Sample records for h2o ice signatures

  1. Interannual observations and quantification of summertime H2O ice deposition on the Martian CO2 ice south polar cap

    USGS Publications Warehouse

    Brown, Adrian J.; Piqueux, Sylvain; Titus, Timothy N.

    2014-01-01

    The spectral signature of water ice was observed on Martian south polar cap in 2004 by the Observatoire pour l'Mineralogie, l'Eau les Glaces et l'Activite (OMEGA) ( Bibring et al., 2004). Three years later, the OMEGA instrument was used to discover water ice deposited during southern summer on the polar cap ( Langevin et al., 2007). However, temporal and spatial variations of these water ice signatures have remained unexplored, and the origins of these water deposits remains an important scientific question. To investigate this question, we have used observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter (MRO) spacecraft of the southern cap during austral summer over four Martian years to search for variations in the amount of water ice. We report below that for each year we have observed the cap, the magnitude of the H2O ice signature on the southern cap has risen steadily throughout summer, particularly on the west end of the cap. The spatial extent of deposition is in disagreement with the current best simulations of deposition of water ice on the south polar cap (Montmessin et al., 2007). This increase in water ice signatures is most likely caused by deposition of atmospheric H2O ice and a set of unusual conditions makes the quantification of this transport flux using CRISM close to ideal. We calculate a ‘minimum apparent‘ amount of deposition corresponding to a thin H2O ice layer of 0.2 mm (with 70% porosity). This amount of H2O ice deposition is 0.6–6% of the total Martian atmospheric water budget. We compare our ‘minimum apparent’ quantification with previous estimates. This deposition process may also have implications for the formation and stability of the southern CO2 ice cap, and therefore play a significant role in the climate budget of modern day Mars.

  2. CO Diffusion into Amorphous H2O Ices

    NASA Astrophysics Data System (ADS)

    Lauck, Trish; Karssemeijer, Leendertjan; Shulenberger, Katherine; Rajappan, Mahesh; Öberg, Karin I.; Cuppen, Herma M.

    2015-03-01

    The mobility of atoms, molecules, and radicals in icy grain mantles regulates ice restructuring, desorption, and chemistry in astrophysical environments. Interstellar ices are dominated by H2O, and diffusion on external and internal (pore) surfaces of H2O-rich ices is therefore a key process to constrain. This study aims to quantify the diffusion kinetics and barrier of the abundant ice constituent CO into H2O-dominated ices at low temperatures (15-23 K), by measuring the mixing rate of initially layered H2O(:CO2)/CO ices. The mixed fraction of CO as a function of time is determined by monitoring the shape of the infrared CO stretching band. Mixing is observed at all investigated temperatures on minute timescales and can be ascribed to CO diffusion in H2O ice pores. The diffusion coefficient and final mixed fraction depend on ice temperature, porosity, thickness, and composition. The experiments are analyzed by applying Fick’s diffusion equation under the assumption that mixing is due to CO diffusion into an immobile H2O ice. The extracted energy barrier for CO diffusion into amorphous H2O ice is ˜160 K. This is effectively a surface diffusion barrier. The derived barrier is low compared to current surface diffusion barriers in use in astrochemical models. Its adoption may significantly change the expected timescales for different ice processes in interstellar environments.

  3. New Optical Constants for Amorphous and Crystalline H2O-ice and H2O-mixtures.

    NASA Technical Reports Server (NTRS)

    Mastrapa, Rachel; Bernstein, Max; Sandford, Scott

    2006-01-01

    We will present the products of new laboratory measurements of ices relevant to Trans-Neptunian Objects. We have calculated the real and imaginary indices of refraction for amorphous and crystalline H2O-ice and also H2O-rich ices containing other molecular species. We create ice samples by condensing gases onto a cold substrate. We measure the thickness of the sample by reflecting a He-Ne laser off of the sample and counting interference fringes as it grows. We then collect transmission spectra of the samples in the wavelength range from 0.7-22 micrometers. Using the thickness and the transmission spectra of the ice we calculate the imaginary part of the index of refraction. We then use a Kramers-Kronig calculation to calculate the real part of the index of refraction (Berland et al. 1994; Hudgins et al. 1993). These optical constants can then be used to create model spectra for comparison to spectra from Solar System objects, including TNOs. We will summarize the difference between the amorphous and crystalline H2O-ice spectra. These changes include weakening of features and shifting of features to shorter wavelength. One important result is that the 2 pm feature is stronger in amorphous H2O ice than it is in crystalline H2O-ice. We will also discuss the changes seen when H2O is mixed with other components, including CO2, CH4, HCN, and NH3 (Bernstein et al. 2005; Bernstein et al. 2006).

  4. Studies of proton irradiated H2O + CO2 and H2O + CO ices and analysis of synthesized molecules

    NASA Technical Reports Server (NTRS)

    Moore, M. H.; Khanna, R.; Donn, B.

    1991-01-01

    Infrared spectra of H2O + CO2 and H2O + CO ices before and after proton irradiation showed that a major reaction in both mixtures was the interconversion of CO2 yields CO. Radiation synthesized organic compounds such as carbonic acid were identified in the H2O + CO2 ice. Different chemical pathways dominate in the H2O + CO ice in which formaldehyde, methanol, ethanol, and methane were identified. Sublimed material was also analyzed using a mass spectrometer. Implications of these results are discussed in reference to comets.

  5. Bacterial Ice Nucleation in Monodisperse D2O and H2O-in-Oil Emulsions.

    PubMed

    Weng, Lindong; Tessier, Shannon N; Smith, Kyle; Edd, Jon F; Stott, Shannon L; Toner, Mehmet

    2016-09-13

    Ice nucleation is of fundamental significance in many areas, including atmospheric science, food technology, and cryobiology. In this study, we investigated the ice-nucleation characteristics of picoliter-sized drops consisting of different D2O and H2O mixtures with and without the ice-nucleating bacteria Pseudomonas syringae. We also studied the effects of commonly used cryoprotectants such as ethylene glycol, propylene glycol, and trehalose on the nucleation characteristics of D2O and H2O mixtures. The results show that the median freezing temperature of the suspension containing 1 mg/mL of a lyophilized preparation of P. syringae is as high as -4.6 °C for 100% D2O, compared to -8.9 °C for 100% H2O. As the D2O concentration increases every 25% (v/v), the profile of the ice-nucleation kinetics of D2O + H2O mixtures containing 1 mg/mL Snomax shifts by about 1 °C, suggesting an ideal mixing behavior of D2O and H2O. Furthermore, all of the cryoprotectants investigated in this study are found to depress the freezing phenomenon. Both the homogeneous and heterogeneous freezing temperatures of these aqueous solutions depend on the water activity and are independent of the nature of the solute. These findings enrich our fundamental knowledge of D2O-related ice nucleation and suggest that the combination of D2O and ice-nucleating agents could be a potential self-ice-nucleating formulation. The implications of self-nucleation include a higher, precisely controlled ice seeding temperature for slow freezing that would significantly improve the viability of many ice-assisted cryopreservation protocols.

  6. Photodesorption of H2O, HDO, and D2O ice and its impact on fractionation

    NASA Astrophysics Data System (ADS)

    Arasa, Carina; Koning, Jesper; Kroes, Geert-Jan; Walsh, Catherine; van Dishoeck, Ewine F.

    2015-03-01

    The HDO/H2O ratio measured in interstellar gas is often used to draw conclusions on the formation and evolution of water in star-forming regions and, by comparison with cometary data, on the origin of water on Earth. In cold cores and in the outer regions of protoplanetary disks, an important source of gas-phase water comes from photodesorption of water ice. This research note presents fitting formulae for implementation in astrochemical models using previously computed photodesorption efficiencies for all water ice isotopologues obtained with classical molecular dynamics simulations. The results are used to investigate to what extent the gas-phase HDO/H2O ratio reflects that present in the ice or whether fractionation can occur during the photodesorption process. Probabilities for the top four monolayers are presented for photodesorption of X (X = H, D) atoms, OX radicals, and X2O and HDO molecules following photodissociation of H2O, D2O, and HDO in H2O amorphous ice at ice temperatures from 10-100 K. Significant isotope effects are found for all possible products: (1) H atom photodesorption probabilities from H2O ice are larger than those for D atom photodesorption from D2O ice by a factor of 1.1; the ratio of H and D photodesorbed upon HDO photodissociation is a factor of 2. This process will enrich the ice in deuterium atoms over time; (2) the OD/OH photodesorption ratio upon D2O and H2O photodissociation is on average a factor of 2, but the OD/OH photodesorption ratio upon HDO photodissociation is almost constant at unity for all ice temperatures; (3) D atoms are more effective in kicking out neighbouring water molecules than H atoms. However, the ratio of the photodesorbed HDO and H2O molecules is equal to the HDO/H2O ratio in the ice, therefore, there is no isotope fractionation when HDO and H2O photodesorb from the ice. Nevertheless, the enrichment of the ice in D atoms due to photodesorption can over time lead to an enhanced HDO/H2O ratio in the ice, and

  7. Dynamics and unsteady morphologies at ice interfaces driven by D2O–H2O exchange

    PubMed Central

    Holmes-Cerfon, Miranda; Kohn, Robert V.

    2017-01-01

    The growth dynamics of D2O ice in liquid H2O in a microfluidic device were investigated between the melting points of D2O ice (3.8 °C) and H2O ice (0 °C). As the temperature was decreased at rates between 0.002 °C/s and 0.1 °C/s, the ice front advanced but retreated immediately upon cessation of cooling, regardless of the temperature. This is a consequence of the competition between diffusion of H2O into the D2O ice, which favors melting of the interface, and the driving force for growth supplied by cooling. Raman microscopy tracked H/D exchange across the solid H2O–solid D2O interface, with diffusion coefficients consistent with transport of intact H2O molecules at the D2O ice interface. At fixed temperatures below 3 °C, the D2O ice front melted continuously, but at temperatures near 0 °C a scalloped interface morphology appeared with convex and concave sections that cycled between growth and retreat. This behavior, not observed for D2O ice in contact with D2O liquid or H2O ice in contact with H2O liquid, reflects a complex set of cooperative phenomena, including H/D exchange across the solid–liquid interface, latent heat exchange, local thermal gradients, and the Gibbs–Thomson effect on the melting points of the convex and concave features. PMID:29042511

  8. New Optical Constants for Amorphous and Crystalline H2O-ice

    NASA Technical Reports Server (NTRS)

    Mastrapa, Rachel; Bernstein, Max; Sandford, Scott

    2006-01-01

    We have used the infrared spectra of laboratory ices to calculate the real and imaginary indices of refraction for amorphous and crystalline H2O-ice. We create H2O-ice samples in vacuum (approx. 10(exp ^-8)Torr). We measure the thickness of the sample by reflecting a He-Ne laser off of the sample and counting interference fringes as it grows and then collect transmission spectra of the samples in the wavelength range 1.25-22 micrometers. Using the ice thickness and transmission spectrum we calculate the imaginary part of the index of refraction. A Kramers-Kronig calculation is then used to calculate the real part of the index of refraction (Berland et al. 1994; Hudgins et al. 1993). These optical constants can be used to create model spectra for comparison to spectra from Solar System objects. We will summarize the differences between the amorphous and crystalline H2O-ice spectra. These include weakening of features and shifting of features to shorter wavelength in amorphous H,O-ice spectra. We will also discuss methods of using band area ratios to quickly estimate the fraction of amorphous to crystalline H2O-ice. We acknowledge financial support from the NASA Origins of the Solar System Program, the NASA Planetary Geology and Geophysics Program, and the NASA Postdoctoral Program.

  9. Ices on Charon: Distribution of H2O and NH3 from New Horizons LEISA observations

    NASA Astrophysics Data System (ADS)

    Dalle Ore, C. Morea; Protopapa, S.; Cook, J. C.; Grundy, W. M.; Cruikshank, D. P.; Verbiscer, A. J.; Ennico, K.; Olkin, C. B.; Stern, S. A.; Weaver, H. A.; Young, L. A.; New Horizons Science Team

    2018-01-01

    Charon, the largest moon of Pluto, appeared as a fairly homogeneous, gray, icy world to New Horizons during closest approach on July 14th, 2015. Charon's sub-Pluto hemisphere was scanned by the Ralph/LEISA near-IR spectrograph providing an unprecedented opportunity to measure its surface composition. We apply a statistical clustering tool to identify spectrally distinct terrains and a radiative transfer approach to study the variations of the 2.0-μm H2O ice band. We map the distribution of the ices previously reported to be present on Charon's surface, namely H2O and the products of NH3 in H2O. We find that H2O ice is mostly in the crystalline phase, confirming previous studies. The regions with the darkest albedos show the strongest signature of amorphous-phase ice, although the crystalline component is still strong. The brighter albedo regions, often corresponding to crater ejecta blankets, are characterized by larger H2O grains, possibly an indication of a younger age. We observe two different behaviors for the two absorption bands representing NH3 in H2O. The 2.21-μm band tends to cluster more in the northern areas compared to the ∼2.01-μm band. Both bands are present in the brighter crater rays, but not all craters show both bands. The 2.21-μm band is also clearly present on the smaller moons Hydra and Nix. These results hint that different physical conditions may determine the appearance or absence of these two different forms of NH3 in H2O ice in the Pluto system. We also investigate the blue slope affecting the spectrum at wavelengths longer than ∼1.8 μm previously reported by several authors. We find that the slope is common among the objects in the Pluto system, Charon, the smaller moons Nix and Hydra, and the darkest terrains on Pluto. It also characterizes the analog ice tholin obtained from irradiation of Pluto-specific materials (a mixture of N2, CH4, and CO ices) in the laboratory. Our modeling results show that Pluto ice tholins are

  10. Surfaces of Ganymede and Callisto: H2O-ice particle sizes and composition of non-ice materials

    NASA Astrophysics Data System (ADS)

    Stephan, K.; Hoffmann, H.; Hibbitts, C.; Wagner, R. J.; Jaumann, R.

    2017-12-01

    Band depth ratios (BDRs) of the major H2O-ice absorptions in the NIMS spectra of the Galilean satellites Ganymede and Callisto have been found to be mainly unaffected by the abundance of the dark non-ice material(s) and can be leveraged to provide semi-quantitative indicators of variations in the H2O-ice particle sizes across their surfaces. Interestingly, the derived H2O-ice particle sizes vary continuously with geographic latitude on both satellites. H2O-ice particles on Callisto appear slightly larger at low and mid latitude than observed on Ganymede, whereas the BDR values converge toward the poles indicating similarly small H2O-ice particle sizes for both satellites. This smooth latitudinal trend on both satellites may be related to their surface temperatures and the possible thermal migration of water vapor to higher latitudes and grain welding at lower latitudes. It is not expected that the observed relationship between the BDRs and H2O-ice particle sizes occurs for mixtures with every non-ice material expected to exist on planetary surfaces. Therefore, ice mixtures with a variety of considered non-ice materials such as carbon-rich materials, phyllosilicates and salts have been investigated and the validity of this relationship tested depending on different H2O-ice abundances and particle sizes. The relationship seems to be valid for most materials if the amount of the non-ice material in the mixture does not exceed a few percent or the non-ice component is not hydrated, i.e. does not itself possess water-related bands near 1.4 and 1.9 microns. Best results across the nearly full range of percentage could be achieved for carbon-rich material, iron sulfides, and hydroxylated phyllosilicates, which are expected to be the major constituent of carbonaceous chondrites. In contrast, significant amounts of hydrated material, as identified on Europa, significantly changes the BDRs and cannot fully explain the global trend.

  11. Reconstructing the history of water ice formation from HDO/H2O and D2O/HDO ratios in protostellar cores

    NASA Astrophysics Data System (ADS)

    Furuya, K.; van Dishoeck, E. F.; Aikawa, Y.

    2016-02-01

    Recent interferometer observations have found that the D2O/HDO abundance ratio is higher than that of HDO/H2O by about one order of magnitude in the vicinity of low-mass protostar NGC 1333-IRAS 2A, where water ice has sublimated. Previous laboratory and theoretical studies show that the D2O/HDO ice ratio should be lower than the HDO/H2O ice ratio, if HDO and D2O ices are formed simultaneously with H2O ice. In this work, we propose that the observed feature, D2O/HDO > HDO/H2O, is a natural consequence of chemical evolution in the early cold stages of low-mass star formation as follows: 1) majority of oxygen is locked up in water ice and other molecules in molecular clouds, where water deuteration is not efficient; and 2) water ice formation continues with much reduced efficiency in cold prestellar/protostellar cores, where deuteration processes are highly enhanced as a result of the drop of the ortho-para ratio of H2, the weaker UV radiation field, etc. Using a simple analytical model and gas-ice astrochemical simulations, which traces the evolution from the formation of molecular clouds to protostellar cores, we show that the proposed scenario can quantitatively explain the observed HDO/H2O and D2O/HDO ratios. We also find that the majority of HDO and D2O ices are likely formed in cold prestellar/protostellar cores rather than in molecular clouds, where the majority of H2O ice is formed. This work demonstrates the power of the combination of the HDO/H2O and D2O/HDO ratios as a tool to reveal the past history of water ice formation in the early cold stages of star formation, and when the enrichment of deuterium in the bulk of water occurred. Further observations are needed to explore if the relation, D2O/HDO > HDO/H2O, is common in low-mass protostellar sources.

  12. Detection and monitoring of H2O and CO2 ice clouds on Mars

    USGS Publications Warehouse

    Bell, J.F.; Calvin, W.M.; Ockert-Bell, M. E.; Crisp, D.; Pollack, James B.; Spencer, J.

    1996-01-01

    We have developed an observational scheme for the detection and discrimination of Mars atmospheric H2O and CO2 clouds using ground-based instruments in the near infrared. We report the results of our cloud detection and characterization study using Mars near IR images obtained during the 1990 and 1993 oppositions. We focused on specific wavelengths that have the potential, based on previous laboratory studies of H2O and CO2 ices, of yielding the greatest degree of cloud detectability and compositional discriminability. We have detected and mapped absorption features at some of these wavelengths in both the northern and southern polar regions of Mars. Compositional information on the nature of these absorption features was derived from comparisons with laboratory ice spectra and with a simplified radiative transfer model of a CO2 ice cloud overlying a bright surface. Our results indicate that both H2O and CO2 ices can be detected and distinguished in the polar hood clouds. The region near 3.00 ??m is most useful for the detection of water ice clouds because there is a strong H2O ice absorption at this wavelength but only a weak CO2 ice band. The region near 3.33 ??m is most useful for the detection of CO2 ice clouds because there is a strong, relatively narrow CO2 ice band at this wavelength but only broad "continuum" H2O ice absorption. Weaker features near 2.30 ??m could arise from CO2 ice at coarse grain sizes, or surface/dust minerals. Narrow features near 2.00 ??m, which could potentially be very diagnostic of CO2 ice clouds, suffer from contamination by Mars atmospheric CO2 absorptions and are difficult to interpret because of the rather poor knowledge of surface elevation at high latitudes. These results indicate that future ground-based, Earth-orbital, and spacecraft studies over a more extended span of the seasonal cycle should yield substantial information on the style and timing of volatile transport on Mars, as well as a more detailed understanding of

  13. Laboratory IR Detection of H2O, CO2 in Ion-Irradiated Ices Relevant to Europa

    NASA Technical Reports Server (NTRS)

    Moore, Marla H.; Hudson, R. L.

    1999-01-01

    Hydrogen peroxide has been identified on Europa (Carlson et al. 1999) based in part on the 3.50 micron absorption feature observed in Galileo NIMS spectra. The observed feature was fitted with laboratory reflectance spectra of H2O + H2O2. Since condensed phase molecules on Europa (H2O, CO2, SO2, and H2O2) are bombarded with a significant flux of energetic particles (H(+), O(n+), S(n+) and e-), we examined the proton irradiation of H2O at 80 K and the conditions for the IR detection of H2O2 near 3.5 microns. Contrary to expectations, H2O2 was not detected if pure H2O ice was irradiated at 80 K. This was an unexpected result since, H2O2 was detected if pure H2O was irradiated at 18 K. We find, however, that if H2O ice contains either O2 or CO2 then H2O2 is detected after irradiation at 80 K (Moore and Hudson, 1999). The source of O2 for the H2O ice on Europa could come from surface interactions with the tenuous oxygen atmosphere, or from the bombardment of the surface by O(n+).

  14. Porosity and thermal collapse measurements of H2O, CH3OH, CO2, and H2O:CO2 ices.

    PubMed

    Isokoski, K; Bossa, J-B; Triemstra, T; Linnartz, H

    2014-02-28

    The majority of astronomical and laboratory based studies of interstellar ices have been focusing on ice constituents. Ice structure is a much less studied topic. Particularly the amount of porosity is an ongoing point of discussion. A porous ice offers more surface area than a compact ice, for reactions that are fully surface driven. In this paper we discuss the amount of compaction for four different ices--H2O, CH3OH, CO2 and mixed H2O : CO2 = 2 : 1--upon heating over an astronomically relevant temperature regime. Laser interference and Fourier transform infrared spectroscopy are used to confirm that for amorphous solid water the full signal loss of dangling OH bonds is not a proof for full compaction. These data are compared with the first compaction results for pure CH3OH, pure CO2 and mixed H2O : CO2 = 2 : 1 ice. Here we find that thermal segregation benefits from a higher degree of porosity.

  15. Infrared spectra and radiation stability of H2O2 ices relevant to Europa.

    PubMed

    Hudson, Reggie L; Moore, Marla H

    2006-06-01

    In this paper we present spectra of H2O2-containing ices in the near- and mid-infrared (IR) regions. Spectral changes on warming are shown, as is a comparison of near-IR bands of H2O and H2O2-containing ices. An estimate of the A-value (absolute intensity) for the largest near- IR feature of H2O2 is given. Radiation-decay half-lives are reported for 19 K and 80 K, and are related to the surface radiation doses on Europa. The radiation data show that H2O2 destruction is slower at 80 K than 19 K, and are consistent with the claim that icy material in the outermost micrometer of Europa's surface has been heavily processed by radiation.

  16. In situ observations of a high-pressure phase of H2O ice

    USGS Publications Warehouse

    Chou, I.-Ming; Blank, J.G.; Goncharov, A.F.; Mao, Ho-kwang; Hemley, R.J.

    1998-01-01

    A previously unknown solid phase of H2O has been identified by its peculiar growth patterns, distinct pressure-temperature melting relations, and vibrational Raman spectra. Morphologies of ice crystals and their pressure-temperature melting relations were directly observed in a hydrothermal diamond-anvil cell for H2O bulk densities between 1203 and 1257 kilograms per cubic meter at temperatures between -10??and 50??C. Under these conditions, four different ice forms were observed to melt: two stable phases, ice V and ice VI, and two metastable phases, ice IV and the new ice phase. The Raman spectra and crystal morphology are consistent with a disordered anisotropic structure with some similarities to ice VI.

  17. Water Ice Radiolytic O2, H2, and H2O2 Yields for Any Projectile Species, Energy, or Temperature: A Model for Icy Astrophysical Bodies

    NASA Astrophysics Data System (ADS)

    Teolis, B. D.; Plainaki, C.; Cassidy, T. A.; Raut, U.

    2017-10-01

    O2, H2, and H2O2 radiolysis from water ice is pervasive on icy astrophysical bodies, but the lack of a self-consistent, quantitative model of the yields of these water products versus irradiation projectile species and energy has been an obstacle to estimating the radiolytic oxidant sources to the surfaces and exospheres of these objects. A major challenge is the wide variation of O2 radiolysis yields between laboratory experiments, ranging over 4 orders of magnitude from 5 × 10-7 to 5 × 10-3 molecules/eV for different particles and energies. We revisit decades of laboratory data to solve this long-standing puzzle, finding an inverse projectile range dependence in the O2 yields, due to preferential O2 formation from an 30 Å thick oxygenated surface layer. Highly penetrating projectile ions and electrons with ranges ≳30 Å are therefore less efficient at producing O2 than slow/heavy ions and low-energy electrons (≲ 400 eV) which deposit most energy near the surface. Unlike O2, the H2O2 yields from penetrating projectiles fall within a comparatively narrow range of (0.1-6) × 10-3 molecules/eV and do not depend on range, suggesting that H2O2 forms deep in the ice uniformly along the projectile track, e.g., by reactions of OH radicals. We develop an analytical model for O2, H2, and H2O2 yields from pure water ice for electrons and singly charged ions of any mass and energy and apply the model to estimate possible O2 source rates on several icy satellites. The yields are upper limits for icy bodies on which surface impurities may be present.

  18. Systematic Variations in CO2/H2O Ice Abundance Ratios in Nearby Galaxies Found with AKARI Near-infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamagishi, M.; Kaneda, H.; Ishihara, D.; Oyabu, S.; Onaka, T.; Shimonishi, T.; Suzuki, T.

    2015-07-01

    We report CO2/H2O ice abundance ratios in seven nearby star-forming galaxies based on the AKARI near-infrared (2.5-5.0 μm) spectra. The CO2/H2O ice abundance ratios show clear variations between 0.05 and 0.2 with the averaged value of 0.14 ± 0.01. The previous study on M82 revealed that the CO2/H2O ice abundance ratios strongly correlate with the intensity ratios of the hydrogen recombination Brα line to the polycyclic aromatic hydrocarbon (PAH) 3.3 μm feature. In the present study, however, we find no correlation for the seven galaxies as a whole due to systematic differences in the relation between CO2/H2O ice abundance and Brα/PAH 3.3 μm intensity ratios from galaxy to galaxy. This result suggests that there is another parameter that determines the CO2/H2O ice abundance ratios in a galaxy in addition to the Brα/PAH 3.3 μm ratios. We find that the CO2/H2O ice abundance ratios positively correlate with the specific star formation rates of the galaxies. From these results, we conclude that CO2/H2O ice abundance ratios tend to be high in young star-forming galaxies.

  19. Possible fossil H2O liquid-ice interfaces in the Martian crust

    USGS Publications Warehouse

    Soderblom, L.A.; Wenner, D.B.

    1978-01-01

    Throughout the northern equatorial region of Mars, extensive areas have been uniformly stripped, roughly to a constant depth. These terrains vary widely in their relative ages. A model is described here to explain this phenomenon as reflecting the vertical distribution of H2O liquid and ice in the crust. Under present conditions the Martian equatorial regions are stratified in terms of the stability of water ice and liquid water. This arises because the temperature of the upper 1 or 2 km is below the melting point of ice and liquid is stable only at greater depth. It is suggested here that during planetary outgassing earlier in Martian history H2O was injected into the upper few kilometers of the crust by subsurface and surface volcanic eruption and lateral migration of the liquid and vapor. As a result, a discontinuity in the physical state of materials developed in the Martian crust coincident with the depth of H2O liquid-ice phase boundary. Material above the boundary remained pristine; material below underwent diagenetic alteration and cementation. Subsequently, sections of the ice-laden zone were erosionally stripped by processes including eolian deflation, gravitational slump and collapse, and fluvial transport due to geothermal heating and melting of the ice. The youngest plains which display this uniform stripping may provide a minimum stratigraphic age for the major period of outgassing of the planet. Viking results suggest that the total amount of H2O outgassed is less than half that required to fill the ice layer, hence any residual liquid eventually found itself in the upper permafrost zone or stored in the polar regions. Erosion stopped at the old liquid-ice interface due to increased resistance of subjacent material and/or because melting of ice was required to mobilize the debris. Water ice may remain in uneroded regions, the overburden of debris preventing its escape to the atmosphere. Numerous morphological examples shown in Viking and Mariner 9

  20. Crystalline and amorphous H2O on Charon

    NASA Astrophysics Data System (ADS)

    Dalle Ore, Cristina M.; Cruikshank, Dale P.; Grundy, Will M.; Ennico, Kimberly; Olkin, Catherine B.; Stern, S. Alan; Young, Leslie A.; Weaver, Harold A.

    2015-11-01

    Charon, the largest satellite of Pluto, is a gray-colored icy world covered mostly in H2O ice, with spectral evidence for NH3, as previously reported (Cook et al. 2007, Astrophys. J. 663, 1406-1419 Merlin, et al. 2010, Icarus, 210, 930; Cook, et al. 2014, AAS/Division for Planetary Sciences Meeting Abstracts, 46, #401.04). Images from the New Horizons spacecraft reveal a surface with terrains of widely different ages and a moderate degree of localized coloration. The presence of H2O ice in its crystalline form (Brown & Calvin 2000 Science 287, 107-109; Buie & Grundy 2000 Icarus 148, 324-339; Merlin et al, 2010) along with NH3 is consistent with a fresh surface.The phase of H2O ice is a key tracer of variations in temperature and physical conditions on the surface of outer Solar System objects. At Charon’s surface temperature H2O is expected to be amorphous, but ground-based observations (e.g., Merlin et al. 2010) show a clearly crystalline signature. From laboratory experiments it is known that amorphous H2O ice becomes crystalline at temperatures of ~130 K. Other mechanisms that can change the phase of the ice from amorphous to crystalline include micro-meteoritic bombardment (Porter et al. 2010, Icarus, 208, 492) or resurfacing processes such as cryovolcanism.New Horizons observed Charon with the LEISA imaging spectrometer, part of the Ralph instrument (Reuter, D.C., Stern, S.A., Scherrer, J., et al. 2008, Space Science Reviews, 140, 129). Making use of high spatial resolution (better than 10 km/px) and spectral resolving power of 240 in the wavelength range 1.25-2.5 µm, and 560 in the range 2.1-2.25 µm, we report on an analysis of the phase of H2O ice on parts of Charon’s surface with a view to investigate the recent history and evolution of this small but intriguing object.This work was supported by NASA’s New Horizons project.

  1. Ferroelectricity in high-density H 2O ice

    DOE PAGES

    Caracas, Razvan; Hemley, Russell J.

    2015-04-01

    The origin of longstanding anomalies in experimental studies of the dense solid phases of H 2O ices VII, VIII, and X is examined using a combination of first-principles theoretical methods. We find that a ferroelectric variant of ice VIII is energetically competitive with the established antiferroelectric form under pressure. The existence of domains of the ferroelectric form within anti-ferroelectric ice can explain previously observed splittings in x-ray diffraction data. The ferroelectric form is stabilized by density and is accompanied by the onset of spontaneous polarization. Here, the presence of local electric fields triggers the preferential parallel orientation of the watermore » molecules in the structure, which could be stabilized in bulk using new high-pressure techniques.« less

  2. UV Signatures of Ices: Moons in the Solar System

    NASA Astrophysics Data System (ADS)

    Hendrix, A. R.; Hansen, C. J.; Retherford, K. D.; Vilas, F.

    2017-12-01

    Using Earth-orbiting telescopes such as the International Ultraviolet Explorer and the Hubble Space Telescope, significant advances have been made in the area of ultraviolet observations of solar system objects. More in-depth studies have been made using interplanetary probes such as Galileo, Cassini and Lunar Reconnaissance Orbiter (LRO). While the UV spectral range has traditionally been used to study atmospheric and auroral processes, there is much to be learned by examining solid surfaces in the UV, including surface composition, weathering processes and effects, and the generation of thin atmospheres. Here we focus on moons in the solar system, including Earth's moon and the Saturnian satellites. The diagnostic UV signature of H2O is used to study ice in the lunar polar regions as well as hydration at lower latitudes, in observations from LRO LAMP. The water ice signature is nearly ubiquitous in the Saturn system; Cassini UVIS datasets are used to study grain sizes, exogenic processes/effects and non-ice species.

  3. Room-temperature NaI/H2O compression icing: solute-solute interactions.

    PubMed

    Zeng, Qingxin; Yao, Chuang; Wang, Kai; Sun, Chang Q; Zou, Bo

    2017-10-11

    In situ Raman spectroscopy revealed that transiting the concentrated NaI/H 2 O solutions to an ice VI phase and then into an ice VII phase at 298 K proceeds in a way different from that activated by the solute type. Unlike the solute type that raises both the critical pressures P C1 and P C2 , for the liquid-VI, the VI-VII transition simultaneously occurs in the Hofmeister series order: I > Br > Cl > F ∼ 0; concentration increase raises the P C1 faster than the P C2 that remains almost constant at higher NaI/H 2 O molecular number ratios. Concentration increase moves the P C1 along the liquid-VI phase boundary and it finally merges with P C2 at the triple-phase junction featured at 350 K and 3.05 GPa. The highly-deformed H-O bond is less sensitive to the concentration because of the involvement of anion-anion repulsion that weakens the electric field in the hydration shells. Observations confirm that the salt solvation lengthens the O:H nonbond and softens its phonon but relaxes the H-O bond contrastingly. Compression, however, has the opposite effect from that of salt solvation. Therefore, compression recovers the polarization-deformed O:H-O bond first and then proceeds to the phase transitions. The anion-anion interaction discriminates the effect of NaI/H 2 O concentration from that of the solute type at an identical concentration on the phase transitions.

  4. Air content and O2/N2 tuned chronologies on local insolation signatures in the Vostok ice core are similar

    NASA Astrophysics Data System (ADS)

    Lipenkov, V.; Raynaud, D.; Loutre, M.-F.; Duval, P.; Lemieux-Dudon, B.

    2009-04-01

    An accurate chronology of ice cores is needed for interpreting the paleoclimatic record and understanding the relation between insolation and climate. A new domain of research in this area has been initially stimulated by the work of M. Bender (2002) linking the record of O2/N2 ratio in the air trapped in the Vostok ice with the local insolation. More recently, it has been proposed that the long-term changes in air content, V, recorded in ice from the high Antarctic plateau is also dominantly imprinted by the local summer insolation (Raynaud et al., 2007). The present paper presents a new V record from Vostok, which is compared with the published Vostok O2/N2 record for the same period of time (150-400 ka BP) by using the same spectral analysis methods. The spectral differences between the two properties and the possible mechanisms linking them with insolation through the surface snow structure and the close-off processes are discussed. The main result of our study is that the two experimentally independent local insolation proxies lead to absolute (orbital) time scales, which agree together within a standard deviation of 0.6 ka. This result strongly adds credibility to the air content of ice and the O2 to N2 ratio of the air trapped in ice as equally reliable and complementary tools for accurate dating of existing and future deep ice cores. References: M. Bender, Orbital tuning chronology for the Vostok climate record supported by trapped gas composition, Earth and Planetary Science Letters 204(2002) 275-289. D. Raynaud, V. Lipenkov, B. Lemieux-Dudon, P. Duval, M.F. Loutre, N. Lhomme, The local insolation signature of air content in Antarctic ice: a new step toward an absolute dating of ice records, Earth and Planetary Science Letters 261(2007) 337-349.

  5. SYSTEMATIC VARIATIONS IN CO{sub 2}/H{sub 2}O ICE ABUNDANCE RATIOS IN NEARBY GALAXIES FOUND WITH AKARI NEAR-INFRARED SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamagishi, M.; Kaneda, H.; Ishihara, D.

    2015-07-01

    We report CO{sub 2}/H{sub 2}O ice abundance ratios in seven nearby star-forming galaxies based on the AKARI near-infrared (2.5–5.0 μm) spectra. The CO{sub 2}/H{sub 2}O ice abundance ratios show clear variations between 0.05 and 0.2 with the averaged value of 0.14 ± 0.01. The previous study on M82 revealed that the CO{sub 2}/H{sub 2}O ice abundance ratios strongly correlate with the intensity ratios of the hydrogen recombination Brα line to the polycyclic aromatic hydrocarbon (PAH) 3.3 μm feature. In the present study, however, we find no correlation for the seven galaxies as a whole due to systematic differences in themore » relation between CO{sub 2}/H{sub 2}O ice abundance and Brα/PAH 3.3 μm intensity ratios from galaxy to galaxy. This result suggests that there is another parameter that determines the CO{sub 2}/H{sub 2}O ice abundance ratios in a galaxy in addition to the Brα/PAH 3.3 μm ratios. We find that the CO{sub 2}/H{sub 2}O ice abundance ratios positively correlate with the specific star formation rates of the galaxies. From these results, we conclude that CO{sub 2}/H{sub 2}O ice abundance ratios tend to be high in young star-forming galaxies.« less

  6. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D{sub 2}O ice beneath a H{sub 2}O ice layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui, E-mail: ryang73@ustc.edu; Gudipati, Murthy S., E-mail: gudipati@jpl.nasa.gov

    2014-03-14

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D{sub 2}O ices by novel infrared (IR) laser ablation of a layered non-absorbing D{sub 2}O ice (spectator) containing the analytes and an ablation-active IR-absorbing H{sub 2}O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry,more » previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H{sub 2}O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D{sub 2}O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D{sub 2}O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H{sub 2}O molecules in the shockwave. We call this “shockwave mediated surface resonance enhanced subsurface ablation” technique as “two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers.” This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes

  7. Structure, spectroscopy and dynamics of layered H2O and CO2 ices

    USGS Publications Warehouse

    ,; Plattner, Nuria; Meuwly, Markus

    2012-01-01

    Molecular dynamics simulations of structural, spectroscopic and dynamical properties of mixed water–carbon dioxide (H2O–CO2) ices are discussed over temperature ranges relevant to atmospheric and astrophysical conditions. The simulations employ multipolar force fields to represent electrostatic interactions which are essential for spectroscopic and dynamical investigations. It is found that at the water/CO2 interface the water surface acts as a template for the CO2 component. The rotational reorientation times in both bulk phases agree well with experimental observations. A pronounced temperature effect on the CO2 reorientation time is observed between 100 K and 200 K. At the interface, water reorientation times are nearly twice as long compared to water in the bulk. The spectroscopy of such ices is rich in the far-infrared region of the spectrum and can be related to translational and rotational modes. Furthermore, spectroscopic signatures mediated across the water/CO2 interface are found in this frequency range (around 440 cm−1). These results will be particularly important for new airborne experiments such as planned for SOFIA.

  8. Possible fossil H2O liquid-ice interfaces in the Martian crust

    NASA Technical Reports Server (NTRS)

    Soderblom, L. A.; Wenner, D. B.

    1978-01-01

    The extensive chaotic and fretted terrains in the equatorial regions of Mars are explained on the basis of the vertical distribution of H2O liquid and ice which once existed in the crust. This account assumes that below the permafrost containing water ice, there was a second zone in which liquid water resided for at least a time. Diagenetic alteration and cementation characterized the material in the subpermafrost zone; above, pristine fragmented material with various ice concentrations was found. Later, the ice-laden zone was stripped away by a number of erosional processes, exposing the former ice-liquid water interface.

  9. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  10. Near-Infrared Band Strengths of Molecules Diluted in N2 and H2O Ice Mixtures Relevant to Interstellar and Planetary Ices

    NASA Technical Reports Server (NTRS)

    Richey, Christina Rae; Gerakines, P.A.

    2012-01-01

    The relative abundances of ices in astrophysical environments rely on accurate laboratory measurements of physical parameters, such as band strengths (or absorption intensities), determined for the molecules of interest in relevant mixtures. In an extension of our previous study on pure-ice samples, here we focus on the near-infrared absorption features of molecules in mixtures with the dominant components of interstellar and planetary ices, H2O and N2. We present experimentally measured near-infrared spectral information (peak positions, widths, and band strengths) for both H2O- and N2-dominated mixtures of CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), and NH3 (ammonia). Band strengths were determined during sample deposition by correlating the growth of near-infrared features (10,000-4000 per centimeter, 1-2.5 micrometers) with better-known mid-infrared features (4000-400 per centimeter, 2.5-25 micrometers) at longer wavelengths.

  11. Longitudinal sound velocities, elastic anisotropy, and phase transition of high-pressure cubic H2O ice to 82 GPa

    NASA Astrophysics Data System (ADS)

    Kuriakose, Maju; Raetz, Samuel; Hu, Qing Miao; Nikitin, Sergey M.; Chigarev, Nikolay; Tournat, Vincent; Bulou, Alain; Lomonosov, Alexey; Djemia, Philippe; Gusev, Vitalyi E.; Zerr, Andreas

    2017-10-01

    Water ice is a molecular solid whose behavior under compression reveals the interplay of covalent bonding in molecules and forces acting between them. This interplay determines high-pressure phase transitions, the elastic and plastic behavior of H2O ice, which are the properties needed for modeling the convection and internal structure of the giant planets and moons of the solar system as well as H2O -rich exoplanets. We investigated experimentally and theoretically elastic properties and phase transitions of cubic H2O ice at room temperature and high pressures between 10 and 82 GPa. The time-domain Brillouin scattering (TDBS) technique was used to measure longitudinal sound velocities (VL) in polycrystalline ice samples compressed in a diamond anvil cell. The high spatial resolution of the TDBS technique revealed variations of VL caused by elastic anisotropy, allowing us to reliably determine the fastest and the slowest sound velocity in a single crystal of cubic H2O ice and thus to evaluate existing equations of state. Pressure dependencies of the single-crystal elastic moduli Ci j(P ) of cubic H2O ice to 82 GPa have been obtained which indicate its hardness and brittleness. These results were compared with ab initio calculations. It is suggested that the transition from molecular ice VII to ionic ice X occurs at much higher pressures than proposed earlier, probably above 80 GPa.

  12. Ultraviolet Irradiation of Naphthalene in H2O Ice: Implications for Meteorites and Biogenesis

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Dworkin, Jason; Sandford, Scott A.; Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The polycyclic aromatic hydrocarbon (PAH) naphthalene was exposed to ultraviolet radiation in H2O ice under astrophysical conditions, and the products were analyzed using infrared spectroscopy and high performance liquid chromatography. As we found in our earlier studies on the photoprocessing of coronene in H2O ice, aromatic alcohols and ketones (quinones) were formed. The regiochemistry of the reactions is described and leads to specific predictions of the relative abundances of various oxidized naphthalenes that should exist in meteorites if interstellar ice photochemistry influenced their aromatic inventory. Since oxidized PAHs are present in carbon-rich meteorites and interplanetary dust particles (IDPs), and ubiquitous in and fundamental to biochemistry, the delivery of such extraterrestrial molecules to the early Earth may have played a role in the origin and evolution of life.

  13. New Equations for the Sublimation Pressure and Melting Pressure of H2O Ice Ih

    NASA Astrophysics Data System (ADS)

    Wagner, Wolfgang; Riethmann, Thomas; Feistel, Rainer; Harvey, Allan H.

    2011-12-01

    New reference equations, adopted by the International Association for the Properties of Water and Steam (IAPWS), are presented for the sublimation pressure and melting pressure of ice Ih as a function of temperature. These equations are based on input values derived from the phase-equilibrium condition between the IAPWS-95 scientific standard for thermodynamic properties of fluid H2O and the equation of state of H2O ice Ih adopted by IAPWS in 2006, making them thermodynamically consistent with the bulk-phase properties. Compared to the previous IAPWS formulations, which were empirical fits to experimental data, the new equations have significantly less uncertainty. The sublimation-pressure equation covers the temperature range from 50 K to the vapor-liquid-solid triple point at 273.16 K. The ice Ih melting-pressure equation describes the entire melting curve from 273.16 K to the ice Ih-ice III-liquid triple point at 251.165 K. For completeness, we also give the IAPWS melting-pressure equation for ice III, which is slightly adjusted to agree with the ice Ih melting-pressure equation at the corresponding triple point, and the unchanged IAPWS melting-pressure equations for ice V, ice VI, and ice VII.

  14. Site-specific vibrational spectral signatures of water molecules in the magic H3O+(H2O)20 and Cs+(H2O)20 clusters

    PubMed Central

    Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.; Johnson, Mark A.; Heine, Nadja; Gewinner, Sandy; Schöllkopf, Wieland; Esser, Tim K.; Fagiani, Matias R.; Knorke, Harald; Asmis, Knut R.

    2014-01-01

    Theoretical models of proton hydration with tens of water molecules indicate that the excess proton is embedded on the surface of clathrate-like cage structures with one or two water molecules in the interior. The evidence for these structures has been indirect, however, because the experimental spectra in the critical H-bonding region of the OH stretching vibrations have been too diffuse to provide band patterns that distinguish between candidate structures predicted theoretically. Here we exploit the slow cooling afforded by cryogenic ion trapping, along with isotopic substitution, to quench water clusters attached to the H3O+ and Cs+ ions into structures that yield well-resolved vibrational bands over the entire 215- to 3,800-cm−1 range. The magic H3O+(H2O)20 cluster yields particularly clear spectral signatures that can, with the aid of ab initio predictions, be traced to specific classes of network sites in the predicted pentagonal dodecahedron H-bonded cage with the hydronium ion residing on the surface. PMID:25489068

  15. Site-specific vibrational spectral signatures of water molecules in the magic H 3O +(H 2O) 20 and Cs +(H 2O) 20 clusters

    DOE PAGES

    Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.; ...

    2014-12-08

    Here, theoretical models of proton hydration with tens of water molecules indicate that the excess proton is embedded on the surface of clathrate-like cage structures with one or two water molecules in the interior. The evidence for these structures has been indirect, however, because the experimental spectra in the critical H-bonding region of the OH stretching vibrations have been too diffuse to provide band patterns that distinguish between candidate structures predicted theoretically. Here we exploit the slow cooling afforded by cryogenic ion trapping, along with isotopic substitution, to quench water clusters attached to the H 3O + and Cs +more » ions into structures that yield well-resolved vibrational bands over the entire 215- to 3,800-cm -1 range. The magic H 3O +(H 2O) 20 cluster yields particularly clear spectral signatures that can, with the aid of ab initio predictions, be traced to specific classes of network sites in the predicted pentagonal dodecahedron H-bonded cage with the hydronium ion residing on the surface.« less

  16. ULTRAVIOLET PHOTON-INDUCED SYNTHESIS AND TRAPPING OF H{sub 2}O{sub 2} AND O{sub 3} IN POROUS WATER ICE FILMS IN THE PRESENCE OF AMBIENT O{sub 2}: IMPLICATIONS FOR EXTRATERRESTRIAL ICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, J.; Raut, U.; Kim, J.-H.

    2011-09-01

    The mass uptake of ambient oxygen in nanoporous ice is enhanced by irradiation with 193 nm photons, due to conversion of O{sub 2} into H{sub 2}O{sub 2} and O{sub 3}, with an efficiency that increases with decreasing temperature. These findings show a new way to form H{sub 2}O{sub 2} and O{sub 3} on icy surfaces in the outer solar system at depths much larger than are accessible by typical ionizing radiation, with possible astrobiological implications.

  17. The Radiolytic Destruction of Glycine Diluted in H2O and CO2 Ice: Implications for Mars and Other Planetary Environments

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, R. L.

    2013-10-01

    Future missions to Mars and other planetary surfaces will probe under the surfaces of these worlds for signs of organic chemistry. In previous studies we have shown that glycine and other amino acids have radiolytic destruction rates that depend on temperature and on dilution within an H2O ice matrix (Gerakines et al., 2012; Gerakines and Hudson 2013). In the new work presented here, we have examined the destruction of glycine diluted in CO2 ice at various concentrations and irradiated with protons at 0.8 MeV, typical of cosmic rays and solar energetic particles. Destruction rates for glycine were measured by infrared spectroscopy in situ, without removing or warming the ice samples. New results on the half life of glycine in solid CO2 will be compared to those found in H2O ice matrices. The survivability of glycine in icy planetary surfaces rich in H2O and CO2 ice will be discussed, and the implications for planetary science missions will be considered. References: Gerakines, P. A., Hudson, R. L., Moore, M. H., and Bell, J-L. (2012). In-situ Measurements of the Radiation Stability of Amino Acids at 15 - 140 K. Icarus, 220, 647-659. Gerakines, P. A. and Hudson, R. L. (2013). Glycine's Radiolytic Destruction in Ices: First in situ Laboratory Measurements for Mars. Astrobiology, 13, 647-655.

  18. Modeling CO, CO2, and H2O Ice Abundances in the Envelopes of Young Stellar Objects in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Pauly, Tyler; Garrod, Robin T.

    2018-02-01

    Massive young stellar objects (MYSOs) in the Magellanic Clouds show infrared absorption features corresponding to significant abundances of CO, CO2, and H2O ice along the line of sight, with the relative abundances of these ices differing between the Magellanic Clouds and the Milky Way. CO ice is not detected toward sources in the Small Magellanic Cloud, and upper limits put its relative abundance well below sources in the Large Magellanic Cloud and the Milky Way. We use our gas-grain chemical code MAGICKAL, with multiple grain sizes and grain temperatures, and further expand it with a treatment for increased interstellar radiation field intensity to model the elevated dust temperatures observed in the MCs. We also adjust the elemental abundances used in the chemical models, guided by observations of H II regions in these metal-poor satellite galaxies. With a grid of models, we are able to reproduce the relative ice fractions observed in MC MYSOs, indicating that metal depletion and elevated grain temperature are important drivers of the MYSO envelope ice composition. Magellanic Cloud elemental abundances have a subgalactic C/O ratio, increasing H2O ice abundances relative to the other ices; elevated grain temperatures favor CO2 production over H2O and CO. The observed shortfall in CO in the Small Magellanic Cloud can be explained by a combination of reduced carbon abundance and increased grain temperatures. The models indicate that a large variation in radiation field strength is required to match the range of observed LMC abundances. CH3OH abundance is found to be enhanced in low-metallicity models, providing seed material for complex organic molecule formation in the Magellanic Clouds.

  19. Brief communication: ikaite (CaCO3*6H2O) discovered in Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Dieckmann, G. S.; Nehrke, G.; Uhlig, C.; Göttlicher, J.; Gerland, S.; Granskog, M. A.; Thomas, D. N.

    2010-02-01

    We report for the first time on the discovery of calcium carbonate crystals as ikaite (CaCO3*6H2O) in sea ice from the Arctic (Kongsfjorden, Svalbard). This finding demonstrates that the precipitation of calcium carbonate during the freezing of sea ice is not restricted to the Antarctic, where it was observed for the first time in 2008. This finding is an important step in the quest to quantify its impact on the sea ice driven carbon cycle and should in the future enable improvement parametrization sea ice carbon models.

  20. The Photochemistry of Pyrimidine in Pure H2O Ice Subjected to Different Radiation Environments and the Formation of Uracil

    NASA Technical Reports Server (NTRS)

    Nuevo, M.; Chen, Y.-J.; Materese. C. K..; Hu, W.-J.; Qiu, J.-M.; Wu, S.-R.; Fung, H.-S.; Sandford, S. A.; Chu, C.-C.; Yih, T.-S.; hide

    2013-01-01

    Nucleobases are N-heterocycles which are the informational subunits of DNA and RNA. They include pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in several meteorites, although no Nheterocycles have been observed in space to data. Laboratory experiments showed that the ultraviolet (UV) irradiation of pyrimidine in pure H2O ice at low temperature (<=20 K) leads to the formation of pyrimidine derivatives including the nucleobase uracil and its precursor 4(3H)-pyrimidone. These results were confirmed by quantum chemical calculations. When pyrimidine is mixed with combinations of H2O, NH3, CH3OH, and CH4 ices under similar conditions, uracil and cytosine are formed. In the present work we study the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in H2O ice with high-energy UV photons (Lyman , He I, and He II lines) provided by a synchrotron source. The photo-destruction of pyrimidine in these H2O ices as well as the formation yields for 4(3H)-pyrimidone and uracil are compared with our previous results in order to study the photo-stability of pyrimidine and the production efficiency of uracil as a function of the photon energy.

  1. Laboratory IR Studies and Astrophysical Implications of C2H2-Containing Binary Ices

    NASA Technical Reports Server (NTRS)

    Knez, C.; Moore, M.; Ferrante, R.; Hudson, R.

    2012-01-01

    Studies of molecular hot cores and protostellar environments have shown that the observed abundance of gas-phase acetylene (C2H2) cannot be matched by chemical models without the inclusion of C2H2 molecules subliming from icy grain mantles. Searches for infrared (IR) spectral features of solid-phase acetylene are under way, but few laboratory reference spectra of C2H2 in icy mixtures, which are needed for spectral fits to observational data, have been published. Here, we report a systematic study of the IR spectra of condensed-phase pure acetylene and acetylene in ices dominated by carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and water (H2O). We present new spectral data for these ices, including band positions and intrinsic band strengths. For each ice mixture and concentration, we also explore the dependence of acetylene's nu5-band position (743 cm-1, 13.46 micrometers) and FWHM on temperature. Our results show that the nu5 feature is much more cleanly resolved in ices dominated by non-polar and low-polarity molecules, specifically CO, CO2, and CH4, than in mixtures dominated by H2O-ice. We compare our laboratory ice spectra with observations of a quiescent region in Serpens.

  2. Influence of isotopic disorder on solid state amorphization and polyamorphism in solid H2O -D2O solutions

    NASA Astrophysics Data System (ADS)

    Gromnitskaya, E. L.; Danilov, I. V.; Lyapin, A. G.; Brazhkin, V. V.

    2015-10-01

    We present a low-temperature and high-pressure ultrasonic study of elastic properties of isotopic H2O-D2O solid solutions, comparing their properties with those of the isotopically pure H2O and D2O ices. Measurements were carried out for solid state amorphization (SSA) from 1h to high-density amorphous (HDA) ice upon compression up to 1.8 GPa at 77 K and for the temperature-induced (77 -190 K ) u-HDA (unrelaxed HDA) → e-HDA (expanded HDA) → low-density amorphous (LDA )→1 c cascade of ice transformations near room pressure. There are many similarities in the elasticity behaviour of H2O ,D2O , and H2O-D2O solid solutions, including the softening of the shear elastic modulus as a precursor of SSA and the HDA →LDA transition. We have found significant isotopic effects during H/D substitution, including elastic softening of H2O -D2O solid solutions with respect to the isotopically pure ices in the case of the bulk moduli of ices 1c and 1h and for both bulk and shear elastic moduli of HDA ice at high pressures (>1 GPa ) . This softening is related to the configurational isotopic disorder in the solid solutions. At low pressures, the isotope concentration dependence of the elastic moduli of u-HDA ice changes remarkably and becomes monotonic with pronounced change of the bulk modulus (≈20 %) .

  3. H-implantation in SO 2 and CO 2 ices

    NASA Astrophysics Data System (ADS)

    Garozzo, M.; Fulvio, D.; Gomis, O.; Palumbo, M. E.; Strazzulla, G.

    2008-07-01

    Ices in the solar system are observed on the surface of planets, satellites, comets and asteroids where they are continuously subordinate at particle fluxes (cosmic ions, solar wind and charged particles caught in the magnetosphere of the planets) that deeply modify their physical and structural properties. Each incoming ion destroys molecular bonds producing fragments that, by recombination, form new molecules also different from the original ones. Moreover, if the incoming ion is reactive (H +, O n+ , S n+ , etc.), it can concur to the formation of new molecules. Those effects can be studied by laboratory experiments where, with some limitation, it is possible to reproduce the astrophysical environments of planetary ices. In this work, we describe some experiments of 15-100 keV H + and He + implantation in pure sulfur dioxide (SO 2) at 16 and 80 K and carbon dioxide (CO 2) at 16 K ices aimed to search for the formation of new molecules. Among other results we confirm that carbonic acid (H 2CO 3) is formed after H-implantation in CO 2, vice versa H-implantation in SO 2 at both temperatures does not produce measurable quantity of sulfurous acid (H 2SO 3). The results are discussed in the light of their relevance to the chemistry of some solar system objects, particularly of Io, the innermost of Jupiter's Galilean satellites, that exhibits a surface very rich in frost SO 2 and it is continuously bombarded with H + ions caught in Jupiter's magnetosphere.

  4. Geographic Distribution of N2, CH4, CO2, and H2O Ices on Triton from Near-IR Spectroscopic Monitoring

    NASA Astrophysics Data System (ADS)

    Grundy, W. M.; Young, L. A.; Young, E. F.; Buie, M. W.; Spencer, J. R.

    2004-11-01

    We present new 0.8 to 2.4 μ m spectral observations of Neptune's satellite Triton, obtained at IRTF\\slash SpeX between 2001 and 2004 as part of an ongoing search for time-variable phenomena associated with Triton's seasonal volatile transport processes, and also perhaps with reported shorter-term "reddening" events. The ability to detect spectral changes on these time scales depends critically on accurate characterization of any cyclic variations resulting from Triton's 5.877 day rotation period. We will report on our observations of periodic variations of Triton's near-IR absorption bands of N2, CH4, and H2O ices, but not of CO2 ice, in this initial stage of our Triton monitoring program. The observed variations (or lack thereof) give an indication of how these four ice species are distributed in longitude. The most heterogeneously distributed ice is N2, which shows nearly twice as much absorption on Triton's Neptune-facing hemisphere as on the anti-Neptune hemisphere. Comparison with Voyager-era, visual wavelength imaging of Triton's surface suggest that the observed N2 ice is concentrated on low-latitude regions of Triton's polar cap, which are predominantly located on the Neptune-facing hemisphere. Non-volatile H2O ice seems to be slightly concentrated on Triton's leading hemisphere. Despite being highly diluted in N2 ice, the longitudinal distribution of Triton's CH4 ice differs from that of Triton's N2 ice, being slightly concentrated on Triton's trailing hemisphere. Triton's CO2 ice shows the least longitudinal variation, suggesting that it is either very uniformly distributed or that it is confined to high latitudes. This work was supported by NASA's Planetary Astronomy and Planetary Geology &\\ Geophysics programs, and by NSF's Planetary Astronomy program. \\hangindent=0.3truein Grundy, W.M., and L.A. Young (2004) Near infrared spectral monitoring of Triton with IRTF\\slash SpeX I: Establishing a baseline. Icarus (in press).

  5. Release of N 2, CH 4, CO 2, and H 2O from surface ices on Enceladus

    NASA Astrophysics Data System (ADS)

    Hodyss, Robert; Goguen, Jay D.; Johnson, Paul V.; Campbell, Colin; Kanik, Isik

    2008-09-01

    We vapor deposit at 20 K a mixture of gases with the specific Enceladus plume composition measured in situ by the Cassini INMS [Waite, J.H., Combi, M.R., Ip, W.H., Cravens, T.E., McNutt, R.L., Kasprzak, W., Yelle, R., Luhmann, J., Niemann, H., Gell, D., Magee, B., Fletcher, G., Lunine, J., Tseng, W.L., 2006. Science 311, 1419-1422] to form a mixed molecular ice. As the sample is slowly warmed, we monitor the escaping gas quantity and composition with a mass spectrometer. Pioneering studies [Schmitt, B., Klinger, J., 1987. Different trapping mechanisms of gases by water ice and their relevance for comet nuclei. In: Rolfe, E.J., Battrick, B. (Eds.), Diversity and Similarity of Comets. SP-278. ESA, Noordwijk, The Netherlands, pp. 613-619; Bar-Nun, A., Kleinfeld, I., Kochavi, E., 1988. Phys. Rev. B 38, 7749-7754; Bar-Nun, A., Kleinfeld, I., 1989. Icarus 80, 243-253] have shown that significant quantities of volatile gases can be trapped in a water ice matrix well above the temperature at which the pure volatile ice would sublime. For our Enceladus ice mixture, a composition of escaping gases similar to that detected by Cassini in the Enceladus plume can be generated by the sublimation of the H 2O:CO 2:CH 4:N 2 mixture at temperatures between 135 and 155 K, comparable to the high temperatures inferred from the CIRS measurements [Spencer, J.R., Pearl, J.C., Segura, M., Flasar, F.M., Mamoutkine, A., Romani, P., Buratti, B.J., Hendrix, A.R., Spilker, L.J., Lopes, R.M.C., 2006. Science 311, 1401-1405] of the Enceladus "tiger stripes." This suggests that the gas escape phenomena that we measure in our experiments are an important process contributing to the gases emitted from Enceladus. A similar experiment for ice deposited at 70 K shows that both the processes of volatile trapping and release are temperature dependent over the temperature range relevant to Enceladus.

  6. Near-Infrared Band Strengths of Molecules Diluted in N2 and H20 Ice Mixtures Relevant to Interstellar and Planetary Ices

    NASA Technical Reports Server (NTRS)

    Richey, C. R.; Richey, Christina R.

    2012-01-01

    In order to determine the column density of a component of an ice from its infrared absorption features, the strengths of these features must be known. The peak positions, widths, profiles, and strengths of a certain ice component's infrared absorption features are affected be the overall composition of the ice. Many satellites within the solar system have surfaces that are dominated by H2O or N2 and ices in the interstellar medium (ISM) are primarily composed of H2O. The experiments presented here focus on the near-infrared absorption features of CO, CO2, CH4, and NH3 (nu=10,000-4,000/cm, lambda=1-2.5 microns) and the effects of diluting these molecules in N2 or H2O ice (mixture ratio of 5:1). This is a continuation of previous results published by our research group.

  7. Observing Physical and Biological Drivers of pH and O2 in a Seasonal Ice Zone in the Ross Sea Using Profiling Float Data

    NASA Astrophysics Data System (ADS)

    Briggs, E.; Martz, T. R.; Talley, L. D.; Mazloff, M. R.

    2015-12-01

    Ice cover has strong influence over gas exchange, vertical stability, and biological production which are critical to understanding the Southern Ocean's central role in oceanic biogeochemical cycling and heat and carbon uptake under a changing climate. However the relative influence of physical versus biological processes in this hard-to-study region is poorly understood due to limited observations. Here we present new findings from a profiling float equipped with biogeochemical sensors in the seasonal ice zone of the Ross Sea capturing, for the first time, under-ice pH profile data over a two year timespan from 2014 to the present. The relative influence of physical (e.g. vertical mixing and air-sea gas exchange) and biological (e.g. production and respiration) drivers of pH and O2 within the mixed layer are explored during the phases of ice formation, ice cover, and ice melt over the two seasonal cycles. During the austral fall just prior to and during ice formation, O2 increases as expected due to surface-layer undersaturation and enhanced gas exchange. A small increase in pH is also observed during this phase, but without a biological signal in accompanying profiling float chlorophyll data, which goes against common reasoning from both a biological and physical standpoint. During the phase of ice cover, gas exchange is inhibited and a clear respiration signal is observed in pH and O2 data from which respiration rates are calculated. In the austral spring, ice melt gives rise to substantial ice edge phytoplankton blooms indicated by O2 supersaturation and corresponding increase in pH and large chlorophyll signal. The influence of the duration of ice cover and mixed layer depth on the magnitude of the ice edge blooms is explored between the two seasonal cycles.

  8. The volume- and surface-binding energies of ice systems containing CO, CO2, and H2O

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1990-01-01

    Laboratory-measured, temperature-dependent sticking efficiencies are presently used to derive the surface-binding energies of CO and CO2 on H2O-rich ices, with a view to determining the condensation and vaporization properties of these systems as well as to the measured energies' implications for both cometary behavior and the evolution of interstellar ices. The molecular volume and the surface binding energies are not found to be necessarily related on the basis of simple nearest-neighbor scaling in surface and bulk sites; this may be due to the physical constraints associated with matrix structure-associated physical constraints, which sometimes dominate the volume-binding energies.

  9. Self-diffusion of protons in H{sub 2}O ice VII at high pressures: Anomaly around 10 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noguchi, Naoki, E-mail: noguchi-n@okayama-u.ac.jp; Okuchi, Takuo

    2016-06-21

    The self-diffusion of ice VII in the pressure range of 5.5–17 GPa and temperature range of 400–425 K was studied using micro Raman spectroscopy and a diamond anvil cell. The diffusion was monitored by observing the distribution of isotope tracers: D{sub 2}O and H{sub 2}{sup 18}O. The diffusion coefficient of hydrogen reached a maximum value around 10 GPa. It was two orders of magnitude greater at 10 GPa than at 6 GPa. Hydrogen diffusion was much faster than oxygen diffusion, which indicates that protonic diffusion is the dominant mechanism for the diffusion of hydrogen in ice VII. This mechanism ismore » in remarkable contrast to the self-diffusion in ice I{sub h} that is dominated by an interstitial mechanism for the whole water molecule. An anomaly around 10 GPa in ice VII indicates that the rate-determining process for the proton diffusion changes from the diffusion of ionic defects to the diffusion of rotational defects, which was suggested by proton conductivity measurements and molecular dynamics simulations.« less

  10. Brief Communication: Ikaite (CaCO3·6H2O) discovered in Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Dieckmann, G. S.; Nehrke, G.; Uhlig, C.; Göttlicher, J.; Gerland, S.; Granskog, M. A.; Thomas, D. N.

    2010-05-01

    We report for the first time on the discovery of calcium carbonate crystals as ikaite (CaCO3·6H2O) in sea ice from the Arctic (Kongsfjorden, Svalbard) as confirmed by morphology and indirectly by X-ray diffraction as well as XANES spectroscopy of its amorophous decomposition product. This finding demonstrates that the precipitation of calcium carbonate during the freezing of sea ice is not restricted to the Antarctic, where it was observed for the first time in 2008. This observation is an important step in the quest to quantify its impact on the sea ice driven carbon cycle.

  11. X-ray-induced dissociation of H.sub.2O and formation of an O.sub.2-H.sub.2 alloy at high pressure

    DOEpatents

    Mao, Ho-kwang [Washington, DC; Mao, Wendy L [Washington, DC

    2011-11-29

    A novel molecular alloy of O.sub.2 and H.sub.2 and a method of producing such a molecular alloy are provided. When subjected to high pressure and extensive x-radiation, H.sub.2O molecules cleaved, forming O--O and H--H bonds. In the method of the present invention, the O and H framework in ice VII was converted into a molecular alloy of O.sub.2 and H.sub.2. X-ray diffraction, x-ray Raman scattering, and optical Raman spectroscopy demonstrate that this crystalline solid differs from previously known phases.

  12. Production of O2 on icy satellites by electronic excitation of low-temperature water ice.

    PubMed

    Sieger, M T; Simpson, W C; Orlando, T M

    1998-08-06

    The signature of condensed molecular oxygen has been reported in recent optical-reflectance measurements of the jovian moon Ganymede, and a tenuous oxygen atmosphere has been observed on Europa. The surfaces of these moons contain large amounts of water ice, and it is thought that O2 is formed by the sputtering of ice by energetic particles from the jovian magnetosphere. Understanding how O2 might be formed from low-temperature ice is crucial for theoretical and experimental simulations of the surfaces and atmospheres of icy bodies in the Solar System. Here we report laboratory measurements of the threshold energy, cross-section and temperature dependence of O2 production by electronic excitation of ice in vacuum, following electron-beam irradiation. Molecular oxygen is formed by direct excitation and dissociation of a stable precursor molecule, rather than (as has been previously thought) by diffusion and chemical recombination of precursor fragments. The large cross-section for O2 production suggests that electronic excitation plays an important part in the formation of O2 on Ganymede and Europa.

  13. Descent without Modification? The Thermal Chemistry of H2O2 on Europa and Other Icy Worlds.

    PubMed

    Loeffler, Mark J; Hudson, Reggie L

    2015-06-01

    The strong oxidant H2O2 is known to exist in solid form on Europa and is suspected to exist on several other Solar System worlds at temperatures below 200 K. However, little is known of the thermal chemistry that H2O2 might induce under these conditions. Here, we report new laboratory results on the reactivity of solid H2O2 with eight different compounds in H2O-rich ices. Using infrared spectroscopy, we monitored compositional changes in ice mixtures during warming. The compounds CH4 (methane), C3H4 (propyne), CH3OH (methanol), and CH3CN (acetonitrile) were unaltered by the presence of H2O2 in ices, showing that exposure to either solid H2O2 or frozen H2O+H2O2 at cryogenic temperatures will not oxidize these organics, much less convert them to CO2. This contrasts strongly with the much greater reactivity of organics with H2O2 at higher temperatures, and particularly in the liquid and gas phases. Of the four inorganic compounds studied, CO, H2S, NH3, and SO2, only the last two reacted in ices containing H2O2, NH3 making NH4+ and SO2 making SO(4)2- by H+ and e- transfer, respectively. An important astrobiological conclusion is that formation of surface H2O2 on Europa and that molecule's downward movement with H2O-ice do not necessarily mean that all organics encountered in icy subsurface regions will be destroyed by H2O2 oxidation.

  14. Descent Without Modification? The Thermal Chemistry of H2O2 on Europa and Other Icy Worlds

    NASA Technical Reports Server (NTRS)

    Loeffler, Mark Josiah; Hudson, Reggie Lester

    2015-01-01

    The strong oxidant H2O2 is known to exist in solid form on Europa and is suspected to exist on several other Solar System worlds at temperatures below 200 K. However, little is known of the thermal chemistry that H2O2 might induce under these conditions. Here, we report new laboratory results on the reactivity of solid H2O2 with eight different compounds in H2O-rich ices. Using infrared spectroscopy, we monitored compositional changes in ice mixtures during warming. The compounds CH4 (methane), C3H4 (propyne), CH3OH (methanol), and CH3CN (acetonitrile) were unaltered by the presence of H2O2 in ices, showing that exposure to either solid H2O2 or frozen H2O+H2O2 at cryogenic temperatures will not oxidize these organics, much less convert them to CO2. This contrasts strongly with the much greater reactivity of organics with H2O2 at higher temperatures, and particularly in the liquid and gas phases. Of the four inorganic compounds studied, CO, H2S, NH3, and SO2, only the last two reacted in ices containing H2O2, NH3 making NHþ 4 and SO2 making SO2 4 by H+ and e - transfer, respectively. An important astrobiological conclusion is that formation of surface H2O2 on Europa and that molecule's downward movement with H2O-ice do not necessarily mean that all organics encountered in icy subsurface regions will be destroyed by H2O2 oxidation.

  15. Experimental Studies on the Formation of D2O and D2O2 by Implantation of Energetic D+ Ions into Oxygen Ices

    NASA Astrophysics Data System (ADS)

    Bennett, Chris J.; Ennis, Courtney P.; Kaiser, Ralf I.

    2014-02-01

    The formation of water (H2O) in the interstellar medium is intrinsically linked to grain-surface chemistry; thought to involve reactions between atomic (or molecular) hydrogen with atomic oxygen (O), molecular oxygen (O2), and ozone (O3). Laboratory precedent suggests that H2O is produced efficiently when O2 ices are exposed to H atoms (~100 K). This leads to the sequential generation of the hydroxyperoxyl radical (HO2), then hydrogen peroxide (H2O2), and finally H2O and a hydroxyl radical (OH); despite a barrier of ~2300 K for the last step. Recent detection of the four involved species toward ρ Oph A supports this general scenario; however, the precise formation mechanism remains undetermined. Here, solid O2 ice held at 12 K is exposed to a monoenergetic beam of 5 keV D+ ions. Products formed during the irradiation period are monitored through FTIR spectroscopy. O3 is observed through seven archetypal absorptions. Three additional bands found at 2583, 2707, and 1195 cm -1 correspond to matrix isolated DO2 (ν1) and D2O2 (ν1, ν5), and D2O2), respectively. During subsequent warming, the O2 ice sublimates, revealing a broad band at 2472 cm-1 characteristic of amorphous D2O (ν1, ν3). Sublimating D2, D2O, D2O2, and O3 products were confirmed through their subsequent detection via quadrupole mass spectrometry. Reaction schemes based on both thermally accessible and suprathermally induced chemistries were developed to fit the observed temporal profiles are used to elucidate possible reaction pathways for the formation of D2-water. Several alternative schemes to the hydrogenation pathway (O2→HO2H2O2H2O) were identified; their astrophysical implications are briefly discussed.

  16. Virulence profiling and quantification of verocytotoxin-producing Escherichia coli O145:H28 and O26:H11 isolated during an ice cream-related hemolytic uremic syndrome outbreak.

    PubMed

    Buvens, Glenn; Possé, Björn; De Schrijver, Koen; De Zutter, Lieven; Lauwers, Sabine; Piérard, Denis

    2011-03-01

    In September-October 2007, a mixed-serotype outbreak of verocytotoxin-producing Escherichia coli (VTEC) O145:H28 and O26:H11 occurred in the province of Antwerp, Belgium. Five girls aged between 2 and 11 years developed hemolytic uremic syndrome, and seven other coexposed persons with bloody diarrhea were identified. Laboratory confirmation of O145:H28 infection was obtained for three hemolytic uremic syndrome patients, one of whom was coinfected with O26:H11. The epidemiological and laboratory investigations revealed ice cream as the most likely source of the outbreak. The ice cream was produced at a local dairy farm using pasteurized milk. VTEC of both serotypes with indistinguishable pulsed-field gel electrophoresis patterns were isolated from patients, ice cream, and environmental samples. Quantitative analysis of the ice cream indicated concentrations of 2.4 and 0.03 CFU/g for VTEC O145 and O26, respectively. Virulence typing revealed that the repertoire of virulence genes carried by the O145:H28 outbreak strain was comparable to that of O157 VTEC and more exhaustive as compared to the O26:H11 outbreak strain and nonrelated clinical strains belonging to these serotypes. Taken together, these data suggest that O145:H28 played the most important role in this outbreak.

  17. Polarimetric Signatures of Sea Ice. Part 1; Theoretical Model

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.

    1995-01-01

    Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarimetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies for interpretation of sea ice polarimetric signatures.

  18. Outbursts of H2O in Comet P/Halley

    NASA Astrophysics Data System (ADS)

    Larson, H. P.; Hu, H.-Y.; Mumma, M. J.; Weaver, H. A.

    1990-07-01

    Comet Halley gas-production monitoring efforts in March 1986 with the NASA Kuiper Airborne Observatory's Fourier transform spectrometer have indicated rapid temporal variations in H2O emissions; a continuous record of an H2O outburst was thus obtained. The event, in which H2O brightness increased by a factor of 2.2 in less than 10 min, is ascribable to an energetic process in the nucleus whose character may have been that of amorphous H2O ice crystallization, chemical explosion, thermal stress, or a compressed gas pocket. The timing and energy of the event appear to require an internal energy source; amorphous ice crystallization is held to be most consistent with compositional and thermal models of cometary nuclei as well as the observations.

  19. Irradiation of Pyrimidine in Pure H2O Ice with High-Energy Ultraviolet Photons

    PubMed Central

    Chen, Yu-Jung; Hu, Wei-Jie; Qiu, Jun-Ming; Wu, Shang-Ruei; Fung, Hok-Sum; Chu, Ching-Chi; Yih, Tai-Sone; Ip, Wing-Huen; Wu, C.-Y. Robert

    2014-01-01

    Abstract The detection of nucleobases, the informational subunits of DNA and RNA, in several meteorites suggests that these compounds of biological interest were formed via astrophysical, abiotic processes. This hypothesis is in agreement with recent laboratory studies of irradiation of pyrimidine in H2O-rich ices with vacuum UV photons emitted by an H2-discharge lamp in the 6.9–11.3 eV (110–180 nm) range at low temperature, shown to lead to the abiotic formation of several compounds including the nucleobases uracil, cytosine, and thymine. In this work, we irradiated H2O:pyrimidine ice mixtures under astrophysically relevant conditions (14 K, ≤10−9 torr) with high-energy UV photons provided by a synchrotron source in three different ranges: the 0th order light (4.1–49.6 eV, 25–300 nm), the He i line (21.2 eV, 58.4 nm), and the He ii line (40.8 eV, 30.4 nm). The photodestruction of pyrimidine was monitored with IR spectroscopy, and the samples recovered at room temperature were analyzed with liquid and gas chromatographies. Uracil and its precursor 4(3H)-pyrimidone were found in all samples, with absolute and relative abundances varying significantly from one sample to another. These results support a scenario in which compounds of biological interest can be formed and survive in environments subjected to high-energy UV radiation fields. Key Words: Pyrimidine—Nucleobases—Interstellar ices—Cometary ices—High-energy photons—Molecular processes—Prebiotic chemistry. Astrobiology 14, 119–131. PMID:24512484

  20. The condensation and vaporization behavior of ices containing SO2, H2S, and CO2: Implications for Io

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1993-01-01

    In an extension of previously reported work on ices containing CO, CO2, H2O, CH3OH, NH3, and H2, measurements of the physical and infrared spectral properties of ices containing molecules relevant to Jupiter's moon Io are presented. These include studies on ice systems containing SO2, H2S, and CO2. The condensation and sublimation behaviors of each ice system and surface binding energies of their components are discussed. The surface binding energies can be used to calculate the residence times of the molecules on a surface as a function of temperature and thus represent important parameters for any calculation that attempts to model the transport of these molecules on Io's surface. The derived values indicate that SO2 frosts on Io are likely to anneal rapidly, resulting in less fluffy, 'glassy' ices and that H2S can be trapped in the SO2 ices of Io during night-time hours provided that SO2 deposition rates are on the order of 5 micrometers/hr or larger.

  1. Thermal Reactions of H2O2 on Icy Satellites and Small Bodies: Descent with Modification?

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Loeffler, Mark J.

    2012-01-01

    Magnetospheric radiation drives surface and near-surface chemistry on Europa, but below a few meters Europa's chemistry is hidden from direct observation . As an example, surface radiation chemistry converts H2O and SO2 into H2O2 and (SO4)(sup 2-), respectively, and these species will be transported downward for possible thermally-driven reactions. However, while the infrared spectra and radiation chemistry of H2O2-containing ices are well documented, this molecule's thermally-induced solid-phase chemistry has seldom been studied. Here we report new results on thermal reactions in H2O + H2O2 + SO2 ices at 50 - 130 K. As an example of our results, we find that warming H2O + H2O2 + SO2 ices promotes SO2 oxidation to (SO4)(sup 2-). These results have implications for the survival of H2O2 as it descends, with modification, towards a subsurface ocean on Europa. We suspect that such redox chemistry may explain some of the observations related to the presence and distribution of H2O2 across Europa's surface as well as the lack of H2O2 on Ganymede and Callisto.

  2. The kinetics of H2O vapor condensation and evaporation on different types of ice in the range 130-210 K.

    PubMed

    Pratte, Pascal; van den Bergh, Hubert; Rossi, Michel J

    2006-03-09

    The kinetics of condensation (kc) and the evaporation flux (J(ev)) of H2O on ice were studied in the range 130-210 K using pulsed-valve and steady-state techniques in a low-pressure flow reactor. The uptake coefficient gamma was measured for different types of ice, namely, condensed (C), bulk (B), single crystal (SC), snow (S), and cubic ice (K). The negative temperature dependence of gamma for C, B, SC, and S ice reveals a precursor-mediated adsorption/desorption process in agreement with the proposal of Davy and Somorjai.(1) The non-Arrhenius behavior of the rate of condensation, kc, manifests itself in a discontinuity in the range 170-190 K depending on the type of ice and is consistent with the precursor model. The average of the energy of sublimation DeltaH(S) degrees is (12.0 +/- 1.4) kcal/mol for C, B, S, and SC ice and is identical within experimental uncertainty between 136 and 210 K. The same is true for the entropy of sublimation DeltaS(S). In contrast, both gamma and the evaporative flux J(ev) are significantly different for different ices. In the range 130-210 K, J(ev) of H2O ice was significantly smaller than the maximum theoretically allowed value. This corroborates gamma values significantly smaller than unity in that T range. On the basis of the present kinetic parameters, the time to complete evaporation of a small ice particle of radius 1 mum is approximately a factor of 5 larger than that previously thought.

  3. Descent with Modification: Thermal Reactions of Subsurface H2O2 of Relevance to Icy Satellites and Other Small Bodies

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Loefler, Mark J.

    2012-01-01

    Laboratory experiments have demonstrated that magnetospheric radiation in the Jovian system drives reaction chemistry in ices at temperatures relevant to Europa and other icy satellites. Similarly, cosmic radiation (mainly protons) acting on cometary and interstellar ices can promote extensive chemical change. Among the products that have been identified in irradiated H20-ice is hydrogen peroxide (H202), which has been observed on Europa and is suspected on other worlds. Although the infrared spectra and radiation chemistry of H2O2-containing ices are well documented, the thermally-induced solid-phase chemistry of H2O2 is largely unknown. Therefore, in this presentation we report new laboratory results on reactions at 50 - 130 K in ices containing H2O2 and other molecules, both in the presence and absence of H2O. As an example of our results, we find that warming H2O + H2O2 + SO2 ices promotes SO2 oxidation to SO4(2-). We suspect that such redox chemistry may explain some of the observations related to the presence and distribution of H2O2 across Europa's surface as well as the lack of H2O2 on Ganymede and Callisto. If other molecules prove to be just as reactive with frozen H2O2 then it may explain why H2O2 has been absent from surfaces of many of the small icy bodies that are known to be exposed to ionizing radiation. Our results also have implications for the survival of H2O2 as it descends towards a subsurface ocean on Europa.

  4. Production and optical constraints of ice tholin from charged particle irradiation of (1:6) C2H6/H2O at 77 K

    NASA Astrophysics Data System (ADS)

    Khare, B. N.; Thompson, W. R.; Cheng, L.; Chyba, C.; Sagan, C.; Arakawa, E. T.; Meisse, C.; Tuminello, P. S.

    1993-06-01

    Fifty separate irradiations of a 6:1 mixture of H2O/C2H6 ice conducted over a 5-month period have yielded sufficient tholin for the determination of its physical constants in the 0.06 to 40 micron range. While the imaginary part of the refractive index k was obtained by transmission measurements on thin-film samples and Kramers-Kronig analysis (KKA), the real part of the refractive index was obtained by KKA and ellipsometry; these data may prove useful in cometary and outer solar system spectrometric interpretation.

  5. Laboratory Studies on the Formation of Three C2H4O Isomers-Acetaldehyde (CH3CHO), Ethylene Oxide (c-C2H4O), and Vinyl Alcohol (CH2CHOH)-in Interstellar and Cometary Ices

    NASA Astrophysics Data System (ADS)

    Bennett, Chris J.; Osamura, Yoshihiro; Lebar, Matt D.; Kaiser, Ralf I.

    2005-11-01

    Laboratory experiments were conducted to unravel synthetic routes to form three C2H4O isomers-acetaldehyde (CH3CHO), ethylene oxide (c-C2H4O), and vinyl alcohol (CH2CHOH)-in extraterrestrial ices via electronic energy transfer processes initiated by electrons in the track of MeV ion trajectories. Here we present the results of electron irradiation on a 2:1 mixture of carbon dioxide (CO2) and ethylene (C2H4). Our studies suggest that suprathermal oxygen atoms can add to the carbon-carbon π bond of an ethylene molecule to form initially an oxirene diradical (addition to one carbon atom) and the cyclic ethylene oxide molecule (addition to two carbon atoms) at 10 K. The oxirene diradical can undergo a [1, 2]-H shift to the acetaldehyde molecule. Both the ethylene oxide and the acetaldehyde isomers can be stabilized in the surrounding ice matrix. To a minor amount, suprathermal oxygen atoms can insert into a carbon-hydrogen bond of the ethylene molecule, forming vinyl alcohol. Once these isomers have been synthesized inside the ice layers of the coated grains in cold molecular clouds, the newly formed molecules can sublime as the cloud reaches the hot molecular core stage. These laboratory investigations help to explain astronomical observations by Nummelin et al. and Ikeda et al. toward massive star-forming regions and hot cores, where observed fractional abundances of these isomers are higher than can be accounted for by gas-phase reactions alone. Similar synthetic routes could help explain the formation of acetaldehyde and ethylene oxide in comet C/1995 O1 (Hale-Bopp) and also suggest a presence of both isomers in Titan's atmosphere.

  6. The effect of rock particles and D2O replacement on the flow behaviour of ice.

    PubMed

    Middleton, Ceri A; Grindrod, Peter M; Sammonds, Peter R

    2017-02-13

    Ice-rock mixtures are found in a range of natural terrestrial and planetary environments. To understand how flow processes occur in these environments, laboratory-derived properties can be extrapolated to natural conditions through flow laws. Here, deformation experiments have been carried out on polycrystalline samples of pure ice, ice-rock and D 2 O-ice-rock mixtures at temperatures of 263, 253 and 233 K, confining pressure of 0 and 48 MPa, rock fraction of 0-50 vol.% and strain-rates of 5 × 10 -7 to 5 × 10 -5  s -1 Both the presence of rock particles and replacement of H 2 O by D 2 O increase bulk strength. Calculated flow law parameters for ice and H 2 O-ice-rock are similar to literature values at equivalent conditions, except for the value of the rock fraction exponent, here found to be 1. D 2 O samples are 1.8 times stronger than H 2 O samples, probably due to the higher mass of deuterons when compared with protons. A gradual transition between dislocation creep and grain-size-sensitive deformation at the lowest strain-rates in ice and ice-rock samples is suggested. These results demonstrate that flow laws can be found to describe ice-rock behaviour, and should be used in modelling of natural processes, but that further work is required to constrain parameters and mechanisms for the observed strength enhancement.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  7. Irradiation Enhanced Adsorption and Trapping of O2 on Microporous Water Ice

    NASA Astrophysics Data System (ADS)

    Shi, Jianming; Teolis, B. D.; Baragiola, R. A.

    2007-10-01

    The condensed O2 found on Ganymede and Europa, and its relationship to tenuous O2 atmospheres have long been a puzzle considering the instability of solid oxygen at the relative high temperatures of the satellites. We report on the discovery that ion irradiation of microporous water ice exposed to gaseous oxygen enhances adsorption and retention of O2. We investigated how the irradiation history of ice with and without ambient O2 influences the O2 adsorption on ice. Irradiation by 100 KeV Ar+ or 50 KeV H+ ions in vacuum was found to compact the ice, in agreement with Raut et al. [(2007), J. Chem. Phys., 126, 244511]. This was revealed in a subsequent oxygen exposure which resulted in no O2 adsorption. When ice was irradiated at an ambient O2 pressure of 5.5x10-7 torr, O2 adsorption was enhanced by a factor as high as 5.5 compared to unirradiated ice. The enhanced amount of adsorbed O2 increased with decreasing ion flux. A uniform oxygen concentration of 3% was achieved throughout the ion penetration depth for a low flux limit. After simultaneous irradiation and oxygen exposure, the adsorbed O2 could be retained in the ice when the ambient O2 pressure was removed. The experimental results show that the ion induced enhancement of adsorption and retention of oxygen may explain the difference in the amount of condensed oxygen on the leading vs. trailing sides of Ganymede and Europa [Spencer et. al. (1995), J. Geophys. Res., 100, 19049]. The results also indicate that re-adsorption of atmospheric O2 can not be neglected in exosphere models, since significant amounts of adsorbed O2 could occur in regions with surfaces colder than 50 K or those areas under low flux ion bombardment.

  8. The behavior of N2 and O2 in pure, mixed or layered CO ices

    NASA Astrophysics Data System (ADS)

    Bisschop, Suzanne E.; Fraser, Helen J.; Fuchs, Guido; Öberg, Karin I.; Acharyya, Kinsuk; van Broekhuizen, Fleur; Schlemmer, Stephan; van Dishoeck, Ewine F.

    N2 and O2 are molecules that are predicted to be abundant in dense molecular clouds. Both molecules are difficult to detect as neither has a dipole moment. The chemical abundance of N2 is mostly inferred from its daughter species N2H+, but was recently detected in the ISM for the first time, with an abundance of 3.3 × 10-7 (Knauth et al 2004). Searches for the submillimeter lines of O2 have given upper limits for the abundance of ≤ 2.6 10-7 for star forming clouds and ≤ 3 10-6 for cold dark clouds (Goldsmith et al. 2000). Pontoppidan et al. (2003) deduced from the CO line profile that CO is present in both H2O poor and H2O rich ice layers, so it follows that N2 is likely to be present in a H2O poor ice layer. In many cold and protostellar cores N2H+ is found to anti-correlate with HCO+ and CO (Bergin et al. 2001; Jørgensen et al. 2004). Models by, for example Bergin & Langer (1997), assume this is due to the balance between freeze-out and evaporation, where ratios for the binding energy for N2 compared to CO of 0.50-0.70 are used. To model these processes, and reproduce the observed abundances of each species it is important to determine empirically the binding energies, sticking probabilities and desorption kinetics of model ice systems containing CO, N2 and O2. It seems that these quantities depend on the degree to which N2 and O2 mix with CO. Therefore, CO and N2 ices were studied extensively in a Ultra High Vacuum (UHV) experiment (P ~ 1 × 10-10 Torr) (Oberg et al. 2005; Bisschop et al submitted)). Ice samples were deposited at 14 K on a polycrystalline gold sample, mounted in the UHV chamber, covering morphologies from pure CO and N2, and 1:1 mixtures, to 1/1 layers of both CO over N2 and N2 over CO, and layers of 40 L of CO (1 L ≈ 1 monolayer) covered with 5 to 50 L of N2. The ices were studied using a combination of Reflection Absorption Infrared Spectroscopy (RAIRS) and Temperature Programmed Desorption (TPD), at a ramp-rate of 0.1 K min-1. The TPD

  9. Ion Irradiation of H2-Laden Porous Water-ice Films: Implications for Interstellar Ices

    NASA Astrophysics Data System (ADS)

    Raut, U.; Mitchell, E. H.; Baragiola, R. A.

    2015-10-01

    To understand the effects of cosmic-ray (CR) impacts on interstellar icy grains immersed in H2 gas, we have irradiated porous water-ice films loaded with H2 with 100 keV H+. The ice films were exposed to H2 gas at different pressures following deposition and during irradiation. A net H2 loss is observed during irradiation due to competition between ion-induced sputtering and gas adsorption. The initial H2 loss cross-section, 4(1) × 10-14 cm2, was independent of film thickness, H2, and proton fluxes. In addition to sputtering, irradiation also closes nanopores, trapping H2 in the film with binding that exceeds physical absorption energies. As a result, 2%-7% H2 is retained in the ice following irradiation to high fluences. We find that the trapped H2 concentration increases with decreasing Φ, the ratio of ion to H2 fluxes, suggesting that as high as 8% solid H2 can be trapped in interstellar ice by CR or stellar wind impacts.

  10. High pressure Raman spectroscopy of H2O-CH3OH mixtures.

    PubMed

    Hsieh, Wen-Pin; Chien, Yu-Hsiang

    2015-02-23

    Complex intra-molecular interactions and the hydrogen-bonding network in H2O-volatile mixtures play critical roles in many dynamics processes in physical chemistry, biology, and Earth and planetary sciences. We used high pressure Raman spectroscopy to study the pressure evolution of vibrational frequencies and bonding behavior in H2O-CH3OH mixtures. We found that the presence of low CH3OH content in H2O increases the transition pressure where water crystallizes to ice VI, but does not significantly change the pressure where ice VI transforms to ice VII. Furthermore, the stiffening rates of C-H stretching frequencies dω/dP in CH3OH significantly decrease upon the crystallization of water, and the softening rates of the O-H stretching frequencies of ice VII are suppressed over a narrow pressure range, after which the frequencies of these modes shift with pressure in ways similar to pure CH3OH and ice VII, respectively. Such complex pressure evolution of Raman frequencies along with pronounced variations in Raman intensities of CH3OH within the sample, and the hysteresis of the water-ice VI phase transition suggest pressure-induced segregation of low content CH3OH from ice VII. These findings indicate the significant influence of volatiles on the crystallization of sub-surface ocean and thermal evolution within large icy planets and satellites.

  11. Ab initio Quantum Chemical Studies of Reactions in Astrophysical Ices. Reactions Involving CH3OH, CO2, CO, HNCO in H2CO/NH3/H2O Ices

    NASA Technical Reports Server (NTRS)

    Woon, David E.

    2006-01-01

    While reactions between closed shell molecules generally involve prohibitive barriers in the gas phase, prior experimental and theoretical studies have demonstrated that some of these reactions are significantly enhanced when confined within an icy grain mantle and can occur efficiently at temperatures below 100 K with no additional energy processing. The archetypal case is the reaction of formaldehyde (H2CO) and ammonia (NH3) to yield hydroxymethylamine (NH2CH2OH). In the present work we have characterized reactions involving methanol (CH3OH), carbon dioxide (CO2), carbon monoxide (CO), and isocyanic acid (HNCO) in search of other favorable cases. Most of the emphasis is on CH3OH, which was investigated in the two-body reaction with one H2CO and the three-body reaction with two H2CO molecules. The addition of a second H2CO to the product of the reaction between CH3OH and H2CO was also considered as an alternative route to longer polyoxymethylene polymers of the -CH2O- form. The reaction between HNCO and NH3 was studied to determine if it can compete against the barrierless charge transfer process that yields OCN(-) and NH4(+). Finally, the H2CO + NH3 reaction was revisited with additional benchmark calculations that confirm that little or no barrier is present when it occurs in ice.

  12. The Formation of N- and O-Heterocycles from the Irradiation of Benzene and Naphthalene in H2O/NH3- Containing Ices

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Materese, C. K.; Nuevo, M.

    2015-01-01

    Aromatic hydrocarbons are an important class of molecules for both astrochemistry and astrobiology (Fig. 1). Within this class of molecules, polycyclic aromatic hydrocarbons (PAHs) are known to be ubiquitous in many astrophysical environments, and are likely present in interstellar clouds and protostellar disks. In dense clouds, PAHs are expected to condense onto grains as part of mixed molecular ice mantles dominated by small molecules like H2O,CH3OH, NH3, CO, and CO2. These ices are exposed to ionizing radiation in the form of cosmic rays and ambient high-energy X-ray and UV photons.

  13. Partial phase diagram for the system NH3-H2O - The water-rich region

    NASA Technical Reports Server (NTRS)

    Johnson, M. L.; Schwake, A.; Nicol, M.

    1984-01-01

    Phase boundaries of the H2O-NH3 system for (NH3)/x/(H2O)/1-x/ have been determined with diamond-anvil cells for mixtures in two composition ranges: (1) for x in the range from 0 to 0.3, at pressures up to 4 GPa at 21 C, and (2) for x in the range from 0.46 to 0.50, at pressures up to 5 GPa from 150 to 400 K. Phases were identified visually with a microscope and polarized optics. The NH3.2(H2O) phase is strongly anisotropic with a much smaller refractive index than that of ice VII and cracks in two nonperpendicular networks. NH3.H2O has a refractive index closer to that of Ice VII and does not appear to form cracks. Both phases are colorless. Phase boundaries were determined on both increasing and decreasing pressures, and compositions of the ammonia ices were determined by estimating relative amounts of water and ammonia ices at known overall compositions. For low-ammonia compositions (x equal to or less than 0.15), the following assemblages succedd one another as pressure increases: liquid; liquid and Ice VI (at 1.0 + GPa); liquid and Ice VII (at 2.1 GPa); Ice VII and NH3.H2O (at 3.5 GPa). For x in the range from 0.15 to 0.30, the water ice and liquid fields are replaced by the NH3.2(H2O) and liquid field at pressures down to 1.0 GPa and lower.

  14. Ices on the Satellites of Jupiter, Saturn, and Uranus

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Brown, Robert H.; Calvin, Wendy M.; Roush, Ted L.

    1995-01-01

    Three satellites of Jupiter, seven satellites of Saturn, and five satellites of Uranus show spectroscopic evidence of H2O ice on their surfaces, although other details of their surfaces are highly diverse. The icy surfaces contain contaminants of unknown composition in varying degrees of concentration, resulting in coloration and large differences in albedo. In addition to H2O, Europa has frozen SO2, and Ganymede has O2 in the surface; in both of these cases external causes are implicated in the deposition or formation of these trace components. Variations in ice exposure across the surfaces of the satellites are measured from the spectroscopic signatures. While H2O ice occurs on the surfaces of many satellites, the range of bulk densities of these bodies shows that its contribution to their overall compositions is highly variable from one object to another.

  15. INFRARED STUDY OF UV/EUV IRRADIATION OF NAPHTHALENE IN H2O+NH3 ICE

    NASA Astrophysics Data System (ADS)

    Chen, Y.-J.; Nuevo, M.; Yeh, F.-C.; Yih, T.-S.; Sun, W.-H.; Ip, W.-H.; Fung, H.-S.; Lee, Y.-Y.; Wu, C.-Y. R.

    We have carried out photon irradiation study of naphthalene (C10H8), the smallest polycyclic aromatic hydrocarbon (PAH) in water and ammonia ice mixtures. Photons provided by a synchrotron radiation light source in two broad-band energy ranges in the ultraviolet/near extreme ultraviolet (4-20 eV) and the extreme ultraviolet (13-45 eV) ranges were used for the irradiation of H2O+NH3+C10H8 = 1:1:1 ice mixtures at 15K. We could identify several photo-products, namely CH4, C2H6, C3H8, CO, CO2, HNCO, OCN-, and probably quinoline (C9H7N) and phenanthridine (C13H9N). We found that the light hydrocarbons are preferably produced for the ice mixture subjected to 4-20 eV photons. However, the production yields of CO, CO2, and OCN- species seem to be higher for the mixture subjected to EUV photons (13-45 eV). Therefore, naphthalene and its photo-products appear to be more efficiently destroyed when high energy photons (E > 20 eV) are used. This has important consequences on the photochemical evolution of PAHs in astrophysical environments.

  16. Distance-dependent radiation chemistry: Oxidation versus hydrogenation of CO in electron-irradiated H2O/CO/H2O ices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Nikolay G.; Monckton, Rhiannon J.; Koehler, Sven

    Electron-stimulated oxidation of CO in layered H2O/CO/H2O ices was investigated with infrared reflection-absorption spectroscopy (IRAS) as function of the distance of the CO layer from the water/vacuum interface. The results show that while both oxidation and reduction reactions occur within the irradiated water films, there are distinct regions where either oxidation or reduction reactions are dominant. At depths less than ~ 15 ML, CO oxidation dominates over the sequential hydrogenation of CO to methanol (CH3OH), and CO2 is the major product of CO oxidation, consistent with previous observations. At its highest yield, CO2 accounts for ~45% of all the reactedmore » CO. Another oxidation product is identified as the formate anion (HCO2-). In contrast, for CO buried more than ~ 35 ML below the water/vacuum interface, the CO-to-methanol conversion efficiency is close to 100%. Production of CO2 and formate are not observed for the more deeply buried CO layers, where hydrogenation dominates. Experiments with CO dosed on pre-irradiated ASW samples suggest that OH radicals are primarily responsible for the oxidation reactions. Possible mechanisms of CO oxidation, involving primary and secondary processes of water radiolysis at low temperature, are discussed. The observed distance-dependent radiation chemistry results from the higher mobility of hydrogen atoms that are created by the interaction of the 100 eV electrons with the water films. These hydrogen atoms, which are primarily created at or near the water/vacuum interface, can desorb from or diffuse into the water films, while the less-mobile OH radicals remain in the near-surface zone resulting in preferential oxidation reactions there. The diffusing hydrogen atoms are responsible for the hydrogenation reactions that are dominant for the more deeply buried CO layers.« less

  17. Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland

    DOE PAGES

    Pettersen, Claire; Bennartz, Ralf; Kulie, Mark S.; ...

    2016-04-15

    Multi-instrument, ground-based measurements provide unique and comprehensive data sets of the atmosphere for a specific location over long periods of time and resulting data compliment past and existing global satellite observations. Our paper explores the effect of ice hydrometeors on ground-based, high-frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland, from 2010 to 2013. Furthermore, data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m -2more » or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high-frequency microwave channels: 90, 150, and 225GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. Then, this measured ice signature was compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single-scattering properties for several ice habits. Furthermore, initial model results compare well against the 4 years of summer season isolated ice signature in the high-frequency microwave channels.« less

  18. Experimentally Determined Binding Energies of Astrophysically Relevant Hydrocarbons in Pure and H2O-Layered Ices

    NASA Astrophysics Data System (ADS)

    Behmard, Aida; Graninger, Dawn; Fayolle, Edith; Oberg, Karin I.

    2017-01-01

    Small hydrocarbons represent an important organic reservoir in a variety of interstellar environments. Constraints on desorption temperatures and binding energies of hydrocarbons are thus necessary for accurate predictions of where and in which phase these molecules exist. Through a series of temperature programmed desorption experiments, we determined binding energies of 1, 2, and 3-carbon interstellar hydrocarbons (CH4, C2H2, C2H4, C2H6, C3H4, C3H6, and C3H8) in pure ices and in relation to water ice, the dominant ice constituent during star and planet formation. These empirically determined values can be used to inform observations and models of the molecular spatial distribution in protoplanetary disks, thus providing insight into planetesimal composition. In addition, knowledge of hydrocarbon binding energies will refine simulations of grain surface chemistry, allowing for better predictions of the chemical conditions that lead to the production of complex organic molecules vital for life.

  19. Photochemistry of coronene in cosmic water ice analogs at different concentrations.

    PubMed

    de Barros, A L F; Mattioda, A L; Ricca, A; Cruz, G; Allamandola, L J

    2017-10-20

    This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K, studied using mid-infrared Fourier transform (FTIR) spectroscopy for C 24 H 12 :H 2 O at concentrations of (1:50), (1:150), (1:200), (1:300) and (1:400). Previous UV irradiation studies of anthracene:H 2 O, pyrene:H 2 O and benzo[ghi]perylene:H 2 O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO 2 and H 2 CO are formed at very low temperatures. Like-wise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene-H + ) are formed. The rate constants for the decay of neutral coronene and for the formation of photoproducts have been derived. It is shown that PAHs and their UV-induced PAH:H 2 O photoproducts have mid-infrared spectroscopic signatures in the 5-8 μ m region that can contribute to the interstellar ice components described by Boogert et al. (2008) as C1-C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the ISM where water-rich ices are important.

  20. Photochemistry of Coronene in Cosmic Water Ice Analogs at Different Concentrations

    NASA Astrophysics Data System (ADS)

    de Barros, A. L. F.; Mattioda, A. L.; Ricca, A.; Cruz-Diaz, G. A.; Allamandola, L. J.

    2017-10-01

    This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K studied using mid-infrared Fourier transform (FTIR) spectroscopy for C24H12:H2O at concentrations of (1:50), (1:150), (1:200), (1:300), and (1:400). Previous UV irradiation studies of anthracene:H2O, pyrene:H2O, and benzo[ghi]perylene:H2O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO2 and H2CO, are formed at very low temperatures. Likewise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene H+) are formed. The rate constants for the decay of neutral coronene and for the formation of photoproducts have been derived. It is shown that Polycyclic Aromatic Hydrocarbons (PAHs) and their UV induced PAH:H2O photoproducts have mid-infrared spectroscopic signatures in the 5-8 μm region that can contribute to the interstellar ice components described by Boogert et al. as C1-C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the interstellar medium where water-rich ices are important.

  1. Revisiting static and dynamic spin-ice correlations in Ho2Ti2O7 with neutron scattering

    NASA Astrophysics Data System (ADS)

    Clancy, J. P.; Ruff, J. P. C.; Dunsiger, S. R.; Zhao, Y.; Dabkowska, H. A.; Gardner, J. S.; Qiu, Y.; Copley, J. R. D.; Jenkins, T.; Gaulin, B. D.

    2009-01-01

    Elastic and inelastic neutron-scattering studies have been carried out on the pyrochlore magnet Ho2Ti2O7 . Measurements in zero applied magnetic field show that the disordered spin-ice ground state of Ho2Ti2O7 is characterized by a pattern of rectangular diffuse elastic scattering within the [HHL] plane of reciprocal space, which closely resembles the zone-boundary scattering seen in its sister compound Dy2Ti2O7 . Well-defined peaks in the zone-boundary scattering develop only within the spin-ice ground state below ˜2K . In contrast, the overall diffuse-scattering pattern evolves on a much higher-temperature scale of ˜17K . The diffuse scattering at small wave vectors below [001] is found to vanish on going to Q=0 , an explicit signature of expectations for dipolar spin ice. Very high energy-resolution inelastic measurements reveal that the spin-ice ground state below ˜2K is also characterized by a transition from dynamic to static spin correlations on the time scale of 10-9s . Measurements in a magnetic field applied along the [11¯0] direction in zero-field-cooled conditions show that the system can be broken up into orthogonal sets of polarized α chains along [11¯0] and quasi-one-dimensional β chains along [110]. Three-dimensional correlations between β chains are shown to be very sensitive to the precise alignment of the [11¯0] externally applied magnetic field.

  2. Characterizing the Chemical and Physical Signature of the 2015-16 El Niño in the Quelccaya Ice Cap Snow and Ice to Calibrate Past ENSO Reconstructions.

    NASA Astrophysics Data System (ADS)

    Beaudon, E.; Barker, J. D.; Kenny, D. V.; Thompson, L. G.

    2017-12-01

    Pacific Sea Surface Temperature (SST) anomalies have reached +3°C in the Niño 3.4 region in November 2015 making this one of the strongest El Niños in 100 years. This warm phase of the El Niño - Southern Oscillation (ENSO) has pronounced differential impacts across the tropical Pacific as well as in South America. Peru statistically experienced flooding in the northern and central regions and drought conditions in the south on the Altiplano. However, the 2015-16 El Nino event led to drought throughout the Peruvian Andes. El Niño is a warm and dry episode, phase locked with the accumulation season on the Quelccaya Ice Cap (QIC) so that this strong event create conditions favorable for enhanced surface ablation and dry deposition of soluble and insoluble aerosols. Here we present new glaciochemical (major and organic ions, dust, black carbon, oxygen isotopes) results from two consecutive snow and ice sampling campaign on QIC framing the climax of the 2015/2016 El Niño episode in Peru. We allocate the ionic and black carbon sources and describe the biogenic and evaporitic contributions to Quelccaya snow chemistry under El Niño atmospheric conditions. Elution factors and ionic budgets are compared to those of the snow and ice samples collected prior to the El Niño initiation and thereby assess the magnitude of the impact of El Niño-induced post-depositional processes. Our results provide the database needed to verify that: 1) melt and percolation induced by El Niño is identifiable in the prior year's snow layer and thus might be calibrated to the El Niño's strength; and 2) the concentration and co-association of biogenic (e.g., NH4, black carbon) and evaporitic (salts) species is enhanced and detectable deeper in the ice and thereby might serve as a proxy for documenting past El Niño frequency. By capturing the chemical signature of a modern El Niño event occurring in a warming world, these results shed light on past ENSO variability preserved in ice core

  3. The radiation stability of the RNA base uracil in H2O-ice and CO2-ice: in-situ laboratory measurements with applications to comets, Europa, and Mars

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Frail, Sarah; Hudson, Reggie L.

    2017-10-01

    Planetary bodies of astrobiological interest, such as Mars, are often exposed to harsh incident radiation, which will influence the times that molecules can survive on them. Some or all of these bodies may well contain biologically-important organic molecules, some may even have supported life at some point in their history, and some may support life today. Future searches for organic molecules likely will include sampling the martian subsurface or a cometary surface sample return mission, where organics may be frozen in ices dominated by either H2O or CO2, which provide some protection from ionizing radiation.Recently, our research group has published studies of the radiation stability of amino acids, with a focus on glycine - in both undiluted form and in mixtures with H2O and CO2. Here, we present a similar study that focuses on the radiation-chemical kinetics of the RNA base uracil. We compare results for uracil decay for dilution in both H2O and CO2 ices. Moreover, we compare these new results with those for glycine. For each sample, we measured uracil’s destruction rate constant and half-life dose due to irradiation by 0.9-MeV protons. All measurements were made in situ at the temperature of irradiation using IR spectroscopy. Trends with dilution (up to ~300:1) and temperature (up to ~150 K) are considered, and results are discussed in the context of icy planetary surfaces.Acknowledgment: Our work is supported in part by the NASA Emerging Worlds Program and by the NASA Astrobiology Institute through the Goddard Center for Astrobiology.

  4. DFT Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters

    DTIC Science & Technology

    2017-10-31

    of isolated molecules and that of bulk systems. DFT calculated absorption spectra represent quantitative estimates that can be correlated with...spectra, can be correlated with the presence of these hydrocarbons (see reference [1]). Accordingly, the molecular structure and IR absorption spectra of...associated with different types of ambient molecules, e.g., H2O, in order to apply background subtraction or spectral-signature- correlation algorithms

  5. Towards a Better Understanding of the Oxygen Isotope Signature of Atmospheric CO2: Determining the 18O-Exchange Between CO2 and H2O in Leaves and Soil On-line with Laser-Based Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gangi, L.; Rothfuss, Y.; Vereecken, H.; Brueggemann, N.

    2013-12-01

    The oxygen isotope signature of carbon dioxide (δ18O-CO2) is a powerful tool to disentangle CO2 fluxes in terrestrial ecosystems, as CO2 attains a contrasting 18O signature by the interaction with isotopically different soil and leaf water pools during soil respiration and photosynthesis, respectively. However, using the δ18O-CO2 signal to quantify plant-soil-atmosphere CO2 fluxes is still challenging due to a lack of knowledge concerning the magnitude and effect of individual fractionation processes during CO2 and H2O diffusion and during CO2-H2O isotopic exchange in soils and leaves, especially related to short-term changes in environmental conditions (non-steady state). This study addresses this research gap by combined on-line monitoring of the oxygen isotopic signature of CO2 and water vapor during gas exchange in soil and plant leaves with laser-based spectroscopy, using soil columns and plant chambers. In both experimental setups, the measured δ18O of water vapor was used to infer the δ18O of liquid water, and, together with the δ18O-CO2, the degree of oxygen isotopic equilibrium between the two species (θ). Gas exchange experiments with different functional plant types (C3 coniferous, C3 monocotyledonous, C3 dicotyledonous, C4) revealed that θ and the influence of the plant on the ambient δ18O-CO2 (CO18O-isoforcing) not only varied on a diurnal timescale but also when plants were exposed to limited water availability, elevated air temperature, and abrupt changes in light intensity (sunflecks). Maximum θ before treatments ranged between 0.7 and 0.8 for the C3 dicotyledonous (poplar) and C3 monocotyledonous (wheat) plants, and between 0.5 and 0.6 for the conifer (spruce) and C4 plant (maize) while maximum CO18O-isoforcing was highest in wheat (0.03 m s-1 ‰), similar in poplar and maize (0.02 m s-1 ‰), and lowest in spruce (0.01 m s-1 ‰). Multiple regression analysis showed that up to 97 % of temporal dynamics in CO18O-isoforcing could be

  6. Mechanisms of the Formation of Adenine, Guanine, and Their Analogues in UV-Irradiated Mixed NH3:H2O Molecular Ices Containing Purine

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Stein, Tamar; Head-Gordon, Martin; Lee, Timothy J.

    2017-08-01

    We investigated the formation mechanisms of the nucleobases adenine and guanine and the nucleobase analogues hypoxanthine, xanthine, isoguanine, and 2,6-diaminopurine in a UV-irradiated mixed 10:1 H2O:NH3 ice seeded with precursor purine by using ab initio and density functional theory computations. Our quantum chemical investigations suggest that a multistep reaction mechanism involving purine cation, hydroxyl and amino radicals, together with water and ammonia, explains the experimentally obtained products in an independent study. The relative abundances of these products appear to largely follow from relative thermodynamic stabilities. The key role of the purine cation is likely to be the reason why purine is not functionalized in pure ammonia ice, where cations are promptly neutralized by free electrons from NH3 ionization. Amine group addition to purine is slightly favored over hydroxyl group attachment based on energetics, but hydroxyl is much more abundant due to higher abundance of H2O. The amino group is preferentially attached to the 6 position, giving 6-aminopurine, that is, adenine, while the hydroxyl group is preferentially attached to the 2 position, leading to 2-hydroxypurine. A second substitution by hydroxyl or amino group occurs at either the 6 or the 2 position depending on the first substitution. Given that H2O is far more abundant than NH3 in the experimentally studied ices (as well as based on interstellar abundances), xanthine and isoguanine are expected to be the most abundant bi-substituted photoproducts.

  7. The Relationship of HCN, C2H6, & H2O in Comets: A Key Clue to Origins?

    NASA Astrophysics Data System (ADS)

    Mumma, Michael J.; Charnley, Steven B.; Cordiner, Martin; Paganini, Lucas; Villanueva, Geronimo Luis

    2017-10-01

    Background: HCN, C2H6, and H2O are three of the best characterized volatiles in comets. It is often assumed that all three are primary volatiles, native to the nucleus. Here, we compare their properties in 26 comets (9 JFC and 17 Oort-cloud), making 6 points:1. Both HCN and C2H6 are poor proxies for water production. The production rate ratio (Q-ratio) of each trace gas relative to water varies by a factor of six among these comets.2. All 26 comets have Q-ratios HCN/C2H6 > 0.1. In 18 comets the Q-ratios HCN/H2O and C2H6/H2O are correlated, with a mean ratio of 0.33. In 6 comets undergoing complete disruption, this Q-ratio exceeds 0.5.3. Q-ratios HCN/C2H6 are not correlated with Q(H2O), nor are they correlated with dynamical class (Oort cloud vs. JFC).4. The nucleus-centered rotational temperatures measured for H2O and other primary species (C2H6, CH3OH) usually agree within error, but those for HCN are often slightly cooler. Could this mean that HCN is not fully developed in the warm near-nucleus region, and instead is at least in part a product species?5. With its strong dipole moment and H-bonding character, HCN should be linked more strongly in the nuclear ice to other molecules with similar properties (H2O, CH3OH), but instead its spatial release in some comets seems strongly coupled to volatiles that lack a dipole moment and thus do not form H-bonds (methane, ethane). Is HCN produced in part from an apolar precursor?6. ALMA maps of HCN and the dust continuum show a slight displacement in their centroids. Is this the signature of extended production of HCN?HCN as a product species: Points 4-6 suggest that HCN may have a significant distributed source. The astrochemical species ammonium cyanide is a strong candidate for this HCN precursor; at moderately low temperatures (< 200K) NH4CN is a stable solid, but it dissociates into HCN and NH3 when warmed. Disruption could eject macroscopic solid NH4CN into the coma where subsequent warming and release could augment

  8. Photochemistry of Coronene in Cosmic Water Ice Analogs at Different Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Barros, A. L. F.; Mattioda, A. L.; Ricca, A.

    This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K studied using mid-infrared Fourier transform (FTIR) spectroscopy for C{sub 24}H{sub 12}:H{sub 2}O at concentrations of (1:50), (1:150), (1:200), (1:300), and (1:400). Previous UV irradiation studies of anthracene:H{sub 2}O, pyrene:H{sub 2}O, and benzo[ghi]perylene:H{sub 2}O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO{sub 2} and H{sub 2}CO, are formed at very low temperatures. Likewise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene H{sup +}) are formed. The rate constants for the decay of neutralmore » coronene and for the formation of photoproducts have been derived. It is shown that Polycyclic Aromatic Hydrocarbons (PAHs) and their UV induced PAH:H{sub 2}O photoproducts have mid-infrared spectroscopic signatures in the 5–8 μ m region that can contribute to the interstellar ice components described by Boogert et al. as C1–C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the interstellar medium where water-rich ices are important.« less

  9. Destruction of C2H4O2 isomers in ice-phase by X-rays: Implication on the abundance of acetic acid and methyl formate in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Rachid, Marina G.; Faquine, Karla; Pilling, S.

    2017-12-01

    The C2H4O2 isomers methyl formate (HCOOCH3), acetic acid (CH3COOH) and glycoaldehyde (HOCH2CHO) have been detected in molecular clouds in the interstellar medium, as well as, hot cores, hot corinos and around protostellar objects. However, their abundances are very different, being methyl formate more abundant than the other two isomers. This fact may be related to the different destruction by ionizing radiation of these molecules. The goal of this work is experimentally study the photodissociation processes of methyl formate and acetic acid ices when exposed to broadband soft X-ray from 6 up to 2000 eV. The experiments were performed coupled to the SGM beamline in the Brazilian Synchrotron Light Source (LNLS/CNPEM) at Campinas, Brazil. The simulated astrophysical ices (12 K) were monitored throughout the experiment using infrared vibrational spectroscopy (FTIR). The analysis of processed ices allowed the determination of the effective destruction cross sections of the parent molecules as well as the effective formation cross section of daughter molecular species such as CO, CO2, H2O, CH4 and H2CO (only for methyl formate) and the hydrocarbons C2H6 and C5H10 (only for acetic acid). The half-lives of molecules at ices toward young stellar objects (YSOs) and inside molecular clouds (e.g. Sgr B2 and W51) due to the presence of incoming soft X-rays were estimated. We determined the effective formation rate and the branching ratios for assigned daughter species after the establishment of a chemical equilibrium. The main product from photodissociation of both methyl formate and acetic acid is CO, that can be formed by recombination of ions, formed during the photodissociation, in the ice surface. The relative abundance between methyl formate and acetic acid (NCH3COOH/NHCOOCH3) in different astronomical scenarios and their column density evolution in the presence of X-rays were calculated. Our results suggest that such radiation field can be one of the factors that

  10. H2O2 Synthesis Induced by Irradiation of H2O with Energetic H(+) and Ar(+) Ions at Various Temperatures

    NASA Technical Reports Server (NTRS)

    Baragiola, R. A.; Loeffler, M. J.; Raut, U.; Vidal, R. A.; Carlson, R. W.

    2004-01-01

    The detection of H2O2 on Jupiter's icy satellite Europa by the Galileo NIMS instrument presented a strong evidence for the importance of radiation effects on icy surfaces. A few experiments have investigated whether solar flux of protons incident on Europa ice could cause a significant if any H2O2 production. These published results differ as to whether H2O2 can be formed by ions impacting water at temperatures near 80 K, which are appropriate to Europa. This discrepancy may be a result of the use of different incident ion energies, different vacuum conditions, or different ways of processing the data. The latter possibility comes about from the difficulty of identifying the 3.5 m peroxide OH band on the long wavelength wing of the much stronger water 3.1 m band. The problem is aggravated by using straight line baselines to represent the water OH band with a curvature, in the region of the peroxide band, that increases with temperature. To overcome this problem, we use polynomial baselines that provide good fits to the water band and its derivative.

  11. Antiferroquadrupolar correlations in the quantum spin ice candidate Pr2Zr2O7

    NASA Astrophysics Data System (ADS)

    Petit, S.; Lhotel, E.; Guitteny, S.; Florea, O.; Robert, J.; Bonville, P.; Mirebeau, I.; Ollivier, J.; Mutka, H.; Ressouche, E.; Decorse, C.; Ciomaga Hatnean, M.; Balakrishnan, G.

    2016-10-01

    We present an experimental study of the quantum spin ice candidate pyrochlore compound Pr2Zr2O7 by means of magnetization measurements, specific heat, and neutron scattering up to 12 T and down to 60 mK. When the field is applied along the [111 ] and [1 1 ¯0 ] directions, k =0 field-induced structures settle in. We find that the ordered moment rises slowly, even at very low temperature, in agreement with macroscopic magnetization. Interestingly, for H ∥[1 1 ¯0 ] , the ordered moment appears on the so-called α chains only. The spin excitation spectrum is essentially inelastic and consists in a broad flat mode centered at about 0.4 meV with a magnetic structure factor which resembles the spin ice pattern. For H ∥[1 1 ¯0 ] (at least up to 2.5 T), we find that a well-defined mode forms from this broad response, whose energy increases with H , in the same way as the temperature of the specific-heat anomaly. We finally discuss these results in the light of mean field calculations and propose an interpretation where quadrupolar interactions play a major role, overcoming the magnetic exchange. In this picture, the spin ice pattern appears shifted up to finite energy because of those interactions. We then propose a range of acceptable parameters for Pr2Zr2O7 that allow to reproduce several experimental features observed under field. With these parameters, the actual ground state of this material would be an antiferroquadrupolar liquid with spin-ice-like excitations.

  12. Physical chemistry of the H2SO4/HNO3/H2O system - Implications for polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Molina, M. J.; Zhang, R.; Wooldridge, P. J.; Mcmahon, J. R.; Kim, J. E.; Chang, H. Y.; Beyer, K. D.

    1993-01-01

    Polar stratospheric clouds (PSCs) play a key role in stratospheric ozone depletion. Surface-catalyzed reactions on PSC particles generate chlorine compounds that photolyze readily to yield chlorine radicals, which in turn destroy ozone very efficiently. The most prevalent PSCs form at temperatures several degrees above the ice frost point and are believed to consist of HNO3 hydrates; however, their formation mechanism is unclear. Results of laboratory experiments are presented which indicate that the background stratospheric H2SO4/H2O aerosols provide an essential link in this mechanism: These liquid aerosols absorb significant amounts of HNO3 vapor, leading most likely to the crystallization of nitric acid trihydrate (NAT). The frozen particles then grow to form PSCs by condensation of additional amounts of HNO3 and H2O vapor. Furthermore, reaction probability measurements reveal that the chlorine radical precursors are formed readily at polar stratospheric temperatures not just on NAT and ice crystals, but also on liquid H2SO4 solutions and on solid H2SO4 hydrates. These results imply that the chlorine activation efficiency of the aerosol particles increases rapidly as the temperature approaches the ice frost point regardless of the phase or composition of the particles.

  13. Transfer of a proton between H2 and O2.

    PubMed

    Kluge, Lars; Gärtner, Sabrina; Brünken, Sandra; Asvany, Oskar; Gerlich, Dieter; Schlemmer, Stephan

    2012-11-13

    The proton affinities of hydrogen and oxygen are very similar. Therefore, it has been discussed that the proton transfer from the omnipresent H(3)(+) to molecular oxygen in the near thermoneutral reaction H(3)(+) + O(2) <--> O(2)H(+) + H(2) effectively binds the interstellar oxygen in O(2)H(+). In this work, the proton transfer reaction has been investigated in a low-temperature 22-pole ion trap from almost room temperature (280 K) down to the lowest possible temperature limited by freeze out of oxygen gas (about 40 K at a low pressure). The Arrhenius behaviour of the rate coefficient for the forward reaction shows that it is subject to an activation energy of E(A)/k=113 K. Thus, the forward reaction can proceed only in higher temperature molecular clouds. Applying laser-induced reactions to the given reaction (in the backward direction), a preliminary search for spectroscopic signatures of O(2)H(+) in the infrared was unsuccessful, whereas the forward reaction has been successfully used to probe the population of the lowest ortho and para levels of H(3)(+).

  14. JUPITER AS AN EXOPLANET: UV TO NIR TRANSMISSION SPECTRUM REVEALS HAZES, A Na LAYER, AND POSSIBLY STRATOSPHERIC H{sub 2}O-ICE CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montañés-Rodríguez, Pilar; González-Merino, B.; Pallé, E.

    Currently, the analysis of transmission spectra is the most successful technique to probe the chemical composition of exoplanet atmospheres. However, the accuracy of these measurements is constrained by observational limitations and the diversity of possible atmospheric compositions. Here, we show the UV–VIS–IR transmission spectrum of Jupiter as if it were a transiting exoplanet, obtained by observing one of its satellites, Ganymede, while passing through Jupiter’s shadow, i.e., during a solar eclipse from Ganymede. The spectrum shows strong extinction due to the presence of clouds (aerosols) and haze in the atmosphere and strong absorption features from CH{sub 4}. More interestingly, themore » comparison with radiative transfer models reveals a spectral signature, which we attribute here to a Jupiter stratospheric layer of crystalline H{sub 2}O ice. The atomic transitions of Na are also present. These results are relevant for the modeling and interpretation of giant transiting exoplanets. They also open a new technique to explore the atmospheric composition of the upper layers of Jupiter’s atmosphere.« less

  15. Atmospheric H2O2 measurement: comparison of cold trap method with impinger bubbling method

    NASA Technical Reports Server (NTRS)

    Sakugawa, H.; Kaplan, I. R.

    1987-01-01

    Collection of atmospheric H2O2 was performed by a cold trap method using dry ice-acetone as the refrigerant. The air was drawn by a pump into a glass gas trap immersed in the dry ice-acetone slush in a dewar flask at a flow rate of 2.5 l min-1 for approximately 2 h. Collection efficiency was > 99% and negligible interferences by O3, SO2 or organic matter with the collected H2O2 in the trap were observed. This method was compared with the air impinger bubbling method which has been previously described (Kok et al., 1978a, b, Envir. Sci. Technol. 12, 1072-1080). The measured total peroxide (H2O2 + organic peroxide) values in a series of aim samples collected by the impinger bubbling method (0.06-3.7 ppb) were always higher than those obtained by the cold trap method (0.02-1.2 ppb). Laboratory experiments suggest that the difference in values between the two methods probably results from the aqueous phase generation of H2O2 and organic peroxide in the impinger solution by a reaction of atmospheric O3 with olefinic and aromatic compounds. If these O3-organic compound reactions which occur in the impinger also occur in aqueous droplets in the atmosphere, the process could be very important for aqueous phase generation of H2O2 in clouds and rainwater.

  16. Study of the photon-induced formation and subsequent desorption of CH3OH and H2CO in interstellar ice analogs

    NASA Astrophysics Data System (ADS)

    Martín-Doménech, R.; Muñoz Caro, G. M.; Cruz-Díaz, G. A.

    2016-05-01

    Context. Methanol and formaldehyde are two simple organic molecules that are ubiquitously detected in the interstellar medium, in both the solid and gaseous phases. An origin in the solid phase and a subsequent nonthermal desorption into the gas phase is often invoked to explain their abundances in some of the environments where they are found. Experimental simulations under astrophysically relevant conditions have been carried out in the past four decades in order to find a suitable mechanism for that process. Aims: In particular, photodesorption from pure methanol ice (and presumably from pure formaldehyde ice) has been found to be negligible in previous works, probably because both molecules are very readily dissociated by vacuum-UV photons. Therefore, we explore the in situ formation and subsequent photon-induced desorption of these species, studying the UV photoprocessing of pure ethanol ice, and a more realistic binary H2O:CH4 ice analog. Methods: Experimental simulations were performed in an ultra-high vacuum chamber. Pure ethanol and binary H2O:CH4 ice samples deposited onto an infrared transparent window at 8 K were UV-irradiated using a microwave-discharged hydrogen flow lamp. Evidence of photochemical production of these two species and subsequent UV-photon-induced desorption into the gas phase were searched for by means of a Fourier transform infrared spectrometer and a quadrupole mass spectrometer, respectively. After irradiation, ice samples were warmed up to room temperature until complete sublimation was attained for detection of volatile products. Results: Formation of CH3OH was only observed during photoprocessing of the H2O:CH4 ice analog, accounting for ~4% of the initial CH4 ice column density, but no photon-induced desorption was detected. Photochemical production of H2CO was observed in both series of experiments. Formation of formaldehyde accounted for ≤45% conversion of the initial ethanol ice, but it could not be quantified during

  17. Proton transfer reactions and dynamics in CH(3)OH-H(3)O(+)-H(2)O complexes.

    PubMed

    Sagarik, Kritsana; Chaiwongwattana, Sermsiri; Vchirawongkwin, Viwat; Prueksaaroon, Supakit

    2010-01-28

    Proton transfer reactions and dynamics in hydrated complexes formed from CH(3)OH, H(3)O(+) and H(2)O were studied using theoretical methods. The investigations began with searching for equilibrium structures at low hydration levels using the DFT method, from which active H-bonds in the gas phase and continuum aqueous solution were characterized and analyzed. Based on the asymmetric stretching coordinates (Deltad(DA)), four H-bond complexes were identified as potential transition states, in which the most active unit is represented by an excess proton nearly equally shared between CH(3)OH and H(2)O. These cannot be definitive due to the lack of asymmetric O-H stretching frequencies (nu(OH)) which are spectral signatures of transferring protons. Born-Oppenheimer molecular dynamics (BOMD) simulations revealed that, when the thermal energy fluctuations and dynamics were included in the model calculations, the spectral signatures at nu(OH) approximately 1000 cm(-1) appeared. In continuum aqueous solution, the H-bond complex with incomplete water coordination at charged species turned out to be the only active transition state. Based on the assumption that the thermal energy fluctuations and dynamics could temporarily break the H-bonds linking the transition state complex and water molecules in the second hydration shell, elementary reactions of proton transfer were proposed. The present study showed that, due to the coupling among various vibrational modes, the discussions on proton transfer reactions cannot be made based solely on static proton transfer potentials. Inclusion of thermal energy fluctuations and dynamics in the model calculations, as in the case of BOMD simulations, together with systematic IR spectral analyses, have been proved to be the most appropriate theoretical approaches.

  18. An Investigation of Armenite, BaCa2Al6Si9O302H2O.H2O Molecules and H Bonding in Microporous Silicates

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Gatta, G.; Xue, X.; McIntyre, G.

    2012-12-01

    The crystal chemistry of armenite, ideally BaCa2Al6Si9O30.2H2O, a double-ring structure belonging to the milarite group, was studied to better understand the nature of extra-framework "Ca-oxygen-anion-H2O-molecule quasi-clusters" and H bonding behavior in microporous silicates. Neutron and X-ray single-crystal diffraction and IR powder and 1H NMR spectroscopic measurements were made. Four crystallographically independent Ca and H2O molecule sites were refined from the diffraction data, whereby both sites appear to have partial occupancies such that locally a Ca atom can have only a single H2O molecule bonded to it through an ion-dipole interaction. The Ca cation is further bonded to six O atoms of the framework forming a quasi cluster around it. The neutron results give the first static description of the protons in armenite, allowing bond distances and angles relating to the H2O molecules and H bonds to be determined. The IR spectrum of armenite is characterized in the OH-stretching region at RT by two broad bands at roughly 3470 and 3410 cm-1 and by a single H2O bending mode at 1654 cm-1. At 10 K four intense OH bands are located at 3479, 3454, 3401 and 3384 cm-1 and two H2O bending modes at 1650 and 1606 cm-1. The 1H MAS NMR spectrum shows a single strong resonance near 5.3 ppm and a smaller one near 2.7 ppm. The former can be assigned to H2O molecules bonded to Ca and the latter to weakly bonded H2O located at a site at the center of the structural double ring and it is partially occupied. The nature of H bonding in the microporous Ca-bearing zeolites scolecite, wairakite and epistilbite are also analyzed. The average OH stretching wavenumber shown by the IR spectra of armenite (~3435 cm-1) and scolecite (~3430 cm-1) are similar, while the average OH wavenumbers for wairakite (~3475 cm-1) and epistilbite (~3500 cm-1) are greater. In all cases the average OH stretching wavenumber is more similar to that of liquid water (~3400 cm-1) than of ice (~3220 cm-1). The

  19. Optical spectrophotometry of Comet P/Giacobini-Zinner and emission profiles of H2O+

    NASA Technical Reports Server (NTRS)

    Strauss, M. A.; Mccarthy, P. J.; Spinrad, H.

    1986-01-01

    Two-dimensional CCD spectrograms were obtained of Comet P/Giacobini-Zinner (1984e) on five occasions between July and October 1985. Spatial emission profiles of H2O+ were extracted at 6198 angstroms (the strongest ionic line in the visible spectrum). This emission line traces the extent of the ion, or plasma, tail. The spectrographic slit was placed approximately along the trajectory of the ICE spacecraft on September 11, 1985; the resulting H2O+ profile has a full-width-half-maximum of about 5700 km, about three times that of the plasma density profile measured by ICE, and has a full-width-zero-intensity of about 30,000 km, very similar to the ICE values. H2O production rates for the comet are derived and compared with those of Comet P/Halley (1982i).

  20. An inter-sensor comparison of the microwave signatures of Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.

    1986-01-01

    Active and passive microwave and physical properties of Arctic sea ice in the marginal ice zone were measured during the summer. Results of an intercomparison of data acquired by an aircraft synthetic aperture radar, a passive microwave imager and a helicopter-mounted scatterometer indicate that early-to-mid summer sea ice microwave signatures are dominated by snowpack characteristics. Measurements show that the greatest contrast between thin first-year and multiyear sea ice occurs when operating actively between 5 and 10 GHz. Significant information about the state of melt of snow and ice is contained in the active and passive microwave signatures.

  1. Discovery of moganite in a lunar meteorite as a trace of H2O ice in the Moon’s regolith

    PubMed Central

    Seto, Yusuke; Miyake, Akira; Sekine, Toshimori; Tomeoka, Kazushige; Matsumoto, Megumi; Kobayashi, Takamichi

    2018-01-01

    Moganite, a monoclinic SiO2 phase, has been discovered in a lunar meteorite. Silica micrograins occur as nanocrystalline aggregates of mostly moganite and occasionally coesite and stishovite in the KREEP (high potassium, rare-earth element, and phosphorus)–like gabbroic-basaltic breccia NWA 2727, although these grains are seemingly absent in other lunar meteorites. We interpret the origin of these grains as follows: alkaline water delivery to the Moon via carbonaceous chondrite collisions, fluid capture during impact-induced brecciation, moganite precipitation from the captured H2O at pH 9.5 to 10.5 and 363 to 399 K on the sunlit surface, and meteorite launch from the Moon caused by an impact at 8 to 22 GPa and >673 K. On the subsurface, this captured H2O may still remain as ice at estimated bulk content of >0.6 weight %. This indicates the possibility of the presence of abundant available water resources underneath local sites of the host bodies within the Procellarum KREEP and South Pole Aitken terranes. PMID:29732406

  2. X-RAY IRRADIATION OF H{sub 2}O + CO ICE MIXTURES WITH SYNCHROTRON LIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez-Escobar, A.; Ciaravella, A.; Micela, G.

    2016-03-20

    We irradiated a (4:1) mixture of water and carbon monoxide with soft X-rays of energies up to 1.2 keV. The experiments were performed using the spherical grating monochromator beamline at National Synchrotron Radiation Research Center in Taiwan. Both monochromatic (300 and 900 eV) and broader energy fluxes (250–1200 eV) were employed. During the irradiation, the H{sub 2}O + CO mixture was ionized, excited, and fragmented, producing a number of reactive species. The composition of the ice has been monitored throughout both the irradiation and warm-up phases. We identified several products, which can be related through a plausible chemical reaction scheme. Such chemistrymore » is initiated by the injection of energetic photoelectrons that produce multiple ionization events generating a secondary electron cascade. The results have been discussed in light of a model for protoplanetary disks around young solar-type stars.« less

  3. Preliminary 3D In-situ measurements of the texture evolution of strained H2O ice during annealing using neutron Laue diffractometry

    NASA Astrophysics Data System (ADS)

    Journaux, Baptiste; Montagnat, Maurine; Chauve, Thomas; Ouladdiaf, Bachir; Allibon, John

    2015-04-01

    Dynamic recrystallization (DRX) strongly affects the evolution of microstructure (grain size and shape) and texture (crystal preferred orientation) in materials during deformation at high temperature. Since texturing leads to anisotropic physical properties, predicting the effect of DRX is essential for industrial applications, for interpreting geophysical data and modeling geodynamic flows, and predicting ice sheet flow and climate evolution. A large amount of literature is available related to metallurgy, geology or glaciology, but there remains overall fundamental questions about the relationship between nucleation, grain boundary migration and texture development at the microscopic scale. Previous measurements of DRX in ice were either conducted using 2D ex-situ techniques such as AITA [1,2] or Electron Backscattering Diffraction (EBSD) [3], or using 3D statistical ex-situ [4] or in-situ [5] techniques. Nevertheless, all these techniques failed to observe at the scale of nucleation processes during DRX in full 3D. Here we present a new approach using neutron Laue diffraction, which enable to perform 3D measurements of in-situ texture evolution of strained polycrystalline H2O ice (>2% at 266 K) during annealing at the microscopic scale. Thanks the CYCLOPS instrument [6] (Institut Laue Langevin Grenoble, France) and the intrinsic low background of this setup, preliminary observations enabled us to follow, in H2O ice, the evolution of serrated grain boundaries, and kink-band during annealing. Our observations show a significant evolution of the texture and internal misorientation over the course of few hours at an annealing temperature of 268.5 K. In the contrary, ice kink-band structures seem to be very stable over time at near melting temperatures. The same samples have been analyzed ex-situ using EBSD for comparison. These results represent a first step toward in-situ microscopic measurements of dynamic recrystallization processes in ice during strain. This

  4. 0.2 to 10 keV electrons interacting with water ice: Radiolysis, sputtering, and sublimation

    NASA Astrophysics Data System (ADS)

    Galli, A.; Vorburger, A.; Wurz, P.; Pommerol, A.; Cerubini, R.; Jost, B.; Poch, O.; Tulej, M.; Thomas, N.

    2018-06-01

    We present new laboratory experiments investigating various water ice samples, ranging from thin ice films to porous thick ice layers, that are irradiated with electrons. The molecules leaving the ice are monitored with a pressure gauge and a mass spectrometer. Most particles released from the ice are H2 and O2, the observed ratio of 2:1 is consistent with H2O being radiolysed into H2 + 1/2 O2 upon irradiation. H2O2 is likely a minor contribution of radiolysis, amounting to 0.001 ± 0.001 of the total gas release from the ice sample. Neither the physical properties of the ice, nor the energy, nor the electron impact angle have any obvious effect on the relative abundances of the radiolysis products. The absolute sputtering yield (i.e., the ratio of produced O2 or destroyed H2O per impacting electron) increases with energy until a few 100 eV. For higher energies up to 10 keV the yield remains roughly constant, once the saturation dose of the ice is reached. This indicates that ongoing irradiation eventually releases the radiolysis products from the water ice even for penetration depths of several micrometers.

  5. Crystal structures of NiSO4·9H2O and NiSO4·8H2O: magnetic properties, stability with respect to morenosite (NiSO4·7H2O), the solid-solution series (Mg x Ni1-x )SO4·9H2O

    NASA Astrophysics Data System (ADS)

    Fortes, A. D.; Knight, K. S.; Gibbs, A. S.; Wood, I. G.

    2018-02-01

    Since being discovered initially in mixed-cation systems, a method of forming end-member NiSO4·9H2O and NiSO4·8H2O has been found. We have obtained powder diffraction data from protonated analogues (with X-rays) and deuterated analogues (using neutrons) of these compounds over a range of temperatures, allowing us to determine their crystal structures—including all H-atoms—and to characterise the transitions on warming from 220 to 278 K; glass → 9-hydrate → 8-hydrate + ice → 7-hydrate + ice → partial melt (7-hydrate + liquid). NiSO4·8D2O is triclinic, space-group P\\bar {1} , Z = 2, with unit cell parameters at 150 K, a = 6.12463(8) Å, b = 6.8401(1) Å, c = 12.5339(2) Å, α = 92.846(1)°, β = 97.822(1)°, γ = 96.627(1)° and V = 515.58(1) Å3. The structure consists of two symmetry-inequivalent Ni(D2O)6 octahedra on sites of \\bar {1} symmetry. These are directly joined by a water-water H-bond to form chains of octahedra parallel with the c-axis at x = 0. Two interstitial water molecules serve both to bridge the Ni(D2O)6 octahedral chains in the b-c plane and also to connect with the SO4 2- tetrahedral oxyanion. These tetrahedra are linked by the two interstitial water molecules in a reticular motif to form sheets perpendicular to c. NiSO4·9D2O is monoclinic, space-group P21/c, Z = 4, with unit-cell parameters at 150 K, a = 6.69739(6) Å, b = 11.8628(1) Å, c = 14.5667(1) Å, β = 94.9739(8)° and V = 1152.96(1) Å3. The structure is isotypic with the Mg analogue described elsewhere (Fortes et al., Acta Cryst B 73:47‒64, 2017b). It shares the motif of H-bonded octahedral chains with NiSO4·8D2O, although in the enneahydrate these run parallel with the b-axis at x = 0. Three interstitial water molecules bridge the Ni(D2O)6 octahedra to the SO4 2- tetrahedral oxyanion. The tetrahedra sit at x ≈ 0.5 and are linked by two of the three interstitial water molecules in a pentagonal motif to form ribbons parallel with b. A solid-solution series

  6. Texture analysis of radiometric signatures of new sea ice forming in Arctic leads

    NASA Technical Reports Server (NTRS)

    Eppler, Duane T.; Farmer, L. Dennis

    1991-01-01

    Analysis of 33.6-GHz, high-resolution, passive microwave images suggests that new sea ice accumulating in open leads is characterized by a unique textural signature which can be used to discriminate new ice forming in this environment from adjacent surfaces of similar radiometric temperature. Ten training areas were selected from the data set, three of which consisted entirely of first-year ice, four entirely of multilayer ice, and three of new ice in open leads in the process of freezing. A simple gradient operator was used to characterize the radiometric texture in each training region in terms of the degree to which radiometric gradients are oriented. New ice in leads has a sufficiently high proportion of well-oriented features to distinguish it uniquely from first-year ice and multiyear ice. The predominance of well-oriented features probably reflects physical processes by which new ice accumulates in open leads. Banded structures, which are evident in aerial photographs of new ice, apparently give rise to the radiometric signature observed, in which the trend of brightness temperature gradients is aligned parallel to lead trends. First-year ice and multiyear ice, which have been subjected to a more random growth and process history, lack this banded structure and therefore are characterized by signatures in which well-aligned elements are less dominant.

  7. Fourier transform-infrared studies of thin H2SO4/H2O films: Formation, water uptake, and solid-liquid phase changes

    NASA Technical Reports Server (NTRS)

    Middlebrook, Ann M.; Iraci, Laura T.; Mcneill, Laurie S.; Koehler, Birgit G.; Wilson, Margaret A.; Saastad, Ole W.; Tolbert, Margaret A.; Hanson, David R.

    1993-01-01

    Fourier transform-infrared (FTIR) spectroscopy was used to examine films representative of stratospheric sulfuric acid aerosols. Thin films of sulfuric acid were formed in situ by the condensed phase reaction of SO3 with H2O. FTIR spectra show that the sulfuric acid films absorb water while cooling in the presence of water vapor. Using stratospheric water pressures, the most dilute solutions observed were greater than 40 wt % before simultaneous ice formation and sulfuric acid freezing occurred. FTIR spectra also revealed that the sulfuric acid films crystallized mainly as sulfuric acid tetrahydrate (SAT). Crystallization occurred either when the composition was about 60 wt% H2SO4 or after ice formed on the films at temperatures 1-4 K below the ice frost point. Finally, we determined that the melting point for SAT depended on the background water pressure and was 216-219 K in the presence of 4 x 10(exp -4) Torr H2O. Our results suggest that once frozen, sulfuric acid aerosols in the stratosphere are likely to melt at these temperatures, 30 K colder than previously thought.

  8. Exploring H2O Prominence in Reflection Spectra of Cool Giant Planets

    NASA Astrophysics Data System (ADS)

    MacDonald, Ryan J.; Marley, Mark S.; Fortney, Jonathan J.; Lewis, Nikole K.

    2018-05-01

    The H2O abundance of a planetary atmosphere is a powerful indicator of formation conditions. Inferring H2O in the solar system giant planets is challenging, due to condensation depleting the upper atmosphere of water vapor. Substantially warmer hot Jupiter exoplanets readily allow detections of H2O via transmission spectroscopy, but such signatures are often diminished by the presence of clouds composed of other species. In contrast, highly scattering water clouds can brighten planets in reflected light, enhancing molecular signatures. Here, we present an extensive parameter space survey of the prominence of H2O absorption features in reflection spectra of cool (Teff < 400 K) giant exoplanetary atmospheres. The impact of effective temperature, gravity, metallicity, and sedimentation efficiency is explored. We find prominent H2O features around 0.94 μm, 0.83 μm, and across a wide spectral region from 0.4 to 0.73 μm. The 0.94 μm feature is only detectable where high-altitude water clouds brighten the planet: Teff ∼ 150 K, g ≳ 20 ms‑2, fsed ≳ 3, m ≲ 10× solar. In contrast, planets with g ≲ 20 ms‑2 and Teff ≳ 180 K display substantially prominent H2O features embedded in the Rayleigh scattering slope from 0.4 to 0.73 μm over a wide parameter space. High fsed enhances H2O features around 0.94 μm, and enables these features to be detected at lower temperatures. High m results in dampened H2O absorption features, due to water vapor condensing to form bright, optically thick clouds that dominate the continuum. We verify these trends via self-consistent modeling of the low-gravity exoplanet HD 192310c, revealing that its reflection spectrum is expected to be dominated by H2O absorption from 0.4 to 0.73 μm for m ≲ 10× solar. Our results demonstrate that H2O is manifestly detectable in reflected light spectra of cool giant planets only marginally warmer than Jupiter, providing an avenue to directly constrain the C/O and O/H ratios of a hitherto

  9. Normalized fluctuations, H2O vs n-hexane: Site-correlated percolation

    NASA Astrophysics Data System (ADS)

    Koga, Yoshikata; Westh, Peter; Sawamura, Seiji; Taniguchi, Yoshihiro

    1996-08-01

    Entropy, volume and the cross fluctuations were normalized to the average volume of a coarse grain with a fixed number of molecules, within which the local and instantaneous value of interest is evaluated. Comparisons were made between liquid H2O and n-hexane in the range from -10 °C to 120 °C and from 0.1 MPa to 500 MPa. The difference between H2O and n-hexane in temperature and pressure dependencies of these normalized fluctuations was explained in terms of the site-correlated percolation theory for H2O. In particular, the temperature increase was confirmed to reduce the hydrogen bond probability, while the pressure appeared to have little effect on the hydrogen bond probability. According to the Le Chatelier principle, however, the putative formation of ``ice-like'' patches at low temperatures due to the site-correlated percolation requirement is retarded by pressure increases. Thus, only in the limited region of low pressure (<300 MPa) and temperature (<60 °C), the fluctuating ice-like patches are considered to persist.

  10. The effect of rock particles and D2O replacement on the flow behaviour of ice

    PubMed Central

    Grindrod, Peter M.

    2017-01-01

    Ice–rock mixtures are found in a range of natural terrestrial and planetary environments. To understand how flow processes occur in these environments, laboratory-derived properties can be extrapolated to natural conditions through flow laws. Here, deformation experiments have been carried out on polycrystalline samples of pure ice, ice–rock and D2O-ice–rock mixtures at temperatures of 263, 253 and 233 K, confining pressure of 0 and 48 MPa, rock fraction of 0–50 vol.% and strain-rates of 5 × 10−7 to 5 × 10−5 s−1. Both the presence of rock particles and replacement of H2O by D2O increase bulk strength. Calculated flow law parameters for ice and H2O-ice–rock are similar to literature values at equivalent conditions, except for the value of the rock fraction exponent, here found to be 1. D2O samples are 1.8 times stronger than H2O samples, probably due to the higher mass of deuterons when compared with protons. A gradual transition between dislocation creep and grain-size-sensitive deformation at the lowest strain-rates in ice and ice–rock samples is suggested. These results demonstrate that flow laws can be found to describe ice–rock behaviour, and should be used in modelling of natural processes, but that further work is required to constrain parameters and mechanisms for the observed strength enhancement. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025298

  11. On the Formation of Interstellar Water Ice: Constraints from a Search for Hydrogen Peroxide Ice in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Smith, R. G.; Charnely, S. B.; Pendleton, Y. J.; Wright, C. M.; Maldoni, M. M.; Robinson, G.

    2011-01-01

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H2O2), for the production of water (H2O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H2O2 ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H2O2 should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H2O2/H2O ice films between 2.5 and 200 micron, from 10 to 180 K, containing 3%, 30%, and 97% H2O2 ice. Integrated absorbances for all the absorption features in low-temperature H2O2 ice have been derived from these spectra. For identifying H2O2 ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 micron. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H2O ice absorption bands, no absorption features are found that can definitely be identified with H2O2 ice. In the absence of definite H2O2 features, the H2O2 abundance is constrained by its possible contribution to the weak absorption feature near 3.47 micron found on the long-wavelength wing of the 3 micron H2O ice band. This gives an average upper limit for H2O2, as a percentage of H2O, of 9% +/- 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  12. Microwave signatures of snow, ice and soil at several wavelengths

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Schmugge, T. J.; Chang, T. C.

    1974-01-01

    Analyses of data obtained from aircraft-borne radiometers have shown that the microwave signatures of various parts of the terrain depend on both the volume scattering cross-section and the dielectric loss in the medium. In soil, it has been found that experimental data fit a model in which the scattering cross section is negligible compared to the dielectric loss. On the other hand, the volume scattering cross-section in snow and continental ice was found, from analyzing data obtained with aircraft- and spacecraft-borne radiometers, to be more important than the dielectric loss or surface reflectivity in determining the observed microwave emissivity. A model which assumes Mie scattering of ice particles of various sizes was found to be the dominant volume scattering mechanism in these media. Both spectral variation in the microwave signatures of snow and ice fields, as well as the variation in the emissivity of continental ice sheets such as those covering Greenland and Antarctica appear to be consistent with this model.

  13. Sea ice radar signatures from ERS-1 SAR during late Summer and Fall in the Beaufort and Chukchi Seas

    NASA Technical Reports Server (NTRS)

    Holt, Benjamin; Cunningham, Glenn; Kwok, Ron

    1993-01-01

    A study which examines ERS-1 C band SAR (Synthetic Aperture Radar) imagery of sea ice obtained in the Beaufort and Chukchi Seas from mid Summer through Fall freeze up and early Winter in 1991 is presented. Radar backscatter statistics of sea ice were obtained from the imagery, using common floes tracked through consecutive repeat images whenever possible. During the Summer months, strong fluctuations in ice signatures of several dB are observed over 2 to 3 day periods, which are found to be closely related to air temperature excursions above and below freezing that alters the phase of the ice surface. As air temperatures drop steadily below freezing in the Fall, the signatures of the pack ice increase in brightness and become more stable with time. Multiyear ice is distinguished from rough and smooth first year ice. There are also variations in the multiyear signatures with latitude. Large variations are seen in new ice and open water contained within leads which results in ambiguous classification.

  14. On the Formation and Isomer Specific Detection of Propenal (C2H3CHO) and Cyclopropanone (c-C3H4O) in Interstellar Model Ices - A Combined FTIR and Reflectron Time-of-Flight Mass Spectroscopic Study

    NASA Astrophysics Data System (ADS)

    Abplanalp, Matthew J.; Borsuk, Aleca; Jones, Brant M.; Kaiser, Ralf I.

    2015-11-01

    The formation routes of two structural isomers—propenal (C2H3CHO) and cyclopropanone (c-C3H4O)—were investigated experimentally by exposing ices of astrophysical interest to energetic electrons at 5.5 K thus mimicking the interaction of ionizing radiation with interstellar ices in cold molecular clouds. The radiation-induced processing of these ices was monitored online and in situ via Fourier Transform Infrared spectroscopy and via temperature programmed desorption exploiting highly sensitive reflectron time-of-flight mass spectrometry coupled with single photon ionization in the post irradiation phase. To selectively probe which isomer(s) is/are formed, the photoionization experiments were conducted with 10.49 and 9.60 eV photons. Our studies provided compelling evidence on the formation of both isomers—propenal (C2H3CHO) and cyclopropanone (c-C3H4O)—in ethylene (C2H4)—carbon monoxide (CO) ices forming propenal and cyclopropanone at a ratio of (4.5 ± 0.9):1. Based on the extracted reaction pathways, the cyclopropanone molecule can be classified as a tracer of a low temperature non-equilibrium chemistry within interstellar ices involving most likely excited triplet states, whereas propenal can be formed at ultralow temperatures, but also during the annealing phase via non-equilibrium as well as thermal chemistry (radical recombination). Since propenal has been detected in the interstellar medium and our laboratory experiments demonstrate that both isomers originated from identical precursor molecules our study predicts that the hitherto elusive second isomer—cyclopropanone—should also be observable toward those astronomical sources such as Sgr B2(N) in which propenal has been detected.

  15. H-atom addition and abstraction reactions in mixed CO, H2CO and CH3OH ices - an extended view on complex organic molecule formation

    NASA Astrophysics Data System (ADS)

    Chuang, K.-J.; Fedoseev, G.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2016-01-01

    Complex organic molecules (COMs) have been observed not only in the hot cores surrounding low- and high-mass protostars, but also in cold dark clouds. Therefore, it is interesting to understand how such species can be formed without the presence of embedded energy sources. We present new laboratory experiments on the low-temperature solid state formation of three complex molecules - methyl formate (HC(O)OCH3), glycolaldehyde (HC(O)CH2OH) and ethylene glycol (H2C(OH)CH2OH) - through recombination of free radicals formed via H-atom addition and abstraction reactions at different stages in the CO→H2CO→CH3OH hydrogenation network at 15 K. The experiments extend previous CO hydrogenation studies and aim at resembling the physical-chemical conditions typical of the CO freeze-out stage in dark molecular clouds, when H2CO and CH3OH form by recombination of accreting CO molecules and H-atoms on ice grains. We confirm that H2CO, once formed through CO hydrogenation, not only yields CH3OH through ongoing H-atom addition reactions, but is also subject to H-atom-induced abstraction reactions, yielding CO again. In a similar way, H2CO is also formed in abstraction reactions involving CH3OH. The dominant methanol H-atom abstraction product is expected to be CH2OH, while H-atom additions to H2CO should at least partially proceed through CH3O intermediate radicals. The occurrence of H-atom abstraction reactions in ice mantles leads to more reactive intermediates (HCO, CH3O and CH2OH) than previously thought, when assuming sequential H-atom addition reactions only. This enhances the probability to form COMs through radical-radical recombination without the need of UV photolysis or cosmic rays as external triggers.

  16. Evolution of microwave sea ice signatures during early summer and midsummer in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Grenfell, T. C.; Matzler, C.; Luther, C. A.; Svendsen, E. A.

    1987-01-01

    Emissivities at frequencies from 5 to 94 GHz and backscatter at frequencies from 1 to 17 GHz were measured from sea ice in Fram Strait during the marginal Ice Zone Experiment in June and July of 1983 and 1984. The ice observed was primarily multiyear; the remainder, first-year ice, was often deformed. Results from this active and passive microwave study include the description of the evolution of the sea ice during early summer and midsummer; the absorption properties of summer snow; the interrelationship between ice thickness and the state and thickness of snow; and the modulation of the microwave signature, especially at the highest frequencies, by the freezing of the upper few centimeters of the ice.

  17. An observational search for CO2 ice clouds on Mars

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Calvin, Wendy M.; Pollack, James B.; Crisp, David

    1993-01-01

    CO2 ice clouds were first directly identified on Mars by the Mariner 6 and 7 infrared spectrometer limb scans. These observations provided support for early theoretical modeling efforts of CO2 condensation. Mariner 9 IRIS temperature profiles of north polar hood clouds were interpreted as indicating that these clouds were composed of H2O ice at lower latitudes and CO2 ice at higher latitudes. The role of CO2 condensation on Mars has recently received increased attention because (1) Kasting's model results indicated that CO2 cloud condensation limits the magnitude of the proposed early Mars CO2/H2O greenhouse, and (2) Pollack el al.'s GCM results indicated that the formation of CO2 ice clouds is favorable at all polar latitudes during the fall and winter seasons. These latter authors have shown that CO2 clouds play an important role in the polar energy balance, as the amount of CO2 contained in the polar caps is constrained by a balance between latent heat release, heat advected from lower latitudes, and thermal emission to space. The polar hood clouds reduce the amount of CO2 condensation on the polar caps because they reduce the net emission to space. There have been many extensive laboratory spectroscopic studies of H2O and CO2 ices and frosts. In this study, we use results from these and other sources to search for the occurrence of diagnostic CO2 (and H2O) ice and/or frost absorption features in ground based near-infrared imaging spectroscopic data of Mars. Our primary goals are (1) to try to confirm the previous direct observations of CO2 clouds on Mars; (2) to determine the spatial extent, temporal variability, and composition (H2O/CO2 ratio) of any clouds detected; and (3) through radiative transfer modeling, to try to determine the mean particle size and optical depth of polar hood clouds, thus, assessing their role in the polar heat budget.

  18. Ikaite crystals in melting sea ice - implications for pCO2 and pH levels in Arctic surface waters

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Glud, R. N.; Lennert, K.; Cooper, M.; Halden, N.; Leakey, R. J. G.; Hawthorne, F. C.; Barber, D.

    2012-03-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (CaCO3·6H2O) in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from an actively melting 1.7 km2 (0.5-1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures gradually disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice flow thickness by ca. 0.2 m per week and resulted in an estimated 1.6 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 11 mmol m-2 sea ice d-1 or to 3.5 ton km-2 ice floe week-1.

  19. Eddy Covariance measurements of stable CO2 and H2O isotopologues

    NASA Astrophysics Data System (ADS)

    Braden-Behrens, Jelka; Knohl, Alexander

    2015-04-01

    The analysis of the stable isotope composition of CO2 and H2O fluxes (such as 13C, 18O and 2H in H2O and CO2) has provided valuable insights into ecosystem gas exchange. The approach builds on differences in the isotope signature of different ecosystem components that are primarily caused by the preference for or the discrimination against respective isotope species by important processes within the ecosystem (e.g. photosynthesis or leaf water diffusion). With the ongoing development of laser spectrometric methods, fast and precise measurements of isotopologue mixing ratios became possible, hence also enabling Eddy Covariance (EC) based approaches to directly measure the isotopic composition of CO2 and H2Ov net fluxes on ecosystem scale. During an eight month long measurement campaign in 2015, we plan to simultaneously measure CO2 and H2Ov isotopologue fluxes using an EC approach in a managed beech forest in Thuringia, Germany. For this purpose, we will use two different laser spectrometers for high frequency measurements of isotopic compositions: For H2Ov measurements, we will use an off axis cavity output water vapour isotope analyser (WVIA, Los Gatos Research Inc.) with 5 Hz response; and for CO2 measurements, we will use a quantum cascade laser-based system (QCLAS, Aerodyne Research Inc.) with thermoelectrically cooled detectors and up to 10 Hz measurement capability. The resulting continuous isotopologue flux measurements will be accompanied by intensive sampling campaigns on the leaf scale: Water from leaf, twig, soil and precipitation samples will be analysed in the lab using isotope ratio mass spectrometry. During data analysis we will put a focus on (i) the influence of carbon and oxygen discrimination on the isotopic signature of respective net ecosystem exchange, (ii) on the relationship between evapotranspiration and leaf water enrichment, and (iii) on the 18O exchange between carbon dioxide and water. At present, we already carried out extensive

  20. New metal-organic frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2] . 4H2O

    NASA Astrophysics Data System (ADS)

    Weng, Sheng-Feng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-04-01

    Two novel materials, [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La(1a), Ce(1b)) and [Ce2(C2O4)(C6H6O7)2] . 4H2O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1¯ (No. 2); compound 2 crystallized in monoclinic space group P21/c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of CuII ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d1 excited state and two levels of the 4f1 ground state (2F5/2 and 2F7/2). Compounds 1b and 2 containing CeIII ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers.

  1. H2O grain size and the amount of dust in Mars' residual north polar cap

    NASA Technical Reports Server (NTRS)

    Kieffer, Hugh H.

    1990-01-01

    In Mars' north polar cap, the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 microns or more. Ice of this granularity containing 30 percent fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be 'old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain.

  2. H2O grain size and the amount of dust in Mars' residual North polar cap

    USGS Publications Warehouse

    Kieffer, H.H.

    1990-01-01

    In Mars' north polar cap the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 ??m or more. Ice of this granularity containing 30% fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be "old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain. -Author

  3. Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Koehler, Birgit G.; Middlebrook, Ann M.; Tolbert, Margaret A.; Jordon, Joseph

    1994-01-01

    We determined the infrared optical constants of nitric acid trihydrate, nitric acid dihydrate, nitric acid monohydrate, and solid amorphous nitric acid solutions which crystallize to form these hydrates. We have also found the infrared optical constants of H2O ice. We measured the transmission of infrared light throught thin films of varying thickness over the frequency range from about 7000 to 500/cm at temperatures below 200 K. We developed a theory for the transmission of light through a substrate that has thin films on both sides. We used an iterative Kramers-Kronig technique to determine the optical constants which gave the best match between measured transmission spectra and those calculated for a variety of films of different thickness. These optical constants should be useful for calculations of the infrared spectrum of polar stratospheric clouds.

  4. The 2140 cm(exp -1) (4.673 Microns) Solid CO Band: The Case for Interstellar O2 and N2 and the Photochemistry of Non-Polar Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie; Allamandola, Louis J.; Sandford, Scott A.; Witteborn, Fred C. (Technical Monitor)

    1996-01-01

    The infrared spectra of CO frozen in non-polar ices containing N2, CO2, O2, and H2O, and the ultraviolet photochemistry of these interstellar/precometary ice analogs are reported. The spectra are used to test the hypothesis that the narrow 2140/cm (4.673 micrometer) interstellar absorption feature attributed to solid CO might be produced by CO frozen in ices containing non-polar species such as N2 and O2. It is shown that mixed molecular ices containing CO, N2, O2, and CO2 provide a very good match to the interstellar band at all temperatures between 12 and 30 K both before and after photolysis. The optical constants (real and imaginary parts of the index of refraction) in the region of the solid CO feature are reported for several of these ices.

  5. USGS46 Greenland ice core water – A new isotopic reference material for δ2H and δ18O measurements of water

    USGS Publications Warehouse

    Coplen, Tyler B.; Qi, Haiping; Tarbox, Lauren V.; Lorenz, Jennifer M.; Buck, Bryan

    2015-01-01

    Ice core from Greenland was melted, filtered, homogenised, loaded into glass ampoules, sealed, autoclaved to eliminate biological activity, and calibrated by dual-inlet isotope-ratio mass spectrometry. This isotopic reference material (RM), USGS46, is intended as one of two secondary isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The measured δ2H and δ18O values of this reference water were −235.8 ± 0.7‰ and −29.80 ± 0.03‰, respectively, relative to VSMOW on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, −428 and −55.5‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95-percent probability of encompassing the true value. This reference water is available in cases containing 144 glass ampoules that are filled with either 4 ml or 5 ml of water per ampoule.

  6. Isotopomer-selective spectra of a single intact H2O molecule in the Cs+(D2O)5H2O isotopologue: Going beyond pattern recognition to harvest the structural information encoded in vibrational spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolke, Conrad T.; Fournier, Joseph A.; Miliordos, Evangelos

    We report the vibrational signatures of a single H2O water molecule occupying distinct sites of the hydration network in the Cs+(H2O)6 cluster. This is accomplished using isotopomer selective IR-IR hole-burning on the Cs+(D2O)5(H2O) clusters formed by gas-phase exchange of a single, intact H2O molecule for D2O in the Cs+(D2O)6 ion. The OH stretching pattern of the Cs+(H2O)6 isotopologue is accurately recovered by superposition of the isotopomer spectra, thus establishing that the H2O incorporation is random and that the OH stretching manifold is largely due to contributions from decoupled water molecules. This behavior enables a powerful new way to extract structuralmore » information from vibrational spectra of size-selected clusters by explicitly identifying the local environments responsible for specific infrared features. The Cs+(H2O)6 structure was unambiguously assigned to the 4.1.1 isomer (a homodromic water tetramer with two additional flanking water molecules) from the fact that its computed IR spectrum matches the observed overall pattern and recovers the embedded correlations in the two OH stretching bands of the water molecule in the Cs+(D2O)5(H2O) isotopomers. The 4.1.1 isomer is the lowest in energy among other candidate networks at advanced (e.g., CCSD(T)) levels of theoretical treatment after corrections for (anharmonic) zero-point energy (ZPE). With the structure in hand, we then explore the mechanical origin of the various band locations using a local electric field formalism. This approach promises to provide a transferrable scheme for the prediction of the OH stretching fundamentals displayed by water networks in close proximity to solute ions.« less

  7. Laboratory measurements of HDO/H2O isotopic fractionation during ice deposition in simulated cirrus clouds.

    PubMed

    Lamb, Kara D; Clouser, Benjamin W; Bolot, Maximilien; Sarkozy, Laszlo; Ebert, Volker; Saathoff, Harald; Möhler, Ottmar; Moyer, Elisabeth J

    2017-05-30

    The stable isotopologues of water have been used in atmospheric and climate studies for over 50 years, because their strong temperature-dependent preferential condensation makes them useful diagnostics of the hydrological cycle. However, the degree of preferential condensation between vapor and ice has never been directly measured at temperatures below 233 K (-40 °C), conditions necessary to form cirrus clouds in the Earth's atmosphere, routinely observed in polar regions, and typical for the near-surface atmospheric layers of Mars. Models generally assume an extrapolation from the warmer experiments of Merlivat and Nief [Merlivat L, Nief G (1967) Tellus 19:122-127]. Nonequilibrium kinetic effects that should alter preferential partitioning have also not been well characterized experimentally. We present here direct measurements of HDO/H 2 O equilibrium fractionation between vapor and ice ([Formula: see text]) at cirrus-relevant temperatures, using in situ spectroscopic measurements of the evolving isotopic composition of water vapor during cirrus formation experiments in a cloud chamber. We rule out the recent proposed upward modification of [Formula: see text], and find values slightly lower than Merlivat and Nief. These experiments also allow us to make a quantitative validation of the kinetic modification expected to occur in supersaturated conditions in the ice-vapor system. In a subset of diffusion-limited experiments, we show that kinetic isotope effects are indeed consistent with published models, including allowing for small surface effects. These results are fundamental for inferring processes on Earth and other planets from water isotopic measurements. They also demonstrate the utility of dynamic in situ experiments for studying fractionation in geochemical systems.

  8. Ikaite crystals in melting sea ice - implications for pCO2 and pH levels in Arctic surface waters

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Glud, R. N.; Lennert, K.; Cooper, M.; Halden, N.; Leakey, R. J. G.; Hawthorne, F. C.; Barber, D.

    2012-08-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3·6H2O) in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km2 (0.5-1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice floe thickness by 0.2 m per week and resulted in an estimated 3.8 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 10.6 mmol m-2 sea ice d-1 or to 3.3 ton km-2 ice floe week-1. This is markedly higher than the estimated primary production within the ice floe of 0.3-1.3 mmol m-2 sea ice d-1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO2 uptake.

  9. Following the south polar cap recession as viewed by OMEGA/MEX using automatic detection of H2O and CO2 ices.

    NASA Astrophysics Data System (ADS)

    Schmidt, F.; Doute, S.; Schmitt, B.

    In order to understand Mars' current climate it is necessary to detect, characterize and monitor CO2 and H2O at the surface (permanent and seasonal icy deposits) and in the atmosphere (vapor and clouds). Here we will focus on the South Seasonal Polar Cap (SSPC) whose recession was previously observed with different techniques : from earth in the visible range with HST [James 1996], or from MGS spacecraft with MOC images [Benson 2005], in the thermal IR range by the TES [Kieffer 2000], in the near infrared by OMEGA/MEX [Langevin submitted]. The time and space evolutions of the SSPC is a major annual climatic signal both at the global and the regional scales. In particular the measurement of the temporal and spatial distributions of CO2 constrains exchange processes between both surface and atmosphere. This exchange may involve preponderant species : H2O, CO2 and dust. In this work we will apply a new detection technique : "wavanglet" in order to follow the recession of the SSPC thanks to OMEGA/MEX observations. This method was especially developed in the goal to classify a huge dataset, such OMEGA ones. We propose to use "wavanglet" as a supervised automatic classification method that identifies spectral features and classifies the image in spectrally homogeneous units. Additionally we will evaluate quantitative detection limits of "wavanglet" based on synthetic dataset simulating OMEGA spectra in typical situation of the SSPC. This detection limit will be discussed in terms of abundance for H2O and CO2 ices in order to improve the interpretation of the classification. Finally we will present the recession of the SSPC using "wavanglet" and we will compare the results with those of earlier investigation. An interpretation of the similarities and disagreements between those maps will be done.

  10. Nuclear quantum fluctuations in ice I(h).

    PubMed

    Moreira, Pedro Augusto Franco Pinheiro; de Koning, Maurice

    2015-10-14

    We discuss the role of nuclear quantum fluctuations in ice Ih, focusing on the hydrogen-bond (HB) structure and the molecular dipole-moment distribution. For this purpose we carry out DFT-based first-principles molecular dynamics and path-integral molecular dynamics simulations at T = 100 K. We analyze the HB structure in terms of a set of parameters previously employed to characterize molecular structures in the liquid phase and compute the molecular dipole moments using the maximally-localized Wannier functions. The results show that the protons experience very large digressions driven by quantum fluctuations, accompanied by major rearrangements in the electronic density. As a result of these protonic quantum fluctuations the molecular dipole-moment distribution is substantially broadened as well as shifted to a larger mean value when compared to the results obtained when such fluctuations are neglected. In terms of dielectric constants, the reconciliation between the greater mean dipole moment and experimental indications that the dielectric constant of H2O ice is lower than that of D2O ice would indicate that the topology of the HB network is sensitive to protonic quantum fluctuations.

  11. Magnetic Coulomb phase in the spin ice Ho2Ti2O7.

    PubMed

    Fennell, T; Deen, P P; Wildes, A R; Schmalzl, K; Prabhakaran, D; Boothroyd, A T; Aldus, R J; McMorrow, D F; Bramwell, S T

    2009-10-16

    Spin-ice materials are magnetic substances in which the spin directions map onto hydrogen positions in water ice. Their low-temperature magnetic state has been predicted to be a phase that obeys a Gauss' law and supports magnetic monopole excitations: in short, a Coulomb phase. We used polarized neutron scattering to show that the spin-ice material Ho2Ti2O7 exhibits an almost perfect Coulomb phase. Our result proves the existence of such phases in magnetic materials and strongly supports the magnetic monopole theory of spin ice.

  12. Laboratory studies of cometary ice analogues

    NASA Astrophysics Data System (ADS)

    Schmitt, B.; Espinasse, S.; Grim, R. J. A.; Greenberg, J. M.; Klinger, J.

    1989-12-01

    Laboratory studies were performed in order to simulate the physico-chemical processes that are likely to occur in the near surface layers of short and intermediate period comets. Pure H2O ice as well as CO:H2O, CO2:H2O, CH4:H2O, CO:CO2:H2O, and NH3:H2O ice mixtures were studied in the temperature range between 10 and 180 K. The evolution of the composition of ice mixtures, the crystallization of H2O ice as well as the formation and decompostion of clathrate hydrate by different processes were studied as a function of temperature and time. Using the results together with numerical modeling, predictions are made about the survival of amorphous ice, CO, CO2, CH4, and NH3 in the near surface layers of short period comets. The likeliness of finding clathrate and molecular hydrates is discussed. It is proposed that the analytical methods developed here could be fruitfully adapted to the analysis of returned comet samples.

  13. Nucleobases and Prebiotic Molecules in Organic Residues Produced from the Ultraviolet Photo-Irradiation of Pyrimidine in NH3 and H2O+NH3 Ices

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott

    2012-01-01

    Although not yet identified in the interstellar medium (ISM), N-heterocycles including nucleobases the information subunits of DNA and RNA are present in carbonaceous chondrites, which indicates that molecules of biological interest can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab-initio calculations have already shown that the irradiation of pyrimidine in pure H2O ices leads to the formation of a suite of oxidized pyrimidine derivatives, including the nucleobase uracil. In the present work, NH3:pyrimidine and H2O:NH3:pyrimidine ice mixtures with different relative proportions were irradiated with UV photons under astrophysically relevant conditions. Liquid- and gas-chromatography analysis of the resulting organic residues has led to the detection of the nucleobases uracil and cytosine, as well as other species of prebiotic interest such as urea and small amino acids. The presence of these molecules in organic residues formed under abiotic conditions supports scenarios in which extraterrestrial organics that formed in space and were subsequently delivered to telluric planets via comets and meteorites could have contributed to the inventory of molecules that triggered the first biological reactions on their surfaces.

  14. FTIR study of CO2 and H2O/CO2 nanoparticles and their temporal evolution at 80 K.

    PubMed

    Taraschewski, M; Cammenga, H K; Tuckermann, R; Bauerecker, S

    2005-04-21

    Fourier transform infrared (FTIR) spectroscopy combined with a long-path collisional cooling cell was used to investigate the temporal evolution of CO2 nanoparticles and binary H2O/CO2 nanocomposites in the aerosol phase at 80 K. The experimental conditions for the formation of different CO2 particle shapes as slab, shell, sphere, cube, and needle have been studied by comparison with calculated data from the literature. The H2O/CO2 nanoparticles were generated with a newly developed multiple-pulse injection technique and with the simpler flow-in technique. The carbon dioxide nu3-vibration band at 2360 cm(-1) and the water ice OH-dangling band at 3700 cm(-1) were used to study the evolution of structure, shape, and contact area of the nanocomposites over 150 s. Different stages of binary nanocomposites with primary water ice cores were identified dependent on the injected CO2 portion: (a) disordered (amorphous) CO2 slabs on water particle surfaces, (b) globular crystalline CO2 humps sticking on the water cores, and (c) water cores being completely enclosed in bigger predominantly crystalline CO2 nanoparticles. However, regular CO2 shell structures on primary water particles showing both longitudinal (LO) and transverse (TO) optical mode features of the nu3-vibration band could not be observed. Experiments with reversed nucleation order indicate that H2O/CO2 composite particles with different initial structures evolve toward similar molecular nanocomposites with separated CO2 and H2O regions.

  15. H2O Paradox and its Implications on H2O in Moon

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue

    2017-04-01

    The concentration of H2O in the mantle of a planetary body plays a significant role in the viscosity and partial melting and hence the convection and evolution of the planetary body. Even though the composition of the primitive terrestrial mantle (PTM) is thought to be well known [1-2], the concentration of H2O in PTM remains paradoxial because different methods of estimation give different results [3]: Using H2O/Ce ratio in MORB and OIB and Ce concentration in PTM, the H2O concentration in PTM would be (300÷×1.5) ppm; using mass balance by adding surface water to the mantle [3-4], H2O concentration in PTM would be (900÷×1.3) ppm [2-3]. The inconsistency based on these two seemingly reliable methods is referred to as the H2O paradox [3]. For Moon, H2O contents in the primitive lunar mantle (PLM) estimated from H2O in plagioclase in lunar anorthosite and that from H2O/Ce ratio in melt inclusions are roughly consistent at ˜110 ppm [5-6] even though there is still debate about the volatile depletion trend [7]. One possible solution to the H2O paradox in PTM is to assume that early Earth experienced whole mantle degassing, which lowered the H2O/Ce ratio in the whole mantle but without depleting Ce in the mantle. The second possible solution is that some deep Earth reservoirs with high H2O/Ce ratios have not been sampled by MORB and OIB. Candidates include the transition zone [8] and the D" layer. The third possible solution is that ocean water only partially originated from mantle degassing, but partially from extraterrestrial sources such as comets [9-10]. At present, there is not enough information to determine which scenario is the answer to the H2O paradox. On the other hand, each scenario would have its own implications to H2O in PLM. If the first scenario applies to Moon, because degassed H2O or H2 would have escaped from the lunar surface, the very early lunar mantle could have much higher H2O [11] than that obtained using the H2O/Ce ratio method. The

  16. The mid-IR Absorption Cross Sections of α- and β-NAT (HNO3 · 3H2O) in the range 170 to 185 K and of metastable NAD (HNO3 · 2H2O) in the range 172 to 182 K

    NASA Astrophysics Data System (ADS)

    Iannarelli, R.; Rossi, M. J.

    2015-11-01

    Growth and Fourier transform infrared (FTIR) absorption in transmission of the title nitric acid hydrates have been performed in a stirred flow reactor (SFR) under tight control of the H2O and HNO3 deposition conditions affording a closed mass balance of the binary mixture. The gas and condensed phases have been simultaneously monitored using residual gas mass spectrometry and FTIR absorption spectroscopy, respectively. Barrierless nucleation of the metastable phases of both α-NAT (nitric acid trihydrate) and NAD (nitric acid dihydrate) has been observed when HNO3 was admitted to the SFR in the presence of a macroscopic thin film of pure H2O ice of typically 1 µm thickness. The stable β-NAT phase was spontaneously formed from the precursor α-NAT phase through irreversible thermal rearrangement beginning at 185 K. This facile growth scheme of nitric acid hydrates requires the presence of H2O ice at thicknesses in excess of approximately hundred nanometers. Absolute absorption cross sections in the mid-IR spectral range (700-4000 cm-1) of all three title compounds have been obtained after spectral subtraction of excess pure ice at temperatures characteristic of the upper troposphere/lower stratosphere. Prominent IR absorption frequencies correspond to the antisymmetric nitrate stretch vibration (ν3(NO3-)) in the range 1300 to 1420 cm-1 and the bands of hydrated protons in the range 1670 to 1850 cm-1 in addition to the antisymmetric O-H stretch vibration of bound H2O in the range 3380 to 3430 cm-1 for NAT.

  17. Exploration of H2O-CO2 Solubility in Alkali Basalt at low-H2O

    NASA Astrophysics Data System (ADS)

    Roggensack, K.; Allison, C. M.; Clarke, A. B.

    2017-12-01

    A number of recent experimental studies have found conflicting evidence for and against the influence of H2O on CO2 solubility in basalt and alkali-rich mafic magma (e.g. Behrens et al., 2009; Shishkina et al., 2010;2014; Iacono-Marziano et al., 2012). Some of the uncertainty is due to the error with spectroscopic determination (FTIR) of carbon and the challenge of controlling H2O abundance in experiments. It's been widely observed that even experimental capsules without added H2O may produce hydrous glasses containing several wt.% H2O. We conducted fluid-saturated, mixed-fluid (H2O-CO2) experiments to determine the solubility in alkali basalt with particular emphasis on conditions at low-H2O. To limit possible H2O contamination, materials were dried prior to loading and experimental capsules were sealed under vacuum. Experiments were run using a piston-cylinder, in Pt (pre-soaked in Fe) or AuPd capsules and operating at pressures from 400 to 600 MPa. Post-run the capsules were punctured under vacuum and fluids were condensed, separated, and measured by mercury manometry. A comparison between two experiments run at the same temperature and pressure conditions but with different fluid compositions illustrates the correlation between carbonate and H2O solubility. Uncertainties associated with using concentrations calculated from FTIR data can be reduced by directly comparing analyses on wafers of similar thickness. We observe that the experiment with greater H2O absorbance also has a higher carbonate absorbance than the experiment with lower H2O absorbance. Since the experiments were run at the same pressure, the experiment with more water-rich fluid, and higher dissolved H2O, has lower CO2 fugacity, but surprisingly has higher dissolved CO2 content. Overall, the results show two distinct trends. Experiments conducted at low-H2O (0.5 to 0.8 wt.%) show lower dissolved CO2 than those conducted at moderate-H2O (2 to 3 wt.%) at similar CO2 fugacity. These data show that

  18. Hydrothermal Syntheses and Structures of Three-Dimensional Oxo-fluorovanadium Phosphates: [H 2N(C 2H 4) 2NH 2] 0.5[(VO) 4V(HPO 4) 2(PO 4) 2F 2(H 2O) 4] · 2H 2O and K 2[(VO) 3(PO 4) 2F 2(H 2O)] · H 2O

    NASA Astrophysics Data System (ADS)

    Bonavia, Grant; Haushalter, R. C.; Zubieta, Jon

    1996-11-01

    The hydrothermal reactions of FPO3H2with vanadium oxides result in the incorporation of fluoride into V-P-O frameworks as a consequence of metal-mediated hydrolysis of the fluorophosphoric acid to produce F-and PO3-4. By exploiting this convenient source of F-, two 3-dimensional oxo-fluorovanadium phosphate phases were isolated, [H2N(C2H4)2NH2]0.5[(VO)4V(HOP4)2(PO4)2F2(H2O)4) · 2H2O (1 · 2H2O) and K2[(VO)3(PO4)2F2(H2O)] · H2O (2 · H2O). Both anionic frameworks contain (VIVO)-F--phosphate layers, with confacial bioctahedral {(VIVO)2FO6} units as the fundamental motif. In the case of 1, the layers are linked through {VIIIO6} octahedra, while for 2 the interlayer connectivity is provided by edge-sharing {(VIVO)2F2O6} units. Crystal data are 1 · 2H2O, CH10FN0.5O13P2V2.5, monoclinicC2/m,a= 18.425(4) Å,c= 8.954(2) Å, β = 93.69(2)0,V= 1221.1(4) Å3,Z= 4,Dcalc= 2.423 g cm-3; 2 · H2O, H4F2K2O13P2V3, triclinicPoverline1,a= 7.298(1) Å,b= 8.929(2) Å,c = 10.090(2) Å, α = 104.50(2)0, β = 100.39(2)0, δ = 92.13(2)0,V= 623.8(3) Å3,Z= 2,Dcalc= 2.891 g cm-3.

  19. Influence of hydroxyapatite nanoparticles on the viscosity of dimethyl sulfoxide-H2O-NaCl and glycerol-H2O-NaCl ternary systems at subzero temperatures.

    PubMed

    Yi, Jingru; Tang, Heyu; Zhao, Gang

    2014-10-01

    The viscosity, at subzero temperatures, of ternary solutions commonly used in cryopreservation is tremendously important for understanding ice formation and molecular diffusion in biopreservation. However, this information is scarce in the literature. In addition, to the best of our knowledge, the effect of nanoparticles on the viscosity of these solutions has not previously been reported. The objectives of this study were thus: (i) to systematically measure the subzero viscosity of two such systems, dimethyl sulfoxide (Me2SO)-H2O-NaCl and glycerol-H2O-NaCl; (ii) to explore the effect of hydroxyapatite (HA) nanoparticles on the viscosity; and (iii) to provide models that precisely predict viscosity at multiple concentrations of cryoprotective agent (CPA) in saline solutions at subzero temperatures. Our experiments were performed in two parts. We first measured the viscosity at multiple CPA concentrations [0.3-0.75 (w/w)] in saline solution with and without nanoparticles at subzero temperatures (0 to -30°C). The data exhibited a good fit to the Williams-Landel-Ferry (WLF) equation. We then measured the viscosity of residual unfrozen ternary solutions with and without nanoparticles during equilibrium freezing. HA nanoparticles made the solution more viscous, suggesting applications for these nanoparticles in preventing cell dehydration, ice nucleation, and ice growth during freezing and thawing in cryopreservation. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Vindication of Yb2Ti2O7 as a model exchange quantum spin ice.

    PubMed

    Applegate, R; Hayre, N R; Singh, R R P; Lin, T; Day, A G R; Gingras, M J P

    2012-08-31

    We use numerical linked-cluster expansions to compute the specific heat C(T) and entropy S(T) of a quantum spin ice Hamiltonian for Yb2Ti2O7 using anisotropic exchange interactions, recently determined from inelastic neutron scattering measurements, and find good agreement with experimental calorimetric data. This vindicates Yb2Ti2O7 as a model quantum spin ice. We find that in the perturbative weak quantum regime, such a system has a ferrimagnetic ordered ground state, with two peaks in C(T): a Schottky anomaly signaling the paramagnetic to spin ice crossover, followed at a lower temperature by a sharp peak accompanying a first-order phase transition to the ordered state. We suggest that the two C(T) features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime consist of weakly confined spinon-antispinon pairs. We anticipate that the conventional ground state with exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.

  1. Submesoscale Sea Ice-Ocean Interactions in Marginal Ice Zones

    NASA Astrophysics Data System (ADS)

    Manucharyan, Georgy E.; Thompson, Andrew F.

    2017-12-01

    Signatures of ocean eddies, fronts, and filaments are commonly observed within marginal ice zones (MIZs) from satellite images of sea ice concentration, and in situ observations via ice-tethered profilers or underice gliders. However, localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with spatial scales O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order 10 m d-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can contribute to the seasonal evolution of MIZs. With the continuing global warming and sea ice thickness reduction in the Arctic Ocean, submesoscale sea ice-ocean processes are expected to become increasingly prominent.

  2. Isotope signatures of N2O emitted from vegetable soil: Ammonia oxidation drives N2O production in NH4(+)-fertilized soil of North China.

    PubMed

    Zhang, Wei; Li, Yuzhong; Xu, Chunying; Li, Qiaozhen; Lin, Wei

    2016-07-08

    Nitrous oxide (N2O) is a potent greenhouse gas. In North China, vegetable fields are amended with high levels of N fertilizer and irrigation water, which causes massive N2O flux. The aim of this study was to determine the contribution of microbial processes to N2O production and characterize isotopic signature effects on N2O source partitioning. We conducted a microcosm study that combined naturally abundant isotopologues and gas inhibitor techniques to analyze N2O flux and its isotopomer signatures [δ(15)N(bulk), δ(18)O, and SP (intramolecular (15)N site preference)] that emitted from vegetable soil after the addition of NH4(+) fertilizers. The results show that ammonia oxidation is the predominant process under high water content (70% water-filled pore space), and nitrifier denitrification contribution increases with increasing N content. δ(15)N(bulk) and δ(18)O of N2O may not provide information about microbial processes due to great shifts in precursor signatures and atom exchange, especially for soil treated with NH4(+) fertilizer. SP and associated two end-member mixing model are useful to distinguish N2O source and contribution. Further work is needed to explore isotopomer signature stability to improve N2O microbial process identification.

  3. Isotope signatures of N2O emitted from vegetable soil: Ammonia oxidation drives N2O production in NH4+-fertilized soil of North China

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Li, Yuzhong; Xu, Chunying; Li, Qiaozhen; Lin, Wei

    2016-07-01

    Nitrous oxide (N2O) is a potent greenhouse gas. In North China, vegetable fields are amended with high levels of N fertilizer and irrigation water, which causes massive N2O flux. The aim of this study was to determine the contribution of microbial processes to N2O production and characterize isotopic signature effects on N2O source partitioning. We conducted a microcosm study that combined naturally abundant isotopologues and gas inhibitor techniques to analyze N2O flux and its isotopomer signatures [δ15Nbulk, δ18O, and SP (intramolecular 15N site preference)] that emitted from vegetable soil after the addition of NH4+ fertilizers. The results show that ammonia oxidation is the predominant process under high water content (70% water-filled pore space), and nitrifier denitrification contribution increases with increasing N content. δ15Nbulk and δ18O of N2O may not provide information about microbial processes due to great shifts in precursor signatures and atom exchange, especially for soil treated with NH4+ fertilizer. SP and associated two end-member mixing model are useful to distinguish N2O source and contribution. Further work is needed to explore isotopomer signature stability to improve N2O microbial process identification.

  4. Expansion of antimonato polyoxovanadates with transition metal complexes: (Co(N3C5H15)2)2[{Co(N3C5H15)2}V15Sb6O42(H2O)]·5H2O and (Ni(N3C5H15)2)2[{Ni(N3C5H15)2}V15Sb6O42(H2O)]·8H2O.

    PubMed

    Antonova, Elena; Näther, Christian; Kögerler, Paul; Bensch, Wolfgang

    2012-02-20

    Two new polyoxovanadates (Co(N(3)C(5)H(15))(2))(2)[{Co(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·5H(2)O (1) and (Ni(N(3)C(5)H(15))(2))(2)[{Ni(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·8H(2)O (2) (N(3)C(5)H(15) = N-(2-aminoethyl)-1,3-propanediamine) were synthesized under solvothermal conditions and structurally characterized. In both structures the [V(15)Sb(6)O(42)(H(2)O)](6-) shell displays the main structural motif, which is strongly related to the {V(18)O(42)} archetype cluster. Both compounds crystallize in the triclinic space group P1 with a = 14.3438(4), b = 16.6471(6), c = 18.9186(6) Å, α = 87.291(3)°, β = 83.340(3)°, γ = 78.890(3)°, and V = 4401.4(2) Å(3) (1) and a = 14.5697(13), b = 15.8523(16), c = 20.2411(18) Å, α = 86.702(11)°, β = 84.957(11)°, γ = 76.941(11)°, and V = 4533.0(7) Å(3) (2). In the structure of 1 the [V(15)Sb(6)O(42)(H(2)O)](6-) cluster anion is bound to a [Co(N(3)C(5)H(15))(2)](2+) complex via a terminal oxygen atom. In the Co(2+)-centered complex, one of the amine ligands coordinates in tridentate mode and the second one in bidentate mode to form a strongly distorted CoN(5)O octahedron. Similarly, in compound 2 an analogous NiN(5)O complex is joined to the [V(15)Sb(6)O(42)(H(2)O)](6-) anion via the same attachment mode. A remarkable difference between the two compounds is the orientation of the noncoordinated propylamine group leading to intermolecular Sb···O contacts in 1 and to Sb···N interactions in 2. In the solid-state lattices of 1 and 2, two additional [M(N(3)C(5)H(15))(2)](2+) complexes act as countercations and are located between the [{M(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)](4-) anions. Between the anions and cations strong N-H···O hydrogen bonds are observed. In both compounds the clusters are stacked along the b axis in an ABAB fashion with cations and water molecules occupying the space between the clusters. Magnetic characterization demonstrates that the Ni(2+) and Co(2+) cations do not

  5. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  6. Structural incorporation of MgCl2 into ice VII at room temperature

    NASA Astrophysics Data System (ADS)

    Watanabe, Mao; Komatsu, Kazuki; Noritake, Fumiya; Kagi, Hiroyuki

    2017-05-01

    Raman spectra and X-ray diffraction patterns were obtained from 1:100 and 1:200 \\text{MgCl}2:\\text{H}2\\text{O} solutions (in molar ratio) at pressures up to 6 GPa using diamond anvil cells (DACs) and compared with those of pure water. The O-H stretching band from ice VII crystallized from the 1:200 solution was approximately 10 cm-1 higher than that of pure ice VII. The phase boundaries between ice VII and VIII crystallized from the MgCl2 solutions at 4 GPa were 2 K lower than those of pure ice VII and VIII. These observations indicate that ice VII incorporates MgCl2 into its structure. The unit cell volumes of ice VII crystallized from pure water and the two solutions coincided with each other within the experimental error, and salt incorporation was not detectable from the cell volume. Possible configurations of ion substitution and excess volume of ice VIII were simulated on the basis of density functional theory (DFT) calculations.

  7. The ice VII-ice X phase transition with implications for planetary interiors

    NASA Astrophysics Data System (ADS)

    Aarestad, B.; Frank, M. R.; Scott, H.; Bricker, M.; Prakapenka, V.

    2008-12-01

    A significant amount of research on the high pressure polymorphs of H2O have detailed the lattice structure and density of these phases, namely ice VI, ice VII, and ice X. These high pressure ices are noteworthy as they may comprise a considerable part of the interior of large icy planets and satellites. However, there is a dearth of data on how the incorporation of an impurity, charged or non-charged, affects the ice VII-ice X transition. This study examined the ice VII-ice X transition that occurs at approximately 62 GPa with a pure system and two select impure systems. Solutions of pure H2O, 1.6 mole percent NaCl in H2O, and 1.60 mole percent CH3OH in H2O were compressed in a diamond anvil cell (DAC). The experiments were performed at the GSECARS 13-BM-D beam line at the Advanced Photon Source at Argonne National Laboratory. Powder diffraction data of the ice samples were collected using monochromatic X-ray radiation, 0.2755 Å, and a MAR 345 online imaging system at intervals of approximately 2 GPa up to ~71.5, ~74.5, and ~68 GPa, respectively. Analyses of the data provided volume-pressure relations (at 298 K) which were used to detail the ice VII-ice X phase transition. The pressure of the phase transition, based upon an interpretation of the X-ray diffraction data, was found to vary as a function of the impurity type. Thus, the depth of the ice VII-ice X phase transition within an ice-rich planetary body can be influenced by trace-level impurities.

  8. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    PubMed Central

    Yang, Jingbin; Li, Dongxu; Fang, Yuan

    2017-01-01

    C-A-S-H (CaO-Al2O3-SiO2-H2O) and N-A-S-H (Na2O-Al2O3-SiO2-H2O) have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O)/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH)2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH)2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali-activated materials. PMID

  9. Evidence of amino acid precursors: C-N bond coupling in simulated interstellar CO2/NH3 ices

    NASA Astrophysics Data System (ADS)

    Esmaili, Sasan

    2015-08-01

    Low energy secondary electrons are abundantly produced in astrophysical or planetary ices by the numerous ionizing radiation fields typically encountered in space environments and may thus play a role in the radiation processing of such ices [1]. One approach to determine their chemical effect is to irradiate nanometer thick molecular solids of simple molecular constituents, with energy selected electron beams and to monitor changes in film chemistry with the surface analytical techniques [2].Of particular interest is the formation of HCN, which is a signature of dense gases in interstellar clouds, and is ubiquitous in the ISM. Moreover, the chemistry of HCN radiolysis products such as CN- may be essential to understand of the formation of amino acids [3] and purine DNA bases. Here we present new results on the irradiation of multilayer films of CO2 and NH3 with 70 eV electrons, leading to CN bond formations. The electron stimulated desorption (ESD) yields of cations and anions are recorded as a function of electron fluence. The prompt desorption of cationic reaction/scattering products [4], is observed at low fluence (~4x1013 electrons/cm2). Detected ions include C2+, C2O2+, C2O+, CO3+, C2O3+ or CO4+ from pure CO2, and N+, NH+, NH2+, NH3+, NH4+, N2+, N2H+ from pure NH3, and NO+, NOH+ from CO2/NH3 mixtures. Most saliently, increasing signals of negative ion products desorbing during prolonged irradiation of CO2/NH3 films included C2-, C2H-, C2H2-, as well as CN-, HCN- and H2CN-. The identification of particular product ions was accomplished by using 13CO2 and 15NH3 isotopes. The chemistry induced by electrons in pure films of CO2 and NH3 and mixtures with composition ratios (3:1), (1:1), and (1:3), was also studied by X-ray photoelectron spectroscopy (XPS). Irradiation of CO2/NH3 mixed films at 22 K produces species containing the following bonds/functional groups identified by XPS: C=O, O-H, C-C, C-O, C=N and N=O. (This work has been funded by NSERC).

  10. Experimental evidence for superionic water ice using shock compression

    NASA Astrophysics Data System (ADS)

    Millot, Marius; Hamel, Sebastien; Rygg, J. Ryan; Celliers, Peter M.; Collins, Gilbert W.; Coppari, Federica; Fratanduono, Dayne E.; Jeanloz, Raymond; Swift, Damian C.; Eggert, Jon H.

    2018-03-01

    In stark contrast to common ice, Ih, water ice at planetary interior conditions has been predicted to become superionic with fast-diffusing (that is, liquid-like) hydrogen ions moving within a solid lattice of oxygen. Likely to constitute a large fraction of icy giant planets, this extraordinary phase has not been observed in the laboratory. Here, we report laser-driven shock-compression experiments on water ice VII. Using time-resolved optical pyrometry and laser velocimetry measurements as well as supporting density functional theory-molecular dynamics (DFT-MD) simulations, we document the shock equation of state of H2O to unprecedented extreme conditions and unravel thermodynamic signatures showing that ice melts near 5,000 K at 190 GPa. Optical reflectivity and absorption measurements also demonstrate the low electronic conductivity of ice, which, combined with previous measurements of the total electrical conductivity under reverberating shock compression, provides experimental evidence for superionic conduction in water ice at planetary interior conditions, verifying a 30-year-old prediction.

  11. Cross section data sets for electron collisions with H2, O2, CO, CO2, N2O and H2O

    NASA Astrophysics Data System (ADS)

    Anzai, K.; Kato, H.; Hoshino, M.; Tanaka, H.; Itikawa, Y.; Campbell, L.; Brunger, M. J.; Buckman, S. J.; Cho, H.; Blanco, F.; Garcia, G.; Limão-Vieira, P.; Ingólfsson, O.

    2012-02-01

    We review earlier cross section data sets for electron-collisions with H2, O2, CO, CO2, H2O and N2O, updated here by experimental results for their electronic states. Based on our recent measurements of differential cross sections for the electronic states of those molecules, integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis and then assessed against theory (BE f-scaling [Y.-K. Kim, J. Chem. Phys. 126, 064305 (2007)]). As they now represent benchmark electronic state cross sections, those ICSs for the above molecules are added into the original cross section sets taken from the data reviews for H2, O2, CO2 and H2O (the Itikawa group), and for CO and N2O (the Zecca group).

  12. Influence of the Organic Species and Oxoanion in the Synthesis of two Uranyl Sulfate Hydrates, (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 ­(H 2 O)]·7H 2 O and (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 (H 2 O)]·4H 2 O, and a Uranyl Selenate-Selenite [C 5 H 6 N][(UO 2 )(SeO 4 )(HSeO 3 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Wylie, Ernest M.; Burns, Peter C.

    2012-08-08

    Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)]·7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)]·4H2O (NDUS1), and one uranyl selenate-selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L-cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4)more » Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two-dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two-dimensional uranyl selenate-selenite sheets with a U/Se ratio of 1/2. In-situ reaction of the L-cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L-cystine, balancing the charge of the sheets.« less

  13. Radar Differential Phase Signatures of Ice Orientation for the Prediction of Lightning Initiation and Cessation

    NASA Technical Reports Server (NTRS)

    Carey, L.D.; Petersen, W.A.; Deierling, W.

    2009-01-01

    The majority of lightning-related casualties typically occur during thunderstorm initiation (e.g., first flash) or dissipation (e.g., last flash). The physics of electrification and lightning production during thunderstorm initiation is fairly well understood. As such, the literature includes a number of studies presenting various radar techniques (using reflectivity and, if available, other dual-polarimetric parameters) for the anticipation of initial electrification and first lightning flash. These radar techniques have shown considerable skill at forecasting first flash. On the other hand, electrical processes and lightning production during thunderstorm dissipation are not nearly as well understood and few, if any, successful techniques have been developed to anticipate the last flash and subsequent cessation of lightning. One promising approach involves the use of dual-polarimetric radar variables to infer the presence of oriented ice crystals in lightning producing storms. In the absence of strong vertical electric fields, ice crystals fall with their largest (semi-major) axis in the horizontal associated with gravitational and aerodynamic forces. In thunderstorms, strong vertical electric fields (100-200 kV m(sup -1)) have been shown to orient small (less than 2 mm) ice crystals such that their semi-major axis is vertical (or nearly vertical). After a lightning flash, the electric field is typically relaxed and prior radar research suggests that ice crystals rapidly resume their preferred horizontal orientation. In active thunderstorms, the vertical electric field quickly recovers and the ice crystals repeat this cycle of orientation for each nearby flash. This change in ice crystal orientation from primarily horizontal to vertical during the development of strong vertical electric fields prior to a lightning flash forms the physical basis for anticipating lightning initiation and, potentially, cessation. Research has shown that radar reflectivity (Z) and

  14. Calculation of the vapor-saturated liquidus for the NaCl-CO2-H2O system

    USGS Publications Warehouse

    Barton, P.B.; I-Ming, C.

    1993-01-01

    The polybaric liquidus surface for the H2O-rich corner of the NaCl-CO2-H2O ternary is calculated, relying heavily on 1. (1) a Henry's law equation for CO2 in brines (modified from Drummond, 1981), 2. (2) the assumption that the contributions of dissolved NaCl and CO2 in lowering the activity of H2O are additive, and 3. (3) data on the CO2 clathrate solid solution (nominally CO2 ?? 7.3H2O, but ranging from 5.75 to 8 or 9 H2O) from Bozzo et al. (1975). The variation with composition of the activity of CO2??7.3H2O, or any other composition within the clathrate field, is small, thereby simplifying the calculations appreciably. Ternary invariant points are 1. (1) ternary eutectic at -21.5??C, with ice + clathrate + hydrohalite NaCl-??H2O + brine mNaCl = 5.15, mco2 = 0.22 + vapor Ptotal ??? Pco2 = 5.7 atm; 2. (2) peritectic at -9.6??C, with clathrate + hydrohalite + liquid CO2 + brine mNaCl = 5.18, mco2 = 0.55 + vapor (Ptotal ??? Pco2 = 26.47 atm); and 3. (3) peritectic slightly below +0.1 ??C, with halite + hydrohalite + liquid CO2 + brine (mNaCl ??? 5.5, mco2 ??? 0.64) + vapor (Ptotal ??? Pco2 ??? 34 atm). CO2 isobars have been contoured on the ternary liquidus and also on the 25??C isotherm. An important caveat regarding the application of this information to the interpretation of the freezing-thawing behavior of fluid inclusions is that metastable behavior is a common characteristic of the clathrate. ?? 1993.

  15. Submesoscale sea ice-ocean interactions in marginal ice zones

    NASA Astrophysics Data System (ADS)

    Thompson, A. F.; Manucharyan, G.

    2017-12-01

    Signatures of ocean eddies, fronts and filaments are commonly observed within the marginal ice zones (MIZ) from satellite images of sea ice concentration, in situ observations via ice-tethered profilers or under-ice gliders. Localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence via a suite of numerical simulations. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with sizes O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order of 10 m day-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can potentially contribute to the seasonal evolution of MIZs. With continuing global warming and sea ice thickness reduction in the Arctic Ocean, as well as the large expanse of thin sea ice in the Southern Ocean, submesoscale sea ice-ocean processes are expected to play a significant role in the climate system.

  16. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3).

    PubMed

    Srithep, Sirinthip; Phattarapattamawong, Songkeart

    2017-06-01

    The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H 2 O 2 , UV/O 3 , and UV/H 2 O 2 /O 3 ) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H 2 O 2 /O 3 was the most effective process for removing HAN precursors, followed by UV/H 2 O 2 , and UV/O 3 , respectively. For 20min contact time, the UV/H 2 O 2 /O 3 , UV/H 2 O 2 , and UV/O 3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL -1 in UV/O 3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H 2 O 2 , and UV/H 2 O 2 /O 3 ), except for the UV/O 3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k' DCANFP ) by the UV/H 2 O 2 /O 3 , UV/H 2 O 2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O 3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k' DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Vibrational energy transfer and relaxation in O2 and H2O.

    PubMed

    Huestis, David L

    2006-06-01

    Near-resonant vibrational energy exchange between oxygen and water molecules is an important process in the Earth's atmosphere, combustion chemistry, and the chemical oxygen iodine laser (COIL). The reactions in question are (1) O2(1) + O2(0) --> O2(0) + O2(0); (2) O2(1) + H2O(000) --> O2(0) + H2O(000); (3) O2(1) + H2O(000) <--> O2(0) + H2O(010); (4) H2O(010) + H2O(000) --> H2O(000) + H2O(000); and (5) H2O(010) + O2(0) --> H2O(000) + O2(0). Reanalysis of the data available in the chemical kinetics literature provides reliable values for rate coefficients for reactions 1 and 4 and strong evidence that reactions 2 and 5 are slow in comparison with reaction 3. Analytical solution of the chemical rate equations shows that previous attempts to measure the rate of reaction 3 are unreliable unless the water mole fraction is higher than 1%. Reanalysis of data from the only experiment satisfying this constraint provides a rate coefficient of (5.5 +/- 0.4) x 10(-13) cm3/s at room temperature, between the values favored by the atmospheric and laser modeling communities.

  18. Distillation of H2O from hard-frozen Martian permafrost

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Gwynne, O.

    1991-01-01

    The authors present a method for distillation of hard-frozen Martian permafrost. A cable-tool is drilled into hard frozem permafrost to a depth of 10 to 20 m. They calculate that a 10 m hole could be drilled in a few days. A 10 m shaft with a diameter equal to the bore is inserted into the hole, and a air tight tent-like structure is erected over the borehole. Photovoltaic cells mounted on the tent supply electrical energy that is dissipated in the shaft. Drilling power can be supplied by other sources. With 1000 watts, the shaft can be heated to near 350 K, producing relatively high temperatures in the vicinity of the borehole. Surrounding H2O is vaporized and diffuses up through the regolith. The authors calculate that a tent of a radius of no more than a few meters would intercept most of the H2O as it diffused to the surface. Calculations suggest that it would require perhaps 30 days to extract H2O from most of the volume drained by this technique. Assuming that the hard frozen regolith is no more than 10 percent ice, the author's calculate that that about 2890 kg of H2O could be extracted in 30 days. Since the nominal requirement for each crew member is about 5 kg/day, one such borehole might be expected to supply enough H2O to maintain a crew of 5 for perhaps 100 days. Additional engineering studies will be done to attempt to improve the capacity or efficiency of this method.

  19. Crystal structures of Sr(ClO4)2·3H2O, Sr(ClO4)2·4H2O and Sr(ClO4)2·9H2O

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang

    2014-01-01

    The title compounds, strontium perchlorate trihydrate {di-μ-aqua-aquadi-μ-perchlorato-strontium, [Sr(ClO4)2(H2O)3]n}, strontium perchlorate tetra­hydrate {di-μ-aqua-bis­(tri­aqua­diperchloratostrontium), [Sr2(ClO4)4(H2O)8]} and strontium perchlorate nona­hydrate {hepta­aqua­diperchloratostrontium dihydrate, [Sr(ClO4)2(H2O)7]·2H2O}, were crystallized at low temperatures according to the solid–liquid phase diagram. The structures of the tri- and tetra­hydrate consist of Sr2+ cations coordinated by five water mol­ecules and four O atoms of four perchlorate tetra­hedra in a distorted tricapped trigonal–prismatic coordination mode. The asymmetric unit of the trihydrate contains two formula units. Two [SrO9] polyhedra in the trihydrate are connected by sharing water mol­ecules and thus forming chains parallel to [100]. In the tetra­hydrate, dimers of two [SrO9] polyhedra connected by two sharing water mol­ecules are formed. The structure of the nona­hydrate contains one Sr2+ cation coordinated by seven water mol­ecules and by two O atoms of two perchlorate tetra­hedra (point group symmetry ..m), forming a tricapped trigonal prism (point group symmetry m2m). The structure contains additional non-coordinating water mol­ecules, which are located on twofold rotation axes. O—H⋯O hydrogen bonds between the water mol­ecules as donor and ClO4 tetra­hedra and water mol­ecules as acceptor groups lead to the formation of a three-dimensional network in each of the three structures. PMID:25552979

  20. Long-Term Observations of Atmospheric CO2, O3 and BrO over the Transitioning Arctic Ocean Pack-ice: The O-Buoy Chemical Network

    NASA Astrophysics Data System (ADS)

    Matrai, P.

    2016-02-01

    Autonomous, sea ice-tethered O-Buoys have been deployed (2009-2016) across the Arctic sea ice for long-term atmospheric measurements (http://www.o-buoy.org). O-Buoys (15) provide in-situ concentrations of three sentinel atmospheric chemicals, ozone, CO2 and BrO, as well as meteorological parameters and imagery, over the frozen ocean. O-Buoys were designed to transmit daily data over a period of 2 years while deployed in sea ice, as part of automated ice-drifting stations that include snow/ice measurement systems (e.g. Ice Mass Balance buoys) and oceanographic measurements (e.g. Ice Tethered Profilers). Seasonal changes in Arctic atmospheric chemistry are influenced by changes in the characteristics and presence of the sea ice vs. open water as well as air mass trajectories, especially during the winter-spring and summer-fall transitions when sea ice is melting and freezing, respectively. The O-Buoy Chemical Network provides the unique opportunity to observe these transition periods in real-time with high temporal resolution, and to compare them with those collected on land-based monitoring stations located. Due to the logistical challenges of measurements over the Arctic Ocean region, most long term, in-situ observations of atmospheric chemistry have been made at coastal or island sites around the periphery of the Arctic Ocean, leaving large spatial and temporal gaps that O-Buoys overcome. Advances in floatation, communications, power management, and sensor hardware have been made to overcome the challenges of diminished Arctic sea ice. O-Buoy data provide insights into enhanced seasonal, interannual and spatial variability in atmospheric composition, atmospheric boundary layer control on the amount of halogen activation, enhancement of the atmospheric CO2 signal over the more variable and porous pack ice, and to develop an integrated picture of the coupled ocean/ice/atmosphere system. As part of the Arctic Observing Network, we provide data to the community (www.aoncadis.org).

  1. Laboratory measurements of HDO/H2O isotopic fractionation during ice deposition in simulated cirrus clouds

    PubMed Central

    Lamb, Kara D.; Clouser, Benjamin W.; Bolot, Maximilien; Sarkozy, Laszlo; Ebert, Volker; Saathoff, Harald; Möhler, Ottmar; Moyer, Elisabeth J.

    2017-01-01

    The stable isotopologues of water have been used in atmospheric and climate studies for over 50 years, because their strong temperature-dependent preferential condensation makes them useful diagnostics of the hydrological cycle. However, the degree of preferential condensation between vapor and ice has never been directly measured at temperatures below 233 K (−40 °C), conditions necessary to form cirrus clouds in the Earth’s atmosphere, routinely observed in polar regions, and typical for the near-surface atmospheric layers of Mars. Models generally assume an extrapolation from the warmer experiments of Merlivat and Nief [Merlivat L, Nief G (1967) Tellus 19:122–127]. Nonequilibrium kinetic effects that should alter preferential partitioning have also not been well characterized experimentally. We present here direct measurements of HDO/H2O equilibrium fractionation between vapor and ice (αeq) at cirrus-relevant temperatures, using in situ spectroscopic measurements of the evolving isotopic composition of water vapor during cirrus formation experiments in a cloud chamber. We rule out the recent proposed upward modification of αeq, and find values slightly lower than Merlivat and Nief. These experiments also allow us to make a quantitative validation of the kinetic modification expected to occur in supersaturated conditions in the ice–vapor system. In a subset of diffusion-limited experiments, we show that kinetic isotope effects are indeed consistent with published models, including allowing for small surface effects. These results are fundamental for inferring processes on Earth and other planets from water isotopic measurements. They also demonstrate the utility of dynamic in situ experiments for studying fractionation in geochemical systems. PMID:28495968

  2. Studies of CW lasing action in CO2-CO, N2O-CO, CO2-H2O, and N2O-H2O mixtures pumped by blackbody radiation

    NASA Technical Reports Server (NTRS)

    Abel, Robert W.; Christiansen, Walter H.; Li, Jian-Guo

    1988-01-01

    A proof of principle experiment to evaluate the efficacy of CO and H2O in increasing the power output for N2O and CO2 lasing mixtures has been conducted and theoretically analyzed for a blackbody radiation-pumped laser. The results for N2O-CO, CO2-CO, N2O-H2O and CO2-H2O mixtures are presented. Additions of CO to the N2O lasant increased power up to 28 percent for N2O laser mixtures, whereas additions of CO to the CO2 lasant, and the addition of H2O to both the CO2 and N2O lasants, resulted in decreased output power.

  3. P - ρ - T data for H2O up to 260 GPa under laser-driven shock loading

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Ozaki, N.; Sano, T.; Okuchi, T.; Shimizu, K.; Miyanishi, K.; Terai, T.; Kakeshita, T.; Sakawa, Y.; Kodama, R.

    2014-12-01

    H2O is believed to be one of the most abundant compounds in ice giants including Neptune and Uranus1. Therefore, equation of state (EOS) for H2O is critical for understanding the formation and evolution of these planets. Various EOS models have been suggested for modeling the interior structure of the ice giants2-4. The recent shock experiments reported that their P - ρ data of H2O are in agreement with those of the QMD based EOS model5, indicating that this model is most suitable for modeling H2O in the ice giants. Whether H2O is in the solid or liquid state in the planetary interior has a great importance to understand their internal structures6. While the QMD model predicted that the solid H2O is present in deep interior of their planets above ~100 GPa4, the recent measurements revealed that H2O remains in the liquid state even at the deep interior conditions7. This discrepancy between experimental and theoretical studies suggests that the QMD based EOS model is disputable for modeling the planetary interior. Indeed, the comparison between data obtained from the shock experiments and the QMD based EOS did not cover the temperature5. We have obtained P - ρ - T data for H2O up to 260 GPa by using laser-driven shock compression technique. The diamond cell applied for the laser shock experiments was used as the sample container in order to achieve temperature conditions lower than the principal Hugoniot states. This shock technique combined with the cell can be used for an assessment the EOS models because it is possible to compare the states under the conditions that the contrast between the models clearly appears. Our data covering P - ρ - T on both the principal and the off Hugoniot curves agree with those of the QMD model, indicating this model to be adopted as the standard for modeling the interior structures of Neptune, Uranus, and exoplanets. References 1W. B. Hubbard et al., The interior of Neptune: Neptune and Triton(Univ. Arizona Press, Tucson, 1995) p

  4. Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang

    2014-01-01

    The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2 solutions is governed by coordination competition of Cl− and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+ both in a tetra­hedral coordination with Cl− and in an octa­hedral environment defined by five water mol­ecules and one Cl− shared with the [ZnCl4]2− unit. Thus, these two different types of Zn2+ cations form isolated units with composition [Zn2Cl4(H2O)5] (penta­aqua-μ-chlorido-tri­chlorido­di­zinc). The trihydrate {hexa­aqua­zinc tetra­chlorido­zinc, [Zn(H2O)6][ZnCl4]}, consists of three different Zn2+ cations, one of which is tetra­hedrally coordinated by four Cl− anions. The two other Zn2+ cations are each located on an inversion centre and are octa­hedrally surrounded by water mol­ecules. The [ZnCl4] tetra­hedra and [Zn(H2O)6] octa­hedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexa­aqua­zinc tetra­chlorido­zinc trihydrate, [Zn(H2O)6][ZnCl4]·3H2O}, consists of isolated octa­hedral [Zn(H2O)6] and tetra­hedral [ZnCl4] units, as well as additional lattice water mol­ecules. O—H⋯O hydrogen bonds between the water mol­ecules as donor and ZnCl4 tetra­hedra and water mol­ecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures. PMID:25552980

  5. Inactivation of Nonpathogenic Escherichia coli, Escherichia coli O157:H7, Salmonella enterica Typhimurium, and Listeria monocytogenes in Ice Using a UVC Light-Emitting Diode.

    PubMed

    Murashita, Suguru; Kawamura, Shuso; Koseki, Shigenobu

    2017-07-01

    Ice, widely used in the food industry, is a potential cause of food poisoning resulting from microbial contamination. Direct microbial inactivation of ice is necessary because microorganisms may have been present in the source water used to make it and/or may have been introduced due to poor hygiene during production or handling of the ice. Nonthermal and nondestructive microbial inactivation technologies are needed to control microorganisms in ice. We evaluated the applicability of a UVC light-emitting diode (UVC-LED) for microbial inactivation in ice. The effects of UV intensity and UV dose of the UVC-LED on Escherichia coli ATCC 25922 and a comparison of UVC-LED with a conventional UV lamp for effective bacterial inactivation in distilled water and ice cubes were investigated to evaluate the performance of the UVC-LED. Finally, we assessed the effects of the UVC-LED on pathogens such as E. coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in ice cubes. The results indicated that UVC-LED effectiveness depended on the UV dose at all UV intensity conditions (0.084, 0.025, 0.013, 0.007, and 0.005 mW/cm 2 ) in ice and that UVC-LED could more efficiently inactivate E. coli ATCC 25922 in distilled water and ice than the UV lamp. At a UV dose of 2.64 mJ/cm 2 , E. coli in distilled water was decreased by 0.90 log CFU/mL (UV lamp) and by more than 7.0 log CFU/mL (UVC-LED). At 15.2 mJ/cm 2 , E. coli in ice was decreased by 3.18 log CFU/mL (UV lamp) and by 4.45 CFU/mL (UVC-LED). Furthermore, UVC-LED irradiation reduced the viable number of pathogens by 6 to 7 log cycles at 160 mJ/cm 2 , although the bactericidal effect was somewhat dependent on the type of bacteria. L. monocytogenes in ice was relatively more sensitive to UVC irradiation than were E. coli O157:H7 and Salmonella Typhimurium. These results demonstrate that UVC-LED irradiation could contribute to the safety of ice in the food industry.

  6. Pathways to Oxygen-Bearing Molecules in the Interstellar Medium and in Planetary Atmospheres: Cyclopropenone (c-C3H2O) and Propynal (HCCCHO)

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Kaiser, Ralf I.; Gao, Li Gyun; Chang, Agnes H. H.; Liang, Mao-Chang; Yung, Yuk L.

    2008-10-01

    We investigated the formation of two C3H2O isomers, i.e., cyclopropenone (c-C3H2O) and propynal (HCCCHO), in binary ice mixtures of carbon monoxide (CO) and acetylene (C2H2) at 10 K in an ultrahigh vacuum machine on high-energy electron irradiation. The chemical evolution of the ice samples was followed online and in situ via a Fourier transform infrared spectrometer and a quadrupole mass spectrometer. The temporal profiles of the cyclopropenone and propynal isomers suggest (pseudo-) first-order kinetics. The cyclic structure (c-C3H2O) is formed via an addition of triplet carbon monoxide to ground-state acetylene (or vice versa); propynal (HCCCHO) can be synthesized from a carbon monoxide-acetylene complex via a [HCO...CCH] radical pair inside the matrix cage. These laboratory studies showed for the first time that both C3H2O isomers can be formed in low-temperature ices via nonequilibrium chemistry initiated by energetic electrons as formed in the track of Galactic cosmic ray particles penetrating interstellar icy grains in cold molecular clouds. Our results can explain the hitherto unresolved gas phase abundances of cyclopropenone in star-forming regions via sublimation of c-C3H2O as formed on icy grains in the cold molecular cloud stage. Implications for the heterogeneous oxygen chemistry of Titan and icy terrestrial planets and satellites suggest that the production of oxygen-bearing molecules such as C3H2O may dominate on aerosol particles compared to pure gas phase chemistry.

  7. Crystal and molecular structure of Sr{sub 2}(Edta) . 5H{sub 2}O, Sr{sub 2}(H{sub 2}Edta)(HCO{sub 3}){sub 2} . 4H{sub 2}O, and Sr{sub 2}(H{sub 2}Edta)Cl{sub 2} . 5H{sub 2}O strontium ethylenediaminetetraacetates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakova, I. N., E-mail: polyakova@igic.ras.ru; Poznyak, A. L.; Sergienko, V. S.

    2009-03-15

    Three Sr{sup 2+} compounds with the Edta{sup 4-} and H{sub 2}Edta{sup 2-} ligands-Sr{sub 2}(Edta) . 5H{sub 2}O (I), Sr{sub 2}(H{sub 2}Edta)(HCO{sub 3}){sub 2} . 4H{sub 2}O (II), and Sr{sub 2}(H{sub 2}Edta)Cl{sub 2} . 5H{sub 2}O (III)-are synthesized, and their crystal structures are studied. In I, the Sr(1) atom is coordinated by the hexadentate Edta{sup 4-} ligand following the 2N + 4O pattern and by two O atoms of the neighboring ligands, which affords the formation of zigzag chains. The Sr(2) atom forms bonds with O atoms of five water molecules and attaches itself to a chain via bonds with threemore » O atoms of the Edta{sup 4-} ligands. The Sr(1)-O and Sr(2)-O bond lengths fall in the ranges 2.520(2)-2.656(3) and 2.527(3)-2.683(2) A, respectively. The Sr(1)-N bonds are 2.702(3) and 2.743(3) A long. In II and III, the H{sub 2}Edta{sup 2-} anions have a centrosymmetric structure with the trans configuration of the planar ethylenediamine fragment. The N atoms are blocked by acid protons. In II, the environment of the Sr atom is formed by six O atoms of three H{sub 2}Edta ligands, two O atoms of water molecules, and an O atom of the bicarbonate ion, which is disordered over two positions. In III, the environment of the Sr atom includes six O atoms of four H{sub 2}Edta{sup 2-} ligands and three O atoms of water molecules. The coordination number of the Sr atoms is equal to 8 + 1. In II and III, the main bonds fall in the ranges 2.534(3)-2.732(2) and 2.482(2)-2.746(3) A, whereas the ninth bond is elongated to 2.937(3) and 3.055(3) A, respectively. In II, all the structural elements are linked into wavy layers. The O-H-O interactions contribute to the stabilization of the layer and link neighboring layers. In III, hydrated Sr{sup 2+} cations and H{sub 2}Edta{sup -} anions form a three-dimensional [Sr{sub 2}(H{sub 2}Edta)(H{sub 2}O){sub 3}]{sub n}{sup 2n+} framework. The Cl{sup -} anions are fixed in channels of the framework by hydrogen bonds with four water

  8. The physical and infrared spectral properties of CO2 in astrophysical ice analogs

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Allamandola, L. J.

    1990-01-01

    Results of measurements of the infrared spectroscopic and condensation-vaporization properties of CO2 in pure and mixed ices are presented. Detailed examination of five infrared CO2 bands, 2.20, 2.78, 4.27, 15.2, and 4.39 microns, shows that the peak position, FWHM, and profile of the bands provide important information about the composition, formation, and subsequent thermal history of the ices. Absorption coefficients and their temperature dependence for all five CO2 bands are determined. The temperature dependence variation is found to be less than 15 percent from 10 to 150 K, i.e., the temperature at which H2O ice sublimes. The number of parameters associated with the physical behavior of CO2 in CO2- and H2O-rich ices, including surface binding energies, and condensation and sublimation temperatures, are determined under experimental conditions. The implications of the data obtained for cometary models are considered.

  9. The response of Antarctic sea ice algae to changes in pH and CO2.

    PubMed

    McMinn, Andrew; Müller, Marius N; Martin, Andrew; Ryan, Ken G

    2014-01-01

    Ocean acidification substantially alters ocean carbon chemistry and hence pH but the effects on sea ice formation and the CO2 concentration in the enclosed brine channels are unknown. Microbial communities inhabiting sea ice ecosystems currently contribute 10-50% of the annual primary production of polar seas, supporting overwintering zooplankton species, especially Antarctic krill, and seeding spring phytoplankton blooms. Ocean acidification is occurring in all surface waters but the strongest effects will be experienced in polar ecosystems with significant effects on all trophic levels. Brine algae collected from McMurdo Sound (Antarctica) sea ice was incubated in situ under various carbonate chemistry conditions. The carbon chemistry was manipulated with acid, bicarbonate and bases to produce a pCO2 and pH range from 238 to 6066 µatm and 7.19 to 8.66, respectively. Elevated pCO2 positively affected the growth rate of the brine algal community, dominated by the unique ice dinoflagellate, Polarella glacialis. Growth rates were significantly reduced when pH dropped below 7.6. However, when the pH was held constant and the pCO2 increased, growth rates of the brine algae increased by more than 20% and showed no decline at pCO2 values more than five times current ambient levels. We suggest that projected increases in seawater pCO2, associated with OA, will not adversely impact brine algal communities.

  10. Identification of combinatorial host-specific signatures with a potential to affect host adaptation in influenza A H1N1 and H3N2 subtypes.

    PubMed

    Khaliq, Zeeshan; Leijon, Mikael; Belák, Sándor; Komorowski, Jan

    2016-07-29

    The underlying strategies used by influenza A viruses (IAVs) to adapt to new hosts while crossing the species barrier are complex and yet to be understood completely. Several studies have been published identifying singular genomic signatures that indicate such a host switch. The complexity of the problem suggested that in addition to the singular signatures, there might be a combinatorial use of such genomic features, in nature, defining adaptation to hosts. We used computational rule-based modeling to identify combinatorial sets of interacting amino acid (aa) residues in 12 proteins of IAVs of H1N1 and H3N2 subtypes. We built highly accurate rule-based models for each protein that could differentiate between viral aa sequences coming from avian and human hosts. We found 68 host-specific combinations of aa residues, potentially associated to host adaptation on HA, M1, M2, NP, NS1, NEP, PA, PA-X, PB1 and PB2 proteins of the H1N1 subtype and 24 on M1, M2, NEP, PB1 and PB2 proteins of the H3N2 subtypes. In addition to these combinations, we found 132 novel singular aa signatures distributed among all proteins, including the newly discovered PA-X protein, of both subtypes. We showed that HA, NA, NP, NS1, NEP, PA-X and PA proteins of the H1N1 subtype carry H1N1-specific and HA, NA, PA-X, PA, PB1-F2 and PB1 of the H3N2 subtype carry H3N2-specific signatures. M1, M2, PB1-F2, PB1 and PB2 of H1N1 subtype, in addition to H1N1 signatures, also carry H3N2 signatures. Similarly M1, M2, NP, NS1, NEP and PB2 of H3N2 subtype were shown to carry both H3N2 and H1N1 host-specific signatures (HSSs). To sum it up, we computationally constructed simple IF-THEN rule-based models that could distinguish between aa sequences of avian and human IAVs. From the rules we identified HSSs having a potential to affect the adaptation to specific hosts. The identification of combinatorial HSSs suggests that the process of adaptation of IAVs to a new host is more complex than previously suggested

  11. Full-dimensional, high-level ab initio potential energy surfaces for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2} with application to hydrogen clathrate hydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homayoon, Zahra; Conte, Riccardo; Qu, Chen

    2015-08-28

    New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H{sub 2}(H{sub 2}O) two-body and H{sub 2}(H{sub 2}O){sub 2} three-body potentials. The database for H{sub 2}(H{sub 2}O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are comparedmore » to computationally faster ones obtained via “purified” symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H{sub 2}, H{sub 2}O, and (H{sub 2}O){sub 2}, to obtain full PESs for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2}. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H{sub 2}(H{sub 2}O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathrate hydrates, illustrated for H{sub 2}@(H{sub 2}O){sub 20}. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H{sub 2} from the calculated equilibrium structure.« less

  12. Candidate Water Vapor Lines to Locate the H2O Snowline through High-dispersion Spectroscopic Observations. III. Submillimeter H2 16O and H2 18O Lines

    NASA Astrophysics Data System (ADS)

    Notsu, Shota; Nomura, Hideko; Walsh, Catherine; Honda, Mitsuhiko; Hirota, Tomoya; Akiyama, Eiji; Millar, T. J.

    2018-03-01

    In this paper, we extend the results presented in our former papers on using ortho-{{{H}}}2{}16{{O}} line profiles to constrain the location of the H2O snowline in T Tauri and Herbig Ae disks, to include submillimeter para-{{{H}}}2{}16{{O}} and ortho- and para-{{{H}}}2{}18{{O}} lines. Since the number densities of the ortho- and para-{{{H}}}2{}18{{O}} molecules are about 560 times smaller than their 16O analogs, they trace deeper into the disk than the ortho-{{{H}}}2{}16{{O}} lines (down to z = 0, i.e., the midplane). Thus these {{{H}}}2{}18{{O}} lines are potentially better probes of the position of the H2O snowline at the disk midplane, depending on the dust optical depth. The values of the Einstein A coefficients of submillimeter candidate water lines tend to be lower (typically <10‑4 s‑1) than infrared candidate water lines. Thus in the submillimeter candidate water line cases, the local intensity from the outer optically thin region in the disk is around 104 times smaller than that in the infrared candidate water line cases. Therefore, in the submillimeter lines, especially {{{H}}}2{}18{{O}} and para-{{{H}}}2{}16{{O}} lines with relatively lower upper state energies (∼a few 100 K) can also locate the position of the H2O snowline. We also investigate the possibility of future observations with ALMA to identify the position of the water snowline. There are several candidate water lines that trace the hot water gas inside the H2O snowline in ALMA Bands 5–10.

  13. A New Parameterization of H2SO4/H2O Aerosol Composition: Atmospheric Implications

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Toon, Owen B.; Clegg, Simon L.; Hamill, Patrick

    1997-01-01

    Recent results from a thermodynamic model of aqueous sulfuric acid are used to derive a new parameterization for the variation of sulfuric acid aerosol composition with temperature and relative humidity. This formulation is valid for relative humidities above 1 % in the temperature range of 185 to 260 K. An expression for calculating the vapor pressure of supercooled liquid water, consistent with the sulfuric acid model, is also presented. We show that the Steele and Hamill [1981] formulation underestimates the water partial pressure over aqueous H2SOI solutions by up to 12% at low temperatures. This difference results in a corresponding underestimate of the H2SO4 concentration in the aerosol by about 6 % of the weight percent at approximately 190 K. In addition, the relation commonly used for estimating the vapor pressure of H2O over supercooled liquid water differs by up to 10 % from our derived expression. The combined error can result in a 20 % underestimation of water activity over a H2SO4 solution droplet in the stratosphere, which has implications for the parameterization of heterogeneous reaction rates in stratospheric sulfuric acid aerosols. The influence of aerosol composition on the rate of homogeneous ice nucleation from a H2SO4 solution droplet is also discussed. This parameterization can also be used for homogeneous gas phase nucleation calculations of H2SO4 solution droplets under various environmental conditions such as in aircraft exhaust or in volcanic plumes.

  14. Evolution of Interstellar Ices

    NASA Astrophysics Data System (ADS)

    Allamandola, Louis J.; Bernstein, Max P.; Sandford, Scott A.; Walker, Robert L.

    1999-10-01

    Infrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Ices in molecular clouds are dominated by the very simple molecules H2O, CH3OH, NH3, CO, CO2, and probably H2CO and H2. More complex species including nitriles, ketones, and esters are also present, but at lower concentrations. The evidence for these, as well as the abundant, carbon-rich, interstellar, polycyclic aromatic hydrocarbons (PAHs) is reviewed. Other possible contributors to the interstellar/pre-cometary ice composition include accretion of gas-phase molecules and in situ photochemical processing. By virtue of their low abundance, accretion of simple gas-phase species is shown to be the least important of the processes considered in determining ice composition. On the other hand, photochemical processing does play an important role in driving dust evolution and the composition of minor species. Ultraviolet photolysis of realistic laboratory analogs readily produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including amides, ketones, and polyoxymethylenes (POMs). Inclusion of PAHs in the ices produces many species similar to those found in meteorites including aromatic alcohols, quinones and ethers. Photon assisted PAH-ice deuterium exchange also occurs. All of these species are readily formed and are therefore likely cometary constituents.

  15. Photoelectron spectroscopic study of the hydrated nucleoside anions: Uridine(-)(H(2)O)(n=0-2), cytidine(-)(H(2)O)(n=0-2), and thymidine(-)(H(2)O)(n=0,1).

    PubMed

    Li, Xiang; Wang, Haopeng; Bowen, Kit H

    2010-10-14

    The hydrated nucleoside anions, uridine(-)(H(2)O)(n=0-2), cytidine(-)(H(2)O)(n=0-2), and thymidine(-)(H(2)O)(n=0,1), have been prepared in beams and studied by anion photoelectron spectroscopy in order to investigate the effects of a microhydrated environment on parent nucleoside anions. Vertical detachment energies (VDEs) were measured for all eight anions, and from these, estimates were made for five sequential anion hydration energies. Excellent agreement was found between our measured VDE value for thymidine(-)(H(2)O)(1) and its calculated value in the companion article by S. Kim and H. F. Schaefer III.

  16. Photoelectron spectroscopic study of the hydrated nucleoside anions: Uridine-(H2O)n=0-2, cytidine-(H2O)n=0-2, and thymidine-(H2O)n=0,1

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Wang, Haopeng; Bowen, Kit H.

    2010-10-01

    The hydrated nucleoside anions, uridine-(H2O)n=0-2, cytidine-(H2O)n=0-2, and thymidine-(H2O)n=0,1, have been prepared in beams and studied by anion photoelectron spectroscopy in order to investigate the effects of a microhydrated environment on parent nucleoside anions. Vertical detachment energies (VDEs) were measured for all eight anions, and from these, estimates were made for five sequential anion hydration energies. Excellent agreement was found between our measured VDE value for thymidine-(H2O)1 and its calculated value in the companion article by S. Kim and H. F. Schaefer III.

  17. Tracing groundwater recharge sources in the northwestern Indian alluvial aquifer using water isotopes (δ18O, δ2H and 3H)

    NASA Astrophysics Data System (ADS)

    Joshi, Suneel Kumar; Rai, Shive Prakash; Sinha, Rajiv; Gupta, Sanjeev; Densmore, Alexander Logan; Rawat, Yadhvir Singh; Shekhar, Shashank

    2018-04-01

    Rapid groundwater depletion from the northwestern Indian aquifer system in the western Indo-Gangetic basin has raised serious concerns over the sustainability of groundwater and the livelihoods that depend on it. Sustainable management of this aquifer system requires that we understand the sources and rates of groundwater recharge, however, both these parameters are poorly constrained in this region. Here we analyse the isotopic (δ18O, δ2H and tritium) compositions of groundwater, precipitation, river and canal water to identify the recharge sources, zones of recharge, and groundwater flow in the Ghaggar River basin, which lies between the Himalayan-fed Yamuna and Sutlej River systems in northwestern India. Our results reveal that local precipitation is the main source of groundwater recharge. However, depleted δ18O and δ2H signatures at some sites indicate recharge from canal seepage and irrigation return flow. The spatial variability of δ18O, δ2H, d-excess, and tritium reflects limited lateral connectivity due to the heterogeneous and anisotropic nature of the aquifer system in the study area. The variation of tritium concentration with depth suggests that groundwater above c. 80 mbgl is generally modern water. In contrast, water from below c. 80 mbgl is a mixture of modern and old waters, and indicates longer residence time in comparison to groundwater above c. 80 mbgl. Isotopic signatures of δ18O, δ2H and tritium suggest significant vertical recharge down to a depth of 320 mbgl. The spatial and vertical variations of isotopic signature of groundwater reveal two distinct flow patterns in the aquifer system: (i) local flow (above c. 80 mbgl) throughout the study area, and (ii) intermediate and regional flow (below c. 80 mbgl), where water recharges aquifers through large-scale lateral flow as well as vertical infiltration. The understanding of spatial and vertical recharge processes of groundwater in the study area provides important base-line knowledge

  18. Infrared photodissociation spectroscopy of H(+)(H2O)6·M(m) (M = Ne, Ar, Kr, Xe, H2, N2, and CH4): messenger-dependent balance between H3O(+) and H5O2(+) core isomers.

    PubMed

    Mizuse, Kenta; Fujii, Asuka

    2011-04-21

    Although messenger mediated spectroscopy is a widely-used technique to study gas phase ionic species, effects of messengers themselves are not necessarily clear. In this study, we report infrared photodissociation spectroscopy of H(+)(H(2)O)(6)·M(m) (M = Ne, Ar, Kr, Xe, H(2), N(2), and CH(4)) in the OH stretch region to investigate messenger(M)-dependent cluster structures of the H(+)(H(2)O)(6) moiety. The H(+)(H(2)O)(6), the protonated water hexamer, is the smallest system in which both the H(3)O(+) (Eigen) and H(5)O(2)(+) (Zundel) hydrated proton motifs coexist. All the spectra show narrower band widths reflecting reduced internal energy (lower vibrational temperature) in comparison with bare H(+)(H(2)O)(6). The Xe-, CH(4)-, and N(2)-mediated spectra show additional band features due to the relatively strong perturbation of the messenger. The observed band patterns in the Ar-, Kr-, Xe-, N(2)-, and CH(4)-mediated spectra are attributed mainly to the "Zundel" type isomer, which is more stable. On the other hand, the Ne- and H(2)-mediated spectra are accounted for by a mixture of the "Eigen" and "Zundel" types, like that of bare H(+)(H(2)O)(6). These results suggest that a messenger sometimes imposes unexpected isomer-selectivity even though it has been thought to be inert. Plausible origins of the isomer-selectivity are also discussed.

  19. Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2).

    PubMed

    Oh, Byung-Taek; Seo, Young-Suk; Sudhakar, Dega; Choe, Ji-Hyun; Lee, Sang-Myeong; Park, Youn-Jong; Cho, Min

    2014-08-30

    The presence of endotoxin in water environments may pose a serious public health hazard. We investigated the effectiveness of advanced oxidative processes (AOP: O3/H2O2 and UV/H2O2) in the oxidative degradation of endotoxin. In addition, we measured the release of endotoxin from Escherichia coli following typical disinfection methods, such as chlorine, ozone alone and UV, and compared it with the use of AOPs. Finally, we tested the AOP-treated samples in their ability to induce tumor necrosis factor alpha (TNF-α) in mouse peritoneal macrophages. The production of hydroxyl radical in AOPs showed superior ability to degrade endotoxin in buffered solution, as well as water samples from Korean water treatment facilities, with the ozone/H2O2 being more efficient compared to UV/H2O2. In addition, the AOPs proved effective not only in eliminating E. coli in the samples, but also in endotoxin degradation, while the standard disinfection methods lead to the release of endotoxin following the bacteria destruction. Furthermore, in the experiments with macrophages, the AOPs-deactivated endotoxin lead to the smallest induction of TNF-α, which shows the loss of inflammation activity, compared to ozone treatment alone. In conclusion, these results suggest that AOPs offer an effective and mild method for endotoxin degradation in the water systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. H2-rich interstellar grain mantles: An equilibrium description

    NASA Technical Reports Server (NTRS)

    Dissly, Richard W.; Allen, Mark; Anicich, Vincent G.

    1994-01-01

    Experiments simulating the codeposition of molecular hydrogen and water ice on interstellar grains demonstrate that amorphous water ice at 12 K can incorporate a substantial amount of H2, up to a mole ratio of H2/H2O = 0.53. We find that the physical behavior of approximately 80% of the hydrogen can be explained satisfactorily in terms of an equilibrium population, thermodynamically governed by a wide distribution of binding site energies. Such a description predicts that gas phase accretion could lead to mole fractions of H2 in interstellar grain mantles of nearly 0.3; for the probable conditions of WL5 in the rho Ophiuchi cloud, an H2 mole fraction of between 0.05 and 0.3 is predicted, in possible agreement with the observed abundance reported by Sandford, Allamandola, & Geballe. Accretion of gas phase H2 onto grain mantles, rather than photochemical production of H2 within the ice, could be a general explanation for frozen H2 in interstellar ices. We speculate on the implications of such a composition for grain mantle chemistry and physics.

  1. On the role of the termolecular reactions 2O2 + H22HO2 and 2O2 + H2H + HO2 + O2 in formation of the first radicals in hydrogen combustion: ab initio predictions of energy barriers.

    PubMed

    Monge-Palacios, M; Rafatijo, Homayoon

    2017-01-18

    We have investigated the role of termolecular reactions in the early chemistry of hydrogen combustion. We performed molecular chemical dynamics simulations using ReaxFF in LAMMPS to identify potential initial reactions for a 1 : 4 mixture of H 2  : O 2 in the NVT ensemble at density 276.3 kg m -3 and ∼3000 K (∼4000 atm) and ∼4000 K (∼5000 atm), and then characterized the saddle points for those reactions using ab initio methods: CCSD(T) = FC/cc-pVTZ//MP2/6-31G, CCSD(T) = FULL/aug-cc-pVTZ//CCSD = FC/cc-pVTZ and CASSCF MP2/6-31G//MP2/6-31G. The main initial reaction is H 2 + O 2H + HO 2 , frequently occurring in the presence of a second O 2 as a third body; that is, 2O 2 + H 2H + HO 2 + O 2 . The second most frequent reaction is 2O 2 + H 22HO 2 . We found three saddle points on the triplet PES of these termolecular reactions: one for 2O 2 + H 2H + HO 2 + O 2 and two for 2O 2 + H 22HO 2 . In the latter case, one has a symmetric structure consistent with simultaneous formation of two HO 2 and the other corresponds to a bimolecular reaction between O 2 and H 2 that is "interrupted" by a second O 2 before going to completion. The classical barrier height of the symmetric saddle point for 2O 2 + H 22HO 2 is 49.8 kcal mol -1 . The barrier to H 2 + O 2H + HO 2 is 58.9 kcal mol -1 . The termolecular reaction will be competitive with H 2 + O 2H + HO 2 only at sufficiently high pressures.

  2. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Ertl, G.; Alefeld, G.; Youdelis, W.; Radd, H.; Oertle, G.; Siegel, Edward

    2011-03-01

    "H2O H2O everywhere; ne'er a drop to drink"[Coleridge(1798)]; now: "H2 H2 everywhere; STILL ne'er a drop to drink": ONLY H2 (or methane CH4) can be FLYING-WATER(F-W) chemical-rain-in-pipelines Hindenberg-effect (H2-UP;H2O-DOWN): {O/H2O}=[16]/[18] 90 % ; O already in air uphill; NO H2O pumping need! In global-warming driven H2O-starved glacial-melting world, rescue is possible ONLY by Siegel [{3rd Intl. Conf. Alt.-Energy }(1980)-vol.5/p.459!!!] Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating-system. Rosenfeld[Science 315,1396(3/9/2007)]-Biello [Sci.Am.(3/9/2007)] crucial geomorph-ology which ONLY maximal-buoyancy H2 can exploit, to again make "Mountains into Fountains", ``upthrust rocks trapping the clouds to precipitate their rain/snow/H2O'': "terraforming"(and ocean-rebasificaton!!!) Siegel proprietary magnetic-hydrogen-valve (MHV) permits H2 flow in already in-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Science 300,1740(2003)] dire warning of global-pandemics (cancers/ blindness/famine) Hydrogen-economy CATASTROPHIC H2 ozone-layer destruction sobering cavat to dangerous H2-automotion-economy panacea hype!!!

  3. Kinetics of hydrogen/deuterium exchanges in cometary ices

    NASA Astrophysics Data System (ADS)

    Faure, Mathilde; Quirico, Eric; Faure, Alexandre; Schmitt, Bernard; Theulé, Patrice; Marboeuf, Ulysse

    2015-11-01

    The D/H composition of volatile molecules composing cometary ices brings key constraints on the origin of comets, on the extent of their presolar heritage, as well as on the origin of atmospheres and hydrospheres of terrestrial planets. Nevertheless, the D/H composition may have been modified to various extents in the nucleus when a comet approaches the Sun and experiences deep physical and chemical modifications in its subsurface. We question here the evolution of the D/H ratio of organic species by proton exchanges with water ice. We experimentally studied the kinetics of D/H exchanges on the ice mixtures H2O:CD3OD, H2O:CD3ND2 and D2O:HCN. Our results show that fast exchanges occur on the -OH and -NH2 chemical groups, which are processed through hydrogen bonds exchanges with water and by the molecular mobility triggered by structural changes, such as glass transition or crystallization. D/H exchanges kinetic is best described by a second-order kinetic law with activation energies of 4300 ± 900 K and 3300 ± 100 K for H2O:CD3OD and H2O:CD3ND2 ice mixtures, respectively. The corresponding pre-exponential factors ln(A(s-1)) are 25 ± 7 and 20 ± 1, respectively. No exchange was observed in the case of HCN trapped in D2O ice. These results strongly suggest that upon thermal heating (1) -OH and -NH2 chemical groups of any organic molecules loose their primordial D/H composition and equilibrate with water ice, (2) HCN does not experience proton transfer and keeps a primordial D/H composition and (3) C-H chemical groups are not isotopically modified.

  4. First real-time measurements of N2O isotopic signatures above intensively managed grassland: analytical performance, validation and illustrative examples

    NASA Astrophysics Data System (ADS)

    Wolf, Benjamin; Tuzson, Béla; Merbold, Lutz; Decock, Charlotte; Emmenegger, Lukas; Mohn, Joachim

    2014-05-01

    , and nitrate concentrations made the identification of controls on N2O isotopic composition possible. Furthermore, simultaneous eddy-covariance N2O flux measurements (Merbold et al. 2014) were used to derive a flux-averaged isotopic signature of soil-emitted N2O of intensively managed grassland. In this context, the potential of the derived N2O isotopic signatures for partitioning of microbial source processes will be discussed in relation to available literature data. Merbold, L, W Eugster, J Stieger, M Zahniser, D Nelson and N Buchmann. 2014. 'Greenhouse gas budget (CO2, CH4 and N2O) of intensively managed grassland following restoration' Global Change Biology doi:10.1111/gcb.12518 Mohn, J, B Tuzson, A Manninen, N Yoshida, S Toyoda, W A Brand, and L Emmenegger. 2012. 'Site selective real-time measurements of atmospheric N2O isotopomers by laser spectroscopy.' Atmospheric Measurement Techniques 5(7): 1601-1609 Park, S, P Croteau, K A Boering, D M Etheridge, D Ferretti, P J Fraser, K-R Kim, P B Krummel, R L Langenfelds, T D van Ommen, L P Steele, and C M Trudinger. 2012. 'Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940.' Nature Geoscience 5(4): 261-265. Waechter, H, J Mohn, B Tuzson, L Emmenegger, and M W Sigrist. 2008. 'Determination of N2O isotopomers with quantum cascade laser based absorption spectroscopy.' Optics Express 16(12): 9239-44. Wunderlin, P, M Lehmann, H Siegrist, B Tuzson, A Joss, L Emmenegger, and J Mohn. 2013. 'Isotope signatures of N2O in a mixed microbial population system: Constraints on N2O producing pathways in wastewater treatment.' Environmental Science and Technology 47: 1339-48.

  5. The Cheshire-cat-like Behavior of 2nu(sub 3) Overtone of Co2 near 2.134 micron: NIR Lab Spectra of Solid CO2 in H2O and CH3OH

    NASA Technical Reports Server (NTRS)

    Bernstein, Max; Sandford, Scott; Cruikshank, Dale

    2005-01-01

    Infrared (IR) spectra have demonstrated that solid H2O is very common in the outer Solar System, and solid carbon dioxide (CO2) has been detected on icy satellites, comets, and planetismals throughout the outer Solar System. In such environments, CO2 and H2O must sometimes be mixed at a molecular level, changing their IR absorption features. In fact, the IR spectra of CO2-H2O mixtures are not equivalent to a linear combination of the spectra of the pure materials. Laboratory IR spectra of pure CO2 and H2O have been published but a lack of near-IR spectra of CO2-H2O mixtures has made the interpretation of outer Solar System spectra more difficult. We present near infrared (IR) spectra of CO2 in H2O and in CH3OH compared to that of pure solid CO2 and find significant differences. Peaks not present in either pure H2O or pure CO2 spectra become evident. First, the CO2 (2nu(sub 3)) overtone near 2.134 micron (4685/ cm) that is not seen in pure solid CO2 is prominent in the spectrum of a CO2/H2O = 25 mixture. Second, a 2.74 micron (3650/ cm) dangling OH feature of water (and a potentially related peak at 1.89 micron) appear in the spectra of CO2-H2O ice mixtures, but may not be specific to the presence of CO2. Other CO2 peaks display shifts in position and increased width because of intermolecular interactions with water. Changes in CO2 peak positions and profiles on warming of a CO2/H2O = 5 mixture are consistent with 'segregation' of the ice into nearly pure separate components. Absolute strengths for absorptions of CO2 in solid H2O are estimated. Similar results are observed for CO2 in solid CH3OH. Since the CO2 ( 2nu(sub 3)) overtone near 2.134 micron (4685/ cm) is not present in pure CO2 but prominent in mixtures it may be a good observational indicator of whether solid CO2 is a pure material or intimately mixed with other molecules. Significant changes in the near IR spectrum of solid CO2 in the presence of H2O and CH3OH means that the abundance of solid CO2 in the

  6. Ab initio studies on Al(+)(H(2)O)(n), HAlOH(+)(H(2)O)(n-1), and the size-dependent H(2) elimination reaction.

    PubMed

    Siu, Chi-Kit; Liu, Zhi-Feng; Tse, John S

    2002-09-11

    We report computational studies on Al(+)(H(2)O)(n), and HAlOH(+)(H(2)O)(n-1), n = 6-14, by the density functional theory based ab initio molecular dynamics method, employing a planewave basis set with pseudopotentials, and also by conventional methods with Gaussian basis sets. The mechanism for the intracluster H(2) elimination reaction is explored. First, a new size-dependent insertion reaction for the transformation of Al(+)(H(2)O)(n), into HAlOH(+)(H(2)O)(n-1) is discovered for n > or = 8. This is because of the presence of a fairly stable six-water-ring structure in Al(+)(H(2)O)(n) with 12 members, including the Al(+). This structure promotes acidic dissociation and, for n > or = 8, leads to the insertion reaction. Gaussian based BPW91 and MP2 calculations with 6-31G* and 6-31G** basis sets confirmed the existence of such structures and located the transition structures for the insertion reaction. The calculated transition barrier is 10.0 kcal/mol for n = 9 and 7.1 kcal/mol for n = 8 at the MP2/6-31G** level, with zero-point energy corrections. Second, the experimentally observed size-dependent H(2) elimination reaction is related to the conformation of HAlOH(+)(H(2)O)(n-1), instead of Al(+)(H(2)O)(n). As n increases from 6 to 14, the structure of the HAlOH(+)(H(2)O)(n-1) cluster changes into a caged structure, with the Al-H bond buried inside, and protons produced in acidic dissociation could then travel through the H(2)O network to the vicinity of the Al-H bond and react with the hydride H to produce H(2). The structural transformation is completed at n = 13, coincident approximately with the onset of the H(2) elimination reaction. From constrained ab initio MD simulations, we estimated the free energy barrier for the H(2) elimination reaction to be 0.7 eV (16 kcal/mol) at n = 13, 1.5 eV (35 kcal/mol) at n = 12, and 4.5 eV (100 kcal/mol) at n = 8. The existence of transition structures for the H(2) elimination has also been verified by ab initio calculations

  7. The condensation and vaporization behavior of ices containing SO2, H2S, and CO2 - Implications for Io

    NASA Astrophysics Data System (ADS)

    Sandford, Scott A.; Allamandola, Louis J.

    1993-12-01

    The present compilation of measurements of the physical and IR spectral properties of ices whose molecular compositions are relevant to the case of Io encompasses ice systems containing SO2, H2S, and CO2. Surface-binding energies used to calculate the residence times of molecules on a surface as a function of temperature furnish crucially important parameters for models attending to the transport of such molecules to the surface of Io. The values thus derived show that SO2 frosts anneal rapidly.

  8. [Mechanism and performance of styrene oxidation by O3/H2O2].

    PubMed

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  9. Organic Contaminant Abatement in Reclaimed Water by UV/H2O2 and a Combined Process Consisting of O3/H2O2 Followed by UV/H2O2: Prediction of Abatement Efficiency, Energy Consumption, and Byproduct Formation.

    PubMed

    Lee, Yunho; Gerrity, Daniel; Lee, Minju; Gamage, Sujanie; Pisarenko, Aleksey; Trenholm, Rebecca A; Canonica, Silvio; Snyder, Shane A; von Gunten, Urs

    2016-04-05

    UV/H2O2 processes can be applied to improve the quality of effluents from municipal wastewater treatment plants by attenuating trace organic contaminants (micropollutants). This study presents a kinetic model based on UV photolysis parameters, including UV absorption rate and quantum yield, and hydroxyl radical (·OH) oxidation parameters, including second-order rate constants for ·OH reactions and steady-state ·OH concentrations, that can be used to predict micropollutant abatement in wastewater. The UV/H2O2 kinetic model successfully predicted the abatement efficiencies of 16 target micropollutants in bench-scale UV and UV/H2O2 experiments in 10 secondary wastewater effluents. The model was then used to calculate the electric energies required to achieve specific levels of micropollutant abatement in several advanced wastewater treatment scenarios using various combinations of ozone, UV, and H2O2. UV/H2O2 is more energy-intensive than ozonation for abatement of most micropollutants. Nevertheless, UV/H2O2 is not limited by the formation of N-nitrosodimethylamine (NDMA) and bromate whereas ozonation may produce significant concentrations of these oxidation byproducts, as observed in some of the tested wastewater effluents. The combined process of O3/H2O2 followed by UV/H2O2, which may be warranted in some potable reuse applications, can achieve superior micropollutant abatement with reduced energy consumption compared to UV/H2O2 and reduced oxidation byproduct formation (i.e., NDMA and/or bromate) compared to conventional ozonation.

  10. The Effect of Broadband Soft X-Rays in SO2-Containing Ices: Implications on the Photochemistry of Ices toward Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Pilling, S.; Bergantini, A.

    2015-10-01

    We investigate the effects produced mainly by broadband soft X-rays up to 2 keV (plus fast (˜keV) photoelectrons and low-energy (˜eV) induced secondary electrons) in the ice mixtures containing H2O:CO2:NH3:SO2 (10:1:1:1) at two different temperatures (50 and 90 K). The experiments are an attempt to simulate the photochemical processes induced by energetic photons in SO2-containing ices present in cold environments in the ices surrounding young stellar objects (YSO) and in molecular clouds in the vicinity of star-forming regions, which are largely illuminated by soft X-rays. The measurements were performed using a high-vacuum portable chamber from the Laboratório de Astroquímica e Astrobiologia (LASA/UNIVAP) coupled to the spherical grating monochromator beamline at the Brazilian Synchrotron Light Source (LNLS) in Campinas, Brazil. In situ analyses were performed by a Fourier transform infrared spectrometer. Sample processing revealed the formation of several organic molecules, including nitriles, acids, and other compounds such as H2O2, H3O+, SO3, CO, and OCN-. The dissociation cross section of parental species was on the order of (2-7) × 10-18 cm2. The ice temperature does not seem to affect the stability of SO2 in the presence of X-rays. Formation cross sections of new species produced were also determined. Molecular half-lives at ices toward YSOs due to the presence of incoming soft X-rays were estimated. The low values obtained employing two different models of the radiation field of YSOs (TW Hydra and typical T-Tauri star) reinforce that soft X-rays are indeed a very efficient source of molecular dissociation in such environments.

  11. Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z 2-4

    NASA Astrophysics Data System (ADS)

    Yang, C.; Omont, A.; Beelen, A.; González-Alfonso, E.; Neri, R.; Gao, Y.; van der Werf, P.; Weiß, A.; Gavazzi, R.; Falstad, N.; Baker, A. J.; Bussmann, R. S.; Cooray, A.; Cox, P.; Dannerbauer, H.; Dye, S.; Guélin, M.; Ivison, R.; Krips, M.; Lehnert, M.; Michałowski, M. J.; Riechers, D. A.; Spaans, M.; Valiante, E.

    2016-11-01

    We report rest-frame submillimeter H2O emission line observations of 11 ultra- or hyper-luminous infrared galaxies (ULIRGs or HyLIRGs) at z 2-4 selected among the brightest lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Using the IRAM NOrthern Extended Millimeter Array (NOEMA), we have detected 14 new H2O emission lines. These include five 321-312ortho-H2O lines (Eup/k = 305 K) and nine J = 2 para-H2O lines, either 202-111(Eup/k = 101 K) or 211-202(Eup/k = 137 K). The apparent luminosities of the H2O emission lines are μLH2O 6-21 × 108 L⊙ (3 <μ< 15, where μ is the lens magnification factor), with velocity-integrated line fluxes ranging from 4-15 Jy km s-1. We have also observed CO emission lines using EMIR on the IRAM 30 m telescope in seven sources (most of those have not yet had their CO emission lines observed). The velocity widths for CO and H2O lines are found to be similar, generally within 1σ errors in the same source. With almost comparable integrated flux densities to those of the high-J CO line (ratios range from 0.4 to 1.1), H2O is found to be among the strongest molecular emitters in high-redshift Hy/ULIRGs. We also confirm our previously found correlation between luminosity of H2O (LH2O) and infrared (LIR) that LH2O LIR1.1-1.2, with ournew detections. This correlation could be explained by a dominant role of far-infrared pumping in the H2O excitation. Modelling reveals that the far-infrared radiation fields have warm dust temperature Twarm 45-75 K, H2O column density per unit velocity interval NH2O /ΔV ≳ 0.3 × 1015 cm-2 km-1 s and 100 μm continuum opacity τ100> 1 (optically thick), indicating that H2O is likely to trace highly obscured warm dense gas. However, further observations of J ≥ 4 H2O lines are needed to better constrain the continuum optical depth and other physical conditions of the molecular gas and dust. We have also detected H2O+ emission in three sources. A tight correlation

  12. Laboratory Spectra of CO2 Vibrational Modes in Planetary Ice Analogs

    NASA Technical Reports Server (NTRS)

    White, Douglas; Mastrapa, Rachel M.; Sandford, Scott

    2012-01-01

    Laboratory spectra have shown that CO2 is a powerful diagnostic tool for analyzing infrared data from remote observations, as it has been detected on icy moons in the outer Solar System as well as dust grain surfaces in the interstellar medium (ISM). IR absorption band profiles of CO2 within ice mixtures containing H2O and CH3OH change with respect to temperature and mixture ratios. In this particular study, the CO2 asymmetric stretching mode near 4.3 m (2350 cm (exp-1)), overtone mode near 1.97 m (5080 cm (exp-1)), and the combination bands near 2.7 m (3700 cm (exp-1)), 2.8 m (3600 cm (exp-1)), and 2.02 m (4960 cm (exp -1)), are systematically observed in different mixtures with H2O and CH3OH in temperature ranges from 15K to 150 K. Additionally, some high-temperature deposits (T greater than 50 K) of H2O, CH3OH, and CO2 ice mixtures were performed. These data may then be used to interpret infrared observational data obtained from icy surfaces in the outer Solar System and beyond.

  13. Tuning the conductance of H2O@C60 by position of the encapsulated H2O

    PubMed Central

    Zhu, Chengbo; Wang, Xiaolin

    2015-01-01

    The change of conductance of single-molecule junction in response to various external stimuli is the fundamental mechanism for the single-molecule electronic devices with multiple functionalities. We propose the concept that the conductance of molecular systems can be tuned from inside. The conductance is varied in C60 with encapsulated H2O, H2O@C60. The transport properties of the H2O@C60-based nanostructure sandwiched between electrodes are studied using first-principles calculations combined with the non-equilibrium Green’s function formalism. Our results show that the conductance of the H2O@C60 is sensitive to the position of the H2O and its dipole direction inside the cage with changes in conductance up to 20%. Our study paves a way for the H2O@C60 molecule to be a new platform for novel molecule-based electronics and sensors. PMID:26643873

  14. Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems.

    PubMed

    Garcia, J C; Oliveira, J L; Silva, A E C; Oliveira, C C; Nozaki, J; de Souza, N E

    2007-08-17

    This work investigated the treatability of real textile effluents using several systems involving advanced oxidation processes (AOPs) such as UV/H2O2, UV/TiO2, UV/TiO2/H2O2, and UV/Fe2+/H2O2. The efficiency of each technique was evaluated according to the reduction levels observed in the UV absorbance of the effluents, COD, and organic nitrogen reduction, as well as mineralization as indicated by the formation of ammonium, nitrate, and sulfate ions. The results indicate the association of TiO2 and H2O2 as the most efficient treatment for removing organic pollutants from textile effluents. In spite of their efficiency, Fenton reactions based treatment proved to be slower and exhibited more complicated kinetics than the ones using TiO2, which are pseudo-first-order reactions. Decolorization was fast and effective in all the experiments despite the fact that only H2O2 was used.

  15. Simutaneous adsorption of CO2 and H2O under Mars-like conditions and application to the evolution of the Martian climate

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Quinn, Richard C.

    1995-01-01

    The Martian regolith is the most substantial volatile reservoir on the planet; estimates of its adsorbed inventory have been based on simple measurements of the adsorption of either water or CO2 in isolation. Under some conditions, H2O can poison adsorbate surfaces, such that CO2 uptake is greatly reduced. We have made the first measurements of the simultaneous adsorption of CO2 and H2O under conditions appropriate to the Martian regolith and have found that at H2O monolayer coverage above about 0.5, CO2 begins to be displaced into the gas phase. We have developed an empirical expression that describes our co-adsorption data and have applied it to standard models of the Martian regolith. We find that currently, H2O does not substantially displace CO2, implying that the adsorbate inventories previously derived may be accurate, not more than 3-4 kPa (30-40 mbar). No substantial increase in atmospheric pressure is predicted at higher obliquities because high-latitude ground ice buffers the partial pressure of H2O in the pores, preventing high monolayer coverages of H2O from displacing CO2. The peak atmospheric pressure at high obliquity does increase as the total inventory of exchangeable CO2 increases.

  16. CANDIDATE WATER VAPOR LINES TO LOCATE THE H{sub 2}O SNOWLINE THROUGH HIGH-DISPERSION SPECTROSCOPIC OBSERVATIONS. I. THE CASE OF A T TAURI STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notsu, Shota; Ishimoto, Daiki; Nomura, Hideko

    2016-08-20

    Inside the H{sub 2}O snowline of protoplanetary disks, water evaporates from the dust-grain surface into the gas phase, whereas it is frozen out onto the dust in the cold region beyond the snowline. H{sub 2}O ice enhances the solid material in the cold outer part of a disk, which promotes the formation of gas-giant planet cores. We can regard the H{sub 2}O snowline as the surface that divides the regions between rocky and gaseous giant planet formation. Thus observationally measuring the location of the H{sub 2}O snowline is crucial for understanding the planetesimal and planet formation processes, and the originmore » of water on Earth. In this paper, we find candidate water lines to locate the H{sub 2}O snowline through future high-dispersion spectroscopic observations. First, we calculate the chemical composition of the disk and investigate the abundance distributions of H{sub 2}O gas and ice, and the position of the H{sub 2}O snowline. We confirm that the abundance of H{sub 2}O gas is high not only in the hot midplane region inside the H{sub 2}O snowline but also in the hot surface layer of the outer disk. Second, we calculate the H{sub 2}O line profiles and identify those H{sub 2}O lines that are promising for locating the H{sub 2}O snowline: the identified lines are those that have small Einstein A coefficients and high upper state energies. The wavelengths of the candidate H{sub 2}O lines range from mid-infrared to sub-millimeter, and they overlap with the regions accessible to the Atacama Large Millimeter/sub-millimeter Array and future mid-infrared high-dispersion spectrographs (e.g., TMT/MICHI, SPICA).« less

  17. Simultaneous adsorption of CO2 and H2O under Mars-like conditions and application to the evolution of the Martian climate

    NASA Technical Reports Server (NTRS)

    Zent, Aaron, P.; Quinn, Richard C.

    1995-01-01

    The Martian regolith is the most substantial volatile reservoir on the planet; estimates of its adsorbed inventory have been based on simple measurements of the adsorption of either water or CO2 in isolation. Under some conditions, H2O can poison adsorbate surfaces, such that CO2 uptake is greatly reduced. We have made the first measurements of the simultaneous adsorption of CO2 and H2O under conditions appropriate to the Martian regolith and have found that at H2O monolayer coverage above about 0.5, CO2 begins to be displaced into the gas phase. We have developed an empirical expression that describes our co-adsorption data and have applied it to standard models of the Martian regolith. We find that currently, H2O does not substantially displace CO, implying that the adsorbate inventories previously derived may be accurate, not more than 3-4 kPa (30-40 mbar). No substantial increase in atmospheric pressure is predicted at higher obliquities because high-latitude ground ice buffers the partial pressure of H2O in the pores, preventing high monolayer coverages of H2O from displacing CO2. The peak atmospheric pressure at high obliquity does increase as the total inventory of exchangeable CO2 increases.

  18. LiOH - H2O2 - H2O trinary system study for the selection of optimal conditions of lithium peroxide synthesis

    NASA Astrophysics Data System (ADS)

    Nefedov, R. A.; Ferapontov, Yu A.; Kozlova, N. P.

    2016-01-01

    Using solubility method the decay kinetics of peroxide products contained in liquid phase of LiOH - H2O2 - H2O trinary system with 2 to 6% by wt hydrogen peroxide content in liquid phase in 21 to 33 °C temperature range has been studied. Conducted studies have allowed to determine temperature and concentration limits of solid phase existence of Li2O2·H2O content, distinctness of which has been confirmed using chemical and qualitative X- ray phase analysis. Stabilizing effect of solid phase of Li2O2·H2O content on hydrogen peroxide decay contained in liquid phase of LiOH - H2O2 - H2O trinary system under conditions of experiments conducted has been shown.

  19. Crystal Structures and Thermal Properties of Two Transition-Metal Compounds {[Ni(DNI)2(H2O)3][Ni(DNI)2 (H2O)4]}·6H2O and Pb(DNI)2(H2O)4 (DNI = 2,4-Dinitroimidazolate)

    PubMed Central

    Zhang, Guo-Fang; Cai, Mei-Yu; Jing, Ping; He, Chong; Li, Ping; Zhao, Feng-Qi; Li, Ji-Zhen; Fan, Xue-Zhong; Ng, Seik Weng

    2010-01-01

    Two transition-metal compounds derived from 2,4-dinitroimidazole, {[Ni(DNI)2(H2O)3][Ni(DNI)2 (H2O)4]}·6H2O, 1, and Pb(DNI)2(H2O)4, 2, were characterized by elemental analysis, FT-IR, TG-DSC and X-ray single-crystal diffraction analysis. Crystal data for 1: monoclinic, space group C2/c, a = 26.826(3), b = 7.7199(10), c = 18.579(2) Å, β = 111.241(2)° and Z = 4; 2: monoclinic, space group C2/c, a = 6.5347(6), b = 17.1727(17), c = 14.1011(14) Å, β = 97.7248(10) and Z = 4. Compound 1 contains two isolated nickel centers in its structure, one being six-coordinate and another five-coordinate. The structure of 2 contains a lead (II) center surrounded by two chelating DNI ligands and four water molecules in distorted square-antiprism geometry. The abundant hydrogen bonds in two compounds link the molecules into three-dimensional network and stabilize the molecules. The TG-DSC analysis reveals that the first step is the loss of water molecules and the final residue is the corresponding metal oxides and carbon. PMID:20526419

  20. Medieval Warm Period and Little Ice Age Signatures in the Distribution of Modern Ocean Temperatures

    NASA Astrophysics Data System (ADS)

    Gebbie, G.; Huybers, P. J.

    2017-12-01

    It is well established both that global temperatures have varied overthe last millenium and that the interior ocean reflects surfaceproperties inherited over these timescales. Signatures of theMedieval Warm Period and Little Ice Age are thus to be expected in themodern ocean state, though the magnitude of these effects and whetherthey are detectable is unclear. Analysis of changes in temperatureacross those obtained in the 1870s as part of the theH.M.S. Challenger expedition, the 1990s World Ocean CirculationExperiment, and recent Argo observations shows a consistent pattern:the upper ocean and Atlantic have warmed, but the oldest waters inthe deep Pacific appear to have cooled. The implications of pressureeffects on the H.M.S. Challenger thermometers and uncertainties indepth of observations are non-negligible but do not appear tofundamentally alter this pattern. Inversion of the modern hydrographyusing ocean transport estimates derived from passive tracer andradiocarbon observations indicates that deep Pacific cooling could bea vestige of the Medieval Warm Period, and that warming elsewhere reflects thecombined effects of emergence from the Little Ice Age and modernanthropogenic warming. Implications for longterm variations in oceanheat uptake and separating natural and anthropogenic contributions to themodern energy imbalance are discussed.

  1. Felix Spectroscopy of Likely Astronomical Molecular Ions: HC_3O^+, C_2H_3CNH^+, and C_2H_5CNH^+

    NASA Astrophysics Data System (ADS)

    Thorwirth, Sven; Asvany, Oskar; Brünken, Sandra; Jusko, Pavol; Schlemmer, Stephan; Martin-Drumel, Marie-Aline; McCarthy, Michael C.

    2017-06-01

    Infrared signatures of three molecular ions of relevance to the interstellar medium and planetary atmospheres have been detected at the Free Electron Laser for Infrared eXperiments, FELIX, at Radboud University (Nijmegen, The Netherlands) in combination with the 4K FELion 22-pole ion trap facility. Mid-infrared vibrational modes of protonated tricarbon monoxide, HC_3O^+, protonated vinyl cyanide, C_2H_3CNH^+, and protonated ethyl cyanide, C_2H_5CNH^+, were detected using resonant photodissociation of the respective Ne-complexes by monitoring the depletion of their cluster mass signal as a function of wavenumber. The infrared fingerprints compare very favorably with results from high-level quantum-chemical calculations performed at the CCSD(T) level of theory.

  2. Exposed water ice discovered near the south pole of Mars

    USGS Publications Warehouse

    Titus, T.N.; Kieffer, H.H.; Christensen, P.R.

    2003-01-01

    The Mars Odyssey Thermal Emission Imaging System (THEMIS) has discovered water ice exposed near the edge of Mars' southern perennial polar cap. The surface H2O ice was first observed by THEMIS as a region that was cooler than expected for dry soil at that latitude during the summer season. Diurnal and seasonal temperature trends derived from Mars Global Surveyor Thermal Emission Spectrometer observations indicate that there is H2O ice at the surface. Viking observations, and the few other relevant THEMIS observations, indicate that surface H2O ice may be widespread around and under the perennial CO2 cap.

  3. Neutral O2 and Ion O2+ Sources from Rings into the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Elrod, M. K.; Johnson, R. E.; Cassidy, T. A.; Wilson, R. J.; Tseng, W.; Ip, W.

    2009-12-01

    The primary source of neutral O2 for Saturn’s magnetosphere is due to solar UV photons protons that produce O2 from H2O ice decomposition over the main rings as well as the tenuous F and G rings resulting in a tenuous O2 atmosphere (Johnson et. al. 2006). The O2 atmosphere is very thin to the point of being nearly collisionless. Our model of the atmosphere predict that as it interacts with the ring particles, the O2 is adsorbed and desorbed from the rings causing changes in the trajectories, which in turn, allows for a distribution of O2 from the rings throughout the magnetosphere (Tokar et. al. 2005; Tseng et. al. 2009). Predominately through photo-ionization and ion-exchange these O2 neutrals from the ice grains become a source for O2+ ions in the inner magnetosphere. Once the O2 becomes ionized to become O2+ the ions then follow the field lines. The ions interact with the ice particles in the rings to stick to the ring particles effectively reducing the ion density. As a result the ion density is greater over the Cassini Division and the area between the F and G ring where the optical depth due to the ice grain is less. Accordingly, the neutral O2 densities would tend to be high over the higher optical depth of the B and A main rings where the source rates are higher. Models of the neutral densities have shown high densities over the main rings, with a tail through the magnetosphere. Analysis of the CAPS (Cassini Plasma Spectrometer) data from the Saturn Orbit Insertion (SOI) in 2004 shows a peak in density over the Cassini Division and a higher peak in O2+ ion density between the F and G rings. References: Johnson, R.E., J.G. Luhmann, R.L. Tokar, M. Bouhram, J.J. Berthelier, E.C. Siler, J.F. Cooper, T.W. Hill, H.T. Smith, M. Michael, M. Liu, F.J. Crary, D.T. Young, "Production, Ionization and Redistribution of O2 Saturn's Ring Atmosphere" Icarus 180, 393-402 (2006).(pdf) Tokar, R.L., and 12 colleagues, 2005. Cassini Observations of the Thermal Plasma in the

  4. Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad; Tahir, Beenish; Saidina Amin, Nor Aishah; Alias, Hajar

    2016-12-01

    Photocatalytic CO2 reduction by H2O and/or H2 reductant to selective fuels over Cu-promoted In2O3/TiO2 photocatalyst has been investigated. The samples, prepared via a simple and direct sol-gel method, were characterized by XRD, SEM, TEM, XPS, N2 adsorption-desorption, UV-vis diffuse reflectance, Raman and PL spectroscopy. Cu and In loaded into TiO2, oxidized as Cu2+ and In3+, promoted efficient separation of photo-generated electron/hole pairs (e-/h+). The results indicate that the reduction rate of CO2 by H2O to CH4 approached to 181 μmol g-1 h-1 using 0.5% Cu-3% In2O3/TiO2 catalyst, a 1.53 fold higher than the production rate over the 3% In2O3/TiO2 and 5 times the amount produced over the pure TiO2. In addition, Cu was found to promote efficient production of CH3OH and yield rate reached to 68 μmol g-1 h-1 over 1% Cu-3% In2O3/TiO2 catalyst. This improvement was attributed to charge transfer property and suppressed recombination rate by Cu-metal. More importantly, H2 reductant was less favorable for CH4 production, yet a significant amount of CH4 and CH3OH were obtained using a mixture of H2O/H2 reductant. Therefore, Cu-loaded In2O3/TiO2 catalyst has shown to be capable for methanol production, whereas product selectivity was greatly depending on the amount of Cu-loading and the type of reductant. A photocatalytic reaction mechanism was proposed to understand the experimental results over the Cu-loaded In2O3/TiO2 catalyst.

  5. Search for Local Variations of Atmospheric H2O and CO on Mars with PFS/Mars Express

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Encrenaz, T.; Fouchet, T.; Billebaud, F.; Formisano, V.; Atreya, S.; Ignatiev, N.; Moroz, V.; Maturilli, A.; Grassi, D.; Pfs Team

    Spectra recorded by the PFS instrument onboard Mars Express include clear spectral signatures due to CO at 4.7 and 2.3 micron, and H2O at 1.38, 2.6 and 30-50 micron. These features can be used to determine the horizontal distribution of these species on global and local scales and to monitor it with time. Here we investigate the local variations of H2O and CO, focussing on the regions of high-altitude volcanoes. Preliminary results suggest a significant decrease of the CO mixing ratio in these regions, as was found from ISM/Phobos observations (Rosenqvist et al. Icarus 98, 254, 1992).

  6. Two mixed-ligand lanthanide–hydrazone complexes: [Pr(NCS)3(pbh)2H2O and [Nd(NCS)(NO3)(pbh)2(H2O)]NO3·2.33H2O [pbh is N′-(pyridin-2-ylmethylidene)benzo­hydrazide, C13H11N3O

    PubMed Central

    Paschalidis, Damianos G.; Harrison, William T. A.

    2016-01-01

    The gel-mediated syntheses and crystal structures of [N′-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O]tris(thiocyanato-κN)praseodymium(III) mono­hydrate, [Pr(NCS)3(C13H11N3O)2H2O, (I), and aqua(nitrato-κ2 O,O′)[N′-(pyri­din-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O](thiocyanato-κN)neo­dym­ium(III) nitrate 2.33-hydrate, [Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2O, (II), are reported. The Pr3+ ion in (I) is coordinated by two N,N,O-tridentate N′-(pyridin-2-ylmethylidene)benzohydrazide (pbh) ligands and three N-bonded thio­cyanate ions to generate an irregular PrN7O2 coordination polyhedron. The Nd3+ ion in (II) is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thio­cyanate ion, a bidentate nitrate ion and a water mol­ecule to generate a distorted NdN5O5 bicapped square anti­prism. The crystal structures of (I) and (II) feature numerous hydrogen bonds, which lead to the formation of three-dimensional networks in each case. PMID:26958385

  7. High-Level ab initio electronic structure calculations of Water Clusters (H2O)16 and (H2O)17: a new global minimum for (H2O)16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Soohaeng; Apra, Edoardo; Zeng, Xiao Cheng

    The lowest-energy structures of water clusters (H2O)16 and (H2O)17 were revisited at the MP2 and CCSD(T) levels of theory. A new global minimum structure for (H2O)16 was found at the MP2 and CCSD(T) levels of theory and the effect of zero-point energy corrections on the relative stability of the low-lying minimum energy structures was assessed. For (H2O)17 the CCSD(T) calculations confirm the previously found at the MP2 level of theory "interior" arrangement (fully coordinated water molecule inside a spherical cluster) as the global minimum.

  8. High-Level ab-initio Electronic Structure Calculations of Water Clusters (H2O)16 and (H2O)17 : a New Global Minimum for (H2O)16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Soohaeng; Apra, Edoardo; Zeng, X.C.

    The lowest-energy structures of water clusters (H2O)16 and (H2O)17 were revisited at the MP2 and CCSD(T) levels of theory. A new global minimum structure for (H2O)16 was found at both the MP2 and CCSD(T) levels of theory, and the effect of zero-point energy corrections on the relative stability of the low-lying minimum energy structures was assessed. For (H2O)17, the CCSD(T) calculations confirm the previously found at the MP2 level of theory interior arrangement (fully coordinated water molecule inside a spherical cluster) as the global minimum

  9. A Model Study of the Thermal Evolution of Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Teolis, B. D.; Baragiola, R. A.

    2006-01-01

    We address the question of the evolution of ices that have been exposed to radiation from stellar sources and cosmic rays. We studied in the laboratory the thermal evolution of a model ice sample: a mixture of water, hydrogen peroxide, dioxygen, and ozone produced by irradiating solid H2O2 with 50 keV H(+) at 17 K. The changes in composition and release of volatiles during warming to 200 K were monitored by infrared spectroscopy, mass spectrometry, and microbalance techniques. We find evidence for voids in the water component from the infrared bands due to dangling H bonds. The absorption from these bands increases during heating and can be observed at temperatures as high as approx. 155 K. More O2 is stored in the radiolyzed film than can be retained by codeposition of O2 and H2O. This O2 remains trapped until approx. 155 K, where it desorbs in an outburst as water ice crystallizes. Warming of the ice also drastically decreases the intrinsic absorbance of O2 by annealing defects in the ice. We also observe loss of O3 in two stages during heating, which correlates with desorption and possibly chemical reactions with radicals stored in the ice, triggered by the temperature increase.

  10. The catalytic effects of H2CO3, CH3COOH, HCOOH and H2O on the addition reaction of CH2OO + H2O → CH2(OH)OOH

    NASA Astrophysics Data System (ADS)

    Zhang, Tianlei; Lan, Xinguang; Wang, Rui; Roy, Soumendra; Qiao, Zhangyu; Lu, Yousong; Wang, Zhuqing

    2018-07-01

    The addition reaction of CH2OO + H2O → CH2(OH)OOH without and with X (X = H2CO3, CH3COOH and HCOOH) and H2O was studied at CCSD(T)/6-311+ G(3df,2dp)//B3LYP/6-311+G(2d,2p) level of theory. Our results show that X can catalyse CH2OO + H2O → CH2(OH)OOH reaction both by increasing the number of rings, and by adding the size of the ring in which ring enlargement by COOH moiety of X inserting into CH2OO...H2O is favourable one. Water-assisted CH2OO + H2O → CH2(OH)OOH can occur by H2O moiety of (H2O)2 or the whole (H2O)2 forming cyclic structure with CH2OO, where the latter form is more favourable. Because the concentration of H2CO3 is unknown, the influence of CH3COOH, HCOOH and H2O were calculated within 0-30 km altitude of the Earth's atmosphere. The results calculated within 0-5 km altitude show that H2O and HCOOH have obvious effect on enhancing the rate with the enhancement factors are, respectively, 62.47%-77.26% and 0.04%-1.76%. Within 5-30 km altitude, HCOOH has obvious effect on enhancing the title rate with the enhancement factor of 2.69%-98.28%. However, compared with the reaction of CH2OO + HCOOH, the rate of CH2OO...H2O + HCOOH is much slower.

  11. [H2O ortho-para spin conversion in aqueous solutions as a quantum factor of Konovalov paradox].

    PubMed

    Pershin, S M

    2014-01-01

    Recently academician Konovalov and co-workers observed an increase in electroconductivity and biological activity simultaneously with diffusion slowing (or nanoobject diameter increasing) and extremes of other parameters (ζ-potential, surface tension, pH, optical activity) in low concentration aqueous solutions. This phenomenon completely disappeared when samples were shielded against external electromagnetic fields by a Faraday cage. A conventional theory of water and water solutions couldn't explain "Konovalov paradox" observed in numerous experiments (representative sampling about 60 samples and 7 parameters). The new approach was suggested to describe the physics of water and explain "Konovalov paradox". The proposed concept takes into account the quantum differences of ortho-para spin isomers of H2O in bulk water (rotational spin-selectivity upon hydration and spontaneous formation of ice-like structures, quantum beats and spin conversion induced in the presence of a resonant electromagnetic radiation). A size-dependent self-assembly of amorphous complexes of H2O molecules more than 275 leading to the ice Ih structure observed in the previous experiments supports this concept.

  12. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT ETERNAL Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Wignall, J.; Lyons, Marv; Ertl, G.; Alefeld, Georg; Youdelis, W.; Radd, H.; Oertle, G.; Siegel, Edward

    2013-03-01

    ''H2O H2O everywhere; ne'er a drop to drink''[Coleridge(1798)] now: ''H2 H2 everywhere; STILL ne'er a drop to drink'': ONLY H2 (or methane CH4) can be FLYING-WATER(F-W) chemical-rain-in-pipelines Hindenberg-effect (H2-UP;H2O-DOWN): { ∖{}O/H2O{ ∖}} =[16]/[18] ∖sim 90{ ∖%} O already in air uphill; NO H2O pumping need! In global-warming driven H2O-starved glacial-melting world, rescue is possible ONLY by Siegel [ ∖underline {3rd Intl. Conf. Alt.-Energy }(1980)-vol.5/p.459!!!] Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating-system. Rosenfeld[Science 315,1396(3/9/2007)]-Biello [Sci.Am.(3/9 /2007)] crucial geomorphology which ONLY maximal-buoyancy H2 can exploit, to again make ''Mountains into Fountains'', ``upthrust rocks trapping the clouds to precipitate their rain/snow/H2O'': ''terraforming''(and ocean-rebasificaton!!!) ONLY VIA Siegel[APS March MTGS.:1960s-2000ss) DIFFUSIVE-MAGNETORESISTANCE (DMR) proprietary MAGNETIC-HYDROGEN-VALVE(MHV) ALL-IMPORTANT PRECLUDED RADIAL-diffusion, permitting ONLY AXIAL-H2-BALLISTIC-flow (``G.A''.''/DoE''/''Terrapower''/''Intellectual-Ventures''/ ''Gileland''/ ''Myhrvold''/''Gates'' ``ARCHIMEDES'') in ALREADY IN-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Science 300,1740(2003)] dire warning of global-pandemics (cancers/ blindness/ famine)

  13. Stability of Sulphur Dimers (S2) in Cometary Ices

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Ozgurel, O.; Lunine, J. I.; Luspay-Kuti, A.; Ronnet, T.; Pauzat, F.; Markovits, A.; Ellinger, Y.

    2017-02-01

    S2 has been observed for decades in comets, including comet 67P/Churyumov-Gerasimenko. Despite the fact that this molecule appears ubiquitous in these bodies, the nature of its source remains unknown. In this study, we assume that S2 is formed by irradiation (photolysis and/or radiolysis) of S-bearing molecules embedded in the icy grain precursors of comets and that the cosmic ray flux simultaneously creates voids in ices within which the produced molecules can accumulate. We investigate the stability of S2 molecules in such cavities, assuming that the surrounding ice is made of H2S or H2O. We show that the stabilization energy of S2 molecules in such voids is close to that of the H2O ice binding energy, implying that they can only leave the icy matrix when this latter sublimates. Because S2 has a short lifetime in the vapor phase, we derive that its formation in grains via irradiation must occur only in low-density environments such as the ISM or the upper layers of the protosolar nebula, where the local temperature is extremely low. In the first case, comets would have agglomerated from icy grains that remained pristine when entering the nebula. In the second case, comets would have agglomerated from icy grains condensed in the protosolar nebula and that would have been efficiently irradiated during their turbulent transport toward the upper layers of the disk. Both scenarios are found consistent with the presence of molecular oxygen in comets.

  14. I + (H2O)2 → HI + (H2O)OH Forward and Reverse Reactions. CCSD(T) Studies Including Spin-Orbit Coupling.

    PubMed

    Wang, Hui; Li, Guoliang; Li, Qian-Shu; Xie, Yaoming; Schaefer, Henry F

    2016-03-03

    The potential energy profile for the atomic iodine plus water dimer reaction I + (H2O)2 → HI + (H2O)OH has been explored using the "Gold Standard" CCSD(T) method with quadruple-ζ correlation-consistent basis sets. The corresponding information for the reverse reaction HI + (H2O)OH → I + (H2O)2 is also derived. Both zero-point vibrational energies (ZPVEs) and spin-orbit (SO) coupling are considered, and these notably alter the classical energetics. On the basis of the CCSD(T)/cc-pVQZ-PP results, including ZPVE and SO coupling, the forward reaction is found to be endothermic by 47.4 kcal/mol, implying a significant exothermicity for the reverse reaction. The entrance complex I···(H2O)2 is bound by 1.8 kcal/mol, and this dissociation energy is significantly affected by SO coupling. The reaction barrier lies 45.1 kcal/mol higher than the reactants. The exit complex HI···(H2O)OH is bound by 3.0 kcal/mol relative to the asymptotic limit. At every level of theory, the reverse reaction HI + (H2O)OH → I + (H2O)2 proceeds without a barrier. Compared with the analogous water monomer reaction I + H2O → HI + OH, the additional water molecule reduces the relative energies of the entrance stationary point, transition state, and exit complex by 3-5 kcal/mol. The I + (H2O)2 reaction is related to the valence isoelectronic bromine and chlorine reactions but is distinctly different from the F + (H2O)2 system.

  15. Synthesis and characterization of polymer eight-coordinate (enH 2)[Y III(pdta)(H 2O)] 2·10H 2O as well as the interaction of [Y III(pdta)(H 2O)] 22- with BSA

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Jun; Wang, Xin; Liu, Bing-Mi; He, Ling-Ling; Xu, Shu-Kun

    2010-12-01

    The eight-coordinate (enH 2)[Y III(pdta)(H 2O)] 2·10H 2O (en = ethylenediamine and H 4pdta = 1,3-propylenediamine- N, N, N', N'-tetraacetic acid) was synthesized, meanwhile its molecular and crystal structures were determined by single-crystal X-ray diffraction technology. The interaction between [Y III(pdta)(H 2O)] 22- and bovine serum albumin (BSA) was investigated by UV-vis and fluorescence spectra. The results indicate that [Y III(pdta)(H 2O)] 22- quenched effectively the intrinsic fluorescence of BSA via a static quenching process with the binding constant ( Ka) of the order of 10 4. Meanwhile, the binding and damaging sites to BSA molecules were also estimated by synchronous fluorescence. Results indicate that the hydrophobic environments around Trp and Tyr residues were all slightly changed. The thermodynamic parameters (Δ G = -25.20 kJ mol -1, Δ H = -26.57 kJ mol -1 and Δ S = -4.58 J mol -1 K -1) showed that the reaction was spontaneous and exothermic. What is more, both Δ H and Δ S were negative values indicated that hydrogen bond and Van der Waals forces were the predominant intermolecular forces between [Y III(pdta)(H 2O)] 22- and BSA.

  16. Grain-size-induced weakening of H2O ices I and II and associated anisotropic recrystallization

    USGS Publications Warehouse

    Stern, L.A.; Durham, W.B.; Kirby, S.H.

    1997-01-01

    Grain-size-dependent flow mechanisms tend to be favored over dislocation creep at low differential stresses and can potentially influence the rheology of low-stress, low-strain rate environments such as those of planetary interiors. We experimentally investigated the effect of reduced grain size on the solid-state flow of water ice I, a principal component of the asthenospheres of many icy moons of the outer solar system, using techniques new to studies of this deformation regime. We fabricated fully dense ice samples of approximate grain size 2 ?? 1 ??m by transforming "standard" ice I samples of 250 ?? 50 ??m grain size to the higher-pressure phase ice II, deforming them in the ice II field, and then rapidly releasing the pressure deep into the ice I stability field. At T ??? 200 K, slow growth and rapid nucleation of ice I combine to produce a fine grain size. Constant-strain rate deformation tests conducted on these samples show that deformation rates are less stress sensitive than for standard ice and that the fine-grained material is markedly weaker than standard ice, particularly during the transient approach to steady state deformation. Scanning electron microscope examination of the deformed fine-grained ice samples revealed an unusual microstructure dominated by platelike grains that grew normal to the compression direction, with c axes preferentially oriented parallel to compression. In samples tested at T ??? 220 K the elongation of the grains is so pronounced that the samples appear finely banded, with aspect ratios of grains approaching 50:1. The anisotropic growth of these crystallographically oriented neoblasts likely contributes to progressive work hardening observed during the transient stage of deformation. We have also documented remarkably similar microstructural development and weak mechanical behavior in fine-grained ice samples partially transformed and deformed in the ice II field.

  17. Invited Article: SUBGLACIOR: An optical analyzer embedded in an Antarctic ice probe for exploring the past climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grilli, R.; Marrocco, N.; Desbois, T.

    2014-11-15

    This article describes the advances made in the development of a specific optical spectrometer based on the Optical Feedback-Cavity Enhanced Absorption Spectroscopy technique for exploring past climate by probing the original composition of the atmosphere stored in the ice sheet of a glacier. Based on significant technological progresses and unconventional approaches, SUBGLACIOR will be a revolutionary tool for ice-core research: the optical spectrometer, directly embedded in the drilling probe, will provide in situ real-time measurements of deuterium isotopic variations (δ{sup 2}H ) and CH{sub 4} concentrations down to 3500 m of ice depth within a single Antarctic season. The instrumentmore » will provide simultaneous and real-time vertical profiles of these two key climate signatures in order to evaluate if a target site can offer ice cores as old as 1.5 million years by providing direct insight into past temperatures and climate cycles. The spectrometer has a noise equivalent absorption coefficient of 2.8 × 10{sup −10} cm{sup −1} Hz{sup −1/2}, corresponding to a detection limit of 0.2 ppbv for CH{sub 4} and a precision of 0.2‰ on the δ{sup 2}H of H{sub 2}O within 1 min acquisition time.« less

  18. CHEMICAL PROCESSING OF PURE AMMONIA AND AMMONIA-WATER ICES INDUCED BY HEAVY IONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordalo, V.; Da Silveira, E. F.; Lv, X. Y.

    Cosmic rays are possibly the main agents to prevent the freeze-out of molecules onto grain surfaces in cold dense clouds. Ammonia (NH{sub 3}) is one of the most abundant molecules present in dust ice mantles, with a concentration of up to 15% relative to water (H{sub 2}O). FTIR spectroscopy is used to monitor pure NH{sub 3} and NH{sub 3}-H{sub 2}O ice samples as they are irradiated with Ni and Zn ion beams (500-600 MeV) at GANIL/France. New species, such as hydrazine (N{sub 2}H{sub 4}), diazene (N{sub 2}H{sub 2} isomers), molecular hydrogen (H{sub 2}), and nitrogen (N{sub 2}) were identified aftermore » irradiation of pure NH{sub 3} ices. Nitrous oxide (N{sub 2}O), nitrogen oxide (NO), nitrogen dioxide (NO{sub 2}), and hydroxylamine (NH{sub 2}OH) are some of the products of the NH{sub 3}-H{sub 2}O ice radiolysis. The spectral band at 6.85 {mu}m was observed after irradiation of both types of ice. Besides the likely contribution of ammonium (NH{sub 4}{sup +}) and amino (NH{sub 2}) radicals, data suggest a small contribution of NH{sub 2}OH to this band profile after high fluences of irradiation of NH{sub 3}-H{sub 2}O ices. The spectral shift of the NH{sub 3} ''umbrella'' mode (9.3 {mu}m) band is parameterized as a function of NH{sub 3}/H{sub 2}O ratio in amorphous ices. Ammonia and water destruction cross-sections are obtained, as well as the rate of NH{sub 3}-H{sub 2}O (1:10) ice compaction, measured by the OH dangling bond destruction cross-section. Ammonia destruction is enhanced in the presence of H{sub 2}O in the ice and a power law relationship between stopping power and NH{sub 3} destruction cross-section is verified. Such results may provide relevant information for the evolution of molecular species in dense molecular clouds.« less

  19. The Ortho-to-para Ratio of Water Molecules Desorbed from Ice Made from Para-water Monomers at 11 K

    NASA Astrophysics Data System (ADS)

    Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki

    2018-04-01

    Water has two nuclear-spin isomers: ortho- and para-H2O. Some observations of interstellar space and cometary comae have reported the existence of gaseous H2O molecules with anomalous ortho-to-para ratios (OPRs) less than the statistical value of three. This has been often used to estimate the formation temperature of ice on dust, which is inferred to be below 50 K. The relation between the nuclear-spin dynamics of H2O in ice at low temperatures and the OPR of gaseous H2O desorbed from the ice has yet to be explored in a laboratory. Consequently, the true meaning of the observed OPRs remains debated. We measure the OPR of H2O photodesorbed from ice made from para-H2O monomers at 11 K, which was prepared by the sublimation of Ne from a para-H2O/Ne matrix. The photodesorbed H2O molecules from the ice have the statistical OPR value of three, demonstrating the immediate nuclear-spin-state mixing of H2O toward the statistical value of ice even at 11 K. The OPR of H2O thermally desorbed from the ice also shows the expected statistical value. Our results indicate that the OPR of H2O desorbed from interstellar ice should be the statistical value regardless of the formation process of the ice, which cannot be used to deduce the ice-formation temperature. This study highlights the importance of interstellar gas-phase processes in understanding anomalous abundance ratios of nuclear-spin isomers of molecules in space.

  20. Saturn's Icy satellites: The Role of Sub-Micron Ice Particles and Nano-sized Contaminants (Invited)

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Cruikshank, D. P.; Dalle Ore, C. M.; Jaumann, R.; Brown, R. H.; Stephan, K.; Buratti, B. J.; Filacchione, G.; Baines, K. H.; Nicholson, P.

    2010-12-01

    The Visual and Infrared Mapping Spectrometer (VIMS) has obtained spatially resolved imaging spectroscopy data on numerous satellites of Saturn. The spectral trends on individual satellites and as compositional gradients within the Saturn system show systematic trends that indicate variable ice grain sizes and contaminants. Compositional mapping shows that the satellite surfaces are composed largely of H2O ice, with small amounts of CO2, trace organics, bound water or OH-bearing minerals, and possible signatures of ammonia, H2O or OH-bearing minerals, and dark, fine-grained materials. The E-ring coats the inner satellites with sub-micron ice particles. The Cassini Rev 49 Iapetus fly-by on September 10, 2007, provided imaging spectroscopy data on both the dark material and the transition zone between the dark material and the visually bright ice on the trailing side. The dark material has very low albedo with a linear increase in reflectance with wavelength, a 3-micron water absorption, and a CO2 absorption. The only reflectance models that can explain the trends include highly absorbing sub-micron materials that create Rayleigh absorption. Radiative transfer models that include diffraction from Rayleigh scattering and Rayleigh absorption are necessary to match observed data. The dark material is well matched by a high component of fine-grained metallic iron plus a small component of nano-phase hematite. Spatially resolved Iapetus data show mixing of dark material with ice and the mixtures display a blue scattering peak and a UV absorption. The blue scattering peak and UV-Visible absorption is observed in spectra of all satellites at some locations where dark material is mixed with the ice. Rayleigh scattering and Rayleigh absorption have also been observed in spectral properties of the Earth's moon. Rayleigh absorption requires high absorption coefficient nano-sized particles, which is also consistent with metallic iron. The UV absorber appears to have increased

  1. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Lyons, M.; Siegel, E.

    2010-03-01

    ``Water water everywhere; ne'er a drop to drink''[Coleridg(1798)]; now:``Hydrogen hydrogen everywhere;STILL ne'er a drop to drink'': ONLY H2 can be ``FLYING-WATER''/``chemical-rain-in-pipelines''/ ``Hindenberg-effect (H2-UP;H2O-DOWN): atomic-weights ratio: O/H2O=[16]/[18]˜90%; O already in air uphill; NO H2O pumping need! In water-starved glacial-melting world, rescue ONLY by Siegel[3rd Intl.Conf.Alt.Energy,Hemisphere/Springer(1980)- vol.5/ p.459]Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating- system. Rosenfeld[Sci.315,1396(3/9/2007)]-Biello[Sci.Am.(3/9/ 2007)]crucial geomorphology which ONLY maximal-buoyancy light- est-element H2 can exploit, to again make ``Mountains into Fount- ains": Siegel ``terra-forming''(and ocean-rebasificaton!!!) long pre-``Holdren''-``Ciccerine" ``geo-enginering'', only via Siegel proprietary magnetic-hydrogen-valve permits H2 flow in already in-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Sci.300,1740(03)]global-pandemics (cancers/blindness/famine)dire-warning about H2-(ALONE)economy CATASTROPHIC H2 ozone-layer destruction sobering cavat to dangerous H2-automotion-economy panacea hype!

  2. High Pressure and High Temperature State of Oxygen Enriched Ice

    NASA Astrophysics Data System (ADS)

    LI, M.; Zhang, S.; Jeanloz, R.; Militzer, B.

    2016-12-01

    Interior models for Uranus and Neptune include a hydrogen/helium/water outer envelope and a core of rock and metal at the center, with superionic water-rich ice proposed as comprising an intermediate layer. Here we consider an oxygen-enriched ice, such as H2O2 hydrogen peroxide (± water), that could form through chemical reaction between water-rich and underlying rocky (i.e., oxygen-rich) layers. As oxygen and its compounds (e.g., H2O, SiO2) form metallic fluids at pressures above 100-150 GPa, the problem amounts to considering oxygen alloying of semiconducting or metallic water. The density of H2O2 is 1.45 g/cc at ambient pressure and 0° C, increasing to 1.71 g/cc in the solid state at about -20° C. There are no Hugoniot data beyond 30 GPa, so we estimated Hugoniots for H2O2 with different initial densities, using both a mixing model based on Hugoniot data for H2O2 and 1/2 O2 (molar volume summation under pressure) and ab initio calculations for unreacted H2O2. The results agree with each other to pressures of about 200 GPa, and the ab initio calculations show evidence of a superionic state at temperatures as low as 500 K, much lower than for water ice. Hydrogen peroxide is expected to be liquid along planetary isentropes for Uranus and Neptune, suggesting that H2O2 may not be present as a pure compound in these planets. Instead, oxygen-enriched H2O ice may be the relevant form of water and oxygen, and might be produced in the laboratory by way of dynamic compression of H2O2 or laser-heating of statically compressed H2O + O2 and/or H2O2.

  3. Ice Chemistry in Starless Molecular Cores

    NASA Astrophysics Data System (ADS)

    Kalvāns, J.

    2015-06-01

    Starless molecular cores are natural laboratories for interstellar molecular chemistry research. The chemistry of ices in such objects was investigated with a three-phase (gas, surface, and mantle) model. We considered the center part of five starless cores, with their physical conditions derived from observations. The ice chemistry of oxygen, nitrogen, sulfur, and complex organic molecules (COMs) was analyzed. We found that an ice-depth dimension, measured, e.g., in monolayers, is essential for modeling of chemistry in interstellar ices. Particularly, the H2O:CO:CO2:N2:NH3 ice abundance ratio regulates the production and destruction of minor species. It is suggested that photodesorption during the core-collapse period is responsible for the high abundance of interstellar H2O2 and O2H and other species synthesized on the surface. The calculated abundances of COMs in ice were compared to observed gas-phase values. Smaller activation barriers for CO and H2CO hydrogenation may help explain the production of a number of COMs. The observed abundance of methyl formate HCOOCH3 could be reproduced with a 1 kyr, 20 K temperature spike. Possible desorption mechanisms, relevant for COMs, are gas turbulence (ice exposure to interstellar photons) or a weak shock within the cloud core (grain collisions). To reproduce the observed COM abundances with the present 0D model, 1%-10% of ice mass needs to be sublimated. We estimate that the lifetime for starless cores likely does not exceed 1 Myr. Taurus cores are likely to be younger than their counterparts in most other clouds.

  4. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    PubMed

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  5. Evolution of H2O, CO, and CO2 production in Comet C/2009 P1 Garradd during the 2011-2012 apparition

    NASA Astrophysics Data System (ADS)

    McKay, Adam J.; Cochran, Anita L.; DiSanti, Michael A.; Villanueva, Geronimo; Russo, Neil Dello; Vervack, Ronald J.; Morgenthaler, Jeffrey P.; Harris, Walter M.; Chanover, Nancy J.

    2015-04-01

    We present analysis of high spectral resolution NIR spectra of CO and H2O in Comet C/2009 P1 (Garradd) taken during its 2011-2012 apparition with the CSHELL instrument on NASA's Infrared Telescope Facility (IRTF). We also present analysis of observations of atomic oxygen in Comet Garradd obtained with the ARCES echelle spectrometer mounted on the ARC 3.5-m telescope at Apache Point Observatory and the Tull Coude spectrograph on the Harlan J. Smith 2.7-m telescope at McDonald Observatory. The observations of atomic oxygen serve as a proxy for H2O and CO2. We confirm the high CO abundance in Comet Garradd and the asymmetry in the CO/H2O ratio with respect to perihelion reported by previous studies. From the oxygen observations, we infer that the CO2/H2O ratio decreased as the comet moved towards the Sun, which is expected based on current sublimation models. We also infer that the CO2/H2O ratio was higher pre-perihelion than post-perihelion. We observe evidence for the icy grain source of H2O reported by several studies pre-perihelion, and argue that this source is significantly less abundant post-perihelion. Since H2O, CO2, and CO are the primary ices in comets, they drive the activity. We use our measurements of these important volatiles in an attempt to explain the evolution of Garradd's activity over the apparition.

  6. Magnetic monopole condensation transition out of quantum spin ice: application to Pr2 Ir2 O7 and Yb2 Ti2 O7

    NASA Astrophysics Data System (ADS)

    Chen, Gang

    We study the proximate magnetic orders and the related quantum phase transition out of quantum spin ice (QSI). We apply the electromagnetic duality of the compact quantum electrodynamics to analyze the condensation of the magnetic monopoles for QSI. The monopole condensation transition represents a unconventional quantum criticality with unusual scaling laws. The magnetic monopole condensation leads to the magnetic states that belong to the ``2-in 2-out'' spin ice manifold and generically have an enlarged magnetic unit cell. We demonstrate that the antiferromagnetic state with the ordering wavevector Q = 2p(001) is proximate to QSI while the ferromagnetic state with the ordering wavevector Q = (000) is not proximate to QSI. This implies that if there exists a direct transition from QSI to the ferromagnetic state, the transition must be strongly first order. We apply the theory to the puzzling experiments on two pyrochlore systems Pr2Ir2O7 and Yb2Ti2O7. chggst@gmail.com.

  7. Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast☆

    PubMed Central

    Martins, Dorival; English, Ann M.

    2014-01-01

    Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1) protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A) does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4). This we attributed to our observation that catalase activity is depressed when yeast are challenged with H2O2 in nutrient-poor media. Hence, we performed a systematic comparison of catalase activity and cell viability of wild-type yeast and of the single catalase knockouts, ctt1∆ and cta1∆, following H2O2 challenge in nutrient-rich medium (YPD) and in phosphate buffer (pH 7.4). Ctt1 but not Cta1 activity is strongly induced by H2O2 when cells are challenged in YPD but suppressed when cells are challenged in buffer. Consistent with the activity results, exponentially growing ctt1∆ cells in YPD are more sensitive to H2O2 than wild-type or cta1∆ cells, whereas in buffer all three strains exhibit comparable H2O2 hypersensitivity. Furthermore, catalase activity is increased during adaptation to sublethal H2O2 concentrations in YPD but not in buffer. We conclude that induction of cytosolic Ctt1 activity is vital in protecting yeast against exogenous H2O2 but this activity is inhibited by H2O2 when cells are challenged in nutrient-free media. PMID:24563848

  8. Ground and excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters: Insight into the electronic structure of the [Fe(H2O)6]2+ – [Fe(H2O)6]3+ complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miliordos, Evangelos; Xantheas, Sotiris S.

    We report the ground and low lying electronically excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters using multi-configuration electronic structure theory. In particular, we have constructed the Potential Energy Curves (PECs) with respect to the iron-oxygen distance when removing all water ligands at the same time from the cluster minima and established their correlation to the long range dissociation channels. Due to the fact that both the second and third ionization potentials of iron are larger than the one for water, the ground state products asymptotically correlate with dissociation channels that are repulsive in nature at large separations as theymore » contain at least one H2O+ fragment and a positive metal center. The most stable equilibrium structures emanate – via intersections and/or avoided crossings – from the channels consisting of the lowest electronic states of Fe2+(5D; 3d6) or Fe3+(6S; 3d5) and six neutral water molecules. Upon hydration, the ground state of Fe2+(H2O)6 is a triply (5Tg) degenerate one with the doubly (5Eg) degenerate state lying slightly higher in energy. Similarly, Fe3+(H2O)6 has a ground state of 6Ag symmetry under Th symmetry. We furthermore examine a multitude of electronically excited states of many possible spin multiplicities, and report the optimized geometries for several selected states. The PECs for those cases are characterized by a high density of states. Focusing on the ground and the first few excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters, we studied their mutual interaction in the gas phase. We obtained the optimal geometries of the Fe2+(H2O)6 – Fe3+(H2O)6 gas phase complex for different Fe–Fe distances. For distances shorter than 6.0 Å, the water molecules in the respective first solvation shells located between the two metal centers were found to interact via weak hydrogen bonds. We examined a total of ten electronic states for this complex, including those corresponding to the

  9. The effect of ZnO addition on H2O activation over Co/ZrO2 catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Stephen D.; Sun, Junming; Wang, Yong

    The effect of ZnO addition on the dissociation of H2O and subsequent effects on cobalt oxidation state and ethanol reaction pathway were investigated over Co/ZrO2 catalyst during ethanol steam reforming (ESR). Catalyst physical properties were characterized by BET, XRD, and TEM. To characterize the catalysts ability to dissociate H2O, Raman spectroscopy, H2O-TPO, and pulsed H2O oxidation coupled with H2-TPR were used. It was found that the addition of ZnO to cobalt supported on ZrO2 decreased the activity for H2O dissociation, leading to a lower degree of cobalt oxidation. The decreased H2O dissociation was also found to affect the reaction pathway,more » evidenced by a shift in liquid product selectivity away from acetone and towards acetaldehyde.« less

  10. Possible significance of cubic water-ice, H2O-Ic, in the atmospheric water cycle of Mars

    NASA Technical Reports Server (NTRS)

    Gooding, James L.

    1988-01-01

    The possible formation and potential significance of the cubic ice polymorph on Mars is discussed. When water-ice crystallizes on Earth, the ambient conditions of temperature and pressure result in the formation of the hexagonal ice polymorph; however, on Mars, the much lower termperature and pressures may permit the crystallization of the cubic polymorph. Cubic ice has two properties of possible importance on Mars: it is an excellant nucleator of other volatiles (such as CO2), and it undergoes an exothermic transition to hexagonal ice at temperatures above 170 K. These properties may have significant implications for both martian cloud formation and the development of the seasonal polar caps.

  11. The reaction of H2O2 with NO2 and NO

    NASA Technical Reports Server (NTRS)

    Gray, D.; Lissi, E.; Heicklen, J.

    1972-01-01

    The reactions of NO and NO2 with H2O2 have been examined at 25 C. Reaction mixtures were monitored by continuously bleeding through a pinhole into a monopole mass spectrometer. NO2 was also monitored by its optical absorption in the visible part of the spectrum. Reaction mixtures containing initially 1.5 - 2.5 torr of NO2 and 0.8 - 1.4 torr of H2O2 or 1 - 12 torr of NO and 0.5 - 1.5 torr of H2O2 were studied. The H2O2 - NO reaction was complex. There was an induction period followed by a marked acceleration in reactant removal. The final products of the reaction, NO2, probably H2O, and possibly HONO2 were produced mainly after all the H2O2 was removed. The HONO intermediate was shown to disproportionate to NO2 + NO + H2O in a relatively slow first order reaction. The acceleration in H2O2 removal after the NO - H2O2 reaction is started is caused by NO2 catalysis.

  12. Reactions of CH3SH and CH3SSCH3 with gas-phase hydrated radical anions (H2O)n(•-), CO2(•-)(H2O)n, and O2(•-)(H2O)n.

    PubMed

    Höckendorf, Robert F; Hao, Qiang; Sun, Zheng; Fox-Beyer, Brigitte S; Cao, Yali; Balaj, O Petru; Bondybey, Vladimir E; Siu, Chi-Kit; Beyer, Martin K

    2012-04-19

    The chemistry of (H(2)O)(n)(•-), CO(2)(•-)(H(2)O)(n), and O(2)(•-)(H(2)O)(n) with small sulfur-containing molecules was studied in the gas phase by Fourier transform ion cyclotron resonance mass spectrometry. With hydrated electrons and hydrated carbon dioxide radical anions, two reactions with relevance for biological radiation damage were observed, cleavage of the disulfide bond of CH(3)SSCH(3) and activation of the thiol group of CH(3)SH. No reactions were observed with CH(3)SCH(3). The hydrated superoxide radical anion, usually viewed as major source of oxidative stress, did not react with any of the compounds. Nanocalorimetry and quantum chemical calculations give a consistent picture of the reaction mechanism. The results indicate that the conversion of e(-) and CO(2)(•-) to O(2)(•-) deactivates highly reactive species and may actually reduce oxidative stress. For reactions of (H(2)O)(n)(•-) with CH(3)SH as well as CO(2)(•-)(H(2)O)(n) with CH(3)SSCH(3), the reaction products in the gas phase are different from those reported in the literature from pulse radiolysis studies. This observation is rationalized with the reduced cage effect in reactions of gas-phase clusters. © 2012 American Chemical Society

  13. Vacuum ultraviolet photoabsorption of prime ice analogues of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Pavithraa, S.; Lo, J.-I.; Rahul, K.; Raja Sekhar, B. N.; Cheng, B.-M.; Mason, N. J.; Sivaraman, B.

    2018-02-01

    Here we present the first Vacuum UltraViolet (VUV) photoabsorption spectra of ice analogues of Pluto and Charon ice mixtures. For Pluto the ice analogue is an icy mixture containing nitrogen (N2), carbon monoxide (CO), methane (CH4) and water (H2O) prepared with a 100:1:1:3 ratio, respectively. Photoabsorption of icy mixtures with and without H2O were recorded and no significant changes in the spectra due to presence of H2O were observed. For Charon a VUV photoabsorption spectra of an ice analogue containing ammonia (NH3) and H2O prepared with a 1:1 ratio was recorded, a spectrum of ammonium hydroxide (NH4OH) was also recorded. These spectra may help to interpret the P-Alice data from New Horizons.

  14. Application of H2O and UV/H2O2 processes for enhancing the biodegradability of reactive black 5 dye.

    PubMed

    Kalpana, S Divya; Kalyanaraman, Chitra; Gandhi, N Nagendra

    2011-07-01

    Leather processing is a traditional activity in India during which many organic and inorganic chemicals are added while part of it is absorbed by the leather, the remaining chemicals are discharged along with the effluent. The effluent contains both easily biodegradable and not easily biodegradable synthetic organics like dyes, syntans. Easily biodegradable organics are removed in the existing biological treatment units whereas synthetic organics present in the wastewater are mostly adsorbed over the microbes. As the tannery effluent contains complex chemicals, it is difficult to ascertain the degradation of specific pollutants. To determine the increase in the biodegradability, one of the complex and synthetic organic chemical like dye used in the tanning operation was selected for Advanced Oxidation Process (AOPs) treatment for cleaving complex organics and its subsequent treatment in aerobic process. In the present study, Reactive Black 5 Dye used in the tanning operation was selected for Hydrogen Peroxide (H2O2) and UV/H2O2 pre-treatment for different operating conditions like pH, contact time and different volume of H2O2. A comparison was made between the untreated, Hydrogen Peroxide (H2O2) and UV/H2O2 treated effluent in order to ascertain the influence of AOP on the improvement of biodegradability of effluent. An increase in the BOD5/COD ratio from 0.21 to 0.435 was achieved in the UV/H2O2 pre-treatment process. This pre-treated effluent was further subjected to aerobic process. Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) removal efficiency of the UV/H2O2 pre-treated dye solution in the aerobic process was found to be 86.39% and 77.82% when compared to 52.43% of BOD5 and 51.55% of COD removal efficiency without any pre-treatment. Hence from these results, to increase the biodegradability of Reactive Black 5 dye pre-treatment methods like H2O2 and UV/H2O2 can be used prior to biological treatment process.

  15. Antarctic ice-core water (USGS49) – A new isotopic reference material for δ2H and δ18O measurements of water

    USGS Publications Warehouse

    Lorenz, Jennifer M.; Qi, Haiping; Coplen, Tyler B.

    2017-01-01

    As a result of the scarcity of isotopic reference waters for daily use, a new secondary isotopic reference material for international distribution has been prepared from ice-core water from the Amundsen–Scott South Pole Station. This isotopic reference material, designated as USGS49, was filtered, homogenised, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity and measured by dual-inlet isotope-ratio mass spectrometry. The δ2H and δ18O values of USGS49 are −394.7 ± 0.4 and −50.55 ± 0.04 mUr (where mUr = 0.001 = ‰), respectively, relative to VSMOW, on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, −428 and −55.5 mUr. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95% probability of encompassing the true value. This isotopic reference material is intended as one of two isotopic reference waters for daily normalisation of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer. It is available by the case of 144 glass ampoules or as a set of sixteen glass ampoules containing 5 ml of water in each ampoule.

  16. Inference of Surface Parameters from Near-Infrared Spectra of Crystalline H2O Ice with Neural Learning

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Merényi, Erzsébet; Grundy, William M.; Young, Eliot F.

    2010-07-01

    The near-infrared spectra of icy volatiles collected from planetary surfaces can be used to infer surface parameters, which in turn may depend on the recent geologic history. The high dimensionality and complexity of the spectral data, the subtle differences between the spectra, and the highly nonlinear interplay between surface parameters make it often difficult to accurately derive these surface parameters. We use a neural machine, with a Self-Organizing Map (SOM) as its hidden layer, to infer the latent physical parameters, temperature and grain size from near-infrared spectra of crystalline H2O ice. The output layer of the SOM-hybrid machine is customarily trained with only the output from the SOM winner. We show that this scheme prevents simultaneous achievement of high prediction accuracies for both parameters. We propose an innovative neural architecture we call Conjoined Twins that allows multiple (k) SOM winners to participate in the training of the output layer and in which the customization of k can be limited automatically to a small range. With this novel machine we achieve scientifically useful accuracies, 83.0 ± 2.7% and 100.0 ± 0.0%, for temperature and grain size, respectively, from simulated noiseless spectra. We also show that the performance of the neural model is robust under various noisy conditions. A primary application of this prediction capability is planned for spectra returned from the Pluto-Charon system by New Horizons.

  17. Processing of N2O ice by fast ions: implications on nitrogen chemistry in cold astrophysical environments

    NASA Astrophysics Data System (ADS)

    Almeida, G. C.; Pilling, S.; de Barros, A. L. F.; da Costa, C. A. P.; Pereira, R. C.; da Silveira, E. F.

    2017-10-01

    Nitrous oxide, N2O, is found in the interstellar medium associated with dense molecular clouds and its abundance is explained by active chemistry occurring on N2 rich ice surfaces of dust grains. Such regions are being constantly exposed to ionizing radiation that triggers chemical processes which change molecular abundances with time. Due to its non-zero dipole moment, N2O can be used as an important tracer for the abundance of N2 in such regions as well as for characterization of nitrogen content of ices in outer bodies of Solar system. In this work, we experimentally investigate the resistance of frozen N2O molecules against radiation in attempt to estimate their half-life in astrophysical environments. All the radiolysis products, such as NO2 and NO, were identified by Fourier transform infrared spectroscopy. The infrared absorbance as a function of fluence is modified by ice compaction and by radiolysis, the compaction being dominant at the beginning of the ice processing. The N2O destruction cross-section as well the formation cross-sections of the products NxOy (x = 1-2 and y = 1-5) oxides and ozone (O3) by 1.5 MeV 14N+ ion beam are determined. The characterization of radiation resistance of N2O in cold astrophysical environments is relevant since it yields limits for the nitrogen abundance where the N2O molecule is used to indirectly derive its concentration. The half-life of solid N2O molecules dissociated by medium-mass cosmic rays at Pluto's orbit and at the interstellar medium is estimated.

  18. Influence of Ar/O2/H2O Feed Gas and N2/O2/H2O Environment on the Interaction of Time Modulated MHz Atmospheric Pressure Plasma Jet (APPJ) with Model Polymers

    NASA Astrophysics Data System (ADS)

    Oehrlein, Gottlieb; Luan, Pingshan; Knoll, Andrew; Kondeti, Santosh; Bruggeman, Peter

    2016-09-01

    An Ar/O2/H2O fed time modulated MHz atmospheric pressure plasma jet (APPJ) in a sealed chamber was used to study plasma interaction with model polymers (polystyrene, poly-methyl methacrylate, etc.). The amount of H2O in the feed gas and/or present in the N2, O2, or N2/O2 environment was controlled. Short lived species such as O atoms and OH radicals play a crucial role in polymer etching and surface modifications (obtained from X-ray photoelectron spectroscopy of treated polymers without additional atmospheric exposure). Polymer etching depth for Ar/air fed APPJ mirrors the decay of gas phase O atoms with distance from the APPJ nozzle in air and is consistent with the estimated O atom flux at the polymer surface. Furthermore, whereas separate O2 or H2O admixture to Ar enhances polymer etching, simultaneous addition of O2 and H2O to Ar quenches polymer etching. This can be explained by the mutual quenching of O with OH, H and HO2 in the gas phase. Results where O2 and/or H2O in the environment were varied are consistent with these mechanisms. All results will be compared with measured and simulated species densities reported in the literature. We gratefully acknowledge funding from US Department of Energy (DE-SC0001939) and National Science Foundation (PHY-1415353).

  19. Snapshots of Proton Accommodation at a Microscopic Water Surface: Understanding the Vibrational Spectral Signatures of the Charge Defect in Cryogenically Cooled H+(H2O)n=2 – 28 Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Mark A.

    In this Article, we review the role of gas-phase, size-selected protonated water clusters, H+(H2O)n, in the analysis of the microscopic mechanics responsible for the behavior of the excess proton in bulk water. We extend upon previous studies of the smaller, two-dimensional sheet-like structures to larger (n≥10) assemblies with three-dimensional cage morphologies which better mimic the bulk environment. Indeed, clusters in which a complete second solvation shell forms around a surface-embedded hydronium ion yield vibrational spectra where the signatures of the proton defect display strikingly similar positions and breadth to those observed in dilute acids. We investigate effects of the localmore » structure and intermolecular interactions on the large red shifts observed in the proton vibrational signature upon cluster growth using various theoretical methods. We show that, in addition to sizeable anharmonic couplings, the position of the excess proton vibration can be traced to large increases in the electric field exerted on the embedded hydronium ion upon formation of the first and second solvation shells. MAJ acknowledges support from the U.S. Department of Energy under Grant No. DE-FG02- 06ER15800 as well as the facilities and staff of the Yale University Faculty of Arts and Sciences High Performance Computing Center, and by the National Science Foundation under Grant No. CNS 08-21132 that partially funded acquisition of the facilities. SMK and SSX acknowledge support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.« less

  20. ESR investigation of ROS generated by H2O2 bleaching with TiO2 coated HAp.

    PubMed

    Saita, Makiko; Kobayashi, Kyo; Kobatashi, Kyou; Yoshino, Fumihiko; Hase, Hiriko; Nonami, Toru; Kimoto, Katsuhiko; Lee, Masaichi-Chang-il

    2012-01-01

    It is well known that clinical bleaching can be achieved with a solution of 30% hydrogen peroxide (H2O2) or H2O2/titanium dioxide (TiO2) combination. This study examined the hypothesis that TiO2 coated with hydroxyapatite (HAp-TiO2) can generate reactive oxygen species (ROS). ROS are generated via photocatalysis using electron spin resonance (ESR). The bleaching properties of HAp-TiO2 in the presence of H2O2 can be measured using hematoporphyrin litmus paper and extracted teeth. We demonstrate that superoxides (O2(•-)) and hydroxyl radicals (HO(•)) can be generated through excitation of anatase TiO2, rutile TiO2, anatase HAp-TiO2, and rutile HAp-TiO2 in the presence of H2O2. The combination of R HAp-TiO2 with H2O2 produced the highest level of HO(•) generation and the most marked bleaching effects of all the samples. The superior bleaching effects exhibited by R HAp-TiO2 with H2O2 suggest that this combination may lead to novel methods for the clinical application of bleaching treatments.

  1. A Computational Investigation of the Oxidative Deboronation of BoroGlycine, H2N–CH2–B(OH)2, Using H2O and H2O2

    PubMed Central

    Larkin, Joseph D.; Markham, George D.; Milkevitch, Matt; Brooks, Bernard R.; Bock, Charles W.

    2014-01-01

    We report results from a computational investigation of the oxidative deboronation of BoroGlycine, H2N–CH2–B(OH)2, using H2O and H2O2 as the reactive oxygen species (ROS) to yield aminomethanol, H2N–CH2–OH; these results complement our study on the protodeboronation of BoroGlycine to produce methylamine, H2N–CH3 (Larkin et al. J. Phys. Chem. A, 111, 6489–6500, 2007). Second-order Møller-Plesset (MP2) perturbation theory with Dunning-Woon correlation-consistent (cc) basis sets were used for the calculations with comparisons made to results from Density Functional Theory (DFT) at the PBE1PBE/6-311++G(d,p)(cc-pVDZ) levels. The effects of a bulk aqueous environment were also incorporated into the calculations employing PCM and CPCM methodology. Using H2O as the ROS, the reaction H2O + H2N–CH2–B(OH)2H2N–CH2–OH + H–B(OH)2 was calculated to be endothermic, the value of ΔH2980 was +12.0 kcal/mol at the MP2(FC)/cc-pVTZ computational level in vacuo and +13.7 kcal/mol in PCM aqueous media; the corresponding value for the activation barrier, ΔH‡, was +94.3 kcal/mol relative to the separated reactants in vacuo and +89.9 kcal/mol in PCM aqueous media. In contrast, the reaction H2O2 + H2N–CH2–B(OH)2H2N–CH2–OH + B(OH)3 was calculated to be highly exothermic with a ΔH2980 value of −100.9 kcal/mol at the MP2(FC)/cc-pVTZ computational level in vacuo and −99.6 kcal/mol in CPCM aqueous media; the highest-energy transition state for the multi-step process associated with this reaction involved the rearrangement of H2N–CH2–B(OH)(OOH) to H2N–CH2–O–B(OH)2 with a ΔH‡ value of +23.2 kcal/mol in vacuo relative to the separated reactants. These computational results for BoroGlycine are in accord with the experimental observations for the deboronation of the FDA approved anti-cancer drug Bortezomib (Velcade™, PS-341) where it was found to be the principle deactivation pathway. (Labutti et al. Chem. Res. Toxicol., 19, 539–546

  2. The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H2O Dissociation

    NASA Astrophysics Data System (ADS)

    France, Kevin; Roueff, Evelyne; Abgrall, Hervé

    2017-08-01

    The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we have assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope-Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100-1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST-COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490-1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L(Bump) ≈ 7 × 1029 erg s-1. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ o = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H2 excited by electron -impact. We show that this Bump makes up between 5%-50% of the total FUV continuum emission in the 1490-1690 Å band and emits roughly 10%-80% of the total fluorescent H2 luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Lyα photons. We argue that the most likely mechanism is Lyα-driven dissociation of H2O in the inner disk, r

  3. H-TiO(2) @MnO(2) //H-TiO(2) @C core-shell nanowires for high performance and flexible asymmetric supercapacitors.

    PubMed

    Lu, Xihong; Yu, Minghao; Wang, Gongming; Zhai, Teng; Xie, Shilei; Ling, Yichuan; Tong, Yexiang; Li, Yat

    2013-01-11

    A flexible solid-state asymmetric supercapacitor device with H-TiO(2) @MnO(2) core-shell NWs as the positive electrode and H-TiO(2) @C core-shell NWs as the negative electrode is developed. This device operates in a 1.8 V voltage window and is able to deliver a high specific capacitance of 139.6 F g(-1) and maximum volumetric energy density of 0.30 mWh cm(-3) with excellent cycling performance and good flexibility. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Phonon-mediated spin-flipping mechanism in the spin ices Dy 2 Ti 2 O 7 and Ho 2 Ti 2 O 7

    DOE PAGES

    Ruminy, M.; Chi, S.; Calder, S.; ...

    2017-02-21

    To understand emergent magnetic monopole dynamics in the spin ices Ho 2Ti 2O 7 and Dy 2Ti 2O 7, it is necessary to investigate the mechanisms by which spins flip in these materials. Presently there are thought to be two processes: quantum tunneling at low and intermediate temperatures and thermally activated at high temperatures. We identify possible couplings between crystal field and optical phonon excitations and construct a strictly constrained model of phonon-mediated spin flipping that quantitatively describes the high-temperature processes in both compounds, as measured by quasielastic neutron scattering. We support the model with direct experimental evidence of themore » coupling between crystal field states and optical phonons in Ho 2Ti 2O 7.« less

  5. Arsenite oxidation by H 2O 2 in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pettine, Maurizio; Campanella, Luigi; Millero, Frank J.

    1999-09-01

    The rates of the oxidation of As( III) with H 2O 2 were measured in NaCl solutions as a function of pH (7.5-10.3), temperature (10-50C) and ionic strength ( I = 0.01-4). The rate of the oxidation of As( III) with H 2O 2 can be described by the general expression: d[As( III)]/ dt = k[As( III)] [H 2O 2] where k (mol/L -1 min -1) can be determined from (σ = ±0.12) log k=5.29+1.41 pH-0.57 I+1.40 I0.5-4898/ T. The effect of pH on the rates indicates that the reaction is due to AsO( OH) 2-+ H2O2k 1→productsAsO2( OH) 2-+ H2O2k 2→products, AsO33-+ H2O2k 3→products where k = k1 α AsO(OH) 2- + k2 α AsO 2(OH) 2- + k3 α AsO 3 3- and α i are the molar fraction of species i. The values of k1 = 42 ± 20, k2 = (8 ± 1) × 10 4, and k3 = (72 ± 18) × 10 6 mol/L -1 min -1 were found at 25C and I = 0.01 mol/L. The undissociated As(OH) 3 does not react with H 2O 2. The effect of ionic strength on the rate constants has been attributed to the effect of ionic strength on the speciation of As( III). The rate expression has been shown to be valid for NaClO 4 solutions, northern Adriatic sea waters, and Tiber River waters. The cations Fe 2+ and Cu 2+ were found to exert a catalytic effect on the rates. Cu 2+ plays a role at concentration levels (>0.1 μmol/L) which are typical of polluted aquatic systems, while Fe 2+ is important at levels which may be found in lacustrine environments (>5-10 μmol/L). The reaction of As( III) with H 2O 2 may play a role in marine and lacustrine surface waters limiting the accumulation of As( III) resulting from biologically mediated reduction processes of As( V).

  6. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    NASA Astrophysics Data System (ADS)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  7. Properties of planetary ices in the NH3 + CO2 ± H2O ternary system using neutron diffraction and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Howard, C. M.; Wood, I. G.; Fortes, A. D.; Vocadlo, L.

    2016-12-01

    BackgroundInteractions between simple molecules are of fundamental interest across diverse areas of the physical sciences, and the ternary system NH3 + CO2 ± H2O is no exception. In the outer solar system, interaction of CO2 with aqueous ammonia is likely to occur, synthesizing `rock-forming' minerals [1], with CO2 perhaps playing a role in ammonia-water oceans and cryomagmas inside icy planetary bodies - the discovery of ammonium carbonates in a crater of Pluto's moon Charon [2] adds weight to CO2 occuring in these planetary environments. In the same context, ammonium carbonates may have some astrobiological relevance, since removal of water leads to the formation of urea. On Earth, combination of CO2 with aqueous ammonia has relevance to carbon capture schemes [3], and there is interest in using such materials for hydrogen storage in fuel cells [4]. Consequently, from earthly matters of climate change to the study of extraterrestrial ices, understanding the structures and properties of ammonium carbonates are important. Despite this, our knowledge of ammonium carbonates is limited under ambient conditions of pressure and temperature and is entirely absent at the higher pressures, severely limiting our ability to model the behaviour of NH3 + CO2 ± H2O solids and fluids in planetary environments. ResultsWe report the results of several experiments using variable pressure and temperature neutron diffraction work on ammonium carbonate monohydrate, ammonium bicarbonate and ammonium carbamate, with complementary Density Functional Theory (DFT) calculations. The excellent agreement between experiments and DFT calculations obtained so far adds weight to the accuracy of calculated material properties of ammonium sesquicarbonate monohydrate and several polymorphs of urea where little empirical data exists. These experimental and computational studies provide the structural, thermoelastic and vibrational information required for accurate planetary modelling and remote

  8. Vacuum ultraviolet photoabsorption of prime ice analogues of Pluto and Charon.

    PubMed

    Pavithraa, S; Lo, J-I; Rahul, K; Raja Sekhar, B N; Cheng, B-M; Mason, N J; Sivaraman, B

    2018-02-05

    Here we present the first Vacuum UltraViolet (VUV) photoabsorption spectra of ice analogues of Pluto and Charon ice mixtures. For Pluto the ice analogue is an icy mixture containing nitrogen (N 2 ), carbon monoxide (CO), methane (CH 4 ) and water (H 2 O) prepared with a 100:1:1:3 ratio, respectively. Photoabsorption of icy mixtures with and without H 2 O were recorded and no significant changes in the spectra due to presence of H 2 O were observed. For Charon a VUV photoabsorption spectra of an ice analogue containing ammonia (NH 3 ) and H 2 O prepared with a 1:1 ratio was recorded, a spectrum of ammonium hydroxide (NH 4 OH) was also recorded. These spectra may help to interpret the P-Alice data from New Horizons. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Synthesis of zinc sulfide nanoparticles during zinc oxidization by H2S and H2S/H2O supercritical fluids

    NASA Astrophysics Data System (ADS)

    Vostrikov, A. A.; Fedyaeva, O. N.; Sokol, M. Ya.; Shatrova, A. V.

    2014-12-01

    Formation of zinc sulfide nanoparticles was detected during interaction of bulk samples with hydrogen sulfide at supercritical parameters. Synthesis proceeds with liberation of H2 by the reaction nZn + nH2S = (ZnS) n + nH2. It has been found by the X-ray diffraction method, scanning electron microscopy, and mass spectrometry that the addition of water stimulates coupled reactions of nanoparticle synthesis nZn + nH2O = (ZnO) n + nH2 and (ZnO) n + nH2S = (ZnS) n + nH2O and brings about an increase in the synthesis rate and morphological changes of (ZnS) n nanoparticles.

  10. [{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20]36-: a molecular quantum spin icosidodecahedron.

    PubMed

    Botar, Bogdan; Kögerler, Paul; Hill, Craig L

    2005-07-07

    Self-assembly of aqueous solutions of molybdate and vanadate under reducing, mildly acidic conditions results in a polyoxomolybdate-based {Mo72V30} cluster compound Na8K16(VO)(H2O)5[K10 subset{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20].150H2O, 1, a quantum spin-based Keplerate structure.

  11. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-14

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  12. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-01

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  13. Backscatter from ice growing on shallow tundra lakes near Barrow, Alaska, winter 1991-1992

    NASA Technical Reports Server (NTRS)

    Jeffries, M. O.; Wakabayashi, H.; Weeks, W. F.; Morris, K.

    1993-01-01

    The timing of freeze-up and break-up of Arctic lake ice is a potentially useful environmental indicator that could be monitored using SAR. In order to do this, it is important to understand how the properties and structure of the ice during its growth and decay affect radar backscatter and thus lake ice SAR signatures. The availability of radiometrically and geometrically calibrated digital SAR data time series from the Alaska SAR Facility has made it possible for the first time to quantify lake ice backscatter intensity (sigma(sup o)) variations. This has been done for ice growing on shallow tundra lakes near Barrow, NW Alaska, from initial growth in September 1991 until thawing and decay in June 1992. Field and laboratory observations and measurements of the lake ice were made in late April 1992. The field investigations of the coastal lakes near Barrow confirmed previous findings that, (1) ice frozen to the lake bottom had a dark signature in SAR images, indicating weak backscatter, while, (2) ice that was floating had a bright signature, indicating strong backscatter. At all sites, regardless of whether the ice was grounded or floating, there was a layer of clear, inclusion-free ice overlaying a layer of ice with dense concentrations of vertically oriented tubular bubbles. At some sites, there was a third layer of porous, snow-ice overlaying the clear ice.

  14. 2,4-Dinitrophenylhydrazine, redetermined at 120 K: a three-dimensional framework built from N-H...O, N-H...(O)2, N-H...pi(arene) and C-H...O hydrogen bonds.

    PubMed

    Wardell, James L; Low, John N; Glidewell, Christopher

    2006-06-01

    In the title compound, C6H6N4O4, the bond distances indicate significant bond fixation, consistent with charge-separated polar forms. The molecules are almost planar and there is an intramolecular N-H...O hydrogen bond. The molecules are linked into a complex three-dimensional framework structure by a combination of N-H...O, N-H...(O)2, N-H...pi(arene) and C-H...O hydrogen bonds.

  15. D/H fractionation in the H2-H2O system at supercritical water conditions: Compositional and hydrogen bonding effects

    NASA Astrophysics Data System (ADS)

    Foustoukos, Dionysis I.; Mysen, Bjorn O.

    2012-06-01

    A series of experiments has been conducted in the H2-D2-D2O-H2O-Ti-TiO2 system at temperatures ranging from 300 to 800 °C and pressures between ∼0.3 and 1.3 GPa in a hydrothermal diamond anvil cell, utilizing Raman spectroscopy as a quantitative tool to explore the relative distribution of hydrogen and deuterium isotopologues of the H2 and H2O in supercritical fluids. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (3-9 h) in the diamond cell, leading to formation of H2, D2, HD, and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in situ and at ambient conditions on quenched samples indicate significant differences from the theoretical estimates of the equilibrium thermodynamic properties of the H-D exchange reactions. In fact, the estimated enthalpy for the H2(aq)-D2(aq) disproportionation reaction (ΔHrxn) is about -3.4 kcal/mol, which differs greatly from the +0.16 kcal/mol predicted for the exchange reaction in the gas phase by statistical mechanics models. The exothermic behavior of the exchange reaction implies enhanced stability of H2 and D2 relative to HD. Accordingly, the significant energy difference of the internal H2(aq)-D2(aq)-HD(aq) equilibrium translates to strong differences of the fractionation effects between the H2O-H2 and D2O-D2 isotope exchange relationships. The D/H fractionation factors between H2O-H2(aq) and D2O-D2(aq) differ by 365‰ in the 600-800 °C temperature range, and are indicative of the greater effect of D2O contribution to the δD isotopic composition of supercritical fluids. The negative ΔHrxn values for the H2(aq)-D2(aq)-HD(aq) equilibrium and the apparent decrease of the equilibrium constant with increasing temperature might be because of differences of the Henry’s law constant between the H- and D-bearing species dissolved in supercritical aqueous solutions. Such effects may be attributed to the stronger hydrogen bonding in the O-H⋯O relative to the

  16. High temperature kinetic study of the reactions H + O2 = OH + O and O + H2 = OH + H in H2/O2 system by shock tube-laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Ryu, Si-Ok; Hwang, Soon Muk; Dewitt, Kenneth J.

    1995-01-01

    The reactions: (1) H + O2 = OH + O; and (2) O + H2 = OH + H are the most important elementary reactions in gas phase combustion. They are the main chain-branching reaction in the oxidation of H2 and hydrocarbon fuels. In this study, rate coefficients of the reactions and have been measured over a wide range of composition, pressure, density and temperature behind the reflected shock waves. The experiments were performed using the shock tube - laser absorption spectroscopic technique to monitor OH radicals formed in the shock-heated H2/O2/Ar mixtures. The OH radicals were detected using the P(1)(5) line of (0,0) band of the A(exp 2) Sigma(+) from X(exp 2) Pi transition of OH at 310.023 nm (air). The data were analyzed with the aid of computer modeling. In the experiments great care was exercised to obtain high time resolution, linearity and signal-to-noise. The results are well represented by the Arrhenius expressions. The rate coefficient expression for reaction (1) obtained in this study is k(1) = (7.13 +/- 0.31) x 10(exp 13) exp(-6957+/- 30 K/T) cu cm/mol/s (1050 K less than or equal to T less than or equal to 2500 K) and a consensus expression for k(1) from a critical review of the most recent evaluations of k(1) (including our own) is k(1) = 7.82 x 10(exp 13) exp(-7105 K/T) cu cm/mol/s (960 K less than or equal to T less than or equal to 5300 K). The rate coefficient expression of k(2) is given by k(2) = (1.88 +/- 0.07) x 10(exp 14) exp(-6897 +/- 53 K/T) cu cm/mol/s (1424 K less than or equal to T less than or equal to 2427 K). For k(1), the temperature dependent A-factor and the correlation between the values of k(1) and the inverse reactant densities were not found. In the temperature range of this study, non-Arrhenius expression of k(2) which shows the upward curvature was not supported.

  17. Microchannel Reactor System Design & Demonstration For On-Site H2O2 Production by Controlled H2/O2 Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeniyi Lawal

    We successfully demonstrated an innovative hydrogen peroxide (H2O2) production concept which involved the development of flame- and explosion-resistant microchannel reactor system for energy efficient, cost-saving, on-site H2O2 production. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for controlled direct combination of H2 and O2 in all proportions including explosive regime, at a low pressure and a low temperature to produce about 1.5 wt% H2O2 as proposed. In the second phase of the program, as a prelude to full-scale commercialization, we demonstrated our H2O2 production approach by ‘numbering up’ the channels in a multi-channel microreactor-based pilot plant tomore » produce 1 kg/h of H2O2 at 1.5 wt% as demanded by end-users of the developed technology. To our knowledge, we are the first group to accomplish this significant milestone. We identified the reaction pathways that comprise the process, and implemented rigorous mechanistic kinetic studies to obtain the kinetics of the three main dominant reactions. We are not aware of any such comprehensive kinetic studies for the direct combination process, either in a microreactor or any other reactor system. We showed that the mass transfer parameter in our microreactor system is several orders of magnitude higher than what obtains in the macroreactor, attesting to the superior performance of microreactor. A one-dimensional reactor model incorporating the kinetics information enabled us to clarify certain important aspects of the chemistry of the direct combination process as detailed in section 5 of this report. Also, through mathematical modeling and simulation using sophisticated and robust commercial software packages, we were able to elucidate the hydrodynamics of the complex multiphase flows that take place in the microchannel. In conjunction with the kinetics information, we were able to validate the experimental data. If fully implemented across the

  18. Experimental observation of magnetoelectricity in spin ice Dy 2Ti 2O 7

    DOE PAGES

    Lin, L.; Xie, Y. L.; Wen, J. -J.; ...

    2015-12-14

    The intrinsic noncollinear spin patterns in rare-earth pyrochlore are physically interesting, due to their many emergent properties (e.g., spin-ice and monopole-type excitation). Recent works have suggested that the magnetic monopole excitation of spin-ice systems is magnetoelectric active, but this fact has rarely been confirmed via experiment. In this work, we performed a systematic experimental investigation on the magnetoelectricity of Dy 2Ti 2O 7 by probing the ferroelectricity, spin dynamics, and dielectric behaviors. Two ferroelectric transitions at T c1 = 25 K and T c2 =13 K were observed. Remarkable magnetoelectric coupling was identified below the lower transition temperature, with significantmore » suppression of the electric polarization on applied magnetic field. Our results show that the lower ferroelectric transition temperature coincides with the Ising-spin paramagnetic transition point, below which the quasi-particle-like monopoles are populated, which indicates implicit correlation between electric dipoles and spin moments. The possible magnetoelectric mechanisms are discussed. Our findings can be used for more investigations to explore multiferroicity in these spin-ice systems and other frustrated magnets.« less

  19. THE EFFECT OF BROADBAND SOFT X-RAYS IN SO{sub 2}-CONTAINING ICES: IMPLICATIONS ON THE PHOTOCHEMISTRY OF ICES TOWARD YOUNG STELLAR OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilling, S.; Bergantini, A., E-mail: sergiopilling@pq.cnpq.br

    2015-10-01

    We investigate the effects produced mainly by broadband soft X-rays up to 2 keV (plus fast (∼keV) photoelectrons and low-energy (∼eV) induced secondary electrons) in the ice mixtures containing H{sub 2}O:CO{sub 2}:NH{sub 3}:SO{sub 2} (10:1:1:1) at two different temperatures (50 and 90 K). The experiments are an attempt to simulate the photochemical processes induced by energetic photons in SO{sub 2}-containing ices present in cold environments in the ices surrounding young stellar objects (YSO) and in molecular clouds in the vicinity of star-forming regions, which are largely illuminated by soft X-rays. The measurements were performed using a high-vacuum portable chamber from themore » Laboratório de Astroquímica e Astrobiologia (LASA/UNIVAP) coupled to the spherical grating monochromator beamline at the Brazilian Synchrotron Light Source (LNLS) in Campinas, Brazil. In situ analyses were performed by a Fourier transform infrared spectrometer. Sample processing revealed the formation of several organic molecules, including nitriles, acids, and other compounds such as H{sub 2}O{sub 2}, H{sub 3}O{sup +}, SO{sub 3}, CO, and OCN{sup −}. The dissociation cross section of parental species was on the order of (2–7) × 10{sup −18} cm{sup 2}. The ice temperature does not seem to affect the stability of SO{sub 2} in the presence of X-rays. Formation cross sections of new species  produced were also determined. Molecular half-lives at ices toward YSOs due to the presence of incoming soft X-rays were estimated. The low values obtained employing two different models of the radiation field of YSOs (TW Hydra and typical T-Tauri star) reinforce that soft X-rays are indeed a very efficient source of molecular dissociation in such environments.« less

  20. A new set-up for simultaneous high-precision measurements of CO2, δ13C-CO2 and δ18O-CO2 on small ice core samples

    NASA Astrophysics Data System (ADS)

    Jenk, Theo Manuel; Rubino, Mauro; Etheridge, David; Ciobanu, Viorela Gabriela; Blunier, Thomas

    2016-08-01

    , replicate measurements are feasible, allowing the method precision to be improved potentially. Further, new analytical approaches are introduced for the accurate correction of the procedural blank and for a consistent detection of measurement outliers, which is based on δ18O-CO2 and the exchange of oxygen between CO2 and the surrounding ice (H2O).

  1. Crystal structures of Ca(ClO4)2·4H2O and Ca(ClO4)2·6H2O

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang

    2014-01-01

    The title compounds, calcium perchlorate tetra­hydrate and calcium perchlorate hexa­hydrate, were crystallized at low temperatures according to the solid–liquid phase diagram. The structure of the tetra­hydrate consists of one Ca2+ cation eightfold coordinated in a square-anti­prismatic fashion by four water mol­ecules and four O atoms of four perchlorate tetra­hedra, forming chains parallel to [01-1] by sharing corners of the ClO4 tetra­hedra. The structure of the hexa­hydrate contains two different Ca2+ cations, each coordinated by six water mol­ecules and two O atoms of two perchlorate tetra­hedra, forming [Ca(H2O)6(ClO4)]2 dimers by sharing two ClO4 tetra­hedra. The dimers are arranged in sheets parallel (001) and alternate with layers of non-coordinating ClO4 tetra­hedra. O—H⋯O hydrogen bonds between the water mol­ecules as donor and ClO4 tetra­hedra and water mol­ecules as acceptor groups lead to the formation of a three-dimensional network in the two structures. Ca(ClO4)2·6H2O was refined as a two-component inversion twin, with an approximate twin component ratio of 1:1 in each of the two structures. PMID:25552974

  2. Adsorption, Desorption, and Displacement Kinetics of H2O and CO2 on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; Li, Zhenjun; Chen, Long

    The adsorption, desorption, and displacement kinetics of H2O and CO2 on TiO2(110) are investigated using temperature programmed desorption (TPD) and molecular beam techniques. The TPD spectra for both H2O and CO2 have well-resolved peaks corresponding to desorption from bridge-bonded oxygen (BBO), Ti, and oxygen vacancies (VO) sites in order of increasing peak temperature. Analysis of the saturated monolayer peak for both species reveals that the corresponding adsorption energies on all sites are greater for H2O and for CO2. Sequential dosing of H2O and CO2 reveals that, independent of the dose order, H2O molecules will displace CO2 in order to occupymore » the highest energy binding sites available. Isothermal experiments show that the displacement of CO2 by H2O occurs between 75 and 80 K. Further analysis shows that a ratio of 4 H2O to 3 CO2 molecules is needed to displace CO2 from the TiO2(110) surface.« less

  3. Nanowire Ice of Phase VI and Distorted VII in Mesoporous Silica Nanotorus Superlattice

    NASA Astrophysics Data System (ADS)

    Zhu, Jinlong; Zhang, Jianzhong; Zhao, Yusheng

    2014-03-01

    The motivation of nano H2O realization and characterization is the highly polarized nature of H2O molecules and the spatial hydrogen bonded networks both in liquid and solid form. The hydrogen bonding character of water molecules results in a remarkably rich phase diagram in the pressure-temperature space. Water/Ice confined in nanochannels showed novel structures and properties as results of hydrophobic and hydrophilic interactions and hydrogen bonding interaction between water molecule and the surface of nanochannel. Studies on nano H2O can provide potential pathway to understand the complicated structure evolutions of ice in the P- T space, because the interplay between nano-confinement and strong intermolecular hydrogen interactions can lead to even richer ice structures which were not found in the none-confined bulk form. The high pressure experiment indicated that the pressure of nanowire ice VI and VII shifted up to 1.7 GPa and 2.5 GPa, and about ~ 0.65 GPa and 0.4 GPa higher than that of normal ice. The nano size effect and the strength of mesoporous silica nanotorus are responsible for the pressure shifts of ice phase regions. More pronounced, the cubic ice VII changed into a tetragonal distorted ``psuedocubic'' structure of the nanowire ice when confined in the mesoporous tubes. The degree of tetragonality increased with increasing pressure, which is resulted from the uniaxial pressure nanowire ice felt, and the anisotropic hydrogen bonding interactions including the H2O-H2O hydrogen bonds in the bulk of the ice and the H2O-silica -OH hydrogen bonds between the interface of nanowire ice and mesoporous silica. The experimental work has benefited from the use of CHESS at Cornell University, which is supported by the NSF award DMR-0936384.

  4. Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7.

    PubMed

    Morris, D J P; Tennant, D A; Grigera, S A; Klemke, B; Castelnovo, C; Moessner, R; Czternasty, C; Meissner, M; Rule, K C; Hoffmann, J-U; Kiefer, K; Gerischer, S; Slobinsky, D; Perry, R S

    2009-10-16

    Sources of magnetic fields-magnetic monopoles-have so far proven elusive as elementary particles. Condensed-matter physicists have recently proposed several scenarios of emergent quasiparticles resembling monopoles. A particularly simple proposition pertains to spin ice on the highly frustrated pyrochlore lattice. The spin-ice state is argued to be well described by networks of aligned dipoles resembling solenoidal tubes-classical, and observable, versions of a Dirac string. Where these tubes end, the resulting defects look like magnetic monopoles. We demonstrated, by diffuse neutron scattering, the presence of such strings in the spin ice dysprosium titanate (Dy2Ti2O7). This is achieved by applying a symmetry-breaking magnetic field with which we can manipulate the density and orientation of the strings. In turn, heat capacity is described by a gas of magnetic monopoles interacting via a magnetic Coulomb interaction.

  5. Electrochemical, H2O2-Boosted Catalytic Oxidation System

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Thompson, John O.; Schussel, Leonard J.

    2004-01-01

    An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

  6. Photodegradation of the antineoplastic cyclophosphamide: a comparative study of the efficiencies of UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2 processes.

    PubMed

    Lutterbeck, Carlos Alexandre; Machado, Ênio Leandro; Kümmerer, Klaus

    2015-02-01

    Anticancer drugs are harmful substances that can have carcinogenic, mutagenic, teratogenic, genotoxic, and cytotoxic effects even at low concentrations. More than 50 years after its introduction, the alkylating agent cyclophosphamide (CP) is still one of the most consumed anticancer drug worldwide. CP has been detected in water bodies in several studies and is known as being persistent in the aquatic environment. As the traditional water and wastewater treatment technologies are not able to remove CP from the water, different treatment options such as advanced oxidation processes (AOPs) are under discussion to eliminate these compounds. The present study investigated the degradation of CP by three different AOPs: UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. The light source was a Hg medium-pressure lamp. Prescreening tests were carried out and afterwards experiments based on the optimized conditions were performed. The primary elimination of the parent compounds and the detection of transformation products (TPs) were monitored with LC-UV-MS/MS analysis, whereas the degree of mineralization was monitored by measuring the dissolved organic carbon (DOC). Ecotoxicological assays were carried out with the luminescent bacteria Vibrio fischeri. CP was completely degraded in all treatments and UV/Fe(2+)/H2O2 was the fastest process, followed by UV/H2O2 and UV/TiO2. All the reactions obeyed pseudo-first order kinetics. Considering the mineralization UV/Fe(2+)/H2O2 and UV/TiO2 were the most efficient process with mineralization degrees higher than 85%, whereas UV/H2O2 achieved 72.5% of DOC removal. Five transformation products were formed during the reactions and identified. None of them showed significant toxicity against V. fischeri. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Cosmetic wastewater treatment by the ZVI/H2O2 process.

    PubMed

    Bogacki, Jan; Marcinowski, Piotr; Zapałowska, Ewa; Maksymiec, Justyna; Naumczyk, Jeremi

    2017-10-01

    The ZVI/H 2 O 2 process was applied for cosmetic wastewater treatment. Two commercial zero-valent iron (ZVI) types with different granulations were chosen: Hepure Ferrox PRB and Hepure Ferrox Target. In addition, the pH and stirring method influence on ZVI/H 2 O 2 process efficiency was studied. During the ZVI and ZVI/H 2 O 2 processes, linear Fe ions concentration increase was observed. The addition of H 2 O 2 significantly accelerated the iron dissolution process. The highest COD removal was obtained using finer ZVI (Hepure Ferrox Target) for doses of reagents ZVI/H 2 O 2 1500/1600 mg/L, in a H 2 O 2 /COD weight ratio 2:1, at pH 3.0 with stirring on a magnetic stirrer. After 120 min of the process, 84.0% COD removal (from 796 to 127 mg/L) was achieved. It was found that the efficiency of the process depends, as in the case of the Fenton process, on the ratio of the reagents (ZVI/H 2 O 2 ) and their dose in relation to the COD (H 2 O 2 /COD) but does not depend on the dose of the iron itself. Statistical analysis confirms that COD removal efficiency depends primarily on H 2 O 2 /COD ratio and ZVI granulation, but ZVI dose influence is not statistically significant. The head space, solid-phase microextraction, gas chromatography, mass spectrometry results confirm high efficiency of the ZVI/H 2 O 2 process.

  8. TES/Aura L2 Water Vapor (H2O) Limb V6 (TL2H2OL)

    Atmospheric Science Data Center

    2018-03-01

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access: OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  9. Characterizing of a Mid-Latitude Ice-Rich Landing Site on Mars to Enable in Situ Habitability Studies

    NASA Technical Reports Server (NTRS)

    Heldmann, J.; Schurmeier, L. R.; Wilhelm, M.; Stoker, C.; McKay, C.; Davila, A.; Marinova, M.; Karcz, J.; Smith, H.

    2012-01-01

    We suggest an ice-rich landing site at 188.5E 46.16N within Amazonis Planitia as a candidate location to support a Mars lander mission equipped to study past habitability and regions capable of preserving the physical and chemical signs of life and organic matter. Studies of the ice-rich subsurface on Mars are critical for several reasons. The subsurface environment provides protection from radiation to shield organic and biologic compounds from destruction. The ice-rich substrate is also ideal for preserving organic and biologic molecules and provides a source of H2O for biologic activity. Examination of martian ground ice can test several hypotheses such as: 1) whether ground ice supports habitable conditions, 2) that ground ice can preserve and accumulate organic compounds, and 3) that ice contains biomolecules evident of past or present biological activity on Mars. This Amazonis site, located near the successful Viking Lander 2, shows indirect evidence of subsurface ice (ubiquitous defined polygonal ground, gamma ray spectrometer hydrogen signature, and numerical modeling of ice stability) and direct evidence of exposed subsurface ice. This site also provides surface conditions favorable to a safe landing including no boulders, low rock density, minimal rough topography, and few craters.

  10. Low-Lying Energy Isomers and Global Minima of Aqueous Nanoclusters: Structures and Spectroscopic Features of the Pentagonal Dodecahedron (H2O)20 and (H3O)+(H2O)20

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xantheas, Sotiris S.

    We rely on a hierarchy of methods to identify the low-lying isomers for the pentagonal dodecahedron (H2O)20 and the H3O+(H2O)20 clusters. Initial screening of isomers was performed with classical potentials [TIP4P, TTM2-F, TTM2.1-F for (H2O)20 and ASP for H3O+(H2O)20] and the networks obtained with those potentials were subsequently reoptimized at the DFT (B3LYP) and MP2 levels of theory. For the pentagonal dodecahedron (H2O)20 it was found that DFT (B3LYP) and MP2 produced the same global minimum. However, this was not the case for the H3O+(H2O)20 cluster, for which MP2 produced a different network for the global minimum when compared tomore » DFT (B3LYP). All low-lying minima of H3O+(H2O)20 correspond to hydrogen bonding networks having 9 ''free'' OH bonds and the hydronium ion on the surface of the cluster. The fact that DFT (B3LYP) and MP2 produce different results and issues related to the use of a smaller basis set, explains the discrepancy between the current results and the structure previously suggested [Science 304, 1137 (2004)] for the global minimum of the H3O+(H2O)20 cluster. Additionally, the IR spectra of the MP2 global minimum are closer to the experimentally measured ones than the spectra of the previously suggested DFT global minimum. The latter exhibit additional bands in the most red-shifted region of the OH stretching vibrations (corresponding to the ''fingerprint'' of the underlying hydrogen bonding network), which are absent from both the experimental as well as the spectra of the new structure suggested for the global minimum of this cluster.« less

  11. Trapping {BW12}2 tungstoborate: synthesis and crystal structure of hybrid [{(H2BW12O42)2O}{Mo6O6S6(OH)4(H2O)2}]14- anion.

    PubMed

    Korenev, V S; Abramov, P A; Vicent, C; Mainichev, D A; Floquet, S; Cadot, E; Sokolov, M N; Fedin, V P

    2012-12-28

    Reaction between monolacunary {BW(11)} tungstoborate and oxothiocationic building block, {Mo(2)O(2)S(2)}, results in the formation of a new polyoxothiometalate with a unique architecture in which two [H(2)BW(12)O(43)](9-) tungstoborate subunits are linked together with a hexamolybdate [Mo(V)(6)O(6)S(6)(OH)(4)(H(2)O)(2)](2+) bridge.

  12. The roles of two O-donor ligands in the Fe2+-binding and H2O2-sensing by the Fe2+-dependent H2O2 sensor PerR.

    PubMed

    Ji, Chang-Jun; Yang, Yoon-Mo; Kim, Jung-Hoon; Ryu, Su-Hyun; Youn, Hwan; Lee, Jin-Won

    2018-05-10

    PerR is a metal-dependent peroxide sensing transcription factor which controls the expression of genes involved in peroxide resistance. The function of Bacillus subtilis PerR is mainly dictated by the regulatory metal ion (Fe 2+ or Mn 2+ ) coordinated by three N-donor ligands (His37, His91, and His93) and two O-donor ligands (Asp85 and Asp104). While H 2 O 2 sensing by PerR is mediated by Fe 2+ -dependent oxidation of N-donor ligand (either His37 or His91), one of the O-donor ligands (Asp104), but not Asp85, has been proposed as the key residue that regulates the sensitivity of PerR to H 2 O 2 . Here we systematically investigated the relative roles of two O-donor ligands of PerR in metal-binding affinity and H 2 O 2 sensitivity in vivo and in vitro. Consistent with the previous report, in vitro the D104E-PerR could not sense low levels of H 2 O 2 in the presence of excess Fe 2+ sufficient for the formation of the Fe 2+ -bound D104E-PerR. However, the expression of PerR-regulated reporter fusion was not repressed by D104E-PerR in the presence of Fe 2+ , suggesting that Fe 2+ is not an effective corepressor for this mutant protein in vivo. Furthermore, in vitro metal titration assays indicate that D104E-PerR has a significantly reduced affinity for Fe 2+ , but not for Mn 2+ , when compared to wild type PerR. These data indicate that the type of O-donor ligand (Asp vs. Glu) at position 104 is an important determinant in providing high Fe 2+ -binding affinity required for the sensing of the physiologically relevant Fe 2+ -levels, in addition to its role in rendering PerR highly sensitive to physiological levels of H 2 O 2 . In comparison, the D85E-PerR did not show a perturbed change in Fe 2+ -binding affinity, however, it displayed a slightly decreased sensitivity to H 2 O 2 both in vivo and in vitro, suggesting that the type of O-donor ligand (Asp vs. Glu) at position 85 may be important for the fine-tuning of H 2 O 2 sensitivity. Copyright © 2018 Elsevier

  13. Reaction of N2O5 with H2O on carbonaceous surfaces

    NASA Technical Reports Server (NTRS)

    Brouwer, L.; Rossi, M. J.; Golden, D. M.

    1986-01-01

    The heterogeneous reaction of N2O5 with commercially available ground charcoal in the absence of H2O revealed a physisorption process (gamma = 0.003), together with a redox reaction generating mostly NO. Slow HNO3 formation was the result of the interaction of N2O5 with H2O that was still adsorbed after prolonged pumping at 0.0001 torr. In the presence of H2O, the same processes with gamma = 0.005 are observed. The redox reaction dominates in the early stages of the reaction, whereas the hydrolysis gains importance later at the expense of the redox reaction. The rate law for HNO3 generation was found to be d(HNO3)/dt = k(bi)(H2O)(N2O5) with k(bi), the effective bimolecular rate constants, for 10 mg of carbon being (1.6 + or - 0.3) x 10 to the -13th cu cm/s.

  14. TES/Aura L2 Water Vapor (H2O) Limb V6 (TL2H2OLS)

    Atmospheric Science Data Center

    2018-03-01

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access:  OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  15. Photochemistry of Polycyclic Aromatic Hydrocarbons in Cosmic Water Ice: The Role of PAH Ionization and Concentration

    NASA Astrophysics Data System (ADS)

    Cook, Amanda M.; Ricca, Alessandra; Mattioda, Andrew L.; Bouwman, Jordy; Roser, Joseph; Linnartz, Harold; Bregman, Jonathan; Allamandola, Louis J.

    2015-01-01

    Infrared spectroscopic studies of ultraviolet (UV) irradiated, water-rich, cosmic ice analogs containing small polycyclic aromatic hydrocarbons (PAHs) are described. The irradiation studies of anthracene:H2O, pyrene:H2O, and benzo[ghi]perylene:H2O ices (14 K) at various concentrations reported by Bouwman et al. are extended. While aromatic alcohols and ketones have been reported in residues after irradiated PAH:H2O ices were warmed to 270 K, it was not known if they formed during ice irradiation or during warm-up when reactants interact as H2O sublimes. Recent work has shown that they form in low temperature ice. Using DFT computed IR spectra to identify photoproducts and PAH cations, we tentatively identify the production of specific alcohols [PAH(OH) n ] and quinones [PAH(O) n ] for all PAH:H2O ices considered here. Little evidence is found for hydrogenation at 14 K, consistent with the findings of Gudipati & Yang. Addition of O and OH to the parent PAH is the dominant photochemical reaction, but PAH erosion to smaller PAHs (producing CO2 and H2CO) is also important. DFT spectra are used to assess the contribution of PAH-related species to interstellar absorption features from 5 to 9 μm. The case is made that PAH cations are important contributors to the C2 component and PAH(OH) n and PAH(O) n to the C5 component described by Boogert et al. Thus, interstellar ices should contain neutral and ionized PAHs, alcohols, ketones and quinones at the ~2%-4% level relative to H2O. PAHs, their photoproducts, and ion-mediated processes should therefore be considered when modeling interstellar ice processes.

  16. PHOTOCHEMISTRY OF POLYCYCLIC AROMATIC HYDROCARBONS IN COSMIC WATER ICE: THE ROLE OF PAH IONIZATION AND CONCENTRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Amanda M.; Mattioda, Andrew L.; Roser, Joseph

    2015-01-20

    Infrared spectroscopic studies of ultraviolet (UV) irradiated, water-rich, cosmic ice analogs containing small polycyclic aromatic hydrocarbons (PAHs) are described. The irradiation studies of anthracene:H{sub 2}O, pyrene:H{sub 2}O, and benzo[ghi]perylene:H{sub 2}O ices (14 K) at various concentrations reported by Bouwman et al. are extended. While aromatic alcohols and ketones have been reported in residues after irradiated PAH:H{sub 2}O ices were warmed to 270 K, it was not known if they formed during ice irradiation or during warm-up when reactants interact as H{sub 2}O sublimes. Recent work has shown that they form in low temperature ice. Using DFT computed IR spectra to identify photoproducts andmore » PAH cations, we tentatively identify the production of specific alcohols [PAH(OH) {sub n} ] and quinones [PAH(O) {sub n} ] for all PAH:H{sub 2}O ices considered here. Little evidence is found for hydrogenation at 14 K, consistent with the findings of Gudipati and Yang. Addition of O and OH to the parent PAH is the dominant photochemical reaction, but PAH erosion to smaller PAHs (producing CO{sub 2} and H{sub 2}CO) is also important. DFT spectra are used to assess the contribution of PAH-related species to interstellar absorption features from 5 to 9 μm. The case is made that PAH cations are important contributors to the C2 component and PAH(OH) {sub n} and PAH(O) {sub n} to the C5 component described by Boogert et al. Thus, interstellar ices should contain neutral and ionized PAHs, alcohols, ketones and quinones at the ∼2%-4% level relative to H{sub 2}O. PAHs, their photoproducts, and ion-mediated processes should therefore be considered when modeling interstellar ice processes.« less

  17. A facile method of fabricating mechanical durable anti-icing coatings based on CeO2 microparticles

    NASA Astrophysics Data System (ADS)

    Wang, Pengren; Peng, Chaoyi; Wu, Binrui; Yuan, Zhiqing; Yang, Fubiao; Zeng, Jingcheng

    2015-07-01

    Compromising between hydrophobicity and mechanical durability may be a feasible approach to fabricating usable anti-icing coatings. This work improves the contact angle of current commercial anti-icing coatings applied to wind turbine blades dramatically and keeps relatively high mechanical durability. CeO2 microparticles and diluent were mixed with fluorocarbon resin to fabricate high hydrophobic coatings on the glass fiber reinforced epoxy composite substrates. The proportion of CeO2 microparticles and diluent influences the contact angles significantly. The optimum mass ratio of fluorocarbon resin to CeO2 microparticles to diluent is 1:1.5:1, which leads to the highest contact angle close to 140°. The microscopy analysis shows that the CeO2 microparticles form nano/microscale hierarchical structure on the surface of the coatings.

  18. Adsorption, desorption, and displacement kinetics of H2O and CO2 on TiO2(110).

    PubMed

    Smith, R Scott; Li, Zhenjun; Chen, Long; Dohnálek, Zdenek; Kay, Bruce D

    2014-07-17

    The adsorption, desorption, and displacement kinetics of H2O and CO2 on TiO2(110) are investigated using temperature programmed desorption (TPD) and molecular beam techniques. The TPD spectra for both H2O and CO2 have well-resolved peaks corresponding to desorption from bridge-bonded oxygen (Ob), Ti5c, and defect sites in order of increasing peak temperature. Analysis of the saturated surface spectrum for both species reveals that the corresponding adsorption energies on all sites are greater for H2O than for CO2. Sequential dosing of H2O and CO2 reveals that, independent of the dose order, H2O molecules will displace CO2 in order to occupy the highest energy binding sites available. Isothermal experiments show that the displacement of CO2 by H2O occurs between 75 and 80 K.

  19. Thermal formation of hydroxynitriles, precursors of hydroxyacids in astrophysical ice analogs: Acetone ((CH3)2Cdbnd O) and hydrogen cyanide (HCN) reactivity

    NASA Astrophysics Data System (ADS)

    Fresneau, Aurélien; Danger, Grégoire; Rimola, Albert; Duvernay, Fabrice; Theulé, Patrice; Chiavassa, Thierry

    2015-11-01

    Reactivity in astrophysical environments is still poorly understood. In this contribution, we investigate the thermal reactivity of interstellar ice analogs containing acetone ((CH3)2CO), ammonia (NH3), hydrogen cyanide (HCN) and water (H2O) by means of infrared spectroscopy and mass spectrometry techniques, complemented by quantum chemical calculations. We show that no reaction occurs in H2O:HCN:(CH3)2CO ices. Nevertheless, HCN does indeed react with acetone once activated by NH3 into CN- to form 2-hydroxy-2-methylpropanenitrile (HOsbnd C(CH3)2sbnd CN), with a calculated activation energy associated with the rate determining step of about 51 kJ mol-1. This reaction inhibits the formation of 2-aminopropan-2-ol (HOsbnd C(CH3)2sbnd NH2) from acetone and NH3, even in the presence of water, which is the first step of the Strecker synthesis to form 2-aminoisobutyric acid (NH2C(CH3)2COOH). However, HOsbnd C(CH3)2sbnd CN formation could be part of an alternative chemical pathway leading to 2-hydroxy-2-methyl-propanoic acid (HOC(CH3)2COOH), which could explain the presence of hydroxy acids in some meteorites.

  20. Radiation Effects in Hydrogen-Laden Porous Water Ice Films: Implications for Interstellar Ices

    NASA Astrophysics Data System (ADS)

    Raut, Ujjwal; Baragiola, Raul; Mitchell, Emma; Shi, Jianming

    H _{2} molar remains trapped in the ice even upon removal of ambient gas-phase H _{2}, and is stable to 170 K, where the ice film desorbs. We will describe the dependence of net loss of adsorbed hydrogen on important parameters such as ice film thickness and the ratio of ion flux (f) to H _{2} flux (F _{H}). Both fluxes are higher by orders of magnitude than interstellar values. However, the information obtained from these experiments, especially the behavior in the limit of low flux (f << F _{H}) should be relevant to the interstellar case. Furthermore, we will discuss the effects of the presence of H _{2} in radiation chemistry of water ice, in particular, the observed suppression in H _{2}O _{2} synthesis. References: 1.Tielens, A.G.G.M., The Physics and Chemistry of the Interstellar Medium. 2005: Cambridge University Press. 2.Webber, W.R. and S.M. Yushak, A measurement of the energy spectra and relative abundance of the cosmic-ray H and He isotopes over a broad energy range. Astrophysical Journal, 1983. 275: p. 391-404. 3.Shi, J., B.D. Teolis, and R.A. Baragiola, Irradiation-enhanced adsorption and trapping of O2 on nanoporous water ice. Physical Review B, 2009. 79(23): p. 235422. 4.Raut, U., et al., Compaction of microporous amorphous solid water by ion irradiation. Journal of Chemical Physics, 2007. 126(24): p. 244511.

  1. H2O2_COD_EPA; MEC_acclimation

    EPA Pesticide Factsheets

    H2O2_COD_EPA: Measurements of hydrogen peroxide and COD concentrations for water samples from the MEC reactors.MEC_acclimation: raw data for current and voltage of the anode in the MEC reactor.This dataset is associated with the following publication:Sim, J., J. An, E. Elbeshbishy, R. Hodon, and H. Lee. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells. Bioresource Technology. Elsevier Online, New York, NY, USA, 195: 31-36, (2015).

  2. Thermodynamic and transport properties of frozen and reacting pH2-oH2 mixtures

    NASA Technical Reports Server (NTRS)

    Carter, H. G.; Bullock, R. E.

    1972-01-01

    Application of experimental state data and spectroscopic term values shows that the thermodynamic and transport properties of reacting pH2-oH2 mixtures are considerably different than those of chemically frozen pH2 at temperatures below 300 R. Calculated H-S data also show that radiation-induced pH2-oH2 equilibration at constant enthalpy produces a temperature drop of at least 28 R, corresponding to an ideal shaft work loss of 15% or more for a turbine operating downstream from the point of conversion. Aside from differences in thermodynamic and transport properties, frozen pH2-oH2 mixtures may differ from pure pH2 on a purely hydrodynamical basis.

  3. Characterization of a real time H2O2 monitor for use in studies on H2O2 production by antibodies and cells.

    PubMed

    Sharma, Harish A; Balcavage, Walter X; Waite, Lee R; Johnson, Mary T; Nindl, Gabi

    2003-01-01

    It was recently shown that antibodies catalyze a reaction between water and ultraviolet light (UV) creating singlet oxygen and ultimately H2O2. Although the in vivo relevance of these antibody reactions is unclear, it is interesting that among a wide variety of non-antibody proteins tested, the T cell receptor is the only protein with similar capabilities. In clinical settings UV is believed to exert therapeutic effects by eliminating inflammatory epidermal T cells and we hypothesized that UV-triggered H2O2 production is involved in this process. To test the hypothesis we developed tools to study production of H2O2 by T cell receptors with the long-term goal of understanding, and improving, UV phototherapy. Here, we report the development of an inexpensive, real time H2O2 monitoring system having broad applicability. The detector is a Clark oxygen electrode (Pt, Ag/AgCl) modified to detect UV-driven H2O2 production. Modifications include painting the electrode black to minimize UV effects on the Ag/AgCl electrode and the use of hydrophilic, large pore Gelnots electrode membranes. Electrode current was converted to voltage and then amplified and recorded using a digital multimeter coupled to a PC. A reaction vessel with a quartz window was developed to maintain constant temperature while permitting UV irradiation of the samples. The sensitivity and specificity of the system and its use in cell-free and cell-based assays will be presented. In a cellfree system, production of H2O2 by CD3 antibodies was confirmed using our real time H2O2 monitoring method. Additionally we report the finding that splenocytes and Jurkat T cells also produce H2O2 when exposed to UV light.

  4. On the electron-induced isotope fractionation in low temperature (32)O(2)/(36)O(2) ices--ozone as a case study.

    PubMed

    Sivaraman, B; Mebel, A M; Mason, N J; Babikov, D; Kaiser, R I

    2011-01-14

    The formation of six ozone isotopomers and isotopologues, (16)O(16)O(16)O, (18)O(18)O(18)O, (16)O(16)O(18)O, (18)O(18)O(16)O, (16)O(18)O(16)O, and (18)O(16)O(18)O, has been studied in electron-irradiated solid oxygen (16)O(2) and (18)O(2) (1 ∶ 1) ices at 11 K. Significant isotope effects were found to exist which involved enrichment of (18)O-bearing ozone molecules. The heavy (18)O(18)O(18)O species is formed with a factor of about six higher than the corresponding (16)O(16)O(16)O isotopologue. Likewise, the heavy (18)O(18)O(16)O species is formed with abundances of a factor of three higher than the lighter (16)O(16)O(18)O counterpart. No isotope effect was observed in the production of (16)O(18)O(16)O versus(18)O(16)O(18)O. Such studies on the formation of distinct ozone isotopomers and isotopologues involving non-thermal, non-equilibrium chemistry by irradiation of oxygen ices with high energy electrons, as present in the magnetosphere of the giant planets Jupiter and Saturn, may suggest that similar mechanisms may contribute to the (18)O enrichment on the icy satellites of Jupiter and Saturn such as Ganymede, Rhea, and Dione. In such a Solar System environment, energetic particles from the magnetospheres of the giant planets may induce non-equilibrium reactions of suprathermal and/or electronically excited atoms under conditions, which are quite distinct from isotopic enrichments found in classical, thermal gas phase reactions.

  5. Heterogeneous kinetics of H2O, HNO3 and HCl on HNO3 hydrates (α-NAT, β-NAT, NAD) in the range 175-200 K

    NASA Astrophysics Data System (ADS)

    Iannarelli, Riccardo; Rossi, Michel J.

    2016-09-01

    Experiments on the title compounds have been performed using a multidiagnostic stirred-flow reactor (SFR) in which the gas phase as well as the condensed phase has been simultaneously investigated under stratospheric temperatures in the range 175-200 K. Wall interactions of the title compounds have been taken into account using Langmuir adsorption isotherms in order to close the mass balance between deposited and desorbed (recovered) compounds. Thin solid films at 1 µm typical thickness have been used as a proxy for atmospheric ice particles and have been deposited on a Si window of the cryostat, with the optical element being the only cold point in the deposition chamber. Fourier transform infrared (FTIR) absorption spectroscopy in transmission as well as partial and total pressure measurement using residual gas mass spectrometry (MS) and sensitive pressure gauges have been employed in order to monitor growth and evaporation processes as a function of temperature using both pulsed and continuous gas admission and monitoring under SFR conditions. Thin solid H2O ice films were used as the starting point throughout, with the initial spontaneous formation of α-NAT (nitric acid trihydrate) followed by the gradual transformation of α- to β-NAT at T > 185 K. Nitric acid dihydrate (NAD) was spontaneously formed at somewhat larger partial pressures of HNO3 deposited on pure H2O ice. In contrast to published reports, the formation of α-NAT proceeded without prior formation of an amorphous HNO3 / H2O layer and always resulted in β-NAT. For α- and β-NAT, the temperature-dependent accommodation coefficient α(H2O) and α(HNO3), the evaporation flux Jev(H2O) and Jev(HNO3) and the resulting saturation vapor pressure Peq(H2O) and Peq(HNO3) were measured and compared to binary phase diagrams of HNO3 / H2O in order to afford a thermochemical check of the kinetic parameters. The resulting kinetic and thermodynamic parameters of activation energies for evaporation (Eev) and

  6. Synthesis and X-ray Crystallography of [Mg(H2O)6][AnO2(C2H5COO)3]2 (An = U, Np, or Pu).

    PubMed

    Serezhkin, Viktor N; Grigoriev, Mikhail S; Abdulmyanov, Aleksey R; Fedoseev, Aleksandr M; Savchenkov, Anton V; Serezhkina, Larisa B

    2016-08-01

    Synthesis and X-ray crystallography of single crystals of [Mg(H2O)6][AnO2(C2H5COO)3]2, where An = U (I), Np (II), or Pu (III), are reported. Compounds I-III are isostructural and crystallize in the trigonal crystal system. The structures of I-III are built of hydrated magnesium cations [Mg(H2O)6](2+) and mononuclear [AnO2(C2H5COO)3](-) complexes, which belong to the AB(01)3 crystallochemical group of uranyl complexes (A = AnO2(2+), B(01) = C2H5COO(-)). Peculiarities of intermolecular interactions in the structures of [Mg(H2O)6][UO2(L)3]2 complexes depending on the carboxylate ion L (acetate, propionate, or n-butyrate) are investigated using the method of molecular Voronoi-Dirichlet polyhedra. Actinide contraction in the series of U(VI)-Np(VI)-Pu(VI) in compounds I-III is reflected in a decrease in the mean An═O bond lengths and in the volume and sphericity degree of Voronoi-Dirichlet polyhedra of An atoms.

  7. (C6N2H16)[Co(H2O)6](SO4)2.2H2O: A new hybrid material based on sulfate templated by diprotonated trans-1,4-diaminocyclohexane

    NASA Astrophysics Data System (ADS)

    Hamdi, N.; Ngopoh, F. A. I.; da Silva, I.; El Bali, B.; Lachkar, M.

    2018-03-01

    Employing trans-1,4-diaminocyclohexane (DACH) as template, the new hybrid sulphate (C6N2H16)[Co(H2O)6](SO4)2.2H2O was prepared in solution. Single-crystal X-ray diffraction analysis shows that it crystallizes in the monoclinic system (S.G.: P 21/n), with the following unit-cell parameters (Å,°): a = 6.2897(2), b = 12.3716(6), c = 13.1996(4), β = 98.091(3) V = 1016.89(7) Å3, Z = 4. Its 3D crystal structure is made upon isolated [Co(H2O)6] octahedra, regular [SO4] tetrahedra, protonated DACH and free H2O molecules, which interact through N-H···O and O-H···O hydrogen bonds. The Fourier transform infrared result exhibits bands corresponding to the vibrations of DACH, sulfate group and water molecules. The thermal decomposition of the phase consists mainly in the loss of the organic moiety and one sulfate group, leading thus to the formation of anhydrous cobalt sulfate.

  8. Tracking the energy flow in the hydrogen exchange reaction OH + H2OH2O + OH.

    PubMed

    Zhu, Yongfa; Ping, Leilei; Bai, Mengna; Liu, Yang; Song, Hongwei; Li, Jun; Yang, Minghui

    2018-05-09

    The prototypical hydrogen exchange reaction OH + H2OH2O + OH has attracted considerable interest due to its importance in a wide range of chemically active environments. In this work, an accurate global potential energy surface (PES) for the ground electronic state was developed based on ∼44 000 ab initio points at the level of UCCSD(T)-F12a/aug-cc-pVTZ. The PES was fitted using the fundamental invariant-neural network method with a root mean squared error of 4.37 meV. The mode specific dynamics was then studied by the quasi-classical trajectory method on the PES. Furthermore, the normal mode analysis approach was employed to calculate the final vibrational state distribution of the product H2O, in which a new scheme to acquire the Cartesian coordinates and momenta of each atom in the product molecule from the trajectories was proposed. It was found that, on one hand, excitation of either the symmetric stretching mode or the asymmetric stretching mode of the reactant H2O promotes the reaction more than the translational energy, which can be rationalized by the sudden vector projection model. On the other hand, the relatively higher efficacy of exciting the symmetric stretching mode than that of the asymmetric stretching mode is caused by the prevalence of the indirect mechanism at low collision energies and the stripping mechanism at high collision energies. In addition, the initial collision energy turns ineffectively into the vibrational energy of the products H2O and OH while a fraction of the energy transforms into the rotational energy of the product H2O. Fundamental excitation of the stretching modes of H2O results in the product H2O having the highest population in the fundamental state of the asymmetric stretching mode, followed by the ground state and the fundamental state of the symmetric stretching mode.

  9. Topology-energy relationships and lowest energy configurations for pentagonal dodecahedral (H2O)20X clusters, X=empty, H2O, NH3, H3O+: The importance of O-topology

    NASA Astrophysics Data System (ADS)

    Anick, David J.

    2010-04-01

    For (H2O)20X water clusters consisting of X enclosed by the 512 dodecahedral cage, X=empty, H2O, NH3, and H3O+, databases are made consisting of 55-82 isomers optimized via B3LYP/6-311++G∗∗. Correlations are explored between ground state electronic energy (Ee) or electronic energy plus zero point energy (Ee+ZPE) and the clusters' topology, defined as the set of directed H-bonds. Linear regression is done to identify topological features that correlate with cluster energy. For each X, variables are found that account for 99% of the variance in Ee and predict it with a rms error under 0.2 kcal/mol. The method of analysis emphasizes the importance of an intermediate level of structure, the "O-topology," consisting of O-types and a list of O pairs that are bonded but omitting H-bond directions, as a device to organize the databases and reduce the number of structures one needs to consider. Relevant variables include three parameters, which count the number of H-bonds having particular donor and acceptor types; |M|2, where M is the cluster's vector dipole moment; and the projection of M onto the symmetry axis of X. Scatter diagrams for Ee or Ee+ZPE versus |M| show that clusters fall naturally into "families" defined by the values of certain discrete parameters, the "major parameters," for each X. Combining "family" analysis and O-topologies, a small group of clusters is identified for each X that are candidates to be the global minimum, and the minimum is determined. For X=H3O+, one cluster with central hydronium lies just 2.08 kcal/mol above the lowest isomer with surface hydronium. Implications of the methodology for dodecahedral (H2O)20(NH4+) and (H2O)20(NH4+)(OH-) are discussed, and new lower energy isomers are found. For MP2/TZVP, the lowest-energy (H2O)20(NH4+) isomer features a trifurcated H-bond. The results suggest a much more efficient and comprehensive way of seeking low-energy water cluster geometries that may have wide applicability.

  10. Topology-energy relationships and lowest energy configurations for pentagonal dodecahedral (H2O)20X clusters, X = empty, H2O, NH3, H3O+: the importance of O-topology.

    PubMed

    Anick, David J

    2010-04-28

    For (H(2)O)(20)X water clusters consisting of X enclosed by the 5(12) dodecahedral cage, X = empty, H(2)O, NH(3), and H(3)O(+), databases are made consisting of 55-82 isomers optimized via B3LYP/6-311++G(**). Correlations are explored between ground state electronic energy (Ee) or electronic energy plus zero point energy (Ee+ZPE) and the clusters' topology, defined as the set of directed H-bonds. Linear regression is done to identify topological features that correlate with cluster energy. For each X, variables are found that account for 99% of the variance in Ee and predict it with a rms error under 0.2 kcal/mol. The method of analysis emphasizes the importance of an intermediate level of structure, the "O-topology," consisting of O-types and a list of O pairs that are bonded but omitting H-bond directions, as a device to organize the databases and reduce the number of structures one needs to consider. Relevant variables include three parameters, which count the number of H-bonds having particular donor and acceptor types; absolute value(M)(2), where M is the cluster's vector dipole moment; and the projection of M onto the symmetry axis of X. Scatter diagrams for Ee or Ee+ZPE versus absolute value(M) show that clusters fall naturally into "families" defined by the values of certain discrete parameters, the "major parameters," for each X. Combining "family" analysis and O-topologies, a small group of clusters is identified for each X that are candidates to be the global minimum, and the minimum is determined. For X = H(3)O(+), one cluster with central hydronium lies just 2.08 kcal/mol above the lowest isomer with surface hydronium. Implications of the methodology for dodecahedral (H(2)O)(20)(NH(4)(+)) and (H(2)O)(20)(NH(4)(+))(OH(-)) are discussed, and new lower energy isomers are found. For MP2/TZVP, the lowest-energy (H(2)O)(20)(NH(4)(+)) isomer features a trifurcated H-bond. The results suggest a much more efficient and comprehensive way of seeking low

  11. Luminescence Spectroscopy and Crystal Field Simulations of Europium Propylenediphosphonate EuH[O 3P(CH 2) 3PO 3] and Europium Glutarate [Eu(H 2O)] 2[O 2C(CH 2) 3CO 2] 3·4H 2O

    NASA Astrophysics Data System (ADS)

    Serpaggi, F.; Férey, G.; Antic-Fidancev, E.

    1999-12-01

    The results of investigations on the photoluminescence of two europium hybrid compounds, EuH[O3P(CH2)3PO3] (Eu[diph]) and [Eu(H2O)]2[O2C(CH2)3CO2]3·4H2O (Eu[glut]), are presented. In both compounds one local environment is found for the rare earth (Re) ion and the symmetry of the Re polyhedron is low (Cs) as evidenced by the Eu3+ luminescence studies. The electrostatic crystal field (cf) parameters of the 7F multiplet are obtained by the application of the phenomenological cf theory. The simulations using C2v symmetry for the rare earth ion give good agreement between the calculated and the experimental 7F0-4 energy level schemes. The observed optical data are discussed in relation to the crystal structure of the compounds.

  12. Physical limit of stability in supercooled D2O and D2O+H2O mixtures

    NASA Astrophysics Data System (ADS)

    Kiselev, S. B.; Ely, J. F.

    2003-01-01

    The fluctuation theory of homogeneous nucleation was applied for calculating the physical boundary of metastable states, the kinetic spinodal, in supercooled D2O and D2O+H2O mixtures. The kinetic spinodal in our approach is completely determined by the surface tension and equation of state of the supercooled liquid. We developed a crossover equation of state for supercooled D2O, which predicts a second critical point of low density water-high density water equilibrium, CP2, and represents all available experimental data in supercooled D2O within experimental accuracy. Using Turnbull's expression for the surface tension we calculated with the crossover equation of state for supercooled D2O the kinetic spinodal, TKS, which lies below the homogeneous nucleation temperature, TH. We show that CP2 always lies inside in the so-called "nonthermodynamic habitat" and physically does not exist. However, the concept of a second "virtual" critical point is physical and very useful. Using this concept we have extended this approach to supercooled D2O+H2O mixtures. As an example, we consider here an equimolar D2O+H2O mixture in normal and supercooled states at atmospheric pressure, P=0.1 MPa.

  13. Morphology-defined interaction of copper phthalocyanine with O2/H2O

    NASA Astrophysics Data System (ADS)

    Muckley, Eric S.; Miller, Nicholas; Jacobs, Christopher B.; Gredig, Thomas; Ivanov, Ilia N.

    2016-10-01

    Copper phthalocyanine (CuPc) is an important hole transport layer for organic photovoltaics (OPVs), but interaction with ambient gas/vapor may lead to changes in its electronic properties and limit OPV device lifetimes. CuPc films of thickness 25 and 100 nm were grown by thermal sublimation at 25°C, 150°C, and 250°C in order to vary morphology. We measured electrical resistance and film mass in situ during exposure to controlled pulses of O2 and H2O vapor. CuPc films deposited at 250°C showed a factor of 5 higher uptake of O2 as detected by a quartz crystal microbalance (QCM), possibly due to the formation of β-CuPc at T>200°C which allows higher O2 mobility between stacked molecules. While weight-based measurements stabilize after ˜10 min of gas exposure, resistance response stabilizes over times >1 h, suggesting that mass change occurs by rapid adsorption at active surface sites whereas resistive response is dominated by slow diffusion of adsorbates into the bulk film. The 25 nm films exhibit higher resistive response than 100 nm films after an hour of O2/H2O exposure due to fast analyte diffusion down to the film/electrode interface. We found evidence of decoupling of CuPc from the gold-coated QCM crystal due to preferential adsorption of O2/H2O molecules on gold.

  14. Thermal conductivity of H2O-CH3OH mixtures at high pressures: Implications for the dynamics of icy super-Earths outer shells

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Pin; Deschamps, Frédéric

    2015-10-01

    Thermal conductivity of H2O-volatile mixtures at extreme pressure-temperature conditions is a key factor to determine the heat flux and profile of the interior temperature in icy bodies. We use time domain thermoreflectance and stimulated Brillouin scattering combined with diamond anvil cells to study the thermal conductivity and sound velocity of water (H2O)-methanol (CH3OH) mixtures to pressures as high as 12 GPa. Compared to pure H2O, the presence of 5-20 wt % CH3OH significantly reduces the thermal conductivity and sound velocity when the mixture becomes ice VI-CH3OH and ice VII-CH3OH phases at high pressures, indicating that the heat transfer is hindered within the icy body. We then apply these results to model the heat transfer through the icy mantles of super-Earths, assuming that these mantles are animated by thermal convection. Our calculations indicate that the decrease of thermal conductivity due to the presence of 10 wt % CH3OH induces a twofold decrease of the power transported by convection.

  15. Development of an E-H2O2/TiO2 photoelectrocatalytic oxidation system for water and wastewater treatment.

    PubMed

    Li, X Z; Liu, H S

    2005-06-15

    In this study, an innovative E-H2O2/TiO2 (E-H2O2 = electrogenerated hydrogen peroxide) photoelectrocatalytic (PEC) oxidation system was successfully developed for water and wastewater treatment. A TiO2/Ti mesh electrode was applied in this photoreactor as the anode to conduct PEC oxidation, and a reticulated vitreous carbon (RVC) electrode was used as the cathode to electrogenerate hydrogen peroxide simultaneously. The TiO2/Ti mesh electrode was prepared with a modified anodic oxidation process in a quadrielectrolyte (H2SO4-H3PO4-H2O2-HF) solution. The crystal structure, surface morphology, and film thickness of the TiO2/Ti mesh electrode were characterized by X-ray diffraction and scanning electron microscopy. The analytical results showed that a honeycomb-type anatase film with a thickness of 5 microm was formed. Photocatalytic oxidation (PC) and PEC oxidation of 2,4,6-trichlorophenol (TCP) in an aqueous solution were performed under various experimental conditions. Experimental results showed that the TiO2/Ti electrode, anodized in the H2SO4-H3PO4-H2O2-HF solution, had higher photocatalytic activity than the TiO2/Ti electrode anodized in the H2SO4 solution. It was found that the maximum applied potential would be around 2.5 V, corresponding to an optimum applied current density of 50 microA cm(-2) under UV-A illumination. The experiments confirmed that the E-H2O2 on the RVC electrode can significantly enhance the PEC oxidation of TCP in aqueous solution. The rate of TCP degradation in such an E-H2O2-assisted TiO2 PEC reaction was 5.0 times that of the TiO2 PC reaction and 2.3 times that of the TiO2 PEC reaction. The variation of pH during the E-H2O2-assisted TiO2 PEC reaction, affected by individual reactions, was also investigated. It was found that pH was well maintained during the TCP degradation in such an E-H2O2/TiO2 reaction system. This is beneficial to TCP degradation in an aqueous solution.

  16. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    PubMed

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  17. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2, treatment for removal of clofibric acid from aqueous solution.

    PubMed

    Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei

    2011-07-01

    Clofibric acid (CA), a metabolite of lipid regulators, was investigated in ultra-pure water and sewage treatment plant (STP) effluent at 10 degrees C under UV, vacuum UV (VUV), UV/H2O2 and VUV/H2O2 processes. The influences of NO3-, HCO3- and humic acid (HA) on CA photolysis in all processes were examined. The results showed that all the experimental data well fitted the pseudo-first-order kinetic model, and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated accordingly. Direct photolysis of CA through UV irradiation was the main process, compared with the indirect oxidation of CA due to the slight generation of hydroxyl radicals dissociated from water molecules under UV irradiation below 200 nm monochromatic wavelength emission. In contrast, indirect oxidation was the main CA degradation mechanism in UV/H2O2 and VUV/H2O2, and VUV/H2O2 was the most effective process for CA degradation. The addition of 20 mg L(-1) HA could significantly inhibit CA degradation, whereas, except for UV irradiation, the inhibitive effects of NO3- and HCO3- (1.0 x 10(-3) and 0.1 mol L(-1), respectively) on CA degradation were observed in all processes, and their adverse effects were more significant in UV/H2O2 and VUV/H2O2 processes, particularly at the high NO3- and HCO3- concentrations. The degradation rate decreased 1.8-4.9-fold when these processes were applied to a real STP effluent owing to the presence of complex constituents. Of the four processes, VUV/H2O2 was the most effective, and the CA removal efficiency reached over 99% after 40 min in contrast to 80 min in both the UV/H2O2 and VUV processes and 240 min in the UV process.

  18. H2O2/TiO2 photocatalytic oxidation of metol. Identification of intermediates and reaction pathways.

    PubMed

    Aceituno, Mónica; Stalikas, Constantine D; Lunar, Loreto; Rubio, Soledad; Pérez-Bendito, Dolores

    2002-08-01

    The applicability of H2O2 to increase the efficiency of TiO2 photocatalytic degradations was investigated. The photographic developer metol [N-methyl-p-aminophenol] that does not adsorb on the surface of TiO2 particulates was used as a model for this purpose. It was proved that metol was mineralised under oxidation with H2O2/TiO2/UV through different thermal and photochemical reactions. Identification of intermediates by both HPLC-electron impact-MS and HPLC-electrospray ionisation-MS helped to elucidate the role of H2O2 and TiO2 in the degradation process and to establish degradation pathways. Intermediates yielded were partially oxygenated aromatic species and dimers, which were amenable to oxidation. The optimal degradation conditions found for mineralisation were 0.4 M H2O2, 5 mg/ml TiO2, pH 9 and irradiation centred at 360 nm (4.9 mW/cm2). The use of oxidants opens an interesting medium to the treatment of effluents containing a diversity of organics since they increase substantially the efficiency of TiO2 photocatalytic degradations.

  19. Transcriptome Analysis of H2O2-Treated Wheat Seedlings Reveals a H2O2-Responsive Fatty Acid Desaturase Gene Participating in Powdery Mildew Resistance

    PubMed Central

    Tang, Lichuan; Zhao, Guangyao; Zhu, Mingzhu; Chu, Jinfang; Sun, Xiaohong; Wei, Bo; Zhang, Xiangqi; Jia, Jizeng; Mao, Long

    2011-01-01

    Hydrogen peroxide (H2O2) plays important roles in plant biotic and abiotic stress responses. However, the effect of H2O2 stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H2O2, we performed an mRNA tag analysis of wheat seedlings under 10 mM H2O2 treatment for 6 hour in one powdery mildew (PM) resistant (PmA) and two susceptible (Cha and Han) lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H2O2 responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, ‘transport’ activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H2O2-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H2O2-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt). Eight of these genes were found to be co-regulated by H2O2 and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS) to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H2O2 stress and uncovers potential links between H2O2 and Bgt responses, hence providing important candidate genes for the PM resistance in wheat. PMID:22174904

  20. The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H{sub 2}O Dissociation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, Kevin; Roueff, Evelyne; Abgrall, Hervé, E-mail: kevin.france@colorado.edu

    The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we havemore » assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope -Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100–1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST -COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490–1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L (Bump) ≈ 7 × 10{sup 29} erg s{sup −1}. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ {sub o} = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H{sub 2} excited by electron -impact. We show that this Bump makes up between 5%–50% of the total FUV continuum emission in the 1490–1690 Å band and emits roughly 10%–80% of the total fluorescent H{sub 2} luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Ly α photons. We argue that the most likely

  1. Kinetics of Al + H2O reaction: theoretical study.

    PubMed

    Sharipov, Alexander; Titova, Nataliya; Starik, Alexander

    2011-05-05

    Quantum chemical calculations were carried out to study the reaction of Al atom in the ground electronic state with H(2)O molecule. Examination of the potential energy surface revealed that the Al + H(2)O → AlO + H(2) reaction must be treated as a complex process involving two steps: Al + H(2)O → AlOH + H and AlOH + H → AlO + H(2). Activation barriers for these elementary reaction channels were calculated at B3LYP/6-311+G(3df,2p), CBS-QB3, and G3 levels of theory, and appropriate rate constants were estimated by using a canonical variational theory. Theoretical analysis exhibited that the rate constant for the Al + H(2)O → products reaction measured by McClean et al. must be associated with the Al + H(2)O → AlOH + H reaction path only. The process of direct HAlOH formation was found to be negligible at a pressure smaller than 100 atm.

  2. Synthesis and structure of heptaaqua(nitrilotris(methylenephosphonato))(dibarium)sodium monohydrate [Na(H{sub 2}O){sub 3}(μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(μ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somov, N. V., E-mail: somov@phys.unn.ru; Chausov, F. F., E-mail: xps@ftiudm.ru; Zakirova, R. M., E-mail: ftt@udsu.ru

    Crystals of the monohydrate form of heptaaqua(nitrilotris(methylenephosphonato))(dibarium) sodium [Na(H{sub 2}O{sub )3}(µ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(µ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O are obtained; space group P2{sub 1}/c, Z = 4; a = 13.9117(10) Å, b = 11.54030(10) Å, and c = 24.1784(17) Å, ß = 148.785(18)°. The Na atom is coordinated octahedrally by one oxygen atom of a phosphonate group and five water molecules, including two bridging molecules. Ba atoms occupy two inequivalent crystallographic positions with coordination number eight and nine. The coordination spheres of both Ba atoms include two water molecules. Each ligand is bound to one Namore » atom and five Ba atoms forming three Ba–O–P–O and five Ba–O–P–C–N–C–P–O chelate cycles. In addition to the coordination bonds, molecules, including the solvate water molecule, are involved in hydrogen bonds in the crystal packing.« less

  3. Degradation of 5-FU by means of advanced (photo)oxidation processes: UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2--Comparison of transformation products, ready biodegradability and toxicity.

    PubMed

    Lutterbeck, Carlos Alexandre; Wilde, Marcelo Luís; Baginska, Ewelina; Leder, Christoph; Machado, Ênio Leandro; Kümmerer, Klaus

    2015-09-15

    The present study investigates the degradation of the antimetabolite 5-fluorouracil (5-FU) by three different advanced photo oxidation processes: UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. Prescreening experiments varying the H2O2 and TiO2 concentrations were performed in order to set the best catalyst concentrations in the UV/H2O2 and UV/TiO2 experiments, whereas the UV/Fe(2+)/H2O2 process was optimized varying the pH, Fe(2+) and H2O2 concentrations by means of the Box-Behnken design (BBD). 5-FU was quickly removed in all the irradiation experiments. The UV/Fe(2+)/H2O2 and UV/TiO2 processes achieved the highest degree of mineralization, whereas the lowest one resulted from the UV/H2O2 treatment. Six transformation products were formed during the advanced (photo)oxidation processes and identified using low and high resolution mass spectrometry. Most of them were formed and further eliminated during the reactions. The parent compound of 5-FU was not biodegraded, whereas the photolytic mixture formed in the UV/H2O2 treatment after 256 min showed a noticeable improvement of the biodegradability in the closed bottle test (CBT) and was nontoxic towards Vibrio fischeri. In silico predictions showed positive alerts for mutagenic and genotoxic effects of 5-FU. In contrast, several of the transformation products (TPs) generated along the processes did not provide indications for mutagenic or genotoxic activity. One exception was TP with m/z 146 with positive alerts in several models of bacterial mutagenicity which could demand further experimental testing. Results demonstrate that advanced treatment can eliminate parent compounds and its toxicity. However, transformation products formed can still be toxic. Therefore toxicity screening after advanced treatment is recommendable. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. High pressure ices.

    PubMed

    Hermann, Andreas; Ashcroft, N W; Hoffmann, Roald

    2012-01-17

    H(2)O will be more resistant to metallization than previously thought. From computational evolutionary structure searches, we find a sequence of new stable and meta-stable structures for the ground state of ice in the 1-5 TPa (10 to 50 Mbar) regime, in the static approximation. The previously proposed Pbcm structure is superseded by a Pmc2(1) phase at p = 930 GPa, followed by a predicted transition to a P2(1) crystal structure at p = 1.3 TPa. This phase, featuring higher coordination at O and H, is stable over a wide pressure range, reaching 4.8 TPa. We analyze carefully the geometrical changes in the calculated structures, especially the buckling at the H in O-H-O motifs. All structures are insulating--chemistry burns a deep and (with pressure increase) lasting hole in the density of states near the highest occupied electronic levels of what might be component metallic lattices. Metallization of ice in our calculations occurs only near 4.8 TPa, where the metallic C2/m phase becomes most stable. In this regime, zero-point energies much larger than typical enthalpy differences suggest possible melting of the H sublattice, or even the entire crystal.

  5. CO Diffusion and Desorption Kinetics in CO2 Ices

    NASA Astrophysics Data System (ADS)

    Cooke, Ilsa R.; Öberg, Karin I.; Fayolle, Edith C.; Peeler, Zoe; Bergner, Jennifer B.

    2018-01-01

    The diffusion of species in icy dust grain mantles is a fundamental process that shapes the chemistry of interstellar regions; yet, measurements of diffusion in interstellar ice analogs are scarce. Here we present measurements of CO diffusion into CO2 ice at low temperatures (T = 11–23 K) using CO2 longitudinal optical phonon modes to monitor the level of mixing of initially layered ices. We model the diffusion kinetics using Fick’s second law and find that the temperature-dependent diffusion coefficients are well fit by an Arrhenius equation, giving a diffusion barrier of 300 ± 40 K. The low barrier along with the diffusion kinetics through isotopically labeled layers suggest that CO diffuses through CO2 along pore surfaces rather than through bulk diffusion. In complementary experiments, we measure the desorption energy of CO from CO2 ices deposited at 11–50 K by temperature programmed desorption and find that the desorption barrier ranges from 1240 ± 90 K to 1410 ± 70 K depending on the CO2 deposition temperature and resultant ice porosity. The measured CO–CO2 desorption barriers demonstrate that CO binds equally well to CO2 and H2O ices when both are compact. The CO–CO2 diffusion–desorption barrier ratio ranges from 0.21 to 0.24 dependent on the binding environment during diffusion. The diffusion–desorption ratio is consistent with the above hypothesis that the observed diffusion is a surface process and adds to previous experimental evidence on diffusion in water ice that suggests surface diffusion is important to the mobility of molecules within interstellar ices.

  6. Kinetic Studies of Iron Deposition in Horse Spleen Ferritin Using H2O2 and O2 as Oxidants

    NASA Technical Reports Server (NTRS)

    Lowery, Thomas J., Jr.; Bunker, Jared; Zhang, Bo; Costen, Robert; Watt, Gerald D.

    2004-01-01

    The reaction of horse spleen ferritin (HoSF) with Fe(2+) at pH 6.5 and 7.5 using O2, H2O2 and 1:1 a mixture of both showed that the iron deposition reaction using H2O2 is approx. 20- to 50-fold faster than the reaction with O2 alone. When H2O2 was added during the iron deposition reaction initiated with O2 as oxidant, Fe(2+) was preferentially oxidized by H2O2, consistent with the above kinetic measurements. Both the O2 and H202 reactions were well defined from 15 to 40 C from which activation parameters were determined. The iron deposition reaction was also studied using O2 as oxidant in the presence and absence of catalase using both stopped-flow and pumped-flow measurements. The presence of catalase decreased the rate of iron deposition by approx. 1.5-fold, and gave slightly smaller absorbance changes than in its absence. From the rate constants for the O2 (0.044 per second) and H2O2 (0.67 per second) iron-deposition reactions at pH 7.5, simulations of steady-state H2O2 concentrations were computed to be 0.45 micromolar. This low value and reported Fe2(+)/O2 values of 2.0-2.5 are consistent with H2O2 rapidly reacting by an alternate but unidentified pathway involving a system component such as the protein shell or the mineral core as previously postulated.

  7. Turbulence in Supercritical O2/H2 and C7H16/N2 Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Okong'o, Nora

    2003-01-01

    This report presents a study of numerical simulations of mixing layers developing between opposing flows of paired fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence. The simulations were performed for two different fluid pairs O2/H2 and C7H16/N2 at similar reduced initial pressures (reduced pressure is defined as pressure divided by critical pressure). Thermodynamically, O2/H2 behaves more nearly like an ideal mixture and has greater solubility, relative to C7H16/N2, which departs strongly from ideality. Because of a specified smaller initial density stratification, the C7H16/N2 layers exhibited greater levels of growth, global molecular mixing, and turbulence. However, smaller density gradients at the transitional state for the O2/H2 system were interpreted as indicating that locally, this system exhibits enhanced mixing as a consequence of its greater solubility and closer approach to ideality. These thermodynamic features were shown to affect entropy dissipation, which was found to be larger for O2/H2 and concentrated in high-density-gradient-magnitude regions that are distortions of the initial density-stratification boundary. In C7H16/N2, the regions of largest dissipation were found to lie in high-density-gradient-magnitude regions that result from mixing of the two fluids.

  8. Measuring hourly 18O and 2H fluxes in a mixed hardwood forest using an integrated cavity output spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, L.; Caylor, K.; Dragoni, D.

    2008-12-01

    The 18O and 2H of water vapor can be used to investigate couplings between biological processes (e.g., photosynthesis or transpiration) and hydrologic processes (e.g., evaporation) and therefore serve as powerful tracers in hydrological cycles. A typical method for determining δ18O and δ2H fluxes in landscapes is a 'Keeling Plot' approach, which uses field-collected vapor samples coupled with a traditional isotope ratio mass spectrometer to infer the isotopic composition of evapotranspiration. However, fractionation accompanying inefficient vapor trapping can lead to large measurement uncertainty and the intensive laboring involved in cold-trap make it almost impossible for continuous measurements. Over the last 3-4 years a few groups have developed continuous approaches for measuring δ18O and δ2H that use laser absorption spectroscopy (LAS) to achieve accuracy levels similar to lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling, constant calibration to a reference gas, and substantial power requirements, which make them unsuitable for long-term field deployment at remote field sites. In this research, we tested out a new LAS--based water vapor isotope analyzer (WVIA, Los Gatos Research, Inc, Mountain View, CA) based on Integrated Cavity Output Spectroscopy (ICOS) and coupled this instrument with a flux gradient system. The WVIA was calibrated bi- weekly using a dew point generator and water with known δ18O and δ2H signatures. The field work was performed at Morgan-Monroe State Forest Ameriflux tower site (central Indiana) between August 8 and August 27, 2008. The combination method was able to produce hourly δ18O and δ2H fluxes data with reproducibility similar to lab-based mass spectrometry methods. Such high temporal resolution data were also able to capture signatures of canopy and bare soil evaporation to individual rainfall events. The use of the ICOS water vapor analyzer within a gradient system has the

  9. Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O-H2O and δ2H-H2O values by cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer E.; Rella, Chris W.

    2017-08-01

    Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O-H2O and δ2H-H2O values based on the amplitude of water isotopologue absorption features around 7184 cm-1 (L2120-i, Picarro, Inc.). For background mixtures balanced with N2, the apparent δ18O values deviate from true values by -0.50 ± 0.001 ‰ O2 %-1 and -0.57 ± 0.001 ‰ Ar %-1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %-1 and 0.42 ± 0.004 ‰ Ar %-1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.

  10. Ab initio and transition state theory study of the OH + HO2H2O + O2(3Σg-)/O2(1Δg) reactions: yield and role of O2(1Δg) in H2O2 decomposition and in combustion of H2.

    PubMed

    Monge-Palacios, M; Sarathy, S Mani

    2018-02-07

    Reactions of hydroxyl (OH) and hydroperoxyl (HO 2 ) are important for governing the reactivity of combustion systems. We performed post-CCSD(T) ab initio calculations at the W3X-L//CCSD = FC/cc-pVTZ level to explore the triplet ground-state and singlet excited-state potential energy surfaces of the OH + HO 2H 2 O + O 2 ( 3 Σ g - )/O 2 ( 1 Δ g ) reactions. Using microcanonical and multistructural canonical transition state theories, we calculated the rate constant for the triplet and singlet channels over the temperature range 200-2500 K, represented by k(T) = 3.08 × 10 12 T 0.07  exp(1151/RT) + 8.00 × 10 12 T 0.32  exp(-6896/RT) and k(T) = 2.14 × 10 6 T 1.65  exp(-2180/RT) in cm 3 mol -1 s -1 , respectively. The branching ratios show that the yield of singlet excited oxygen is small (<0.5% below 1000 K). To ascertain the importance of singlet oxygen channel, our new kinetic information was implemented into the kinetic model for hydrogen combustion recently updated by Konnov (Combust. Flame, 2015, 162, 3755-3772). The updated kinetic model was used to perform H 2 O 2 thermal decomposition simulations for comparison against shock tube experiments performed by Hong et al. (Proc. Combust. Inst., 2013, 34, 565-571), and to estimate flame speeds and ignition delay times in H 2 mixtures. The simulation predicted a larger amount of O 2 ( 1 Δ g ) in H 2 O 2 decomposition than that predicted by Konnov's original model. These differences in the O 2 ( 1 Δ g ) yield are due to the use of a higher ab initio level and a more sophisticated methodology to compute the rate constant than those used in previous studies, thereby predicting a significantly larger rate constant. No effect was observed on the rate of the H 2 O 2 decomposition and on the flame speeds and ignition delay times of different H 2 -oxidizer mixtures. However, if the oxidizer is seeded with O 3 , small differences appear in the flame speed. Given that O 2 ( 1 Δ g ) is much more reactive than O

  11. Water Ice on Triton

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Roush, Ted L.; Owen, Tobias C.; Schmitt, Bernard; Quirico, Eric; Geballe, Thomas R.; deBergh, Catherine; Bartholomew, Mary Jane; DalleOre, Cristina M.; Doute, Sylvain

    1999-01-01

    We report the spectroscopic detection of H2O ice on Triton, evidenced by the broad absorptions in the near infrared at 1.55 and 2.04 micron. The detection on Triton confirms earlier preliminary studies (D. P. Cruikshank, R. H. Brown, and R. N. Clark, Icarus 58, 293-305, 1984). The spectra support the contention that H2O ice on Triton is in a crystalline (cubic or hexagonal) phase. Our spectra (1.87-2.5 micron) taken over an interval of nearly 3.5 years do not show any significant changes that might relate to reports of changes in Triton's spectral reflectance (B. Buratti, M. D. Hicks, and R. L. Newburn, Jr., Nature 397, 219, 1999), or in Triton's volatile inventory (J. L. Elliot et al., Nature 393, 765-767, 1998).

  12. Interaction of D2 with H2O amorphous ice studied by temperature-programmed desorption experiments.

    PubMed

    Amiaud, L; Fillion, J H; Baouche, S; Dulieu, F; Momeni, A; Lemaire, J L

    2006-03-07

    The gas-surface interaction of molecular hydrogen D2 with a thin film of porous amorphous solid water (ASW) grown at 10 K by slow vapor deposition has been studied by temperature-programmed-desorption (TPD) experiments. Molecular hydrogen diffuses rapidly into the porous network of the ice. The D2 desorption occurring between 10 and 30 K is considered here as a good probe of the effective surface of ASW interacting with the gas. The desorption kinetics have been systematically measured at various coverages. A careful analysis based on the Arrhenius plot method has provided the D2 binding energies as a function of the coverage. Asymmetric and broad distributions of binding energies were found, with a maximum population peaking at low energy. We propose a model for the desorption kinetics that assumes a complete thermal equilibrium of the molecules with the ice film. The sample is characterized by a distribution of adsorption sites that are filled according to a Fermi-Dirac statistic law. The TPD curves can be simulated and fitted to provide the parameters describing the distribution of the molecules as a function of their binding energy. This approach contributes to a correct description of the interaction of molecular hydrogen with the surface of possibly porous grain mantles in the interstellar medium.

  13. Chlorogenic acid analogues from Gynura nepalensis protect H9c2 cardiomyoblasts against H2O2-induced apoptosis

    PubMed Central

    Yu, Bang-wei; Li, Jin-long; Guo, Bin-bin; Fan, Hui-min; Zhao, Wei-min; Wang, He-yao

    2016-01-01

    Aim: Chlorogenic acid has shown protective effect on cardiomyocytes against oxidative stress-induced damage. Herein, we evaluated nine caffeoylquinic acid analogues (1–9) isolated from the leaves of Gynura nepalensis for their protective effect against H2O2-induced H9c2 cardiomyoblast damage and explored the underlying mechanisms. Methods: H9c2 cardiomyoblasts were exposed to H2O2 (0.3 mmol/L) for 3 h, and cell viability was detected with MTT assay. Hoechst 33342 staining was performed to evaluate cell apoptosis. MMPs (mitochondrial membrane potentials) were measured using a JC-1 assay kit, and ROS (reactive oxygen species) generation was measured using CM-H2 DCFDA. The expression levels of relevant proteins were detected using Western blot analysis. Results: Exposure to H2O2 markedly decreased the viability of H9c2 cells and catalase activity, and increased LDH release and intracellular ROS production; accompanied by a loss of MMP and increased apoptotic rate. Among the 9 chlorogenic acid analogues as well as the positive control drug epigallocatechin gallate (EGCG) tested, compound 6 (3,5-dicaffeoylquinic acid ethyl ester) was the most effective in protecting H9c2 cells from H2O2-induced cell death. Pretreatment with compound 6 (1.56–100 μmol/L) dose-dependently alleviated all the H2O2-induced detrimental effects. Moreover, exposure to H2O2 significantly increased the levels of Bax, p53, cleaved caspase-8, and cleaved caspase-9, and decreased the level of Bcl-2, resulting in cell apoptosis. Exposure to H2O2 also significantly increased the phosphorylation of p38, JNK and ERK in the H9c2 cells. Pretreatment with compound 6 (12.5 and 25 μmol/L) dose-dependently inhibited the H2O2-induced increase in the level of cleaved caspase-9 but not of cleaved caspase-8. It also dose-dependently suppressed the H2O2-induced phosphorylation of JNK and ERK but not that of p38. Conclusion: Compound 6 isolated from the leaves of Gynura nepalensis potently protects H9c2

  14. A novel amido-pyrophosphate Mn(II) chelate complex with the synthetic ligand O{P(O)[NHC(CH3)3]2}2 (L): [Mn(L)2{OC(H)N(CH3)2}2]Cl2·2H2O.

    PubMed

    Tarahhomi, Atekeh; Pourayoubi, Mehrdad; Fejfarová, Karla; Dušek, Michal

    2013-03-01

    The title complex, trans-bis(dimethylformamide-κO)bis{N,N'-N'',N'''-tetra-tert-butyl[oxybis(phosphonic diamide-κO)]}manganese(II) dichloride dihydrate, [Mn(C16H40N4O3P2)2(C3H7NO)2]Cl2·2H2O, is the first example of a bis-chelate amido-pyrophosphate (pyrophosphoramide) complex containing an O[P(O)(NH)2]2 fragment. Its asymmetric unit contains half of the complex dication, one chloride anion and one water molecule. The Mn(II) atom, located on an inversion centre, is octahedrally coordinated, with a slight elongation towards the monodentate dimethylformamide ligand. Structural features of the title complex, such as the P=O bond lengths and the planarity of the chelate ring, are compared with those of previously reported complexes with six-membered chelates involving the fragments C(O)NHP(O), (X)NP(O) [X = C(O), C(S), S(O)2 and P(O)] and O[P(O)(N)2]2. This analysis shows that the six-membered chelate rings are less puckered in pyrophosphoramide complexes containing a P(O)OP(O) skeleton, such as the title compound. The extended structure of the title complex involves a linear aggregate mediated by N-H...O and N-H...Cl hydrogen bonds, in which the chloride anion is an acceptor in two additional O-H...Cl hydrogen bonds.

  15. Borate mineral assemblages in the system Na2OCaOMgOB2O3H2O

    USGS Publications Warehouse

    Christ, C.L.; Truesdell, A.H.; Erd, Richard C.

    1967-01-01

    he significant known hydrated borate mineral assemblages (principally of the western United States) in the system Na2OCaOz.sbnd;MgOB2O3H2O are expressible in three ternary composition diagrams. Phase rule interpretation of the diagrams is consistent with observation, if the activity of H2O is generally considered to be determined by the geologic environment. The absence of conflicting tie-lines on a diagram indicates that the several mineral assemblages of the diagram were formed under relatively narrow ranges of temperature and pressure. The known structural as well as empirical formulas for the minerals are listed, and the more recent (since 1960) crystal structure findings are discussed briefly. Schematic Gibbs free energy-composition diagrams based on known solubility-temperature relations in the systems Na2B4O7-H2O and Na2B4O7-NaCl-H2O, are highly useful in the interpretation and prediction of the stability relations in these systems; in particular these diagrams indicate clearly that tincalconite, although geologically important, is everywhere a metastable phase. Crystal-chemical considerations indicate that the same thermodynamic and kinetic behavior observed in the Na2B4O7-H2O system will hold in the Ca2B6O11-H2O system. This conclusion is confirmed by the petrologic evidence. The chemical relations among the mineral assemblages of a ternary diagram are expressed by a schematic "activity-activity" diagram. These activity-activity diagrams permit the tracing-out of the paragenetic sequences as a function of changing cation and H2O activities. ?? 1967.

  16. Isotope exchange in reactions between D2O and size-selected ionic water clusters containing pyridine, H+ (pyridine)m(H2O)n.

    PubMed

    Ryding, Mauritz Johan; Zatula, Alexey S; Andersson, Patrik Urban; Uggerud, Einar

    2011-01-28

    Pyridine containing water clusters, H(+)(pyridine)(m)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. In the experiments, H(+)(pyridine)(m)(H(2)O)(n) with m = 1-4 and n = 0-80 are observed. For the cluster distributions observed, there are no magic numbers, neither in the abundance spectra, nor in the evaporation spectra from size selected clusters. Experiments with size-selected clusters H(+)(pyridine)(m)(H(2)O)(n), with m = 0-3, reacting with D(2)O at a center-of-mass energy of 0.1 eV were also performed. The cross-sections for H/D isotope exchange depend mainly on the number of water molecules in the cluster and not on the number of pyridine molecules. Clusters having only one pyridine molecule undergo D(2)O/H(2)O ligand exchange, while H(+)(pyridine)(m)(H(2)O)(n), with m = 2, 3, exhibit significant H/D scrambling. These results are rationalized by quantum chemical calculations (B3LYP and MP2) for H(+)(pyridine)(1)(H(2)O)(n) and H(+)(pyridine)(2)(H(2)O)(n), with n = 1-6. In clusters containing one pyridine, the water molecules form an interconnected network of hydrogen bonds associated with the pyridinium ion via a single hydrogen bond. For clusters containing two pyridines, the two pyridine molecules are completely separated by the water molecules, with each pyridine being positioned diametrically opposite within the cluster. In agreement with experimental observations, these calculations suggest a "see-saw mechanism" for pendular proton transfer between the two pyridines in H(+)(pyridine)(2)(H(2)O)(n) clusters.

  17. Inhibitory Effect of Dissolved Silica on the H2O2 Decomposition by Iron(III) and Manganese(IV) Oxides: Implications for H2O2-based In Situ Chemical Oxidation

    PubMed Central

    Pham, Anh Le-Tuan; Doyle, Fiona M.; Sedlak, David L.

    2011-01-01

    The decomposition of H2O2 on iron minerals can generate •OH, a strong oxidant that can transform a wide range of contaminants. This reaction is critical to In Situ Chemical Oxidation (ISCO) processes used for soil and groundwater remediation, as well as advanced oxidation processes employed in waste treatment systems. The presence of dissolved silica at concentrations comparable to those encountered in natural waters decreases the reactivity of iron minerals toward H2O2, because silica adsorbs onto the surface of iron minerals and alters catalytic sites. At circumneutral pH values, goethite, amorphous iron oxide, hematite, iron-coated sand and montmorillonite that were pre-equilibrated with 0.05 – 1.5 mM SiO2 were significantly less reactive toward H2O2 decomposition than their original counterparts, with the H2O2 loss rates inversely proportional to the SiO2 concentration. In the goethite/H2O2 system, the overall •OH yield, defined as the percentage of decomposed H2O2 producing •OH, was almost halved in the presence of 1.5 mM SiO2. Dissolved SiO2 also slows the H2O2 decomposition on manganese(IV) oxide. The presence of dissolved SiO2 results in greater persistence of H2O2 in groundwater, lower H2O2 utilization efficiency and should be considered in the design of H2O2-based treatment systems. PMID:22129132

  18. A V(IV) Hydroxyhydrogenomonophosphate with an Intersecting Tunnel Structure: HK 4[V 10O 10(H 2O) 2(OH) 4(PO 4) 7]·9H 2O

    NASA Astrophysics Data System (ADS)

    Berrah, F.; Guesdon, A.; Leclaire, A.; Borel, M. M.; Provost, J.; Raveau, B.

    1999-12-01

    A V(IV) hydroxyhydrogenomonophosphate HK4[V10O10(H2O)2(OH)4(PO4)7]·9H2O has been obtained, using hydrothermal conditions. Its structure, closely related to that of (CH3)2NH2K4[V10O10(H2O)2(OH)4(PO4)7]·4H2O, differs from the latter by its I41/a space group (instead of P43). This difference corresponds to a "disordering" of the vanadium atoms, with respect to the dimethyl ammonium phase. It is shown that this disorder, which appears in the form of "V5O22" units distributed at random, does not affect the oxygen framework. The analysis of this complex structure shows that it can be described from the stacking along c of [V8P7O38(OH)4(H2O)2]∞ layers interconnected through layers of isolated VO6 octahedra. In this structure, built up of VO6, VO5OH, and VO4(OH)(H2O) octahedra, of VO4OH pyramids, and of PO4 tetrahedra, large "toffee" tunnels and smaller ones with a tulip-shape section are running along a (or b). The first ones are stuffed with H2O molecules forming aquo tubes, where protons are likely "delocalized," whereas the second ones are occupied by K+ cations.

  19. IR Spectroscopy and Photo-Chemistry of Extraterrestrial Ices

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Mastrapa, Rachel; Elsila, Jamie; Sandford, Scott

    2005-01-01

    Dense molecular clouds from which planetary systems form and the outer Solar System are both cold environments dominated by ices. Infrared (IR) spectroscopy is used to probe these ices, but the IR absorptions of molecules depend on the conditions. As a result appropriate lab data is needed to correctly fit spectra of extraterrestrial ices. Such fits have shown that most of these ices are composed primarily of H2O, but also contain 1-10 percent of other simple molecules such as CO2, CO, CH4, & NH3;. We shall present near IR spectra of ice mixtures of relevance to icy outer Solar System bodies and show that they still hold surprises, such as the Cheshire cat-like CO2 (2v3) overtone near 2.134 micrometers (4685 cm-1) that is absent from spectra of pure CO2 but present in H2O-CO2 mixtures.

  20. Synthesis, DFT calculations of structure, vibrational and thermal decomposition studies of the metal complex Pb[Mn(C3H2O4)2(H2O)2].

    PubMed

    Gil, Diego M; Carbonio, Raúl E; Gómez, María Inés

    2015-04-15

    The metallo-organic complex Pb[Mn(C3H2O4)2(H2O)2] was synthesized and characterized by IR and Raman spectroscopy and powder X-ray diffraction methods. The cell parameters for the complex were determined from powder X-ray diffraction using the autoindexing program TREOR, and refined by the Le Bail method with the Fullprof program. A hexagonal unit cell was determined with a=b=13.8366(7)Å, c=9.1454(1)Å, γ=120°. The DFT calculated geometry of the complex anion [Mn(C3H2O4)2(H2O)2](2-) is very close to the experimental data reported for similar systems. The IR and Raman spectra and the thermal analysis of the complex indicate that only one type of water molecules is present in the structure. The thermal decomposition of Pb[Mn(C3H2O4)2(H2O)2] at 700 °C in air produces PbO and Pb2MnO4 as final products. The crystal structure of the mixed oxide is very similar to that reported for Pb3O4. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Removal of pharmaceutically active compounds from synthetic and real aqueous mixtures and simultaneous disinfection by supported TiO2/UV-A, H2O2/UV-A, and TiO2/H2O2/UV-A processes.

    PubMed

    Bosio, Morgana; Satyro, Suéllen; Bassin, João Paulo; Saggioro, Enrico; Dezotti, Márcia

    2018-05-01

    Pharmaceutically active compounds are carried into aquatic bodies along with domestic sewage, industrial and agricultural wastewater discharges. Psychotropic drugs, which can be toxic to the biota, have been detected in natural waters in different parts of the world. Conventional water treatments, such as activated sludge, do not properly remove these recalcitrant substances, so the development of processes able to eliminate these compounds becomes very important. Advanced oxidation processes are considered clean technologies, capable of achieving high rates of organic compounds degradation, and can be an efficient alternative to conventional treatments. In this study, the degradation of alprazolam, clonazepam, diazepam, lorazepam, and carbamazepine was evaluated through TiO 2 /UV-A, H 2 O 2 /UV-A, and TiO 2 /H 2 O 2 /UV-A, using sunlight and artificial irradiation. While using TiO 2 in suspension, best results were found at [TiO 2 ] = 0.1 g L -1 . H 2 O 2 /UV-A displayed better results under acidic conditions, achieving from 60 to 80% of removal. When WWTP was used, degradation decreased around 50% for both processes, TiO 2 /UV-A and H 2 O 2 /UV-A, indicating a strong matrix effect. The combination of both processes was shown to be an adequate approach, since removal increased up to 90%. H 2 O 2 /UV-A was used for disinfecting the aqueous matrices, while mineralization was obtained by TiO 2 -photocatalysis.

  2. H2O2 dynamics in the malaria parasite Plasmodium falciparum

    PubMed Central

    Rahbari, Mahsa; Bogeski, Ivan

    2017-01-01

    Hydrogen peroxide is an important antimicrobial agent but is also crucially involved in redox signaling and pathogen-host cell interactions. As a basis for systematically investigating intracellular H2O2 dynamics and regulation in living malaria parasites, we established the genetically encoded fluorescent H2O2 sensors roGFP2-Orp1 and HyPer-3 in Plasmodium falciparum. Both ratiometric redox probes as well as the pH control SypHer were expressed in the cytosol of blood-stage parasites. Both redox sensors showed reproducible sensitivity towards H2O2 in the lower micromolar range in vitro and in the parasites. Due to the pH sensitivity of HyPer-3, we used parasites expressing roGFP2-Orp1 for evaluation of short-, medium-, and long-term effects of antimalarial drugs on H2O2 levels and detoxification in Plasmodium. None of the quinolines or artemisinins tested had detectable direct effects on the H2O2 homeostasis at pharmacologically relevant concentrations. However, pre-treatment of the cells with antimalarial drugs or heat shock led to a higher tolerance towards exogenous H2O2. The systematic evaluation and comparison of the two genetically encoded cytosolic H2O2 probes in malaria parasites provides a basis for studying parasite-host cell interactions or drug effects with spatio-temporal resolution while preserving cell integrity. PMID:28369083

  3. Infrared Spectra and Thermodynamic Properties of Co2/Methanol Ices

    NASA Astrophysics Data System (ADS)

    Maté, Belén; Gálvez, Óscar; Herrero, Víctor J.; Escribano, Rafael

    2009-01-01

    Ices of mixtures of carbon dioxide and methanol have been studied in a range of temperatures relevant for star-forming regions, comets, polar caps of planets and satellites, and other solar system bodies. We have performed temperature-programmed desorption measurements and recorded IR spectra of various types of samples. The presence of two slightly different structures of CO2 is manifest. A distorted CO2 structure is characterized by bandshifts between 5 cm-1 (ν3) and 10 cm-1 (ν2) with respect to normal CO2. If the samples are heated above 130 K, the distorted CO2 sublimates and only the normal structure remains. The latter can stay trapped until the sublimation of crystalline methanol (150 K). The desorption energy (E d ~ 20 kJ mol-1) of CO2 from methanol ice, and the specific adsorption surface area (6 m2 g-1) of amorphous CH3OH ice, have been determined. CO2 does not penetrate into crystalline ice. Whereas the desorption energy is similar to that of CO2/H2O samples, the specific surface of methanol is much smaller than that of amorphous solid water (ASW). The interaction of CO2 molecules with water and methanol is similar but ices of CH3OH are much less porous than ASW. The inclusion of CO2 into previously formed ices containing these two species would take place preferentially into ASW. However, in processes of simultaneous deposition, methanol ice can admit a larger amount of CO2 than water ice. CO2/CH3OH ices formed by simultaneous deposition admit two orders of magnitude more CO2 than sequentially deposited ices. These findings can have direct relevance to the interpretation of observations from protostellar environments (e.g., RAFGL7009S) and comet nuclei.

  4. Thermochemical Kinetics of H2O and HNO3 on crystalline Nitric Acid Hydrates (alpha-, beta-NAT, NAD) in the range 175-200 K

    NASA Astrophysics Data System (ADS)

    Rossi, Michel J.; Iannarelli, Riccardo

    2015-04-01

    The growth of NAT (Nitric Acid Trihydrate, HNO3x3H2O) and NAD (Nitric Acid Dihydrate, HNO3x2H2O) on an ice substrate, the evaporative lifetime of NAT and NAD as well as the interconversion of alpha- and beta-NAT competing with evaporation and growth under UT/LS conditions depends on the interfacial kinetics of H2O and HNO3 vapor on the condensed phase. Despite the existence of some literature results we have embarked on a systematic investigation of the kinetics using a multidiagnostic experimental approach enabled by the simultaneous observation of both the gas (residual gas mass spectrometry) as well as the condensed phase (FTIR absorption in transmission). We report on thermochemically consistent mass accommodation coefficients alpha and absolute evaporation rates Rev/molecule s-1cm-3 as a function of temperature which yields the corresponding vapor pressures of both H2O and HNO3 in equilibrium with the crystalline phases, hence the term thermochemical kinetics. These results have been obtained using a stirred flow reactor (SFR) using a macroscopic pure ice film of 1 micron or so thickness as a starting substrate mimicking atmospheric ice particles and are reported in a phase diagram specifically addressing UT (Upper Troposphere)/LS (Lower Stratosphere) conditions as far as temperature and partial pressures are concerned. The experiments have been performed either at steady-state flow conditions or in transient supersaturation using a pulsed solenoid valve in order to generate gas pulses whose decay were subsequently monitored in real time. Special attention has been given to the effect of the stainless-steel vessel walls in that Langmuir adsorption isotherms for H2O and HNO3 have been used to correct for wall-adsorption of both probe gases. Typically, the accommodation coefficients of H2O and HNO3 are similar throughout the temperature range whereas the rates of evaporation Rev of H2O are significantly larger than for HNO3 thus leading to the difference in

  5. Defining the chemical role of H2O in mantle melts: Effect of melt composition and H2O content on the activity of SiO2

    NASA Astrophysics Data System (ADS)

    Moore, G.; Roggensack, K.

    2007-12-01

    Quantifying the influence of volatiles (H2O, CO2) on the chemistry of mantle melts is a critical aspect of understanding the petrogenesis of arc magmas. A significant amount of experimental work done on the effect of H2O on the solidii of various mantle compositions, as well as on multiple saturation points of various primitive melts, has shown that H2O stabilizes olivine with respect to orthopyroxene. Or, in other words, at constant activity of SiO2, the presence of H2O decreases the activity coefficient of SiO2 in the melt, potentially leading to mantle melts that have suprisingly high SiO2 contents (Carmichael, 2002). Quantification and modelling of this behavior in hydrous silicate melts in equilibrium with the mantle have proven problematic, due mainly to a relatively small set of experiments that allow this type of thermodynamic analysis, and because of the experimental and analytical difficulties of dealing with hydrous high P-T samples (e.g. quench to a glass, rapid melt-solid reaction on quench, electron beam sensitivity of resulting glass, volatile content determination, etc). A further complication in the existing data includes co-variance of important experimental parameters (e.g. T and H2O content), making robust statistical regression analysis difficult and potentially misleading. We present here results of high P-T experiments conducted at a single pressure and temperature (1.0 GPa, 1200 deg C) that have the specific goal of quantifying the effect of H2O, as well as other melt components, on the activity coefficient of SiO2 in mantle melts. Using a "sandwich" type experiment, basaltic melts are saturated with an olivine plus orthopyroxene mineral assemblage with varying H2O and CO2 contents. The resulting samples have their bulk solid phase and glass compositions determined using EPMA, and the volatile content of the glass is determined by FTIR. The activity of SiO2 is then calculated using the olivine and orthopyroxene compositions. This value is

  6. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere.

    PubMed

    Webster, Chris R; Mahaffy, Paul R; Flesch, Gregory J; Niles, Paul B; Jones, John H; Leshin, Laurie A; Atreya, Sushil K; Stern, Jennifer C; Christensen, Lance E; Owen, Tobias; Franz, Heather; Pepin, Robert O; Steele, Andrew; Achilles, Cherie; Agard, Christophe; Alves Verdasca, José Alexandre; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Bish, David; Blake, David F; Blanco Avalos, Juan J; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John; Cantor, Bruce; Caplinger, Michael; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Charpentier, Antoine; Chipera, Steve; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie; de la Torre Juarez, Manuel; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; DesMarais, David; Dietrich, William; Dingler, Robert; Donny, Christophe; Downs, Bob; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fisk, Marty; Fitzgibbon, Mike; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fraeman, Abby; Francis, Raymond; François, Pascaline; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Joseph, Jonathan; Jun, Insoo; Kah, Linda; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette Malvitte, Alain; Léveillé, Richard; Lewin-Carpintier, Éric; Lewis, Kevin; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Madsen, Morten; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gérard; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F Javier; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitrofanov, Igor; Moersch, Jeff; Mokrousov, Maxim; Molina Jurado, Antonio; Moores, John; Mora-Sotomayor, Luis; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Muñoz Caro, Guillermo; Nachon, Marion; Navarro López, Sara; Navarro-González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Nixon, Brian; Noe Dobrea, Eldar; Nolan, Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; de Pablo Hernández, Miguel Ángel; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alex; Pavri, Betina; Peinado-González, Verónica; Peret, Laurent; Perez, Rene; Perrett, Glynis; Peterson, Joe; Pilorget, Cedric; Pinet, Patrick; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Purdy, Sharon Wilson; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Rampe, Elizabeth; Raulin, François; Ravine, Michael; Reitz, Günther; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Robert, François; Robertson, Kevin; Rodriguez Manfredi, José Antonio; Romeral-Planelló, Julio J; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Salamon, Andrew; Sandoval, Jennifer; Sanin, Anton; Sans Fuentes, Sara Alejandra; Saper, Lee; Sarrazin, Philippe; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne; Sebastian Martinez, Eduardo; Sengstacken, Aaron; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, Jeff; Sirven, Jean-Baptiste; Slavney, Susie; Sletten, Ronald; Smith, Michael; Sobrón Sánchez, Pablo; Spanovich, Nicole; Spray, John; Squyres, Steven; Stack, Katie; Stalport, Fabien; Stein, Thomas; Stewart, Noel; Stipp, Susan Louise Svane; Stoiber, Kevin; Stolper, Ed; Sucharski, Bob; Sullivan, Rob; Summons, Roger; Sumner, Dawn; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge; Thomas, Peter; Thompson, Lucy; Tokar, Robert; Toplis, Mike; Torres Redondo, Josefina; Trainer, Melissa; Treiman, Allan; Tretyakov, Vladislav; Urqui-O'Callaghan, Roser; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Vaniman, David; Varenikov, Alexey; Vasavada, Ashwin; Vasconcelos, Paulo; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Weigle, Eddie; Wellington, Danika; Westall, Frances; Wiens, Roger Craig; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B; Wilson, Mike; Wimmer-Schweingruber, Robert; Wolff, Mike; Wong, Mike; Wray, James; Wu, Megan; Yana, Charles; Yen, Albert; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Zorzano Mier, María-Paz

    2013-07-19

    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

  7. The model of nano-scale copper particle removal from silicon surface in high pressure CO2 + H2O and CO2 + H2O + IPA cleaning solutions.

    PubMed

    Tan, Xin; Chai, Jiajue; Zhang, Xiaogang; Chen, Jiawei

    2011-12-01

    This study focuses on the description of the static forces in CO2-H2O and CO2-H2O-IPA cleaning solutions with a separate fluid phase entrapped between nano-scale copper particles and a silicon surface. Calculations demonstrate that increasing the pressure of the cleaning system decreases net adhesion force (NAF) between the particle and silicon. The NAF of a particle for in CO2-H2O-IPA system is less than that in CO2-H2O system, suggesting that the particles enter into bulk layer more easily as the CO2-H2O cleaning system is added IPA.

  8. Low levels of iron enhance UV/H2O2 efficiency at neutral pH.

    PubMed

    Ulliman, Sydney L; McKay, Garrett; Rosario-Ortiz, Fernando L; Linden, Karl G

    2018-03-01

    While the presence of iron is generally not seen as favorable for UV-based treatment systems due to lamp fouling and decreased UV transmittance, we show that low levels of iron can lead to improvements in the abatement of chemicals in the UV-hydrogen peroxide advanced oxidation process. The oxidation potential of an iron-assisted UV/H 2 O 2 (UV 254  + H 2 O 2  + iron) process was evaluated at neutral pH using iron levels below USEPA secondary drinking water standards (<0.3 mg/L). Para-chlorobenzoic acid (pCBA) was used as a hydroxyl radical (HO) probe to quantify HO steady state concentrations. Compounds degraded by different mechanisms including, carbamazepine (CBZ, HO oxidation) and N-nitrosodimethylamine (NDMA, direct photolysis), were used to investigate the effect of iron on compound degradation for UV/H 2 O 2 systems. The effects of iron species (Fe 2+ and Fe 3+ ), iron concentration (0-0.3 mg/L), H 2 O 2 concentration (0-10 mg/L) and background water matrix (low-carbon tap (LCT) and well water) on HO production and compound removal were examined. Iron-assisted UV/H 2 O 2 efficiency was most influenced by the target chemical and the water matrix. Added iron to UV/H 2 O 2 was shown to increase the steady-state HO concentration by approximately 25% in all well water scenarios. While CBZ removal was unchanged by iron addition, 0.3 mg/L iron improved NDMA removal rates in both LCT and well water matrices by 15.1% and 4.6% respectively. Furthermore, the combination of UV/Fe without H 2 O 2 was also shown to enhance NDMA removal when compared to UV photolysis alone indicating the presence of degradation pathways other than HO oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Synthesis, structure, optical, photoluminescence and magnetic properties of K2[Co(C2O4)2(H2O)2]·4H2O

    NASA Astrophysics Data System (ADS)

    Narsimhulu, M.; Hussain, K. A.

    2018-06-01

    The synthesis, crystal structure, optical, photoluminescence and magnetic behaviour of potassium bis(oxalato)cobaltate(II)tertrahydrate{K2[Co(C2O4)2(H2O)2]·4H2O} are described. The compound was grown at room temperature from mixture of aqueous solutions by slow evaporation method. The X-ray crystallographic data showed that the compound belongs to the monoclinic crystal system with P21/n space group and Z = 4. The UV-visible diffuse absorbance spectra exhibited bands at 253, 285 and 541 nm in the visible and ultraviolet regions. The optical band gap of the compound was estimated as 3.4 eV. At room temperature, an intense photoluminescence was observed from this material around 392 nm when it excited at 254 nm. The variable temperature dc magnetic susceptibility measurements exposed paramagnetic behaviour at high temperatures and antiferromagnetic ordering at low temperatures.

  10. Odin observations of H2O and O2 in comets and interstellar clouds

    NASA Astrophysics Data System (ADS)

    Hjalmarson, Åke; Odin Team

    2002-11-01

    We here report on results from single-position observations, and in some cases also mapping, of the 557 GHz ortho-H2O line in several comets and in many interstellar molecular clouds by the Odin sub-millimetre wave spectroscopy satellite. The H2O production rates have been accurately determined in four comets, C/2001 A2 (LINEAR), 19P/Borrelly, C/2000 WM1 (LINEAR), and 153P/2002 C1 (Ikeya-Zhang). In comet Ikeya-Zhang our detection at a low level of the corresponding H218O emission line verifies the H2O production rate (which depends upon the assumed radiative and collisional excitation and also upon radiative transfer modelling) and is consistent with a nearly terrestrial 16O/18O-isotope ratio. In an astrobiological context, the cometary H2O production rates are especially important as reference levels for comparison with abundances of other molecules simultaneously observed with ground-based telescopes. In interstellar clouds the observed gas-phase H2O abundances (vs H2) range from 5×10-4 in the Orion KL outflow/shock region (where essentially all oxygen is locked up in H2O) to circa 10-8 in quiescent cloud regions (where H2O) is just one of many trace molecules). From an astrobiological point of view, the molecular abundances in star forming clouds are important in terms of initial conditions for the chemistry in proto-planetary disks ("proto-solar nebulae"), the formation sites of new planetary systems. In simultaneous observations, Odin has also detected the 572 GHz ortho-NH3 line in cold and warm clouds as well as in the Orion outflow and Bar/PDR regions (an area of increased ionisation caused by the intense UV flux from newly born massive stars). In other simultaneous observations, we have performed sensitive searches for O2 at 119 GHz. Although no detection can be reported as yet, the resulting very low abundance limits (<10-7) are very intriguing when they are compared with current "standard" model expectations, which fall in the range 10-5-10-4.

  11. UV-activated ZnO films on a flexible substrate for room temperature O2 and H2O sensing.

    PubMed

    Jacobs, Christopher B; Maksov, Artem B; Muckley, Eric S; Collins, Liam; Mahjouri-Samani, Masoud; Ievlev, Anton; Rouleau, Christopher M; Moon, Ji-Won; Graham, David E; Sumpter, Bobby G; Ivanov, Ilia N

    2017-07-20

    We demonstrate that UV-light activation of polycrystalline ZnO films on flexible polyimide (Kapton) substrates can be used to detect and differentiate between environmental changes in oxygen and water vapor. The in-plane resistive and impedance properties of ZnO films, fabricated from bacteria-derived ZnS nanoparticles, exhibit unique resistive and capacitive responses to changes in O 2 and H 2 O. We propose that the distinctive responses to O 2 and H 2 O adsorption on ZnO could be utilized to statistically discriminate between the two analytes. Molecular dynamic simulations (MD) of O 2 and H 2 O adsorption energy on ZnO surfaces were performed using the large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) with a reactive force-field (ReaxFF). These simulations suggest that the adsorption mechanisms differ for O 2 and H 2 O adsorption on ZnO, and are governed by the surface termination and the extent of surface hydroxylation. Electrical response measurements, using DC resistance, AC impedance spectroscopy, and Kelvin Probe Force Microscopy (KPFM), demonstrate differences in response to O 2 and H 2 O, confirming that different adsorption mechanisms are involved. Statistical and machine learning approaches were applied to demonstrate that by integrating the electrical and kinetic responses the flexible ZnO sensor can be used for detection and discrimination between O 2 and H 2 O at low temperature.

  12. A potential energy surface for the process H2 + H2O yielding H + H + H2O - Ab initio calculations and analytical representation

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1991-01-01

    Extensive ab initio calculations on the ground state potential energy surface of H2 + H2O were performed using a large contracted Gaussian basis set and a high level of correlation treatment. An analytical representation of the potential energy surface was then obtained which reproduces the calculated energies with an overall root-mean-square error of only 0.64 mEh. The analytic representation explicitly includes all nine internal degrees of freedom and is also well behaved as the H2 dissociates; it thus can be used to study collision-induced dissociation or recombination of H2. The strategy used to minimize the number of energy calculations is discussed, as well as other advantages of the present method for determining the analytical representation.

  13. Influences of H2O mass fraction and chemical kinetics mechanism on the turbulent diffusion combustion of H2-O2 in supersonic flows

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Wang, Zhen-guo; Li, Shi-bin; Liu, Wei-dong

    2012-07-01

    Hydrogen is one of the most promising fuels for the airbreathing hypersonic propulsion system, and it attracts an increasing attention of the researchers worldwide. In this study, a typical hydrogen-fueled supersonic combustor was investigated numerically, and the predicted results were compared with the available experimental data in the open literature. Two different chemical reaction mechanisms were employed to evaluate their effects on the combustion of H2-O2, namely the two-step and the seven-step mechanisms, and the vitiation effect was analyzed by varying the H2O mass fraction. The obtained results show that the predicted mole fraction profiles for different components show very good agreement with the available experimental data under the supersonic mixing and combustion conditions, and the chemical reaction mechanism has only a slight impact on the overall performance of the turbulent diffusion combustion. The simple mechanism of H2-O2 can be employed to evaluate the performance of the combustor in order to reduce the computational cost. The H2O flow vitiation makes a great difference to the combustion of H2-O2, and there is an optimal H2O mass fraction existing to enhance the intensity of the turbulent combustion. In the range considered in this paper, its optimal value is 0.15. The initiated location of the reaction appears far away from the bottom wall with the increase of the H2O mass fraction, and the H2O flow vitiation quickens the transition from subsonic to supersonic mode at the exit of the combustor.

  14. Signature of quantum entanglement in NH{sub 4}CuPO{sub 4}·H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Tanmoy, E-mail: tanmoy@iiserkol.ac.in; Singh, Harkirat; Mitra, Chiranjib, E-mail: chiranjib@iiserkol.ac.in

    2014-01-21

    Entangled solid state systems have gained a great deal of attention due to their fruitful applications in modern quantum technologies. Herein, detection of entanglement content from experimental magnetic susceptibility and specific heat data is reported for NH{sub 4}CuPO{sub 4}·H{sub 2}O in its solid state crystalline form. NH{sub 4}CuPO{sub 4}·H{sub 2}O is a prototype of Heisenberg spin 1/2 dimer system. Temperature dependent magnetic susceptibility and specific data are fitted to an isolated dimer model and the exchange coupling constant is determined. Field dependent magnetization isotherms taken at different temperatures are plotted in a three dimensional plot. Subsequently, entanglement is detected bothmore » from susceptibility and specific heat through two different entanglement measures; entanglement witness and entanglement of formation. The temperature evolution of entanglement is studied and the critical temperature is determined up to which entanglement exists. Temperature dependent nature of entanglement extracted from susceptibility and specific heat shows good consistency with each other. Moreover, the field dependent entanglement is also investigated.« less

  15. Indications of noncontinuous PVT-behaviour of H2O at high P-T conditions

    NASA Astrophysics Data System (ADS)

    Mirwald, P. W.

    2003-04-01

    The understanding of the properties of H_2O is still limited despite its apparently tri-vial chemical composition and unique importance. In contrast to the complex system of ice and amorphous water being revealed at low temperature and high pressure (1) the P-T field of water is still relatively unexplored. The steam tables (2) suggest an apparently continuous volume behaviour over the covered P-T range. However, a number of diffraction experiments in the ambient temperature range at high pressure indicate changes in the co-ordination of the H_2O molecules (e.g. 3). A re-examination of literature data on the melting of ice I--VII and the PVT-behaviour of water the range of 20 to 300^oC and 1 to 20 kbar has recently been conducted (4). The detailed evaluation indicated anomalous behaviour of water at some 2--4 and 7--8 Kb and thus three different regimes of steam behaviour. Own preliminary data from compression experiments at 25^oC (5) confirm these two anomalies. In addition the steam data indicate non-continuous compression behaviour also towards higher temperatures (4). Again three different areas of different PVT behaviour of steam may be distinguished divided by two anomaly boundaries of shallow dP/dT slope at some 10 and 20 kb. However, the correlation between the topologies at low and high temperatures is not clear. Solution data at high P-T conditions e.g. on corundum (6) and on quartz (7) show a significant discontinuous behaviour if Δsol./ΔP is plotted vs. pressure. So, at 700^oC discontinuous solubility changes are encountered at 10 kbar and at 19 kbar what is in agreement with the steam table data. Furthermore, a continuation of these anomalies to even higher temperatures is insinuated by the steam table data. If this is correct these anomalies would be of significance for partitioning and transport processes in the deep crust and the upper mantle of the earth. (1) Petrenko and Whitnorth (1999): Physics of Ice, Oxford Univ.Press, 1999. (2) Haar

  16. Ro-vibrational spectrum of H2O-Ne in the ν2 H2O bending region: A combined ab initio and experimental investigation

    NASA Astrophysics Data System (ADS)

    Liu, Xunchen; Hou, Dan; Thomas, Javix; Li, Hui; Xu, Yunjie

    2016-12-01

    High resolution ro-vibrational transitions of the H2O-Ne complex in the ν2 bending region of H2O at 6 μm have been measured using a rapid scan infrared spectrometer based on an external cavity quantum cascade laser and an astigmatic multipass optical cell. To aid the spectral assignment, a four-dimension potential energy surface of H2O-Ne which depends on the intramolecular bending coordinate of the H2O monomer and the three intermolecular vibrational coordinates has been constructed and the rovibrational transitions have been calculated. Three ortho and two para H2O-20Ne bands have been identified from the experimental spectra. Some weaker transitions belonging to H2O-22Ne have also been identified experimentally. Spectroscopic fits have been performed for both the experimental and theoretical transition frequencies using a simple pseudo-diatomic Hamiltonian including both Coriolis coupling and Fermi resonance terms. The experimental and theoretical spectroscopic constants thus obtained have been compared. Further improvements needed in the potential energy surface and the related spectral simulation have been discussed.

  17. Interfacial contributions of H2O2 decomposition-induced reaction current on mesoporous Pt/TiO2 systems

    NASA Astrophysics Data System (ADS)

    Ray, Nathan J.; Styrov, Vladislav V.; Karpov, Eduard G.

    2017-12-01

    We report on conversion of energy released due to chemical reactions into current for the decomposition of aqueous hydrogen peroxide solution on single phases Pt and TiO2, in addition to Pt and TiO2 simultaneously. We observe that H2O2 decomposition-induced current on TiO2 drastically overshadows the current generated by H2O2 decomposition on Pt. Photo-effects avoided, H2O2 decomposition was found to yield a conversion efficiency of 10-3 electrons generated per H2O2 molecule. Further understanding of chemical reaction-induced current shows promise as a metric with which the surface reaction may be monitored and could be greatly extended into the field of analytical chemistry.

  18. Polycrystalline methane hydrate: Synthesis from superheated ice, and low-temperature mechanical properties

    USGS Publications Warehouse

    Stern, L.A.; Kirby, S.H.; Durham, W.B.

    1998-01-01

    We describe a new and efficient technique to grow aggregates of pure methane hydrate in quantities suitable for physical and material properties testing. Test specimens were grown under static conditions by combining cold, pressurized CH4 gas with granulated H2O ice, and then warming the reactants to promote the reaction CH4(g) + 6H2O(s???1) ??? CH4??6H2O (methane hydrate). Hydrate formation evidently occurs at the nascent ice/liquid water interface on ice grain surfaces, and complete reaction was achieved by warming the system above the ice melting point and up to 290 K, at 25-30 MPa, for approximately 8 h. The resulting material is pure, cohesive, polycrystalline methane hydrate with controlled grain size and random orientation. Synthesis conditions placed the H2O ice well above its melting temperature while reaction progressed, yet samples and run records showed no evidence for bulk melting of the unreacted portions of ice grains. Control experiments using Ne, a non-hydrate-forming gas, showed that under otherwise identical conditions, the pressure reduction and latent heat associated with ice melting are easily detectable in our fabrication apparatus. These results suggest that under hydrate-forming conditions, H2O ice can persist metastably to temperatures well above its ordinary melting point while reacting to form hydrate. Direct observations of the hydrate growth process in a small, high-pressure optical cell verified these conclusions and revealed additional details of the hydrate growth process. Methane hydrate samples were then tested in constant-strain-rate deformation experiments at T = 140-200 K, Pc = 50-100 MPa, and ?? = 10-4 10-6 s-1. Measurements in both the brittle and ductile fields showed that methane hydrate has measurably different strength than H2O ice, and work hardens to an unusually high degree compared to other ices as well as to most metals and ceramics at high homologous temperatures. This work hardening may be related to a changing

  19. Hydrothermal synthesis and structural characterization of an organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en){sub 2}(H{sub 2}O)]{sub 4}[Cu(en){sub 2}(H{sub 2}O){sub 2}][Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]·6H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yingjie; College of Medicine, Henan University, Kaifeng, Henan 475004; Cao, Jing

    An organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en){sub 2}(H{sub 2}O)]{sub 4}[Cu(en){sub 2}(H{sub 2}O){sub 2}][Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]·6H{sub 2}O (1) has been synthesized by reaction of Sb{sub 2}O{sub 3}, Na{sub 2}WO{sub 4}·2H{sub 2}O, CuCl{sub 22H{sub 2}O with en (en=ethanediamine) under hydrothermal conditions and structurally characterized by elemental analysis, inductively coupled plasma atomic emission spectrometry, IR spectrum and single-crystal X-ray diffraction. 1 displays a centric dimeric structure formed by two equivalent trivacant Keggin [α-SbW{sub 9}O{sub 33}]{sup 9−} subunits sandwiching a hexagonal (Cu{sub 2}Na{sub 4}) cluster. Moreover, those related hexagonal hexa-metal cluster sandwiched tungstoantimonates have been also summarized and compared. The variable-temperature magneticmore » measurements of 1 exhibit the weak ferromagnetic exchange interactions within the hexagonal (Cu{sub 2}Na{sub 4}) cluster mediated by the oxygen bridges. - Graphical abstract: An organic–inorganic hybrid (Cu{sub 2}Na{sub 4}) sandwiched tungstoantimonate [Cu(en){sub 2}(H{sub 2}O)]{sub 4}[Cu (en){sub 2}(H{sub 2}O){sub 2}][Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]·6H{sub 2}O was synthesized and magnetic properties was investigated. Display Omitted - Highlights: • Organic–inorganic hybrid sandwich-type tungstoantimonate. • (Cu{sub 2}Na{sub 4} sandwiched) tungstoantimonate [Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]{sup 10−}. • Ferromagnetic tungstoantimonate.« less

  20. Global Flux Balance in the Terrestrial H2O Cycle: Reconsidering the Post-Arc Subducted H2O Flux

    NASA Astrophysics Data System (ADS)

    Parai, R.; Mukhopadhyay, S.

    2010-12-01

    Quantitative estimates of H2O fluxes between the mantle and the exosphere (i.e., the atmosphere, oceans and crust) are critical to our understanding of the chemistry and dynamics of the solid Earth: the abundance and distribution of water in the mantle has dramatic impacts upon mantle melting, degassing history, structure and style of convection. Water is outgassed from the mantle is association with volcanism at mid-ocean ridges, ocean islands and convergent margins. H2O is removed from the exosphere at subduction zones, and some fraction of the subducted flux may be recycled past the arc into the Earth’s deep interior. Estimates of the post-arc subducted H2O flux are primarily based on the stability of hydrous phases at subduction zone pressures and temperatures (e.g. Schmidt and Poli, 1998; Rüpke et al., 2004; Hacker, 2008). However, the post-arc H2O flux remains poorly quantified, in part due to large uncertainties in the water content of the subducting slab. Here we evaluate estimated post-arc subducted fluxes in the context of mantle-exosphere water cycling, using a Monte Carlo simulation of the global H2O cycle. Literature estimates of primary magmatic H2O abundances and magmatic production rates at different tectonic settings are used with estimates of the total subducted H2O flux to establish the parameter space under consideration. Random sampling of the allowed parameter space affords insight into which input and output fluxes satisfy basic constraints on global flux balance, such as a limit on sea-level change over time. The net flux of H2O between mantle and exosphere is determined by the total mantle output flux (via ridges and ocean islands, with a small contribution from mantle-derived arc output) and the input flux subducted beyond the arc. Arc and back-arc output is derived mainly from the slab, and therefore cancels out a fraction of the trench intake in an H2O subcycle. Limits on sea-level change since the end of the Archaean place

  1. High-excitation OH and H2O Lines in Markarian 231: The Molecular Signatures of Compact Far-infrared Continuum Sources

    NASA Astrophysics Data System (ADS)

    González-Alfonso, Eduardo; Smith, Howard A.; Ashby, Matthew L. N.; Fischer, Jacqueline; Spinoglio, Luigi; Grundy, Timothy W.

    2008-03-01

    The ISO LWS far-infrared spectrum of the ultraluminous galaxy Mrk 231 shows OH and H2O lines in absorption from energy levels up to 300 K above the ground state, and emission in the [O I] 63 μm and [C II] 158 μm lines. Our analysis shows that OH and H2O are radiatively pumped by the far-infrared continuum emission of the galaxy. The absorptions in the high-excitation lines require high far-infrared radiation densities, allowing us to constrain the properties of the underlying continuum source. The bulk of the far-infrared continuum arises from a warm (Tdust = 70-100 K), optically thick (τ100μ m = 1-2) medium of effective diameter 200-400 pc. In our best-fit model of total luminosity LIR, the observed OH and H2O high-lying lines arise from a luminous (L/LIR ~ 0.56) region with radius ~100 pc. The high surface brightness of this component suggests that its infrared emission is dominated by the AGN. The derived column densities N(OH) gtrsim 1017 cm-2 and N(H2O) gtrsim 6 × 1016 cm-2 may indicate X-ray dominated region (XDR) chemistry, although significant starburst chemistry cannot be ruled out. The lower-lying OH, [C II] 158 μm, and [O I] 63 μm lines arise from a more extended (~350 pc) starburst region. We show that the [C II] deficit in Mrk 231 is compatible with a high average abundance of C+ because of an extreme overall luminosity to gas mass ratio. Therefore, a [C II] deficit may indicate a significant contribution to the luminosity by an AGN, and/or by extremely efficient star formation. Based on observations with the Infrared Space Observatory, an ESA project with instruments funded by ESA Member States (especially the principal investigator countries: France, Germany, Netherlands, and the United Kingdom) and with the participation of ISAS and NASA.

  2. Oxyhydroxide of metallic nanowires in a molecular H2O and H2O2 environment and their effects on mechanical properties.

    PubMed

    Aral, Gurcan; Islam, Md Mahbubul; Wang, Yun-Jiang; Ogata, Shigenobu; Duin, Adri C T van

    2018-06-14

    To avoid unexpected environmental mechanical failure, there is a strong need to fully understand the details of the oxidation process and intrinsic mechanical properties of reactive metallic iron (Fe) nanowires (NWs) under various aqueous reactive environmental conditions. Herein, we employed ReaxFF reactive molecular dynamics (MD) simulations to elucidate the oxidation of Fe NWs exposed to molecular water (H2O) and hydrogen peroxide (H2O2) environment, and the influence of the oxide shell layer on the tensile mechanical deformation properties of Fe NWs. Our structural analysis shows that oxidation of Fe NWs occurs with the formation of different iron oxide and hydroxide phases in the aqueous molecular H2O and H2O2 oxidizing environments. We observe that the resulting microstructure due to pre-oxide shell layer formation reduces the mechanical stress via increasing the initial defect sites in the vicinity of the oxide region to facilitate the onset of plastic deformation during tensile loading. Specifically, the oxide layer of Fe NWs formed in the H2O2 environment has a relatively significant effect on the deterioration of the mechanical properties of Fe NWs. The weakening of the yield stress and Young modulus of H2O2 oxidized Fe NWs indicates the important role of local oxide microstructures on mechanical deformation properties of individual Fe NWs. Notably, deformation twinning is found as the primary mechanical plastic deformation mechanism of all Fe NWs, but it is initially observed at low strain and stress level for the oxidized Fe NWs.

  3. UV-activated ZnO films on a flexible substrate for room temperature O 2 and H 2O sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Christopher B.; Maksov, Artem B.; Muckley, Eric S.

    Here, we demonstrate that UV-light activation of polycrystalline ZnO films on flexible polyimide (Kapton) substrates can be used to detect and differentiate between environmental changes in oxygen and water vapor. The in-plane resistive and impedance properties of ZnO films, fabricated from bacteria-derived ZnS nanoparticles, exhibit unique resistive and capacitive responses to changes in O 2 and H 2O. We also propose that the distinctive responses to O 2 and H 2O adsorption on ZnO could be utilized to statistically discriminate between the two analytes. Molecular dynamic simulations (MD) of O 2 and H 2O adsorption energy on ZnO surfaces weremore » performed using the large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) with a reactive force-field (ReaxFF). Furthermore, these simulations suggest that the adsorption mechanisms differ for O 2 and H 2O adsorption on ZnO, and are governed by the surface termination and the extent of surface hydroxylation. Electrical response measurements, using DC resistance, AC impedance spectroscopy, and Kelvin Probe Force Microscopy (KPFM), demonstrate differences in response to O 2 and H 2O, confirming that different adsorption mechanisms are involved. Statistical and machine learning approaches were applied to demonstrate that by integrating the electrical and kinetic responses the flexible ZnO sensor can be used for detection and discrimination between O 2 and H 2O at low temperature.« less

  4. UV-activated ZnO films on a flexible substrate for room temperature O 2 and H 2O sensing

    DOE PAGES

    Jacobs, Christopher B.; Maksov, Artem B.; Muckley, Eric S.; ...

    2017-07-20

    Here, we demonstrate that UV-light activation of polycrystalline ZnO films on flexible polyimide (Kapton) substrates can be used to detect and differentiate between environmental changes in oxygen and water vapor. The in-plane resistive and impedance properties of ZnO films, fabricated from bacteria-derived ZnS nanoparticles, exhibit unique resistive and capacitive responses to changes in O 2 and H 2O. We also propose that the distinctive responses to O 2 and H 2O adsorption on ZnO could be utilized to statistically discriminate between the two analytes. Molecular dynamic simulations (MD) of O 2 and H 2O adsorption energy on ZnO surfaces weremore » performed using the large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) with a reactive force-field (ReaxFF). Furthermore, these simulations suggest that the adsorption mechanisms differ for O 2 and H 2O adsorption on ZnO, and are governed by the surface termination and the extent of surface hydroxylation. Electrical response measurements, using DC resistance, AC impedance spectroscopy, and Kelvin Probe Force Microscopy (KPFM), demonstrate differences in response to O 2 and H 2O, confirming that different adsorption mechanisms are involved. Statistical and machine learning approaches were applied to demonstrate that by integrating the electrical and kinetic responses the flexible ZnO sensor can be used for detection and discrimination between O 2 and H 2O at low temperature.« less

  5. H2/O2 three-body rates at high temperatures

    NASA Technical Reports Server (NTRS)

    Marinelli, William J.; Kessler, William J.; Carleton, Karen L.

    1991-01-01

    Hydrogen atoms are produced in the presence of excess O2, and the first-order decay are studied as a function of temperature and pressure in order to obtain the rate coefficient for the three-body reaction between H-atoms and O2. Attention is focused on the kinetic scheme employed as well as the reaction cell and photolysis and probe laser system. A two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical-thickness or O2-absorption problems. Results confirm measurements reported previously for the H + O2 + N2 reaction at 300 K and extend these measurements to higher temperatures. Preliminary data indicate non-Arrehenius-type behavior of this reaction rate coefficient as a function of temperature. Measurements of the rate coefficient for H + O2 + Ar reaction at 300 K give a rate coefficient of 2.1 +/- 0.1 x 10 to the -32nd cm exp 6/molecule sec.

  6. Complexes in the Photocatalytic Reaction of CO2 and H2O: Theoretical Studies

    PubMed Central

    Luo, Dongmei; Zhang, Ning; Hong, Sanguo; Wu, Huanwen; Liu, Zhihua

    2010-01-01

    Complexes (H2O/CO2, e–(H2O/CO2) and h+–(H2O/CO2)) in the reaction system of CO2 photoreduction with H2O were researched by B3LYP and MP2 methods along with natural bond orbital (NBO) analysis. Geometries of these complexes were optimized and frequencies analysis performed. H2O/CO2 captured photo-induced electron and hole produced e–(H2O/CO2) and h+–(H2O/CO2), respectively. The results revealed that CO2 and H2O molecules could be activated by the photo-induced electrons and holes, and each of these complexes possessed two isomers. Due to the effect of photo-induced electrons, the bond length of C=O and H-O were lengthened, while H-O bonds were shortened, influenced by holes. The infrared (IR) adsorption frequencies of these complexes were different from that of CO2 and H2O, which might be attributed to the synergistic effect and which could not be captured experimentally. PMID:21152274

  7. Cutin monomers and surface wax constituents elicit H2O2 in conditioned cucumber hypocotyl segments and enhance the activity of other H2O2 elicitors

    PubMed

    Fauth; Schweizer; Buchala; Markstadter; Riederer; Kato; Kauss

    1998-08-01

    Hypocotyls from etiolated cucumber (Cucumis sativus L.) seedlings were gently abraded at their epidermal surface and cut segments were conditioned to develop competence for H2O2 elicitation. Alkaline hydrolysates of cutin from cucumber, tomato, and apple elicited H2O2 in such conditioned segments. The most active constituent of cucumber cutin was identified as dodecan-1-ol, a novel cutin monomer capable of forming hydrophobic terminal chains. Additionally, the cutin hydrolysates enhanced the activity of a fungal H2O2 elicitor, similar to cucumber surface wax, which contained newly identified alkan-1,3-diols. The specificity of elicitor and enhancement activity was further elaborated using some pure model compounds. Certain saturated hydroxy fatty acids were potent H2O2 elicitors as well as enhancers. Some unsaturated epoxy and hydroxy fatty acids were also excellent H2O2 elicitors but inhibited the fungal elicitor activity. Short-chain alkanols exhibited good elicitor and enhancer activity, whereas longer-chain alkan-1-ols were barely active. The enhancement effect was also observed for H2O2 elicitation by ergosterol and chitosan. The physiological significance of these observations might be that once the cuticle is degraded by fungal cutinase, the cutin monomers may act as H2O2 elicitors. Corrosion of cutin may also bring surface wax constituents in contact with protoplasts and enhance elicitation.

  8. Pressure-Induced Melting of Confined Ice.

    PubMed

    Sotthewes, Kai; Bampoulis, Pantelis; Zandvliet, Harold J W; Lohse, Detlef; Poelsema, Bene

    2017-12-26

    The classic regelation experiment of Thomson in the 1850s deals with cutting an ice cube, followed by refreezing. The cutting was attributed to pressure-induced melting but has been challenged continuously, and only lately consensus emerged by understanding that compression shortens the O:H nonbond and lengthens the H-O bond simultaneously. This H-O elongation leads to energy loss and lowers the melting point. The hot debate survived well over 150 years, mainly due to a poorly defined heat exchange with the environment in the experiment. In our current experiment, we achieved thermal isolation from the environment and studied the fully reversible ice-liquid water transition for water confined between graphene and muscovite mica. We observe a transition from two-dimensional (2D) ice into a quasi-liquid phase by applying a pressure exerted by an atomic force microscopy tip. At room temperature, the critical pressure amounts to about 6 GPa. The transition is completely reversible: refreezing occurs when the applied pressure is lifted. The critical pressure to melt the 2D ice decreases with temperature, and we measured the phase coexistence line between 293 and 333 K. From a Clausius-Clapeyron analysis, we determine the latent heat of fusion of two-dimensional ice at 0.15 eV/molecule, being twice as large as that of bulk ice.

  9. Energetics of CO2 and H2O adsorption on zinc oxide.

    PubMed

    Gouvêa, Douglas; Ushakov, Sergey V; Navrotsky, Alexandra

    2014-08-05

    Adsorption of H2O and CO2 on zinc oxide surfaces was studied by gas adsorption calorimetry on nanocrystalline samples prepared by laser evaporation in oxygen to minimize surface impurities and degassed at 450 °C. Differential enthalpies of H2O and CO2 chemisorption are in the range -150 ±10 kJ/mol and -110 ±10 kJ/mol up to a coverage of 2 molecules per nm(2). Integral enthalpy of chemisorption for H2O is -96.8 ±2.5 kJ/mol at 5.6 H2O/nm(2) when enthalpy of water condensation is reached, and for CO2 is -96.6 ±2.5 kJ/mol at 2.6 CO2/nm(2) when adsorption ceases. These values are consistent with those reported for ZnO prepared by other methods after similar degas conditions. The similar energetics suggests possible competition of CO2 and H2O for binding to ZnO surfaces. Exposure of bulk and nanocrystalline ZnO with preadsorbed CO2 to water vapor results in partial displacement of CO2 by H2O. In contrast, temperature-programmed desorption (TPD) indicates that a small fraction of CO2 is retained on ZnO surfaces up to 800 °C, under conditions where all H2O is desorbed, with adsorption energies near -200 kJ/mol. Although molecular mechanisms of adsorption were not studied, the thermodynamic data are consistent with dissociative adsorption of H2O at low coverage and with several different modes of CO2 binding.

  10. Mesospheric H2O Concentrations Retrieved from SABER/TIMED Measurements

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Marshall, B. T.; Garcia-Comas, M.; Kutepov, A. A.; Lopez-Puertas, M.; Manuilova, R. O.; Yankovsky, V.A.; Goldberg, R. A.; Gordley, L. L.; Petelin, S.; hide

    2008-01-01

    The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The H2O concentrations are retrieved from 6.3 micron band radiances. The populations of H2O(v2) vibrational levels are in non-Local Thermodynamic Equilibrium (non-LTE) above approximately 55 km altitude and the interpretation of 6.3 micron radiance requires utilizing non-LTE H2O model that includes various energy exchange processes in the system of H2O vibrational levels coupled with O2, N2, and CO2 vibrational levels. We incorporated these processes including kinetics of O2/O3 photolysis products to our research non-LTE H2O model and applied it for the development and optimization of SABER operational model. The latter has been validated using simultaneous SCISAT1/ACE occultation measurements. This helped us to estimate CO2(020)-O2(X,v=I), O2(X,v=I)- H2O(010), and O2(X,v=1) O rates at mesopause temperatures that is critical for an adequate interpretation of non-LTE H2O radiances in the MLT. The first distributions of seasonal and meridional H2O concentrations retrieved from SABER 6.3 micron radiances applying an updated non-LTE H2O model are demonstrated and discussed.

  11. Quasiparticle interfacial level alignment of highly hybridized frontier levels: H2O on TiO2(110).

    PubMed

    Migani, Annapaola; Mowbray, Duncan J; Zhao, Jin; Petek, Hrvoje

    2015-01-13

    Knowledge of the frontier levels' alignment prior to photoirradiation is necessary to achieve a complete quantitative description of H2O photocatalysis on TiO2(110). Although H2O on rutile TiO2(110) has been thoroughly studied both experimentally and theoretically, a quantitative value for the energy of the highest H2O occupied levels is still lacking. For experiment, this is due to the H2O levels being obscured by hybridization with TiO2(110) levels in the difference spectra obtained via ultraviolet photoemission spectroscopy (UPS). For theory, this is due to inherent difficulties in properly describing many-body effects at the H2O-TiO2(110) interface. Using the projected density of states (DOS) from state-of-the-art quasiparticle (QP) G0W0, we disentangle the adsorbate and surface contributions to the complex UPS spectra of H2O on TiO2(110). We perform this separation as a function of H2O coverage and dissociation on stoichiometric and reduced surfaces. Due to hybridization with the TiO2(110) surface, the H2O 3a1 and 1b1 levels are broadened into several peaks between 5 and 1 eV below the TiO2(110) valence band maximum (VBM). These peaks have both intermolecular and interfacial bonding and antibonding character. We find the highest occupied levels of H2O adsorbed intact and dissociated on stoichiometric TiO2(110) are 1.1 and 0.9 eV below the VBM. We also find a similar energy of 1.1 eV for the highest occupied levels of H2O when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than those estimated from UPS difference spectra, which are inconclusive in this energy region. Finally, we apply self-consistent QPGW (scQPGW1) to obtain the ionization potential of the H2O-TiO2(110) interface.

  12. Raman spectroscopic study of hydrogen ordered ice XIII and of its reversible phase transition to disordered ice V.

    PubMed

    Salzmann, Christoph G; Hallbrucker, Andreas; Finney, John L; Mayer, Erwin

    2006-07-14

    Raman spectra of recovered ordered H(2)O (D(2)O) ice XIII doped with 0.01 M HCl (DCl) recorded in vacuo at 80 K are reported in the range 3600-200 cm(-1). The bands are assigned to the various types of modes on the basis of isotope ratios. On thermal cycling between 80 and 120 K, the reversible phase transition to disordered ice V is observed. The remarkable effect of HCl (DCl) on orientational ordering in ice V and its phase transition to ordered ice XIII, first reported in a powder neutron diffraction study of DCl doped D(2)O ice V (C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, J. L. Finney, Science, 2006, 311, 1758), is demonstrated by Raman spectroscopy and discussed. The dopants KOH and HF have only a minor effect on hydrogen ordering in ice V, as shown by the Raman spectra.

  13. Infrared spectra of seeded hydrogen clusters: (para-H2)N-N2O and (ortho-H2)N-N2O, N = 2-13.

    PubMed

    Tang, Jian; McKellar, A R W

    2005-09-15

    High-resolution infrared spectra of clusters containing para-H2 and/or ortho-H2 and a single nitrous oxide molecule are studied in the 2225-cm(-1) region of the upsilon1 fundamental band of N2O. The clusters are formed in pulsed supersonic jet expansions from a cooled nozzle and probed using a tunable infrared diode laser spectrometer. The simple symmetric rotor-type spectra generally show no resolved K structure, with prominent Q-branch features for ortho-H2 but not para-H2 clusters. The observed vibrational shifts and rotational constants are reported. There is no obvious indication of superfluid effects for para-H2 clusters up to N=13. Sharp transitions due to even larger clusters are observed, but no definite assignments are possible. Mixed (para-H2)N-(ortho-H2)M-N2O cluster line positions can be well predicted by linear interpolation between the corresponding transitions of the pure clusters.

  14. A laser flash photolysis kinetics study of the reaction OH + H2O2 yields HO2 + H2O

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Semmes, D. H.; Ravishankara, A. R.

    1981-01-01

    Absolute rate constants for the reaction are reported as a function of temperature over the range 273-410 K. OH radicals are produced by 266 nm laser photolysis of H2O2 and detected by resonance fluorescence. H2O2 concentrations are determined in situ in the slow flow system by UV photometry. The results confirm the findings of two recent discharge flow-resonance fluorescence studies that the title reaction is considerably faster, particularly at temperatures below 300 K, than all earlier studies had indicated. A table giving kinetic data from the reaction is included.

  15. Generation of H2, O2, and H2O2 from water by the use of intense femtosecond laser pulses and the possibility of laser sterilization

    NASA Astrophysics Data System (ADS)

    Chin, S. L.; Lagacé, S.

    1996-02-01

    An intense femtosecond Ti-sapphire laser pulse was focused into water, leading to self-focusing. Apart from generating a white light (supercontinuum), the intense laser field in the self-focusing regions of the laser pulse dissociated the water molecules, giving rise to hydrogen and oxygen gas as well as hydrogen peroxide. Our analysis shows that the formation of free radicals O, H, and OH preceded the formation of the stable products of H2, O2, and H2O2. Because O radicals and H2O2 are strong oxydizing agents, one can take advantage of this phenomenon to design a laser scheme for sterilization in medical and biological applications.

  16. Pd-catalytic in situ generation of H2O2 from H2 and O2 produced by water electrolysis for the efficient electro-fenton degradation of rhodamine B.

    PubMed

    Yuan, Songhu; Fan, Ye; Zhang, Yucheng; Tong, Man; Liao, Peng

    2011-10-01

    A novel electro-Fenton process was developed for wastewater treatment using a modified divided electrolytic system in which H2O2 was generated in situ from electro-generated H2 and O2 in the presence of Pd/C catalyst. Appropriate pH conditions were obtained by the excessive H+ produced at the anode. The performance of the novel process was assessed by Rhodamine B (RhB) degradation in an aqueous solution. Experimental results showed that the accumulation of H2O2 occurred when the pH decreased and time elapsed. The maximum concentration of H2O2 reached 53.1 mg/L within 120 min at pH 2 and a current of 100 mA. Upon the formation of the Fenton reagent by the addition of Fe2+, RhB degraded completely within 30 min at pH 2 with a pseudo first order rate constant of 0.109 ± 0.009 min(-1). An insignificant decline in H2O2 generation and RhB degradation was found after six repetitions. RhB degradation was achieved by the chemisorption of H2O2 on the Pd/C surface, which subsequently decomposed into •OH upon catalysis by Pd0 and Fe2+. The catalytic decomposition of H2O2 to •OH by Fe2+ was more powerful than that by Pd0, which was responsible for the high efficiency of this novel electro-Fenton process.

  17. Photogeneration of H2O2 in SPEEK/PVA aqueous polymer solutions.

    PubMed

    Little, Brian K; Lockhart, PaviElle; Slaten, B L; Mills, G

    2013-05-23

    Photolysis of air-saturated aqueous solutions containing sulphonated poly(ether etherketone) and poly(vinyl alcohol) results in the generation of hydrogen peroxide. Consumption of oxygen and H2O2 formation are initially concurrent processes with a quantum yield of peroxide generation of 0.02 in stirred or unstirred solutions within the range of 7 ≤ pH ≤ 9. The results are rationalized in terms of O2 reduction by photogenerated α-hydroxy radicals of the polymeric ketone in competition with radical-radical processes that consume the macromolecular reducing agents. Generation of H2O2 is controlled by the photochemical transformation that produces the polymer radicals, which is most efficient in neutral and slightly alkaline solutions. Quenching of the excited state of the polyketone by both H3O(+) and OH(-) affect the yields of the reducing macromolecular radicals and of H2O2. Deprotonation of the α-hydroxy polymeric radicals at pH > 9 accelerate their decay and contribute to suppressing the peroxide yields in basic solutions. Maxima in [H2O2] are observed when illuminations are performed with static systems, where O2 reduction is faster than diffusion of oxygen into the solutions. Under such conditions H2O2 can compete with O2 for the reducing radicals resulting in a consumption of the peroxide.

  18. Quasiparticle Interfacial Level Alignment of Highly Hybridized Frontier Levels: H2O on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migani, Annapaola; Mowbray, Duncan J.; Zhao, Jin

    Knowledge of the frontier levels’ alignment prior to photoirradiation is necessary to achieve a complete quantitative description of H2O photocatalysis on TiO2(110). Although H2O on rutile TiO2(110) has been thoroughly studied both experimentally and theoretically, a quantitative value for the energy of the highest H2O occupied levels is still lacking. For experiment, this is due to the H2O levels being obscured by hybridization with TiO2(110) levels in the difference spectra obtained via ultraviolet photoemission spectroscopy (UPS). For theory, this is due to inherent difficulties in properly describing many-body effects at the H2O–TiO2(110) interface. Using the projected density of states (DOS)more » from state-of-the-art quasiparticle (QP) G0W0, we disentangle the adsorbate and surface contributions to the complex UPS spectra of H2O on TiO2(110). We perform this separation as a function of H2O coverage and dissociation on stoichiometric and reduced surfaces. Due to hybridization with the TiO2(110) surface, the H2O 3a1 and 1b1 levels are broadened into several peaks between 5 and 1 eV below the TiO2(110) valence band maximum (VBM). These peaks have both intermolecular and interfacial bonding and antibonding character. We find the highest occupied levels of H2O adsorbed intact and dissociated on stoichiometric TiO2(110) are 1.1 and 0.9 eV below the VBM. We also find a similar energy of 1.1 eV for the highest occupied levels of H2O when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than those estimated from UPS difference spectra, which are inconclusive in this energy region. Finally, we apply self-consistent QPGW (scQPGW1) to obtain the ionization potential of the H2O–TiO2(110) interface.« less

  19. Interstellar Ice Chemistry: From Water to Complex Organics

    NASA Astrophysics Data System (ADS)

    Oberg, Karin I.; Fayolle, E.; Linnartz, H.; van Dishoeck, E.; Fillion, J.; Bertin, M.

    2013-06-01

    Molecular cloud cores, protostellar envelopes and protoplanetary disk midplanes are all characterized by freeze-out of atoms and molecules (other than H and H2) onto interstellar dust grains. On the grain surface, atom addition reactions, especially hydrogenation, are efficient and H2O forms readily from O, CH3OH from CO etc. The result is an icy mantle typically dominated by H2O, but also rich in CO2, CO, NH3, CH3OH and CH4. These ices are further processed through interactions with radiation, electrons and energetic particles. Because of the efficiency of the freeze-out process, and the complex chemistry that succeeds it, these icy grain mantles constitute a major reservoir of volatiles during star formation and are also the source of much of the chemical evolution observed in star forming regions. Laboratory experiments allow us to explore how molecules and radicals desorb, dissociate, diffuse and react in ices when exposed to different sources of energy. Changes in ice composition and structure is constrained using infrared spectroscopy and mass spectrometry. By comparing ice desorption, segregation, and chemistry efficiencies under different experimental conditions, we can characterize the basic ice processes, e.g. diffusion of different species, that underpin the observable changes in ice composition and structure. This information can then be used to predict the interstellar ice chemical evolution. I will review some of the key laboratory discoveries on ice chemistry during the past few years and how they have been used to predict and interpret astronomical observations of ice bands and gas-phase molecules associated with ice evaporation. These include measurements of thermal diffusion in and evaporation from ice mixtures, non-thermal diffusion efficiencies (including the recent results on frequency resolved UV photodesorption), and the expected temperature dependencies of the complex ice chemistry regulated by radical formation and diffusion. Based on these

  20. The low temperature oxidation of lithium thin films on HOPG by O 2 and H 2O

    DOE PAGES

    Wulfsberg, Steven M.; Koel, Bruce E.; Bernasek, Steven L.

    2016-04-16

    Lithiated graphite and lithium thin films have been used in fusion devices. In this environment, lithiated graphite will undergo oxidation by background gases. In order to gain insight into this oxidation process, thin (< 15 monolayer (ML)) lithium films on highly ordered pyrolytic graphite (HOPG) were exposed in this paper to O 2(g) and H 2O (g) in an ultra-high vacuum chamber. High resolution electron energy loss spectroscopy (HREELS) was used to identify the surface species formed during O 2(g) and H 2O (g) exposure. Auger electron spectroscopy (AES) was used to obtain the relative oxidation rates during O 2(g)more » and H 2O (g) exposure. AES showed that as the lithium film thickness decreased from 15 to 5 to 1 ML, the oxidation rate decreased for both O 2(g) and H 2O (g). HREELS showed that a 15 ML lithium film was fully oxidized after 9.7 L (L) of O 2(g) exposure and Li 2O was formed. HREELS also showed that during initial exposure (< 0.5 L) H 2O (g), lithium hydride and lithium hydroxide were formed on the surface of a 15 ML lithium film. Finally, after 0.5 L of H 2O (g) exposure, the H 2O (g) began to physisorb, and after 15 L of H 2O (g) exposure, the 15 ML lithium film was not fully oxidized.« less

  1. The low temperature oxidation of lithium thin films on HOPG by O 2 and H 2O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wulfsberg, Steven M.; Koel, Bruce E.; Bernasek, Steven L.

    Lithiated graphite and lithium thin films have been used in fusion devices. In this environment, lithiated graphite will undergo oxidation by background gases. In order to gain insight into this oxidation process, thin (< 15 monolayer (ML)) lithium films on highly ordered pyrolytic graphite (HOPG) were exposed in this paper to O 2(g) and H 2O (g) in an ultra-high vacuum chamber. High resolution electron energy loss spectroscopy (HREELS) was used to identify the surface species formed during O 2(g) and H 2O (g) exposure. Auger electron spectroscopy (AES) was used to obtain the relative oxidation rates during O 2(g)more » and H 2O (g) exposure. AES showed that as the lithium film thickness decreased from 15 to 5 to 1 ML, the oxidation rate decreased for both O 2(g) and H 2O (g). HREELS showed that a 15 ML lithium film was fully oxidized after 9.7 L (L) of O 2(g) exposure and Li 2O was formed. HREELS also showed that during initial exposure (< 0.5 L) H 2O (g), lithium hydride and lithium hydroxide were formed on the surface of a 15 ML lithium film. Finally, after 0.5 L of H 2O (g) exposure, the H 2O (g) began to physisorb, and after 15 L of H 2O (g) exposure, the 15 ML lithium film was not fully oxidized.« less

  2. Unfolding the Quantum Nature of Proton Bound Symmetric Dimers of (MeOH)2H+ and (Me2O)2H+: a Theoretical Study

    NASA Astrophysics Data System (ADS)

    Tan, Jake Acedera; Kuo, Jer-Lai

    2014-06-01

    A proton under a tug of war between two competing Lewis bases is a common motif in biological systems and proton transfer processes. Over the past decades, model compounds for such motifs can be prepared by delicate stoichiometric control of salt solutions. Unfortunately, condensed phase studies, which aims to identify the key vibrational signatures are complicated to analyze. As a result, gas-phase studies do provide promising insights on the behavior of the shared proton. This study attempts to understand the quantum nature of the shared proton under theoretical paradigms. Proton bound symmetric dimers of (MeOH)2H+ and (Me2O)2H+ are chosen as the model compounds. The simulation is performed using Density Functional Theory (DFT) at the B3LYP level with 6-311+G(d,p) as the basis set. It was found out that stretching mode of shared proton couples with several other normal modes and its corresponding oscillator strength do distribute to other normal modes. J.R. Roscioli, L.R. McCunn and M.A. Johnson. Science 2007, 316, 249 T.E. DeCoursey. Physiol. Rev., 2003, 83, 475 E.S. Stoyanov. Psys. Chem. Phys., 2000,2,1137

  3. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  4. Experimental studies on cycling stable characteristics of inorganic phase change material CaCl2·6H2O-MgCl2·6H2O modified with SrCl2·6H2O and CMC

    NASA Astrophysics Data System (ADS)

    He, Meizhi; Yang, Luwei; Zhang, Zhentao

    2018-01-01

    By means of mass ratio method, binary eutectic hydrated salts inorganic phase change thermal energy storage system CaCl2·6H2O-20wt% MgCl2·6H2O was prepared, and through adding nucleating agent 1wt% SrCl2·6H2O and thickening agent 0.5wt% carboxy methyl cellulose (CMC), inoganic phase change material (PCM) modified was obtained. With recording cooling-melting curves simultaneously, this PCM was frozen and melted for 100 cycles under programmable temperature control. After per 10 cycles, the PCM was charaterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD) and density meter, then analysing variation characteristics of phase change temperature, supercooling degree, superheat degree, latent heat, crystal structure and density with the increase of cycle index. The results showed that the average values of average phase change temperature for cooling and heating process were 25.70°C and 27.39°C respectively with small changes. The average values of average supercooling and superheat degree were 0.59°C and 0.49°C respectively, and the maximum value was 1.10°C. The average value and standard deviation of latent heat of fusion were 120.62 J/g and 1.90 J/g respectively. Non-molten white solid sediments resulted from phase separation were tachyhydrite (CaMg2Cl6·12H2O), which was characterized by XRD. Measuring density of the PCM after per 10 cycles, and the results suggested that the total mass of tachyhydrite was limited. In summary, such modified inoganic PCM CaCl2·6H2O-20wt% MgCl2·6H2O-1wt% SrCl2·6H2O-0.5wt% CMC could stay excellent circulation stability within 100 cycles, and providing reference value in practical use.

  5. Degradation of crystal violet by an FeGAC/H2O2 process.

    PubMed

    Chen, Chiing-Chang; Chen, Wen-Ching; Chiou, Mei-Rung; Chen, Sheng-Wei; Chen, Yao Yin; Fan, Huan-Jung

    2011-11-30

    Because of the growing concern over highly contaminated crystal violet (CV) wastewater, an FeGAC/H(2)O(2) process was employed in this research to treat CV-contaminated wastewater. The experimental results indicated that the presence of iron oxide-coated granular activated carbon (FeGAC) greatly improved the oxidative ability of H(2)O(2) for the removal of CV. For instance, the removal efficiencies of H(2)O(2), GAC, FeGAC, GAC/H(2)O(2) and FeGAC/H(2)O(2) processes were 10%, 44%, 40%, 43% and 71%, respectively, at test conditions of pH 3 and 7.4mM H(2)O(2). FeGAC/H(2)O(2) combined both the advantages of FeGAC and H(2)O(2). FeGAC had a good CV adsorption ability and could effectively catalyze the hydrogen peroxide oxidation reaction. Factors (including pH, FeGAC dosage and H(2)O(2) dosage) affecting the removal of CV by FeGAC/H(2)O(2) were investigated in this research as well. In addition, the reaction intermediates were separated and identified using HPLC-ESI-MS. The N-demethylation step might be the main reaction pathway for the removal of CV. The reaction mechanisms for the process proposed in this research might be useful for future application of this technology to the removal of triphenylmethane (TPM) dyes. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Synthesis, crystal structure and thermal study of the hybrid nickel sulfate: C6N2H16[Ni(H2O)6(SO4)2].2H2O

    NASA Astrophysics Data System (ADS)

    Ngopoh, F. A. I.; Hamdi, N.; Chaouch, S.; Lachkar, M.; da Silva, I.; El Bali, B.

    2018-03-01

    A new inorganic-organic hybrid open framework nickel sulfate C6N2H16[Ni(H2O)6(SO4)2].2H2O has been synthesized by slow evaporation in aqueous solution using trans-1,4-diaminocyclohexane as structure-directing agent. It was characterized by single-crystal X-ray diffraction, infrared spectroscopy and analyzed by TGA-DSC. The compound crystallizes in the monoclinic space group P21/n, with the unit cell parameters of a = 6.2586 Å, b = 12.3009 Å, c = 13.2451 Å, β = 98,047°, Z = 4. Its crystal structure consists of isolated polyhedrons [Ni(H2O)6]2+ and [SO4]2- and free water which connects through hydrogen bonds. This association results in the porous framework where the protonated organic molecule trans-1,4-diaminocyclohexane is located as a counter ion. The IR spectra Shows the bands corresponding to the sulfate anion, water molecule and diprotonated trans-1-4-diaminocyclohexane. Thermal study indicates the loss of water molecules and the degradation of trans-1-4-diaminocyclohexane.

  7. Detection of pH and Enzyme-Free H2O2 Sensing Mechanism by Using GdO x Membrane in Electrolyte-Insulator-Semiconductor Structure.

    PubMed

    Kumar, Pankaj; Maikap, Siddheswar; Qiu, Jian-Tai; Jana, Surajit; Roy, Anisha; Singh, Kanishk; Cheng, Hsin-Ming; Chang, Mu-Tung; Mahapatra, Rajat; Chiu, Hsien-Chin; Yang, Jer-Ren

    2016-12-01

    A 15-nm-thick GdO x membrane in an electrolyte-insulator-semiconductor (EIS) structure shows a higher pH sensitivity of 54.2 mV/pH and enzyme-free hydrogen peroxide (H2O2) detection than those of the bare SiO2 and 3-nm-thick GdO x membranes for the first time. Polycrystalline grain and higher Gd content of the thicker GdO x films are confirmed by transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS), respectively. In a thicker GdO x membrane, polycrystalline grain has lower energy gap and Gd(2+) oxidation states lead to change Gd(3+) states in the presence of H2O2, which are confirmed by electron energy loss spectroscopy (EELS). The oxidation/reduction (redox) properties of thicker GdO x membrane with higher Gd content are responsible for detecting H2O2 whereas both bare SiO2 and thinner GdO x membranes do not show sensing. A low detection limit of 1 μM is obtained due to strong catalytic activity of Gd. The reference voltage shift increases with increase of the H2O2 concentration from 1 to 200 μM owing to more generation of Gd(3+) ions, and the H2O2 sensing mechanism has been explained as well.

  8. Calcium carbonate as ikaite crystals in Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Dieckmann, Gerhard S.; Nehrke, Gernot; Papadimitriou, Stathys; Göttlicher, Jörg; Steininger, Ralph; Kennedy, Hilary; Wolf-Gladrow, Dieter; Thomas, David N.

    2008-04-01

    We report on the discovery of the mineral ikaite (CaCO3.6H2O) in sea-ice from the Southern Ocean. The precipitation of CaCO3 during the freezing of seawater has previously been predicted from thermodynamic modelling, indirect measurements, and has been documented in artificial sea ice during laboratory experiments but has not been reported for natural sea-ice. It is assumed that CaCO3 formation in sea ice may be important for a sea ice-driven carbon pump in ice-covered oceanic waters. Without direct evidence of CaCO3 precipitation in sea ice, its role in this and other processes has remained speculative. The discovery of CaCO3.6H2O crystals in natural sea ice provides the necessary evidence for the evaluation of previous assumptions and lays the foundation for further studies to help elucidate the role of ikaite in the carbon cycle of the seasonally sea ice-covered regions

  9. Active sites and mechanisms for H2O2 decomposition over Pd catalysts

    PubMed Central

    Plauck, Anthony; Stangland, Eric E.; Dumesic, James A.; Mavrikakis, Manos

    2016-01-01

    A combination of periodic, self-consistent density functional theory (DFT-GGA-PW91) calculations, reaction kinetics experiments on a SiO2-supported Pd catalyst, and mean-field microkinetic modeling are used to probe key aspects of H2O2 decomposition on Pd in the absence of cofeeding H2. We conclude that both Pd(111) and OH-partially covered Pd(100) surfaces represent the nature of the active site for H2O2 decomposition on the supported Pd catalyst reasonably well. Furthermore, all reaction flux in the closed catalytic cycle is predicted to flow through an O–O bond scission step in either H2O2 or OOH, followed by rapid H-transfer steps to produce the H2O and O2 products. The barrier for O–O bond scission is sensitive to Pd surface structure and is concluded to be the central parameter governing H2O2 decomposition activity. PMID:27006504

  10. On the nature of the dirty ice at the bottom of the GISP2 ice core

    USGS Publications Warehouse

    Bender, Michael L.; Burgess, Edward; Alley, Richard B.; Barnett, Bruce; Clow, Gary D.

    2010-01-01

    We present data on the triple Ar isotope composition in trapped gas from clean, stratigraphically disturbed ice between 2800 and 3040m depth in the GISP2 ice core, and from basal dirty ice from 3040 to 3053m depth. We also present data for the abundance and isotopic composition of O2 and N2, and abundance of Ar, in the basal dirty ice. The Ar/N2 ratio of dirty basal ice, the heavy isotope enrichment (reflecting gravitational fractionation), and the total gas content all indicate that the gases in basal dirty ice originate from the assimilation of clean ice of the overlying glacier, which comprises most of the ice in the dirty bottom layer. O2 is partly to completely depleted in basal ice, reflecting active metabolism. The gravitationally corrected ratio of 40Ar/38Ar, which decreases with age in the global atmosphere, is compatible with an age of 100-250ka for clean disturbed ice. In basal ice, 40Ar is present in excess due to injection of radiogenic 40Ar produced in the underlying continental crust. The weak depth gradient of 40Ar in the dirty basal ice, and the distribution of dirt, indicate mixing within the basal ice, while various published lines of evidence indicate mixing within the overlying clean, disturbed ice. Excess CH4, which reaches thousands of ppm in basal dirty ice at GRIP, is virtually absent in overlying clean disturbed ice, demonstrating that mixing of dirty basal ice into the overlying clean ice, if it occurs at all, is very slow. Order-of-magnitude estimates indicate that the mixing rate of clean ice into dirty ice is sufficient to maintain a steady thickness of dirty ice against thinning from the mean ice flow. The dirty ice appears to consist of two or more basal components in addition to clean glacial ice. A small amount of soil or permafrost, plus preglacial snow, lake or ground ice could explain the observations.

  11. Are H and O Being Lost From the Mars Atmosphere in the H2O Stoichiometric Ratio of 2:1?

    NASA Astrophysics Data System (ADS)

    Jakosky, B. M.; Chaffin, M.; Deighan, J.; Brain, D.; Halekas, J. S.

    2017-12-01

    Loss of gas from the Mars upper atmosphere to space has been a significant process in the evolution of the Mars atmosphere through time. H is derived from photodissociation of H2O, and is lost by Jeans (thermal) escape. O comes from photodissociation of either H2O or CO2, and is lost by non-thermal processes including dissociative recombination, ion pickup, or sputtering by pick-up ions impacting the atmosphere (in order of importance today). McElroy (1972) proposed that H and O are lost in the ratio of 2:1 that comes from photodissociation of H2O; any imbalance would result in build-up of the lesser-escaping atom that increases its loss rate until the rates were in balance. For the Mars year observed by MAVEN, the large seasonal variation in H loss rate makes this hypothesis difficult to evaluate; however, current best estimates of loss rates suggest that they could be in balance, given the observational uncertainties and seasonal variations (both of which are significant). Even if they are in balance over longer timescales, they still might not be during the "MAVEN" year due to: (i) complications resulting from the interplay between multiple loss processes for O beyond only photochemical loss as considered by McElroy, (ii) interannual and longer-term variations in the lower-atmosphere dust and water cycles that can change the escape rate, (iii) the variation in loss rate expected throughout the 11-year solar cycle, (iv) changes in lower-atmosphere forcing due to the changing orbital elements, or (v) loss of C, H, or O to the crust via reaction with surface minerals. The higher (and unequal) loss rates for all species early in history are likely to have kept H and O from being in balance over the 4-billion-year timescale.

  12. A Novel Dimeric Ni-Substituted beta-Keggin Silicotungstate: Structure and Magnetic Properties of K(12)[{beta-SiNi(2)W(10)O(36)(OH)(2)(H(2)O)}(2)].20H(2)O.

    PubMed

    Kortz, Ulrich; Jeannin, Yves P.; Tézé, André; Hervé, Gilbert; Isber, Samih

    1999-08-09

    The novel dimeric polyoxometalate [{beta-SiNi(2)W(10)O(36)(OH)(2)(H(2)O)}(2)](12)(-) (1) has been synthesized and characterized by IR spectroscopy, polarography, elemental analysis, thermogravimetric analysis, and magnetic measurements. An X-ray single-crystal analysis was carried out on K(12)[{beta-SiNi(2)W(10)O(36)(OH)(2)(H(2)O)}(2)].20H(2)O, which crystallizes in the monoclinic system, space group P2(1)/n, with a = 13.701(4) Å, b = 24.448(11) Å, c = 13.995(5) Å, beta = 99.62(3) degrees, and Z = 4. The anion consists of two [beta-SiNi(2)W(10)O(36)(OH)(2)(H(2)O)] Keggin moieties linked via two OH bridging groups, leading to a planar Ni(2)(OH)(2) unit. The two half-units are related by an inversion center and each contain one Ni atom in the rotated triad. The formation of the new anion involves insertion, isomerization, and dimerization. Magnetic measurements show that the central Ni(4) unit exhibits ferromagnetic (J' = 4.14 cm(-)(1)) as well as weak antiferromagnetic (J = -0.65 cm(-)(1)) Ni-Ni exchange interactions.

  13. The reaction of O(1 D) with H2O and the reaction of OH with C3H6

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Heicklen, J.

    1972-01-01

    The N2O was photolyzed at 2139 A to produce O(1 D) atoms in the presence of H2O and CO. The O(1 D) atoms react with H2O to produce HO radicals, as measured by CO2 production from the reaction of OH with CO. The relative rate constant for O(1 D) removal by H2O compared to that by N2O is 2.1. In the presence of C3H6, the OH can be removed by reaction with either CO or C3H6.

  14. 1-Propanol probing methodology: two-dimensional characterization of the effect of solute on H2O.

    PubMed

    Koga, Yoshikata

    2013-09-21

    The wording "hydrophobicity/hydrophilicity" has been used in a loose manner based on human experiences. We have devised a more quantitative way to redefine "hydrophobes" and "hydrophiles" in terms of the mole fraction dependence pattern of one of the third derivative quantities, the enthalpic interaction between solute molecules. We then devised a thermodynamic methodology to characterize the effect of a solute on H2O in terms of its hydrophobicity and/or hydrophilicity. We use a thermodynamic signature, the enthalpic interaction of 1-propanol, H, to monitor how the test solute modifies H2O. By this method, characterization is facilitated by two indices; one pertaining to its hydrophobicity and the other its hydrophilicity. Hence differences among amphiphiles are quantified in a two-dimensional manner. Furthermore, an individual ion can be characterized independent of a counter ion. By using this methodology, we have studied the effects on H2O of a number of solutes, and gained some important new insights. For example, such commonly used examples of hydrophobes in the literature as tetramethyl urea, trimethylamine-N-oxide, and tetramethylammonium salts are in fact surprisingly hydrophilic. Hence the conclusions about "hydrophobes" using these samples ought to be interpreted with caution. The effects of anions on H2O found by this methodology are in the same sequence of the Hofmeister ranking, which will no doubt aid a further investigation into this enigma in biochemistry. Thus, it is likely that this methodology could play an important role in the characterization of the effects of solutes in H2O, and a perspective view may be useful. Here, we describe the basis on which the methodology is developed and the methodology itself in m.ore detail than given in individual papers. We then summarize the results in two dimensional hydrophobicity/hydrophilicity maps.

  15. Electron-stimulated reactions in layered CO/H2O films: Hydrogen atom diffusion and the sequential hydrogenation of CO to methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Nikolay G.; Monckton, Rhiannon J.; Koehler, Sven

    Low-energy (100 eV) electron-stimulated reactions in layered H2O/CO/H2O ices are investigated. For CO trapped within approximately 50 ML of the vacuum interface in the amorphous solid water (ASW) films, both oxidation and reduction reactions are observed. However for CO buried more deeply in the film, only the reduction of CO to methanol is observed. Experiments with layered films of H2O and D2O show that the hydrogen atoms participating in the reduction of the buried CO originate in region from ~10 – 40 ML below the surface of the ASW films and subsequently diffuse through the film. For deeply buried COmore » layers, the CO reduction reactions quickly increase with temperature above ~60 K. We present a simple chemical kinetic model that treats the diffusion of hydrogen atoms in the ASW and sequential hydrogenation of the CO to methanol that accounts for the observations.« less

  16. 3-Methyl-7-(2-thienyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione: pi-stacked bilayers built from N-H...O, C-H...O and C-H...pi hydrogen bonds.

    PubMed

    Trilleras, Jorge; Quiroga, Jairo; Cobo, Justo; Glidewell, Christopher

    2009-06-01

    In the title compound, C(12)H(9)N(3)O(2)S, the thienyl substituent is disordered over two sets of sites with occupancies of 0.749 (3) and 0.251 (3). A combination of N-H...O, C-H...O and C-H...pi hydrogen bonds links the molecules into bilayers and these bilayers are themselves linked into a continuous structure by pi-pi stacking interactions.

  17. H2O2 modulates the energetic metabolism of the cloud microbiome

    NASA Astrophysics Data System (ADS)

    Wirgot, Nolwenn; Vinatier, Virginie; Deguillaume, Laurent; Sancelme, Martine; Delort, Anne-Marie

    2017-12-01

    Chemical reactions in clouds lead to oxidation processes driven by radicals (mainly HO⚫, NO3⚫, or HO2⚫) or strong oxidants such as H2O2, O3, nitrate, and nitrite. Among those species, hydrogen peroxide plays a central role in the cloud chemistry by driving its oxidant capacity. In cloud droplets, H2O2 is transformed by microorganisms which are metabolically active. Biological activity can therefore impact the cloud oxidant capacity. The present article aims at highlighting the interactions between H2O2 and microorganisms within the cloud system. First, experiments were performed with selected strains studied as a reference isolated from clouds in microcosms designed to mimic the cloud chemical composition, including the presence of light and iron. Biotic and abiotic degradation rates of H2O2 were measured and results showed that biodegradation was the most efficient process together with the photo-Fenton process. H2O2 strongly impacted the microbial energetic state as shown by adenosine triphosphate (ATP) measurements in the presence and absence of H2O2. This ATP depletion was not due to the loss of cell viability. Secondly, correlation studies were performed based on real cloud measurements from 37 cloud samples collected at the PUY station (1465 m a.s.l., France). The results support a strong correlation between ATP and H2O2 concentrations and confirm that H2O2 modulates the energetic metabolism of the cloud microbiome. The modulation of microbial metabolism by H2O2 concentration could thus impact cloud chemistry, in particular the biotransformation rates of carbon compounds, and consequently can perturb the way the cloud system is modifying the global atmospheric chemistry.

  18. Adsorption of H2O, H2, O2, CO, NO, and CO2 on graphene/g-C3N4 nanocomposite investigated by density functional theory

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Zhang; Bandaru, Sateesh; Liu, Jin; Li, Li-Li; Wang, Zhenling

    2018-02-01

    Motivated by the photocatalytic reactions of small molecules on g-C3N4 by these insights, we sought to explore the adsorption of H2O and CO2 molecules on the graphene side and H2O, H2, O2, CO, NO, and CO2 molecules on the g-C3N4 side of hybrid g-C3N4/graphene nanocomposite using first-principles calculations. The atomic structure and electronic properties of hybrid g-C3N4/graphene nanocomposite is explored. The adsorption of small molecules on graphene/g-C3N4 nanocomposite is thoroughly investigated. The computational studies revels that all small molecules on graphene/g-C3N4 nanocomposite are the physisorption. The adsorption characteristics of H2O and CO2 molecules on the graphene side are similar to that on graphene. The adsorption of H2O, H2, O2, CO, NO, and CO2 molecules on the g-C3N4 side always leads to a buckle structure of graphene/g-C3N4 nanocomposite. Graphene as a substrate can significantly relax the buckle degree of g-C3N4 in g-C3N4/graphene nanocomposite.

  19. A calorimetric study on the low temperature dynamics of doped ice V and its reversible phase transition to hydrogen ordered ice XIII.

    PubMed

    Salzmann, Christoph G; Radaelli, Paolo G; Finney, John L; Mayer, Erwin

    2008-11-07

    Doped ice V samples made from solutions containing 0.01 M HCl (DCl), HF (DF), or KOH (KOD) in H(2)O (D(2)O) were slow-cooled from 250 to 77 K at 0.5 GPa. The effect of the dopant on the hydrogen disorder --> order transition and formation of hydrogen ordered ice XIII was studied by differential scanning calorimetry (DSC) with samples recovered at 77 K. DSC scans of acid-doped samples are consistent with a reversible ice XIII <--> ice V phase transition at ambient pressure, showing an endothermic peak on heating due to the hydrogen ordered ice XIII --> disordered ice V phase transition, and an exothermic peak on subsequent cooling due to the ice V --> ice XIII phase transition. The equilibrium temperature (T(o)) for the ice V <--> ice XIII phase transition is 112 K for both HCl doped H(2)O and DCl doped D(2)O. From the maximal enthalpy change of 250 J mol(-1) on the ice XIII --> ice V phase transition and T(o) of 112 K, the change in configurational entropy for the ice XIII --> ice V transition is calculated as 2.23 J mol(-1) K(-1) which is 66% of the Pauling entropy. For HCl, the most effective dopant, the influence of HCl concentration on the formation of ice XIII was determined: on decreasing the concentration of HCl from 0.01 to 0.001 M, its effectiveness is only slightly lowered. However, further HCl decrease to 0.0001 M drastically lowered its effectiveness. HF (DF) doping is less effective in inducing formation of ice XIII than HCl (DCl) doping. On heating at a rate of 5 K min(-1), kinetic unfreezing starts in pure ice V at approximately 132 K, whereas in acid doped ice XIII it starts at about 105 K due to acceleration of reorientation of water molecules. KOH doping does not lead to formation of hydrogen ordered ice XIII, a result which is consistent with our powder neutron diffraction study (C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, J. L. Finney, Science, 2006, 311, 1758). We further conjecture whether or not ice XIII has a stable region in

  20. Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice. II. Near UV/VIS spectroscopy and ionization rates

    NASA Astrophysics Data System (ADS)

    Bouwman, J.; Cuppen, H. M.; Steglich, M.; Allamandola, L. J.; Linnartz, H.

    2011-05-01

    Context. Mid-infrared emission features originating from polycyclic aromatic hydrocarbons (PAHs) are observed towards photon dominated regions in space. Towards dense clouds, however, these emission features are quenched. Observations of dense clouds show that many simple volatile molecules are frozen out on interstellar grains, forming thin layers of ice. Recently, observations have shown that more complex non-volatile species, presumably including PAHs, also freeze out and contribute to the ongoing solid-state chemistry. Aims: The study presented here aims at obtaining reaction rate data that characterize PAH photochemistry upon vacuum ultraviolet (VUV) irradiation in an interstellar H2O ice analogue to explore the potential impact of PAH:H2O ice reactions on overall interstellar ice chemistry. To this end, the experimental results are implemented in a chemical model under simple interstellar cloud conditions. Methods: Time-dependent near-UV/VIS spectroscopy on the VUV photochemistry of anthracene, pyrene, benzo[ghi]perylene and coronene containing interstellar H2O ice analogs is performed at 25 and 125 K, using an optical absorption setup. Results: Near-UV/VIS absorption spectra are presented for these four PAHs and their photoproducts including cationic species trapped in H2O ice. Oscillator strengths of the cation absorption bands are derived relative to the oscillator strength of the neutral parent PAH. The loss of the parent and growth of PAH photoproducts are measured as a function of VUV dose, yielding solid state reaction constants. The rate constants are used in an exploratory astrochemical model, to assess the importance of PAH:H2O ice photoprocessing in UV exposed interstellar environments, compared with the timescales in which PAH molecules are incorporated in interstellar ices. Conclusions: All four PAHs studied here are found to be readily ionized upon VUV photolysis when trapped in H2O ice and exhibit similar rates for ionization at astronomically

  1. Reactions of electronically excited molecular nitrogen with H2 and H2O molecules: theoretical study

    NASA Astrophysics Data System (ADS)

    Pelevkin, Alexey V.; Sharipov, Alexander S.

    2018-05-01

    Comprehensive quantum chemical analysis with the usage of the second-order perturbation multireference XMCQDPT2 approach was carried out to study the processes in the   +  H2 and   +  H2O systems. The energetically favorable reaction pathways have been revealed based on the exploration of potential energy surfaces. It has been shown that the reactions   +  H2 and   +  H2O occur with small activation barriers and, primarily, lead to the formation of N2H  +  H and N2H  +  OH products, respectively. Further, the interaction of these species could give rise to the ground state and H2 (or H2O) products, however, the estimations, based on RRKM theory and dynamic reaction coordinate calculations, exhibited that the   +  H2 and   +  H2O reactions lead to the dissociative quenching predominately. Appropriate rate constants for revealed reaction channels have been estimated by using a canonical variational theory and capture approximation. Corresponding three-parameter Arrhenius expressions for the temperature range T  =  300  ‑  3000 K were reported.

  2. Non-Potassic Melts In CMAS-CO2-H2O-K2O Model Peridotite

    NASA Astrophysics Data System (ADS)

    Buisman, I.; Walter, M. J.; Keshav, S.

    2009-12-01

    Volatile mediated model systems have been fundamental in shaping our knowledge about the way we view melting phase relations of peridotite at various depths in the Earth. Volatiles not only affect the melting temperatures, but the resulting liquids are, in some case, dramatically different than those witnessed in melting of dry peridotite. For example, the influence of CO2 and H2O on the melting phase relations of model peridotite shows a remarkable decrease in the solidus temperatures when compared to the dry peridotite (Gudfinnsson and Presnall, 2005). These model systems illustrate a gradational change above the solidus from carbonatites to kimberlites over several hundreds of degrees. Group-II kimberlites are ultrapotassic rocks with high water content where the mineral phlogopite is abundant. To get a better understanding of the melting phase relations related to carbonatitic and kimberlitic magmas, K2O was added to the system CMAS-CO2-H2O. In these systems, fluid and melt can co-exist in P-T space. However, from past studies, it is also known that in hydrous systems, both the fluid and melt will become indistinguishable from one another creating a singularity (second critical endpoint). Starting from the solidus located in six components (Keshav and Gudfinnsson, AGU abstract, 2009), with seven phases, melting phase relations in CMAS-CO2-H2O-K2O involving, fo-opx-cpx-garnet-carbonate-melt-fluid, are divariant. Fluid was recognized with the observation of large cavities seen in exposed capsules. Moreover, the presence of bright, needle-like grains found in large cavities in backscattered images implies the presence of solute in the fluid phase. Significantly, liquids on this divariant region have about 1000 ppm K2O, and so is the case with accompanying cpx. Hence, with this non-interesting amount of K2O in the mentioned phases, fluid must have all the potassium. At 30 kbar/1100C, with fo-opx-cpx-garnet-carbonate-phlogopite-melt-fluid, the melting phase

  3. Melting and subsolidus reactions in the system K2O-CaO-Al2O3-SiO2-H2O

    NASA Astrophysics Data System (ADS)

    Johannes, Wilhelm

    1980-09-01

    Beginning of melting and subsolidus relationships in the system K2O-CaO-Al2O3-SiO2-H2O have been experimentally investigated at pressures up to 20 kbars. The equilibria discussed involve the phases anorthite, sanidine, zoisite, muscovite, quartz, kyanite, gas, and melt and two invariant points: Point [Ky] with the phases An, Or, Zo, Ms, Qz, Vapor, and Melt; point [Or] with An, Zo, Ms, Ky, Qz, Vapor, and Melt. The invariant point [Ky] at 675° C and 8.7 kbars marks the lowest solidus temperature of the system investigated. At pressures above this point the hydrated phases zoisite and muscovite are liquidus phases and the solidus temperatures increase with increasing pressure. At 20 kbars beginning of melting occurs at 740 °C. The solidus temperatures of the quinary system K2O-CaO-Al2O3-SiO2-H2O are almost 60° C (at 20 kbars) and 170° C (at 2kbars) below those of the limiting quaternary system CaO-Al2O3-SiO2-H2O. The maximum water pressure at which anorthite is stable is lowered from 14 to 8.7 kbars in the presence of sanidine. The stability limits of anorthite+ vapor and anorthite+sanidine+vapor at temperatures below 700° C are almost parallel and do not intersect. In the wide temperature — pressure range at pressures above the reaction An+Or+Vapor = Zo+Ms+Qz and temperatures below the melting curve of Zo+Ms+Ky+Qz+Vapor, the feldspar assemblage anorthite+sanidine is replaced by the hydrated phases zoisite and muscovite plus quartz. CaO-Al2O3-SiO2-H2O. Knowledge of the melting relationships involving the minerals zoisite and muscovite contributes to our understanding of the melting processes occuring in the deeper parts of the crust. Beginning of melting in granites and granodiorites depends on the composition of plagioclase. The solidus temperatures of all granites and granodiorites containing plagioclases of intermediate composition are higher than those of the Ca-free alkali feldspar granite system and below those of the Na-free system discussed in this

  4. Ice Lens Formation, Frost Heave, Thin Films, and the Importance of the Polar H2O Reservoir at High Obliquity

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Sizemore, H. G.; Rempel, A. W.

    2011-01-01

    Several lines of evidence indicate that the volume of shallow ground ice in the martian high latitudes exceeds the pore volume of the host regolith. Boynton et al. found an optimal fit to the Mars Odyssey Gamma Ray Spectrometer (GRS) data at the Phoenix landing site by modeling a buried layer of 50-75% ice by mass (up to 90% ice by volume). Thermal and optical observations of recent impact craters in the northern hemisphere have revealed nearly pure ice. Ice deposits containing only 1-2% soil by volume were excavaged by Phoenix. One hypothesis for the origin of this excess ice is that it developed in situ by a mechanism analogous to the formation of terrestrial ice lenses and needle ice. Problematically, terrestrial soil-ice segregation is driven by freeze/thaw cycling and the movement of bulk water, neither of which are expected to have occurred in the geologically recent past on Mars. If however ice lens formation is possible at temperatures less than 273 K, there are possible implications for the habitability of Mars permafrost, since the same thin films of unfrozen water that lead to ice segregation are used by terrestrial psychrophiles to metaboluze and grow down to temperatures of at least 258 K.

  5. Comparison of gene expression signatures of diamide, H2O2 and menadione exposed Aspergillus nidulans cultures – linking genome-wide transcriptional changes to cellular physiology

    PubMed Central

    Pócsi, István; Miskei, Márton; Karányi, Zsolt; Emri, Tamás; Ayoubi, Patricia; Pusztahelyi, Tünde; Balla, György; Prade, Rolf A

    2005-01-01

    Background In addition to their cytotoxic nature, reactive oxygen species (ROS) are also signal molecules in diverse cellular processes in eukaryotic organisms. Linking genome-wide transcriptional changes to cellular physiology in oxidative stress-exposed Aspergillus nidulans cultures provides the opportunity to estimate the sizes of peroxide (O22-), superoxide (O2•-) and glutathione/glutathione disulphide (GSH/GSSG) redox imbalance responses. Results Genome-wide transcriptional changes triggered by diamide, H2O2 and menadione in A. nidulans vegetative tissues were recorded using DNA microarrays containing 3533 unique PCR-amplified probes. Evaluation of LOESS-normalized data indicated that 2499 gene probes were affected by at least one stress-inducing agent. The stress induced by diamide and H2O2 were pulse-like, with recovery after 1 h exposure time while no recovery was observed with menadione. The distribution of stress-responsive gene probes among major physiological functional categories was approximately the same for each agent. The gene group sizes solely responsive to changes in intracellular O22-, O2•- concentrations or to GSH/GSSG redox imbalance were estimated at 7.7, 32.6 and 13.0 %, respectively. Gene groups responsive to diamide, H2O2 and menadione treatments and gene groups influenced by GSH/GSSG, O22- and O2•- were only partly overlapping with distinct enrichment profiles within functional categories. Changes in the GSH/GSSG redox state influenced expression of genes coding for PBS2 like MAPK kinase homologue, PSK2 kinase homologue, AtfA transcription factor, and many elements of ubiquitin tagging, cell division cycle regulators, translation machinery proteins, defense and stress proteins, transport proteins as well as many enzymes of the primary and secondary metabolisms. Meanwhile, a separate set of genes encoding transport proteins, CpcA and JlbA amino acid starvation-responsive transcription factors, and some elements of sexual development

  6. GaAs micromachining in the 1 H2SO4:1 H2O2:8 H2O system. From anisotropy to simulation

    NASA Astrophysics Data System (ADS)

    Tellier, C. R.

    2011-02-01

    The bulk micromachining on (010), (110) and (111)A GaAs substrates in the 1 H2SO4:1 H2O2:8 H2O system is investigated. Focus is placed on anisotropy of 3D etching shapes with a special emphasis on convex and concave undercuts which are of prime importance in the wet micromachining of mechanical structures. Etched structures exhibit curved contours and more and less rounded sidewalls showing that the anisotropy is of type 2. This anisotropy can be conveniently described by a kinematic and tensorial model. Hence, a database composed of dissolution constants is further determined from experiments. A self-elaborated simulator which works with the proposed database is used to derive theoretical 3D shapes. Simulated shapes agree well with observed shapes of microstructures. The successful simulations open up two important applications for MEMS: CAD of mask patterns and meshing of simulated shapes for FEM simulation tools.

  7. Optical-cell evidence for superheated ice under gas-hydrate-forming conditions

    USGS Publications Warehouse

    Stern, L.A.; Hogenboom, D.L.; Durham, W.B.; Kirby, S.H.; Chou, I.-Ming

    1998-01-01

    We previously reported indirect but compelling evidence that fine-grained H2O ice under elevated CH4 gas pressure can persist to temperatures well above its ordinary melting point while slowly reacting to form methane clathrate hydrate. This phenomenon has now been visually verified by duplicating these experiments in an optical cell while observing the very slow hydrate-forming process as the reactants were warmed from 250 to 290 K at methane pressures of 23 to 30 MPa. Limited hydrate growth occurred rapidly after initial exposure of the methane gas to the ice grains at temperatures well within the ice subsolidus region. No evidence for continued growth of the hydrate phase was observed until samples were warmed above the equilibrium H2O melting curve. With continued heating, no bulk melting of the ice grains or free liquid water was detected anywhere within the optical cell until hydrate dissociation conditions were reached (292 K at 30 MPa), even though full conversion of the ice grains to hydrate requires 6-8 h at temperatures approaching 290 K. In a separate experimental sequence, unreacted portions of H2O ice grains that had persisted to temperatures above their ordinary melting point were successfully induced to melt, without dissociating the coexisting hydrate in the sample tube, by reducing the pressure overstep of the equilibrium phase boundary and thereby reducing the rate of hydrate growth at the ice-hydrate interface. Results from similar tests using CO2 as the hydrate-forming species demonstrated that this superheating effect is not unique to the CH4-H2O system.

  8. Fluoresence cross section of the H2O(+) A 2A1(0,7,0) produced through photoionization of H2O

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. Robert; Hwang, M. Y.

    1988-01-01

    The cross section for the production of the H2O(+) A 2A1(0,7,0) - X 2B1(0,0,0) fluorescence through photoionization of H2O was measured in the 14.5-20.5 eV region. The maximum quantum yield is 1.4 x 10 to the -3rd at 16.5 eV.

  9. The mechanism for water exchange in [UO(2)(H(2)O)(5)](2+) and [UO(2)(oxalate)(2)(H(2)O)](2-), as studied by quantum chemical methods.

    PubMed

    Vallet, V; Wahlgren, U; Schimmelpfennig, B; Szabó, Z; Grenthe, I

    2001-12-05

    The mechanisms for the exchange of water between [UO(2)(H(2)O)(5)](2+), [UO(2)(oxalate)(2)(H(2)O)](2)(-)(,) and water solvent along dissociative (D), associative (A) and interchange (I) pathways have been investigated with quantum chemical methods. The choice of exchange mechanism is based on the computed activation energy and the geometry of the identified transition states and intermediates. These quantities were calculated both in the gas phase and with a polarizable continuum model for the solvent. There is a significant and predictable difference between the activation energy of the gas phase and solvent models: the energy barrier for the D-mechanism increases in the solvent as compared to the gas phase, while it decreases for the A- and I-mechanisms. The calculated activation energy, Delta U(++), for the water exchange in [UO(2)(H(2)O)(5)](2+) is 74, 19, and 21 kJ/mol, respectively, for the D-, A-, and I-mechanisms in the solvent, as compared to the experimental value Delta H(++) = 26 +/- 1 kJ/mol. This indicates that the D-mechanism for this system can be ruled out. The energy barrier between the intermediates and the transition states is small, indicating a lifetime for the intermediate approximately 10(-10) s, making it very difficult to distinguish between the A- and I-mechanisms experimentally. There is no direct experimental information on the rate and mechanism of water exchange in [UO(2)(oxalate)(2)(H(2)O)](2-) containing two bidentate oxalate ions. The activation energy and the geometry of transition states and intermediates along the D-, A-, and I-pathways were calculated both in the gas phase and in a water solvent model, using a single-point MP2 calculation with the gas phase geometry. The activation energy, Delta U(++), in the solvent for the D-, A-, and I-mechanisms is 56, 12, and 53 kJ/mol, respectively. This indicates that the water exchange follows an associative reaction mechanism. The geometry of the A- and I-transition states for both [UO

  10. Stepwise mechanism and H2O-assisted hydrolysis in atomic layer deposition of SiO2 without a catalyst.

    PubMed

    Fang, Guo-Yong; Xu, Li-Na; Wang, Lai-Guo; Cao, Yan-Qiang; Wu, Di; Li, Ai-Dong

    2015-01-01

    Atomic layer deposition (ALD) is a powerful deposition technique for constructing uniform, conformal, and ultrathin films in microelectronics, photovoltaics, catalysis, energy storage, and conversion. The possible pathways for silicon dioxide (SiO2) ALD using silicon tetrachloride (SiCl4) and water (H2O) without a catalyst have been investigated by means of density functional theory calculations. The results show that the SiCl4 half-reaction is a rate-determining step of SiO2 ALD. It may proceed through a stepwise pathway, first forming a Si-O bond and then breaking Si-Cl/O-H bonds and forming a H-Cl bond. The H2O half-reaction may undergo hydrolysis and condensation processes, which are similar to conventional SiO2 chemical vapor deposition (CVD). In the H2O half-reaction, there are massive H2O molecules adsorbed on the surface, which can result in H2O-assisted hydrolysis of the Cl-terminated surface and accelerate the H2O half-reaction. These findings may be used to improve methods for the preparation of SiO2 ALD and H2O-based ALD of other oxides, such as Al2O3, TiO2, ZrO2, and HfO2.

  11. Stepwise mechanism and H2O-assisted hydrolysis in atomic layer deposition of SiO2 without a catalyst

    NASA Astrophysics Data System (ADS)

    Fang, Guo-Yong; Xu, Li-Na; Wang, Lai-Guo; Cao, Yan-Qiang; Wu, Di; Li, Ai-Dong

    2015-02-01

    Atomic layer deposition (ALD) is a powerful deposition technique for constructing uniform, conformal, and ultrathin films in microelectronics, photovoltaics, catalysis, energy storage, and conversion. The possible pathways for silicon dioxide (SiO2) ALD using silicon tetrachloride (SiCl4) and water (H2O) without a catalyst have been investigated by means of density functional theory calculations. The results show that the SiCl4 half-reaction is a rate-determining step of SiO2 ALD. It may proceed through a stepwise pathway, first forming a Si-O bond and then breaking Si-Cl/O-H bonds and forming a H-Cl bond. The H2O half-reaction may undergo hydrolysis and condensation processes, which are similar to conventional SiO2 chemical vapor deposition (CVD). In the H2O half-reaction, there are massive H2O molecules adsorbed on the surface, which can result in H2O-assisted hydrolysis of the Cl-terminated surface and accelerate the H2O half-reaction. These findings may be used to improve methods for the preparation of SiO2 ALD and H2O-based ALD of other oxides, such as Al2O3, TiO2, ZrO2, and HfO2.

  12. A neodymium(III)-ammonium complex involving oxalate and carbonate ligands: (NH4)2[Nd2(C2O4)3(CO3)(H2O)].H2O.

    PubMed

    Trombe, Jean-Christian; Galy, Jean; Enjalbert, Renée

    2002-10-01

    The title compound, diammonium aqua-mu-carbonato-tri-mu-oxalato-dineodymium(III) hydrate, (NH(4))(2)[Nd(2)(CO(3))(C(2)O(4))(3)(H(2)O)].H(2)O, involving the two ligands oxalate and carbonate, has been prepared hydrothermally as single crystals. The Nd atoms form a tetranuclear unit across the inversion centre at (1/2, 1/2, 1/2). Starting from this tetranuclear unit, the oxalate ligands serve to develop a three-dimensional network. The carbonate group acts as a bis-chelating ligand to two Nd atoms, and is monodentate to a third Nd atom. The oxalate groups are all bis-chelating. The two independent Nd atoms are ninefold coordinated and the coordination polyhedron of these atoms is a distorted monocapped antiprism.

  13. Abatement of Polychoro-1,3-butadienes in Aqueous Solution by Ozone, UV Photolysis, and Advanced Oxidation Processes (O3/H2O2 and UV/H2O2).

    PubMed

    Lee, Minju; Merle, Tony; Rentsch, Daniel; Canonica, Silvio; von Gunten, Urs

    2017-01-03

    The abatement of 9 polychloro-1,3-butadienes (CBDs) in aqueous solution by ozone, UV-C(254 nm) photolysis, and the corresponding advanced oxidation processes (AOPs) (i.e., O 3 /H 2 O 2 and UV/H 2 O 2 ) was investigated. The following parameters were determined for 9 CBDs: second-order rate constants for the reactions of CBDs with ozone (k O 3 ) (<0.1-7.9 × 10 3 M -1 s -1 ) or with hydroxyl radicals (k • OH ) (0.9 × 10 9 - 6.5 × 10 9 M -1 s -1 ), photon fluence-based rate constants (k') (210-2730 m 2 einstein -1 ), and quantum yields (Φ) (0.03-0.95 mol einstein -1 ). During ozonation of CBDs in a natural groundwater, appreciable abatements (>50% at specific ozone doses of 0.5 gO 3 /gDOC to ∼100% at ≥1.0 gO 3 /gDOC) were achieved for tetra-CBDs followed by (Z)-1,1,2,3,4-penta-CBD and hexa-CBD. This is consistent with the magnitude of the determined k O 3 and k • OH . The formation of bromate, a potentially carcinogenic ozonation byproduct, could be significantly reduced by addition of H 2 O 2 . For a typical UV disinfection dose (400 J/m 2 ), various extents of phototransformations (10-90%) could be achieved. However, the efficient formation of photoisomers from CBDs with E/Z configuration must be taken into account because of their potential residual toxicity. Under UV-C(254 nm) photolysis conditions, no significant effect of H 2 O 2 addition on CBDs abatement was observed due to an efficient direct phototransformation of CBDs.

  14. Preparation, Characterization, and Structure of Two Layered Molybdenum(VI) Phosphates: KMo(H 2O)O 2PO 4 and NH 4Mo(H 2O)O 2PO 4

    NASA Astrophysics Data System (ADS)

    Millini, Roberto; Carati, Angela

    1995-08-01

    New layered Mo(VI) compounds, KMo(H 2O)O 2PO 4 (I) and NH 4Mo(H 2O)O 2PO 4 (II), were synthesized hydrothermally and their structures were determined from single-crystal X-ray analysis. Compounds (I) and (II) are isostructural and crystallize in the monoclinic P2 1/ n space group with a = 12.353(3), b = 8.623(2), c = 5.841(1) Å, β = 102.78(1)°, V = 606.8(2) Å 3, Z = 4, and R = 0.027 ( Rw = 0.030) for compound (I) and a = 12.435(3), b = 8.761(2), c = 6.015(1), β = 103.45(1)°, V = 637.3(2) Å 3, Z = 4, and R = 0.040 ( Rw = 0.041) for compound (II). The structure consists of layers built up of eight- and four-membered rings resulting from the alternation of corner-sharing [MoO 6] octahedra and [PO 4] tetrahedra. The layers stack along the (1¯01) direction by intercalating K and NH 4 ions.

  15. Hydrogen and carbon isotope systematics in hydrogenotrophic methanogenesis under H2-limited and H2-enriched conditions: implications for the origin of methane and its isotopic diagnosis

    NASA Astrophysics Data System (ADS)

    Okumura, Tomoyo; Kawagucci, Shinsuke; Saito, Yayoi; Matsui, Yohei; Takai, Ken; Imachi, Hiroyuki

    2016-12-01

    Hydrogen and carbon isotope systematics of H2O-H2-CO2-CH4 in hydrogenotrophic methanogenesis and their relation to H2 availability were investigated. Two H2-syntrophic cocultures of fermentatively hydrogenogenic bacteria and hydrogenotrophic methanogens under conditions of <102 Pa-H2 and two pure cultures of hydrogenotrophic methanogens under conditions of 105 Pa-H2 were tested. Carbon isotope fractionation between CH4 and CO2 during hydrogenotrophic methanogenesis was correlated with pH2, as indicated in previous studies. The hydrogen isotope ratio of CH4 produced during rapid growth of the thermophilic methanogen Methanothermococcus okinawensis under high pH2 conditions ( 105 Pa) was affected by the isotopic composition of H2, as concluded in a previous study of Methanothermobacter thermautotrophicus. This " {δ D}_{{H}_2} effect" is a possible cause of the diversity of previously reported values for hydrogen isotope fractionation between CH4 and H2O examined in H2-enriched culture experiments. Hydrogen isotope fractionation between CH4 and H2O, defined by (1000 + {δ D}_{{CH}_4} )/(1000 + {δ D}_{{H}_2O} ), during hydrogenotrophic methanogenesis of the H2-syntrophic cocultures was in the range 0.67-0.69. The hydrogen isotope fractionation of our H2-syntrophic dataset overlaps with those obtained not only from low- pH2 experiments reported so far but also from natural samples of "young" methane reservoirs (0.66-0.74). Conversely, such hydrogen isotope fractionation is not consistent with that of "aged" methane in geological samples (≥0.79), which has been regarded as methane produced via hydrogenotrophic methanogenesis from the carbon isotope fractionation. As a possible process inducing the inconsistency in hydrogen isotope signatures between experiments and geological samples, we hypothesize that the hydrogen isotope signature of CH4 imprinted at the time of methanogenesis, as in the experiments and natural young methane, may be altered by diagenetic hydrogen

  16. Organic Compounds Produced by Photolysis of Realistic Interstellar and Cometary Ice Analogs Containing Methanol

    NASA Astrophysics Data System (ADS)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Chang, Sherwood; Scharberg, Maureen A.

    1995-11-01

    The infrared (IR) spectra of ultraviolet (UV) and thermally processed, methanol-containing interstellar/ cometary ice analogs at temperatures from 12 to 300 K are presented. Infrared spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry indicate that CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), HCO (the formyl radical), H2CO (formaldehyde), CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), and R-C=-N (nitriles) are formed. In addition, the organic materials remaining after photolyzed ice analogs have been warmed to room temperature contain (in rough order of decreasing abundance), (1) hexamethylenetetramine (HMT, C6H12N4), (2) ethers, alcohols, and compounds related to polyoxymethylene {POM, ( CH2O )n}, and (3) ketones {R-C(=O)-R'} and amides {H2NC(=O)-R}. Most of the carbon in these residues is thought to come from the methanol in the original ice. Deuterium and 13C isotopic labeling demonstrates that methanol is definitely the source of carbon in HMT. High concentrations of HMT in interstellar and cometary ices could have important astrophysical consequences. The ultraviolet photolysis of HMT frozen in H2O ice readily produces the "XCN" band observed in the spectra of protostellar objects and laboratory ices, as well as other nitriles. Thus, HMT may be a precursor of XCN and a source of CN in comets and the interstellar medium. Also, HMT is known to hydrolyze under acidic conditions to yield ammonia, formaldehyde, and amino acids. Thus, HMT may be a significant source of prebiogenic compounds on asteroidal parent bodies. A potential mechanism for the radiative formation of HMT in cosmic ices is outlined.

  17. The effect of H2O and CO2 on planetary mantles

    NASA Technical Reports Server (NTRS)

    Wyllie, P. J.

    1978-01-01

    The peridotite-H2O-CO2 system is discussed, and it is shown that even traces of H2O and CO2, in minerals or vapor, lower mantle solidus temperatures through hundreds of degrees in comparison with the volatile-free solidus. The solidus for peridotite-H2O-CO2 is a divariant surface traversed by univariant lines that locate the intersections of subsolidus divariant surfaces for carbonation or hydration reactions occurring in the presence of H2O-CO2 mixtures. Vapor phase compositions are normally buffered to these lines, and near the buffered curve for the solidus of partly carbonated peridotite there is a temperature maximum on the peridotite-vapor solidus. Characteristics on the CO2 side of the maximum and on the H2O side of the maximum are described.

  18. Evaluation of H2O2 and pH in exhaled breath condensate samples: methodical and physiological aspects.

    PubMed

    Knobloch, Henri; Becher, Gunther; Decker, Manfred; Reinhold, Petra

    2008-05-01

    This veterinary study is aimed at further standardization of H(2)O(2) and pH measurements in exhaled breath condensate (EBC). Data obtained in the study provide valuable information for many mammalian species including humans, and may help to avoid general pitfalls in interpretation of EBC data. EBC was sampled via the 'ECoScreen' in healthy calves (body weight 63-98 kg). Serum samples and condensates of ambient (indoor) air were collected in parallel. In the study on H(2)O(2), concentrations of H(2)O(2) in EBC, blood and ambient air were determined with the biosensor system 'ECoCheck'. In EBC, the concentration of H(2)O(2) was found to be dependent on food intake and increased significantly in the course of the day. Physiologically, lowest H(2)O(2) concentrations at 06:00 varied within the range 138-624 nmol l(-1) EBC or 0.10-0.94 nmol per 100 l exhaled breath and individual concentrations were significantly different indicating a remarkable intersubject variability. Highly reproducible results were seen within each subject (three different days within 4 weeks). No correlation existed between H(2)O(2) concentrations in EBC and blood, and EBC-H(2)O(2) was not influenced by variables of spontaneous breathing. Further results confirmed that standardization of H(2)O(2) measurements in EBC requires (1) the re-calculation of the concentration exhaled per 100 l exhaled breath (because the analyzed concentration in the liquid condensate underlies multiple methodological sources of variability given by the collection process), and (2) subtracting the concentration of inspired indoor H(2)O(2). In the study on pH use of the ISFET electrode (Sentron, the Netherlands) and a blood gas analyzer ABL 550 (Radiometer, Denmark) led to comparable results for EBC-pH (r=0.89, R(2)=79.3%, pH data in non-degassed EBC samples varied between 5.3 and 6.5, and were not significantly different between subjects, but were significantly higher in the evening compared

  19. Solar kerosene from H2O and CO2

    NASA Astrophysics Data System (ADS)

    Furler, P.; Marxer, D.; Scheffe, J.; Reinalda, D.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A.

    2017-06-01

    The entire production chain for renewable kerosene obtained directly from sunlight, H2O, and CO2 is experimentally demonstrated. The key component of the production process is a high-temperature solar reactor containing a reticulated porous ceramic (RPC) structure made of ceria, which enables the splitting of H2O and CO2 via a 2-step thermochemical redox cycle. In the 1st reduction step, ceria is endo-thermally reduced using concentrated solar radiation as the energy source of process heat. In the 2nd oxidation step, nonstoichiometric ceria reacts with H2O and CO2 to form H2 and CO - syngas - which is finally converted into kerosene by the Fischer-Tropsch process. The RPC featured dual-scale porosity for enhanced heat and mass transfer: mm-size pores for volumetric radiation absorption during the reduction step and μm-size pores within its struts for fast kinetics during the oxidation step. We report on the engineering design of the solar reactor and the experimental demonstration of over 290 consecutive redox cycles for producing high-quality syngas suitable for the processing of liquid hydrocarbon fuels.

  20. Wavelength-dependent UV photodesorption of pure N2 and O2 ices

    NASA Astrophysics Data System (ADS)

    Fayolle, E. C.; Bertin, M.; Romanzin, C.; Poderoso, H. A. M.; Philippe, L.; Michaut, X.; Jeseck, P.; Linnartz, H.; Öberg, K. I.; Fillion, J.-H.

    2013-08-01

    Context. Ultraviolet photodesorption of molecules from icy interstellar grains can explain observations of cold gas in regions where thermal desorption is negligible. This non-thermal desorption mechanism should be especially important where UV fluxes are high. Aims: N2 and O2 are expected to play key roles in astrochemical reaction networks, both in the solid state and in the gas phase. Measurements of the wavelength-dependent photodesorption rates of these two infrared-inactive molecules provide astronomical and physical-chemical insights into the conditions required for their photodesorption. Methods: Tunable radiation from the DESIRS beamline at the SOLEIL synchrotron in the astrophysically relevant 7 to 13.6 eV range is used to irradiate pure N2 and O2 thin ice films. Photodesorption of molecules is monitored through quadrupole mass spectrometry. Absolute rates are calculated by using the well-calibrated CO photodesorption rates. Strategic N2 and O2 isotopolog mixtures are used to investigate the importance of dissociation upon irradiation. Results: N2 photodesorption mainly occurs through excitation of the b1Πu state and subsequent desorption of surface molecules. The observed vibronic structure in the N2 photodesorption spectrum, together with the absence of N3 formation, supports that the photodesorption mechanism of N2 is similar to CO, i.e., an indirect DIET (Desorption Induced by Electronic Transition) process without dissociation of the desorbing molecule. In contrast, O2 photodesorption in the 7-13.6 eV range occurs through dissociation and presents no vibrational structure. Conclusions: Photodesorption rates of N2 and O2 integrated over the far-UV field from various star-forming environments are lower than for CO. Rates vary between 10-3 and 10-2 photodesorbed molecules per incoming photon.

  1. Activation of Nrf2 by H2O2: de novo synthesis versus nuclear translocation.

    PubMed

    Covas, Gonçalo; Marinho, H Susana; Cyrne, Luísa; Antunes, Fernando

    2013-01-01

    The most common mechanism described for the activation of the transcription factor Nrf2 is based on the inhibition of its degradation in the cytosol followed by its translocation to the nucleus. Recently, Nrf2 de novo synthesis was proposed as an additional mechanism for the rapid upregulation of Nrf2 by hydrogen peroxide (H2O2). Here, we describe a detailed protocol, including solutions, pilot experiments, and experimental setups, which allows exploring the role of H2O2, delivered either as a bolus or as a steady state, in endogenous Nrf2 translocation and synthesis. We also show experimental data, illustrating that H2O2 effects on Nrf2 activation in HeLa cells are strongly dependent both on the H2O2 concentration and on the method of H2O2 delivery. The de novo synthesis of Nrf2 is triggered within 5min of exposure to low concentrations of H2O2, preceding Nrf2 translocation to the nucleus which is slower. Evidence of de novo synthesis of Nrf2 is observed only for low H2O2 steady-state concentrations, a condition that is prevalent in vivo. This study illustrates the applicability of the steady-state delivery of H2O2 to uncover subtle regulatory effects elicited by H2O2 in narrow concentration and time ranges. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. NASA Lewis H2-O2 MHD program

    NASA Technical Reports Server (NTRS)

    Smith, M.; Nichols, L. D.; Seikel, G. R.

    1974-01-01

    Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.

  3. Morphology-defined interaction of copper phthalocyanine with O 2/H 2O

    DOE PAGES

    Muckley, Eric S.; Miller, Nicholas; Jacobs, Christopher B.; ...

    2016-11-01

    Copper phthalocyanine (CuPc) is an important hole transport layer for organic photovoltaics (OPVs), but its interaction with ambient gas/vapor may lead to changes in electronic properties of the material which subsequently limits the lifetime of OPV devices. CuPc films of thickness 25 nm and 100 nm were grown by thermal sublimation at 25°C, 150°C, and 250°C in order to vary morphology. Using a source-measure unit and a quartz crystal microbalance (QCM), we measured changes in electrical resistance and film mass in situ during exposure to controlled pulses of O 2 and H 2O vapor. Mass loading by O 2 wasmore » enhanced by a factor of 5 in films deposited at 250 C, possibly due to the ~200° C CuPc -> transition which allows higher O 2 mobility between stacked molecules. While gas/vapor sorption occurred over timescales of < 10 minutes, resistance change occurred over timescales > 1 hour, suggesting that mass change occurs by rapid adsorption at active surface sites, whereas resistive response is dominated by slow diffusion of adsorbates into the film bulk. Resistive response generally increases with film deposition temperature due to increased porosity associated with larger crystalline domains. The 25 nm thick films exhibit higher resistive response than 100 nm thick films after an hour of O 2/H 2O exposure due to the smaller analyte diffusion length required for reaching the film/electrode interface. We found evidence of decoupling of CuPc from the gold-coated QCM crystal due to preferential adsorption of O 2/H 2O molecules on gold, which is consistent with findings of other studies.« less

  4. Effective potentials for H2O-He and H2O-Ar systems. Isotropic induction-dispersion potentials

    NASA Astrophysics Data System (ADS)

    Starikov, Vitali I.; Petrova, Tatiana M.; Solodov, Alexander M.; Solodov, Alexander A.; Deichuli, Vladimir M.

    2017-05-01

    The vibrational and rotational dependence of the effective isotropic interaction potential of H2O-He and H2O-Ar systems, taken in the form of Lennard-Jones 6-12 potential has been analyzed. The analysis is based on the experimental line broadening (γ) and line shift (δ) coefficients obtained for different vibrational bands of H2O molecule perturbed by He and Ar. The first and second derivatives of the function C(1)(q) for the long-range part of the induction-dispersion potential with respect to the dimensionless normal coordinates q were calculated using literature information for the dipole moment and mean polarizability functions μ(q) and α(q), respectively. These derivatives have been used in the calculations of the quantities which determine the vibrational and rotational dependence of the long-range part of the effective isotropic potential. The optimal set of the derivatives for the function C(1)(q) is proposed. The comparison with the experimental data has been performed.

  5. [Zn(phen)(O,N,O)(H2O)] and [Zn(phen)(O,N)(H2O)] with O,N,O is 2,6-dipicolinate and N,O is L-threoninate: synthesis, characterization, and biomedical properties.

    PubMed

    Chin, Lee-Fang; Kong, Siew-Ming; Seng, Hoi-Ling; Tiong, Yee-Lian; Neo, Kian-Eang; Maah, Mohd Jamil; Khoo, Alan Soo-Beng; Ahmad, Munirah; Hor, Tzi-Sum Andy; Lee, Hong-Boon; San, Swee-Lan; Chye, Soi-Moi; Ng, Chew-Hee

    2012-10-01

    Two ternary Zn(II) complexes, with 1,10-phenanthroline (phen) as the main ligand and a carboxylate-containing ligand [dipicolinate (dipico) or L-threoninate (L-Thr)] as the subsidiary ligand, were prepared and characterized by elemental analysis, Fourier transform IR, UV, and fluorescence spectroscopy, X-ray diffraction, molar conductivity, and electrospray ionization mass spectrometry. X-ray structure analysis shows that both [Zn(phen)(dipico)(H(2)O)]·H(2)O (1) and [Zn(phen)(L-Thr)(H(2)O)Cl]·2H(2)O (2) have octahedral geometry about the Zn(II) atom. Both complexes can inhibit topoisomerase I, and have better anticancer activity than cisplatin against nasopharyngeal cancer cell lines, HK1 and HONE-1, with concentrations causing 50 % inhibition of cell proliferation (IC(50)) in the low micromolar range. Complex 2 has the highest therapeutic index for HK1. Both Zn(II) complexes can induce cell death by apoptosis. Changing the subsidiary ligand in the Zn(II) complexes affects the UV-fluorescence spectral properties of the coordinated phen ligand, the binding affinity for some DNA sequences, nucleobase sequence-selective binding, the phase at which cell cycle progression was arrested for treated cancer cells, and their therapeutic index.

  6. Probing the Release and Uptake of Water in α-MnO 2 · xH 2O

    DOE PAGES

    Yang, Zhenzhen; Ford, Denise C.; Park, Joong Sun; ...

    2016-12-27

    Alpha-MnO 2 is of interest as a cathode material for 3 V lithium batteries and as an electrode/electrocatalyst for higher energy, hybrid Li-ion/Li–O 2 systems. It has a structure with large tunnels that contain stabilizing cations such as Ba 2+, K + , NH 4 + , and H3O + (or water, H 2O). When stabilized by H 3O + /H 2O, the protons can be ion-exchanged with lithium to produce a Li 2O-stabilized α-MnO 2 structure. It has been speculated that the electrocatalytic process in Li–O 2 cells may be linked to the removal of lithium and oxygen frommore » the host α-MnO 2 structure during charge, and their reintroduction during discharge. In this investigation, hydrated α-MnO 2 was used, as a first step, to study the release and uptake of oxygen in α-MnO 2. Temperature-resolved in situ synchrotron X-ray diffraction (XRD) revealed a nonlinear, two-stage, volume change profile, which with the aide of X-ray absorption near-edge spectroscopy (XANES), redox titration, and density functional theory (DFT) calculations, is interpreted as the release of water from the α-MnO 2 tunnels. The two stages correspond to H 2O release from intercalated H 2O species at lower temperatures and H 3O + species at higher temperature. Thermogravimetric analysis confirmed the release of oxygen from α-MnO 2 in several stages during heating–including surface water, occluded water, and structural oxygen–and in situ UV resonance Raman spectroscopy corroborated the uptake and release of tunnel water by revealing small shifts in frequencies during the heating and cooling of α-MnO 2. Lastly, DFT calculations revealed the likelihood of disordered water species in binding sites in α-MnO 2 tunnels and a facile diffusion process.« less

  7. Spectroscopic properties of morin in various CH3OH-H2O and CH3CN-H2O mixed solvents.

    PubMed

    Park, Hyoung-Ryun; Im, Seo-Eun; Seo, Jung-Ja; Kim, Bong-Gon; Yoon, Jin Ah; Bark, Ki-Min

    2015-01-01

    The specific fluorescence properties of morin (3,2',4',5,7-pentahydroxyflavone) were studied in various CH3OH-H2O and CH3CN-H2O mixed solvents. Although the dihedral angle is large in the S0 state, morin has an almost planar molecular structure in the S1 state owing to the very low rotational energy barrier around the interring bond between B and the A, C ring. The excited state intramolecular proton transfer (ESIPT) at the S1 state cannot occur immediately after excitation, S1 → S0 fluorescence can be observed. Two conformers, Morin A and B have been known. At the CH3OH-H2O, Morin B will be the principal species but at the CH3CN-H2O, Morin A is the principal species. At the CH3OH-H2O, owing to the large Franck-Condon (FC) factor for S2 → S1 internal convernal (IC) and flexible molecular structure, only S1 → S0 fluorescence was exhibited. At the CH3CN-H2O, as the FC factor for S2 → S1 IC is small and molecular structure is rigid, S2 → S0 and S1 → S0 dual fluorescence was observed. This abnormal fluorescence property was further supported by the small pK1 value, effective delocalization of the lone pair electrons of C(2')-OH to the A, C ring, and a theoretical calculation. © 2014 The American Society of Photobiology.

  8. The reactions of HO2 with CO and NO and the reaction of O(1D) with H2O

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Heicklen, J.

    1973-01-01

    HO2 radicals were generated by the photolysis of N2O at 2139 A in the presence of excess H2O or H2 and smaller amounts of CO and O2. The O(1D) atoms produced from the photolysis of N2O to give HO radicals or H2 to give HO + H. With H2O two HO radicals are produced for each O(1D) removed low pressures (i.e. approximately 20 torr H2O), but the HO yield drops as the pressure is raised. This drop is attributed to the insertion reaction: O(1D) + H2O + M yields H2O2 +M. The HO radicals generated can react with either CO or H2 to produce H atoms which then add to O2 to produce HO2. Two reactions are given for the reactions of the HO radicals, in the absence of NO.

  9. Three-dimensional WS2 nanosheet networks for H2O2 produced for cell signaling

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Quan, Yingzhou; Zhang, Yueyu; Jiang, Min; Al-Enizi, Abdullah M.; Kong, Biao; An, Tiance; Wang, Wenshuo; Xia, Limin; Gong, Xingao; Zheng, Gengfeng

    2016-03-01

    Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in living RAW 264.7 macrophage cells and neurons. First-principles calculations further demonstrate that the enhanced sensitivity of probing H2O2 is attributed to the efficient and spontaneous H2O2 adsorption on WS2 nanosheet edge sites. The combined features of 3D WS2 nanosheet networks suggest attractive new opportunities for exploring the physiological roles of reactive oxygen species like H2O2 in living systems.Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in

  10. Effects of ocean acidification on the physiological performance and carbon production of the Antarctic sea ice diatom Nitzschia sp. ICE-H.

    PubMed

    Qu, Chang-Feng; Liu, Fang-Ming; Zheng, Zhou; Wang, Yi-Bin; Li, Xue-Gang; Yuan, Hua-Mao; Li, Ning; An, Mei-Ling; Wang, Xi-Xi; He, Ying-Ying; Li, Lu-Lu; Miao, Jin-Lai

    2017-07-15

    Ocean acidification (OA) resulting from increasing atmospheric CO 2 strongly influences marine ecosystems, particularly in the polar ocean due to greater CO 2 solubility. Here, we grew the Antarctic sea ice diatom Nitzschia sp. ICE-H in a semicontinuous culture under low (~400ppm) and high (1000ppm) CO 2 levels. Elevated CO 2 resulted in a stimulated physiological response including increased growth rates, chlorophyll a contents, and nitrogen and phosphorus uptake rates. Furthermore, high CO 2 enhanced cellular particulate organic carbon production rates, indicating a greater shift from inorganic to organic carbon. However, the cultures grown in high CO 2 conditions exhibited a decrease in both extracellular and intracellular carbonic anhydrase activity, suggesting that the carbon concentrating mechanisms of Nitzschia sp. ICE-H may be suppressed by elevated CO 2 . Our results revealed that OA would be beneficial to the survival of this sea ice diatom strain, with broad implications for global carbon cycles in the future ocean. Copyright © 2017. Published by Elsevier Ltd.

  11. Reactions of hydrated electrons (H2O)n- with carbon dioxide and molecular oxygen: hydration of the CO2- and O2- ions.

    PubMed

    Balaj, O Petru; Siu, Chi-Kit; Balteanu, Iulia; Beyer, Martin K; Bondybey, Vladimir E

    2004-10-04

    The gas-phase reactions of hydrated electrons with carbon dioxide and molecular oxygen were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Both CO2 and O2 react efficiently with (H2O)n- because they possess low-lying empty pi* orbitals. The molecular CO2- and O2- anions are concurrently solvated and stabilized by the water ligands to form CO2(-)(H2O)n and O2(-)(H2O)n. Core exchange reactions are also observed, in which CO2(-)(H2O)n is transformed into O2(-)(H2O)n upon collision with O2. This is in agreement with the prediction based on density functional theory calculations that O2(-)(H2O)n clusters are thermodynamically favored with respect to CO2(-)(H2O)n. Electron detachment from the product species is only observed for CO2(-)(H2O)2, in agreement with the calculated electron affinities and solvation energies.

  12. Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    Some refinements have been conceived for a proposed apparatus that would generate hydrogen (for use in a fuel cell) by means of chemical reactions among magnesium, magnesium hydride, and steam. The refinements lie in tailoring spatial and temporal distributions of steam and liquid water so as to obtain greater overall energy-storage or energy-generation efficiency than would otherwise be possible. A description of the prior art is prerequisite to a meaningful description of the present refinements. The hydrogen-generating apparatus in question is one of two versions of what was called the "advanced hydrogen generator" in "Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators" (NPO-43554), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 52. To recapitulate: The apparatus would include a reactor vessel that would be initially charged with magnesium hydride. The apparatus would exploit two reactions: The endothermic decomposition reaction MgH2-->Mg + H2, which occurs at a temperature greater than or equal to 300 C, and The exothermic oxidation reaction MgH2 + H2O MgO + 2H2, which occurs at a temperature greater than or equal to 330 C.

  13. Reduction in central H2O2 levels prevents voluntary ethanol intake in mice: a role for the brain catalase-H2O2 system in alcohol binge drinking.

    PubMed

    Ledesma, Juan Carlos; Baliño, Pablo; Aragon, Carlos M G

    2014-01-01

    Hydrogen peroxide (H2 O2 ) is the cosubstrate used by the enzyme catalase to form Compound I (the catalase-H2 O2 system), which is the major pathway for the conversion of ethanol (EtOH) into acetaldehyde in the brain. This centrally formed acetaldehyde has been shown to be involved in some of the psychopharmacological effects induced by EtOH in rodents, including voluntary alcohol intake. It has been observed that different levels of this enzyme in the central nervous system (CNS) result in variations in the amount of EtOH consumed. This has been interpreted to mean that the brain catalase-H2 O2 system, by determining EtOH metabolism, mediates alcohol self-administration. To date, however, the role of H2 O2 in voluntary EtOH drinking has not been investigated. In the present study, we explored the consequence of a reduction in cerebral H2 O2 levels in volitional EtOH ingestion. With this end in mind, we injected mice of the C57BL/6J strain intraperitoneally with the H2 O2 scavengers alpha-lipoic acid (LA; 0 to 50 mg/kg) or ebselen (Ebs; 0 to 25 mg/kg) 15 or 60 minutes, respectively, prior to offering them an EtOH (10%) solution following a drinking-in-the-dark procedure. The same procedure was followed to assess the selectivity of these compounds in altering EtOH intake by presenting mice with a (0.1%) solution of saccharin. In addition, we indirectly tested the ability of LA and Ebs to reduce brain H2 O2 availability. The results showed that both LA and Ebs dose-dependently reduced voluntary EtOH intake, without altering saccharin consumption. Moreover, we demonstrated that these treatments decreased the central H2 O2 levels available to catalase. Therefore, we propose that the amount of H2 O2 present in the CNS, by determining brain acetaldehyde formation by the catalase-H2 O2 system, could be a factor that determines an animal's propensity to consume EtOH. Copyright © 2013 by the Research Society on Alcoholism.

  14. Experimental Determination of the H2O-undersaturated Peridotite Solidus

    NASA Astrophysics Data System (ADS)

    Sarafian, E. K.; Gaetani, G. A.; Hauri, E.; Sarafian, A.

    2015-12-01

    Knowledge of the H2O-undersaturated lherzolite solidus places important constraints on the process of melt generation beneath oceanic spreading centers. While it is generally accepted that the small concentration of H2O (~50-200 ug/g) dissolved in the oceanic upper mantle has a strong influence on the peridotite solidus, but this effect has not been directly determined through experiments. This is because (1) precisely controlling low concentrations of H2O in high-pressure melting experiments is thought to be difficult, (2) small amounts of melt are difficult to identify, and (3) the size of mineral grains that grow in near-solidus experiments is too small to be analyzed for H2O by either Fourier transform infrared (FTIR) spectroscopy or secondary ion mass spectrometry (SIMS). We have developed an experimental approach for determining the peridotite solidus as a function of H2O content that overcomes these difficulties. Our approach utilizes large (~300 um diameter) spheres of San Carlos olivine to monitor the concentration and behavior of H2O in our experiments.. The spheres are mixed in 5:95 proportions with a synthetic peridotite that has the composition of the depleted MORB mantle of Workman and Hart (2005). Partial melting experiments are conducted in is a piston cylinder device using pre-conditioned Au80Pd20 capsules. During an experiment, the H2O content of the San Carlos olivine spheres diffusively equilibrates with the peridotite matrix. After each experiment, the concentration of H2O dissolved in the olivine spheres is determined by secondary ion mass spectrometry. By analyzing the H2O content of the San Carlos olivine spheres and performing a simple mass balance, we can then calculate the amount of H2O in the capsule. The spheres also provides a means to determine the solidus temperature due to the strong partitioning of H2O into silicate melt compared to olivine, pyroxene, and spinel. When a small amount of melt is present the H2O partitions into the

  15. KCd2[N(CN)2]5(H2O)4: an enmeshed honeycomb grid.

    PubMed

    Schlueter, John A; Geiser, Urs; Funk, Kylee A

    2008-02-01

    The title compound, poly[potassium [diaquapenta-micro(2)-dicyanamido-dicadmium(II)] dihydrate], {K[Cd(2)(C(2)N(3))(5)(H(2)O)(2)].2H(2)O}(n), contains two-dimensional anionic sheets of {[Cd(2){N(CN)(2)}(H(2)O)(2)](-)}(n) with a modified (6,3)-net (layer group cm2m, No. 35). Two sets of equivalent sheets interpenetrate orthogonally to form a tetragonal enmeshed grid.

  16. Adsorption, Desorption, and Displacement Kinetics of H2O and CO2 on Forsterite, Mg2SiO4(011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; Li, Zhenjun; Dohnalek, Zdenek

    We have examined the adsorbate-substrate interaction kinetics of CO2 and H2O on a natural forsterite crystal surface, Mg2SiO4(011), with 10-15% of substitutional Fe2+. We use temperature programmed desorption (TPD) and molecular beam techniques to determine the adsorption, desorption, and displacement kinetics for H2O and CO2. Neither CO2 nor H2O has distinct sub-monolayer desorption peaks but instead both have a broad continuous desorption feature that evolve smoothly into multilayer desorption. Inversion of the monolayer coverage spectra for both molecules reveals that the corresponding binding energies for H2O are greater than that for CO2 on all sites. The relative strength of thesemore » interactions is the dominant factor in the competitive adsorption/displacement kinetics. In experiments where the two adsorbates are co-dosed, H2O always binds to the highest energy binding sites available and displaces CO2. The onset of CO2 displacement by H2O occurs between 65 and 75 K.« less

  17. Degradation mechanism of alachlor during direct ozonation and O(3)/H(2)O(2) advanced oxidation process.

    PubMed

    Qiang, Zhimin; Liu, Chao; Dong, Bingzhi; Zhang, Yalei

    2010-01-01

    The degradation of alachlor by direct ozonation and advanced oxidation process O(3)/H(2)O(2) was investigated in this study with focus on identification of degradation byproducts. The second-order reaction rate constant between ozone and alachlor was determined to be 2.5+/-0.1M(-1)s(-1) at pH 7.0 and 20 degrees C. Twelve and eight high-molecular-weight byproducts (with the benzene ring intact) from alachlor degradation were identified during direct ozonation and O(3)/H(2)O(2), respectively. The common degradation byproducts included N-(2,6-diethylphenyl)-methyleneamine, 8-ethyl-3,4-dihydro-quinoline, 8-ethyl-quinoline, 1-chloroacetyl-2-hydro-3-ketone-7-acetyl-indole, 2-chloro-2',6'-diacetyl-N-(methoxymethyl)acetanilide, 2-chloro-2'-acetyl-6'-ethyl-N-(methoxymethyl)-acetanilide, and two hydroxylated alachlor isomers. In direct ozonation, four more byproducts were also identified including 1-chloroacetyl-2,3-dihydro-7-ethyl-indole, 2-chloro-2',6'-ethyl-acetanilide, 2-chloro-2',6'-acetyl-acetanilide and 2-chloro-2'-ethyl-6'-acetyl-N-(methoxymethyl)-acetanilide. Degradation of alachlor by O(3) and O(3)/H(2)O(2) also led to the formation of low-molecular-weight byproducts including formic, acetic, propionic, monochloroacetic and oxalic acids as well as chloride ion (only detected in O(3)/H(2)O(2)). Nitrite and nitrate formation was negligible. Alachlor degradation occurred via oxidation of the arylethyl group, N-dealkylation, cyclization and cleavage of benzene ring. After O(3) or O(3)/H(2)O(2) treatment, the toxicity of alachlor solution examined by the Daphnia magna bioassay was slightly reduced. 2009 Elsevier Ltd. All rights reserved.

  18. Flow of ices in the Ammonia-Water System

    NASA Technical Reports Server (NTRS)

    Durham, W. B.; Kirby, S. H.; Stern, L. A.

    1993-01-01

    We have fabricated in the laboratory and subsequently deformed crystalline hydrates and partial melts of the water-rich end of the NH3-H2O system, with the aim of improving our understanding of physical processes occurring in icy moons of the outer solar system. Deformation experiments were carried out at constant strain rate. The range of experimental variables are given. Phase relationships in the NH3-H2O system indicate that water ice and ammonia dihydrate, NH3-2H2O, are the stable phases under our experiment conditions. X-ray diffraction of our samples usually revealed these as the dominant phases, but we have also observed an amorphous phase (in unpressurized samples only) and occasionally significant ammonia monohydrate, NH3-H2O. The onset of partial melting at the peritectic temperature at about 176 K appeared as a sharp transition in strength observed in samples of x(sub NH3) = 0.05 and 0.01, the effect of melt was less pronounced. For any given water ice + dihydrate alloy in the subsolidus region, we observed one rheological law over the entire temperature range from 175 K to about 140 K. Below 140 K, a shear instability similar to that occurring in pure water ice under the same conditions limited our ability to measure ductile flow. The rheological laws for the several alloys vary systematically from that of pure ice to that of dihydrate. Pure dihydrate is about 4 orders of magnitude less viscous than water ice just below the peritectic temperature, but because of a very pronounced temperature dependence in dihydrate (100 kJ/mol versus 43 kJ/mol for water ice) the viscosity of dihydrate equals or exceeds that of water ice at T less than 140 K. The large variation in viscosity of dihydrate with relatively small changes in temperature may be helpful in explaining the rich variety of tectonic and volcanic features seen on the surfaces of icy moons in the outer solar system.

  19. Insertion of bentonite with Organometallic [Fe3O(OOC6H5)6(H2O)3(NO3).nH2O] as Adsorbent of Congo Red

    NASA Astrophysics Data System (ADS)

    Said, Muhammad; Paluta Utami, Hasja; Hayati, Ferlina

    2018-01-01

    The adsorption of Congo red using bentonite inserted organometallic has been investigated. The insertion bentonite was characterized using FT-IR Spectrophotometer, XRD and XRF analysis. The FT-IR characterization showed the higher intensity of peak wavenumber at 470.6 cm-1 for Fe3O on the ratio 1:3. While the XRD characterization showed the shift of diffraction angle of 2θ was 5.2° and has a basal spacing of 16.8 Å. In the XRF characterization, the insertion process of organometallic occurred optimally with the percentage of metal oxide reached 71.75 %. The adsorption process of bentonite inserted organometallic compound [Fe3O(OOC6H5)6(H2O)3(NO3)·nH2O] showed the adsorption rate (k) is 0.050 min-1, the largest adsorption capacity (b) at 70°C is 4.48 mol/g, the largest adsorption energy at temperature 30°C which is 6.4 kJ/mol Organometallic compounds. The value of the enthalpy (ΔH) and entropy (ΔS) decreased with increasing concentrations of the Congo red. Effect of pH on the adsorption on at pH 3 shows the biggest of number Congo red absorbed is 19.52 mg/L for insertion of bentonite.

  20. Triple Isotope Water Measurements of Lake Untersee Ice using Off-Axis ICOS

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Huang, Y. W.; Andersen, D. T.; Gupta, M.; McKay, C. P.

    2015-12-01

    Lake Untersee (71.348°S, 13.458°E) is the largest surface freshwater lake in the interior of the Gruber Mountains of central Queen Maud Land in East Antarctica. The lake is permanently covered with ice, is partly bounded by glacier ice and has a mean annual air temperature of -10°C. In contrast to other Antarctic lakes the dominating physical process controlling ice-cover dynamics is low summer temperatures and high wind speeds resulting in sublimation rather than melting as the main mass-loss process. The ice-cover of the lake is composed of lake-water ice formed during freeze-up and rafted glacial ice derived from the Anuchin Glacier. The mix of these two fractions impacts the energy balance of the lake, which directly affects ice-cover thickness. Ice-cover is important if one is to understand the physical, chemical, and biological linkages within these unique, physically driven ecosystems. We have analyzed δ2H, δ18O, and δ17O from samples of lake and glacier ice collected at Lake Untersee in Dec 2014. Using these data we seek to answer two specific questions: Are we able to determine the origin and history of the lake ice, discriminating between rafted glacial ice and lake water? Can isotopic gradients in the surface ice indicate the ablation (sublimation) rate of the surface ice? The triple isotope water analyzer developed by Los Gatos Research (LGR 912-0032) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures δ2H, δ18O, and δ17O from water, as well as the calculated d-excess and 17O-excess. The laboratory precision in high performance mode for both δ17O and δ18O is 0.03 ‰, and for δ2H is 0.2 ‰. Methodology and isotope data from Lake Untersee samples are presented. Figure: Ice samples were collected across Lake Untersee from both glacial and lake ice regions for this study.

  1. Novel Process of Simultaneous Removal of Nitric Oxide and Sulfur Dioxide Using a Vacuum Ultraviolet (VUV)-Activated O2/H2O/H2O2 System in A Wet VUV-Spraying Reactor.

    PubMed

    Liu, Yangxian; Wang, Qian; Pan, Jianfeng

    2016-12-06

    A novel process for NO and SO 2 simultaneous removal using a vacuum ultraviolet (VUV, with 185 nm wavelength)-activated O 2 /H 2 O/H 2 O 2 system in a wet VUV-spraying reactor was developed. The influence of different process variables on NO and SO 2 removal was evaluated. Active species (O 3 and ·OH) and liquid products (SO 3 2- , NO 2 - , SO 4 2- , and NO 3 - ) were analyzed. The chemistry and routes of NO and SO 2 removal were investigated. The oxidation removal system exhibits excellent simultaneous removal capacity for NO and SO 2 , and a maximum removal of 96.8% for NO and complete SO 2 removal were obtained under optimized conditions. SO 2 reaches 100% removal efficiency under most of test conditions. NO removal is obviously affected by several process variables. Increasing VUV power, H 2 O 2 concentration, solution pH, liquid-to-gas ratio, and O 2 concentration greatly enhances NO removal. Increasing NO and SO 2 concentration obviously reduces NO removal. Temperature has a dual impact on NO removal, which has an optimal temperature of 318 K. Sulfuric acid and nitric acid are the main removal products of NO and SO 2 . NO removals by oxidation of O 3 , O·, and ·OH are the primary routes. NO removals by H 2 O 2 oxidation and VUV photolysis are the complementary routes. A potential scaled-up removal process was also proposed initially.

  2. A new Pu(iii) coordination geometry in (C5H5NBr)2[PuCl3(H2O)5]·2Cl·2H2O as obtained via supramolecular assembly in aqueous, high chloride media.

    PubMed

    Surbella, Robert G; Ducati, Lucas C; Pellegrini, Kristi L; McNamara, Bruce K; Autschbach, Jochen; Schwantes, Jon M; Cahill, Christopher L

    2017-09-28

    Crystals of a hydrated Pu(iii) chloride, (C 5 H 5 NBr) 2 [PuCl 3 (H 2 O) 5 ]·2Cl·2H 2 O, were grown via slow evaporation from acidic aqueous, high chloride media. X-ray diffraction data reveals the neutral [PuCl 3 (H 2 O) 5 ] tecton is assembled via charge assisted hydrogen and halogen bonds donated by 4-bromopyridinium cations and a series of inter-tecton hydrogen bonds.

  3. Improved hydrogen storage properties of MgH2 catalyzed with TiO2

    NASA Astrophysics Data System (ADS)

    Jangir, Mukesh; Meena, Priyanka; Jain, I. P.

    2018-05-01

    In order to improve the hydrogenation properties of the MgH2, various concentration of rutile Titanium Oxide (TiO2) (X wt%= 5, 10, 15 wt %) is added to MgH2 by ball milling and the catalytic effect of TiO2 on hydriding/dehydriding properties of MgH2 has been investigated. Result shows that the TiO2 significantly reduced onset temperature of desorption. Onset temperature as low as 190 °C were observed for the MgH2-15 wt% TiO2 sample which is 60 °C and 160 °C lower than the as-milled and as-received MgH2. Fromm the Kissinger plot the activation energy of 15 wt% TiO2 added sample is calculated to be -75.48 KJ/mol. These results indicate that the hydrogenation properties of MgH2-TiO2 have been improved compared to the as-milled and as-received MgH2. Furthermore, XRD and XPS were performed to characterize the structural evolution upon milling and dehydrogenation.

  4. High H2O/Ce of K-rich MORB from Lena Trough and Gakkel Ridge, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Snow, J. E.; Feig, S. T.

    2014-12-01

    Lena Trough in the Arctic ocean is the oblique spreading continuation of Gakkel Ridge through the Fram Strait (eg Snow et al. 2011). Extreme trace element and isotopic compositions seen in Lena Trough basalt appear to be the enriched end member dominating the geochemistry of the Western Volcanic Zone of the Western Gakkel Ridge as traced by Pb isotopes, K2O/TiO2, Ba/Nb and other isotopic, major and trace element indicators of mixing (Nauret et al., 2011). This is in contrast to neighboring Gakkel Ridge which has been spreading for 50-60 million years. Basalts from Lena Trough also show a pure MORB noble gas signature (Nauret et al., 2010) and peridotites show no evidence of ancient components in their Os isotopes (Lassiter, et al., in press). The major and trace element compositions of the basalts, however are very distinct from MORB, being far more potassic than all but a single locality on the SW Indian Ridge. We determined H2O and trace element composiitions of a suite of 17 basalt glasses from the Central Lena Trough (CLT) and the Gakkel Western Volcanic Zone, including many of those previously analyzed by Nauret et al. (2012). The Western Gakkel glasses have high H2O/Ce for MORB (>300) suggesting a water rich source consistent with the idea that the northernmost Atlantic mantle is enriched in water (Michael et al., 1995). They are within the range of Eastern Gakkel host glasses determined by Wanless et al, 2013. The Lena Trough (CLT) glasses are very rich in water for MORB (>1% H2O) and are among the highest H2O/Ce (>400) ever measured in MORB aside from melt inclusions in olivine. Mantle melting dynamics and melt evolution cannot account for the H2O/Ce variations in MORB, as these elements have similar behavior during melting and crustal evolution. Interestingly, the H2O/K2O ratios in the basalts are only around 1. This is because the K2O levels in the CLT glasses are very high as well relative to REE. The absolutely linear relationship between H2O and K2O/TiO

  5. D/H isotopic fractionation effects in the H2-H2O system: An in-situ experimental study at supercritical water conditions

    NASA Astrophysics Data System (ADS)

    Foustoukos, D.; Mysen, B. O.

    2011-12-01

    Understanding the effect of temperature on the relative distribution of volatiles in supercritical aqueous solutions is important to constrain elemental and isotopic partitioning/fractionation effects in systems applicable to planetary interiors where the temperature-pressure conditions are often beyond existing experimental or theoretical datasets. For example, very little exists for the fundamental equilibria between H2, D2 and HD (H2 + D2 = 2HD), which, in turn, constrains the internal D/H isotope exchange and the evolution of HD in H2-containing systems such as H2-CH4 and H2-H2O. Theoretical calculations considering the partition functions of the molecules predict that with temperature increase, the equilibrium constant of this reaction approximates values that correspond to the stochastic distribution of species. These calculations consider pure harmonic vibrational frequencies, which, however, do not apply to the diatomic molecule of hydrogen, especially because anharmonic oscillations are anticipated to become stronger at high temperatures. Published experimental data have been limited to conditions lower than 468°C with large uncertainties at elevated temperatures. To address the lack of experimental data, a series of hydrothermal diamond anvil experiments has been conducted utilizing vibrational spectroscopy as a novel quantitative method to explore the relative distribution of H- and D-bearing volatiles in the H2-D2-D2O-H2O-Ti-TiO2 system. The fundamentals of this methodology are based on the distinct Raman frequency shift resulting from deuterium substitution in the H-H and O-H bonds. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (for 3-9hrs) at 600-800°C and pressures of 0.5-1 GPa, leading to formation of H2, D2, HD and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in-situ and in the quenched gas phase, indicate a significant deviation from the theoretical estimate of the equilibrium

  6. Cesium and strontium ion exchange on the framework titanium silicate M2Ti2O3SiO4.nH2O (M = H, Na).

    PubMed

    Solbrå, S; Allison, N; Waite, S; Mikhalovsky, S V; Bortun, A I; Bortun, L N; Clearfield, A

    2001-02-01

    The ion exchange properties of the titanium silicate, M2Ti2O3SiO4.nH2O (M = H, Na), toward stable and radioactive 137Cs+ and 89Sr2+, have been examined. By studying the cesium and strontium uptake in the presence of NaNO3, CaCl2, NaOH, and HNO3 (in the range of 0.01-6 M) the sodium titanium silicate was found to be an efficient Cs+ ion exchanger in acid, neutral, and alkaline media and an efficient Sr2+ ion exchanger in neutral and alkaline media, which makes it promising for treatment of contaminated environmental media and biological systems.

  7. Mid-infrared signatures of hydroxyl containing water clusters: Infrared laser Stark spectroscopy of OH–H{sub 2}O and OH(D{sub 2}O){sub n} (n = 1-3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Federico J.; INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba; Brice, Joseph T.

    2015-10-28

    Small water clusters containing a single hydroxyl radical are synthesized in liquid helium droplets. The OH–H{sub 2}O and OH(D{sub 2}O){sub n} clusters (n = 1-3) are probed with infrared laser spectroscopy in the vicinity of the hydroxyl radical OH stretch vibration. Experimental band origins are qualitatively consistent with ab initio calculations of the global minimum structures; however, frequency shifts from isolated OH are significantly over-predicted by both B3LYP and MP2 methods. An effective Hamiltonian that accounts for partial quenching of electronic angular momentum is used to analyze Stark spectra of the OH–H{sub 2}O and OH–D{sub 2}O binary complexes, revealing amore » 3.70(5) D permanent electric dipole moment. Computations of the dipole moment are in good agreement with experiment when large-amplitude vibrational averaging is taken into account. Polarization spectroscopy is employed to characterize two vibrational bands assigned to OH(D{sub 2}O){sub 2}, revealing two nearly isoenergetic cyclic isomers that differ in the orientation of the non-hydrogen-bonded deuterium atoms relative to the plane of the three oxygen atoms. The dipole moments for these clusters are determined to be approximately 2.5 and 1.8 D for “up-up” and “up-down” structures, respectively. Hydroxyl stretching bands of larger clusters containing three or more D{sub 2}O molecules are observed shifted approximately 300 cm{sup −1} to the red of the isolated OH radical. Pressure dependence studies and ab initio calculations imply the presence of multiple cyclic isomers of OH(D{sub 2}O){sub 3}.« less

  8. Interstellar H3O(+) and its relation to the O2 and H2O abundances

    NASA Astrophysics Data System (ADS)

    Phillips, T. G.; van Dishoeck, Ewine F.; Keene, Jocelyn

    1992-11-01

    An interstellar medium study of the three reasonably accessible low-lying submillimeter lines of the H3O(+) molecular ion at 396, 364, and 307 GHz is presented. An analysis of the H3O(+) line ratios shows that under high density (about 10 exp 6 - 10 exp 7/cu cm) and high-temperature (greater than about 50 K), the 396 GHz line is about a factor of two stronger than the 364 GHz line, with the 307 GHz line much weaker. For lower densities, the excitation of the 364 GHz line can be very sensitive to dust radiation pumping, and it is shown that this is the case in Sgr B2, resulting in the 364 GHz line being a factor of 2-3 stronger than the 396 GHz line. Under almost all conditions, the 307 GHz line is weak, the exception being for densities greater than about 10 exp 7/cu cm.

  9. Polyoxometal cations within polyoxometalate anions. Seven-coordinate uranium and zirconium heteroatom groups in [(UO2)12(μ3-O)4(μ2-H2O)12(P2W15O56)4]32- and [Zr4(μ3-O)22-OH)2(H2O)4 (P2W16O59)2]14-

    NASA Astrophysics Data System (ADS)

    Gaunt, Andrew J.; May, Iain; Collison, David; Travis Holman, K.; Pope, Michael T.

    2003-08-01

    Two new composite polyoxotungstate anions with unprecedented structural features, [(UO2)12(μ3-O)4(μ2-H2O)12(P2W15O56)4]32- (1) and [Zr4(μ3-O)22-OH)2(H2O)4 (P2W16O59)2]14- (2) contain polyoxo-uranium and -zirconium clusters as bridging units. The anions are synthesized by reaction of Na12[P2W15O56] with solutions of UO2(NO3)2 and ZrCl4. The structure of 1 in the sodium salt contains four [P2W15O56]12- anions assembled into an overall tetrahedral cluster by means of trigonal bridging groups formed by three equatorial-edge-shared UO7 pentagonal bipyramids. The structure of anion 2 consists of a centrosymmetric assembly of two [P2W16O59]12- anions linked by a {Zr4O2(OH)2(H2O)4}10+ cluster. Both complexes in solution yield the expected two-line 31P-NMR spectra with chemical shifts of -2.95, -13.58 and -6.45, -13.69 ppm, respectively.

  10. ON THE FORMATION AND ISOMER SPECIFIC DETECTION OF PROPENAL (C{sub 2}H{sub 3}CHO) AND CYCLOPROPANONE (c-C{sub 3}H{sub 4}O) IN INTERSTELLAR MODEL ICES—A COMBINED FTIR AND REFLECTRON TIME-OF-FLIGHT MASS SPECTROSCOPIC STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abplanalp, Matthew J.; Borsuk, Aleca; Jones, Brant M.

    2015-11-20

    The formation routes of two structural isomers—propenal (C{sub 2}H{sub 3}CHO) and cyclopropanone (c-C{sub 3}H{sub 4}O)—were investigated experimentally by exposing ices of astrophysical interest to energetic electrons at 5.5 K thus mimicking the interaction of ionizing radiation with interstellar ices in cold molecular clouds. The radiation-induced processing of these ices was monitored online and in situ via Fourier Transform Infrared spectroscopy and via temperature programmed desorption exploiting highly sensitive reflectron time-of-flight mass spectrometry coupled with single photon ionization in the post irradiation phase. To selectively probe which isomer(s) is/are formed, the photoionization experiments were conducted with 10.49 and 9.60 eV photons.more » Our studies provided compelling evidence on the formation of both isomers—propenal (C{sub 2}H{sub 3}CHO) and cyclopropanone (c-C{sub 3}H{sub 4}O)—in ethylene (C{sub 2}H{sub 4})—carbon monoxide (CO) ices forming propenal and cyclopropanone at a ratio of (4.5 ± 0.9):1. Based on the extracted reaction pathways, the cyclopropanone molecule can be classified as a tracer of a low temperature non-equilibrium chemistry within interstellar ices involving most likely excited triplet states, whereas propenal can be formed at ultralow temperatures, but also during the annealing phase via non-equilibrium as well as thermal chemistry (radical recombination). Since propenal has been detected in the interstellar medium and our laboratory experiments demonstrate that both isomers originated from identical precursor molecules our study predicts that the hitherto elusive second isomer—cyclopropanone—should also be observable toward those astronomical sources such as Sgr B2(N) in which propenal has been detected.« less

  11. Ultraviolet spectrophotometry of Comet Giacobini-Zinner during the ICE encounter. [International Cometary Explorer

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy A.; Ahearn, Michael F.; Feldman, Paul D.; Boehnhardt, Hermann; Rahe, Juergen; Festou, Michel C.; Brandt, John C.; Maran, Stephen P.; Niedner, Malcolm B.; Smith, Andrew M.

    1987-01-01

    The IUE's UV spectrophotometer was used to monitor Comet Giacobini-Zinner's H2O production rate from June to October, 1985, in support of the International Cometary Explorer (ICE) mission. Observation results for the spatial and temporal variation and the abundance or upper limits of C, CO, CO(+), CO2(+), CS, H, Mg(+), O, OH, and S, between September 9 and 12, included the time of the ICE encounter: at this time, the H2O production rate obtained was consistent with a number of gas production rates derived indirectly from the ICE experiments. A comparison of the CO2(+) ion abundance with the total electron density measured by the plasma electron and radio science experiments on ICE implies an ion deficiency relative to electrons, so that the satisfaction of charge balance criteria requires the presence of a major ion population not detected by remote sensing.

  12. Synthesis, structure and reactivity of rare-earth metallacarborane alkyls [η(1):η(5)-O(CH2)2C2B9H9]Ln(σ:η(1)-CH2C6H4-o-NMe2)(THF)2.

    PubMed

    Yang, Jingying; Xie, Zuowei

    2015-04-14

    Rare-earth metallacarborane alkyls can be stabilized by the incorporation of a functional sidearm into both π and σ ligands. Reaction of [Me3NH][7,8-O(CH2)2-7,8-C2B9H10] with one equiv. of Ln(CH2C6H4-o-NMe2)3 gave metallacarborane alkyls [η(1):η(5)-O(CH2)2C2B9H9]Ln(σ:η(1)-CH2C6H4-o-NMe2)(THF)2 (Ln = Y (), Gd (), Er ()) via alkane elimination. They represent the first examples of rare-earth metallacarborane alkyls. Treatment of with RN[double bond, length as m-dash]C[double bond, length as m-dash]NR (R = Cy, (i)Pr) or 2-benzoylpyridine afforded the corresponding mono-insertion products [η(1):η(5)-O(CH2)2C2B9H9]Y[η(2)-(RN)2C(CH2C6H4-o-NMe2)](DME) (R = Cy (), (i)Pr ()) or [η(1):η(5)-O(CH2)2C2B9H9]Y[C5H4NC(Ph)(CH2C6H4-o-NMe2)O](THF)2 (), respectively. Complex also reacted with ArNCO or ArNC (Ar = 2,6-diisopropylphenyl, 2,6-dimethylphenyl) to give di-insertion products [η(1):η(5)-O(CH2)2C2B9H9]Y[OC([double bond, length as m-dash]NC6H3Me2)N(C6H3Me2)C(CH2C6H4-o-NMe2)O](THF)2 () or [η(1):η(5)-O(CH2)2C2B9H9]Y[C([double bond, length as m-dash]NC6H3(i)Pr2)C([double bond, length as m-dash]NC6H3(i)Pr2)(CH2C6H4-o-NMe2)](DME) (). These results showed that the reactivity pattern of the Ln-C σ bond in rare-earth metallacarborane alkyls was dependent on the nature of the unsaturated organic molecules. New complexes were characterized by various spectroscopic techniques and elemental analysis. Some were further confirmed by single-crystal X-ray analysis.

  13. Availability of O(2) and H(2)O(2) on pre-photosynthetic Earth.

    PubMed

    Haqq-Misra, Jacob; Kasting, James F; Lee, Sukyoung

    2011-05-01

    Old arguments that free O(2) must have been available at Earth's surface prior to the origin of photosynthesis have been revived by a new study that shows that aerobic respiration can occur at dissolved oxygen concentrations much lower than had previously been thought, perhaps as low as 0.05 nM, which corresponds to a partial pressure for O(2) of about 4 × 10(-8) bar. We used numerical models to study whether such O(2) concentrations might have been provided by atmospheric photochemistry. Results show that disproportionation of H(2)O(2) near the surface might have yielded enough O(2) to satisfy this constraint. Alternatively, poleward transport of O(2) from the equatorial stratosphere into the polar night region, followed by downward transport in the polar vortex, may have brought O(2) directly to the surface. Thus, our calculations indicate that this "early respiration" hypothesis might be physically reasonable.

  14. Vapor-liquid phase equilibria of potassium chloride-water mixtures: Equation-of-state representation for KCl-H2O and NaCl-H2O

    USGS Publications Warehouse

    Hovey, J.K.; Pitzer, Kenneth S.; Tanger, J.C.; Bischoff, J.L.; Rosenbauer, R.J.

    1990-01-01

    Measurements of isothermal vapor-liquid compositions for KCl-H2O as a function of pressure are reported. An equation of state, which was originally proposed by Pitzer and was improved and used by Tanger and Pitzer to fit the vapor-liquid coexistence surface for NaCl-H2O, has been used for representation of the KCl-H2O system from 300 to 410??C. Improved parameters are also reported for NaCl-H2O from 300 to 500??C. ?? 1990 American Chemical Society.

  15. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce, Nd.

    PubMed

    De Almeida, Lucie; Grandjean, Stéphane; Rivenet, Murielle; Patisson, Fabrice; Abraham, Francis

    2014-03-28

    New hydrazinium lanthanide oxalates N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce (Ce-HyOx) and Nd (Nd-HyOx), were synthesized by hydrothermal reaction at 150 °C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2₁/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Å, β = 116.638(4)°, V = 2021.4(7) Å(3), Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO9 and NdO8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm(-1) confirms the coordination of N2H5(+) to the metal. These polyhedra are connected through μ2 and μ3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-HyOx) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO2 and Ce(0.5)Nd(0.5)O(1.75) are formed at low temperature from Ce-HyOx and CeNd-HyOx, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxymonocyanamides Ln2O2CN2 are formed.

  16. Radiolysis of astrophysical ice analogs by energetic ions: the effect of projectile mass and ice temperature.

    PubMed

    Pilling, Sergio; Duarte, Eduardo Seperuelo; Domaracka, Alicja; Rothard, Hermann; Boduch, Philippe; da Silveira, Enio F

    2011-09-21

    An experimental study of the interaction of highly charged, energetic ions (52 MeV (58)Ni(13+) and 15.7 MeV (16)O(5+)) with mixed H(2)O : C(18)O(2) astrophysical ice analogs at two different temperatures is presented. This analysis aims to simulate the chemical and the physicochemical interactions induced by cosmic rays inside dense, cold astrophysical environments, such as molecular clouds or protostellar clouds as well at the surface of outer solar system bodies. The measurements were performed at the heavy ion accelerator GANIL (Grand Accelerateur National d'Ions Lourds) in Caen, France. The gas samples were deposited onto a CsI substrate at 13 K and 80 K. In situ analysis was performed by a Fourier transform infrared (FTIR) spectrometer at different fluences. Radiolysis yields of the produced species were quantified. The dissociation cross section at 13 K of both H(2)O and CO(2) is about 3-4 times smaller when O ions are employed. The ice temperature seems to affect differently each species when the same projectile was employed. The formation cross section at 13 K of molecules such as C(18)O, CO (with oxygen from water), and H(2)O(2) increases when Ni ions are employed. The formation of organic compounds seems to be enhanced by the oxygen projectiles and at lower temperatures. In addition, because the organic production at 13 K is at least 4 times higher than the value at 80 K, we also expect that interstellar ices are more organic-rich than the surfaces of outer solar system bodies.

  17. Possible sources of H2 to H2O enrichment at evaporation of parent chondritic material

    NASA Technical Reports Server (NTRS)

    Makalkin, A. B.; Dorofeyeva, V. A.; Vityazev, A. V.

    1993-01-01

    One of the results obtained from thermodynamic simulation of recondensation of the source chondritic material is that at 1500-1800 K it's possible to form iron-rich olivine by reaction between enstatite, metallic iron and water vapor in the case of (H2O)/(H2) approximately equal to 0.1. This could be reached if the gas depletion in hydrogen is 200-300 times relative to solar abundance. To get this range of depletion one needs some source material more rich in hydrogen than the carbonaceous CI material which is the richest in volatiles among chondrites. In the case of recondensation at impact heating and evaporation of colliding planetesimals composed of CI material, we obtain insufficiently high value of (H2)/(H2O) ratio. In the present paper we consider some possible source materials and physical conditions necessary to reach gas composition with (H2)/(H2O) approximately 10 at high temperature.

  18. Self-encapsulation of [MII(phen)2(H2O)2]2+ (M=Co, Zn) in one-dimensional nanochannels of [MII(H2O)6(BTC)2]4- (M=Co, Cu, Mn): a high HQ/CAT ratio catalyst for hydroxylation of phenols.

    PubMed

    Bi, Jianhong; Kong, Lingtao; Huang, Zixiang; Liu, Jinhuai

    2008-06-02

    Four novel three-dimensional (3D) microporous supramolecular compounds containing nanosized channels, namely, [Co(phen)2(H2O)2]2[Co(H2O)6].2BTC.21.5H2O (1), [Co(phen)2(H2O)2]2[Cu(H2O)6].2BTC.21.5H2O (2), [Co(phen)2(H2O)2]2[Mn(H2O)6].2BTC.18H2O (3), and [Zn(phen)2(H2O)2]2[Mn(H2O)6].2BTC.22.5H2O (4), were synthesized from 1,3,5-benzenetricarboxylate (BTC), 1,10-phenanthroline (phen), and the transition-metal salt(s) by self-assembly. Single-crystal X-ray structural analysis showed that the resulting 3D microporous supramolecular frameworks consist of a two-dimensional (2D) hydrogen-bonded host framework of [MII(H2O)6(BTC)2]4- (M=Co for 1, Cu for 2, Mn for 3, 4) with rectangular-shaped cavities containing [MII(phen)2(H2O)2]2+ (M=Co for 1-3, Zn for 4) guests. The guest complex is encapsulated in the 2D hydrogen-bonded host framework by hydrogen bonding and aromatic pi-pi stacking interactions, forming the 3D hydrogen-bonded framework. The catalytic activities of 1, 2, 3, and 4 were studied using hydroxylation of phenols with 30% aqueous H2O2 as a test reaction. The compounds displayed a good phenol conversion ratio and excellent channel selectivity in the hydroxylation reaction, with a maximum hydroquinone (HQ)/catechol (CAT) ratio of 3.9.

  19. Decreased N2O reduction by low soil pH causes high N2O emissions in a riparian ecosystem.

    PubMed

    Van den Heuvel, R N; Bakker, S E; Jetten, M S M; Hefting, M M

    2011-05-01

    Quantification of harmful nitrous oxide (N(2)O) emissions from soils is essential for mitigation measures. An important N(2)O producing and reducing process in soils is denitrification, which shows deceased rates at low pH. No clear relationship between N(2)O emissions and soil pH has yet been established because also the relative contribution of N(2)O as the denitrification end product decreases with pH. Our aim was to show the net effect of soil pH on N(2)O production and emission. Therefore, experiments were designed to investigate the effects of pH on NO(3)(-) reduction, N(2)O production and reduction and N(2) production in incubations with pH values set between 4 and 7. Furthermore, field measurements of soil pH and N(2)O emissions were carried out. In incubations, NO(3)(-) reduction and N(2) production rates increased with pH and net N(2)O production rate was highest at pH 5. N(2)O reduction to N(2) was halted until NO(3)(-) was depleted at low pH values, resulting in a built up of N(2)O. As a consequence, N(2)O:N(2) production ratio decreased exponentially with pH. N(2)O reduction appeared therefore more important than N(2)O production in explaining net N(2)O production rates. In the field, a negative exponential relationship for soil pH against N(2)O emissions was observed. Soil pH could therefore be used as a predictive tool for average N(2)O emissions in the studied ecosystem. The occurrence of low pH spots may explain N(2)O emission hotspot occurrence. Future studies should focus on the mechanism behind small scale soil pH variability and the effect of manipulating the pH of soils. © 2011 Blackwell Publishing Ltd.

  20. Photogeneration of H2O2 in Water-Swollen SPEEK/PVA Polymer Films.

    PubMed

    Lockhart, PaviElle; Little, Brian K; Slaten, B L; Mills, G

    2016-06-09

    Efficient reduction of O2 took place via illumination with 350 nm photons of cross-linked films containing a blend of sulfonated poly(ether etherketone) and poly(vinyl alcohol) in contact with air-saturated aqueous solutions. Swelling of the solid macromolecular matrices in H2O enabled O2 diffusion into the films and also continuous extraction of the photogenerated H2O2, which was the basis for a method that allowed quantification of the product. Peroxide formed with similar efficiencies in films containing sulfonated polyketones prepared from different precursors and the initial photochemical process was found to be the rate-determining step. Generation of H2O2 was most proficient in the range of 4.9 ≤ pH ≤ 8 with a quantum yield of 0.2, which was 10 times higher than the efficiencies determined for solutions of the polymer blend. Increases in temperature as well as [O2] in solution were factors that enhanced the H2O2 generation. H2O2 quantum yields as high as 0.6 were achieved in H2O/CH3CN mixtures with low water concentrations, but peroxide no longer formed when film swelling was suppressed. A mechanism involving reduction of O2 by photogenerated α-hydroxy radicals from the polyketone in competition with second-order radical decay processes explains the kinetic features. Higher yields result from the films because cross-links present in them hinder diffusion of the radicals, limiting their decay and enhancing the oxygen reduction pathway.

  1. Empirical electronic polarizabilities: deviations from the additivity rule. I. M2+SO4·nH2O, blödite Na2M2+(SO4)2·4H2O, and kieserite-related minerals with sterically strained structures

    NASA Astrophysics Data System (ADS)

    Gagné, Olivier; Hawthorne, Frank; Shannon, Robert D.; Fischer, Reinhard X.

    2017-09-01

    Empirical electronic polarizabilities allow the prediction of total mineral polarizabilities and mean refractive indices of the vast majority of minerals and synthetic oxides. However, deviations from the valence-sum rule at cations in some minerals are associated with large deviations of observed from calculated total polarizabilities. We have identified several groups of minerals and compounds where deviations from the valence-sum rule at cations lead to polarizability deviations of 2-5%: M(SO4)·nH2O, n = 1-6, blödite-group minerals [Na2M2+(SO4)2·4H2O], and the kieserite-related minerals: isokite, panasqueiraite and tilasite. In these minerals, the environment of the M ions contains both O and H2O: Mg[O4(H2O)2] in kieserite, szmikite, and szomolnokite; Mg[O2(H2O)4] in starkeyite, ilesite, and rozenite, and Mg[(H2O)6] in hexahydrite. In compounds where the ligands are only H2O, deviations from the valence-sum rule at the M(H2O)6 groups are not accompanied by significant polarizability deviations. This is the case for epsomite, MgSO4·7H2O; bieberite, CoSO4·7H2O; goslarite, ZnSO4·7H2O, six silicofluorides, MSiF6·6H2O; eighteen Tutton's salts, M2M'(SO4)2·6H2O, where M = K, Rb, Cs and M' = Mg, Mn, Fe, Co, Ni, Cu, and Zn; and eleven MM'(SO4)2·12H2O alums, where M = Na, K, Rb and Cs, and M' = Al, Cr, Ga and In. This is also the case for the sulfates alunogen, Al2(SO4)3·17H2O and halotrichite, FeAl2(SO4)4·22H2O; three hydrated nitrates; one phosphate; three antimonates and two hydrated perchlorates. A possible explanation for this different behavior is that the bond-valence model treats O and H separately, whereas polarizability calculations treat the polarizability of the entire H2O molecule.

  2. Phonon-mediated nuclear spin relaxation in H2O

    NASA Astrophysics Data System (ADS)

    Yamakawa, Koichiro; Azami, Shinya; Arakawa, Ichiro

    2017-03-01

    A theoretical model of the phonon-mediated nuclear spin relaxation in H2O trapped by cryomatrices has been established for the first time. In order to test the validity of this model, we measured infrared spectra of H2O trapped in solid Ar, which showed absorption peaks due to rovibrational transitions of ortho- and para-H2O in the spectral region of the bending vibration. We monitored the time evolution of the spectra and analyzed the rotational relaxation associated with the nuclear spin flip to obtain the relaxation rates of H2O at temperatures of 5-15 K. Temperature dependence of the rate is discussed in terms of the devised model.

  3. Transient responses of SFG spectra of D 2O ice/CO/Pt(1 1 1) interface with irradiation of ultra-short NIR pump pulses

    NASA Astrophysics Data System (ADS)

    Kubota, Jun; Wada, Akihide; Domen, Kazunari; Kano, Satoru S.

    2002-08-01

    The behavior of D 2O ice on CO/Pt(1 1 1) and Pt(1 1 1) under the irradiation of near-IR pulses (NIR) was studied by sum-frequency generation (SFG) spectroscopy. The peaks assigned to the O-D stretching modes of ice were obtained for the first 30 molecular layers on Pt(1 1 1). When the D2O/ CO/ Pt(1 1 1) was irradiated, the signal of D 2O was weakened after 500 ps, but that of CO was weakened immediately after the pumping. A similar time response was observed for the D 2O peak in D2O/ Pt(1 1 1) . The weakening of SFG is attributed to the broadening of bands due to thermal excitation. This indicates that the energy of the pump pulse is deposited on the Pt(1 1 1) surface and diffused into the layers of D 2O ice in the 500 ps timescale.

  4. Electrochemical Quantification of Extracellular Local H2O2 Kinetics Originating from Single Cells.

    PubMed

    Bozem, Monika; Knapp, Phillip; Mirčeski, Valentin; Slowik, Ewa J; Bogeski, Ivan; Kappl, Reinhard; Heinemann, Christian; Hoth, Markus

    2017-05-15

    H 2 O 2 is produced by all eukaryotic cells under physiological and pathological conditions. Due to its enormous relevance for cell signaling at low concentrations and antipathogenic function at high concentrations, precise quantification of extracellular local H 2 O 2 concentrations ([H 2 O 2 ]) originating from single cells is required. Using a scanning electrochemical microscope and bare platinum disk ultramicroelectrodes, we established sensitive long-term measurements of extracellular [H 2 O 2 ] kinetics originating from single primary human monocytes (MCs) ex vivo. For the electrochemical techniques square wave voltammetry, cyclic and linear scan voltammetry, and chronoamperometry, detection limits for [H 2 O 2 ] were determined to be 5, 50, and 500 nM, respectively. Following phorbol ester stimulation, local [H 2 O 2 ] 5-8 μm above a single MC increased by 3.4 nM/s within the first 10 min before reaching a plateau. After extracellular addition of H 2 O 2 to an unstimulated MC, the local [H 2 O 2 ] decreased on average by 4.2 nM/s due to degradation processes of the cell. Using the scanning mode of the setup, we found that H 2 O 2 is evenly distributed around the producing cell and can still be detected up to 30 μm away from the cell. The electrochemical single-cell measurements were validated in MC populations using electron spin resonance spectroscopy and the Amplex ® UltraRed assay. Innovation and Conclusion: We demonstrate a highly sensitive, spatially, and temporally resolved electrochemical approach to monitor dynamics of production and degradation processes for H 2 O 2 separately. Local extracellular [H 2 O 2 ] kinetics originating from single cells is quantified in real time. Antioxid. Redox Signal. 00, 000-000.

  5. O2 reduction to H2O by the multicopper oxidases.

    PubMed

    Solomon, Edward I; Augustine, Anthony J; Yoon, Jungjoo

    2008-08-14

    In nature the four electron reduction of O2 to H2O is carried out by Cytochrome c oxidase (CcO) and the multicopper oxidases (MCOs). In the former, Cytochrome c provides electrons for pumping protons to produce a gradient for ATP synthesis, while in the MCOs the function is the oxidation of substrates, either organic or metal ions. In the MCOs the reduction of O2 is carried out at a trinuclear Cu cluster (TNC). Oxygen intermediates have been trapped which exhibit unique spectroscopic features that reflect novel geometric and electronic structures. These intermediates have both intact and cleaved O-O bonds, allowing the reductive cleavage of the O-O bond to be studied in detail both experimentally and computationally. These studies show that the topology of the TNC provides a unique geometric and electronic structure particularly suited to carry out this key reaction in nature.

  6. O2 Reduction to H2O by the Multicopper Oxidases

    PubMed Central

    Solomon, Edward I.; Augustine, Anthony J.; Yoon, Jungjoo

    2010-01-01

    In nature the four electron reduction of O2 to H2O is carried out by Cytochrome c Oxidase (CcO) and the multicopper oxidases (MCOs). In the former, Cytochrome c provides electrons for pumping protons to produce a gradient for ATP synthesis, while in the MCOs the function is the oxidation of substrates, either organic or metal ions. In the MCOs the reduction of O2 is carried out at a trinuclear Cu cluster (TNC). Oxygen intermediates have been trapped which exhibit unique spectroscopic features that reflect novel geometric and electronic structures. These intermediates have both intact and cleaved O-O bonds, allowing the reductive cleavage of the O-O bond to be studied in detail both experimentally and computationally. These studies show that the topology of the TNC provides a unique geometric and electronic structure particularly suited to carry out this key reaction in Nature. PMID:18648693

  7. Observation of Signatures of Meteoroidal Water in the Lunar Exosphere by the LADEE NMS Instrument

    NASA Astrophysics Data System (ADS)

    Benna, M.; Elphic, R. C.; Hurley, D.; Stubbs, T. J.; Mahaffy, P. R.

    2017-12-01

    During its seven months in orbit, the Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission measured the composition and variability of the tenuous lunar atmosphere. These measurements led to the detection of signatures of water group neutrals (H2O and/or OH) in the exosphere of the Moon. The signature of water has been measured as sporadic, short-lived signal increases above instrument background levels. The NMS data show that the occurrence rate of the high signal water "spikes" is correlated with periods of major annual meteoroid streams. Moreover, the daily water detection rate is in agreement with the expected evolution of the incoming meteoroidal impact flux at the Moon. Monte Carlo modeling of the evolution of vaporized water indicates that the signatures detected by the NMS instrument are commensurate in size and distribution of the energetic fraction of the vapors released by impacts that occurred near the location of the spacecraft. These measurements provide the first direct constraints on the contribution of meteoroid-delivered water to the sequestered ice in the permanently shadow regions of the lunar poles. They also provide a new technique for real-time observations of meteoroid impacts on airless bodies of the solar system through the detection of their associated volatile signatures.

  8. Degradation of 40 selected pharmaceuticals by UV/H2O2.

    PubMed

    Wols, B A; Hofman-Caris, C H M; Harmsen, D J H; Beerendonk, E F

    2013-10-01

    The occurrence of pharmaceuticals in source waters is increasing. Although UV advanced oxidation is known to be an effective barrier against micropollutants, degradation rates are only available for limited amounts of pharmaceuticals. Therefore, the degradation of a large group of pharmaceuticals has been studied in this research for the UV/H2O2 process under different conditions, including pharmaceuticals of which the degradation by UV/H2O2 was never reported before (e.g., metformin, paroxetine, pindolol, sotalol, venlafaxine, etc.). Monochromatic low pressure (LP) and polychromatic medium pressure (MP) lamps were used for three different water matrices. In order to have well defined hydraulic conditions, all experiments were conducted in a collimated beam apparatus. Degradation rates for the pharmaceuticals were determined. For those compounds used in this research that are also reported in literature, measured degradation results are in good agreement with literature data. Pharmaceutical degradation for only photolysis with LP lamps is small, which is increased by using a MP lamp. Most of the pharmaceuticals are well removed when applying both UV (either LP or MP) and H2O2. However, differences in degradation rates between pharmaceuticals can be large. For example, ketoprofen, prednisolone, pindolol are very well removed by UV/H2O2, whereas metformin, cyclophosphamide, ifosfamide are very little removed by UV/H2O2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Samarium-Neodymium model age and Geochemical (Sr-Nd) signature of a bedrock inclusion from lake Vostok accretion ice.

    NASA Astrophysics Data System (ADS)

    Delmonte, B.; Petit, J. R.; Michard, A.; Basile-Doelsch, I.; Lipenkov, V.

    2003-04-01

    We investigated properties of the basal ice from Vostok ice core as well as the sediment inclusions within the accreted ice. The Vostok ice core preserves climatic information for the last 420 kyrs down to 3310m depth, but below this depth the horizontal layers of the climatic record are disrupted by the glacier dynamics. From 3450 m to 3538 m depth thin bedrock particles, as glacial flour, are entrapped. Glacial flour is released in the northern area lake, where glacier mostly melts and contributes to sediment accumulation. In the southern area, close to Vostok station, the lake water freezes and the upstream glacial flour does not contribute to sedimentation. The accreted ice contains visible sediment inclusions down to 3608 m (accretion ice 1), while below this depth and likely down to the water interface (˜3750 m), the ice is clear (accretion ice 2). The fine inclusions (1-2mm in diameter) from Accretion Ice 1 mostly consist of fine clays and quartz aggregates and we suggest they are entrained into ice as the glacier floats over shallow depth bay then it grounds against a relief rise. Afterward the glacier freely floats over the deep lake before reaching Vostok, and accreted ice 2 is clean. Sm-Nd dating of one of two inclusions at 3570 m depth gives 1.88 (+/-0.13)Ga (DM model age), corresponding to 1.47 Ga (TCHUR), suggesting a Precambrian origin. Also the isotopic signature of such inclusion (87Sr/86Sr= 0.8232 and eNd= -16) and that of a second one (87Sr/86Sr= 0.7999 and eNd= -15) are coherent with the nature of an old continental shield. Sediments that may initially accumulate in the shallow bay prior the Antarctic glaciation, should have been eroded and exported out of the lake by the glacier movement, this assuming processes for ice accretion and for sediment entrapping operate since a long time. As the glacial flour from upstream does not contribute to sedimentation, sediments need to be renewed at the surface of the bedrock rising question about the way

  10. First investigations of an ice core from Eisriesenwelt cave (Austria)

    NASA Astrophysics Data System (ADS)

    May, B.; Spötl, C.; Wagenbach, D.; Dublyansky, Y.; Liebl, J.

    2011-02-01

    Investigations into the genesis and dynamical properties of cave ice are essential for assessing the climate significance of these underground glaciers. We drilled an ice core through a 7.1 m-thick ice body filling a large cavern of the dynamic ice cave Eisenriesenwelt (Austria). In addition to visual core inspections, quasi-continuous measurements at 2 cm resolution comprised particulate matter, stable water isotope (δ18O, δD) and electrolytic conductivity profiles supplemented by specifically selected samples analyzed for tritium and radiocarbon. We found that recent ablation led to an almost complete loss of bomb-derived tritium removing any ice accumulated since, at least, the early fifties leaving the actual ice surface even below the natural tritium level. The small particulate organic masses rendered radiocarbon dating inconclusive, though a crude estimate gave a basal ice age in the order of several thousand years. The visual stratigraphy and all investigated parameters showed a clear dichotomy between the upper 2 m and the bottom 3 m of the core, which points to a substantial change in the ice formation process. Main features of the core comprise the changing appearance and composition of distinct cryocalcite layers, extremely low total ion content and a surprisingly high variability of the isotope signature. Co-isotope evaluation (δD versus δ18O) of the core in comparison with data from precipitation and karst spring water clearly indicate that ice formation is governed by (slow) freezing of dripping water.

  11. X-ray irradiation activates K+ channels via H2O2 signaling.

    PubMed

    Gibhardt, Christine S; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-09-09

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.

  12. Structurally characterized 1,1,3,3-tetramethylguanidine solvated magnesium aryloxide complexes: [Mg(mu-OEt)(DBP)(H-TMG)]2, [Mg(mu-OBc)(DBP)(H-TMG)]2, [Mg(mu-TMBA)(DBP)(H-TMG)]2, [Mg(mu-DPP)(DBP)(H-TMG)]2, [Mg(BMP)2(H-TMG)2], [Mg(O-2,6-Ph2C6H3)2 (H-TMG)2].

    PubMed

    Monegan, Jessie D; Bunge, Scott D

    2009-04-06

    The synthesis and structural characterization of several 1,1,3,3-tetramethylguanidine (H-TMG) solvated magnesium aryloxide complexes are reported. Bu(2)Mg was successfully reacted with H-TMG, HOC(6)H(3)(CMe(3))(2)-2,6 (H-DBP), and either ethanol, a carboxylic acid, or diphenyl phosphate in a 1:1 ratio to yield the corresponding [Mg(mu-L)(DBP)(H-TMG)](2) where L = OCH(2)CH(3) (OEt, 1), O(2)CC(CH(3))(3) (OBc, 2), O(2)C(C(6)H(2)-2,4,6-(CH(3))(3)) (TMBA, 3), or O(2)P(OC(6)H(5))(2) (DPP, 4). Bu(2)Mg was also reacted with two equivalents of H-TMG and HOC(6)H(3)(CMe(3))-2-(CH(3))-6 (BMP) or HO-2,6-Ph(2)C(6)H(3) to yield [Mg(BMP)(2)(H-TMG)(2)] (5) and [Mg(O-2,6-Ph(2)C(6)H(3))(2)(H-TMG)(2)] (6). Compounds 1-6 were characterized by single-crystal X-ray diffraction. Polymerization of l- and rac-lactide with 1 was found to generate polylactide (PLA). A discussion concerning the relevance of compounds 2 - 4 to the structure of Mg-activated phosphatase enzymes is also provided. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and (1)H, (13)C and (31)P NMR studies.

  13. Determination of the ortho to para ratio of H2Cl+ and H2O+ from submillimeter observations.

    PubMed

    Gerin, Maryvonne; de Luca, Massimo; Lis, Dariusz C; Kramer, Carsten; Navarro, Santiago; Neufeld, David; Indriolo, Nick; Godard, Benjamin; Le Petit, Franck; Peng, Ruisheng; Phillips, Thomas G; Roueff, Evelyne

    2013-10-03

    The opening of the submillimeter sky with the Herschel Space Observatory has led to the detection of new interstellar molecular ions, H2O(+), H2Cl(+), and HCl(+), which are important intermediates in the synthesis of water vapor and hydrogen chloride. In this paper, we report new observations of H2O(+) and H2Cl(+) performed with both Herschel and ground-based telescopes, to determine the abundances of their ortho and para forms separately and derive the ortho-to-para ratio. At the achieved signal-to-noise ratio, the observations are consistent with an ortho-to-para ratios of 3 for both H2O(+) and H2Cl(+), in all velocity components detected along the lines-of-sight to the massive star-forming regions W31C and W49N. We discuss the mechanisms that contribute to establishing the observed ortho-to-para ratio and point to the need for a better understanding of chemical reactions, which are important for establishing the H2O(+) and H2Cl(+) ortho-to-para ratios.

  14. Where's the Water in (Salty) Ice?

    NASA Astrophysics Data System (ADS)

    Kahan, T.; Malley, P.

    2017-12-01

    Solutes can have large effects on reactivity in ice and at ice surfaces. Freeze concentration ("the salting out effect") forms liquid regions containing high solute concentrations surrounded by relatively solute-free ice. Thermodynamics can predict the fraction of ice that is liquid for a given temperature and (pre-frozen) solute concentration, as well as the solute concentration within these liquid regions, but they do not inform on the spatial distribution of the solutes and the liquid regions within the ice. This leads to significant uncertainty in predictions of reaction kinetics in ice and at ice surfaces. We have used Raman microscopy to determine the location of liquid regions within ice and at ice surface in the presence of sodium chloride (NaCl). Under most conditions, liquid channels are observed at the ice surface and throughout the ice bulk. The fraction of the ice that is liquid, as well as the widths of these channels, increases with increasing temperature. Below the eutectic temperature (-21.1 oC), no liquid is observed. Patches of NaCl.2H2O ("hydrohalite") are observed at the ice surface under these conditions. These results will improve predictions of reaction kinetics in ice and at ice surfaces.

  15. Vibrational spectra of Mg2KH(XO4)2·15H2O (X = P, As) containing dimer units [H(XO4)2

    NASA Astrophysics Data System (ADS)

    Stefov, V.; Koleva, V.; Najdoski, M.; Abdija, Z.; Cahil, A.; Šoptrajanov, B.

    2017-08-01

    Infrared and Raman spectra of Mg2KH(PO4)2·15H2O and Mg2KH(AsO4)2·15H2O and a series of their partially deuterated analogues were recorded and analyzed. Compounds of the type Mg2KH(XO4)2·15H2O (X = P, As) are little-known and a rare case of phosphate and arsenate salts containing dimer units [H(XO4)2] in the crystal structure. The analysis of their IR spectra (recorded at room and liquid nitrogen temperature) and Raman spectra showed that the spectral characteristics of the XO4 groups connected in a dimer through a proton are not consistent with the presence of X-O-H covalent linkage and C1 crystallographic symmetry of the XO4 groups. The observation of a singlet Raman band for the ν1(XO4) mode as well as the absence of substantial splitting of the ν3(XO4) modes and IR activation of the ν1(XO4) mode suggest that the dimer units [H(XO4)2] are most probably symmetric rather than non-symmetric ones. It was found that, in the vibrational spectra of Mg2KH(AsO4)2·15H2O, both ν1(AsО4) and ν3(AsО4) modes have practically the same wavenumber around 830 cm- 1. It was also established that the ν4(PО4) modes in the deuterated hydrogendiphosphate compound are strongly coupled, most probably with HDO and/or D2O librations. As a whole, the spectral picture of Mg2KH(XO4)2·15H2O (X = P, As) very much resembles that observed for the struvite type compounds with the formula KMgXO4·6H2O (X = P, As) which do not contain X-OH groups. This means that vibrations of the dimers [H(XO4)2] play a relatively small part in the general spectral appearance.

  16. Organic Compounds Produced by Photolysis of Realistic Interstellar and Cometary Ice Analogs Containing Methanol

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Chang, Sherwood; Scharberg, Maureen A.

    1995-01-01

    The InfraRed (IR) spectra of UltraViolet (UV) and thermally processed, methanol-containing interstellar / cometary ice analogs at temperatures from 12 to 300 K are presented. Infrared spectroscopy, H-1 and C-13 Nuclear Magnetic Resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry indicate that CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), HCO (the formyl radical), H2CO (formaldehyde), CH3CH2OH (ethanol), HC([double bond]O)NH2 (formamide), CH3C([double bond]O)NH2 (acetamide), and R[single bond]C[triple bond]N (nitriles) are formed. In addition, the organic materials remaining after photolyzed ice analogs have been warmed to room temperature contain (in rough order of decreasing abundance), (1) hexamethylenetetramine (HMT, C6H12N4), (2) ethers, alcohols, and compounds related to PolyOxyMethylene (POM, ([single bond]CH2O[single bond](sub n)), and (3) ketones (R[single bond]C([double bond]O)[single bond]R') and amides (H2NC([double bond]O)[single bond]R). Most of the carbon in these residues is thought to come from the methanol in the original ice. Deuterium and C-13 isotopic labeling demonstrates that methanol is definitely the source of carbon in HMT. High concentrations of HMT in interstellar and cometary ices could have important astrophysical consequences. The ultraviolet photolysis of HMT frozen in H2O ice readily produces the 'XCN' band observed in the spectra of protostellar objects and laboratory ices, as well as other nitriles. Thus, HMT may be a precursor of XCN and a source of CN in comets and the interstellar medium. Also, HMT is known to hydrolyze under acidic conditions to yield ammonia, formaldehyde, and amino acids. Thus, HMT may be a significant source of prebiogenic compounds on asteroidal parent bodies. A potential mechanism for the radiative formation of HMT in cosmic ices is outlined.

  17. Raman spectroscopy on ice cores from Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Weikusat, C.; Kipfstuhl, S.

    2012-04-01

    Ice cores are invaluable archives for the reconstruction of the climatic history of the earth. Besides the analysis of various climatic processes from isotopes and chemical signatures they offer the unique possibility of directly extracting the past atmosphere from gaseous inclusions in the ice. Many aspects of the formation and alterations of these inclusions, e.g. the entrapment of air at the firn-ice-transition, the formation of crystalline gas hydrates (clathrates) from the bubbles or the structural relaxation during storage of the cores, need to be better understood to enable reliable interpretations of the obtained data. Modern micro Raman spectroscopy is an excellent tool to obtain high-quality data for all of these aspects. It has been productively used for phase identification of solid inclusions [1], investigation of air clathrates [2] and high-resolution measurements of N2/O2 mixing ratios inside individual air bubbles [3,4]. Detailed examples of the various uses of Raman spectroscopy will be presented along with practical information about the techniques required to obtain high-quality spectra. Retrieval and interpretation of quantitative data from the spectra will be explained. Future possibilities for advanced uses of Raman spectroscopy for ice core research will be discussed. [1] T. Sakurai et al., 2009, Direct observation of salts as micro-inclusions in the Greenland GRIP ice core. Journal of Glaciology, 55, 777-783. [2] F. Pauer et al., 1995, Raman spectroscopic study of nitrogen/oxygen ratio in natural ice clathrates in the GRIP ice core. Geophysical Research Letters, 22, 969-971. [3] T. Ikeda-Fukazawa et al., 2001, Variation in N2/O2 ratio of occluded air in Dome Fuji antarctic ice. Journal of Geophysical Research, 106, 17799-17810. [4] C. Weikusat et al., Raman spectroscopy of gaseous inclusions in EDML ice core: First results - microbubbles. Journal of Glaciology, accepted.

  18. Co3(PO4)2·4H2O

    PubMed Central

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·4H2O, tricobalt(II) bis­[ortho­phosphate(V)] tetra­hydrate, were obtained under hydro­thermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO4)2·4H2O (mineral name hopeite) and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetra­hedral coordination, while the second, located on a mirror plane, has a distorted octa­hedral coordination environment. The tetra­hedrally coordinated Co2+ is bonded to four O atoms of four PO4 3− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water mol­ecules (two of which are located on mirror planes), forming a framework structure. In addition, hydrogen bonds of the type O—H⋯O are present throughout the crystal structure. PMID:21200978

  19. Isotopic separation of D.sub.2 O from H.sub.2 O using ruthenium adsorbent

    DOEpatents

    Thiel, Patricia A.

    1990-04-10

    A method of enrichment of D.sub.2 O in solutions of D.sub.2 O in H.sub.2 O by contacting said solutions in the steam phase with hexagonal crystalline to produce enriched D.sub.2 O. The passages may be repeated to achieve a desired amount of D.sub.2 O.

  20. Monotop signature from the supersymmetric t t¯ H channel

    NASA Astrophysics Data System (ADS)

    Gonçalves, Dorival; Sakurai, Kazuki; Takeuchi, Michihisa

    2016-10-01

    We point out that a distinctive monotop signature is present in natural supersymmetry scenarios when a scalar top quark and Higgsinos are almost mass degenerate. This signature originates from a supersymmetric counterpart of the t t ¯H process, i.e. p p →t ˜t h ˜. Unlike monojet signatures exploiting initial state radiation, this channel can be regarded as a clear signature of a light stop and Higgsinos, allowing a direct probe of the stop and neutralino sectors. The production rate of this channel largely depends on the up-type Higgsino components in the neutralinos while the stop sector is sensitive to angular distributions of the top-quark's decay products. We develop an optimal search strategy to capture the supersymmetric t t ¯ H process and find that a high luminosity LHC can probe the stop and Higgsino sectors with mt˜1≲380 GeV and mt˜1-mχ˜1 0≲mW . Additionally, we propose a kinematic variable with which one can measure the stop mixing in this channel.

  1. FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation

    PubMed Central

    Bartell, Shoshana M.; Kim, Ha-Neui; Ambrogini, Elena; Han, Li; Iyer, Srividhya; Serra Ucer, S.; Rabinovitch, Peter; Jilka, Robert L.; Weinstein, Robert S.; Zhao, Haibo; O’Brien, Charles A.; Manolagas, Stavros C.; Almeida, Maria

    2014-01-01

    Besides their cell-damaging effects in the setting of oxidative stress, reactive oxygen species (ROS) play an important role in physiological intracellular signalling by triggering proliferation and survival. FoxO transcription factors counteract ROS generation by upregulating antioxidant enzymes. Here we show that intracellular H2O2 accumulation is a critical and purposeful adaptation for the differentiation and survival of osteoclasts, the bone cells responsible for the resorption of mineralized bone matrix. Using mice with conditional loss or gain of FoxO transcription factor function, or mitochondria-targeted catalase in osteoclasts, we demonstrate this is achieved, at least in part, by downregulating the H2O2-inactivating enzyme catalase. Catalase downregulation results from the repression of the transcriptional activity of FoxO1, 3 and 4 by RANKL, the indispensable signal for the generation of osteoclasts, via an Akt-mediated mechanism. Notably, mitochondria-targeted catalase prevented the loss of bone caused by loss of oestrogens, suggesting that decreasing H2O2 production in mitochondria may represent a rational pharmacotherapeutic approach to diseases with increased bone resorption. PMID:24781012

  2. Noteworthy performance of La(1-x)Ca(x)MnO3 perovskites in generating H2 and CO by the thermochemical splitting of H2O and CO2.

    PubMed

    Dey, Sunita; Naidu, B S; Govindaraj, A; Rao, C N R

    2015-01-07

    Perovskite oxides of the composition La1-xCaxMnO3 (LCM) have been investigated for the thermochemical splitting of H2O and CO2 to produce H2 and CO, respectively. The study was carried out in comparison with La1-xSrxMnO3, CeO2 and other oxides. The LCM system exhibits superior characteristics in high-temperature evolution of oxygen, and in reducing CO2 to CO and H2O to H2. The best results were obtained with La0.5Ca0.5MnO3 whose performance is noteworthy compared to that of other oxides including ceria. The orthorhombic structure of LCM seems to be a crucial factor.

  3. Interhemispheric differences in polar stratospheric HNO3, H2O, ClO, and O3

    NASA Technical Reports Server (NTRS)

    Santee, M. L.; Read, W. G.; Waters, J. W.; Froidevaux, L.; Manney, G. L.; Flower, D. A.; Jarnot, R. F.; Harwood, R. S.; Peckham, G. E.

    1995-01-01

    Simultaneous global measurements of nitric acid (HNO3), water (H2O), chlorine monoxide (ClO), and ozone (O3) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO3 was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H2O after mid-July. By mid-August, near the time of peak ClO, abundances of gas-phase HNO3 and H2O were extremely low. The concentrations of HNO3 and H2O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO3 or H2O were observed in the 1992-1993 Arctic winter vortex. Although ClO was enhanced over the Arctic as it was over the Antarctic, Arctic O3 depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone 'hole' is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.

  4. Middle-to-late Holocene palaeoenvironmental reconstruction from the A294 ice-cave record (Central Pyrenees, northern Spain)

    NASA Astrophysics Data System (ADS)

    Sancho, Carlos; Belmonte, Ánchel; Bartolomé, Miguel; Moreno, Ana; Leunda, María; López-Martínez, Jerónimo

    2018-02-01

    Perennial ice deposits in caves represent unique, but underexplored, terrestrial sequences that potentially contain outstanding palaeoclimatic records. Here, we present a pioneer palaeoenvironmental study of an ice deposit preserved in a small sag-type cave (A294) in the Central Pyrenees (northern Iberian Peninsula). The 9.25-m-thick sequence, which is dated from 6100 ± 107 to 1888 ± 64 cal BP, represents the oldest known firn ice record worldwide. The stratigraphy (detrital layers, unconformities, and cross stratification), plant macrofossils, and isotopic signature (similarity between the ice linear distribution, δ2H = 7.83δ18O + 8.4, and the Global Meteoric Water Line) of the ice point to the diagenesis of snow introduced to the cave by winter snowstorms. Four phases of rapid ice accumulation (6100-5515, 4945-4250, 3810-3155, and 2450-1890 cal BP) are related to wetter and colder winters. Comparison of the isotopic composition (δ18O and deuterium excess) of the ice with other paleoclimate records show that both source effects and the North Atlantic Oscillation (NAO) mechanism exert a dominant influence on the ice cave record. The NAO signal may be a combination of source effects and rainfall amount. Three intervals with low ice accumulation occurred between the phases of rapid accumulation and were related to drier, and possibly warmer, winters. These centennial-scale episodes appear to be in-phase with regional arid events, as established from high altitude lacustrine records and can be correlated to global Rapid Climate Change events. The current warming trend has dramatically decreased the volume of the ice deposit in cave A294.

  5. H2/O2 three-body rates at high temperatures

    NASA Technical Reports Server (NTRS)

    Marinelli, William J.; Kessler, William J.; Piper, Lawrence G.; Rawlins, W. Terry

    1990-01-01

    The extraction of thrust from air breathing hypersonic propulsion systems is critically dependent on the degree to which chemical equilibrium is reached in the combustion process. In the combustion of H2/Air mixtures, slow three-body chemical reactions involving H-atoms, O-atoms, and the OH radical play an important role in energy extraction. A first-generation high temperature and pressure flash-photolysis/laser-induced fluorescence reactor was designed and constructed to measure these important three-body rates. The system employs a high power excimer laser to produce these radicals via the photolysis of stable precursors. A novel two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical thickness or O2 absorption problems. To demonstrate the feasibility of the technique the apparatus in the program is designed to perform preliminary measurements on the H + O2 + M reaction at temperatures from 300 to 835 K.

  6. Site-specific 15N isotopic signatures of abiotically produced N2O

    NASA Astrophysics Data System (ADS)

    Heil, Jannis; Wolf, Benjamin; Brüggemann, Nicolas; Emmenegger, Lukas; Tuzson, Béla; Vereecken, Harry; Mohn, Joachim

    2014-08-01

    Efficient nitrous oxide (N2O) mitigation strategies require the identification of the main source and sink processes and their contribution to total soil N2O production. Several abiotic reactions of nitrification intermediates leading to N2O production are known, but their contribution to total N2O production in soils is uncertain. As the site preference (SP) of 15N in N2O is a promising tool to give more insight into N2O production processes, we investigated the SP of N2O produced by different abiotic reactions in a laboratory study. All reactions involved the nitrification intermediate hydroxylamine (NH2OH) in combination with nitrite (NO2-), Fe3+, Fe2+ and Cu2+, reactants commonly or potentially found in soils, at different concentrations and pH values. N2O production and its four main isotopic species (14N14N16O, 15N14N16O, 14N15N16O, and 14N14N18O) were quantified simultaneously and online at high temporal resolution using quantum cascade laser absorption spectroscopy. Thereby, our study presents the first continuous analysis of δ18O in N2O. The experiments revealed the possibility of purely abiotic reactions over a wide range of acidity (pH 3-8) by different mechanisms. All studied abiotic pathways produced N2O with a characteristic SP in the range of 34-35‰, unaffected by process conditions and remaining constant over the course of the experiments. These findings reflect the benefit of continuous N2O isotopic analysis by laser spectroscopy, contribute new information to the challenging source partitioning of N2O emissions from soils, and emphasize the potentially significant role of coupled biotic-abiotic reactions in soils.

  7. The correlation between HCN/H2O flux ratios and disk mass: evidence for protoplanet formation

    NASA Astrophysics Data System (ADS)

    Rose, Caitlin; Salyk, Colette

    2017-01-01

    We analyze hydrogen cyanide (HCN) and water vapor flux ratios in protoplanetary disks as a way to trace planet formation. Analyzing only disks in the Taurus molecular cloud, Najita et al. (2013) found a tentative correlation between protoplanetary disk mass and the HCN/H2O line flux ratio in Spitzer-IRS emission spectra. They interpret this correlation to be a consequence of more massive disks forming planetesimals more efficiently than smaller disks, as the formation of large planetesimals may lock up water ice in the cool outer disk region and prevent it from migrating, drying out the inner disk. The sequestering of water (and therefore oxygen) in the outer disk may also increase the carbon-to- oxygen ratio in the inner disk, leading to enhanced organic molecule (e.g. HCN) emission. To confirm this trend, we expand the Najita et al. sample by calculating HCN/H2O line flux ratios for 8 more sources with known disk masses from clusters besides Taurus. We find agreement with the Najita et al. trend, suggesting that this is a widespread phenomenon. In addition, we find HCN/H2O line flux ratios for 17 more sources that await disk mass measurements, which should become commonplace in the ALMA era. Finally, we investigate linear fits and outliers to this trend, and discuss possible causes.

  8. Spectral and thermal studies of MgI2·8H2O

    NASA Astrophysics Data System (ADS)

    Koleva, Violeta; Stefov, Viktor; Najdoski, Metodija; Ilievski, Zlatko; Cahil, Adnan

    2017-10-01

    In the present contribution special attention is paid to the spectroscopic and thermal characterization of MgI2·8H2O which is the stable hydrated form at room temperature. The infrared spectra of MgI2·8H2O and its deuterated analogues recorded at room and liquid nitrogen temperature are presented and interpreted. In the low-temperature diference infrared spectrum of the slightly deuterated analogue (≈5% D) at least four bands are found out of the expected five (at 2595, 2550, 2538 and 2495 cm-1) as a result of the uncoupled O-D oscillators in the isotopically isolated HOD molecules. Multiple bands are observed in the water bending region and only two bands of the HOH librational modes are found. For more precise and deep description of the processes occurring upon heating of MgI2·8H2O we have applied simultaneous TG/DTA/Mass spectrometry technique identifying the gases evolved during the thermal transformations. We have established that the thermal decomposition of MgI2·8H2O is a complex process that takes place in two main stages. In the first stage (between 120 and 275 °C) the salt undergoes a partial stepwise dehydration to MgI2·2H2O followed by a hydrolytic decomposition with formation of magnesium hydroxyiodide Mg(OH)1.44I0.56 accompanied with simultaneous release of H2O and HI. In the second stage Mg(OH)1.44I0.56 is completely decomposed to MgO with elimination of gaseous H2O, HI, I2 and H2. Infrared spectra of the annealed samples heated between 190 and 270 °C confirmed the formation of magnesium hydroxyiodide.

  9. Phase and Physicochemical Properties Diagrams of Quaternary System Li2B4O7 + Na2B4O7 + Mg2B6O11 + H2O

    NASA Astrophysics Data System (ADS)

    Wang, Shi-qiang; Du, Xue-min; Jing, Yan; Guo, Ya-fei; Deng, Tian-long

    2017-12-01

    The phase and physicochemical properties diagrams of the quaternary system (Li2B4O7 + Na2B4O7 + Mg2B6O11) at 288.15 K and 0.1 MPa were constructed using the solubilities, densities, and refractive indices measured. In the phase diagrams of the system there are one invariant point, three univariant isothermic dissolution curves, and three crystallization regions corresponding to Li2B4O7 · 3H2O, Na2B4O7 · 10H2O, and Mg2B6O11 · 15H2O, respectively. The solution density, refractive index of the quaternary system changes regularly with the increasing of Li2B4O7 concentration. The calculated values of density and refractive index using empirical equations of the quaternary system are in good agreement with the experimental values.

  10. Stable isotope and gas properties of two ice wedges from Cape Mamontov Klyk, Laptev Sea, Northern Siberia

    NASA Astrophysics Data System (ADS)

    Boereboom, T.; Samyn, D.; Meyer, H.; Tison, J.-L.

    2011-12-01

    This paper presents and discusses the texture, fabric and gas properties (contents of total gas, O2, N2, CO2, and CH4) of two ice wedges from Cape Mamontov Klyk, Laptev Sea, Northern Siberia. The two ice wedges display contrasting structures: one being of relatively "clean" ice and the other showing clean ice at its centre as well as debris-rich ice on its sides (referred to as ice-sand wedge). A comparison of gas properties, crystal size, fabrics and stable isotope data (δ18O and δD) allows discriminating between three different facies of ice with specific paleoenvironmental signatures, suggesting different climatic conditions and rates of biological activity. More specifically, total gas content and composition reveal variable intensities of meltwater infiltration and show the impact of biological processes with contrasting contributions from anaerobic and aerobic conditions. Stable isotope data are shown to be valid for discussing changes in paleoenvironmental conditions and/or decipher different sources for the snow feeding into the ice wedges with time. Our data also give support to the previous assumption that the composite ice wedge was formed in Pleistocene and the ice wedge in Holocene times. This study sheds more light on the conditions of ice wedge growth under changing environmental conditions.

  11. Fe{sub 2}O{sub 3}-Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses as lithium-free nonsilicate pH responsive glasses – Compatibility between pH responsivity and hydrophobicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Tadanori, E-mail: hasimoto@chem.mie-u.ac.jp; Hamajima, Mitsuaki; Ohta, Honami

    Highlights: • Fe{sub 2}O{sub 3}-rich FeBiB glasses show high pH sensitivity and short pH response time. • Bi{sub 2}O{sub 3}-rich FeBiB glasses show relatively high contact angle for water. • FeBiB glasses are lithium-free nonsilicate pH responsive ones. • pH responsivity and hydrophobicity are obtained for optimum glass compositions. - Abstract: Lithium silicate-based glasses have widely been used as commercially available pH glass electrodes. It was revealed that Ti{sup 3+}-containing titanophosphate (TiO{sub 2}-P{sub 2}O{sub 5}, TP) glasses are pH responsive as lithium-free nonsilicate glasses for the first time. TP glasses with the compatibility between pH responsivity and self-cleaning property weremore » obtained by the sequential post-annealing (oxidation and reduction) of as-prepared glasses. Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} (BiB) glasses are relatively hydrophobic and are expected to show anti-fouling effect. They are unsuitable for pH responsive glasses, because they have high electrical resistivity. In the present study, xFe{sub 2}O{sub 3}·yBi{sub 2}O{sub 3}·(100 − x − y)B{sub 2}O{sub 3} glasses (xFeyBiB, x = 0–20 mol%, y = 20–80 mol%) glasses were selected as new pH responsive glasses with hydrophobicity, because Fe{sub 2}O{sub 3} is a representative component for causing hopping conduction to the glasses. BiB glass did not show pH responsivity, whereas xFeyBiB glasses showed good pH responsivity. xFeyBiB glasses are lithium-free nonsilicate pH responsive ones as well as TP glasses. The electrical resistivity and pH response time decreased with increasing Fe{sub 2}O{sub 3} content. The pH repeatability for standard solutions increased with increasing Bi{sub 2}O{sub 3} content. Silicate glass (20Fe70BiSi) showed better pH responsivity but lower contact angle than those of borate glass (20Fe70BiB). pH sensitivity increased in order of TP glasses (about 80%), xFeyBiB glasses (about 90%) and commercial pH responsive glass (about 100

  12. Optimization of NO oxidation by H2O2 thermal decomposition at moderate temperatures.

    PubMed

    Zhao, Hai-Qian; Wang, Zhong-Hua; Gao, Xing-Cun; Liu, Cheng-Hao; Qi, Han-Bing

    2018-01-01

    H2O2 was adopted to oxidize NO in simulated flue gas at 100-500°C. The effects of the H2O2 evaporation conditions, gas temperature, initial NO concentration, H2O2 concentration, and H2O2:NO molar ratio on the oxidation efficiency of NO were investigated. The reason for the narrow NO oxidation temperature range near 500°C was determined. The NO oxidation products were analyzed. The removal of NOx using NaOH solution at a moderate oxidation ratio was studied. It was proven that rapid evaporation of the H2O2 solution was critical to increase the NO oxidation efficiency and broaden the oxidation temperature range. the NO oxidation efficiency was above 50% at 300-500°C by contacting the outlet of the syringe needle and the stainless-steel gas pipe together to spread H2O2 solution into a thin film on the surface of the stainless-steel gas pipe, which greatly accelerated the evaporation of H2O2. The NO oxidation efficiency and the NO oxidation rate increased with increasing initial NO concentration. This method was more effective for the oxidation of NO at high concentrations. H2O2 solution with a concentration higher than 15% was more efficient in oxidizing NO. High temperatures decreased the influence of the H2O2 concentration on the NO oxidation efficiency. The oxidation efficiency of NO increased with an increase in the H2O2:NO molar ratio, but the ratio of H2O2 to oxidized NO decreased. Over 80% of the NO oxidation product was NO2, which indicated that the oxidation ratio of NO did not need to be very high. An 86.7% NO removal efficiency was obtained at an oxidation ratio of only 53.8% when combined with alkali absorption.

  13. Optimization of NO oxidation by H2O2 thermal decomposition at moderate temperatures

    PubMed Central

    Wang, Zhong-hua; Gao, Xing-cun; Liu, Cheng-hao; Qi, Han-bing

    2018-01-01

    H2O2 was adopted to oxidize NO in simulated flue gas at 100–500°C. The effects of the H2O2 evaporation conditions, gas temperature, initial NO concentration, H2O2 concentration, and H2O2:NO molar ratio on the oxidation efficiency of NO were investigated. The reason for the narrow NO oxidation temperature range near 500°C was determined. The NO oxidation products were analyzed. The removal of NOx using NaOH solution at a moderate oxidation ratio was studied. It was proven that rapid evaporation of the H2O2 solution was critical to increase the NO oxidation efficiency and broaden the oxidation temperature range. the NO oxidation efficiency was above 50% at 300–500°C by contacting the outlet of the syringe needle and the stainless-steel gas pipe together to spread H2O2 solution into a thin film on the surface of the stainless-steel gas pipe, which greatly accelerated the evaporation of H2O2. The NO oxidation efficiency and the NO oxidation rate increased with increasing initial NO concentration. This method was more effective for the oxidation of NO at high concentrations. H2O2 solution with a concentration higher than 15% was more efficient in oxidizing NO. High temperatures decreased the influence of the H2O2 concentration on the NO oxidation efficiency. The oxidation efficiency of NO increased with an increase in the H2O2:NO molar ratio, but the ratio of H2O2 to oxidized NO decreased. Over 80% of the NO oxidation product was NO2, which indicated that the oxidation ratio of NO did not need to be very high. An 86.7% NO removal efficiency was obtained at an oxidation ratio of only 53.8% when combined with alkali absorption. PMID:29668672

  14. O2(b1Σg+) Quenching by O2, CO2, H2O, and N2 at Temperatures of 300-800 K.

    PubMed

    Zagidullin, M V; Khvatov, N A; Medvedkov, I A; Tolstov, G I; Mebel, A M; Heaven, M C; Azyazov, V N

    2017-10-05

    Rate constants for the removal of O 2 (b 1 Σ g + ) by collisions with O 2 , N 2 , CO 2 , and H 2 O have been determined over the temperature range from 297 to 800 K. O 2 (b 1 Σ g + ) was excited by pulses from a tunable dye laser, and the deactivation kinetics were followed by observing the temporal behavior of the b 1 Σ g + -X 3 Σ g - fluorescence. The removal rate constants for CO 2 , N 2 , and H 2 O were not strongly dependent on temperature and could be represented by the expressions k CO2 = (1.18 ± 0.05) × 10 -17 × T 1.5 × exp[Formula: see text], k N2 = (8 ± 0.3) × 10 -20 × T 1.5 × exp[Formula: see text], and k H2O = (1.27 ± 0.08) × 10 -16 × T 1.5 × exp[Formula: see text] cm 3 molecule -1 s -1 . Rate constants for O 2 (b 1 Σ g + ) removal by O 2 (X), being orders of magnitude lower, demonstrated a sharp increase with temperature, represented by the fitted expression k O2 = (7.4 ± 0.8) × 10 -17 × T 0.5 × exp[Formula: see text] cm 3 molecule -1 s -1 . All of the rate constants measured at room temperature were found to be in good agreement with previously reported values.

  15. Microhydration effects on the electronic spectra of protonated polycyclic aromatic hydrocarbons: [naphthalene-(H2O)n = 1,2]H+

    NASA Astrophysics Data System (ADS)

    Alata, Ivan; Broquier, Michel; Dedonder-Lardeux, Claude; Jouvet, Christophe; Kim, Minho; Sohn, Woon Yong; Kim, Sang-su; Kang, Hyuk; Schütz, Markus; Patzer, Alexander; Dopfer, Otto

    2011-02-01

    Vibrational and electronic spectra of protonated naphthalene (NaphH+) microsolvated by one and two water molecules were obtained by photofragmentation spectroscopy. The IR spectrum of the monohydrated species is consistent with a structure with the proton located on the aromatic molecule, NaphH+-H2O. Similar to isolated NaphH+, the first electronic transition of NaphH+-H2O (S1) occurs in the visible range near 500 nm. The doubly hydrated species lacks any absorption in the visible range (420-600 nm) but absorbs in the UV range, similar to neutral Naph. This observation is consistent with a structure, in which the proton is located on the water moiety, Naph-(H2O)2H+. Ab initio calculations for [Naph-(H2O)n]H+ confirm that the excess proton transfers from Naph to the solvent cluster upon attachment of the second water molecule.

  16. Do aerosols influence the diurnal variation of H2O2 in the atmosphere?

    NASA Astrophysics Data System (ADS)

    Liang, H.; Chen, Z.; Wu, Q.; Huang, D.; Zhao, Y.

    2013-12-01

    Hydrogen peroxide (H2O2) and organic peroxides are crucial reactive species that are involved in the cycling of HOx (OH and HO2) radicals and the formation of secondary inorganic and organic aerosols in the atmosphere. Despite the importance of peroxides, their formation and removal mechanisms with the coexistence of aerosols are as yet less well known. From June 10 to July 15 2013, summertime surface measurements for atmospheric peroxides were simultaneously obtained in urban Beijing (UB) and Gucheng (GC). The UB site is located in the northern downtown of Beijing city, while the GC site is a rural site located in the North China Plain and ~100 km southwest of Beijing. In both sites, the major peroxides were determined to be H2O2, methyl hydroperoxide (MHP), peroxyformic acid (PFA) and peroxyacetic acid (PAA). By comparing the concentrations of PFA and PAA in the gas phase and rainwater, for the first time, we estimated the Henry's law constant for PFA as ~210 M atm-1 at 298 K, a quarter of that for PAA. Interestingly, we observed different H2O2 profiles in the two sites as follows: (i) the average concentration of H2O2 in UB was 50% higher than that in GC; (ii) H2O2 in GC reached its peak concentration at around 15:30, whereas the peak concentration in UB appeared at as late as 21:00; and (iii) the daily variation of H2O2 in GC generally kept consistent with that of O3 and organic peroxides while it was not always the case in UB. These differences indicate a hitherto unrecognized storage-release mechanism for H2O2 in UB, that is, an extra sink in the noontime and an extra source in the early evening. The extra source of H2O2 would enhance the aerosol phase OH radical in the early evening by the Fenton reaction. A box model analysis shows that the impacts of aerosols were majorly responsible to this unrecognized mechanism, although NOx, regional transport and planet boundary layer height also contributed a minor part. Aerosols participated in the storage

  17. Synthesis and physicochemical characterization of carbon backbone modified [Gd(TTDA)(H2O)]2- derivatives.

    PubMed

    Chang, Ya-Hui; Chen, Chiao-Yun; Singh, Gyan; Chen, Hsing-Yin; Liu, Gin-Chung; Goan, Yih-Gang; Aime, Silvio; Wang, Yun-Ming

    2011-02-21

    The present study was designed to exploit optimum lipophilicity and high water-exchange rate (k(ex)) on low molecular weight Gd(III) complexes to generate high bound relaxivity (r(1)(b)), upon binding to the lipophilic site of human serum albumin (HSA). Two new carbon backbone modified TTDA (3,6,10-tri(carboxymethyl)-3,6,10-triazadodecanedioic acid) derivatives, CB-TTDA and Bz-CB-TTDA, were synthesized. The complexes [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) both display high stability constant (log K(GdL) = 20.28 and 20.09, respectively). Furthermore, CB-TTDA (log K(Gd/Zn) = 4.22) and Bz-CB-TTDA (log K(Gd/Zn) = 4.12) exhibit superior selectivity of Gd(III) against Zn(II) than those of TTDA (log K(Gd/Zn) = 2.93), EPTPA-bz-NO(2) (log K(Gd/Zn) = 3.19), and DTPA (log K(Gd/Zn) = 3.76). However, the stability constant values of [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) are lower than that of MS-325. The parameters that affect proton relaxivity have been determined in a combined variable temperature (17)O NMR and NMRD study. The water exchange rates are comparable for the two complexes, 232 × 10(6) s(-1) for [Gd(CB-TTDA)(H(2)O)](2-) and 271 × 10(6) s(-1) for [Gd(Bz-CB-TTDA)(H(2)O)](2-). They are higher than those of [Gd(TTDA)(H(2)O)](2-) (146 × 10(6) s(-1)), [Gd(DTPA)(H(2)O)](2-) (4.1 × 10(6) s(-1)), and MS-325 (6.1 × 10(6) s(-1)). Elevated stability and water exchange rate indicate that the presence of cyclobutyl on the carbon backbone imparts rigidity and steric constraint to [Gd(CB-TTDA)(H(2)O)](2-)and [Gd(Bz-CB-TTDA)(H(2)O)](2-). In addition, the major objective for selecting the cyclobutyl is to tune the lipophilicity of [Gd(Bz-CB-TTDA)(H(2)O)](2-). The binding affinity of [Gd(Bz-CB-TTDA)(H(2)O)](2-) to HSA was evaluated by ultrafiltration study across a membrane with a 30 kDa MW cutoff, and the first three stepwise binding constants were determined by fitting the data to a stoichiometric model. The binding association constants (K

  18. Geochemical and sedimentological properties of Heinrich layers H2 and H1 off the Hudson Strait ice-surging source areas: ice-rafting vs water-laid down depositional mechanisms

    NASA Astrophysics Data System (ADS)

    Nuttin, L.; Hillaire-Marcel, C.

    2012-12-01

    The ~9 m-long core HU08-029-004PC was raised from the lower Labrador Sea slope (2674 m water-depth), approximately 180 km off Hudson Strait shelf edge. It yielded a high resolution record spanning the last 35 ka. The sequence includes layers with abundant detrital carbonates produced by glacial erosion of Paleozoic rocks and released into the Labrador Sea through ice streaming processes in Hudson Strait and Ungava Bay. These layers are assigned to 'Heinrich events' 3 (at core bottom), 2 and 1. Sedimentological properties and U and Th isotope measurements are used to document depositional mechanisms and durations of these layers. Data suggest: i) intense ice-rafting deposition (IRD) due to iceberg calving at the ice-stream edge, as illustrated by the coarse fraction content of the layers, and ii) sub-glacial meltwater flushing over the Hudson Strait sill, carrying fine silt-size, carbonate-rich glacial flour to the shelf-edge. Such suspended sediment pulses led to the spreading of turbidites mostly into the deep Labrador Sea, through the NAMOC system. Others late-glacial events, such as the ~ 8.2 ka final drainage of Lake Agassiz, are also recorded in the study core, whereas the H0 layer, exclusively observed in the western Labrador Sea is missing. CAT-scan images, mineralogical data, carbonate abundance, %>106 μm fraction (mostly IRD here), U-Th isotope data and 14C ages of planktic foraminifera assemblages (Neogloboquadrina pachyderma, l.) are used to further document H2 (760 to 700 cm) and H1 (588 to 488 cm). The H-layers contain up to 60% of fine detrital carbonates (about 2/3 calcite, 1/3 dolomite). Whereas the fine calcitic material points to sediment sources (basal till/water-laid glacial sediments) in the Hudson Strait and Ungava Bay, i.e., originating from the glacial erosion of Paleozoic carbonates from the area, the dolomitic component might have several origins (from Proterozoic and Paleozoic limestones in the Hudson Bay and Strait, to northwestern

  19. Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes.

    PubMed

    Graves, Christopher; Chatzichristodoulou, Christodoulos; Mogensen, Mogens B

    2015-01-01

    The solid oxide electrochemical cell (SOC) is an energy conversion technology that can be operated reversibly, to efficiently convert chemical fuels to electricity (fuel cell mode) as well as to store electricity as chemical fuels (electrolysis mode). The SOC fuel-electrode carries out the electrochemical reactions CO2 + 2e(-) ↔ CO + O(2-) and H2O + 2e(-) ↔ H2 + O(2-), for which the electrocatalytic activities of different electrodes differ considerably. The relative activities in CO/CO2 and H2/H2O and the nature of the differences are not well studied, even for the most common fuel-electrode material, a composite of nickel and yttria/scandia stabilized zirconia (Ni-SZ). Ni-SZ is known to be more active for H2/H2O than for CO/CO2 reactions, but the reported relative activity varies widely. Here we compare AC impedance and DC current-overpotential data measured in the two gas environments for several different electrodes comprised of Ni-SZ, Gd-doped CeO2 (CGO), and CGO nanoparticles coating Nb-doped SrTiO3 backbones (CGOn/STN). 2D model and 3D porous electrode geometries are employed to investigate the influence of microstructure, gas diffusion and impurities.Comparing model and porous Ni-SZ electrodes, the ratio of electrode polarization resistance in CO/CO2vs. H2/H2O decreases from 33 to 2. Experiments and modelling suggest that the ratio decreases due to a lower concentration of impurities blocking the three phase boundary and due to the nature of the reaction zone extension into the porous electrode thickness. Besides showing higher activity for H2/H2O reactions than CO/CO2 reactions, the Ni/SZ interface is more active for oxidation than reduction. On the other hand, we find the opposite behaviour in both cases for CGOn/STN model electrodes, reporting for the first time a higher electrocatalytic activity of CGO nanoparticles for CO/CO2 than for H2/H2O reactions in the absence of gas diffusion limitations. We propose that enhanced surface reduction at the

  20. Observed ices in the Solar System

    USGS Publications Warehouse

    Clark, Roger N.; Grundy, Will; Carlson, Robert R.; Noll, Keith; Gudipati, Murthy; Castillo-Rogez, Julie C.

    2013-01-01

    Ices have been detected and mapped on the Earth and all planets and/or their satellites further from the sun. Water ice is the most common frozen volatile observed and is also unambiguously detected or inferred in every planet and/or their moon(s) except Venus. Carbon dioxide is also extensively found in all systems beyond the Earth except Pluto although it sometimes appears to be trapped rather than as an ice on some objects. The largest deposits of carbon dioxide ice is on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn’s moon Titan probably has the most complex active chemistry involving ices, with benzene (C6H6) and many tentative or inferred compounds including ices of Cyanoacetylene (HC3N), Toluene (C7H8), Cyanogen (C2N2), Acetonitrile (CH3CN), H2O, CO2, and NH3. Confirming compounds on Titan is hampered by its thick smoggy atmosphere. Ammonia was predicted on many icy moons but is notably absent among the definitively detected ices with the possible exception of Enceladus. Comets, storehouses of many compounds that could exist as ices in their nuclei, have only had small amounts of water ice definitively detected on their surfaces. Only one asteroid has had a direct detection of surface water ice, although its presence can be inferred in others. This chapter reviews some of the properties of ices that lead to their detection, and surveys the ices that have been observed on solid surfaces throughout the Solar System.

  1. X-ray irradiation activates K+ channels via H2O2 signaling

    PubMed Central

    Gibhardt, Christine S.; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-01-01

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels. PMID:26350345

  2. Selective Adsorption Resonances in the Scattering of n-H2 p-H2 n-D2 and o-D2 from Ag(111)

    NASA Astrophysics Data System (ADS)

    Yu, Chien-Fan; Whaley, K. Birgitta; Hogg, Charles S.; Sibener, Steven J.

    1983-12-01

    Diffractive and rotationally mediated selective adsorption scattering resonances are reported for n-H2 p-H2 n-D2 and o-D2 on Ag(111). Small resonance shifts and line-width differences are observed between n-H2 and p-H2 indicating a weak orientation dependence of the laterally averaged H2/Ag(111) potential. The p-H2 and o-D2 levels were used to determine the isotropic component of this potential, yielding a well depth of ~ 32 meV.

  3. Hot chemistry in the diffuse medium: spectral signature in the H2 rotational lines

    NASA Astrophysics Data System (ADS)

    Verstraete, L.; Falgarone, E.; Pineau des Forets, G.; Flower, D.; Puget, J. L.

    1999-03-01

    Most of the diffuse interstellar medium is cold, but it must harbor pockets of hot gas to explain the large observed abundances of molecules like CH+ and HCO+. Because they dissipate locally large amounts of kinetic energy, MHD shocks and coherent vortices in turbulence can drive endothermic chemical reactions or reactions with large activation barriers. We predict the spectroscopic signatures in the H2 rotational lines of MHD shocks and vortices and compare them to those observed with the ISO-SWS along a line of sight through the Galaxy which samples 20 magnitudes of mostly diffuse gas.

  4. Photochemical Generation of H_{2}NCNX, H_{2}NNCX, H_{2}NC(NX) (x = O, s) in Low-Temperature Matrices

    NASA Astrophysics Data System (ADS)

    Voros, Tamas; Lajgut, Gyozo Gyorgy; Magyarfalvi, Gabor; Tarczay, Gyorgy

    2017-06-01

    The [NH_{2}, C, N, O] and the [NH_{2}, C, N, S] systems were investigated by quantum-chemical computations and matrix-isolation spectroscopic methods. The equilibrium structures of the isomers and their relative energies were determined by CCSD(T) method. This was followed by the computation of the harmonic and anharmonic vibrational wavenumbers, infrared intensities, relative Raman activities and UV excitation energies. These computed data were used to assist the identification of products obtained by UV laser photolysis of 3,4-diaminofurazan, 3,4-diaminothiadiazole and 1,2,4-thiadiazole-3,5-diamine in low-temperature Ar and Kr matrices. Experimentally, first the precursors were studied by matrix-isolation IR and UV spectroscopic methods. Based on these UV spectra, different wavelengths were selected for photolysis. The irradiations, carried out by a tunable UV laser-light source, resulted in the decomposition of the precursors, and in the appearance of new bands in the IR spectra. Some of these bands were assigned to cyanamide (H_{2}NCN) and its isomer, the carbodiimide molecule (HNCNH), generated from H_{2}NCN. By the analysis of the relative absorbance vs. photolysis time curves, the other bands were grouped to three different species both for the O- and the S-containing systems. In the case of the O-containing isomers, these bands were assigned to the H_{2}NNCO:H_{2}NCN, and H_{2}NCNO:H_{2}NCN complexes, and to the ring-structure H_{2}NC(NO) isomer. In a similar way, the complexes of H_{2}NNCS and H_{2}NCNS with the H_{2}NCN, and H_{2}NC(NS) were also identified. 1,2,4-thiadiazole-3,5-diamine was also investigated in similar way like the above mentioned precursors. The results of this study also support the identification of the new S-containing isomers. Except for H_{2}NNCO and H_{2}NCNS, these molecules were not identified previously. It is expected that at least some of these species, like the methyl isocyanate (CH_{3}CNO) isomer, are present and could be

  5. Influence of H2O2 on LPG fuel performance evaluation

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Saad; Ahmed, Iqbal; Mutalib, Mohammad Ibrahim bin Abdul; Nadeem, Saad; Ali, Shahid

    2014-10-01

    The objective of this mode of combustion is to insertion of hydrogen peroxide (H2O2) to the Liquefied Petroleum Gas (LPG) combustion on spark plug ignition engines. The addition of hydrogen peroxide may probably decrease the formation of NOx, COx and unburned hydrocarbons. Hypothetically, Studies have shown that addition of hydrogen peroxide to examine the performance of LPG/H2O2 mixture in numerous volumetric compositions starting from lean LPG until obtaining a better composition can reduce the LPG fuel consumption. The theory behind this idea is that, the addition of H2O2 can cover the lean operation limit, increase the lean burn ability, diminution the burn duration along with controlling the exhaust emission by significantly reducing the greenhouse gaseous.

  6. Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: Minimization of oxygen evolution

    NASA Astrophysics Data System (ADS)

    Amirfakhri, Seyed Javad; Meunier, Jean-Luc; Berk, Dimitrios

    2014-12-01

    The catalytic activity of LaNiO3 toward H2O2 reduction reaction (HPRR), with a potential application in the cathode side of fuel cells, is studied in alkaline, neutral and acidic solutions by rotating disk electrode. The LaNiO3 particles synthesised by citrate-based sol-gel method have sizes between 30 and 70 nm with an active specific surface area of 1.26 ± 0.05 m2 g-1. LaNiO3 shows high catalytic activity toward HPRR in 0.1 M KOH solution with an exchange current density based on the active surface area (j0A) of (7.4 ± 1) × 10-6 A cm-2 which is noticeably higher than the j0A of N-doped graphene. The analysis of kinetic parameters suggests that the direct reduction of H2O2, H2O2 decomposition, O2 reduction and O2 desorption occur through HPRR on this catalyst. In order to control and minimize oxygen evolution from the electrode surface, the effects of catalyst loading, bulk concentration of H2O2, and using a mixture of LaNiO3 and N-doped graphene are studied. Although the mechanism of HPRR is independent of the aforementioned operating conditions, gas evolution decreases by increasing the catalyst loading, decreasing the bulk concentration of H2O2, and addition of N-doped graphene to LaNiO3.

  7. Bleaching of cotton fabric with tetraacetylhydrazine as bleach activator for H2O2.

    PubMed

    Liu, Kai; Zhang, Xuan; Yan, Kelu

    2018-05-15

    Tetraacetylhydrazine (TH) as bleach activator for H 2 O 2 cotton bleaching was synthesized and characterized by 1 H NMR, 13 C NMR and MS spectra. TH has better solubility than that of TAED. The CIE whiteness index (WI), H 2 O 2 decomposition rate and bursting strength were employed to investigate the performance of H 2 O 2 /TH bleaching system. By addition of TH, WI and H 2 O 2 decomposition rate increased significantly at 70 °C. Bleaching temperature, NaHCO 3 concentration and bleaching time were also discussed in detail and the loss of bursting strength is not clear. By using benzenepentacarboxylic acid (BA) as a fluorescent probe for hydroxyl radical detection, the bleaching process of H 2 O 2 /TH system was investigated. Acetylhydrazine and diacetylhydrazine were also utilized to further confirm the process. In addition, bimolecular decomposition was investigated by using 9,10-dimethylanthracene (DMA) as fluorescent probe of 1 O 2 . Based on these experimental results, the bleaching mechanism of H 2 O 2 /TH system was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Comparisons of multilayer H2O adsorption onto the (110) surfaces of alpha-TiO2 and SnO2 as calculated with density functional theory.

    PubMed

    Bandura, Andrei V; Kubicki, James D; Sofo, Jorge O

    2008-09-18

    Mono- and bilayer adsorption of H2O molecules on TiO2 and SnO 2 (110) surfaces has been investigated using static planewave density functional theory (PW DFT) simulations. Potential energies and structures were calculated for the associative, mixed, and dissociative adsorption states. The DOS of the bare and hydrated surfaces has been used for the analysis of the difference between the H2O interaction with TiO2 and SnO 2 surfaces. The important role of the bridging oxygen in the H2O dissociation process is discussed. The influence of the second layer of H2O molecules on relaxation of the surface atoms was estimated.

  9. Implications for Extraterrestrial Hydrocarbon Chemistry: Analysis of Ethylene (C2H4) and D4-Ethylene (C2D4) Ices Exposed to Ionizing Radiation via Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Abplanalp, Matthew J.; Kaiser, Ralf I.

    2017-02-01

    The processing of the hydrocarbon ice, ethylene (C2H4/C2D4), via energetic electrons, thus simulating the processes in the track of galactic cosmic-ray particles, was carried out in an ultrahigh vacuum apparatus. The chemical evolution of the ices was monitored online and in situ utilizing Fourier transform infrared spectroscopy (FTIR) and during temperature programmed desorption, via a quadrupole mass spectrometer utilizing electron impact ionization (EI-QMS) and a reflectron time-of-flight mass spectrometer utilizing a photoionization source (PI-ReTOF-MS). Several previous in situ studies of ethylene ice irradiation using FTIR were substantiated with the detection of six products: [CH4 (CD4)], acetylene [C2H2 (C2D2)], the ethyl radical [C2H5 (C2D5)], ethane [C2H6 (C2D6)], 1-butene [C4H8 (C4D8)], and n-butane [C4H10 (C4D10)]. Contrary to previous gas phase studies, the PI-ReTOF-MS detected several groups of hydrocarbon with varying degrees of saturation: C n H2n+2 (n = 4-10), C n H2n (n = 2-12, 14, 16), C n H2n-2 (n = 3-12, 14, 16), C n H2n-4 (n = 4-12, 14, 16), C n H2n-6 (n = 4-10, 12), C n H2n-8 (n = 6-10), and C n H2n-10 (n = 6-10). Multiple laboratory studies have shown the facile production of ethylene from methane, which is a known ice constituent in the interstellar medium. Various astrophysically interesting molecules can be associated with the groups detected here, such as allene/methylacetylene (C3H4) or 1, 3-butadiene (C4H6) and its isomers, which have been shown to lead to polycyclic aromatic hydrocarbons. Finally, several hydrocarbon groups detected here are unique to ethylene ice versus ethane ice and may provide understanding of how complex hydrocarbons form in astrophysical environments.

  10. Vibrational spectra of Mg2KH(XO4)2·15H2O (X=P, As) containing dimer units [H(XO4)2].

    PubMed

    Stefov, V; Koleva, V; Najdoski, M; Abdija, Z; Cahil, A; Šoptrajanov, B

    2017-08-05

    Infrared and Raman spectra of Mg 2 KH(PO 4 ) 2 ·15H 2 O and Mg 2 KH(AsO 4 ) 2 ·15H 2 O and a series of their partially deuterated analogues were recorded and analyzed. Compounds of the type Mg 2 KH(XO 4 ) 2 ·15H 2 O (X=P, As) are little-known and a rare case of phosphate and arsenate salts containing dimer units [H(XO 4 ) 2 ] in the crystal structure. The analysis of their IR spectra (recorded at room and liquid nitrogen temperature) and Raman spectra showed that the spectral characteristics of the XO 4 groups connected in a dimer through a proton are not consistent with the presence of X-O-H covalent linkage and C 1 crystallographic symmetry of the XO 4 groups. The observation of a singlet Raman band for the ν 1 (XO 4 ) mode as well as the absence of substantial splitting of the ν 3 (XO 4 ) modes and IR activation of the ν 1 (XO 4 ) mode suggest that the dimer units [H(XO 4 ) 2 ] are most probably symmetric rather than non-symmetric ones. It was found that, in the vibrational spectra of Mg 2 KH(AsO 4 ) 2 ·15H 2 O, both ν 1 (AsО 4 ) and ν 3 (AsО 4 ) modes have practically the same wavenumber around 830cm -1 . It was also established that the ν 4 (PО 4 ) modes in the deuterated hydrogendiphosphate compound are strongly coupled, most probably with HDO and/or D 2 O librations. As a whole, the spectral picture of Mg 2 KH(XO 4 ) 2 ·15H 2 O (X=P, As) very much resembles that observed for the struvite type compounds with the formula KMgXO 4 ·6H 2 O (X=P, As) which do not contain X-OH groups. This means that vibrations of the dimers [H(XO 4 ) 2 ] play a relatively small part in the general spectral appearance. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ab Initio Reaction Kinetics of CH 3 O$$\\dot{C}$$(=O) and $$\\dot{C}$$H 2 OC(=O)H Radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Ting; Yang, Xueliang; Ju, Yiguang

    The dissociation and isomerization kinetics of the methyl ester combustion intermediates methoxycarbonyl radical (CH3Omore » $$\\dot{C}$$(=O)) and (formyloxy)methyl radical ($$\\dot{C}$$H2OC(=O)H) are investigated theoretically using high-level ab initio methods and Rice–Ramsperger–Kassel–Marcus (RRKM)/master equation (ME) theory. Geometries obtained at the hybrid density functional theory (DFT) and coupled cluster singles and doubles with perturbative triples correction (CCSD(T)) levels of theory are found to be similar. We employ high-level ab initio wave function methods to refine the potential energy surface: CCSD(T), multireference singles and doubles configuration interaction (MRSDCI) with the Davidson–Silver (DS) correction, and multireference averaged coupled-pair functional (MRACPF2) theory. MRSDCI+DS and MRACPF2 capture the multiconfigurational character of transition states (TSs) and predict lower barrier heights than CCSD(T). The temperature- and pressure-dependent rate coefficients are computed using RRKM/ME theory in the temperature range 300–2500 K and a pressure range of 0.01 atm to the high-pressure limit, which are then fitted to modified Arrhenius expressions. Dissociation of CH3O$$\\dot{C}$$(=O) to $$\\dot{C}$$H3 and CO2 is predicted to be much faster than dissociating to CH3$$\\dot{O}$$ and CO, consistent with its greater exothermicity. Isomerization between CH3O$$\\dot{C}$$(=O) and $$\\dot{C}$$H2OC(=O)H is predicted to be the slowest among the studied reactions and rarely happens even at high temperature and high pressure, suggesting the decomposition pathways of the two radicals are not strongly coupled. The predicted rate coefficients and branching fractions at finite pressures differ significantly from the corresponding high-pressure-limit results, especially at relatively high temperatures. Finally, because it is one of the most important CH3$$\\dot{O}$$ removal mechanisms under atmospheric conditions, the reaction kinetics of

  12. Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Wang, Hongbo; Zeuschner, Janek; Eremets, Mikhail; Troyan, Ivan; Willams, Jonathan

    2016-01-01

    Carbonic acid (H2CO3) forms in small amounts when CO2 dissolves in H2O, yet decomposes rapidly under ambient conditions of temperature and pressure. Despite its fleeting existence, H2CO3 plays an important role in the global carbon cycle and in biological carbonate-containing systems. The short lifetime in water and presumed low concentration under all terrestrial conditions has stifled study of this fundamental species. Here, we have examined CO2/H2O mixtures under conditions of high pressure and high temperature to explore the potential for reaction to H2CO3 inside celestial bodies. We present a novel method to prepare solid H2CO3 by heating CO2/H2O mixtures at high pressure with a CO2 laser. Furthermore, we found that, contrary to present understanding, neutral H2CO3 is a significant component in aqueous CO2 solutions above 2.4 GPa and 110 °C as identified by IR-absorption and Raman spectroscopy. This is highly significant for speciation of deep C-O-H fluids with potential consequences for fluid-carbonate-bearing rock interactions. As conditions inside subduction zones on Earth appear to be most favorable for production of aqueous H2CO3, a role in subduction related phenomena is inferred.

  13. Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature.

    PubMed

    Wang, Hongbo; Zeuschner, Janek; Eremets, Mikhail; Troyan, Ivan; Willams, Jonathan

    2016-01-27

    Carbonic acid (H2CO3) forms in small amounts when CO2 dissolves in H2O, yet decomposes rapidly under ambient conditions of temperature and pressure. Despite its fleeting existence, H2CO3 plays an important role in the global carbon cycle and in biological carbonate-containing systems. The short lifetime in water and presumed low concentration under all terrestrial conditions has stifled study of this fundamental species. Here, we have examined CO2/H2O mixtures under conditions of high pressure and high temperature to explore the potential for reaction to H2CO3 inside celestial bodies. We present a novel method to prepare solid H2CO3 by heating CO2/H2O mixtures at high pressure with a CO2 laser. Furthermore, we found that, contrary to present understanding, neutral H2CO3 is a significant component in aqueous CO2 solutions above 2.4 GPa and 110 °C as identified by IR-absorption and Raman spectroscopy. This is highly significant for speciation of deep C-O-H fluids with potential consequences for fluid-carbonate-bearing rock interactions. As conditions inside subduction zones on Earth appear to be most favorable for production of aqueous H2CO3, a role in subduction related phenomena is inferred.

  14. Water Structure and Dynamics in Smectites: X-ray Diffraction and 2 H NMR Spectroscopy of Mg–, Ca–, Sr–, Na–, Cs–, and Pb–Hectorite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, U. Venkateswara; Bowers, Geoffrey M.; Loganathan, Narasimhan

    2016-04-06

    Variable-temperature X-ray diffraction and 2H NMR spectroscopy of the smectite mineral, hectorite, containing interlayer Na +, K +, Cs +, Mg 2+, Ca 2+, Sr 2+, and Pb 2+ equilibrated at 43% relative humidity (RH) and mixed with 2H 2O to form a paste provide a comprehensive picture of the structural environments and dynamics of interlayer 2H 2O and the relationships of these properties to interlayer hydration state, the hydration energy and polarizability of the cation, temperature, and the formation of ice-1h in the interparticle pores. The variation in basal spacing shown by the XRD data correlates well with themore » 2H NMR behavior, and the XRD data show for the first time in hectorites that crystallization of interparticle ice-1h causes a decrease in the interlayer spacing, likely due to removal of interlayer 2H 2O. The variation of the 2H NMR behavior of all the samples with decreasing temperature reflects decreasing frequencies of motion for the rotation of the 2H 2O molecules around their dipoles, reorientation of the 2H 2O molecules, and exchange of the 2H 2O molecules between interlayer sites coordinated to and not coordinated to the cations.« less

  15. Theoretical studies of UO(2)(OH)(H(2)O)(n) (+), UO(2)(OH)(2)(H(2)O)(n), NpO(2)(OH)(H(2)O)(n), and PuO(2)(OH)(H(2)O)(n) (+) (n

    PubMed

    Cao, Zhiji; Balasubramanian, K

    2009-10-28

    Extensive ab initio calculations have been carried out to study equilibrium structures, vibrational frequencies, and the nature of chemical bonds of hydrated UO(2)(OH)(+), UO(2)(OH)(2), NpO(2)(OH), and PuO(2)(OH)(+) complexes that contain up to 21 water molecules both in first and second hydration spheres in both aqueous solution and the gas phase. The structures have been further optimized by considering long-range solvent effects through a polarizable continuum dielectric model. The hydrolysis reaction Gibbs free energy of UO(2)(H(2)O)(5) (2+) is computed to be 8.11 kcal/mol at the MP2 level in good agreement with experiments. Our results reveal that it is necessary to include water molecules bound to the complex in the first hydration sphere for proper treatment of the hydrated complex and the dielectric cavity although water molecules in the second hydration sphere do not change the coordination complex. Structural reoptimization of the complex in a dielectric cavity seems inevitable to seek subtle structural variations in the solvent and to correlate with the observed spectra and thermodynamic properties in the aqueous environment. Our computations reveal dramatically different equilibrium structures in the gas phase and solution and also confirm the observed facile exchanges between the complex and bulk solvent. Complete active space multiconfiguration self-consistent field followed by multireference singles+doubles CI (MRSDCI) computations on smaller complexes confirm predominantly single-configurational nature of these species and the validity of B3LYP and MP2 techniques for these complexes in their ground states.

  16. Towards a Quantum Dynamical Study of the H_2O+H_2O Inelastic Collision: Representation of the Potential and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Ndengue, Steve Alexandre; Dawes, Richard

    2017-06-01

    Water, an essential ingredient of life, is prevalent in space and various media. H_2O in the gas phase is the major polyatomic species in the interstellar medium (ISM) and a primary target of current studies of collisional dynamics. In recent years a number of theoretical and experimental studies have been devoted to H_2O-X (with X=He, H_2, D_2, Ar, ?) elastic and inelastic collisions in an effort to understand rotational distributions of H_2O in molecular clouds. Although those studies treated several abundant species, no quantum mechanical calculation has been reported to date for a nonlinear polyatomic collider. We present in this talk the preliminary steps toward this goal, using the H_2O molecule itself as our collider, the very accurate MB-Pol surface to describe the intermolecular interaction and the MultiConfiguration Time Dependent (MCTDH) algorithm to study the dynamics. One main challenge in this effort is the need to express the Potential Energy Surface (PES) in a sum-of-products form optimal for MCTDH calculations. We will describe how this was done and present preliminary results of state-to-state probabilities.

  17. Identification of Shewanella baltica as the most important H2S-producing species during iced storage of Danish marine fish.

    PubMed

    Fonnesbech Vogel, Birte; Venkateswaran, Kasthuri; Satomi, Masataka; Gram, Lone

    2005-11-01

    Shewanella putrefaciens has been considered the main spoilage bacteria of low-temperature stored marine seafood. However, psychrotropic Shewanella have been reclassified during recent years, and the purpose of the present study was to determine whether any of the new Shewanella species are important in fish spoilage. More than 500 H2S-producing strains were isolated from iced stored marine fish (cod, plaice, and flounder) caught in the Baltic Sea during winter or summer time. All strains were identified as Shewanella species by phenotypic tests. Different Shewanella species were present on newly caught fish. During the warm summer months the mesophilic human pathogenic S. algae dominated the H2S-producing bacterial population. After iced storage, a shift in the Shewanella species was found, and most of the H2S-producing strains were identified as S. baltica. The 16S rRNA gene sequence analysis confirmed the identification of these two major groups. Several isolates could only be identified to the genus Shewanella level and were separated into two subgroups with low (44%) and high (47%) G+C mol%. The low G+C% group was isolated during winter months, whereas the high G+C% group was isolated on fish caught during summer and only during the first few days of iced storage. Phenotypically, these strains were different from the type strains of S. putrefaciens, S. oneidensis, S. colwelliana, and S. affinis, but the high G+C% group clustered close to S. colwelliana by 16S rRNA gene sequence comparison. The low G+C% group may constitute a new species. S. baltica, and the low G+C% group of Shewanella spp. strains grew well in cod juice at 0 degrees C, but three high G+C Shewanella spp. were unable to grow at 0 degrees C. In conclusion, the spoilage reactions of iced Danish marine fish remain unchanged (i.e., trimethylamine-N-oxide reduction and H2S production); however, the main H2S-producing organism was identified as S. baltica.

  18. Conductivity measurements on H 2O-bearing CO 2-rich fluids

    DOE PAGES

    Capobianco, Ryan M.; Miroslaw S. Gruszkiewicz; Bodnar, Robert J.; ...

    2014-09-10

    Recent studies report rapid corrosion of metals and carbonation of minerals in contact with carbon dioxide containing trace amounts of dissolved water. One explanation for this behavior is that addition of small amounts of H 2O to CO 2 leads to significant ionization within the fluid, thus promoting reactions at the fluid-solid interface analogous to corrosion associated with aqueous fluids. The extent of ionization in the bulk CO 2 fluid was determined using a flow-through conductivity cell capable of detecting very low conductivities. Experiments were conducted from 298 to 473 K and 7.39 to 20 MPa with H 2O concentrationsmore » up to ~1600 ppmw (xH 2O ≈ 3.9 x 10 -3), corresponding to the H 2O solubility limit in liquid CO 2 at ambient temperature. All solutions showed conductivities <10 nS/cm, indicating that the solutions were essentially ion-free. Furthermore, this observation suggests that the observed corrosion and carbonation reactions are not the result of ionization in CO 2-rich bulk phase, but does not preclude ionization in the fluid at the fluid-solid interface.« less

  19. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells.

    PubMed

    Sim, Junyoung; An, Junyeong; Elbeshbishy, Elsayed; Ryu, Hodon; Lee, Hyung-Sool

    2015-11-01

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2O2 conversion efficiency was negligible at 0.3-12%. Current density decreased for passive O2 diffusion to the cathode, but H2O2 conversion efficiency increased by 65%. An MEC equipped with a gas diffusion cathode was operated with acetate medium and domestic wastewater, which presented relatively high H2O2 conversion efficiency from 36% to 47%, although cathode overpotential was fluctuated. Due to different current densities, the maximum H2O2 production rate was 141 mg H2O2/L-h in the MEC fed with acetate medium, but it became low at 6 mg H2O2/L-h in the MEC fed with the wastewater. Our study clearly indicates that improving anodic current density and mitigating membrane fouling would be key parameters for large-scale H2O2-MECs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. X-ray investigation of molten crystal hydrates H2SO4(nH2O) and HNO3(nH2O)

    NASA Technical Reports Server (NTRS)

    Romanova, A. V.; Skryshevskiy, A. F.

    1979-01-01

    Integral analysis of the intensity of the electron density distribution curve in molten crystal hydrates provided by X-ray analysis, permits the following conclusions on the structure of the complex SO and NO ions, and the short-range order in the structure of the solution. The SO4 ion in the solution has a tetrahedral structure with an S to O distance equal to 1.5 A. For the NO3 in the solution, a planar triangular shape is probable, with an N to O distance equal to 1.2 A. Preferential distances between each of the oxygens of the SO ion and the nearest molecules of water proved near to the corresponding distances in solid crystal hydrates. For an (H2SO4)(H2O) solution, the average number of water molecules surrounding each oxygen atom of the SO4 (--) ion was on the order of 1.3 molecules. Hence the preferential distances between the water molecules and the oxygen atoms of the SO ion, and the preference of their mutual position, correspond to the fixed position of these same elements of the structure in the solid crystal hydrate.