information.'' FOR FURTHER...

  20. 77 FR 6172 - Discretionary Bus and Bus Facilities Program and National Research Program Funds.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... Interagency Coordinating Council on Access and Mobility's (Coordinating Council or CCAM) Veterans... of the U.S. Department of Transportation (DOT) through March 31, 2012, and provides contract... coordination and simplified customer access priorities established by the Coordinating Council's partnership...

  1. Hydrogen Fuel Cell Engines and Related Technologies

    NASA Astrophysics Data System (ADS)

    2001-12-01

    The Hydrogen Fuel Cell Engines and Related Technologies report documents the first training course ever developed and made available to the transportation community and general public on the use hydrogen fuel cells in transportation. The course is designed to train a new generation of technicians in gaining a more complete understanding of the concepts, procedures, and technologies involved with hydrogen fuel cell use in transportation purposes. The manual contains 11 modules (chapters). The first eight modules cover (1) hydrogen properties, use and safety; and (2) fuel cell technology and its systems, fuel cell engine design and safety, and design and maintenance of a heavy duty fuel cell bus engine. The different types of fuel cells and hybrid electric vehicles are presented, however, the system descriptions and maintenance procedures focus on proton-exchange-membrane (PEM) fuel cells with respect to heavy duty transit applications. Modules 9 and 10 are intended to provide a better understanding of the acts, codes, regulations and guidelines concerning the use of hydrogen, as well as the safety guidelines for both hydrogen maintenance and fueling facilities. Module 11 presents a glossary and conversions.

  2. Design of a CAN bus interface for photoelectric encoder in the spaceflight camera

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Wan, Qiu-hua; She, Rong-hong; Zhao, Chang-hai; Jiang, Yong

    2009-05-01

    In order to make photoelectric encoder usable in a spaceflight camera which adopts CAN bus as the communication method, CAN bus interface of the photoelectric encoder is designed in this paper. CAN bus interface hardware circuit of photoelectric encoder consists of CAN bus controller SJA 1000, CAN bus transceiver TJA1050 and singlechip. CAN bus interface controlling software program is completed in C language. A ten-meter shield twisted pair line is used as the transmission medium in the spaceflight camera, and speed rate is 600kbps.The experiments show that: the photoelectric encoder with CAN bus interface which has the advantages of more reliability, real-time, transfer rate and transfer distance overcomes communication line's shortcomings of classical photoelectric encoder system. The system works well in automatic measuring and controlling system.

  3. Coal derived fuel gases for molten carbonate fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-11-01

    Product streams from state-of-the-art and future coal gasification systems are characterized to guide fuel cell program planners and researchers in establishing performance goals and developing materials for molten carbonate fuel cells that will be compatible with gasifier product gases. Results are presented on: (1) the range of gasifier raw-gas compositions available from the major classes of coal gasifiers; (2) the degree of gas clean-up achievable with state-of-the-art and future gas clean-up systems; and (3) the energy penalties associated with gas clean-up. The study encompasses fixed-bed, fluid-bed, entrained-bed, and molten salt gasifiers operating with Eastern bituminous and Western subbituminous coals. Gasifiersmore » operating with air and oxygen blowing are evaluated, and the coal gasification product streams are characterized with respect to: (1) major gas stream constituents, e.g., CO, H/sub 2/, CO/sub 2/, CH/sub 4/, N/sub 2/, H/sub 2/O; (2) major gas stream contaminants, e.g., H/sub 2/S, COS, particulates, tars, etc.; and (3) trace element contaminants, e.g., Na, K, V, Cl, Hg, etc.« less

  4. Small Explorer Data System MIL-STD-1773 fiber optic bus

    NASA Technical Reports Server (NTRS)

    Flanegan, Mark; Label, Ken

    1992-01-01

    The MIL-STD-1773 Fiber Optic Data Bus as implemented in the GSFC Small Explorer Data System (SEDS) for the Small Explorer Program is described. It provides an overview of the SEDS MIL-STD-1773 bus components system design considerations, reliability figures, acceptance and qualification testing requirements, radiation requirements and tests, error handling considerations, and component heritage. The first mission using the bus will be launched in June of 1992.

  5. 77 FR 48592 - Bus and Bus Facilities Discretionary Program Funds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... to award the funds for capital investments aimed at replacing or rehabilitating transit... (DOT) Federal Transit Administration (FTA) announces the selection of capital projects for the State of... Facilities Program funds. As outlined in the NOFA, the Section 5309 funds would be awarded for capital...

  6. 76 FR 18066 - Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 80 Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program CFR Correction In Title 40 of the Code of Federal Regulations, Parts 72 to 80, revised as of July 1, 2010, on page 1160, in Sec. 80.1466, in paragraph (h)(1), the equation is...

  7. Bus Propulsion Alternatives Overview

    DOT National Transportation Integrated Search

    1982-04-01

    The Urban Mass Transportation Administration (UMTA) is currently investigating propulsion alternatives which would conserve petroleum-based fuels and would be practical for use by U.S. transit operators. A discussion of these alternatives (electric p...

  8. 49 CFR 665.11 - Testing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... braking performance, Structural Integrity, Fuel Economy, Noise, and Emissions; (c) If the new bus model... testing facility shall develop a test plan for the testing of vehicles at the facility. The test plan...

  9. Program Guide for Diesel Engine Mechanics 8742000 (IN47.060500) and Heavy Duty Truck and Bus Mechanics DIM0991 (IN47.060501).

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Coll. of Education.

    This competency-based program guide provides course content information and procedures for secondary schools, postsecondary vocational schools, and community colleges in Florida that conduct programs in diesel engine mechanics and heavy duty truck and bus mechanics. The first section is on legal authority, which applies to all vocational education…

  10. Design of belt conveyor electric control device based on CC-link bus

    NASA Astrophysics Data System (ADS)

    Chen, Goufen; Zhan, Minhua; Li, Jiehua

    2016-01-01

    In view of problem of the existing coal mine belt conveyor is no field bus communication function, two levels belt conveyor electric control system design is proposed based on field bus. Two-stage belt conveyor electric control system consists of operation platform, PLC control unit, various sensors, alarm device and the water spraying device. The error protection is realized by PLC programming, made use of CC-Link bus technology, the data share and the cooperative control came true between host station and slave station. The real-time monitor was achieved by the touch screen program. Practical application shows that the system can ensure the coalmine production, and improve the automatic level of the coalmine transport equipment.

  11. Reducing transit bus emissions: Alternative fuels or traffic operations?

    NASA Astrophysics Data System (ADS)

    Alam, Ahsan; Hatzopoulou, Marianne

    2014-06-01

    In this study, we simulated the operations and greenhouse gas (GHG) emissions of transit buses along a busy corridor and quantified the effects of two different fuels (conventional diesel and compressed natural gas) as well as a set of driving conditions on emissions. Results indicate that compressed natural gas (CNG) reduces GHG emissions by 8-12% compared to conventional diesel, this reduction could increase to 16% with high levels of traffic congestion. However, the benefits of switching from conventional diesel to CNG are less apparent when the road network is uncongested. We also investigated the effects of bus operations on emissions by applying several strategies such as transit signal priority (TSP), queue jumper lanes, and relocation of bus stops. Results show that in congested conditions, TSP alone can reduce GHG emissions by 14% and when combined with improved technology; a reduction of 23% is achieved. The reduction benefits are even more apparent when other transit operational improvements are combined with TSP. Finally a sensitivity analysis was performed to investigate the effect of operational improvements on emissions under varying levels of network congestion. We observe that under “extreme congestion”, the benefits of TSP decrease.

  12. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results. Fourth Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew

    This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 12 advanced-design fuel cell buses and two hydrogen fueling stations. The FCEBs in service at AC Transit are 40-foot, low-floor buses built by Van Hool with a hybrid electric propulsion system that includes a US Hybrid fuel cell power system and EnerDel lithium-based energy storage system. The buses began revenue service in May 2010.

  13. Fuel Cell Demonstration Project at a Sunline Transit Agency

    NASA Astrophysics Data System (ADS)

    Hsiung, S.

    2001-09-01

    This is the final report summarizing the Fuel Cell Demonstration Project activities of the XCELLSIS Zebus (zero emissions bus) performance at the SunLine Transit Agency in Thousand Palms, California. Under this demonstration project, SunLine participated with XCELLSIS in the fueling, training, operating, and testing of this prototype fuel cell bus. The report presents a summary of project activities, including the results of the 13-month test of the XCELLSIS Zebus performance at SunLine Transit. This final report includes data relating to Zebus performance, along with the successes achieved beyond the technical realm. The study concludes that the project was very useful in establishing operating parameters and environmental testing in extreme heat conditions and in transferring technology to a transit agency. At the end of the 13-month test period, the Zebus ran flawlessly in the Michelin Challenge Bibendum from Los Angeles to Las Vegas, a 275-mile trek. SunLine refueled the Zebus in transit to Baker, California, 150 miles from its home base. Everyone who encountered or rode the Zebus was impressed with its smoothness, low engine noise, and absence of emissions. The study states that the future for the Zebus looks very bright. Fuel cell projects are anticipated to continue in California and Europe with the introduction new buses equipped with Ballard P5 and other fuel cell engines as early as the first half of 2003.

  14. Pilot Evaluation of a Walking School Bus Program in a Low-Income Urban Community

    USDA-ARS?s Scientific Manuscript database

    To evaluate the impact of a walking school bus (WSB) program on the proportion of students walking to school in a low-income, urban neighborhood, we conducted a controlled, quasi-experimental trial in urban, socioeconomically disadvantaged, public elementary schools (one intervention and two control...

  15. Pilot evaluation of a walking school bus program in a low-income, urban community

    USDA-ARS?s Scientific Manuscript database

    Our objective was to evaluate the impact of a walking school bus (WSB) program on student transport in a low-income, urban neighborhood. The design was a controlled, quasi-experimental trial with consecutive cross-sectional assessments. The setting was three urban, socioeconomically disadvantaged, p...

  16. Design of a 500 MJ, 5 MA power supply

    NASA Astrophysics Data System (ADS)

    Pappas, J. A.; Headifen, G. R.; Weldon, J. M.; Wright, J. C.; Zowarka, R. C.; Aanstoos, T. A.; Kajs, J. H.

    1993-01-01

    The design of a 500 MJ, 5 MA power supply for rail gun experiments under the Battery Upgraded Supply (BUS) program is examined. About 50,000 12-volt lead acid batteries are required to reach this level. BUS will be required to perform up to two discharges per week. Therefore, BUS is designed to be a low-maintenance, reliable, and fault-tolerant power supply. The design of BUS and the details of its subsystems are described.

  17. System for simultaneously loading program to master computer memory devices and corresponding slave computer memory devices

    NASA Technical Reports Server (NTRS)

    Hall, William A. (Inventor)

    1993-01-01

    A bus programmable slave module card for use in a computer control system is disclosed which comprises a master computer and one or more slave computer modules interfacing by means of a bus. Each slave module includes its own microprocessor, memory, and control program for acting as a single loop controller. The slave card includes a plurality of memory means (S1, S2...) corresponding to a like plurality of memory devices (C1, C2...) in the master computer, for each slave memory means its own communication lines connectable through the bus with memory communication lines of an associated memory device in the master computer, and a one-way electronic door which is switchable to either a closed condition or a one-way open condition. With the door closed, communication lines between master computer memory (C1, C2...) and slave memory (S1, S2...) are blocked. In the one-way open condition invention, the memory communication lines or each slave memory means (S1, S2...) connect with the memory communication lines of its associated memory device (C1, C2...) in the master computer, and the memory devices (C1, C2...) of the master computer and slave card are electrically parallel such that information seen by the master's memory is also seen by the slave's memory. The slave card is also connectable to a switch for electronically removing the slave microprocessor from the system. With the master computer and the slave card in programming mode relationship, and the slave microprocessor electronically removed from the system, loading a program in the memory devices (C1, C2...) of the master accomplishes a parallel loading into the memory devices (S1, S2...) of the slave.

  18. Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling

    Science.gov Websites

    Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Charging Stations Spread Through Philly March 3, 2012 Natural Gas School Buses Help Kansas City Save Money Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus

  19. Steering characteristic of an articulated bus under quasi steady maneuvering

    NASA Astrophysics Data System (ADS)

    Ubaidillah, Setiawan, Budi Agus; Aridharma, Airlangga Putra; Lenggana, Bhre Wangsa; Caesar, Bernardus Placenta Previo

    2018-02-01

    Articulated buses have been being preferred as public transportation modes due to their operational capacity. Therefore, passenger safety must be the priority of this public service vehicle. This research focused on the analytical approach of steering characteristics of an articulated bus when it maneuvered steadily. Such turning condition could be referred as a stability parameter of the bus for preliminary handling assessment. The analytical approach employed kinematics relationship between front and rear bodies as well as steering capabilities. The quasi steady model was developed to determine steering parameters such as turning radius, oversteer, and understeer. The mathematical model was useful for determining both coefficients of understeer and oversteer. The dimension of articulated bus followed a commonly used bus as utilized in Trans Jakarta busses. Based on the simulation, for one minimum center of the body, the turning radius was calculated about 8.8 m and 7.6 m at steady turning speed of 10 km/h. In neutral condition, the minimum road radius should be 6.5 m at 10 km/h and 6.9 m at 40 km/h. For two centers of the body and oversteer condition, the front body has the turning radius of 8.8 m, while, the rear body has the turning radius of 9.8 m at both turning speeds of 40 km/h. The other steering parameters were discussed accordingly.

  20. Unregulated emissions from compressed natural gas (CNG) transit buses configured with and without oxidation catalyst.

    PubMed

    Okamoto, Robert A; Kado, Norman Y; Kuzmicky, Paul A; Ayala, Alberto; Kobayashi, Reiko

    2006-01-01

    The unregulated emissions from two in-use heavy-duty transit buses fueled by compressed natural gas (CNG) and equipped with oxidation catalyst (OxiCat) control were evaluated. We tested emissions from a transit bus powered by a 2001 Cummins Westport C Gas Plus 8.3-L engine (CWest), which meets the California Air Resources Board's (CARB) 2002 optional NOx standard (2.0 g/bhp-hr). In California, this engine is certified only with an OxiCat, so our study did not include emissions testing without it. We also tested a 2000 New Flyer 40-passenger low-floor bus powered by a Detroit Diesel series 50G engine (DDCs50G) that is currently certified in California without an OxiCat. The original equipment manufacturer (OEM) offers a "low-emission" package for this bus that includes an OxiCat for transit bus applications, thus, this configuration was also tested in this study. Previously, we reported that formaldehyde and other volatile organic emissions detected in the exhaust of the DDCs50G bus equipped with an OxiCat were significantly reduced relative to the same DDCs50G bus without OxiCat. In this paper, we examine othertoxic unregulated emissions of significance. The specific mutagenic activity of emission sample extracts was examined using the microsuspension assay. The total mutagenic activity of emissions (activity per mile) from the OxiCat-equipped DDC bus was generally lower than that from the DDC bus without the OxiCat. The CWest bus emission samples had mutagenic activity that was comparable to that of the OxiCat-equipped DDC bus. In general, polycyclic aromatic hydrocarbon (PAH) emissions were lower forthe OxiCat-equipped buses, with greater reductions observed for the volatile and semivolatile PAH emissions. Elemental carbon (EC) was detected in the exhaust from the all three bus configurations, and we found that the total carbon (TC) composition of particulate matter (PM) emissions was primarily organic carbon (OC). The amount of carbon emissions far exceeded the PM-associated inorganic element emissions, which were detected in all exhaust samples, at comparatively small emission rates. In summary, based on these results and those referenced from our group, the use of OxiCat for the new CWest engine and as a retrofit option for the DDCs50G engine generally results in the reduction of tailpipe toxic emissions. However, the conclusions of this study do not take into account OxiCat durability, deterioration, lubricant consumption, or vehicle maintenance, and these parameters merit further study.

  1. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Markovich

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part ofmore » the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.« less

  2. A Conceptual Approach for Optimising Bus Stop Spacing

    NASA Astrophysics Data System (ADS)

    Johar, Amita; Jain, S. S.; Garg, P. k.

    2017-06-01

    An efficient public transportation system is essential of any country. The growth, development and shape of the urban areas are mainly due to availability of good transportation (Shah et al. in Inst Town Plan India J 5(3):50-59, 1). In developing countries, like India, travel by local bus in a city is very common. The accidents, congestion, pollution and appropriate location of bus stops are the major problems arising in metropolitan cities. Among all the metropolitan cities in India, Delhi has highest percentage of growth of population and vehicles. Therefore, it is important to adopt efficient and effective ways to improve mobility in different metropolitan cities in order to overcome the problem and to reduce the number of private vehicles on the road. The primary objective of this paper is to present a methodology for developing a model for optimum bus stop spacing (OBSS). It describes the evaluation of existing urban bus route, data collection, development of model for optimizing urban bus route and application of model. In this work, the bus passenger generalized cost method is used to optimize the spacing between bus stops. For the development of model, a computer program is required to be written. The applicability of the model has been evaluated by taking the data of urban bus route of Delhi Transport Corporation (DTC) in Excel sheet in first phase. Later on, it is proposed to develop a programming in C++ language. The developed model is expected to be useful to transport planner for rational design of the spacing of bus stops to save travel time and to generalize operating cost. After analysis it is found that spacing between the bus stop comes out to be between 250 and 500 m. The Proposed Spacing of bus stops is done considering the points that they don't come nearer to metro/rail station, entry or exit of flyover and near traffic signal.

  3. Spacecraft Bus and Platform Technology Development under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  4. Spacecraft Bus and Platform Technology Development under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John W.; Glaab, Louis J.; Peterson, Todd T.

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  5. Walking school bus programs in U.S. public elementary schools.

    PubMed

    Turner, Lindsey; Chriqui, Jamie F; Chaloupka, Frank J

    2013-07-01

    Active transportation to school provides an important way for children to meet physical activity recommendations. The "walking school bus" (WSB) is a strategy whereby adults walk with a group of children to and from school along a fixed route. This study assessed whether school-organized WSB programs varied by school characteristics, district policies, and state laws. School data were gathered by mail-back surveys in nationally representative samples of U.S. public elementary schools during the 2008-2009 and 2009-2010 school years (n = 632 and 666, respectively). Corresponding district policies and state laws were obtained. Nationwide, 4.2% of schools organized a WSB program during 2008-2009, increasing to 6.2% by 2009-2010. Controlling for demographic covariates, schools were more likely to organize a WSB program where there was a strong district policy pertaining to safe active routes to school (OR = 2.14, P < .05), or a state law requiring crossing guards around schools (OR = 2.72, P < .05). WSB programs are not common but district policies and state laws are associated with an increased likelihood of elementary schools organizing these programs. Policymaking efforts may encourage schools to promote active transportation.

  6. Evaluation of retrofit crankcase ventilation controls and diesel oxidation catalysts for reducing air pollution in school buses

    NASA Astrophysics Data System (ADS)

    Trenbath, Kim; Hannigan, Michael P.; Milford, Jana B.

    2009-12-01

    This study evaluates the effect of retrofit closed crankcase ventilation filters (CCFs) and diesel oxidation catalysts (DOCs) on the in-cabin air quality in transit-style diesel school buses. In-cabin pollution levels were measured on three buses from the Pueblo, CO District 70 fleet. Monitoring was conducted while buses were driven along their regular routes, with each bus tested three times before and three times after installation of control devices. Ultrafine number concentrations in the school bus cabins were 33-41% lower, on average, after the control devices were installed. Mean mass concentrations of particulate matter less than 2.5 μm in diameter (PM2.5) were 56% lower, organic carbon (OC) 41% lower, elemental carbon (EC) 85% lower, and formaldehyde 32% lower after control devices were installed. While carbon monoxide concentrations were low in all tests, mean concentrations were higher after control devices were installed than in pre-retrofit tests. Reductions in number, OC, and formaldehyde concentrations were statistically significant, but reductions in PM2.5 mass were not. Even with control devices installed, during some runs PM2.5 and OC concentrations in the bus cabins were elevated compared to ambient concentrations observed in the area. OC concentrations inside the bus cabins ranged from 22 to 58 μg m -3 before and 13 to 33 μg m -3 after control devices were installed. OC concentrations were correlated with particle-bound organic tracers for lubricating oil emissions (hopanes) and diesel fuel and tailpipe emissions (polycyclic aromatic hydrocarbons (PAH) and aliphatic hydrocarbons). Mean concentrations of hopanes, PAH, and aliphatic hydrocarbons were lower by 37, 50, and 43%, respectively, after the control devices were installed, suggesting that both CCFs and DOCs were effective at reducing in-cabin OC concentrations.

  7. Transonic Fan/Compressor Rotor Design Study. Volume 5

    DTIC Science & Technology

    1982-02-01

    Fan Aircraft Engines Compressor Blade Thickness Rotor Camber Distribution Aerodesign Throat Margin Aerodynamics 20. ABStTRACT (Continue n reverse...Technology Branch FOR THE COMNANDER H. IV N BUS Director, Turbine Engine Division A If your address has changed, if you wish to be removed from our...ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK General Electric Ctmpany AREA & WORK UNIT NUMBERS Aircraft Engine Business Group Project 2307

  8. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, M. P.; Walkowicz, K.; Duran, A.

    2012-10-01

    In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CANmore » bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.« less

  9. Air quality and climate impacts of alternative bus technologies in Greater London.

    PubMed

    Chong, Uven; Yim, Steve H L; Barrett, Steven R H; Boies, Adam M

    2014-04-15

    The environmental impact of diesel-fueled buses can potentially be reduced by the adoption of alternative propulsion technologies such as lean-burn compressed natural gas (LB-CNG) or hybrid electric buses (HEB), and emissions control strategies such as a continuously regenerating trap (CRT), exhaust gas recirculation (EGR), or selective catalytic reduction with trap (SCRT). This study assessed the environmental costs and benefits of these bus technologies in Greater London relative to the existing fleet and characterized emissions changes due to alternative technologies. We found a >30% increase in CO2 equivalent (CO2e) emissions for CNG buses, a <5% change for exhaust treatment scenarios, and a 13% (90% confidence interval 3.8-20.9%) reduction for HEB relative to baseline CO2e emissions. A multiscale regional chemistry-transport model quantified the impact of alternative bus technologies on air quality, which was then related to premature mortality risk. We found the largest decrease in population exposure (about 83%) to particulate matter (PM2.5) occurred with LB-CNG buses. Monetized environmental and investment costs relative to the baseline gave estimated net present cost of LB-CNG or HEB conversion to be $187 million ($73 million to $301 million) or $36 million ($-25 million to $102 million), respectively, while EGR or SCRT estimated net present costs were $19 million ($7 million to $32 million) or $15 million ($8 million to $23 million), respectively.

  10. Monomethylhydrazine versus hydrazine fuels - Test results using a 100 pound thrust bipropellant rocket engine

    NASA Technical Reports Server (NTRS)

    Smith, J. A.; Stechman, R. C.

    1981-01-01

    A test program was performed to evaluate hydrazine (N2H4) as a fuel for a 445 Newton (100 lbf) thrust bipropellant rocket engine. Results of testing with an identical thruster utilizing monomethylhydrazine (MMH) are included for comparison. Engine performance with hydrazine fuel was essentially identical to that experienced with monomethylhydrazine although higher combustor wall temperatures (approximately 400 F) were obtained with hydrazine. Results are presented which indicate that hydrazine as a fuel is compatible with Marquardt bipropellant rocket engines which use monomethylhydrazine as a baseline fuel.

  11. A historical overview of the electrical power systems in the US manned and some US unmanned spacecraft

    NASA Technical Reports Server (NTRS)

    Maisel, J. E.

    1984-01-01

    A historical overview of electrical power systems used in the U.S. manned spacecraft and some of the U.S. unmanned spacecraft is presented in this investigation. A time frame of approximately 25 years, the period for 1959 to 1984, is covered in this report. Results indicate that the nominal bus voltage was 28 volts dc in most spacecraft and all other voltage levels were derived from this voltage through such techniques as voltage inversion or rectification, or a combination. Most spacecraft used solar arrays for the main source of power except for those spacecraft that had a relatively short flight duration, or deep spaceprobes that were designed for very long flight duration. Fuel cells were used on Gemini, Apollo, and Space Shuttle (short duration flights) while radioisotope thermoelectric generators were employed on the Pioneer, Jupiter/Saturn, Viking Lander, and Voyager spacecraft (long duration flights). The main dc bus voltage was unregulated on the manned spacecraft with voltage regulation provided at the user loads. A combination of regulated, semiregulated, and unregulated buses were used on the unmanned spacecraft depending on the type of load. For example, scientific instruments were usually connected to regulated buses while fans, relays, etc. were energized from an unregulated bus. Different forms of voltage regulation, such as shunt, buck/boot, and pulse-width modulated regulators, were used. This report includes a comprehensive bibliography on spacecraft electrical power systems for the space programs investigated.

  12. Reducing exhaust gas emissions from Citydiesel busses

    NASA Astrophysics Data System (ADS)

    Mikkonen, Seppo

    The effect of fuel composition and exhaust gas aftertreatment on the emissions was measured from truck and bus engines. Possibilities to measure unregulated emissions (aldehydes, polyaromatic hydrocarbons, mutagenicity) were built. A reformulated diesel fuel 'Citydiesel' was developed. Citydiesel was able to reduce emissions compared to standard diesel fuel as follows: particulates by 10 to 30%, nitrogen oxides by 2 to 10%, sulphur dioxide by 97%, polyaromatic hydrocarbons (PAH) over 50%, mutagenicity of the exhaust particulates clearly, odor of the exhaust, and smoke after a cold start. The use of Citydiesel fuel reduces emissions of the existing vehicles immediately which is a remarkable benefit. The very low sulphur content (below 50 ppm) makes it possible to use oxidation. catalytic converters to reduce emissions of diesel vehicles. The new Euro 2 exhaust regulations coming into force during 1996 can be met with a modern diesel engine, Citydiesel fuel, and exhaust gas aftertreatment. Properties of Citydiesel fuel were verified in a three year field test with 140 city buses. Experience was good; e.g., engine oil change interval could be lengthened. Total value of the exhaust was estimated with different fuels and aftertreatment device in order to find out cheap ways to reduce emissions.

  13. 77 FR 25529 - Over-the-Road Bus Accessibility Program Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... Century (TEA-21). The OTRB program makes funds available to private operators of over-the-road buses to... bus services. These services are an important element of the U.S. transportation system. TEA-21... delivered after June 8, 1998, the date that the TEA-21 became effective, are eligible for funding under the...

  14. Polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Gottesfeld, S.

    The recent increase in attention to polymer electrolyte fuel cells (PEFC's) is the result of significant technical advances in this technology and the initiation of some projects for the demonstration of complete PEFC-based power system in a bus or in a passenger car. A PEFC powered vehicle has the potential for zero emission, high energy conversion efficiency and extended range compared to present day battery powered EV's. This paper describes recent achievements in R&D on PEFC's. The major thrust areas have been: (1) demonstration of membrane/electrode assemblies with stable high performance in life tests lasting 4000 hours, employing ultra-low Pt loadings corresponding to only 1/2 oz of Pt for the complete power source of a passenger car; (2) effective remedies for the high sensitivity of the Pt electrocatalyst to impurities in the fuel feed stream; and (3) comprehensive evaluation of the physicochemical properties of membrane and electrodes in the PEFC, clarifying the water management issues and enabling effective codes and diagnostics for this fuel cell.

  15. Alternative Thinking.

    ERIC Educational Resources Information Center

    Herman, Dan

    1999-01-01

    Explains how advances in diesel and alternative fuels has caused schools to reconsider their use for their bus fleets. Reductions in air pollution emissions, cost-savings developments, and the economies experienced from less downtime and maintenance requirements are explored. (GR)

  16. SunLine Expands Horizons with Fuel Cell Bus Demo

    DOT National Transportation Integrated Search

    2006-05-01

    The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...

  17. A Summary of NASA and USAF Hypergolic Propellant Related Spills And Fires

    NASA Technical Reports Server (NTRS)

    Nufer, B. M.

    2009-01-01

    Hypergolic fluids are toxic liquids that react spontaneously and violently when they contact each other. These fluids are used in many different rocket and aircraft systems for propulsion and hydraulic power including, orbiting satellites, manned spacecraft, military aircraft, and deep space probes. Hypergolic fuels include hydrazine (N 2H4) and its derivatives including monomethylhydrazine (MMH), unsymmetrical di-methylhydrazine (UDMH), and Aerozine 50 (A-50), which is an equal mixture of N2H4 and UDMH. The oxidizer used with these fuels is usually nitrogen tetroxide (N2O4), also known as di-nitrogen tetroxide or NTO, and various blends of N2O4 with nitric oxide (NO). Several documented, unintentional hypergolic fluid spills and fires related to the Apollo Program, the Space Shuttle Program, and several other programs from approximately 1968 through the spring of 2009 have been studied for the primary purpose of extracting the lessons learned. Spill sites include KSC, JSC, WSTF, CCAFS, EAFB, McConnell AFB, and VAFB.

  18. Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With

    Science.gov Websites

    Photo of a truck Natural Gas Fuels School Buses and Refuse Trucks in Tulsa, Oklahoma Feb. 18, 2017 Photo of buses Baton Rouge School District Adds Propane Buses to Its Fleet Dec. 23, 2016 photo of a truck Buses to Its Fleet Nov. 11, 2016 photo of a propane school bus Propane Powers School Buses in Tuscaloosa

  19. System Critical Design Audit (CDA). Books 1, 2 and 3; [Small Satellite Technology Initiative (SSTI Lewis Spacecraft Program)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Small Satellite Technology Initiative (SSTI) Lewis Spacecraft Program is evaluated. Spacecraft integration, test, launch, and spacecraft bus are discussed. Payloads and technology demonstrations are presented. Mission data management system and ground segment are also addressed.

  20. Modelling and simulation of fuel cell dynamics for electrical energy usage of Hercules airplanes.

    PubMed

    Radmanesh, Hamid; Heidari Yazdi, Seyed Saeid; Gharehpetian, G B; Fathi, S H

    2014-01-01

    Dynamics of proton exchange membrane fuel cells (PEMFC) with hydrogen storage system for generating part of Hercules airplanes electrical energy is presented. Feasibility of using fuel cell (FC) for this airplane is evaluated by means of simulations. Temperature change and dual layer capacity effect are considered in all simulations. Using a three-level 3-phase inverter, FC's output voltage is connected to the essential bus of the airplane. Moreover, it is possible to connect FC's output voltage to airplane DC bus alternatively. PID controller is presented to control flow of hydrogen and oxygen to FC and improve transient and steady state responses of the output voltage to load disturbances. FC's output voltage is regulated via an ultracapacitor. Simulations are carried out via MATLAB/SIMULINK and results show that the load tracking and output voltage regulation are acceptable. The proposed system utilizes an electrolyser to generate hydrogen and a tank for storage. Therefore, there is no need for batteries. Moreover, the generated oxygen could be used in other applications in airplane.

  1. Modelling and Simulation of Fuel Cell Dynamics for Electrical Energy Usage of Hercules Airplanes

    PubMed Central

    Radmanesh, Hamid; Heidari Yazdi, Seyed Saeid; Gharehpetian, G. B.; Fathi, S. H.

    2014-01-01

    Dynamics of proton exchange membrane fuel cells (PEMFC) with hydrogen storage system for generating part of Hercules airplanes electrical energy is presented. Feasibility of using fuel cell (FC) for this airplane is evaluated by means of simulations. Temperature change and dual layer capacity effect are considered in all simulations. Using a three-level 3-phase inverter, FC's output voltage is connected to the essential bus of the airplane. Moreover, it is possible to connect FC's output voltage to airplane DC bus alternatively. PID controller is presented to control flow of hydrogen and oxygen to FC and improve transient and steady state responses of the output voltage to load disturbances. FC's output voltage is regulated via an ultracapacitor. Simulations are carried out via MATLAB/SIMULINK and results show that the load tracking and output voltage regulation are acceptable. The proposed system utilizes an electrolyser to generate hydrogen and a tank for storage. Therefore, there is no need for batteries. Moreover, the generated oxygen could be used in other applications in airplane. PMID:24782664

  2. How to Reduce Those Costly School Bus Accidents.

    ERIC Educational Resources Information Center

    Farmer, Ernest

    1985-01-01

    The deterrent to school bus accidents is preparedness. Training programs for drivers and mechanics, equipment specifications, and a community support base are some of the ways to prevent tragedy. (MLF)

  3. School Districts Move to the Head of the Class with Propane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    School districts across the country are under pressure to reduce their cost of operations and ensure their budgets are spent wisely. School bus fleets operate more than 675,000 buses in the United States, and many school districts have found the answer to their budget woes in the form of propane, or liquefied petroleum gas (LPG). Propane is a reliable, domestic fuel, and it's used in approximately 2% of school buses nationwide.

  4. Oregon School Bus Drivers Training Program. Students Handbook. Core Course.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This student handbook is one of the publications used for the Oregon Bus Driver Training Core Course. Handbook content focuses on those aspects of driving a school bus that differ from driving an automobile and that are essential for the safe transporting of students. Designed to accompany the four classes (each two and one-half hours long), the…

  5. 77 FR 74452 - Bus Testing: Calculation of Average Passenger Weight and Test Vehicle Weight

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... require FTA to work with bus manufacturers and transit agencies to establish a new pass/ fail standard for... buses from the current value of 150 pounds to a new value of 175 pounds. This increase was proposed to... new pass/fail standards that require a more comprehensive review of its overall bus testing program...

  6. Investigating Elevated Concentrations of Hydrogen in the LAX region

    NASA Astrophysics Data System (ADS)

    Rund, P.; Hughes, S.; Blake, D. R.

    2017-12-01

    The growing interest in hydrogen (H2) fuel cell vehicles has created a need to study the atmospheric H2 budget. While there is resounding agreement that hydrogen would escape into the atmosphere due to fuel transport/storage processes, there is disagreement over the amount that would be leaked in a hydrogen fuel economy. Leakage rate estimates range from 2% to 10% for total hydrogen production and transport. A hydrogen based energy infrastructure seems a viable clean alternative to oil because, theoretically, the only waste products are H2O and heat. However, hydrogen leads to the formation of water vapor, polar stratospheric clouds, and a decrease in stratospheric temperatures, which contribute to the depletion of stratospheric ozone. Whole air samples (WAS) collected aboard the NASA Sherpa C-23 during the Student Airborne Research Program (SARP) showed elevated concentrations of hydrogen near LAX (950 ± 110 ppbv) compared to global average concentrations of 560 ± 20 ppbv. Trace gas analysis along with wind trajectories obtained with the NOAA HySPLIT models indicate that the source of elevated mixing ratios was leakage from H2 fuel stations in the surrounding areas. Correlation and ratio analyses eliminate the potential for common photochemical sources of H2 in the LAX area. This project could elucidate new and potential factors that contribute to the global atmospheric hydrogen budget.

  7. Advanced Ceramic-Metallic Composites for Lightweight Vehicle Braking Systems

    DOT National Transportation Integrated Search

    2012-09-11

    According to the Federal Transit Administration Strategic Research Plan [1]: Researching technologies to reduce vehicle weight can also lead to important reductions in fuel consumption and emissions. The power required to accelerate a bus and over...

  8. New York State School Bus Driver Instructional Program for Transporting Students with Handicapping Conditions. Basic Unit V (Revised).

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Div. of Educational Management Services.

    Intended to be used as part of the existing school bus driver training program in New York State, the guide sets forth responsibilities and suggestions for transporting students with handicapping conditions. School district and BOCES (Board of Cooperative Educational Services) responsibilities for transportation are outlined. General guidelines…

  9. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Fifth Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew; Jeffers, Matthew

    This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 13 advanced-design fuel cell buses and two hydrogen fueling stations. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published four previous reports describing operation of these buses. This report presents new and updated results covering data from January 2015 through December 2015.

  10. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Sixth Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew B.; Jeffers, Matthew A.

    This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 13 advanced-design fuel cell buses and two hydrogen fueling stations. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published five previous reports describing operation of these buses. This report presents new and updated results covering data from January 2016 through December 2016.

  11. Fuel cell drives for road vehicles

    NASA Astrophysics Data System (ADS)

    Charnah, R. M.

    For fuel-cell driven vehicles, including buses, the fuel cell may be the main, determining factor in the system but must be integrated into the complete design process. A Low-Floor Bus design is used to illustrate this point. The influence of advances in drive-train electronics is illustrated as are novel designs for motors and mechanical transmission of power to the wheels allowing the use of novel hub assemblies. A hybrid electric power system is being deployed in which Fuel Cells produce the energy needs but are coupled with batteries especially for acceleration phases and for recuperative braking.

  12. Fresh and Oxidized Emissions from In-Use Transit Buses Running on Diesel, Biodiesel, and CNG.

    PubMed

    Watne, Ågot K; Psichoudaki, Magda; Ljungström, Evert; Le Breton, Michael; Hallquist, Mattias; Jerksjö, Martin; Fallgren, Henrik; Jutterström, Sara; Hallquist, Åsa M

    2018-06-26

    The potential effect of changing to a nonfossil fuel vehicle fleet was investigated by measuring primary emissions (by extractive sampling of bus plumes) and secondary mass formation, using a Gothenburg Potential Aerosol Mass (Go:PAM) reactor, from 29 in-use transit buses. Regarding fresh emissions, diesel (DSL) buses without a diesel particulate filter (DPF) emitted the highest median mass of particles, whereas compressed natural gas (CNG) buses emitted the lowest ( Md EF PM 514 and 11 mg kg fuel -1 , respectively). Rapeseed methyl ester (RME) buses showed smaller Md EF PM and particle sizes than DSL buses. DSL (no DPF) and hybrid-electric RME (RME HEV ) buses exhibited the highest particle numbers ( Md EF PN 12 × 10 14 # kg fuel -1 ). RME HEV buses displayed a significant nucleation mode ( D p < 20 nm). EF PN of CNG buses spanned the highest to lowest values measured. Low Md EF PN and Md EF PM were observed for a DPF-equipped DSL bus. Secondary particle formation resulting from exhaust aging was generally important for all the buses (79% showed an average EF PM:AGED /EF PM:FRESH ratio >10) and fuel types tested, suggesting an important nonfuel dependent source. The results suggest that the potential for forming secondary mass should be considered in future fuel shifts, since the environmental impact is different when only considering the primary emissions.

  13. Efficient and Robust Data Collection Using Compact Micro Hardware, Distributed Bus Architectures and Optimizing Software

    NASA Technical Reports Server (NTRS)

    Chau, Savio; Vatan, Farrokh; Randolph, Vincent; Baroth, Edmund C.

    2006-01-01

    Future In-Space propulsion systems for exploration programs will invariably require data collection from a large number of sensors. Consider the sensors needed for monitoring several vehicle systems states of health, including the collection of structural health data, over a large area. This would include the fuel tanks, habitat structure, and science containment of systems required for Lunar, Mars, or deep space exploration. Such a system would consist of several hundred or even thousands of sensors. Conventional avionics system design will require these sensors to be connected to a few Remote Health Units (RHU), which are connected to robust, micro flight computers through a serial bus. This results in a large mass of cabling and unacceptable weight. This paper first gives a survey of several techniques that may reduce the cabling mass for sensors. These techniques can be categorized into four classes: power line communication, serial sensor buses, compound serial buses, and wireless network. The power line communication approach uses the power line to carry both power and data, so that the conventional data lines can be eliminated. The serial sensor bus approach reduces most of the cabling by connecting all the sensors with a single (or redundant) serial bus. Many standard buses for industrial control and sensor buses can support several hundreds of nodes, however, have not been space qualified. Conventional avionics serial buses such as the Mil-Std-1553B bus and IEEE 1394a are space qualified but can support only a limited number of nodes. The third approach is to combine avionics buses to increase their addressability. The reliability, EMI/EMC, and flight qualification issues of wireless networks have to be addressed. Several wireless networks such as the IEEE 802.11 and Ultra Wide Band are surveyed in this paper. The placement of sensors can also affect cable mass. Excessive sensors increase the number of cables unnecessarily. Insufficient number of sensors may not provide adequate coverage of the system. This paper also discusses an optimal technique to place and validate sensors.

  14. Commuters’ Exposure to Particulate Matter Air Pollution Is Affected by Mode of Transport, Fuel Type, and Route

    PubMed Central

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-01-01

    Background Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. Objectives The aim of our study was to assess differences in commuters’ exposure to traffic-related air pollution related to transport mode, route, and fuel type. Methods We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), PM10, and soot between June 2007 and June 2008 on 47 weekdays, from 0800 to 1000 hours, in diesel and electric buses, gasoline- and diesel-fueled cars, and along two bicycle routes with different traffic intensities in Arnhem, the Netherlands. In addition, each-day measurements were taken at an urban background location. Results We found that median PNC exposures were highest in diesel buses (38,500 particles/cm3) and for cyclists along the high-traffic intensity route (46,600 particles/cm3) and lowest in electric buses (29,200 particles/cm3). Median PM10 exposure was highest from diesel buses (47 μg/m3) and lowest along the high- and low-traffic bicycle routes (39 and 37 μg/m3). The median soot exposure was highest in gasoline-fueled cars (9.0 × 10−5/m), diesel cars (7.9 × 10−5/m), and diesel buses (7.4 × 10−5/m) and lowest along the low-traffic bicycle route (4.9 × 10−5/m). Because the minute ventilation (volume of air per minute) of cyclists, which we estimated from measured heart rates, was twice the minute ventilation of car and bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Conclusions Commuters’ rush hour exposures were significantly influenced by mode of transport, route, and fuel type. PMID:20185385

  15. Programmable DMA controller

    NASA Technical Reports Server (NTRS)

    Hendry, David F. (Inventor)

    1993-01-01

    In a data system having a memory, plural input/output (I/O) devices and a bus connecting each of the I/O devices to the memory, a direct memory access (DMA) controller regulating access of each of the I/O devices to the bus, including a priority register storing priorities of bus access requests from the I/O devices, an interrupt register storing bus access requests of the I/O devices, a resolver for selecting one of the I/O devices to have access to the bus, a pointer register storing addresses of locations in the memory for communication with the one I/O device via the bus, a sequence register storing an address of a location in the memory containing a channel program instruction which is to be executed next, an ALU for incrementing and decrementing addresses stored in the pointer register, computing the next address to be stored in the sequence register, computing an initial contents of each of the register. The memory contains a sequence of channel program instructions defining a set up operation wherein the contents of each of the registers in the channel register is initialized in accordance with the initial contents computed by the ALU and an access operation wherein data is transferred on the bus between a location in the memory whose address is currently stored in the pointer register and the one I/O device enabled by the resolver.

  16. Expanded Capabilities for the Hydrogen Financial Analysis Scenario Tool (H2FAST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, Brian; Melaina, Marc; Penev, Michael

    This presentation describes how NREL expanded the capabilities for the Hydrogen Financial Analysis Scenario Tool (H2FAST) in FY16. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2016 Annual Merit Review and Peer Evaluation Meeting on June 8, 2016, in Washington, D.C.

  17. An estimation of traffic related CO2 emissions from motor vehicles in the capital city of, Iran

    PubMed Central

    2012-01-01

    Vehicle exhaust is a major source of anthropogenic carbon dioxide (CO2) in metropolitan cities. Popular community mode (buses and taxies) and about 2.4 million private cars are the main emission sources of air pollution in Tehran. A case survey has conducted to measure CO2 in four popular vehicles, bus, taxi, private car and motorcycle, which moved in the city with respectively 7800, 82358, 560000 and 2.4 million per day in 2012. Results indicated that the contribution of CO2 emissions increased in the following order: private car, motorcycle, bus and taxi. The overall average for the contribution of CO2 emissions in the private car, motorcycle, bus, and taxi were 26372, 1648, 1433 and 374 tons per day, respectively. Our results also showed that the urban transport operation consume an estimated 178 and 4224 million liter diesel and petrol per year, respectively, that have released about 10 million tons of CO2. The average contribution of CO2 emissions of private cars in Tehran was higher (88%) than other vehicles. It was concluded that high volume of traffic, transport consumption of fossil fuels and shortage of adequate public transport system are responsible for the high CO2 level in environment in Tehran. Thus, it is to be expected that CO2 as a greenhouse gas has risen in Tehran more than ever in the following years and this would be a matter of concern for the authorities to have a comprehensive plan to mitigate this phenomena. PMID:23369252

  18. An estimation of traffic related CO2 emissions from motor vehicles in the capital city of, Iran.

    PubMed

    Kakouei, Aliakbar; Vatani, Ali; Idris, Ahmed Kamal Bin

    2012-11-28

    Vehicle exhaust is a major source of anthropogenic carbon dioxide (CO2) in metropolitan cities. Popular community mode (buses and taxies) and about 2.4 million private cars are the main emission sources of air pollution in Tehran. A case survey has conducted to measure CO2 in four popular vehicles, bus, taxi, private car and motorcycle, which moved in the city with respectively 7800, 82358, 560000 and 2.4 million per day in 2012. Results indicated that the contribution of CO2 emissions increased in the following order: private car, motorcycle, bus and taxi. The overall average for the contribution of CO2 emissions in the private car, motorcycle, bus, and taxi were 26372, 1648, 1433 and 374 tons per day, respectively. Our results also showed that the urban transport operation consume an estimated 178 and 4224 million liter diesel and petrol per year, respectively, that have released about 10 million tons of CO2. The average contribution of CO2 emissions of private cars in Tehran was higher (88%) than other vehicles. It was concluded that high volume of traffic, transport consumption of fossil fuels and shortage of adequate public transport system are responsible for the high CO2 level in environment in Tehran. Thus, it is to be expected that CO2 as a greenhouse gas has risen in Tehran more than ever in the following years and this would be a matter of concern for the authorities to have a comprehensive plan to mitigate this phenomena.

  19. Energy management of fuel cell/solar cell/supercapacitor hybrid power source

    NASA Astrophysics Data System (ADS)

    Thounthong, Phatiphat; Chunkag, Viboon; Sethakul, Panarit; Sikkabut, Suwat; Pierfederici, Serge; Davat, Bernard

    This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles.

  20. Statistical Evaluation of Voltage Variation of Power Distribution System with Clustered Home-Cogeneration Systems

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Minagata, Atsushi; Suzuoki, Yasuo

    This paper discusses the influence of mass installation of a home co-generation system (H-CGS) using a polymer electrolyte fuel cell (PEFC) on the voltage profile of power distribution system in residential area. The influence of H-CGS is compared with that of photovoltaic power generation systems (PV systems). The operation pattern of H-CGS is assumed based on the electricity and hot-water demand observed in 10 households for a year. The main results are as follows. With the clustered H-CGS, the voltage of each bus is higher by about 1-3% compared with the conventional system without any distributed generators. Because H-CGS tends to increase the output during the early evening, H-CGS contributes to recover the voltage drop during the early evening, resulting in smaller voltage variation of distribution system throughout a day. Because of small rated power output about 1kW, the influence on voltage profile by the clustered H-CGS is smaller than that by the clustered PV systems. The highest voltage during the day time is not so high as compared with the distribution system with the clustered PV systems, even if the reverse power flow from H-CGS is allowed.

  1. AstroBus On-Board Software

    NASA Astrophysics Data System (ADS)

    Biscarros, D.; Cantenot, C.; Séronie-Vivien, J.; Schmidt, G.

    AstroBus on-board software is a customisable software for ERC32 based avionics implementing standard ESA Packet Utilization Standard functions. Its architecture based on generic design templates and relying on a library providing standard PUS TC, TM and event services enhances its reusability on various programs. Finally, AstroBus on-board software development and validation environment is based on last generation tools providing an optimised customisation environment.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goalmore » is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.« less

  3. The life cycle assessment of alternative fuel chains for urban buses and trolleybuses.

    PubMed

    Kliucininkas, L; Matulevicius, J; Martuzevicius, D

    2012-05-30

    This paper describes a comparative analysis of public transport alternatives in the city of Kaunas, Lithuania. An LCA (Life Cycle Assessment) inventory analysis of fuel chains was undertaken using the midi urban bus and a similar type of trolleybus. The inventory analysis of fuel chains followed the guidelines provided by the ISO 14040 and ISO 14044 standards. The ReCiPe Life Cycle Impact Assessment (LCIA) methodology was used to quantify weighted damage originating from five alternative fuel chains. The compressed biogas fuel chain had the lowest weighted damage value, namely 45.7 mPt/km, whereas weighted damage values of the fuel chains based on electricity generation for trolleybuses were 60.6 mPt/km (for natural gas) and 78.9 mPt/km (for heavy fuel oil). The diesel and compressed natural gas fuel chains exhibited considerably higher damage values of 114.2 mPt/km and 132.6 mPt/km, respectively. The comparative life cycle assessment of fuel chains suggested that biogas-powered buses and electric trolleybuses can be considered as the best alternatives to use when modernizing the public transport fleet in Kaunas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. High Pressure Earth Storable Rocket Technology Program: Basic Program

    NASA Technical Reports Server (NTRS)

    Chazen, M. L.; Sicher, D.; Huang, D.; Mueller, T.

    1995-01-01

    The HIPES Program was conducted for NASA-LeRC by TRW. The Basic Program consisted of system studies, design of testbed engine, fabrication and testing of engine. Studies of both pressure-fed and pump-fed systems were investigated for N2O4 and both MMH and N2H4 fuels with the result that N2H4 provides the maximum payload for all satellites over MMH. The higher pressure engine offers improved performance with smaller envelope and associated weight savings. Pump-fed systems offer maximum payload for large and medium weight satellites while pressure-fed systems offer maximum payload for small light weight satellites. The major benefits of HIPES are high performance within a confined length maximizing payload for lightsats which are length (volume) constrained. Three types of thrust chambers were evaluated -- Copper heatsink at 400, 500 and 600 psia chamber pressures for performance/thermal; water cooled to determine heat absorbed to predict rhenium engine operation; and rhenium to validate the concept. The HIPES engine demonstrated very high performance at 50 lbf thrust (epsilon = 150) and Pc = 500 psia with both fuels: Isp = 337 sec using N2O4-N2H4 and ISP = 327.5 sec using N2O4-MMH indicating combustion efficiencies greater than 98%. A powder metallurgy rhenium engine demonstrated operation with high performance at Pc = 500 psia which indicated the viability of the concept.

  5. Delay and environmental costs of truck crashes

    DOT National Transportation Integrated Search

    2013-03-01

    This report presents estimates of certain categories of costs of truck- and bus-involved crashes. Crash related costs estimated as part of this study include vehicle delay costs, emission costs, and fuel consumption costs. In addition, this report al...

  6. Show me the road to hydrogen

    DOT National Transportation Integrated Search

    2010-02-01

    The Missouri University of Science and Technology (Missouri S&T) and Ford Motor Company demonstrated a shuttle bus service and hydrogen fueling facilities in rural Missouri near Ft. Leonard Wood. Initiated by a request from the U.S. Army Maneuver Sup...

  7. INL receives GreenGov Presidential Award for fleet fuel efficiency improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wold, Scott

    Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  8. Fuel cells, batteries and super-capacitors stand-alone power systems management using optimal/flatness based-control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benaouadj, M.; Aboubou, A.; Bahri, M.

    2016-07-25

    In this work, an optimal control (under constraints) based on the Pontryagin’s maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane) fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DC-DC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithiumion batteries and supercapacitors. The aim of this paper is to developmore » an energy management strategy that is able to satisfy the following objectives: Impose the power requested by a habitat (representing the load) according to a proposed daily consumption profile, Keep fuel cells working at optimal power delivery conditions, Maintain constant voltage across the common DC bus, Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control. Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.« less

  9. Intercity Bus Feeder Project Program Analysis

    DOT National Transportation Integrated Search

    1990-09-01

    Following the passage of the Bus Regualtory Reform Act of 1982 (BRRA), intercity : carriers used their increased regulatory flexibility to discontinue many : underutilized rural and small city services. This was understandable, in light : of the comp...

  10. The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd

    2014-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems Mission Analysis. ISPTs propulsion technologies include: 1) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; 2) a Hall-effect electric propulsion (HEP) system for sample return and low cost missions; 3) the Advanced Xenon Flow Control System (AXFS); ultra-lightweight propellant tank technologies (ULTT); and propulsion technologies for a Mars Ascent Vehicle (MAV). The AXFS and ULTT are two component technologies being developed with nearer-term flight infusion in mind, whereas NEXT and the HEP are being developed as EP systems. ISPTs entry vehicle technologies are: 1) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GNC) models of blunt-body rigid aeroshells; and aerothermal effect models; and 2) Multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions. The Systems Mission Analysis area is focused on developing tools and assessing the application of propulsion, entry vehicle, and spacecraft bus technologies to a wide variety of mission concepts. Several of the ISPT technologies are related to sample return missions and other spacecraft bus technology needs like: MAV propulsion, MMEEV, and electric propulsion. These technologies, as well as Aerocapture, are more vehicle and mission-focused, and present a different set of technology development challenges. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.

  11. 40 CFR 52.2270 - Identification of plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... incorporated as it exists on the date of the approval, and notice of any change in the material will be... Clean School Bus Program Section 114.640 Definitions 9/20/2006 4/9/2010, 75 FR 18061 Section 114.642 Applicability 9/20/2006 4/9/2010, 75 FR 18061 Section 114.644 Clean School Bus Program Requirements 9/20/2006 4...

  12. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter Hill; Michael Penev

    2014-08-01

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  13. Reanalysis of Asteroid Families Structure Through Visible Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mothé-Diniz, T.; Carvano, J.; Roig, F.; Lazzaro, D.

    In this work we re-analyse the presence of interlopers in asteroid families based on a larger spectral database and on a family determination which makes use of a larger set of proper elements. The asteroid families were defined using the HCM method (Zappalà et al. 1995) on the set of proper elements for 110,000 asteroids available at the Asteroid Dynamic Site (AstDyS http://hamilton.dm.unipi.it/astdys )). The spectroscopic analysis is performed using spectra on the 0.44-0.92 μ m range observed by the SMASS Xu et al. 1995, SMASSII (Bus and Binzel, 2002) and 3OS2 (Lazzaro et al. 2002) surveys, which together total around 2140 asteroids with observed spectra. The asteroid taxonomy used is the Bus taxonomy (Bus et al. 2000). A total of 22 two families were analysed . The families of Vesta, Eunomia, Hoffmeister, Dora, Merxia, Agnia, and Koronis were found to be spectrally homogeneous, which confirms previous studies. The Veritas family, on the other hand, which is quoted in the literature as an heterogeneous family was found to be quite homogeneous in the present work. The Eos family is noteworthy for being at one time spectrally heterogeneous and quite different from the background population. References Bus, S. J., and R. P. Binzel 2002. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey - The Observations. Icarus 158, 106-145. Bus, S. J., R. P. Binzel, and T. H. Burbine 2000. A New Generation of Asteroid Taxonomy. Meteoritics and Planetary Science, vol. 35, Supplement, p.A36 35, 36 +. Lazzaro, D., C. A. Angeli, T. Mothe-Diniz, J. M. Carvano, R. Duffard, and M. Florczak 2002. The superficial characterization of a large sample of asteroids: the S3OS2. Bulletin of the American Astronomical Society 34, 859 +. Xu, S., R. P. Binzel, T. H. Burbine, and S. J. Bus 1995. Small main-belt asteroid spectroscopic survey: Initial results. Icarus 115, 1-35. Zappala, V., P. Bendjoya, A. Cellino, P. Farinella, and C. Froeschle 1995. Asteroid families: Search of a 12,487-asteroid sample using two different clustering techniques. Icarus 116, 291-314.

  14. 77 FR 43723 - Energy Efficiency and Conservation Loan Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... communities by investing in energy efficiency, and (5) encouraging the use of renewable energy fuels for both... contracts. Impacts The new Subpart H. for the Energy Efficiency and Conservation Loan Program can have several economic impacts. The benefits include: (1) The value of purchased energy saved; (2) the value of...

  15. The use of biodiesel in a school transportation system: the case of Medford Township, New Jersey.

    PubMed

    Biluck, Joe

    2007-09-01

    A combination of high fuel prices, bus maintenance costs, and the health and safety of school children, along with a consideration of federal and state regulations, prompted Medford Township school district in southern New Jersey to explore the use of alternative fuels, specifically biodiesel. The school district owns and operates 62 school buses that transport 3500 children daily. The evolution of this switch from petroleum-based fuel to biodiesel is described. The district is the nation's longest continuous user of biodiesel in a school transportation system.

  16. Reductions in commuter exposure to volatile organic compounds in Mexico City due to the environmental program ProAire2002-2010.

    PubMed

    Shinohara, Naohide; Ángeles, Felipe; Basaldud, Roberto; Cardenas, Beatriz; Wakamatsu, Shinji

    2017-05-01

    We investigated commuter exposure to volatile organic compounds in the metropolitan area of Mexico City in 2011 in private car, microbus, bus, metro, metrobus, and trolley bus. A similar survey was conducted in 2002 before initiation of the ProAire2002-2010 program aimed at reducing air pollution. Formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene were sampled while traveling during the morning rush hour in May 2011. Compared with the 2002 survey, in-vehicle concentrations were substantially lower in 2011, except for formaldehyde in microbuses (35% higher than in 2002). The reductions were 17-42% (except microbuses), 25-44%, 41-61%, 43-61%, 71-79%, 80-91%, and 79-93% for formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene, respectively. These reductions are considered to be the outcome of some of the actions in the ProAire2002-2010 program. In some microbuses, use of liquid petroleum gas may have increased in-vehicle formaldehyde concentrations. The reduction in predicted excess cancer incidence of commuters because of ProAire2002-2010 was estimated to be 1.4 cases/yr. In addition, if every microbus commuter changed their transport mode to bus, metro, or metrobus in the future, the estimated excess cancer incidence of commuters could be further decreased from 6.4 to 0.88-2.2 cases/year.

  17. Moving the bus safely back into traffic : Phase II.

    DOT National Transportation Integrated Search

    2010-09-01

    The difficulty experienced by transit buses in moving back into traffic safely from bus pullout bays has : become a serious problem due to potential hazards between buses merging from the pullout bays and : the surrounding traffic. Previous studies h...

  18. Moving the bus safely back into traffic : phase II.

    DOT National Transportation Integrated Search

    2010-09-01

    The difficulty experienced by transit buses in moving back into traffic safely from bus pullout bays has : become a serious problem due to potential hazards between buses merging from the pullout bays and : the surrounding traffic. Previous studies h...

  19. A statistical analysis of the relationship between land values and freestanding bus facilities.

    DOT National Transportation Integrated Search

    2010-02-01

    Public transit professionals continue to seek methods that offer greater service opportunities, while : not materially increasing the costs of service provision. One strategy is to construct bus transit : centers which operate much like the airline h...

  20. Cutting Transportation Costs.

    ERIC Educational Resources Information Center

    Lewis, Barbara

    1982-01-01

    Beginning on the front cover, this article tells how school districts are reducing their transportation costs. Particularly effective measures include the use of computers for bus maintenance and scheduling, school board ownership of buses, and the conversion of gasoline-powered buses to alternative fuels. (Author/MLF)

  1. Demonstration of diesel fired coolant heaters in school bus applications : final report.

    DOT National Transportation Integrated Search

    2010-04-01

    Engine block pre-heating can reduce fuel consumption, decrease pollution, extend engine life, and it is often necessary for reliably starting diesel engines in cold climates. This report describes the application and experience of applying 36 diesel ...

  2. Design & development of the LCO-140H series hydraulic hybrid low floor transit bus.

    DOT National Transportation Integrated Search

    2012-09-01

    Automation Alley, Altair, and the Federal Transit Administration (FTA), in a public-private partnership, teamed up to advance a new transit bus initiative that would improve Americas local and regional transit systems while requiring no infrastruc...

  3. Determination of an Optimal Commercial Data Bus Architecture for a Flight Data System

    NASA Technical Reports Server (NTRS)

    Crawford, Kevin; Johnson, Martin; Humphries, Rick (Technical Monitor)

    2001-01-01

    NASA/Marshall Space Flight Center (MSFC) is continually looking for methods to reduce cost and schedule while keeping the quality of work high. MSFC is NASA's lead center for space transportation and microgravity research. When supporting NASA's programs several decisions concerning the avionics system must be made. Usually many trade studies must be conducted to determine the best ways to meet the customer's requirements. When deciding the flight data system, one of the first trade studies normally conducted is the determination of the data bus architecture. The schedule, cost, reliability, and environments are some of the factors that are reviewed in the determination of the data bus architecture. Based on the studies, the data bus architecture could result in a proprietary data bus or a commercial data bus. The cost factor usually removes the proprietary data bus from consideration. The commercial data bus's range from Versa Module Eurocard (VME) to Compact PCI to STD 32 to PC 104. If cost, schedule and size are prime factors, VME is usually not considered. If the prime factors are cost, schedule, and size then Compact PCI, STD 32 and PC104 are the choices for the data bus architecture. MSFC's center director has funded a study from his discretionary fund to determine an optimal low cost commercial data bus architecture. The goal of the study is to functionally and environmentally test Compact PCI, STD 32 and PC 104 data bus architectures. This paper will summarize the results of the data bus architecture study.

  4. Gas Phase Emission Ratios From In-Use Diesel and CNG Curbside Passenger Buses in New York City

    NASA Astrophysics Data System (ADS)

    Herndon, S. C.; Shorter, J.; Canagaratna, M.; Jayne, J.; Nelson, D. D.; Wormhoudt, J. C.; Williams, P.; Silva, P. J.; Shi, Q.; Ghertner, A.; Zahniser, M.; Worsnop, D.; Kolb, C.; Lanni, T.; Drewnick, F.; Demerjian, K. L.

    2002-12-01

    The Aerodyne Mobile Laboratory simultaneously measured gas phase and particulate emissions from in use vehicles during two campaigns in New York City. The campaigns took place during two weeks in October, 2000 and four weeks in July-August, 2001. Passenger curbside buses were the primary focus of the study, but school buses and several other heavy duty diesel vehicles were also characterized. This paper describes the methodologies used to measure individual in use vehicles and presents the results of the gas phase measurements. Emission ratios for NO, NO2, SO2, N2O, CO, CH4 and H2CO relative to CO2 have been determined across several classes of buses. The gas phase concentrations were measured each second, using Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS). Some of the categories of buses into which the data has been sorted are; diesel (both 6V92 and Series 50) with and without the Continuous Regenerative Technology (CRT) retrofit, compressed natural gas powered(CNG) and hybrid diesel-electric buses. The New York Metropolitan Transit Authority (MTA) cooperated with this work, providing details about each of their buses followed. In addition to MTA buses, other New York City passenger bus operators were also measured. In September 2000, MTA began to switch to 30 ppm sulfur diesel fuel while it is believed the non MTA operators did not. The measured emission ratios show that low sulfur fuel greatly reduces the amount of SO2 per CO2. Roughly one third of the MTA fleet of diesel buses have been equipped with the CRT retrofit. The gas phase results of interest in this category show increased direct emission of NO2 and companion work (also submitted to the 12th CRC) show the impact the CRT refit has on particulate emissions. CNG buses show increased H2CO and CH4 emission ratios relative to diesel powered motors.

  5. Chapter 2 Formula. 1986-87 Final Report.

    ERIC Educational Resources Information Center

    Moede, Lauren Hall

    For the 1986-87 school year, the Austin (Texas) Independent School District (AISD) allocated its Education Consolidation Improvement Act (ECIA) Chapter 2 Formula and Carry-over funds to nine desegregation-related programs: (1) Bus Monitors; (2) Extracurricular Transportation; (3) Outdoor Learning; (4) Peer Assistance and Leadership; (5) Project…

  6. A comparison of emissions from vehicles fueled with diesel or compressed natural gas.

    PubMed

    Hesterberg, Thomas W; Lapin, Charles A; Bunn, William B

    2008-09-01

    A comprehensive comparison of emissions from vehicles fueled with diesel or compressed natural gas (CNG) was developed from 25 reports on transit buses, school buses, refuse trucks, and passenger cars. Emissions for most compounds were highest for untreated exhaust emissions and lowest for treated exhaust CNG buses without after-treatment had the highest emissions of carbon monoxide, hydrocarbons, nonmethane hydrocarbons (NMHC), volatile organic compounds (VOCs; e.g., benzene, butadiene, ethylene, etc.), and carbonyl compounds (e.g., formaldehyde, acetaldehyde, acrolein). Diesel buses without after-treatment had the highest emissions of particulate matter and polycyclic aromatic hydrocarbons (PAHs). Exhaust after-treatments reduced most emissions to similar levels in diesel and CNG buses. Nitrogen oxides (NO(x)) and carbon dioxide (CO2) emissions were similar for most vehicle types, fuels, and exhaust after-treatments with some exceptions. Diesel school buses had higher CO2 emissions than the CNG bus. CNG transit buses and passenger cars equipped with three-way catalysts had lower NO(x) emissions. Diesel buses equipped with traps had higher nitrogen dioxide emissions. Fuel economy was best in the diesel buses not equipped with exhaust after-treatment.

  7. CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus

    DOT National Transportation Integrated Search

    2018-02-01

    The purpose of the Impact Assessment Plan is to take the results of the test track or field tests of the prototype, make reasonable extrapolations of those results to a theoretical full scale implementation, and answer the following 7 questions relat...

  8. Old-Fashioned Bus Trips: New Age Professional Development

    ERIC Educational Resources Information Center

    Feldhues, Katherine; Epley, Hannah K.

    2018-01-01

    Two 4-H Camp-related bus tours offered new nontraditional professional development (PD) experiences that better align Extension's PD opportunities with the organization's experiential education pedagogy. Creating quality PD opportunities for employees is important because such experiences can affect overall work performance, community connections,…

  9. Case Study - Propane School Bus Fleets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laughlin, M; Burnham, A.

    As part of the U.S. Department of Energy’s (DOE’s) effort to deploy transportation technologies that reduce U.S. dependence on imported petroleum, this study examines five school districts, one in Virginia and four in Texas, successful use of propane school buses. These school districts used school buses equipped with the newly developed liquid propane injection system that improves vehicle performance. Some of the school districts in this study saved nearly 50% on a cost per mile basis for fuel and maintenance relative to diesel. Using Argonne National Laboratory’s Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool developed for the DOE’smore » Clean Cities program to help Clean Cities stakeholders estimate petroleum use, greenhouse gas (GHG) emissions, air pollutant emissions and cost of ownership of light-duty and heavy-duty vehicles, the results showed payback period ranges from 3—8 years, recouping the incremental cost of the vehicles and infrastructure. Overall, fuel economy for these propane vehicles is close to that of displaced diesel vehicles, on an energy-equivalent basis. In addition, the 110 propane buses examined demonstrated petroleum displacement, 212,000 diesel gallon equivalents per year, and GHG benefits of 770 tons per year.« less

  10. A Feeder-Bus Dispatch Planning Model for Emergency Evacuation in Urban Rail Transit Corridors

    PubMed Central

    Wang, Yun; Yan, Xuedong; Zhou, Yu; Zhang, Wenyi

    2016-01-01

    The mobility of modern metropolises strongly relies on urban rail transit (URT) systems, and such a heavy dependence causes that even minor service interruptions would make the URT systems unsustainable. This study aims at optimally dispatching the ground feeder-bus to coordinate with the urban rails’ operation for eliminating the effect of unexpected service interruptions in URT corridors. A feeder-bus dispatch planning model was proposed for the collaborative optimization of URT and feeder-bus cooperation under emergency situations and minimizing the total evacuation cost of the feeder-buses. To solve the model, a concept of dummy feeder-bus system is proposed to transform the non-linear model into traditional linear programming (ILP) model, i.e., traditional transportation problem. The case study of Line #2 of Nanjing URT in China was adopted to illustrate the model application and sensitivity analyses of the key variables. The modeling results show that as the evacuation time window increases, the total evacuation cost as well as the number of dispatched feeder-buses decrease, and the dispatched feeder-buses need operate for more times along the feeder-bus line. The number of dispatched feeder-buses does not show an obvious change with the increase of parking spot capacity and time window, indicating that simply increasing the parking spot capacity would cause huge waste for the emergent bus utilization. When the unbalanced evacuation demand exists between stations, the more feeder-buses are needed. The method of this study will contribute to improving transportation emergency management and resource allocation for URT systems. PMID:27676179

  11. Information management advanced development. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Gerber, C. R.

    1972-01-01

    The information management systems designed for the modular space station are discussed. Subjects presented are: (1) communications terminal breadboard configuration, (2) digital data bus breadboard configuration, (3) data processing assembly definition, and (4) computer program (software) assembly definition.

  12. 76 FR 47296 - Transit Asset Management (TAM) Pilot Program Funds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... makes funds available for public transportation providers, State Departments of Transportation (DOT... transportation asset management at the nation's rail and bus public transportation agencies. FOR FURTHER... asset management at the rail and bus public transportation agencies. Transit Asset Management Selections...

  13. 76 FR 37184 - Discretionary Bus and Bus Facilities Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ..., Flexible, Efficient, Transportation Equity Act: A Legacy For Users (SAFETEA-LU), Public Law 109-59, August... in public transportation, or private non- profit organizations. This notice includes priorities... engaged in public transportation, or private non-profit organizations.'' B. Background Maintaining the...

  14. The Yellow School Bus Project: Helping Homeless Students Get Ready for School.

    ERIC Educational Resources Information Center

    Vissing, Yvonne

    2003-01-01

    Describes the Yellow School Bus Project, a community program jointly sponsored by religious, civic, fraternal, business, and nonprofit organizations in Durham, New Hampshire, to provide homeless children with supplies and clothes to help them succeed in school. (PKP)

  15. Intercity bus service study 2014.

    DOT National Transportation Integrated Search

    2015-02-01

    Rural transit programs are funded with 5311 funds, named for their description in Section 5311 of United States : Code (49 USC S5311). In Alabama, 15% of 5311 funds are set aside to be spent on improving intercity bus : service through the 5311(f) pr...

  16. Seat Belts: Are They the Best Solution to the Real Problem?

    ERIC Educational Resources Information Center

    Comeau, Lee F.

    1985-01-01

    More children are killed outside their school buses than inside. To solve this problem, we should improve bus design, provide driver training programs for all school bus drivers, utilize the latest safety devices available, and improve ridership safety curriculum. (MLF)

  17. COM-BUS : A Southern California Subscription Bus Service

    DOT National Transportation Integrated Search

    1977-05-01

    The evolution and operations of the COM-BUS Subscription Commuter Bus Service are documented. COM-BUS is a privately owned organization operating at a profit without any form of subsidy. COM-BUS serves approximately 2,000 commuters per day on 47 rout...

  18. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Parag Kulkarni; Wei Wei

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research is developing an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE was awarded a contract frommore » U.S. DOE NETL to develop the UFP technology. Work on the Phase I program started in October 2000, and work on the Phase II effort started in April 2005. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions with an estimated efficiency higher than IGCC with conventional CO2 separation. The Phase I R&D program established the feasibility of the integrated UFP technology through lab-, bench- and pilot-scale testing and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The Phase I effort integrated experimental testing, modeling and preliminary economic studies to demonstrate the UFP technology. The Phase II effort will focus on three high-risk areas: economics, sorbent attrition and lifetime, and product gas quality for turbines. The economic analysis will include estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs will be benchmarked with IGCC polygen costs for plants of similar size. Sorbent attrition and lifetime will be addressed via bench-scale experiments that monitor sorbent performance over time and by assessing materials interactions at operating conditions. The product gas from the third reactor (high-temperature vitiated air) will be evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. This is the eighteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the Phase II period starting July 01, 2005 and ending September 30, 2005. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including process modeling, scale-up and economic analysis.« less

  19. Novel optimization technique of isolated microgrid with hydrogen energy storage.

    PubMed

    Beshr, Eman Hassan; Abdelghany, Hazem; Eteiba, Mahmoud

    2018-01-01

    This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm.

  20. Novel optimization technique of isolated microgrid with hydrogen energy storage

    PubMed Central

    Abdelghany, Hazem; Eteiba, Mahmoud

    2018-01-01

    This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm. PMID:29466433

  1. High-Speed Ring Bus

    NASA Technical Reports Server (NTRS)

    Wysocky, Terry; Kopf, Edward, Jr.; Katanyoutananti, Sunant; Steiner, Carl; Balian, Harry

    2010-01-01

    The high-speed ring bus at the Jet Propulsion Laboratory (JPL) allows for future growth trends in spacecraft seen with future scientific missions. This innovation constitutes an enhancement of the 1393 bus as documented in the Institute of Electrical and Electronics Engineers (IEEE) 1393-1999 standard for a spaceborne fiber-optic data bus. It allows for high-bandwidth and time synchronization of all nodes on the ring. The JPL ring bus allows for interconnection of active units with autonomous operation and increased fault handling at high bandwidths. It minimizes the flight software interface with an intelligent physical layer design that has few states to manage as well as simplified testability. The design will soon be documented in the AS-1393 standard (Serial Hi-Rel Ring Network for Aerospace Applications). The framework is designed for "Class A" spacecraft operation and provides redundant data paths. It is based on "fault containment regions" and "redundant functional regions (RFR)" and has a method for allocating cables that completely supports the redundancy in spacecraft design, allowing for a complete RFR to fail. This design reduces the mass of the bus by incorporating both the Control Unit and the Data Unit in the same hardware. The standard uses ATM (asynchronous transfer mode) packets, standardized by ITU-T, ANSI, ETSI, and the ATM Forum. The IEEE-1393 standard uses the UNI form of the packet and provides no protection for the data portion of the cell. The JPL design adds optional formatting to this data portion. This design extends fault protection beyond that of the interconnect. This includes adding protection to the data portion that is contained within the Bus Interface Units (BIUs) and by adding to the signal interface between the Data Host and the JPL 1393 Ring Bus. Data transfer on the ring bus does not involve a master or initiator. Following bus protocol, any BIU may transmit data on the ring whenever it has data received from its host. There is no centralized arbitration or bus granting. The JPL design provides for autonomous synchronization of the nodes on the ring bus. An address-synchronous latency adjust buffer (LAB) has been designed that cannot get out of synchronization and needs no external input. Also, a priority-driven cable selection behavior has been programmed into each unit on the ring bus. This makes the bus able to connect itself up, according to a maximum redundancy priority system, without the need for computer intervention at startup. Switching around a failed or switched-off unit is also autonomous. The JPL bus provides a map of all the active units for the host computer to read and use for fault management. With regard to timing, this enhanced bus recognizes coordinated timing on a spacecraft as critical and addresses this with a single source of absolute and relative time, which is broadcast to all units on the bus with synchronization maintained to the tens of nanoseconds. Each BIU consists of up to five programmable triggers, which may be programmed for synchronization of events within the spacecraft of instrument. All JPL-formatted data transmitted on the ring bus are automatically time-stamped.

  2. Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem.

    PubMed

    Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue

    2015-01-01

    As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods.

  3. School Bus Safety. An AS&U Roundtable.

    ERIC Educational Resources Information Center

    American School and University, 1985

    1985-01-01

    A roundtable discussion of the issue of seat belts in school buses features United States Representative Peter H. Kostmayer, who has introduced a bill providing incentive grants to states to adopt and enforce laws requiring the use of seat belts in new school buses; three bus manufacturing executives; and two educators. (MLF)

  4. Heavy vehicle propulsion system materials program: Semiannual progress report, April 1996--September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    1997-04-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goalmore » is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.« less

  5. Using Credit Cards To Pay Bus Fares in Phoenix

    DOT National Transportation Integrated Search

    1996-01-01

    In 1991 the City of Phoenix Public Transit System, first in the nation to install magnetic card readers on the electronic fareboxes in its buses, implemented a program known as Bus Card Plus, which billed employers for trips made by employees using e...

  6. A uniform transit safety records system for the Commonwealth of Virginia.

    DOT National Transportation Integrated Search

    1981-01-01

    This study was conceived as the first phase of a three-phase program to develop a safety data base for intracity bus transit. It involved reviewing the state of the art of general transportation safety management, examining the current intracity bus ...

  7. 75 FR 23843 - Discretionary Bus and Bus Facilities Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... transit facilities and equipment. d. For facilities, evidence of proposed project compliance with ``Green Building'' certification. 3. For transit asset management system projects: If asset management system...-New York, Administrator, Region 7-Kansas One Bowling Green, Room 429, New City, MO, 901 Locust Street...

  8. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    NASA Technical Reports Server (NTRS)

    Gagnier, Don; Hayner, Rick; Roza, Michael; Nosek, Thomas; Razzaghi, Andrea

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric science instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments that will be flown on the Aura s p a c m and of the Aura spacecraft bus electronics. Aura is one of NASA's Earth Observing System @OS) Program missions managed by the Goddard Space Flight Center. The test was designed to evaluate the complex interfaces in the spacecraft and instrument command and data handling (C&DH) subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during (and not before) the flight hardware integration phase can cause significant cost and schedule impacts. The testing successfully surfaced problems and led to their resolution before the full-up integration phase, saving significant cost and schedule time. This approach could be used on future environmental satellite programs involving multiple, complex scientific instruments being integrated onto a bus.

  9. Replacement model of city bus: A dynamic programming approach

    NASA Astrophysics Data System (ADS)

    Arifin, Dadang; Yusuf, Edhi

    2017-06-01

    This paper aims to develop a replacement model of city bus vehicles operated in Bandung City. This study is driven from real cases encountered by the Damri Company in the efforts to improve services to the public. The replacement model propounds two policy alternatives: First, to maintain or keep the vehicles, and second is to replace them with new ones taking into account operating costs, revenue, salvage value, and acquisition cost of a new vehicle. A deterministic dynamic programming approach is used to solve the model. The optimization process was heuristically executed using empirical data of Perum Damri. The output of the model is to determine the replacement schedule and the best policy if the vehicle has passed the economic life. Based on the results, the technical life of the bus is approximately 20 years old, while the economic life is an average of 9 (nine) years. It means that after the bus is operated for 9 (nine) years, managers should consider the policy of rejuvenation.

  10. LEOPARD; SPOTS; sjectrum calculation with depletion. [IBM360; UNIVAC1108; FORTRAN IV(H) (IBM360) and FORTRAN V (UNIVAC1108)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry, R.F.

    LEOPARD is a unit cell homogenization and spectrum generation (MUFT-SOFOCATE type) program with a fuel depletion option.IBM360;UNIVAC1108; FORTRAN IV(H) (IBM360) and FORTRAN V (UNIVAC1108); OS/360 (IBM360) and EXEC2 (UNIVAC1108); 50K (decimal) memory.

  11. Emerging Energy Requirements for Future C4ISR

    DTIC Science & Technology

    2002-09-01

    hydrogen (H2). The transition has already begun, and private industry is leading the way by developing prototype vehicles that use fuel cells and... fuel cell generators in homes and businesses may spread the development cost of the technology beyond vehicles and accelerate consumer acceptance...military and civilian requirements, and this could foster joint programs to develop modern nuclear power sources for use in the 21st century. 4

  12. Korea Earth Observation Satellite Program

    NASA Astrophysics Data System (ADS)

    Baek, Myung-Jin; Kim, Zeen-Chul

    via Korea Aerospace Research Institute (KARI) as the prime contractor in the area of Korea earth observation satellite program to enhance Korea's space program development capability. In this paper, Korea's on-going and future earth observation satellite programs are introduced: KOMPSAT- 1 (Korea Multi Purpose Satellite-1), KOMPSAT-2 and Communication, Broadcasting and Meteorological Satellite (CBMS) program. KOMPSAT-1 satellite successfully launched in December 1999 with Taurus launch vehicle. Since launch, KOMPSAT-1 is downlinking images of Korea Peninsular every day. Until now, KOMPSAT-1 has been operated more than 2 and half years without any major hardware malfunction for the mission operation. KOMPSAT-1 payload has 6.6m panchromatic spatial resolution at 685 km on-orbit and the spacecraft bus had NASA TOMS-EP (Total Ozone Mapping Spectrometer-Earth Probe) spacecraft bus heritage designed and built by TRW, U.S.A.KOMPSAT-1 program was international co-development program between KARI and TRW funded by Korean Government. be launched in 2004. Main mission objective is to provide geo-information products based on the multi-spectral high resolution sensor called Multi-Spectral Camera (MSC) which will provide 1m panchromatic and 4m multi-spectral high resolution images. ELOP of Israel is the prime contractor of the MSC payload system and KARI is the total system prime contractor including spacecraft bus development and ground segment. KARI also has the contract with Astrium of Europe for the purpose of technical consultation and hardware procurement. Based on the experience throughout KOMPSAT-1 and KOMPSAT-2 space system development, Korea is expecting to establish the infrastructure of developing satellite system. Currently, KOMPSAT-2 program is in the critical design stage. are scheduled to launch in 2008 and in 2014, respectively. The mission of CBMS consists of two areas. One is of space technology test for the communications mission, and the other is of a real- time environmental observation for meteorological mission on the geosynchronous orbit for public services. The CBMS is expected to weigh about 2 ~ 2.5 tons, and 6 channels of Ka-band and S- band transponder are equipped for communications service and observation payloads such as meteorological and ocean sensors. To increase the reliability of the first CBMS, a cooperative development with advanced foreign companies of the space business is being considered.

  13. Renewable Electrolysis | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    variable-input power conditions Designing and developing shared power-electronics packages and controllers Development NREL develops power electronics interfaces for renewable electrolysis systems to characterize and constant voltage DC bus and power electronics to regulate power output and to convert wild alternating

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, K.; Eudy, L.

    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The evaluation period in this report (January 2008 through February 2009) has been chosen to coincide with a UTC Power propulsion system changeout that occurred on January 15, 2008.

  15. Simulation Analysis of Data Sharing in Shared Memory Multiprocessors

    DTIC Science & Technology

    1989-02-24

    LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 178 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b . ABSTRACT unclassified...work. Andrea Casotto (CELL), Steve McGrogan (SPICE), Srinivas Devadas (TOPOP1) and Hi-Keung Tony Ma (VERIFY) donated the parallel programs and a con...Effect of Block Size on B us Utilization 120 5-14 Ratio of Sharing Bus Cyc les to Total Bus Cycles 120 5-15 Oassification of Bus Cyc les for

  16. Advanced Thermally Stable Coal-Based Jet Fuels

    DTIC Science & Technology

    2007-10-01

    has been minimized, additional dispersant does not affect deposition. Presumably, a second deposit 400 3PO Meat , Ntgen, S houn 3 JP8 N..t, AW, 5 h"Lrm...between 1.0 and 1.5. These fuel-rich equivalence ratios were 18 5 9 X-610 (RCO:LCO=1:1) A JP-8 4 JP-900 / /Tp= - 550K1 3 Ph = - 0.51 MPaMi*= 32 g/ s / 2...NUMBER F49620-99-1-0290 5C. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR( S ) 5d. PROJECT NUMBER 2308 Se. TASK NUMBER Harold H. Schobert BC 5f. WORK UNIT

  17. Catalog of databases and reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burtis, M.D.

    1997-04-01

    This catalog provides information about the many reports and materials made available by the US Department of Energy`s (DOE`s) Global Change Research Program (GCRP) and the Carbon Dioxide Information Analysis Center (CDIAC). The catalog is divided into nine sections plus the author and title indexes: Section A--US Department of Energy Global Change Research Program Research Plans and Summaries; Section B--US Department of Energy Global Change Research Program Technical Reports; Section C--US Department of Energy Atmospheric Radiation Measurement (ARM) Program Reports; Section D--Other US Department of Energy Reports; Section E--CDIAC Reports; Section F--CDIAC Numeric Data and Computer Model Distribution; Section G--Othermore » Databases Distributed by CDIAC; Section H--US Department of Agriculture Reports on Response of Vegetation to Carbon Dioxide; and Section I--Other Publications.« less

  18. 76 FR 78732 - FY 2011 Discretionary Funding Opportunity; Section 5309 Bus and Bus Facilities Veterans...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... VTCLI supports the Obama Administration's priority of supporting America's veterans and military... Living Initiative Competitive Grant Program Funds: Announcement of Project Selections. SUMMARY: The U.S. Department of Transportation's (DOT) Federal Transit Administration (FTA) announces the selection of projects...

  19. Clean air program : use of hydrogen to power the advanced technology transit bus (ATTB) : an assessment

    DOT National Transportation Integrated Search

    1997-11-01

    The Advanced Technology Transit Bus (ATTB), developed under primary funding from : the U.S. DOT/Federal Transit Administration (FTA), currently uses a power plant : based on a natural gas burning IC engine-generator set. FTA is interested in : demons...

  20. Reactive power planning under high penetration of wind energy using Benders decomposition

    DOE PAGES

    Xu, Yan; Wei, Yanli; Fang, Xin; ...

    2015-11-05

    This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition ismore » modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.« less

  1. Concept and Design of the Hybrid Sensor Bus System for Telecommunication Satellites

    NASA Astrophysics Data System (ADS)

    Hurni, Andreas; Tiefenbeck, Christoph; Manhart, Markus; Heyer, Heinz-Volker; Plattner, Markus; Putzer, Philipp; Roßner, Max; Koch, Alexander W.; Furano, Gianluca; McKenzie, Iain; Lam, King

    2012-08-01

    The Hybrid Sensor Bus (HSB) is a system for sensor interrogation in telecommunication satellites, which will be developed in the frame of the ESA ARTES program. The main target of the HSB system is the replacement of classical point-to-point wired sensors by sensors connected on bus networks. This will save mass and reduces efforts in assembly, integration and testing (AIT). The HSB system is able to manage an electrical I2C and a fiber-optical sensor network. The system consists of an intelligent power module, an electrical and a fiber-optical interrogator module in cold redundancy. Additional features of the HSB system are its modularity and the adaptability to different satellite platforms. The implementation of a HSB system allows platform manufacturers to build a more cost efficient satellite.This paper presents the concept and the design status of the HSB system.

  2. Baseline Testing of The EV Global E-Bike

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.

    2001-01-01

    The NASA John H. Glenn Research Center initiated baseline testing of the EV Global E-Bike as a way to reduce pollution in urban areas, reduce fossil fuel consumption and reduce Operating costs for transportation systems. The work was done Linder the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB). The E-Bike is a state of the art, ground up, hybrid electric bicycle. Unique features of the vehicle's power system include the use of an efficient, 400 W. electric hub motor and a 7-speed derailleur system that permits operation as fully electric, fully pedal, or a combination of the two. Other innovative features, such as regenerative braking through ultracapacitor energy storage are planned. Regenerative braking recovers much of the kinetic energy of the vehicle during deceleration. The E-Bike is an inexpensive approach to advance the state of the art in hybrid technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. A description of the E-bike, the results of performance testing, and future vehicle development plans is the subject of this report. The report concludes that the E-Bike provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.

  3. Baseline Testing of the Club Car Carryall With Asymmetric Ultracapacitors

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2003-01-01

    The NASA John H. Glenn Research Center initiated baseline testing of the Club Car Carryall with asymmetric ultracapacitors as a way to reduce pollution in industrial settings, reduce fossil fuel consumption, and reduce operating costs for transportation systems. The Club Car Carryall provides an inexpensive approach to advance the state of the art in electric vehicle technology in a practical application. The project transfers space technology to terrestrial use via non-traditional partners, and provides power system data valuable for future space applications. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB). The Carryall is a state of the art, ground up, electric utility vehicle. A unique aspect of the project was the use of a state of the art, long life ultracapacitor energy storage system. Innovative features, such as regenerative braking through ultracapacitor energy storage, are planned. Regenerative braking recovers much of the kinetic energy of the vehicle during deceleration. The Carryall was tested with the standard lead acid battery energy storage system, as well as with an asymmetric ultracapacitor energy storage system. The report concludes that the Carryall provides excellent performance, and that the implementation of asymmetric ultracapacitors in the power system can provide significant performance improvements.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dever, Thomas J.

    The project objective was to further assist in the commercialization of fuel cell and H2 technology by building further upon the successful fuel cell lift truck deployments that were executed by LiftOne in 2007, with longer deployments of this technology in real-world applications. We involved facilities management, operators, maintenance personnel, safety groups, and Authorities Having Jurisdiction. LiftOne strived to educate a broad group from many areas of industry and the community as to the benefits of this technology. Included were First Responders from the local areas. We conducted month long deployments with end-users to validate the value proposition and themore » market requirements for fuel cell powered lift trucks. Management, lift truck operators, Authorities Having Jurisdiction and the general public experienced 'hands on' fuel cell experience in the material handling applications. We partnered with Hydrogenics in the execution of the deployment segment of the program. Air Products supplied the compressed H2 gas and the mobile fueler. Data from the Fuel Cell Power Packs and the mobile fueler was sent to the DOE and NREL as required. Also, LiftOne conducted the H2 Education Seminars on a rotating basis at their locations for lift trucks users and for other selected segments of the community over the project's 36 month duration. Executive Summary The technology employed during the deployments program was not new, as the equipment had been used in several previous demos and early adoptions within the material handling industry. This was the case with the new HyPx Series PEM - Fuel Cell Power Packs used, which had been demo'd before during the 2007 Greater Columbia Fuel Cell Challenge. The Air Products HF-150 Fueler was used outdoors during the deployments and had similarly been used for many previous demo programs. The methods used centered on providing this technology as the power for electric sit-down lift trucks at high profile companies operating large fleets. As a long-standing lift truck dealership, LiftOne was able to introduce the fuel cells to such companies in the demanding applications. Accomplishments vs Objectives: We were successful in respect to the stated objectives. The Education Segment's H2 Education Sessions were able to introduce fuel cell technology to many companies and reached the intended broad audience. Also, demos of the lift truck at the sessions as well as the conferences; expos and area events provided great additional exposure. The Deployments were successful in allowing the 6 participating companies to test the 2 fuel cell powered lift trucks in their demanding applications. One of the 6 sites (BMW) eventually adopted over 80 fuel cells from Plug Power. LiftOne was one of the 3 fuel cell demonstrators at BMW for this trial and played a major role in helping to prove the viability and efficiency of this alternative form of energy for BMW. The other 5 companies that participated in the project's deployments were encouraged by the trials and while not converting over to fuel cell power at this time, expressed the desire to revisit acquisition scenarios in the near future as the cost of fuel cells and infrastructure continue to improve. The Education sessions began in March of 2009 at the 7 LiftOne Branches and continued throughout the duration of the project. Attendees came from a large base of lift truck users in North Carolina, South Carolina and Virginia. The sessions were free and invitations were sent out to potential users and companies with intrigue. In addition to the Education content at the sessions (which was offered in a 'H2 101' format), LiftOne was able to demonstrate a working fuel cell powered lift truck, which proved to be a big draw with the 'hands on' experience. LiftOne also demo'd the fuel cell lift trucks at many conferences, expos, professional association meetings, trade shows and 'Green' events in major cities region including Charlotte, Greenville, and Columbia. Such events allowed for H2 Education Material to be presented, and recruit attendees for future sessions. The Deployments began in May '09 and continued through August'10. While the overall results were good, there were some technical problems with the fuel cells at times during the trials. These items are detailed in the attachment provided with this submission. There were never any safety issues during the trials as design features and diagnostic capabilities allowed for quick analysis and field repairs. There were no products developed during this award, as we demo'd existing products. During the project, Tom Dever was able to speak at several panel type discussions and presentations at the NHA/ Fuel Cell & H2 Energy Annual Conference, as well as at the Promat Show in Chicago. Expertise and deployment/ education experiences were imparted during these events. The presentations are included as attachments.« less

  5. Short-term exposure to PM 10, PM 2.5, ultrafine particles and CO 2 for passengers at an intercity bus terminal

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Hsiang; Chang, Hsiao-Peng; Hsieh, Cheng-Ju

    2011-04-01

    The Taipei Bus Station is the main transportation hub for over 50 bus routes to eastern, central, and southern Taiwan. Daily traffic volume at this station is about 2500 vehicles, serving over 45,000 passengers daily. The station is a massive 24-story building housing a bus terminal, a business hotel, a shopping mall, several cinemas, offices, private residential suites, and over 900 parking spaces. However, air quality inside this bus terminal is a concern as over 2500 buses are scheduled to run daily. This study investigates the PM 10, PM 2.5, UFP and CO 2 levels inside and outside the bus terminal. All measurements were taken between February and April 2010. Measurement results show that coarse PM inside the bus terminal was resuspended by the movement of large numbers of passengers. The fine and ultrafine PM in the station concourse were from outside vehicles. Moreover, fine and ultrafine PM at waiting areas were exhausted directly from buses in the building. The CO 2 levels at waiting areas were likely elevated by bus exhaust and passengers exhaling. The PM 10, PM 2.5 and CO 2 levels at the bus terminal were lower than Taiwan's EPA suggested standards for indoor air quality. However, UFP levels at the bus terminal were significantly higher than those in the urban background by about 10 times. Therefore, the effects of UFPs on the health of passengers and workers must be addressed at this bus terminal since the levels of UFPs are higher than >1.0 × 10 5 particles cm -3.

  6. Auxiliary engine digital interface unit (DIU)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This auxiliary propulsion engine digital unit controls both the valving of the fuel and oxidizer to the engine combustion chamber and the ignition spark required for timely and efficient engine burns. In addition to this basic function, the unit is designed to manage it's own redundancy such that it is still operational after two hard circuit failures. It communicates to the data bus system several selected information points relating to the operational status of the electronics as well as the engine fuel and burning processes.

  7. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffman, Gerald

    2012-12-31

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation's urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  8. Evaluation of Candidate Measures for Home-Based Screening of Sleep Disordered Breathing in Taiwanese Bus Drivers

    PubMed Central

    Ting, Hua; Huang, Ren-Jing; Lai, Ching-Hsiang; Chang, Shen-Wen; Chung, Ai-Hui; Kuo, Teng-Yao; Chang, Ching-Haur; Shih, Tung-Sheng; Lee, Shin-Da

    2014-01-01

    Background: Sleepiness-at-the-wheel has been identified as a major cause of highway accidents. The aim of our study is identifying the candidate measures for home-based screening of sleep disordered breathing in Taiwanese bus drivers, instead of polysomnography. Methods: Overnight polysomnography accompanied with simultaneous measurements of alternative screening devices (pulse oximetry, ApneaLink, and Actigraphy), heart rate variability, wake-up systolic blood pressure and questionnaires were completed by 151 eligible participants who were long-haul bus drivers with a duty period of more than 12 h a day and duty shifting. Results: 63.6% of professional bus drivers were diagnosed as having sleep disordered breathing and had a higher body mass index, neck circumference, systolic blood pressure, arousal index and desaturation index than those professional bus drivers without evidence of sleep disordered breathing. Simple home-based candidate measures: (1) Pulse oximetry, oxygen-desaturation indices by ≥3% and 4% (r = 0.87∼0.92); (2) Pulse oximetry, pulse-rising indices by ≥7% and 8% from a baseline (r = 0.61∼0.89); and (3) ApneaLink airflow detection, apnea-hypopnea indices (r = 0.70∼0.70), based on recording-time or Actigraphy-corrected total sleep time were all significantly correlated with, and had high agreement with, corresponding polysomnographic apnea-hypopnea indices [(1) 94.5%∼96.6%, (2) 93.8%∼97.2%, (3) 91.1%∼91.3%, respectively]. Conversely, no validities of SDB screening were found in the multi-variables apnea prediction questionnaire, Epworth Sleepiness Scale, night-sleep heart rate variability, wake-up systolic blood pressure and anthropometric variables. Conclusions: The indices of pulse oximetry and apnea flow detection are eligible criteria for home-based screening of sleep disordered breathing, specifically for professional drivers. PMID:24803198

  9. Core thermal response and hydrogen generation of the N Reactor hydrogen mitigation design basis accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M.D.; Lombardo, N.J.; Heard, F.J.

    1988-04-01

    Calculations were performed to determine core heatup, core damage, and subsequent hydrogen production of a hypothetical loss-of-cooling accident at the Department of Energy's N Reactor. The thermal transient response of the reactor core was solved using the TRUMP-BD computer program. Estimates of whole-core thermal damage and hydrogen production were made by weighting the results of multiple half-length pressure tube simulations at various power levels. The Baker-Just and Wilson parabolic rate equations for the metal-water chemical reactions modeled the key phenomena of chemical energy and hydrogen evolution. Unlimited steam was assumed available for continuous oxidation of exposed Zircaloy-2 surfaces and formore » uranium metal with fuel cladding beyond the failure temperature (1038 C). Intact fuel geometry was modeled. Maximum fuel temperatures (1181 C) in the cooled central regions of the core were predicted to occur one-half hour into the accident scenario. Maximum fuel temperatures of 1447 C occurred in the core GSCS-regions at the end of the 10-h transient. After 10-h 26% of the fuel inventory was predicted to have failed. Peak hydrogen evolution equaled 42 g/s, while 10-h integrated hydrogen evolution equaled 167 kg. 12 refs., 12 figs., 2 tabs.« less

  10. A decentralized software bus based on IP multicas ting

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Montgomery, Todd

    1995-01-01

    We describe decentralized reconfigurable implementation of a conference management system based on the low-level Internet Protocol (IP) multicasting protocol. IP multicasting allows low-cost, world-wide, two-way transmission of data between large numbers of conferencing participants through the Multicasting Backbone (MBone). Each conference is structured as a software bus -- a messaging system that provides a run-time interconnection model that acts as a separate agent (i.e., the bus) for routing, queuing, and delivering messages between distributed programs. Unlike the client-server interconnection model, the software bus model provides a level of indirection that enhances the flexibility and reconfigurability of a distributed system. Current software bus implementations like POLYLITH, however, rely on a centralized bus process and point-to-point protocols (i.e., TCP/IP) to route, queue, and deliver messages. We implement a software bus called the MULTIBUS that relies on a separate process only for routing and uses a reliable IP multicasting protocol for delivery of messages. The use of multicasting means that interconnections are independent of IP machine addresses. This approach allows reconfiguration of bus participants during system execution without notifying other participants of new IP addresses. The use of IP multicasting also permits an economy of scale in the number of participants. We describe the MULITIBUS protocol elements and show how our implementation performs better than centralized bus implementations.

  11. Safety Handbook.

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, Rockville, MD.

    Safety policies, procedures, and related information are presented in this manual to assist school personnel in a continuing program of accident prevention. Chapter 1 discusses safety education and accident prevention in general. Chapter 2 covers traffic regulations relating to school safety patrols, school bus transportation, bicycles, and…

  12. Idle reduction programs and potential benefits to schools

    DOT National Transportation Integrated Search

    2010-11-01

    School districts in Texas and many other states have, in recent years, increased the walk zones : surrounding schools to a 2-mile perimeter. Inside this perimeter, either no school bus service is : offered, or service is offered only with a fee...

  13. Polymer electrolyte fuel cells: Potential transportation and stationary applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottesfeld, S.

    1993-01-01

    The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry's faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scalemore » transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.« less

  14. Polymer electrolyte fuel cells: Potential transportation and stationary applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottesfeld, S.

    1993-04-01

    The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry`s faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scalemore » transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.« less

  15. Pupil Transportation.

    ERIC Educational Resources Information Center

    Bete, Tim, Ed.

    1998-01-01

    Presents the opinions of four transportation experts on issues related to school buses. The experts respond to the following questions: will advertisements placed on buses be used to generate district revenue; will compressed natural gas or liquefied natural gas become standard fuel for school buses; and will school bus seat belts be mandatory and…

  16. Alternative Fuels Data Center: Multi-Modal Transportation

    Science.gov Websites

    examples of resources to help travelers use multi-modal transportation. OpenTripPlanner Map - an online transportation modes including transit (bus or train), walking, and bicycling 511 - a one-stop source from the of alternative transportation modes. A 2010 evaluation by the Oregon Transportation Research and

  17. 40 CFR 85.1406 - Certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-use engine that is newly rebuilt to its original configuration. (b) Diesel test fuel. Federally... used is the heavy-duty engine Federal Test Procedure as set forth in the applicable portions of part 86... provide some level of particulate emission reduction, and will not cause the urban bus engine to fail to...

  18. 40 CFR 85.1406 - Certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-use engine that is newly rebuilt to its original configuration. (b) Diesel test fuel. Federally... used is the heavy-duty engine Federal Test Procedure as set forth in the applicable portions of part 86... provide some level of particulate emission reduction, and will not cause the urban bus engine to fail to...

  19. 40 CFR 85.1406 - Certification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-use engine that is newly rebuilt to its original configuration. (b) Diesel test fuel. Federally... used is the heavy-duty engine Federal Test Procedure as set forth in the applicable portions of part 86... provide some level of particulate emission reduction, and will not cause the urban bus engine to fail to...

  20. 40 CFR 85.1406 - Certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-use engine that is newly rebuilt to its original configuration. (b) Diesel test fuel. Federally... used is the heavy-duty engine Federal Test Procedure as set forth in the applicable portions of part 86... provide some level of particulate emission reduction, and will not cause the urban bus engine to fail to...

  1. 76 FR 44979 - Section 5309 Discretionary Bus and Bus Facilities Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    .... The Department of Labor (DOL) will make social communication technologies and training available to... veterans and military service families. This announcement is available on the FTA's Web site, on the Veterans Transportation and Community Living initiative Web page at: http://www.fta.dot.gov/veterans . FTA...

  2. 77 FR 6178 - FY 2012 Discretionary Funding Opportunities: Bus and Bus Facilities Programs (State of Good...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... and green building initiatives for transit facilities and equipment. 3. For transit asset management... efficiency or reduces energy consumption/green house gas emissions. Proposers are encouraged to provide... to: 1. Improve energy efficiency or reduce energy consumption/green house gas emissions. Proposers...

  3. 76 FR 41323 - Over-the-Road Bus Accessibility Program Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ..., authorized by Section 3038 of the Transportation Equity Act for the 21st Century (TEA-21). The OTRB... (TEA-21), Public Law 105-85 as amended by the Safe, Accountable, Flexible, Efficient, Transportation... bus services. These services are an important element of the U.S. transportation system. TEA-21...

  4. 58. VIEW OF SIGNAL BUS SECTION NUMBER 2 LOCATED OVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. VIEW OF SIGNAL BUS SECTION NUMBER 2 LOCATED OVER THE CONTROL ROOM MEZZANINE IN THE SIGNAL POWER CONDITIONING ROOM. BUS IS A HEAVY COPPER BAR APPROXIMATELY 1/2" BY 4" WHICH CONDUCTS POWER THROUGHOUT THE POWER PLANT. BUS ARE PROTECTED BY A BRICK AND SOAPSTONE HOUSING. OPENINGS FOR INSPECTION AND ACCESS WOULD NORMALLY BE PROTECTED BY GLASS DOORS. THE BUS WOULD BE SUPPORTED ON INSULATORS WITHIN THE BRICK CHAMBER. BUS WAS REMOVED AND SALVAGED WHEN THE STATION WAS ABANDONED. THE OBJECT IN THE TOP CENTER OF THE PHOTOGRAPH IS A POTENTIAL TRANSFORMER USED TO REDUCE BUS POTENTIAL OF 2200 VOLTS TO LOW VOLTAGES SAFE FOR USE IN CONTROL ROOM CIRCUITRY. POTENTIAL TRANSFORMERS ARE PRECISION DEVICES WHICH PRODUCE AN ACCURATE LOW VOLTAGE ANALOG OF THE HIGH VOLTAGE ON THE BUS. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  5. Space Storable Rocket Technology (SSRT) basic program

    NASA Technical Reports Server (NTRS)

    Chazen, M. L.; Mueller, T.; Casillas, A. R.; Huang, D.

    1992-01-01

    The Space Storable Rocket Technology Program (SSRT) was conducted to establish a technology for a new class of high performance and long life bipropellant engines using space storable propellants. The results are described. Task 1 evaluated several characteristics for a number of fuels to determine the best space storable fuel for use with LO2. The results indicated that LO2-N2H4 is the best propellant combination and provides the maximum mission/system capability maximum payload into GEO of satellites. Task 2 developed two models, performance and thermal. The performance model indicated the performance goal of specific impulse greater than or = 340 seconds (sigma = 204) could be achieved. The thermal model was developed and anchored to hot fire test data. Task 3 consisted of design, fabrication, and testing of a 200 lbf thrust test engine operating at a chamber pressure of 200 psia using LO2-N2H4. A total of 76 hot fire tests were conducted demonstrating performance greater than 340 (sigma = 204) which is a 25 second specific impulse improvement over the existing highest performance flight apogee type engines.

  6. Risk factors affecting fatal bus accident severity: Their impact on different types of bus drivers.

    PubMed

    Feng, Shumin; Li, Zhenning; Ci, Yusheng; Zhang, Guohui

    2016-01-01

    While the bus is generally considered to be a relatively safe means of transportation, the property losses and casualties caused by bus accidents, especially fatal ones, are far from negligible. The reasons for a driver to incur fatalities are different in each case, and it is essential to discover the underlying risk factors of bus fatality severity for different types of drivers in order to improve bus safety. The current study investigates the underlying risk factors of fatal bus accident severity to different types of drivers in the U.S. by estimating an ordered logistic model. Data for the analysis are retrieved from the Buses Involved in Fatal Accidents (BIFA) database from the USA for the years 2006-2010. Accidents are divided into three levels by counting their equivalent fatalities, and the drivers are classified into three clusters by the K-means cluster analysis. The analysis shows that some risk factors have the same impact on different types of drivers, they are: (a) season; (b) day of week; (c) time period; (d) number of vehicles involved; (e) land use; (f) manner of collision; (g) speed limit; (h) snow or ice surface condition; (i) school bus; (j) bus type and seating capacity; (k) driver's age; (l) driver's gender; (m) risky behaviors; and (n) restraint system. Results also show that some risk factors only have impact on the "young and elder drivers with history of traffic violations", they are: (a) section type; (b) number of lanes per direction; (c) roadway profile; (d) wet road surface; and (e) cyclist-bus accident. Notably, history of traffic violations has different impact on different types of bus drivers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Air Quality in Mexico City: Policies Implemented for its Improvement

    NASA Astrophysics Data System (ADS)

    Paramo, V.

    2007-12-01

    Ozone and suspended particles (PM) are two pollutants in the atmosphere of Mexico City Metropolitan Area (MCMA) that still exceed the recommended Mexican health standards. The other criteria pollutants very seldom exceed their corresponding standards. In 2006, the maximum ozone concentrations were above the health standard (0.11 ppm in 1 hour) during 59 percent of the days for an average of 2.2 hours and 130 points of the Air Quality Index (Índice Metropolitano de la Calidad del Aire - IMECA). In contrast, in 1991, 98 percent of the days exceeded the ozone health standard for an average of 6.6 hours and 200 IMECA points. With regards to PM10, in 2006, 80 percent of the sampled concentrations were below the health standard of 120 µg/m3 in 24 hours. However, the annual health standard of 50 µg/m3 is still exceeded. The air quality management in the MCMA is a difficult task due to several adverse factors. The main one is the large population that increased from nearly 15 million in 1992 to more than 18 million at present. As a result, the urban area grows in the adjoined municipalities of the State of Mexico. The vehicular fleet increases also to almost 4 million and the number of industrial facilities is at present 50,000. Consequently, the fuel consumption is very high. The daily energy consumption is estimated to be 44 million liters of equivalent of gasoline. Despite the fact that the air quality has improved in recent years, the related health standards are still exceeded and therefore it is necessary to continue applying the most cost-effective actions to improve the environment quality. Some actions that have contributed most to the reduction of pollutant emissions are the following: Continuous update of the inspection and maintenance program of the vehicular fleet; substitution of the catalytic converters at the end of their useful life; self-regulation of the diesel fleet; use of alternative fuels; update the No-Driving-Day program; establishment of more stringent emission levels of the gasoline fleet; update the detention of pollutant vehicles program; partial exemption of the inspection and maintenance program for cleaner and or highly efficient vehicles; substitution of 3,000 microbuses, 40,000 taxis and 1,200 buses; commissioning of the first Bus Rapid Transit system; implementation of a program for the emissions reduction for the 300 most polluted industrial facilities; and continuous update of the air quality environmental management programs. To continue improving the air quality in the MCMA, the environmental authorities will continue the implementation of the 2002-2010 Air Quality Improvement Program. In 2007 the Green Program was started, this includes those actions that have proven to be effective reduction of pollutant emissions and incorporates new actions for the reduction of local and global pollutant emissions. The most important of these new actions are: substitution of 9,500 microbuses; renewal of all the taxis fleet; commissioning of 10 Bus Rapid Transit lines; commissioning of Line 12 of the underground system; schedules and routes limitations to the cargo fleet; increase 5 percent the number of non-motorized trips (bicycling and walking); regulation of the private public transport passenger stops; requirement of private schools to provide school transport; regulation of non-occupied taxis in circulation; modifications to the circulation of 350 critical crossing points in the city; adoption of intelligent traffic lights systems; complete substitution of the local government vehicle's fleet; implement the inspection and maintenance of the cargo fleet; introduction of low- sulfur diesel, among other measures.

  8. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S.

    2012-01-01

    The Simulation Software, KATE (Knowledgebase Autonomous Test Engineer), is used to demonstrate the automatic identification of faults in a system. The ACLO (Autonomous Cryogenics Loading Operation) project uses KATE to monitor and find faults in the loading of the cryogenics int o a vehicle fuel tank. The KATE software interfaces with the IHM (Integrated Health Management) systems bus to communicate with other systems that are part of ACLO. One system that KATE uses the IHM bus to communicate with is AIS (Advanced Inspection System). KATE will send messages to AIS when there is a detected anomaly. These messages include visual inspection of specific valves, pressure gauges and control messages to have AIS open or close manual valves. My goals include implementing the connection to the IHM bus within KATE and for the AIS project. I will also be working on implementing changes to KATE's Ul and implementing the physics objects in KATE that will model portions of the cryogenics loading operation.

  9. Ultra-Capacitor Energy Storage in a Large Hybrid Electric Bus

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1997-01-01

    The power requirements for inner city transit buses are characterized by power peaks about an order of magnitude larger than the average power usage of the vehicle. For these vehicles, hybrid power trains can offer significantly improved fuel economy and exhaust emissions. A critical design challenge, however, has been developing the energy storage and power management system to respond to these rapid power variations. Most hybrid vehicles today use chemical energy storage batteries to supplement the power from the fuel burning generator unit. Chemical storage batteries however, present several difficulties in power management and control. These difficulties include (1) inadequate life, (2) limited current delivery as well as absorption during regenerative braking, (3) inaccurate measurement of state of charge, and (4) stored energy safety issues. Recent advances in ultra-capacitor technology create an opportunity to address these concerns. The NASA Lewis Research Center, in cooperation with industry and academia, has developed an advanced hybrid electric transit bus using ultra-capacitors as the primary energy storage system. At over 15,000-kg gross weight, this is the largest vehicle of its kind ever built using this advanced energy storage technology. Results of analyses show that the vehicle will match the performance of an equivalent conventionally powered vehicle over typical inner city drive cycles. This paper describes the overall power system architecture, the evolution of the control strategy, and analysis of power flow and vehicle performance.

  10. Multi Bus DC-DC Converter in Electric Hybrid Vehicles

    NASA Astrophysics Data System (ADS)

    Krithika, V.; Subramaniam, C.; Sridharan, R.; Geetha, A.

    2018-04-01

    This paper is cotncerned with the design, simulation and fabrication of the prototype of a Multi bus DC- DC converter operating from 42V DC and delivering 14V DC and 260V DC. As a result, three DC buses are interconnected through a single power electronic circuitry. Such a requirement is energized in the development of a hybrid electric automobile which uses the technology of fuel cell. This is implemented by using a Bidirectional DC-DC converter configuration which is ideally suitable for multiple outputs with mutual electrical isolation. For the sake of reduced size and cost of step-up transformer, selection of a high frequency switching cycle at 10 KHz was done.

  11. Pybus -- A Python Software Bus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrijsen, Wim T.L.P.

    2004-10-14

    A software bus, just like its hardware equivalent, allows for the discovery, installation, configuration, loading, unloading, and run-time replacement of software components, as well as channeling of inter-component communication. Python, a popular open-source programming language, encourages a modular design on software written in it, but it offers little or no component functionality. However, the language and its interpreter provide sufficient hooks to implement a thin, integral layer of component support. This functionality can be presented to the developer in the form of a module, making it very easy to use. This paper describes a Pythonmodule, PyBus, with which the conceptmore » of a ''software bus'' can be realized in Python. It demonstrates, within the context of the ATLAS software framework Athena, how PyBus can be used for the installation and (run-time) configuration of software, not necessarily Python modules, from a Python application in a way that is transparent to the end-user.« less

  12. Optimal PMU placement using topology transformation method in power systems.

    PubMed

    Rahman, Nadia H A; Zobaa, Ahmed F

    2016-09-01

    Optimal phasor measurement units (PMUs) placement involves the process of minimizing the number of PMUs needed while ensuring the entire power system completely observable. A power system is identified observable when the voltages of all buses in the power system are known. This paper proposes selection rules for topology transformation method that involves a merging process of zero-injection bus with one of its neighbors. The result from the merging process is influenced by the selection of bus selected to merge with the zero-injection bus. The proposed method will determine the best candidate bus to merge with zero-injection bus according to the three rules created in order to determine the minimum number of PMUs required for full observability of the power system. In addition, this paper also considered the case of power flow measurements. The problem is formulated as integer linear programming (ILP). The simulation for the proposed method is tested by using MATLAB for different IEEE bus systems. The explanation of the proposed method is demonstrated by using IEEE 14-bus system. The results obtained in this paper proved the effectiveness of the proposed method since the number of PMUs obtained is comparable with other available techniques.

  13. Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem

    PubMed Central

    Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue

    2015-01-01

    As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods. PMID:26176764

  14. Back-Up/ Peak Shaving Fuel Cell System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staudt, Rhonda L.

    2008-05-28

    This Final Report covers the work executed by Plug Power from 8/11/03 – 10/31/07 statement of work for Topic 2: advancing the state of the art of fuel cell technology with the development of a new generation of commercially viable, stationary, Back-up/Peak-Shaving fuel cell systems, the GenCore II. The Program cost was $7.2 M with the Department of Energy share being $3.6M and Plug Power’s share being $3.6 M. The Program started in August of 2003 and was scheduled to end in January of 2006. The actual program end date was October of 2007. A no cost extension was grated.more » The Department of Energy barriers addressed as part of this program are: Technical Barriers for Distributed Generation Systems: o Durability o Power Electronics o Start up time Technical Barriers for Fuel Cell Components: o Stack Material and Manufacturing Cost o Durability o Thermal and water management Background The next generation GenCore backup fuel cell system to be designed, developed and tested by Plug Power under the program is the first, mass-manufacturable design implementation of Plug Power’s GenCore architected platform targeted for battery and small generator replacement applications in the telecommunications, broadband and UPS markets. The next generation GenCore will be a standalone, H2 in-DC-out system. In designing the next generation GenCore specifically for the telecommunications market, Plug Power is teaming with BellSouth Telecommunications, Inc., a leading industry end user. The final next generation GenCore system is expected to represent a market-entry, mass-manufacturable and economically viable design. The technology will incorporate: • A cost-reduced, polymer electrolyte membrane (PEM) fuel cell stack tailored to hydrogen fuel use • An advanced electrical energy storage system • A modular, scalable power conditioning system tailored to market requirements • A scaled-down, cost-reduced balance of plant (BOP) • Network Equipment Building Standards (NEBS), UL and CE certifications.« less

  15. The EOS Aqua/Aura Experience: Lessons Learned on Design, Integration, and Test of Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Nosek, Thomas P.

    2004-01-01

    NASA and NOAA earth observing satellite programs are flying a number of sophisticated scientific instruments which collect data on many phenomena and parameters of the earth's environment. The NASA Earth Observing System (EOS) Program originated the EOS Common Bus approach, which featured two spacecraft (Aqua and Aura) of virtually identical design but with completely different instruments. Significant savings were obtained by the Common Bus approach and these lessons learned are presented as information for future program requiring multiple busses for new diversified instruments with increased capabilities for acquiring earth environmental data volume, accuracy, and type.

  16. Performance comparison of genetic algorithms and particle swarm optimization for model integer programming bus timetabling problem

    NASA Astrophysics Data System (ADS)

    Wihartiko, F. D.; Wijayanti, H.; Virgantari, F.

    2018-03-01

    Genetic Algorithm (GA) is a common algorithm used to solve optimization problems with artificial intelligence approach. Similarly, the Particle Swarm Optimization (PSO) algorithm. Both algorithms have different advantages and disadvantages when applied to the case of optimization of the Model Integer Programming for Bus Timetabling Problem (MIPBTP), where in the case of MIPBTP will be found the optimal number of trips confronted with various constraints. The comparison results show that the PSO algorithm is superior in terms of complexity, accuracy, iteration and program simplicity in finding the optimal solution.

  17. Emission Standards, Public Transit, and Infant Health.

    PubMed

    Ngo, Nicole S

    Transit buses are an integral part of urban life. They reduce externalities generated from private vehicles and increase geographic mobility. However, unlike most private vehicles in the United States, they use diesel fuel and emit higher amounts of toxic pollutants. The U.S. Environmental Protection Agency set emission standards for transit buses starting in 1988 that have been continually updated, but their public health and economic impacts are unclear due to scarce emissions data. I construct a novel panel dataset for the New York City (NYC) Transit bus fleet between 1990 and 2009 and examine the impact of bus pollution on infant health by using bus vintage as a proxy for emissions. I exploit the variation in vintage as older buses are retired and replaced with newer, lower-emitting buses forced to adhere to stricter emission standards. I then assign maternal exposure to bus vintage at the census block level. Findings suggest that maternal exposure to the oldest, unregulated buses is associated with modest reductions in birth weight and gestational age relative to newer buses that abide by emissions policies. I then conduct a back-of-the-envelope cost-benefit calculation and find net economic benefits of $53.3 million resulting from improved emission standards for the 2009 birth cohort in NYC. Since the treatment in this study clearly maps to federal emissions policies, these results are the first to provide credible evidence that transit bus emission standards had a positive effect on infant health.

  18. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The third quarter (April-June, 1978) effort of the Ford/DOE Automotive Stirling Engine Development Program is reported, specifically Task 1 of that effort, which is Fuel Economy Assessment. At the end of this quarter the total fourth generation fuel economy projection was 26.12 MPG (gasoline) with a confidence level of 44%. This represents an improvement of 66.4% over the baseline M-H fuel economy of 15.7 MPG. The confidence level for the original 20.6 MPG goal has been increased from 53% to 57%. Engine 3X17 has accumulated a total of 213 hours of variable speed running. A summary of the individual sub-tasks of Task 1 are given. The sub-tasks are grouped into two categories: Category 1 consists of those sub-tasks which are directly related to fuel economy and Category 2 consists of those sub-tasks which are not directly related to fuel economy but are an integral part of the Task 1 effort.

  19. Multipurpose satellite bus (MPS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Naval Postgraduate School Advanced Design Project sponsored by the Universities Space Research Association Advanced Design Program is a multipurpose satellite bus (MPS). The design was initiated from a Statement of Work (SOW) developed by the Defense Advanced Research Projects Agency (DARPA). The SOW called for a 'proposal to design a small, low-cost, lightweight, general purpose spacecraft bus capable of accommodating any of a variety of mission payloads. Typical payloads envisioned include those associated with meteorological, communication, surveillance and tracking, target location, and navigation mission areas.' The design project investigates two dissimilar missions, a meteorological payload and a communications payload, mated with a single spacecraft bus with minimal modifications. The MPS is designed for launch aboard the Pegasus Air Launched Vehicle (ALV) or the Taurus Standard Small Launch Vehicle (SSLV).

  20. Roles of Radiolytic and Externally Generated H2 in the Corrosion of Fractured Spent Nuclear Fuel.

    PubMed

    Liu, Nazhen; Wu, Linda; Qin, Zack; Shoesmith, David W

    2016-11-15

    A 2-D model for the corrosion of spent nuclear fuel inside a failed nuclear waste container has been modified to determine the influence of various redox processes occurring within fractures in the fuel. The corrosion process is driven by reaction of the fuel with the dominant α radiolysis product, H 2 O 2 . A number of reactions are shown to moderate or suppress the corrosion rate, including H 2 O 2 decomposition and a number of reactions involving dissolved H 2 produced either by α radiolysis or by the corrosion of the steel container vessel. Both sources of H 2 lead to the suppression of fuel corrosion, with their relative importance being determined by the radiation dose rate, the steel corrosion rate, and the dimensions of the fractures in the fuel. The combination of H 2 from these two sources can effectively prevent corrosion when only micromolar quantities of H 2 are present.

  1. Bus Training Handbook.

    ERIC Educational Resources Information Center

    Dorny, Audrea; Cole, ChiKay

    This manual presents guidelines for teaching students with disabilities necessary skills for safe and independent travel on public buses. Six guidelines for teachers include: (1) participate in bus training; (2) use wise and intelligent judgment; (3) utilize the bus checklist; (4) know and teach bus rules; (5) know bus routes; and (6) know bus…

  2. Pupil Transportation Safety Program Plan.

    ERIC Educational Resources Information Center

    Delahanty, Joseph F.; And Others

    This study has been undertaken to assess the magnitude of the school bus safety problem and to develop a plan to improve pupil transportation safety. The resulting report provides estimates of school bus population and daily usage, gives an account of injuries and fatalities that occur annually, and compares the safety records of school buses to…

  3. The Walking School Bus and children's physical activity: A pilot cluster randomized controlled trial

    USDA-ARS?s Scientific Manuscript database

    To evaluate the impact of a "walking school bus" program on children's rates of active commuting to school and physical activity. We conducted a pilot cluster randomized controlled trial among 4th-graders from 8 schools in Houston, Texas (N = 149). Random allocation to treatment or control condition...

  4. 40 CFR 85.1404 - Maintenance of records for urban bus operators; submittal of information; right of entry.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Maintenance of records for urban bus operators; submittal of information; right of entry. 85.1404 Section 85.1404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE...

  5. Chapter 2 Formula. 1983-84 Final Technical Report.

    ERIC Educational Resources Information Center

    Doss, David A.; Davis, Walter E.

    In 1982-83, the Austin (TX) Independent School District chose to use its Chapter 2-Formula funds for two sets of activities: bus monitors and extracurricular transportation for desegregation purposes. This report summarizes the evaluation findings for these two activities, as well as what happened to programs funded under the Emergency School Aid…

  6. Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand

    NASA Astrophysics Data System (ADS)

    Carignano, Mauro G.; Costa-Castelló, Ramon; Roda, Vicente; Nigro, Norberto M.; Junco, Sergio; Feroldi, Diego

    2017-08-01

    Offering high efficiency and producing zero emissions Fuel Cells (FCs) represent an excellent alternative to internal combustion engines for powering vehicles to alleviate the growing pollution in urban environments. Due to inherent limitations of FCs which lead to slow transient response, FC-based vehicles incorporate an energy storage system to cover the fast power variations. This paper considers a FC/supercapacitor platform that configures a hard constrained powertrain providing an adverse scenario for the energy management strategy (EMS) in terms of fuel economy and drivability. Focusing on palliating this problem, this paper presents a novel EMS based on the estimation of short-term future energy demand and aiming at maintaining the state of energy of the supercapacitor between two limits, which are computed online. Such limits are designed to prevent active constraint situations of both FC and supercapacitor, avoiding the use of friction brakes and situations of non-power compliance in a short future horizon. Simulation and experimentation in a case study corresponding to a hybrid electric bus show improvements on hydrogen consumption and power compliance compared to the widely reported Equivalent Consumption Minimization Strategy. Also, the comparison with the optimal strategy via Dynamic Programming shows a room for improvement to the real-time strategies.

  7. Program on the combustion chemistry of low- and intermediate-Btu gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-30

    Low and intermediate Btu (LBTU and IBTU) gas mixtures are essentially mixtures of CO, H/sub 2/ and CH/sub 4/ diluted with nitrogen and CO/sub 2/. Although the combustion properties of these three fuels have been extensively investigated and their individual combustion kinetics are reasonably well established, prediction techniques for applying these gas mixtures remain for the most part empirical. This program has aimed to bring together and apply some of the fundamental combustion parameters to the CO-H/sub 2/-CH/sub 4/ flame system with the hope of reducing some of this empiricism. Four topical reports have resulted from this program. This finalmore » report summarizes these reports and other activities undertaken in this program. This program was initiated June 22, 1976 under ERDA Contract No. E(49-18)-2406 and was later continued under DOE/PETC and DOE Contract No. DE-AC22-76ET10653.« less

  8. Hydrogen Generation Via Fuel Reforming

    NASA Astrophysics Data System (ADS)

    Krebs, John F.

    2003-07-01

    Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2-based power generation, via reforming, is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2-enriched product stream, such as carbon monoxide (CO) and hydrogen sulfide (H2S), can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC's). Removal of such contaminants requires extensive processing of the H2-rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.

  9. Common Traffic Violations of Bus Drivers in Urban China: An Observational Study.

    PubMed

    Wang, Qiqi; Zhang, Wei; Yang, Rendong; Huang, Yuanxiu; Zhang, Lin; Ning, Peishan; Cheng, Xunjie; Schwebel, David C; Hu, Guoqing; Yao, Hongyan

    2015-01-01

    To report common traffic violations in bus drivers and the factors that influence those violations in urban China. We conducted an observational study to record three types of traffic violations among bus drivers in Changsha City, China: illegal stopping at bus stations, violating traffic light signals, and distracted driving. The behaviors of bus drivers on 32 routes (20% of bus routes in the city) were observed. A two-level Poisson regression examined factors that predicted bus driver violations. The incidence of illegal stopping at bus stations was 20.2%. Illegal stopping was less frequent on weekends, sunny days, and at stations with cameras, with adjusted incidence rate ratios (IRRs) of 0.81, 0.65 and 0.89, respectively. The incidence of violating traffic light signals was 2.2%, and was lower on cloudy than sunny days (adjusted IRR: 0.60). The incidence of distracted driving was 3.3%. The incidence of distracted driving was less common on cloudy days, rainy or snowy days, and foggy/windy/dusty days compared to sunny days, with adjusted IRRs of 0.54, 0.55 and 0.07, respectively. Traffic violations are common in bus drivers in urban China and they are associated with the date, weather, and presence of traffic cameras at bus station. Further studies are recommended to understand the behavioral mechanisms that may explain bus driver violations and to develop feasible prevention measures.

  10. 29 CFR 779.360 - Classification of liquefied-petroleum-gas sales.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... bus fuel and the repair and servicing of trucks and buses used in over-the-road commercial transportation (including parts and accessories for such vehicles). (b) Sales or repairs of tanks. Sales or repairs of tanks for the storage of liquefied-petroleum-gas are recognized as retail in the industry...

  11. The Fuel Efficient Missile Combat Crew Routing Network.

    DTIC Science & Technology

    1980-06-01

    after a 24 -hour alert tour, driving safety might be impacted. Al- though the 1.98 gallons per passenger is a 43% improvement over the present MCC...Van/DS II, Van/DS I, and 29 Pax Bus/ DS I combinations, the authors believe that the potential lengthy travel times, driving safety factor, vehicle

  12. 77 FR 50502 - California State Nonroad Engine Pollution Control Standards; In-Use Heavy-Duty Vehicles (As...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL 9716-9] California State Nonroad Engine Pollution Control Standards; In- Use Heavy-Duty Vehicles (As Applicable to Yard Trucks and Two-Engine Sweepers); Opportunity... from In-Use Heavy-Duty Diesel-Fueled Vehicles'' (commonly referred to as the ``Truck and Bus Regulation...

  13. In-vehicle measurement of ultrafine particles on compressed natural gas, conventional diesel, and oxidation-catalyst diesel heavy-duty transit buses.

    PubMed

    Hammond, Davyda; Jones, Steven; Lalor, Melinda

    2007-02-01

    Many metropolitan transit authorities are considering upgrading transit bus fleets to decrease ambient criteria pollutant levels. Advancements in engine and fuel technology have lead to a generation of lower-emission buses in a variety of fuel types. Dynamometer tests show substantial reductions in particulate mass emissions for younger buses (<10 years) over older models, but particle number reduction has not been verified in the research. Recent studies suggest that particle number is a more important factor than particle mass in determining health effects. In-vehicle particle number concentration measurements on conventional diesel, oxidation-catalyst diesel and compressed natural gas transit buses are compared to estimate relative in-vehicle particulate exposures. Two primary consistencies are observed from the data: the CNG buses have average particle count concentrations near the average concentrations for the oxidation-catalyst diesel buses, and the conventional diesel buses have average particle count concentrations approximately three to four times greater than the CNG buses. Particle number concentrations are also noticeably affected by bus idling behavior and ventilation options, such as, window position and air conditioning.

  14. Preventing CO poisoning in fuel cells

    DOEpatents

    Gottesfeld, Shimshon

    1990-01-01

    Proton exchange membrane (PEM) fuel cell performance with CO contamination of the H.sub.2 fuel stream is substantially improved by injecting O.sub.2 into the fuel stream ahead of the fuel cell. It is found that a surface reaction occurs even at PEM operating temperatures below about 100.degree. C. to oxidatively remove the CO and restore electrode surface area for the H.sub.2 reaction to generate current. Using an O.sub.2 injection, a suitable fuel stream for a PEM fuel cell can be formed from a methanol source using conventional reforming processes for producing H.sub.2.

  15. 49 CFR 393.62 - Emergency exits for buses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (including a school bus used in interstate commerce for non-school bus operations) with a GVWR of more than 4... manufacture. (2) Each bus (including a school bus used in interstate commerce for non-school bus operations... NECESSARY FOR SAFE OPERATION Glazing and Window Construction § 393.62 Emergency exits for buses. (a) Buses...

  16. 49 CFR 393.62 - Emergency exits for buses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (including a school bus used in interstate commerce for non-school bus operations) with a GVWR of more than 4... manufacture. (2) Each bus (including a school bus used in interstate commerce for non-school bus operations... NECESSARY FOR SAFE OPERATION Glazing and Window Construction § 393.62 Emergency exits for buses. (a) Buses...

  17. 49 CFR 393.62 - Emergency exits for buses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (including a school bus used in interstate commerce for non-school bus operations) with a GVWR of more than 4... manufacture. (2) Each bus (including a school bus used in interstate commerce for non-school bus operations... NECESSARY FOR SAFE OPERATION Glazing and Window Construction § 393.62 Emergency exits for buses. (a) Buses...

  18. 49 CFR 393.62 - Emergency exits for buses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (including a school bus used in interstate commerce for non-school bus operations) with a GVWR of more than 4... manufacture. (2) Each bus (including a school bus used in interstate commerce for non-school bus operations... NECESSARY FOR SAFE OPERATION Glazing and Window Construction § 393.62 Emergency exits for buses. (a) Buses...

  19. Fuel Exhaling Fuel Cell.

    PubMed

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  20. An assessment and comparison of fuel cells for transportation applications

    NASA Astrophysics Data System (ADS)

    Krumpelt, M.; Christianson, C. C.

    1989-09-01

    Fuel cells offer the potential of a clean, efficient power source for buses, cars, and other transportation applications. When the fuel cell is run on methanol, refueling would be as rapid as with gasoline-powered internal combustion engines, providing a virtually unlimited range while still maintaining the smooth and quiet acceleration that is typical for electric vehicles. The advantages and disadvantages of five types of fuel cells are reviewed and analyzed for a transportation application: alkaline, phosphoric acid, proton exchange membrane, molten carbonate, and solid oxide. The status of each technology is discussed, system designs are reviewed, and preliminary comparisons of power densities, start-up times, and dynamic response capabilities are made. To test the concept, a fuel cell/battery powered urban bus appears to be a good first step that can be realized today with phosphoric acid cells. In the longer term, the proton exchange membrane and solid oxide fuel cells appear to be superior.

  1. A PC-based bus monitor program for use with the transport systems research vehicle RS-232 communication interfaces

    NASA Technical Reports Server (NTRS)

    Easley, Wesley C.

    1991-01-01

    Experiment critical use of RS-232 data busses in the Transport Systems Research Vehicle (TSRV) operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center has recently increased. Each application utilizes a number of nonidentical computer and peripheral configurations and requires task specific software development. To aid these development tasks, an IBM PC-based RS-232 bus monitoring system was produced. It can simultaneously monitor two communication ports of a PC or clone, including the nonstandard bus expansion of the TSRV Grid laptop computers. Display occurs in a separate window for each port's input with binary display being selectable. A number of other features including binary log files, screen capture to files, and a full range of communication parameters are provided.

  2. Assessing paratransit eligibility under the Americans With Disabilities Act in the rehabilitation setting.

    PubMed

    Griffin, Jeanne; Priddy, David A

    2005-06-01

    To assess the usefulness of a rehabilitation-based assessment program designed to determine the eligibility, according to Americans With Disabilities Act criteria, of applicants for paratransit bus services. Retrospective summary statistics on 500 consecutive paratransit evaluations. Outpatient physical medicine and rehabilitation center. Applicants for a community paratransit bus service. Not applicable. Clinical assessment of each applicants functional physical and cognitive ability to ride a fixed-route or paratransit bus system. Of the 500 applicants for specialized paratransit services, 38 (8%) were found to be ineligible, based on rehabilitation professionals evaluations of their physical and cognitive abilities. Mass transit organizations must adjust to the rapidly growing demand for paratransit services. Rehabilitation-based assessment programs, because of the expertise they provide in assessing functional abilities, are uniquely qualified to provide objective determinations of paratransit eligibility.

  3. Overestimation of on-road air quality surveying data measured with a mobile laboratory caused by exhaust plumes of a vehicle ahead in dense traffic areas.

    PubMed

    Woo, Sang-Hee; Kwak, Kyung-Hwan; Bae, Gwi-Nam; Kim, Kyung Hwan; Kim, Chang Hyeok; Yook, Se-Jin; Jeon, Sangzin; Kwon, Sangil; Kim, Jeongsoo; Lee, Seung-Bok

    2016-11-01

    The unintended influence of exhaust plumes emitted from a vehicle ahead to on-road air quality surveying data measured with a mobile laboratory (ML) at 20-40 km h -1 in dense traffic areas was investigated by experiment and life-sized computational fluidic dynamics (CFD) simulation. The ML equipped with variable sampling inlets of five columns by four rows was used to measure the spatial distribution of CO 2 and NO x concentrations when following 5-20 m behind a sport utility vehicle (SUV) as an emitter vehicle equipped with a portable emission monitoring system (PEMS). The PEMS measured exhaust gases at the tailpipe for input data of the CFD simulations. After the CFD method was verified with experimental results of the SUV, dispersion of exhaust plumes emitted from a bus and a sedan was numerically analyzed. More dilution of the exhaust plume was observed at higher vehicle speeds, probably because of eddy diffusion that was proportional to turbulent kinetic energy and vehicle speed. The CO 2 and NO x concentrations behind the emitter vehicle showed less overestimation as both the distance between the two vehicles and their background concentrations increased. If the height of the ML inlet is lower than 2 m and the ML travels within 20 m behind a SUV and a sedan ahead at 20 km h -1 , the overestimation should be considered by as much as 200 ppb in NO x and 80 ppm in CO 2 . Following a bus should be avoided if possible, because effect of exhaust plumes from a bus ahead could not be negligible even when the distance between the bus and the ML with the inlet height of 2 m, was more than 40 m. Recommendations are provided to avoid the unintended influence of exhaust plumes from vehicles ahead of the ML during on-road measurement in urban dense traffic conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A new assessment method of outdoor tobacco smoke (OTS) exposure

    NASA Astrophysics Data System (ADS)

    Cho, Hyeri; Lee, Kiyoung

    2014-04-01

    Outdoor tobacco smoke (OTS) is concerned due to potential health effects. An assessment method of OTS exposure is needed to determine effects of OTS and validate outdoor smoking policies. The objective of this study was to develop a new method to assess OTS exposure. This study was conducted at 100 bus stops including 50 centerline bus stops and 50 roadside bus stops in Seoul, Korea. Using real-time aerosol monitor, PM2.5 was measured for 30 min at each bus stop in two seasons. ‘Peak analysis' method was developed to assess short term PM2.5 exposure by OTS. The 30-min average PM2.5 exposure at each bus stop was associated with season and bus stop location but not smoking activity. The PM2.5 peak occurrence rate by the peak analysis method was significantly associated with season, bus stop location, observed smoking occurrence, and the number of buses servicing a route. The PM2.5 peak concentration was significantly associated with season, smoking occurrence, and the number of buses servicing a route. When a smoker was standing still at the bus stop, magnitude of peak concentrations were significantly higher than when the smoker walking-through the bus stop. People were exposed to high short-term PM2.5 peak levels at bus stops, and the magnitude of peak concentrations were highest when a smoker was located close to the monitor. The magnitude of peak concentration was a good indicator helped distinguish nearby OTS exposure. Further research using ‘peak analysis' is needed to measure smoking-related exposure to PM2.5 in other outdoor locations.

  5. H2FIRST: A partnership to advance hydrogen fueling station technology driving an optimal consumer experience.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moen, Christopher D.; Dedrick, Daniel E.; Pratt, Joseph William

    2014-03-01

    The US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Office of Fuel Cell Technologies Office (FCTO) is establishing the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) partnership, led by the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL). FCTO is establishing this partnership and the associated capabilities in support of H2USA, the public/private partnership launched in 2013. The H2FIRST partnership provides the research and technology acceleration support to enable the widespread deployment of hydrogen infrastructure for the robust fueling of light-duty fuel cell electric vehicles (FCEV). H2FIRST will focus on improving private-sector economics, safety,more » availability and reliability, and consumer confidence for hydrogen fueling. This whitepaper outlines the goals, scope, activities associated with the H2FIRST partnership.« less

  6. NASA Lewis H2-O2 MHD program

    NASA Technical Reports Server (NTRS)

    Smith, M.; Nichols, L. D.; Seikel, G. R.

    1974-01-01

    Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.

  7. Galileo IOV Electrical Power Subsystem Relies On Li-Ion Batter Charge Management Controlled By Hardware

    NASA Astrophysics Data System (ADS)

    Douay, N.

    2011-10-01

    In the frame of GALILEO In-Orbit Validation program which is composed of 4 satellites, Thales Alenia Space France has designed, developed and tested the Electrical Power Subsystem. Besides some classical design choices like: -50V regulated main power bus provided by the PCDU manufactured by Terma (DK), -Solar array, manufactured by Dutch-Space (NL), using Ga-As triple junction technology from Azur Space Power Solar GmbH, -SAFT (FR) Lithium-ion Battery for which cell package balancing function is required, -Solar Array Drive Mechanism, provided by RUAG Space Switzerland, to transfer the power. This subsystem features a fully autonomous, failure tolerant, battery charge management able to operate even after a complete unavailability of the on-board software. The battery charge management is implemented such that priority is always given to satisfy the satellite main bus needs in order to maintain the main bus regulation under MEA control. This battery charge management principle provides very high reliability and operational robustness. So, the paper describes : -the battery charge management concept using a combination of PCDU hardware and relevant battery lines monitoring, -the functional aspect of the single point failure free S4R (Sequential Switching Shunt Switch Regulator) and associated performances, -the failure modes isolated and passivated by this architecture. The paper will address as well the autonomous balancing function characteristics and performances.

  8. Systems design study of the Pioneer Venus spacecraft. Appendices to volume 1, sections 8-11 (part 3 of 3). [power subsystem/cost tradeoffs for Venus probe

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Power subsystem cost/weight tradeoffs are discussed for the Venus probe spacecraft. The cost estimations of power subsystem units were based upon DSCS-2, DSP, and Pioneer 10 and 11 hardware design and development and manufacturing experience. Parts count and degree of modification of existing hardware were factored into the estimate of manufacturing and design and development costs. Cost data includes sufficient quantities of units to equip probe bus and orbiter versions. It was based on the orbiter complement of equipment, but the savings in fewer slices for the probe bus balance the cost of the different probe bus battery. The preferred systems for the Thor/Delta and for the Atlas/Centaur are discussed. The weights of the candidate designs were based upon slice or tray weights for functionally equivalent circuitry measured on existing hardware such as Pioneers 10 and 11, Intelsat 3, DSCS-2, or DSP programs. Battery weights were based on measured cell weight data adjusted for case weight or off-the-shelf battery weights. The solar array weight estimate was based upon recent hardware experience on DSCS-2 and DSP arrays.

  9. Buses retrofitting with diesel particle filters: Real-world fuel economy and roadworthiness test considerations.

    PubMed

    Fleischman, Rafael; Amiel, Ran; Czerwinski, Jan; Mayer, Andreas; Tartakovsky, Leonid

    2018-05-01

    Retrofitting older vehicles with diesel particulate filter (DPF) is a cost-effective measure to quickly and efficiently reduce particulate matter emissions. This study experimentally analyzes real-world performance of buses retrofitted with CRT DPFs. 18 in-use Euro III technology urban and intercity buses were investigated for a period of 12months. The influence of the DPF and of the vehicle natural aging on buses fuel economy are analyzed and discussed. While the effect of natural deterioration is about 1.2%-1.3%, DPF contribution to fuel economy penalty is found to be 0.6% to 1.8%, depending on the bus type. DPF filtration efficiency is analyzed throughout the study and found to be in average 96% in the size range of 23-560nm. Four different load and non-load engine operating modes are investigated on their appropriateness for roadworthiness tests. High idle is found to be the most suitable regime for PN diagnostics considering particle number filtration efficiency. Copyright © 2017. Published by Elsevier B.V.

  10. 7. YOSEMITE VALLEY SHUTTLE BUS AT SENTINEL BRIDGE SHUTTLE BUS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. YOSEMITE VALLEY SHUTTLE BUS AT SENTINEL BRIDGE SHUTTLE BUS AND PARKING LOT AREA. LOOKING WNW. GIS: N-37 40 36.2 / W-119 44 45.0 - Yosemite National Park Roads & Bridges, Yosemite Village, Mariposa County, CA

  11. Power conversion apparatus and method

    DOEpatents

    Su, Gui-Jia [Knoxville, TN

    2012-02-07

    A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

  12. Common Traffic Violations of Bus Drivers in Urban China: An Observational Study

    PubMed Central

    Yang, Rendong; Huang, Yuanxiu; Zhang, Lin; Ning, Peishan; Cheng, Xunjie; Schwebel, David C.

    2015-01-01

    Objective To report common traffic violations in bus drivers and the factors that influence those violations in urban China. Methods We conducted an observational study to record three types of traffic violations among bus drivers in Changsha City, China: illegal stopping at bus stations, violating traffic light signals, and distracted driving. The behaviors of bus drivers on 32 routes (20% of bus routes in the city) were observed. A two-level Poisson regression examined factors that predicted bus driver violations. Results The incidence of illegal stopping at bus stations was 20.2%. Illegal stopping was less frequent on weekends, sunny days, and at stations with cameras, with adjusted incidence rate ratios (IRRs) of 0.81, 0.65 and 0.89, respectively. The incidence of violating traffic light signals was 2.2%, and was lower on cloudy than sunny days (adjusted IRR: 0.60). The incidence of distracted driving was 3.3%. The incidence of distracted driving was less common on cloudy days, rainy or snowy days, and foggy/windy/dusty days compared to sunny days, with adjusted IRRs of 0.54, 0.55 and 0.07, respectively. Conclusion Traffic violations are common in bus drivers in urban China and they are associated with the date, weather, and presence of traffic cameras at bus station. Further studies are recommended to understand the behavioral mechanisms that may explain bus driver violations and to develop feasible prevention measures. PMID:26372105

  13. Gaseous and particulate composition of fresh and aged emissions of diesel, RME and CNG buses using Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Psichoudaki, Magda; Le Breton, Michael; Hallquist, Mattias; Watne, Ågot; Hallquist, Asa

    2016-04-01

    Urban air pollution is becoming a significant global problem, especially for large cities around the world. Traffic emissions contribute significantly to both elevated particle concentrations and to gaseous pollutants in cities. The latter also have the potential of forming more particulate mass via their photochemical oxidation in the atmosphere. The International Agency for Research on Cancer and the US EPA have characterised diesel exhausts as a likely human carcinogen that can also contribute to other health problems. In order to meet the challenges with increased transportation and enhanced greenhouse gas emissions, the European Union have decided on a 10% substitution of traditional fuels in the road transport sector by alternative fuels (e.g. biodiesel, CNG) before the year 2020. However, it is also important to study the influence of fuel switches on other primary pollutants as well as the potential to form secondary aerosol mass. This work focuses on the characterisation of the chemical composition of the gas and the condensed phase of fresh bus emissions during acceleration, in order to mimic the exhaust plume that humans would inhale under realistic conditions. In addition, photochemical aging of the exhaust emissions was achieved by employing a Potential Aerosol Mass (PAM) flow reactor, allowing the characterization of the composition of the corresponding aged emissions. The PAM reactor uses UV lamps and high concentrations of oxidants (OH radicals and O3) to oxidize the organic species present in the chamber. The oxidation that takes place within the reactor can be equivalent to up to one week of atmospheric oxidation. Preliminary tests showed that the oxidation employed in these measurements corresponded to a range from 4 to 8 days in the atmosphere. During June and July 2015, a total of 29 buses, 5 diesel, 13 CNG and 11 RME (rapeseed methyl ester), were tested in two different locations with limited influence from other types of emissions and traffic. A Time-of-Flight Chemical Ionization Mass Spectrometer (ToF-CIMS) was employed to monitor the concentration of different organic species present in the fresh and aged emissions. This instrument is capable of identifying the molecular formulas of species in the gas phase. The FIGAERO inlet, also enabled the characterisation of the particle phase, as particles were simultaneously collected on a filter, from which they could then be thermally desorbed and detected. Acetate (negative) ionization was utilised to allow high sensitivity measurements of organic acids, aldehydes, ketones, diols and halogenated species. The H2O, O3 and NOx concentrations inside the PAM flow reactor were monitored, and an organic tracer for OH exposure was also continuously measured. The concentrations of dominant species in both fresh and aged gaseous and particulate bus emissions from the different fuel types will be presented as well as their emission factors, calculated from concurrent CO2 measurements.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickerell, D.H.; Abkowitz, M.; Tozzi, J.

    The 9 papers in the report deal with the following areas: Federal operating assistance for urban mass transit; a decade of experience; transit route characteristics and headway-based reliability control; day-of-week and part-of-month variation in bus ridership; job satisfaction and transit operator recognition programs; results of a survey of muni operators; bus marketing costs: the experience of 18 section 15 reporters from 1981 to 1983; prospects for differential transit pricing in the United States; an initial analysis of total factor productivity for public-transit coordination of transportation resources: the Georgia experience; absenteeism, accidents, and attrition: part-time versus full-time bus drivers.

  15. Mathematical modeling of synthesis gas fueled electrochemistry and transport including H2/CO co-oxidation and surface diffusion in solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin

    2015-10-01

    Fuel flexibility is a significant advantage of solid oxide fuel cell (SOFC). A comprehensive macroscopic framework is proposed for synthesis gas (syngas) fueled electrochemistry and transport in SOFC anode with two main novelties, i.e. analytical H2/CO electrochemical co-oxidation, and correction of gas species concentration at triple phase boundary considering competitive absorption and surface diffusion. Staring from analytical approximation of the decoupled charge and mass transfer, we present analytical solutions of two defined variables, i.e. hydrogen current fraction and enhancement factor. Giving explicit answer (rather than case-by-case numerical calculation) on how many percent of the current output contributed by H2 or CO and on how great the water gas shift reaction plays role on, this approach establishes at the first time an adaptive superposition mechanism of H2-fuel and CO-fuel electrochemistry for syngas fuel. Based on the diffusion equivalent circuit model, assuming series-connected resistances of surface diffusion and bulk diffusion, the model predicts well at high fuel utilization by keeping fixed porosity/tortuosity ratio. The model has been validated by experimental polarization behaviors in a wide range of operation on a button cell for H2-H2O-CO-CO2-N2 fuel systems. The framework could be helpful to narrow the gap between macro-scale and meso-scale SOFC modeling.

  16. Fuel-Air Explosive Simulation of Far-Field Nuclear Airblasts.

    DTIC Science & Technology

    1979-12-31

    Blastwave Simulator," Sixieme Symposium International sur Les A19 plications Militaires de La Simulation de Souffle, Centre D’Etudes de Gramat , Gramat ... Gramat , Gramat , France, p. 4.2.1, June 1979. 207 7............................. 64. Cooperwaithe, M. and Zwisler, W. H., "TIGER Computer Program

  17. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel

    PubMed Central

    Mase, Kentaro; Yoneda, Masaki; Yamada, Yusuke; Fukuzumi, Shunichi

    2016-01-01

    Hydrogen peroxide (H2O2) in water has been proposed as a promising solar fuel instead of gaseous hydrogen because of advantages on easy storage and high energy density, being used as a fuel of a one-compartment H2O2 fuel cell for producing electricity on demand with emitting only dioxygen (O2) and water. It is highly desired to utilize the most earth-abundant seawater instead of precious pure water for the practical use of H2O2 as a solar fuel. Here we have achieved efficient photocatalytic production of H2O2 from the most earth-abundant seawater instead of precious pure water and O2 in a two-compartment photoelectrochemical cell using WO3 as a photocatalyst for water oxidation and a cobalt complex supported on a glassy-carbon substrate for the selective two-electron reduction of O2. The concentration of H2O2 produced in seawater reached 48 mM, which was high enough to operate an H2O2 fuel cell. PMID:27142725

  18. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel.

    PubMed

    Mase, Kentaro; Yoneda, Masaki; Yamada, Yusuke; Fukuzumi, Shunichi

    2016-05-04

    Hydrogen peroxide (H2O2) in water has been proposed as a promising solar fuel instead of gaseous hydrogen because of advantages on easy storage and high energy density, being used as a fuel of a one-compartment H2O2 fuel cell for producing electricity on demand with emitting only dioxygen (O2) and water. It is highly desired to utilize the most earth-abundant seawater instead of precious pure water for the practical use of H2O2 as a solar fuel. Here we have achieved efficient photocatalytic production of H2O2 from the most earth-abundant seawater instead of precious pure water and O2 in a two-compartment photoelectrochemical cell using WO3 as a photocatalyst for water oxidation and a cobalt complex supported on a glassy-carbon substrate for the selective two-electron reduction of O2. The concentration of H2O2 produced in seawater reached 48 mM, which was high enough to operate an H2O2 fuel cell.

  19. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Raul Subia

    GE Global Research is developing an innovative energy technology for coal gasification with high efficiency and near-zero pollution. This Unmixed Fuel Processor (UFP) technology simultaneously converts coal, steam and air into three separate streams of hydrogen-rich gas, sequestration-ready CO{sub 2}, and high-temperature, high-pressure vitiated air to produce electricity in gas turbines. This is the draft final report for the first stage of the DOE-funded Vision 21 program. The UFP technology development program encompassed lab-, bench- and pilot-scale studies to demonstrate the UFP concept. Modeling and economic assessments were also key parts of this program. The chemical and mechanical feasibility weremore » established via lab and bench-scale testing, and a pilot plant was designed, constructed and operated, demonstrating the major UFP features. Experimental and preliminary modeling results showed that 80% H{sub 2} purity could be achieved, and that a UFP-based energy plant is projected to meet DOE efficiency targets. Future work will include additional pilot plant testing to optimize performance and reduce environmental, operability and combined cycle integration risks. Results obtained to date have confirmed that this technology has the potential to economically meet future efficiency and environmental performance goals.« less

  20. Split delivery vehicle routing problem with time windows: a case study

    NASA Astrophysics Data System (ADS)

    Latiffianti, E.; Siswanto, N.; Firmandani, R. A.

    2018-04-01

    This paper aims to implement an extension of VRP so called split delivery vehicle routing problem (SDVRP) with time windows in a case study involving pickups and deliveries of workers from several points of origin and several destinations. Each origin represents a bus stop and the destination represents either site or office location. An integer linear programming of the SDVRP problem is presented. The solution was generated using three stages of defining the starting points, assigning busses, and solving the SDVRP with time windows using an exact method. Although the overall computational time was relatively lengthy, the results indicated that the produced solution was better than the existing routing and scheduling that the firm used. The produced solution was also capable of reducing fuel cost by 9% that was obtained from shorter total distance travelled by the shuttle buses.

Top