Sample records for h2o2-induced cell death

  1. Neuroligin-3 protects retinal cells from H2O2-induced cell death via activation of Nrf2 signaling.

    PubMed

    Li, Xiu-Miao; Huang, Dan; Yu, Qing; Yang, Jian; Yao, Jin

    2018-05-25

    Intensified oxidative stress can cause severe damage to human retinal pigment epithelium (RPE) cells and retinal ganglion cells (RGCs). The potential effect of neuroligin-3 (NLGN3) against the process is studied here. Our results show that NLGN3 efficiently inhibited hydrogen peroxide (H 2 O 2 )-induced death and apoptosis in human RPE cells and RGCs. H 2 O 2 -induced reactive oxygen species (ROS) production, lipid peroxidation and DNA damage in retinal cells were alleviated by NLGN3. NLGN3 activated nuclear-factor-E2-related factor 2 (Nrf2) signaling, enabling Nrf2 protein stabilization, nuclear translocation and expression of key anti-oxidant enzymes (HO1, NOQ1 and GCLC) in RPE cells and RGCs. Further results demonstrate that NLGN3 activated Akt-mTORC1 signaling in retinal cells. Conversely, Akt-mTORC1 inhibitors (RAD001 and LY294002) reduced NLGN3-induced HO1, NOQ1 and GCLC mRNA expression. Significantly, Nrf2 silencing by targeted shRNAs reversed NLGN3-induced retinal cytoprotection against H 2 O 2 . We conclude that NLGN3 activates Nrf2 signaling to protect human retinal cells from H 2 O 2 . NLGN3 could be further tested as a valuable retinal protection agent. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Antioxidative potential of Duranta repens (Linn.) fruits against H2O2 induced cell death in vitro.

    PubMed

    Khan, Md Asaduzzaman; Rahman, Mohammad Mijanur; Tania, Mousumi; Shoshee, Nusrat Fatima; Xu, Ai-hua; Chen, Han-chun

    2013-01-01

    The effects of Duranta repens fruits were investigated on H2O2 induced oxidative cell death to evaluate its antioxidative potential in vitro. HEK293T cells were treated with different concentrations [0-1000 µg/ ml] of ethanol extract (E-Ex) and methanol extract (M-Ex) of D. repens for 24h, and then treated with 100 µM H2O2 for 24h. Cell viability, antioxidant parameters of cells, and antioxidant constituents of the extracts were determined. Treatment with limited dose of E-Ex or M-Ex increased the survival rate of H2O2-treated HEK293T cells, however the extra-high dose showed growth inhibitory effect. Treatment with E-Ex or M-Ex protected cellular lipid per-oxidation. In vitro analyses showed the 2,2-diphenyl-1-picrylhydrazyl and H2O2 scavenging activities as well as reducing potential of the extracts. We report here that the limited dose of E-Ex and M-Ex possess antioxidative potential, which can protect H2O2-induced oxidative cell damage.

  3. Melatonin partially protects 661W cells from H2O2-induced death by inhibiting Fas/FasL-caspase-3.

    PubMed

    Sánchez-Bretaño, Aída; Baba, Kenkichi; Janjua, Uzair; Piano, Ilaria; Gargini, Claudia; Tosini, Gianluca

    2017-01-01

    Previous studies have shown that melatonin (MEL) signaling is involved in the modulation of photoreceptor viability during aging. Recent work by our laboratory suggested that MEL may protect cones by modulating the Fas/FasL-caspase-3 pathway. In this study, we first investigated the presence of MEL receptors (MT 1 and MT 2 ) in 661W cells, then whether MEL can prevent H 2 O 2 -induced cell death, and last, through which pathway MEL confers protection. The mRNA and proteins of the MEL receptors were detected with quantitative PCR (q-PCR) and immunocytochemistry, respectively. To test the protective effect of MEL, 661W cells were treated with H 2 O 2 for 2 h in the presence or absence of MEL, a MEL agonist, and an antagonist. To study the pathways involved in H 2 O 2 -mediated cell death, a Fas/FasL antagonist was used before the exposure to H 2 O 2 . Finally, Fas/FasL and caspase-3 mRNA was analyzed with q-PCR and immunocytochemistry in cells treated with H 2 O 2 and/or MEL. Cell viability was analyzed by using Trypan Blue. Both MEL receptors (MT 1 and MT 2 ) were detected at the mRNA and protein levels in 661W cells. MEL partially prevented H 2 O 2 -mediated cell death (20-25%). This effect was replicated with IIK7 (a melatonin receptor agonist) when used at a concentration of 1 µM. Preincubation with luzindole (a melatonin receptor antagonist) blocked MEL protection. Kp7-6, an antagonist of Fas/FasL, blocked cell death caused by H 2 O 2 similarly to what was observed for MEL. Fas, FasL, and caspase-3 expression was increased in cells treated with H 2 O 2 , and this effect was prevented by MEL. Finally, MEL treatment partially prevented the activation of caspase-3 caused by H 2 O 2 . The results demonstrate that MEL receptors are present and functional in 661W cells. MEL can prevent photoreceptor cell death induced by H 2 O 2 via the inhibition of the proapoptotic pathway Fas/FasL-caspase-3.

  4. Neuroprotective effects of corn silk maysin via inhibition of H2O2-induced apoptotic cell death in SK-N-MC cells.

    PubMed

    Choi, Doo Jin; Kim, Sun-Lim; Choi, Ji Won; Park, Yong Il

    2014-07-25

    Neuroprotective effects of maysin, which is a flavone glycoside that was isolated from the corn silk (CS, Zea mays L.) of a Korean hybrid corn Kwangpyeongok, against oxidative stress (H2O2)-induced apoptotic cell death of human neuroblastoma SK-N-MC cells were investigated. Maysin cytotoxicity was determined by measuring cell viability using MTT and lactate dehydrogenase (LDH) assays. Intracellular reactive oxygen species (ROS) were measured using a 2,7-dichlorofluorescein diacetate (DCF-DA) assay. Apoptotic cell death was monitored by annexin V-FITC/PI double staining and by a TUNEL assay. Antioxidant enzyme mRNA levels were determined by real-time PCR. The cleavage of poly (ADP-ribose) polymerase (PARP) was measured by western blotting. Maysin pretreatment reduced the cytotoxic effect of H2O2 on SK-N-MC cells, as shown by the increase in cell viability and by reduced LDH release. Maysin pretreatment also dose-dependently reduced the intracellular ROS level and inhibited PARP cleavage. In addition, DNA damage and H2O2-induced apoptotic cell death were significantly attenuated by maysin pretreatment. Moreover, maysin pretreatment (5-50 μg/ml) for 2h significantly and dose-dependently increased the mRNA levels of antioxidant enzymes (CAT, GPx-1, SOD-1, SOD-2 and HO-1) in H2O2 (200 μM)-insulted cells. These results suggest that CS maysin has neuroprotective effects against oxidative stress (H2O2)-induced apoptotic death of human brain SK-N-MC cells through its antioxidative action. This report is the first regarding neuroprotective health benefits of corn silk maysin by its anti-apoptotic action and by triggering the expression of intracellular antioxidant enzyme systems in SK-N-MC cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Eriodictyol protects against H(2)O(2)-induced neuron-like PC12 cell death through activation of Nrf2/ARE signaling pathway.

    PubMed

    Lou, Haiyan; Jing, Xu; Ren, Dongmei; Wei, Xinbing; Zhang, Xiumei

    2012-07-01

    Eriodictyol, a flavonoid isolated from the Chinese herb Dracocephalum rupestre has long been established as an antioxidant. The present study was designed to explore the protective effects of eriodictyol against hydrogen peroxide (H(2)O(2))-induced neurotoxicity with cultured rat pheochromocytoma cells (PC12 cells) and the possible mechanisms involved. For this purpose, differentiated PC12 cells were cultured and exposed to 200 μM H(2)O(2) in the absence or presence of eriodictyol (20, 40 and 80 μM). In addition, the potential contribution of the Nrf2/ARE neuroprotective pathway in eriodictyol-mediated protection against H(2)O(2)-induced neurotoxicity was also investigated. The results showed that H(2)O(2)-induced cell death can be inhibited in the presence of eriodictyol as measured by assays for MTT and apoptosis. Further study revealed that eriodictyol induced the nuclear translocation of Nrf2, enhanced the expression of heme oxygenase (HO-1) and γ-glutamylcysteine synthetase (γ-GCS), and increased the levels of intracellular glutathione. Treatment of PC12 cells with Nrf2 small interference RNA abolished eriodictyol-induced HO-1 and γ-GCS expression and its protective effects. In conclusion, these results suggest that eriodictyol upregulates HO-1 and γ-GCS expression through the activation of Nrf2/ARE pathway and protects PC12 cells against H(2)O(2)-induced oxidative stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Involvement of H2O2 in fluazifop-P-butyl-induced cell death in bristly starbur seedlings.

    PubMed

    Luo, Xiaoyong; Liu, Zhihang; Sunohara, Yukari; Matsumoto, Hiroshi; Li, Pingliang

    2017-11-01

    In order to understand the action mechanism of fluazifop-P-butyl (FB) in bristly starbur (Acanthospermum hispidum D.C.), a susceptible plant, the role of active oxygen species (ROS) in herbicide-induced cell death in shoots was investigated. FB-induced phytotoxicity was not reduced by the antioxidants, 1,4-diazabicyclooctane (dabaco), sodium azide, l-tryptophan, d-tryptophan, hydroquinone and dimethyl pyridine N-oxide (DMPO). The activities of superoxide dismutase (SOD) and catalase (CAT), in bristly starbur seedlings were significantly increased by FB at 12 HAT and 24 HAT, while ascorbate peroxidase (APX) and glutathione reductase (GR) activities increased only at 12 HAT. The contents of H 2 O 2 in FB-treated bristly starbur seedlings were significantly higher to that of control between 8 and 24 HAT. According to the analysis of potassium iodide - starch or 3,3-diaminobenzidine, the accumulation of hydrogen peroxide was observed in the apical growing point, stem, petiole and veins of FB-treated bristly starbur seedlings at 24 HAT. The cell viability of bristly starbur seedlings treated by 10μM FB decreased at 18 HAT. These results suggested that FB-induced cell death in bristly starbur shoots may be caused by ROS (O 2 - and H 2 O 2 ) generation and lipid peroxidation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Epigallocatechin gallate (EGCG) prevents H2O2-induced oxidative stress in primary rat retinal pigment epithelial cells.

    PubMed

    Cia, David; Vergnaud-Gauduchon, Juliette; Jacquemot, Nathalie; Doly, Michel

    2014-09-01

    To determine whether the green tea polyphenol epigallocatechin gallate (EGCG) could prevent H(2)O(2)-induced oxidative stress in primary rat retinal pigment epithelial cells. Primary cultures of retinal pigment epithelium (RPE) cells were established from Long-Evans newborn rats. RPE cells were pretreated with various concentrations of EGCG for 24 h before being exposed to hydrogen peroxide (H(2)O(2)) for 2h to induce oxidative stress. Cell metabolic activity was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell death was quantified by flow cytometry using propidium iodide (PI). Treatment of RPE cells with EGCG alone does not affect the cell viability up to 50 µM. Exposure of RPE cells to 600 µM H(2)O(2) caused a significant decrease in cell viability; whereas pretreatment with 10, 25, and 50 µM EGCG significantly reduced this decrease in a dose-dependent manner. The proportion of PI-positive cells increased significantly in cultures treated with H(2)O(2) alone; whereas pretreatment of RPE cells with 50 µM EGCG significantly reduced H(2)O(2)-induced RPE cell death. Our study shows that EGCG pretreatment can protect primary rat RPE cells from H(2)O(2)-induced death. This suggests potential effect of EGCG in the prevention of retinal diseases associated with H(2)O(2)-induced oxidative stress.

  8. A simple and powerful approach for isolation of Arabidopsis mutants with increased tolerance to H2O2-induced cell death.

    PubMed

    Gechev, Tsanko; Mehterov, Nikolay; Denev, Iliya; Hille, Jacques

    2013-01-01

    A genetic approach is described to isolate mutants more tolerant to oxidative stress. A collection of T-DNA activation tag Arabidopsis thaliana mutant lines was screened for survivors under conditions that trigger H2O2-induced cell death. Oxidative stress was induced by applying the catalase (CAT) inhibitor aminotriazole (AT) in the growth media, which results in decrease in CAT enzyme activity, H2O2 accumulation, and subsequent plant death. One mutant was recovered from the screening and named oxr1 (oxidative stress resistant 1). The location of the T-DNA insertion was identified by TAIL-PCR. Oxr1 exhibited lack of cell death symptoms and more fresh weight and chlorophyll content compared to wild type. The lack of cell death correlated with more prominent induction of anthocyanins synthesis in oxr1. These results demonstrate the feasibility of AT as a screening agent for the isolation of oxidative stress-tolerant mutants and indicate a possible protective role for anthocyanins against AT-induced cell death. The chapter includes protocols for ethyl methanesulfonate mutagenesis, mutant screening using AT, T-DNA identification by TAIL-PCR, CAT activity measurements, and determination of malondialdehyde, chlorophyll, and anthocyanins. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Exogenous NAD+ decreases oxidative stress and protects H2O2-treated RPE cells against necrotic death through the up-regulation of autophagy

    PubMed Central

    Zhu, Ying; Zhao, Ke-ke; Tong, Yao; Zhou, Ya-li; Wang, Yi-xiao; Zhao, Pei-quan; Wang, Zhao-yang

    2016-01-01

    Increased oxidative stress, which can lead to the retinal pigment epithelium (RPE) cell death by inducing ATP depletion and DNA repair, is believed to be a prominent pathology in age-related macular degeneration (AMD). In the present study, we showed that and 0.1 mM nicotinamide adenine dinucleotide (NAD+) administration significantly blocked RPE cell death induced by 300 μM H2O2. Further investigation showed that H2O2 resulted in increased intracellular ROS level, activation of PARP-1 and subsequently necrotic death of RPE cells. Exogenous NAD+ administration significantly decreased intracellular and intranuclear ROS levels in H2O2-treated RPE cells. In addition, NAD+ administration to H2O2-treated RPE cells inhibited the activation of PARP-1 and protected the RPE cells against necrotic death. Moreover, exogenous NAD+ administration up-regulated autophagy in the H2O2-treated RPE cells. Inhibition of autophagy by LY294002 blocked the decrease of intracellular and intranuclear ROS level. Besides, inhibition of autophagy by LY294002 abolished the protection of exogenous NAD+ against H2O2-induced cell necrotic death. Taken together, our findings indicate that that exogenous NAD+ administration suppresses H2O2-induced oxidative stress and protects RPE cells against PARP-1 mediated necrotic death through the up-regulation of autophagy. The results suggest that exogenous NAD+ administration might be potential value for the treatment of AMD. PMID:27240523

  10. Exogenous NAD(+) decreases oxidative stress and protects H2O2-treated RPE cells against necrotic death through the up-regulation of autophagy.

    PubMed

    Zhu, Ying; Zhao, Ke-Ke; Tong, Yao; Zhou, Ya-Li; Wang, Yi-Xiao; Zhao, Pei-Quan; Wang, Zhao-Yang

    2016-05-31

    Increased oxidative stress, which can lead to the retinal pigment epithelium (RPE) cell death by inducing ATP depletion and DNA repair, is believed to be a prominent pathology in age-related macular degeneration (AMD). In the present study, we showed that and 0.1 mM nicotinamide adenine dinucleotide (NAD(+)) administration significantly blocked RPE cell death induced by 300 μM H2O2. Further investigation showed that H2O2 resulted in increased intracellular ROS level, activation of PARP-1 and subsequently necrotic death of RPE cells. Exogenous NAD(+) administration significantly decreased intracellular and intranuclear ROS levels in H2O2-treated RPE cells. In addition, NAD(+) administration to H2O2-treated RPE cells inhibited the activation of PARP-1 and protected the RPE cells against necrotic death. Moreover, exogenous NAD(+) administration up-regulated autophagy in the H2O2-treated RPE cells. Inhibition of autophagy by LY294002 blocked the decrease of intracellular and intranuclear ROS level. Besides, inhibition of autophagy by LY294002 abolished the protection of exogenous NAD(+) against H2O2-induced cell necrotic death. Taken together, our findings indicate that that exogenous NAD(+) administration suppresses H2O2-induced oxidative stress and protects RPE cells against PARP-1 mediated necrotic death through the up-regulation of autophagy. The results suggest that exogenous NAD(+) administration might be potential value for the treatment of AMD.

  11. Modulation of notch signaling pathway to prevent H2O2/menadione-induced SK-N-MC cells death by EUK134.

    PubMed

    Kamarehei, Maryam; Yazdanparast, Razieh

    2014-10-01

    The brain in Alzheimer's disease is under increased oxidative stress, and this may have a role in the pathogenesis and neural death in this disorder. It has been verified that numerous signaling pathways involved in neurodegenerative disorders are activated in response to reactive oxygen species (ROS). EUK134, a synthetic salen-manganese antioxidant complex, has been found to possess many interesting pharmacological activities awaiting exploration. The present study is to characterize the role of Notch signaling in apoptotic cell death of SK-N-MC cells. The cells were treated with hydrogen peroxide (H2O2) or menadione to induce oxidative stress. The free-radical scavenging capabilities of EUK134 were studied through the MTT assay, glutathione peroxidase (GPx) enzyme activity assay, and glutathione (GSH) Levels. The extents of lipid peroxidation, protein carbonyl formation, and intracellular ROS levels, as markers of oxidative stress, were also studied. Our results showed that H2O2/menadione reduced GSH levels and GPx activity. However, EUK134 protected cells against ROS-induced cell death by down-regulation of lipid peroxidation and protein carbonyl formation as well as restoration of antioxidant enzymes activity. ROS induced apoptosis and increased NICD and HES1 expression. Inhibition of NICD production proved that Notch signaling is involved in apoptosis through p53 activation. Moreover, H2O2/menadione led to Numb protein down-regulation which upon EUK134 pretreatment, its level increased and subsequently prevented Notch pathway activation. We indicated that EUK134 can be a promising candidate in designing natural-based drugs for ROS-induced neurodegenerative diseases. Collectively, ROS activated Notch signaling in SK-N-MC cells leading to cell apoptosis.

  12. Sailuotong Prevents Hydrogen Peroxide (H2O2)-Induced Injury in EA.hy926 Cells

    PubMed Central

    Seto, Sai Wang; Chang, Dennis; Ko, Wai Man; Zhou, Xian; Kiat, Hosen; Bensoussan, Alan; Lee, Simon M. Y.; Hoi, Maggie P. M.; Steiner, Genevieve Z.; Liu, Jianxun

    2017-01-01

    Sailuotong (SLT) is a standardised three-herb formulation consisting of Panax ginseng, Ginkgo biloba, and Crocus sativus designed for the management of vascular dementia. While the latest clinical trials have demonstrated beneficial effects of SLT in vascular dementia, the underlying cellular mechanisms have not been fully explored. The aim of this study was to assess the ability and mechanisms of SLT to act against hydrogen peroxide (H2O2)-induced oxidative damage in cultured human vascular endothelial cells (EAhy926). SLT (1–50 µg/mL) significantly suppressed the H2O2-induced cell death and abolished the H2O2-induced reactive oxygen species (ROS) generation in a concentration-dependent manner. Similarly, H2O2 (0.5 mM; 24 h) caused a ~2-fold increase in lactate dehydrogenase (LDH) release from the EA.hy926 cells which were significantly suppressed by SLT (1–50 µg/mL) in a concentration-dependent manner. Incubation of SLT (50 µg/mL) increased superoxide dismutase (SOD) activity and suppressed the H2O2-enhanced Bax/Bcl-2 ratio and cleaved caspase-3 expression. In conclusion, our results suggest that SLT protects EA.hy916 cells against H2O2-mediated injury via direct reduction of intracellular ROS generation and an increase in SOD activity. These protective effects are closely associated with the inhibition of the apoptotic death cascade via the suppression of caspase-3 activation and reduction of Bax/Bcl-2 ratio, thereby indicating a potential mechanism of action for the clinical effects observed. PMID:28067784

  13. Tanshinone IIA protects H9c2 cells from oxidative stress-induced cell death via microRNA-133 upregulation and Akt activation.

    PubMed

    Gu, Yunfei; Liang, Zhuo; Wang, Haijun; Jin, Jun; Zhang, Shouyan; Xue, Shufeng; Chen, Jianfeng; He, Huijuan; Duan, Kadan; Wang, Jing; Chang, Xuewei; Qiu, Chunguang

    2016-08-01

    The aim of the present study was to investigate the cardioprotective effect of tanshinone IIA and the underlying molecular mechanisms. An in vitro model of oxidative stress injury was established in cardiac H9c2 cells, and the effects of tanshinone IIa were investigated using cell viability, reverse transcription-quantitative polymerase chain reaction and western blotting assays. The results demonstrated that tanshinone IIA protects H9c2 cells from H 2 O 2 -induced cell death in a concentration-dependent manner, via a mechanism involving microRNA-133 (miR-133), and that treatment with TIIA alone exerted no cytotoxic effects on H9c2. In order to further elucidate the mechanisms underlying the actions of TIIA, reverse transcription-quantitative polymease chain reaction and western blot analysis were performed. Reductions in miR-133 expression levels induced by increasing concentrations of H 2 O 2 were reversed by treatment with tanshinone IIA. In addition, the inhibition of miR-133 by transfection with an miR-133 inhibitor abolished the cardioprotective effects of tanshinone IIA against H 2 O 2 -induced cell death. Furthermore, western blot analysis demonstrated that tanshinone IIA activated Akt kinase via the phosphorylation of serine 473. Inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by pretreatment with the PI3K specific inhibitors wortmannin and LY294002 also eliminated the cardioprotective effects of tanshinone IIA against H 2 O 2 -induced cell death. Western blot analysis demonstrated that H 2 O 2 -induced reductions in B cell lymphoma 2 (Bcl-2) expression levels were reversed by tanshinone IIA. In addition, the effect of tanshinone IIA on Bcl-2 protein expression level in an oxidative environment was suppressed by a PI3K inhibitor, wortmannin, indicating that tanshinone IIA exerts cardioprotective effects against H 2 O 2 -induced cell death via the activation of the PI3K/Akt signal transduction pathway and the consequent

  14. Synergistic Effect of H2O2 and NO2 in Cell Death Induced by Cold Atmospheric He Plasma

    PubMed Central

    Girard, Pierre-Marie; Arbabian, Atousa; Fleury, Michel; Bauville, Gérard; Puech, Vincent; Dutreix, Marie; Sousa, João Santos

    2016-01-01

    Cold atmospheric pressure plasmas (CAPPs) have emerged over the last decade as a new promising therapy to fight cancer. CAPPs’ antitumor activity is primarily due to the delivery of reactive oxygen and nitrogen species (RONS), but the precise determination of the constituents linked to this anticancer process remains to be done. In the present study, using a micro-plasma jet produced in helium (He), we demonstrate that the concentration of H2O2, NO2− and NO3− can fully account for the majority of RONS produced in plasma-activated buffer. The role of these species on the viability of normal and tumour cell lines was investigated. Although the degree of sensitivity to H2O2 is cell-type dependent, we show that H2O2 alone cannot account for the toxicity of He plasma. Indeed, NO2−, but not NO3−, acts in synergy with H2O2 to enhance cell death in normal and tumour cell lines to a level similar to that observed after plasma treatment. Our findings suggest that the efficiency of plasma treatment strongly depends on the combination of H2O2 and NO2− in determined concentrations. We also show that the interaction of the He plasma jet with the ambient air is required to generate NO2− and NO3− in solution. PMID:27364563

  15. Retino-protective effect of Bucida buceras against oxidative stress induced by H2O2 in human retinal pigment epithelial cells line.

    PubMed

    Iloki-Assanga, Simon Bernard; Lewis-Luján, Lidianys María; Fernández-Angulo, Daniela; Gil-Salido, Armida Andrea; Lara-Espinoza, Claudia Lizeth; Rubio-Pino, José Luis

    2015-07-29

    Reactive Oxygen Species (ROS) impair the physiological functions of Retinal Pigment Epithelial (RPE) cells, which are known as one major cause of age-related macular degeneration and retinopathy diseases. The purpose of this study is to explore the cytoprotective effects of the antioxidant Bucida buceras extract in co-treatment with hydrogen peroxide (H2O2) delivery as a single addition or with continuous generation using glucose oxidase (GOx) in ARPE-19 cell cultures. The mechanism of Bucida buceras extract is believed to be associated with their antioxidant capacity to protect cells against oxidative stress. A comparative oxidative stress H2O2-induced was performed by addition and enzymatic generation using glucose oxidase on human retinal pigment epithelial cells line. H2O2-induced injury was measured by toxic effects (cell death and apoptotic pathway) and intracellular redox status: glutathione (GSH), antioxidant enzymes (catalase and glutathione peroxidase) and reducing power (FRAP). The retino-protective effect of co-treatment with Bucida buceras extract on H2O2-induced human RPE cell injury was investigated by cell death (MTT assay) and oxidative stress biomarkers (H2O2, GSH, CAT, GPx and FRAP). Bucida buceras L. extract is believed to be associated with the ability to prevent cellular oxidative stress. When added as a pulse, H2O2 is rapidly depleted and the cytotoxicity analyses show that cells can tolerate short exposure to high peroxide doses delivered as a pulse but are susceptible to lower chronic doses. Co-treatment with Bucida buceras was able to protect the cells against H2O2-induced injury. In addition to preventing cell death treatment with antioxidant plant could also reverse the significant decrease in GSH level, catalase activity and reducing power caused by H2O2. These findings suggest that Bucida buceras could protect RPE against ocular pathogenesis associated with oxidative stress induced by H2O2-delivered by addition and enzymatic generation.

  16. Nitric oxide production is not required for dihydrosphingosine-induced cell death in tobacco BY-2 cells.

    PubMed

    Da Silva, Daniel; Lachaud, Christophe; Cotelle, Valérie; Brière, Christian; Grat, Sabine; Mazars, Christian; Thuleau, Patrice

    2011-05-01

    Sphinganine or dihydrosphingosine (d18:0, DHS), one of the most abundant free sphingoid Long Chain Base (LCB) in plants, is known to induce a calcium dependent programmed cell death (PCD) in tobacco BY-2 cells. In addition, we have recently shown that DHS triggers a production of H2O2, via the activation of NADPH oxidase(s). However, this production of H2O2 is not correlated with the DHS-induced cell death but would rather be associated with basal cell defense mechanisms. In the present study, we extend our current knowledge of the DHS signaling pathway, by demonstrating that DHS also promotes a production of nitric oxide (NO) in tobacco BY-2 cells. As for H2O2, this NO production is not necessary for cell death induction. 

  17. Curcumin-induced heme oxygenase-1 expression prevents H2O2-induced cell death in wild type and heme oxygenase-2 knockout adipose-derived mesenchymal stem cells.

    PubMed

    Cremers, Niels A J; Lundvig, Ditte M S; van Dalen, Stephanie C M; Schelbergen, Rik F; van Lent, Peter L E M; Szarek, Walter A; Regan, Raymond F; Carels, Carine E; Wagener, Frank A D T G

    2014-10-08

    Mesenchymal stem cell (MSC) administration is a promising adjuvant therapy to treat tissue injury. However, MSC survival after administration is often hampered by oxidative stress at the site of injury. Heme oxygenase (HO) generates the cytoprotective effector molecules biliverdin/bilirubin, carbon monoxide (CO) and iron/ferritin by breaking down heme. Since HO-activity mediates anti-apoptotic, anti-inflammatory, and anti-oxidative effects, we hypothesized that modulation of the HO-system affects MSC survival. Adipose-derived MSCs (ASCs) from wild type (WT) and HO-2 knockout (KO) mice were isolated and characterized with respect to ASC marker expression. In order to analyze potential modulatory effects of the HO-system on ASC survival, WT and HO-2 KO ASCs were pre-treated with HO-activity modulators, or downstream effector molecules biliverdin, bilirubin, and CO before co-exposure of ASCs to a toxic dose of H2O2. Surprisingly, sensitivity to H2O2-mediated cell death was similar in WT and HO-2 KO ASCs. However, pre-induction of HO-1 expression using curcumin increased ASC survival after H2O2 exposure in both WT and HO-2 KO ASCs. Simultaneous inhibition of HO-activity resulted in loss of curcumin-mediated protection. Co-treatment with glutathione precursor N-Acetylcysteine promoted ASC survival. However, co-incubation with HO-effector molecules bilirubin and biliverdin did not rescue from H2O2-mediated cell death, whereas co-exposure to CO-releasing molecules-2 (CORM-2) significantly increased cell survival, independently from HO-2 expression. Summarizing, our results show that curcumin protects via an HO-1 dependent mechanism against H2O2-mediated apoptosis, and likely through the generation of CO. HO-1 pre-induction or administration of CORMs may thus form an attractive strategy to improve MSC therapy.

  18. Novel role of TRPV2 in promoting the cytotoxicity of H2O2-mediated oxidative stress in human hepatoma cells.

    PubMed

    Ma, Wenbo; Li, Caiyue; Yin, Shikui; Liu, Jingxin; Gao, Chao; Lin, Zuoxian; Huang, Rongqi; Huang, Jufang; Li, Zhiyuan

    2015-12-01

    Oxidative stress is important for the initiation and progression of cancers, which confers the cells with a survival advantage by inducing oxidative adaption and drug resistance. Therefore, developing strategies to promote oxidative stress-induced cytotoxicity could be important for cancer therapy. Herein, we found that H2O2-mediated oxidative stress increases TRPV2 expression in human hepatoma (HepG2 and Huh-7) cells. This occurred at the mRNA and protein levels in a dose-dependent manner. The significance of TRPV2 in promoting H2O2-induced cell death was demonstrated in gain and loss of function studies with overexpression and knockdown of TRPV2, respectively. Mechanistically, H2O2-induced cell death involves inhibition of pro-survival signaling proteins (Akt, Nrf2) and activation of pro-death signaling proteins (p38, JNK1). Overexpression of TRPV2 in H2O2-treated hepatoma cells aggravates the inhibition of Akt and Nrf2, while it enhances the activation of p38 and JNK1 at the early stage of cell death. Interestingly, increased expression of TRPV2 in HepG2 cells improved the efficacy of stress-associated chemicals to induce cell death. Our findings suggest that TRPV2 acts as an important enhancer for H2O2-induced cytotoxicity. This process occurred by the inhibition of Akt and Nrf2 as well as the early activation of p38 and JNK1. These findings have important implications for inhibition of oxidative adaption and drug resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Chlorogenic acid analogues from Gynura nepalensis protect H9c2 cardiomyoblasts against H2O2-induced apoptosis

    PubMed Central

    Yu, Bang-wei; Li, Jin-long; Guo, Bin-bin; Fan, Hui-min; Zhao, Wei-min; Wang, He-yao

    2016-01-01

    Aim: Chlorogenic acid has shown protective effect on cardiomyocytes against oxidative stress-induced damage. Herein, we evaluated nine caffeoylquinic acid analogues (1–9) isolated from the leaves of Gynura nepalensis for their protective effect against H2O2-induced H9c2 cardiomyoblast damage and explored the underlying mechanisms. Methods: H9c2 cardiomyoblasts were exposed to H2O2 (0.3 mmol/L) for 3 h, and cell viability was detected with MTT assay. Hoechst 33342 staining was performed to evaluate cell apoptosis. MMPs (mitochondrial membrane potentials) were measured using a JC-1 assay kit, and ROS (reactive oxygen species) generation was measured using CM-H2 DCFDA. The expression levels of relevant proteins were detected using Western blot analysis. Results: Exposure to H2O2 markedly decreased the viability of H9c2 cells and catalase activity, and increased LDH release and intracellular ROS production; accompanied by a loss of MMP and increased apoptotic rate. Among the 9 chlorogenic acid analogues as well as the positive control drug epigallocatechin gallate (EGCG) tested, compound 6 (3,5-dicaffeoylquinic acid ethyl ester) was the most effective in protecting H9c2 cells from H2O2-induced cell death. Pretreatment with compound 6 (1.56–100 μmol/L) dose-dependently alleviated all the H2O2-induced detrimental effects. Moreover, exposure to H2O2 significantly increased the levels of Bax, p53, cleaved caspase-8, and cleaved caspase-9, and decreased the level of Bcl-2, resulting in cell apoptosis. Exposure to H2O2 also significantly increased the phosphorylation of p38, JNK and ERK in the H9c2 cells. Pretreatment with compound 6 (12.5 and 25 μmol/L) dose-dependently inhibited the H2O2-induced increase in the level of cleaved caspase-9 but not of cleaved caspase-8. It also dose-dependently suppressed the H2O2-induced phosphorylation of JNK and ERK but not that of p38. Conclusion: Compound 6 isolated from the leaves of Gynura nepalensis potently protects H9c2

  20. Protective effect of Dendrobium officinale polysaccharides on H2O2-induced injury in H9c2 cardiomyocytes.

    PubMed

    Zhao, Xiaoyan; Dou, Mengmeng; Zhang, Zhihao; Zhang, Duoduo; Huang, Chengzhi

    2017-10-01

    The preliminary studies have shown that Dendrobium officinale possessed therapeutic effects on hypertension and atherosclerosis. Studies also reported that Dendrobium officinale polysaccharides showed antioxidant capabilities. However, little is known about its effects on myocardial cells under oxidative stress. The present study was designed to study the protective effect of Dendrobium officinale polysaccharides against H 2 O 2 -induced oxidative stress in H9c2 cells. MTT assay was carried out to determine the cell viability of H9c2 cells when pretreated with Dendrobium officinale polysaccharides. Fluorescent microscopy measurements were performed for evaluating the apoptosis in H9c2 cells. Furthermore, effects of Dendrobium officinale polysaccharides on the activities of antioxidative indicators (malondialdehyde, superoxide dismutase), reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) levels were analyzed. Dendrobium officinale polysaccharides attenuated H 2 O 2 -induced cell death, as determined by the MTT assay. Dendrobium officinale polysaccharides decreased malondialdehyde levels, increased superoxide dismutase activities, and inhibited the generation of intracellular ROS. Moreover, pretreatment with Dendrobium officinale polysaccharides also inhibited apoptosis and increased the MMP levels in H9c2 cells. These results suggested the protective effects of Dendrobium officinale polysaccharides against H 2 O 2 -induced injury in H9c2 cells. The results also indicated the anti-oxidative capability of Dendrobium officinale polysaccharides. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Cell death in the unicellular green alga Micrasterias upon H2O2 induction

    PubMed Central

    Darehshouri, Anza; Affenzeller, Matthias; Lütz-Meindl, Ursula

    2010-01-01

    In the present study we investigate whether the unicellular green alga Micrasterias denticulata is capable of executing programmed cell death (PCD) upon experimental induction and by which morphological, molecular and physiological hallmarks it is characterized. This is particularly interesting as unicellular fresh water green algae growing in shallow bog ponds are exposed to extreme environmental conditions and the capability to perform PCD may provide an important strategy to guarantee survival of the population. The theoretically “immortal” alga Micrasterias is an ideal object for such investigations as it has served as a cell biological model system since many years and details on its growth properties, physiology and ultrastructure throughout the cell cycle are well known. Treatment with low concentrations of H2O2 known to induce PCD in other organisms resulted in severe ultrastructural changes of organelles as observed in TEM. These include deformation and partly disintegration of mitochondria, abnormal dilatation of cisternal rims of dictyosomes, the occurrence of multivesicular bodies, an increase in the number of ER compartments and slight condensation of chromatin. Additionally, a statistically significant increase in caspase-3-like activity could be detected which was abrogated by a caspase-3 inhibitor. Photosynthetic activity measured by fast chlorophyll fluorescence decreased as a consequence of H2O2 exposure whereas pigment composition, except of a reduction in carotenoids, was the same as in untreated controls. TUNEL positive staining and ladder-like degradation of DNA, both frequently regarded as PCD hallmark in higher plants could only be detected in dead Micrasterias cells. PMID:18950431

  2. Neuroprotective Effect of CeO2@PAA-LXW7 Against H2O2-Induced Cytotoxicity in NGF-Differentiated PC12 Cells.

    PubMed

    Jia, Jingjing; Zhang, Ting; Chi, Jieshan; Liu, Xiaoma; Sun, Jingjing; Xie, Qizhi; Peng, Sijia; Li, Changyan; Yi, Li

    2018-06-07

    CeO 2 nanoparticles (nanoceria) have been used in many studies as a powerful free radical scavenger, and LXW7, a small-molecule peptide, can specifically target the integrin αvβ3, whose neuroprotective effects have also been demonstrated. The objective of this study is to observe the neuroprotective effect and potential mechanism of CeO 2 @PAA-LXW7, a new compound that couples CeO 2 @PAA (nanoceria modified with the functional group of polyacrylic acid) with LXW7 via a series of chemical reactions, in H 2 O 2 -induced NGF-differentiated PC12 cells. We examined the effects of LXW7, CeO 2 @PAA, and CeO 2 @PAA-LXW7 on the viability of primary hippocampal neurons and found that there was no significant difference under control conditions, but increased cellular viability was observed in the case of H 2 O 2 -induced injury. We used H 2 O 2 -induced NGF-differentiated PC12 cells as the classical injury model to investigate the neuroprotective effect of CeO 2 @PAA-LXW7. In this study, LXW7, CeO 2 @PAA, and CeO 2 @PAA-LXW7 inhibit H 2 O 2 -induced oxidative stress by reducing the production of reactive oxygen species (ROS) and regulating Bax/Bcl-2, cleaved caspase-3 and mitochondrial cytochrome C (cyto C) in the apoptotic signaling pathways. We found that the levels of phosphorylation of focal adhesion kinase (FAK) and of signal transducer and activator of transcription 3 (STAT3) increased significantly in H 2 O 2 -induced NGF-differentiated PC12 cells, whereas LXW7, CeO 2 @PAA, and CeO 2 @PAA-LXW7 suppressed the increase to different degrees. Among the abovementioned changes, the inhibitory effect of CeO 2 @PAA-LXW7 on H 2 O 2 -induced changes, including the increases in the levels of p-FAK and p-STAT3, is more obvious than that of LXW7 or CeO 2 @PAA alone. In summary, these results suggest that integrin signaling participates in the regulation of apoptosis via the regulation of ROS and of the apoptosis pathway in H 2 O 2 -induced NGF-differentiated PC12 cells. LXW7, CeO

  3. 5-AIQ inhibits H{sub 2}O{sub 2}-induced apoptosis through reactive oxygen species scavenging and Akt/GSK-3β signaling pathway in H9c2 cardiomyocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Eun-Seok; Kang, Jun Chul; Kang, Do-Hyun

    2013-04-01

    Poly(adenosine 5′-diphosphate ribose) polymerase (PARP) is a nuclear enzyme activated by DNA strand breaks and plays an important role in the tissue injury associated with ischemia and reperfusion. The aim of the present study was to investigate the protective effect of 5-aminoisoquinolinone (5-AIQ), a PARP inhibitor, against oxidative stress-induced apoptosis in H9c2 cardiomyocytes. 5-AIQ pretreatment significantly protected against H{sub 2}O{sub 2}-induced cell death, as determined by the XTT assay, cell counting, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and Western blot analysis of apoptosis-related proteins such as caspase-3, Bax, and Bcl-2. Upregulation of antioxidant enzymes such as manganese superoxidemore » dismutase and catalase accompanied the protective effect of 5-AIQ on H{sub 2}O{sub 2}-induced cell death. Our data also showed that 5-AIQ pretreatment protected H9c2 cells from H{sub 2}O{sub 2}-induced apoptosis by triggering activation of Akt and glycogen synthase kinase-3β (GSK-3β), and that the protective effect of 5-AIQ was diminished by the PI3K inhibitor LY294002 at a concentration that effectively abolished 5-AIQ-induced Akt and GSK-3β activation. In addition, inhibiting the Akt/GSK-3β pathway by LY294002 significantly attenuated the 5-AIQ-mediated decrease in cleaved caspase-3 and Bax activation and H9c2 cell apoptosis induction. Taken together, these results demonstrate that 5-AIQ prevents H{sub 2}O{sub 2}-induced apoptosis in H9c2 cells by reducing intracellular reactive oxygen species production, regulating apoptosis-related proteins, and activating the Akt/GSK-3β pathway. - Highlights: ► 5-AIQ, a PARP inhibitor, decreased H{sub 2}O{sub 2}-induced H9c2 cell death and apoptosis. ► 5-AIQ upregulated antioxidant Mn-SOD and catalase, while decreasing ROS production. ► 5-AIQ decreased H{sub 2}O{sub 2}-induced increase in cleaved caspase-3 and Bax and decrease in Bcl2. ► 5-AIQ activated Akt and

  4. Cyanide-induced death of dopaminergic cells is mediated by uncoupling protein-2 up-regulation and reduced Bcl-2 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X.; Li, L.; Zhang, L.

    Cyanide is a potent inhibitor of mitochondrial oxidative metabolism and produces mitochondria-mediated death of dopaminergic neurons and sublethal intoxications that are associated with a Parkinson-like syndrome. Cyanide toxicity is enhanced when mitochondrial uncoupling is stimulated following up-regulation of uncoupling protein-2 (UCP-2). In this study, the role of a pro-survival protein, Bcl-2, in cyanide-mediated cell death was determined in a rat dopaminergic immortalized mesencephalic cell line (N27 cells). Following pharmacological up-regulation of UCP-2 by treatment with Wy14,643, cyanide reduced cellular Bcl-2 expression by increasing proteasomal degradation of the protein. The increased turnover of Bcl-2 was mediated by an increase of oxidativemore » stress following UCP-2 up-regulation. The oxidative stress involved depletion of mitochondrial glutathione (mtGSH) and increased H{sub 2}O{sub 2} generation. Repletion of mtGSH by loading cells with glutathione ethyl ester reduced H{sub 2}O{sub 2} generation and in turn blocked the cyanide-induced decrease of Bcl-2. To determine if UCP-2 mediated the response, RNAi knock down was conducted. The RNAi decreased cyanide-induced depletion of mtGSH, reduced H{sub 2}O{sub 2} accumulation, and inhibited down-regulation of Bcl-2, thus blocking cell death. To confirm the role of Bcl-2 down-regulation in the cell death, it was shown that over-expression of Bcl-2 by cDNA transfection attenuated the enhancement of cyanide toxicity after UCP-2 up-regulation. It was concluded that UCP-2 up-regulation sensitizes cells to cyanide by increasing cellular oxidative stress, leading to an increase of Bcl-2 degradation. Then the reduced Bcl-2 levels sensitize the cells to cyanide-mediated cell death.« less

  5. 5-AIQ inhibits H2O2-induced apoptosis through reactive oxygen species scavenging and Akt/GSK-3β signaling pathway in H9c2 cardiomyocytes.

    PubMed

    Park, Eun-Seok; Kang, Jun Chul; Kang, Do-Hyun; Jang, Yong Chang; Yi, Kyu Yang; Chung, Hun-Jong; Park, Jong Seok; Kim, Bokyung; Feng, Zhong-Ping; Shin, Hwa-Sup

    2013-04-01

    Poly(adenosine 5'-diphosphate ribose) polymerase (PARP) is a nuclear enzyme activated by DNA strand breaks and plays an important role in the tissue injury associated with ischemia and reperfusion. The aim of the present study was to investigate the protective effect of 5-aminoisoquinolinone (5-AIQ), a PARP inhibitor, against oxidative stress-induced apoptosis in H9c2 cardiomyocytes. 5-AIQ pretreatment significantly protected against H2O2-induced cell death, as determined by the XTT assay, cell counting, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and Western blot analysis of apoptosis-related proteins such as caspase-3, Bax, and Bcl-2. Upregulation of antioxidant enzymes such as manganese superoxide dismutase and catalase accompanied the protective effect of 5-AIQ on H2O2-induced cell death. Our data also showed that 5-AIQ pretreatment protected H9c2 cells from H2O2-induced apoptosis by triggering activation of Akt and glycogen synthase kinase-3β (GSK-3β), and that the protective effect of 5-AIQ was diminished by the PI3K inhibitor LY294002 at a concentration that effectively abolished 5-AIQ-induced Akt and GSK-3β activation. In addition, inhibiting the Akt/GSK-3β pathway by LY294002 significantly attenuated the 5-AIQ-mediated decrease in cleaved caspase-3 and Bax activation and H9c2 cell apoptosis induction. Taken together, these results demonstrate that 5-AIQ prevents H2O2-induced apoptosis in H9c2 cells by reducing intracellular reactive oxygen species production, regulating apoptosis-related proteins, and activating the Akt/GSK-3β pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Hydrophilic CeO2 nanocubes protect pancreatic β-cell line INS-1 from H2O2-induced oxidative stress

    NASA Astrophysics Data System (ADS)

    Lyu, Guang-Ming; Wang, Yan-Jie; Huang, Xue; Zhang, Huai-Yuan; Sun, Ling-Dong; Liu, Yan-Jun; Yan, Chun-Hua

    2016-04-01

    Oxidative stress plays a key role in the occurrence and development of diabetes. With their unique redox properties, CeO2 nanoparticles (nanoceria) exhibit promising potential for the treatment of diabetes resulting from oxidative stress. Here, we develop a novel preparation of hydrophilic CeO2 nanocubes (NCs) with two different sizes (5 nm and 25 nm) via an acetate assisted hydrothermal method. Dynamic light scattering, zeta potential measurements and thermogravimetric analyses were utilized to investigate the changes in the physico-chemical characteristics of CeO2 NCs when exposed to in vitro cell culture conditions. CCK-8 assays revealed that the CeO2 NCs did not impair cell proliferation in the pancreatic β-cell line INS-1 at the highest dose of 200 μg mL-1 over the time scale of 72 h, while being able to protect INS-1 cells from H2O2-induced cytotoxicity even after protein adsorption. It is also noteworthy that nanoceria with a smaller hydrodynamic radius exhibit stronger antioxidant and anti-apoptotic effects, which is consistent with their H2O2 quenching capability in biological systems. These findings suggest that nanoceria can be used as an excellent antioxidant for controlling oxidative stress-induced pancreatic β-cell damage.Oxidative stress plays a key role in the occurrence and development of diabetes. With their unique redox properties, CeO2 nanoparticles (nanoceria) exhibit promising potential for the treatment of diabetes resulting from oxidative stress. Here, we develop a novel preparation of hydrophilic CeO2 nanocubes (NCs) with two different sizes (5 nm and 25 nm) via an acetate assisted hydrothermal method. Dynamic light scattering, zeta potential measurements and thermogravimetric analyses were utilized to investigate the changes in the physico-chemical characteristics of CeO2 NCs when exposed to in vitro cell culture conditions. CCK-8 assays revealed that the CeO2 NCs did not impair cell proliferation in the pancreatic β-cell line INS-1 at

  7. NO and H2O2 contribute to SO2 toxicity via Ca2+ signaling in Vicia faba guard cells.

    PubMed

    Yi, Min; Bai, Heli; Xue, Meizhao; Yi, Huilan

    2017-04-01

    NO and H 2 O 2 have been implicated as important signals in biotic and abiotic stress responses of plants to the environment. Previously, we have shown that SO 2 exposure increased the levels of NO and H 2 O 2 in plant cells. We hypothesize that, as signaling molecules, NO and H 2 O 2 mediate SO 2 -caused toxicity. In this paper, we show that SO 2 hydrates caused guard cell death in a concentration-dependent manner in the concentration range of 0.25 to 6 mmol L -1 , which was associated with elevation of intracellular NO, H 2 O 2 , and Ca 2+ levels in Vicia faba guard cells. NO donor SNP enhanced SO 2 toxicity, while NO scavenger c-PTIO and NO synthesis inhibitors L-NAME and tungstate significantly prevented SO 2 toxicity. ROS scavenger ascorbic acid (AsA) and catalase (CAT), Ca 2+ chelating agent EGTA, and Ca 2+ channel inhibitor LaCl 3 also markedly blocked SO 2 toxicity. In addition, both c-PTIO and AsA could completely block SO 2 -induced elevation of intracellular Ca 2+ level. Moreover, c-PTIO efficiently blocked SO 2 -induced H 2 O 2 elevation, and AsA significantly blocked SO 2 -induced NO elevation. These results indicate that extra NO and H 2 O 2 are produced and accumulated in SO 2 -treated guard cells, which further activate Ca 2+ signaling to mediate SO 2 toxicity. Our findings suggest that both NO and H 2 O 2 contribute to SO 2 toxicity via Ca 2+ signaling.

  8. Role of transglutaminase 2 in A1 adenosine receptor- and β2-adrenoceptor-mediated pharmacological pre- and post-conditioning against hypoxia-reoxygenation-induced cell death in H9c2 cells.

    PubMed

    Vyas, Falguni S; Nelson, Carl P; Dickenson, John M

    2018-01-15

    Pharmacologically-induced pre- and post-conditioning represent attractive therapeutic strategies to reduce ischaemia/reperfusion injury during cardiac surgery and following myocardial infarction. We have previously reported that transglutaminase 2 (TG2) activity is modulated by the A 1 adenosine receptor and β 2 -adrenoceptor in H9c2 cardiomyoblasts. The primary aim of this study was to determine the role of TG2 in A 1 adenosine receptor and β 2 -adrenoceptor-induced pharmacological pre- and post-conditioning in the H9c2 cells. H9c2 cells were exposed to 8h hypoxia (1% O 2 ) followed by 18h reoxygenation, after which cell viability was assessed by monitoring mitochondrial reduction of MTT, lactate dehydrogenase release and caspase-3 activation. N 6 -cyclopentyladenosine (CPA; A 1 adenosine receptor agonist), formoterol (β 2 -adrenoceptor agonist) or isoprenaline (non-selective β-adrenoceptor agonist) were added before hypoxia/reoxygenation (pre-conditioning) or at the start of reoxygenation following hypoxia (post-conditioning). Pharmacological pre- and post-conditioning with CPA and isoprenaline significantly reduced hypoxia/reoxygenation-induced cell death. In contrast, formoterol did not elicit protection. Pre-treatment with pertussis toxin (G i/o -protein inhibitor), DPCPX (A 1 adenosine receptor antagonist) or TG2 inhibitors (Z-DON and R283) attenuated the A 1 adenosine receptor-induced pharmacological pre- and post-conditioning. Similarly, pertussis toxin, ICI 118,551 (β 2 -adrenoceptor antagonist) or TG2 inhibition attenuated the isoprenaline-induced cell survival. Knockdown of TG2 using small interfering RNA (siRNA) attenuated CPA and isoprenaline-induced pharmacological pre- and post-conditioning. Finally, proteomic analysis following isoprenaline treatment identified known (e.g. protein S100-A6) and novel (e.g. adenine phosphoribosyltransferase) protein substrates for TG2. These results have shown that A 1 adenosine receptor and β 2 -adrenoceptor-induced

  9. Antioxidant ameliorating effects against H2O2-induced cytotoxicity in primary endometrial cells.

    PubMed

    Zal, F; Khademi, F; Taheri, R; Mostafavi-Pour, Z

    2018-02-01

    Oxidative stress and a disrupted antioxidant system are involved in a variety of pregnancy complications. In the present study, the role of vitamin E (Vit E) and folate as radical scavengers on the GSH homeostasis in stress oxidative induced in rat endometrial cells was investigated. Primary endometrial stromal cell cultures treated with 50 and 200 µM of H 2 O 2 and evaluated the cytoprotective effects of Vit E (5 µM) and folate (0.01 µM) in H 2 O 2 -treated cells for 24 h. Following the exposure of endometrial cells to H 2 O 2 alone and in the presence of Vit E and/or folate, cell survival, glutathione peroxidase (GPx) and glutathione reductase activities and the level of reduced glutathione (GSH) were measured. Cell adhesions comprise of cell attachment and spreading on collagen were determined. Flow cytometric analysis using annexin V was used to measure apoptosis. H 2 O 2 treatment showed a marked decrease in cell viability, GPx and GR activities and the level of GSH. Although Vit E or folate had some protective effect, combination therapy with Vit E and folate attenuated all the changes due to H 2 O 2 toxicity. An increasing number of alive cells was showed in the cells exposed to H 2 O 2 (50 µM) accompanied by co-treatment with Vit E and folic acid. The present findings indicate that co-administration of Vit E and folate before and during pregnancy may maintain a viable pregnancy and contribute to its clinical efficacy for the treatment of some idiopathic infertility.

  10. Caffeic acid phenethyl ester protects 661W cells from H2O2-mediated cell death and enhances electroretinography response in dim-reared albino rats

    PubMed Central

    Chen, Hui; Tran, Julie-Thu A.; Anderson, Robert E.

    2012-01-01

    Purpose Caffeic acid phenethyl ester (CAPE), an active component of honeybee propolis, has a wide range of beneficial properties. The purpose of this study was to test the protective role of CAPE in 661W cells (in vitro) against H2O2-mediated cell death and in albino rats (in vivo) against various light conditions. Methods The 661W cells were pretreated with CAPE and then stressed with H2O2. Cell death was measured with lactate dehydrogenase (LDH) release assay, and mRNA and proteins were analyzed. Sprague Dawley rats were raised on either a control or CAPE (0.02%) diet and exposed to various light conditions for short or long periods. Retinal histology, mRNA, protein, lipid composition, and retinal function by electroretinography (ERG) were measured at the end of feeding. Results Pretreatment of 661W cells with CAPE reduced H2O2-mediated cell death in a dose-dependent manner and induced expression of heme oxygenase-1 (Ho1). Albino rats fed with CAPE had greater expression of Ho1 and intercellular adhesion molecule 1 (Icam1), less expression of FOS-like antigen (Fosl) and lipoxygenase 12 (Lox12) genes in the retina, less translocation of nuclear factor kappaB protein to the nucleus, and a lower molar ratio of n-3 polyunsaturated fatty acids. Further, the ERGs of the retinas of CAPE-fed rats were significantly higher than those of the control-fed rats when raised in dim light. Conclusions CAPE can activate the antioxidative gene expression pathway in retinal cells in vitro and in vivo. Feeding CAPE to albino rats can enhance ERG responses and change the lipid profile in the rats’ retinas. PMID:22690111

  11. Sulfated lentinan induced mitochondrial dysfunction leads to programmed cell death of tobacco BY-2 cells.

    PubMed

    Wang, Jie; Wang, Yaofeng; Shen, Lili; Qian, Yumei; Yang, Jinguang; Wang, Fenglong

    2017-04-01

    Sulphated lentinan (sLTN) is known to act as a resistance inducer by causing programmed cell death (PCD) in tobacco suspension cells. However, the underlying mechanism of this effect is largely unknown. Using tobacco BY-2 cell model, morphological and biochemical studies revealed that mitochondrial reactive oxygen species (ROS) production and mitochondrial dysfunction contribute to sLNT induced PCD. Cell viability, and HO/PI fluorescence imaging and TUNEL assays confirmed a typical cell death process caused by sLNT. Acetylsalicylic acid (an ROS scavenger), diphenylene iodonium (an inhibitor of NADPH oxidases) and protonophore carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (a protonophore and an uncoupler of mitochondrial oxidative phosphorylation) inhibited sLNT-induced H 2 O 2 generation and cell death, suggesting that ROS generation linked, at least partly, to a mitochondrial dysfunction and caspase-like activation. This conclusion was further confirmed by double-stained cells with the mitochondria-specific marker MitoTracker RedCMXRos and the ROS probe H 2 DCFDA. Moreover, the sLNT-induced PCD of BY-2 cells required cellular metabolism as up-regulation of the AOX family gene transcripts and induction of the SA biosynthesis, the TCA cycle, and miETC related genes were observed. It is concluded that mitochondria play an essential role in the signaling pathway of sLNT-induced ROS generation, which possibly provided new insight into the sLNT-mediated antiviral response, including PCD. Copyright © 2016. Published by Elsevier Inc.

  12. Glutaredoxin 2 prevents H(2)O(2)-induced cell apoptosis by protecting complex I activity in the mitochondria.

    PubMed

    Wu, Hongli; Xing, Kuiyi; Lou, Marjorie F

    2010-10-01

    Glutaredoxin 2 (Grx2) belongs to the oxidoreductase family and is an isozyme of glutaredoxin 1 (Grx1) present in the mitochondria, however its function is not well understood. The purpose of this study is to evaluate the potential anti-apoptotic function of Grx2 by examining its ability to protect complex I in the mitochondrial electron transport system using human lens epithelial cells as a model. We found that cells treated with 200muM hydrogen peroxide (H(2)O(2)) for 24h exhibited decreased viability and became apoptotic with corresponding Bax up-regulation, Bcl-2 down-regulation, caspase 3 activation and mitochondrial cytochrome c leakage. Grx2 over-expression (OE) could protect cells against H(2)O(2)-induced damage while Grx2 knockdown (KD) showed the opposite effect. Under the same conditions, H(2)O(2) treatment caused 50% inactivation of complex I activity in control cells (vector only), 75% in Grx2 KD cells but only 20% in Grx2 OE cells. Furthermore, the inactivated complex I in the H(2)O(2)-treated cells could be protected mostly by importing the purified nascent Grx2 protein, but not the Grx2 protein mutated at the active site with C70S, or C73S, or with C70S plus C73S. Immunoprecipitation study also revealed that Grx2 co-precipitated with complex I, but not complex II, in the mitochondrial lysate. Thus, the mechanism of Grx2 protection against H(2)O(2)-induced apoptosis is likely associated with its ability to preserve complex I. Published by Elsevier B.V.

  13. Role of cerium oxide nanoparticle-induced autophagy as a safeguard to exogenous H2O2-mediated DNA damage in tobacco BY-2 cells.

    PubMed

    Sadhu, Abhishek; Ghosh, Ilika; Moriyasu, Yuji; Mukherjee, Anita; Bandyopadhyay, Maumita

    2018-04-13

    The effect of cerium oxide nanoparticle (CeNP) in plants has elicited substantial controversy. While some investigators have reported that CeNP possesses antioxidant properties, others observed CeNP to induce reactive oxygen species (ROS). In spite of considerable research carried out on the effects of CeNP in metazoans, fundamental studies that can unveil its intracellular consequences linking ROS production, autophagy and DNA damage are lacking in plants. To elucidate the impact of CeNP within plant cells, tobacco BY-2 cells were treated with 10, 50 and 250 µg ml-1 CeNP (Ce10, Ce50 and Ce250), for 24 h. Results demonstrated concentration-dependent accumulation of Ca2+ and ROS at all CeNP treatment sets. However, significant DNA damage and alteration in antioxidant defence systems were noted prominently at Ce50 and Ce250. Moreover, Ce50 and Ce250 induced DNA damage, analysed by comet assay and DNA diffusion experiments, complied with the concomitant increase in ROS. Furthermore, to evaluate the antioxidant property of CeNP, treated cells were washed after 24 h (to minimise CeNP interference) and challenged with H2O2 for 3 h. Ce10 did not induce genotoxicity and H2O2 exposure to Ce10-treated cells showed lesser DNA breakage than cells treated with H2O2 only. Interestingly, Ce10 provided better protection over N-acetyl-L-cysteine against exogenous H2O2 in BY-2 cells. CeNP exposure to transgenic BY-2 cells expressing GFP-Atg8 fusion protein exhibited formation of autophagosomes at Ce10. Application of vacuolar protease inhibitor E-64c and fluorescent basic dye acridine orange, further demonstrated accumulation of particulate matters in the vacuole and occurrence of acidic compartments, the autophagolysosomes, respectively. BY-2 cells co-treated with CeNP and autophagy inhibitor 3-methyladenine exhibited increased DNA damage in Ce10 and cell death at all assessed treatment sets. Thus, current results substantiate an alternative autophagy-mediated, antioxidant and

  14. Neuroprotective and antioxidant activities of bamboo salt soy sauce against H2O2-induced oxidative stress in rat cortical neurons.

    PubMed

    Jeong, Jong Hee; Noh, Min-Young; Choi, Jae-Hyeok; Lee, Haiwon; Kim, Seung Hyun

    2016-04-01

    Bamboo salt (BS) and soy sauce (SS) are traditional foods in Asia, which contain antioxidants that have cytoprotective effects on the body. The majority of SS products contain high levels of common salt, consumption of which has been associated with numerous detrimental effects on the body. However, BS may be considered a healthier substitute to common salt. The present study hypothesized that SS made from BS, known as bamboo salt soy sauce (BSSS), may possess enhanced cytoprotective properties; this was evaluated using a hydrogen peroxide (H 2 O 2 )-induced neuronal cell death rat model. Rat neuronal cells were pretreated with various concentrations (0.001, 0.01, 0.1, 1 and 10%) of BSSS, traditional soy sauce (TRSS) and brewed soy sauce (BRSS), and were subsequently exposed to H 2 O 2 (100 µM). The viability of neuronal cells, and the occurrence of DNA fragmentation, was subsequently examined. Pretreatment of neuronal cells with TRSS and BRSS reduced cell viability in a concentration-dependent manner, whereas neuronal cells pretreated with BSSS exhibited increased cell viability, as compared with non-treated neuronal cells. Furthermore, neuronal cells pretreated with 0.01% BSSS exhibited the greatest increase in viability. Exposure of neuronal cells to H 2 O 2 significantly increased the levels of reactive oxygen species (ROS), B-cell lymphoma 2-associated X protein, poly (ADP-ribose), cleaved poly (ADP-ribose) polymerase, cytochrome c , apoptosis-inducing factor, cleaved caspase-9 and cleaved caspase-3, in all cases. Pretreatment of neuronal cells with BSSS significantly reduced the levels of ROS generated by H 2 O 2 , and increased the levels of phosphorylated AKT and phosphorylated glycogen synthase kinase-3β. Furthermore, the observed effects of BSSS could be blocked by administration of 10 µM LY294002, a phosphatidylinositol 3-kinase inhibitor. The results of the present study suggested that BSSS may exert positive neuroprotective effects against H 2 O 2

  15. Silicon does not mitigate cell death in cultured tobacco BY-2 cells subjected to salinity without ethylene emission.

    PubMed

    Liang, Xiaolei; Wang, Huahua; Hu, Yanfeng; Mao, Lina; Sun, Lili; Dong, Tian; Nan, Wenbin; Bi, Yurong

    2015-02-01

    Silicon induces cell death when ethylene is suppressed in cultured tobacco BY-2 cells. There is a crosstalk between Si and ethylene signaling. Silicon (Si) is beneficial for plant growth. It alleviates both biotic and abiotic stresses in plants. How Si works in plants is still mysterious. This study investigates the mechanism of Si-induced cell death in tobacco BY-2 cell cultures when ethylene is suppressed. Results showed that K2SiO3 alleviated the damage of NaCl stress. Si treatment rapidly increased ethylene emission and the expression of ethylene biosynthesis genes. Treatments with Si + Ag and Si + aminooxyacetic acid (AOA, ethylene biosynthesis inhibitor) reduced the cell growth and increased cell damage. The treatment with Si + Ag induced hydrogen peroxide (H2O2) generation and ultimately cell death. Some nucleus of BY-2 cells treated with Si + Ag appeared TUNEL positive. The inhibition of H2O2 and nitric oxide (NO) production reduced the cell death rate induced by Si + Ag treatment. Si eliminated the up-regulation of alternative pathway by Ag. These data suggest that ethylene plays an important role in Si function in plants. Without ethylene, Si not only failed to enhance plant resistance, but also elevated H2O2 generation and further induced cell death in tobacco BY-2 cells.

  16. Ultrasound-assisted extraction of phenolic compounds from Cratoxylum formosum ssp. formosum leaves using central composite design and evaluation of its protective ability against H2O2-induced cell death.

    PubMed

    Yingngam, Bancha; Monschein, Marlene; Brantner, Adelheid

    2014-09-01

    To optimize the processing parameters for phenolic compounds extracted from Cratoxylum formosum ssp. formosum leaves using an ultrasound-assisted extraction and to evaluate its protective ability against H2O2-induced cell death. The influence of three independent variables including ethanol concentration (%), extraction temperature (°C) and extraction time (min) on the extraction yield of phenolic compounds were optimized using a central composite design-based response surface methodology. The obtained extract was assessed for its antioxidant activity by DPPH(•) and ABTS(•)(+) methods. Cellular protective ability against H2O2-induced cell death was evaluated on HEK293 cells using the MTT assay. The optimal conditions to achieve maximal yields of phenolic compounds were ethanol concentration of 50.33% (v/v), temperature of 65 °C, and extractiontion time of 15 min. The yield of phenolic compounds was (40.00±1.00) mg gallic acid equivalent/g dry powder which matched well with the values predicted from the proposed model. These conditions resulted in a higher efficiency concerning the extraction of phenolics compared to a conventional heat reflux extraction by providing shorter extraction time and reduced energy consumption. 5-O-caffeoylquinic acid identified by high performance liquid chromatography-diode array detector-electron spin ionization-mass spectrometry was the major compound in the obtained extract [(41.66±0.07) mg/g plant extract]. The obtained extract showed a strong ability to scavenge both DPPH(•) and ABTS(•)(+) free radicals and exhibited additionally good ability to protect HEK293 cells death against oxidative stress. These results indicate the suitability of ultrasound-assisted extraction for the extraction of phenolic compounds from Cratoxylum formosum ssp. formosum leaves. This phenolic-enriched extract can be used as valuable antioxidant source for health benefits. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All

  17. Rhus verniciflua Stokes Extract and Its Flavonoids Protect PC-12 Cells against H2O2-Induced Cytotoxicity.

    PubMed

    Nam, Tae Gyu; Lee, Bong Han; Choi, Hyo-Kyoung; Mansur, Ahmad Rois; Lee, Sang Gil; Kim, Dae-Ok

    2017-06-28

    Rhus verniciflua Stokes (RVS), an herbal medicine found in East Asia, was extracted and further fractionated to investigate its antioxidant capacity and neuroprotective effects. The RVS ethyl acetate (EtOAc) fraction had the highest level of total phenolics and antioxidant capacity among all solvent fractions tested. Pretreatment of PC-12 cells with the EtOAc fraction effectively attenuated H 2 O 2 -induced oxidative damage. Furthermore, the EtOAc fraction significantly attenuated caspase-3 activity, resulting in inhibition of H 2 O 2 -induced apoptosis. We identified and quantified fustin, sulfuretin, and butein in the EtOAc fraction using accurate mass quadrupole time-of-flight mass spectrometry and reversed-phase high-performance liquid chromatography. The intracellular antioxidant capacity and superoxide dismutase (SOD) activity were significantly increased in PC-12 cells treated with the EtOAc fraction and with individual flavonoids. When cells were pretreated with the EtOAc fraction or individual flavonoids and then co-incubated with diethyldithiocarbamic acid (an inhibitor of SOD activity), cell viability against H 2 O 2 -induced oxidative stress was attenuated. These results suggest that the RVS EtOAc fraction and its flavonoid constituents protect PC-12 cells against H 2 O 2 -induced neurotoxicity through their antioxidant properties.

  18. Salvianolic acid B protects hepatocytes from H2O2 injury by stabilizing the lysosomal membrane.

    PubMed

    Yan, Xiao-Feng; Zhao, Pei; Ma, Dong-Yan; Jiang, Yi-Lu; Luo, Jiao-Jiao; Liu, Liu; Wang, Xiao-Ling

    2017-08-07

    To investigate the capability of salvianolic acid B (Sal B) to protect hepatocytes from hydrogen peroxide (H 2 O 2 )/carbon tetrachloride (CCl 4 )-induced lysosomal membrane permeabilization. Cell Counting Kit-8 assay was used to measure cell viability. Apoptosis and death were assayed through flow cytometry. BrdU incorporation was used to detect cell proliferation. Serum alanine aminotransferase activity and liver malondialdehyde (MDA) content were measured. Liver histopathological changes were evaluated using hematoxylin-eosin staining. Lysosomal membrane permeability was detected with LysoTracker Green-labeled probes and acridine orange staining. The levels of protein carbonyl content (PCC), cathepsins (Cat)B/D, and lysosome-associated membrane protein 1 (LAMP1) were evaluated through western blotting. Cytosol CatB activity analysis was performed with chemiluminescence detection. The mRNA level of LAMP1 was evaluated through quantitative real-time polymerase chain reaction. Results indicated that H 2 O 2 induced cell injury/death. Sal B attenuated H 2 O 2 -induced cell apoptosis and death, restored the inhibition of proliferation, decreased the amount of PCC, and stabilized the lysosome membrane by increasing the LAMP1 protein level and antagonizing CatB/D leakage into the cytosol. CCl 4 also triggered hepatocyte death. Furthermore, Sal B effectively rescued hepatocytes by increasing LAMP1 expression and by reducing lysosomal enzyme translocation to the cytosol. Sal B protected mouse embryonic hepatocytes from H 2 O 2 /CCl 4 -induced injury/death by stabilizing the lysosomal membrane.

  19. Liraglutide alleviates H2O2-induced retinal ganglion cells injury by inhibiting autophagy through mitochondrial pathways.

    PubMed

    Ma, Xuefei; Lin, Wenjian; Lin, Zhenyu; Hao, Ming; Gao, Xinyuan; Zhang, Yue; Kuang, Hongyu

    2017-06-01

    Retinal ganglion cells (RGCs), which exist in the inner retina, are the retinal neurons which can be damaged in the early stage of diabetic retinopathy (DR). Liraglutide, a glucagon-like peptide-1 (GLP-1) analog, exerts biological functions by binding the receptor (GLP-1R), the expression of which in RGC-5 cells was first shown by our team in 2012. It was reported that liraglutide prevented retinal neurodegeneration in diabetic subjects. However, the involvement of mechanisms such as autophagy and mitochondrial balance in liraglutide-induced retinal protection is unknown. Here, we aimed to investigate the protective effects of liraglutide and explore the potential mechanisms of liraglutide-induced retinal RGC protection. RGC-5 cells were treated with H 2 O 2 and/or liraglutide. Cell viability was detected with the CCK-8 kit. The axon marker GAP43, autophagy and mitophagy indicators LC3A/B, Beclin-1, p62, Parkin, BCL2/Adenovirus E1B 19kDa protein-interacting protein 3-like (BNIP3L) and the key regulator of mitochondrial biogenesis PGC-1α were examined via western blot analysis. Autophagy was also evaluated using the ImageXpress Micro XLS system and transmission electron microscopy (TEM). Reactive oxygen species (ROS), mitochondrial membrane potential and fluorescent staining for mitochondria were also measured using the ImageXpress Micro XLS system. Our results showed that pretreatment with liraglutide significantly prevented H 2 O 2 -induced cell viability decline, mitochondrial morphological deterioration and induction of autophagy, which appeared as increased expression of LC3 II/I and Beclin-1, along with p62 degradation. Moreover, liraglutide suppressed the H 2 O 2 -induced decline in GAP43 expression, thus protecting cells. However, rapamycin induced autophagy and blocked the protective process. Liraglutide also provided mitochondrial protection and appeared to alleviate H 2 O 2 -induced ROS overproduction and a decline in mitochondrial membrane potential

  20. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathwaysmore » involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.« less

  1. Proteomic and metabolomic analysis of H2O2-induced premature senescent human mesenchymal stem cells.

    PubMed

    Kim, Ji-Soo; Kim, Eui-Jin; Kim, Hyun-Jung; Yang, Ji-Young; Hwang, Geum-Sook; Kim, Chan-Wha

    2011-06-01

    Stress induced premature senescence (SIPS) occurs after exposure to many different sublethal stresses including H(2)O(2), hyperoxia, or tert-butylhydroperoxide. Human mesenchymal stem cells (hMSCs) exhibit limited proliferative potential in vitro, the so-called Hayflick limit. According to the free-radical theory, reactive oxygen species (ROS) might be the candidates responsible for senescence and age-related diseases. H(2)O(2) may be responsible for the production of high levels of ROS, in which the redox balance is disturbed and the cells shift into a state of oxidative stress, which subsequently leads to premature senescence with shortening telomeres. H(2)O(2) has been the most commonly used inducer of SIPS, which shares features of replicative senescence (RS) including a similar morphology, senescence-associated β-galactosidase activity, cell cycle regulation, etc. Therefore, in this study, the senescence of hMSC during SIPS was confirmed using a range of different analytical methods. In addition, we determined five differentially expressed spots in the 2-DE map, which were identified as Annexin A2 (ANXA2), myosin light chain 2 (MLC2), peroxisomal enoyl-CoA hydratase 1 (ECH1), prosomal protein P30-33K (PSMA1) and mutant β-actin by ESI-Q-TOF MS/MS. Also, proton ((1)H) nuclear magnetic resonance spectroscopy (NMR) was used to elucidate the difference between metabolites in the control and hMSCs treated with H(2)O(2). Among these metabolites, choline and leucine were identified by (1)H-NMR as up-regulated metabolites and glycine and proline were identified as down-regulated metabolites. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells

    PubMed Central

    LI, BO; KIM, DO SUNG; YADAV, RAJ KUMAR; KIM, HYUNG RYONG; CHAE, HAN JUNG

    2015-01-01

    Sulforaphane, a natural isothiocyanate compound found in cruciferous vegetables, has been shown to exert cardioprotective effects during ischemic heart injury. However, the effects of sulforaphane on cardiotoxicity induced by doxorubicin are unknown. Thus, in the present study, H9c2 rat myoblasts were pre-treated with sulforaphane and its effects on cardiotoxicity were then examined. The results revealed that the pre-treatment of H9c2 rat myoblasts with sulforaphane decreased the apoptotic cell number (as shown by trypan blue exclusion assay) and the expression of pro-apoptotic proteins (Bax, caspase-3 and cytochrome c; as shown by western blot analysis and immunostaining), as well as the doxorubicin-induced increase in mitochondrial membrane potential (measured by JC-1 assay). Furthermore, sulforaphane increased the mRNA and protein expression of heme oxygenase-1 (HO-1, measured by RT-qPCR), which consequently reduced the levels of reactive oxygen species (ROS, measured using MitoSOX Red reagent) in the mitochondria which were induced by doxorubicin. The cardioprotective effects of sulforaphane were found to be mediated by the activation of the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor-2 (Nrf2)/antioxidant-responsive element (ARE) pathway, which in turn mediates the induction of HO-1. Taken together, the findings of this study demonstrate that sulforaphane prevents doxorubicin-induced oxidative stress and cell death in H9c2 cells through the induction of HO-1 expression. PMID:25936432

  3. Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells.

    PubMed

    Li, Bo; Kim, Do Sung; Yadav, Raj Kumar; Kim, Hyung Ryong; Chae, Han Jung

    2015-07-01

    Sulforaphane, a natural isothiocyanate compound found in cruciferous vegetables, has been shown to exert cardioprotective effects during ischemic heart injury. However, the effects of sulforaphane on cardiotoxicity induced by doxorubicin are unknown. Thus, in the present study, H9c2 rat myoblasts were pre-treated with sulforaphane and its effects on cardiotoxicity were then examined. The results revealed that the pre-treatment of H9c2 rat myoblasts with sulforaphane decreased the apoptotic cell number (as shown by trypan blue exclusion assay) and the expression of pro-apoptotic proteins (Bax, caspase-3 and cytochrome c; as shown by western blot analysis and immunostaining), as well as the doxorubicin-induced increase in mitochondrial membrane potential (measured by JC-1 assay). Furthermore, sulforaphane increased the mRNA and protein expression of heme oxygenase-1 (HO-1, measured by RT-qPCR), which consequently reduced the levels of reactive oxygen species (ROS, measured using MitoSOX Red reagent) in the mitochondria which were induced by doxorubicin. The cardioprotective effects of sulforaphane were found to be mediated by the activation of the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor-2 (Nrf2)/antioxidant-responsive element (ARE) pathway, which in turn mediates the induction of HO-1. Taken together, the findings of this study demonstrate that sulforaphane prevents doxorubicin-induced oxidative stress and cell death in H9c2 cells through the induction of HO-1 expression.

  4. Antiapoptotic effects of anthocyanin from the seed coat of black soybean against oxidative damage of human lens epithelial cell induced by H2O2.

    PubMed

    Mok, Jee Won; Chang, Dong-Jin; Joo, Choun-Ki

    2014-11-01

    To describe the protective effect of anthocyanin from black soybean in human lens epithelial cell line (HLE-B3) under H2O2-induced oxidative stress. Cytotoxicity of anthocyanin and H2O2 were determined by Cell Counting Kit-8 test. Viability of HLE-B3 cells under various H2O2 concentration (0, 50 and 100 μM) with or without pretreatment of anthocyanin (0, 50, 100 and 200 μg/ml) was measured. After quantifying the percentage of the apoptosis by Annexin V assay and APO-BrdU TUNEL assay, we conducted western blot and immunostaining of apoptosis-related molecules; Bcl2, BAD, BAX, p53 and caspase-3. To confirm the effect of anthocyanin on an ex vivo model, its effect on cultures of the lenses of porcine were examined. Anthocyanin reduced cell death of HLE-B3 under H2O2-induced oxidative stress in a dose-dependent manner. In Annexin V analysis, anthocyanin protected HLE-B3 cells from apoptosis. H2O2 increased the expression of BAX, BAD, p53 and caspase-3 in a time-dependent manner, those of which anthocyanin significantly decreased. On the other hand, Bcl2 was increased from anthocyanin-treated lens cells. And in anthocyanin-treated lens organ culture, transparency was maintained. This study showed that anthocyanin protects HLE-B3 cells under oxidative stress from apoptosis, and the mechanism of the effect is related to the intrinsic pathway of apoptosis. Anthocyanin has a potential in prevention of cataract.

  5. Protection of LLC-PK1 cells against hydrogen peroxide-induced cell death by modulation of ceramide level.

    PubMed

    Yoo, Jae-Myung; Lee, Youn-Sun; Choi, Heon-Kyo; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Oh, Seikwan; Yoo, Hwan-Soo

    2005-03-01

    Oxidative stress has been reported to elevate ceramide level during cell death. The purpose of the present study was to modulate cell death in relation to cellular glutathione (GSH) level and GST (glutathione S-transferase) expression by regulating the sphingolipid metabolism. LLC-PK1 cells were treated with H2O2 in the absence of serum to induce cell death. Subsequent to exposure to H2O2, LLC-PK1 cells were treated with desipramine, sphingomyelinase inhibitor, and N-acetylcysteine (NAC), GSH substrate. Based on comparative visual observation with H2O2-treated control cells, it was observed that 0.5 microM of desipramine and 25 mM of NAC exhibited about 90 and 95% of cytoprotection, respectively, against H2O2-induced cell death. Desipramine and NAC lowered the release of LDH activity by 36 and 3%, respectively, when compared to 71% in H2O2-exposed cells. Cellular glutathione level in 500 microM H2O2-treated cells was reduced to 890 pmol as compared to control level of 1198 pmol per mg protein. GST P1-1 expression was decreased in H2O2-treated cells compared to healthy normal cells. In conclusion, it has been inferred that H2O2-induced cell death is closely related to cellular GSH level and GST P1-1 expression in LLC-PK1 cells and occurs via ceramide elevation by sphingomyelinase activation.

  6. Oxidant-Induced Cell Death and Nrf2-Dependent Antioxidative Response Are Controlled by Fra-1/AP-1

    PubMed Central

    Vaz, Michelle; Machireddy, Narsa; Irving, Ashley; Potteti, Haranatha R.; Chevalier, Karinne; Kalvakolanu, Dhananjaya

    2012-01-01

    AP-1 (Jun/Fos) transcription factors play key roles in various biological processes, including cell death. Here we report a novel role for Fra-1 in oxidant-induced cell death controlled by modulating antioxidant gene expression. Fra-1-deficient (Fra-1Δ/Δ) mouse embryonic fibroblasts (MEFs) and primary lung fibroblasts (PLFs) were remarkably resistant to H2O2- and diquat-induced cell death, compared to their wild-type (Fra-1+/+) counterparts. Fra-1 deficiency ablated oxidant-induced mitochondrion-dependent apoptosis. Fra-1Δ/Δ cells had elevated basal levels of antioxidant enzymes and intracellular glutathione (GSH), which were further stimulated by oxidants. Loss of Fra-1 led to an increased half-life of transcription factor Nrf2 and increased recruitment of this protein to the promoters of antioxidant genes and increased their expression. Depletion of intracellular GSH or RNA interference (RNAi)-mediated knockdown of Nqo1, Hmox1, and Nrf2 restored oxidant-induced cell death in Fra-1Δ/Δ cells. Thus, Fra-1 appears to increase susceptibility to oxidants and promotes cell death by attenuating Nrf2-driven antioxidant responses. PMID:22393254

  7. Selenium Polysaccharide SPMP-2a from Pleurotus geesteranus Alleviates H2O2-Induced Oxidative Damage in HaCaT Cells

    PubMed Central

    Zhou, Cheng; Huang, Shoucheng

    2017-01-01

    Selenium- (Se-) enriched polysaccharide SPMP-2a was extracted and purified from Pleurotus geesteranus. SPMP-2a is a white flocculent polysaccharide and soluble in water, with a molecular weight of 3.32 × 104 Da. Fourier transform infrared spectroscopy spectral analysis indicated that it belongs to an acid Se polysaccharide with α-D-glucopyranoside bond. The effects of Se polysaccharide SPMP-2a in P. geesteranus against hydrogen peroxide- (H2O2-) induced oxidative damage in human keratinocytes (HaCaT) cells were evaluated further. Reduced cell viability and elevated apoptotic rates in H2O2-treated HaCaT cells were proven by MTT and flow cytometry assays. Hoechst 33342 staining revealed chromatin condensations in the nuclei of HaCaT cells. However, with the addition of SPMP-2a, cell viability improved, nuclear condensation declined, and cell apoptotic rates dropped significantly. Ultrastructural observation consistently revealed that treatments with SPMP-2a reduced the number of swollen and vacuolar mitochondria in the H2O2-treated cells compared with the controls. Furthermore, SPMP-2a increased the superoxide dismutase (SOD) and catalase (CAT) activities and reduced reactive oxygen species (ROS) content. Western blot analysis showed that SPMP-2a treatment effectively increased B-cell lymphoma 2 (Bcl-2) protein expression. Therefore, SPMP-2a could improve cellular antioxidant enzyme activities, reduce ROS levels, and increase Bcl-2 protein expression levels, thereby reducing cell apoptosis and protecting HaCaT cells from H2O2-induced oxidative damage. PMID:28293636

  8. Adenosine decreases oxidative stress and protects H2O2-treated neural stem cells against apoptosis through decreasing Mst1 expression.

    PubMed

    Gholinejad, Masoumeh; Jafari Anarkooli, Iraj; Taromchi, Amirhossein; Abdanipour, Alireza

    2018-05-01

    Overproduction of free radicals during oxidative stress induces damage to key biomolecules and activates programed cell death pathways. Neuronal cell death in the nervous system leads to a number of neurodegenerative diseases. The aim of the present study was to evaluate the neuroprotective effect of adenosine on inhibition of apoptosis induced by hydrogen peroxide (H 2 O 2 ) in bone marrow-derived neural stem cells (B-dNSCs), with focus on its regulatory effect on the expression of mammalian sterile 20-like kinase 1 ( Mst1 ), as a novel proapoptotic kinase. B-dNSCs were exposed to adenosine at different doses (2, 4, 6, 8 and 10 µM) for 48 h followed by 125 µM H 2 O 2 for 30 min. Using MTT, terminal deoxynucleotidyl transferase dUTP nick-end labeling and real-time reverse transcription polymerase chain reaction assays, the effects of adenosine on cell survival, apoptosis and Mst1 , nuclear factor (erythroid-derived 2)-like 2 and B-cell lymphoma 2 and adenosine A1 receptor expression were evaluated in pretreated B-dNSCs compared with controls (cells treated with H 2 O 2 only). Firstly, results of the MTT assay indicated 6 µM adenosine to be the most protective dose in terms of promotion of cell viability. Subsequent assays using this dosage indicated that apoptosis rate and Mst1 expression in B-dNSCs pretreated with 6 µM adenosine were significantly decreased compared with the control group. These findings suggest that adenosine protects B-dNSCs against oxidative stress-induced cell death, and therefore, that it may be used to promote the survival rate of B-dNSCs and as a candidate for the treatment of oxidative stress-mediated neurological diseases.

  9. Cell-Cell Communication Between Fibroblast and 3T3-L1 Cells Under Co-culturing in Oxidative Stress Condition Induced by H2O2.

    PubMed

    Subramaniyan, Sivakumar Allur; Kim, Sidong; Hwang, Inho

    2016-10-01

    The present study was carried out to understand the interaction between fibroblast and 3T3-L1 preadipocyte cells under H 2 O 2 -induced oxidative stress condition. H 2 O 2 (40 μM) was added in co-culture and monoculture of fibroblast and 3T3-L1 cell. The cells in the lower well were harvested for analysis and the process was carried out for both cells. The cell growth, oxidative stress markers, and antioxidant enzymes were analyzed. Additionally, the mRNA expressions of caspase-3 and caspase-7 were selected for analysis of apoptotic pathways and TNF-α and NF-κB were analyzed for inflammatory pathways. The adipogenic marker such as adiponectin and PPAR-γ and collagen synthesis markers such as LOX and BMP-1 were analyzed in the co-culture of fibroblast and 3T3-L1 cells. Cell viability and antioxidant enzymes were significantly increased in the co-culture compared to the monoculture under stress condition. The apoptotic, inflammatory, adipogenic, and collagen-synthesized markers were significantly altered in H 2 O 2 -induced co-culture of fibroblast and 3T3-L1 cells when compared with the monoculture of H 2 O 2 -induced fibroblast and 3T3-L1 cells. In addition, the confocal microscopical investigation indicated that the co-culture of H 2 O 2 -induced 3T3-L1 and fibroblast cells increases collagen type I and type III expression. From our results, we suggested that co-culture of fat cell (3T3-L1) and fibroblast cells may influence/regulate each other and made the cells able to withstand against oxidative stress and aging. It is conceivable that the same mechanism might have been occurring from cell to cell while animals are stressed by various environmental conditions.

  10. Baicalin Ameliorates H2O2 Induced Cytotoxicity in HK-2 Cells through the Inhibition of ER Stress and the Activation of Nrf2 Signaling

    PubMed Central

    Lin, Miao; Li, Long; Zhang, Yi; Zheng, Long; Xu, Ming; Rong, Ruiming; Zhu, Tongyu

    2014-01-01

    Renal ischemia-reperfusion injury plays a key role in renal transplantation and greatly affects the outcome of allograft. Our previous study proved that Baicalin, a flavonoid glycoside isolated from Scutellaria baicalensis, protects kidney from ischemia-reperfusion injury. This study aimed to study the underlying mechanism in vitro. Human renal proximal tubular epithelial cell line HK-2 cells were stimulated by H2O2 with and without Baicalin pretreatment. The cell viability, apoptosis and oxidative stress level were measured. The expression of endoplasmic reticulum (ER) stress hallmarks, such as binding immunoglobulin protein (BiP) and C/EBP homologous protein (CHOP), were analyzed by western blot and real-time PCR. NF-E2-related factor 2 (Nrf2) expression was also measured. In the H2O2 group, cell viability decreased and cell apoptosis increased. Reactive Oxygen Species (ROS) and Glutathione/Oxidized Glutathione (GSH/GSSG) analysis revealed increased oxidative stress. ER stress and Nrf2 signaling also increased. Baicalin pretreatment ameliorated H2O2-induced cytotoxicity, reduced oxidative stress and ER stress and further activated the anti-oxidative Nrf2 signaling pathway. The inducer of ER stress and the inhibitor of Nrf2 abrogated the protective effects, while the inhibitor of ER stress and the inducer of Nrf2 did not improve the outcome. This study revealed that Baicalin pretreatment serves a protective role against H2O2-induced cytotoxicity in HK-2 cells, where the inhibition of ER stress and the activation of downstream Nrf2 signaling are involved. PMID:25029541

  11. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    PubMed

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  12. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment

    PubMed Central

    Ortiz-Espín, Ana; Locato, Vittoria; Camejo, Daymi; Schiermeyer, Andreas; De Gara, Laura; Sevilla, Francisca; Jiménez, Ana

    2015-01-01

    Background and Aims Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. Methods Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. Key Results Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. Conclusions A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and

  13. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment.

    PubMed

    Ortiz-Espín, Ana; Locato, Vittoria; Camejo, Daymi; Schiermeyer, Andreas; De Gara, Laura; Sevilla, Francisca; Jiménez, Ana

    2015-09-01

    Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative

  14. Pellino-1 Protects Periodontal Ligament Stem Cells Against H2O2-Induced Apoptosis via Activation of NF-κB Signaling.

    PubMed

    Tian, Jiangang; Gu, Liufang; Adams, Andrew; Wang, Xueliang; Huang, Ruizhe

    2018-06-02

    To determine the protective effects of Pellino-1 against H 2 O 2 -induced apoptosis in periodontal ligament stem cells (PDLSC). We demonstrated that H 2 O 2 decreases PDLSC viability by 40 and 50% with the concentrations of 400 and 500 μM, respectively, with an observed downregulation of Pellino-1 mRNA and protein; we further concluded that overexpression of Pellino-1 significantly lowers 8-hydroxy-2'-deoxyguanosine levels by 10% and upregulates superoxide dismutase 1, glutathione peroxidase levels, and catalase mRNA levels by 200, 40, and 250%, respectively. More importantly, we found that overexpression of Pellino-1 inhibited H 2 O 2 -induced cellular apoptosis through the activation of the NF-κB signaling pathway. Pellino-1 may be critically important for cell survival in the presence of oxidative elements; activation of the NF-κB signaling cascade was required for the overexpression of Pellino-1 to protect the cells from H 2 O 2 -induced apoptosis.

  15. Bradykinin-potentiating PEPTIDE-10C, an argininosuccinate synthetase activator, protects against H2O2-induced oxidative stress in SH-SY5Y neuroblastoma cells.

    PubMed

    Querobino, Samyr Machado; Ribeiro, César Augusto João; Alberto-Silva, Carlos

    2018-05-01

    Bradykinin-potentiating peptides (BPPs - 5a, 7a, 9a, 10c, 11e, and 12b) of Bothrops jararaca (Bj) were described as argininosuccinate synthase (AsS) activators, improving l-arginine availability. Agmatine and polyamines, which are l-arginine metabolism products, have neuroprotective properties. Here, we investigated the neuroprotective effects of low molecular mass fraction from Bj venom (LMMF) and two synthetic BPPs (BPP-10c, cell line against H 2 O 2 -induced oxidative stress. The neuroprotective effects against H 2 O 2 -induced were analyzed by reactive oxygen species (ROS - DCFH) production; lipid peroxidation (TBARS); intracellular GSH; AsS, iNOS, and NF-kB expressions; nitrite levels (Griess); mitochondrial membrane potential (TMRM); and antioxidant activity (DPPH). Analysis of variance followed by Tukey's post hoc test were calculated for statistical comparisons. Pre-treatment with both BPPs significantly reduced cell death induced by H 2 O 2 , but BPP-10c showed higher protective capacity than BPP-12b. LMMF pretreatment was unable to prevent the reduction of cell viability caused by H 2 O 2 . The neuroprotective mechanism of BPP-10c against oxidative stress was investigated. BPP-10c reduced ROS generation and lipid peroxidation in relation to cells treated only with H 2 O 2 . BBP-10c increased AsS expression and was not neuroprotective in the presence of MDLA, a specific inhibitor of AsS. BPP-10c reduced iNOS expression and nitrate levels but decreased NF-kB expression. Furthermore, BPP-10c protected the mitochondrial membrane against oxidation. Overall, we demonstrated for the first time neuroprotective mechanisms of BPPs against oxidative stress, opening new perspectives to the study and application of these peptides for the treatment of neurodegenerative diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Different effects of H2O2 treatment on cervical squamous carcinoma cells and adenocarcinoma cells

    PubMed Central

    Zhang, Peihai; Yin, Haiqin; Wang, Sie; Wei, Yuping; Peng, Nan

    2015-01-01

    Introduction This study aims to compare the antioxidant abilities of cervical squamous carcinoma cells and cervical adenocarcinoma cells and to study the related mechanisms. Material and methods Cervical squamous carcinoma and adenocarcinoma cells were treated with H2O2. Cell proliferation was determined with the MTT assay. The reactive oxygen species (ROS) level was detected by the 2’,7’-dichlorofluorescein-diacetate (DCFH-DA) method. The 5,5’-dithiobis-2-nitrobenzoic acid (DTNB) method was performed to measure intracellular concentrations of reduced glutathione (GSH) and oxidized glutathione (GSSG). The nitrite formation method, the molybdate colorimetric method, and the DTNB colorimetric method were used to determine activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), respectively. Results Compared with untreated control cells, cell proliferation of cervical squamous carcinoma cells and cervical adenocarcinoma cells was significantly inhibited by H2O2 treatment (p < 0.05). Reactive oxygen species levels and GSSG levels were significantly increased (p < 0.01), whereas GSH levels were significantly decreased (p < 0.05 or 0.01) in both cells after H2O2 treatment. Thus the ratio of GSH/GSSG was significantly decreased by H2O2 treatment in both cells (p < 0.01). In addition, H2O2 treatment significantly increased activities of SOD, CAT, and GPx in both cells (p < 0.05 or 0.01). Furthermore, the above-mentioned changes induced by H2O2 treatment were more dramatic in cervical squamous carcinoma cells. Conclusions The antioxidant ability of cervical squamous carcinoma cells is lower than that of cervical adenocarcinoma cells, which may be related to the increased ROS levels in cervical squamous carcinoma cells induced by H2O2 treatments. PMID:26788095

  17. A unique polysaccharide purified from Hericium erinaceus mycelium prevents oxidative stress induced by H2O2 in human gastric mucosa epithelium cell

    PubMed Central

    Kanako, Nakajima; Zhang, Yanqiu; Xiao, Xulang; Gao, Qipin; Tetsuya, Konishi

    2017-01-01

    Hericium erinaceus (HE) has been used both as a traditional Chinese medicine and home remedy for treatment of gastric and duodenal ulcers and gastritis. EP-1, a purified polysaccharide isolated from HE mycelium, has recently been identified as the active component responsible for HE anti-gastritis activity. Because oxidative stress has been implicated as a pathogenic cause of gastritis and gastric ulcers, EP-1 antioxidant properties were systematically examined in vitro using the human gastric mucosal epithelial cell line, GES-1. Results showed that EP-1 possessed higher oxygen radical absorbance capacity (ORAC) and 2–3 times higher ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide and hydroxyl radicals than a hot water extract of commercially available HE fruiting body. A crude mycelial polysaccharide (CMPS) extract of HE, from which EP-1 was purified, showed slightly stronger radical scavenging activity and ORAC than EP-1, with the exception of DPPH-scavenging activity. Antioxidant activities of these extracts were further studied using hydrogen peroxide (H2O2)-abused GES-1 cells; EP-1 dose-dependently preserved cell viability of abused cells as assessed via MTT assay. Moreover, FACS analysis revealed that EP-1 prevented H2O2-induced apoptotic cell death by inhibiting activation of apoptotic cellular signals within mitochondria-dependent apoptotic pathways. CMPS also prevented H2O2-induced oxidative stress, but to a lesser degree than did EP-1, even though CMPS exhibited comparable or stronger in vitro antioxidant activity than did EP-1. PMID:28742114

  18. A unique polysaccharide purified from Hericium erinaceus mycelium prevents oxidative stress induced by H2O2 in human gastric mucosa epithelium cell.

    PubMed

    Wang, Mingxing; Kanako, Nakajima; Zhang, Yanqiu; Xiao, Xulang; Gao, Qipin; Tetsuya, Konishi

    2017-01-01

    Hericium erinaceus (HE) has been used both as a traditional Chinese medicine and home remedy for treatment of gastric and duodenal ulcers and gastritis. EP-1, a purified polysaccharide isolated from HE mycelium, has recently been identified as the active component responsible for HE anti-gastritis activity. Because oxidative stress has been implicated as a pathogenic cause of gastritis and gastric ulcers, EP-1 antioxidant properties were systematically examined in vitro using the human gastric mucosal epithelial cell line, GES-1. Results showed that EP-1 possessed higher oxygen radical absorbance capacity (ORAC) and 2-3 times higher ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide and hydroxyl radicals than a hot water extract of commercially available HE fruiting body. A crude mycelial polysaccharide (CMPS) extract of HE, from which EP-1 was purified, showed slightly stronger radical scavenging activity and ORAC than EP-1, with the exception of DPPH-scavenging activity. Antioxidant activities of these extracts were further studied using hydrogen peroxide (H2O2)-abused GES-1 cells; EP-1 dose-dependently preserved cell viability of abused cells as assessed via MTT assay. Moreover, FACS analysis revealed that EP-1 prevented H2O2-induced apoptotic cell death by inhibiting activation of apoptotic cellular signals within mitochondria-dependent apoptotic pathways. CMPS also prevented H2O2-induced oxidative stress, but to a lesser degree than did EP-1, even though CMPS exhibited comparable or stronger in vitro antioxidant activity than did EP-1.

  19. MPK6 controls H2 O2-induced root elongation by mediating Ca2+ influx across the plasma membrane of root cells in Arabidopsis seedlings.

    PubMed

    Han, Shuan; Fang, Lin; Ren, Xuejian; Wang, Wenle; Jiang, Jing

    2015-01-01

    Mitogen-activated protein kinases (MPKs) play critical roles in signalling and growth, and Ca(2+) and H2 O2 control plant growth processes associated with abscisic acid (ABA). However, it remains unclear how MPKs are involved in H2 O2 - and Ca(2+) -mediated root elongation. Root elongation in seedlings of the loss-of-function mutant Atmpk6 (Arabidopsis thaliana MPK6) was less sensitive to moderate H2 O2 or ABA than that in wild-type (WT) plants. The enhanced elongation was a result of root cell expansion. This effect disappeared when ABA-induced H2 O2 accumulation or the cytosolic Ca(2+) increase were defective. Molecular and biochemical evidence showed that increased expression of the cell wall peroxidase PRX34 in Atmpk6 root cells enhanced apoplastic H2 O2 generation; this promoted a cytosolic Ca(2+) increase and Ca(2+) influx across the plasma membrane. The plasma membrane damage caused by high levels of H2 O2 was ameliorated in a Ca(2+) -dependent manner. These results suggested that there was intensified PRX34-mediated H2 O2 generation in the apoplast and increased Ca(2+) flux into the cytosol of Atmpk6 root cells; that is, the spatial separation of apoplastic H2 O2 from cytosolic Ca(2+) in root cells prevented H2 O2 -induced inhibition of root elongation in Atmpk6 seedlings. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. Ectopic expression of H2AX protein promotes TrkA-induced cell death via modulation of TrkA tyrosine-490 phosphorylation and JNK activity upon DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Eun Joo; Kim, Deok Ryong, E-mail: drkim@gnu.ac.kr

    2011-01-21

    Research highlights: {yields} We established TrkA-inducible U2OS cells stably expressing GFP-H2AX proteins. {yields} GFP-H2AX was colocalized with TrkA in the cytoplasm. {yields} {gamma}H2AX production was significantly increased upon activation of TrkA and suppressed by TrkA inhibitor or JNK inhibitor. {yields} Ectopic expression of H2AX promoted TrkA-mediated cell death through the modulation of TrkA tyrosine-490 phosphorylation and JNK activity upon DNA damage. -- Abstract: We previously reported that TrkA overexpression causes accumulation of {gamma}H2AX proteins in the cytoplasm, subsequently leading to massive cell death in U2OS cells. To further investigate how cytoplasmic H2AX is associated with TrkA-induced cell death, we establishedmore » TrkA-inducible cells stably expressing GFP-tagged H2AX. We found that TrkA co-localizes with ectopically expressed GFP-H2AX proteins in the cytoplasm, especially at the juxta-nuclear membranes, which supports our previous results about a functional connection between TrkA and {gamma}H2AX in TrkA-induced cell death. {gamma}H2AX production from GFP-H2AX proteins was significantly increased when TrkA was overexpressed. Moreover, ectopic expression of H2AX activated TrkA-mediated signal pathways via up-regulation of TrkA tyrosine-490 phosphorylation. In addition, suppression of TrkA tyrosine-490 phosphorylation under a certain condition was removed by ectopic expression of H2AX, indicating a functional role of H2AX in the maintenance of TrkA activity. Indeed, TrkA-induced cell death was highly elevated by ectopic H2AX expression, and it was further accelerated by DNA damage via JNK activation. These all results suggest that cytoplasmic H2AX could play an important role in TrkA-mediated cell death by modulating TrkA upon DNA damage.« less

  1. Neuroglobin protects astroglial cells from hydrogen peroxide-induced oxidative stress and apoptotic cell death.

    PubMed

    Amri, Fatma; Ghouili, Ikram; Amri, Mohamed; Carrier, Alice; Masmoudi-Kouki, Olfa

    2017-01-01

    Oxidative stress, resulting from accumulation of reactive oxygen species, plays a critical role in astroglial cell death occurring in diverse neuropathological conditions. Numerous studies indicate that neuroglobin (Ngb) promotes neuron survival, but nothing is known regarding the action of Ngb in astroglial cell survival. Thus, the purpose of this study was to investigate the potential glioprotective effect of Ngb on hydrogen peroxide (H 2 O 2 )-induced oxidative stress and apoptosis in cultured mouse astrocytes. Incubation of cells with subnanomolar concentrations of Ngb (10 -14 -10 -10  M) was found to prevent both H 2 O 2 -evoked reduction in surviving cells number and accumulation of reactive oxygen species in a concentration-dependent manner. Furthermore, Ngb treatment abolishes H 2 O 2 -induced increase in mitochondrial oxygen consumption rates. Concomitantly, Ngb treatment rescues H 2 O 2 -associated reduced expression of endogenous antioxidant enzymes (superoxide dismutases and catalase) and prevents the stimulation of the expression of pro-inflammatory genes (inducible nitric oxide synthase, cyclooxygenase-2, and interleukin (IL) IL-6 and IL-33). Moreover, Ngb blocks the stimulation of Bax (pro-apoptotic) and the inhibition of Bcl-2 (anti-apoptotic) gene expression induced by H 2 O 2 , which in turn abolishes caspase 3 activation. The protective effect of Ngb upon H 2 O 2 induced activation of caspase 3 activity and cell death can be accounted for by activation of protein kinase A and mitogen-activated protein kinase transduction cascade. Finally, we demonstrate that Ngb increases Akt phosphorylation and prevents H 2 O 2 -provoked inhibition of ERK and Akt phosphorylation. Taken together, these data demonstrate for the first time that Ngb is a glioprotective agent that prevents H 2 O 2 -induced oxidative stress and apoptotic astroglial cell death. Protection of astrocytes from oxidative insult may thus contribute to the neuroprotective effect of Ngb.

  2. Protective effect of lavender oil on scopolamine induced cognitive deficits in mice and H2O2 induced cytotoxicity in PC12 cells.

    PubMed

    Xu, Pan; Wang, Kezhu; Lu, Cong; Dong, Liming; Gao, Li; Yan, Ming; Aibai, Silafu; Liu, Xinmin

    2016-12-04

    Lavender essential oil (LO), an aromatic liquid extracted from Lavandula angustifolia Mill., has been traditionally used in the treatments of many nervous system diseases, and recently LO also reported to be effective for the Alzheimer's disease (AD). The improvement effect of lavender oil (LO) on the scopolamine-induced cognitive deficits in mice and H 2 O 2 induced cytotoxicity in PC12 cells have been evaluated. The relevant mechanism was also researched from the perspective of antioxidant effect and cholinergic system modulation. Cognitive deficits were induced in C57BL/6J mice treated with scopolamine (1mg/kg, i.p.) and were assessed by Morris water maze (MWM) and step-through passive avoidance tests. Then their hippocampus were removed for biochemical assays (acetylcholinesterase (AChE), superoxide dismutase (SOD), glutathione peroxidase (GPX) and malondialdehyde (MDA)). In vitro, the cytotoxicity were induced by 4h exposure to H 2 O 2 in PC12 and evaluated by cell viability (MTT), lactate dehydrogenase (LDH) level, nitric oxide (NO) release, reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP). The results demonstrated that LO (100mg/kg) could improve the cognitive performance of scopolamine induced mice in behavioral tests. Meanwhile, it significantly decreased the AChE activity, MDA level, and increase SOD and GPX activities of the model. Moreover, LO (12μg/mL) protected PC12 cells from H 2 O 2 induced cytotoxicity by reducing LDH, NO release, intracellular ROS accumulation and MMP loss. It was suggested that LO could show neuroprotective effect in AD model in vivo (scopolamine-treated mice) and in vitro (H 2 O 2 induced PC12 cells) via modulating oxidative stress and AChE activity. Copyright © 2016. Published by Elsevier Ireland Ltd.

  3. Jasmonic Acid Signaling Modulates Ozone-Induced Hypersensitive Cell Death

    PubMed Central

    Rao, Mulpuri V.; Lee, Hyung-il; Creelman, Robert A.; Mullet, John E.; Davis, Keith R.

    2000-01-01

    Recent studies suggest that cross-talk between salicylic acid (SA)–, jasmonic acid (JA)–, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O3) exposure activates a hypersensitive response (HR)–like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O3-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O3-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O3-induced H2O2 content and SA concentrations and completely abolished O3-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O3 exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O3 of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O3-induced HR-like cell death. PMID:11006337

  4. Preconditioning with Gua Lou Gui Zhi decoction enhances H2O2-induced Nrf2/HO-1 activation in PC12 cells

    PubMed Central

    MAO, JINGJIE; LI, ZUANFANG; LIN, RUHUI; ZHU, XIAOQIN; LIN, JIUMAO; PENG, JUN; CHEN, LIDIAN

    2015-01-01

    Spasticity is common in various central neurological conditions, including after a stroke. Such spasticity may cause additional problems, and often becomes a primary concern for afflicted individuals. A number of studies have identified nuclear factor (erythroid-derived 2)-like 2 (Nrf2) as a key regulator in the adaptive survival response to oxidative stress. Elevated expression of Nrf2, combined with heme oxygenase 1 (HO-1) resistance, in the central nervous system is known to elicit key internal and external oxidation protection. Gua Lou Gui Zhi decoction (GLGZD) is a popular traditional Chinese formula with a long history of clinical use in China for the treatment of muscular spasticity following a stroke, epilepsy or a spinal cord injury. However, the mechanism underlying the efficacy of the medicine remains unclear. In the present study, the antioxidative effects of GLGZD were evaluated and the underlying molecular mechanisms were investigated, using hydrogen peroxide (H2O2)-induced rat pheochromocytoma cells (PC12 cells) as an in vitro oxidative stress model of neural cells. Upon application of different concentrations of GLGZD, a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay and ATP measurement were conducted to assess the impact on PC12 cell proliferation. In addition, inverted microscopy observations, and the MTT and ATP assessments, revealed that GLGZD attenuated H2O2-induced oxidative damage and signaling repression in PC12 cells. Furthermore, the mRNA and protein expression levels of Nrf2 and HO-1, which are associated with oxidative stress, were analyzed using reverse transcription quantitative polymerase chain reaction (PCR) and confocal microscopy. Confocal microscopy observations, as well as the quantitative PCR assay, revealed that GLGZD exerted a neuroprotective function against H2O2-induced oxidative damage in PC12 cells. Therefore, the results demonstrated that GLGZD protected PC12 cells injured by H2O2, which may be

  5. Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts.

    PubMed

    Chen, Wei-Cheng; Hsieh, Shih-Rong; Chiu, Chun-Hwei; Hsu, Ban-Dar; Liou, Ying-Ming

    2014-06-09

    Epigallocatechin-3-gallate (EGCG) has been documented for its beneficial effects protecting oxidative stress to cardiac cells. Previously, we have shown the EGCG-mediated cardiac protection by attenuating reactive oxygen species and cytosolic Ca2+ in cardiac cells during oxidative stress and myocardial ischemia. Here, we aimed to seek a deeper elucidation of the molecular anti-oxidative capabilities of EGCG in an H2O2-induced oxidative stress model of myocardial ischemia injury using H9c2 rat cardiomyoblasts. Proteomics analysis was used to determine the differential expression of proteins in H9c2 cells cultured in the conditions of control, 400 μM H2O2 exposure for 30 min with and/or without 10 to 20 μM EGCG pre-treatment. In this model, eight proteins associated with energy metabolism, mitochondrial electron transfer, redox regulation, signal transduction, and RNA binding were identified to take part in EGCG-ameliorating H2O2-induced injury in H9c2 cells. H2O2 exposure increased oxidative stress evidenced by increases in reactive oxygen species and cytosolic Ca2+ overload, increases in glycolytic protein, α-enolase, decreases in antioxidant protein, peroxiredoxin-4, as well as decreases in mitochondrial proteins, including aldehyde dehydrogenase-2, ornithine aminotransferase, and succinate dehydrogenase ubiquinone flavoprotein subunit. All of these effects were reversed by EGCG pre-treatment. In addition, EGCG attenuated the H2O2-induced increases of Type II inositol 3, 4-bisphosphate 4-phosphatase and relieved its subsequent inhibition of the downstream signalling for Akt and glycogen synthase kinase-3β (GSK-3β)/cyclin D1 in H9c2 cells. Pre-treatment with EGCG or GSK-3β inhibitor (SB 216763) significantly improved the H2O2-induced suppression on cell viability, phosphorylation of pAkt (S473) and pGSK-3β (S9), and level of cyclin D1 in cells. Collectively, these findings suggest that EGCG blunts the H2O2-induced oxidative effect on the Akt activity

  6. Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts

    PubMed Central

    2014-01-01

    Background Epigallocatechin-3-gallate (EGCG) has been documented for its beneficial effects protecting oxidative stress to cardiac cells. Previously, we have shown the EGCG-mediated cardiac protection by attenuating reactive oxygen species and cytosolic Ca2+ in cardiac cells during oxidative stress and myocardial ischemia. Here, we aimed to seek a deeper elucidation of the molecular anti-oxidative capabilities of EGCG in an H2O2-induced oxidative stress model of myocardial ischemia injury using H9c2 rat cardiomyoblasts. Results Proteomics analysis was used to determine the differential expression of proteins in H9c2 cells cultured in the conditions of control, 400 μM H2O2 exposure for 30 min with and/or without 10 to 20 μM EGCG pre-treatment. In this model, eight proteins associated with energy metabolism, mitochondrial electron transfer, redox regulation, signal transduction, and RNA binding were identified to take part in EGCG-ameliorating H2O2-induced injury in H9c2 cells. H2O2 exposure increased oxidative stress evidenced by increases in reactive oxygen species and cytosolic Ca2+ overload, increases in glycolytic protein, α-enolase, decreases in antioxidant protein, peroxiredoxin-4, as well as decreases in mitochondrial proteins, including aldehyde dehydrogenase-2, ornithine aminotransferase, and succinate dehydrogenase ubiquinone flavoprotein subunit. All of these effects were reversed by EGCG pre-treatment. In addition, EGCG attenuated the H2O2-induced increases of Type II inositol 3, 4-bisphosphate 4-phosphatase and relieved its subsequent inhibition of the downstream signalling for Akt and glycogen synthase kinase-3β (GSK-3β)/cyclin D1 in H9c2 cells. Pre-treatment with EGCG or GSK-3β inhibitor (SB 216763) significantly improved the H2O2-induced suppression on cell viability, phosphorylation of pAkt (S473) and pGSK-3β (S9), and level of cyclin D1 in cells. Conclusions Collectively, these findings suggest that EGCG blunts the H2O2-induced oxidative

  7. Formononetin attenuates hydrogen peroxide (H2O2)-induced apoptosis and NF-κB activation in RGC-5 cells.

    PubMed

    Jia, W-C; Liu, G; Zhang, C-D; Zhang, S-P

    2014-01-01

    Diabetic retinopathy is a common diabetic eye disease caused by changes in retinal ganglion cells (RGCs). Several studies suggest that the oxidative stress plays a role in the pathogenesis of diabetic retinopathy in adults. Formononetin is a flavone with powerful antioxidant properties that exists naturally in various plants and Chinese medicine. In the present study, an attempt has been made to investigate the antioxidative effects of formononetin on H2O2-induced apoptosis of RGC-5 cells. Exposure of retinal ganglion cells (RGCs) to the indicated concentrations of formononetin and H2O2 for 24 h, analyzed by MTT assay. Cells were stained with Annexin V-FITC and PI, analyzed by flow cytometry. And the level of superoxide anions, malondialdehyde (MDA, a marker of lipid peroxidation), 8-hydroxy-2-deoxyguanosine (8-OHdG, indicator of oxidative DNA damage) and MnSOD (manganese superoxide dismutase) activity were measured by kits. Formononetin reduced hydrogen peroxide (H2O2)-induced apoptosis and improved the levels or activity of indicators of oxidative stress. Formononetin also inhibited the activation of nuclear factor-kappaB (NF-κB), which is a significant transcription factor for RGC-5 apoptosis. Formononetin may be developed as a antioxidant drug to treat diabetic retinopathy.

  8. Deciphering early events involved in hyperosmotic stress-induced programmed cell death in tobacco BY-2 cells.

    PubMed

    Monetti, Emanuela; Kadono, Takashi; Tran, Daniel; Azzarello, Elisa; Arbelet-Bonnin, Delphine; Biligui, Bernadette; Briand, Joël; Kawano, Tomonori; Mancuso, Stefano; Bouteau, François

    2014-03-01

    Hyperosmotic stresses represent one of the major constraints that adversely affect plants growth, development, and productivity. In this study, the focus was on early responses to hyperosmotic stress- (NaCl and sorbitol) induced reactive oxygen species (ROS) generation, cytosolic Ca(2+) concentration ([Ca(2+)]cyt) increase, ion fluxes, and mitochondrial potential variations, and on their links in pathways leading to programmed cell death (PCD). By using BY-2 tobacco cells, it was shown that both NaCl- and sorbitol-induced PCD seemed to be dependent on superoxide anion (O2·(-)) generation by NADPH-oxidase. In the case of NaCl, an early influx of sodium through non-selective cation channels participates in the development of PCD through mitochondrial dysfunction and NADPH-oxidase-dependent O2·(-) generation. This supports the hypothesis of different pathways in NaCl- and sorbitol-induced cell death. Surprisingly, other shared early responses, such as [Ca(2+)]cyt increase and singlet oxygen production, do not seem to be involved in PCD.

  9. Age-related differences in cigarette smoke extract-induced H2O2 production by lung endothelial cells.

    PubMed

    Downs, Charles A; Montgomery, David W; Merkle, Carrie J

    2011-11-01

    Cigarette smoke causes oxidative stress in the lung resulting in injury and disease. The purpose of this study was to determine if there were age-related differences in cigarette smoke extract (CSE)-induced production of reactive species in single and co-cultures of alveolar epithelial type I (AT I) cells and microvascular endothelial cells harvested from the lungs (MVECLs) of neonatal, young and old male Fischer 344 rats. Cultures of AT I cells and MVECLs grown separately (single culture) and together (co-culture) were exposed to CSE (1, 10, 50, 100%). Cultures were assayed for the production of intracellular reactive oxygen species (ROS), hydroxyl radical (OH), peroxynitrite (ONOO(-)), nitric oxide (NO) and extracellular hydrogen peroxide (H(2)O(2)). Single and co-cultures of AT I cells and MVECLs from all three ages produced minimal intracellular ROS in response to CSE. All ages of MVECLs produced H(2)O(2) in response to CSE, but young MVECLs produced significantly less H(2)O(2) compared to neonatal and old MVECLs. Interestingly, when grown as a co-culture with age-matched AT I cells, neonatal and old MVECLs demonstrated ~50% reduction in H(2)O(2) production in response to CSE. However, H(2)O(2) production in young MVECLs grown as a co-culture with young AT I cells did not change with CSE exposure. To begin investigating for a potential mechanism to explain the reduction in H(2)O(2) production in the co-cultures, we evaluated single and co-cultures for extracellular total antioxidant capacity. We also performed gene expression profiling specific to oxidant and anti-oxidant pathways. The total antioxidant capacity of the AT I cell supernatant was ~5 times greater than that of the MVECLs, and when grown as a co-culture and exposed to CSE (≥ 10%), the total antioxidant capacity of the supernatant was reduced by ~50%. There were no age-related differences in total antioxidant capacity of the cell supernatants. Gene expression profiling found eight genes to be

  10. Carvedilol, a third-generation β-blocker prevents oxidative stress-induced neuronal death and activates Nrf2/ARE pathway in HT22 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Ying; Chen, Ziwei; Tan, Min

    Highlights: •Carvedilol significantly prevented oxidative stress-induced cell death. •Carvedilol significantly decreased the production of ROS. •Carvedilol activated Nrf2/ARE pathway. •Carvedilol increased the protein levels of HO-1 and NQO-1. -- Abstract: Carvedilol, a nonselective β-adrenoreceptor blocker with pleiotropic activities has been shown to exert neuroprotective effect due to its antioxidant property. However, the neuroprotective mechanism of carvedilol is still not fully uncovered. Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. Here we investigated the effect of carvedilol on oxidative stress-induced cell death (glutamate 2 mM and H{sub 2}O{sub 2}more » 600 μM) and the activity of Nrf2/ARE pathway in HT22 hippocampal cells. Carvedilol significantly increased cell viability and decreased ROS in HT22 cells exposed to glutamate or H{sub 2}O{sub 2}. Furthermore, carvedilol activated the Nrf2/ARE pathway in a concentration-dependent manner, and increased the protein levels of heme oxygenase-1(HO-1) and NAD(P)H quinone oxidoreductase-1(NQO-1), two downstream factors of the Nrf2/ARE pathway. Collectively, our results indicate that carvedilol protects neuronal cell against glutamate- and H{sub 2}O{sub 2}-induced neurotoxicity possibly through activating the Nrf2/ARE signaling pathway.« less

  11. Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Chao; Yang, Bo; Yang, Zhi

    Highlights: Black-Right-Pointing-Pointer UVB radiated skin keratinocytes show cyclophilin D (Cyp-D) upregulation. Black-Right-Pointing-Pointer NAC inhibits UVB induced Cyp-D expression, while H{sub 2}O{sub 2} facilitates it. Black-Right-Pointing-Pointer Cyp-D-deficient cells are significantly less susceptible to UVB induced cell death. Black-Right-Pointing-Pointer Over-expression of Cyp-D causes spontaneous keratinocytes cell death. -- Abstract: UVB-induced skin cell damage involves the opening of mitochondrial permeability transition pore (mPTP), which leads to both apoptotic and necrotic cell death. Cyclophilin D (Cyp-D) translocation to the inner membrane of mitochondrion acts as a key component to open the mPTP. Our Western-Blot results in primary cultured human skin keratinocytes and in HaCaTmore » cell line demonstrated that UVB radiation and hydrogen peroxide (H{sub 2}O{sub 2}) induced Cyp-D expression, which was inhibited by anti-oxidant N-acetyl cysteine (NAC). We created a stable Cyp-D deficiency skin keratinocytes by expressing Cyp-D-shRNA through lentiviral infection. Cyp-D-deficient cells were significantly less susceptible than their counterparts to UVB- or H{sub 2}O{sub 2}-induced cell death. Further, cyclosporine A (Cs-A), a Cyp-D inhibitor, inhibited UVB- or H{sub 2}O{sub 2}-induced keratinocytes cell death. Reversely, over-expression of Cyp-D in primary keratinocytes caused spontaneous keratinocytes cell death. These results suggest Cyp-D's critical role in UVB/oxidative stress-induced skin cell death.« less

  12. Hydrogen peroxide production and mitochondrial dysfunction contribute to the fusaric acid-induced programmed cell death in tobacco cells.

    PubMed

    Jiao, Jiao; Sun, Ling; Zhou, Benguo; Gao, Zhengliang; Hao, Yu; Zhu, Xiaoping; Liang, Yuancun

    2014-08-15

    Fusaric acid (FA), a non-specific toxin produced mainly by Fusarium spp., can cause programmed cell death (PCD) in tobacco suspension cells. The mechanism underlying the FA-induced PCD was not well understood. In this study, we analyzed the roles of hydrogen peroxide (H2O2) and mitochondrial function in the FA-induced PCD. Tobacco suspension cells were treated with 100 μM FA and then analyzed for H2O2 accumulation and mitochondrial functions. Here we demonstrate that cells undergoing FA-induced PCD exhibited H2O2 production, lipid peroxidation, and a decrease of the catalase and ascorbate peroxidase activities. Pre-treatment of tobacco suspension cells with antioxidant ascorbic acid and NADPH oxidase inhibitor diphenyl iodonium significantly reduced the rate of FA-induced cell death as well as the caspase-3-like protease activity. Moreover, FA treatment of tobacco cells decreased the mitochondrial membrane potential and ATP content. Oligomycin and cyclosporine A, inhibitors of the mitochondrial ATP synthase and the mitochondrial permeability transition pore, respectively, could also reduce the rate of FA-induced cell death significantly. Taken together, the results presented in this paper demonstrate that H2O2 accumulation and mitochondrial dysfunction are the crucial events during the FA-induced PCD in tobacco suspension cells. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Production of simplex RNS and ROS by nanosecond pulse N2/O2 plasma jets with homogeneous shielding gas for inducing myeloma cell apoptosis

    NASA Astrophysics Data System (ADS)

    Liu, Zhijie; Xu, Dehui; Liu, Dingxin; Cui, Qingjie; Cai, Haifeng; Li, Qiaosong; Chen, Hailan; Kong, Michael G.

    2017-05-01

    In this paper, atmospheric pressure N2/O2 plasma jets with homogeneous shielding gas excited by nanosecond pulse are obtained to generate simplex reactive nitrogen species (RNS) and reactive oxygen species (ROS), respectively, for the purpose of studying the simplex RNS and ROS to induce the myeloma cell apoptosis with the same discharge power. The results reveal that the cell death rate by the N2 plasma jet with N2 shielding gas is about two times that of the O2 plasma jet with O2 shielding gas for the equivalent treatment time. By diagnosing the reactive species of ONOO-, H2O2, OH and \\text{O}2- in medium, our findings suggest the cell death rate after plasma jets treatment has a positive correlation with the concentration of ONOO-. Therefore, the ONOO- in medium is thought to play an important role in the process of inducing myeloma cell apoptosis.

  14. [Zn(phen)(O,N,O)(H2O)] and [Zn(phen)(O,N)(H2O)] with O,N,O is 2,6-dipicolinate and N,O is L-threoninate: synthesis, characterization, and biomedical properties.

    PubMed

    Chin, Lee-Fang; Kong, Siew-Ming; Seng, Hoi-Ling; Tiong, Yee-Lian; Neo, Kian-Eang; Maah, Mohd Jamil; Khoo, Alan Soo-Beng; Ahmad, Munirah; Hor, Tzi-Sum Andy; Lee, Hong-Boon; San, Swee-Lan; Chye, Soi-Moi; Ng, Chew-Hee

    2012-10-01

    Two ternary Zn(II) complexes, with 1,10-phenanthroline (phen) as the main ligand and a carboxylate-containing ligand [dipicolinate (dipico) or L-threoninate (L-Thr)] as the subsidiary ligand, were prepared and characterized by elemental analysis, Fourier transform IR, UV, and fluorescence spectroscopy, X-ray diffraction, molar conductivity, and electrospray ionization mass spectrometry. X-ray structure analysis shows that both [Zn(phen)(dipico)(H(2)O)]·H(2)O (1) and [Zn(phen)(L-Thr)(H(2)O)Cl]·2H(2)O (2) have octahedral geometry about the Zn(II) atom. Both complexes can inhibit topoisomerase I, and have better anticancer activity than cisplatin against nasopharyngeal cancer cell lines, HK1 and HONE-1, with concentrations causing 50 % inhibition of cell proliferation (IC(50)) in the low micromolar range. Complex 2 has the highest therapeutic index for HK1. Both Zn(II) complexes can induce cell death by apoptosis. Changing the subsidiary ligand in the Zn(II) complexes affects the UV-fluorescence spectral properties of the coordinated phen ligand, the binding affinity for some DNA sequences, nucleobase sequence-selective binding, the phase at which cell cycle progression was arrested for treated cancer cells, and their therapeutic index.

  15. Deciphering early events involved in hyperosmotic stress-induced programmed cell death in tobacco BY-2 cells

    PubMed Central

    Monetti, Emanuela; Kadono, Takashi; Bouteau, François

    2014-01-01

    Hyperosmotic stresses represent one of the major constraints that adversely affect plants growth, development, and productivity. In this study, the focus was on early responses to hyperosmotic stress- (NaCl and sorbitol) induced reactive oxygen species (ROS) generation, cytosolic Ca2+ concentration ([Ca2+]cyt) increase, ion fluxes, and mitochondrial potential variations, and on their links in pathways leading to programmed cell death (PCD). By using BY-2 tobacco cells, it was shown that both NaCl- and sorbitol-induced PCD seemed to be dependent on superoxide anion (O2·–) generation by NADPH-oxidase. In the case of NaCl, an early influx of sodium through non-selective cation channels participates in the development of PCD through mitochondrial dysfunction and NADPH-oxidase-dependent O2·– generation. This supports the hypothesis of different pathways in NaCl- and sorbitol-induced cell death. Surprisingly, other shared early responses, such as [Ca2+]cyt increase and singlet oxygen production, do not seem to be involved in PCD. PMID:24420571

  16. Feruloylserotonin inhibits hydrogen peroxide-induced melanogenesis and apoptosis in B16F10 and SK-Mel-2 melanoma cells.

    PubMed

    Cho, Hyejoung; Kim, Okjoon; Lee, Younghee; Kang, Li-Jung; Nguyen, Cam Ngoc; Ishihara, Atsushi; Kim, Hye-Eun

    2017-09-30

    Feruloylserotonin (FS) is a major bioactive component of safflower seeds, with documented strong antibacterial, anti-inflammatory, and free radical scavenging activities. Reactive oxygen species (ROS) can strongly induce melanogenesis and cell apoptosis. The present study aimed to investigate the ability of FS in preventing hydrogen peroxide (H 2 O 2 )-induced melanogenesis and cell apoptosis. Melanogenesis and apoptotic cell death were induced by transient exposure to H 2 O 2 in B16F10 and SK-Mel-2 melanoma cells. FS significantly inhibited melanogenesis and cell death in both cell lines. FS inhibited H 2 O 2 -induced melanin production by down-regulating CREB/MITF/TYR signaling via inhibited intracellular cAMP accumulation. Additionally, FS induced extracellular regulated kinase activation, which led to the degradation of MITF and consequently decreased TYR expression and melanin production in H 2 O 2 -stimulated cells. Furthermore, FS inhibited H 2 O 2 -induced apoptotic cell death by maintaining mitochondrial membrane potential. Therefore, FS might have potential use for cosmetic whitening and as a therapeutic agent for hyperpigmentation disorder. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Carvedilol protects bone marrow stem cells against hydrogen peroxide-induced cell death via PI3K-AKT pathway.

    PubMed

    Chen, Meihui; Chen, Shudong; Lin, Dingkun

    2016-03-01

    Carvedilol, a nonselective β-adrenergic receptor blocker, has been reported to exert potent anti-oxidative activities. In the present study, we aimed to investigate the effects of carvedilol against hydrogen peroxide (H2O2)-induced bone marrow-derived mesenchymal stem cells (BMSCs) death, which imitate the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. Carvedilol significantly reduced H2O2-induced reactive oxygen species production, apoptosis and subsequent cell death. LY294002, the PI3K inhibitor, blocked the protective effects and up-regulation of Akt phosphorylation of carvedilol. Together, our results showed that carvedilol protects H2O2-induced BMSCs cell death partly through PI3K-Akt pathway, suggesting carvedilol could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Hengwen; Yang, Shana; Li, Jianhua

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expressionmore » in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.« less

  19. Protective effect of hydroxytyrosol and its metabolite homovanillic alcohol on H(2)O(2) induced lipid peroxidation in renal tubular epithelial cells.

    PubMed

    Deiana, Monica; Incani, Alessandra; Rosa, Antonella; Corona, Giulia; Atzeri, Angela; Loru, Debora; Paola Melis, M; Assunta Dessì, M

    2008-09-01

    We investigated the capacity of hydroxytyrosol (HT), 3,4-dihydroxyphenylethanol, and homovanillic alcohol (HVA), 4-hydroxy-3-methoxy-phenylethanol, to inhibit H(2)O(2) induced oxidative damage in LLC-PK1, a porcine kidney epithelial cell line, studying the effect of H(2)O(2) on specific cell membrane lipid targets, unsaturated fatty acids and cholesterol. Exposure to H(2)O(2) induced a significant increase of the level of MDA together with a disruption of the membrane structure, with the loss of unsaturated fatty acids, cholesterol and alpha-tocopherol, and the formation of fatty acids hydroperoxides and 7-ketocholesterol. Pretreatment with HT protected renal cells from oxidative damage: the level of membrane lipids was preserved and there was no significant detection of oxidation products. HVA exerted a comparable activity, thus both HT and HVA were able to prevent in renal cells the lipid peroxidation process that plays a central role in tubular cell injury.

  20. Nuclear factor erythroid 2-related factor 2 antioxidant response element pathways protect bovine mammary epithelial cells against H2O2-induced oxidative damage in vitro.

    PubMed

    Ma, Y F; Wu, Z H; Gao, M; Loor, J J

    2018-06-01

    The experiment was conducted to determine the role of nuclear factor (erythroid-derived 2)-like factor 2 (NFE2L2, formerly Nrf2) antioxidant response element (ARE) pathway in protecting bovine mammary epithelial cells (BMEC) against H 2 O 2 -induced oxidative stress injury. An NFE2L2 small interfering RNA (siRNA) interference or a pCMV6-XL5-NFE2L2 plasmid fragment was transfected to independently downregulate or upregulate expression of NFE2L2. Isolated BMEC in triplicate were exposed to H 2 O 2 (600 μM) for 6 h to induce oxidative stress before transient transfection with scrambled siRNA, NFE2L2-siRNA, pCMV6-XL5, and pCMV6-XL5-NFE2L2. Cell proliferation, apoptosis and necrosis rates, antioxidant enzyme activities, reactive oxygen species (ROS) and malondialdehyde (MDA) production, protein and mRNA expression of NFE2L2 and downstream target genes, and fluorescence activity of ARE were measured. The results revealed that compared with the control, BMEC transfected with NFE2L2-siRNA3 had proliferation rates that were 9 or 65% lower without or with H 2 O 2 , respectively. These cells also had apoptosis and necrosis rates that were 27 and 3.5 times greater with H 2 O 2 compared with the control group, respectively. In contrast, transfected pCMV6-XL5-NFE2L2 had proliferation rates that were 64.3% greater or 17% lower without or with H 2 O 2 compared with the control group, respectively. Apoptosis rates were 1.8 times lower with H 2 O 2 compared with the control. In addition, compared with the control, production of ROS and MDA and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and glutathione-S-transferase (GST) increased markedly in cells transfected with pCMV6-XL5-NFE2L2 and without H 2 O 2 . However, compared with the control, production of ROS and MDA and activity of CAT and GSH-Px increased markedly, whereas activities of SOD and GST decreased in cells transfected with pCMV6-XL5-NFE2L2 and incubated with H 2 O 2

  1. Fermented Acanthopanax koreanum Root Extract Reduces UVB- and H2O2-Induced Senescence in Human Skin Fibroblast Cells.

    PubMed

    Park, Min-Ja; Bae, Young-Seuk

    2016-07-28

    The present study assessed the effects of an aqueous extract of Acanthopanax koreanum root (AE) and of AE following fermentation by lactic acid bacteria (Lactobacillus plantarum and Bifidobacterium bifidum) (AEF) on human skin fibroblast HS68 cells exposed to ultraviolet B (UVB) irradiation and oxidative stress. AEF effectively antagonized the senescence-associated β-galactosidase staining and upregulation of p53 and p21(Cip1/WAF1) induced by UVB or H2O2 treatment in HS68 cells. It also exhibited excellent antioxidant activities in radical scavenging assays and reduced the intracellular level of reactive oxygen species induced by UVB or H2O2 treatment. The antioxidant and antisenescent activities of AEF were greater than those of nonfermented A. koreanum extract. AEF significantly repressed the UVB- or H2O2-induced activities of matrix metalloproteinase (MMP)-1 and -3, overexpression of MMP-1, and nuclear factor κB (NF-κB) activation. This repression of NF-κB activation and MMP-1 overexpression was attenuated by a mitogen-activated protein kinase activator, suggesting that this AEF activity was dependent on this signaling pathway. Taken together, these data indicated that AEF-mediated antioxidant and anti-photoaging activities may produce anti-wrinkle effects on human skin.

  2. Nitric oxide activates superoxide dismutase and ascorbate peroxidase to repress the cell death induced by wounding.

    PubMed

    Lin, Chih-Ching; Jih, Pei-Ju; Lin, Hsin-Hung; Lin, Jeng-Shane; Chang, Ling-Lan; Shen, Yu-Hsing; Jeng, Shih-Tong

    2011-10-01

    Wounding caused by rain, wind, and pathogen may lead plants to onset defense response. Previous studies indicated that mechanical wounding stimulates plants to generate nitric oxide (NO) and hydrogen peroxide (H(2)O(2)). In this study, the functions of NO and H(2)O(2) after wounding in sweet potato (Ipomoea batatas cv. Tainung 57) was further analyzed. Mechanical wounding damaged cells and resulted in necrosis, but the presence of NO donors or NO scavenger might reduce or enhance the cell death caused by wounding, respectively. The amount of H(2)O(2) induced by wounding was also decreased or increased when plants were incubated with NO donors or NO scavenger, individually. These results indicate that NO may regulate H(2)O(2) generation to affect cell death. NO-induced proteins isolated from two-dimensional electrophoresis were identified to be Copper/Zinc superoxide dismutases (CuZnSODs). The activities of CuZnSODs and ascorbate peroxidase (APX) could be enhanced by NO. In addition, the expression of CuZnSOD and APX was induced by wounding via NO, and their expression was further stimulated by NO through the generation of cGMP. The influx of calcium ions and the activity of NADPH oxidase were also involved in the NO signal transduction pathway inducing APX expression. Collectively, the generation of H(2)O(2) in wounded plants might trigger cell death. Meanwhile, the production of NO induced by wounding stimulated signal transducers including cGMP, calcium ions, and H(2)O(2) to activate CuZnSOD and APX, which further decreased H(2)O(2) level and reduced the cell death caused by wounding.

  3. Silymarin versus Silibinin: Differential Antioxidant and Neuroprotective Effects against H2O2-induced Oxidative Stress in PC12 Cells.

    PubMed

    Jiang, Hui-Hui; Yan, Fa-Shun; Shen, Liang; Ji, Hong-Fang

    2016-05-01

    The present study assessed comparatively the antioxidant activities of silymarin and its major active component silibinin and their neuroprotective effects against hydrogen peroxide (H2O2)-induced oxidative stress in rat pheochromocytoma PC12 cells. It was found that despite newly prepared silymarin and silibinin solution possessing comparable superoxide anion (O2*-)-scavenging activities, with time the activity of silymarin lowered slightly, but that of silibinin decreased dramatically. Both silymarin and silibinin suppressed H2O2-induced oxidative stress and apoptosis, and the neuroprotective effect of silymarin was overall relatively stronger than that of silibinin. The findings provided clues for future studies on therapeutic potentials of the whole silymarin or purified silibinin for neurodegenerative diseases.

  4. Tamarix gallica phenolics protect IEC-6 cells against H2O2 induced stress by restricting oxidative injuries and MAPKs signaling pathways.

    PubMed

    Bettaib, Jamila; Talarmin, Hélène; Droguet, Mickaël; Magné, Christian; Boulaaba, Mondher; Giroux-Metges, Marie-Agnès; Ksouri, Riadh

    2017-05-01

    Polyphenolic compounds gained interest in the pharmaceutical research area due to their beneficial properties. Herein, antioxidant and cytoprotective capacities of T. gallica extract on H 2 O 2 -challenged rat small intestine epithelial cells were investigated. To set stress conditions, IEC-6 cultures were challenged with numerous H 2 O 2 doses and durations. Then, 40μM H 2 O 2 during 4h were selected to assess the cytoprotective effect of different T. gallica extract concentrations. Oxidative parameters, measured through CAT and SOD activities as well as MDA quantification were assessed. In addition, the expression of possibly involved MAPKs was also valued. Main results reported that T. gallica was rich in polyphenols and exhibited an important antioxidant activity (DPPH Assay, IC 50 =6μgmL -1 ; ABTS + test, IC 50 =50μgmL -1 ; Fe-reducing power, EC 50 =100μgmL -1 ). The exposure of IEC-6 cultures to 40μM H 2 O 2 during 4h caused oxidative stress manifested by (i) over 70% cell mortality, (ii) over-activity of CAT (246%), (iii) excess in MDA content (18.4nmolmg -1 ) and (iiii) a trigger of JNK phosphorylation. Pretreatment with T. gallica extract, especially when used at 0.25μgmL -1 , restored cell viability to 122%, and normal cell morphology in H 2 O 2 -chalenged cells. In addition, this extract normalized CAT activity and MDA content (100% and 14.7nmolmg -1 , respectively) to their basal levels as compared to control cells. Furthermore, stopping cell death seems to be due to dephosphorylated JNK MAPK exerted by T. gallica bioactive compounds. In all, T. gallica components provided a cross-talk between regulatory pathways leading to an efficient cytoprotection against harmful oxidative stimulus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. The NRF2 Activation and Antioxidative Response Are Not Impaired Overall during Hyperoxia-Induced Lung Epithelial Cell Death

    PubMed Central

    Potteti, Haranatha R.; Reddy, Narsa M.; Hei, Tom K.; Kalvakolanu, Dhananjaya V.; Reddy, Sekhar P.

    2013-01-01

    Lung epithelial and endothelial cell death caused by pro-oxidant insults is a cardinal feature of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) patients. The NF-E2-related factor 2 (NRF2) activation in response to oxidant exposure is crucial to the induction of several antioxidative and cytoprotective enzymes that mitigate cellular stress. Since prolonged exposure to hyperoxia causes cell death, we hypothesized that chronic hyperoxia impairs NRF2 activation, resulting in cell death. To test this hypothesis, we exposed nonmalignant small airway epithelial cells (AECs) to acute (1–12 h) and chronic (36–48 h) hyperoxia and evaluated cell death, NRF2 nuclear accumulation and target gene expression, and NRF2 recruitment to the endogenous HMOX1 and NQO1 promoters. As expected, hyperoxia gradually induced death in AECs, noticeably and significantly by 36 h; ~60% of cells were dead by 48 h. However, we unexpectedly found increased expression levels of NRF2-regulated antioxidative genes and nuclear NRF2 in AECs exposed to chronic hyperoxia as compared to acute hyperoxia. Chromatin Immunoprecipitation (ChIP) assays revealed an increased recruitment of NRF2 to the endogenous HMOX1 and NQO1 promoters in AECs exposed to acute or chronic hyperoxia. Thus, our findings demonstrate that NRF2 activation and antioxidant gene expression are functional during hyperoxia-induced lung epithelial cell death and that chronic hyperoxia does not impair NRF2 signaling overall. PMID:23738042

  6. Oxidative stress activates the TRPM2-Ca2+-CaMKII-ROS signaling loop to induce cell death in cancer cells.

    PubMed

    Wang, Qian; Huang, Lihong; Yue, Jianbo

    2017-06-01

    High intracellular levels of reactive oxygen species (ROS) cause oxidative stress that results in numerous pathologies, including cell death. Transient potential receptor melastatin-2 (TRPM2), a Ca 2+ -permeable cation channel, is mainly activated by intracellular adenosine diphosphate ribose (ADPR) in response to oxidative stress. Here we studied the role and mechanisms of TRPM2-mediated Ca 2+ influx on oxidative stress-induced cell death in cancer cells. We found that oxidative stress activated the TRPM2-Ca 2+ -CaMKII cascade to inhibit early autophagy induction, which ultimately led to cell death in TRPM2 expressing cancer cells. On the other hand, TRPM2 knockdown switched cells from cell death to autophagy for survival in response to oxidative stress. Moreover, we found that oxidative stress activated the TRPM2-CaMKII cascade to further induce intracellular ROS production, which led to mitochondria fragmentation and loss of mitochondrial membrane potential. In summary, our data demonstrated that oxidative stress activates the TRPM2-Ca 2+ -CaMKII-ROS signal loop to inhibit autophagy and induce cell death. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    PubMed Central

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2014-01-01

    Background Arctium lappa (AL), Camellia sinensis (CS), Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG), and Vaccinium myrtillus (VM) are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (m)RNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results A noncytotoxic dose (200 μM) of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001) regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in vitro and in vivo investigation into molecular mechanisms modulated by herbal extracts should be undertaken to shed light on the development of novel

  8. LAMP-2 mediates oxidative stress-dependent cell death in Zn2+-treated lung epithelium cells.

    PubMed

    Qin, Xia; Zhang, Jun; Wang, Bin; Xu, Ge; Zou, Zhen

    2017-06-17

    Zinc is an essential element for the biological system. However, excessive exogenous Zn 2+ would disrupt cellular Zn 2+ homeostasis and cause toxicity. In particular, Zinc salts or ZnO nanoparticles exposure could induce respiratory injury. Although previous studies have indicated that organelle damage (including mitochondria or lysosomes) and reactive oxygen species (ROS) production are involved in Zn 2+ -induced toxicity, the interplay between mitochondria/lysosomes damage and ROS production is obscure. Herein, we demonstrated that Zn 2+ could induce deglycosylation of lysosome-associated membrane protein 1 and 2 (LAMP-1 and LAMP-2), which primarily locate in late endosomes/lysosomes, in A549 lung epithelium cells. Intriguingly, LAMP-2 knockdown further aggravated Zn 2+ -mediated ROS production and cell death, indicating LAMP-2 (not LAMP-1) was involved in Zn 2+ -induced toxicity. Our results provide a new insight that LAMP-2 contributes to the ROS clearance and cell death induced by Zn 2+ treatment, which would help us to get a better understanding of Zn 2+ -induced toxicity in respiratory system. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Estrogen attenuates glutamate-induced cell death by inhibiting Ca2+ influx through L-type voltage-gated Ca2+ channels

    PubMed Central

    Sribnick, Eric A.; Del Re, Angelo M.; Ray, Swapan K.; Woodward, John J.; Banik, Naren L.

    2009-01-01

    Estrogen-mediated neuroprotection is observed in neurodegenerative disease and neurotrauama models; however, determining a mechanism for these effects has been difficult. We propose that estrogen may limit cell death in the nervous system tissue by inhibiting increases in intracellular free Ca2+. Here, we present data using VSC 4.1 cell line, a ventral spinal motoneuron and neuroblastoma hybrid cell line. Treatment with 1 mM glutamate for 24 h induced apoptosis. When cells were pre-treated with 100 nM 17β-estradiol (estrogen) for 1 h and then co-treated with glutamate, apoptotic death was significantly attenuated. Estrogen also prevented glutamate-mediated changes in resting membrane potential and membrane capacitance. Treatment with either 17α-estradiol or cell impermeable estrogen did not mimic the findings seen with estrogen. Glutamate treatment significantly increased both intracellular free Ca2+ and the activities of downstream proteases such as calpain and caspase-3. Estrogen attenuated both the increases in intracellular free Ca2+ and protease activities. In order to determine the pathway responsible for estrogen-mediated inhibition of these increases in intracellular free Ca2+, cells were treated with several Ca2+ entry inhibitors, but only the L-type Ca2+ channel blocker nifedipine demonstrated cytoprotective effects comparable to estrogen. To expand these findings, cells were treated with the L-type Ca2+ channel agonist FPL 64176, which increased both cell death and intracellular free Ca2+, and estrogen inhibited both effects. From these observations, we conclude that estrogen limits glutamate-induced cell death in VSC 4.1 cells through effects on L-type Ca2+ channels, inhibiting Ca2+ influx as well as activation of the pro-apoptotic proteases calpain and caspase-3. PMID:19389388

  10. BaxΔ2 sensitizes colorectal cancer cells to proteasome inhibitor-induced cell death

    PubMed Central

    Mañas, Adriana; Chen, Wenjing; Nelson, Adam; Yao, Qi; Xiang, Jialing

    2018-01-01

    Proteasome inhibitors, such as bortezomib and carfilzomib, are FDA approved for the treatment of hemopoietic cancers, but recent studies have shown their great potential for treatment of solid tumors. BaxΔ2, a unique proapoptotic Bax isoform, promotes non-mitochondrial cell death and sensitizes cancer cells to chemotherapy. However, endogenous BaxΔ2 proteins are unstable and susceptible to proteasomal degradation. Here, we screened a panel of proteasome inhibitors in colorectal cancer cells with different Bax statuses. We found that all proteasome inhibitors tested were able to block BaxΔ2 degradation without affecting the level of Baxα or Bcl-2 proteins. Among the inhibitors tested, only bortezomib and carfilzomib were able to induce differential cell death corresponding to the distinct Bax statuses. BaxΔ2-positive cells had a significantly higher level of cell death at low nanomolar concentrations than Baxα-positive or Bax-negative cells. Furthermore, bortezomib-induced cell death in BaxΔ2-positive cells was predominantly dependent on the caspase 8/3 pathway, consistent with our previous studies. These results imply that BaxΔ2 can selectively sensitize cancer cells to proteasome inhibitors, enhancing their potential to treat colon cancer and other solid tumors. PMID:29291406

  11. PM2.5 induces autophagy-mediated cell death via NOS2 signaling in human bronchial epithelium cells

    PubMed Central

    Zhu, Xiao-Ming; Wang, Qin; Xing, Wei-Wei; Long, Min-Hui; Fu, Wen-Liang; Xia, Wen-Rong; Jin, Chen; Guo, Ning; Xu, Dong-Qun; Xu, Dong-Gang

    2018-01-01

    The biggest victim of ambient air pollution is the respiratory system. Mainly because of the harmful components, especially the particulate matters with an aerodynamic diameter of ≤ 2.5µm (PM2.5), can be directly inhaled and deeply penetrate into the lung alveoli, thus causing severe lung dysfunction, including chronic cough, bronchitis and asthma, even lung cancer. Unfortunately, the toxicological mechanisms of PM2.5 associations with these adverse respiratory outcomes have still not been clearly unveiled. Here, we found that PM2.5 rapidly induced inflammatory responses, oxidative injure and cell death in human bronchial epithelium cells through upregulation of IL-6 expression, ROS production and apoptosis. Furthermore, PM2.5 specifically induced nitric oxide synthase 2 (NOS2) expression and NO generation to elevate excessive autophagy. Finally, disruption of NOS2 signaling effectively blocked autophayosome formation and the subsequent cell death. Our novel findings systemically reveled the role of autophagy-mediated cell death in PM2.5-treated human bronchial epithelium cells and provided potential strategy for future clinic intervention.

  12. Interfacial contributions of H2O2 decomposition-induced reaction current on mesoporous Pt/TiO2 systems

    NASA Astrophysics Data System (ADS)

    Ray, Nathan J.; Styrov, Vladislav V.; Karpov, Eduard G.

    2017-12-01

    We report on conversion of energy released due to chemical reactions into current for the decomposition of aqueous hydrogen peroxide solution on single phases Pt and TiO2, in addition to Pt and TiO2 simultaneously. We observe that H2O2 decomposition-induced current on TiO2 drastically overshadows the current generated by H2O2 decomposition on Pt. Photo-effects avoided, H2O2 decomposition was found to yield a conversion efficiency of 10-3 electrons generated per H2O2 molecule. Further understanding of chemical reaction-induced current shows promise as a metric with which the surface reaction may be monitored and could be greatly extended into the field of analytical chemistry.

  13. Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes

    PubMed Central

    Bihamta, Mehdi; Hosseini, Azar; Ghorbani, Ahmad; Boroushaki, Mohammad Taher

    2017-01-01

    Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO) has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2)-induced damage in H9c2 cardiomyocytes. Materials and Methods: The cells were pretreated 24 hr with PSO 1 hr before exposure to 200 µM H2O2. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay. The level of reactive oxygen species (ROS) and lipid peroxidation were measured by fluorimetric methods. Results: H2O2 significantly decreased cell viability which was accompanied by an increase in ROS production and lipid peroxidation and a decline in superoxide dismutase activity. Pretreatment with PSO increased viability of cardiomyocytes and decrease the elevated ROS production and lipid peroxidation. Also, PSO was able to restore superoxide dismutase activity. Conclusion: PSO has protective effect against oxidative stress-induced damage in cardiomyocytes and can be considered as a natural cardioprotective agent to prevent cardiovascular diseases. PMID:28265546

  14. The CNGRC-GG-D(KLAKLAK)2 peptide induces a caspase-independent, Ca2+-dependent death in human leukemic myeloid cells by targeting surface aminopeptidase N/CD13.

    PubMed

    Bouchet, Sandrine; Tang, Ruoping; Fava, Fanny; Legrand, Ollivier; Bauvois, Brigitte

    2016-04-12

    The CD13 antigen's binding site for the Asn-Gly-Arg (NGR) motif enables NGR-containing chemotherapeutic drugs to be delivered to CD13-positive tumours. Human CD13-positive acute myeloid leukemia (AML) cells proliferate abnormally and escape death. Here, we show that the CNGRC-GG-D(KLAKLAK)2 peptide induces death in AML cell lines (U937, THP-1, NB4, HL-60) and primary blood cells from AML patients. Cell death was characterized as a caspase-independent mechanism, without DNA fragmentation, but phosphatidylserine externalization and membrane disruption. Our results demonstrate in U937 cells that (i) the NGR-peptide triggers the loss of mitochondrial potential(ΔΨm) and generates superoxide anion (O2-), (ii) N-acetyl-L-cysteine (NAC) and extra/intracellular Ca2+ chelators (BAPTA) prevent both O2- production and cell death, (iii) the Ca2+-channel blocker nifedipine prevents cell death (indicating that Ca2+ influx is the initial death trigger), and (iv) BAPTA, but not NAC, prevents ΔΨm loss (suggesting O2- is a mitochondrial downstream effector). AML cell lines and primary blasts responding to the lethal action of NGR-peptide express promatrix metalloproteinase-12 (proMMP-12) and its substrate progranulin (an 88 kDa cell survival factor). A cell-free assay highlighted proMMP-12 activation by O2-. Accordingly, NGR-peptide's downregulation of 88 kDa progranulin protein was prevented by BAPTA and NAC. Conversely, AML blast resistance to NGR-peptide is associated with the expression of a distinct, 105 kDa progranulin isoform. These results indicate that CNGRC-GG-D(KLAKLAK)2 induces death in AML cells through the Ca2+-mitochondria-O2.-pathway, and support the link between proMMP-12 activation and progranulin cleavage during cell death. Our findings may have implications for the understanding of tumour biology and treatment.

  15. Long Noncoding RNA MHRT Protects Cardiomyocytes against H2O2-Induced Apoptosis

    PubMed Central

    Zhang, Jianying; Gao, Caihua; Meng, Meijuan; Tang, Hongxia

    2016-01-01

    Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. The exploration of new biomarkers with high sensitivity and specificity for early diagnosis of AMI therefore becomes one of the primary task. In the current study, we aim to detect whether there is any heart specific long noncoding RNA (lncRNA) releasing into the circulation during AMI, and explore its function in the neonatal rat cardiac myocytes injury induced by H2O2. Our results revealed that the cardiac-specific lncRNA MHRT (Myosin Heavy Chain Associated RNA Transcripts) was significantly elevated in the blood from AMI patients compared with the healthy control (*p<0.05). Using an in vitro neonatal rat cardiac myocytes injury model, we demonstrated that lncRNA MHRT was upregulated in the cardiac myocytes after treatment with hydrogen peroxide (H2O2) via real-time RT-PCR (qRT-PCR). Furthermore, we knockdowned the MHRT gene by siRNA to confirm its roles in the H2O2-induced cardiac cell apoptosis, and found that knockdown of MHRT led to significant more apoptotic cells than the non-target control (**p<0.01), indicating that the lncRNA MHRT is a protective factor for cardiomyocyte and the plasma concentration of MHRT may serve as a biomarker for myocardial infarction diagnosis in humans AMI. PMID:26759697

  16. 3',4',7-Trihydroxyflavone prevents apoptotic cell death in neuronal cells from hydrogen peroxide-induced oxidative stress.

    PubMed

    Kwon, Seung-Hwan; Hong, Sa-Ik; Ma, Shi-Xun; Lee, Seok-Yong; Jang, Choon-Gon

    2015-06-01

    In this study, we investigated the mechanisms of 3',4',7-trihydroxyflavone (THF) protection of neuronal cells from neuronal cell death induced by the oxidative stress-related neurotoxin hydrogen peroxide (H2O2). Pretreatment with THF significantly elevated cell viability, reduced H2O2-induced lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) production, glutathione (GSH) content, superoxide dismutase (SOD) activity, catalase (CAT) activity, and mitochondria membrane potential (MMP) loss. Western blot data demonstrated that THF inhibited the H2O2-induced up- or down-regulation of cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), Bax, Bcl-2, and Bcl-xL, and attenuated the H2O2-induced release of cytochrome c from the mitochondria to the cytosol. In addition, pretreatment with THF attenuated H2O2-induced rapid and significant phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinases (PI3K)/Akt. THF also inhibited nuclear factor-κB (NF-κB) translocation to the nucleus induced by H2O2, down-stream of H2O2-induced phosphorylation of MAPKs and PI3K/Akt. These data provide the first evidence that THF protects neuronal cells against H2O2-induced oxidative stress, possibly through ROS reduction, mitochondria protection, and NF-κB modulation via MAPKs and PI3K/Akt pathways. The neuroprotective effects of THF make it a promising candidate as a therapeutic agent for neurodegenerative diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Progesterone amplifies oxidative stress signal and promotes NO production via H2O2 in mouse kidney arterial endothelial cells.

    PubMed

    Yuan, Xiao-Hua; Fan, Yang-Yang; Yang, Chun-Rong; Gao, Xiao-Rui; Zhang, Li-Li; Hu, Ying; Wang, Ya-Qin; Jun, Hu

    2016-01-01

    The role of progesterone on the cardiovascular system is controversial. Our present research is to specify the effect of progesterone on arterial endothelial cells in response to oxidative stress. Our result showed that H2O2 (150 μM and 300 μM) induced cellular antioxidant response. Glutathione (GSH) production and the activity of Glutathione peroxidase (GPx) were increased in H2O2-treated group. The expression of glutamate cysteine ligase catalytic subunit (GCLC) and modifier subunit (GCLM) was induced in response to H2O2. However, progesterone absolutely abolished the antioxidant response through increasing ROS level, inhibiting the activity of Glutathione peroxidase (GPx), decreasing GSH level and reducing expression of GClC and GCLM. In our study, H2O2 induced nitrogen monoxide (NO) production and endothelial nitric oxide synthase (eNOS) expression, and progesterone promoted H2O2-induced NO production. Progesterone increased H2O2-induced expression of hypoxia inducible factor-α (HIFα) which in turn regulated eNOS expression and NO synthesis. Further study demonstrated that progesterone increased H2O2 concentration of culture medium which may contribute to NO synthesis. Exogenous GSH decreased the content of H2O2 of culture medium pretreated by progesterone combined with H2O2 or progesterone alone. GSH also inhibited expression of HIFα and eNOS, and abolished NO synthesis. Collectively, our study demonstrated for the first time that progesterone inhibited cellular antioxidant effect and increased oxidative stress, promoted NO production of arterial endothelial cells, which may be due to the increasing H2O2 concentration and amplified oxidative stress signal. Copyright © 2015. Published by Elsevier Ltd.

  18. Ethylene is required for elicitin-induced oxidative burst but not for cell death induction in tobacco cell suspension cultures.

    PubMed

    Koehl, Julia; Djulic, Alma; Kirner, Veronika; Nguyen, Tach Thao; Heiser, Ingrid

    2007-12-01

    The signal compound ethylene and its relationships with oxidative burst and cell death were analyzed in cultured tobacco cells treated with the proteinaceous elicitor quercinin. Quercinin belongs to the protein family of elicitins and was isolated from the soil-born oak pathogen Phytophthora quercina. It was shown to induce a dose-dependent oxidative burst in tobacco cell culture in concentrations from 0.05 to 0.5 nM, and subsequently, cell death. The characteristics of quercinin-induced cell death included both membrane damage and DNA fragmentation in tobacco cell culture. At higher quercinin concentrations (2 nM), H(2)O(2) formation and ethylene biosynthesis were inhibited. Ethylene at low concentrations proved to be necessary for induction and maintenance of H(2)O(2) production in tobacco cells treated with quercinin. It was demonstrated that external addition of inhibitors of ethylene biosynthesis such as alpha-amino-oxy-acetic acid (AOA) and CoCl(2) also decreased or even inhibited the quercinin-induced oxidative burst, but did not influence cell death induction. These results demonstrate evidence for a requirement of the plant hormone ethylene for the onset of the quercinin-induced oxidative burst.

  19. Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast☆

    PubMed Central

    Martins, Dorival; English, Ann M.

    2014-01-01

    Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1) protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A) does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4). This we attributed to our observation that catalase activity is depressed when yeast are challenged with H2O2 in nutrient-poor media. Hence, we performed a systematic comparison of catalase activity and cell viability of wild-type yeast and of the single catalase knockouts, ctt1∆ and cta1∆, following H2O2 challenge in nutrient-rich medium (YPD) and in phosphate buffer (pH 7.4). Ctt1 but not Cta1 activity is strongly induced by H2O2 when cells are challenged in YPD but suppressed when cells are challenged in buffer. Consistent with the activity results, exponentially growing ctt1∆ cells in YPD are more sensitive to H2O2 than wild-type or cta1∆ cells, whereas in buffer all three strains exhibit comparable H2O2 hypersensitivity. Furthermore, catalase activity is increased during adaptation to sublethal H2O2 concentrations in YPD but not in buffer. We conclude that induction of cytosolic Ctt1 activity is vital in protecting yeast against exogenous H2O2 but this activity is inhibited by H2O2 when cells are challenged in nutrient-free media. PMID:24563848

  20. BH3-Only Molecule Bim Mediates β-Cell Death in IRS2 Deficiency

    PubMed Central

    Ren, Decheng; Sun, Juan; Mao, Liqun; Ye, Honggang

    2014-01-01

    Irs2-deficient mice develop type 2–like diabetes due to a reduction in β-cell mass and a failure of pancreatic islets to undergo compensatory hyperplasia in response to insulin resistance. In order to define the molecular mechanisms, we knocked down Irs2 gene expression in mouse MIN6 insulinoma cells. Insulin receptor substrate 2 (IRS2) suppression induced apoptotic cell death, which was associated with an increase in expression of the BH3-only molecule Bim. Knockdown (KD) of Bim reduced apoptotic β-cell death induced by IRS2 suppression. In Irs2-deficient mice, Bim ablation restored β-cell mass, decreased the number of TUNEL-positive cells, and restored normal glucose tolerance after glucose challenge. FoxO1 mediates Bim upregulation induced by IRS2 suppression, and FoxO1 KD partially inhibits β-cell death induced by IRS2 suppression. These results suggest that Bim plays an important role in mediating the increase in β-cell apoptosis and the reduction in β-cell mass that occurs in IRS2-deficient diabetes. PMID:24760140

  1. Characterization of a real time H2O2 monitor for use in studies on H2O2 production by antibodies and cells.

    PubMed

    Sharma, Harish A; Balcavage, Walter X; Waite, Lee R; Johnson, Mary T; Nindl, Gabi

    2003-01-01

    It was recently shown that antibodies catalyze a reaction between water and ultraviolet light (UV) creating singlet oxygen and ultimately H2O2. Although the in vivo relevance of these antibody reactions is unclear, it is interesting that among a wide variety of non-antibody proteins tested, the T cell receptor is the only protein with similar capabilities. In clinical settings UV is believed to exert therapeutic effects by eliminating inflammatory epidermal T cells and we hypothesized that UV-triggered H2O2 production is involved in this process. To test the hypothesis we developed tools to study production of H2O2 by T cell receptors with the long-term goal of understanding, and improving, UV phototherapy. Here, we report the development of an inexpensive, real time H2O2 monitoring system having broad applicability. The detector is a Clark oxygen electrode (Pt, Ag/AgCl) modified to detect UV-driven H2O2 production. Modifications include painting the electrode black to minimize UV effects on the Ag/AgCl electrode and the use of hydrophilic, large pore Gelnots electrode membranes. Electrode current was converted to voltage and then amplified and recorded using a digital multimeter coupled to a PC. A reaction vessel with a quartz window was developed to maintain constant temperature while permitting UV irradiation of the samples. The sensitivity and specificity of the system and its use in cell-free and cell-based assays will be presented. In a cellfree system, production of H2O2 by CD3 antibodies was confirmed using our real time H2O2 monitoring method. Additionally we report the finding that splenocytes and Jurkat T cells also produce H2O2 when exposed to UV light.

  2. Extracts from Calendula officinalis offer in vitro protection against H2 O2 induced oxidative stress cell killing of human skin cells.

    PubMed

    Alnuqaydan, Abdullah M; Lenehan, Claire E; Hughes, Rachel R; Sanderson, Barbara J

    2015-01-01

    The in vitro safety and antioxidant potential of Calendula officinalis flower head extracts was investigated. The effect of different concentrations (0.125, 0.5, 1.0, 2.0 and 5.0% (v/v)) of Calendula extracts on human skin cells HaCaT in vitro was explored. Doses of 1.0% (v/v) (0.88 mg dry weight/mL) or less showed no toxicity. Cells were also exposed to the Calendula extracts for either 4, 24 or 48 h before being exposed to an oxidative insult (hydrogen peroxide H2 O2 ) for 1 h. Using the MTT cytotoxicity assay, it was observed that two independent extracts of C. officinalis gave time-dependent and concentration-dependent H2 O2 protection against induced oxidative stress in vitro using human skin cells. Pre-incubation with the Calendula extracts for 24 and 48 h increased survival relative to the population without extract by 20% and 40% respectively following oxidative challenge. The antioxidant potential of the Calendula extracts was confirmed using a complimentary chemical technique, the DPPH(●) assay. Calendula extracts exhibited free radical scavenging abilities. This study demonstrates that Calendula flower extracts contain bioactive and free radical scavenging compounds that significantly protect against oxidative stress in a human skin cell culture model. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces HepG2 cells death.

    PubMed

    Lu, Yapeng; Liu, Siyuan; Wang, Ying; Wang, Dang; Gao, Jing; Zhu, Li

    2016-09-05

    Asiatic acid, one of the triterpenoid components isolated from Centella asiatica, has received increasing attention due to a wide variety of biological activities. To date, little is known about its mechanisms of action. Here we examined the cytotoxic effect of asiatic acid on HepG2 cells and elucidated some of the underlying mechanisms. Asiatic acid induced rapid cell death, as well as mitochondrial membrane potential (MMP) dissipation, ATP depletion and cytochrome c release from mitochondria to the cytosol in HepG2 cells. In mitochondria isolated from mouse liver, asiatic acid treatment significantly stimulated the succinate-supported state 4 respiration rate, dissipated the MMP, increased Ca(2+) release from Ca(2+)-loaded mitochondria, decreased ATP content and promoted cytochrome c release, indicating the uncoupling effect of asiatic acid. Hydrogen peroxide (H2O2) produced by succinate-supported mitochondrial respiration was also significantly inhibited by asiatic acid. In addition, asiatic acid inhibited Ca(2+)-induced mitochondrial swelling but did not induce mitochondrial swelling in hyposmotic potassium acetate medium which suggested that asiatic acid may not act as a protonophoric uncoupler. Inhibition of uncoupling proteins (UCPs) or blockade of adenine nucleotide transporter (ANT) attenuated the effect of asiatic acid on MMP dissipation, Ca(2+) release, mitochondrial respiration and HepG2 cell death. When combined inhibition of UCPs and ANT, asiatic acid-mediated uncoupling effect was noticeably alleviated. These results suggested that both UCPs and ANT partially contribute to the uncoupling properties of asiatic acid. In conclusion, asiatic acid is a novel mitochondrial uncoupler and this property is potentially involved in its toxicity on HepG2 cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Cytoprotective Effect of Hydroalcoholic Extract of Pinus eldarica Bark against H2O2-Induced Oxidative Stress in Human Endothelial Cells

    PubMed Central

    Babaee, Fatemeh; Safaeian, Leila; Zolfaghari, Behzad; Haghjoo Javanmard, Shaghayegh

    2016-01-01

    Background: Pinus eldarica is a widely growing pine in Iran consisting of biologically active constituents with antioxidant properties. This study investigates the effect of hydroalcoholic extract of P. eldarica bark against oxidative damage induced by hydrogen peroxide (H2O2) in human umbilical vein endothelial cells (HUVECs). Methods: The total phenolic content of P. eldarica extract was determined using Folin-Ciocalteu method. The cytotoxicity of P. eldarica extract (25-1000 µg/ml) on HUVECs was assessed using 3-(4,5- Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) method. Cytoprotective effect of P. eldarica extract (25-500 µg/ml) on H2O2-induced oxidative stress was also evaluated by MTT assay. The intra- and extra-cellular hydroperoxides concentration and ferric reducing antioxidant power (FRAP) were measured in pretreated cells. Results: The total phenolic content of P. eldarica extract was estimated as 37.04±1.8% gallic acid equivalent. P. eldarica extract (25-1000 µg/ml) had no cytotoxic effect on HUVECs viability. The pretreatment of HUVECs with P. eldarica extract at the concentrations of 50-500 µg/ml significantly reduced the cytotoxicity of H2O2. P. eldarica extract decreased hydroperoxides concentration and increased FRAP value in intra-cellular fluid at the concentration range of 100-500 µg/ml and in extra-cellular fluid at the concentration range of 25-500 µg/ml. Conclusions: This study revealed the antioxidant and cytoprotective effects of P. eldarica extract against H2O2-induced oxidative stress in HUVECs. Concerning the high content of phenolic compounds in P. eldarica, more research is needed to evaluate its clinical value in endothelial dysfunction and in other oxidative conditions. PMID:26931383

  5. Evidence for P(2)-purinoceptors contribution in H(2)O(2)-induced contraction of rat aorta in the absence of endothelium.

    PubMed

    Shen, J Z; Zheng, X F; Kwan, C Y

    2000-08-18

    , PKC, PLA(2) and cyclooxygenase. Lastly, removal of extracellular Ca(2+) or pretreatment with procaine (10 mM) and dantrolene (30 microM), two putative intracellular Ca(2+) release blockers, or with Ni(2+) (100 microM) and tetrandrine (5 microM), two Ca(2+) channel blockers, all significantly inhibited H(2)O(2) and ATP-induced contractions. However, nifedipine (1 microM), a voltage-dependent L-type Ca(2+) channel blocker, was without effect. Our results demonstrate that H(2)O(2)-induced phasic contraction of rat aorta involves, at least in part, the activation of P(2)-purinoceptors in the aortic smooth muscle cells

  6. The CNGRC-GG-D(KLAKLAK)2 peptide induces a caspase-independent, Ca2+-dependent death in human leukemic myeloid cells by targeting surface aminopeptidase N/CD13

    PubMed Central

    Bouchet, Sandrine; Tang, Ruoping; Fava, Fanny; Legrand, Ollivier; Bauvois, Brigitte

    2016-01-01

    The CD13 antigen's binding site for the Asn-Gly-Arg (NGR) motif enables NGR-containing chemotherapeutic drugs to be delivered to CD13-positive tumours. Human CD13-positive acute myeloid leukemia (AML) cells proliferate abnormally and escape death. Here, we show that the CNGRC-GG-D(KLAKLAK)2 peptide induces death in AML cell lines (U937, THP-1, NB4, HL-60) and primary blood cells from AML patients. Cell death was characterized as a caspase-independent mechanism, without DNA fragmentation, but phosphatidylserine externalization and membrane disruption. Our results demonstrate in U937 cells that (i) the NGR-peptide triggers the loss of mitochondrial potential(ΔΨm) and generates superoxide anion (O2−), (ii) N-acetyl-L-cysteine (NAC) and extra/intracellular Ca2+ chelators (BAPTA) prevent both O2− production and cell death, (iii) the Ca2+-channel blocker nifedipine prevents cell death (indicating that Ca2+ influx is the initial death trigger), and (iv) BAPTA, but not NAC, prevents ΔΨm loss (suggesting O2− is a mitochondrial downstream effector). AML cell lines and primary blasts responding to the lethal action of NGR-peptide express promatrix metalloproteinase-12 (proMMP-12) and its substrate progranulin (an 88 kDa cell survival factor). A cell-free assay highlighted proMMP-12 activation by O2−. Accordingly, NGR-peptide's downregulation of 88 kDa progranulin protein was prevented by BAPTA and NAC. Conversely, AML blast resistance to NGR-peptide is associated with the expression of a distinct, 105 kDa progranulin isoform. These results indicate that CNGRC-GG-D(KLAKLAK)2 induces death in AML cells through the Ca2+-mitochondria-O2.-pathway, and support the link between proMMP-12 activation and progranulin cleavage during cell death. Our findings may have implications for the understanding of tumour biology and treatment. PMID:26655501

  7. Peroxisome proliferator-activated receptors γ/mitochondrial uncoupling protein 2 signaling protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus

    PubMed Central

    2012-01-01

    Background Status epilepticus induces subcellular changes that may lead to neuronal cell death in the hippocampus. However, the mechanism of seizure-induced neuronal cell death remains unclear. The mitochondrial uncoupling protein 2 (UCP2) is expressed in selected regions of the brain and is emerged as an endogenous neuroprotective molecule in many neurological disorders. We evaluated the neuroprotective role of UCP2 against seizure-induced hippocampal neuronal cell death under experimental status epilepticus. Methods In Sprague–Dawley rats, kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 subfield to induce prolonged bilateral seizure activity. Oxidized protein level, translocation of Bcl-2, Bax and cytochrome c between cytosol and mitochondria, and expression of peroxisome proliferator-activated receptors γ (PPARγ) and UCP2 were examined in the hippocampal CA3 subfield following KA-induced status epilepticus. The effects of microinjection bilaterally into CA3 area of a PPARγ agonist, rosiglitazone or a PPARγ antagonist, GW9662 on UCP2 expression, induced superoxide anion (O2· -) production, oxidized protein level, mitochondrial respiratory chain enzyme activities, translocation of Bcl-2, Bax and cytochrome c, and DNA fragmentation in bilateral CA3 subfields were examined. Results Increased oxidized proteins and mitochondrial or cytosol translocation of Bax or cytochrome c in the hippocampal CA3 subfield was observed 3–48 h after experimental status epilepticus. Expression of PPARγ and UCP2 increased 12–48 h after KA-induced status epilepticus. Pretreatment with rosiglitazone increased UCP2 expression, reduced protein oxidation, O2· - overproduction and dysfunction of mitochondrial Complex I, hindered the translocation of Bax and cytochrome c, and reduced DNA fragmentation in the CA3 subfield. Pretreatment with GW9662 produced opposite effects. Conclusions Activation of PPARγ upregulated mitochondrial UCP2 expression

  8. Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation.

    PubMed

    Zhao, Lijuan; Peng, Bo; Hernandez-Viezcas, Jose A; Rico, Cyren; Sun, Youping; Peralta-Videa, Jose R; Tang, Xiaolei; Niu, Genhua; Jin, Lixin; Varela-Ramirez, Armando; Zhang, Jian-ying; Gardea-Torresdey, Jorge L

    2012-11-27

    The rapid development of nanotechnology will inevitably release nanoparticles (NPs) into the environment with unidentified consequences. In addition, the potential toxicity of CeO(2) NPs to plants and the possible transfer into the food chain are still unknown. Corn plants (Zea mays) were germinated and grown in soil treated with CeO(2) NPs at 400 or 800 mg/kg. Stress-related parameters, such as H(2)O(2), catalase (CAT), and ascorbate peroxidase (APX) activity, heat shock protein 70 (HSP70), lipid peroxidation, cell death, and leaf gas exchange were analyzed at 10, 15, and 20 days post-germination. Confocal laser scanning microscopy was used to image H(2)O(2) distribution in corn leaves. Results showed that the CeO(2) NP treatments increased accumulation of H(2)O(2), up to day 15, in phloem, xylem, bundle sheath cells and epidermal cells of shoots. The CAT and APX activities were also increased in the corn shoot, concomitant with the H(2)O(2) levels. Both 400 and 800 mg/kg CeO(2) NPs triggered the up-regulation of the HSP70 in roots, indicating a systemic stress response. None of the CeO(2) NPs increased the level of thiobarbituric acid reacting substances, indicating that no lipid peroxidation occurred. CeO(2) NPs, at both concentrations, did not induce ion leakage in either roots or shoots, suggesting that membrane integrity was not compromised. Leaf net photosynthetic rate, transpiration, and stomatal conductance were not affected by CeO(2) NPs. Our results suggest that the CAT, APX, and HSP70 might help the plants defend against CeO(2) NP-induced oxidative injury and survive NP exposure.

  9. Stress Response and Tolerance of Zea mays to CeO2 Nanoparticles: Cross Talk among H2O2, Heat Shock Protein and Lipid Peroxidation

    PubMed Central

    Zhao, Lijuan; Peng, Bo; Hernandez-Viezcas, Jose A.; Rico, Cyren; Sun, Youping; Peralta-Videa, Jose R.; Tang, Xiaolei; Niu, Genhua; Jin, Lixin; Varela-Ramirez, Armando; Zhang, Jian-ying; Gardea-Torresdey, Jorge L.

    2014-01-01

    The rapid development of nanotechnology will inevitably release nanoparticles (NPs) into the environment with unidentified consequences. In addition, the potential toxicity of CeO2 NPs to plants, and the possible transfer into the food chain, are still unknown. Corn plants (Zea mays) were germinated and grown in soil treated with CeO2 NPs at 400 or 800 mg/kg. Stress related parameters, such as: H2O2, catalase (CAT) and ascorbate peroxidase (APX) activity, heat shock protein 70 (HSP 70), lipid peroxidation, cell death and leaf gas exchange were analyzed at 10, 15, and 20 days post germination. Confocal laser scanning microscopy was used to image H2O2 distribution in corn leaves. Results showed that the CeO2 NP treatments increased accumulation of H2O2, up to day 15, in phloem, xylem, bundle sheath cells, and epidermal cells of shoots. The CAT and APX activities were also increased in the corn shoot, concomitant with the H2O2 levels. Both 400 and 800 mg/kg CeO2 NPs triggered the up regulation of the HSP 70 in roots, indicating a systemic stress response. None of the CeO2 NPs increased the level of thiobarbituric acid reacting substances, indicating that no lipid peroxidation occurred. CeO2 NPs, at both concentrations, did not induce ion leakage in either roots or shoots, suggesting membrane integrity was not compromised. Leaf net photosynthetic rate, transpiration, and stomatal conductance were not affected by CeO2 NPs. Our results suggest that the CAT, APX and HSP 70 might help the plants defend against CeO2 NPs induced oxidative injury and survive NP exposure. PMID:23050848

  10. Electrochemical Quantification of Extracellular Local H2O2 Kinetics Originating from Single Cells.

    PubMed

    Bozem, Monika; Knapp, Phillip; Mirčeski, Valentin; Slowik, Ewa J; Bogeski, Ivan; Kappl, Reinhard; Heinemann, Christian; Hoth, Markus

    2017-05-15

    H 2 O 2 is produced by all eukaryotic cells under physiological and pathological conditions. Due to its enormous relevance for cell signaling at low concentrations and antipathogenic function at high concentrations, precise quantification of extracellular local H 2 O 2 concentrations ([H 2 O 2 ]) originating from single cells is required. Using a scanning electrochemical microscope and bare platinum disk ultramicroelectrodes, we established sensitive long-term measurements of extracellular [H 2 O 2 ] kinetics originating from single primary human monocytes (MCs) ex vivo. For the electrochemical techniques square wave voltammetry, cyclic and linear scan voltammetry, and chronoamperometry, detection limits for [H 2 O 2 ] were determined to be 5, 50, and 500 nM, respectively. Following phorbol ester stimulation, local [H 2 O 2 ] 5-8 μm above a single MC increased by 3.4 nM/s within the first 10 min before reaching a plateau. After extracellular addition of H 2 O 2 to an unstimulated MC, the local [H 2 O 2 ] decreased on average by 4.2 nM/s due to degradation processes of the cell. Using the scanning mode of the setup, we found that H 2 O 2 is evenly distributed around the producing cell and can still be detected up to 30 μm away from the cell. The electrochemical single-cell measurements were validated in MC populations using electron spin resonance spectroscopy and the Amplex ® UltraRed assay. Innovation and Conclusion: We demonstrate a highly sensitive, spatially, and temporally resolved electrochemical approach to monitor dynamics of production and degradation processes for H 2 O 2 separately. Local extracellular [H 2 O 2 ] kinetics originating from single cells is quantified in real time. Antioxid. Redox Signal. 00, 000-000.

  11. Neuroprotective property of low molecular weight fraction from B. jararaca snake venom in H2O2-induced cytotoxicity in cultured hippocampal cells.

    PubMed

    Querobino, Samyr Machado; Carrettiero, Daniel Carneiro; Costa, Maricilia Silva; Alberto-Silva, Carlos

    2017-04-01

    In central nervous system cells, low molecular weight fractions (LMWF) from snake venoms can inhibit changes in mitochondrial membrane permeability, preventing the diffusion of cytochrome c to the cytoplasm, inhibiting the activation of pro-apoptotic factors. Here, we evaluated the neuroprotective activity of LMWF from Bothrops jararaca (Bj) snake venom in H 2 O 2 -induced cytotoxicity in cultured hippocampal cells. SDS-PAGE, FT-IR and MALDI-TOF analysis of LMWF (<14 kDa) confirmed the absence of high-molecular-weight proteins in the fraction. LMWF did not present cytotoxicity in all concentrations and time tested by MTT assay. Neuroprotection was evaluated in cells pretreated with LMWF for 4 h prior to the addition of 50 μM H 2 O 2 for 20 h. We demonstrated that LMWF reduced the argininosuccinate synthase (AsS) and superoxide dismutase (SOD1) expressions, suggesting that this fraction as an effective neuroprotective compound that could increase the hippocampal cells viability by attenuation of oxidative stress. In addition, LMWF protects against apoptosis induced by H 2 O 2 , reducing the expression of caspase-3 and caspase-8. Overall, this study opens new perspectives for the identification of new molecules for the development of drugs applied to the treatment of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Vitamin K3 triggers human leukemia cell death through hydrogen peroxide generation and histone hyperacetylation.

    PubMed

    Lin, Changjun; Kang, Jiuhong; Zheng, Rongliang

    2005-10-01

    Vitamin K3 (VK3) is a well-known anticancer agent, but its mechanism remains elusive. In the present study, VK3 was found to simultaneously induce cell death, reactive oxygen species (ROS) generation, including superoxide anion (O2*-) and hydrogen peroxide (H2O2) generation, and histone hyperacetylation in human leukemia HL-60 cells in a concentration- and time-dependent manner. Catalase (CAT), an antioxidant enzyme that specifically scavenges H2O2, could significantly diminish both histone acetylation increase and cell death caused by VK3, whereas superoxide dismutase (SOD), an enzyme that specifically eliminates O2*-, showed no effect on both of these, leading to the conclusion that H2O2 generation, but not O2*- generation, contributes to VK3-induced histone hyperacetylation and cell death. This conclusion was confirmed by the finding that enhancement of VK3-induced H2O2 generation by vitamin C (VC) could significantly promote both the histone hyperacetylation and cell death. Further studies suggested that histone hyperacetylation played an important role in VK3-induced cell death, since sodium butyrate, a histone deacetylase (HDAC) inhibitor, showed no effect on ROS generation, but obviously potentiated VK3-induced histone hyperacetylation and cell death. Collectively, these results demonstrate a novel mechanism for the anticancer activity of VK3, i.e., VK3 induced tumor cell death through H2O2 generation, which then further induced histone hyperacetylation.

  13. Limoniastrum guyonianum prevents H2O2-induced oxidative damage in IEC-6 cells by enhancing enzyamtic defense, reducing glutathione depletion and JNK phosphorylation.

    PubMed

    Bettaib, Jamila; Talarmin, Hélène; Kalai, Feten Zar; Giroux-Metges, Marie-Agnès; Ksouri, Riadh

    2017-11-01

    Limoniastrum guyonianum is used in several regions of North Africa as a folk medicine. The objective of this study was to determine the in vitro antioxidant activities of L. guyonianum roots and their cytoprotective action on H 2 O 2 -challenged rat small intestine epithelial cells (IEC-6 cells). To assess the cytoprotective effect of L. guyonianum extract (LGE), IEC-6 cells were pre-incubated with different LGE concentrations. Then, IEC-6 cultures were exposed to 40μM H 2 O 2 during 4h. Modulation of endogenous antioxidant system including SOD, CAT, MDA, GSH and the expression of possibly involved MAPKs was evaluated. Main results reported that L. guyonianum was rich in polyphenols and exhibited an important antioxidant activity as revealed by different tests (DPPH Assay, IC 50 =1.6μg/mL; ABTS + test, IC 50 =27μg/mL; Fe-reducing power, EC 50 =44μg/mL). HPLC analysis showed that quercetin, catechin, and isorhamnetin-3-O-rutinoside were major phenolics. The exposure of IEC-6 cells to 40μM H 2 O 2 during 4h resulted in oxidative stress manifested by (i) over 70% cell mortality, (ii) over-activity of CAT (246%), (iii) decrease in GSH level (10.4nmol/mg), (iv) excess in MDA content (18.4nmol/mg), and (v) a trigger of JNK phosphorylation. Pretreatment with LGE, especially at 0.25μg/mL, restored cell viability to 100%, and normal cell morphology in H 2 O 2 -chalenged cells. In addition, this extract maintained a high CAT activity, enhanced SOD capacity (120%) and increased GSH level (45.5nmol/mg). Furthermore, reducing cell death seems to be due to dephosphorylated JNK MAPK exerted by L. guyonianum bioactive compounds. In all, L. guyonianum components provided a cross-talk between regulatory pathways, implying their role as cytoprotector against oxidative stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Programmed cell death of tobacco BY-2 cells induced by still culture conditions is affected by the age of the culture under agitation.

    PubMed

    Hiraga, Asahi; Kaneta, Tsuyoshi; Sato, Yasushi; Sato, Seiichi

    2010-01-25

    Evans Blue staining indicated that actively growing tobacco BY-2 cells in the exponential phase died more rapidly than quiescent cells in the stationary phase when the cells cultured under agitation were placed under still conditions. Fifty percent cell death was induced at about 18, 26, 80 and 140 h for early, mid, late exponential- and stationary-phase cells, respectively. Actively growing cells became TUNEL (transferase-mediated dUTP nick end labelling)-positive more rapidly than quiescent cells, suggesting that the cell death evaluated by Evans Blue is accompanied by DNA cleavages. Electrophoresis of genomic DNA showed a typical 'DNA laddering' pattern formed by multiples of about 200 bp internucleosomal units. Chromatin condensation was first detected at least within 24 h by light microscopy, and then cell shrinkage followed. These findings suggest that the death of BY-2 cells induced by still conditions is PCD (programmed cell death).

  15. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain.more » Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.« less

  16. Arabidopsis ACCELERATED CELL DEATH2 Modulates Programmed Cell DeathW⃞

    PubMed Central

    Yao, Nan; Greenberg, Jean T.

    2006-01-01

    The Arabidopsis thaliana chloroplast protein ACCELERATED CELL DEATH2 (ACD2) modulates the amount of programmed cell death (PCD) triggered by Pseudomonas syringae and protoporphyrin IX (PPIX) treatment. In vitro, ACD2 can reduce red chlorophyll catabolite, a chlorophyll derivative. We find that ACD2 shields root protoplasts that lack chlorophyll from light- and PPIX-induced PCD. Thus, chlorophyll catabolism is not obligatory for ACD2 anti-PCD function. Upon P. syringae infection, ACD2 levels and localization change in cells undergoing PCD and in their close neighbors. Thus, ACD2 shifts from being largely in chloroplasts to partitioning to chloroplasts, mitochondria, and, to a small extent, cytosol. ACD2 protects cells from PCD that requires the early mitochondrial oxidative burst. Later, the chloroplasts of dying cells generate NO, which only slightly affects cell viability. Finally, the mitochondria in dying cells have dramatically altered movements and cellular distribution. Overproduction of both ACD2 (localized to mitochondria and chloroplasts) and ascorbate peroxidase (localized to chloroplasts) greatly reduces P. syringae–induced PCD, suggesting a pro-PCD role for mitochondrial and chloroplast events. During infection, ACD2 may bind to and/or reduce PCD-inducing porphyrin-related molecules in mitochondria and possibly chloroplasts that generate reactive oxygen species, cause altered organelle behavior, and activate a cascade of PCD-inducing events. PMID:16387834

  17. Protective effects of protopine on hydrogen peroxide-induced oxidative injury of PC12 cells via Ca(2+) antagonism and antioxidant mechanisms.

    PubMed

    Xiao, Xianghua; Liu, Juntian; Hu, Jingwen; Zhu, Xiuping; Yang, Hua; Wang, Chaoyun; Zhang, Yuanhui

    2008-09-04

    Calcium and lipid peroxidation play important roles in oxidative stress-induced cellular injury and apoptosis, which ultimately cause cell death. In this study we examined whether protopine had a neuroprotection against H(2)O(2)-induced injury in PC12 cells. Pretreatment of PC12 cells with protopine improved the cell viability, enhanced activities of superoxide dismutase, glutathione peroxidase and catalase, and decreased malondialdehyde level in the H(2)O(2) injured cells. Protopine also reversed the increased intracellular Ca(2+) concentration and the reduced mitochondrial membrane potential caused by H(2)O(2) in the cells. Furthermore, protopine was able to inhibit caspase-3 expression and cell apoptosis induced by H(2)O(2). In summary, this study demonstrates that protopine is able to relieve H(2)O(2)-induced oxidative stress and apoptosis in PC12 cells, at least in part, by Ca(2+) antagonism and antioxidant mechanisms.

  18. DNA double-strand breaks and Aurora B mislocalization induced by exposure of early mitotic cells to H2O2 appear to increase chromatin bridges and resultant cytokinesis failure.

    PubMed

    Cho, Min-Guk; Ahn, Ju-Hyun; Choi, Hee-Song; Lee, Jae-Ho

    2017-07-01

    Aneuploidy, an abnormal number of chromosomes that is a hallmark of cancer cells, can arise from tetraploid/binucleated cells through a failure of cytokinesis. Reactive oxygen species (ROS) have been implicated in various diseases, including cancer. However, the nature and role of ROS in cytokinesis progression and related mechanisms has not been clearly elucidated. Here, using time-lapse analysis of asynchronously growing cells and immunocytochemical analyses of synchronized cells, we found that hydrogen peroxide (H 2 O 2 ) treatment at early mitosis (primarily prometaphase) significantly induced cytokinesis failure. Cytokinesis failure and the resultant formation of binucleated cells containing nucleoplasmic bridges (NPBs) seemed to be caused by increases in DNA double-strand breaks (DSBs) and subsequent unresolved chromatin bridges. We further found that H 2 O 2 induced mislocalization of Aurora B during mitosis. All of these effects were attenuated by pretreatment with N-acetyl-L-cysteine (NAC) or overexpression of Catalase. Surprisingly, the PARP inhibitor PJ34 also reduced H 2 O 2 -induced Aurora B mislocalization and binucleated cell formation. Results of parallel experiments with etoposide, a topoisomerase IIα inhibitor that triggers DNA DSBs, suggested that both DNA DSBs and Aurora B mislocalization contribute to chromatin bridge formation. Aurora B mislocalization also appeared to weaken the "abscission checkpoint". Finally, we showed that KRAS-induced binucleated cell formation appeared to be also H 2 O 2 -dependent. In conclusion, we propose that a ROS, mainly H 2 O 2 increases binucleation through unresolved chromatin bridges caused by DNA damage and mislocalization of Aurora B, the latter of which appears to augment the effect of DNA damage on chromatin bridge formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Sulforaphane Prevents Angiotensin II-Induced Testicular Cell Death via Activation of NRF2.

    PubMed

    Wang, Yonggang; Wu, Hao; Xin, Ying; Bai, Yang; Kong, Lili; Tan, Yi; Liu, Feng; Cai, Lu

    2017-01-01

    Although angiotensin II (Ang II) was reported to facilitate sperm motility and intratesticular sperm transport, recent findings shed light on the efficacy of Ang II in stimulating inflammatory events in testicular peritubular cells, effect of which may play a role in male infertility. It is still unknown whether Ang II can induce testicular apoptotic cell death, which may be a more direct action of Ang II in male infertility. Therefore, the present study aims to determine whether Ang II can induce testicular apoptotic cell death and whether this action can be prevented by sulforaphane (SFN) via activating nuclear factor (erythroid-derived 2)-like 2 (NRF2), the governor of antioxidant-redox signalling. Eight-week-old male C57BL/6J wild type (WT) and Nrf2 gene knockout mice were treated with Ang II, in the presence or absence of SFN. In WT mice, SFN activated testicular NRF2 expression and function, along with a marked attenuation in Ang II-induced testicular oxidative stress, inflammation, endoplasmic reticulum stress, and apoptotic cell death. Deletion of the Nrf2 gene led to a complete abolishment of these efficacies of SFN. The present study indicated that Ang II may result in testicular apoptotic cell death, which can be prevented by SFN via the activation of NRF2.

  20. A Mn(II) complex of boradiazaindacene (BODIPY) loaded graphene oxide as both LED light and H2O2 enhanced anticancer agent.

    PubMed

    Xu, Xiao-Lei; Shao, Jian; Chen, Qiu-Yun; Li, Cheng-Hao; Kong, Meng-Yun; Fang, Fang; Ji, Ling; Boison, Daniel; Huang, Tao; Gao, Jing; Feng, Chang-Jian

    2016-06-01

    Cancer cells are more susceptible to H2O2 induced cell death than normal cells. H2O2-activatable and O2-evolving nanoparticles could be used as photodynamic therapy agents in hypoxic environments. In this report, a photo-active Mn(II) complex of boradiazaindacene derivatives (Mn1) was used as a dioxygen generator under irradiation with LED light in water. Moreover, the in vitro biological evaluation for Mn1 and its loaded graphene oxide (herein called Mn1@GO) on HepG-2 cells in normal and hypoxic conditions has been performed. In particular, Mn1@GO can react with H2O2 resulting active anticancer species, which show high inhibition on both HepG-2 cells and CoCl2-treated HepG-2 cells (hypoxic cancer cells). The mechanism of LED light enhanced anticancer activity for Mn1@GO on HepG-2 cells was discussed. Our results show that Mn(II) complexes of boradiazaindacene (BODIPY) derivatives loaded GO can be both LED light and H2O2-activated anticancer agents in hypoxic environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. RS9, a novel Nrf2 activator, attenuates light-induced death of cells of photoreceptor cells and Müller glia cells.

    PubMed

    Inoue, Yuki; Shimazawa, Masamitsu; Noda, Yasuhiro; Nagano, Ryota; Otsuka, Tomohiro; Kuse, Yoshiki; Nakano, Yukimichi; Tsuruma, Kazuhiro; Nakagami, Yasuhiro; Hara, Hideaki

    2017-06-01

    The retina is highly sensitive to oxidative stress because of its high consumption of oxygen associated with the phototransductional processes. Recent findings have suggested that oxidative stress is involved in the pathology of age-related macular degeneration, a progressive degeneration of the central retina. A well-known environmental risk factor is light exposure, as excessive and continuous light exposure can damage photoreceptors. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcriptional factor that controls antioxidative responses and phase 2 enzymes. Thus, we hypothesized that RS9, a specific activator of Nrf2, decreases light-induced retinal cell death in vivo and in vitro. Nrf2 was detected in the nucleus of the 661W cells exposed to RS9 and also after light exposure, and the Nrf2-antioxidant response element binding was increased in 661W cells after exposure to RS9. Consequentially, the expression of the phase 2 enzyme's mRNAs of Ho-1, Nqo-1, and Gclm genes was increased in 661W cells after exposure to RS9. Furthermore, RS9 decreased the light-induced death of 661W cells (2500 lux, 24 h), and also reduced the functional damages and the histological degeneration of the nuclei in the outer nuclear layer or the retina in the in vivo studies (8000 lux, 3 h). Heme oxygenase-1 was increased after light exposure, and Nrf2 was translocated into the nucleus after light exposure in vivo. Silencing of Ho-1 reduced the protective effects of RS9 against light-induced death of 661W cells. These findings indicate that RS9 has therapeutic potential for retinal diseases that are aggravated by light exposure. © 2017 International Society for Neurochemistry.

  2. H2O2 accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD+ depletion.

    PubMed

    Furukawa, Ayako; Tada-Oikawa, Saeko; Kawanishi, Shosuke; Oikawa, Shinji

    2007-01-01

    It has been reported that p53 acetylation, which promotes cellular senescence, can be regulated by the NAD(+)-dependent deacetylase SIRT1, the human homolog of yeast Sir2, a protein that modulates lifespan. To clarify the role of SIRT1 in cellular senescence induced by oxidative stress, we treated normal human diploid fibroblast TIG-3 cells with H(2)O(2) and examined DNA cleavage, depletion of intracellular NAD(+), expression of p21, SIRT1, and acetylated p53, cell cycle arrest, and senescence-associated beta-galactosidase (SA-beta-gal) activity. DNA cleavage was observed immediately in TIG-3 cells treated with H(2)O(2), though no cell death was observed. NAD(+) levels in TIG-3 cells treated with H(2)O(2) were also decreased significantly. Pre-incubation with the poly (ADP-ribose) polymerase (PARP) inhibitor resulted in preservation of intracellular NAD(+) levels. The amount of acetylated p53 was increased in TIG-3 cells at 4h after H(2)O(2) treatment, while there was little to no decrease in SIRT1 protein expression. The expression level of p21 was increased at 12h and continued to increase for up to 24h. Additionally, exposure of TIG-3 cells to H(2)O(2) induced cell cycle arrest at 24h and increased SA-beta-gal activity at 48h. This pathway likely plays an important role in the acceleration of cellular senescence by oxidative stress.

  3. L-Theanine Protects H9C2 Cells from Hydrogen Peroxide-Induced Apoptosis by Enhancing Antioxidant Capability.

    PubMed

    Li, Chengjian; Yan, Qiongxian; Tang, Shaoxun; Xiao, Wenjun; Tan, Zhiliang

    2018-04-09

    BACKGROUND L-theanine is a non-protein amino acid in green tea, and its hepatoprotection and neuroprotection have been verified. However, whether L-theanine can prevent cardiomyocytes from apoptosis is unclear yet. This study evaluated the protective effects of L-theanine on H2O2-induced heart injury in vitro. MATERIAL AND METHODS The certified H9C2 cells were pretreated with L-theanine (0 mM, 4 mM, 8 mM, and 16 mM) for 24 h, followed by 160 µM H2O2 solution for 4 h. The cell viability and antioxidant indices were assayed. Quantitative evaluation of apoptosis was performed by flow cytometric analysis. Nuclear morphology of the cells was monitored by 4',6-diamidino-2-phenylindole staining. Expression of Caspase-3, poly ADP-ribose polymerase (PARP), c-Jun N-terminal kinase (JNK), and mitogen-activated protein kinase p38 was assayed by Western blot. RESULTS Compared to the H2O2 treatment, all doses of L-theanine treatments increased the cell viability, glutathione level, and the activities of glutathione peroxidase and superoxide dismutase (P<0.001). The contents of reactive oxygen species, nitric oxide, and oxidized glutathione were decreased by L-theanine treatments (P<0.001). Meanwhile, L-theanine treatments decreased the apoptosis ratio of H2O2-induced H9C2 cells (P<0.001). Pro-Caspase-3 expression was upregulated and cleavaged-PARP expression was inhibited by L-theanine (P<0.001). However, the phosphorylation of JNK and p38 was not affected by L-theanine treatments (P>0.05). CONCLUSIONS These data indicate that L-theanine pretreatment prevents H2O2-induced apoptosis in H9C2 cells, probably via antioxidant capacity improvement. Therefore, it might be a promising potential drug candidate for prophylaxis of ischemia/reperfusion-induced heart diseases.

  4. Early H2O2 Accumulation in Mesophyll Cells Leads to Induction of Glutathione during the Hyper-Sensitive Response in the Barley-Powdery Mildew Interaction1

    PubMed Central

    Vanacker, Helene; Carver, Tim L.W.; Foyer, Christine H.

    2000-01-01

    H2O2 production and changes in glutathione, catalase, and peroxidase were followed in whole-leaf extracts from the susceptible (AlgS [Algerian/4* (F14) Man.(S)]; ml-a1 allele) and resistant (AlgR [Algerian/4* (F14) Man.(R)]; Ml-a1 allele) barley (Hordeum vulgare) isolines between 12 and 24 h after inoculation with powdery mildew (Blumeria graminis [DC]. Speer [syn. Erysiphe graminis DC] f.sp hordei Marchal). Localized papilla responses and cell death hypersensitive responses were not observed within the same cell. In hypersensitive response sites, H2O2 accumulation first occurred in the mesophyll underlying the attacked epidermal cell. Subsequently, H2O2 disappeared from the mesophyll and accumulated around attacked epidermal cells. In AlgR, transient glutathione oxidation coincided with H2O2 accumulation in the mesophyll. Subsequently, total foliar glutathione and catalase activities transiently increased in AlgR. These changes, absent from AlgS, preceded inoculation-dependent increases in peroxidase activity that were observed in both AlgR and AlgS at 18 h. An early intercellular signal precedes H2O2, and this elicits anti-oxidant responses in leaves prior to events leading to death of attacked cells. PMID:10938348

  5. NADPH Oxidase-Derived H2O2 Contributes to Angiotensin II-Induced Aldosterone Synthesis in Human and Rat Adrenal Cortical Cells

    PubMed Central

    Rajamohan, Senthilkumar B.; Raghuraman, Gayatri; Prabhakar, Nanduri R.

    2012-01-01

    Abstract Background The Renin-Angiotensin-Aldosterone-System plays a pivotal role in hypertension. Angiotensin II (Ang II) is a major regulator of aldosterone synthesis and secretion, and it is known to facilitate reactive oxygen species (ROS) generation in many cell types. Aims: Here, we assessed the role of ROS signaling in Ang II-induced aldosterone synthesis by focusing on the regulation of aldosterone synthase (CYP11B2), a cytochrome P450 oxidase that catalyzes the final step in aldosterone biosynthetic pathway. Results: Ang II increased CYP11B2 activity, mRNA and protein with a concomitant elevation of 6-Carboxy- 2′,7′-dichlorodihydrofluorescein diacetate fluorescence, malondialdehyde and protein carbonyl levels (indices of ROS), NADPH oxidase (Nox) activity, and H2O2 levels in human and rat adrenal cortical cells. The expression of nuclear receptor related 1 protein, a transcription factor known to regulate CYP11B2 expression, was also augmented by Ang II. These Ang II-evoked effects were either abolished or attenuated by pretreatment of cells with either Ang II type I receptor (AT1R) antagonist, or antioxidants or Nox inhibitor or siRNA silencing of Nox1, 2 and 4, or inhibitors of phospholipase C and protein kinase C. Exogenous H2O2 mimicked the facilitatory effects of Ang II on CYP11B2 activity, mRNA, and protein expression, and these changes were significantly reduced by PEG-catalase. Innovation: ROS, particularly H2O2, is identified as a key regulator of aldosterone production. Conclusion: Our results suggest that Ang II facilitates CYP11B2 activity and the ensuing aldosterone production via activation of AT1R-Nox-H2O2 signaling pathway. Antioxid. Redox Signal. 17, 445–459. PMID:22214405

  6. Sargassum horneri methanol extract rescues C2C12 murine skeletal muscle cells from oxidative stress-induced cytotoxicity through Nrf2-mediated upregulation of heme oxygenase-1.

    PubMed

    Kang, Ji Sook; Choi, Il-Whan; Han, Min Ho; Hong, Su Hyun; Kim, Sung Ok; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Choi, Byung Tae; Kim, Cheol Min; Choi, Yung Hyun

    2015-02-05

    Sargassum horneri, an edible marine brown alga, is typically distributed along the coastal seas of Korea and Japan. Although several studies have demonstrated the anti-oxidative activity of this alga, the regulatory mechanisms have not yet been defined. The aim of the present study was to examine the cytoprotective effects of S. horneri against oxidative stress-induced cell damage in C2C12 myoblasts. We demonstrated the anti-oxidative effects of a methanol extract of S. horneri (SHME) in a hydrogen peroxide (H2O2)-stimulated C2C12 myoblast model. Cytotoxicity was determined using the 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyl-tetrazolium assay and mode of cell death by cell cycle analysis. DNA damage was measured using a comet assay and expression of phospho-histone γH2A.X (p-γH2A.X). Levels of cellular oxidative stress as reactive oxygen species (ROS) accumulation were measured using 2',7'-dichlorofluorescein diacetate. The involvement of selected genes in the oxidative stress-mediated signaling pathway was explored using Western blot analysis. SHME attenuated H2O2-induced growth inhibition and exhibited scavenging activity against intracellular ROS that were induced by H2O2. The SHME also inhibited comet tail formation, p-γH2A.X expression, and the number of sub-G1 hypodiploid cells, suggesting that it prevents H2O2-induced cellular DNA damage and apoptotic cell death. Furthermore, the SHME significantly enhanced the expression of heme oxygenase-1 (HO-1) associated with induction of nuclear factor-erythroid 2 related factor 2 (Nrf2) in a time- and concentration-dependent manner. Moreover, the protective effect of the SHME on H2O2-induced C2C12 cell damage was significantly abolished by zinc protoporphyrin IX, a HO-1 competitive inhibitor, in C2C12 cells. These findings suggest that the SHME augments cellular antioxidant defense capacity through both intrinsic free radical scavenging activity and activation of the Nrf2/HO-1 pathway, protecting C2C12 cells from H2

  7. Tumor suppressor Spred2 interaction with LC3 promotes autophagosome maturation and induces autophagy-dependent cell death.

    PubMed

    Jiang, Ke; Liu, Min; Lin, Guibin; Mao, Beibei; Cheng, Wei; Liu, Han; Gal, Jozsef; Zhu, Haining; Yuan, Zengqiang; Deng, Wuguo; Liu, Quentin; Gong, Peng; Bi, Xiaolin; Meng, Songshu

    2016-05-03

    The tumor suppressor Spred2 (Sprouty-related EVH1 domain-2) induces cell death in a variety of cancers. However, the underlying mechanism remains to be elucidated. Here we show that Spred2 induces caspase-independent but autophagy-dependent cell death in human cervical carcinoma HeLa and lung cancer A549 cells. We demonstrate that ectopic Spred2 increased both the conversion of microtubule-associated protein 1 light chain 3 (LC3), GFP-LC3 puncta formation and p62/SQSTM1 degradation in A549 and HeLa cells. Conversely, knockdown of Spred2 in tumor cells inhibited upregulation of autophagosome maturation induced by the autophagy inducer Rapamycin, which could be reversed by the rescue Spred2. These data suggest that Spred2 promotes autophagy in tumor cells. Mechanistically, Spred2 co-localized and interacted with LC3 via the LC3-interacting region (LIR) motifs in its SPR domain. Mutations in the LIR motifs or deletion of the SPR domain impaired Spred2-mediated autophagosome maturation and tumor cell death, indicating that functional LIR is required for Spred2 to trigger tumor cell death. Additionally, Spred2 interacted and co-localized with p62/SQSTM1 through its SPR domain. Furthermore, the co-localization of Spred2, p62 and LAMP2 in HeLa cells indicates that p62 may be involved in Spred2-mediated autophagosome maturation. Inhibition of autophagy using the lysosomal inhibitor chloroquine, reduced Spred2-mediated HeLa cell death. Silencing the expression of autophagy-related genes ATG5, LC3 or p62 in HeLa and A549 cells gave similar results, suggesting that autophagy is required for Spred2-induced tumor cell death. Collectively, these data indicate that Spred2 induces tumor cell death in an autophagy-dependent manner.

  8. Tumor suppressor Spred2 interaction with LC3 promotes autophagosome maturation and induces autophagy-dependent cell death

    PubMed Central

    Lin, Guibin; Mao, Beibei; Cheng, Wei; Liu, Han; Gal, Jozsef; Zhu, Haining; Yuan, Zengqiang; Deng, Wuguo; Liu, Quentin; Gong, Peng; Bi, Xiaolin; Meng, Songshu

    2016-01-01

    The tumor suppressor Spred2 (Sprouty-related EVH1 domain-2) induces cell death in a variety of cancers. However, the underlying mechanism remains to be elucidated. Here we show that Spred2 induces caspase-independent but autophagy-dependent cell death in human cervical carcinoma HeLa and lung cancer A549 cells. We demonstrate that ectopic Spred2 increased both the conversion of microtubule-associated protein 1 light chain 3 (LC3), GFP-LC3 puncta formation and p62/SQSTM1 degradation in A549 and HeLa cells. Conversely, knockdown of Spred2 in tumor cells inhibited upregulation of autophagosome maturation induced by the autophagy inducer Rapamycin, which could be reversed by the rescue Spred2. These data suggest that Spred2 promotes autophagy in tumor cells. Mechanistically, Spred2 co-localized and interacted with LC3 via the LC3-interacting region (LIR) motifs in its SPR domain. Mutations in the LIR motifs or deletion of the SPR domain impaired Spred2-mediated autophagosome maturation and tumor cell death, indicating that functional LIR is required for Spred2 to trigger tumor cell death. Additionally, Spred2 interacted and co-localized with p62/SQSTM1 through its SPR domain. Furthermore, the co-localization of Spred2, p62 and LAMP2 in HeLa cells indicates that p62 may be involved in Spred2-mediated autophagosome maturation. Inhibition of autophagy using the lysosomal inhibitor chloroquine, reduced Spred2-mediated HeLa cell death. Silencing the expression of autophagy-related genes ATG5, LC3 or p62 in HeLa and A549 cells gave similar results, suggesting that autophagy is required for Spred2-induced tumor cell death. Collectively, these data indicate that Spred2 induces tumor cell death in an autophagy-dependent manner. PMID:27028858

  9. Bupivacaine-induced apoptosis independently of WDR35 expression in mouse neuroblastoma Neuro2a cells

    PubMed Central

    2012-01-01

    Background Bupivacaine-induced neurotoxicity has been shown to occur through apoptosis. Recently, bupivacaine was shown to elicit reactive oxygen species (ROS) production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK) in a human neuroblastoma cell line. We have reported that WDR35, a WD40-repeat protein, may mediate apoptosis through caspase-3 activation. The present study was undertaken to test whether bupivacaine induces apoptosis in mouse neuroblastoma Neuro2a cells and to determine whether ROS, p38 MAPK, and WDR35 are involved. Results Our results showed that bupivacaine induced ROS generation and p38 MAPK activation in Neuro2a cells, resulting in apoptosis. Bupivacaine also increased WDR35 expression in a dose- and time-dependent manner. Hydrogen peroxide (H2O2) also increased WDR35 expression in Neuro2a cells. Antioxidant (EUK-8) and p38 MAPK inhibitor (SB202190) treatment attenuated the increase in caspase-3 activity, cell death and WDR35 expression induced by bupivacaine or H2O2. Although transfection of Neuro2a cells with WDR35 siRNA attenuated the bupivacaine- or H2O2-induced increase in expression of WDR35 mRNA and protein, in contrast to our previous studies, it did not inhibit the increase in caspase-3 activity in bupivacaine- or H2O2-treated cells. Conclusions In summary, our results indicated that bupivacaine induced apoptosis in Neuro2a cells. Bupivacaine induced ROS generation and p38 MAPK activation, resulting in an increase in WDR35 expression, in these cells. However, the increase in WDR35 expression may not be essential for the bupivacaine-induced apoptosis in Neuro2a cells. These results may suggest the existence of another mechanism of bupivacaine-induced apoptosis independent from WDR35 expression in Neuro2a cells. PMID:23227925

  10. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens.

    PubMed

    Choi, Hyong Woo; Kim, Young Jin; Lee, Sung Chul; Hong, Jeum Kyu; Hwang, Byung Kook

    2007-11-01

    Reactive oxygen species (ROS) are responsible for mediating cellular defense responses in plants. Controversy has existed over the origin of ROS in plant defense. We have isolated a novel extracellular peroxidase gene, CaPO2, from pepper (Capsicum annuum). Local or systemic expression of CaPO2 is induced in pepper by avirulent Xanthomonas campestris pv vesicatoria (Xcv) infection. We examined the function of the CaPO2 gene in plant defense using the virus-induced gene silencing technique and gain-of-function transgenic plants. CaPO2-silenced pepper plants were highly susceptible to Xcv infection. Virus-induced gene silencing of the CaPO2 gene also compromised hydrogen peroxide (H(2)O(2)) accumulation and hypersensitive cell death in leaves, both locally and systemically, during avirulent Xcv infection. In contrast, overexpression of CaPO2 in Arabidopsis (Arabidopsis thaliana) conferred enhanced disease resistance accompanied by cell death, H(2)O(2) accumulation, and PR gene induction. In CaPO2-overexpression Arabidopsis leaves infected by Pseudomonas syringae pv tomato, H(2)O(2) generation was sensitive to potassium cyanide (a peroxidase inhibitor) but insensitive to diphenylene iodonium (an NADPH oxidase inhibitor), suggesting that H(2)O(2) generation depends on peroxidase in Arabidopsis. Together, these results indicate that the CaPO2 peroxidase is involved in ROS generation, both locally and systemically, to activate cell death and PR gene induction during the defense response to pathogen invasion.

  11. The H2O2 scavenger ebselen decreases ethanol-induced locomotor stimulation in mice.

    PubMed

    Ledesma, Juan Carlos; Font, Laura; Aragon, Carlos M G

    2012-07-01

    In the brain, the enzyme catalase by reacting with H(2)O(2) forms Compound I (catalase-H(2)O(2) system), which is the main system of central ethanol metabolism to acetaldehyde. Previous research has demonstrated that acetaldehyde derived from central-ethanol metabolism mediates some of the psychopharmacological effects produced by ethanol. Manipulations that modulate central catalase activity or sequester acetaldehyde after ethanol administration modify the stimulant effects induced by ethanol in mice. However, the role of H(2)O(2) in the behavioral effects caused by ethanol has not been clearly addressed. The present study investigated the effects of ebselen, an H(2)O(2) scavenger, on ethanol-induced locomotion. Swiss RjOrl mice were pre-treated with ebselen (0-50mg/kg) intraperitoneally (IP) prior to administration of ethanol (0-3.75g/kg; IP). In another experiment, animals were pre-treated with ebselen (0 or 25mg/kg; IP) before caffeine (15mg/kg; IP), amphetamine (2mg/kg; IP) or cocaine (10mg/kg; IP) administration. Following these treatments, animals were placed in an open field to measure their locomotor activity. Additionally, we evaluated the effect of ebselen on the H(2)O(2)-mediated inactivation of brain catalase activity by 3-amino-1,2,4-triazole (AT). Ebselen selectively prevented ethanol-induced locomotor stimulation without altering the baseline activity or the locomotor stimulating effects caused by caffeine, amphetamine and cocaine. Ebselen reduced the ability of AT to inhibit brain catalase activity. Taken together, these data suggest that a decline in H(2)O(2) levels might result in a reduction of the ethanol locomotor-stimulating effects, indicating a possible role for H(2)O(2) in some of the psychopharmacological effects produced by ethanol. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. 17Beta-estradiol protects against oxidative stress-induced cell death through the glutathione/glutaredoxin-dependent redox regulation of Akt in myocardiac H9c2 cells.

    PubMed

    Urata, Yoshishige; Ihara, Yoshito; Murata, Hiroaki; Goto, Shinji; Koji, Takehiko; Yodoi, Junji; Inoue, Satoshi; Kondo, Takahito

    2006-05-12

    The GSH/glutaredoxin (GRX) system is involved in the redox regulation of certain enzyme activities, and this system protects cells from H2O2-induced apoptosis by regulating the redox state of Akt (Murata, H., Ihara, Y., Nakamura, H., Yodoi, J., Sumikawa, K., and Kondo, T. (2003) J. Biol. Chem. 278, 50226-50233). Estrogens, such as 17beta-estradiol (E2), play an important role in development, growth, and differentiation and appear to have protective effects on oxidative stress mediated by estrogen receptor alpha (ERalpha). However, the role of the ERbeta-mediated pathway in this cytoprotection and the involvement of E2 in the redox regulation are not well understood. In the present study, we demonstrated that E2 protected cardiac H9c2 cells, expressing ERbeta from H2O2-induced apoptosis concomitant with an increase in the activity of Akt. E2 induced the expression of glutaredoxin (GRX) as well as gamma-glutamylcysteine synthetase, a rate-limiting enzyme for the synthesis of GSH. Inhibitors for both gamma-glutamylcysteine synthetase and GRX and ICI182,780, a specific inhibitor of ERs, abolished the protective effect of E2 on cell survival as well as the activity of Akt, suggesting that ERbeta is involved in the cytoprotection and redox regulation by E2. Transcription of the GRX gene was enhanced by E2. The promoter activity of GRX was up-regulated by an ERbeta-dependent element. These results suggest that the GRX/GSH system is involved in the cytoprotective and genomic effects of E2 on the redox state of Akt, a pathway that is mediated, at least in part, by ERbeta. This mechanism may also play an antiapoptotic role in cancer cells during carcinogenesis or chemotherapy.

  13. Copper Ion from Cu2O Crystal Induces AMPK-Mediated Autophagy via Superoxide in Endothelial Cells

    PubMed Central

    Seo, Youngsik; Cho, Young-Sik; Huh, Young-Duk; Park, Heonyong

    2016-01-01

    Copper is an essential element required for a variety of functions exerted by cuproproteins. An alteration of the copper level is associated with multiple pathological conditions including chronic ischemia, atherosclerosis and cancers. Therefore, copper homeostasis, maintained by a combination of two copper ions (Cu+ and Cu2+), is critical for health. However, less is known about which of the two copper ions is more toxic or functional in endothelial cells. Cubic-shaped Cu2O and CuO crystals were prepared to test the role of the two different ions, Cu+ and Cu2+, respectively. The Cu2O crystal was found to have an effect on cell death in endothelial cells whereas CuO had no effect. The Cu2O crystals appeared to induce p62 degradation, LC3 processing and an elevation of LC3 puncta, important processes for autophagy, but had no effect on apoptosis and necrosis. Cu2O crystals promote endothelial cell death via autophagy, elevate the level of reactive oxygen species such as superoxide and nitric oxide, and subsequently activate AMP-activated protein kinase (AMPK) through superoxide rather than nitric oxide. Consistently, the AMPK inhibitor Compound C was found to inhibit Cu2O-induced AMPK activation, p62 degradation, and LC3 processing. This study provides insight on the pathophysiologic function of Cu+ ions in the vascular system, where Cu+ induces autophagy while Cu2+ has no detected effect. PMID:26743904

  14. A1 adenosine receptor-induced phosphorylation and modulation of transglutaminase 2 activity in H9c2 cells: A role in cell survival.

    PubMed

    Vyas, Falguni S; Hargreaves, Alan J; Bonner, Philip L R; Boocock, David J; Coveney, Clare; Dickenson, John M

    2016-05-01

    The regulation of tissue transglutaminase (TG2) activity by the GPCR family is poorly understood. In this study, we investigated the modulation of TG2 activity by the A1 adenosine receptor in cardiomyocyte-like H9c2 cells. H9c2 cells were lysed following stimulation with the A1 adenosine receptor agonist N(6)-cyclopentyladenosine (CPA). Transglutaminase activity was determined using an amine incorporating and a protein cross linking assay. TG2 phosphorylation was assessed via immunoprecipitation and Western blotting. The role of TG2 in A1 adenosine receptor-induced cytoprotection was investigated by monitoring hypoxia-induced cell death. CPA induced time and concentration-dependent increases in amine incorporating and protein crosslinking activity of TG2. CPA-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Responses to CPA were blocked by PKC (Ro 31-8220), MEK1/2 (PD 98059), p38 MAPK (SB 203580) and JNK1/2 (SP 600125) inhibitors and by removal of extracellular Ca(2+). CPA triggered robust increases in the levels of TG2-associated phosphoserine and phosphothreonine, which were attenuated by PKC, MEK1/2 and JNK1/2 inhibitors. Fluorescence microscopy revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (Histone H4) and novel (Hexokinase 1) protein substrates for TG2. CPA pre-treatment reversed hypoxia-induced LDH release and decreases in MTT reduction. TG2 inhibitors R283 and Z-DON attenuated A1 adenosine receptor-induced cytoprotection. TG2 activity was stimulated by the A1 adenosine receptor in H9c2 cells via a multi protein kinase dependent pathway. These results suggest a role for TG2 in A1 adenosine receptor-induced cytoprotection. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Zn(2+)-dependence of the synergistic increase in rat thymocyte cell lethality caused by simultaneous application of 4,5-dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) and H2O2.

    PubMed

    Saitoh, Shohei; Fukunaga, Eri; Ohtani, Hana; Oyama, Yasuo

    2015-09-01

    4,5-Dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) is an antifouling agent that is an alternative to organotins such as tributyltin (TBT). Because DCOIT decreases catalase activity, it may increase the susceptibility of cells to oxidative stress. We examined the effects of DCOIT on rat thymocytes suffering from oxidative stress induced by H2O2. The simultaneous application of DCOIT and H2O2 induced a synergistic increase in cell lethality that was completely suppressed by chelating intracellular Zn(2+). Intracellular Zn(2+) concentration was increased by DCOIT at concentrations ranging from 0.1 μM to 3 μM. Although the increase in cell lethality produced by DCOIT alone was less than that produced by TBT alone, a synergistic increase was not induced by the combination of TBT and H2O2. Therefore, these results suggest that DCOIT increases vulnerability to oxidative stress and is more cytotoxic than TBT when oxidative stress is induced by H2O2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The Chilean wild raspberry (Rubus geoides Sm.) increases intracellular GSH content and protects against H2O2 and methylglyoxal-induced damage in AGS cells.

    PubMed

    Jiménez-Aspee, Felipe; Theoduloz, Cristina; Ávila, Felipe; Thomas-Valdés, Samanta; Mardones, Claudia; von Baer, Dietrich; Schmeda-Hirschmann, Guillermo

    2016-03-01

    The Chilean raspberry Rubus geoides Sm. (Rosaceae) is a native species occurring in the Patagonia. Five R. geoides samples were assessed for phenolic content and composition, antioxidant activity, effect on total reduced glutathione (GSH) synthesis and protective effect against H2O2 and methylglyoxal (MGO)-induced stress in epithelial gastric AGS cells. The HPLC-DAD/ESI-MS profiles allowed the tentative identification of 39 phenolics including flavonol glycosides and tannins. R. geoides presented higher total phenolic and flavonoid content than Rubus idaeus. Two out of the five phenolic enriched R. geoides extracts (PEEs) exhibited better antioxidant activity than R. idaeus in the DPPH, FRAP and TEAC assays. A significant cytoprotective activity was observed when AGS cells were pre-incubated with extracts and subsequently challenged with H2O2 or MGO. Treatment with the PEEs increased the intracellular GSH content. R. geoides fruit extracts may induce the activation of intracellular protection mechanisms against oxidative and dicarbonyl-induced stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Hydrogen Peroxide Contributes to the Epithelial Cell Death Induced by the Oral Mitis Group of Streptococci

    PubMed Central

    Okahashi, Nobuo; Sumitomo, Tomoko; Nakata, Masanobu; Sakurai, Atsuo; Kuwata, Hirotaka; Kawabata, Shigetada

    2014-01-01

    Members of the mitis group of streptococci are normal inhabitants of the commensal flora of the oral cavity and upper respiratory tract of humans. Some mitis group species, such as Streptococcus oralis and Streptococcus sanguinis, are primary colonizers of the human oral cavity. Recently, we found that hydrogen peroxide (H2O2) produced by S. oralis is cytotoxic to human macrophages, suggesting that streptococcus-derived H2O2 may act as a cytotoxin. Since epithelial cells provide a physical barrier against pathogenic microbes, we investigated their susceptibility to infection by H2O2-producing streptococci in this study. Infection by S. oralis and S. sanguinis was found to stimulate cell death of Detroit 562, Calu-3 and HeLa epithelial cell lines at a multiplicity of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited S. oralis cytotoxicity, and H2O2 alone was capable of eliciting epithelial cell death. Moreover, S. oralis mutants lacking the spxB gene encoding pyruvate oxidase, which are deficient in H2O2 production, exhibited reduced cytotoxicity toward Detroit 562 epithelial cells. In addition, enzyme-linked immunosorbent assays revealed that both S. oralis and H2O2 induced interleukin-6 production in Detroit 562 epithelial cells. These results suggest that streptococcal H2O2 is cytotoxic to epithelial cells, and promotes bacterial evasion of the host defense systems in the oral cavity and upper respiratory tracts. PMID:24498253

  18. Glucose Acutely Reduces Cytosolic and Mitochondrial H2O2 in Rat Pancreatic Beta Cells.

    PubMed

    Deglasse, Jean-Philippe; Roma, Leticia Prates; Pastor-Flores, Daniel; Gilon, Patrick; Dick, Tobias P; Jonas, Jean-Christophe

    2018-06-14

    Whether H 2 O 2 contributes to the glucose-dependent stimulation of insulin secretion (GSIS) by pancreatic β cells is highly controversial. We used two H 2 O 2 -sensitive probes, roGFP2-Orp1 (reduction/oxidation-sensitive enhanced green fluorescent protein fused to oxidant receptor peroxidase 1) and HyPer (hydrogen peroxide sensor) with its pH-control SypHer, to test the acute effects of glucose, monomethyl succinate, leucine with glutamine, and α-ketoisocaproate on β cell cytosolic and mitochondrial H 2 O 2 concentrations. We then tested the effects of low H 2 O 2 and menadione concentrations on insulin secretion. RoGFP2-Orp1 was more sensitive than HyPer to H 2 O 2 (response at 2-5 vs. 10 μM) and less pH-sensitive. Under control conditions, stimulation with glucose reduced mitochondrial roGFP2-Orp1 oxidation without affecting cytosolic roGFP2-Orp1 and HyPer fluorescence ratios, except for the pH-dependent effects on HyPer. However, stimulation with glucose decreased the oxidation of both cytosolic probes by 15 μM exogenous H 2 O 2 . The glucose effects were not affected by overexpression of catalase, mitochondrial catalase, or superoxide dismutase 1 and 2. They followed the increase in NAD(P)H autofluorescence, were maximal at 5 mM glucose in the cytosol and 10 mM glucose in the mitochondria, and were partly mimicked by the other nutrients. Exogenous H 2 O 2 (1-15 μM) did not affect insulin secretion. By contrast, menadione (1-5 μM) did not increase basal insulin secretion but reduced the stimulation of insulin secretion by 20 mM glucose. Subcellular changes in β cell H 2 O 2 levels are better monitored with roGFP2-Orp1 than HyPer/SypHer. Nutrients acutely lower mitochondrial H 2 O 2 levels in β cells and promote degradation of exogenously supplied H 2 O 2 in both cytosolic and mitochondrial compartments. The GSIS occurs independently of a detectable increase in β cell cytosolic or mitochondrial H 2 O 2 levels. Antioxid. Redox Signal. 00

  19. Photoassisted Oxygen Reduction Reaction in H2 -O2 Fuel Cells.

    PubMed

    Zhang, Bingqing; Wang, Shengyang; Fan, Wenjun; Ma, Weiguang; Liang, Zhenxing; Shi, Jingying; Liao, Shijun; Li, Can

    2016-11-14

    The oxygen reduction reaction (ORR) is a key step in H 2 -O 2 fuel cells, which, however, suffers from slow kinetics even for state-of-the-art catalysts. In this work, by making use of photocatalysis, the ORR was significantly accelerated with a polymer semiconductor (polyterthiophene). The onset potential underwent a positive shift from 0.66 to 1.34 V, and the current was enhanced by a factor of 44 at 0.6 V. The improvement was further confirmed in a proof-of-concept light-driven H 2 -O 2 fuel cell, in which the open circuit voltage (V oc ) increased from 0.64 to 1.18 V, and the short circuit current (J sc ) was doubled. This novel tandem structure combining a polymer solar cell and a fuel cell enables the simultaneous utilization of photo- and electrochemical energy, showing promising potential for applications in energy conversion and storage. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Three-dimensional WS2 nanosheet networks for H2O2 produced for cell signaling

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Quan, Yingzhou; Zhang, Yueyu; Jiang, Min; Al-Enizi, Abdullah M.; Kong, Biao; An, Tiance; Wang, Wenshuo; Xia, Limin; Gong, Xingao; Zheng, Gengfeng

    2016-03-01

    Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in living RAW 264.7 macrophage cells and neurons. First-principles calculations further demonstrate that the enhanced sensitivity of probing H2O2 is attributed to the efficient and spontaneous H2O2 adsorption on WS2 nanosheet edge sites. The combined features of 3D WS2 nanosheet networks suggest attractive new opportunities for exploring the physiological roles of reactive oxygen species like H2O2 in living systems.Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in

  1. Black rice extract protected HepG2 cells from oxidative stress-induced cell death via ERK1/2 and Akt activation

    PubMed Central

    Yoon, Jaemin; Ham, Hyeonmi; Sung, Jeehye; Kim, Younghwa; Choi, Youngmin; Lee, Jeom-Sig; Jeong, Heon-Sang; Lee, Junsoo

    2014-01-01

    BACKGROUND/OBJECTIVES The objective of this study was to evaluate the protective effect of black rice extract (BRE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. MATERIALS/METHODS Methanolic extract from black rice was evaluated for the protective effect on TBHP-induced oxidative injury in HepG2 cells. Several biomarkers that modulate cell survival and death including reactive oxygen species (ROS), caspase-3 activity, and related cellular kinases were determined. RESULTS TBHP induced cell death and apoptosis by a rapid increase in ROS generation and caspase-3 activity. Moreover, TBHP-induced oxidative stress resulted in a transient ERK1/2 activation and a sustained increase of JNK1/2 activation. While, BRE pretreatment protects the cells against oxidative stress by reducing cell death, caspase-3 activity, and ROS generation and also by preventing ERKs deactivation and the prolonged JNKs activation. Moreover, pretreatment of BRE increased the activation of ERKs and Akt which are pro-survival signal proteins. However, this effect was blunted in the presence of ERKs and Akt inhibitors. CONCLUSIONS These results suggest that activation of ERKs and Akt pathway might be involved in the cytoprotective effect of BRE against oxidative stress. Our findings provide new insights into the cytoprotective effects and its possible mechanism of black rice against oxidative stress. PMID:24741394

  2. Nitroxides protect horseradish peroxidase from H2O2-induced inactivation and modulate its catalase-like activity.

    PubMed

    Samuni, Amram; Maimon, Eric; Goldstein, Sara

    2017-08-01

    Horseradish peroxidase (HRP) catalyzes H 2 O 2 dismutation while undergoing heme inactivation. The mechanism underlying this process has not been fully elucidated. The effects of nitroxides, which protect metmyoglobin and methemoglobin against H 2 O 2 -induced inactivation, have been investigated. HRP reaction with H 2 O 2 was studied by following H 2 O 2 depletion, O 2 evolution and heme spectral changes. Nitroxide concentration was followed by EPR spectroscopy, and its reactions with the oxidized heme species were studied using stopped-flow. Nitroxide protects HRP against H 2 O 2 -induced inactivation. The rate of H 2 O 2 dismutation in the presence of nitroxide obeys zero-order kinetics and increases as [nitroxide] increases. Nitroxide acts catalytically since its oxidized form is readily reduced to the nitroxide mainly by H 2 O 2 . The nitroxide efficacy follows the order 2,2,6,6-tetramethyl-piperidine-N-oxyl (TPO)>4-OH-TPO>3-carbamoyl proxyl>4-oxo-TPO, which correlates with the order of the rate constants of nitroxide reactions with compounds I, II, and III. Nitroxide catalytically protects HRP against inactivation induced by H 2 O 2 while modulating its catalase-like activity. The protective role of nitroxide at μM concentrations is attributed to its efficient oxidation by P940, which is the precursor of the inactivated form P670. Modeling the dismutation kinetics in the presence of nitroxide adequately fits the experimental data. In the absence of nitroxide the simulation fits the observed kinetics only if it does not include the formation of a Michaelis-Menten complex. Nitroxides catalytically protect heme proteins against inactivation induced by H 2 O 2 revealing an additional role played by nitroxide antioxidants in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Triosephosphate isomerase tyrosine nitration induced by heme-NaNO2 -H2 O2 or peroxynitrite: Effects of different natural phenolic compounds.

    PubMed

    Gao, Wanxia; Zhao, Jie; Li, Hailing; Gao, Zhonghong

    2017-06-01

    Peroxynitrite and heme peroxidases (or heme)-H 2 O 2 -NaNO 2 system are the two common ways to cause protein tyrosine nitration in vitro, but the effects of antioxidants on reducing these two pathways-induced protein nitration and oxidation are controversial. Both nitrating systems can dose-dependently induce triosephosphate isomerase (TIM) nitration, however, heme-H 2 O 2 -NaNO 2 was less destructive to protein secondary structures and led to more nitrated tyrosine residue than 3-morpholinosydnonimine hydrochloride (SIN-1, a peroxynitrite donor). Both of desferrioxamine and catechin could inhibit TIM nitration induced by heme-H 2 O 2 -NaNO 2 and SIN-1 and protein oxidation induced by SIN-1, but promoted heme-H 2 O 2 -NaNO 2 -induced protein oxidation. Moreover, the antagonism of natural phenolic compounds on SIN-1-induced tyrosine nitration was consistent with their radical scavenging ability, but no similar consensus was found in heme-H 2 O 2 -NaNO 2 -induced nitration. Our results indicated that peroxynitrite and heme-H 2 O 2 -NaNO 2 -induced protein nitration was different, and the later one could be a better model for anti-nitration compounds screening. © 2017 Wiley Periodicals, Inc.

  4. Mitofusin-2 protects against cold stress-induced cell injury in HEK293 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenbin; Chen, Yaomin; Yang, Qun

    2010-06-25

    Mitochondrial impairment is hypothesized to contribute to cell injury during cold stress. Mitochondria fission and fusion are closely related in the function of the mitochondria, but the precise mechanisms whereby these processes regulate cell injury during cold stress remain to be determined. HEK293 cells were cultured in a cold environment (4.0 {+-} 0.1 {sup o}C) for 2, 4, 8, or 12 h. Western blot analyses showed that these cells expressed decreased fission-related protein Drp1 and increased fusion-related protein Mfn2 at 4 h; meanwhile, electron microscopy analysis revealed large and long mitochondrial morphology within these cells, indicating increased mitochondrial fusion. Withmore » silencing of Mfn2 but not of Mfn1 by siRNA promoted cold-stress-induced cell death with decreased ATP production in HEK293 cells. Our results show that increased expression of Mfn2 and mitochondrial fusion are important for mitochondrial function as well as cell survival during cold stress. These findings have important implications for understanding the mechanisms of mitochondrial fusion and fission in cold-stress-induced cell injury.« less

  5. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchissio, Maria Julia; Francés, Daniel Eleazar Antonio; Carnovale, Cristina Ester

    Human aquaporin-8 (AQP8) channels facilitate the diffusional transport of H{sub 2}O{sub 2} across membranes. Since AQP8 is expressed in hepatic inner mitochondrial membranes, we studied whether mitochondrial AQP8 (mtAQP8) knockdown in human hepatoma HepG2 cells impairs mitochondrial H{sub 2}O{sub 2} release, which may lead to organelle dysfunction and cell death. We confirmed AQP8 expression in HepG2 inner mitochondrial membranes and found that 72 h after cell transfection with siRNAs targeting two different regions of the human AQP8 molecule, mtAQP8 protein specifically decreased by around 60% (p < 0.05). Studies in isolated mtAQP8-knockdown mitochondria showed that H{sub 2}O{sub 2} release, assessedmore » by Amplex Red, was reduced by about 45% (p < 0.05), an effect not observed in digitonin-permeabilized mitochondria. mtAQP8-knockdown cells showed an increase in mitochondrial ROS, assessed by dichlorodihydrofluorescein diacetate (+ 120%, p < 0.05) and loss of mitochondrial membrane potential (− 80%, p < 0.05), assessed by tetramethylrhodamine-coupled quantitative fluorescence microscopy. The mitochondria-targeted antioxidant MitoTempol prevented ROS accumulation and dissipation of mitochondrial membrane potential. Cyclosporin A, a mitochondrial permeability transition pore blocker, also abolished the mtAQP8 knockdown-induced mitochondrial depolarization. Besides, the loss of viability in mtAQP8 knockdown cells verified by MTT assay, LDH leakage, and trypan blue exclusion test could be prevented by cyclosporin A. Our data on human hepatoma HepG2 cells suggest that mtAQP8 facilitates mitochondrial H{sub 2}O{sub 2} release and that its defective expression causes ROS-induced mitochondrial depolarization via the mitochondrial permeability transition mechanism, and cell death. -- Highlights: ► Aquaporin-8 is expressed in mitochondria of human hepatoma HepG2 cells. ► Aquaporin-8 knockdown impairs mitochondrial H{sub 2}O{sub 2} release and increases ROS.

  6. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  7. Phenethyl Isothiocyanate Induces Apoptotic Cell Death Through the Mitochondria-dependent Pathway in Gefitinib-resistant NCI-H460 Human Lung Cancer Cells In Vitro.

    PubMed

    Hsia, Te-Chun; Huang, Yi-Ping; Jiang, Yi-Wen; Chen, Hsin-Yu; Cheng, Zheng-Yu; Hsiao, Yung-Ting; Chen, Cheng-Yen; Peng, Shu-Fen; Chueh, Fu-Shin; Chou, Yu-Cheng; Chung, Jing-Gung

    2018-04-01

    Some lung cancer patients treated with gefitinib develop resistance to this drug resulting in unsatisfactory treatment outcomes. Phenethyl isothiocyanate (PEITC), present in our common cruciferous vegetables, exhibits anticancer activities in many human cancer cell lines. Currently, there is no available information on the possible modification of gefitinib resistance of lung cancer in vitro by PEITC. Thus, the effects of PEITC on gefitinib resistant lung cancer NCI-H460 cells were investigated in vitro. The total cell viability, apoptotic cell death, production of reactive oxygen species (ROS) and Ca 2+ , levels of mitochondria membrane potential (ΔΨ m ) and caspase-3, -8 and -9 activities were measured by flow cytometry assay. PEITC induced chromatin condensation was examined by DAPI staining. PEITC-induced cell morphological changes, decreased total viable cell number and induced apoptotic cell death in NCI-H460 and NCI-H460/G cells. PEITC decreased ROS production in NCI-H460 cells, but increased production in NCI-H460/G cells. PEITC increased Ca 2+ production, decreased the levels of ΔΨ m and increased caspase-3, -8 and -9 activities in both NCI-H460 and NCI-H460/G cells. Western blotting was used to examine the effect of apoptotic cell death associated protein expression in NCI-H460 NCI-H460/G cells after exposure to PEITC. Results showed that PEITC increased expression of cleaved caspase-3, PARP, GADD153, Endo G and pro-apoptotic protein Bax in NCI-H460/G cells. Based on these results, we suggest that PEITC induces apoptotic cell death via the caspase- and mitochondria-dependent pathway in NCI-H460/G cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Protective Effects of Curcumin on Manganese-Induced BV-2 Microglial Cell Death.

    PubMed

    Park, Euteum; Chun, Hong Sung

    2017-08-01

    Curcumin, a bioactive component in tumeric, has been shown to exert antioxidant, anti-inflammatory, anticarcinogenic, hepatoprotective, and neuroprotective effects, but the effects of curcumin against manganese (Mn)-mediated neurotoxicity have not been studied. This study examined the protective effects of curcumin on Mn-induced cytotoxicity in BV-2 microglial cells. Curcumin (0.1-10 µM) dose-dependently prevented Mn (250 µM)-induced cell death. Mn-induced mitochondria-related apoptotic characteristics, such as caspase-3 and -9 activation, cytochrome c release, Bax increase, and Bcl-2 decrease, were significantly suppressed by curcumin. In addition, curcumin significantly increased intracellular glutathione (GSH) and moderately potentiated superoxide dismutase (SOD), both which were diminished by Mn treatment. Curcumin pretreatment effectively suppressed Mn-induced upregulation of malondialdehyde (MDA), total reactive oxygen species (ROS). Moreover, curcumin markedly inhibited the Mn-induced mitochondrial membrane potential (MMP) loss. Furthermore, curcumin was able to induce heme oxygenase (HO)-1 expression. Curcumin-mediated inhibition of ROS, down-regulation of caspases, restoration of MMP, and recovery of cell viability were partially reversed by HO-1 inhibitor (SnPP). These results suggest the first evidence that curcumin can prevent Mn-induced microglial cell death through the induction of HO-1 and regulation of oxidative stress, mitochondrial dysfunction, and apoptotic events.

  9. N-Desmethyldauricine Induces Autophagic Cell Death in Apoptosis-Defective Cells via Ca2+ Mobilization.

    PubMed

    Law, Betty Y K; Mok, Simon W F; Chen, Juan; Michelangeli, Francesco; Jiang, Zhi-Hong; Han, Yu; Qu, Yuan Q; Qiu, Alena C L; Xu, Su-Wei; Xue, Wei-Wei; Yao, Xiao-Jun; Gao, Jia Y; Javed, Masood-Ul-Hassan; Coghi, Paolo; Liu, Liang; Wong, Vincent K W

    2017-01-01

    Resistance of cancer cells to chemotherapy remains a significant problem in oncology. Mechanisms regulating programmed cell death, including apoptosis, autophagy or necrosis, in the treatment of cancers have been extensively investigated over the last few decades. Autophagy is now emerging as an important pathway in regulating cell death or survival in cancer therapy. Recent studies demonstrated variety of natural small-molecules could induce autophagic cell death in apoptosis-resistant cancer cells, therefore, discovery of novel autophagic enhancers from natural products could be a promising strategy for treatment of chemotherapy-resistant cancer. By computational virtual docking analysis, biochemical assays, and advanced live-cell imaging techniques, we have identified N -desmethyldauricine (LP-4), isolated from rhizoma of Menispermum dauricum DC as a novel inducer of autophagy. LP-4 was shown to induce autophagy via the Ulk-1-PERK and Ca 2+ /Calmodulin-dependent protein kinase kinase β (CaMKKβ)-AMPK-mTOR signaling cascades, via mobilizing calcium release through inhibition of SERCA, and importantly, lead to autophagic cell death in a panel of cancer cells, apoptosis-defective and apoptosis-resistant cells. Taken together, this study provides detailed insights into the cytotoxic mechanism of a novel autophagic compound that targeting the apoptosis resistant cancer cells, and new implication on drug discovery from natural products for drug resistant cancer therapy.

  10. Atomic hydrogen surrounded by water molecules, H(H2O)m, modulates basal and UV-induced gene expressions in human skin in vivo.

    PubMed

    Shin, Mi Hee; Park, Raeeun; Nojima, Hideo; Kim, Hyung-Chel; Kim, Yeon Kyung; Chung, Jin Ho

    2013-01-01

    Recently, there has been much effort to find effective ingredients which can prevent or retard cutaneous skin aging after topical or systemic use. Here, we investigated the effects of the atomic hydrogen surrounded by water molecules, H(H2O)m, on acute UV-induced responses and as well as skin aging. Interestingly, we observed that H(H2O)m application to human skin prevented UV-induced erythema and DNA damage. And H(H2O)m significantly prevented UV-induced MMP-1, COX-2, IL-6 and IL-1β mRNA expressions in human skin in vivo. We found that H(H2O)m prevented UV-induced ROS generation and inhibited UV-induced MMP-1, COX-2 and IL-6 expressions, and UV-induced JNK and c-Jun phosphorylation in HaCaT cells. Next, we investigated the effects of H(H2O)m on intrinsically aged or photoaged skin of elderly subjects. In intrinsically aged skin, H(H2O)m application significantly reduced constitutive expressions of MMP-1, IL-6, and IL-1β mRNA. Additionally, H(H2O)m significantly increased procollagen mRNA and also decreased MMP-1 and IL-6 mRNA expressions in photoaged facial skin. These results demonstrated that local application of H(H2O)m may prevent UV-induced skin inflammation and can modulate intrinsic skin aging and photoaging processes. Therefore, we suggest that modifying the atmospheric gas environment within a room may be a new way to regulate skin functions or skin aging.

  11. Atomic Hydrogen Surrounded by Water Molecules, H(H2O)m, Modulates Basal and UV-Induced Gene Expressions in Human Skin In Vivo

    PubMed Central

    Shin, Mi Hee; Park, Raeeun; Nojima, Hideo; Kim, Hyung-Chel; Kim, Yeon Kyung; Chung, Jin Ho

    2013-01-01

    Recently, there has been much effort to find effective ingredients which can prevent or retard cutaneous skin aging after topical or systemic use. Here, we investigated the effects of the atomic hydrogen surrounded by water molecules, H(H2O)m, on acute UV-induced responses and as well as skin aging. Interestingly, we observed that H(H2O)m application to human skin prevented UV-induced erythema and DNA damage. And H(H2O)m significantly prevented UV-induced MMP-1, COX-2, IL-6 and IL-1β mRNA expressions in human skin in vivo. We found that H(H2O)m prevented UV-induced ROS generation and inhibited UV-induced MMP-1, COX-2 and IL-6 expressions, and UV-induced JNK and c-Jun phosphorylation in HaCaT cells. Next, we investigated the effects of H(H2O)m on intrinsically aged or photoaged skin of elderly subjects. In intrinsically aged skin, H(H2O)m application significantly reduced constitutive expressions of MMP-1, IL-6, and IL-1β mRNA. Additionally, H(H2O)m significantly increased procollagen mRNA and also decreased MMP-1 and IL-6 mRNA expressions in photoaged facial skin. These results demonstrated that local application of H(H2O)m may prevent UV-induced skin inflammation and can modulate intrinsic skin aging and photoaging processes. Therefore, we suggest that modifying the atmospheric gas environment within a room may be a new way to regulate skin functions or skin aging. PMID:23637886

  12. Improved oxidative tolerance in suspension-cultured cells of C4-pepctransgenic rice by H2O2 and Ca(2+) under PEG-6000.

    PubMed

    Qian, Baoyun; Li, Xia; Liu, Xiaolong; Wang, Man

    2015-06-01

    To understand the molecular responses of PC (Overexpressing the maize C4-pepc gene, which encodes phosphoenolpyruvate carboxylase (PEPC)), to drought stress at cell level, we analyzed changes in the levels of signaling molecules (hydrogen peroxide (H2O2), calcium ion (Ca(2+)), and nitric oxide (NO)) in suspension-cultured PC and wild-type (WT) rice (Oryza sativa L.) cell under drought stress induced by 20% polyethylene glycol 6000 (PEG-6000). Results demonstrated that PC improved drought tolerance by enhancing antioxidant defense, retaining higher relative water content, survival percentages, and dry weight of cells. In addition, PEPC activity in PC under PEG treatment was strengthened by addition of H2O2 inhibitor, dimethylthiourea (DMTU) and NO synthesis inhibitor, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), respectively, while that in PC was weakened by addition of free calcium chelator, ethylene glycol-bis(b-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) + calcium channel outflow inhibitor, ruthenium red (RR) + plasma membrane channel blocker La(NO3)3, but EGTA + RR did not. Results also showed that NO and Ca(2+) was lying downstream of H2O2 in drought-induced signaling. Calcium ion was also involved in the expression of C4-pepc in PC. These results suggested that PC could improve oxidative tolerance in suspension-cultured cells and the acquisition of this tolerance required downregulation of H2O2 and the entry of extracellular Ca(2+) into cells across the plasma membrane for regulation of PEPC activity and C4-pepc expression. © 2014 Institute of Botany, Chinese Academy of Sciences.

  13. HMG-CoA reductase is negatively associated with PCV2 infection and PCV2-induced apoptotic cell death.

    PubMed

    Yang, Xin; Ouyang, Hongsheng; Chen, Fuwang; Pang, Daxing; Dong, Meichen; Yang, Susu; Liu, Xiaoyun; Peng, Zhiyuan; Wang, Fei; Zhang, Xiao; Ren, Linzhu

    2014-06-01

    We examined the role of HMG-CoA reductase (HMGCR) during porcine circovirus 2 (PCV2) infection. The results demonstrated that levels of endogenous HMGCR were not significantly different in PCV2-infected cells and mock-infected cells. However, the level of phosphorylated HMGCR, an inactivated form of HMGCR, was increased in PCV2-infected cells. Furthermore, HMGCR was upregulated by overexpression, silenced by siRNA or inactivated using its dominant-negative form in PK-15 cells. The results showed that PCV2 infection was inhibited by HMGCR overexpression, whereas it was significantly increased in HMGCR-silenced cells and HMGCR inhibitor-treated cells. Moreover, there was a robust apoptotic response at 48 h post-infection (p.i.) in HMGCR-inactivated cells, and this response was significantly greater than that observed in PK-15 cells. A modest apoptotic response was also observed in HMGCR-silenced cells. Caspase-3 activity was also analysed in PCV2-infected cells at 48 h p.i. As expected, caspase-3 activity was significantly increased in HMGCR-inactivated and -silenced cells compared with PK-15 cells. PCV2 replication was dose-dependently increased in HMGCR-inactivated cells when treated with increasing amounts of caspase-3 inhibitor. Altogether, HMGCR was negatively associated with PCV2 infection and PCV2-induced apoptotic cell death. These data demonstrated that HMGCR can be used as a candidate target for PCV2 disease control and antivirus research. Furthermore, the cells generated in this study can be used to evaluate the potential effects of HMGCR on PCV2 replication. © 2014 The Authors.

  14. H2/O2 three-body rates at high temperatures

    NASA Technical Reports Server (NTRS)

    Marinelli, William J.; Kessler, William J.; Carleton, Karen L.

    1991-01-01

    Hydrogen atoms are produced in the presence of excess O2, and the first-order decay are studied as a function of temperature and pressure in order to obtain the rate coefficient for the three-body reaction between H-atoms and O2. Attention is focused on the kinetic scheme employed as well as the reaction cell and photolysis and probe laser system. A two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical-thickness or O2-absorption problems. Results confirm measurements reported previously for the H + O2 + N2 reaction at 300 K and extend these measurements to higher temperatures. Preliminary data indicate non-Arrehenius-type behavior of this reaction rate coefficient as a function of temperature. Measurements of the rate coefficient for H + O2 + Ar reaction at 300 K give a rate coefficient of 2.1 +/- 0.1 x 10 to the -32nd cm exp 6/molecule sec.

  15. Propofol attenuates H2O2-induced oxidative stress and apoptosis via the mitochondria- and ER-medicated pathways in neonatal rat cardiomyocytes.

    PubMed

    Liu, Xue-Ru; Cao, Lu; Li, Tao; Chen, Lin-Lin; Yu, Yi-Yan; Huang, Wen-Jun; Liu, Li; Tan, Xiao-Qiu

    2017-05-01

    Previous studies have shown that propofol, an intravenous anesthetic commonly used in clinical practice, protects the myocardium from injury. Mitochondria- and endoplasmic reticulum (ER)-mediated oxidative stress and apoptosis are two important signaling pathways involved in myocardial injury and protection. The present study aimed to test the hypothesis that propofol could exert a cardio-protective effect via the above two pathways. Cultured neonatal rat cardiomyocytes were treated with culture medium (control group), H 2 O 2 at 500 μM (H 2 O 2 group), propofol at 50 μM (propofol group), and H 2 O 2 plus propofol (H 2 O 2  + propofol group), respectively. The oxidative stress, mitochondrial membrane potential (ΔΨm) and apoptosis of the cardiomyocytes were evaluated by a series of assays including ELISA, flow cytometry, immunofluorescence microscopy and Western blotting. Propofol significantly suppressed the H 2 O 2 -induced elevations in the activities of caspases 3, 8, 9 and 12, the ratio of Bax/Bcl-2, and cell apoptosis. Propofol also inhibited the H 2 O 2 -induced reactive oxygen species (ROS) generation, lactic dehydrogenase (LDH) release and mitochondrial transmembrane potential (ΔΨm) depolarization, and restored the H 2 O 2 -induced reductions of glutathione (GSH) and superoxide dismutase (SOD). In addition, propofol decreased the expressions of glucose-regulated protein 78 kDa (Grp78) and inositol-requiring enzyme 1α (IRE1α), two important signaling molecules in the ER-mediated apoptosis pathway. Propofol protects cardiomyocytes from H 2 O 2 -induced injury by inhibiting the mitochondria- and ER-mediated apoptosis signaling pathways.

  16. Hepatoprotective effect of 2'-O-galloylhyperin against oxidative stress-induced liver damage through induction of Nrf2/ARE-mediated antioxidant pathway.

    PubMed

    Wang, Peng; Gao, Yi-Meng; Sun, Xing; Guo, Na; Li, Ji; Wang, Wei; Yao, Li-Ping; Fu, Yu-Jie

    2017-04-01

    2'-O-galloylhyperin (2'-O-GH), an active compound isolated from Pyrola calliantha, possesses remarkable antioxidant activity. The aims of this study were to investigate the hepatoprotective effect of 2'-O-GH against oxidative stress and elucidate the underlying mechanistic signaling pathways in HepG2 cells as well as in an animal model. Results showed that 2'-O-GH significantly inhibited hydrogen peroxide (H 2 O 2 )-induced HepG2 cell death in a dose dependent manner. The mitogen-activated protein kinase activation, ROS production, mitochondrial membrane potential, intracellular calcium level and subsequent apoptotic protein activation in H 2 O 2 -stimulated HepG2 cells were remarkably inhibited by 2'-O-GH. Furthermore, 2'-O-GH stimulation resulted in a fast and dramatic activation of Akt and nuclear translocation of the NF-E2-related factor 2 (Nrf2), along with the increased expression of heme oxygenase-1 (HO-1) and levels of glutathione (GSH). Meanwhile, histopathological evaluation of the liver also revealed that 2'-O-GH effectively ameliorated CCl 4 -induced the hepatic damage by reducing alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Therefore, these results suggested the hepatoprotective effect of 2'-O-GH might be correlated with its antioxidant and free radical scavenger effect. Copyright © 2017. Published by Elsevier Ltd.

  17. Quercetin Exerts Differential Neuroprotective Effects Against H2O2 and Aβ Aggregates in Hippocampal Neurons: the Role of Mitochondria.

    PubMed

    Godoy, Juan A; Lindsay, Carolina B; Quintanilla, Rodrigo A; Carvajal, Francisco J; Cerpa, Waldo; Inestrosa, Nibaldo C

    2017-11-01

    Amyloid-β peptide (Aβ) is one of the major players in the pathogenesis of Alzheimer's disease (AD). Despite numerous studies, the mechanisms by which Aβ induces neurodegeneration are not completely understood. Oxidative stress is considered a major contributor to the pathogenesis of AD, and accumulating evidence indicates that high levels of reactive oxygen species (ROS) are involved in Aβ-induced neurodegeneration. Moreover, Aβ can induce the deregulation of calcium homeostasis, which also affects mitochondrial function and triggers neuronal cell death. In the present study, we analyzed the effects of quercetin, a plant flavonoid with antioxidant properties, on oxidative stress- and Aβ-induced degeneration. Our results indicate that quercetin efficiently protected against H 2 O 2 -induced neuronal toxicity; however, this protection was only partial in rat hippocampal neurons that were treated with Aβ. Treatment with quercetin decreased ROS levels, recovered the normal morphology of mitochondria, and prevented mitochondrial dysfunction in neurons that were treated with H 2 O 2 . By contrast, quercetin treatment partially rescued hippocampal neurons from Aβ-induced mitochondrial injury. Most importantly, quercetin treatment prevented the toxic effects that are induced by H 2 O 2 in hippocampal neurons and, to a lesser extent, the Aβ-induced toxicity that is associated with the superoxide anion, which is a precursor of ROS production in mitochondria. Collectively, these results indicate that quercetin exerts differential effects on the prevention of H 2 O 2 - and Aβ-induced neurotoxicity in hippocampal neurons and may be a powerful tool for dissecting the molecular mechanisms underlying Aβ neurotoxicity.

  18. JTC801 Induces pH-dependent Death Specifically in Cancer Cells and Slows Growth of Tumors in Mice.

    PubMed

    Song, Xinxin; Zhu, Shan; Xie, Yangchun; Liu, Jiao; Sun, Lingyi; Zeng, Dexing; Wang, Pengcheng; Ma, Xiaochao; Kroemer, Guido; Bartlett, David L; Billiar, Timothy R; Lotze, Michael T; Zeh, Herbert J; Kang, Rui; Tang, Daolin

    2018-04-01

    Maintenance of acid-base homeostasis is required for normal physiology, metabolism, and development. It is not clear how cell death is activated in response to changes in pH. We performed a screen to identify agents that induce cell death in a pH-dependent manner (we call this alkaliptosis) in pancreatic ductal adenocarcinoma cancer (PDAC) cells and tested their effects in mice. We screened a library of 254 compounds that interact with G-protein-coupled receptors (GPCRs) to identify those with cytotoxic activity against a human PDAC cell line (PANC1). We evaluated the ability of JTC801, which binds the opiod receptor and has analgesic effects, to stimulate cell death in human PDAC cell lines (PANC1, MiaPaCa2, CFPAC1, PANC2.03, BxPc3, and CAPAN2), mouse pancreatic cancer-associated stellate cell lines, primary human pancreatic ductal epithelial cells, and 60 cancer cell lines (the NCI-60 panel). Genes encoding proteins in cell death and GPCR signaling pathways, as well as those that regulate nuclear factor-κB (NF-κB) activity, were knocked out, knocked down, or expressed from transgenes in cancer cell lines. JTC801 was administered by gavage to mice with xenograft tumors, C57BL/6 mice with orthographic pancreatic tumors grown from Pdx1-Cre;KRas G12D/+ ;Tp53 R172H/+ (KPC) cells, mice with metastases following tail-vein injection of KPC cells, and Pdx-1-Cre;Kras G12D/+ mice crossed with Hmgb1 flox/flox mice (KCH mice). Pancreata were collected from mice and analyzed for tumor growth and by histology and immunohistochemistry. We compared gene and protein expression levels between human pancreatic cancer tissues and patient survival times using online R2 genomic or immunohistochemistry analyses. Exposure of human PDAC cell lines (PANC1 and MiaPaCa2) to JTC801 did not induce molecular markers of apoptosis (cleavage of caspase 3 or poly [ADP ribose] polymerase [PARP]), necroptosis (interaction between receptor-interacting serine-threonine kinase 3 [RIPK3] and mixed

  19. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells.

    PubMed

    Sim, Junyoung; An, Junyeong; Elbeshbishy, Elsayed; Ryu, Hodon; Lee, Hyung-Sool

    2015-11-01

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2O2 conversion efficiency was negligible at 0.3-12%. Current density decreased for passive O2 diffusion to the cathode, but H2O2 conversion efficiency increased by 65%. An MEC equipped with a gas diffusion cathode was operated with acetate medium and domestic wastewater, which presented relatively high H2O2 conversion efficiency from 36% to 47%, although cathode overpotential was fluctuated. Due to different current densities, the maximum H2O2 production rate was 141 mg H2O2/L-h in the MEC fed with acetate medium, but it became low at 6 mg H2O2/L-h in the MEC fed with the wastewater. Our study clearly indicates that improving anodic current density and mitigating membrane fouling would be key parameters for large-scale H2O2-MECs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Magnolol-induced H460 cells death via autophagy but not apoptosis.

    PubMed

    Li, Hai-Bo; Yi, Xin; Gao, Jian-Mei; Ying, Xi-Xiang; Guan, Hong-Quan; Li, Jian-Chun

    2007-12-01

    We have reported that the protective effect of Magnolol on TBHP-induced injury in human nonsmall lung cancer H460 cells is partially via a p53 dependent mechanism. In this study, we found that Magnolol displayed a stimulatory effect at low concentrations (< or = 20 microM) whilst inhibitory effect at high concentrations (> or = 40 microM) in H460 cells. To investigate the mechanism of inducing the biphasic effect in H460 cells with Magnolol, we showed that Magnolol stimulated DNA synthesis at low concentrations and displayed an inhibition effect at high concentrations in H460 cells. More importantly, the inhibition of DNA synthesis was accompanied by the S phase cell cycle arrest and the appearance of intense intracytoplasmic vacuoles. These vacuoles can be labeled by autophagic marker monodansylcadaverin (MDC), 3-methyladenine (3-MA), an inhibitor of autophagy, was able to inhibit the occurrence of autophagy. The results of the LDH activity assay and TUNEL assay also showed that Magnolol at high concentrations inhibiting H460 cell growth was not via apoptotic pathway. Furthermore, accompanied by the occurrence of autophagy, the expression of phospho-Akt was down-regulated but PTEN significantly was up-regulated. In conclusion, Magnolol induces H460 cells death by autophagy but not apoptotic pathway. Blockade of PI3K/PTEN/Akt pathway is maybe related to Magnolol-induced autophagy. Autophagic cells death induction by Magnolol underlines the potential utility of its induction as a new cancer treatment modality.

  1. H2O2 plays an important role in the lifestyle of Colletotrichum gloeosporioides during interaction with cowpea [Vigna unguiculata (L.) Walp].

    PubMed

    Eloy, Ygor R G; Vasconcelos, Ilka M; Barreto, Ana L H; Freire-Filho, Francisco R; Oliveira, Jose T A

    2015-08-01

    Plant-fungus interactions usually generate H(2)O(2) in the infected plant tissue. H(2)O(2) has a direct antimicrobial effect and is involved in the cross-linking of cell walls, signaling, induction of gene expression, hypersensitive cell death and induced systemic acquired resistance. This has raised the hypothesis that H(2)O(2) manipulation by pharmacological compounds could alter the lifestyle of Colletotrichum gloeosporioides during interaction with the BR-3-Tracuateua cowpea genotype. The primary leaves of cowpea were excised, infiltrated with salicylic acid (SA), glucose oxidase + glucose (GO/G), catalase (CAT) or diphenyliodonium chloride (DPI), followed by spore inoculation on the adaxial leaf surface. SA or GO/G-treated plantlets showed increased H(2)O(2) accumulation and lipid peroxidation. The fungus used a subcuticular, intramural necrotrophic strategy, and developed secondary hyphae associated with the quick spread and rapid killing of host cells. However, CAT or DPI-treated leaves exhibited decreased H(2)O(2) concentration and lipid peroxidation and the fungus developed intracellular hemibiotrophic infection with vesicles, in addition to primary and secondary hyphal formation. These results suggest that H(2)O(2) plays an important role in the cowpea (C. gloeosporioides) pathosystem given that it affected fungal lifestyle during interaction. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. Induction of activation of the antioxidant response element and stabilization of Nrf2 by 3-(3-pyridylmethylidene)-2-indolinone (PMID) confers protection against oxidative stress-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jia-Wei; Beijing Institute of Radiation Medicine, Beijing 100850; Liu, Jing

    2012-03-01

    The antioxidant response elements (ARE) are a cis-acting enhancer sequence located in regulatory regions of antioxidant and detoxifying genes. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a member of the Cap ‘n’ Collar family of transcription factors that binds to the ARE and regulates the transcription of specific ARE-containing genes. Under oxidative stress, Nrf2/ARE induction is fundamental to defense against reactive oxygen species (ROS) and serves as a key factor in the protection against toxic xenobiotics. 3-(3-Pyridylmethylidene)-2-Indolinone (PMID) is a derivative of 2-indolinone compounds which act as protein kinase inhibitors and show anti-tumor activity. However, the role of PMID inmore » the oxidative stress remains unknown. In the present study, we showed that PMID induced the activation of ARE-mediated transcription, increased the DNA-binding activity of Nrf2 and then up-regulated the expression of antioxidant genes such as HO-1, SOD, and NQO1. The level of Nrf2 protein was increased in cells treated with PMID by a post-transcriptional mechanism. Under CHX treatment, the stability of Nrf2 protein was enhanced by PMID with decreased turnover rate. We showed that PMID reduced the ubiquitination of Nrf2 and disrupted the Cullin3 (Cul3)-Keap1 interaction. Furthermore, cells treated with PMID showed resistance to cytotoxicity by H{sub 2}O{sub 2} and pro-oxidant 6-OHDA. PMID also up-regulated the antioxidant level in BALB/c mice. Taken together, the compound PMID induces the ARE-mediated gene expression through stabilization of Nrf2 protein and activation of Nrf2/ARE pathway and protects against oxidative stress-mediated cell death. -- Highlights: ► PMID up-regulates ARE-mediated antioxidant gene expression in vitro and in vivo. ► PMID enhances the stabilization of Nrf2 protein, decreasing Nrf2 turnover rate. ► PMID disrupted the Cullin3 (Cul3)-Keap1 interaction. ► PMID protects against cell death induced by H{sub 2}O{sub 2} and pro

  3. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells

    EPA Science Inventory

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2...

  4. H2O2-induced mild stress in relation with in vitro ovine oocyte developmental competence: implications for blastocyst apoptosis and related genes expression.

    PubMed

    Nikdel, K; Aminafshar, M; Mohammadi-Sangcheshmeh, A; EmamJomeh-Kashan, N; Seyedjafari, E

    2017-05-20

    In this study, in vitro maturation was performed in presence of various concentrations (0, 10, 100, or 1000 µM) of H2O2. The intracellular glutathione (GSH) level, fertilization, cleavage, and blastocyst rates, total cell number, and apoptotic cell number and expression of Bax, Bcl-2, and p53 genes in blastocyst-stage embryos were studied. At 10 μM H2O2 concentration, a higher GSH level was detected in comparison to the other groups while oocytes exposed to 1000 μM H2O2 had the lowest GSH level. Treatment of oocytes with 1000 μM H2O2 decreased the rate of two pronuclei formation as compared with other groups. A higher rate of blastocyst formation was seen in 100 μM H2O2 group as compared with the control group. However, exogenous H2O2 in maturation medium did not affect total cell numbers and apoptotic cell ratio at the blastocyst stage. Moreover, mRNA transcript abundance of Bax, Bcl-2, and p53 genes was similar between blastocysts derived from H2O2-induced oocytes and control blastocysts. Treatment of oocytes with H2O2 at mild level during in vitro maturation had a positive effect on GSH level and this, in turn, may lead to improvement in preimplantation embryonic development.

  5. CD47-ligation induced cell death in T-acute lymphoblastic leukemia.

    PubMed

    Leclair, Pascal; Liu, Chi-Chao; Monajemi, Mahdis; Reid, Gregor S; Sly, Laura M; Lim, Chinten James

    2018-05-10

    CD47 is a cell-surface marker well recognized for its anti-phagocytic functions. As such, an emerging avenue for targeted cancer therapies involves neutralizing the anti-phagocytic function using monoclonal antibodies (mAbs) to enhance tumour cell immunogenicity. A lesser known consequence of CD47 receptor ligation is the direct induction of tumour cell death. While several mAbs and their derivatives with this property have been studied, the best characterized is the commercially available mAb B6H12, which requires immobilization for induction of cell death. Here, we describe a commercially available mAb, CC2C6, which induces T-cell acute lymphoblastic leukemia (ALL) cell death in soluble form. Soluble CC2C6 induces CD47-dependent cell death in a manner consistent with immobilized B6H12, which is characterized by mitochondrial deficiencies but is independent of caspase activation. Titration studies indicated that CC2C6 shares a common CD47-epitope with B6H12. Importantly, CC2C6 retains the anti-phagocytic neutralizing function, thus possessing dual anti-tumour properties. Although CD47-ligation induced cell death occurs in a caspase-independent manner, CC2C6 was found to stimulate increases in Mcl-1 and NOXA levels, two Bcl-2 family proteins that govern the intrinsic apoptosis pathway. Further analysis revealed that the ratio of Mcl-1:NOXA were minimally altered for cells treated with CC2C6, in comparison to cells treated with agents that induced caspase-dependent apoptosis which alter this ratio in favour of NOXA. Finally, we found that CC2C6 can synergize with low dose chemotherapeutic agents that induce classical apoptosis, giving rise to the possibility of an effective combination treatment with reduced long-term sequelae associated with high-dose chemotherapies in childhood ALL.

  6. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response.

    PubMed

    Levine, A; Tenhaken, R; Dixon, R; Lamb, C

    1994-11-18

    Microbial elicitors or attempted infection with an avirulent pathogen strain causes the rapid production of reactive oxygen intermediates. We report here that H2O2 from this oxidative burst not only drives the cross-linking of cell wall structural proteins, but also functions as a local trigger of programmed death in challenged cells and as a diffusible signal for the induction in adjacent cells of genes encoding cellular protectants such as glutathione S-transferase and glutathione peroxidase. Thus, H2O2 from the oxidative burst plays a key role in the orchestration of a localized hypersensitive response during the expression of plant disease resistance.

  7. Cells with impaired mitochondrial H2O2 sensing generate less •OH radicals and live longer.

    PubMed

    Martins, Dorival; Titorenko, Vladimir I; English, Ann M

    2014-10-01

    Mitochondria are major sites of reactive oxygen species (ROS) generation, and adaptive mitochondrial ROS signaling extends longevity. We aim at linking the genetic manipulation of mitochondrial H2O2 sensing in live cells to mechanisms driving aging in the model organism, Saccharomyces cerevisiae. To this end, we compare in vivo ROS (O2(•-), H2O2 and (•)OH) accumulation, antioxidant enzyme activities, labile iron levels, GSH depletion, and protein oxidative damage during the chronological aging of three yeast strains: ccp1Δ that does not produce the mitochondrial H2O2 sensor protein, cytochrome c peroxidase (Ccp1); ccp1(W191F) that produces a hyperactive variant of this sensor protein (Ccp1(W191F)); and the isogenic wild-type strain. Since they possess elevated manganese superoxide dismutase (Sod2) activity, young ccp1Δ cells accumulate low mitochondrial superoxide (O2(•-)) levels but high H2O2 levels. These cells exhibit stable aconitase activity and contain low amounts of labile iron and hydroxyl radicals ((•)OH). Furthermore, they undergo late glutathione (GSH) depletion, less mitochondrial protein oxidative damage and live longer than wild-type cells. In contrast, young ccp1(W191F) cells accumulate little H2O2, possess depressed Sod2 activity, enabling their O2(•-) level to spike and deactivate aconitase, which, ultimately, leads to greater mitochondrial oxidative damage, early GSH depletion, and a shorter lifespan than wild-type cells. Modulation of mitochondrial H2O2 sensing offers a novel interventional approach to alter mitochondrial H2O2 levels in live cells and probe the pro- versus anti-aging effects of ROS. The strength of mitochondrial H2O2 sensing modulates adaptive mitochondrial ROS signaling and, hence, lifespan.

  8. Targeting Death Receptor TRAIL-R2 by Chalcones for TRAIL-Induced Apoptosis in Cancer Cells

    PubMed Central

    Szliszka, Ewelina; Jaworska, Dagmara; Kłósek, Małgorzata; Czuba, Zenon P.; Król, Wojciech

    2012-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells without toxicity to normal cells. TRAIL binds to death receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5) expressed on cancer cell surface and activates apoptotic pathways. Endogenous TRAIL plays an important role in immune surveillance and defense against cancer cells. However, as more tumor cells are reported to be resistant to TRAIL mediated death, it is important to search for and develop new strategies to overcome this resistance. Chalcones can sensitize cancer cells to TRAIL-induced apoptosis. We examined the cytotoxic and apoptotic effects of TRAIL in combination with four chalcones: chalcone, isobavachalcone, licochalcone A and xanthohumol on HeLa cancer cells. The cytotoxicity was measured by MTT and LDH assays. The apoptosis was detected using annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptor expression was analyzed using flow cytometry. The decreased expression of death receptors in cancer cells may be the cause of TRAIL-resistance. Chalcones enhance TRAIL-induced apoptosis in HeLa cells through increased expression of TRAIL-R2. Our study has indicated that chalcones augment the antitumor activity of TRAIL and confirm their cancer chemopreventive properties. PMID:23203129

  9. Protective Effects of Blueberry Anthocyanins against H2O2-Induced Oxidative Injuries in Human Retinal Pigment Epithelial Cells.

    PubMed

    Huang, Wu-Yang; Wu, Han; Li, Da-Jing; Song, Jiang-Feng; Xiao, Ya-Dong; Liu, Chun-Quan; Zhou, Jian-Zhong; Sui, Zhong-Quan

    2018-02-21

    Blueberry anthocyanins are considered protective of eye health because of their recognized antioxidant properties. In this study, blueberry anthocyanin extract (BAE), malvidin (Mv), malvidin-3-glucoside (Mv-3-glc), and malvidin-3-galactoside (Mv-3-gal) all reduced H 2 O 2 -induced oxidative stress by decreasing the levels of reactive oxygen species and malondialdehyde and increasing the levels of superoxide dismutase, catalase, and glutathione peroxidase in human retinal pigment epithelial cells. BAE and the anthocyanin standards enhanced cell viability from 63.69 ± 3.36 to 86.57 ± 6.92% (BAE), 115.72 ± 23.41% (Mv), 98.15 ± 9.39% (Mv-3-glc), and 127.97 ± 20.09% (Mv-3-gal) and significantly inhibited cell apoptosis (P < 0.01 for all). Mitogen-activated-protein-kinase pathways, including ERK1/2 and p38, were involved in the bioactivities. In addition, the anthocyanins decreased vascular-endothelial-cell-growth-factor levels and activated Akt-signal pathways. These combined results supported the hypothesis that blueberry anthocyanins could inhibit the induction and progression of age-related macular degeneration (AMD) through antioxidant mechanisms.

  10. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mota, Alba, E-mail: amota@iib.uam.es; Jiménez-Garcia, Lidia, E-mail: ljimenez@isciii.es; Herránz, Sandra, E-mail: sherranz@isciii.es

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H hadmore » no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. •

  11. Ozone-Induced Cell Death in Tobacco Cultivar Bel W3 Plants. The Role of Programmed Cell Death in Lesion Formation

    PubMed Central

    Pasqualini, Stefania; Piccioni, Claudia; Reale, Lara; Ederli, Luisa; Della Torre, Guido; Ferranti, Francesco

    2003-01-01

    Treatment of the ozone-sensitive tobacco (Nicotiana tabacum L. cv Bel W3) with an ozone pulse (150 nL L–1 for 5 h) induced visible injury, which manifested 48 to 72 h from onset of ozone fumigation. The “classical” ozone symptoms in tobacco cv Bel W3 plants occur as sharply defined, dot-like lesions on the adaxial side of the leaf and result from the death of groups of palisade cells. We investigated whether this reaction had the features of a hypersensitive response like that which results from the incompatible plant-pathogen interaction. We detected an oxidative burst, the result of H2O2 accumulation at 12 h from the starting of fumigation. Ozone treatment induced deposition of autofluorescent compounds and callose 24 h from the start of treatment. Total phenolic content was also strongly stimulated at the 10th and 72nd h from starting fumigation, concomitant with an enhancement in phenylalanine ammonia-lyase a and phenylalanine ammonia-lyase b expression, as evaluated by reverse transcriptase-polymerase chain reaction. There was also a marked, but transient, increase in the mRNA level of pathogenesis-related-1a, a typical hypersensitive response marker. Overall, these results are evidence that ozone triggers a hypersensitive response in tobacco cv Bel W3 plants. We adopted four criteria for detecting programmed cell death in ozonated tobacco cv Bel W3 leaves: (a) early release of cytochrome c from mitochondria; (b) activation of protease; (c) DNA fragmentation by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling of DNA 3′-OH groups; and (d) ultrastructural changes characteristic of programmed cell death, including chromatin condensation and blebbing of plasma membrane. We, therefore, provide evidence that ozone-induced oxidative stress triggers a cell death program in tobacco cv Bel W3. PMID:14612586

  12. Photochemical tuning of ultrathin TiO2/ p-Si p-n junction properties via UV-induced H doping

    NASA Astrophysics Data System (ADS)

    Lee, Sang Yeon; Kim, Jinseo; Ahn, Byungmin; Cho, In Sun; Yu, Hak Ki; Seo, Hyungtak

    2017-03-01

    We report a modified TiO2/ p-Si electronic structure that uses ultraviolet exposure for the incorporation of H. This structure was characterized using various photoelectron spectroscopic techniques. The ultraviolet (UV) exposure of the TiO2 surface allowed the Fermi energy level to be tuned by the insertion of H radicals, which induced changes in the heterojunction TiO2/ p-Si diode properties. The UV exposure of the TiO2 surface was performed in air. On UVexposure, a photochemical reaction involving the incorporation of UV-induced H radicals led to the creation of a surface Ti-O-OH group and caused interstitial H doping (Ti-H-O) in the bulk, which modified the electronic structures in different ways, depending on the location of the H. On the basis of the band alignment determined using a combined spectroscopic analysis, it is suggested that the UV-induced H incorporation into the TiO2 could be utilized for the systematic tuning of the heterojunction property for solar cells, photocatalytic applications, and capacitors.

  13. Peroxisome proliferator-activated receptor delta (PPARdelta) activation protects H9c2 cardiomyoblasts from oxidative stress-induced apoptosis.

    PubMed

    Pesant, Matthieu; Sueur, Stéphanie; Dutartre, Patrick; Tallandier, Mireille; Grimaldi, Paul A; Rochette, Luc; Connat, Jean-Louis

    2006-02-01

    Activation of peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma plays beneficial roles in cardiovascular disorders such as atherosclerosis and heart reperfusion. Although PPARalpha and gamma have been documented to reduce oxidative stress in the vasculature and the heart, the role of PPARdelta remains poorly studied. We focused on PPARdelta function in the regulation of oxidative stress-induced apoptosis in the rat cardiomyoblast cell line H9c2. Using semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we showed that PPARdelta is the predominantly expressed isotype whereas PPARalpha was weakly detected. By performing cell viability assays, we also showed that the selective PPARdelta agonist GW501516 protected cells from H(2)O(2)-induced cell death. The protective effect of GW501516 was due to an inhibition of H(2)O(2)-triggered apoptosis as shown by annexin-V labeling, DNA fragmentation analysis, and caspase-3 activity measurement. We demonstrated by transient transfection of a dominant negative mutant of PPARdelta that the protection induced by GW501516 was totally dependent on PPARdelta. Semi-quantitative RT-PCR and Western blotting analysis demonstrated that GW501516 treatment upregulated catalase. Moreover, forced overexpression of catalase inhibited H(2)O(2)-triggered apoptosis, as evidenced by annexin-V labeling. Taken together, our results account for an important role of PPARdelta in inhibiting the onset of oxidative stress-induced apoptosis in H9c2 cells. PPARdelta appears to be a new therapeutic target for the regulation of heart reperfusion-associated oxidative stress and stimulation of enzymatic antioxidative defences.

  14. Protective effects of rambutan (Nephelium lappaceum) peel phenolics on H2O2-induced oxidative damages in HepG2 cells and d-galactose-induced aging mice.

    PubMed

    Zhuang, Yongliang; Ma, Qingyu; Guo, Yan; Sun, Liping

    2017-10-01

    Rambutan peel phenolic (RPP) extracts were prepared via dynamic separation with macroporous resin. The total phenolic content and individual phenolics in RPP were determined. Results showed that the total phenolic content of RPP was 877.11 mg gallic acid equivalents (GAE)/g extract. The content of geranin (122.18 mg/g extract) was the highest among those of the 39 identified phenolic compounds. RPP protected against oxidative stress in H 2 O 2 -induced HepG2 cells in a dose-response manner. The inhibitory effects of RPP on cell apoptosis might be related to its inhibitory effects on the generation of intracellular reactive oxygen species and increased effects on superoxide dismutase activity. The in vivo anti-aging activity of RPP was evaluated using an aging mice model that was induced by d-galactose (d-gal). The results showed that RPP enhanced the antioxidative status of experimental mice. Moreover, histological analysis indicated that RPP effectively reduced d-gal-induced liver and kidney tissue damage in a dose-dependent manner. Therefore, RPP can be used as a natural antioxidant and anti-aging agent in the pharmaceutical and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Plant Aquaporin AtPIP1;4 Links Apoplastic H2O2 Induction to Disease Immunity Pathways.

    PubMed

    Tian, Shan; Wang, Xiaobing; Li, Ping; Wang, Hao; Ji, Hongtao; Xie, Junyi; Qiu, Qinglei; Shen, Dan; Dong, Hansong

    2016-07-01

    Hydrogen peroxide (H2O2) is a stable component of reactive oxygen species, and its production in plants represents the successful recognition of pathogen infection and pathogen-associated molecular patterns (PAMPs). This production of H2O2 is typically apoplastic but is subsequently associated with intracellular immunity pathways that regulate disease resistance, such as systemic acquired resistance and PAMP-triggered immunity. Here, we elucidate that an Arabidopsis (Arabidopsis thaliana) aquaporin (i.e. the plasma membrane intrinsic protein AtPIP1;4) acts to close the cytological distance between H2O2 production and functional performance. Expression of the AtPIP1;4 gene in plant leaves is inducible by a bacterial pathogen, and the expression accompanies H2O2 accumulation in the cytoplasm. Under de novo expression conditions, AtPIP1;4 is able to mediate the translocation of externally applied H2O2 into the cytoplasm of yeast (Saccharomyces cerevisiae) cells. In plant cells treated with H2O2, AtPIP1;4 functions as an effective facilitator of H2O2 transport across plasma membranes and mediates the translocation of externally applied H2O2 from the apoplast to the cytoplasm. The H2O2-transport role of AtPIP1;4 is essentially required for the cytoplasmic import of apoplastic H2O2 induced by the bacterial pathogen and two typical PAMPs in the absence of induced production of intracellular H2O2 As a consequence, cytoplasmic H2O2 quantities increase substantially while systemic acquired resistance and PAMP-triggered immunity are activated to repress the bacterial pathogenicity. By contrast, loss-of-function mutation at the AtPIP1;4 gene locus not only nullifies the cytoplasmic import of pathogen- and PAMP-induced apoplastic H2O2 but also cancels the subsequent immune responses, suggesting a pivotal role of AtPIP1;4 in apocytoplastic signal transduction in immunity pathways. © 2016 American Society of Plant Biologists. All Rights Reserved.

  16. D-galactose induces necroptotic cell death in neuroblastoma cell lines.

    PubMed

    Li, Na; He, Yangyan; Wang, Ling; Mo, Chunfen; Zhang, Jie; Zhang, Wei; Li, Junhong; Liao, Zhiyong; Tang, Xiaoqiang; Xiao, Hengyi

    2011-12-01

    D-Galactose (D-gal) can induce oxidative stress in non-cancer cells and result in cell damage by disturbing glucose metabolism. However, the effect of D-gal on cancer cells is yet to be explored. In this study, we investigated the toxicity of D-gal to malignant cells specifically neuroblastoma cells. As the results, high concentrations of D-gal had significant toxicity to cancer cells, whereas the same concentrations of glucose had no; the viability loss via D-gal treatment was prominent to malignant cells (Neuro2a, SH-SY5Y, PC-3, and HepG2) comparing to non-malignant cells (NIH3T3 and LO(2)). Differing from the apoptosis induced by H(2) O(2), D-gal damaged cells showed the characters of necrotic cell death, such as trypan blue-tangible and early phase LDH leakage. Further experiments displayed that the toxic effect of D-gal can be alleviated by necroptosis inhibitor Necrostatin (Nec-1) and autophagy inhibitor 3-methyladenine (3-MA) but not by caspase inhibitor z-VAD-fmk. D-Gal treatment can transcriptionally up-regulate the genes relevant to necroptosis (Bmf, Bnip3) and autophagy (Atg5, TIGAR) but not the genes related to apoptosis (Caspase3, Bax, and p53). D-Gal did not activate Caspase-3, but prompted puncta-like GFP-LC3 distribution, an indicator for activated autophagy. The involvement of aldose reductase (AR)-mediated polyol pathway was proved because the inhibitor of AR can attenuate the toxicity of D-gal and D-gal treatment elevates the expression of AR. This study demonstrates for the first time that D-gal can induce non-apoptotic but necroptotic cell death in neuroblastoma cells and provides a new clue for developing the strategy against apoptosis-resistant cancers. Copyright © 2011 Wiley Periodicals, Inc.

  17. Sensitive Detection of Single-Cell Secreted H2O2 by Integrating a Microfluidic Droplet Sensor and Au Nanoclusters.

    PubMed

    Shen, Rui; Liu, Peipei; Zhang, Yiqiu; Yu, Zhao; Chen, Xuyue; Zhou, Lu; Nie, Baoqing; Żaczek, Anna; Chen, Jian; Liu, Jian

    2018-04-03

    As an important signaling molecule, hydrogen peroxide (H 2 O 2 ) secreted externally by the cells influences cell migration, immunity generation, and cellular communications. Herein, we have developed a microfluidic approach with droplets in combination with Au nanoclusters for the sensitive detection of H 2 O 2 secreted by a single cell. Isolated in the ultrasmall volume (4.2 nL) of a microdroplet, single-cell secreted H 2 O 2 can initiate dramatic fluorescence changes of horseradish peroxidase-Au nanoclusters. We have demonstrated an ultrahigh sensitivity (200-400 attomole H 2 O 2 directly measured from a single cell) with good specificity. It offers a useful research tool to study the cell-to-cell differences of H 2 O 2 secretion at the single-cell level.

  18. High-dose ascorbic acid induces carcinostatic effects through hydrogen peroxide and superoxide anion radical generation-induced cell death and growth arrest in human tongue carcinoma cells.

    PubMed

    Ohwada, Ryouhei; Ozeki, Yu; Saitoh, Yasukazu

    2017-01-01

    High-dose ascorbic acid (AsA) treatment, known as pharmacological AsA, has been shown to exert carcinostatic effects in many types of cancer cells and in vivo tumour models. Although pharmacological AsA has potential as a complementary and alternative medicine for anticancer treatment, its effects on human tongue carcinoma have not yet been elucidated. In this study, we investigated the effect of AsA treatment on human tongue carcinoma HSC-4 cells compared with non-tumourigenic tongue epithelial dysplastic oral keratinocyte (DOK) cells. Our results show that treatment with 1 and 3 mM of AsA for 60 min preferentially inhibits the growth of human tongue carcinoma HSC-4 over DOK cells. Furthermore, AsA-induced effects were accompanied by increased intracellular oxidative stress and were repressed by treatment with a hydrogen peroxide (H 2 O 2 ) scavenger catalase and a superoxide anion radical (O 2 - ) scavenger, tempol. Time-lapse observation and thymidine analog EdU incorporation revealed that AsA treatment induces not only cell death but also suppression of DNA synthesis and cell growth. Moreover, the growth arrest was accompanied by abnormal cellular morphologies whereby cells extended dendrite-like pseudopodia. Taken together, our results demonstrate that AsA treatment can induce carcinostatic effects through induction of cell death, growth arrest, and morphological changes mediated by H 2 O 2 and O 2 - generation. These findings suggest that high-dose AsA treatment represents an effective treatment for tongue cancer as well as for other types of cancer cells.

  19. Heterotrimeric G Protein Signaling Is Required for Epidermal Cell Death in Rice[W][OA

    PubMed Central

    Steffens, Bianka; Sauter, Margret

    2009-01-01

    In rice (Oryza sativa) adventitious root primordia are formed at the nodes as part of normal development. Upon submergence of rice plants, adventitious roots emerge from the nodes preceded by death of epidermal cells above the root primordia. Cell death is induced by ethylene and mediated by hydrogen peroxide (H2O2). Pharmacological experiments indicated that epidermal cell death was dependent on signaling through G proteins. Treatment with GTP-γ-S induced epidermal cell death, whereas GDP-β-S partially inhibited ethylene-induced cell death. The dwarf1 (d1) mutant of rice has repressed expression of the Gα subunit RGA1 of heterotrimeric G protein. In d1 plants, cell death in response to ethylene and H2O2 was nearly completely abolished, indicating that signaling through Gα is essential. Ethylene and H2O2 were previously shown to alter gene expression in epidermal cells that undergo cell death. Transcriptional regulation was not generally affected in the d1 mutant, indicating that altered gene expression is not sufficient to trigger cell death in the absence of Gα. Analysis of genes encoding proteins related to G protein signaling revealed that four small GTPase genes, two GTPase-activating protein genes, and one GDP dissociation inhibitor gene but not RGA1 were differentially expressed in epidermal cells above adventitious roots, indicating that Gα activity is regulated posttranscriptionally. PMID:19656904

  20. Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H2O2 have crucial roles in the resistance of tea plant (Camellia sinensis (L.) O. Kuntze) to anthracnose.

    PubMed

    Wang, Yuchun; Hao, Xinyuan; Lu, Qinhua; Wang, Lu; Qian, Wenjun; Li, Nana; Ding, Changqing; Wang, Xinchao; Yang, Yajun

    2018-01-01

    Anthracnose causes severe losses of tea production in China. Although genes and biological processes involved in anthracnose resistance have been reported in other plants, the molecular response to anthracnose in tea plant is unknown. We used the susceptible tea cultivar Longjing 43 and the resistant cultivar Zhongcha 108 as materials and compared transcriptome changes in the leaves of both cultivars following Colletotrichum fructicola inoculation. In all, 9015 and 8624 genes were differentially expressed between the resistant and susceptible cultivars and their controls (0 h), respectively. In both cultivars, the differentially expressed genes (DEGs) were enriched in 215 pathways, including responses to sugar metabolism, phytohormones, reactive oxygen species (ROS), biotic stimuli and signalling, transmembrane transporter activity, protease activity and signalling receptor activity, but DEG expression levels were higher in Zhongcha 108 than in Longjing 43. Moreover, functional enrichment analysis of the DEGs showed that hydrogen peroxide (H 2 O 2 ) metabolism, cell death, secondary metabolism, and carbohydrate metabolism are involved in the defence of Zhongcha 108, and 88 key genes were identified. Protein-protein interaction (PPI) network demonstrated that putative mitogen-activated protein kinase (MAPK) cascades are activated by resistance (R) genes and mediate downstream defence responses. Histochemical analysis subsequently validated the strong hypersensitive response (HR) and H 2 O 2 accumulation that occurred around the hyphal infection sites in Zhongcha 108. Overall, our results indicate that the HR and H 2 O 2 are critical mechanisms in tea plant defence against anthracnose and may be activated by R genes via MAPK cascades.

  1. Nitric Oxide and Protein S-Nitrosylation Are Integral to Hydrogen Peroxide-Induced Leaf Cell Death in Rice1[W][OA

    PubMed Central

    Lin, Aihong; Wang, Yiqin; Tang, Jiuyou; Xue, Peng; Li, Chunlai; Liu, Linchuan; Hu, Bin; Yang, Fuquan; Loake, Gary J.; Chu, Chengcai

    2012-01-01

    Nitric oxide (NO) is a key redox-active, small molecule involved in various aspects of plant growth and development. Here, we report the identification of an NO accumulation mutant, nitric oxide excess1 (noe1), in rice (Oryza sativa), the isolation of the corresponding gene, and the analysis of its role in NO-mediated leaf cell death. Map-based cloning revealed that NOE1 encoded a rice catalase, OsCATC. Furthermore, noe1 resulted in an increase of hydrogen peroxide (H2O2) in the leaves, which consequently promoted NO production via the activation of nitrate reductase. The removal of excess NO reduced cell death in both leaves and suspension cultures derived from noe1 plants, implicating NO as an important endogenous mediator of H2O2-induced leaf cell death. Reduction of intracellular S-nitrosothiol (SNO) levels, generated by overexpression of rice S-nitrosoglutathione reductase gene (GSNOR1), which regulates global levels of protein S-nitrosylation, alleviated leaf cell death in noe1 plants. Thus, S-nitrosylation was also involved in light-dependent leaf cell death in noe1. Utilizing the biotin-switch assay, nanoliquid chromatography, and tandem mass spectrometry, S-nitrosylated proteins were identified in both wild-type and noe1 plants. NO targets identified only in noe1 plants included glyceraldehyde 3-phosphate dehydrogenase and thioredoxin, which have been reported to be involved in S-nitrosylation-regulated cell death in animals. Collectively, our data suggest that both NO and SNOs are important mediators in the process of H2O2-induced leaf cell death in rice. PMID:22106097

  2. Kinetic and stoichiometric constraints determine the pathway of H2O2 consumption by red blood cells.

    PubMed

    Orrico, Florencia; Möller, Matías N; Cassina, Adriana; Denicola, Ana; Thomson, Leonor

    2018-05-09

    Red blood cells (RBC) are considered as a circulating sink of H 2 O 2 , but a significant debate remains over the role of the different intraerythocyte peroxidases. Herein we examined the kinetic of decomposition of exogenous H 2 O 2 by human RBC at different cell densities, using fluorescent and oxymetric methods, contrasting the results against a mathematical model. Fluorescent measurements as well as oxygen production experiments showed that catalase was responsible for most of the decomposition of H 2 O 2 at cell densities suitable for both experimental settings (0.1-10 × 10 10 cell L -1 ), since sodium azide but not N-ethylmaleimide (NEM) inhibited H 2 O 2 consumption. Oxygen production decreased at high cell densities until none was detected above 1.1 × 10 12 cell L- 1 , being recovered after inhibition of the thiol dependent systems by NEM. This result underlined that the consumption of H 2 O 2 by catalase prevail at RBC densities regularly used for research, while the thiol dependent systems predominate when the cell density increases, approaching the normal number in blood (5 × 10 12 cell L- 1 ). The mathematical model successfully reproduced experimental results and at low cell number it showed a time sequence involving Prx as the first line of defense, followed by catalase, with a minor role by Gpx. The turning points were given by the total consumption of reduced Prx in first place and reduced GSH after that. However, Prx alone was able to account for the added H 2 O 2 (50µM) at physiological RBC density, calling attention to the importance of cell density in defining the pathway of H 2 O 2 consumption and offering an explanation to current apparently conflicting results in the literature. Copyright © 2018. Published by Elsevier Inc.

  3. Early NADPH oxidase-2 activation is crucial in phenylephrine-induced hypertrophy of H9c2 cells.

    PubMed

    Hahn, Nynke E; Musters, René J P; Fritz, Jan M; Pagano, Patrick J; Vonk, Alexander B A; Paulus, Walter J; van Rossum, Albert C; Meischl, Christof; Niessen, Hans W M; Krijnen, Paul A J

    2014-09-01

    Reactive oxygen species (ROS) produced by different NADPH oxidases (NOX) play a role in cardiomyocyte hypertrophy induced by different stimuli, such as angiotensin II and pressure overload. However, the role of the specific NOX isoforms in phenylephrine (PE)-induced cardiomyocyte hypertrophy is unknown. Therefore we aimed to determine the involvement of the NOX isoforms NOX1, NOX2 and NOX4 in PE-induced cardiomyocyte hypertrophy. Hereto rat neonatal cardiomyoblasts (H9c2 cells) were incubated with 100 μM PE to induce hypertrophy after 24 and 48h as determined via cell and nuclear size measurements using digital imaging microscopy, electron microscopy and an automated cell counter. Digital-imaging microscopy further revealed that in contrast to NOX1 and NOX4, NOX2 expression increased significantly up to 4h after PE stimulation, coinciding and co-localizing with ROS production in the cytoplasm as well as the nucleus. Furthermore, inhibition of NOX-mediated ROS production with apocynin, diphenylene iodonium (DPI) or NOX2 docking sequence (Nox2ds)-tat peptide during these first 4h of PE stimulation significantly inhibited PE-induced hypertrophy of H9c2 cells, both after 24 and 48h of PE stimulation. These data show that early NOX2-mediated ROS production is crucial in PE-induced hypertrophy of H9c2 cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Isocitrate dehydrogenase 1 mutant R132H sensitizes glioma cells to BCNU-induced oxidative stress and cell death.

    PubMed

    Mohrenz, Isabelle Vanessa; Antonietti, Patrick; Pusch, Stefan; Capper, David; Balss, Jörg; Voigt, Sophia; Weissert, Susanne; Mukrowsky, Alicia; Frank, Jan; Senft, Christian; Seifert, Volker; von Deimling, Andreas; Kögel, Donat

    2013-11-01

    Isocitrate dehydrogenase 1 (IDH1) decarboxylates isocitrate to α-ketoglutarate (α-KG) leading to generation of NADPH, which is required to regenerate reduced glutathione (GSH), the major cellular ROS scavenger. Mutation of R132 of IDH1 abrogates generation of α-KG and leads to conversion of α-KG to 2-hydroxyglutarate. We hypothesized that glioma cells expressing mutant IDH1 have a diminished antioxidative capacity and therefore may encounter an ensuing loss of cytoprotection under conditions of oxidative stress. Our study was performed with LN229 cells stably overexpressing IDH1 R132H and wild type IDH1 or with a lentiviral IDH1 knockdown. Quantification of GSH under basal conditions and following treatment with the glutathione reductase inhibitor BCNU revealed significantly lower GSH levels in IDH1 R132H expressing cells and IDH1 KD cells compared to their respective controls. FACS analysis of cell death and ROS production also demonstrated an increased sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to BCNU, but not to temozolomide. The sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to ROS induction and cell death was further enhanced with the transaminase inhibitor aminooxyacetic acid and under glutamine free conditions, indicating that these cells were more addicted to glutaminolysis. Increased sensitivity to BCNU-induced ROS production and cell death was confirmed in HEK293 cells inducibly expressing the IDH1 mutants R132H, R132C and R132L. Based on these findings we propose that in addition to its established pro-tumorigenic effects, mutant IDH1 may also limit the resistance of gliomas to specific death stimuli, therefore opening new perspectives for therapy.

  5. Sulphur antioxidants inhibit oxidative stress induced retinal ganglion cell death by scavenging reactive oxygen species but influence nuclear factor (erythroid-derived 2)-like 2 signalling pathway differently.

    PubMed

    Majid, Aman Shah Abdul; Yin, Zheng Qin; Ji, Dan

    2013-01-01

    This study aimed to show if two different sulphur containing drugs sulbutiamine and acetylcysteine (NAC) could attenuate the effects of two different insults being serum deprivation and glutamate/buthionine sulfoximine (GB)-induced death to transformed retinal ganglion cell line (RGC-5) in culture. Cells were exposed to either 5 mM of GB for 24 h or serum deprivation for 48 h with inclusion of either NAC or sulbutiamine. Cell viability, microscopic evidence for apoptosis, caspase 3 activity, reactive oxygen species (ROS), glutathione (GSH), catalase and gluthathione-S-transferase (GST) were determined. The effects of NAC and sulbutiamine on the oxidative stress related transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) levels and its dependent phase II enzyme haemeoxygenase-1 (HO-1) were carried out using Western blot and quantitative-polymerase chain reaction (PCR). NAC and sulbutiamine dose-dependently attenuated serum deprivation-induced cell death. However NAC but not sulbutiamine attenuated GB-induced cell death. NAC and sulbutiamine both independently stimulated the GSH and GST production but scavenged different types of ROS with different efficacy. Moreover only sulbutiamine stimulated catalase and significantly increased Nrf-2 and HO-1 levels. In addition, the pan caspase inhibitor, benzoylcarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-fmk) attenuated the negative effect of serum deprivation while the necroptosis inhibitor (necrostatin-1) counteracted solely an insult of GB. The neuroprotective actions of NAC and sulbutiamine in GB or serum-deprivation insult are therefore different.

  6. Inhibition of Cyclooxygenase-2 (COX-2) Initiates Autophagy and Potentiates MPTP-Induced Autophagic Cell Death of Human Neuroblastoma Cells, SH-SY5Y: an Inside in the Pathology of Parkinson's Disease.

    PubMed

    Niranjan, Rituraj; Mishra, Kaushal Prasad; Thakur, Ashwani Kumar

    2018-03-01

    Cyclooxygenase-2 or COX-2 has been known to be crucial for Parkinson's disease (PD) pathogenesis; however, its exact role is still not known. We first time report that inhibition of COX-2 promotes 1-methyl-4-phenyl 1,2,3,6 tetrahydropyridine (MPTP)-induced neuronal cell death via induction of autophagic mechanisms. We found that treatment with MPTP induced cell death of neuroblastoma cells SH-SY5Y in a dose dependent manner. Treatment of MPTP has also upregulated the expressions of autophagic proteins such as LC3, beclin, ATG-5, and p62. Interestingly, nimesulide, a preferential COX-2 inhibitor, further potentiated the MPTP-induced cell death of human neuroblastoma cells. Treatment of nimesulide with MPTP further potentiated expressions of p62, ATG-5, beclin-1, LC3 autophagic proteins. Furthermore, nimesulide with MPTP increased apoptotic protein cleaved caspase-3 and also induced expression of p53 gene. Interestingly, it was observed that Akt inhibitor significantly increased MPTP-induced cell death of neuroblastoma cells. However, (-) deprenyl, a monoamine oxidase B (MAO B) inhibitor, attenuated MPTP-induced autophagic response and protected cell death. The prior treatment with prostaglandin E2 protected against nimesulide induced-death of neuronal cells. This study confirms that neuroinflammation is associated to the autophagy and may be one of the main pathological mechanisms in Parkinson's disease and other inflammation-associated disorders.

  7. Identification of C-geranylated flavonoids from Paulownia catalpifolia Gong Tong fruits by HPLC-DAD-ESI-MS/MS and their anti-aging effects on 2BS cells induced by H2O2.

    PubMed

    Tang, Wen-Zhao; Wang, Ying-Ai; Gao, Tian-Yang; Wang, Xiao-Jing; Zhao, Yun-Xue

    2017-05-01

    The fruits of Paulownia catalpifolia Gong Tong are used as a Chinese folk herbal medicine for the treatment of enteritis, tonsillitis, bronchitis, and dysentery, etc. Our previous study has identified new C-geranylated flavanones with obvious anti-proliferative effects in lung cancer A549 cells. In the present study, a new C-geranylated flavone, paucatalinone C (1) and five known C-geranylated flavanones (2-6) were isolated. In addition, a total of 34 C-geranylated flavonoids were detected by HPLC-DAD-ESI-MS/MS coupling techniques from the CH 2 Cl 2 extract of P. catalpifolia. Futhermore, anti-aging effects of isolated compounds were evaluated in vitro with premature senescent 2BS cells induced by H 2 O 2 . Phytochemical results indicated that P. catalpifolia was a natural resource of abundant C-geranylated flavonoids. Diplacone (3) and paucatalinone A (5) were the potent anti-aging agents in the premature senescent 2BS cells induced by H 2 O 2 and the C-geranyl substituent may be an important factor because of its lipophilic character. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  8. TiO2 nanoparticle-induced ROS correlates with modulated immune cell function

    NASA Astrophysics Data System (ADS)

    Maurer-Jones, Melissa A.; Christenson, Jenna R.; Haynes, Christy L.

    2012-12-01

    Design of non-toxic nanoparticles will be greatly facilitated by understanding the nanoparticle-cell interaction mechanism on a cell function level. Mast cells are important cells for the immune system's first line of defense, and we can utilize their exocytotic behavior as a model cellular function as it is a conserved process across cell types and species. Perturbations in exocytosis can also have implications for whole organism health. One proposed mode of toxicity is nanoparticle-induced reactive oxygen species (ROS), particularly for titanium dioxide (TiO2) nanoparticles. Herein, we have correlated changes in ROS with the perturbation of the critical cell function of exocytosis, using UV light to induce greater levels of ROS in TiO2 exposed cells. The primary culture mouse peritoneal mast cells (MPMCs) were exposed to varying concentrations of TiO2 nanoparticles for 24 h. ROS content was determined using 2,7-dihydrodichlorofluorescein diacetate (DCFDA). Cellular viability was determined with the MTT and Trypan blue assays, and exocytosis was measured by the analytical electrochemistry technique of carbon-fiber microelectrode amperometry. MPMCs exposed to TiO2 nanoparticles experienced a dose-dependent increase in total ROS content. While there was minimal impact of ROS on cellular viability, there is a correlation between ROS amount and exocytosis perturbation. As nanoparticle-induced ROS increases, there is a significant decrease (45 %) in the number of serotonin molecules being released during exocytosis, increase (26 %) in the amount of time for each exocytotic granule to release, and decrease (28 %) in the efficiency of granule trafficking and docking. This is the first evidence that nanoparticle-induced ROS correlates with chemical messenger molecule secretion, possibly making a critical connection between functional impairment and mechanisms contributing to that impairment.

  9. Direct N2H4/H2O2 Fuel Cells Powered by Nanoporous Gold Leaves

    PubMed Central

    Yan, Xiuling; Meng, Fanhui; Xie, Yun; Liu, Jianguo; Ding, Yi

    2012-01-01

    Dealloyed nanoporous gold leaves (NPGLs) are found to exhibit high electrocatalytic properties toward both hydrazine (N2H4) oxidation and hydrogen peroxide (H2O2) reduction. This observation allows the implementation of a direct hydrazine-hydrogen peroxide fuel cell (DHHPFC) based on these novel porous membrane catalysts. The effects of fuel and oxidizer flow rate, concentration and cell temperature on the performance of DHHPFC are systematically investigated. With a loading of ~0.1 mg cm−2 Au on each side, an open circuit voltage (OCV) of 1.2 V is obtained at 80°C with a maximum power density 195 mW cm−2, which is 22 times higher than that of commercial Pt/C electrocatalyst at the same noble metal loading. NPGLs thus hold great potential as effective and stable electrocatalysts for DHHPFCs. PMID:23230507

  10. Contribution of KV1.5 Channel to H2O2-Induced Human Arteriolar Dilation and its Modulation by Coronary Artery Disease

    PubMed Central

    Nishijima, Yoshinori; Cao, Sheng; Chabowski, Dawid S.; Korishettar, Ankush; Ge, Alyce; Zheng, Xiaodong; Sparapani, Rodney; Gutterman, David D.; Zhang, David X.

    2016-01-01

    Rationale Hydrogen peroxide (H2O2) regulates vascular tone in the human microcirculation under physiological and pathophysiological conditions. It dilates arterioles by activating BKCa channels in subjects with coronary artery disease (CAD), but its mechanisms of action in subjects without CAD (non-CAD) as compared to those with CAD remain unknown. Objective We hypothesize that H2O2-elicited dilation involves different K+ channels in non-CAD versus CAD, resulting in an altered capacity for vasodilation during disease. Methods and Results H2O2 induced endothelium-independent vasodilation in non-CAD adipose arterioles, which was reduced by paxilline, a BKCa channel blocker, and by 4-AP, a KV channel blocker. Assays of mRNA transcripts, protein expression and subcellular localization revealed that KV1.5 is the major KV1 channel expressed in vascular smooth muscle cells (VSMCs) and is abundantly localized on the plasma membrane. The selective KV1.5 blocker DPO-1 and the KV1.3/1.5 blocker Psora-4 reduced H2O2-elicited dilation to a similar extent as 4-AP, but the selective KV1.3 blocker PAP-1 was without effect. In arterioles from CAD subjects, H2O2-induced dilation was significantly reduced and this dilation was inhibited by paxilline but not by 4-AP, DPO-1 or Psora-4. KV1.5 cell membrane localization and DPO-1-sensitive K+ currents were markedly reduced in isolated VSMCs from CAD arterioles, although mRNA or total cellular protein expression were largely unchanged. Conclusions In human arterioles, H2O2-induced dilation is impaired in CAD, which is associated with a transition from a combined BKCa- and KV (KV1.5)-mediated vasodilation toward a BKCa-predominant mechanism of dilation. Loss of KV1.5 vasomotor function may play an important role in microvascular dysfunction in CAD or other vascular diseases. PMID:27872049

  11. Naproxen-induced Ca2+ movement and death in MDCK canine renal tubular cells.

    PubMed

    Cheng, H-H; Chou, C-T; Sun, T-K; Liang, W-Z; Cheng, J-S; Chang, H-T; Tseng, H-W; Kuo, C-C; Chen, F-A; Kuo, D-H; Shieh, P; Jan, C-R

    2015-11-01

    Naproxen is an anti-inflammatory drug that affects cellular calcium ion (Ca(2+)) homeostasis and viability in different cells. This study explored the effect of naproxen on [Ca(2+)](i) and viability in Madin-Darby canine kidney cells (MDCK) canine renal tubular cells. At concentrations between 50 μM and 300 μM, naproxen induced [Ca(2+)](i) rises in a concentration-dependent manner. This Ca(2+) signal was reduced partly when extracellular Ca(2+) was removed. The Ca(2+) signal was inhibited by a Ca(2+) channel blocker nifedipine but not by store-operated Ca(2+) channel inhibitors (econazole and SKF96365), a protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, and a PKC inhibitor GF109203X. In Ca(2+)-free medium, pretreatment with 2,5-di-tert-butylhydroquinone or thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+) pumps, partly inhibited naproxen-induced Ca(2+) signal. Inhibition of phospholipase C with U73122 did not alter naproxen-evoked [Ca(2+)](i) rises. At concentrations between 15 μM and 30 μM, naproxen killed cells in a concentration-dependent manner, which was not reversed by prechelating cytosolic Ca(2+) with the acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl. Annexin V/propidium iodide staining data suggest that naproxen induced apoptosis. Together, in MDCK renal tubular cells, naproxen induced [Ca(2+)](i) rises by inducing Ca(2+) release from multiple stores that included the endoplasmic reticulum and Ca(2+) entry via nifedipine-sensitive Ca(2+) channels. Naproxen induced cell death that involved apoptosis. © The Author(s) 2015.

  12. Anti-apoptotic genes Bcl-2 and Bcl-xL overexpression can block iridovirus serine/threonine kinase-induced Bax/mitochondria-mediated cell death in GF-1 cells.

    PubMed

    Reshi, Latif; Wang, Hua-Ven; Hui, Cho-Fat; Su, Yu-Chin; Hong, Jiann-Ruey

    2017-02-01

    Although serine/threonine (ST) kinase is known to induce host cell death in GF-1 cells, it remains unclear how ST kinase induces mitochondrial function loss. In the present study, we addressed the issue of mitochondrial function loss by determining whether the Bcl-2 family members Bcl-2 and Bcl-xL can prevent ST kinase-induced cell death activity via interacting with the pro-apoptotic gene Bax. Grouper fin cells (GF-1) carrying EGFP-Bal-xL and EGFP-Bcl-2 fused genes were selected, established in cell culture, and used to examine the involvement of Bcl-2 and Bcl-xL overexpression in protection of GF-1 cells from the effects of the giant sea perch iridovirus (GSIV) ST kinase gene. Using the TUNEL assay, we found that EGFP-Bcl-2 and EGFP-Bcl-xL reduced GSIV ST kinase-induced apoptosis to 20% all at 24 h and 48 h post-transfection (pt). Also, Bcl-2 and Bcl-xL substantially reduced the percentage of cells with GSIV ST kinase-induced loss of mitochondrial membrane potential (Δψps) at 24 and 48 hpt, respectively, and this reduction correlated with a 30% and 50% enhancement of host cell viability at 24 and 48 hpt as compared with vector control. Moreover, analysis of the effect of Bcl-2 and Bcl-xL interaction with Bax targeted to mitochondria during ST kinase expression at 48 hpt found that Bcl-2 and Bcl-xL also interacted with Bax to block cytochrome c release. Finally, Bcl-2 and Bcl-xL overexpression caused blockage of ST kinase function at 48 hpt, which was correlated with preventing caspase-9 and -3 cleavage and activation, thereby blocking downstream death signaling events. Taken together, our results suggest that the ST kinase-induced Bax/mitochondria-mediated cell death pathway can be blocked by the interaction of Bcl-2 and Bcl-xL with Bax to inhibit cytochrome c release during MMP loss. This rescue activity also correlated with inhibition of caspase-9 and -3 activation, thereby enhancing cell viability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Boron Nutrition of Tobacco BY-2 Cells. V. Oxidative Damage is the Major Cause of Cell Death Induced by Boron Deprivation

    PubMed Central

    Koshiba, Taichi; Kobayashi, Masaru; Matoh, Toru

    2009-01-01

    Boron (B) is an essential micronutrient for vascular plants. However, it remains unclear how B deficiency leads to various metabolic disorders and cell death. To understand this mechanism, we analyzed the physiological changes in suspension-cultured tobacco (Nicotiana tabacum) BY-2 cells upon B deprivation. When 3-day-old cells were transferred to B-free medium, cell death was detectable as early as 12 h after treatment. The B-deprived cells accumulated more reactive oxygen species and lipid peroxides than control cells, and showed a slight but significant decrease in the cellular ascorbate pool. Supplementing the media with lipophilic antioxidants effectively suppressed the death of B-deprived cells, suggesting that the oxidative damage is the immediate and major cause of cell death under B deficiency. Dead cells in B-free culture exhibited a characteristic morphology with a shrunken cytoplasm, which is often seen in cells undergoing programmed cell death (PCD). However, they did not display other hallmarks of PCD such as internucleosomal DNA fragmentation, decreased ascorbate peroxidase expression and protection from death by cycloheximide. These results suggest that the death of tobacco cells induced by B deprivation is not likely to be a typical PCD. PMID:19054807

  14. Targeting TRPM2 Channels Impairs Radiation-Induced Cell Cycle Arrest and Fosters Cell Death of T Cell Leukemia Cells in a Bcl-2-Dependent Manner

    PubMed Central

    Klumpp, Dominik; Misovic, Milan; Szteyn, Kalina; Shumilina, Ekaterina; Rudner, Justine; Huber, Stephan M.

    2016-01-01

    Messenger RNA data of lymphohematopoietic cancer lines suggest a correlation between expression of the cation channel TRPM2 and the antiapoptotic protein Bcl-2. The latter is overexpressed in various tumor entities and mediates therapy resistance. Here, we analyzed the crosstalk between Bcl-2 and TRPM2 channels in T cell leukemia cells during oxidative stress as conferred by ionizing radiation (IR). To this end, the effects of TRPM2 inhibition or knock-down on plasma membrane currents, Ca2+ signaling, mitochondrial superoxide anion formation, and cell cycle progression were compared between irradiated (0–10 Gy) Bcl-2-overexpressing and empty vector-transfected Jurkat cells. As a result, IR stimulated a TRPM2-mediated Ca2+-entry, which was higher in Bcl-2-overexpressing than in control cells and which contributed to IR-induced G2/M cell cycle arrest. TRPM2 inhibition induced a release from G2/M arrest resulting in cell death. Collectively, this data suggests a pivotal function of TRPM2 in the DNA damage response of T cell leukemia cells. Apoptosis-resistant Bcl-2-overexpressing cells even can afford higher TRPM2 activity without risking a hazardous Ca2+-overload-induced mitochondrial superoxide anion formation. PMID:26839633

  15. Dose-related influence of sodium selenite on apoptosis in human thyroid follicles in vitro induced by iodine, EGF, TGF-beta, and H2O2.

    PubMed

    Lehmann, Petra; Rank, Petra; Hallfeldt, Klaus L J; Krebs, Bjarne; Gärtner, Roland

    2006-08-01

    Apoptosis of thyroid follicular cells is induced by high doses of iodide, epidermal growth factor (EGF), transforming growth factor-beta (TGF-beta), as well as H2O2 and might be attenuated by antioxidants. Therefore, we examined the apoptotic index induced by these substances in selenium-treated vs untreated human thyroid follicular cells. Reconstituted human thyroid follicles were incubated with sodium selenite (10 or 100 nM) for 72 h; controls received none. The follicles were then distributed to 24-well plates and incubated with potassium iodide (5, 10, or 20 nM), EGF (5 ng/mL), TGF-beta (5 ng/mL), or H2O2 (100 muM). Apoptosis was determined by a mitochondrial potential assay and the number of apoptotic cells counted by two independent, experienced technicians and the glutathione peroxidase (GPx) activity was determined. Asignificant increase of apoptic cells was obtained in control thyroid follicles treated with iodine (5, 10, or 20 microM), thyroidstimulating hormone (TSH) 1, or 10 mU/mL in combination with 5 and 10 microM iodine, EGF (5 ng/mL) and TGF-beta (5 ng/mL), or H2O2 (100 microM) (p < 0.001). In contrast, in thyroid follicles preincubated with 10 or 100 nM sodium selenite, the apoptototic index was identical to the basal rate. In H2O2-treated follicles, the apoptotic index was still significantly elevated but 50% lower compared to control cells. The GPx activity increased from 1.4 +/- 0.2 to 2.25 +/- 0.4 mU/microg DNA with 10 nMselenite and 2.6 + 0.4 mU/microg DNA with 100 nM selenite. Sodium selenite might increase the antioxidative potential in human thyroid follicles in vitro and therefore diminish the apoptosis induced by TGF-beta, EGF, iodide, and even H2O2.

  16. Nonlinear feedback drives homeostatic plasticity in H2O2 stress response

    PubMed Central

    Goulev, Youlian; Morlot, Sandrine; Matifas, Audrey; Huang, Bo; Molin, Mikael; Toledano, Michel B; Charvin, Gilles

    2017-01-01

    Homeostatic systems that rely on genetic regulatory networks are intrinsically limited by the transcriptional response time, which may restrict a cell’s ability to adapt to unanticipated environmental challenges. To bypass this limitation, cells have evolved mechanisms whereby exposure to mild stress increases their resistance to subsequent threats. However, the mechanisms responsible for such adaptive homeostasis remain largely unknown. Here, we used live-cell imaging and microfluidics to investigate the adaptive response of budding yeast to temporally controlled H2O2 stress patterns. We demonstrate that acquisition of tolerance is a systems-level property resulting from nonlinearity of H2O2 scavenging by peroxiredoxins and our study reveals that this regulatory scheme induces a striking hormetic effect of extracellular H2O2 stress on replicative longevity. Our study thus provides a novel quantitative framework bridging the molecular architecture of a cellular homeostatic system to the emergence of nonintuitive adaptive properties. DOI: http://dx.doi.org/10.7554/eLife.23971.001 PMID:28418333

  17. O(2)-dependent K(+) fluxes in trout red blood cells: the nature of O(2) sensing revealed by the O(2) affinity, cooperativity and pH dependence of transport.

    PubMed

    Berenbrink, M; Völkel, S; Heisler, N; Nikinmaa, M

    2000-07-01

    The effects of pH and O(2) tension on the isotonic ouabain-resistant K(+) (Rb+) flux pathway and on haemoglobin O2 binding were studied in trout red blood cells (RBCs) in order to test for a direct effect of haemoglobin O(2) saturation on K(+) transport across the RBC membrane. At pH values corresponding to in vivo control arterial plasma pH and higher, elevation of the O(2) partial pressure (PO(2)) from 7.8 to 157 mmHg increased unidirectional K(+) influx across the RBC membrane several-fold. At lower extracellular pH values, stimulation of K(+) influx by O(2) was depressed, exhibiting an apparent pK(a) (pK'(a)) for the process of 8.0. Under similar conditions the pK'(a) for acid-induced deoxygenation of haemoglobin (Hb) was 7.3. When trout RBCs were exposed to PO(2) values between 0 and 747 mmHg, O(2) equilibrium curves typical of Hb O(2) saturation were also obtained for K(+) influx and efflux. However, at pH 7.9, the PO(2) for half-maximal K(+) efflux and K(+) influx (P50) was about 8- to 12-fold higher than the P(50) for Hb-O(2) binding. While K(+) influx and efflux stimulation by O(2) was essentially non-cooperative, Hb-O(2) equilibrium curves were distinctly sigmoidal (Hill parameters close to 1 and 3, respectively). O(2)-stimulated K(+) influx and efflux were strongly pH dependent. When the definition of the Bohr factor for respiratory pigments (Phi = delta logP50 x delta pH(-1)) was extended to the effect of pH on O(2)-dependent K(+) influx and efflux, extracellular Bohr factors (Phi(o) of -2.00 and -2.06 were obtained, values much higher than that for Hb (Phi(o) = -0.49). The results of this study are consistent with an O(2) sensing mechanism differing markedly in affinity and cooperativity of O(2) binding, as well as in pH sensitivity, from bulk Hb.

  18. Manganese ions enhance mitochondrial H2O2 emission from Krebs cycle oxidoreductases by inducing permeability transition.

    PubMed

    Bonke, Erik; Siebels, Ilka; Zwicker, Klaus; Dröse, Stefan

    2016-10-01

    Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn 2+ ions induce hydrogen peroxide (H 2 O 2 ) production from the ubiquinone binding site of mitochondrial complex II (II Q ) and generally enhance H 2 O 2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H 2 O 2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn 2+ and different respiratory chain inhibitors led to a dynamically increasing H 2 O 2 emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn 2+ stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca 2+ increased the rate of H 2 O 2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H 2 O 2 emission: stimulating its production from distinct sites (e.g. site II Q ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Physical and chemical effects on crystalline H2O2 induced by 20 keV protons.

    PubMed

    Loeffler, M J; Baragiola, R A

    2009-03-21

    We present laboratory studies on radiation chemistry, sputtering, and amorphization of crystalline H(2)O(2) induced by 20 keV protons at 80 K. We used infrared spectroscopy to identify H(2)O, O(3), and possibly HO(3), measure the fluence dependence of the fraction of crystalline and amorphous H(2)O(2) and of the production of H(2)O and destruction of H(2)O(2). Furthermore, using complementary techniques, we observe that the sputtering yield depends on fluence due to the buildup of O(2) radiation products in the sample. In addition, we find that the effective cross sections for the destruction of hydrogen peroxide and the production of water are very high compared to radiation chemical processes in water even though the fluence dependence of amorphization is nearly the same for the two materials. This result is consistent with a model of fast cooling of a liquid track produced by each projectile ion rather than with the disorder produced by the formation of radiolytic products.

  20. Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes.

    PubMed

    Graves, Christopher; Chatzichristodoulou, Christodoulos; Mogensen, Mogens B

    2015-01-01

    The solid oxide electrochemical cell (SOC) is an energy conversion technology that can be operated reversibly, to efficiently convert chemical fuels to electricity (fuel cell mode) as well as to store electricity as chemical fuels (electrolysis mode). The SOC fuel-electrode carries out the electrochemical reactions CO2 + 2e(-) ↔ CO + O(2-) and H2O + 2e(-) ↔ H2 + O(2-), for which the electrocatalytic activities of different electrodes differ considerably. The relative activities in CO/CO2 and H2/H2O and the nature of the differences are not well studied, even for the most common fuel-electrode material, a composite of nickel and yttria/scandia stabilized zirconia (Ni-SZ). Ni-SZ is known to be more active for H2/H2O than for CO/CO2 reactions, but the reported relative activity varies widely. Here we compare AC impedance and DC current-overpotential data measured in the two gas environments for several different electrodes comprised of Ni-SZ, Gd-doped CeO2 (CGO), and CGO nanoparticles coating Nb-doped SrTiO3 backbones (CGOn/STN). 2D model and 3D porous electrode geometries are employed to investigate the influence of microstructure, gas diffusion and impurities.Comparing model and porous Ni-SZ electrodes, the ratio of electrode polarization resistance in CO/CO2vs. H2/H2O decreases from 33 to 2. Experiments and modelling suggest that the ratio decreases due to a lower concentration of impurities blocking the three phase boundary and due to the nature of the reaction zone extension into the porous electrode thickness. Besides showing higher activity for H2/H2O reactions than CO/CO2 reactions, the Ni/SZ interface is more active for oxidation than reduction. On the other hand, we find the opposite behaviour in both cases for CGOn/STN model electrodes, reporting for the first time a higher electrocatalytic activity of CGO nanoparticles for CO/CO2 than for H2/H2O reactions in the absence of gas diffusion limitations. We propose that enhanced surface reduction at the

  1. ERK1/2-dependent bestrophin-3 expression prevents ER-stress-induced cell death in renal epithelial cells by reducing CHOP.

    PubMed

    Lee, Wing-Kee; Chakraborty, Prabir K; Roussa, Eleni; Wolff, Natascha A; Thévenod, Frank

    2012-10-01

    Upon endoplasmic reticulum (ER) stress induction, cells endeavor to survive by engaging the adaptive stress response known as the unfolded protein response or by removing aggregated proteins via autophagy. Chronic ER stress culminates in apoptotic cell death, which involves induction of pro-apoptotic CHOP. Here, we show that bestrophin-3 (Best-3), a protein previously associated with Ca(2+)-activated Cl(-) channel activity, is upregulated by the ER stressors, thapsigargin (TG), tunicamycin (TUN) and the toxic metal Cd(2+). In cultured rat kidney proximal tubule cells, ER stress, CHOP and cell death were induced after 6h by Cd(2+) (25μM), TG (3μM) and TUN (6μM), were associated with increased cytosolic Ca(2+) and downstream formation of reactive oxygen species and attenuated by the Ca(2+) chelator BAPTA-AM (10μM), the antioxidant α-tocopherol (100μM), or overexpression of catalase (CAT). Immunofluorescence staining showed Best-3 expression in the plasma membrane, nuclei and intracellular compartments, though not in the ER, in cultured cells and rat kidney cortex sections. Best-3 mRNA was augmented by ER stress and signaled through increased Ca(2+), oxidative stress and ERK1/2 phosphorylation, because it was attenuated by α-tocopherol, CAT expression, BAPTA-AM, calmodulin kinase inhibitor calmidazolium (40μM), ERK1/2 inhibitor U0126 (10μM), and ERK1/2 RNAi. Knockdown of Best-3 resulted in decreased cell number consequentially of cell death, as determined by nuclear staining and PARP-1 cleavage. Furthermore, reduced ER stress-cell death by Best-3 overexpression is attributed to diminished CHOP. Since Best-3 overexpression did not affect upstream signaling pathways, we hypothesize that Best-3 possibly interferes with CHOP transcription. From our novel observations, we conclude that ERK1/2-dependent Best-3 activation regulates cell fate decisions during ER stress by suppressing CHOP induction and death. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Extensin network formation in Vitis vinifera callus cells is an essential and causal event in rapid and H2O2-induced reduction in primary cell wall hydration

    PubMed Central

    2011-01-01

    Background Extensin deposition is considered important for the correct assembly and biophysical properties of primary cell walls, with consequences to plant resistance to pathogens, tissue morphology, cell adhesion and extension growth. However, evidence for a direct and causal role for the extensin network formation in changes to cell wall properties has been lacking. Results Hydrogen peroxide treatment of grapevine (Vitis vinifera cv. Touriga) callus cell walls was seen to induce a marked reduction in their hydration and thickness. An analysis of matrix proteins demonstrated this occurs with the insolubilisation of an abundant protein, GvP1, which displays a primary structure and post-translational modifications typical of dicotyledon extensins. The hydration of callus cell walls free from saline-soluble proteins did not change in response to H2O2, but fully regained this capacity after addition of extensin-rich saline extracts. To assay the specific contribution of GvP1 cross-linking and other wall matrix proteins to the reduction in hydration, GvP1 levels in cell walls were manipulated in vitro by binding selected fractions of extracellular proteins and their effect on wall hydration during H2O2 incubation assayed. Conclusions This approach allowed us to conclude that a peroxidase-mediated formation of a covalently linked network of GvP1 is essential and causal in the reduction of grapevine callus wall hydration in response to H2O2. Importantly, this approach also indicated that extensin network effects on hydration was only partially irreversible and remained sensitive to changes in matrix charge. We discuss this mechanism and the importance of these changes to primary wall properties in the light of extensin distribution in dicotyledons. PMID:21672244

  3. Dendritic cells' death induced by contact sensitizers is controlled by Nrf2 and depends on glutathione levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Ali, Zeina

    Dendritic cells (DC) are known to play a major role during contact allergy induced by contact sensitizers (CS). Our previous studies showed that Nrf2 was induced in DC and controlled allergic skin inflammation in mice in response to chemicals. In this work, we raised the question of the role of Nrf2 in response to a stress provoked by chemical sensitizers in DC. We used two well-described chemical sensitizers, dinitrochlorobenzene (DNCB) and cinnamaldehyde (CinA), known to have different chemical reactivity and mechanism of action. First, we performed a RT-qPCR array showing that CinA was a higher inducer of immune and detoxificationmore » genes compared to DNCB. Interestingly, in the absence of Nrf2, gene expression was dramatically affected in response to DNCB but was slightly affected in response to CinA. These observations prompted us to study DC's cell death in response to both chemicals. DNCB and CinA increased apoptotic cells and decreased living cells in the absence of Nrf2. The characterization of DC apoptosis induced by both CS involved the mitochondrial-dependent caspase pathway and was regulated via Nrf2 in response to both chemicals. Oxidative stress induced by DNCB, and leading to cell death, was regulated by Nrf2. Unlike CinA, DNCB treatment provoked a significant reduction of intracellular GSH levels and up-regulated bcl-2 gene expression, under the control of Nrf2. This work underlies that chemical reactivity may control Nrf2-dependent gene expression leading to different cytoprotective mechanisms in DC. - Highlights: • Nrf2 controls cell death induced by contact sensitizers in dendritic cells. • DNCB reduced GSH levels and up-regulated bcl-2 gene expression unlike CinA. • Chemical reactivity controls Nrf2-dependent genes having protective effect in DC.« less

  4. 5-(2-Carboxyethenyl) isatin derivative induces G{sub 2}/M cell cycle arrest and apoptosis in human leukemia K562 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yao; Zhao, Hong-Ye; Han, Kai-Lin

    2014-08-08

    Highlights: • 5-(2-Carboxyethenyl) isatin derivative (HKL 2H) inhibited K562’s proliferation. • HKL 2H caused the morphology change of G{sub 2}/M phase arrest and typical apoptosis. • HKL 2H induced G2/M cell cycle phase arrest in K562 cells. • HKL 2H induced apoptosis in K562 cells through the mitochondrial pathway. - Abstract: Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC{sub 50}) level of 3 nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562more » cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G{sub 2}/M phase and accumulated subsequently in the sub-G{sub 1} phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G{sub 2}/M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation.« less

  5. Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2).

    PubMed

    Oh, Byung-Taek; Seo, Young-Suk; Sudhakar, Dega; Choe, Ji-Hyun; Lee, Sang-Myeong; Park, Youn-Jong; Cho, Min

    2014-08-30

    The presence of endotoxin in water environments may pose a serious public health hazard. We investigated the effectiveness of advanced oxidative processes (AOP: O3/H2O2 and UV/H2O2) in the oxidative degradation of endotoxin. In addition, we measured the release of endotoxin from Escherichia coli following typical disinfection methods, such as chlorine, ozone alone and UV, and compared it with the use of AOPs. Finally, we tested the AOP-treated samples in their ability to induce tumor necrosis factor alpha (TNF-α) in mouse peritoneal macrophages. The production of hydroxyl radical in AOPs showed superior ability to degrade endotoxin in buffered solution, as well as water samples from Korean water treatment facilities, with the ozone/H2O2 being more efficient compared to UV/H2O2. In addition, the AOPs proved effective not only in eliminating E. coli in the samples, but also in endotoxin degradation, while the standard disinfection methods lead to the release of endotoxin following the bacteria destruction. Furthermore, in the experiments with macrophages, the AOPs-deactivated endotoxin lead to the smallest induction of TNF-α, which shows the loss of inflammation activity, compared to ozone treatment alone. In conclusion, these results suggest that AOPs offer an effective and mild method for endotoxin degradation in the water systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Phenylethylamine induces an increase in cytosolic Ca2+ in yeast.

    PubMed

    Pinontoan, Reinhard; Krystofova, Svetlana; Kawano, Tomonori; Mori, Izumi C; Tsuji, Frederick I; Iida, Hidetoshi; Muto, Shoshi

    2002-05-01

    Beta-phenylethylamine (PEA) induced an increase in cytosolic free calcium ion concentration ([Ca2+]c) in Saccharomyces cerevisiae cells monitored with transgenic aequorin, a Ca2+-dependent photoprotein. The PEA-induced [Ca2+]c increase was dependent on the concentrations of PEA applied, and the Ca2+ mostly originated from an extracellular source. Preceding the Ca2+ influx, H2O2 was generated in the cells by the addition of PEA. Externally added H2O2 also induced a [Ca2+]c increase. These results suggest that PEA induces the [Ca2+]c increase via H2O2 generation. The PEA-induced [Ca2+]c increase occurred in the mid1 mutant with a slightly smaller peak than in the wild-type strain, indicating that Mid1, a stretch-activated nonselective cation channel, may not be mainly involved in the PEA-induced Ca2+ influx. When PEA was applied, the MATa mid1 mutant was rescued from alpha-factor-induced death in a Ca2+-limited medium, suggesting that the PEA-induced [Ca2+]c increase can reinforce calcium signaling in the mating pheromone response pathway.

  7. Effect of Immortalization-Upregulated Protein-2 (IMUP-2) on Cell Death of Trophoblast

    PubMed Central

    Jung, Ran; Choi, Jong Ho; Lee, Hyun Jung; Kim, Jin Kyeoung; Kim, Gi Jin

    2013-01-01

    Trophoblasts, in the placenta, play a role for placental development as well as implantation in the early pregnancy. The characteristics and functions of trophoblast are identified by their localization and potency for proliferation, differentiation, and invasion. Thus, inadequate trophoblast cell death induces trophoblast dysfunction resulting in abnormal placental development and several gynecological diseases. Recently, it was reported that increased immortalization-upregulated protein-2 (IMUP-2) by hypoxia influences trophoblast apoptosis. However, IMUP-2 function on autophagy, which is type II programmed cell death remains unclear. In this study, we analyzed IMUP-2 expression in trophoblast cells (HTR8-SVneo) and compared IMUP-2 effects on cell death including apoptosis and autophagy in trophoblast regardless of IMUP-2 expression. Increased IMUP-2 in trophoblast by IMUP-2 gene transfection induces cell death, especially, apoptosis increases more than autophagy (p<0.05). However, the decreased IMUP-2 in trophoblasts after siRNA treatment decreased apoptosis with the decreased activities of caspase 3 and 7. The expressions of LC3 and MDC as an autophagosome makers and phosphorylated mTOR, which is a negative regulator for autophagy, increased. In addition, the S phase of cell cycle increased in trophoblasts when IMUP-2 expression decreased. Taken together, the alteration of IMUP-2 can control the balance between apoptosis and autophagy of trophoblasts resulting in functional involvement in placental development and in gynecological diseases by regulating the function of trophoblasts. PMID:25949126

  8. Photodynamic N-TiO2 Nanoparticle Treatment Induces Controlled ROS-mediated Autophagy and Terminal Differentiation of Leukemia Cells

    PubMed Central

    Moosavi, Mohammad Amin; Sharifi, Maryam; Ghafary, Soroush Moasses; Mohammadalipour, Zahra; Khataee, Alireza; Rahmati, Marveh; Hajjaran, Sadaf; Łos, Marek J.; Klonisch, Thomas; Ghavami, Saeid

    2016-01-01

    In this study, we used nitrogen-doped titanium dioxide (N-TiO2) NPs in conjugation with visible light, and show that both reactive oxygen species (ROS) and autophagy are induced by this novel NP-based photodynamic therapy (PDT) system. While well-dispersed N-TiO2 NPs (≤100 μg/ml) were inert, their photo-activation with visible light led to ROS-mediated autophagy in leukemia K562 cells and normal peripheral lymphocytes, and this increased in parallel with increasing NP concentrations and light doses. At a constant light energy (12 J/cm2), increasing N-TiO2 NP concentrations increased ROS levels to trigger autophagy-dependent megakaryocytic terminal differentiation in K562 cells. By contrast, an ROS challenge induced by high N-TiO2 NP concentrations led to autophagy-associated apoptotic cell death. Using chemical autophagy inhibitors (3-methyladenine and Bafilomycin A1), we confirmed that autophagy is required for both terminal differentiation and apoptosis induced by photo-activated N-TiO2. Pre-incubation of leukemic cells with ROS scavengers muted the effect of N-TiO2 NP-based PDT on cell fate, highlighting the upstream role of ROS in our system. In summary, PDT using N-TiO2 NPs provides an effective method of priming autophagy by ROS induction. The capability of photo-activated N-TiO2 NPs in obtaining desirable cellular outcomes represents a novel therapeutic strategy of cancer cells. PMID:27698385

  9. Plant Aquaporin AtPIP1;4 Links Apoplastic H2O2 Induction to Disease Immunity Pathways1[OPEN

    PubMed Central

    Tian, Shan; Wang, Xiaobing; Li, Ping; Wang, Hao; Ji, Hongtao; Xie, Junyi; Qiu, Qinglei

    2016-01-01

    Hydrogen peroxide (H2O2) is a stable component of reactive oxygen species, and its production in plants represents the successful recognition of pathogen infection and pathogen-associated molecular patterns (PAMPs). This production of H2O2 is typically apoplastic but is subsequently associated with intracellular immunity pathways that regulate disease resistance, such as systemic acquired resistance and PAMP-triggered immunity. Here, we elucidate that an Arabidopsis (Arabidopsis thaliana) aquaporin (i.e. the plasma membrane intrinsic protein AtPIP1;4) acts to close the cytological distance between H2O2 production and functional performance. Expression of the AtPIP1;4 gene in plant leaves is inducible by a bacterial pathogen, and the expression accompanies H2O2 accumulation in the cytoplasm. Under de novo expression conditions, AtPIP1;4 is able to mediate the translocation of externally applied H2O2 into the cytoplasm of yeast (Saccharomyces cerevisiae) cells. In plant cells treated with H2O2, AtPIP1;4 functions as an effective facilitator of H2O2 transport across plasma membranes and mediates the translocation of externally applied H2O2 from the apoplast to the cytoplasm. The H2O2-transport role of AtPIP1;4 is essentially required for the cytoplasmic import of apoplastic H2O2 induced by the bacterial pathogen and two typical PAMPs in the absence of induced production of intracellular H2O2. As a consequence, cytoplasmic H2O2 quantities increase substantially while systemic acquired resistance and PAMP-triggered immunity are activated to repress the bacterial pathogenicity. By contrast, loss-of-function mutation at the AtPIP1;4 gene locus not only nullifies the cytoplasmic import of pathogen- and PAMP-induced apoplastic H2O2 but also cancels the subsequent immune responses, suggesting a pivotal role of AtPIP1;4 in apocytoplastic signal transduction in immunity pathways. PMID:26945050

  10. Transcriptome Analysis of H2O2-Treated Wheat Seedlings Reveals a H2O2-Responsive Fatty Acid Desaturase Gene Participating in Powdery Mildew Resistance

    PubMed Central

    Tang, Lichuan; Zhao, Guangyao; Zhu, Mingzhu; Chu, Jinfang; Sun, Xiaohong; Wei, Bo; Zhang, Xiangqi; Jia, Jizeng; Mao, Long

    2011-01-01

    Hydrogen peroxide (H2O2) plays important roles in plant biotic and abiotic stress responses. However, the effect of H2O2 stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H2O2, we performed an mRNA tag analysis of wheat seedlings under 10 mM H2O2 treatment for 6 hour in one powdery mildew (PM) resistant (PmA) and two susceptible (Cha and Han) lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H2O2 responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, ‘transport’ activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H2O2-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H2O2-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt). Eight of these genes were found to be co-regulated by H2O2 and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS) to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H2O2 stress and uncovers potential links between H2O2 and Bgt responses, hence providing important candidate genes for the PM resistance in wheat. PMID:22174904

  11. Inhibition of MPP+-induced mitochondrial damage and cell death by trifluoperazine and W-7 in PC12 cells.

    PubMed

    Lee, Chung Soo; Park, Se Young; Ko, Hyun Hee; Song, Jin Ho; Shin, Yong Kyoo; Han, Eun Sook

    2005-01-01

    Opening of the mitochondrial permeability transition pore has been recognized to be involved in cell death. The present study investigated the effect of trifluoperazine and W-7 on the MPP+-induced mitochondrial damage and cell death in undifferentiated PC12 cells. Calmodulin antagonists (trifluoperazine, W-7 and calmidazolium) at 0.5-1 microM significantly reduced the loss of cell viability in PC12 cells treated with 500 microM MPP+. Trifluoperazine and W-7 (0.5-1 microM) inhibited the nuclear damage, the loss of the mitochondrial transmembrane potential followed by cytochrome c release, and the elevation of intracellular Ca2+ levels due to MPP+ in PC12 cells and attenuated the formation of reactive oxygen species and the depletion of GSH. Calmodulin antagonists at 5-10 microM exhibited a cytotoxic effect on PC12 cells, and compounds at 10 microM did not attenuate cytotoxicity of MPP+. Calmodulin antagonists (0.5-1 microM) significantly reduced rotenone-induced mitochondrial damage and cell death, whereas they did not attenuate cell death and elevation of intracellular Ca2+ levels due to H2O2 or ionomycin. The results show that trifluoperazine and W-7 exhibit a differential inhibitory effect against cytotoxicity of MPP+ depending on concentration. Both compounds at the concentrations less than 5 microM may attenuate the MPP+-induced viability loss in PC12 cells by suppressing change in the mitochondrial membrane permeability and by lowering the intracellular Ca2+ levels.

  12. Neuroprotective effects of hydrogen sulfide on sodium azide‑induced autophagic cell death in PC12 cells.

    PubMed

    Shan, Haiyan; Chu, Yang; Chang, Pan; Yang, Lijun; Wang, Yi; Zhu, Shaohua; Zhang, Mingyang; Tao, Luyang

    2017-11-01

    Sodium azide (NaN3) is a chemical of rapidly growing commercial importance. It is very acutely toxic and inhibits cytochrome oxidase (COX) by binding irreversibly to the heme cofactor. A previous study from our group demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator identified, had protective effects against neuronal damage induced by traumatic brain injury (TBI). It is well‑known that TBI can reduce the activity of COX and have detrimental effects on the central nervous system metabolism. Therefore, in the present study, it was hypothesized that H2S may provide neuroprotection against NaN3 toxicity. The current results revealed that NaN3 treatment induced non‑apoptotic cell death, namely autophagic cell death, in PC12 cells. Expression of the endogenous H2S‑producing enzymes, cystathionine‑β‑synthase and 3‑mercaptopyruvate sulfurtransferase, decreased in a dose‑dependent manner following NaN3 treatment. Pretreatment with H2S markedly attenuated the NaN3‑induced cell viability loss and autophagic cell death in a dose‑dependent manner. The present study suggests that H2S‑based strategies may have future potential in the prevention and/or therapy of neuronal damage following NaN3 exposure.

  13. Removal of H2O2 and generation of superoxide radical: Role of cytochrome c and NADH

    PubMed Central

    Velayutham, Murugesan; Hemann, Craig; Zweier, Jay L.

    2011-01-01

    In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe3+cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H2O2) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe3+cyt c in the presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe3+cyt c, and H2O2 in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe3+cyt c increased with NADH and H2O2 concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe3+cyt c oxidizes NADH to NAD•, which in turn donates an electron to O2 resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe3+cyt c is reduced in the presence of both NADH and H2O2. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe3+cyt c may play a key role in the mitochondrial “ROS-induced ROS-release (RIRR)” signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical

  14. Complexes in the Photocatalytic Reaction of CO2 and H2O: Theoretical Studies

    PubMed Central

    Luo, Dongmei; Zhang, Ning; Hong, Sanguo; Wu, Huanwen; Liu, Zhihua

    2010-01-01

    Complexes (H2O/CO2, e–(H2O/CO2) and h+–(H2O/CO2)) in the reaction system of CO2 photoreduction with H2O were researched by B3LYP and MP2 methods along with natural bond orbital (NBO) analysis. Geometries of these complexes were optimized and frequencies analysis performed. H2O/CO2 captured photo-induced electron and hole produced e–(H2O/CO2) and h+–(H2O/CO2), respectively. The results revealed that CO2 and H2O molecules could be activated by the photo-induced electrons and holes, and each of these complexes possessed two isomers. Due to the effect of photo-induced electrons, the bond length of C=O and H-O were lengthened, while H-O bonds were shortened, influenced by holes. The infrared (IR) adsorption frequencies of these complexes were different from that of CO2 and H2O, which might be attributed to the synergistic effect and which could not be captured experimentally. PMID:21152274

  15. Dynamic response performance of proton exchange membrane fuel cell stack with Pt/C-RuO2·xH2O electrode

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Xu, Hongfeng; Zhao, Hong; Sun, Xin; Dong, Yiming; Ren, Ruiming

    2013-11-01

    The dynamic response performance of a proton exchange membrane fuel cell (PEMFC) significantly affects its durability and reliability. Thus, the improvement of the dynamic performance of PEMFC has become the key for prolonging the PEMFC life in fuel cell vehicle applications. In this study, RuO2·xH2O is prepared by sol-gel method, and then sprayed onto catalyst layers to promote PEMFC dynamic response performance. The prepared RuO2·xH2O is characterized by TEM, which shows that the average particle size of RuO2·xH2O is 8 nm and that the particulates are uniformly distributed. A 10-cell stack is assembled using membrane electrode assembly (MEA) with and without RuO2·xH2O. This stack is studied under various loading cycles and operating conditions, including different air stoichiometries, relative humidities, and loading degrees. Results show that the steady-state performance of the MEA with RuO2·xH2O is better than that in the MEA without RuO2·xH2O with a decreasing relative humidity from 80% to 20%. A slower and more unstable dynamic response of the MEA without RuO2·xH2O is observed as air stoichiometry and relative humidity decrease as well as the loading increase. Thus, RuO2·xH2O improves the dynamic response performance, indicating that RuO2·xH2O can buffer the voltage undershoot, improve the stability, and prolong the lifetime of the PEMFC stack.

  16. H2S protects against methionine-induced oxidative stress in brain endothelial cells.

    PubMed

    Tyagi, Neetu; Moshal, Karni S; Sen, Utpal; Vacek, Thomas P; Kumar, Munish; Hughes, William M; Kundu, Soumi; Tyagi, Suresh C

    2009-01-01

    Homocysteine (Hcy) causes cerebrovascular dysfunction by inducing oxidative stress. However, to date, there are no strategies to prevent Hcy-induced oxidative damage. Hcy is an H2S precursor formed from methionine (Met) metabolism. We aimed to investigate whether H2S ameliorated Met-induced oxidative stress in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to Met treatment in the presence or absence of NaHS (donor of H2S). Met-induced cell toxicity increased the levels of free radicals in a concentration-dependent manner. Met increased NADPH-oxidase-4 (NOX-4) expression and mitigated thioredxion-1(Trx-1) expression. Pretreatment of bEnd3 with NaHS (0.05 mM) attenuated the production of free radicals in the presence of Met and protected the cells from oxidative damage. Furthermore, NaHS enhanced inhibitory effects of apocynin, N-acetyl-l-cysteine (NAC), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), Nomega-nitro-l-arginine methyl ester (L-NAME) on ROS production and redox enzymes levels induced by Met. In conclusion, the administration of H2S protected the cells from oxidative stress induced by hyperhomocysteinemia (HHcy), which suggested that NaHS/H2S may have therapeutic potential against Met-induced oxidative stress.

  17. Characterization of the programmed cell death induced by metabolic products of Alternaria alternata in tobacco BY-2 cells.

    PubMed

    Cheng, Dan-Dan; Jia, Yu-Jiao; Gao, Hui-Yuan; Zhang, Li-Tao; Zhang, Zi-Shan; Xue, Zhong-Cai; Meng, Qing-Wei

    2011-02-01

    Alternaria alternata has received considerable attention in current literature and most of the studies are focused on its pathogenic effects on plant chloroplasts, but little is known about the characteristics of programmed cell death (PCD) induced by metabolic products (MP) of A. alternata, the effects of the MP on mitochondrial respiration and its relation to PCD. The purpose of this study was to explore the mechanism of MP-induced PCD in non-green tobacco BY-2 cells and to explore the role of mitochondrial inhibitory processes in the PCD of tobacco BY-2 cells. MP treatment led to significant cell death that was proven to be PCD by the concurrent cytoplasm shrinkage, chromatin condensation and DNA laddering observed in the cells. Moreover, MP treatment resulted in the overproduction of reactive oxygen species (ROS), rapid ATP depletion and a respiratory decline in the tobacco BY-2 cells. It was concluded that the direct inhibition of the mitochondrial electron transport chain (ETC), alternative pathway (AOX) capacity and catalase (CAT) activity by the MP might be the main contributors to the MP-induced ROS burst observed in tobacco BY-2 cells. The addition of adenosine together with the MP significantly inhibited ATP depletion without preventing PCD; however, when the cells were treated with the MP plus CAT, ROS overproduction was blocked and PCD did not occur. The data presented here demonstrate that the ROS burst played an important role in MP-induced PCD in the tobacco BY-2 cells.

  18. 6-shogaol induces autophagic cell death then triggered apoptosis in colorectal adenocarcinoma HT-29 cells.

    PubMed

    Li, Ting-Yi; Chiang, Been-Huang

    2017-09-01

    6-shogaol is a phytochemical of dietary ginger, we found that 6-shogaol could induced both autophagic and apoptotic death in human colon adenocarcinoma (HT-29) cells. Results of this study showed that 6-shogal induced cell cycle arrest, autophagy, and apoptosis in HT-29 cells in a time sequence. After 6h, 6-shogal induced apparent G2/M arrest, then the HT-29 cells formed numerous autophagosomes in each phase of the cell cycle. After 18h, increases in acidic vesicles and LAMP-1 (Lysosome-associated membrane proteins 1) showed that 6-shogaol had caused autophagic cell death. After 24h, cell shrinkage and Caspase-3/7 activities rising, suggesting that apoptotic cell death had increased. And after 48h, the result of TUNEL assay indicated the highest occurrence of apoptosis upon 6-shogaol treatment. It appeared that apoptosis is triggered by autophagy in 6-shogaol treated HT-29 cells, the damage of autophagic cell death initiated apoptosis program. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Antioxidative response in variegated Pelargonium zonale leaves and generation of extracellular H2O2 in (peri)vascular tissue induced by sunlight and paraquat.

    PubMed

    Vidović, Marija; Morina, Filis; Prokić, Ljiljana; Milić-Komić, Sonja; Živanović, Bojana; Jovanović, Sonja Veljović

    2016-11-01

    In this study we exposed variegated leaves of Pelargonium zonale to strong sunlight (>1100μmolm -2 s -1 of photosynthetically active radiation) with and without paraquat (Pq), with the aim to elucidate the mechanisms of H 2 O 2 regulation in green and white tissues with respect to the photosynthetically-dependent generation of reactive oxygen species (ROS). Sunlight induced marked accumulation of H 2 O 2 in the apoplast of vascular and (peri)vascular tissues only in green sectors. This effect was enhanced by the addition of Pq. In the presence of diphenyl iodide, an NADPH oxidase inhibitor, H 2 O 2 accumulation was abolished. Distinct light-induced responses were observed: in photosynthetic cells, sunlight rapidly provoked ascorbate (Asc) biosynthesis and an increase of glutathione reductase (GR) and catalase activities, while in non-photosynthetic cells, early up-regulation of soluble ascorbate peroxidase, dehydroascorbate reductase (DHAR) and GR activities was observed. Paraquat addition stimulated DHAR and GR activities in green sectors, while in white sectors activities of monodehydroascorbate reductase, DHAR and class III peroxidases, as well as Asc content rapidly increased. Differential antioxidative responses in the two tissues in the frame of their contrasting metabolisms, and the possible role of (peri)vascular H 2 O 2 in signaling were discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Bcl-2 Family Members and Functional Electron Transport Chain Regulate Oxygen Deprivation-Induced Cell Death

    PubMed Central

    McClintock, David S.; Santore, Matthew T.; Lee, Vivian Y.; Brunelle, Joslyn; Budinger, G. R. Scott; Zong, Wei-Xing; Thompson, Craig B.; Hay, Nissim; Chandel, Navdeep S.

    2002-01-01

    The mechanisms underlying cell death during oxygen deprivation are unknown. We report here a model for oxygen deprivation-induced apoptosis. The death observed during oxygen deprivation involves a decrease in the mitochondrial membrane potential, followed by the release of cytochrome c and the activation of caspase-9. Bcl-XL prevented oxygen deprivation-induced cell death by inhibiting the release of cytochrome c and caspase-9 activation. The ability of Bcl-XL to prevent cell death was dependent on allowing the import of glycolytic ATP into the mitochondria to generate an inner mitochondrial membrane potential through the F1F0-ATP synthase. In contrast, although activated Akt has been shown to inhibit apoptosis induced by a variety of apoptotic stimuli, it did not prevent cell death during oxygen deprivation. In addition to Bcl-XL, cells devoid of mitochondrial DNA (ρ° cells) that lack a functional electron transport chain were resistant to oxygen deprivation. Further, murine embryonic fibroblasts from bax−/− bak−/− mice did not die in response to oxygen deprivation. These data suggest that when subjected to oxygen deprivation, cells die as a result of an inability to maintain a mitochondrial membrane potential through the import of glycolytic ATP. Proapoptotic Bcl-2 family members and a functional electron transport chain are required to initiate cell death in response to oxygen deprivation. PMID:11739725

  1. CKA2 functions in H2O2-induced apoptosis and high-temperature stress tolerance by regulating NO accumulation in yeast.

    PubMed

    Liu, Wen-Cheng; Yuan, Hong-Mei; Li, Yun-Hui; Lu, Ying-Tang

    2015-09-01

    Nitric oxide (NO) plays key roles in yeast responses to various environmental factors, such as H2O2 and high temperature. However, the gene encoding NO synthase (NOS) in yeast has not yet been identified, and the mechanism underlying the regulation of NOS-like activity is poorly understood. Here, we report on the involvement of CKA2 in H2O2-induced yeast apoptosis and yeast high-temperature stress tolerance. Our results showed that although Δcka2 mutant had reduced NO accumulation with decreased apoptosis after H2O2 exposure, treatment with a NO donor, sodium nitroprusside, resulted in similar survival rate of Δcka2 mutant compared to that of wild-type yeast when subjected to H2O2 stress. This finding occurred because H2O2-enhanced NOS-like activity in wild-type yeast was significantly repressed in Δcka2. Our additional experiments indicated that both high-temperature-enhanced NO accumulation and NOS-like activity were also suppressed in Δcka2, leading to the hypersensitivity of the mutant to high temperature in terms of changes in survival rate. Thus, our results showed that CKA2 functioned in H2O2-induced apoptosis and high-temperature stress tolerance by regulating NOS-like-dependent NO accumulation in yeast. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. hCLCA2 is a p53-inducible inhibitor of breast cancer cell proliferation

    PubMed Central

    Walia, Vijay; Ding, Ming; Kumar, Sumit; Nie, Daotai; Premkumar, Louis; Elble, Randolph C.

    2009-01-01

    hCLCA2 is frequently downregulated in breast cancer and is a candidate tumor suppressor gene. We show here that the hCLCA2 gene is strongly induced by p53 in response to DNA damage. Adenoviral expression of p53 induces hCLCA2 in a variety of breast cell lines. Further, we find that p53 binds to consensus elements in the hCLCA2 promoter and mutation of these sites abolishes p53-responsiveness and induction by DNA damage. Adenoviral transduction of hCLCA2 into immortalized cells induces p53, CDK inhibitors p21 and p27, and cell cycle arrest by 24 hours, and caspase induction and apoptosis by 40 hours post-infection. Transduction of the malignant tumor cell line BT549 on the other hand does not induce p53, p21, or p27 but instead induces apoptosis directly and more rapidly. Knockout and knockdown studies indicate that growth inhibition and apoptosis are signaled via multiple pathways. Conversely, suppression of hCLCA2 by RNA interference enhances proliferation of MCF10A and reduces sensitivity to doxorubicin. Gene expression profiles indicate that hCLCA2 levels are strongly predictive of tumor cell sensitivity to doxorubicin and other chemotherapeutics. Because certain Cl- channels are proposed to promote apoptosis by reducing intracellular pH, we tested whether, and established that, hCLCA2 enhances Cl- current in breast cancer cells and reduces pH to ∼6.7. These results reveal hCLCA2 as a novel p53-inducible growth inhibitor, explain how its downregulation confers a survival advantage to tumor cells, and suggest both prognostic and therapeutic applications. PMID:19654313

  3. 17-beta estradiol inhibits oxidative stress-induced accumulation of AIF into nucleolus and PARP1-dependent cell death via estrogen receptor alpha.

    PubMed

    Batnasan, Enkhzaya; Wang, Ruoxi; Wen, Jitao; Ke, Yueshuang; Li, Xiaoxue; Bohio, Ameer Ali; Zeng, Xianlu; Huo, Hongliang; Han, Liping; Boldogh, Istvan; Ba, Xueqing

    2015-01-05

    Oxidative stress-induced DNA damage results in over-activation of poly(ADP-ribose) polymerase 1 (PARP1), leading to parthanatos, a newly discovered cell elimination pathway. Inhibition of PARP1-dependent cell death has shown to improve the outcome of diseases, including stroke, heart ischemia, and neurodegenerative diseases. In the present study we aimed to detect whether estrogen plays a protective role in inhibiting parthanatos. We utilized human mammary adenocarcinoma cells (MCF7) that abundantly express the estrogen receptor alpha and beta (ERα and ERβ). Parthanatos was induced by challenging the cells with hydrogen peroxide (H2O2). Microscopic imaging and molecular biological techniques, such as Western blot analysis and RNA interference, were performed. The results showed 17β estradiol (E2) protected MCF7 cells from PARP1-dependent cell death by decreasing protein PARylation, and AIF translocation into nuclei/nucleoli. Down-regulation of ERα expression by siRNA before E2 addition resulted in the failure of the E2-mediated inhibition of H2O2-induced protein PARylation and AIF nucleolar translocation. Together these data suggest that estrogen via its alpha-type receptor inhibits oxidative stress-induced, PARP1-dependent cell death. The present study provided us insight into how to apply hormone therapy in intervention of parthanatos-implicated ischemic and degenerative diseases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Sigma-2 ligands and PARP inhibitors synergistically trigger cell death in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Elizabeth S.; Mankoff, Julia; Makvandi, Mehran

    The sigma-2 receptor is overexpressed in proliferating cells compared to quiescent cells and has been used as a target for imaging solid tumors by positron emission tomography. Recent work has suggested that the sigma-2 receptor may also be an effective therapeutic target for cancer therapy. Poly (ADP-ribose) polymerase (PARP) is a family of enzymes involved in DNA damage response. In this study, we looked for potential synergy of cytotoxicity between PARP inhibitors and sigma-2 receptor ligands in breast cancer cell lines. We showed that the PARP inhibitor, YUN3-6, sensitized mouse breast cancer cell line, EMT6, to sigma-2 receptor ligand (SV119,more » WC-26, and RHM-138) induced cell death determined by cell viability assay and colony forming assay. The PARP inhibitor, olaparib, sensitized tumor cells to a different sigma-2 receptor ligand SW43-induced apoptosis and cell death in human triple negative cell line, MDA-MB-231. Olaparib inhibited PARP activity and cell proliferation, and arrested cells in G2/M phase of the cell cycle in MDA-MB-231 cells. Subsequently cells became sensitized to SW43 induced cell death. In conclusion, the combination of sigma-2 receptor ligands and PARP inhibitors appears to hold promise for synergistically triggering cell death in certain types of breast cancer cells and merits further investigation. - Highlights: • PARPi, YUN3-6 and olaparib, and σ2 ligands, SV119 and SW43, were evaluated. • Mouse and human breast cancer cells, EMT6 and MDA-MB-231 respectively, were used. • YUN3-6 and SV119 synergistically triggered cell death in EMT6 cells. • Olaparib and SW43 additively triggered cell death in MDA-MB-231 cells. • Olaparib arrested cells in G2/M in MDA-MB-231 cells.« less

  5. Molecular hydrogen protects against oxidative stress-induced SH-SY5Y neuroblastoma cell death through the process of mitohormesis.

    PubMed

    Murakami, Yayoi; Ito, Masafumi; Ohsawa, Ikuroh

    2017-01-01

    Inhalation of molecular hydrogen (H2) gas ameliorates oxidative stress-induced acute injuries in the brain. Consumption of water nearly saturated with H2 also prevents chronic neurodegenerative diseases including Parkinson's disease in animal and clinical studies. However, the molecular mechanisms underlying the remarkable effect of a small amount of H2 remain unclear. Here, we investigated the effect of H2 on mitochondria in cultured human neuroblastoma SH-SY5Y cells. H2 increased the mitochondrial membrane potential and the cellular ATP level, which were accompanied by a decrease in the reduced glutathione level and an increase in the superoxide level. Pretreatment with H2 suppressed H2O2-induced cell death, whereas post-treatment did not. Increases in the expression of anti-oxidative enzymes underlying the Nrf2 pathway in H2-treated cells indicated that mild stress caused by H2 induced increased resistance to exacerbated oxidative stress. We propose that H2 functions both as a radical scavenger and a mitohormetic effector against oxidative stress in cells.

  6. H2O2 dynamics in the malaria parasite Plasmodium falciparum

    PubMed Central

    Rahbari, Mahsa; Bogeski, Ivan

    2017-01-01

    Hydrogen peroxide is an important antimicrobial agent but is also crucially involved in redox signaling and pathogen-host cell interactions. As a basis for systematically investigating intracellular H2O2 dynamics and regulation in living malaria parasites, we established the genetically encoded fluorescent H2O2 sensors roGFP2-Orp1 and HyPer-3 in Plasmodium falciparum. Both ratiometric redox probes as well as the pH control SypHer were expressed in the cytosol of blood-stage parasites. Both redox sensors showed reproducible sensitivity towards H2O2 in the lower micromolar range in vitro and in the parasites. Due to the pH sensitivity of HyPer-3, we used parasites expressing roGFP2-Orp1 for evaluation of short-, medium-, and long-term effects of antimalarial drugs on H2O2 levels and detoxification in Plasmodium. None of the quinolines or artemisinins tested had detectable direct effects on the H2O2 homeostasis at pharmacologically relevant concentrations. However, pre-treatment of the cells with antimalarial drugs or heat shock led to a higher tolerance towards exogenous H2O2. The systematic evaluation and comparison of the two genetically encoded cytosolic H2O2 probes in malaria parasites provides a basis for studying parasite-host cell interactions or drug effects with spatio-temporal resolution while preserving cell integrity. PMID:28369083

  7. Pannexin1 channels act downstream of P2X7 receptors in ATP-induced murine T-cell death

    PubMed Central

    Shoji, Kenji F; Sáez, Pablo J; Harcha, Paloma A; Aguila, Hector L; Sáez, Juan C

    2014-01-01

    Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1−/− mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1−/− mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP. PMID:24590064

  8. Role of transglutaminase 2 in PAC1 receptor mediated protection against hypoxia-induced cell death and neurite outgrowth in differentiating N2a neuroblastoma cells.

    PubMed

    Algarni, Alanood S; Hargreaves, Alan J; Dickenson, John M

    2017-03-15

    The PAC 1 receptor and tissue transglutaminase (TG2) play important roles in neurite outgrowth and modulation of neuronal cell survival. In this study, we investigated the regulation of TG2 activity by the PAC 1 receptor in retinoic acid-induced differentiating N2a neuroblastoma cells. TG2 transamidase activity was determined using an amine incorporation and a peptide cross linking assay. In situ TG2 activity was assessed by visualising the incorporation of biotin-X-cadaverine using confocal microscopy. TG2 phosphorylation was monitored via immunoprecipitation and Western blotting. The role of TG2 in PAC 1 receptor-induced cytoprotection and neurite outgrowth was investigated by monitoring hypoxia-induced cell death and appearance of axonal-like processes, respectively. The amine incorporation and protein crosslinking activity of TG2 increased in a time and concentration-dependent manner following stimulation with pituitary adenylate cyclase-activating polypeptide-27 (PACAP-27). PACAP-27 mediated increases in TG2 activity were abolished by the TG2 inhibitors Z-DON and R283 and by pharmacological inhibition of protein kinase A (KT 5720 and Rp-cAMPs), protein kinase C (Ro 31-8220), MEK1/2 (PD 98059), and removal of extracellular Ca 2+ . Fluorescence microscopy demonstrated PACAP-27 induced in situ TG2 activity. TG2 inhibition blocked PACAP-27 induced attenuation of hypoxia-induced cell death and outgrowth of axon-like processes. TG2 activation and cytoprotection were also observed in human SH-SY5Y cells. Together, these results demonstrate that TG2 activity was stimulated downstream of the PAC 1 receptor via a multi protein kinase dependent pathway. Furthermore, PAC 1 receptor-induced cytoprotection and neurite outgrowth are dependent upon TG2. These results highlight the importance of TG2 in the cellular functions of the PAC 1 receptor. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. H2S Protects Against Methionine–Induced Oxidative Stress in Brain Endothelial Cells

    PubMed Central

    Tyagi, Neetu; Moshal, Karni S.; Sen, Utpal; Vacek, Thomas P.; Kumar, Munish; Hughes, William M.; Kundu, Soumi

    2009-01-01

    Abstract Homocysteine (Hcy) causes cerebrovascular dysfunction by inducing oxidative stress. However, to date, there are no strategies to prevent Hcy-induced oxidative damage. Hcy is an H2S precursor formed from methionine (Met) metabolism. We aimed to investigate whether H2S ameliorated Met-induced oxidative stress in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to Met treatment in the presence or absence of NaHS (donor of H2S). Met-induced cell toxicity increased the levels of free radicals in a concentration-dependent manner. Met increased NADPH-oxidase-4 (NOX-4) expression and mitigated thioredxion-1(Trx-1) expression. Pretreatment of bEnd3 with NaHS (0.05 mM) attenuated the production of free radicals in the presence of Met and protected the cells from oxidative damage. Furthermore, NaHS enhanced inhibitory effects of apocynin, N-acetyl-l-cysteine (NAC), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), Nω-nitro-l-arginine methyl ester (L-NAME) on ROS production and redox enzymes levels induced by Met. In conclusion, the administration of H2S protected the cells from oxidative stress induced by hyperhomocysteinemia (HHcy), which suggested that NaHS/H2S may have therapeutic potential against Met-induced oxidative stress. Antioxid. Redox Signal. 11, 25–33. PMID:18837652

  10. A quantitative study of NF-kappaB activation by H2O2: relevance in inflammation and synergy with TNF-alpha.

    PubMed

    de Oliveira-Marques, Virgínia; Cyrne, Luísa; Marinho, H Susana; Antunes, Fernando

    2007-03-15

    Although the germicide role of H(2)O(2) released during inflammation is well established, a hypothetical regulatory function, either promoting or inhibiting inflammation, is still controversial. In particular, after 15 years of highly contradictory results it remains uncertain whether H(2)O(2) by itself activates NF-kappaB or if it stimulates or inhibits the activation of NF-kappaB by proinflammatory mediators. We investigated the role of H(2)O(2) in NF-kappaB activation using, for the first time, a calibrated and controlled method of H(2)O(2) delivery--the steady-state titration--in which cells are exposed to constant, low, and known concentrations of H(2)O(2). This technique contrasts with previously applied techniques, which disrupt cellular redox homeostasis and/or introduce uncertainties in the actual H(2)O(2) concentration to which cells are exposed. In both MCF-7 and HeLa cells, H(2)O(2) at extracellular concentrations up to 25 microM did not induce significantly per se NF-kappaB translocation to the nucleus, but it stimulated the translocation induced by TNF-alpha. For higher H(2)O(2) doses this stimulatory role shifts to an inhibition, which may explain published contradictory results. The stimulatory role was confirmed by the observation that 12.5 microM H(2)O(2), a concentration found during inflammation, increased the expression of several proinflammatory NF-kappaB-dependent genes induced by TNF-alpha (e.g., IL-8, MCP-1, TLR2, and TNF-alpha). The same low H(2)O(2) concentration also induced the anti-inflammatory gene coding for heme oxygenase-1 (HO-1) and IL-6. We propose that H(2)O(2) has a fine-tuning regulatory role, comprising both a proinflammatory control loop that increases pathogen removal and an anti-inflammatory control loop, which avoids an exacerbated harmful inflammatory response.

  11. Antioxidant activity against H2O2-induced cytotoxicity of the ethanol extract and compounds from Pyrola decorate leaves.

    PubMed

    Yang, Xiliang; Peng, Qingyun; Liu, Qian; Hu, Jie; Tang, Zhipeng; Cui, Lianjie; Lin, Zonghao; Xu, Bing; Lu, Kuojian; Yang, Fang; Sheng, Zhizheng; Yuan, Qiong; Liu, Song; Zhang, Jiuliang; Zhou, Xuefeng

    2017-12-01

    The leaves of Pyrola decorate H. Andr (Pyrolaceae), known as Luxiancao, have long been used for treating kidney deficiency, gastric haemorrhage and rheumatic arthritic diseases in traditional Chinese medicine. The phytochemicals and antioxidant capacities in vitro of P. decorate leaves were investigated. Ethanol, petroleum ether, acetidin, n-butyl alcohol and aqueous extracts of Pyrola decorate leaves were prepared by solvent sequential process, and then isolated and purified to obtain phytochemicals. Cell viability was measured by MTT assay. PC12 cells were pretreated for 24 h with different extractions of P. decorate leaves at concentrations of 0.1, 0.5, 1, 5 and 10 mg/mL, then H 2 O 2 of 0.4 mM was added in all samples for an additional 2h. The antioxidant capacities of betulin, ursolic acid and monotropein were determined in PC12 cells against H 2 O 2 induced cytotoxicity in vitro as well. Nine compounds (1-9) were isolated and structurally determined by spectroscopic methods, especially 2D NMR analyses. Ethanol extract treated groups showed inhibitory activity with IC 50 value of 10.83 mg/mL. Betulin, ursolic acid and monotropein were isolated from P. decorate, and demonstrated with IC 50 values of 6.88, 6.15 and 6.13 μg/mL, respectively. In conclusion, Pyrola decorate is a potential antioxidative natural plant and worth testing for further pharmacological investigation in the treatment of oxidative stress related neurological disease.

  12. Changes of Nitric Oxide and Its Relationship with H2O2 and Ca2+ in Defense Interactions between Wheat and Puccinia Triticina

    PubMed Central

    Liu, Na; Sun, Tianjie; Liu, Gang; Han, Shengfang; Hou, Chunyan; Wang, Dongmei

    2015-01-01

    In this research, the wheat cultivar 'Lovrin 10' and Puccinia triticina races 165 and 260 were used to constitute compatible and incompatible combinations to investigate the relationship between NO and H2O2 and between NO and calcium (Ca2+) signaling in the cell defense process by pharmacological means. The specific fluorescent probe DAF-FM DA was coupled with confocal laser scanning microscopy and used to label intracellular nitric oxide (NO) and monitoring the real-time NO dynamics during the processes of wheat defense response triggered by P. triticina infection. The results showed that at 4 h after inoculation, weak green fluorescence was observed in the stomatal guard cells at the P. triticina infection site in the incompatible combination, which indicates a small amount of NO production. Twelve hours after inoculation, the fluorescence of NO in- cell adjacent to the stomata gradually intensified, and the NO fluorescent area also expanded continuously; the green fluorescence primarily occurred in the cells undergoing a hypersensitive response (HR) at 24–72 h after inoculation. For the compatible combination, however, a small amount of green fluorescence was observed in stomata where the pathogenic contact occurred at 4 h after inoculation, and fluorescence was not observed thereafter. Injections of the NO scavenger c-PTIO prior to inoculation postponed the onset of NO production to 48 h after inoculation and suppressed HR advancement. The injection of imidazole, a NADPH oxidase inhibitor, or EGTA, an extracellular calcium chelator, in the leaves prior to inoculation, delayed the onset of NO production in the incompatible combination and suppressed HR advancement. Combined with our previous results, it could be concluded that, Ca2+ and hydrogen peroxide (H2O2) are involved in upstream of NO production to induce the HR cell death during P. triticina infection, and Ca2+, NO and H2O2 are jointly involved in the signal transduction process of HR in the

  13. Tim18, a component of the mitochondrial translocator, mediates yeast cell death induced by arsenic.

    PubMed

    Du, Li; Yu, Yong; Li, Zidong; Chen, Jingsi; Liu, Yan; Xia, Yongjing; Liu, Xiangjun

    2007-08-01

    Evidence is presented that Tim18, a mitochondria translocase, plays a role in the previously described apoptosis induced by arsenite in Saccharomyces cerevisiae. Tim18 deletion mutant exhibited resistance to arsenite. After arsenite treatment, both the wild type and Tim18-deficient cells showed reactive oxygen species (ROS) production. Arsenite induced the higher expression of tim18 in wild type yeast cells. We found that the tim18 deletion mutant also exhibited resistance to other apoptotic stresses such as acetic acid, H2O2, and hyperosmotic stress. These results suggest that Tim18 is important for yeast cell death induced by arsenic, and it may act downstream of ROS production.

  14. Lack of Both Nucleotide-Binding Oligomerization Domain-Containing Proteins 1 and 2 Primes T Cells for Activation-Induced Cell Death.

    PubMed

    Kasimsetty, Sashi G; Shigeoka, Alana A; Scheinok, Andrew A; Gavin, Amanda L; Ulevitch, Richard J; McKay, Dianne B

    2017-08-01

    Nucleotide-binding oligomerization domain (Nod)-containing proteins Nod1 and Nod2 play important roles in the innate immune response to pathogenic microbes, but mounting data suggest these pattern recognition receptors might also play key roles in adaptive immune responses. Targeting Nod1 and Nod2 signaling pathways in T cells is likely to provide a new strategy to modify inflammation in a variety of disease states, particularly those that depend on Ag-induced T cell activation. To better understand how Nod1 and Nod2 proteins contribute to adaptive immunity, this study investigated their role in alloantigen-induced T cell activation and asked whether their absence might impact in vivo alloresponses using a severe acute graft versus host disease model. The study provided several important observations. We found that the simultaneous absence of Nod1 and Nod2 primed T cells for activation-induced cell death. T cells from Nod1 × 2 -/- mice rapidly underwent cell death upon exposure to alloantigen. The Nod1 × 2 -/- T cells had sustained p53 expression that was associated with downregulation of its negative regulator MDM2. In vivo, mice transplanted with an inoculum containing Nod1 × 2 -/- T cells were protected from severe graft versus host disease. The results show that the simultaneous absence of Nod1 and Nod2 is associated with accelerated T cell death upon alloantigen encounter, suggesting these proteins might provide new targets to ameliorate T cell responses in a variety of inflammatory states, including those associated with bone marrow or solid organ transplantation. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. Long-term treatment of anterior pituitary cells with nitric oxide induces programmed cell death.

    PubMed

    Velardez, Miguel Omar; Poliandri, Ariel Hernán; Cabilla, Jimena Paula; Bodo, Cristian Carlos Armando; Machiavelli, Leticia Inés; Duvilanski, Beatriz Haydeé

    2004-04-01

    Nitric oxide (NO) plays a complex role in modulating programmed cell death. It can either protect the cell from apoptotic death or mediate apoptosis, depending on its concentration and the cell type and/or status. In this study, we demonstrate that long-term exposition to NO induces cell death of anterior pituitary cells from Wistar female rats. DETA NONOate (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate, 1 mm], a NO donor that releases NO for an extended period of time, decreased cellular viability and prolactin release from primary cultures of anterior pituitary cells. Morphological studies showed an increase in the number of cells with chromatin condensation and nuclear fragmentation at 24 and 48 h after DETA/NO exposure. DNA internucleosomal fragmentation was also observed at the same time. Reversibility of the NO effect on cellular viability and prolactin release was observed only when the cells were incubated with DETA/NO for less than 6 h. Most apoptotic cells were immunopositive for prolactin, suggesting a high susceptibility of lactotrophs to the effect of NO. The cytotoxic effect of NO is dependent of caspase-9 and caspase-3, but seems to be independent of oxidative stress or nitrosative stress. Our results show that the exposition of anterior pituitary cells to NO for long periods induces programmed cell death of anterior pituitary cells.

  16. Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca2+ responses, and neuron cell death in cultured rat hippocampal neurons.

    PubMed

    Calvo-Rodríguez, María; de la Fuente, Carmen; García-Durillo, Mónica; García-Rodríguez, Carmen; Villalobos, Carlos; Núñez, Lucía

    2017-01-31

    Toll-like receptors (TLRs) are transmembrane pattern-recognition receptors of the innate immune system recognizing diverse pathogen-derived and tissue damage-related ligands. It has been suggested that TLR signaling contributes to the pathogenesis of age-related, neurodegenerative diseases, including Alzheimer's disease (AD). AD is associated to oligomers of the amyloid β peptide (Aβo) that cause intracellular Ca 2+ dishomeostasis and neuron cell death in rat hippocampal neurons. Here we assessed the interplay between inflammation and Aβo in long-term cultures of rat hippocampal neurons, an in vitro model of neuron aging and/or senescence. Ca 2+ imaging and immunofluorescence against annexin V and TLR4 were applied in short- and long-term cultures of rat hippocampal neurons to test the effects of TLR4-agonist LPS and Aβo on cytosolic [Ca 2+ ] and on apoptosis as well as on expression of TLR4. LPS increases cytosolic [Ca 2+ ] and promotes apoptosis in rat hippocampal neurons in long-term culture considered aged and/or senescent neurons, but not in short-term cultured neurons considered young neurons. TLR4 antagonist CAY10614 prevents both effects. TLR4 expression in rat hippocampal neurons is significantly larger in aged hippocampal cultures. Treatment of aged hippocampal cultures with Aβo increases TLR4 expression and enhances LPS-induced Ca 2+ responses and neuron cell death. Aging and amyloid β oligomers, the neurotoxin involved in Alzheimer's disease, enhance TLR4 expression as well as LPS-induced Ca 2+ responses and neuron cell death in rat hippocampal neurons aged in vitro.

  17. Molecular mechanism of cell death induced by king cobra (Ophiophagus hannah) venom l-amino acid oxidase.

    PubMed

    Fung, Shin Yee; Lee, Mui Li; Tan, Nget Hong

    2015-03-01

    Snake venom LAAOs have been reported to exhibit a wide range of pharmacological activities, including cytotoxic, edema-inducing, platelet aggregation-inducing/platelet aggregation-inhibiting, bactericidal and antiviral activities. A heat-stable form of l-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom (OH-LAAO) has been shown to exhibit very potent cytotoxicity against human tumorigenic cells but not in their non-tumorigenic counterparts, and the cytotoxicity was due to the apoptosis-inducing effect of the enzyme. In this work, the molecular mechanism of cell death induced by OH-LAAO was investigated. The enzyme exerts its apoptosis-inducing effect presumably via both intrinsic and extrinsic pathways as suggested by the increase in caspase-8 and -9 activities. Oligonucleotide microarray analysis showed that the expression of a total of 178 genes was significantly altered as a result of oxidative stress induced by the hydrogen peroxide generated by the enzyme. Of the 178 genes, at least 27 genes are involved in apoptosis and cell death. These alterations of gene expression was presumably caused by the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidative modifications of signaling molecules that eventually lead to apoptosis and cell death. The very substantial up-regulation of cytochrome P450 genes may also contribute to the potent cytotoxic action of OH-LAAO by producing excessive reactive oxygen species (ROS). In conclusion, the potent apoptosis inducing activity of OH-LAAO was likely due to the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidation of signalling molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Autophagy Protects Against Aminochrome-Induced Cell Death in Substantia Nigra-Derived Cell Line

    PubMed Central

    Paris, Irmgard; Muñoz, Patricia; Huenchuguala, Sandro; Couve, Eduardo; Sanders, Laurie H.; Greenamyre, John Timothy; Caviedes, Pablo; Segura-Aguilar, Juan

    2011-01-01

    Aminochrome, the precursor of neuromelanin, has been proposed to be involved in the neurodegeneration neuromelanin-containing dopaminergic neurons in Parkinson’s disease. We aimed to study the mechanism of aminochrome-dependent cell death in a cell line derived from rat substantia nigra. We found that aminochrome (50μM), in the presence of NAD(P)H-quinone oxidoreductase, EC 1.6.99.2 (DT)-diaphorase inhibitor dicoumarol (DIC) (100μM), induces significant cell death (62 ± 3%; p < 0.01), increase in caspase-3 activation (p < 0.001), release of cytochrome C, disruption of mitochondrial membrane potential (p < 0.01), damage of mitochondrial DNA, damage of mitochondria determined with transmission electron microscopy, a dramatic morphological change characterized as cell shrinkage, and significant increase in number of autophagic vacuoles. To determine the role of autophagy on aminochrome-induced cell death, we incubated the cells in the presence of vinblastine and rapamycin. Interestingly, 10μM vinblastine induces a 5.9-fold (p < 0.001) and twofold (p < 0.01) significant increase in cell death when the cells were incubated with 30μM aminochrome in the absence and presence of DIC, respectively, whereas 10μM rapamycin preincubated 24 h before addition of 50μM aminochrome in the absence and the presence of 100μM DIC induces a significant decrease (p < 0.001) in cell death. In conclusion, autophagy seems to be an important protective mechanism against two different aminochrome-induced cell deaths that initially showed apoptotic features. The cell death induced by aminochrome when DT-diaphorase is inhibited requires activation of mitochondrial pathway, whereas the cell death induced by aminochrome alone requires inhibition of autophagy-dependent degrading of damaged organelles and recycling through lysosomes. PMID:21427056

  19. Cyanidin-3-glucoside inhibits glutamate-induced Zn2+ signaling and neuronal cell death in cultured rat hippocampal neurons by inhibiting Ca2+-induced mitochondrial depolarization and formation of reactive oxygen species.

    PubMed

    Yang, Ji Seon; Perveen, Shazia; Ha, Tae Joung; Kim, Seong Yun; Yoon, Shin Hee

    2015-05-05

    Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. However, effects of C3G on glutamate-induced [Zn(2+)]i increase and neuronal cell death remain unknown. We studied the effects of C3G on glutamate-induced [Zn(2+)]i increase and cell death in cultured rat hippocampal neurons from embryonic day 17 maternal Sprague-Dawley rats using digital imaging methods for Zn(2+), Ca(2+), reactive oxygen species (ROS), mitochondrial membrane potential and a MTT assay for cell survival. Treatment with glutamate (100 µM) for 7 min induces reproducible [Zn(2+)]i increase at 35 min interval in cultured rat hippocampal neurons. The intracellular Zn(2+)-chelator TPEN markedly blocked glutamate-induced [Zn(2+)]i increase, but the extracellular Zn(2+) chelator CaEDTA did not affect glutamate-induced [Zn(2+)]i increase. C3G inhibited the glutamate-induced [Zn(2+)]i response in a concentration-dependent manner (IC50 of 14.1 ± 1.1 µg/ml). C3G also significantly inhibited glutamate-induced [Ca(2+)]i increase. Two antioxidants such as Trolox and DTT significantly inhibited the glutamate-induced [Zn(2+)]i response, but they did not affect the [Ca(2+)]i responses. C3G blocked glutamate-induced formation of ROS. Trolox and DTT also inhibited the formation of ROS. C3G significantly inhibited glutamate-induced mitochondrial depolarization. However, TPEN, Trolox and DTT did not affect the mitochondrial depolarization. C3G, Trolox and DTT attenuated glutamate-induced neuronal cell death in cultured rat hippocampal neurons, respectively. Taken together, all these results suggest that cyanidin-3-glucoside inhibits glutamate-induced [Zn(2+)]i increase through a release of Zn(2+) from intracellular sources in cultured rat hippocampal neurons by inhibiting Ca(2+)-induced mitochondrial depolarization and formation of ROS, which is involved in neuroprotection against glutamate-induced cell death. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. X-ray-induced dissociation of H.sub.2O and formation of an O.sub.2-H.sub.2 alloy at high pressure

    DOEpatents

    Mao, Ho-kwang [Washington, DC; Mao, Wendy L [Washington, DC

    2011-11-29

    A novel molecular alloy of O.sub.2 and H.sub.2 and a method of producing such a molecular alloy are provided. When subjected to high pressure and extensive x-radiation, H.sub.2O molecules cleaved, forming O--O and H--H bonds. In the method of the present invention, the O and H framework in ice VII was converted into a molecular alloy of O.sub.2 and H.sub.2. X-ray diffraction, x-ray Raman scattering, and optical Raman spectroscopy demonstrate that this crystalline solid differs from previously known phases.

  1. Hydrothermal Syntheses and Structures of Three-Dimensional Oxo-fluorovanadium Phosphates: [H 2N(C 2H 4) 2NH 2] 0.5[(VO) 4V(HPO 4) 2(PO 4) 2F 2(H 2O) 4] · 2H 2O and K 2[(VO) 3(PO 4) 2F 2(H 2O)] · H 2O

    NASA Astrophysics Data System (ADS)

    Bonavia, Grant; Haushalter, R. C.; Zubieta, Jon

    1996-11-01

    The hydrothermal reactions of FPO3H2with vanadium oxides result in the incorporation of fluoride into V-P-O frameworks as a consequence of metal-mediated hydrolysis of the fluorophosphoric acid to produce F-and PO3-4. By exploiting this convenient source of F-, two 3-dimensional oxo-fluorovanadium phosphate phases were isolated, [H2N(C2H4)2NH2]0.5[(VO)4V(HOP4)2(PO4)2F2(H2O)4) · 2H2O (1 · 2H2O) and K2[(VO)3(PO4)2F2(H2O)] · H2O (2 · H2O). Both anionic frameworks contain (VIVO)-F--phosphate layers, with confacial bioctahedral {(VIVO)2FO6} units as the fundamental motif. In the case of 1, the layers are linked through {VIIIO6} octahedra, while for 2 the interlayer connectivity is provided by edge-sharing {(VIVO)2F2O6} units. Crystal data are 1 · 2H2O, CH10FN0.5O13P2V2.5, monoclinicC2/m,a= 18.425(4) Å,c= 8.954(2) Å, β = 93.69(2)0,V= 1221.1(4) Å3,Z= 4,Dcalc= 2.423 g cm-3; 2 · H2O, H4F2K2O13P2V3, triclinicPoverline1,a= 7.298(1) Å,b= 8.929(2) Å,c = 10.090(2) Å, α = 104.50(2)0, β = 100.39(2)0, δ = 92.13(2)0,V= 623.8(3) Å3,Z= 2,Dcalc= 2.891 g cm-3.

  2. H2O2_COD_EPA; MEC_acclimation

    EPA Pesticide Factsheets

    H2O2_COD_EPA: Measurements of hydrogen peroxide and COD concentrations for water samples from the MEC reactors.MEC_acclimation: raw data for current and voltage of the anode in the MEC reactor.This dataset is associated with the following publication:Sim, J., J. An, E. Elbeshbishy, R. Hodon, and H. Lee. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells. Bioresource Technology. Elsevier Online, New York, NY, USA, 195: 31-36, (2015).

  3. Modulation of transglutaminase 2 activity in H9c2 cells by PKC and PKA signalling: a role for transglutaminase 2 in cytoprotection

    PubMed Central

    Almami, Ibtesam; Dickenson, John M; Hargreaves, Alan J; Bonner, Philip L R

    2014-01-01

    BACKGROUND AND PURPOSE Tissue transglutaminase (TG2) has been shown to mediate cell survival in many cell types. In this study, we investigated whether the role of TG2 in cytoprotection was mediated by the activation of PKA and PKC in cardiomyocyte-like H9c2 cells. EXPERIMENTAL APPROACH H9c2 cells were extracted following stimulation with phorbol-12-myristate-13-acetate (PMA) and forskolin. Transglutaminase activity was determined using an amine incorporating and a protein crosslinking assay. The presence of TG isoforms (TG1, 2, 3) was determined using Western blot analysis. The role of TG2 in PMA- and forskolin-induced cytoprotection was investigated by monitoring H2O2-induced oxidative stress in H9c2 cells. KEY RESULTS Western blotting showed TG2 >> TG1 protein expression but no detectable TG3. The amine incorporating activity of TG2 in H9c2 cells increased in a time and concentration-dependent manner following stimulation with PMA and forskolin. PMA and forskolin-induced TG2 activity was blocked by PKC (Ro 31-8220) and PKA (KT 5720 and Rp-8-Cl-cAMPS) inhibitors respectively. The PMA- and forskolin-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Immunocytochemistry revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (β-tubulin) and novel (α-actinin) protein substrates for TG2. Pretreatment with PMA and forskolin reversed H2O2-induced decrease in MTT reduction and release of LDH. TG2 inhibitors R283 and Z-DON blocked PMA- and forskolin-induced cytoprotection. CONCLUSIONS AND IMPLICATIONS TG2 activity was stimulated via PKA- and PKC-dependent signalling pathways in H9c2 cells These results suggest a role for TG2 in cytoprotection induced by these kinases. PMID:24821315

  4. TSA-induced cell death in prostate cancer cell lines is caspase-2 dependent and involves the PIDDosome.

    PubMed

    Taghiyev, Agshin F; Guseva, Natalya V; Glover, Rebecca A; Rokhlin, Oskar W; Cohen, Michael B

    2006-09-01

    The histone deacetylase inhibitor Trichostatin A (TSA) has previously been found to induce caspase activity in the human prostate cancer cell lines DU145 and LNCaP. TSA treatment resulted in the release of cytochrome c and Smac/DIABLO from mitochondria in DU145, and activation of caspase-9 in both cell lines. We concluded that TSA mediated its effect via the mitochondrial pathway. The aim of the current study was to determine how TSA initiated the caspase cascade. The results revealed that caspase-2 plays an important role in TSA-induced apoptosis. Inhibition of caspase-2 by siRNA or expression of caspase-2dn substantially decreased caspase activity after TSA treatment in both cell lines, siRNA caspase-2 also inhibited TSA-induced cell death. Caspase-2 acts upstream of caspase-8 and -9 and mediates mitochondrial cytochrome c release. Coimmunoprecipitation experiments show that caspase-2 formed protein complexes with RADD/RAIDD and PIDD. Together, these data indicate that caspase-2 initiates caspase cascade after TSA treatment and involves the formation of the PIDDosome.

  5. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} induces renal epithelial cell death through NF-{kappa}B-dependent and MAPK-independent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Dae Sik; Kwon, Chae Hwa; Park, Ji Yeon

    2006-11-01

    The peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) ligand 15d-PGJ{sub 2} induces cell death in renal proximal tubular cells. However, the underlying molecular mechanism(s) remains unidentified. The present study was undertaken to examine the roles of reactive oxygen species (ROS), mitogen-activated protein kinase, and NF-{kappa}B in opossum kidney (OK) cell death induced by 15d-PGJ{sub 2}. Treatment of OK cells with 15d-PGJ{sub 2} resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. 15d-PGJ{sub 2} increased ROS production and the effect was inhibited by catalase and N-acetylcysteine. The 15d-PGJ{sub 2}-induced cell death was also prevented by these antioxidants, suggesting thatmore » the cell death was associated with ROS generation. The PPAR{gamma} antagonist GW9662 did not prevent the 15d-PGJ{sub 2}-induced cell death. 15d-PGJ{sub 2} caused a transient activation of extracellular signal-regulated kinase (ERK). However, inhibitors (PD98059 and U0126) of MEK, an ERK upstream kinase, did not alter the 15d-PGJ{sub 2}-induced cell death. Transfection with constitutively active MEK and dominant-negative MEK had no effect on the cell death. 15d-PGJ{sub 2} inhibited the NF-{kappa}B transcriptional activity, which was accompanied by an inhibition of nuclear translocation of the NF-{kappa}B subunit p65 and impairment in DNA binding. Inhibition of NF-{kappa}B with a NF-{kappa}B specific inhibitor pyrrolidinecarbodithioate and transfection with I{kappa}B{alpha} (S32A/36A) caused cell death. These results suggest that the 5d-PGJ{sub 2}-induced OK cell death was associated with ROS production and NF-{kappa}B inhibition, but not with MAPK activation.« less

  6. La0.8Sr0.2Co0.8Ni0.2O3-δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells

    NASA Astrophysics Data System (ADS)

    Zheng, Haoyu; Tian, Yunfeng; Zhang, Lingling; Chi, Bo; Pu, Jian; Jian, Li

    2018-04-01

    High-temperature H2O/CO2 co-electrolysis through reversible solid oxide electrolysis cell (SOEC) provides potentially a feasible and eco-friendly way to convert electrical energy into chemicals stored in syngas. In this work, La0.8Sr0.2Co0.8Ni0.2O3-δ (LSCN) impregnated Gd0.1Ce0.9O1.95 (GDC)-(La0.8Sr0.2)0.95MnO3-δ (LSM) composite oxygen electrode is studied as high-performance electrode for H2O/CO2 co-electrolysis. The LSCN impregnated cell exhibits competitive performance with the peak power density of 1057 mW cm-2 at 800 °C in solid oxide fuel cell (SOFC) mode; in co-electrolysis mode, the current density can reach 1.60 A cm-2 at 1.5 V at 800 °C with H2O/CO2 ratio of 2/1. With LSCN nanoparticles dispersed on the surface of GDC-LSM to maximize the reaction active sites, the LSCN impregnated cell shows significant enhanced electrochemical performance at both SOEC and SOFC modes. The influence of feed gas composition (H2O-H2-CO2) and operating voltages on the performance of co-electrolysis are discussed in detail. The cell shows a very stable performance without obvious degradation for more than 100 h. Post-test characterization is analyzed in detail by multiple measurements.

  7. Dual-Enzyme Characteristics of Polyvinylpyrrolidone-Capped Iridium Nanoparticles and Their Cellular Protective Effect against H2O2-Induced Oxidative Damage.

    PubMed

    Su, Hua; Liu, Dan-Dan; Zhao, Meng; Hu, Wei-Liang; Xue, Shan-Shan; Cao, Qian; Le, Xue-Yi; Ji, Liang-Nian; Mao, Zong-Wan

    2015-04-22

    Polyvinylpyrrolidone-stabilized iridium nanoparticles (PVP-IrNPs), synthesized by the facile alcoholic reduction method using abundantly available PVP as protecting agents, were first reported as enzyme mimics showing intrinsic catalase- and peroxidase-like activities. The preparation procedure was much easier and more importantly, kinetic studies found that the catalytic activity of PVP-IrNPs was comparable to previously reported platinum nanoparticles. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) characterization indicated that PVP-IrNPs had the average size of approximately 1.5 nm and mainly consisted of Ir(0) chemical state. The mechanism of PVP-IrNPs' dual-enzyme activities was investigated using XPS, Electron spin resonance (ESR) and cytochrome C-based electron transfer methods. The catalase-like activity was related to the formation of oxidized species Ir(0)@IrO2 upon reaction with H2O2. The peroxidase-like activity originated from their ability acting as electron transfer mediators during the catalysis cycle, without the production of hydroxyl radicals. Interestingly, the protective effect of PVP-IrNPs against H2O2-induced cellular oxidative damage was investigated in an A549 lung cancer cell model and PVP-IrNPs displayed excellent biocompatibility and antioxidant activity. Upon pretreatment of cells with PVP-IrNPs, the intracellular reactive oxygen species (ROS) level in response to H2O2 was decreased and the cell viability increased. This work will facilitate studies on the mechanism and biomedical application of nanomaterials-based enzyme mimic.

  8. Oxidative stress alters mitochondrial bioenergetics and modifies pancreatic cell death independently of cyclophilin D, resulting in an apoptosis-to-necrosis shift

    PubMed Central

    Armstrong, Jane A.; Cash, Nicole J.; Ouyang, Yulin; Morton, Jack C.; Chvanov, Michael; Latawiec, Diane; Awais, Muhammad; Tepikin, Alexei V.; Sutton, Robert; Criddle, David N.

    2018-01-01

    Mitochondrial dysfunction lies at the core of acute pancreatitis (AP). Diverse AP stimuli induce Ca2+-dependent formation of the mitochondrial permeability transition pore (MPTP), a solute channel modulated by cyclophilin D (CypD), the formation of which causes ATP depletion and necrosis. Oxidative stress reportedly triggers MPTP formation and is elevated in clinical AP, but how reactive oxygen species influence cell death is unclear. Here, we assessed potential MPTP involvement in oxidant-induced effects on pancreatic acinar cell bioenergetics and fate. H2O2 application promoted acinar cell apoptosis at low concentrations (1–10 μm), whereas higher levels (0.5–1 mm) elicited rapid necrosis. H2O2 also decreased the mitochondrial NADH/FAD+ redox ratio and ΔΨm in a concentration-dependent manner (10 μm to 1 mm H2O2), with maximal effects at 500 μm H2O2. H2O2 decreased the basal O2 consumption rate of acinar cells, with no alteration of ATP turnover at <50 μm H2O2. However, higher H2O2 levels (≥50 μm) diminished spare respiratory capacity and ATP turnover, and bioenergetic collapse, ATP depletion, and cell death ensued. Menadione exerted detrimental bioenergetic effects similar to those of H2O2, which were inhibited by the antioxidant N-acetylcysteine. Oxidant-induced bioenergetic changes, loss of ΔΨm, and cell death were not ameliorated by genetic deletion of CypD or by its acute inhibition with cyclosporine A. These results indicate that oxidative stress alters mitochondrial bioenergetics and modifies pancreatic acinar cell death. A shift from apoptosis to necrosis appears to be associated with decreased mitochondrial spare respiratory capacity and ATP production, effects that are independent of CypD-sensitive MPTP formation. PMID:29626097

  9. Real-Time H2 O2 Measurements in Bone Marrow Mesenchymal Stem Cells (MSCs) Show Increased Antioxidant Capacity in Cells From Osteoporotic Women.

    PubMed

    Román, Flavia; Urra, Carla; Porras, Omar; Pino, Ana María; Rosen, Clifford J; Rodríguez, Juan Pablo

    2017-03-01

    Oxidative stress (OS) derived from an increase in intracellular reactive oxygen species (ROS) is a major determinant of aging and lifespan. It has also been associated with several age-related disorders, like postmenopausal osteoporosis of Mesenchymal stem cells (MSCs). MSCs are the common precursors for osteoblasts and adipocytes; appropriate commitment and differentiation of MSCs into a specific phenotype is modulated, among other factors, by ROS balance. MSCs have shown more resistance to ROS than differentiated cells, and their redox status depends on complex and abundant anti-oxidant mechanisms. The purpose of this work was to analyze in real time, H 2 O 2 signaling in individual h-MSCs, and to compare the kinetic parameters of H 2 O 2 management by cells derived from both control (c-) and osteoporotic (o-) women. For these purposes, cells were infected with a genetically encoded fluorescent biosensor named HyPer, which is specific for detecting H 2 O 2 inside living cells. Subsequently, cells were sequentially challenged with 50 and 500 μM H 2 O 2 pulses, and the cellular response was recorded in real time. The results demonstrated adequate expression of the biosensor allowing registering fluorescence from HyPer at a single cell level. Comparison of the response of c- and o-MSCs to the oxidant challenges demonstrated improved antioxidant activity in o-MSCs. This was further corroborated by measuring the relative expression of mRNAs for catalase, superoxide dismutase-1, thioredoxine, and peroxiredoxine, as well as by cell-surviving capacity under short-term H 2 O 2 treatment. We conclude that functional differences exist between healthy and osteoporotic human MSCs. The mechanism for these differences requires further study. J. Cell. Biochem. 118: 585-593, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. O2⋅- and H2O2-Mediated Disruption of Fe Metabolism Causes the Differential Susceptibility of NSCLC and GBM Cancer Cells to Pharmacological Ascorbate.

    PubMed

    Schoenfeld, Joshua D; Sibenaller, Zita A; Mapuskar, Kranti A; Wagner, Brett A; Cramer-Morales, Kimberly L; Furqan, Muhammad; Sandhu, Sonia; Carlisle, Thomas L; Smith, Mark C; Abu Hejleh, Taher; Berg, Daniel J; Zhang, Jun; Keech, John; Parekh, Kalpaj R; Bhatia, Sudershan; Monga, Varun; Bodeker, Kellie L; Ahmann, Logan; Vollstedt, Sandy; Brown, Heather; Shanahan Kauffman, Erin P; Schall, Mary E; Hohl, Ray J; Clamon, Gerald H; Greenlee, Jeremy D; Howard, Matthew A; Schultz, Michael K; Smith, Brian J; Riley, Dennis P; Domann, Frederick E; Cullen, Joseph J; Buettner, Garry R; Buatti, John M; Spitz, Douglas R; Allen, Bryan G

    2017-04-10

    Pharmacological ascorbate has been proposed as a potential anti-cancer agent when combined with radiation and chemotherapy. The anti-cancer effects of ascorbate are hypothesized to involve the autoxidation of ascorbate leading to increased steady-state levels of H 2 O 2 ; however, the mechanism(s) for cancer cell-selective toxicity remain unknown. The current study shows that alterations in cancer cell mitochondrial oxidative metabolism resulting in increased levels of O 2 ⋅- and H 2 O 2 are capable of disrupting intracellular iron metabolism, thereby selectively sensitizing non-small-cell lung cancer (NSCLC) and glioblastoma (GBM) cells to ascorbate through pro-oxidant chemistry involving redox-active labile iron and H 2 O 2 . In addition, preclinical studies and clinical trials demonstrate the feasibility, selective toxicity, tolerability, and potential efficacy of pharmacological ascorbate in GBM and NSCLC therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. H2O2 Production in Species of the Lactobacillus acidophilus Group: a Central Role for a Novel NADH-Dependent Flavin Reductase

    PubMed Central

    Hertzberger, Rosanne; Arents, Jos; Dekker, Henk L.; Pridmore, R. David; Gysler, Christof; Kleerebezem, Michiel

    2014-01-01

    Hydrogen peroxide production is a well-known trait of many bacterial species associated with the human body. In the presence of oxygen, the probiotic lactic acid bacterium Lactobacillus johnsonii NCC 533 excretes up to 1 mM H2O2, inducing growth stagnation and cell death. Disruption of genes commonly assumed to be involved in H2O2 production (e.g., pyruvate oxidase, NADH oxidase, and lactate oxidase) did not affect this. Here we describe the purification of a novel NADH-dependent flavin reductase encoded by two highly similar genes (LJ_0548 and LJ_0549) that are conserved in lactobacilli belonging to the Lactobacillus acidophilus group. The genes are predicted to encode two 20-kDa proteins containing flavin mononucleotide (FMN) reductase conserved domains. Reductase activity requires FMN, flavin adenine dinucleotide (FAD), or riboflavin and is specific for NADH and not NADPH. The Km for FMN is 30 ± 8 μM, in accordance with its proposed in vivo role in H2O2 production. Deletion of the encoding genes in L. johnsonii led to a 40-fold reduction of hydrogen peroxide formation. H2O2 production in this mutant could only be restored by in trans complementation of both genes. Our work identifies a novel, conserved NADH-dependent flavin reductase that is prominently involved in H2O2 production in L. johnsonii. PMID:24487531

  12. Determination of NAD + and NADH level in a Single Cell Under H 2O 2 Stress by Capillary Electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Wenjun

    2008-01-01

    A capillary electrophoresis (CE) method is developed to determine both NAD + and NADH levels in a single cell, based on an enzymatic cycling reaction. The detection limit can reach down to 0.2 amol NAD + and 1 amol NADH on a home-made CE-LIF setup. The method showed good reproducibility and specificity. After an intact cell was injected into the inlet of a capillary and lysed using a Tesla coil, intracellular NAD + and NADH were separated, incubated with the cycling buffer, and quantified by the amount of fluorescent product generated. NADH and NAD + levels of single cells ofmore » three cell lines and primary astrocyte culture were determined using this method. Comparing cellular NAD + and NADH levels with and without exposure to oxidative stress induced by H 2O 2, it was found that H9c2 cells respond to the stress by reducing both cellular NAD + and NADH levels, while astrocytes respond by increasing cellular NADH/NAD + ratio.« less

  13. Vacuolar and cytoskeletal dynamics during elicitor-induced programmed cell death in tobacco BY-2 cells.

    PubMed

    Higaki, Takumi; Kadota, Yasuhiro; Goh, Tatsuaki; Hayashi, Teruyuki; Kutsuna, Natsumaro; Sano, Toshio; Hasezawa, Seiichiro; Kuchitsu, Kazuyuki

    2008-09-01

    Responses of plant cells to environmental stresses often involve morphological changes, differentiation and redistribution of various organelles and cytoskeletal network. Tobacco BY-2 cells provide excellent model system for in vivo imaging of these intracellular events. Treatment of the cell cycle-synchronized BY-2 cells with a proteinaceous oomycete elicitor, cryptogein, induces highly synchronous programmed cell death (PCD) and provide a model system to characterize vacuolar and cytoskeletal dynamics during the PCD. Sequential observation revealed dynamic reorganization of the vacuole and actin microfilaments during the execution of the PCD. We further characterized the effects cryptogein on mitotic microtubule organization in cell cycle-synchronized cells. Cryptogein treatment at S phase inhibited formation of the preprophase band, a cortical microtubule band that predicts the cell division site. Cortical microtubules kept their random orientation till their disruption that gradually occurred during the execution of the PCD twelve hours after the cryptogein treatment. Possible molecular mechanisms and physiological roles of the dynamic behavior of the organelles and cytoskeletal network in the pathogenic signal-induced PCD are discussed.

  14. Synergistic effect of sunlight induced photothermal conversion and H2O2 release based on hybridized tungsten oxide gel for cancer inhibition

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Gao, Yibo; Gao, Xinghua; Wang, Hua; Tian, Jingxuan; Wang, Li; Zhou, Bingpu; Ye, Ziran; Wan, Jun; Wen, Weijia

    2016-10-01

    A highly efficient photochromic hydrogel was successfully fabricated via casting precursor, which is based on amorphous tungsten oxide and poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide). Under simulated solar illumination, the hydrogel has a rapid and controlled temperature increasing ratio as its coloration degree. Localized electrons in the amorphous tungsten oxide play a vital role in absorption over a broad range of wavelengths from 400 nm to 1100 nm, encompassing the entire visible light and infrared regions in the solar spectrum. More importantly, the material exhibits sustainable released H2O2 induced by localized electrons, which has a synergistic effect with the rapid surface temperature increase. The amount of H2O2 released by each film can be tuned by the light irradiation, and the film coloration can indicate the degree of oxidative stress. The ability of the H2O2-releasing gels in vitro study was investigated to induce apoptosis in melanoma tumor cells and NIH 3T3 fibroblasts. The in vivo experimental results indicate that these gels have a greater healing effect than the control in the early stages of tumor formation.

  15. Synergistic effect of sunlight induced photothermal conversion and H2O2 release based on hybridized tungsten oxide gel for cancer inhibition

    PubMed Central

    Wang, Cong; Gao, Yibo; Gao, Xinghua; Wang, Hua; Tian, Jingxuan; Wang, Li; Zhou, Bingpu; Ye, Ziran; Wan, Jun; Wen, Weijia

    2016-01-01

    A highly efficient photochromic hydrogel was successfully fabricated via casting precursor, which is based on amorphous tungsten oxide and poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide). Under simulated solar illumination, the hydrogel has a rapid and controlled temperature increasing ratio as its coloration degree. Localized electrons in the amorphous tungsten oxide play a vital role in absorption over a broad range of wavelengths from 400 nm to 1100 nm, encompassing the entire visible light and infrared regions in the solar spectrum. More importantly, the material exhibits sustainable released H2O2 induced by localized electrons, which has a synergistic effect with the rapid surface temperature increase. The amount of H2O2 released by each film can be tuned by the light irradiation, and the film coloration can indicate the degree of oxidative stress. The ability of the H2O2-releasing gels in vitro study was investigated to induce apoptosis in melanoma tumor cells and NIH 3T3 fibroblasts. The in vivo experimental results indicate that these gels have a greater healing effect than the control in the early stages of tumor formation. PMID:27775086

  16. Image-Based Measurement of H2O2 Reaction-Diffusion in Wounded Zebrafish Larvae.

    PubMed

    Jelcic, Mark; Enyedi, Balázs; Xavier, João B; Niethammer, Philipp

    2017-05-09

    Epithelial injury induces rapid recruitment of antimicrobial leukocytes to the wound site. In zebrafish larvae, activation of the epithelial NADPH oxidase Duox at the wound margin is required early during this response. Before injury, leukocytes are near the vascular region, that is, ∼100-300 μm away from the injury site. How Duox establishes long-range signaling to leukocytes is unclear. We conceived that extracellular hydrogen peroxide (H 2 O 2 ) generated by Duox diffuses through the tissue to directly regulate chemotactic signaling in these cells. But before it can oxidize cellular proteins, H 2 O 2 must get past the antioxidant barriers that protect the cellular proteome. To test whether, or on which length scales this occurs during physiological wound signaling, we developed a computational method based on reaction-diffusion principles that infers H 2 O 2 degradation rates from intravital H 2 O 2 -biosensor imaging data. Our results indicate that at high tissue H 2 O 2 levels the peroxiredoxin-thioredoxin antioxidant chain becomes overwhelmed, and H 2 O 2 degradation stalls or ceases. Although the wound H 2 O 2 gradient reaches deep into the tissue, it likely overcomes antioxidant barriers only within ∼30 μm of the wound margin. Thus, Duox-mediated long-range signaling may require other spatial relay mechanisms besides extracellular H 2 O 2 diffusion. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. The sirtuin 1/2 inhibitor tenovin-1 induces a nonlinear apoptosis-inducing factor-dependent cell death in a p53 null Ewing's sarcoma cell line.

    PubMed

    Marx, Christian; Marx-Blümel, Lisa; Lindig, Nora; Thierbach, René; Hoelzer, Doerte; Becker, Sabine; Wittig, Susan; Lehmann, Roland; Slevogt, Hortense; Heinzel, Thorsten; Wang, Zhao-Qi; Beck, James F; Sonnemann, Jürgen

    2018-06-01

    The sirtuin 1/2 inhibitor tenovin-1 activates p53 and may have potential in the management of cancer. Here, we investigated the responsiveness of Ewing's sarcoma cells to tenovin-1. We examined its effects in two Ewing's sarcoma cell lines with different p53 status, i.e. in p53 wild-type and p53 null cells. Effects were assessed by flow cytometric analyses of cell death, mitochondrial membrane depolarization and reactive oxygen species (ROS) generation, by caspase 3/7 activity measurement, by mRNA expression profiling and by immunoblotting. Tenovin-1 elicited caspase-mediated cell death in p53 wild-type cells, but caspase-independent cell death in p53 null cells. Remarkably, it induced a nonlinear concentration response in the latter: low concentrations of tenovin-1 were much more effective than were higher concentrations. Tenovin-1's effects in p53 null cells involved gene expression changes of Bcl-2 family members, mitochondrial membrane depolarization, nuclear translocation of apoptosis-inducing factor, ROS formation and DNA damage; all these effects followed a bell-shaped pattern. In conclusion, our results provide new insights into tenovin-1's mode of action by demonstrating that it can induce different pathways of cell death.

  18. Tunable Syngas Production from CO2 and H2 O in an Aqueous Photoelectrochemical Cell.

    PubMed

    Chu, Sheng; Fan, Shizhao; Wang, Yongjie; Rossouw, David; Wang, Yichen; Botton, Gianluigi A; Mi, Zetian

    2016-11-07

    Syngas, the mixture of CO and H 2 , is a key feedstock to produce methanol and liquid fuels in industry, yet limited success has been made to develop clean syngas production using renewable solar energy. We demonstrated that syngas with a benchmark turnover number of 1330 and a desirable CO/H 2 ratio of 1:2 could be attained from photoelectrochemical CO 2 and H 2 O reduction in an aqueous medium by exploiting the synergistic co-catalytic effect between Cu and ZnO. The CO/H 2 ratio in the syngas products was tuned in a large range between 2:1 and 1:4 with a total unity Faradaic efficiency. Moreover, a high Faradaic efficiency of 70 % for CO was acheived at underpotential of 180 mV, which is the lowest potential ever reported in an aqueous photoelectrochemical cell. It was found that the combination of Cu and ZnO offered complementary chemical properties that lead to special reaction channels not seen in Cu, or ZnO alone. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effects of hydrogen peroxide on vestibular hair cells in the guinea pig: importance of cell membrane impairment preceding cell death.

    PubMed

    Tanigawa, Tohru; Tanaka, Hirokazu; Hayashi, Ken; Nakayama, Meiho; Iwasaki, Satoshi; Banno, Shinya; Takumida, Masaya; Brodie, Hirally; Inafuku, Shigeru

    2008-11-01

    Our findings indicate that oxidative stress induces morphological changes in vestibular hair cells and subsequently leads to cell death after 2.5 h. The aim of this study was to confirm the direct effects of oxidative stress on vestibular hair cells. Vestibular hair cells isolated from guinea pigs were loaded with 1 or 10 mM H2O2, and morphological changes were observed. In addition, in a viability/cytotoxicity assay system, the numbers of dead cells in isolated cristae ampullares were counted 1, 3, and 5 h after loading with H2O2 or artificial perilymph (control). Reactive oxygen, in the form of H2O2, directly affects the cell membrane of isolated vestibular hair cells and causes swelling of the cell body, bleb formation, and shortening of the neck region. Morphological changes occur within 30 min after loading with H2O2, but a significant increase in the number of dead cells is noted only after 3 h.

  20. Synthesis, DFT calculations of structure, vibrational and thermal decomposition studies of the metal complex Pb[Mn(C3H2O4)2(H2O)2].

    PubMed

    Gil, Diego M; Carbonio, Raúl E; Gómez, María Inés

    2015-04-15

    The metallo-organic complex Pb[Mn(C3H2O4)2(H2O)2] was synthesized and characterized by IR and Raman spectroscopy and powder X-ray diffraction methods. The cell parameters for the complex were determined from powder X-ray diffraction using the autoindexing program TREOR, and refined by the Le Bail method with the Fullprof program. A hexagonal unit cell was determined with a=b=13.8366(7)Å, c=9.1454(1)Å, γ=120°. The DFT calculated geometry of the complex anion [Mn(C3H2O4)2(H2O)2](2-) is very close to the experimental data reported for similar systems. The IR and Raman spectra and the thermal analysis of the complex indicate that only one type of water molecules is present in the structure. The thermal decomposition of Pb[Mn(C3H2O4)2(H2O)2] at 700 °C in air produces PbO and Pb2MnO4 as final products. The crystal structure of the mixed oxide is very similar to that reported for Pb3O4. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Visible photoelectrochemical water splitting into H 2 and O 2 in a dye-sensitized photoelectrosynthesis cell

    DOE PAGES

    Alibabaei, Leila; Sherman, Benjamin D.; Norris, Michael R.; ...

    2015-04-27

    A hybrid strategy for solar water splitting is exploited here based on a dye-sensitized photoelectrosynthesis cell (DSPEC) with a mesoporous SnO 2/TiO 2 core/shell nanostructured electrode derivatized with a surface-bound Ru(II) polypyridyl-based chromophore–catalyst assembly. The assembly, [(4,4’-(PO 3H 2) 2bpy) 2Ru(4-Mebpy-4’-bimpy)Ru(tpy)(OH 2)] 4+ ([RuaII-RubII-OH 2] 4+, combines both a light absorber and a water oxidation catalyst in a single molecule. It was attached to the TiO 2 shell by phosphonate-surface oxide binding. The oxide-bound assembly was further stabilized on the surface by atomic layer deposition (ALD) of either Al 2O 3 or TiO 2 overlayers. Illumination of the resulting fluorine-dopedmore » tin oxide (FTO)|SnO 2/TiO 2|-[Ru a II-Ru b II-OH 2] 4+(Al 2O 3 or TiO 2) photoanodes in photoelectrochemical cells with a Pt cathode and a small applied bias resulted in visible-light water splitting as shown by direct measurements of both evolved H 2 and O 2. The performance of the resulting DSPECs varies with shell thickness and the nature and extent of the oxide overlayer. Use of the SnO 2/TiO 2 core/shell compared with nanoITO/TiO 2 with the same assembly results in photocurrent enhancements of ~5. In conclusion, systematic variations in shell thickness and ALD overlayer lead to photocurrent densities as high as 1.97 mA/cm 2 with 445-nm, ~90-mW/cm 2 illumination in a phosphate buffer at pH 7.« less

  2. Thermodynamic and transport properties of frozen and reacting pH2-oH2 mixtures

    NASA Technical Reports Server (NTRS)

    Carter, H. G.; Bullock, R. E.

    1972-01-01

    Application of experimental state data and spectroscopic term values shows that the thermodynamic and transport properties of reacting pH2-oH2 mixtures are considerably different than those of chemically frozen pH2 at temperatures below 300 R. Calculated H-S data also show that radiation-induced pH2-oH2 equilibration at constant enthalpy produces a temperature drop of at least 28 R, corresponding to an ideal shaft work loss of 15% or more for a turbine operating downstream from the point of conversion. Aside from differences in thermodynamic and transport properties, frozen pH2-oH2 mixtures may differ from pure pH2 on a purely hydrodynamical basis.

  3. X-ray irradiation activates K+ channels via H2O2 signaling.

    PubMed

    Gibhardt, Christine S; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-09-09

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.

  4. Trimetallic Hybrid Nanoflower-Decorated MoS2 Nanosheet Sensor for Direct in Situ Monitoring of H2O2 Secreted from Live Cancer Cells.

    PubMed

    Dou, Baoting; Yang, Jianmei; Yuan, Ruo; Xiang, Yun

    2018-05-01

    In situ monitoring of hydrogen peroxide (H 2 O 2 ) secreted from live cells plays a critical role in elucidating many cellular signaling pathways, and it is a significant challenge to selectively detect these low levels of endogenous H 2 O 2 . To address this challenge, we report the establishment of a trimetallic hybrid nanoflower-decorated MoS 2 nanosheet-modified sensor for in situ monitoring of H 2 O 2 secreted from live MCF-7 cancer cells. The Au-Pd-Pt nanoflower-dispersed MoS 2 nanosheets are synthesized by a simple wet-chemistry method, and the resulting nanosheet composites exhibit significantly enhanced catalytic activity toward electrochemical reduction of H 2 O 2 , due to the synergistic effect of the highly dispersed trimetallic hybrid nanoflowers and the MoS 2 nanosheets, thereby resulting in ultrasensitive detection of H 2 O 2 with a subnanomolar level detection limit in vitro. Also the immobilization of the laminin glycoproteins on the surface of the nanocomposites increases its biocompatibility for cell adhesion and growth, which enables in situ electrochemical monitoring of H 2 O 2 directly secreted from live cells for potential application of such sensor in cellular biology, clinical diagnosis, and pathophysiology.

  5. Single-cell resolution of intracellular T cell Ca2+ dynamics in response to frequency-based H2O2 stimulation.

    PubMed

    Kniss-James, Ariel S; Rivet, Catherine A; Chingozha, Loice; Lu, Hang; Kemp, Melissa L

    2017-03-01

    Adaptive immune cells, such as T cells, integrate information from their extracellular environment through complex signaling networks with exquisite sensitivity in order to direct decisions on proliferation, apoptosis, and cytokine production. These signaling networks are reliant on the interplay between finely tuned secondary messengers, such as Ca 2+ and H 2 O 2 . Frequency response analysis, originally developed in control engineering, is a tool used for discerning complex networks. This analytical technique has been shown to be useful for understanding biological systems and facilitates identification of the dominant behaviour of the system. We probed intracellular Ca 2+ dynamics in the frequency domain to investigate the complex relationship between two second messenger signaling molecules, H 2 O 2 and Ca 2+ , during T cell activation with single cell resolution. Single-cell analysis provides a unique platform for interrogating and monitoring cellular processes of interest. We utilized a previously developed microfluidic device to monitor individual T cells through time while applying a dynamic input to reveal a natural frequency of the system at approximately 2.78 mHz stimulation. Although our network was much larger with more unknown connections than previous applications, we are able to derive features from our data, observe forced oscillations associated with specific amplitudes and frequencies of stimuli, and arrive at conclusions about potential transfer function fits as well as the underlying population dynamics.

  6. Insights into the mechanism of human papillomavirus E2-induced procaspase-8 activation and cell death

    NASA Astrophysics Data System (ADS)

    Singh, Nitu; Senapati, Sanjib; Bose, Kakoli

    2016-02-01

    High-risk human papillomavirus (HR-HPV) E2 protein, the master regulator of viral life cycle, induces apoptosis of host cell that is independent of its virus-associated regulatory functions. E2 protein of HR-HPV18 has been found to be involved in novel FADD-independent activation of caspase-8, however, the molecular basis of this unique non-death-fold E2-mediated apoptosis is poorly understood. Here, with an interdisciplinary approach that involves in silico, mutational, biochemical and biophysical probes, we dissected and characterized the E2-procasapse-8 binding interface. Our data demonstrate direct non-homotypic interaction of HPV18 E2 transactivation domain (TAD) with α2/α5 helices of procaspase-8 death effector domain-B (DED-B). The observed interaction mimics the homotypic DED-DED complexes, wherein the conserved hydrophobic motif of procaspase-8 DED-B (F122/L123) occupies a groove between α2/α3 helices of E2 TAD. This interaction possibly drives DED oligomerization leading to caspase-8 activation and subsequent cell death. Furthermore, our data establish a model for E2-induced apoptosis in HR-HPV types and provide important clues for designing E2 analogs that might modulate procaspase-8 activation and hence apoptosis.

  7. Apoptosis inducing factor gene depletion inhibits zearalenone-induced cell death in a goat Leydig cell line.

    PubMed

    Yang, Diqi; Jiang, Tingting; Lin, Pengfei; Chen, Huatao; Wang, Lei; Wang, Nan; Zhao, Fan; Tang, Keqiong; Zhou, Dong; Wang, Aihua; Jin, Yaping

    2017-01-01

    Zearalenone (ZEA) is a contaminant of human food and animal feedstuffs that causes health hazards. However, the signal pathways underlying ZEA toxicity remain elusive. The aims of this study were to determine which pathways are involved in ZEA-induced cell death and investigate the effect of apoptosis inducing factor (AIF) on cell death during ZEA treatment in the immortalized goat Leydig cell line hTERT-GLC. This study showed that ZEA-induced cell death in hTERT-GLCs works via endoplasmic reticulum (ER) stress, the caspase-dependent pathway, the caspase-independent pathway and autophagy. Recombinant lentiviral vectors were constructed to silence AIF expression in hTERT-GLCs. Flow cytometry results showed that knockdown of AIF diminished ZEA-induced cell apoptosis in hTERT-GLCs. Furthermore, we found AIF depletion down-regulated phosphoIRE1α, GRP78, CHOP and promoted the switch of LC3-I to LC3-II. Therefore, ZEA induces cytotoxicity in hTERT-GLCs via different pathways, while AIF-mediated signaling plays a critical role in ZEA-induced cell death in hTERT-GLCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. RuvBL2 Is Involved in Histone Deacetylase Inhibitor PCI-24781-Induced Cell Death in SK-N-DZ Neuroblastoma Cells

    PubMed Central

    Zhan, Qinglei; Tsai, Sauna; Lu, Yonghai; Wang, Chunmei; Kwan, Yiuwa; Ngai, Saiming

    2013-01-01

    Neuroblastoma is the second most common solid tumor diagnosed during infancy. The survival rate among children with high-risk neuroblastoma is less than 40%, highlighting the urgent needs for new treatment strategies. PCI-24781 is a novel hydroxamic acid-based histone deacetylase (HDAC) inhibitor that has high efficacy and safety for cancer treatment. However, the underlying mechanisms of PCI-24781 are not clearly elucidated in neuroblastoma cells. In the present study, we demonstrated that PCI-24781 treatment significantly inhibited tumor growth at very low doses in neuroblastoma cells SK-N-DZ, not in normal cell line HS-68. However, PCI-24781 caused the accumulation of acetylated histone H3 both in SK-N-DZ and HS-68 cell line. Treatment of SK-N-DZ with PCI-24781 also induced cell cycle arrest in G2/M phase and activated apoptosis signaling pathways via the up-regulation of DR4, p21, p53 and caspase 3. Further proteomic analysis revealed differential protein expression profiles between non-treated and PCI-24781 treated SK-N-DZ cells. Totally 42 differentially expressed proteins were identified by MALDI-TOF MS system. Western blotting confirmed the expression level of five candidate proteins including prohibitin, hHR23a, RuvBL2, TRAP1 and PDCD6IP. Selective knockdown of RuvBL2 rescued cells from PCI-24781-induced cell death, implying that RuvBL2 might play an important role in anti-tumor activity of PCI-24781 in SK-N-DZ cells. The present results provide a new insight into the potential mechanism of PCI-24781 in SK-N-DZ cell line. PMID:23977108

  9. Hydrogen Suppresses Hypoxia/Reoxygenation-Induced Cell Death in Hippocampal Neurons Through Reducing Oxidative Stress.

    PubMed

    Wei, Rong; Zhang, Rufang; Xie, Yewei; Shen, Li; Chen, Fang

    2015-01-01

    Deep hypothermic circulatory arrest (DHCA) is a cerebral protection technique that has been used in the operations involving the aortic arch and brain aneurysm for decades. We previous showed that DHCA treated rats developed a significant oxidative stress and apoptosis in neurons. We here intend to investigate the protective the effect of hydrogen against oxidative stress-induced cell injury and the involved mechanisms using an in vitro experimental model of hypoxia/reoxygenation (H/R) on HT-22 cells. The model of H/R was established using an airtight culture container and the anaeropack. Measurement of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production was used H2DCFDA and JC-1 staining. Western blot was used for the quantification of Akt, p-Akt, Bcl-2, Bax and cleaved caspase-3 proteins. The microRNA (miRNA) profile in hippocampal neurons from rat model of DHCA was determined by miRNA deep sequencing. The elevation of ROS and reduction of MMP were significantly induced by the treatment with hypoxia for 18 h followed by reoxygenation for 6 h. Hydrogen treatment significantly reduced H/R-caused cell death. The levels of p-Akt (Ser 473) and Bcl-2 were significantly increased while Bax and cleaved caspase-3 were decreased by hydrogen treatment on the model of H/R. The expression of miR-200 family was significantly elevated in model of DHCA and H/R. Hydrogen administration inhibited the H/R-induced expression of miR-200 family in HT-22 cells. In addition, inhibition of miR-200 family suppressed H/R-caused cell death through reducing ROS production. These results suggest that H/R causes oxidative stress-induced cell death and that the hydrogen protects against H/R-induced cell death in HT22 cells, in part, due to reducing expression of miR-200 family. © 2015 S. Karger AG, Basel.

  10. Conditions Inducing Excessive O-GlcNAcylation Inhibit BMP2-Induced Osteogenic Differentiation of C2C12 Cells.

    PubMed

    Gu, Hanna; Song, Mina; Boonanantanasarn, Kanitsak; Baek, Kyunghwa; Woo, Kyung Mi; Ryoo, Hyun-Mo; Baek, Jeong-Hwa

    2018-01-09

    Hyperglycemic conditions in diabetic patients can affect various cellular functions, including the modulation of osteogenic differentiation. However, the molecular mechanisms by which hyperglycemia affects osteogenic differentiation are yet to be clarified. This study aimed to investigate whether the aberrant increase in protein O -linked-β- N -acetylglucosamine glycosylation ( O -GlcNAcylation) contributes to the suppression of osteogenic differentiation due to hyperglycemia. To induce osteogenic differentiation, C2C12 cells were cultured in the presence of recombinant human bone morphogenetic protein 2 (BMP2). Excessive protein O -GlcNAcylation was induced by treating C2C12 cells with high glucose, glucosamine, or N -acetylglucosamine concentrations or by O -GlcNAc transferase (OGT) overexpression. The effect of O -GlcNAcylation on osteoblast differentiation was then confirmed by examining the expression levels of osteogenic marker gene mRNAs, activity of alkaline phosphatase, and transcriptional activity of Runx2, a critical transcription factor for osteoblast differentiation and bone formation. Cell treatment with high glucose, glucosamine or N -acetylglucosamine increased O -GlcNAcylation of Runx2 and the total levels of O -GlcNAcylated proteins, which led to a decrease in the transcriptional activity of Runx2, expression levels of osteogenic marker genes (Runx2, osterix, alkaline phosphatase, and type I collagen), and activity of alkaline phosphatase. These inhibitory effects were rescued by lowering protein O -GlcNAcylation levels by adding STO45849, an OGT inhibitor, or by overexpressing β- N -acetylglucosaminidase. Our findings suggest that excessive protein O -GlcNAcylation contributes to high glucose-suppressed osteogenic differentiation.

  11. Enhanced poly(γ-glutamic acid) production by H2 O2 -induced reactive oxygen species in the fermentation of Bacillus subtilis NX-2.

    PubMed

    Tang, Bao; Zhang, Dan; Li, Sha; Xu, Zongqi; Feng, Xiaohai; Xu, Hong

    2016-09-01

    Effects of reactive oxygen species (ROS) on cell growth and poly(γ-glutamic acid) (γ-PGA) synthesis were studied by adding hydrogen peroxide to a medium of Bacillus subtilis NX-2. After optimizing the addition concentration and time of H 2 O 2 , a maximum concentration of 33.9 g/L γ-PGA was obtained by adding 100 µM H 2 O 2 to the medium after 24 H. This concentration was 20.6% higher than that of the control. The addition of diphenyleneiodonium chloride (ROS inhibitor) can interdict the effect of H 2 O 2 -induced ROS. Transcriptional levels of the cofactors and relevant genes were also determined under ROS stress to illustrate the possible metabolic mechanism contributing to the improve γ-PGA production. The transcriptional levels of genes belonging to the tricarboxylic acid cycle and electron transfer chain system were significantly increased by ROS, which decreased the NADH/NAD + ratio and increased the ATP levels, thereby providing more reducing power and energy for γ-PGA biosynthesis. The enhanced γ-PGA synthetic genes also directly promoted the formation of γ-PGA. This study was the first to use the ROS control strategy for γ-PGA fermentation and provided valuable information on the possible mechanism by which ROS regulated γ-PGA biosynthesis in B. subtilis NX-2. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  12. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    NASA Astrophysics Data System (ADS)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  13. Thalidomide suppresses NF-kappa B activation induced by TNF and H2O2, but not that activated by ceramide, lipopolysaccharides, or phorbol ester.

    PubMed

    Majumdar, Sekhar; Lamothe, Betty; Aggarwal, Bharat B

    2002-03-15

    Thalidomide ([+]-alpha-phthalimidoglutarimide), a psychoactive drug that readily crosses the blood-brain barrier, has been shown to exhibit anti-inflammatory, antiangiogenic, and immunosuppressive properties through a mechanism that is not fully established. Due to the central role of NF-kappaB in these responses, we postulated that thalidomide mediates its effects through suppression of NF-kappaB activation. We investigated the effects of thalidomide on NF-kappaB activation induced by various inflammatory agents in Jurkat cells. The treatment of these cells with thalidomide suppressed TNF-induced NF-kappaB activation, with optimum effect occurring at 50 microg/ml thalidomide. These effects were not restricted to T cells, as other hematopoietic and epithelial cell types were also inhibited. Thalidomide suppressed H(2)O(2)-induced NF-kappaB activation but had no effect on NF-kappaB activation induced by PMA, LPS, okadaic acid, or ceramide, suggesting selectivity in suppression of NF-kappaB. The suppression of TNF-induced NF-kappaB activation by thalidomide correlated with partial inhibition of TNF-induced degradation of an inhibitory subunit of NF-kappaB (IkappaBalpha), abrogation of IkappaBalpha kinase activation, and inhibition of NF-kappaB-dependent reporter gene expression. Thalidomide abolished the NF-kappaB-dependent reporter gene expression activated by overexpression of TNFR1, TNFR-associated factor-2, and NF-kappaB-inducing kinase, but not that activated by the p65 subunit of NF-kappaB. Overall, our results clearly demonstrate that thalidomide suppresses NF-kappaB activation specifically induced by TNF and H(2)O(2) and that this may contribute to its role in suppression of proliferation, inflammation, angiogenesis, and the immune system.

  14. H2O2 Synthesis Induced by Irradiation of H2O with Energetic H(+) and Ar(+) Ions at Various Temperatures

    NASA Technical Reports Server (NTRS)

    Baragiola, R. A.; Loeffler, M. J.; Raut, U.; Vidal, R. A.; Carlson, R. W.

    2004-01-01

    The detection of H2O2 on Jupiter's icy satellite Europa by the Galileo NIMS instrument presented a strong evidence for the importance of radiation effects on icy surfaces. A few experiments have investigated whether solar flux of protons incident on Europa ice could cause a significant if any H2O2 production. These published results differ as to whether H2O2 can be formed by ions impacting water at temperatures near 80 K, which are appropriate to Europa. This discrepancy may be a result of the use of different incident ion energies, different vacuum conditions, or different ways of processing the data. The latter possibility comes about from the difficulty of identifying the 3.5 m peroxide OH band on the long wavelength wing of the much stronger water 3.1 m band. The problem is aggravated by using straight line baselines to represent the water OH band with a curvature, in the region of the peroxide band, that increases with temperature. To overcome this problem, we use polynomial baselines that provide good fits to the water band and its derivative.

  15. NbCZF1, a Novel C2H2-Type Zinc Finger Protein, as a New Regulator of SsCut-Induced Plant Immunity in Nicotiana benthamiana.

    PubMed

    Zhang, Huajian; Zhao, Tongyao; Zhuang, Peitong; Song, Zhiqiang; Du, Hui; Tang, Zhaozhao; Gao, Zhimou

    2016-12-01

    SsCut, which functions as an elicitor, can induce plant immunity. In this study, we utilized Nicotiana benthamiana and virus-induced gene silencing to decrease the expression of > 2,500 genes individually. Using this forward genetics approach, several genes were identified that, when silenced, compromised SsCut-triggered cell death based on a cell death assay. A C 2 H 2 -type zinc finger gene was isolated from N. benthamiana Sequence analysis indicated that the gene encodes a 27 kDa protein with 253 amino acids containing two typical C 2 H 2 -type zinc finger domains; this gene was named NbCZF1 We found that SsCut-induced cell death could be inhibited by virus-induced gene silencing of NbCZF1 in N. benthamiana In addition, SsCut induces stomatal closure, accompanied by reactive oxygen species (ROS) production by NADPH oxidases and nitric oxide (NO) production. NbCZF1-silenced plants showed impaired SsCut-induced stomatal closure, decreased SsCut-induced production of ROS and NO in guard cells and reduced SsCut-induced resistance against Phytophthora nicotianae Taken together, these results demonstrate that the NbCZF1-ROS-NO pathway mediates multiple SsCut-triggered responses, including stomatal closure, hypersensitive responses and defense-related gene expression. This is the first report describing the function of a C 2 H 2 -type zinc finger protein in N. benthamiana. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. X-ray irradiation activates K+ channels via H2O2 signaling

    PubMed Central

    Gibhardt, Christine S.; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-01-01

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels. PMID:26350345

  17. New metal-organic frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2] . 4H2O

    NASA Astrophysics Data System (ADS)

    Weng, Sheng-Feng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-04-01

    Two novel materials, [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La(1a), Ce(1b)) and [Ce2(C2O4)(C6H6O7)2] . 4H2O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1¯ (No. 2); compound 2 crystallized in monoclinic space group P21/c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of CuII ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d1 excited state and two levels of the 4f1 ground state (2F5/2 and 2F7/2). Compounds 1b and 2 containing CeIII ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers.

  18. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com; Kim, Dong-Wook; Jung, Chang-Hwa

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We alsomore » found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.« less

  19. Xenobiotic metal-induced autoimmunity: mercury and silver differentially induce antinucleolar autoantibody production in susceptible H-2s, H-2q and H-2f mice

    PubMed Central

    Hansson, M; Abedi-Valugerdi, M

    2003-01-01

    Xenobiotic-metals such as mercury (Hg) and silver (Ag) induce an H-2 linked antinucleolar autoantibody (ANolA) production in susceptible mice. The mechanism for induction of ANolA synthesis is not well understood. However, it has been suggested that both metals interact with nucleolar proteins and reveal cryptic self-peptides to nontolerant autoreactive T cells, which in turn stimulate specific autoreactive B cells. In this study, we considered this suggestion and asked if mercury and silver display, if not identical, similar cryptic self-peptides, they would induce comparable ANolA responses in H-2 susceptible mice. We analysed the development of ANolA production in mercury- and/or silver-treated mice of H-2s, H-2q and H-2f genotypes. We found that while mercury stimulated ANolA synthesis in all strains tested, silver induced ANolA responses of lower magnitudes in only H-2s and H-2q mice, but not in H-2f mice. Resistance to silver in H-2f mice was independent of the dosage/time-period of silver-treatment and non-H-2 genes. Further studies showed that F1 hybrid crosses between silver-susceptible A.SW (H-2s) and -resistant A.CA (H-2f) mice were resistant to silver, but not mercury with regard to ANolA production. Additionally, the magnitudes of mercury-induced ANolA responses in the F1 hybrids were lower than those of their parental strains. The above differential ANolA responses to mercury and silver can be explained by various factors, including the different display of nucleolar cryptic peptides by these xenobiotics, determinant capture and coexistence of different MHC molecules. Our findings also suggest that the ability of a xenobiotic metal merely to create cryptic self-peptides may not be sufficient for the induction of an ANolA response. PMID:12605692

  20. Quantification and purification of mangiferin from Chinese Mango (Mangifera indica L.) cultivars and its protective effect on human umbilical vein endothelial cells under H(2)O(2)-induced stress.

    PubMed

    Luo, Fenglei; Lv, Qiang; Zhao, Yuqin; Hu, Guibing; Huang, Guodi; Zhang, Jiukai; Sun, Chongde; Li, Xian; Chen, Kunsong

    2012-01-01

    Mangiferin is a natural xanthonoid with various biological activities. Quantification of mangiferin in fruit peel, pulp, and seed kernel was carried out in 11 Chinese mango (Mangifera indica L.) cultivars. The highest mangiferin content was found in the peel of Lvpimang (LPM) fruit (7.49 mg/g DW). Efficient purification of mangiferin from mango fruit peel was then established for the first time by combination of macroporous HPD100 resin chromatography with optimized high-speed counter-current chromatography (HSCCC). Purified mangiferin was identified by both HPLC and LC-MS, and it showed higher DPPH(•) free-radical scavenging capacities and ferric reducing ability of plasma (FRAP) than by l-ascorbic acid (Vc) or Trolox. In addition, it showed significant protective effects on human umbilical vein endothelial cells (HUVEC) under H(2)O(2)-induced stress. Cells treated with mangiferin resulted in significant enhanced cell survival under of H(2)O(2) stress. Therefore, mangiferin from mango fruit provides a promising perspective for the prevention of oxidative stress-associated diseases.

  1. Quantification and Purification of Mangiferin from Chinese Mango (Mangifera indica L.) Cultivars and Its Protective Effect on Human Umbilical Vein Endothelial Cells under H2O2-induced Stress

    PubMed Central

    Luo, Fenglei; Lv, Qiang; Zhao, Yuqin; Hu, Guibing; Huang, Guodi; Zhang, Jiukai; Sun, Chongde; Li, Xian; Chen, Kunsong

    2012-01-01

    Mangiferin is a natural xanthonoid with various biological activities. Quantification of mangiferin in fruit peel, pulp, and seed kernel was carried out in 11 Chinese mango (Mangifera indica L.) cultivars. The highest mangiferin content was found in the peel of Lvpimang (LPM) fruit (7.49 mg/g DW). Efficient purification of mangiferin from mango fruit peel was then established for the first time by combination of macroporous HPD100 resin chromatography with optimized high-speed counter-current chromatography (HSCCC). Purified mangiferin was identified by both HPLC and LC-MS, and it showed higher DPPH• free-radical scavenging capacities and ferric reducing ability of plasma (FRAP) than by l-ascorbic acid (Vc) or Trolox. In addition, it showed significant protective effects on human umbilical vein endothelial cells (HUVEC) under H2O2-induced stress. Cells treated with mangiferin resulted in significant enhanced cell survival under of H2O2 stress. Therefore, mangiferin from mango fruit provides a promising perspective for the prevention of oxidative stress-associated diseases. PMID:23109851

  2. Neuroprotective effects of seaweeds against 6-hydroxidopamine-induced cell death on an in vitro human neuroblastoma model.

    PubMed

    Silva, Joana; Alves, Celso; Pinteus, Susete; Mendes, Susana; Pedrosa, Rui

    2018-02-14

    Parkinson's disease (PD) is a progressive neurodegenerative disorder of the central nervous system. Although the causes of PD pathogenesis remain incomplete, some evidences has suggested that oxidative stress is an important mediator in its pathogenesis. The aim of this study was to evaluate the protective effects of seaweeds with high antioxidant activity on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in the human neuroblastoma cell line SH-SY5Y, as well as the associated intracellular signaling pathways. Cell viability studies were assessed by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium (MTT) bromide assay and the intracellular signaling pathways analyzed were: hydrogen peroxide (H 2 O 2 ) production, changes in the mitochondrial membrane potential and Caspase-3 activity. Exposure of SH-SY5Y cells to 6-OHDA (10-1000 μM) reduced cell's viability in a concentration and time-dependent manner. The data suggest that the cell death induced by 6-OHDA was mediated by an increase of H 2 O 2 production, the depolarization of mitochondrial membrane potential and the increase of Caspase-3 activity. Extracts from S. polyshides, P. pavonica, S. muticum, C. tomentosum and U. compressa revealed to efficiently protect cell's viability in the presence of 6-OHDA (100 μM; 24 h). These effects appear to be associated with the reduction of H 2 O 2 cell's production, the protection of mitochondrial membrane's potential and the reduction of Caspase-3 activity. These results suggest that seaweeds can be a promising source of new compounds with neuroprotective potential.

  3. Inhibitory effects of mouse bone marrow mesenchymal stem cell soup on staurospurine-induced cell death in MCF-7 and AGS.

    PubMed

    Zhaleh, M; Azadbakht, M; Bidmeshki Pour, A

    2017-01-01

    Staurospurine induces apoptosis in cell line. Bone Marrow Mesenchymal stem cells Soup is a promising tool for cell proliferation via a variety of secreted factors. In this study, we examined the effects of BMSCs Soup on Staurospurine induced-cell death in MCF-7 and AGS cells. There were three Groups: Group I: no incubation with BM Soup; Group II: incubated with 24 h BM Soup; Group III: incubation with 48 h BM Soup. There were two treatments in each group. The treatments were 1μM Staurospurine (Treatment 1) and 0.0 μM Staurospurine (Treatment 2). The cells were cultured in culture medium containing 0.2 % BSA. We obtained the cell viability, cell death and NO concentration. Our results showed that BM soup administration for 48 hours protectsed against 1μM staurosporine concentration induced cell death and reduced cell toxicity in MCF-7 and AGS cells. Cell viability and cell toxicity assay showed that BM soup in time dependent manner increased cell viability (p < 0.05) and cell death assay showed that cell death in time dependent manner was decreased(p < 0.05). Our data showed that BM soup with increasing NO concentration reduced staurospurine induced cell death and cell cytotoxicity (p < 0.05). It's concluded that BMSCs soup suppressed staurospurine-induced cytotoxicity activity process in MCF-7 and AGS cells (Fig. 9, Ref. 79).

  4. Clozapine protects PC-12 cells from death due to oxidative stress induced by hydrogen peroxide via a cell-type specific mechanism involving inhibition of extracellular signal-regulated kinase phosphorylation.

    PubMed

    Magliaro, Brian C; Saldanha, Colin J

    2009-08-04

    Recent evidence suggests that some atypical antipsychotic drugs may protect against oxidative stress and consequent neurodegeneration by mechanisms that remain unclear. Using the neuron-like rat pheochromocytoma (PC-12) cell line, Clozapine and N-desmethylclozapine were tested for their ability to protect against cell death due to oxidative stress induced by hydrogen peroxide (H(2)O(2)). These drugs demonstrated significant protection of PC-12 cells, as measured by both the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide (MTT) and Alamar Blue cell viability assays. However, neither viability assay detected a protective effect of Clozapine on human embryonic kidney (HEK293), rat primary cortical neurons, or human neuroblastoma (SH-SY5Y) exposed to H(2)O(2) treatment. The mechanism of protection involves a PC-12 cell-specific differential response to H(2)O(2) treatment vs. the other cell lines. Pre-treatment with 250 microM or 125 microM diethyldithiocarbamate (DETC), a superoxide dismutase (SOD) inhibitor, unexpectedly showed protection of the PC-12 cells from H(2)O(2) treatment. Western blots revealed that Clozapine, N-desmethylclozapine, and DETC reduce the phosphorylation of extracellular signal-regulated kinase (ERK) that is caused by H(2)O(2) exposure in PC-12 cells. In both HEK293 and SH-SY5Y cells, H(2)O(2) exposure did not increase ERK phosphorylation over control, demonstrating a different response to H(2)O(2) vs. PC-12 cells, and explaining why Clozapine could not protect these cells. Also, U0126, a specific MEK inhibitor, was able to protect PC-12 cells from H(2)O(2) exposure, showing that inhibiting ERK phosphorylation is sufficient to provide protection. Cumulatively, these results indicate that Clozapine, N-desmethylclozapine, DETC, and U0126 protect PC-12 cells by blocking the cell-type specific H(2)O(2) induced increase in ERK phosphorylation.

  5. Exploration of H2O-CO2 Solubility in Alkali Basalt at low-H2O

    NASA Astrophysics Data System (ADS)

    Roggensack, K.; Allison, C. M.; Clarke, A. B.

    2017-12-01

    A number of recent experimental studies have found conflicting evidence for and against the influence of H2O on CO2 solubility in basalt and alkali-rich mafic magma (e.g. Behrens et al., 2009; Shishkina et al., 2010;2014; Iacono-Marziano et al., 2012). Some of the uncertainty is due to the error with spectroscopic determination (FTIR) of carbon and the challenge of controlling H2O abundance in experiments. It's been widely observed that even experimental capsules without added H2O may produce hydrous glasses containing several wt.% H2O. We conducted fluid-saturated, mixed-fluid (H2O-CO2) experiments to determine the solubility in alkali basalt with particular emphasis on conditions at low-H2O. To limit possible H2O contamination, materials were dried prior to loading and experimental capsules were sealed under vacuum. Experiments were run using a piston-cylinder, in Pt (pre-soaked in Fe) or AuPd capsules and operating at pressures from 400 to 600 MPa. Post-run the capsules were punctured under vacuum and fluids were condensed, separated, and measured by mercury manometry. A comparison between two experiments run at the same temperature and pressure conditions but with different fluid compositions illustrates the correlation between carbonate and H2O solubility. Uncertainties associated with using concentrations calculated from FTIR data can be reduced by directly comparing analyses on wafers of similar thickness. We observe that the experiment with greater H2O absorbance also has a higher carbonate absorbance than the experiment with lower H2O absorbance. Since the experiments were run at the same pressure, the experiment with more water-rich fluid, and higher dissolved H2O, has lower CO2 fugacity, but surprisingly has higher dissolved CO2 content. Overall, the results show two distinct trends. Experiments conducted at low-H2O (0.5 to 0.8 wt.%) show lower dissolved CO2 than those conducted at moderate-H2O (2 to 3 wt.%) at similar CO2 fugacity. These data show that

  6. Ethylene Insensitivity Modulates Ozone-Induced Cell Death in Birch1

    PubMed Central

    Vahala, Jorma; Ruonala, Raili; Keinänen, Markku; Tuominen, Hannele; Kangasjärvi, Jaakko

    2003-01-01

    We have used genotypic variation in birch (Betula pendula Roth) to investigate the roles of ozone (O3)-induced ethylene (ET), jasmonic acid, and salicylic acid in the regulation of tissue tolerance to O3. Of these hormones, ET evolution correlated best with O3-induced cell death. Disruption of ET perception by transformation of birch with the dominant negative mutant allele etr1-1 of the Arabidopsis ET receptor gene ETR1 or blocking of ET perception with 1-methylcyclopropene reduced but did not completely prevent the O3-induced cell death, when inhibition of ET biosynthesis with aminooxyacetic acid completely abolished O3 lesion formation. This suggests the presence of an ET-signaling-independent but ET biosynthesis-dependent component in the ET-mediated stimulation of cell death in O3-exposed birch. Functional ET signaling was required for the O3 induction of the gene encoding β-cyanoalanine synthase, which catalyzes detoxification of the cyanide formed during ET biosynthesis. The results suggest that functional ET signaling is required to protect birch from the O3-induced cell death and that a decrease in ET sensitivity together with a simultaneous, high ET biosynthesis can potentially cause cell death through a deficient detoxification of cyanide. PMID:12746524

  7. Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells.

    PubMed

    Ma, Wenwen; Xu, Wenzhong; Xu, Hua; Chen, Yanshan; He, Zhenyan; Ma, Mi

    2010-07-01

    Nitric oxide (NO) is a bioactive gas and functions as a signaling molecule in plants exposed to diverse biotic and abiotic stresses including cadmium (Cd(2+)). Cd(2+) is a non-essential and toxic heavy metal, which has been reported to induce programmed cell death (PCD) in plants. Here, we investigated the role of NO in Cd(2+)-induced PCD in tobacco BY-2 cells (Nicotiana tabacum L. cv. Bright Yellow 2). In this work, BY-2 cells exposed to 150 microM CdCl(2) underwent PCD with TUNEL-positive nuclei, significant chromatin condensation and the increasing expression of a PCD-related gene Hsr203J. Accompanied with the occurring of PCD, the production of NO increased significantly. The supplement of NO by sodium nitroprusside (SNP) had accelerated the PCD, whereas the NO synthase inhibitor Nomega-nitro-L-arginine methyl ester hydrochloride (L-NAME) and NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) alleviated this toxicity. To investigate the mechanism by which NO exerted its function, Cd(2+) concentration was measured subsequently. SNP led more Cd(2+) content than Cd(2+) treatment alone. By contrast, the prevention of NO by L-NAME decreased Cd(2+) accumulation. Using the scanning ion-selective electrode technique, we analyzed the pattern and rate of Cd(2+) fluxes. This analysis revealed the promotion of Cd(2+) influxes into cells by application of SNP, while L-NAME and cPTIO reduced the rate of Cd(2+) uptake or even resulted in net Cd(2+) efflux. Based on these founding, we concluded that NO played a positive role in CdCl(2)-induced PCD by modulating Cd(2+) uptake and thus promoting Cd(2+) accumulation in BY-2 cells.

  8. Salvianolic Acid B (Sal B) Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Cell Death by Activating Glutaredoxin 1 (Grx1)

    PubMed Central

    Liu, Xiaobin; Xavier, Christy; Jann, Jamieson; Wu, Hongli

    2016-01-01

    Protein glutathionylation, defined as the formation of protein mixed disulfides (PSSG) between cysteine residues and glutathione (GSH), can lead to cell death. Glutaredoxin 1 (Grx1) is a thiol repair enzyme which catalyzes the reduction of PSSG. Therefore, Grx1 exerts strong anti-apoptotic effects by improving the redox state, especially in times of oxidative stress. However, there is currently no compound that is identified as a Grx1 activator. In this study, we identified and characterized Salvianolic acid B (Sal B), a natural compound, as a Grx1 inducer, which potently protected retinal pigment epithelial (RPE) cells from oxidative injury. Our results showed that treatment with Sal B protected primary human RPE cells from H2O2-induced cell damage. Interestingly, we found Sal B pretreatment upregulated Grx1 expression in RPE cells in a time- and dose-dependent manner. Furthermore, NF-E2-related factor 2 (Nrf2), the key transcription factor that regulates the expression of Grx1, was activated in Sal B treated RPE cells. Further investigation showed that knockdown of Grx1 by small interfering RNA (siRNA) significantly reduced the protective effects of Sal B. We conclude that Sal B protects RPE cells against H2O2-induced cell injury through Grx1 induction by activating Nrf2 pathway, thus preventing lethal accumulation of PSSG and reversing oxidative damage. PMID:27827892

  9. Stimulation of cell proliferation by histamine H2 receptors in dimethylhdrazine-induced adenocarcinomata.

    PubMed

    Tutton, P J; Barkla, D H

    1978-03-01

    Cell proliferation in dimethylhydrazine-induced colonic carcinomata was stimulated by histamine and by the histamine H2 receptor agonist dimaprit and inhibited by the histamine H2 receptor antagonists Metiamide and Cimetidine but not by the histamine H1 receptor antagonist Mepyramine. In contrast histamine had no effect on colonic crypt cell proliferation in normal or dimethylhydrazine-treated rats.

  10. Chemokine CCL2–CCR2 Signaling Induces Neuronal Cell Death via STAT3 Activation and IL-1β Production after Status Epilepticus

    PubMed Central

    Tian, Dai-Shi; Feng, Li-Jie; Liu, Jun-Li

    2017-01-01

    Elevated levels of chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 have been reported in patients with temporal lobe epilepsy and in experimental seizures. However, the functional significance and molecular mechanism underlying CCL2–CCR2 signaling in epileptic brain remains largely unknown. In this study, we found that the upregulated CCL2 was mainly expressed in hippocampal neurons and activated microglia from mice 1 d after kainic acid (KA)-induced seizures. Taking advantage of CX3CR1GFP/+:CCR2RFP/+ double-transgenic mice, we demonstrated that CCL2–CCR2 signaling has a role in resident microglial activation and blood-derived monocyte infiltration. Moreover, seizure-induced degeneration of neurons in the hippocampal CA3 region was attenuated in mice lacking CCL2 or CCR2. We further showed that CCR2 activation induced STAT3 (signal transducer and activator of transcription 3) phosphorylation and IL-1β production, which are critical for promoting neuronal cell death after status epilepticus. Consistently, pharmacological inhibition of STAT3 by WP1066 reduced seizure-induced IL-1β production and subsequent neuronal death. Two weeks after KA-induced seizures, CCR2 deficiency not only reduced neuronal loss, but also attenuated seizure-induced behavioral impairments, including anxiety, memory decline, and recurrent seizure severity. Together, we demonstrated that CCL2–CCR2 signaling contributes to neurodegeneration via STAT3 activation and IL-1β production after status epilepticus, providing potential therapeutic targets for the treatment of epilepsy. SIGNIFICANCE STATEMENT Epilepsy is a global concern and epileptic seizures occur in many neurological conditions. Neuroinflammation associated with microglial activation and monocyte infiltration are characteristic of epileptic brains. However, molecular mechanisms underlying neuroinflammation in neuronal death following epilepsy remain to be elucidated. Here we demonstrate that CCL2–CCR2 signaling is

  11. The TrkAIII oncoprotein inhibits mitochondrial free radical ROS-induced death of SH-SY5Y neuroblastoma cells by augmenting SOD2 expression and activity at the mitochondria, within the context of a tumour stem cell-like phenotype.

    PubMed

    Ruggeri, Pierdomenico; Farina, Antonietta R; Di Ianni, Natalia; Cappabianca, Lucia; Ragone, Marzia; Ianni, Giulia; Gulino, Alberto; Mackay, Andrew R

    2014-01-01

    The developmental and stress-regulated alternative TrkAIII splice variant of the NGF receptor TrkA is expressed by advanced stage human neuroblastomas (NBs), correlates with worse outcome in high TrkA expressing unfavourable tumours and exhibits oncogenic activity in NB models. In the present study, we report that constitutive TrkAIII expression in human SH-SY5Y NB cells inhibits Rotenone, Paraquat and LY83583-induced mitochondrial free radical reactive oxygen species (ROS)-mediated death by stimulating SOD2 expression, increasing mitochondrial SOD2 activity and attenuating mitochondrial free radical ROS production, in association with increased mitochondrial capacity to produce H2O2, within the context of a more tumour stem cell-like phenotype. This effect can be reversed by the specific TrkA tyrosine kinase inhibitor GW441756, by the multi-kinase TrkA inhibitors K252a, CEP-701 and Gö6976, which inhibit SOD2 expression, and by siRNA knockdown of SOD2 expression, which restores the sensitivity of TrkAIII expressing SH-SY5Y cells to Rotenone, Paraquat and LY83583-induced mitochondrial free radical ROS production and ROS-mediated death. The data implicate the novel TrkAIII/SOD2 axis in promoting NB resistance to mitochondrial free radical-mediated death and staminality, and suggest that the combined use of TrkAIII and/or SOD2 inhibitors together with agents that induce mitochondrial free radical ROS-mediated death could provide a therapeutic advantage that may also target the stem cell niche in high TrkA expressing unfavourable NB.

  12. The TrkAIII Oncoprotein Inhibits Mitochondrial Free Radical ROS-Induced Death of SH-SY5Y Neuroblastoma Cells by Augmenting SOD2 Expression and Activity at the Mitochondria, within the Context of a Tumour Stem Cell-like Phenotype

    PubMed Central

    Di Ianni, Natalia; Cappabianca, Lucia; Ragone, Marzia; Ianni, Giulia; Gulino, Alberto; Mackay, Andrew R.

    2014-01-01

    The developmental and stress-regulated alternative TrkAIII splice variant of the NGF receptor TrkA is expressed by advanced stage human neuroblastomas (NBs), correlates with worse outcome in high TrkA expressing unfavourable tumours and exhibits oncogenic activity in NB models. In the present study, we report that constitutive TrkAIII expression in human SH-SY5Y NB cells inhibits Rotenone, Paraquat and LY83583-induced mitochondrial free radical reactive oxygen species (ROS)-mediated death by stimulating SOD2 expression, increasing mitochondrial SOD2 activity and attenuating mitochondrial free radical ROS production, in association with increased mitochondrial capacity to produce H2O2, within the context of a more tumour stem cell-like phenotype. This effect can be reversed by the specific TrkA tyrosine kinase inhibitor GW441756, by the multi-kinase TrkA inhibitors K252a, CEP-701 and Gö6976, which inhibit SOD2 expression, and by siRNA knockdown of SOD2 expression, which restores the sensitivity of TrkAIII expressing SH-SY5Y cells to Rotenone, Paraquat and LY83583-induced mitochondrial free radical ROS production and ROS-mediated death. The data implicate the novel TrkAIII/SOD2 axis in promoting NB resistance to mitochondrial free radical-mediated death and staminality, and suggest that the combined use of TrkAIII and/or SOD2 inhibitors together with agents that induce mitochondrial free radical ROS-mediated death could provide a therapeutic advantage that may also target the stem cell niche in high TrkA expressing unfavourable NB. PMID:24736663

  13. H2/O2 three-body rates at high temperatures

    NASA Technical Reports Server (NTRS)

    Marinelli, William J.; Kessler, William J.; Piper, Lawrence G.; Rawlins, W. Terry

    1990-01-01

    The extraction of thrust from air breathing hypersonic propulsion systems is critically dependent on the degree to which chemical equilibrium is reached in the combustion process. In the combustion of H2/Air mixtures, slow three-body chemical reactions involving H-atoms, O-atoms, and the OH radical play an important role in energy extraction. A first-generation high temperature and pressure flash-photolysis/laser-induced fluorescence reactor was designed and constructed to measure these important three-body rates. The system employs a high power excimer laser to produce these radicals via the photolysis of stable precursors. A novel two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical thickness or O2 absorption problems. To demonstrate the feasibility of the technique the apparatus in the program is designed to perform preliminary measurements on the H + O2 + M reaction at temperatures from 300 to 835 K.

  14. Lycopene protects human SH-SY5Y neuroblastoma cells against hydrogen peroxide-induced death via inhibition of oxidative stress and mitochondria-associated apoptotic pathways

    PubMed Central

    FENG, CHUNSHENG; LUO, TIANFEI; ZHANG, SHUYAN; LIU, KAI; ZHANG, YANHONG; LUO, YINAN; GE, PENGFEI

    2016-01-01

    Oxidative stress, which is characterized by excessive production of reactive oxygen species (ROS), is a common pathway that results in neuronal injury or death due to various types of pathological stress. Although lycopene has been identified as a potent antioxidant, its effect on hydrogen peroxide (H2O2)-induced neuronal damage remains unclear. In the present study, pretreatment with lycopene was observed to protect SH-SY5Y neuroblastoma cells against H2O2-induced death via inhibition of apoptosis resulting from activation of caspase-3 and translocation of apoptosis inducing factor (AIF) to the nucleus. Furthermore, the over-produced ROS, as well as the reduced activities of anti-oxidative enzymes, superoxide dismutase and catalase, were demonstrated to be alleviated by lycopene. Additionally, lycopene counteracted H2O2-induced mitochondrial dysfunction, which was evidenced by suppression of mitochondrial permeability transition pore opening, attenuation of the decline of the mitochondrial membrane potential, and inhibition of the increase of Bax and decrease of Bcl-2 levels within the mitochondria. The release of cytochrome c and AIF from the mitochondria was also reduced. These results indicate that lycopene is a potent neuroprotectant against apoptosis, oxidative stress and mitochondrial dysfunction, and could be administered to prevent neuronal injury or death. PMID:27035331

  15. CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41silicate sieve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Wenyong; Han, Hongxian; Frei, Heinz

    2004-04-06

    The 266 nm light-induced reaction of CO{sub 2} and H{sub 2}O gas mixtures (including isotopic modifications {sup 13}CO{sub 2}, C{sup 18}O{sub 2}, and D{sub 2}O) in framework TiMCM-41 silicate sieve was monitored by in-situ FT-IR spectroscopy at room temperature. Carbon monoxide gas was observed as the sole product by infrared, and the growth was found to depend linearly on the photolysis laser power. H{sub 2}O was confirmed as stoichiometric electron donor. The work establishes CO as the single photon, 2-electron transfer product of CO{sub 2} photoreduction by H{sub 2}O at framework Ti centers for the first time. O{sub 2} wasmore » detected as co-product by mass spectrometric analysis of the photolysis gas mixture. These results are explained by single UV photon-induced splitting of CO{sub 2} by H{sub 2}O to CO and surface OH radical.« less

  16. Influence of adhesive restorations on diffusion of H2O2 released from a bleaching agent and its toxic effects on pulp cells.

    PubMed

    Soares, Diana Gabriela; Pastana, Júlia Vieira; de Oliveira Duque, Carla Caroline; Dias Ribeiro, Ana Paula; Basso, Fernanda Gonçalves; Hebling, Josimeri; de Souza Costa, Carlos Alberto

    2014-04-01

    To assess the influence of adhesive restorations on hydrogen peroxide (H2O2) diffusion through enamel and dentin and its cytotoxicity to pulp (MDPC-23) cells. Sound and resin-restored enamel/dentin disks were stored in water for 24 h or 6 months and adapted to artificial pulp chambers. Bleaching gels with 20% or 35% H2O2 were applied to the enamel surface for 45 min, and a culture medium in direct contact with the dentin surface (extract) was applied for 1 h to the MDPC-23 cells. Cell metabolism (MTT assay) and cell morphology (SEM) were assessed. The amount of H2O2 in the extracts was also quantified (peroxidase/leuco-crystal violet reaction). A significant reduction in cell metabolism was observed between the group bleached with the 35% gel and the control group (sound, nonbleached) (p < 0.05). The H2O2 diffusion was directly related to its concentration in the bleaching gel. The variables "presence of restoration" and "time of water storage" did not significantly influence H2O2 diffusion or cell metabolism for either of the bleaching gels (p > 0.05). All bleached groups presented alterations in cell morphology related to the concentration of H2O2 in the bleaching gel. The reduction in cell metabolism and the changes in cell morphology were H2O2-concentration dependent, having no relationship with the presence of either new or aged adhesive restorations on teeth subjected to bleaching therapies.

  17. Cytokinin-induced cell death is associated with elevated expression of alternative oxidase in tobacco BY-2 cells.

    PubMed

    Mlejnek, Petr

    2013-10-01

    N(6)-benzyladenine (BA) and N(6)-benzyladenosine ([9R]BA) induce massive production of reactive oxygen species (ROS) that is eventually followed by a loss of cell viability in tobacco BY-2 cells (Mlejnek et al. Plant Cell Environ 26:1723-1735, 2003, Plant Sci 168:389-395, 2005). Results presented in this work suggest that the main sources of ROS are likely mitochondria and that the maintenance of the mitochondrial transmembrane potential is crucial for ROS production in cytokinin-treaded BY-2 cells. Therefore, the possible involvement of alternative oxidase (AOX) in cell death process induced by BA and [9R]BA was studied. About three- to fourfold increase in mRNA levels of AOX1 was observed a few hours after the BA and [9R]BA addition into the growth medium. The elevated expression of AOX1 mRNA could be prevented by adding adenine and adenosine which simultaneously reduced the cytotoxic effects of BA and [9R]BA, respectively. N(6)-benzyladenine 7-β-D-glucoside ([7G]BA) which is a common non-toxic metabolite of BA and [9R]BA did not affect the AOX1 mRNA expression. Although AOX1 seemed to be involved in protection of BY-2 cells against the abiotic stress induced by BA and [9R]BA, the results do not support the idea that it protects cells from death exclusively by scavenging of reactive oxygen species. Indeed, N-propyl gallate, an inhibitor of AOX, decreased cell survival despite it concomitantly decreased the ROS production. This finding is in contrast to the effect of salicylhydroxamic acid, another well-known inhibitor of AOX, which also increased the number of dying cells while it increased the ROS production.

  18. Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells.

    PubMed

    Wei, Limin; Wang, Jianfeng; Chen, Aijie; Liu, Jia; Feng, Xiaoli; Shao, Longquan

    2017-01-01

    With the increasing application of zinc oxide nanoparticles (ZnO NPs) in biological materials, the neurotoxicity caused by these particles has raised serious concerns. However, the underlying molecular mechanisms of the toxic effect of ZnO NPs on brain cells remain unclear. Mitochondrial damage has been reported to be a factor in the toxicity of ZnO NPs. PINK1/parkin-mediated mitophagy is a newly emerging additional function of autophagy that selectively degrades impaired mitochondria. Here, a PINK1 gene knockdown BV-2 cell model was established to determine whether PINK1/parkin-mediated mitophagy was involved in ZnO NP-induced toxicity in BV-2 cells. The expression of total parkin, mito-parkin, cyto-parkin, and PINK1 both in wild type and PINK1 -/- BV-2 cells was evaluated using Western blot analysis after the cells were exposed to 10 μg/mL of 50 nm ZnO NPs for 2, 4, 8, 12, and 24 h. The findings suggested that the downregulation of PINK1 resulted in a significant reduction in the survival rate after ZnO NP exposure compared with that of control cells. ZnO NPs were found to induce the transportation of parkin from the cytoplasm to the mitochondria, implying the involvement of mitophagy in ZnO NP-induced toxicity. The deletion of the PINK1 gene inhibited the recruitment of parkin to the mitochondria, causing failure of the cell to trigger mitophagy. The present study demonstrated that apart from autophagy, PINK1/parkin-mediated mitophagy plays a protective role in ZnO NP-induced cytotoxicity.

  19. Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells

    PubMed Central

    Wei, Limin; Wang, Jianfeng; Chen, Aijie; Liu, Jia; Feng, Xiaoli; Shao, Longquan

    2017-01-01

    With the increasing application of zinc oxide nanoparticles (ZnO NPs) in biological materials, the neurotoxicity caused by these particles has raised serious concerns. However, the underlying molecular mechanisms of the toxic effect of ZnO NPs on brain cells remain unclear. Mitochondrial damage has been reported to be a factor in the toxicity of ZnO NPs. PINK1/parkin-mediated mitophagy is a newly emerging additional function of autophagy that selectively degrades impaired mitochondria. Here, a PINK1 gene knockdown BV-2 cell model was established to determine whether PINK1/parkin-mediated mitophagy was involved in ZnO NP-induced toxicity in BV-2 cells. The expression of total parkin, mito-parkin, cyto-parkin, and PINK1 both in wild type and PINK1−/− BV-2 cells was evaluated using Western blot analysis after the cells were exposed to 10 μg/mL of 50 nm ZnO NPs for 2, 4, 8, 12, and 24 h. The findings suggested that the downregulation of PINK1 resulted in a significant reduction in the survival rate after ZnO NP exposure compared with that of control cells. ZnO NPs were found to induce the transportation of parkin from the cytoplasm to the mitochondria, implying the involvement of mitophagy in ZnO NP-induced toxicity. The deletion of the PINK1 gene inhibited the recruitment of parkin to the mitochondria, causing failure of the cell to trigger mitophagy. The present study demonstrated that apart from autophagy, PINK1/parkin-mediated mitophagy plays a protective role in ZnO NP-induced cytotoxicity. PMID:28331313

  20. (C6N2H16)[Co(H2O)6](SO4)2.2H2O: A new hybrid material based on sulfate templated by diprotonated trans-1,4-diaminocyclohexane

    NASA Astrophysics Data System (ADS)

    Hamdi, N.; Ngopoh, F. A. I.; da Silva, I.; El Bali, B.; Lachkar, M.

    2018-03-01

    Employing trans-1,4-diaminocyclohexane (DACH) as template, the new hybrid sulphate (C6N2H16)[Co(H2O)6](SO4)2.2H2O was prepared in solution. Single-crystal X-ray diffraction analysis shows that it crystallizes in the monoclinic system (S.G.: P 21/n), with the following unit-cell parameters (Å,°): a = 6.2897(2), b = 12.3716(6), c = 13.1996(4), β = 98.091(3) V = 1016.89(7) Å3, Z = 4. Its 3D crystal structure is made upon isolated [Co(H2O)6] octahedra, regular [SO4] tetrahedra, protonated DACH and free H2O molecules, which interact through N-H···O and O-H···O hydrogen bonds. The Fourier transform infrared result exhibits bands corresponding to the vibrations of DACH, sulfate group and water molecules. The thermal decomposition of the phase consists mainly in the loss of the organic moiety and one sulfate group, leading thus to the formation of anhydrous cobalt sulfate.

  1. Effect of hypothermia on doxorubicin-induced cardiac myoblast signaling and cell death.

    PubMed

    L'Ecuyer, Thomas J; Aggarwal, Sanjeev; Zhang, Jiang Ping; Van der Heide, Richard S

    2012-01-01

    Anthracyclines (AC) are useful chemotherapeutic agents whose principal limitation is cardiac toxicity, which may progress to heart failure, transplantation or even death. We have shown that this toxicity involves oxidative stress-induced activation of the DNA damage pathway. Hypothermia has been shown to be protective against other diseases involving oxidative stress but has not been studied in models of AC toxicity. In the current experiments, H9C2 cardiac myoblasts were treated with varying concentrations of the AC doxorubicin (DOX) during normothermia (37°C) or mild hypothermia (35°C). Total cell death was assayed using trypan blue exclusion and apoptosis by terminal deoxynucleotidyl transferase-mediated deoxyuridine-biotin nick end labeling (TUNEL) staining. Oxidative stress was assayed using the fluorescent indicator 2'7'-dichlorofluorescein diacetate. DNA damage pathway activation was assayed by immunostaining for H2AX and p53. Mitochondrial membrane potential was assayed by JC-1 staining. At all concentrations of DOX examined (1, 2.5 and 5 μM), hypothermia reduced oxidative stress, activation of H2AX and p53, loss of mitochondrial membrane potential and total and apoptotic cell death (P=.001-.03 for each observation). The reduction of oxidative stress-induced activation of the DNA damage pathway and consequent cell death by mild hypothermia supports a possible protective role to reduce the clinical impact of DOX-induced cardiac toxicity. Such an approach may allow expanded use of these effective chemotherapeutic agents to increase cancer cure rates. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Escin activates AKT-Nrf2 signaling to protect retinal pigment epithelium cells from oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kaijun; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou; Jiang, Yiqian

    Here we explored the anti-oxidative and cytoprotective potentials of escin, a natural triterpene-saponin, against hydrogen peroxide (H{sub 2}O{sub 2}) in retinal pigment epithelium (RPE) cells. We showed that escin remarkably attenuated H{sub 2}O{sub 2}-induced death and apoptosis of established (ARPE-19) and primary murine RPE cells. Meanwhile, ROS production and lipid peroxidation by H{sub 2}O{sub 2} were remarkably inhibited by escin. Escin treatment in RPE cells resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by transcription of anti-oxidant-responsive element (ARE)-regulated genes, including HO-1, NQO-1 and SRXN-1. Knockdown of Nrf2 through targeted shRNAs/siRNAs alleviated escin-mediated ARE gene transcription, and almost abolishedmore » escin-mediated anti-oxidant activity and RPE cytoprotection against H{sub 2}O{sub 2}. Reversely, escin was more potent against H{sub 2}O{sub 2} damages in Nrf2-over-expressed ARPE-19 cells. Further studies showed that escin-induced Nrf2 activation in RPE cells required AKT signaling. AKT inhibitors (LY294002 and perifosine) blocked escin-induced AKT activation, and dramatically inhibited Nrf2 phosphorylation, its cytosol accumulation and nuclear translocation in RPE cells. Escin-induced RPE cytoprotection against H{sub 2}O{sub 2} was also alleviated by the AKT inhibitors. Together, these results demonstrate that escin protects RPE cells from oxidative stress possibly through activating AKT-Nrf2 signaling.« less

  3. Influence of Background H2O on the Collision-Induced Dissociation Products Generated from [UO2NO3]+

    NASA Astrophysics Data System (ADS)

    Van Stipdonk, Michael J.; Iacovino, Anna; Tatosian, Irena

    2018-04-01

    Developing a comprehensive understanding of the reactivity of uranium-containing species remains an important goal in areas ranging from the development of nuclear fuel processing methods to studies of the migration and fate of the element in the environment. Electrospray ionization (ESI) is an effective way to generate gas-phase complexes containing uranium for subsequent studies of intrinsic structure and reactivity. Recent experiments by our group have demonstrated that the relatively low levels of residual H2O in a 2-D, linear ion trap (LIT) make it possible to examine fragmentation pathways and reactions not observed in earlier studies conducted with 3-D ion traps (Van Stipdonk et al. J. Am. Soc. Mass Spectrom. 14, 1205-1214, 2003). In the present study, we revisited the dissociation of complexes composed of uranyl nitrate cation [UVIO2(NO3)]+ coordinated by alcohol ligands (methanol and ethanol) using the 2-D LIT. With relatively low levels of background H2O, collision-induced dissociation (CID) of [UVIO2(NO3)]+ primarily creates [UO2(O2)]+ by the ejection of NO. However, CID (using He as collision gas) of [UVIO2(NO3)]+ creates [UO2(H2O)]+ and UO2 + when the 2-D LIT is used with higher levels of background H2O. Based on the results presented here, we propose that product ion spectrum in the previous experiments was the result of a two-step process: initial formation of [UVIO2(O2)]+ followed by rapid exchange of O2 for H2O by ion-molecule reaction. Our experiments illustrate the impact of residual H2O in ion trap instruments on the product ions generated by CID and provide a more accurate description of the intrinsic dissociation pathway for [UVIO2(NO3)]+. [Figure not available: see fulltext.

  4. ZnO Nanoparticles Treatment Induces Apoptosis by Increasing Intracellular ROS Levels in LTEP-a-2 Cells.

    PubMed

    Wang, Caixia; Hu, Xiaoke; Gao, Yan; Ji, Yinglu

    2015-01-01

    Owing to the wide use of novel nanoparticles (NPs) such as zinc oxide (ZnO) in all aspects of life, toxicological research on ZnO NPs is receiving increasing attention in these days. In this study, the toxicity of ZnO NPs in a human pulmonary adenocarcinoma cell line LTEP-a-2 was tested in vitro. Log-phase cells were exposed to different levels of ZnO NPs for hours, followed by colorimetric cell viability assay using tetrazolium salt and cell survival rate assay using trypan blue dye. Cell morphological changes were observed by Giemsa staining and light microscopy. Apoptosis was detected by using fluorescence microscopy and caspase-3 activity assay. Both intracellular reactive oxygen species (ROS) and reduced glutathione (GSH) were examined by a microplate-reader method. Results showed that ZnO NPs (≥ 0.01 μg/mL) significantly inhibited proliferation (P < 0.05) and induced substantial apoptosis in LTEP-a-2 cells after 4 h of exposure. The intracellular ROS level rose up to 30-40% corresponding to significant depletion (approximately 70-80%) in GSH content in LTEP-a-2 cells (P < 0.05), suggesting that ZnO NPs induced apoptosis mainly through increased ROS production. This study elucidates the toxicological mechanism of ZnO NPs in human pulmonary adenocarcinoma cells and provides reference data for application of nanomaterials in the environment.

  5. Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy

    PubMed Central

    Zou, Yi; Liu, Qiao; Yang, Xia; Huang, Hua-Chuan; Li, Jiang; Du, Liang-Hui; Li, Ze-Ren; Zhao, Jian-Heng; Zhu, Li-Guo

    2017-01-01

    We demonstrated that attenuated total reflectance terahertz time-domain spectroscopy (ATR THz-TDS) is able to monitor oxidative stress response of living human cells, which is proven in this work that it is an efficient non-invasive, label-free, real-time and in situ monitoring of cell death. Furthermore, the dielectric constant and dielectric loss of cultured living human breast epithelial cells, and along with their evolution under oxidative stress response induced by high concentration of H2O2, were quantitatively determined in the work. Our observation and results were finally confirmed using standard fluorescence-labeled flow cytometry measurements and visible fluorescence imaging. PMID:29359084

  6. Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Jin, Hong; Heller, Daniel A.; Kalbacova, Marie; Kim, Jong-Ho; Zhang, Jingqing; Boghossian, Ardemis A.; Maheshri, Narendra; Strano, Michael S.

    2010-04-01

    An emerging concept in cell signalling is the natural role of reactive oxygen species such as hydrogen peroxide (H2O2) as beneficial messengers in redox signalling pathways. The nature of H2O2 signalling is confounded, however, by difficulties in tracking it in living systems, both spatially and temporally, at low concentrations. Here, we develop an array of fluorescent single-walled carbon nanotubes that can selectively record, in real time, the discrete, stochastic quenching events that occur as H2O2 molecules are emitted from individual human epidermal carcinoma cells stimulated by epidermal growth factor. We show mathematically that such arrays can distinguish between molecules originating locally on the cell membrane from other contributions. We find that epidermal growth factor induces 2 nmol H2O2 locally over a period of 50 min. This platform promises a new approach to understanding the signalling of reactive oxygen species at the cellular level.

  7. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L.

    2011-04-08

    Research highlights: {yields} Resveratrol induces cellular senescence in glioma cell. {yields} Resveratrol inhibits mono-ubiquitination of histone H2B at K120. {yields} Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. {yields} Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. {yields} RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as amore » model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-{beta}-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting

  8. Cross section data sets for electron collisions with H2, O2, CO, CO2, N2O and H2O

    NASA Astrophysics Data System (ADS)

    Anzai, K.; Kato, H.; Hoshino, M.; Tanaka, H.; Itikawa, Y.; Campbell, L.; Brunger, M. J.; Buckman, S. J.; Cho, H.; Blanco, F.; Garcia, G.; Limão-Vieira, P.; Ingólfsson, O.

    2012-02-01

    We review earlier cross section data sets for electron-collisions with H2, O2, CO, CO2, H2O and N2O, updated here by experimental results for their electronic states. Based on our recent measurements of differential cross sections for the electronic states of those molecules, integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis and then assessed against theory (BE f-scaling [Y.-K. Kim, J. Chem. Phys. 126, 064305 (2007)]). As they now represent benchmark electronic state cross sections, those ICSs for the above molecules are added into the original cross section sets taken from the data reviews for H2, O2, CO2 and H2O (the Itikawa group), and for CO and N2O (the Zecca group).

  9. Clusterin protects H9c2 cardiomyocytes from oxidative stress-induced apoptosis via Akt/GSK-3β signaling pathway

    PubMed Central

    Jun, Hyoung-Oh; Kim, Dong-hun; Lee, Sae-Won; Lee, Hye Shin; Seo, Ji Hae; Kim, Jeong Hun; Kim, Jin Hyoung; Yu, Young Suk; Min, Bon Hong

    2011-01-01

    Clusterin is a secretory glycoprotein, which is highly up-regulated in a variety of normal and injury tissues undergoing apoptosis including infarct region of the myocardium. Here, we report that clusterin protects H9c2 cardiomyocytes from H2O2-induced apoptosis by triggering the activation of Akt and GSK-3β. Treatment with H2O2 induces apoptosis of H9c2 cells by promoting caspase cleavage and cytochrome c release from mitochondria. However, co-treatment with clusterin reverses the induction of apoptotic signaling by H2O2, thereby recovers cell viability. The protective effect of clusterin on H2O2-induced apoptosis is impaired by PI3K inhibitor LY294002, which effectively suppresses clusterin-induced activation of Akt and GSK-3β. In addition, the protective effect of clusterin is independednt on its receptor megalin, because inhibition of megalin has no effect on clusturin-mediated Akt/GSK-3β phosphoylation and H9c2 cell viability. Collectively, these results suggest that clusterin has a role protecting cardiomyocytes from oxidative stress and the Akt/GSK-3β signaling mediates anti-apoptotic effect of clusterin. PMID:21270507

  10. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    PubMed Central

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS).We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. PMID:25034532

  11. Crystalline structure of pulverized dental calculus induces cell death in oral epithelial cells.

    PubMed

    Ziauddin, S M; Yoshimura, A; Montenegro Raudales, J L; Ozaki, Y; Higuchi, K; Ukai, T; Kaneko, T; Miyazaki, T; Latz, E; Hara, Y

    2018-06-01

    Dental calculus is a mineralized deposit attached to the tooth surface. We have shown that cellular uptake of dental calculus triggers nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation, leading to the processing of the interleukin-1β precursor into its mature form in mouse and human phagocytes. The activation of the NLRP3 inflammasome also induced a lytic form of programmed cell death, pyroptosis, in these cells. However, the effects of dental calculus on other cell types in periodontal tissue have not been investigated. The aim of this study was to determine whether dental calculus can induce cell death in oral epithelial cells. HSC-2 human oral squamous carcinoma cells, HOMK107 human primary oral epithelial cells and immortalized mouse macrophages were exposed to dental calculus or 1 of its components, hydroxyapatite crystals. For inhibition assays, the cells were exposed to dental calculus in the presence or absence of cytochalasin D (endocytosis inhibitor), z-YVAD-fmk (caspase-1 inhibitor) or glyburide (NLRP3 inflammasome inhibitor). Cytotoxicity was determined by measuring lactate dehydrogenase (LDH) release and staining with propidium iodide. Tumor necrosis factor-α production was quantified by enzyme-linked immunosorbent assay. Oral epithelial barrier function was examined by permeability assay. Dental calculus induced cell death in HSC-2 cells, as judged by LDH release and propidium iodide staining. Dental calculus also induced LDH release from HOMK107 cells. Following heat treatment, dental calculus lost its capacity to induce tumor necrosis factor-α in mouse macrophages, but could induce LDH release in HSC-2 cells, indicating a major role of inorganic components in cell death. Hydroxyapatite crystals also induced cell death in both HSC-2 and HOMK107 cells, as judged by LDH release, indicating the capacity of crystal particles to induce cell death. Cell death induced by dental

  12. A potential energy surface for the process H2 + H2O yielding H + H + H2O - Ab initio calculations and analytical representation

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1991-01-01

    Extensive ab initio calculations on the ground state potential energy surface of H2 + H2O were performed using a large contracted Gaussian basis set and a high level of correlation treatment. An analytical representation of the potential energy surface was then obtained which reproduces the calculated energies with an overall root-mean-square error of only 0.64 mEh. The analytic representation explicitly includes all nine internal degrees of freedom and is also well behaved as the H2 dissociates; it thus can be used to study collision-induced dissociation or recombination of H2. The strategy used to minimize the number of energy calculations is discussed, as well as other advantages of the present method for determining the analytical representation.

  13. H2O2 mediates ALA-induced glutathione and ascorbate accumulation in the perception and resistance to oxidative stress in Solanum lycopersicum at low temperatures.

    PubMed

    Liu, Tao; Hu, Xiaohui; Zhang, Jiao; Zhang, Junheng; Du, Qingjie; Li, Jianming

    2018-02-15

    Low temperature is a crucial factor influencing plant growth and development. The chlorophyll precursor, 5-aminolevulinic acid (ALA) is widely used to improve plant cold tolerance. However, the interaction between H 2 O 2 and cellular redox signaling involved in ALA-induced resistance to low temperature stress in plants remains largely unknown. Here, the roles of ALA in perceiving and regulating low temperature-induced oxidative stress in tomato plants, together with the roles of H 2 O 2 and cellular redox states, were characterized. Low concentrations (10-25 mg·L - 1 ) of ALA enhanced low temperature-induced oxidative stress tolerance of tomato seedlings. The most effective concentration was 25 mg·L - 1 , which markedly increased the ratio of reduced glutathione and ascorbate (GSH and AsA), and enhanced the activities of superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Furthermore, gene expression of respiratory burst oxidase homolog1 and H 2 O 2 content were upregulated with ALA treatment under normal conditions. Treatment with exogenous H 2 O 2 , GSH, and AsA also induced plant tolerance to oxidative stress at low temperatures, while inhibition of GSH and AsA syntheses significantly decreased H 2 O 2 -induced oxidative stress tolerance. Meanwhile, scavenging or inhibition of H 2 O 2 production weakened, but did not eliminate, GSH- or AsA- induced tomato plant tolerance to oxidative stress at low temperatures. Appropriate concentrations of ALA alleviated the low temperature-induced oxidative stress in tomato plants via an antioxidant system. The most effective concentration was 25 mg·L - 1 . The results showed that H 2 O 2 induced by exogenous ALA under normal conditions is crucial and may be the initial step for perception and signaling transmission, which then improves the ratio of GSH and AsA. GSH and AsA may then interact with H 2 O 2 signaling, resulting in enhanced antioxidant capacity

  14. Hypoxia promotes luteal cell death in bovine corpus luteum.

    PubMed

    Nishimura, Ryo; Komiyama, Junichi; Tasaki, Yukari; Acosta, Tomas J; Okuda, Kiyoshi

    2008-03-01

    Low oxygen caused by a decreasing blood supply is known to induce various responses of cells, including apoptosis. The present study was conducted to examine whether low-oxygen conditions (hypoxia) induce luteal cell apoptosis in cattle. Bovine midluteal cells incubated under hypoxia (3% O(2)) showed significantly more cell death than did those incubated under normoxia (20% O(2)) at 24 and 48 h of culture, and had significantly lower progesterone (P4) levels starting at 8 h. Characteristic features of apoptosis, such as shrunken nuclei and DNA fragmentation, were observed in cells cultured under hypoxia for 48 h. Hypoxia increased the mRNA expressions of BNIP3 and caspase 3 at 24 and 48 h of culture. Hypoxia had no significant effect on the expressions of BCL2 and BAX mRNA. Hypoxia also increased BNIP3 protein, and activated caspase-3. Treatment of P4 attenuated cell death, caspase-3 mRNA expression, and caspase-3 activity under hypoxia. Overall results of the present study indicate that hypoxia induces luteal cell apoptosis by enhancing the expression of proapoptotic protein, BNIP3, and by activating caspase-3, and that the induction of apoptosis by hypoxia is partially caused by a decrease in P4 production. Because hypoxia suppresses P4 synthesis in bovine luteal cells, we suggest that oxygen deficiency caused by a decreasing blood supply in bovine corpus luteum is one of the major factors contributing to both functional and structural luteolysis.

  15. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    PubMed Central

    Yang, Jingbin; Li, Dongxu; Fang, Yuan

    2017-01-01

    C-A-S-H (CaO-Al2O3-SiO2-H2O) and N-A-S-H (Na2O-Al2O3-SiO2-H2O) have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O)/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH)2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH)2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali-activated materials. PMID

  16. Expansion of antimonato polyoxovanadates with transition metal complexes: (Co(N3C5H15)2)2[{Co(N3C5H15)2}V15Sb6O42(H2O)]·5H2O and (Ni(N3C5H15)2)2[{Ni(N3C5H15)2}V15Sb6O42(H2O)]·8H2O.

    PubMed

    Antonova, Elena; Näther, Christian; Kögerler, Paul; Bensch, Wolfgang

    2012-02-20

    Two new polyoxovanadates (Co(N(3)C(5)H(15))(2))(2)[{Co(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·5H(2)O (1) and (Ni(N(3)C(5)H(15))(2))(2)[{Ni(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·8H(2)O (2) (N(3)C(5)H(15) = N-(2-aminoethyl)-1,3-propanediamine) were synthesized under solvothermal conditions and structurally characterized. In both structures the [V(15)Sb(6)O(42)(H(2)O)](6-) shell displays the main structural motif, which is strongly related to the {V(18)O(42)} archetype cluster. Both compounds crystallize in the triclinic space group P1 with a = 14.3438(4), b = 16.6471(6), c = 18.9186(6) Å, α = 87.291(3)°, β = 83.340(3)°, γ = 78.890(3)°, and V = 4401.4(2) Å(3) (1) and a = 14.5697(13), b = 15.8523(16), c = 20.2411(18) Å, α = 86.702(11)°, β = 84.957(11)°, γ = 76.941(11)°, and V = 4533.0(7) Å(3) (2). In the structure of 1 the [V(15)Sb(6)O(42)(H(2)O)](6-) cluster anion is bound to a [Co(N(3)C(5)H(15))(2)](2+) complex via a terminal oxygen atom. In the Co(2+)-centered complex, one of the amine ligands coordinates in tridentate mode and the second one in bidentate mode to form a strongly distorted CoN(5)O octahedron. Similarly, in compound 2 an analogous NiN(5)O complex is joined to the [V(15)Sb(6)O(42)(H(2)O)](6-) anion via the same attachment mode. A remarkable difference between the two compounds is the orientation of the noncoordinated propylamine group leading to intermolecular Sb···O contacts in 1 and to Sb···N interactions in 2. In the solid-state lattices of 1 and 2, two additional [M(N(3)C(5)H(15))(2)](2+) complexes act as countercations and are located between the [{M(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)](4-) anions. Between the anions and cations strong N-H···O hydrogen bonds are observed. In both compounds the clusters are stacked along the b axis in an ABAB fashion with cations and water molecules occupying the space between the clusters. Magnetic characterization demonstrates that the Ni(2+) and Co(2+) cations do not

  17. Photocatalytic CO2 reduction by Cr-substituted Ba2(In2-xCrx)O5·(H2O)δ (0.04 ≤ x ≤ 0.60)

    NASA Astrophysics Data System (ADS)

    Yoon, Songhak; Gaul, Michael; Sharma, Sitansh; Son, Kwanghyo; Hagemann, Hans; Ziegenbalg, Dirk; Schwingenschlogl, Udo; Widenmeyer, Marc; Weidenkaff, Anke

    2018-04-01

    Cr-substituted polycrystalline Ba2(In2-xCrx)O5·(H2O)δ powders (0.04 ≤ x ≤ 0.60) were synthesized by solid state reaction to investigate the relation of crystal structure, thermochemical, magnetic, and optical properties. The Cr-substitution results in an unit cell expansion and formation of the higher-symmetric tetragonal phase together with increased oxygen and hydrogen contents. Magnetic property measurements reveal that the diamagnetic pristine Ba2In2O5·(H2O)δ becomes magnetically ordered upon Cr-substitution. By UV-vis spectroscopy a gradual shift of the absorption-edge energy to lower values was observed. Numerical calculations showed that the observed bandgap narrowing was ascribed to the Cr induced states near the Fermi level. The correlation between the changes of crystal chemistry, magnetic, and optical properties of Cr-substituted Ba2(In2-xCrx)O5·(H2O)δ can be explained by the replacement of In by Cr. Consequently, an enhanced photocatalytic CO2 reduction activity was observed with increasing Cr substitution, compatible with the state-of-the-art high surface area TiO2 photocatalyst (P-25).

  18. Up-regulation of K{sub ir}2.1 by ER stress facilitates cell death of brain capillary endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kito, Hiroaki; Yamazaki, Daiju; Department of Biological Chemistry, Kyoto University, Graduate School of Pharmaceutical Sciences, Kyoto

    Highlights: {yields} We found that application of endoplasmic reticulum (ER) stress with tunicamycin to brain capillary endothelial cells (BCECs) induced cell death. {yields} The ER stress facilitated the expression of inward rectifier K{sup +} channel (K{sub ir}2.1) and induced sustained membrane hyperpolarization. {yields} The membrane hyperpolarization induced sustained Ca{sup 2+} entry through voltage-independent nonspecific cation channels and consequently facilitated cell death. {yields} The K{sub ir}2.1 up-regulation by ER stress is, at least in part, responsible for cell death of BCECs under pathological conditions. -- Abstract: Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cellmore » turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K{sup +} channel (K{sub ir}2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of K{sub ir} channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca{sup 2+} concentration due to Ca{sup 2+} influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of K{sub ir}2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.« less

  19. A fast-response two-photon fluorescent probe for imaging endogenous H2O2 in living cells and tissues

    NASA Astrophysics Data System (ADS)

    Lu, Yanan; Shi, Xiaomin; Fan, Wenlong; Black, Cory A.; Lu, Zhengliang; Fan, Chunhua

    2018-02-01

    As a second messenger, hydrogen peroxide plays significant roles in numerous physiological and pathological processes and is related to various diseases including inflammatory disease, diabetes, neurodegenerative disorders, cardiovascular disease and Alzheimer's disease. Two-photon (TP) fluorescent probes reported for the detection of endogenous H2O2 are rare and most have drawbacks such as slow response and low sensitivity. In this report, we demonstrate a simple H2O2-specific TP fluorescent probe (TX-HP) containing a two-photon dye 6-hydroxy-2,3,4,4a-tetrahydro-1H-xanthen-1-one (TX) on the modulation of the ICT process. The probe exhibits a rapid fluorescent response to H2O2 in 9 min with both high sensitivity and selectivity. The probe can detect exogenous H2O2 in living cells. Furthermore, the probe is successfully utilized for imaging H2O2 in liver tissues.

  20. Glutamate mediates cell death and increases the Bax to Bcl-2 ratio in a differentiated neuronal cell line.

    PubMed

    Schelman, William R; Andres, Robert D; Sipe, Kimberly J; Kang, Evan; Weyhenmeyer, James A

    2004-09-28

    Excessive stimulation of the NMDA receptor by glutamate induces cell death and has been implicated in the development of several neurodegenerative diseases. While apoptosis plays a role in glutamate-mediated toxicity, the mechanisms underlying this process have yet to be completely determined. Recent evidence has shown that exposure to excitatory amino acids regulates the expression of the antiapoptotic protein, Bcl-2, and the proapoptotic protein, Bax, in neurons. Since it has been suggested that the ratio of Bax to Bcl-2 is an important determinant of neuronal survival, the reciprocal regulation of these Bcl-2 family proteins may play a role in the neurotoxicity mediated by glutamate. Here, we have used a differentiable neuronal cell line, N1E-115, to investigate the molecular properties of glutamate-induced cell death. Annexin V staining was used to determine apoptotic cell death between 0 and 5 days differentiation with DMSO/low serum. Immunoblot analysis was used to determine whether the expression of Bcl-2 or Bax was modulated during the differentiation process. Bcl-2 protein levels were increased during maturation while Bax expression remained unchanged. Maximum Bcl-2 expression was observed following 5 days of differentiation. Examination of Bcl-2 and Bax following glutamate treatment revealed that the expression of these proteins was inversely regulated. Exposure to glutamate (0.001-10 mM) for 20+/-2 h resulted in a dose-dependent decrease in cell survival (as measured by MTT analysis) that was maximal at 10 mM. These results further support the role of apoptosis in glutamate-mediated cell death. Furthermore, a significant decrease in Bcl-2 levels was observed at 1 mM and 10 mM glutamate (32.1%+/-4.8 and 33.7+/-12.8%, respectively) while a significant upregulation of Bax expression (88.2+/-17.9%) was observed at 10 mM glutamate. Interestingly, Bcl-2 and Bax levels in cells treated with glutamate from 12-24 h were not significantly different from those of

  1. Catalase-Modulated Heterogeneous Fenton Reaction for Selective Cancer Cell Eradication: SnFe2O4 Nanocrystals as an Effective Reagent for Treating Lung Cancer Cells.

    PubMed

    Lee, Kuan-Ting; Lu, Yu-Jen; Mi, Fwu-Long; Burnouf, Thierry; Wei, Yi-Ting; Chiu, Shao-Chieh; Chuang, Er-Yuan; Lu, Shih-Yuan

    2017-01-18

    Heterogeneous Fenton reactions have been proven to be an effective and promising selective cancer cell treatment method. The key working mechanism for this method to achieve the critical therapeutic selectivity however remains unclear. In this study, we proposed and demonstrated for the first time the critical role played by catalase in realizing the therapeutic selectivity for the heterogeneous Fenton reaction-driven cancer cell treatment. The heterogeneous Fenton reaction, with the lattice ferric ions of the solid catalyst capable of converting H 2 O 2 to highly reactive hydroxyl radicals, can effectively eradicate cancer cells. In this study, SnFe 2 O 4 nanocrystals, a recently discovered outstanding heterogeneous Fenton catalyst, were applied for selective killing of lung cancer cells. The SnFe 2 O 4 nanocrystals, internalized into the cancer cells, can effectively convert endogenous H 2 O 2 into highly reactive hydroxyl radicals to invoke an intensive cytotoxic effect on the cancer cells. On the other hand, catalase, present at a significantly higher concentration in normal cells than in cancer cells, remarkably can impede the apoptotic cell death induced by the internalized SnFe 2 O 4 nanocrystals. According to the results obtained from the in vitro cytotoxicity study, the relevant oxidative attacks were effectively suppressed by the presence of normal physiological levels of catalase. The SnFe 2 O 4 nanocrystals were thus proved to effect apoptotic cancer cell death through the heterogeneous Fenton reaction and were benign to cells possessing normal physiological levels of catalase. The catalase modulation of the involved heterogeneous Fenton reaction plays the key role in achieving selective cancer cell eradication for the heterogeneous Fenton reaction-driven cancer cell treatment.

  2. The involvement of protein kinase C-ε in isoflurane induced preconditioning of human embryonic stem cell--derived Nkx2.5(+) cardiac progenitor cells.

    PubMed

    Song, In-Ae; Oh, Ah-Young; Kim, Jin-Hee; Choi, Young-Min; Jeon, Young-Tae; Ryu, Jung-Hee; Hwang, Jung-Won

    2016-02-20

    Anesthetic preconditioning can improve survival of cardiac progenitor cells exposed to oxidative stress. We investigated the role of protein kinase C and isoform protein kinase C-ε in isoflurane-induced preconditioning of cardiac progenitor cells exposed to oxidative stress. Cardiac progenitor cells were obtained from undifferentiated human embryonic stem cells. Immunostaining with anti-Nkx2.5 was used to confirm the differentiated cardiac progenitor cells. Oxidative stress was induced by H2O2 and FeSO4. For anesthetic preconditioning, cardiac progenitor cells were exposed to 0.25, 0.5, and 1.0 mM of isoflurane. PMA and chelerythrine were used for protein kinase C activation and inhibition, while εψRACK and εV1-2 were used for protein kinase C -ε activation and inhibition, respectively. Isoflurane-preconditioning decreased the death rate of Cardiac progenitor cells exposed to oxidative stress (death rates isoflurane 0.5 mM 12.7 ± 9.3%, 1.0 mM 12.0 ± 7.7% vs. control 31.4 ± 10.2%). Inhibitors of both protein kinase C and protein kinase C -ε abolished the preconditioning effect of isoflurane 0.5 mM (death rates 27.6 ± 13.5% and 25.9 ± 8.7% respectively), and activators of both protein kinase C and protein kinase C - ε had protective effects from oxidative stress (death rates 16.0 ± 3.2% and 10.6 ± 3.8% respectively). Both PKC and PKC-ε are involved in isoflurane-induced preconditioning of human embryonic stem cells -derived Nkx2.5(+) Cardiac progenitor cells under oxidative stress.

  3. Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang

    2014-01-01

    The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2 solutions is governed by coordination competition of Cl− and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+ both in a tetra­hedral coordination with Cl− and in an octa­hedral environment defined by five water mol­ecules and one Cl− shared with the [ZnCl4]2− unit. Thus, these two different types of Zn2+ cations form isolated units with composition [Zn2Cl4(H2O)5] (penta­aqua-μ-chlorido-tri­chlorido­di­zinc). The trihydrate {hexa­aqua­zinc tetra­chlorido­zinc, [Zn(H2O)6][ZnCl4]}, consists of three different Zn2+ cations, one of which is tetra­hedrally coordinated by four Cl− anions. The two other Zn2+ cations are each located on an inversion centre and are octa­hedrally surrounded by water mol­ecules. The [ZnCl4] tetra­hedra and [Zn(H2O)6] octa­hedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexa­aqua­zinc tetra­chlorido­zinc trihydrate, [Zn(H2O)6][ZnCl4]·3H2O}, consists of isolated octa­hedral [Zn(H2O)6] and tetra­hedral [ZnCl4] units, as well as additional lattice water mol­ecules. O—H⋯O hydrogen bonds between the water mol­ecules as donor and ZnCl4 tetra­hedra and water mol­ecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures. PMID:25552980

  4. Toxicological Assessment of CoO and La2O3 Metal Oxide Nanoparticles in Human Small Airway Epithelial Cells

    PubMed Central

    Pirela, Sandra V.; Shaffer, Justine; Mihalchik, Amy L.; Chisholm, William P.; Andrew, Michael E.; Schwegler-Berry, Diane; Castranova, Vincent; Demokritou, Philip; Qian, Yong

    2016-01-01

    Cobalt monoxide (CoO) and lanthanum oxide (La2O3) nanoparticles are 2 metal oxide nanoparticles with different redox potentials according to their semiconductor properties. By utilizing these two nanoparticles, this study sought to determine how metal oxide nanoparticle’s mode of toxicological action is related to their physio-chemical properties in human small airway epithelial cells (SAEC). We investigated cellular toxicity, production of superoxide radicals and alterations in gene expression related to oxidative stress, and cellular death at 6 and 24 h following exposure to CoO and La2O3 (administered doses: 0, 5, 25, and 50 µg/ml) nanoparticles. CoO nanoparticles induced gene expression related to oxidative stress at 6 h. After characterizing the nanoparticles, transmission electron microscope analysis showed SAEC engulfed CoO and La2O3 nanoparticles. CoO nanoparticles were toxic after 6 and 24 h of exposure to 25.0 and 50.0 µg/ml administered doses, whereas, La2O3 nanoparticles were toxic only after 24 h using the same administered doses. Based upon the Volumetric Centrifugation Method in vivo Sedimentation, Diffusion, and Dosimetry, the dose of CoO and La2O3 nanoparticles delivered at 6 and 24 h were determined to be: CoO: 1.25, 6.25, and 12.5 µg/ml; La2O3: 5, 25, and 50 µg/ml and CoO: 4, 20, and 40 µg/ml; and La2O3: 5, 25, 50 µg/ml, respectively. CoO nanoparticles produced more superoxide radicals and caused greater stimulation of total tyrosine and threonine phosphorylation at both 6 and 24 h when compared with La2O3 nanoparticles. Taken together, these data provide evidence that different toxicological modes of action were involved in CoO and La2O3 metal oxide nanoparticle-induced cellular toxicity. PMID:26769336

  5. H2O Paradox and its Implications on H2O in Moon

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue

    2017-04-01

    The concentration of H2O in the mantle of a planetary body plays a significant role in the viscosity and partial melting and hence the convection and evolution of the planetary body. Even though the composition of the primitive terrestrial mantle (PTM) is thought to be well known [1-2], the concentration of H2O in PTM remains paradoxial because different methods of estimation give different results [3]: Using H2O/Ce ratio in MORB and OIB and Ce concentration in PTM, the H2O concentration in PTM would be (300÷×1.5) ppm; using mass balance by adding surface water to the mantle [3-4], H2O concentration in PTM would be (900÷×1.3) ppm [2-3]. The inconsistency based on these two seemingly reliable methods is referred to as the H2O paradox [3]. For Moon, H2O contents in the primitive lunar mantle (PLM) estimated from H2O in plagioclase in lunar anorthosite and that from H2O/Ce ratio in melt inclusions are roughly consistent at ˜110 ppm [5-6] even though there is still debate about the volatile depletion trend [7]. One possible solution to the H2O paradox in PTM is to assume that early Earth experienced whole mantle degassing, which lowered the H2O/Ce ratio in the whole mantle but without depleting Ce in the mantle. The second possible solution is that some deep Earth reservoirs with high H2O/Ce ratios have not been sampled by MORB and OIB. Candidates include the transition zone [8] and the D" layer. The third possible solution is that ocean water only partially originated from mantle degassing, but partially from extraterrestrial sources such as comets [9-10]. At present, there is not enough information to determine which scenario is the answer to the H2O paradox. On the other hand, each scenario would have its own implications to H2O in PLM. If the first scenario applies to Moon, because degassed H2O or H2 would have escaped from the lunar surface, the very early lunar mantle could have much higher H2O [11] than that obtained using the H2O/Ce ratio method. The

  6. Preparation of a Two-Photon Fluorescent Probe for Imaging H2O2 in Lysosomes in Living Cells and Tissues.

    PubMed

    Ren, Mingguang; Deng, Beibei; Kong, Xiuqi; Tang, Yonghe; Lin, Weiying

    2017-01-01

    Hydrogen peroxide (H 2 O 2 ) plays important roles in many physiological and pathological processes. At the cellular organelle level, the abnormal concentrations of H 2 O 2 in the lysosomes may cause redox imbalance and the loss of the critical functions of the lysosomes. Herein, we describe the preparation of a potent lysosome-targeted two-photon fluorescent probe (Lyso-HP) for the detection of H 2 O 2 in the lysosomes in the living cells. This unique fluorescent probe can also be employed to effectively detect H 2 O 2 in the living tissues using two-photon fluorescence microscopy.

  7. Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    Some refinements have been conceived for a proposed apparatus that would generate hydrogen (for use in a fuel cell) by means of chemical reactions among magnesium, magnesium hydride, and steam. The refinements lie in tailoring spatial and temporal distributions of steam and liquid water so as to obtain greater overall energy-storage or energy-generation efficiency than would otherwise be possible. A description of the prior art is prerequisite to a meaningful description of the present refinements. The hydrogen-generating apparatus in question is one of two versions of what was called the "advanced hydrogen generator" in "Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators" (NPO-43554), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 52. To recapitulate: The apparatus would include a reactor vessel that would be initially charged with magnesium hydride. The apparatus would exploit two reactions: The endothermic decomposition reaction MgH2-->Mg + H2, which occurs at a temperature greater than or equal to 300 C, and The exothermic oxidation reaction MgH2 + H2O MgO + 2H2, which occurs at a temperature greater than or equal to 330 C.

  8. Radiation-induced cyclooxygenase 2 up-regulation is dependent on redox status in prostate cancer cells.

    PubMed

    Li, Lingyun; Steinauer, Kirsten K; Dirks, Amie J; Husbeck, Bryan; Gibbs, Iris; Knox, Susan J

    2003-12-01

    Cyclooxygenase 2 (COX2) is the inducible isozyme of COX, a key enzyme in arachidonate metabolism and the conversion of arachidonic acid (AA) to prostaglandins (PGs) and other eicosanoids. Previous studies have demonstrated that the COX2 protein is up-regulated in prostate cancer cells after irradiation and that this results in elevated levels of PGE(2). In the present study, we further investigated whether radiation-induced COX2 up-regulation is dependent on the redox status of cells from the prostate cancer cell line PC-3. l-Buthionine sulfoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), and the antioxidants alpha-lipoic acid and N-acetyl-l-cysteine (NAC) were used to modulate the cellular redox status. BSO decreased the cellular GSH level and increased cellular reactive oxygen species (ROS) in PC-3 cells, whereas alpha-lipoic acid and NAC increased the GSH level and decreased cellular ROS. Both radiation and the oxidant H(2)O(2) had similar effects on COX2 up-regulation and PGE(2) production in PC-3 cells, suggesting that radiation-induced COX2 up-regulation is secondary to the production of ROS. The relative increases in COX2 expression and PGE(2) production induced by radiation and H(2)O(2) were even greater when PC-3 cells were pretreated with BSO. When the cells were pretreated with alpha-lipoic acid or NAC for 24 h, both radiation- and H(2)O(2)-induced COX2 up-regulation and PGE(2) production were markedly inhibited. These results demonstrate that radiation-induced COX2 up-regulation in prostate cancer cells is modulated by the cellular redox status. Radiation-induced increases in ROS levels contribute to the adaptive response of PC-3 cells, resulting in elevated levels of COX2.

  9. Crystal and molecular structure of Sr{sub 2}(Edta) . 5H{sub 2}O, Sr{sub 2}(H{sub 2}Edta)(HCO{sub 3}){sub 2} . 4H{sub 2}O, and Sr{sub 2}(H{sub 2}Edta)Cl{sub 2} . 5H{sub 2}O strontium ethylenediaminetetraacetates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakova, I. N., E-mail: polyakova@igic.ras.ru; Poznyak, A. L.; Sergienko, V. S.

    2009-03-15

    Three Sr{sup 2+} compounds with the Edta{sup 4-} and H{sub 2}Edta{sup 2-} ligands-Sr{sub 2}(Edta) . 5H{sub 2}O (I), Sr{sub 2}(H{sub 2}Edta)(HCO{sub 3}){sub 2} . 4H{sub 2}O (II), and Sr{sub 2}(H{sub 2}Edta)Cl{sub 2} . 5H{sub 2}O (III)-are synthesized, and their crystal structures are studied. In I, the Sr(1) atom is coordinated by the hexadentate Edta{sup 4-} ligand following the 2N + 4O pattern and by two O atoms of the neighboring ligands, which affords the formation of zigzag chains. The Sr(2) atom forms bonds with O atoms of five water molecules and attaches itself to a chain via bonds with threemore » O atoms of the Edta{sup 4-} ligands. The Sr(1)-O and Sr(2)-O bond lengths fall in the ranges 2.520(2)-2.656(3) and 2.527(3)-2.683(2) A, respectively. The Sr(1)-N bonds are 2.702(3) and 2.743(3) A long. In II and III, the H{sub 2}Edta{sup 2-} anions have a centrosymmetric structure with the trans configuration of the planar ethylenediamine fragment. The N atoms are blocked by acid protons. In II, the environment of the Sr atom is formed by six O atoms of three H{sub 2}Edta ligands, two O atoms of water molecules, and an O atom of the bicarbonate ion, which is disordered over two positions. In III, the environment of the Sr atom includes six O atoms of four H{sub 2}Edta{sup 2-} ligands and three O atoms of water molecules. The coordination number of the Sr atoms is equal to 8 + 1. In II and III, the main bonds fall in the ranges 2.534(3)-2.732(2) and 2.482(2)-2.746(3) A, whereas the ninth bond is elongated to 2.937(3) and 3.055(3) A, respectively. In II, all the structural elements are linked into wavy layers. The O-H-O interactions contribute to the stabilization of the layer and link neighboring layers. In III, hydrated Sr{sup 2+} cations and H{sub 2}Edta{sup -} anions form a three-dimensional [Sr{sub 2}(H{sub 2}Edta)(H{sub 2}O){sub 3}]{sub n}{sup 2n+} framework. The Cl{sup -} anions are fixed in channels of the framework by hydrogen bonds with four water

  10. Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants.

    PubMed

    Hu, Xiuli; Jiang, Mingyi; Zhang, Jianhua; Zhang, Aying; Lin, Fan; Tan, Mingpu

    2007-01-01

    * Using pharmacological and biochemical approaches, the role of calmodulin (CaM) and the relationship between CaM and hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays) plants were investigated. * Treatment with ABA or H(2)O(2) led to significant increases in the concentration of cytosolic Ca(2+) in the protoplasts of mesophyll cells and in the expression of the calmodulin 1 (CaM1) gene and the content of CaM in leaves of maize plants, and enhanced the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes. The up-regulation of the antioxidant enzymes was almost completely blocked by pretreatments with two CaM antagonists. * Pretreatments with CaM antagonists almost completely inhibited ABA-induced H(2)O(2) production throughout ABA treatment, but pretreatment with an inhibitor or scavenger of reactive oxygen species (ROS) did not affect the initial increase in the contents of CaM induced by ABA. * Our results suggest that Ca(2+)-CaM is involved in ABA-induced antioxidant defense, and that cross-talk between Ca(2+)-CaM and H(2)O(2) plays a pivotal role in ABA signaling.

  11. Studies of CW lasing action in CO2-CO, N2O-CO, CO2-H2O, and N2O-H2O mixtures pumped by blackbody radiation

    NASA Technical Reports Server (NTRS)

    Abel, Robert W.; Christiansen, Walter H.; Li, Jian-Guo

    1988-01-01

    A proof of principle experiment to evaluate the efficacy of CO and H2O in increasing the power output for N2O and CO2 lasing mixtures has been conducted and theoretically analyzed for a blackbody radiation-pumped laser. The results for N2O-CO, CO2-CO, N2O-H2O and CO2-H2O mixtures are presented. Additions of CO to the N2O lasant increased power up to 28 percent for N2O laser mixtures, whereas additions of CO to the CO2 lasant, and the addition of H2O to both the CO2 and N2O lasants, resulted in decreased output power.

  12. Efficient Photocatalytic Disinfection of Escherichia coli O157:H7 using C70-TiO2 Hybrid under Visible Light Irradiation

    PubMed Central

    Ouyang, Kai; Dai, Ke; Walker, Sharon L.; Huang, Qiaoyun; Yin, Xixiang; Cai, Peng

    2016-01-01

    Efficient photocatalytic disinfection of Escherichia coli O157:H7 was achieved by using a C70 modified TiO2 (C70-TiO2) hybrid as a photocatalyst under visible light (λ > 420 nm) irradiation. Disinfection experiments showed that 73% of E. coli O157:H7 died within 2h with a disinfection rate constant of k = 0.01 min−1, which is three times that measured for TiO2. The mechanism of cell death was investigated by using several scavengers combined with a partition system. The results revealed that diffusing hydroxyl radicals play an important role in the photocatalytically initiated bacterial death, and direct contact between C70-TiO2 hybrid and bacteria is not indispensable in the photocatalytic disinfection process. Extracellular polymeric substances (EPS) of bacteria have little effect on the disinfection efficiency. Analyses of the inhibitory effect of C70-TiO2 thin films on E. coli O157:H7 showed a decrease of the bacterial concentration from 3 × 108 to 38 cfu mL−1 in the solution with C70-TiO2 thin film in the first 2h of irradiation and a complete inhibition of the growth of E. coli O157:H7 in the later 24 h irradiation. PMID:27161821

  13. Efficient Photocatalytic Disinfection of Escherichia coli O157:H7 using C70-TiO2 Hybrid under Visible Light Irradiation

    NASA Astrophysics Data System (ADS)

    Ouyang, Kai; Dai, Ke; Walker, Sharon L.; Huang, Qiaoyun; Yin, Xixiang; Cai, Peng

    2016-05-01

    Efficient photocatalytic disinfection of Escherichia coli O157:H7 was achieved by using a C70 modified TiO2 (C70-TiO2) hybrid as a photocatalyst under visible light (λ > 420 nm) irradiation. Disinfection experiments showed that 73% of E. coli O157:H7 died within 2h with a disinfection rate constant of k = 0.01 min-1, which is three times that measured for TiO2. The mechanism of cell death was investigated by using several scavengers combined with a partition system. The results revealed that diffusing hydroxyl radicals play an important role in the photocatalytically initiated bacterial death, and direct contact between C70-TiO2 hybrid and bacteria is not indispensable in the photocatalytic disinfection process. Extracellular polymeric substances (EPS) of bacteria have little effect on the disinfection efficiency. Analyses of the inhibitory effect of C70-TiO2 thin films on E. coli O157:H7 showed a decrease of the bacterial concentration from 3 × 108 to 38 cfu mL-1 in the solution with C70-TiO2 thin film in the first 2h of irradiation and a complete inhibition of the growth of E. coli O157:H7 in the later 24 h irradiation.

  14. Synthesis, crystal structure and thermal study of the hybrid nickel sulfate: C6N2H16[Ni(H2O)6(SO4)2].2H2O

    NASA Astrophysics Data System (ADS)

    Ngopoh, F. A. I.; Hamdi, N.; Chaouch, S.; Lachkar, M.; da Silva, I.; El Bali, B.

    2018-03-01

    A new inorganic-organic hybrid open framework nickel sulfate C6N2H16[Ni(H2O)6(SO4)2].2H2O has been synthesized by slow evaporation in aqueous solution using trans-1,4-diaminocyclohexane as structure-directing agent. It was characterized by single-crystal X-ray diffraction, infrared spectroscopy and analyzed by TGA-DSC. The compound crystallizes in the monoclinic space group P21/n, with the unit cell parameters of a = 6.2586 Å, b = 12.3009 Å, c = 13.2451 Å, β = 98,047°, Z = 4. Its crystal structure consists of isolated polyhedrons [Ni(H2O)6]2+ and [SO4]2- and free water which connects through hydrogen bonds. This association results in the porous framework where the protonated organic molecule trans-1,4-diaminocyclohexane is located as a counter ion. The IR spectra Shows the bands corresponding to the sulfate anion, water molecule and diprotonated trans-1-4-diaminocyclohexane. Thermal study indicates the loss of water molecules and the degradation of trans-1-4-diaminocyclohexane.

  15. Importance of ERK activation in As2O3-induced differentiation and promyelocytic leukemia nuclear bodies formation in neuroblastoma cells.

    PubMed

    Petit, A; Delaune, A; Falluel-Morel, A; Goullé, J-P; Vannier, J-P; Dubus, I; Vasse, M

    2013-11-01

    Neuroblastoma malignant cell growth is dependent on their undifferentiated status. Arsenic trioxide (As2O3) induces neuroblastoma cell differentiation in vitro, but its mechanisms still remains unknown. We used three human neuroblastoma cell lines (SH-SY5Y, IGR-N-91, LAN-1) that differ from their MYCN and p53 status to explore the intracellular events activated by As2O3 and involved in neurite outgrowth, a morphological marker of differentiation. As2O3 (2μM) induced neurite outgrowth in all cell lines, which was dependent on ERK activation but independent on MYCN status. This process was induced either by a sustained (3 days) or a transient (2h) incubation with As2O3, indicating that very early events trigger the induction of differentiation. In parallel, As2O3 induced a rapid assembly of promyelocytic leukemia nuclear bodies (PML-NB) in an ERK-dependent manner. In conclusion, mechanisms leading to neuroblastoma cell differentiation in response to As2O3 appear to involve the ERK pathway activation and PML-NB formation, which are observed in response to other differentiating molecules such as retinoic acid derivates. This open new perspectives based on the use of treatment combinations to potentiate the differentiating effects of each drug alone and reduce their adverse side effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Critical Involvement of Extracellular ATP Acting on P2RX7 Purinergic Receptors in Photoreceptor Cell Death

    PubMed Central

    Notomi, Shoji; Hisatomi, Toshio; Kanemaru, Takaaki; Takeda, Atsunobu; Ikeda, Yasuhiro; Enaida, Hiroshi; Kroemer, Guido; Ishibashi, Tatsuro

    2011-01-01

    Stressed cells release ATP, which participates in neurodegenerative processes through the specific ligation of P2RX7 purinergic receptors. Here, we demonstrate that extracellular ATP and the more specific P2RX7 agonist, 2′- and 3′-O-(4-benzoylbenzoyl)-ATP, both induce photoreceptor cell death when added to primary retinal cell cultures or when injected into the eyes from wild-type mice, but not into the eyes from P2RX7−/− mice. Photoreceptor cell death was accompanied by the activation of caspase-8 and -9, translocation of apoptosis-inducing factor from mitochondria to nuclei, and TUNEL-detectable chromatin fragmentation. All hallmarks of photoreceptor apoptosis were prevented by premedication or co-application of Brilliant Blue G, a selective P2RX7 antagonist that is already approved for the staining of internal limiting membranes during ocular surgery. ATP release is up-regulated by nutrient starvation in primary retinal cell cultures and seems to be an initializing event that triggers primary and/or secondary cell death via the positive feedback loop on P2RX7. Our results encourage the potential application of Brilliant Blue G as a novel neuroprotective agent in retinal diseases or similar neurodegenerative pathologies linked to excessive extracellular ATP. PMID:21983632

  17. Alternariol induce toxicity via cell death and mitochondrial damage on Caco-2 cells.

    PubMed

    Fernández-Blanco, Celia; Juan-García, Ana; Juan, Cristina; Font, Guillermina; Ruiz, Maria-Jose

    2016-02-01

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, appears as food contaminant in fruit, vegetables and cereal products. Its toxicity has been demonstrated, but the mechanisms involved have not been elucidated yet. In this study, the pathways triggered by AOH and degradation products generated on Caco-2 cells were evaluated. Cells were exposed to AOH sub-cytotoxic concentrations of 15, 30 and 60 μM. Cell cycle disruption, the induction of apoptosis/necrosis and changes in mitochondrial membrane potential (Δψm) after 24 and 48 h was asses by flow cytometry. Also, AOH and its degradation products were evaluated after 24 and 48 h by high-performance liquid chromatography with tandem mass spectrometric (LC-MS/MS) to detect and quantify its levels. Cell cycle was significantly decreased at G1 phase and increased at S and G2/M phase at the time of exposure. AOH induced necrosis, apoptosis/necrosis and loss of Δψm in a dose and time-dependent manner. The concentrations of AOH quantified in the culture media exposed to AOH decreased as the exposure time was increased. In conclusion, AOH caused cytotoxic effects supported by blocking cell cycle, decreasing cell proliferation and increasing apoptosis/necrosis cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Protective Effect of Hibiscus Sabdariffa on Doxorubicin-induced Cytotoxicity in H9c2 Cardiomyoblast Cells

    PubMed Central

    Hosseini, Azar; Bakhtiari, Elham; Mousavi, Seyed Hadi

    2017-01-01

    Doxorubicin (DOX) is an effective anticancer drug. But its clinical application is limited, because DOX induces apoptosis in cardiomyocytes and it leads to permanent degenerative cardiomyopathy and heart failure. Recent trainings showed that Hibiscus sabdariffa exhibit pharmacological actions such as potent antioxidant. So, in this study we explored the protective effect of H. sabdariffa extract on doxorubicin-induced cytotoxicity in H9c2 cells. Cell viability was quantified by MTT assay. Apoptotic cells were determined using PI staining of DNA fragmentation by flowcytometry (sub-G1 peak). Cells were cultured with 5 μM DOX for 24 h to create the cell damage. H9c2 cells were pretreated with different concentrations (7.81-500 μg/mL) of H. sabdariffa extract (HSE) for 2 h before DOX treatment in all trials. Pretreatment with HSE increased cell viability at concentration of 31.25-500 μg/mL. Compared to control cells, apoptosis was induced in DOX treated cells after 24 h, (𝑃< 0.001). Pretreatment with HSE significantly decreased cell apoptosis after 24 hr at concentration of 31.25-250 μg/mL. Our results show that H. sabdariffa could exert the cardioprotective effects on DOX-induced toxicity partly by antiapoptotic activity. PMID:28979325

  19. Protective Effect of Hibiscus Sabdariffa on Doxorubicin-induced Cytotoxicity in H9c2 Cardiomyoblast Cells.

    PubMed

    Hosseini, Azar; Bakhtiari, Elham; Mousavi, Seyed Hadi

    2017-01-01

    Doxorubicin (DOX) is an effective anticancer drug. But its clinical application is limited, because DOX induces apoptosis in cardiomyocytes and it leads to permanent degenerative cardiomyopathy and heart failure. Recent trainings showed that Hibiscus sabdariffa exhibit pharmacological actions such as potent antioxidant. So, in this study we explored the protective effect of H. sabdariffa extract on doxorubicin-induced cytotoxicity in H9c2 cells. Cell viability was quantified by MTT assay. Apoptotic cells were determined using PI staining of DNA fragmentation by flowcytometry (sub-G1 peak). Cells were cultured with 5 μM DOX for 24 h to create the cell damage. H9c2 cells were pretreated with different concentrations (7.81-500 μg/mL) of H. sabdariffa extract (HSE) for 2 h before DOX treatment in all trials. Pretreatment with HSE increased cell viability at concentration of 31.25-500 μg/mL. Compared to control cells, apoptosis was induced in DOX treated cells after 24 h, (< 0.001). Pretreatment with HSE significantly decreased cell apoptosis after 24 hr at concentration of 31.25-250 μg/mL. Our results show that H. sabdariffa could exert the cardioprotective effects on DOX-induced toxicity partly by antiapoptotic activity.

  20. Influence of the Organic Species and Oxoanion in the Synthesis of two Uranyl Sulfate Hydrates, (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 ­(H 2 O)]·7H 2 O and (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 (H 2 O)]·4H 2 O, and a Uranyl Selenate-Selenite [C 5 H 6 N][(UO 2 )(SeO 4 )(HSeO 3 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Wylie, Ernest M.; Burns, Peter C.

    2012-08-08

    Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)]·7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)]·4H2O (NDUS1), and one uranyl selenate-selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L-cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4)more » Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two-dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two-dimensional uranyl selenate-selenite sheets with a U/Se ratio of 1/2. In-situ reaction of the L-cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L-cystine, balancing the charge of the sheets.« less

  1. Do antioxidants inhibit oxidative-stress-induced autophagy of tenofibroblasts?

    PubMed

    Kim, Ra-Jeong; Hah, Young-Sool; Sung, Chang-Meen; Kang, Jae-Ran; Park, Hyung Bin

    2014-07-01

    Recent research on tendinopathy has focused on its relationship to programmed cell death. Increased autophagy has been observed in ruptured rotator cuff tendon tissues, suggesting a causal relationship. We investigated whether autophagy occurs in human rotator cuff tenofibroblast death induced by oxidative stress and whether antioxidants protect against autophagic cell death. We used H2 O2 (0.75 mM) as oxidative stressor, cyanidin (100 µg/ml) as antioxidant, zVAD (20 µM) as apoptosis inhibitor, and 3-MA (10 mM) as autophagy inhibitor. We evaluated cell viability and known autophagic markers: LC3-II expression, GFP-LC3 puncta formation, autolysosomes, and Atg5-12 and Beclin 1 expression. H2 O2 exposure increased the rates of cell death, LC3-II expression, GFP-LC3 puncta formation, and autolysosomes. After we induced apoptosis arrest using zVAD, H2 O2 exposure still induced cell death, LC3-II expression, and GFP-LC3 puncta formation. H2 O2 exposure also increased Atg5-12 and Beclin 1 expressions, indicating autophagic cell death. However, cyanidin treatment reduced H2 O2 -induced cell death, LC3-II expression, GFP-LC3 puncta formation, and autolysosomes. Cyanidin and 3-MA similarly reduced the cell-death rate, and Atg5-12 and Beclin 1 expression. This study demonstrated that H2 O2 , an oxidative stressor, induces autophagic cell death in rotator cuff tenofibroblasts, and that cyanidin, a natural antioxidant, inhibits autophagic cell death. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes.

    PubMed

    Mali, Vishal R; Deshpande, Mandar; Pan, Guodong; Thandavarayan, Rajarajan A; Palaniyandi, Suresh S

    2016-02-01

    Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Transfer of a proton between H2 and O2.

    PubMed

    Kluge, Lars; Gärtner, Sabrina; Brünken, Sandra; Asvany, Oskar; Gerlich, Dieter; Schlemmer, Stephan

    2012-11-13

    The proton affinities of hydrogen and oxygen are very similar. Therefore, it has been discussed that the proton transfer from the omnipresent H(3)(+) to molecular oxygen in the near thermoneutral reaction H(3)(+) + O(2) <--> O(2)H(+) + H(2) effectively binds the interstellar oxygen in O(2)H(+). In this work, the proton transfer reaction has been investigated in a low-temperature 22-pole ion trap from almost room temperature (280 K) down to the lowest possible temperature limited by freeze out of oxygen gas (about 40 K at a low pressure). The Arrhenius behaviour of the rate coefficient for the forward reaction shows that it is subject to an activation energy of E(A)/k=113 K. Thus, the forward reaction can proceed only in higher temperature molecular clouds. Applying laser-induced reactions to the given reaction (in the backward direction), a preliminary search for spectroscopic signatures of O(2)H(+) in the infrared was unsuccessful, whereas the forward reaction has been successfully used to probe the population of the lowest ortho and para levels of H(3)(+).

  4. On the role of the termolecular reactions 2O2 + H22HO2 and 2O2 + H2H + HO2 + O2 in formation of the first radicals in hydrogen combustion: ab initio predictions of energy barriers.

    PubMed

    Monge-Palacios, M; Rafatijo, Homayoon

    2017-01-18

    We have investigated the role of termolecular reactions in the early chemistry of hydrogen combustion. We performed molecular chemical dynamics simulations using ReaxFF in LAMMPS to identify potential initial reactions for a 1 : 4 mixture of H 2  : O 2 in the NVT ensemble at density 276.3 kg m -3 and ∼3000 K (∼4000 atm) and ∼4000 K (∼5000 atm), and then characterized the saddle points for those reactions using ab initio methods: CCSD(T) = FC/cc-pVTZ//MP2/6-31G, CCSD(T) = FULL/aug-cc-pVTZ//CCSD = FC/cc-pVTZ and CASSCF MP2/6-31G//MP2/6-31G. The main initial reaction is H 2 + O 2H + HO 2 , frequently occurring in the presence of a second O 2 as a third body; that is, 2O 2 + H 2H + HO 2 + O 2 . The second most frequent reaction is 2O 2 + H 22HO 2 . We found three saddle points on the triplet PES of these termolecular reactions: one for 2O 2 + H 2H + HO 2 + O 2 and two for 2O 2 + H 22HO 2 . In the latter case, one has a symmetric structure consistent with simultaneous formation of two HO 2 and the other corresponds to a bimolecular reaction between O 2 and H 2 that is "interrupted" by a second O 2 before going to completion. The classical barrier height of the symmetric saddle point for 2O 2 + H 22HO 2 is 49.8 kcal mol -1 . The barrier to H 2 + O 2H + HO 2 is 58.9 kcal mol -1 . The termolecular reaction will be competitive with H 2 + O 2H + HO 2 only at sufficiently high pressures.

  5. Ferroptosis is Involved in Acetaminophen Induced Cell Death.

    PubMed

    Lőrincz, Tamás; Jemnitz, Katalin; Kardon, Tamás; Mandl, József; Szarka, András

    2015-09-01

    The recently described form of programmed cell death, ferroptosis can be induced by agents causing GSH depletion or the inhibition of GPX4. Ferroptosis clearly shows distinct morphologic, biochemical and genetic features from apoptosis, necrosis and autophagy. Since NAPQI the highly reactive metabolite of the widely applied analgesic and antipyretic, acetaminophen induces a cell death which can be characterized by GSH depletion, GPX inhibition and caspase independency the involvement of ferroptosis in acetaminophen induced cell death has been investigated. The specific ferroptosis inhibitor ferrostatin-1 failed to elevate the viability of acetaminophen treated HepG2 cells. It should be noticed that these cells do not form NAPQI due to the lack of phase I enzyme expression therefore GSH depletion cannot be observed. However in the case of acetaminophen treated primary mouse hepatocytes the significant elevation of cell viability could be observed upon ferrostatin-1 treatment. Similar to ferrostatin-1 treatment, the addition of the RIP1 kinase inhibitor necrostatin-1 could also elevate the viability of acetaminophen treated primary hepatocytes. Ferrostatin-1 has no influence on the expression of CYP2E1 or on the cellular GSH level which suggest that the protective effect of ferrostatin-1 in APAP induced cell death is not based on the reduced metabolism of APAP to NAPQI or on altered NAPQI conjugation by cellular GSH. Our results suggest that beyond necroptosis and apoptosis a third programmed cell death, ferroptosis is also involved in acetaminophen induced cell death in primary hepatocytes.

  6. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide

    PubMed Central

    Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Li, Yixuan; Wada, Satoshi; Yamaguchi, Masaya; Sumitomo, Tomoko; Hayashi, Mikako; Kawabata, Shigetada

    2017-01-01

    Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs). Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream. PMID:28222125

  7. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide.

    PubMed

    Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Li, Yixuan; Wada, Satoshi; Yamaguchi, Masaya; Sumitomo, Tomoko; Hayashi, Mikako; Kawabata, Shigetada

    2017-01-01

    Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs). Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream.

  8. Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O-H2O and δ2H-H2O values by cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer E.; Rella, Chris W.

    2017-08-01

    Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O-H2O and δ2H-H2O values based on the amplitude of water isotopologue absorption features around 7184 cm-1 (L2120-i, Picarro, Inc.). For background mixtures balanced with N2, the apparent δ18O values deviate from true values by -0.50 ± 0.001 ‰ O2 %-1 and -0.57 ± 0.001 ‰ Ar %-1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %-1 and 0.42 ± 0.004 ‰ Ar %-1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.

  9. Free cholesterol accumulation impairs antioxidant activities and aggravates apoptotic cell death in menadione-induced oxidative injury.

    PubMed

    Lee, Waisin; Xu, Mingjing; Li, Yue; Gu, Yong; Chen, Jianping; Wong, Derek; Fung, Peter C W; Shen, Jiangang

    2011-10-01

    Although the relationship between hypercholesterolemia and oxidative stress has been extensively investigated, direct evidence regarding to the roles of cholesterol accumulation in the generations of reactive oxygen species (ROS) and apoptotic cell death under oxidative stress is lack. In this study, we investigated productions of superoxide anions (O(2)(-)) and nitric oxide (NO), and apoptotic cell death in wild type Chinese hamster ovary (CHO) cells and cholesterol accumulated CHO cells genetically and chemically. Oxidative stress was induced by menadione challenge. The results revealed that abundance of free cholesterol (FC) promoted menadione-induced O(2)(-) and NO productions. FC accumulation down-regulated eNOS expression but up-regulated NADPH oxidases, and inhibited the activities of superoxide dismutase (SOD) and catalase. Treatment of menadione increased the expressions of iNOS and qp91 phox, enhanced the activities of SOD and catalase in the wild-type CHO cells but inhibited the activity of glutathione peroxidase in the cholesterol accumulated CHO cells. Moreover, FC abundance promoted apoptotic cell death in these cells. Taken together, those results suggest that free cholesterol accumulation aggravates menadione-induced oxidative stress and exacerbates apoptotic cell death. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Over-expression of angiotensin II type 2 receptor gene induces cell death in lung adenocarcinoma cells.

    PubMed

    Pickel, Lara; Matsuzuka, Takaya; Doi, Chiyo; Ayuzawa, Rie; Maurya, Dharmendra Kumar; Xie, Sheng-Xue; Berkland, Cory; Tamura, Masaaki

    2010-02-01

    The endogenous angiotensin II (Ang II) type 2 receptor (AT 2) has been shown to mediate apoptosis in cardiovascular tissues. Thus, the aim of this study was to explore the anti-cancer effect of AT 2 over-expression on lung adenocarcinoma cells in vitro using adenoviral (Ad), FuGENE, and nanoparticle vectors. All three gene transfection methods efficiently transfected AT 2 cDNA into lung cancer cells but caused minimal gene transfection in normal lung epithelial cells. Ad-AT 2 significantly attenuated multiple human lung cancer cell growth (A549 and H358) as compared to the control viral vector, Ad-LacZ, when cell viability was examined by direct cell count. Examination of annexin V by flow cytometry revealed the activation of the apoptotic pathway via AT 2 over-expression. Western Blot analysis confirmed the activation of caspase-3. Similarly, poly (lactide-co-glycolic acid) (PLGA) biodegradable nanoparticles encapsulated AT 2 plasmid DNA were shown to be effectively taken up into the lung cancer cell. Nanoparticle-based AT 2 gene transfection markedly increased AT 2 expression and resultant cell death in A549 cells. These results indicate that AT 2 over-expression effectively attenuates growth of lung adenocarcinoma cells through intrinsic apoptosis. Our results also suggest that PLGA nanoparticles can be used as an efficient gene delivery vector for lung adenocarcinoma targeted therapy.

  11. Growth hormone facilitates 5'-azacytidine-induced myogenic but inhibits 5'-azacytidine-induced adipogenic commitment in C3H10T1/2 mesenchymal stem cells.

    PubMed

    Jia, Dan; Zheng, Weijiang; Jiang, Honglin

    2018-06-01

    The C3H10T1/2 cells are considered mesenchymal stem cells (MSCs) because they can be induced to become the progenitor cells for myocytes, adipocytes, osteoblasts, and chondrocytes by the DNA methyltransferase inhibitor 5'-azacytidine. In this study, we determined the effect of growth hormone (GH) on the myogenic and adipogenic lineage commitment in C3H10T1/2 cells. The C3H10T1/2 cells were treated with recombinant bovine GH in the presence or absence of 5'-azacytidine for 4 days. The myogenic commitment in C3H10T1/2 cells was assessed by immunostaining them for MyoD, the marker for myoblasts, and by determining their capacity to differentiate into the multinucleated myotubes. The adipogenic commitment in C3H10T1/2 cells was assessed by determining their ability to differentiate into adipocytes. Myotubes and adipocyteswere identified by immunocytochemistry and Oil Red O staining, respectively. C3H10T1/2 cells treated with 5'-azacytidine and GH for 4 days contained a greater percentage of MyoD-positive cells than those treated with 5'-axacytidine alone (P < 0.05). The former generated more myotubes than the latter upon induced myoblast differentiation (P < 0.05). However, C3H10T1/2 cells treated with GH alone did not form any myotubes. C3H10T1/2 cells treated with 5'-azacytidine formed adipocytes upon adipocyte differentiation induction, whereas C3H10T1/2 cells treated with GH alone did not form any adipocytes. C3H10T1/2 cells treated with both 5'-azacytidine and GH formed fewer adipocytes than those treated with 5'-azacytidine alone (P < 0.05). Both GHR and IGF-I mRNA expression in C3H10T1/2 cells were increased by 5'-azacytidine (P < 0.05), but neither was affected by GH. Overall, this study showed that GH enhanced 5'-azacytidine-induced commitment in C3H10T1/2 cells to myoblasts but inhibited 5'-azacytidine-induced commitment to preadipocytes. These results support the possibility that GH stimulates skeletal muscle growth and inhibits adipose

  12. Poisoning of Ni-Based anode for proton conducting SOFC by H2S, CO2, and H2O as fuel contaminants

    NASA Astrophysics Data System (ADS)

    Sun, Shichen; Awadallah, Osama; Cheng, Zhe

    2018-02-01

    It is well known that conventional solid oxide fuel cells (SOFCs) based on oxide ion conducting electrolyte (e.g., yttria-stabilized zirconia, YSZ) and nickel (Ni) - ceramic cermet anodes are susceptible to poisoning by trace amount of hydrogen sulfide (H2S) while not significantly impacted by the presence of carbon dioxide (CO2) and moisture (H2O) in the fuel stream unless under extreme operating conditions. In comparison, the impacts of H2S, CO2, and H2O on proton-conducting SOFCs remain largely unexplored. This study aims at revealing the poisoning behaviors caused by H2S, CO2, and H2O for proton-conducting SOFCs. Anode-supported proton-conducting SOFCs with BaZe0.1Ce0.7Y0.1Yb0.1O3 (BZCYYb) electrolyte and Ni-BZCYYb anode and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode as well as Ni-BZCYYb/BZCYYb/Ni-BZCYYb anode symmetrical cells were subjected to low ppm-level H2S or low percentage-level CO2 or H2O in the hydrogen fuel, and the responses in cell electrochemical behaviors were recorded. The results suggest that, contrary to conventional SOFCs that show sulfur poisoning and CO2 and H2O tolerance, such proton-conducting SOFCs with Ni-BZCYYb cermet anode seem to be poisoned by all three types of "contaminants". Beyond that, the implications of the experimental observations on understanding the fundamental mechanism of anode hydrogen electrochemical oxidation reaction in proton conducting SOFCs are also discussed.

  13. CO2-induced pH reduction increases physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus

    PubMed Central

    Hu, Menghong; Lin, Daohui; Shang, Yueyong; Hu, Yi; Lu, Weiqun; Huang, Xizhi; Ning, Ke; Chen, Yimin; Wang, Youji

    2017-01-01

    The increasing usage of nanoparticles has caused their considerable release into the aquatic environment. Meanwhile, anthropogenic CO2 emissions have caused a reduction of seawater pH. However, their combined effects on marine species have not been experimentally evaluated. This study estimated the physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus under high pCO2 (2500–2600 μatm). We found that respiration rate (RR), food absorption efficiency (AE), clearance rate (CR), scope for growth (SFG) and O:N ratio were significantly reduced by nano-TiO2, whereas faecal organic weight rate and ammonia excretion rate (ER) were increased under nano-TiO2 conditions. High pCO2 exerted lower effects on CR, RR, ER and O:N ratio than nano-TiO2. Despite this, significant interactions of CO2-induced pH change and nano-TiO2 were found in RR, ER and O:N ratio. PCA showed close relationships among most test parameters, i.e., RR, CR, AE, SFG and O:N ratio. The normal physiological responses were strongly correlated to a positive SFG with normal pH and no/low nano-TiO2 conditions. Our results indicate that physiological functions of M. coruscus are more severely impaired by the combination of nano-TiO2 and high pCO2. PMID:28054631

  14. CO2-induced pH reduction increases physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus

    NASA Astrophysics Data System (ADS)

    Hu, Menghong; Lin, Daohui; Shang, Yueyong; Hu, Yi; Lu, Weiqun; Huang, Xizhi; Ning, Ke; Chen, Yimin; Wang, Youji

    2017-01-01

    The increasing usage of nanoparticles has caused their considerable release into the aquatic environment. Meanwhile, anthropogenic CO2 emissions have caused a reduction of seawater pH. However, their combined effects on marine species have not been experimentally evaluated. This study estimated the physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus under high pCO2 (2500-2600 μatm). We found that respiration rate (RR), food absorption efficiency (AE), clearance rate (CR), scope for growth (SFG) and O:N ratio were significantly reduced by nano-TiO2, whereas faecal organic weight rate and ammonia excretion rate (ER) were increased under nano-TiO2 conditions. High pCO2 exerted lower effects on CR, RR, ER and O:N ratio than nano-TiO2. Despite this, significant interactions of CO2-induced pH change and nano-TiO2 were found in RR, ER and O:N ratio. PCA showed close relationships among most test parameters, i.e., RR, CR, AE, SFG and O:N ratio. The normal physiological responses were strongly correlated to a positive SFG with normal pH and no/low nano-TiO2 conditions. Our results indicate that physiological functions of M. coruscus are more severely impaired by the combination of nano-TiO2 and high pCO2.

  15. The anti-ErbB2 antibody H2-18 and the pan-PI3K inhibitor GDC-0941 effectively inhibit trastuzumab-resistant ErbB2-overexpressing breast cancer.

    PubMed

    Wang, Lingfei; Yu, Xiaojie; Wang, Chao; Pan, Shujun; Liang, Beibei; Zhang, Yajun; Chong, Xiaodan; Meng, Yanchun; Dong, Jian; Zhao, Yirong; Yang, Yang; Wang, Huajing; Gao, Jie; Wei, Huafeng; Zhao, Jian; Wang, Hao; Hu, Chaohua; Xiao, Wenze; Li, Bohua

    2017-08-08

    Trastuzumab, an anti-ErbB2 humanized antibody, brings benefit to patients with ErbB2-amplified metastatic breast cancers. However, the resistance to trastuzumab is common. Our previously reported H2-18, an anti-ErbB2 antibody, potently induced programmed cell death in trastuzumab-resistant breast cancer cells. Here, we aim to investigate the antitumor efficacy of H2-18 in combination with the pan-PI3K inhibitor GDC-0941 in trastuzumab-resistant breast cancer cell lines. The results showed that H2-18 and GDC-0941 synergistically inhibited the in vitro proliferation of BT-474, SKBR-3, HCC-1954 and HCC-1419 breast cancer cells. H2-18 plus GDC-0941 showed significantly enhanced programmed cell death-inducing activity compared with each drug used alone. The combination of H2-18 and GDC-0941 did not increase the effect of single agent on ROS production, cell cycle and ErbB2 signaling. Importantly, the in vivo antitumor efficacy of H2-18 plus GDC-0941 was superior to that of single agent. Thus, the enhanced in vivo antitumor efficacy of H2-18 plus GDC-0941 may mainly be attributable to its increased programmed cell death-inducing activity. Collectively, H2-18 plus GDC-0941 could effectively inhibit tumor growth, suggesting the potential to be translated into clinic as an efficient strategy for ErbB2-overexpressing breast cancers.

  16. The anti-ErbB2 antibody H2-18 and the pan-PI3K inhibitor GDC-0941 effectively inhibit trastuzumab-resistant ErbB2-overexpressing breast cancer

    PubMed Central

    Liang, Beibei; Zhang, Yajun; Chong, Xiaodan; Meng, Yanchun; Dong, Jian; Zhao, Yirong; Yang, Yang; Wang, Huajing; Gao, Jie; Wei, Huafeng; Zhao, Jian; Wang, Hao; Hu, Chaohua; Xiao, Wenze; Li, Bohua

    2017-01-01

    Trastuzumab, an anti-ErbB2 humanized antibody, brings benefit to patients with ErbB2-amplified metastatic breast cancers. However, the resistance to trastuzumab is common. Our previously reported H2-18, an anti-ErbB2 antibody, potently induced programmed cell death in trastuzumab-resistant breast cancer cells. Here, we aim to investigate the antitumor efficacy of H2-18 in combination with the pan-PI3K inhibitor GDC-0941 in trastuzumab-resistant breast cancer cell lines. The results showed that H2-18 and GDC-0941 synergistically inhibited the in vitro proliferation of BT-474, SKBR-3, HCC-1954 and HCC-1419 breast cancer cells. H2-18 plus GDC-0941 showed significantly enhanced programmed cell death-inducing activity compared with each drug used alone. The combination of H2-18 and GDC-0941 did not increase the effect of single agent on ROS production, cell cycle and ErbB2 signaling. Importantly, the in vivo antitumor efficacy of H2-18 plus GDC-0941 was superior to that of single agent. Thus, the enhanced in vivo antitumor efficacy of H2-18 plus GDC-0941 may mainly be attributable to its increased programmed cell death-inducing activity. Collectively, H2-18 plus GDC-0941 could effectively inhibit tumor growth, suggesting the potential to be translated into clinic as an efficient strategy for ErbB2-overexpressing breast cancers. PMID:28881779

  17. Structures, physicochemical and cytoprotective properties of new oxidovanadium(IV) complexes -[VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O

    NASA Astrophysics Data System (ADS)

    Drzeżdżon, Joanna; Jacewicz, Dagmara; Wyrzykowski, Dariusz; Inkielewicz-Stępniak, Iwona; Sikorski, Artur; Tesmar, Aleksandra; Chmurzyński, Lech

    2017-09-01

    New oxidovanadium(IV) complexes with a modification of the ligand in the VO2+ coordination sphere were synthesized. [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O were obtained as dark green crystals and grey-green powder, respectively (mIDA = N-methyliminodiacetic anion, IDA = iminodiacetic anion, dmbipy = 4,4‧-dimethoxy-2,2‧-dipyridyl). The crystal structure of [VO(mIDA)(dmbipy)]·1.5H2O has been determined by the X-ray diffraction method. The studies of structure of [VO(mIDA)(dmbipy)]•1.5H2O have shown that this compound occurs in the crystal as two rotational conformers. Furthermore, the stability constants of [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O complexes in aqueous solutions were studied by using the potentiometric titration method and, consequently, determined using the Hyperquad2008 program. Moreover, the title complexes were investigated as antioxidant substances. The impact of the structure modification in the VO2+ complexes on the radical scavenging activity has been studied. The ability to scavenge the superoxide radical by two complexes - [VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O was studied by cyclic voltammetry (CV) and nitrobluetetrazolium (NBT) methods. The title complexes were also examined by the spectrophotometric method as scavengers of neutral organic radical - 1,1-diphenyl-2-picrylhydrazyl (DPPH•) and radical cation - 2,2'-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS•+). Furthermore, the biological properties of two oxidovanadium(IV) complexes were investigated in relation to its cytoprotective properties by the MTT and LDH tests based on the hippocampal HT22 neuronal cell line during the oxidative damage induced by hydrogen peroxide. Finally, the results presented in this paper have shown that the both new oxidovanadium(IV) complexes with the 4,4‧-dimethoxy-2,2‧-dipyridyl ligand can be treated as the cytoprotective substances.

  18. D/H fractionation in the H2-H2O system at supercritical water conditions: Compositional and hydrogen bonding effects

    NASA Astrophysics Data System (ADS)

    Foustoukos, Dionysis I.; Mysen, Bjorn O.

    2012-06-01

    A series of experiments has been conducted in the H2-D2-D2O-H2O-Ti-TiO2 system at temperatures ranging from 300 to 800 °C and pressures between ∼0.3 and 1.3 GPa in a hydrothermal diamond anvil cell, utilizing Raman spectroscopy as a quantitative tool to explore the relative distribution of hydrogen and deuterium isotopologues of the H2 and H2O in supercritical fluids. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (3-9 h) in the diamond cell, leading to formation of H2, D2, HD, and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in situ and at ambient conditions on quenched samples indicate significant differences from the theoretical estimates of the equilibrium thermodynamic properties of the H-D exchange reactions. In fact, the estimated enthalpy for the H2(aq)-D2(aq) disproportionation reaction (ΔHrxn) is about -3.4 kcal/mol, which differs greatly from the +0.16 kcal/mol predicted for the exchange reaction in the gas phase by statistical mechanics models. The exothermic behavior of the exchange reaction implies enhanced stability of H2 and D2 relative to HD. Accordingly, the significant energy difference of the internal H2(aq)-D2(aq)-HD(aq) equilibrium translates to strong differences of the fractionation effects between the H2O-H2 and D2O-D2 isotope exchange relationships. The D/H fractionation factors between H2O-H2(aq) and D2O-D2(aq) differ by 365‰ in the 600-800 °C temperature range, and are indicative of the greater effect of D2O contribution to the δD isotopic composition of supercritical fluids. The negative ΔHrxn values for the H2(aq)-D2(aq)-HD(aq) equilibrium and the apparent decrease of the equilibrium constant with increasing temperature might be because of differences of the Henry’s law constant between the H- and D-bearing species dissolved in supercritical aqueous solutions. Such effects may be attributed to the stronger hydrogen bonding in the O-H⋯O relative to the

  19. Transient Receptor Potential Vanilloid 1 Expression Mediates Capsaicin-Induced Cell Death.

    PubMed

    Ramírez-Barrantes, Ricardo; Córdova, Claudio; Gatica, Sebastian; Rodriguez, Belén; Lozano, Carlo; Marchant, Ivanny; Echeverria, Cesar; Simon, Felipe; Olivero, Pablo

    2018-01-01

    The transient receptor potential (TRP) ion channel family consists of a broad variety of non-selective cation channels that integrate environmental physicochemical signals for dynamic homeostatic control. Involved in a variety of cellular physiological processes, TRP channels are fundamental to the control of the cell life cycle. TRP channels from the vanilloid (TRPV) family have been directly implicated in cell death. TRPV1 is activated by pain-inducing stimuli, including inflammatory endovanilloids and pungent exovanilloids, such as capsaicin (CAP). TRPV1 activation by high doses of CAP (>10 μM) leads to necrosis, but also exhibits apoptotic characteristics. However, CAP dose-response studies are lacking in order to determine whether CAP-induced cell death occurs preferentially via necrosis or apoptosis. In addition, it is not known whether cytosolic Ca 2+ and mitochondrial dysfunction participates in CAP-induced TRPV1-mediated cell death. By using TRPV1-transfected HeLa cells, we investigated the underlying mechanisms involved in CAP-induced TRPV1-mediated cell death, the dependence of CAP dose, and the participation of mitochondrial dysfunction and cytosolic Ca 2+ increase. Together, our results contribute to elucidate the pathophysiological steps that follow after TRPV1 stimulation with CAP. Low concentrations of CAP (1 μM) induce cell death by a mechanism involving a TRPV1-mediated rapid and transient intracellular Ca 2+ increase that stimulates plasma membrane depolarization, thereby compromising plasma membrane integrity and ultimately leading to cell death. Meanwhile, higher doses of CAP induce cell death via a TRPV1-independent mechanism, involving a slow and persistent intracellular Ca 2+ increase that induces mitochondrial dysfunction, plasma membrane depolarization, plasma membrane loss of integrity, and ultimately, cell death.

  20. alpha-Tocopheryl succinate promotes selective cell death induced by vitamin K3 in combination with ascorbate.

    PubMed

    Tomasetti, M; Strafella, E; Staffolani, S; Santarelli, L; Neuzil, J; Guerrieri, R

    2010-04-13

    A strategy to reduce the secondary effects of anti-cancer agents is to potentiate the therapeutic effect by their combination. A combination of vitamin K3 (VK3) and ascorbic acid (AA) exhibited an anti-cancer synergistic effect, associated with extracellular production of H(2)O(2) that promoted cell death. The redox-silent vitamin E analogue alpha-tocopheryl succinate (alpha-TOS) was used in combination with VK3 and AA to evaluate their effect on prostate cancer cells. Prostate cancer cells were sensitive to alpha-TOS and VK3 treatment, but resistant to AA upto 3.2 mM. When combined, a synergistic effect was found for VK3-AA, whereas alpha-TOS-VK3 and alpha-TOS-AA combination showed an antagonist and additive effect, respectively. However, sub-lethal doses of AA-VK3 combination combined with a sub-toxic dose of alpha-TOS showed to induce efficient cell death that resembles autoschizis. Associated with this cell demise, lipid peroxidation, DNA damage, cytoskeleton alteration, lysosomal-mitochondrial perturbation, and release of cytochrome c without caspase activation were observed. Inhibition of lysosomal proteases did not attenuate cell death induced by the combined agents. Furthermore, cell deaths by apoptosis and autoschizis were detected. These finding support the emerging idea that synergistic combinations of some agents can overcome toxicity and other side-effects associated with high doses of single drugs creating the opportunity for therapeutically relevant selectivity.

  1. Closed Bipolar Electrodes for Spatial Separation of H2 and O2 Evolution during Water Electrolysis and the Development of High-Voltage Fuel Cells.

    PubMed

    Goodwin, Sean; Walsh, Darren A

    2017-07-19

    Electrolytic water splitting could potentially provide clean H 2 for a future "hydrogen economy". However, as H 2 and O 2 are produced in close proximity to each other in water electrolyzers, mixing of the gases can occur during electrolysis, with potentially dangerous consequences. Herein, we describe an electrochemical water-splitting cell, in which mixing of the electrogenerated gases is impossible. In our cell, separate H 2 - and O 2 -evolving cells are connected electrically by a bipolar electrode in contact with an inexpensive dissolved redox couple (K 3 Fe(CN) 6 /K 4 Fe(CN) 6 ). Electrolytic water splitting occurs in tandem with oxidation/reduction of the K 3 Fe(CN) 6 /K 4 Fe(CN) redox couples in the separate compartments, affording completely spatially separated H 2 and O 2 evolution. We demonstrate operation of our prototype cell using conventional Pt electrodes for each gas-evolving reaction, as well as using earth-abundant Ni 2 P electrocatalysts for H 2 evolution. Furthermore, we show that our cell can be run in reverse and operate as a H 2 fuel cell, releasing the energy stored in the electrogenerated H 2 and O 2 . We also describe how the absence of an ionically conducting electrolyte bridging the H 2 - and O 2 -electrode compartments makes it possible to develop H 2 fuel cells in which the anode and cathode are at different pH values, thereby increasing the voltage above that of conventional fuel cells. The use of our cell design in electrolyzers could result in dramatically improved safety during operation and the generation of higher-purity H 2 than available from conventional electrolysis systems. Our cell could also be readily modified for the electrosynthesis of other chemicals, where mixing of the electrochemical products is undesirable.

  2. Nardosinone protects H9c2 cardiac cells from angiotensin II-induced hypertrophy.

    PubMed

    Du, Meng; Huang, Kun; Gao, Lu; Yang, Liu; Wang, Wen-Shuo; Wang, Bo; Huang, Kai; Huang, Dan

    2013-12-01

    Pathological cardiac hypertrophy induced by angiotensin II (AngII) can subsequently give rise to heart failure, a leading cause of mortality. Nardosinone is a pharmacologically active compound extracted from the roots of Nardostachys chinensis, a well-known traditional Chinese medicine. In order to investigate the effects of nardosinone on AngII-induced cardiac cell hypertrophy and the related mechanisms, the myoblast cell line H9c2, derived from embryonic rat heart, was treated with nardosinone (25, 50, 100, and 200 μmol/L) or AngII (1 μmol/L). Then cell surface area and mRNA expression of classical markers of hypertrophy were detected. The related protein levels in PI3K/Akt/mTOR and MEK/ERK signaling pathways were examined by Western blotting. It was found that pretreatment with nardosinone could significantly inhibit the enlargement of cell surface area induced by AngII. The mRNA expression of ANP, BNP and β-MHC was obviously elevated in AngII-treated H9c2 cells, which could be effectively blocked by nardosinone at the concentration of 100 μmol/L. Further study revealed that the protective effects of nardosinone might be mediated by repressing the phosphorylation of related proteins in PI3K/Akt and MEK/ERK signaling pathways. It was suggested that the inhibitory effect of nardosinone on Ang II-induced hypertrophy in H9c2 cells might be mediated by targeting PI3K/Akt and MEK/ERK signaling pathways.

  3. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  4. Changes in metabolic markers in insulin-producing β-cells during hypoxia-induced cell death as studied by NMR metabolomics.

    PubMed

    Tian, Lianji; Kim, Hoe Suk; Kim, Heyonjin; Jin, Xing; Jung, Hye Seung; Park, Kyong Soo; Cho, Kyoung Won; Park, Sunghyouk; Moon, Woo Kyung

    2013-08-02

    This study was designed to investigate changes in the metabolites in the intracellular fluid of the pancreatic β-cell line INS-1 to identify potential early and late biomarkers for predicting hypoxia-induced cell death. INS-1 cells were incubated under normoxic conditions (95% air, 5% CO₂) or hypoxic conditions (1% O₂, 5% CO₂, 95% N₂) for 2, 4, 6, 12, or 24 h. The biological changes indicating the process of cell death were analyzed using the MTT assay, flow cytometry, Western blotting, and immunostaining. Changes in the metabolic profiles from cell lysates were identified using ¹H nuclear magnetic resonance (¹H NMR) spectroscopy, and the spectra were analyzed by the multivariate model Orthogonal Projections to Latent Structure-Discriminant Analysis. Cell viability decreased approximately 40% after 12-24 h of hypoxia, coincident with a high level of cleaved caspase-3. A high level of HIF-1α was detected in the 12-24 h hypoxic conditions. The metabolite profiles were altered according to the degree of exposure to hypoxia. A spectral analysis showed significant differences in creatine-containing compounds at the early stage (2-6 h) and taurine-containing compounds at the late stage (12-24 h), with the detection of HIF-1α and cleaved caspase-3 in cells exposed to hypoxia compared to normoxia. Glycerophosphocholine decreased during the early stage hypoxia. The change in taurine- and creatine-containing compounds and choline species could be involved in the β-cell death process as inhibitors or activators of cell death. Our results imply that assessment by ¹H NMR spectroscopy would be a useful tool to predict the cell death process and to identify molecules regulating hypoxia-induced cell death mechanisms.

  5. Acetylated Chitosan Oligosaccharides Act as Antagonists against Glutamate-Induced PC12 Cell Death via Bcl-2/Bax Signal Pathway

    PubMed Central

    Hao, Cui; Gao, Lixia; Zhang, Yiran; Wang, Wei; Yu, Guangli; Guan, Huashi; Zhang, Lijuan; Li, Chunxia

    2015-01-01

    Chitosan oligosaccharides (COSs), depolymerized products of chitosan composed of β-(1→4) d-glucosamine units, have broad range of biological activities such as antitumour, antifungal, and antioxidant activities. In this study, peracetylated chitosan oligosaccharides (PACOs) and N-acetylated chitosan oligosaccharides (NACOs) were prepared from the COSs by chemcal modification. The structures of these monomers were identified using NMR and ESI-MS spectra. Their antagonist effects against glutamate-induced PC12 cell death were investigated. The results showed that pretreatment of PC12 cells with the PACOs markedly inhibited glutamate-induced cell death in a concentration-dependent manner. The PACOs were better glutamate antagonists compared to the COSs and the NACOs, suggesting the peracetylation is essential for the neuroprotective effects of chitosan oligosaccharides. In addition, the PACOs pretreatment significantly reduced lactate dehydrogenase release and reactive oxygen species production. It also attenuated the loss of mitochondrial membrane potential. Further studies indicated that the PACOs inhibited glutamate-induced cell death by preventing apoptosis through depressing the elevation of Bax/Bcl-2 ratio and caspase-3 activation. These results suggest that PACOs might be promising antagonists against glutamate-induced neural cell death. PMID:25775423

  6. MicroRNA-137 Negatively Regulates H2O2-Induced Cardiomyocyte Apoptosis Through CDC42

    PubMed Central

    Wang, Junnan; Xu, Rihao; Wu, Junduo; Li, Zhibo

    2015-01-01

    Background Oxidative stress, inducing cardiomyocyte apoptosis or myocardial ischemia, is the major denominator of many cardiac diseases. In this study, we intended to explore the regulatory function of microRNA-137 (miR-137) in oxidative stress-induced cardiomyocyte apoptosis. Material/Methods Cardiomyocytes were extracted from newborn C57BL/6 mice and cultured in vitro. Apoptosis was induced by H2O2, and evaluated by TUNEL assay. The effect of cardiomyocyte apoptosis on gene expression of miR-137 was evaluated by qRT-PCR. Lentivirus was used to stably down-regulate miR-137, and the subsequent effects of miR-137 down-regulation on cardiomyocyte apoptosis, its targeted gene CDC42, and caspase pathway were evaluated by TUNEL assay, dual-luciferase reporter assay, and Western blot assay, respectively. Finally, CDC42 was down-regulated by siRNA and its effect on miR-137-mediated cardiomyocyte apoptosis protection was examined. Results H2O2 induced significant apoptosis and up-regulated miR-137 in cardiomyocytes, whereas lentivirus-mediated miR-137 down-regulation protected against apoptosis. CDC42 was the direct target gene of miR-137 and proteins of CDC42, caspase-3, and caspase-9 were all regulated by miR-137 down-regulation in cardiomyocyte apoptosis. SiRNA-mediated CDC42 down-regulation reversed the protection of miR-137 down-regulation against cardiomyocyte apoptosis. Conclusions Our work demonstrated miR-137 and CDC42 are critical regulators in cardiomyocyte apoptosis. It may help to identify the molecular targets to prevent myocardial injury in human patients. PMID:26566162

  7. Crystal structures of Sr(ClO4)2·3H2O, Sr(ClO4)2·4H2O and Sr(ClO4)2·9H2O

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang

    2014-01-01

    The title compounds, strontium perchlorate trihydrate {di-μ-aqua-aquadi-μ-perchlorato-strontium, [Sr(ClO4)2(H2O)3]n}, strontium perchlorate tetra­hydrate {di-μ-aqua-bis­(tri­aqua­diperchloratostrontium), [Sr2(ClO4)4(H2O)8]} and strontium perchlorate nona­hydrate {hepta­aqua­diperchloratostrontium dihydrate, [Sr(ClO4)2(H2O)7]·2H2O}, were crystallized at low temperatures according to the solid–liquid phase diagram. The structures of the tri- and tetra­hydrate consist of Sr2+ cations coordinated by five water mol­ecules and four O atoms of four perchlorate tetra­hedra in a distorted tricapped trigonal–prismatic coordination mode. The asymmetric unit of the trihydrate contains two formula units. Two [SrO9] polyhedra in the trihydrate are connected by sharing water mol­ecules and thus forming chains parallel to [100]. In the tetra­hydrate, dimers of two [SrO9] polyhedra connected by two sharing water mol­ecules are formed. The structure of the nona­hydrate contains one Sr2+ cation coordinated by seven water mol­ecules and by two O atoms of two perchlorate tetra­hedra (point group symmetry ..m), forming a tricapped trigonal prism (point group symmetry m2m). The structure contains additional non-coordinating water mol­ecules, which are located on twofold rotation axes. O—H⋯O hydrogen bonds between the water mol­ecules as donor and ClO4 tetra­hedra and water mol­ecules as acceptor groups lead to the formation of a three-dimensional network in each of the three structures. PMID:25552979

  8. Activation of Nrf2 by H2O2: de novo synthesis versus nuclear translocation.

    PubMed

    Covas, Gonçalo; Marinho, H Susana; Cyrne, Luísa; Antunes, Fernando

    2013-01-01

    The most common mechanism described for the activation of the transcription factor Nrf2 is based on the inhibition of its degradation in the cytosol followed by its translocation to the nucleus. Recently, Nrf2 de novo synthesis was proposed as an additional mechanism for the rapid upregulation of Nrf2 by hydrogen peroxide (H2O2). Here, we describe a detailed protocol, including solutions, pilot experiments, and experimental setups, which allows exploring the role of H2O2, delivered either as a bolus or as a steady state, in endogenous Nrf2 translocation and synthesis. We also show experimental data, illustrating that H2O2 effects on Nrf2 activation in HeLa cells are strongly dependent both on the H2O2 concentration and on the method of H2O2 delivery. The de novo synthesis of Nrf2 is triggered within 5min of exposure to low concentrations of H2O2, preceding Nrf2 translocation to the nucleus which is slower. Evidence of de novo synthesis of Nrf2 is observed only for low H2O2 steady-state concentrations, a condition that is prevalent in vivo. This study illustrates the applicability of the steady-state delivery of H2O2 to uncover subtle regulatory effects elicited by H2O2 in narrow concentration and time ranges. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3).

    PubMed

    Srithep, Sirinthip; Phattarapattamawong, Songkeart

    2017-06-01

    The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H 2 O 2 , UV/O 3 , and UV/H 2 O 2 /O 3 ) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H 2 O 2 /O 3 was the most effective process for removing HAN precursors, followed by UV/H 2 O 2 , and UV/O 3 , respectively. For 20min contact time, the UV/H 2 O 2 /O 3 , UV/H 2 O 2 , and UV/O 3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL -1 in UV/O 3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H 2 O 2 , and UV/H 2 O 2 /O 3 ), except for the UV/O 3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k' DCANFP ) by the UV/H 2 O 2 /O 3 , UV/H 2 O 2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O 3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k' DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Nrf2 protects against oxidative stress induced by SiO2 nanoparticles.

    PubMed

    Liu, Wei; Hu, Tao; Zhou, Li; Wu, Desheng; Huang, Xinfeng; Ren, Xiaohu; Lv, Yuan; Hong, Wenxu; Huang, Guanqin; Lin, Zequn; Liu, Jianjun

    2017-10-01

    The aim of our study was to explore the role of nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) on the exposure of SiO 2 nanoparticles (NPs) and its influence. To understand the mechanism of NP-induced oxidative stress, the involvement of oxidative-stress-responding transcription factors and the Nrf2/antioxidant reactive element (ARE) signaling pathway in the toxicity of SiO 2 NPs' exposure was investigated via in vivo and in vitro models. A549 cells showed a significant cytotoxic effect while A549-shNrf2 cells showed decreased cell viability after nm-SiO 2 exposure. SiO 2 NPs' exposure activated the Nrf2/ARE signaling pathway. Nrf2 -/- exposed mice showed increased reactive oxygen species, 8-hydroxyl deoxyguanosine level and decreased total antioxidant capacity. Nrf2/ARE signaling pathway activation disrupted, leading inhibition of heme oxygenase-1 and upregulation of PKR-like endoplasmic-reticulum-regulated kinase. Our findings suggested that Nrf2 could protect against oxidative stress induced by SiO 2 NPs, and the Nrf2/ARE pathway might be involved in mild-to-moderate SiO 2 NP-induced oxidative stress that was evident from dampened activity of Nrf2.

  11. Critical involvement of extracellular ATP acting on P2RX7 purinergic receptors in photoreceptor cell death.

    PubMed

    Notomi, Shoji; Hisatomi, Toshio; Kanemaru, Takaaki; Takeda, Atsunobu; Ikeda, Yasuhiro; Enaida, Hiroshi; Kroemer, Guido; Ishibashi, Tatsuro

    2011-12-01

    Stressed cells release ATP, which participates in neurodegenerative processes through the specific ligation of P2RX7 purinergic receptors. Here, we demonstrate that extracellular ATP and the more specific P2RX7 agonist, 2'- and 3'-O-(4-benzoylbenzoyl)-ATP, both induce photoreceptor cell death when added to primary retinal cell cultures or when injected into the eyes from wild-type mice, but not into the eyes from P2RX7(-/-) mice. Photoreceptor cell death was accompanied by the activation of caspase-8 and -9, translocation of apoptosis-inducing factor from mitochondria to nuclei, and TUNEL-detectable chromatin fragmentation. All hallmarks of photoreceptor apoptosis were prevented by premedication or co-application of Brilliant Blue G, a selective P2RX7 antagonist that is already approved for the staining of internal limiting membranes during ocular surgery. ATP release is up-regulated by nutrient starvation in primary retinal cell cultures and seems to be an initializing event that triggers primary and/or secondary cell death via the positive feedback loop on P2RX7. Our results encourage the potential application of Brilliant Blue G as a novel neuroprotective agent in retinal diseases or similar neurodegenerative pathologies linked to excessive extracellular ATP. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Ro-vibrational spectrum of H2O-Ne in the ν2 H2O bending region: A combined ab initio and experimental investigation

    NASA Astrophysics Data System (ADS)

    Liu, Xunchen; Hou, Dan; Thomas, Javix; Li, Hui; Xu, Yunjie

    2016-12-01

    High resolution ro-vibrational transitions of the H2O-Ne complex in the ν2 bending region of H2O at 6 μm have been measured using a rapid scan infrared spectrometer based on an external cavity quantum cascade laser and an astigmatic multipass optical cell. To aid the spectral assignment, a four-dimension potential energy surface of H2O-Ne which depends on the intramolecular bending coordinate of the H2O monomer and the three intermolecular vibrational coordinates has been constructed and the rovibrational transitions have been calculated. Three ortho and two para H2O-20Ne bands have been identified from the experimental spectra. Some weaker transitions belonging to H2O-22Ne have also been identified experimentally. Spectroscopic fits have been performed for both the experimental and theoretical transition frequencies using a simple pseudo-diatomic Hamiltonian including both Coriolis coupling and Fermi resonance terms. The experimental and theoretical spectroscopic constants thus obtained have been compared. Further improvements needed in the potential energy surface and the related spectral simulation have been discussed.

  13. H. pylori attenuates TNBS-induced colitis via increasing mucosal Th2 cells in mice.

    PubMed

    Wu, Yi-Zhong; Tan, Gao; Wu, Fang; Zhi, Fa-Chao

    2017-09-26

    There is an epidemiological inverse relationship between Helicobacter pylori ( H. pylori ) infection and Crohn's disease (CD). However, whether H. pylori plays a protective role against CD remains unclear. Since 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis is thought to resemble CD, we investigated whether H. pylori can attenuate TNBS-induced colitis in mice. Here we show that H. pylori can attenuate the severity of TNBS-induced colitis. In addition, H. pylori not only down-regulates Th17 and Th1 cytokine expression, but can up-regulate Th2 cytokine expression and increase the Th2:Th17 ratio of CD4 + T in the colonic mucosa of TNBS-induced colitis. Our results indicate that H. pylori attenuates TNBS-induced colitis mainly through increasing Th2 cells in murine colonic mucosa. Our finding offers a novel view on the role of H. pylori in regulating gastrointestinal immunity, and may open a new avenue for development of therapeutic strategies in CD by making use of asymptomatic H. pylori colonization.

  14. FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation

    PubMed Central

    Bartell, Shoshana M.; Kim, Ha-Neui; Ambrogini, Elena; Han, Li; Iyer, Srividhya; Serra Ucer, S.; Rabinovitch, Peter; Jilka, Robert L.; Weinstein, Robert S.; Zhao, Haibo; O’Brien, Charles A.; Manolagas, Stavros C.; Almeida, Maria

    2014-01-01

    Besides their cell-damaging effects in the setting of oxidative stress, reactive oxygen species (ROS) play an important role in physiological intracellular signalling by triggering proliferation and survival. FoxO transcription factors counteract ROS generation by upregulating antioxidant enzymes. Here we show that intracellular H2O2 accumulation is a critical and purposeful adaptation for the differentiation and survival of osteoclasts, the bone cells responsible for the resorption of mineralized bone matrix. Using mice with conditional loss or gain of FoxO transcription factor function, or mitochondria-targeted catalase in osteoclasts, we demonstrate this is achieved, at least in part, by downregulating the H2O2-inactivating enzyme catalase. Catalase downregulation results from the repression of the transcriptional activity of FoxO1, 3 and 4 by RANKL, the indispensable signal for the generation of osteoclasts, via an Akt-mediated mechanism. Notably, mitochondria-targeted catalase prevented the loss of bone caused by loss of oestrogens, suggesting that decreasing H2O2 production in mitochondria may represent a rational pharmacotherapeutic approach to diseases with increased bone resorption. PMID:24781012

  15. H2O2 attenuates IGF-1R tyrosine phosphorylation and its survival signaling properties in neuronal cells via NR2B containing NMDA receptor.

    PubMed

    Zeng, Zhiwen; Wang, Dejun; Gaur, Uma; Rifang, Liao; Wang, Haitao; Zheng, Wenhua

    2017-09-12

    Impairment of insulin-like growth factor I (IGF-I) signaling plays an important role in the development of neurodegeneration. In the present study, we investigated the effect of H 2 O 2 on the survival signaling of IGF-1 and its underlying mechanisms in human neuronal cells SH-SY5Y. Our results showed that IGF-1 promoted cell survival and stimulated phosphorylation of IGF-1R as well as its downstream targets like AKT and ERK1/2 in these cells. Meanwhile, these effects of IGF-1 were abolished by H 2 O 2 at 200μM concentration which did not cause any significant toxicity to cells itself in our experiments. Moreover, studies using various glutamate receptor subtype antagonists displayed that N-methyl-D -aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) blocked the effects of H 2 O 2 , whereas other glutamate receptor subtype antagonists, such as non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX), metabolic glutamate receptor antagonists LY341495 and CPCCOEt, had no effect. Further studies revealed that NR2B-containing NMDARs are responsible for these effects as its effects were blocked by pharmacological inhibitor Ro25-698 or specific siRNA for NR2B, but not NR2A. Finally, our data also showed that Ca 2+ influx contributes to the effects of H 2 O 2 . Similar results were obtained in primary cultured cortical neurons. Taken together, the results from the present study suggested that H 2 O 2 attenuated IGF-1R tyrosine phosphorylation and its survival signaling properties via NR2B containing NMDA receptors and Ca 2+ influx in SH-SY5Y cells. Therefore, NMDAR antagonists, especially NR2B-selective ones, combined with IGF-1 may serve as an alternative therapeutic agent for oxidative stress related neurodegenerative disease.

  16. Vibrational energy transfer and relaxation in O2 and H2O.

    PubMed

    Huestis, David L

    2006-06-01

    Near-resonant vibrational energy exchange between oxygen and water molecules is an important process in the Earth's atmosphere, combustion chemistry, and the chemical oxygen iodine laser (COIL). The reactions in question are (1) O2(1) + O2(0) --> O2(0) + O2(0); (2) O2(1) + H2O(000) --> O2(0) + H2O(000); (3) O2(1) + H2O(000) <--> O2(0) + H2O(010); (4) H2O(010) + H2O(000) --> H2O(000) + H2O(000); and (5) H2O(010) + O2(0) --> H2O(000) + O2(0). Reanalysis of the data available in the chemical kinetics literature provides reliable values for rate coefficients for reactions 1 and 4 and strong evidence that reactions 2 and 5 are slow in comparison with reaction 3. Analytical solution of the chemical rate equations shows that previous attempts to measure the rate of reaction 3 are unreliable unless the water mole fraction is higher than 1%. Reanalysis of data from the only experiment satisfying this constraint provides a rate coefficient of (5.5 +/- 0.4) x 10(-13) cm3/s at room temperature, between the values favored by the atmospheric and laser modeling communities.

  17. Ulmus macrocarpa Hance Extracts Attenuated H2O2 and UVB-Induced Skin Photo-Aging by Activating Antioxidant Enzymes and Inhibiting MAPK Pathways

    PubMed Central

    Choi, Sun-Il; Lee, Jin-Ha; Kim, Jae-Min; Jung, Tae-Dong; Cho, Bong-Yeon; Choi, Seung-Hyun; Lee, Dae-Won; Kim, Jinkyung; Kim, Jong-Yea; Lee, Ok-Hawn

    2017-01-01

    To protect from reactive oxygen species (ROS) damages, skin cells have evolved to have antioxidant enzymes, such as copper and zinc-dependent superoxide dismutase (SOD1), mitochondrial manganese-dependent superoxide dismutase (SOD2), catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GR), and suppressed the expression of matrix metalloproteinases (MMPs) through the mitogen-activated protein kinase (MAPK) signaling pathways, such as c-Jun N-terminal kinase (JNK) and p38. Bioactive compounds analyses were performed using a high-performance liquid chromatography-photodiode array detector (HPLC-PDA) system. The antioxidant activity of Ulmus macrocarpa Hance (UMH) extracts was estimated in vitro. The anti-aging activity of UMH extracts was estimated in vivo using the SKH-1 hairless mice. The UMH extracts reduced the H2O2-induced intracellular ROS production and the cell damages in human dermal fibroblasts (HDFs). Moreover, the H2O2-induced phosphorylation of JNK and p38 was detected in HDF and UMH extracts blocked the phosphorylation. These results suggest that UMH extracts can reduce the expression of MMPs and the reduced MMPs lead to the inhibition of collagen degradation. In addition, oral administration of the UMH extracts decreased the depth, thickness, and length of wrinkles on UVB exposed hairless mice. Therefore, UMH extracts play an advantage of the functional materials in antioxidant and anti-aging of skin. PMID:28587261

  18. Dependence of Cisplatin-Induced Cell Death In Vitro and In Vivo on Cyclin-Dependent Kinase 2

    PubMed Central

    Price, Peter M.; Yu, Fang; Kaldis, Philipp; Aleem, Eiman; Nowak, Grażyna; Safirstein, Robert L.; Megyesi, Judit

    2006-01-01

    Cisplatin is one of the most effective chemotherapeutics, but its usefulness is limited by its toxicity to normal tissues, including cells of the kidney proximal tubule. The purpose of these studies was to determine the mechanism of cisplatin cytotoxicity. It was shown in vivo that cisplatin administration induces upregulation of the gene for the p21 cyclin-dependent kinase (cdk) inhibitor in kidney cells. This protein is a positive effector on the fate of cisplatin-exposed renal tubule cells in vivo and in vitro; adenoviral transduction of p21 completely protected proximal tubule cells from cisplatin toxicity. Herein is reported that cdk2 inhibitory drugs protect kidney cells in vivo and in vitro, that transduction of kidney cells in vitro with dominant-negative cdk2 also protected, and that cdk2 knockout cells were resistant to cisplatin. The cdk2 knockout cells regained cisplatin sensitivity after transduction with wild-type cdk2. It is concluded that cisplatin cytotoxicity depends on cdk2 activation and that the mechanism of p21 protection is by direct inhibition of cdk2. This demonstrated the involvement of a protein that previously was associated with cell-cycle progression with pathways of apoptosis. It also was demonstrated that this pathway of cisplatin-induced cell death can be interceded in vivo to prevent nephrotoxicity. PMID:16914540

  19. FasL-triggered death of Jurkat cells requires caspase 8-induced, ATP-dependent cross-talk between Fas and the purinergic receptor P2X(7).

    PubMed

    Aguirre, Adam; Shoji, Kenji F; Sáez, Juan C; Henríquez, Mauricio; Quest, Andrew F G

    2013-02-01

    Fas ligation via the ligand FasL activates the caspase-8/caspase-3-dependent extrinsic death pathway. In so-called type II cells, an additional mechanism involving tBid-mediated caspase-9 activation is required to efficiently trigger cell death. Other pathways linking FasL-Fas interaction to activation of the intrinsic cell death pathway remain unknown. However, ATP release and subsequent activation of purinergic P2X(7) receptors (P2X(7)Rs) favors cell death in some cells. Here, we evaluated the possibility that ATP release downstream of caspase-8 via pannexin1 hemichannels (Panx1 HCs) and subsequent activation of P2X(7)Rs participate in FasL-stimulated cell death. Indeed, upon FasL stimulation, ATP was released from Jurkat cells in a time- and caspase-8-dependent manner. Fas and Panx1 HCs colocalized and inhibition of the latter, but not connexin hemichannels, reduced FasL-induced ATP release. Extracellular apyrase, which hydrolyzes ATP, reduced FasL-induced death. Also, oxidized-ATP or Brilliant Blue G, two P2X(7)R blockers, reduced FasL-induced caspase-9 activation and cell death. These results represent the first evidence indicating that the two death receptors, Fas and P2X(7)R connect functionally via caspase-8 and Panx1 HC-mediated ATP release to promote caspase-9/caspase-3-dependent cell death in lymphoid cells. Thus, a hitherto unsuspected route was uncovered connecting the extrinsic to the intrinsic pathway to amplify death signals emanating from the Fas receptor in type II cells. Copyright © 2012 Wiley Periodicals, Inc.

  20. Analysis of lymphocyte cell death and apoptosis in HIV-2-infected patients.

    PubMed

    Jaleco, A C; Covas, M J; Victorino, R M

    1994-11-01

    Recent evidence suggests that T cell apoptosis could be involved in the pathogenesis of HIV-1 infection. As the progression of HIV-2 associated disease appears to be slower than that of HIV-1, we investigated whether there were differences in the degree of T cell death and apoptosis in peripheral blood mononuclear cell (PBMC) cultures from patients with HIV-1 or HIV-2 infection. PBMC from healthy controls (n = 28) and patients infected with HIV-1 (n = 26: asymptomatic (ASY)/persistent generalized lymphadenopathy (PGL), n = 16; and AIDS-related complex (ARC)/AIDS n = 10) or HIV-2 (n = 30: ASY/PGL, n = 16; ARC/AIDS, n = 14) were cultured in the absence or presence of mitogens (PHA, PWM) or superantigen (SEB). After 48 h, cell death (CD) was assessed by trypan blue exclusion and in some patients programmed cell death (PCD) was quantified in flow cytometry by measuring the percentage of hypodiploid nuclei corresponding to fragmented DNA, after treating the cells with a propidium iodide hypotonic solution. HIV-1 and HIV-2 ARC/AIDS patients and ASY/PGL HIV-1+ patients had significant increases in cell death percentages compared with controls, both in unstimulated and stimulated lymphocyte cultures. However, HIV-2+ ASY/PGL patients did not exhibit significant increases of cell death in unstimulated cultures. In addition, the comparison between HIV-1 and HIV-2 infected subjects in similar stages of disease, showed no significant differences in CD in the ARC/AIDS patients, although ASY/PGL HIV-2 infected subjects had lower levels of CD than the HIV-1+ ASY/PGL (3.4% +/- 0.6 s.e.m. versus 6.8% +/- 1.1 s.e.m., P < 0.01). PCD was significantly increased both in ASY/PGL (14.3% +/- 2.2 s.e.m., n = 8, P < 0.005) and in ARC/AIDS (25.3% +/- 4.5 s.e.m., n = 9, P < 0.001) HIV-1+ patients compared with healthy controls (5.8% +/- 1.7 s.e.m., n = 11). This contrasts with HIV-2 infected subjects where the ASY/PGL patients (10.0% +/- 2.8 s.e.m., n = 6) did not differ significantly from

  1. Analysis of lymphocyte cell death and apoptosis in HIV-2-infected patients.

    PubMed Central

    Jaleco, A C; Covas, M J; Victorino, R M

    1994-01-01

    Recent evidence suggests that T cell apoptosis could be involved in the pathogenesis of HIV-1 infection. As the progression of HIV-2 associated disease appears to be slower than that of HIV-1, we investigated whether there were differences in the degree of T cell death and apoptosis in peripheral blood mononuclear cell (PBMC) cultures from patients with HIV-1 or HIV-2 infection. PBMC from healthy controls (n = 28) and patients infected with HIV-1 (n = 26: asymptomatic (ASY)/persistent generalized lymphadenopathy (PGL), n = 16; and AIDS-related complex (ARC)/AIDS n = 10) or HIV-2 (n = 30: ASY/PGL, n = 16; ARC/AIDS, n = 14) were cultured in the absence or presence of mitogens (PHA, PWM) or superantigen (SEB). After 48 h, cell death (CD) was assessed by trypan blue exclusion and in some patients programmed cell death (PCD) was quantified in flow cytometry by measuring the percentage of hypodiploid nuclei corresponding to fragmented DNA, after treating the cells with a propidium iodide hypotonic solution. HIV-1 and HIV-2 ARC/AIDS patients and ASY/PGL HIV-1+ patients had significant increases in cell death percentages compared with controls, both in unstimulated and stimulated lymphocyte cultures. However, HIV-2+ ASY/PGL patients did not exhibit significant increases of cell death in unstimulated cultures. In addition, the comparison between HIV-1 and HIV-2 infected subjects in similar stages of disease, showed no significant differences in CD in the ARC/AIDS patients, although ASY/PGL HIV-2 infected subjects had lower levels of CD than the HIV-1+ ASY/PGL (3.4% +/- 0.6 s.e.m. versus 6.8% +/- 1.1 s.e.m., P < 0.01). PCD was significantly increased both in ASY/PGL (14.3% +/- 2.2 s.e.m., n = 8, P < 0.005) and in ARC/AIDS (25.3% +/- 4.5 s.e.m., n = 9, P < 0.001) HIV-1+ patients compared with healthy controls (5.8% +/- 1.7 s.e.m., n = 11). This contrasts with HIV-2 infected subjects where the ASY/PGL patients (10.0% +/- 2.8 s.e.m., n = 6) did not differ significantly from

  2. Can apple antioxidants inhibit tumor cell proliferation? Generation of H(2)O(2) during interaction of phenolic compounds with cell culture media.

    PubMed

    Lapidot, Tair; Walker, Michael D; Kanner, Joseph

    2002-05-22

    It has recently been suggested that the ability of apple extracts to inhibit proliferation of tumor cells in vitro may be due to phenolic/flavonoid antioxidants. Our study demonstrates that this inhibition is caused indirectly by H(2)O(2) generated through interaction of the phenolics with the cell culture media. The results indicate that many previously reported effects of flavonoids and phenolic compounds on cultured cells may result from similar artifactual generation of oxidative stress. We suggest that in order to prevent such artifacts, the use of catalase and/or metmyoglobin in the presence of reducing agents should be considered as a method to decompose H(2)O(2) and prevent generation of other reactive oxygen species, which could affect cell proliferation. The use of tumor cells and "nontumor cells" in a bioassay to measure antioxidant activity, in this context, is potentially misleading and should be applied with caution.

  3. A polysaccharide of Dendrobium officinale ameliorates H2O2-induced apoptosis in H9c2 cardiomyocytes via PI3K/AKT and MAPK pathways.

    PubMed

    Zhang, Jing-Yi; Guo, Ying; Si, Jin-Ping; Sun, Xiao-Bo; Sun, Gui-Bo; Liu, Jing-Jing

    2017-11-01

    Dendrobium officinale is one valuable traditional Chinese medicine, which has skyscraping medicinal value. Polysaccharide is the main active ingredient in D. officinale; its antioxidant activity is a hot research topic nowadays. Oxidative stress plays an important role in the pathological progress of a variety of cardiovascular disease, as one of key factors of cardiomyocyte apoptosis. This research adopts a model of H 2 O 2 induction-H9c2 cardiomyocytes apoptosis, aiming to study the effect of Dendrobium officinale Polysaccharide (DOP-GY) for cardiomyocyte apoptosis caused by oxidative stress and its possible mechanism. Our results showed that pretreatment of DOP-GY (low dose: 6.25μg/mL, medium dose: 12.5μg/mL, high dose: 25μg/mL) followed by a 2h incubation with 200μM H 2 O 2 elevated the survival rate, cutted the LDH leakage, reduced lipid peroxidation damage, improved the activity of the endogenous antioxidant enzymes. In addition, the pretreatment of DOP-GY significantly inhibited the production of ROS, declined of the mitochondrial membrane potential, down-regulated pro-apoptosis protein and up-regulated anti-apoptosis protein. The protective effect was correlated with the PI3K/Akt and MAPK signal pathway. Collectively, these observations suggest that DOY-GY has the potential to exert cardioprotective effects against H 2 O 2 -induced H9c2 cardiomyocyte apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Influence of environmental pH on G2-phase arrest caused by ionizing radiation.

    PubMed

    Park, Heon Joo; Lee, Sang Hwa; Chung, HyunSook; Rhee, Yun Hee; Lim, Byung Uk; Ha, Sung Whan; Griffin, Robert J; Lee, Hyung Sik; Song, Chang Won; Choi, Eun Kyung

    2003-01-01

    We investigated the effects of an acidic environment on the G2/M-phase arrest, apoptosis, clonogenic death, and changes in cyclin B1-CDC2 kinase activity caused by a 4-Gy irradiation in RKO.C human colorectal cancer cells in vitro. The time to reach peak G2/M-phase arrest after irradiation was delayed in pH 6.6 medium compared to that in pH 7.5 medium. Furthermore, the radiation-induced G2/M-phase arrest decayed more slowly in pH 6.6 medium than in pH 7.5 medium. Finally, there was less radiation-induced apoptosis and clonogenic cell death in pH 6.6 medium than in pH 7.5 medium. It appeared that the prolongation of G2-phase arrest after irradiation in the acidic environment allowed for greater repair of radiation-induced DNA damage, thereby decreasing the radiation-induced cell death. The prolongation of G2-phase arrest after irradiation in the acidic pH environment appeared to be related at least in part to a prolongation of the phosphorylation of CDC2, which inhibited cyclin B1-CDC2 kinase activity.

  5. Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells.

    PubMed

    Kim, In-Sun; Baek, Miri; Choi, Soo-Jin

    2010-05-01

    The increased applications of nanoparticles in a wide range of industrial fields raise the concern about their potential toxicity to human. The aim of this study was to assess and compare the toxicity of four different oxide nanoparticles (Al2O3, CeO2, TiO2 and ZnO) to human lung epithelial cells, A549 carcinoma cells and L-132 normal cells, in vitro. We focused on the toxicological effects of the present nanoparticles on cell proliferation, cell viability, membrane integrity and oxidative stress. The long-term cytotoxicity of nanoparticles was also evaluated by employing the clonogenic assay. Among four nanoparticles tested, ZnO exhibited the highest cytotoxicity in terms of cell proliferation, cell viability, membrane integrity and colony formation in both cell lines. Al2O3, CeO2 and TiO2 showed little adverse effects on cell proliferation and cell viability. However, TiO2 induced oxidative stress in a concentration- and time-dependent manner. CeO2 caused membrane damage and inhibited colony formation in long-term, but with different degree depending on cell lines. Al2O3 seems to be less toxic than the other nanoparticles even after long time exposure. These results highlight the need for caution during manufacturing process of nanomaterials as well as further investigation on the toxicity mechanism.

  6. A fuel-cell reactor for the direct synthesis of hydrogen peroxide alkaline solutions from H(2) and O(2).

    PubMed

    Yamanaka, Ichiro; Onisawa, Takeshi; Hashimoto, Toshikazu; Murayama, Toru

    2011-04-18

    The effects of the type of fuel-cell reactors (undivided or divided by cation- and anion-exchange membranes), alkaline electrolytes (LiOH, NaOH, KOH), vapor-grown carbon fiber (VGCF) cathode components (additives: none, activated carbon, Valcan XC72, Black Pearls 2000, Seast-6, and Ketjen Black), and the flow rates of anolyte (0, 1.5, 12 mL h(-1)) and catholyte (0, 12 mL h(-1)) on the formation of hydrogen peroxide were studied. A divided fuel-cell system, O(2) (g)|VGCF-XC72 cathode|2 M NaOH catholyte|cation-exchange membrane (Nafion-117)|Pt/XC72-VGCF anode|2 M NaOH anolyte at 12 mL h(-1) flow|H(2) (g), was effective for the selective formation of hydrogen peroxide, with 130 mA cm(-2) , a 2 M aqueous solution of H(2)O(2)/NaOH, and a current efficiency of 95 % at atmospheric pressure and 298 K. The current and formation rate gradually decreased over a long period of time. The cause of the slow decrease in electrocatalytic performance was revealed and the decrease was stopped by a flow of catholyte. Cyclic voltammetry studies at the VGCF-XC72 electrode indicated that fast diffusion of O(2) from the gas phase to the electrode, and quick desorption of hydrogen peroxide from the electrode to the electrolyte were essential for the efficient formation of solutions of H(2)O(2)/NaOH. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress.

    PubMed

    Jarc, Eva; Kump, Ana; Malavašič, Petra; Eichmann, Thomas O; Zimmermann, Robert; Petan, Toni

    2018-03-01

    Cancer cells driven by the Ras oncogene scavenge unsaturated fatty acids (FAs) from their environment to counter nutrient stress. The human group X secreted phospholipase A 2 (hGX sPLA 2 ) releases FAs from membrane phospholipids, stimulates lipid droplet (LD) biogenesis in Ras-driven triple-negative breast cancer (TNBC) cells and enables their survival during starvation. Here we examined the role of LDs, induced by hGX sPLA 2 and unsaturated FAs, in protection of TNBC cells against nutrient stress. We found that hGX sPLA 2 releases a mixture of unsaturated FAs, including ω-3 and ω-6 polyunsaturated FAs (PUFAs), from TNBC cells. Starvation-induced breakdown of LDs induced by low micromolar concentrations of unsaturated FAs, including PUFAs, was associated with protection from cell death. Interestingly, adipose triglyceride lipase (ATGL) contributed to LD breakdown during starvation, but it was not required for the pro-survival effects of hGX sPLA 2 and unsaturated FAs. High micromolar concentrations of PUFAs, but not OA, induced oxidative stress-dependent cell death in TNBC cells. Inhibition of triacylglycerol (TAG) synthesis suppressed LD biogenesis and potentiated PUFA-induced cell damage. On the contrary, stimulation of LD biogenesis by hGX sPLA 2 and suppression of LD breakdown by ATGL depletion reduced PUFA-induced oxidative stress and cell death. Finally, lipidomic analyses revealed that sequestration of PUFAs in LDs by sPLA 2 -induced TAG remodelling and retention of PUFAs in LDs by inhibition of ATGL-mediated TAG lipolysis protect from PUFA lipotoxicity. LDs are thus antioxidant and pro-survival organelles that guard TNBC cells against nutrient and lipotoxic stress and emerge as attractive targets for novel therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synthetic Chalcones with Potent Antioxidant Ability on H2O2-Induced Apoptosis in PC12 Cells

    PubMed Central

    Wu, Jian-Zhang; Cheng, Chan-Chan; Shen, Lai-Lai; Wang, Zhan-Kun; Wu, Shou-Biao; Li, Wu-Lan; Chen, Su-Hua; Zhou, Rong-Ping; Qiu, Pei-Hong

    2014-01-01

    Chalcone derivatives (E)-3-(4-hydroxy-3-methoxyphenyl)-1-(4-methoxyphenyl) prop-2-en-1-one and (E)-3-(4-hydroxyphenyl)-1-(4-methoxyphenyl) prop-2-en-1-one (Compounds 1 and 2) have been demonstrated to be potent anti-inflammatory agents in our previous study. In light of the relationship of intracellular mechanisms between anti-inflammatories and antioxidants, we further designed and synthesized a series of chalcone derivatives based on 1 and 2, to explore their antioxidant efficacy. The majority of the derivatives exhibited strong protective effects on PC12 (PC12 rat pheochromocytoma) cells exposed to H2O2, and all compounds were nontoxic. A preliminary structure-activity relationship was proposed. Compounds 1 and 1d ((E)-2-methoxy-4-(3-(4-methoxyphenyl)-3-oxoprop-1-en-1-yl) phenyl acrylate) exerted the action in a good dose-dependent manner. Quantitative RT-PCR (qRT-PCR) and western blot analysis showed that 1 and 1d significantly improve the expression of nuclear factor erythroid 2 p45-related factor 2 (Nrf2)-dependent antioxidant genes g-Glutamylcysteine Ligase Catalytic Subunit (GCLC) and heme oxygenase-1 (HO-1) and their corresponding proteins (γ-glutamyl cysteine synthase (γ-GCS) and HO-1) in PC12 cells. Inhibition of GCLC and HO-1 by specific inhibitors, l-buthionine-S-sulfoximine (BSO) and zinc protoporphyrin (ZnPP), respectively, partially reduce the protective effect of 1 and 1d. These data present a series of novel chalcone analogs, especially compounds 1 and 1d, as candidates for treating oxidative stress-related disease by activating the Nrf2-antioxidant responsive element (ARE) pathway. PMID:25318055

  9. Aniracetam attenuates H2O2-induced deficiency of neuron viability, mitochondria potential and hippocampal long-term potentiation of mice in vitro.

    PubMed

    Wang, Yong-Fu; Li, Chao-Cui; Cai, Jing-Xia

    2006-09-01

    Objective It is known that free radicals are involved in neurodegeneration and cognitive dysfunction, as seen in Alzheimer' s disease (AD) and aging. The present study examines the protective effects of aniracetam against H2O2-induced toxicity to neuron viability, mitochondria potential and hippocampal long-term potentiation (LTP). Methods Tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) was used to detect neuronal viability. MitoTracker Red (CMX Ros), a fluorescent stain for mitochondria, was used to measure mitochondria potential. Electrophysiological technique was carried out to record hippocampal LTP. Results H2O2 exposure impaired the viability of neurons, reduced mitochondria potential, and decreased LTP in the CA1 region of hippocampus. These deficient effects were significantly rescued by pre-treatment with aniracetam (10-100 mu mol/L). Conclusion These results indicate that aniracetam has a strong neuroprotective effect against H2O2-induced toxicity, which could partly explain the mechanism of its clinical application in neurodegenerative diseases.

  10. Laser induced fluorescence of HCCO (DCCO) radical formed in O+C2H2 (C2D2) reaction

    NASA Astrophysics Data System (ADS)

    Inoue, Gen; Suzuki, Makoto

    1986-04-01

    Laser induced fluorescence of HCCO (DCCO) radical have been obtained in the reaction of O(3P)+C2H2(C2D2) for the first time (X 2A'-2A`). The laser excitation spectra have been obtained over the wavelength region from 310 to 370 nm. The collision-free lifetimes for HCCO and DCCO are 0.14 and 3.8 μs, respectively. From the excitation and dispersed fluorescence spectra, some vibrational energies have been obtained in cm-1 unit: 1762 (1727), 150-140 (n.a.), and 2334 (1901) for the ground state HCCO (DCCO), and 1183 (1167), 866 (607), and 2862 (2075) for the excited state HCCO (DCCO). The band origin ν00 is 28 296.7 cm-1.

  11. Development of recombinant cell line co-expressing mutated Nav1.5, Kir2.1, and hERG for the safety assay of drug candidates.

    PubMed

    Fujii, Masato; Ohya, Susumu; Yamamura, Hisao; Imaizumi, Yuji

    2012-07-01

    To provide a high-throughput screening method for human ether-a-go-go-gene-related gene (hERG) K(+) channel inhibition, a new recombinant cell line, in which single action potential (AP)-induced cell death was produced by gene transfection. Mutated human cardiac Na(+) channel Nav1.5 (IFM/Q3), which shows extremely slow inactivation, and wild-type inward rectifier K(+) channel, Kir2.1, were stably co-expressed in HEK293 cells (IFM/Q3+Kir2.1). In IFM/Q3+Kir2.1, application of single electrical stimulation (ES) elicited a long AP lasting more than 30 s and led cells to die by more than 70%, whereas HEK293 co-transfected with wild-type Nav1.5 and Kir2.1 fully survived. The additional expression of hERG K(+) channels in IFM/Q3+Kir2.1 shortened the duration of evoked AP and thereby markedly reduced the cell death. The treatment of the cells with hERG channel inhibitors such as nifekalant, E-4031, cisapride, terfenadine, and verapamil, recovered the prolonged AP and dose-dependently facilitated cell death upon ES. The EC(50) values to induce the cell death were 3 µM, 19 nM, 17 nM, 74 nM, and 3 µM, respectively, whereas 10 µM nifedipine did not induce cell death. Results indicate the high utility of this cell system for hERG K(+) channel safety assay.

  12. Mitochondrial Dysfunction and Ca(2+) Overload Contributes to Hesperidin Induced Paraptosis in Hepatoblastoma Cells, HepG2.

    PubMed

    Yumnam, Silvia; Hong, Gyeong Eun; Raha, Suchismita; Saralamma, Venu Venkatarame Gowda; Lee, Ho Jeong; Lee, Won-Sup; Kim, Eun-Hee; Kim, Gon Sup

    2016-06-01

    Paraptosis is a programmed cell death which is morphologically and biochemically different from apoptosis. In this study, we have investigated the role of Ca(2+) in hesperidin-induced paraptotic cell death in HepG2 cells. Increase in mitochondrial Ca(2+) level was observed in hesperidin treated HepG2 cells but not in normal liver cancer cells. Inhibition of inositol-1,4,5-triphosphate receptor (IP3 R) and ryanodine receptor also block the mitochondrial Ca(2+) accumulation suggesting that the release of Ca(2+) from the endoplasmic reticulum (ER) may probably lead to the increase in mitochondrial Ca(2+) level. Pretreatment with ruthenium red (RuRed), a Ca(2+) uniporter inhibitor inhibited the hesperidin-induced mitochondrial Ca(2+) overload, swelling of mitochondria, and cell death in HepG2 cells. It has also been demonstrated that mitochondrial Ca(2+) influxes act upstream of ROS and mitochondrial superoxide production. The increased ROS production further leads to mitochondrial membrane loss in hesperidin treated HepG2 cells. Taken together our results show that IP3 R and ryanodine receptor mediated release of Ca(2+) from the ER and its subsequent influx through the uniporter into mitochondria contributes to hesperidin-induced paraptosis in HepG2 cells. © 2015 Wiley Periodicals, Inc.

  13. Slow spin relaxation induced by magnetic field in [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O.

    PubMed

    Vrábel, P; Orendáč, M; Orendáčová, A; Čižmár, E; Tarasenko, R; Zvyagin, S; Wosnitza, J; Prokleška, J; Sechovský, V; Pavlík, V; Gao, S

    2013-05-08

    We report on a comprehensive investigation of the magnetic properties of [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O (bpdo=4, 4'-bipyridine-N,N'-dioxide) by use of electron paramagnetic resonance, magnetization, specific heat and susceptibility measurements. The studied material was identified as a magnet with an effective spin S = 1/2 and a weak exchange interaction J/kB = 25 mK. The ac susceptibility studies conducted at audio frequencies and at temperatures from 1.8 to 9 K revealed that the application of a static magnetic field induces a slow spin relaxation. It is suggested that the relaxation in the magnetic field appears due to an Orbach-like process between the two lowest doublet energy states of the magnetic Nd(3+) ion. The appearance of the slow relaxation in a magnetic field cannot be associated with a resonant phonon trapping. The obtained results suggest that the relaxation is influenced by nuclear spin driven quantum tunnelling which is suppressed by external magnetic field.

  14. Effects of subtoxic concentrations of TiO{sub 2} and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson-Willman, Britta; Gehrmann, Ulf; Cansu, Zekiye

    Metal oxide nanoparticles are widely used in the paint and coating industry as well as in cosmetics, but the knowledge of their possible interactions with the immune system is very limited. Our aims were to investigate if commercially available TiO{sub 2} and ZnO nanoparticles may affect different human immune cells and their production of exosomes, nano-sized vesicles that have a role in cell to cell communication. We found that the TiO{sub 2} or ZnO nanoparticles at concentrations from 1 to 100 μg/mL did not affect the viability of primary human peripheral blood mononuclear cells (PBMC). In contrast, monocyte-derived dendritic cellsmore » (MDDC) reacted with a dose dependent increase in cell death and caspase activity to ZnO but not to TiO{sub 2} nanoparticles. Non-toxic exposure, 10 μg/mL, to TiO{sub 2} and ZnO nanoparticles did not significantly alter the phenotype of MDDC. Interestingly, ZnO but not TiO{sub 2} nanoparticles induced a down regulation of FcγRIII (CD16) expression on NK-cells in the PBMC population, suggesting that subtoxic concentrations of ZnO nanoparticles might have an effect on FcγR-mediated immune responses. The phenotype and size of exosomes produced by PBMC or MDDC exposed to the nanoparticles were similar to that of exosomes harvested from control cultures. TiO{sub 2} or ZnO nanoparticles could not be detected within or associated to exosomes as analyzed with TEM. We conclude that TiO{sub 2} and ZnO nanoparticles differently affect immune cells and that evaluations of nanoparticles should be performed even at subtoxic concentrations on different primary human immune cells when investigating potential effects on immune functions. -- Highlights: ► ZnO nanoparticles induce cell death of MDDC but not of PBMC. ► ZnO nanoparticles induce caspase activation and DNA fragmentation in MDDC. ► TiO{sub 2} nanoparticles are taken up by MDDC but have no effect on their phenotype. ► ZnO nanoparticles induce a significant reduction of CD16

  15. Full-dimensional, high-level ab initio potential energy surfaces for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2} with application to hydrogen clathrate hydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homayoon, Zahra; Conte, Riccardo; Qu, Chen

    2015-08-28

    New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H{sub 2}(H{sub 2}O) two-body and H{sub 2}(H{sub 2}O){sub 2} three-body potentials. The database for H{sub 2}(H{sub 2}O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are comparedmore » to computationally faster ones obtained via “purified” symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H{sub 2}, H{sub 2}O, and (H{sub 2}O){sub 2}, to obtain full PESs for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2}. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H{sub 2}(H{sub 2}O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathrate hydrates, illustrated for H{sub 2}@(H{sub 2}O){sub 20}. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H{sub 2} from the calculated equilibrium structure.« less

  16. Zinc deficiency mediates alcohol-induced apoptotic cell death in the liver of rats through activating ER and mitochondrial cell death pathways

    PubMed Central

    Sun, Qian; Zhong, Wei; Zhang, Wenliang; Li, Qiong; Sun, Xiuhua; Tan, Xiaobing; Sun, Xinguo; Dong, Daoyin

    2015-01-01

    Hepatic zinc deficiency has been well documented in alcoholic patients, but the mechanisms by which zinc deficiency mediates cell death have not been well defined. The objectives of this study were to determine whether alcohol perturbs subcellular zinc homeostasis and how organelle zinc depletion may link with cell death pathways. Wistar rats were pair-fed with the Lieber-DeCarli control or ethanol diet for 5 mo. Chronic alcohol exposure significantly reduced zinc level in isolated hepatic endoplasmic reticulum (ER) and mitochondria. Among the detected zinc transporters, ER Zrt/Irt-like protein (ZIP)13 and mitochondrial ZIP8, which transport zinc from ER and mitochondria to cytosol, were significantly increased. Mitochondrial zinc transporter (ZnT) 4, which transports zinc from cytosol to mitochondria, was also increased. ER phosphorylated eukaryotic initiation factor 2α, activating transcription factor 4, and C/EBP homologous protein were significantly upregulated, and mitochondrial cytochrome c release and Bax insertion were detected in association with caspase-3 activation and apoptotic cell death. To define the role of zinc deficiency in ER and mitochondrial stress, H4IIEC3 cells were treated with 3 μM N,N,N′,N′-tetrakis (2-pyridylmethyl) ethylenediamine for 6 h with or without supplementation with zinc or N-acetylcysteine (NAC). The results demonstrated that zinc deprivation induced caspase-3 activation and apoptosis in association with ER and mitochondria dysfunction, which were inhibited by zinc as low as 10 μM but not by 2 mM NAC. These results suggest that chronic ethanol exposure induced in ER and mitochondrial zinc deficiency might activate intrinsic cell death signaling pathway, which could not be effectively rescued by antioxidant treatment. PMID:25767260

  17. A Key Role for Apoplastic H2O2 in Norway Spruce Phenolic Metabolism.

    PubMed

    Laitinen, Teresa; Morreel, Kris; Delhomme, Nicolas; Gauthier, Adrien; Schiffthaler, Bastian; Nickolov, Kaloian; Brader, Günter; Lim, Kean-Jin; Teeri, Teemu H; Street, Nathaniel R; Boerjan, Wout; Kärkönen, Anna

    2017-07-01

    Apoplastic events such as monolignol oxidation and lignin polymerization are difficult to study in intact trees. To investigate the role of apoplastic hydrogen peroxide (H 2 O 2 ) in gymnosperm phenolic metabolism, an extracellular lignin-forming cell culture of Norway spruce ( Picea abies ) was used as a research model. Scavenging of apoplastic H 2 O 2 by potassium iodide repressed lignin formation, in line with peroxidases activating monolignols for lignin polymerization. Time-course analyses coupled to candidate substrate-product pair network propagation revealed differential accumulation of low-molecular-weight phenolics, including (glycosylated) oligolignols, (glycosylated) flavonoids, and proanthocyanidins, in lignin-forming and H 2 O 2 -scavenging cultures and supported that monolignols are oxidatively coupled not only in the cell wall but also in the cytoplasm, where they are coupled to other monolignols and proanthocyanidins. Dilignol glycoconjugates with reduced structures were found in the culture medium, suggesting that cells are able to transport glycosylated dilignols to the apoplast. Transcriptomic analyses revealed that scavenging of apoplastic H 2 O 2 resulted in remodulation of the transcriptome, with reduced carbon flux into the shikimate pathway propagating down to monolignol biosynthesis. Aggregated coexpression network analysis identified candidate enzymes and transcription factors for monolignol oxidation and apoplastic H 2 O 2 production in addition to potential H 2 O 2 receptors. The results presented indicate that the redox state of the apoplast has a profound influence on cellular metabolism. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Photoelectron spectroscopic study of the hydrated nucleoside anions: Uridine(-)(H(2)O)(n=0-2), cytidine(-)(H(2)O)(n=0-2), and thymidine(-)(H(2)O)(n=0,1).

    PubMed

    Li, Xiang; Wang, Haopeng; Bowen, Kit H

    2010-10-14

    The hydrated nucleoside anions, uridine(-)(H(2)O)(n=0-2), cytidine(-)(H(2)O)(n=0-2), and thymidine(-)(H(2)O)(n=0,1), have been prepared in beams and studied by anion photoelectron spectroscopy in order to investigate the effects of a microhydrated environment on parent nucleoside anions. Vertical detachment energies (VDEs) were measured for all eight anions, and from these, estimates were made for five sequential anion hydration energies. Excellent agreement was found between our measured VDE value for thymidine(-)(H(2)O)(1) and its calculated value in the companion article by S. Kim and H. F. Schaefer III.

  19. Photoelectron spectroscopic study of the hydrated nucleoside anions: Uridine-(H2O)n=0-2, cytidine-(H2O)n=0-2, and thymidine-(H2O)n=0,1

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Wang, Haopeng; Bowen, Kit H.

    2010-10-01

    The hydrated nucleoside anions, uridine-(H2O)n=0-2, cytidine-(H2O)n=0-2, and thymidine-(H2O)n=0,1, have been prepared in beams and studied by anion photoelectron spectroscopy in order to investigate the effects of a microhydrated environment on parent nucleoside anions. Vertical detachment energies (VDEs) were measured for all eight anions, and from these, estimates were made for five sequential anion hydration energies. Excellent agreement was found between our measured VDE value for thymidine-(H2O)1 and its calculated value in the companion article by S. Kim and H. F. Schaefer III.

  20. H2S-induced S-sulfhydration of pyruvate carboxylase contributes to gluconeogenesis in liver cells.

    PubMed

    Ju, YoungJun; Untereiner, Ashley; Wu, Lingyun; Yang, Guangdong

    2015-11-01

    Cystathionine gamma-lyase (CSE)-derived hydrogen sulfide (H(2)S) possesses diverse roles in the liver, affecting lipoprotein synthesis, insulin sensitivity, and mitochondrial biogenesis. H(2)S S-sulfhydration is now proposed as a major mechanism for H(2)S-mediated signaling. Pyruvate carboxylase (PC) is an important enzyme for gluconeogenesis. S-sulfhydration regulation of PC by H(2)S and its implication in gluconeogenesis in the liver have been unknown. Gene expressions were analyzed by real-time PCR and western blotting, and protein S-sulfhydration was assessed by both modified biotin switch assay and tag switch assay. Glucose production and PC activity was measured with coupled enzyme assays, respectively. Exogenously applied H(2)S stimulates PC activity and gluconeogenesis in both HepG2 cells and mouse primary liver cells. CSE overexpression enhanced but CSE knockout reduced PC activity and gluconeogenesis in liver cells, and blockage of PC activity abolished H(2)S-induced gluconeogenesis. H(2)S had no effect on the expressions of PC mRNA and protein, while H(2)S S-sulfhydrated PC in a dithiothreitol-sensitive way. PC S-sulfhydration was significantly strengthened by CSE overexpression but attenuated by CSE knockout, suggesting that H(2)S enhances glucose production through S-sulfhydrating PC. Mutation of cysteine 265 in human PC diminished H(2)S-induced PC S-sulfhydration and activity. In addition, high-fat diet feeding of mice decreased both CSE expression and PC S-sulfhydration in the liver, while glucose deprivation of HepG2 cells stimulated CSE expression. CSE/H(2)S pathway plays an important role in the regulation of glucose production through S-sulfhydrating PC in the liver. Tissue-specific regulation of CSE/H(2)S pathway might be a promising therapeutic target of diabetes and other metabolic syndromes. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Nitric Oxide- and Hydrogen Peroxide-Responsive Gene Regulation during Cell Death Induction in Tobacco1[W

    PubMed Central

    Zago, Elisa; Morsa, Stijn; Dat, James F.; Alard, Philippe; Ferrarini, Alberto; Inzé, Dirk; Delledonne, Massimo; Van Breusegem, Frank

    2006-01-01

    Nitric oxide (NO) and hydrogen peroxide (H2O2) are regulatory molecules in various developmental processes and stress responses. Tobacco (Nicotiana tabacum) leaves exposed to moderate high light dramatically potentiated NO-mediated cell death in catalase-deficient (CAT1AS) but not in wild-type plants, providing genetic evidence for a partnership between NO and H2O2 during the induction of programmed cell death. With this experimental model system, the specific impact on gene expression was characterized by either NO or H2O2 alone or both molecules combined. By means of genome-wide cDNA-amplified fragment length polymorphism analysis, transcriptional changes were compared in high light-treated CAT1AS and wild-type leaves treated with or without the NO donor sodium nitroprusside. Differential gene expression was detected for 214 of the approximately 8,000 transcript fragments examined. For 108 fragments, sequence analysis revealed homology to genes with a role in signal transduction, defense response, hormone interplay, proteolysis, transport, and metabolism. Surprisingly, only 16 genes were specifically induced by the combined action of NO and H2O2, whereas the majority were regulated by either of them alone. At least seven transcription factors were mutually up-regulated, indicating significant overlap between NO and H2O2 signaling pathways. These results consolidate significant cross-talk between NO and H2O2, provide new insight into the early transcriptional response of plants to increased NO and H2O2 levels, and identify target genes of the combined action of NO and H2O2 during the induction of plant cell death. PMID:16603664

  2. PMCA2 silencing potentiates MDA-MB-231 breast cancer cell death initiated with the Bcl-2 inhibitor ABT-263.

    PubMed

    Curry, Merril; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2016-09-30

    PMCA2 overexpression in some breast cancers suggests that this calcium pump isoform may play a role in breast pathophysiology. To investigate PMCA2 as a potential drug target for breast cancer therapy, we assessed the functional consequence of PMCA2 silencing on cell death pathways and calcium signals in the basal-like MDA-MB-231 breast cancer cell line. Silencing PMCA2 expression alone has no effect on MDA-MB-231 cell viability, however, PMCA2 silencing promotes calcium-induced cell death initiated with the calcium ionophore ionomycin. Assessment of cytoplasmic calcium responses generated with various agents including ionomycin demonstrates that in MDA-MB-231 cells, PMCA2 does not play a major role in shaping global calcium signals. We also examined the ability of PMCA2 silencing to modulate caspase-dependent cell death triggered by a Bcl-2 inhibitor that is in clinical development for the treatment of various cancers, ABT-263 (Navitoclax). Despite the lack of effect on global calcium responses, PMCA2 silencing augmented Bcl-2 inhibitor (ABT-263)-mediated MDA-MB-231 breast cancer cell death. These studies provide evidence that PMCA2 inhibitors could sensitize PMCA2-positive breast cancers to cell death initiators that work through mechanisms involving the Bcl-2 survival pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Neuroprotective Properties of Compounds Extracted from Dianthus superbus L. against Glutamate-induced Cell Death in HT22 Cells.

    PubMed

    Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2016-01-01

    Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of (1)H nuclear magnetic resonance (NMR), (13)C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10

  4. Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems.

    PubMed

    Garcia, J C; Oliveira, J L; Silva, A E C; Oliveira, C C; Nozaki, J; de Souza, N E

    2007-08-17

    This work investigated the treatability of real textile effluents using several systems involving advanced oxidation processes (AOPs) such as UV/H2O2, UV/TiO2, UV/TiO2/H2O2, and UV/Fe2+/H2O2. The efficiency of each technique was evaluated according to the reduction levels observed in the UV absorbance of the effluents, COD, and organic nitrogen reduction, as well as mineralization as indicated by the formation of ammonium, nitrate, and sulfate ions. The results indicate the association of TiO2 and H2O2 as the most efficient treatment for removing organic pollutants from textile effluents. In spite of their efficiency, Fenton reactions based treatment proved to be slower and exhibited more complicated kinetics than the ones using TiO2, which are pseudo-first-order reactions. Decolorization was fast and effective in all the experiments despite the fact that only H2O2 was used.

  5. Attenuation of Aβ{sub 25–35}-induced parallel autophagic and apoptotic cell death by gypenoside XVII through the estrogen receptor-dependent activation of Nrf2/ARE pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xiangbao; Wang, Min; Sun, Guibo, E-mail: sunguibo@126.com

    Amyloid-beta (Aβ) has a pivotal function in the pathogenesis of Alzheimer's disease. To investigate Aβ neurotoxicity, we used an in vitro model that involves Aβ{sub 25–35}-induced cell death in the nerve growth factor-induced differentiation of PC12 cells. Aβ{sub 25–35} (20 μM) treatment for 24 h caused apoptotic cell death, as evidenced by significant cell viability reduction, LDH release, phosphatidylserine externalization, mitochondrial membrane potential disruption, cytochrome c release, caspase-3 activation, PARP cleavage, and DNA fragmentation in PC12 cells. Aβ{sub 25–35} treatment led to autophagic cell death, as evidenced by augmented GFP-LC3 puncta, conversion of LC3-I to LC3-II, and increased LC3-II/LC3-I ratio.more » Aβ{sub 25–35} treatment induced oxidative stress, as evidenced by intracellular ROS accumulation and increased production of mitochondrial superoxide, malondialdehyde, protein carbonyl, and 8-OHdG. Phytoestrogens have been proved to be protective against Aβ-induced neurotoxicity and regarded as relatively safe targets for AD drug development. Gypenoside XVII (GP-17) is a novel phytoestrogen isolated from Gynostemma pentaphyllum or Panax notoginseng. Pretreatment with GP-17 (10 μM) for 12 h increased estrogen response element reporter activity, activated PI3K/Akt pathways, inhibited GSK-3β, induced Nrf2 nuclear translocation, augmented antioxidant responsive element enhancer activity, upregulated heme oxygenase 1 (HO-1) expression and activity, and provided protective effects against Aβ{sub 25–35}-induced neurotoxicity, including oxidative stress, apoptosis, and autophagic cell death. In conclusion, GP-17 conferred protection against Aβ{sub 25–35}-induced neurotoxicity through estrogen receptor-dependent activation of PI3K/Akt pathways, inactivation of GSK-3β and activation of Nrf2/ARE/HO-1 pathways. This finding might provide novel insights into understanding the mechanism for neuroprotective effects of

  6. Mitochondrial permeability transition pore inhibitors prevent ethanol-induced neuronal death in mice.

    PubMed

    Lamarche, Frederic; Carcenac, Carole; Gonthier, Brigitte; Cottet-Rousselle, Cecile; Chauvin, Christiane; Barret, Luc; Leverve, Xavier; Savasta, Marc; Fontaine, Eric

    2013-01-18

    Ethanol induces brain injury by a mechanism that remains partly unknown. Mitochondria play a key role in cell death processes, notably through the opening of the permeability transition pore (PTP). Here, we tested the effect of ethanol and PTP inhibitors on mitochondrial physiology and cell viability both in vitro and in vivo. Direct addition of ethanol up to 100 mM on isolated mouse brain mitochondria slightly decreased oxygen consumption but did not affect PTP regulation. In comparison, when isolated from ethanol-treated (two doses of 2 g/kg, 2 h apart) 7-day-old mouse pups, brain mitochondria displayed a transient decrease in oxygen consumption but no change in PTP regulation or H2O2 production. Conversely, exposure of primary cultured astrocytes and neurons to 20 mM ethanol for 3 days led to a transient PTP opening in astrocytes without affecting cell viability and to a permanent PTP opening in 10 to 20% neurons with the same percentage of cell death. Ethanol-treated mouse pups displayed a widespread caspase-3 activation in neurons but not in astrocytes and dramatic behavioral alterations. Interestingly, two different PTP inhibitors (namely, cyclosporin A and nortriptyline) prevented both ethanol-induced neuronal death in vivo and ethanol-induced behavioral modifications. We conclude that PTP opening is involved in ethanol-induced neurotoxicity in the mouse.

  7. H2O2 modulates the energetic metabolism of the cloud microbiome

    NASA Astrophysics Data System (ADS)

    Wirgot, Nolwenn; Vinatier, Virginie; Deguillaume, Laurent; Sancelme, Martine; Delort, Anne-Marie

    2017-12-01

    Chemical reactions in clouds lead to oxidation processes driven by radicals (mainly HO⚫, NO3⚫, or HO2⚫) or strong oxidants such as H2O2, O3, nitrate, and nitrite. Among those species, hydrogen peroxide plays a central role in the cloud chemistry by driving its oxidant capacity. In cloud droplets, H2O2 is transformed by microorganisms which are metabolically active. Biological activity can therefore impact the cloud oxidant capacity. The present article aims at highlighting the interactions between H2O2 and microorganisms within the cloud system. First, experiments were performed with selected strains studied as a reference isolated from clouds in microcosms designed to mimic the cloud chemical composition, including the presence of light and iron. Biotic and abiotic degradation rates of H2O2 were measured and results showed that biodegradation was the most efficient process together with the photo-Fenton process. H2O2 strongly impacted the microbial energetic state as shown by adenosine triphosphate (ATP) measurements in the presence and absence of H2O2. This ATP depletion was not due to the loss of cell viability. Secondly, correlation studies were performed based on real cloud measurements from 37 cloud samples collected at the PUY station (1465 m a.s.l., France). The results support a strong correlation between ATP and H2O2 concentrations and confirm that H2O2 modulates the energetic metabolism of the cloud microbiome. The modulation of microbial metabolism by H2O2 concentration could thus impact cloud chemistry, in particular the biotransformation rates of carbon compounds, and consequently can perturb the way the cloud system is modifying the global atmospheric chemistry.

  8. Glutamine Acts as a Neuroprotectant against DNA Damage, Beta-Amyloid and H2O2-Induced Stress

    PubMed Central

    Chen, Jianmin; Herrup, Karl

    2012-01-01

    Glutamine is the most abundant free amino acid in the human blood stream and is ‘conditionally essential’ to cells. Its intracellular levels are regulated both by the uptake of extracellular glutamine via specific transport systems and by its intracellular synthesis by glutamine synthetase (GS). Adding to the regulatory complexity, when extracellular glutamine is reduced GS protein levels rise. Unfortunately, this excess GS can be maladaptive. GS overexpression is neurotoxic especially if the cells are in a low-glutamine medium. Similarly, in low glutamine, the levels of multiple stress response proteins are reduced rendering cells hypersensitive to H2O2, zinc salts and DNA damage. These altered responses may have particular relevance to neurodegenerative diseases of aging. GS activity and glutamine levels are lower in the Alzheimer's disease (AD) brain, and a fraction of AD hippocampal neurons have dramatically increased GS levels compared with control subjects. We validated the importance of these observations by showing that raising glutamine levels in the medium protects cultured neuronal cells against the amyloid peptide, Aβ. Further, a 10-day course of dietary glutamine supplementation reduced inflammation-induced neuronal cell cycle activation, tau phosphorylation and ATM-activation in two different mouse models of familial AD while raising the levels of two synaptic proteins, VAMP2 and synaptophysin. Together, our observations suggest that healthy neuronal cells require both intracellular and extracellular glutamine, and that the neuroprotective effects of glutamine supplementation may prove beneficial in the treatment of AD. PMID:22413000

  9. Crystal Structures and Thermal Properties of Two Transition-Metal Compounds {[Ni(DNI)2(H2O)3][Ni(DNI)2 (H2O)4]}·6H2O and Pb(DNI)2(H2O)4 (DNI = 2,4-Dinitroimidazolate)

    PubMed Central

    Zhang, Guo-Fang; Cai, Mei-Yu; Jing, Ping; He, Chong; Li, Ping; Zhao, Feng-Qi; Li, Ji-Zhen; Fan, Xue-Zhong; Ng, Seik Weng

    2010-01-01

    Two transition-metal compounds derived from 2,4-dinitroimidazole, {[Ni(DNI)2(H2O)3][Ni(DNI)2 (H2O)4]}·6H2O, 1, and Pb(DNI)2(H2O)4, 2, were characterized by elemental analysis, FT-IR, TG-DSC and X-ray single-crystal diffraction analysis. Crystal data for 1: monoclinic, space group C2/c, a = 26.826(3), b = 7.7199(10), c = 18.579(2) Å, β = 111.241(2)° and Z = 4; 2: monoclinic, space group C2/c, a = 6.5347(6), b = 17.1727(17), c = 14.1011(14) Å, β = 97.7248(10) and Z = 4. Compound 1 contains two isolated nickel centers in its structure, one being six-coordinate and another five-coordinate. The structure of 2 contains a lead (II) center surrounded by two chelating DNI ligands and four water molecules in distorted square-antiprism geometry. The abundant hydrogen bonds in two compounds link the molecules into three-dimensional network and stabilize the molecules. The TG-DSC analysis reveals that the first step is the loss of water molecules and the final residue is the corresponding metal oxides and carbon. PMID:20526419

  10. 3H-1,2-dithiole-3-thione protects retinal pigment epithelium cells against Ultra-violet radiation via activation of Akt-mTORC1-dependent Nrf2-HO-1 signaling.

    PubMed

    Li, Ke-Ran; Yang, Su-Qing; Gong, Yi-Qing; Yang, Hong; Li, Xiu-Miao; Zhao, Yu-Xia; Yao, Jin; Jiang, Qin; Cao, Cong

    2016-05-06

    Excessive UV radiation and reactive oxygen species (ROS) cause retinal pigment epithelium (RPE) cell injuries. Nrf2 regulates transcriptional activation of many anti-oxidant genes. Here, we tested the potential role of 3H-1,2-dithiole-3-thione (D3T) against UV or ROS damages in cultured RPE cells (both primary cells and ARPE-19 line). We showed that D3T significantly inhibited UV-/H2O2-induced RPE cell death and apoptosis. UV-stimulated ROS production was dramatically inhibited by D3T pretreatment. D3T induced Nrf2 phosphorylation in cultured RPE cells, causing Nrf2 disassociation with KEAP1 and its subsequent nuclear accumulation. This led to expression of antioxidant response elements (ARE)-dependent gene heme oxygenase-1 (HO-1). Nrf2-HO-1 activation was required for D3T-mediated cytoprotective effect. Nrf2 shRNA knockdown or S40T dominant negative mutation as well as the HO-1 inhibitor Zinc protoporphyrin (ZnPP) largely inhibited D3T's RPE cytoprotective effects against UV radiation. Yet, exogenous overexpression Nrf2 enhanced D3T's activity in RPE cells. Further studies showed that D3T activated Akt/mTORC1 in cultured RPE cells. Akt-mTORC1 inhibitors, or Akt1 knockdown by shRNA, not only inhibited D3T-induced Nrf2-HO-1 activation, but also abolished the RPE cytoprotective effects. In vivo, D3T intravitreal injection protected from light-induced retinal dysfunctions in mice. Thus, D3T protects RPE cells from UV-induced damages via activation of Akt-mTORC1-Nrf2-HO-1 signaling axis.

  11. Long Non-Coding RNA H19 Protects H9c2 Cells against Hypoxia-Induced Injury by Targeting MicroRNA-139.

    PubMed

    Gong, Li-Cheng; Xu, Hai-Ming; Guo, Gong-Liang; Zhang, Tao; Shi, Jing-Wei; Chang, Chang

    2017-01-01

    Acute myocardial infarction (AMI) occurs when blood supply to the heart is diminished (ischemia) for long time; ischemia is primarily caused due to hypoxia. The present study evaluated the effects of long non-coding RNA H19 on hypoxic rat H9c2 cells and mouse HL-1 cells. Hypoxic injury was confirmed by measuring cell viability, migration and invasion, and apoptosis using MTT, Transwell and flow cytometry assays, respectively. H19 expression after hypoxia was estimated by qRT-PCR. We then measured the effects of non-physiologically expressed H19, knockdown of miR-139 with or without H19 silence, and abnormally expressed Sox8 on hypoxia-induced H9c2 cells. Moreover, the interacted miRNA for H19 and downstream target gene were virtually screened and verified. The involved signaling pathways and the effects of abnormally expressed H19 on contractility of HL-1 cells were explored via Western blot analysis. Hypoxia induced decreases of cell viability, migration and invasion, increase of cell apoptosis and up-regulation of H19. Knockdown of H19 increased hypoxia-induced injury in H9c2 cells. H19 acted as a sponge for miR-139 and H19 knockdown aggravated hypoxia-induced injury by up-regulating miR-139. Sox8 was identified as a target of miR-139, and its expression was negatively regulated by miR-139. The mechanistic studies revealed that overexpression of Sox8 might decrease hypoxia-induced cell injury by activating the PI3K/AKT/mTOR pathway and MAPK. Besides, H19 promoted contractility of HL-1 cells. These findings suggest that H19 alleviates hypoxia-induced myocardial cell injury by miR-139-mediated up-regulation of Sox8, along with activation of the PI3K/AKT/mTOR pathway and MAPK. © 2017 The Author(s). Published by S. Karger AG, Basel.

  12. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress

    NASA Astrophysics Data System (ADS)

    Chiu, Hui-Wen; Xia, Tian; Lee, Yu-Hsuan; Chen, Chun-Wan; Tsai, Jui-Chen; Wang, Ying-Jan

    2014-12-01

    epithelial (BEAS-2B) cells. Furthermore, NH2-PS could induce autophagic cell death. NH2-PS increased autophagic flux due to reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress caused by misfolded protein aggregation. The inhibition of ER stress decreased cytotoxicity and autophagy in the NH2-PS-treated cells. In addition, the Akt/mTOR and AMPK signaling pathways were involved in the regulation of NH2-PS-triggered autophagic cell death. These results suggest an important role of autophagy in cationic NP-induced cell death and provide mechanistic insights into the inhibition of the toxicity and safe material design. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05509h

  13. S-nitrosylation of TRIM72 at cysteine 144 is critical for protection against oxidation-induced protein degradation and cell death.

    PubMed

    Kohr, Mark J; Evangelista, Alicia M; Ferlito, Marcella; Steenbergen, Charles; Murphy, Elizabeth

    2014-04-01

    Oxidative stress and membrane damage following myocardial ischemia/reperfusion injury are important contributors to cardiomyocyte death and the loss of myocardial function. Our previous study identified cysteine 144 (C144) of tripartite motif-containing protein 72 (TRIM72) as a potential site for S-nitrosylation (SNO). TRIM72 is a cardioprotective membrane repair protein that can be both activated and targeted for degradation by different oxidative modifications. Consistent with the potential regulation of TRIM72 by various oxidative modifications, we found that SNO levels increased at C144 of TRIM72 with ischemic preconditioning. Therefore, to investigate the role of C144 in the regulation of TRIM72 function, we mutated C144 of TRIM72 to a serine residue (TRIM72(C144S)), and expressed either TRIM72(WT) or TRIM72(C144S) in HEK-293 cells, which lack endogenous TRIM72, in order to examine the effect of this mutation on the functional stability of TRIM72 and on cell survival. We hypothesized that SNO of TRIM72 stabilizes the protein, thus allowing for membrane repair and enhanced cell survival. Upon treatment with hydrogen peroxide (H2O2), we found that TRIM72(WT) levels were decreased, but not TRIM72(C144S) and this correlated with increased H2O2-induced cell death in TRIM72(WT) cells. Additionally, we found that treatment with the cardioprotective S-nitrosylating agent S-nitrosoglutathione (GSNO), was able to preserve TRIM72(WT) protein levels and enhance TRIM72(WT)-mediated cell survival, but had no effect on TRIM72(C144S) levels. Consistent with our hypothesis, GSNO was also found to increase SNO levels and inhibit H2O2-induced irreversible oxidation for TRIM72(WT) without affecting TRIM72(C144S). In further support of our hypothesis, GSNO blocked the ischemia/reperfusion-induced decrease in TRIM72 levels and reduced infarct size in a Langendorff-perfused heart model. The results of these studies have important implications for cardioprotection and suggest that

  14. Glucose-6-phosphate dehydrogenase deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2.

    PubMed

    Roshankhah, Shiva; Rostami-Far, Zahra; Shaveisi-Zadeh, Farhad; Movafagh, Abolfazl; Bakhtiari, Mitra; Shaveisi-Zadeh, Jila

    2016-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. G6PD plays a key role in the pentose phosphate pathway, which is a major source of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH provides the reducing equivalents for oxidation-reduction reductions involved in protecting against the toxicity of reactive oxygen species such as H 2 O 2 . We hypothesized that G6PD deficiency may reduce the amount of NADPH in sperms, thereby inhibiting the detoxification of H 2 O 2 , which could potentially affect their motility and viability, resulting in an increased susceptibility to infertility. Semen samples were obtained from four males with G6PD deficiency and eight healthy males as a control. In both groups, motile sperms were isolated from the seminal fluid and incubated with 0, 10, 20, 40, 60, 80, and 120 µM concentrations of H 2 O 2 . After 1 hour incubation at 37℃, sperms were evaluated for motility and viability. Incubation of sperms with 10 and 20 µM H 2 O 2 led to very little decrease in motility and viability, but motility decreased notably in both groups in 40, 60, and 80 µM H 2 O 2 , and viability decreased in both groups in 40, 60, 80, and 120 µM H 2 O 2 . However, no statistically significant differences were found between the G6PD-deficient group and controls. G6PD deficiency does not increase the susceptibility of sperm to oxidative stress induced by H 2 O 2 , and the reducing equivalents necessary for protection against H 2 O 2 are most likely produced by other pathways. Therefore, G6PD deficiency cannot be considered as major risk factor for male infertility.

  15. Assessment of cellular responses to oxidative stress using MCF-7 breast cancer cells, black seed (N. Sativa L.) extracts and H2O2.

    PubMed

    Farah, Ibrahim O

    2005-12-01

    Black seed (N. Sativa L) is an oriental spice of the family Ranunculaceae that has long been rationally used as a natural medicine for treatment of many acute as well as chronic conditions including cardiovascular disease and immunological disorders. It has been used in the treatment of diabetes, hypertension, and dermatological conditions. There have been very few studies on the effects of N. Sativa as a chemoprevention of chronic diseases as well as in cancer prevention and/or therapy. Oxidative stress is a condition that underlies many acute as well as chronic conditions. The combination and role of oxidative stress and antioxidants in vivo is still a matter of conjecture. Our objective for the present study was to expose MCF-7 breast cancer cells in vitro (as a chronic disease example) to aqueous and alcohol extracts and in combination with H[2]O[2] as an oxidative stressor. Measurement of cell survival under various concentrations and mixtures was conducted using standard cell culture techniques, exposure protocols in 96 well plates and Fluorospectrosphotometry. Following cellular growth to 90% confluencey, exposure to water (WE) and ethanol (AE) extracts of N. sativa and H[2]O[2] was performed. Cell survival indices were calculated from percent survival using regression analysis. Results showed that the alcohol extract and its mixtures were able to influence the survival of MCF-7 cells (indices ranged from 357.15- 809.50 mug/ml in descending potency for H[2]O[2]+AE to the mix of 3). In contrast, H[2]O[2] alone reduced effectively the survival of MCF-7 cells and the least effective combinations in descending potency were AE+H[2]O[2], WE+H[2]O[2], AE+WE, and WE+AE+H[2]O[2]. Mixtures other than AE+H[2]O[2] showed possible interactions and loss of potency. In conclusion, N. Sativa alone or in combination with oxidative stress was found to be effective (in vitro) in influencing the survival of MCF-7 breast cancer cells, unveiling promising opportunities in the

  16. Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells.

    PubMed

    Liu, Kuo-Ching; Shih, Ting-Ying; Kuo, Chao-Lin; Ma, Yi-Shih; Yang, Jiun-Long; Wu, Ping-Ping; Huang, Yi-Ping; Lai, Kuang-Chi; Chung, Jing-Gung

    2016-01-01

    Sulforaphane (SFN), an isothiocyanate, exists exclusively in cruciferous vegetables, and has been shown to possess potent antitumor and chemopreventive activity. However, there is no available information that shows SFN affecting human colon cancer HCT 116 cells. In the present study, we found that SFN induced cell morphological changes, which were photographed by contrast-phase microscopy, and decreased viability. SFN also induced G2/M phase arrest and cell apoptosis in HCT 116 cells, which were measured with flow cytometric assays. Western blotting indicated that SFN increased Cyclin A, cdk 2, Cyclin B and WEE1, but decreased Cdc 25C, cdk1 protein expressions that led to G2/M phase arrest. Apoptotic cell death was also confirmed by Annexin V/PI and DAPI staining and DNA gel electrophoresis in HCT 116 cells after exposure to SFN. The flow cytometric assay also showed that SFN induced the generation of reactive oxygen species (ROS) and Ca[Formula: see text] and decreased mitochondria membrane potential and increased caspase-8, -9 and -3 activities in HCT 116 cell. Western blotting also showed that SFN induced the release of cytochrome c, and AIF, which was confirmed by confocal microscopy examination. SFN induced ER stress-associated protein expression. Based on those observations, we suggest that SFN may be used as a novel anticancer agent for the treatment of human colon cancer in the future.

  17. P2X7 receptor promotes intestinal inflammation in chemically induced colitis and triggers death of mucosal regulatory T cells.

    PubMed

    Figliuolo, Vanessa R; Savio, Luiz Eduardo Baggio; Safya, Hanaa; Nanini, Hayandra; Bernardazzi, Cláudio; Abalo, Alessandra; de Souza, Heitor S P; Kanellopoulos, Jean; Bobé, Pierre; Coutinho, Cláudia M L M; Coutinho-Silva, Robson

    2017-06-01

    P2X7 receptor activation contributes to inflammation development in different pathologies. We previously reported that the P2X7 receptor is over-expressed in the gut mucosa of patients with inflammatory bowel disease, and that P2X7 inhibition protects against chemically induced colitis. Here, we investigated in detail the role of the P2X7 receptor in inflammatory bowel disease development, by treating P2X7 knockout (KO) and WT mice with two different (and established) colitis inductors. P2X7 KO mice were protected against gut inflammation induced by 2,4,6-trinitrobenzenesulfonic acid or oxazolone, with no weight loss or gut histological alterations after treatment. P2X7 receptor knockout induced regulatory T cell accumulation in the colon, as evaluated by qRT-PCR for FoxP3 expression and immunostaining for CD90/CD45RB low . Flow cytometry analysis of mesenteric lymph node cells showed that P2X7 activation (by ATP) triggered regulatory T cell death. In addition, such cells from P2X7 KO mice expressed more CD103, suggesting increased migration of regulatory T cells to the colon (relative to the WT). Our results show that the P2X7 has a key role during inflammation development in inflammatory bowel disease, by triggering the death and retention in the mesenteric lymph nodes of regulatory T cells that would otherwise promote immune system tolerance in the gut. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    PubMed

    Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C

    2012-07-19

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  19. Protective effects of Arctium lappa L. roots against hydrogen peroxide-induced cell injury and potential mechanisms in SH-SY5Y cells.

    PubMed

    Tian, Xing; Guo, Li-Ping; Hu, Xiao-Long; Huang, Jin; Fan, Yan-Hua; Ren, Tian-Shu; Zhao, Qing-Chun

    2015-04-01

    Accumulated evidence has shown that excessive reactive oxygen species (ROS) have been implicated in neuronal cell death related with various chronic neurodegenerative disorders. This study was designed to explore neuroprotective effects of ethyl acetate extract of Arctium lappa L. roots (EAL) on hydrogen peroxide (H2O2)-induced cell injury in human SH-SY5Y neuroblastoma cells. The cell viability was significantly decreased after exposure to 200 μM H2O2, whereas pretreatment with different concentrations of EAL attenuated the H2O2-induced cytotoxicity. Hoechst 33342 staining indicated that EAL reversed nuclear condensation in H2O2-treated cells. Meanwhile, TUNEL assay with DAPI staining showed that EAL attenuated apoptosis was induced by H2O2. Pretreatment with EAL also markedly elevated activities of antioxidant enzyme (GSH-Px and SOD), reduced lipid peroxidation (MDA) production, prevented ROS formation, and the decrease of mitochondrial membrane potential. In addition, EAL showed strong radical scavenging ability in 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) assays. Furthermore, EAL inhibited H2O2-induced apoptosis by increases in the Bcl-2/Bax ratio, decreases in cytochrome c release, and attenuation of caspase-3, caspase-9 activities, and expressions. These findings suggest that EAL may be regarded as a potential antioxidant agent and possess potent neuroprotective activity against H2O2-induced injury.

  20. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    PubMed

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  1. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    PubMed Central

    Riad, Sandra; Bougherara, Habiba

    2015-01-01

    Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death). PMID:25685789

  2. Mechano-chemical pathways to H2O and CO2 splitting

    NASA Astrophysics Data System (ADS)

    Vedadi, Mohammad H.; Haas, Stephan

    2011-10-01

    The shock-induced collapse of CO2-filled nanobubbles is investigated using molecular dynamics simulations based on a reactive force field. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water and formation of O2 molecules. The dominant pathways through which splitting of water molecules occur are identified.

  3. In Vitro Production of Fumonisins by Fusarium verticillioides under Oxidative Stress Induced by H2O2.

    PubMed

    Ferrigo, Davide; Raiola, Alessandro; Bogialli, Sara; Bortolini, Claudio; Tapparo, Andrea; Causin, Roberto

    2015-05-20

    The effects of oxidative stress induced by H2O2 were tested in liquid cultures in the fumonisin-producing fungus Fusarium verticillioides. The quantitative analysis of fumonisins B1, B2, B3, and B4 was achieved by means of liquid chromatography coupled to high-resolution mass spectrometry. Two effects in F. verticillioides, consisting of different abilities to produce fumonisins in response to oxidative stress, were identified. Following H2O2 addition, two F. verticillioides strains produced significantly more fumonisin (>300%) while three other strains produced significantly less (<20%) in comparison to control cultures. Transcriptional studies with seven biosynthetic genes showed a significant increase in transcript levels in the strain that made more fumonisin and either no or minimal changes in the strain that made less fumonisin. Our data indicate the important role of oxidative stress toward the modulation of the fumonisin biosynthesis and suggest the necessity to verify the presence of such divergent behavior in F. verticillioides populations under natural conditions.

  4. Upregulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury.

    PubMed

    Shi, Guodong; Liu, Yang; Liu, Tielong; Yan, Wangjun; Liu, Xiaowei; Wang, Yuan; Shi, Jiangang; Jia, Lianshun

    2012-01-01

    It is increasingly clear that microRNAs (miRNAs) play an important role in controlling cell survival. However, the functional significance of miRNAs in ischemic brain injury remains poorly understood. In the present study, we assayed the expression levels of miR-29b after ischemic brain injury, and defined the target genes and biological functions of miR-29b. We found that the miR-29b levels were significantly increased in rat brain after transient middle cerebral artery occlusion and neurons after oxygen-glucose deprivation. Moreover, ectopic expression of miR-29b promoted neuronal cell death, whereas its repression decreased cell death. Furthermore, we verified that miR-29b directly targeted and inhibited Bcl2L2 gene expression, and then increased neuronal cell death. Importantly, Bcl2L2 overexpression rescued neuronal cell death induced by miR-29b. These results suggest an important role of miR-29b in regulating neuronal cell death, thus offering a new target for the development of therapeutic agents against ischemic brain injury.

  5. Sensitive and real-time determination of H2O2 release from intact peroxisomes.

    PubMed Central

    Mueller, Sebastian; Weber, Angelika; Fritz, Reiner; Mütze, Sabine; Rost, Daniel; Walczak, Henning; Völkl, Alfred; Stremmel, Wolfgang

    2002-01-01

    Peroxisomes are essential and ubiquitous cell organelles having a key role in mammalian lipid and oxygen metabolism. The presence of flavine oxidases makes them an important intracellular source of H(2)O(2): an obligate product of peroxisomal redox reactions and a key reactive oxygen species. Peroxisomes proliferate in response to external signals triggered by peroxisome-proliferator-activated receptor signalling pathways. Peroxisome-derived oxidative stress as a consequence of this proliferation is increasingly recognized to participate in pathologies ranging from carcinogenesis in rodents to alcoholic and non-alcoholic steatosis hepatitis in humans. To date, no sensitive approach exists to record H(2)O(2) turnover of peroxisomes in real time. Here, we introduce a sensitive chemiluminescence method that allows the monitoring of H(2)O(2) generation and degradation in real time in suspensions of intact peroxisomes. Importantly, removal, as well as release of, H(2)O(2) can be assessed at nanomolar, non-toxic concentrations in the same sample. Owing to the kinetic properties of catalase and oxidases, H(2)O(2) forms fast steady-state concentrations in the presence of various peroxisomal substrates. Substrate screening suggests that urate, glycolate and activated fatty acids are the most important sources for H(2)O(2) in rodents. Kinetic studies imply further that peroxisomes contribute significantly to the beta-oxidation of medium-chain fatty acids, in addition to their essential role in the breakdown of long and very long ones. These observations establish a direct quantitative release of H(2)O(2) from intact peroxisomes. The experimental approach offers new possibilities for functionally studying H(2)O(2) metabolism, substrate transport and turnover in peroxisomes of eukaryotic cells. PMID:11964148

  6. Surface properties of SiO2 with and without H2O2 treatment as gate dielectrics for pentacene thin-film transistor applications

    NASA Astrophysics Data System (ADS)

    Hung, Cheng-Chun; Lin, Yow-Jon

    2018-01-01

    The effect of H2O2 treatment on the surface properties of SiO2 is studied. H2O2 treatment leads to the formation of Si(sbnd OH)x at the SiO2 surface that serves to reduce the number of trap states, inducing the shift of the Fermi level toward the conduction band minimum. H2O2 treatment also leads to a noticeable reduction in the value of the SiO2 capacitance per unit area. The effect of SiO2 layers with H2O2 treatment on the behavior of carrier transports for the pentacene/SiO2-based organic thin-film transistor (OTFT) is also studied. Experimental identification confirms that the shift of the threshold voltage towards negative gate-source voltages is due to the reduced number of trap states in SiO2 near the pentacene/SiO2 interface. The existence of a hydrogenated layer between pentacene and SiO2 leads to a change in the pentacene-SiO2 interaction, increasing the value of the carrier mobility.

  7. O2-O2 and O2-N2 collision-induced absorption mechanisms unravelled

    NASA Astrophysics Data System (ADS)

    Karman, Tijs; Koenis, Mark A. J.; Banerjee, Agniva; Parker, David H.; Gordon, Iouli E.; van der Avoird, Ad; van der Zande, Wim J.; Groenenboom, Gerrit C.

    2018-05-01

    Collision-induced absorption is the phenomenon in which interactions between colliding molecules lead to absorption of light, even for transitions that are forbidden for the isolated molecules. Collision-induced absorption contributes to the atmospheric heat balance and is important for the electronic excitations of O2 that are used for remote sensing. Here, we present a theoretical study of five vibronic transitions in O2-O2 and O2-N2, using analytical models and numerical quantum scattering calculations. We unambiguously identify the underlying absorption mechanism, which is shown to depend explicitly on the collision partner—contrary to textbook knowledge. This explains experimentally observed qualitative differences between O2-O2 and O2-N2 collisions in the overall intensity, line shape and vibrational dependence of the absorption spectrum. It is shown that these results can be used to discriminate between conflicting experimental data and even to identify unphysical results, thus impacting future experimental studies and atmospheric applications.

  8. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death.

    PubMed

    Kim, Jin Sik; Lee, Jin; Chung, Hai Won; Choi, Han; Paik, Sang Gi; Kim, In Gyu

    2006-09-01

    Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.

  9. Correlation of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced apoptotic cell death in the embryonic vasculature with embryotoxicity

    USGS Publications Warehouse

    Cantrell, Susannah M.; Joy-Schlezinger, Jennifer; Stegeman, John J.; Tillitt, Donald E.; Hannington, Mark D.

    1998-01-01

    Vertebrate embryos are particularly sensitive to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Identification of tissues that are susceptible to the adverse effects of TCDD is requisite for understanding the embryo toxic effects of TCDD. The objective of the present study was to quantitate the temporal appearance of and dose dependence of apoptosis in TCDD-exposed medaka embryos (Oryzias latipes). A fluorescent-based DNA end-labeling assay provided a sensitive method for detection of TCDD-induced apoptosis in tissue sections of medaka embryos. Apoptotic cells were readily apparent in the medial yolk vein at all observed embryonic stages in TCDD-exposed embryos. Slope-comparison analysis indicated that TCDD-induced programmed cell death in the embryonic medial yolk vein was mechanistically linked to embryo mortality. These data are consistent with the hypothesis that vascular damage contributes to the acute embryo toxic effects of TCDD. However, as sublethal concentrations of dioxin-like compounds are more typical of environmental exposures, tissue damage was also assessed in medaka fry that were exposed to low doses of TCDD during embryonic development. Cell death was detected in gill and digestive tissues in visibly healthy medaka fry that had been exposed to low doses of TCDD during embryonic development. Increased expression of cytochrome P450 1A is a major biochemical consequence of TCDD exposure and is often used as a biomarker for exposure to dioxin-like compounds. Therefore, we compared the tissue distribution of TCDD-induced P450 1A expression and TCDD-induced programmed cell death. TCDD-induced programmed cell death co-localized with TCDD-induced P450 1A expression in both embryos and in visibly healthy post-hatch fry. Our results suggest that aberrant programmed cell death may be a suitable marker for exposure of feral organisms to dioxin-like compounds.

  10. Hygromycin B-induced cell death is partly mediated by reactive oxygen species in rice (Oryza sativa L.).

    PubMed

    Oung, Hui-Min; Lin, Ke-Chun; Wu, Tsung-Meng; Chandrika, Nulu Naga Prafulla; Hong, Chwan-Yang

    2015-12-01

    The aminoglycoside antibiotic hygromycin B (Hyg) inhibits prokaryotic, chloroplast and mitochondrial protein synthesis. Because of the toxic effect of Hyg on plant cells, the HPT gene, encoding hygromycin phosphotransferase, has become one of the most widely used selectable markers in plant transformation. Yet the mechanism behind Hyg-induced cell lethality in plants is not clearly understood. In this study, we aimed to decipher this mechanism. With Hyg treatment, rice calli exhibited cell death, and rice seedlings showed severe growth defects, leaf chlorosis and leaf shrinkage. Rice seedlings also exhibited severe lipid peroxidation and protein carbonylation, for oxidative stress damage at the cellular level. The production of reactive oxygen species such as O2(·-), H2O2 and OH(·) was greatly induced in rice seedlings under Hyg stress, and pre-treatment with ascorbate increased resistance to Hyg-induced toxicity indicating the existence of oxidative stress. Overexpression of mitochondrial Alternative oxidase1a gene without HPT selection marker in rice enhanced tolerance to Hyg and attenuated the degradation of protein content, whereas the rice plastidial glutathione reductase 3 mutant showed increased sensitivity to Hyg. These results demonstrate that Hyg-induced cell lethality in rice is not only due to the inhibition of protein synthesis but also mediated by oxidative stress.

  11. Induction of cell death by tospoviral protein NSs and the motif critical for cell death does not control RNA silencing suppression activity.

    PubMed

    Singh, Ajeet; Permar, Vipin; Jain, R K; Goswami, Suneha; Kumar, Ranjeet Ranjan; Canto, Tomas; Palukaitis, Peter; Praveen, Shelly

    2017-08-01

    Groundnut bud necrosis virus induces necrotic symptoms in different hosts. Previous studies showed reactive oxygen species-mediated programmed cell death (PCD) resulted in necrotic symptoms. Transgenic expression of viral protein NSs mimics viral symptoms. Here, we showed a role for NSs in influencing oxidative burst in the cell, by analyzing H 2 O 2 accumulation, activities of antioxidant enzymes and expression levels of vacuolar processing enzymes, H 2 O 2 -responsive microRNA 319a.2 plus its possible target metacaspase-8. The role of NSs in PCD, was shown using two NSs mutants: one in the Trp/GH3 motif (a homologue of pro-apototic domain) (NSs S189R ) and the other in a non-Trp/GH3 motif (NSs L172R ). Tobacco rattle virus (TRV) expressing NSs S189R enhanced the PCD response, but not TRV-NSs L172R , while RNA silencing suppression activity was lost in TRV-NSs L172R , but not in TRV-NSs S189R . Therefore, we propose dual roles of NSs in RNA silencing suppression and induction of cell death, controlled by different motifs. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The reaction of H2O2 with NO2 and NO

    NASA Technical Reports Server (NTRS)

    Gray, D.; Lissi, E.; Heicklen, J.

    1972-01-01

    The reactions of NO and NO2 with H2O2 have been examined at 25 C. Reaction mixtures were monitored by continuously bleeding through a pinhole into a monopole mass spectrometer. NO2 was also monitored by its optical absorption in the visible part of the spectrum. Reaction mixtures containing initially 1.5 - 2.5 torr of NO2 and 0.8 - 1.4 torr of H2O2 or 1 - 12 torr of NO and 0.5 - 1.5 torr of H2O2 were studied. The H2O2 - NO reaction was complex. There was an induction period followed by a marked acceleration in reactant removal. The final products of the reaction, NO2, probably H2O, and possibly HONO2 were produced mainly after all the H2O2 was removed. The HONO intermediate was shown to disproportionate to NO2 + NO + H2O in a relatively slow first order reaction. The acceleration in H2O2 removal after the NO - H2O2 reaction is started is caused by NO2 catalysis.

  13. OsNAC2 positively affects salt-induced cell death and binds to the OsAP37 and OsCOX11 promoters.

    PubMed

    Mao, Chanjuan; Ding, Jialin; Zhang, Bin; Xi, Dandan; Ming, Feng

    2018-05-01

    Plant development and adaptation to environmental stresses are intimately associated with programmed cell death (PCD). Although some of the mechanisms regulating PCD [e.g., accumulation of reactive oxygen species (ROS)] are common among responses to different abiotic stresses, the pathways mediating salt-induced PCD remain largely uncharacterized. Here we report that overexpression of OsNAC2, which encodes a plant-specific transcription factor, promotes salt-induced cell death accompanied by the loss of plasma membrane integrity, nuclear DNA fragmentation, and changes to caspase-like activity. In OsNAC2-knockdown lines, cell death was markedly decreased in response to severe salt stress. Additionally, OsNAC2 expression was enhanced in rice seedlings exposed to a high NaCl concentration. Moreover, the results of quantitative real-time PCR, chromatin immunoprecipitation, dual-luciferase, and yeast one-hybrid assays indicated that OsNAC2 targeted genes that encoded an ROS scavenger (OsCOX11) and a caspase-like protease (OsAP37). Furthermore, K + -efflux channels (OsGORK and OsSKOR) were clearly activated by OsNAC2. Overall, our results suggested that OsNAC2 accelerates NaCl-induced PCD and provide new insights into the mechanisms that affect ROS accumulation, plant caspase-like activity, and K + efflux. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  14. Reduction in central H2O2 levels prevents voluntary ethanol intake in mice: a role for the brain catalase-H2O2 system in alcohol binge drinking.

    PubMed

    Ledesma, Juan Carlos; Baliño, Pablo; Aragon, Carlos M G

    2014-01-01

    Hydrogen peroxide (H2 O2 ) is the cosubstrate used by the enzyme catalase to form Compound I (the catalase-H2 O2 system), which is the major pathway for the conversion of ethanol (EtOH) into acetaldehyde in the brain. This centrally formed acetaldehyde has been shown to be involved in some of the psychopharmacological effects induced by EtOH in rodents, including voluntary alcohol intake. It has been observed that different levels of this enzyme in the central nervous system (CNS) result in variations in the amount of EtOH consumed. This has been interpreted to mean that the brain catalase-H2 O2 system, by determining EtOH metabolism, mediates alcohol self-administration. To date, however, the role of H2 O2 in voluntary EtOH drinking has not been investigated. In the present study, we explored the consequence of a reduction in cerebral H2 O2 levels in volitional EtOH ingestion. With this end in mind, we injected mice of the C57BL/6J strain intraperitoneally with the H2 O2 scavengers alpha-lipoic acid (LA; 0 to 50 mg/kg) or ebselen (Ebs; 0 to 25 mg/kg) 15 or 60 minutes, respectively, prior to offering them an EtOH (10%) solution following a drinking-in-the-dark procedure. The same procedure was followed to assess the selectivity of these compounds in altering EtOH intake by presenting mice with a (0.1%) solution of saccharin. In addition, we indirectly tested the ability of LA and Ebs to reduce brain H2 O2 availability. The results showed that both LA and Ebs dose-dependently reduced voluntary EtOH intake, without altering saccharin consumption. Moreover, we demonstrated that these treatments decreased the central H2 O2 levels available to catalase. Therefore, we propose that the amount of H2 O2 present in the CNS, by determining brain acetaldehyde formation by the catalase-H2 O2 system, could be a factor that determines an animal's propensity to consume EtOH. Copyright © 2013 by the Research Society on Alcoholism.

  15. Estrogen and/or Estrogen Receptor α Inhibits BNIP3-Induced Apoptosis and Autophagy in H9c2 Cardiomyoblast Cells.

    PubMed

    Chen, Bih-Cheng; Weng, Yi-Jiun; Shibu, Marthandam Asokan; Han, Chien-Kuo; Chen, Yueh-Sheng; Shen, Chia-Yao; Lin, Yueh-Min; Viswanadha, Vijaya Padma; Liang, Hsin-Yueh; Huang, Chih-Yang

    2018-04-26

    The process of autophagy in heart cells maintains homeostasis during cellular stress such as hypoxia by removing aggregated proteins and damaged organelles and thereby protects the heart during the times of starvation and ischemia. However, autophagy can lead to substantial cell death under certain circumstances. BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), a hypoxia-induced marker, has been shown to induce both autophagy and apoptosis. A BNIP3-docked organelle, e.g., mitochondria, also determines whether autophagy or apoptosis will take place. Estrogen (E2) and estrogen receptor (ER) alpha (ERα) have been shown to protect the heart against mitochondria-dependent apoptosis. The aim of the present study is to investigate the mechanisms by which ERα regulates BNIP3-induced apoptosis and autophagy, which is associated with hypoxic injury, in cardiomyoblast cells. An in vitro model to mimic hypoxic injury in the heart by engineering H9c2 cardiomyoblast cells to overexpress BNIP3 was established. Further, the effects of E2 and ERα in BNIP3-induced apoptosis and autophagy were determined in BNIP3 expressing H9c2 cells. Results from TUNEL assay and Immunoflourecense assay for LC3 puncta formation, respectively, revealed that ERα/E2 suppresses BNIP3-induced apoptosis and autophagy. The Western blot analysis showed ERα/E2 decreases the protein levels of caspase 3 (apoptotic marker), Atg5, and LC3-II (autophagic markers). Co-immunoprecipitation of BNIP3 and immunoblotting of Bcl-2 and Rheb showed that ERα reduced the interaction between BNIP3 and Bcl-2 or Rheb. The results confirm that ERα binds to BNIP3 causing a reduction in the levels of functional BNIP3 and thereby inhibits cellular apoptosis and autophagy. In addition, ERα attenuated the activity of the BNIP3 promoter by binding to SP-1 or NFκB sites.

  16. Effect of blue light radiation on curcumin-induced cell death of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Zeng, X. B.; Leung, A. W. N.; Xia, X. S.; Yu, H. P.; Bai, D. Q.; Xiang, J. Y.; Jiang, Y.; Xu, C. S.

    2010-06-01

    In the present study, we have successfully set up a novel blue light source with the power density of 9 mW/cm2 and the wavelength of 435.8 nm and then the novel light source was used to investigate the effect of light radiation on curcumin-induced cell death. The cytotoxicity was investigated 24 h after the treatment of curcumin and blue light radiation together using MTT reduction assay. Nuclear chromatin was observed using a fluorescent microscopy with Hoechst33258 staining. The results showed blue light radiation could significantly enhance the cytotoxicity of curcumin on the MCF-7 cells and apoptosis induction. These findings demonstrated that blue light radiation could enhance curcumin-induced cell death of breast cancer cells, suggesting light radiation may be an efficient enhancer of curcumin in the management of breast cancer.

  17. Mutation in Rice Abscisic Acid2 Results in Cell Death, Enhanced Disease-Resistance, Altered Seed Dormancy and Development

    PubMed Central

    Liao, Yongxiang; Bai, Que; Xu, Peizhou; Wu, Tingkai; Guo, Daiming; Peng, Yongbin; Zhang, Hongyu; Deng, Xiaoshu; Chen, Xiaoqiong; Luo, Ming; Ali, Asif; Wang, Wenming; Wu, Xianjun

    2018-01-01

    Lesion mimic mutants display spontaneous cell death, and thus are valuable for understanding the molecular mechanism of cell death and disease resistance. Although a lot of such mutants have been characterized in rice, the relationship between lesion formation and abscisic acid (ABA) synthesis pathway is not reported. In the present study, we identified a rice mutant, lesion mimic mutant 9150 (lmm9150), exhibiting spontaneous cell death, pre-harvest sprouting, enhanced growth, and resistance to rice bacterial and blast diseases. Cell death in the mutant was accompanied with excessive accumulation of H2O2. Enhanced disease resistance was associated with cell death and upregulation of defense-related genes. Map-based cloning identified a G-to-A point mutation resulting in a D-to-N substitution at the amino acid position 110 of OsABA2 (LOC_Os03g59610) in lmm9150. Knock-out of OsABA2 through CRISPR/Cas9 led to phenotypes similar to those of lmm9150. Consistent with the function of OsABA2 in ABA biosynthesis, ABA level in the lmm9150 mutant was significantly reduced. Moreover, exogenous application of ABA could rescue all the mutant phenotypes of lmm9150. Taken together, our data linked ABA deficiency to cell death and provided insight into the role of ABA in rice disease resistance. PMID:29643863

  18. Mutation in Rice Abscisic Acid2 Results in Cell Death, Enhanced Disease-Resistance, Altered Seed Dormancy and Development.

    PubMed

    Liao, Yongxiang; Bai, Que; Xu, Peizhou; Wu, Tingkai; Guo, Daiming; Peng, Yongbin; Zhang, Hongyu; Deng, Xiaoshu; Chen, Xiaoqiong; Luo, Ming; Ali, Asif; Wang, Wenming; Wu, Xianjun

    2018-01-01

    Lesion mimic mutants display spontaneous cell death, and thus are valuable for understanding the molecular mechanism of cell death and disease resistance. Although a lot of such mutants have been characterized in rice, the relationship between lesion formation and abscisic acid (ABA) synthesis pathway is not reported. In the present study, we identified a rice mutant, lesion mimic mutant 9150 ( lmm9150 ), exhibiting spontaneous cell death, pre-harvest sprouting, enhanced growth, and resistance to rice bacterial and blast diseases. Cell death in the mutant was accompanied with excessive accumulation of H 2 O 2 . Enhanced disease resistance was associated with cell death and upregulation of defense-related genes. Map-based cloning identified a G-to-A point mutation resulting in a D-to-N substitution at the amino acid position 110 of OsABA2 (LOC_Os03g59610) in lmm9150 . Knock-out of OsABA2 through CRISPR/Cas9 led to phenotypes similar to those of lmm9150 . Consistent with the function of OsABA2 in ABA biosynthesis, ABA level in the lmm9150 mutant was significantly reduced. Moreover, exogenous application of ABA could rescue all the mutant phenotypes of lmm9150 . Taken together, our data linked ABA deficiency to cell death and provided insight into the role of ABA in rice disease resistance.

  19. Self-assembly of red-blood-cell-like (NH4)[Fe2(OH)(PO4)22H2O architectures from 2D nanoplates by sonochemical method.

    PubMed

    Wu, Kaipeng; Liu, Diwei; Tang, Yun

    2018-01-01

    Red-blood-cell-like (RBC-like) (NH 4 )[Fe 2 (OH)(PO 4 ) 22H 2 O architectures assembled from 2D nanoplates are successfully synthesized via a facile sonochemical method. XRD measurement indicates that the as-prepared sample is well crystallized with a monoclinic structure. The morphology of the sample is characterized by SEM analysis, which shows that the (NH 4 )[Fe 2 (OH)(PO 4 ) 22H 2 O particles exhibit a unique biconcave red blood cell morphology with an average diameter of 4um and thickness of 1.5um. The detailed time-dependent experiments are conducted to investigate the morphological evolution process. It reveals that the ultrasonic time is crucial to the morphology of the products, and the RBC-like (NH 4 )[Fe 2 (OH)(PO 4 ) 22H 2 O proceeds in steps of crystallization, formation of thin plates, and the subsequent self-assembly. Compared to the available methods that are typically time-consuming and complicated, this smart sonochemical strategy proposed herein is efficient and simple. Moreover, these obtained special RBC-like architectures will be more fascinating for application in many areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [Role of necroptosis in aluminum induced SH-SY5Y cell death].

    PubMed

    Niu, Qiao; Zhang, Qin-li; Zheng, Jin-ping; Liu, Cheng-yun; Wang, Liang

    2009-02-01

    To study whether necroptosis exists or not in neural cell death induced by aluminum. SH-SY5Y cells were treated with 4 mmol/L AlCl(3) x 6H(2)O The cell viability was determined with CCK-8 kit after treated with Nec-1 at different dosages (0, 30, 60, 90 micromol/L). Mitochondria membrane potential (MMP), content of reactive oxygen species (ROS), and apoptotic rate/necrotic rates were measured with cytometry. Nec-1 ameliorated the necrotic-like cell morphology, the cell viability were 0.28 +/- 0.05, 0.58 +/- 0.03, 0.68 +/- 0.04, and 1.03 +/- 0.17, there were significant differences between the Nec-1 treated groups and that of controls (t values were 3.25, 3.36, 4.56; P < 0.05). After Nec-1 treatment, the necrotic rates were 16.46% +/- 0.54%, 10.40% +/- 0.64%, 5.43% +/- 0.68%, and 6.28% +/- 0.35%, there were significant differences between the Nec-1 treated cells and that of controls (t values were 3.62, 7.32, 6.96; P < 0.05); while the apoptotic rates were 8.68 +/- 0.36, 7.66 +/- 0.53, 5.68 +/- 0.41, and 4.13 +/- 0.41, there was no significant difference among the groups (F = 6.33, P = 0.11). Cytometry had shown the increased cell MMPs after Nec-1 treatment, which were 67.54 +/- 6.36, 49.42 +/- 5.96, 84.79 +/- 6.86, and 95.51 +/- 7.01, there were significant differences as comparing MMPs of the middle and high dosage of Nec-1 treated cells with those of controls (t values were 3.21, 4.01; P < 0.05); while ROS contents in the Nec-1 treated SH-SY5Y cells were 54.07 +/- 3.32, 52.79 +/- 2.36, 54.68 +/- 1.91, and 59.23 +/- 2.96, there was no significant difference among the groups (F = 5.26, P = 0.19). Nec-1, as a specific inhibitor of necroptosis, might effectively block the cell death pathway induced by aluminum, it indicates that necroptosis should be one of the major causes of the SH-SY5Y cell toxicity induced by aluminum, and necroptosis also plays an important role in aluminum induced SH-SY5Y cell death.

  1. Osmopriming-induced salt tolerance during seed germination of alfalfa most likely mediates through H2O2 signaling and upregulation of heme oxygenase.

    PubMed

    Amooaghaie, Rayhaneh; Tabatabaie, Fatemeh

    2017-07-01

    The present study showed that osmopriming or pretreatment with low H 2 O 2 doses (2 mM) for 6 h alleviated salt-reduced seed germination. The NADPH oxidase activity was the main source, and superoxide dismutase (SOD) activity might be a secondary source of H 2 O 2 generation during osmopriming or H 2 O 2 pretreatment. Hematin pretreatment similar to osmopriming improved salt-reduced seed germination that was coincident with the enhancement of heme oxygenase (HO) activity. The semi-quantitative RT-PCR confirmed that osmopriming or H 2 O 2 pretreatment was able to upregulate heme oxygenase HO-1 transcription, while the application of N,N-dimethyl thiourea (DMTU as trap of endogenous H 2 O 2 ) and diphenyleneiodonium (DPI as inhibitor of NADPHox) not only blocked the upregulation of HO but also reversed the osmopriming-induced salt attenuation. The addition of CO-saturated aqueous rescued the inhibitory effect of DMTU and DPI on seed germination and α-amylase activity during osmopriming or H 2 O 2 pretreatment, but H 2 O 2 could not reverse the inhibitory effect of ZnPPIX (as HO inhibitor) or Hb (as CO scavenger) that indicates that the CO acts downstream of H 2 O 2 in priming-driven salt acclimation. The antioxidant enzymes and proline synthesis were upregulated in roots of seedlings grown from primed seeds, and these responses were reversed by adding DMTU, ZnPPIX, and Hb during osmopriming. These findings for the first time suggest that H 2 O 2 signaling and upregulation of heme oxygenase play a crucial role in priming-driven salt tolerance.

  2. Low-T magnetometry study of S = 1 Q2D [Ni(pyz) 2(H 2O) 2](BF 4) 2 (pyz = pyrazine)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manson, J. L.; Villa, D. Y.; Blackmore, W. J. A.

    2017-02-13

    [Ni(pyz) 2(H 2O) 2](BF 4) 2 (pyz = N 2C 4H 4) was synthesized by a solvent-free technique and its structure solved by synchrotron X-ray powder diffraction.1 The compound contains S = 1 Ni(II) ions and has tetragonal symmetry. Two-D [Ni(pyz) 2(H 2O) 2] 2+ square lattices propagate in the ab-plane and stack along the c-axis (Fig. 1). Water ligands occupy axial sites and form H-bonds with interlayer BF 4 - ions. SQUID magnetometry shows a possible transition to long-range magnetic order near 3 K. We measured the magnetization of [Ni(pyz) 2(H 2O) 2](BF 4) 2 as a function ofmore » temperature to search for field-induced phase transitions and briefly report those findings here.« less

  3. Prostaglandin H2 induces the migration of human eosinophils through the chemoattractant receptor homologous molecule of Th2 cells, CRTH2.

    PubMed

    Schuligoi, Rufina; Sedej, Miriam; Waldhoer, Maria; Vukoja, Anela; Sturm, Eva M; Lippe, Irmgard T; Peskar, Bernhard A; Heinemann, Akos

    2009-01-01

    The major mast cell product PGD2 is released during the allergic response and stimulates the chemotaxis of eosinophils, basophils, and Th2-type T lymphocytes. The chemoattractant receptor homologous molecule of Th2 cells (CRTH2) has been shown to mediate the chemotactic effect of PGD2. PGH2 is the common precursor of all PGs and is produced by several cells that express cyclooxygenases. In this study, we show that PGH2 selectively stimulates human peripheral blood eosinophils and basophils but not neutrophils, and this effect is prevented by the CRTH2 receptor antagonist (+)-3-[[(4-fluorophenyl)sulfonyl] methyl amino]-1,2,3,4-tetrahydro-9H-carbazole-9-acetic acid (Cay10471) but not by the hematopoietic PGD synthase inhibitor 4-benzhydryloxy-1-[3-(1H-tetrazol-5-yl)-propyl]piperidine (HQL79). In chemotaxis assays, eosinophils showed a pronounced migratory response toward PGH2, but eosinophil degranulation was inhibited by PGH2. Moreover, collagen-induced platelet aggregation was inhibited by PGH2 in platelet-rich plasma, which was abrogated in the presence of the D-type prostanoid (DP) receptor antagonist 3-[(2-cyclohexyl-2-hydroxyethyl)amino]-2,5-dioxo-1-(phenylmethyl)-4-imidazolidine-heptanoic acid (BWA868c). Each of these effects of PGH2 was enhanced in the presence of plasma and/or albumin. In eosinophils, PGH2-induced calcium ion (Ca2+) flux was subject to homologous desensitization with PGD2. Human embryo kidney (HEK)293 cells transfected with human CRTH2 or DP likewise responded with Ca2+ flux, and untransfected HEK293 cells showed no response. These data indicate that PGH2 causes activation of the PGD2 receptors CRTH2 and DP via a dual mechanism: by interacting directly with the receptors and/or by giving rise to PGD2 after catalytic conversion by plasma proteins.

  4. In vitro study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe2O4

    NASA Astrophysics Data System (ADS)

    Oh, Yunok; Lee, Nohyun; Kang, Hyun Wook; Oh, Junghwan

    2016-03-01

    Magnetic nanoparticles (MNPs) have been widely investigated as a hyperthermic agent for cancer treatment. In this study, thermally responsive Chitosan-coated MnFe2O4 (Chitosan-MnFe2O4) nanoparticles were developed to conduct localized magnetic hyperthermia for cancer treatment. Hydrophobic MnFe2O4 nanoparticles were synthesized via thermal decomposition and modified with 2,3-dimercaptosuccinic acid (DMSA) for further conjugation of chitosan. Chitosan-MnFe2O4 nanoparticles exhibited high magnetization and excellent biocompatibility along with low cell cytotoxicity. During magnetic hyperthermia treatment (MHT) with Chitosan-MnFe2O4 on MDA-MB 231 cancer cells, the targeted therapeutic temperature was achieved by directly controlling the strength of the external AC magnetic fields. In vitro Chitosan-MnFe2O4-assisted MHT at 42 °C led to drastic and irreversible changes in cell morphology and eventual cellular death in association with the induction of apoptosis through heat dissipation from the excited magnetic nanoparticles. Therefore, the Chitosan-MnFe2O4 nanoparticles with high biocompatibility and thermal capability can be an effective nano-mediated agent for MHT on cancer.

  5. Organic Contaminant Abatement in Reclaimed Water by UV/H2O2 and a Combined Process Consisting of O3/H2O2 Followed by UV/H2O2: Prediction of Abatement Efficiency, Energy Consumption, and Byproduct Formation.

    PubMed

    Lee, Yunho; Gerrity, Daniel; Lee, Minju; Gamage, Sujanie; Pisarenko, Aleksey; Trenholm, Rebecca A; Canonica, Silvio; Snyder, Shane A; von Gunten, Urs

    2016-04-05

    UV/H2O2 processes can be applied to improve the quality of effluents from municipal wastewater treatment plants by attenuating trace organic contaminants (micropollutants). This study presents a kinetic model based on UV photolysis parameters, including UV absorption rate and quantum yield, and hydroxyl radical (·OH) oxidation parameters, including second-order rate constants for ·OH reactions and steady-state ·OH concentrations, that can be used to predict micropollutant abatement in wastewater. The UV/H2O2 kinetic model successfully predicted the abatement efficiencies of 16 target micropollutants in bench-scale UV and UV/H2O2 experiments in 10 secondary wastewater effluents. The model was then used to calculate the electric energies required to achieve specific levels of micropollutant abatement in several advanced wastewater treatment scenarios using various combinations of ozone, UV, and H2O2. UV/H2O2 is more energy-intensive than ozonation for abatement of most micropollutants. Nevertheless, UV/H2O2 is not limited by the formation of N-nitrosodimethylamine (NDMA) and bromate whereas ozonation may produce significant concentrations of these oxidation byproducts, as observed in some of the tested wastewater effluents. The combined process of O3/H2O2 followed by UV/H2O2, which may be warranted in some potable reuse applications, can achieve superior micropollutant abatement with reduced energy consumption compared to UV/H2O2 and reduced oxidation byproduct formation (i.e., NDMA and/or bromate) compared to conventional ozonation.

  6. Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad; Tahir, Beenish; Saidina Amin, Nor Aishah; Alias, Hajar

    2016-12-01

    Photocatalytic CO2 reduction by H2O and/or H2 reductant to selective fuels over Cu-promoted In2O3/TiO2 photocatalyst has been investigated. The samples, prepared via a simple and direct sol-gel method, were characterized by XRD, SEM, TEM, XPS, N2 adsorption-desorption, UV-vis diffuse reflectance, Raman and PL spectroscopy. Cu and In loaded into TiO2, oxidized as Cu2+ and In3+, promoted efficient separation of photo-generated electron/hole pairs (e-/h+). The results indicate that the reduction rate of CO2 by H2O to CH4 approached to 181 μmol g-1 h-1 using 0.5% Cu-3% In2O3/TiO2 catalyst, a 1.53 fold higher than the production rate over the 3% In2O3/TiO2 and 5 times the amount produced over the pure TiO2. In addition, Cu was found to promote efficient production of CH3OH and yield rate reached to 68 μmol g-1 h-1 over 1% Cu-3% In2O3/TiO2 catalyst. This improvement was attributed to charge transfer property and suppressed recombination rate by Cu-metal. More importantly, H2 reductant was less favorable for CH4 production, yet a significant amount of CH4 and CH3OH were obtained using a mixture of H2O/H2 reductant. Therefore, Cu-loaded In2O3/TiO2 catalyst has shown to be capable for methanol production, whereas product selectivity was greatly depending on the amount of Cu-loading and the type of reductant. A photocatalytic reaction mechanism was proposed to understand the experimental results over the Cu-loaded In2O3/TiO2 catalyst.

  7. Absence of PDGF-induced, PKC-independent c-fos expression in a chemically transformed C3H/10T1/2 cell clone.

    PubMed

    Vassbotn, F S; Skar, R; Holmsen, H; Lillehaug, J R

    1992-09-01

    The effect of platelet-derived growth factor (PDGF) on c-fos mRNA transcription was studied in the immortalized mouse embryo fibroblast C3H/10T1/2 Cl 8 (10T1/2) cells and the chemically transformed, tumorigenic subclone C3H/10T1/2 Cl 16 (Cl 16). In the 10T1/2 cells as well as the Cl 16 subclone, the dose-dependent PDGF stimulation of c-fos mRNA synthesis was similar in both logarithmically growing and confluent cultures. c-fos mRNA was induced severalfold by 12-O-tetradecanoylphorbol-13-acetate (TPA) in both 10T1/2 and Cl 16. Down-regulation of protein kinase C (PKC) activity by TPA pretreatment inhibited PDGF-stimulated c-fos mRNA expression in Cl 16 cells but did not affect this induction in the 10T1/2 cells. This inhibition was not a general phenomenon of 3-methylcholanthrene-mediated transformation of 10T1/2 cells since experiments with another transformed 10T1/2 cell clone, C3H/10T1/2 TPA 482, gave qualitatively the same results as the 10T1/2 cells. Receptor binding experiments showed that the nontransformed and transformed cells had a comparable number of PDGF receptors, 1.3 x 10(5) and 0.7 x 10(5) receptors per cell, respectively. Furthermore, cAMP-induced c-fos expression induced by forskolin is formerly shown to be independent of PKC down-regulation. In our experiments, forskolin induced c-fos expression in both clones. However, PKC down-regulation inhibited the forskolin-induced c-fos expression in Cl 16 cells. This apparently demonstrates cross talk between PKC and PKA in the c-fos induction pathway. The present results provide evidence for an impaired mechanism for activating c-fos expression through PKC-independent, PDGF-induced signal transduction in the chemically transformed Cl 16 fibroblasts compared to that in nontransformed 10T1/2 cells.

  8. Conductivity measurements on H 2O-bearing CO 2-rich fluids

    DOE PAGES

    Capobianco, Ryan M.; Miroslaw S. Gruszkiewicz; Bodnar, Robert J.; ...

    2014-09-10

    Recent studies report rapid corrosion of metals and carbonation of minerals in contact with carbon dioxide containing trace amounts of dissolved water. One explanation for this behavior is that addition of small amounts of H 2O to CO 2 leads to significant ionization within the fluid, thus promoting reactions at the fluid-solid interface analogous to corrosion associated with aqueous fluids. The extent of ionization in the bulk CO 2 fluid was determined using a flow-through conductivity cell capable of detecting very low conductivities. Experiments were conducted from 298 to 473 K and 7.39 to 20 MPa with H 2O concentrationsmore » up to ~1600 ppmw (xH 2O ≈ 3.9 x 10 -3), corresponding to the H 2O solubility limit in liquid CO 2 at ambient temperature. All solutions showed conductivities <10 nS/cm, indicating that the solutions were essentially ion-free. Furthermore, this observation suggests that the observed corrosion and carbonation reactions are not the result of ionization in CO 2-rich bulk phase, but does not preclude ionization in the fluid at the fluid-solid interface.« less

  9. Diagnosis of Cell Death by Means of Infrared Spectroscopy

    PubMed Central

    Zelig, Udi; Kapelushnik, Joseph; Moreh, Raymond; Mordechai, Shaul; Nathan, Ilana

    2009-01-01

    Abstract Fourier transform infrared (FTIR) spectroscopy has been established as a fast spectroscopic method for biochemical analysis of cells and tissues. In this research we aimed to investigate FTIR's utility for identifying and characterizing different modes of cell death, using leukemic cell lines as a model system. CCRF-CEM and U937 leukemia cells were treated with arabinoside and doxorubicin apoptosis inducers, as well as with potassium cyanide, saponin, freezing-thawing, and H2O2 necrosis inducers. Cell death mode was determined by various gold standard biochemical methods in parallel with FTIR-microscope measurements. Both cell death modes exhibit large spectral changes in lipid absorbance during apoptosis and necrosis; however, these changes are similar and thus cannot be used to distinguish apoptosis from necrosis. In contrast to the above confounding factor, our results reveal that apoptosis and necrosis can still be distinguished by the degree of DNA opaqueness to infrared light. Moreover, these two cell death modes also can be differentiated by their infrared absorbance, which relates to the secondary structure of total cellular protein. In light of these findings, we conclude that, because of its capacity to monitor multiple biomolecular parameters, FTIR spectroscopy enables unambiguous and easy analysis of cell death modes and may be useful for biochemical and medical applications. PMID:19804743

  10. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    PubMed Central

    Šljukić, Biljana; Morais, Ana L.; Santos, Diogo M. F.; Sequeira, César A. C.

    2012-01-01

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC’s performance. Cell polarization, power density, stability, and durability tests are used in the membranes’ evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load. PMID:24958292

  11. [Recombinant hFOXA2 and hPDX1 lentivirus induced dental pulp stem cells from deciduous teeth reprogramming for insulin-producing cells].

    PubMed

    Shi, Jian-feng; Zhu, Chun-hui; Liu, Jin; Sun, Jun-yi; Rao, Guo-zhou; Li, Ang

    2013-12-01

    The purpose of this study was to culture and identify dental pulp stem cells(DPSCs) from deciduous teeth in vitro and construct the recombinant hFOXA2 and hPDX1 lentivirus vectors and transfect the DPSCs to induce insulin-producing cells (IPCs). DPSCs were separated and cultured by enzyme digest method, and purified by limited dilution method. Flow cytometry was used to determine the surface marker expression of the DPSCs, and the ability of multiple differentiations was determined by specific staining. hFOXA2 and hPDX1 genes were amplified by PCR, and the recombinant hFOXA2 and hPDX1 lentivirus vectors were reconstructed and transfected into 293T cells by lipofectamine2000 for virus packaging. The viral infection efficiency and titer were determined through fluorescence cell count. The recombinant virus was used to infect the DPSCs cells via multiplicity of infection (MOI) and induce the DPSCs reprogramming for IPCs. Immunofluorescence staining was used to measure the expression of proinsulin, FOXA2 and PDX1. ELISA method was used to detect the insulin secretion. The data was analyzed Using SPSS13.0 software package. DPSCs were isolated and cultured successfully. Cell surface highly expressed STRO-1 (98.01%), CDl46 (98.51%), CD34 (99.54%) and CD45 (24.08%). The multi-lineage differentiation capacity into osteoblasts, chondrocytes, and adipose was achieved. The recombinant hFOXA2 and hPDX1 lentivirus vectors were successfully constructed. Double enzyme digestion and sequencing appraisal showed that the sequence was fully consistent with GenBank retrieval. Virus packing efficiency was (96.15±0.17) % and (95.49±0.21) % respectively, and the infection titer was about 1.80±108 GTU/mL. The best MOI of the virus was 20. After inducing the cells to express proinsulin, FOXA2 and PDX1, insulin secretion volume was about 1.92 μmol/L. Compared with the uninduced group and control group, insulin secretion increased significantly (P<0.01). The recombinant transcription

  12. Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482 nm

    NASA Astrophysics Data System (ADS)

    Goldenstein, Christopher S.; Jeffries, Jay B.; Hanson, Ronald K.

    2013-11-01

    Absorption lineshapes for two unresolved H2O doublets near 4029.52 and 4041.92 cm-1 were measured at high-resolution in a heated static cell using two distributed-feedback diode lasers. Measurements were acquired for H2O, CO2, and N2 perturbers over a temperature and pressure range of 650-1325 K and 2-760 Torr, respectively. Strong collisional narrowing effects were observed in CO2 and N2, but not in pure H2O. The Galatry profile was used to infer collisional-broadening and -narrowing coefficients and their respective temperature dependence for CO2 and N2 perturbers. The collisional-broadening and -narrowing coefficients for CO2 perturbers were found to decrease with increasing temperature in a similar manner. For N2 perturbers, the collisional-broadening coefficients increased with temperature while the collisional-narrowing coefficients decreased with increasing temperature. Self-broadening coefficients were inferred from Voigt profile fits and are compared with HITEMP 2010. The linestrengths of 17 H2O transitions are also reported.

  13. A Cyclin D2-derived peptide acts on specific cell cycle phases by activating ERK1/2 to cause the death of breast cancer cells.

    PubMed

    Russo, Lilian C; Araujo, Christiane B; Iwai, Leo K; Ferro, Emer S; Forti, Fabio L

    2017-01-16

    Protein degradation by the proteasome generates functional intracellular peptides. Pep5, a peptide derived from Cyclin D2, induces cell death in tumor cell lines and reduces the volume of rat C6 glioblastoma tumors in vivo. Here, we chose the human MDA-MB-231 breast cancer cells to evaluate the mechanism of cell death induced by pep5 in different phases of the cell cycle. Fluorescently labeled pep5, monitored by real time confocal microscopy, entered the MDA-MB-231 cells 3min after application and localized to the nucleus and cytoplasm. Pep5-induced cell death was increased when the MDA-MB-231 cell population was arrested at the G1/S transition or in S phase compared to asynchronous cells. Pep5 induced permanent extracellular signal-regulated kinase (ERK1/2) phosphorylation in MDA-MB-231 cells synchronized in G1/S or S phase. Affinity chromatography followed by mass spectrometry identified CLIC1 and Plectin as the only two proteins that interacted with pep5 in both asynchronous and synchronized MDA-MB-231 cells. These interactions could explain the long-lasting ERK1/2 phosphorylation and the cytoskeleton perturbations in the MDA-MB-231 cells, in which the stress fibers' integrity is affected by pep5 treatments. These data suggest that pep5 has potential therapeutic properties for treating specific types of cancers, such as breast cancer cells. Pep5, a natural intracellular peptide formed by the degradation of Cyclin D2 through the ubiquitin-proteasome system, induces cell death when reintroduced into MDA-MB-231 breast cancer cells, which express low levels of Cyclin D2, specifically in G1/S arrested cells or in cells that are passing through S phase. Under these conditions, pep5 is able to interact with different intracellular proteins, primarily cytoskeleton and proteasome components, which can lead to cellular apoptosis. Together, our data suggest that pep5 is an intracellular peptide with therapeutic potential for treating specific types of tumors with low

  14. A Computational Investigation of the Oxidative Deboronation of BoroGlycine, H2N–CH2–B(OH)2, Using H2O and H2O2

    PubMed Central

    Larkin, Joseph D.; Markham, George D.; Milkevitch, Matt; Brooks, Bernard R.; Bock, Charles W.

    2014-01-01

    We report results from a computational investigation of the oxidative deboronation of BoroGlycine, H2N–CH2–B(OH)2, using H2O and H2O2 as the reactive oxygen species (ROS) to yield aminomethanol, H2N–CH2–OH; these results complement our study on the protodeboronation of BoroGlycine to produce methylamine, H2N–CH3 (Larkin et al. J. Phys. Chem. A, 111, 6489–6500, 2007). Second-order Møller-Plesset (MP2) perturbation theory with Dunning-Woon correlation-consistent (cc) basis sets were used for the calculations with comparisons made to results from Density Functional Theory (DFT) at the PBE1PBE/6-311++G(d,p)(cc-pVDZ) levels. The effects of a bulk aqueous environment were also incorporated into the calculations employing PCM and CPCM methodology. Using H2O as the ROS, the reaction H2O + H2N–CH2–B(OH)2H2N–CH2–OH + H–B(OH)2 was calculated to be endothermic, the value of ΔH2980 was +12.0 kcal/mol at the MP2(FC)/cc-pVTZ computational level in vacuo and +13.7 kcal/mol in PCM aqueous media; the corresponding value for the activation barrier, ΔH‡, was +94.3 kcal/mol relative to the separated reactants in vacuo and +89.9 kcal/mol in PCM aqueous media. In contrast, the reaction H2O2 + H2N–CH2–B(OH)2H2N–CH2–OH + B(OH)3 was calculated to be highly exothermic with a ΔH2980 value of −100.9 kcal/mol at the MP2(FC)/cc-pVTZ computational level in vacuo and −99.6 kcal/mol in CPCM aqueous media; the highest-energy transition state for the multi-step process associated with this reaction involved the rearrangement of H2N–CH2–B(OH)(OOH) to H2N–CH2–O–B(OH)2 with a ΔH‡ value of +23.2 kcal/mol in vacuo relative to the separated reactants. These computational results for BoroGlycine are in accord with the experimental observations for the deboronation of the FDA approved anti-cancer drug Bortezomib (Velcade™, PS-341) where it was found to be the principle deactivation pathway. (Labutti et al. Chem. Res. Toxicol., 19, 539–546

  15. Thermal Reactions of H2O2 on Icy Satellites and Small Bodies: Descent with Modification?

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Loeffler, Mark J.

    2012-01-01

    Magnetospheric radiation drives surface and near-surface chemistry on Europa, but below a few meters Europa's chemistry is hidden from direct observation . As an example, surface radiation chemistry converts H2O and SO2 into H2O2 and (SO4)(sup 2-), respectively, and these species will be transported downward for possible thermally-driven reactions. However, while the infrared spectra and radiation chemistry of H2O2-containing ices are well documented, this molecule's thermally-induced solid-phase chemistry has seldom been studied. Here we report new results on thermal reactions in H2O + H2O2 + SO2 ices at 50 - 130 K. As an example of our results, we find that warming H2O + H2O2 + SO2 ices promotes SO2 oxidation to (SO4)(sup 2-). These results have implications for the survival of H2O2 as it descends, with modification, towards a subsurface ocean on Europa. We suspect that such redox chemistry may explain some of the observations related to the presence and distribution of H2O2 across Europa's surface as well as the lack of H2O2 on Ganymede and Callisto.

  16. The catalytic effects of H2CO3, CH3COOH, HCOOH and H2O on the addition reaction of CH2OO + H2O → CH2(OH)OOH

    NASA Astrophysics Data System (ADS)

    Zhang, Tianlei; Lan, Xinguang; Wang, Rui; Roy, Soumendra; Qiao, Zhangyu; Lu, Yousong; Wang, Zhuqing

    2018-07-01

    The addition reaction of CH2OO + H2O → CH2(OH)OOH without and with X (X = H2CO3, CH3COOH and HCOOH) and H2O was studied at CCSD(T)/6-311+ G(3df,2dp)//B3LYP/6-311+G(2d,2p) level of theory. Our results show that X can catalyse CH2OO + H2O → CH2(OH)OOH reaction both by increasing the number of rings, and by adding the size of the ring in which ring enlargement by COOH moiety of X inserting into CH2OO...H2O is favourable one. Water-assisted CH2OO + H2O → CH2(OH)OOH can occur by H2O moiety of (H2O)2 or the whole (H2O)2 forming cyclic structure with CH2OO, where the latter form is more favourable. Because the concentration of H2CO3 is unknown, the influence of CH3COOH, HCOOH and H2O were calculated within 0-30 km altitude of the Earth's atmosphere. The results calculated within 0-5 km altitude show that H2O and HCOOH have obvious effect on enhancing the rate with the enhancement factors are, respectively, 62.47%-77.26% and 0.04%-1.76%. Within 5-30 km altitude, HCOOH has obvious effect on enhancing the title rate with the enhancement factor of 2.69%-98.28%. However, compared with the reaction of CH2OO + HCOOH, the rate of CH2OO...H2O + HCOOH is much slower.

  17. Insights into the distribution of water in a self-humidifying H2/O2 proton-exchange membrane fuel cell using 1H NMR microscopy.

    PubMed

    Feindel, Kirk W; Bergens, Steven H; Wasylishen, Roderick E

    2006-11-01

    Proton ((1)H) NMR microscopy is used to investigate in-situ the distribution of water throughout a self-humidifying proton-exchange membrane fuel cell, PEMFC, operating at ambient temperature and pressure on dry H(2)(g) and O(2)(g). The results provide the first experimental images of the in-plane distribution of water within the PEM of a membrane electrode assembly in an operating fuel cell. The effect of gas flow configuration on the distribution of water in the PEM and cathode flow field is investigated, revealing that the counter-flow configurations yield a more uniform distribution of water throughout the PEM. The maximum power output from the PEMFC, while operating under conditions of constant external load, occurs when H(2)O(l) is first visible in the (1)H NMR image of the cathode flow field, and subsequently declines as this H(2)O(l) continues to accumulate. The (1)H NMR microscopy experiments are in qualitative agreement with predictions from several theoretical modeling studies (e.g., Pasaogullari, U.; Wang, C. Y. J. Electrochem. Soc. 2005, 152, A380-A390), suggesting that combined theoretical and experimental approaches will constitute a powerful tool for PEMFC design, diagnosis, and optimization.

  18. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Ertl, G.; Alefeld, G.; Youdelis, W.; Radd, H.; Oertle, G.; Siegel, Edward

    2011-03-01

    "H2O H2O everywhere; ne'er a drop to drink"[Coleridge(1798)]; now: "H2 H2 everywhere; STILL ne'er a drop to drink": ONLY H2 (or methane CH4) can be FLYING-WATER(F-W) chemical-rain-in-pipelines Hindenberg-effect (H2-UP;H2O-DOWN): {O/H2O}=[16]/[18] 90 % ; O already in air uphill; NO H2O pumping need! In global-warming driven H2O-starved glacial-melting world, rescue is possible ONLY by Siegel [{3rd Intl. Conf. Alt.-Energy }(1980)-vol.5/p.459!!!] Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating-system. Rosenfeld[Science 315,1396(3/9/2007)]-Biello [Sci.Am.(3/9/2007)] crucial geomorph-ology which ONLY maximal-buoyancy H2 can exploit, to again make "Mountains into Fountains", ``upthrust rocks trapping the clouds to precipitate their rain/snow/H2O'': "terraforming"(and ocean-rebasificaton!!!) Siegel proprietary magnetic-hydrogen-valve (MHV) permits H2 flow in already in-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Science 300,1740(2003)] dire warning of global-pandemics (cancers/ blindness/famine) Hydrogen-economy CATASTROPHIC H2 ozone-layer destruction sobering cavat to dangerous H2-automotion-economy panacea hype!!!

  19. Chitosan-phosphotungstic acid complex as membranes for low temperature H2-O2 fuel cell

    NASA Astrophysics Data System (ADS)

    Santamaria, M.; Pecoraro, C. M.; Di Quarto, F.; Bocchetta, P.

    2015-02-01

    Free-standing Chitosan/phosphotungstic acid polyelectrolyte membranes were prepared by an easy and fast in-situ ionotropic gelation process performed at room temperature. Scanning electron microscopy was employed to study their morphological features and their thickness as a function of the chitosan concentration. The membrane was tested as proton conductor in low temperature H2-O2 fuel cell allowing to get peak power densities up to 350 mW cm-2. Electrochemical impedance measurements allowed to estimate a polyelectrolyte conductivity of 18 mS cm-1.

  20. Regulatory mechanism of the flavoprotein Tah18-dependent nitric oxide synthesis and cell death in yeast.

    PubMed

    Yoshikawa, Yuki; Nasuno, Ryo; Kawahara, Nobuhiro; Nishimura, Akira; Watanabe, Daisuke; Takagi, Hiroshi

    2016-07-01

    Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. The regulatory mechanism of NO generation in unicellular eukaryotic yeast cells is poorly understood due to the lack of mammalian and bacterial NO synthase (NOS) orthologues, even though yeast produces NO under oxidative stress conditions. Recently, we reported that the flavoprotein Tah18, which was previously shown to transfer electrons to the iron-sulfur cluster protein Dre2, is involved in NOS-like activity in the yeast Saccharomyces cerevisiae. On the other hand, Tah18 was reported to promote apoptotic cell death after exposure to hydrogen peroxide (H2O2). Here, we showed that NOS-like activity requiring Tah18 induced cell death upon treatment with H2O2. Our experimental results also indicate that Tah18-dependent NO production and cell death are suppressed by enhancement of the interaction between Tah18 and its molecular partner Dre2. Our findings indicate that the Tah18-Dre2 complex regulates cell death as a molecular switch via Tah18-dependent NOS-like activity in response to environmental changes. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Curcumin induces autophagic cell death in Spodoptera frugiperda cells.

    PubMed

    Veeran, Sethuraman; Shu, Benshui; Cui, Gaofeng; Fu, Shengjiao; Zhong, Guohua

    2017-06-01

    The increasing interest in the role of autophagy (type II cell death) in the regulation of insect toxicology has propelled study of investigating autophagic cell death pathways. Turmeric, the rhizome of the herb Curcuma longa (Mañjaḷ in Tamil, India and Jiānghuáng in Chinese) have been traditionally used for the pest control either alone or combination with other botanical pesticides. However, the mechanisms by which Curcuma longa or curcumin exerts cytotoxicity in pests are not well understood. In this study, we investigated the potency of Curcuma longa (curcumin) as a natural pesticide employing Sf9 insect line. Autophagy induction effect of curcumin on Spodoptera frugiperda (Sf9) cells was investigated using various techniques including cell proliferation assay, morphology analysis with inverted phase contrast microscope and Transmission Electron Microscope (TEM) analysis. Autophagy was evaluated using the fluorescent dye monodansylcadaverine (MDC). Cell death measurement was examined using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) within the concentrations of 5-15μg/mL. Curcumin inhibited the growth of the Sf9 cells and induced autophagic cell death in a time and dose dependent manner. Staining the cells with MDC showed the presence of autophagic vacuoles while increased in a dose and time dependent manner. At the ultrastructural level transmission electron microscopy, cells revealed massive autophagy vacuole accumulation and absence of chromatin condensation. Protein expression levels of ATG8-I and ATG8-II, well-established markers of autophagy related protein were elevated in a time dependent manner after curcumin treatment. The present study proves that curcumin induces autophagic cell death in Sf9 insect cell line and this is the first report of cytotoxic effect of curcumin in insect cells and that will be utilized as natural pesticides in future. Copyright © 2017. Published by Elsevier Inc.

  2. Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lingzhi; Qiu, Ping; Chen, Bailing

    Our previous studies suggested that arsenic is able to induce serine 21 phosphorylation of the EZH2 protein through activation of JNK, STAT3, and Akt signaling pathways in the bronchial epithelial cell line, BEAS-2B. In the present report, we further demonstrated that reactive oxygen species (ROS) were involved in the arsenic-induced protein kinase activation that leads to EZH2 phosphorylation. Several lines of evidence supported this notion. First, the pretreatment of the cells with N-acetyl-L-cysteine (NAC), a potent antioxidant, abolishes arsenic-induced EZH2 phosphorylation along with the inhibition of JNK, STAT3, and Akt. Second, H{sub 2}O{sub 2}, the most important form of ROSmore » in the cells in response to extracellular stress signals, can induce phosphorylation of the EZH2 protein and the activation of JNK, STAT3, and Akt. By ectopic expression of the myc-tagged EZH2, we additionally identified direct interaction and phosphorylation of the EZH2 protein by Akt in response to arsenic and H{sub 2}O{sub 2}. Furthermore, both arsenic and H{sub 2}O{sub 2} were able to induce the translocation of ectopically expressed or endogenous EZH2 from nucleus to cytoplasm. In summary, the data presented in this report indicate that oxidative stress due to ROS generation plays an important role in the arsenic-induced EZH2 phosphorylation. - Highlights:: • Arsenic (As{sup 3+}) induces EZH phosphorylation. • JNK, STAT3, and Akt contribute to EZH2 phosphorylation. • Oxidative stress is involved in As{sup 3+}-induced EZH2 phosphorylation. • As{sup 3+} induces direct interaction of Akt and EZH2. • Phosphorylated EZH2 localized in cytoplasm.« less

  3. High-throughput drug screen identifies chelerythrine as a selective inducer of death in a TSC2-null setting.

    PubMed

    Medvetz, Doug; Sun, Yang; Li, Chenggang; Khabibullin, Damir; Balan, Murugabaskar; Parkhitko, Andrey; Priolo, Carmen; Asara, John M; Pal, Soumitro; Yu, Jane; Henske, Elizabeth P

    2015-01-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant syndrome associated with tumors of the brain, heart, kidney, and lung. The TSC protein complex inhibits the mammalian or mechanistic target of rapamycin complex 1 (mTORC1). Inhibitors of mTORC1, including rapamycin, induce a cytostatic response in TSC tumors, resulting in temporary disease stabilization and prompt regrowth when treatment is stopped. The lack of TSC-specific cytotoxic therapies represents an important unmet clinical need. Using a high-throughput chemical screen in TSC2-deficient, patient-derived cells, we identified a series of molecules antagonized by rapamycin and therefore selective for cells with mTORC1 hyperactivity. In particular, the cell-permeable alkaloid chelerythrine induced reactive oxygen species (ROS) and depleted glutathione (GSH) selectively in TSC2-null cells based on metabolic profiling. N-acetylcysteine or GSH cotreatment protected TSC2-null cells from chelerythrine's effects, indicating that chelerythrine-induced cell death is ROS dependent. Induction of heme-oxygenase-1 (HMOX1/HO-1) with hemin also blocked chelerythrine-induced cell death. In vivo, chelerythrine inhibited the growth of TSC2-null xenograft tumors with no evidence of systemic toxicity with daily treatment over an extended period of time. This study reports the results of a bioactive compound screen and the identification of a potential lead candidate that acts via a novel oxidative stress-dependent mechanism to selectively induce necroptosis in TSC2-deficient tumors. This study demonstrates that TSC2-deficient tumor cells are hypersensitive to oxidative stress-dependent cell death, and provide critical proof of concept that TSC2-deficient cells can be therapeutically targeted without the use of a rapalog to induce a cell death response. ©2014 American Association for Cancer Research.

  4. Ni(ii)/Cu(ii)/Zn(ii) 5,5-diethylbarbiturate complexes with 1,10-phenanthroline and 2,2'-dipyridylamine: synthesis, structures, DNA/BSA binding, nuclease activity, molecular docking, cellular uptake, cytotoxicity and the mode of cell death.

    PubMed

    Yilmaz, Veysel T; Icsel, Ceyda; Suyunova, Feruza; Aygun, Muhittin; Aztopal, Nazlihan; Ulukaya, Engin

    2016-06-21

    New 5,5-diethylbarbiturate (barb) complexes of Ni(ii), Cu(ii) and Zn(ii) with 1,10-phenanthroline (phen) and 2,2'-dipyridylamine (dpya), namely [Ni(phen-κN,N')3]Cl(barb)·7H2O (), [Cu(barb-κN)(barb-κ(2)N,O)(phen-κN,N')]·H2O (), [Cu(barb-κN)2(phen-κN,N')] (), [Zn(barb-κN)2(phen-κN,N')]·H2O (), [Ni(barb-κ(2)N,O)(dpya-κN,N')2]Cl·2H2O (), [Cu(barb-κ(2)N,O)2(dpya-κN,N')]·2H2O () and [Zn(barb-κN)2(dpya-κN,N')] (), were synthesized and characterized by elemental analysis, UV-vis, FT-IR and ESI-MS. The structures of the complexes were determined by X-ray crystallography. Notably, and were fluorescent in MeOH : H2O at rt. The interaction of the complexes with fish sperm (FS) DNA and bovine serum albumin (BSA) was investigated in detail by various techniques. The complexes exhibited groove binding along with a partial intercalative interaction with DNA, while the hydrogen bonding and hydrophobic interactions played a major role in binding to BSA. It is noteworthy that exhibited the highest affinity towards DNA and BSA. Enzyme inhibition assay showed that show a preference for both A/T and G/C rich sequences in pUC19 DNA, while and display a binding specificity to the G/C and A/T rich regions, respectively. These findings were further supported by molecular docking. The cellular uptake studies suggested that was deposited mostly in the membrane fraction of the cells. Among the present complexes, exhibited a very strong cytotoxic effect on A549, MCF-7, HT-29 and DU-145 cancer cells, being more potent than cisplatin. Moreover, induces cell death through the apoptotic mode obtained by flow cytometry.

  5. Esculetin Protects Human Retinal Pigment Epithelial Cells from Lipopolysaccharide-induced Inflammation and Cell Death.

    PubMed

    Ozal, S Altan; Turkekul, Kader; Gurlu, Vuslat; Guclu, Hande; Erdogan, Suat

    2018-05-26

    Age-related macular degeneration (AMD) is the most common cause of visual loss. The dry AMD is characterized by retinal pigment epithelium (RPE) death and changes in AMD lead to severe loss of vision. Coumarin-derived esculetin has a number of therapeutic and pharmacological effects such as anti-inflammatory and antioxidant with various mechanisms. The purpose of this study was to investigate the effects of esculetin treatment on lipopolysaccharide (LPS)-induced inflammation, oxidative stress, and cell survival. Human RPE cells (ARPE-19) were incubated for 24-72 h with 5 μg/ml LPS to induce inflammation and oxidative stress. Esculetin (5 μM) was used to protect the cells from LPS-induced damage. The cell viability was evaluated by quantitative 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide test. Interleukin 6 (IL-6), IL-12, and vascular endothelial growth factor (VEGF) levels were determined by enzyme-linked immunosorbent assay (ELISA). IL-1β, tumor necrosis factor receptor (TNFR), TNF-related apoptosis-inducing ligand (TRAIL), catalase, glutathione peroxidase (GPx), superoxide dismutase 1 (CuZnSOD) and SOD2 (MnSOD) mRNA expressions were analyzed by RT-quantitative polymerase chain reaction. Apoptosis was monitored by cell-based cytometer. NF-kappa B (NF-κB) p65/RelA levels were determined by ELISA, and NF-κB protein expression and extracellular signal-regulated kinase (ERK1/2) phosphorylation were evaluated by Western blot analysis. Esculetin treatment significantly suppressed LPS-induced cell death mediated by apoptosis and necrosis in a concentration-dependent manner. While LPS caused significant inflammation with cytokine increase in cells, esculetin reduced the expression of LPS-induced cytokines, VEGF, TNFR, and TRAIL. Furthermore, exposure to LPS increased the expression of GPx and mitochondrial MnSOD, leading to oxidative stress in the cells. Esculetin treatment attenuated phosphorylation of ERK1/2 and NF-κB expression mediated by LPS

  6. FoxO1 regulates apoptosis induced by asbestos in the MT-2 human T-cell line.

    PubMed

    Matsuzaki, Hidenori; Lee, Suni; Maeda, Megumi; Kumagai-Takei, Naoko; Nishimura, Yasumitsu; Otsuki, Takemi

    2016-09-01

    Asbestos is known to cause malignant mesothelioma and lung cancer. Recent studies implicate tumor immunity in the development of various tumors, including malignant mesothelioma. In order to establish an in vitro T-cell model to clarify the effects of long-term exposure of asbestos on tumor immunity, in this study, human T-cell line MT-2 cells were cultured with asbestos for longer than 8 months and the resultant cells (MT-2Rst) were assessed for the expression of forkhead transcription factor FoxO1. Gene expression analysis revealed that the amount of FoxO1 mRNA decreased after long-term exposure of the MT-2 cells to asbestos. In accordance with this reduction in FoxO1, pro-apoptotic Foxo1 target genes Puma, Fas ligand and Bim were also seen to be down-regulated in MT-2Rst cells. Furthermore, shRNA-mediated knock-down of FoxO1 reduced the number of apoptotic parental MT-2 cells after treatment with asbestos. On the other hand, over-expression of FoxO1 did not affect asbestos-induced apoptosis in MT-2Rst cells. These results suggested that FoxO1 played an important role in regulating asbestos-induced apoptosis and confirmed the presence of multiple pathways regulating resistance to asbestos in MT-2Rst cells.

  7. Protection against hydrogen peroxide cytotoxicity in rat-1 fibroblasts provided by the oncoprotein Bcl-2: maintenance of calcium homoeostasis is secondary to the effect of Bcl-2 on cellular glutathione.

    PubMed Central

    Rimpler, M M; Rauen, U; Schmidt, T; Möröy, T; de Groot, H

    1999-01-01

    The oncoprotein Bcl-2 protects cells against apoptosis, but the exact molecular mechanism that underlies this function has not yet been identified. Studying H2O2-induced cell injury in Rat-1 fibroblast cells, we observed that Bcl-2 had a protective effect against the increase in cytosolic calcium concentration and subsequent cell death. Furthermore, overexpression of Bcl-2 resulted in an alteration of cellular glutathione status: the total amount of cellular glutathione was increased by about 60% and the redox potential of the cellular glutathione pool was maintained in a more reduced state during H2O2 exposure compared with non-Bcl-2-expressing controls. In our cytotoxicity model, disruption of cellular glutathione homoeostasis closely correlated with the pathological elevation of cytosolic calcium concentration. Stabilization of the glutathione pool by Bcl-2, N-acetylcysteine or glucose delayed the cytosolic calcium increase and subsequent cell death, whereas depletion of glutathione by dl-buthionine-(S, R)-sulphoximine, sensitized Bcl-2-transfected cells towards cytosolic calcium increase and cell death. We therefore suggest that the protection exerted by Bcl-2 against H2O2-induced cytosolic calcium elevation and subsequent cell death is secondary to its effect on the cellular glutathione metabolism. PMID:10229685

  8. 1-Nitropyrene (1-NP) induces apoptosis and apparently a non-apoptotic programmed cell death (paraptosis) in Hepa1c1c7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asare, Nana; Landvik, Nina E.; Lagadic-Gossmann, Dominique

    2008-07-15

    Mechanistic studies of nitro-PAHs (polycyclic aromatic hydrocarbons) of interest might help elucidate which chemical characteristics are most important in eliciting toxic effects. 1-Nitropyrene (1-NP) is the predominant nitrated PAH emitted in diesel exhaust. 1-NP-exposed Hepa1c1c7 cells exhibited marked changes in cellular morphology, decreased proliferation and different forms of cell death. A dramatic increase in cytoplasmic vacuolization was observed already after 6 h of exposure and the cells started to round up at 12 h. The rate of cell proliferation was markedly reduced at 24 h and apoptotic as well as propidium iodide (PI)-positive cells appeared. Electron microscopic examination revealed thatmore » the vacuolization was partly due to mitochondria swelling. The caspase inhibitor Z-VAD-FMK inhibited only the apoptotic cell death and Nec-1 (an inhibitor of necroptosis) exhibited no inhibitory effects on either cell death or vacuolization. In contrast, cycloheximide markedly reduced both the number of apoptotic and PI-positive cells as well as the cytoplasmic vacuolization, suggesting that 1-NP induced paraptotic cell death. All the MAPKs; ERK1/2, p38 and JNK, appear to be involved in the death process since marked activation was observed upon 1-NP exposure, and their inhibitors partly reduced the induced cell death. The ERK1/2 inhibitor PD 98057 completely blocked the induced vacuolization, whereas the other MAPKs inhibitors only had minor effects on this process. These findings suggest that 1-NP may cause apoptosis and paraptosis. In contrast, the corresponding amine (1-aminopyrene) elicited only minor apoptotic and necrotic cell death, and cells with characteristics typical of paraptosis were absent.« less

  9. Understanding the role of the catalase/peroxide genes in H2O2 resistance of E. coli serotype O157:H7 biofilms

    USDA-ARS?s Scientific Manuscript database

    Introduction: Escherichia coli serotype O157:H7 defenses against H2O2 include the peroxiredoxin AhpC and three catalases: KatG (catalase-peroxidase), KatE (catalase), and the plasmid-encoded KatP (catalase/peroxidase). AhpC, KatG, and KatP are induced by OxyR in exponential phase, while KatE is indu...

  10. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-14

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  11. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-01

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  12. Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model.

    PubMed

    Komulainen, Tuomas; Lodge, Tiffany; Hinttala, Reetta; Bolszak, Maija; Pietilä, Mika; Koivunen, Peppi; Hakkola, Jukka; Poulton, Joanna; Morten, Karl J; Uusimaa, Johanna

    2015-05-04

    Sodium valproate (VPA) is a potentially hepatotoxic antiepileptic drug. Risk of VPA-induced hepatotoxicity is increased in patients with mitochondrial diseases and especially in patients with POLG1 gene mutations. We used a HepG2 cell in vitro model to investigate the effect of VPA on mitochondrial activity. Cells were incubated in glucose medium and mitochondrial respiration-inducing medium supplemented with galactose and pyruvate. VPA treatments were carried out at concentrations of 0-2.0mM for 24-72 h. In both media, VPA caused decrease in oxygen consumption rates and mitochondrial membrane potential. VPA exposure led to depleted ATP levels in HepG2 cells incubated in galactose medium suggesting dysfunction in mitochondrial ATP production. In addition, VPA exposure for 72 h increased levels of mitochondrial reactive oxygen species (ROS), but adversely decreased protein levels of mitochondrial superoxide dismutase SOD2, suggesting oxidative stress caused by impaired elimination of mitochondrial ROS and a novel pathomechanism related to VPA toxicity. Increased cell death and decrease in cell number was detected under both metabolic conditions. However, immunoblotting did not show any changes in the protein levels of the catalytic subunit A of mitochondrial DNA polymerase γ, the mitochondrial respiratory chain complexes I, II and IV, ATP synthase, E3 subunit dihydrolipoyl dehydrogenase of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and glutathione peroxidase. Our results show that VPA inhibits mitochondrial respiration and leads to mitochondrial dysfunction, oxidative stress and increased cell death, thus suggesting an essential role of mitochondria in VPA-induced hepatotoxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA{sub 2} activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takatani-Nakase, Tomoka, E-mail: nakase@mukogawa-u.ac.jp; Takahashi, Koichi, E-mail: koichi@mukogawa-u.ac.jp

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA{sub 2}, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death.more » - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA{sub 2} activity, leading to avoidance of non-apoptotic cell death.« less

  14. Two mixed-ligand lanthanide–hydrazone complexes: [Pr(NCS)3(pbh)2H2O and [Nd(NCS)(NO3)(pbh)2(H2O)]NO3·2.33H2O [pbh is N′-(pyridin-2-ylmethylidene)benzo­hydrazide, C13H11N3O

    PubMed Central

    Paschalidis, Damianos G.; Harrison, William T. A.

    2016-01-01

    The gel-mediated syntheses and crystal structures of [N′-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O]tris(thiocyanato-κN)praseodymium(III) mono­hydrate, [Pr(NCS)3(C13H11N3O)2H2O, (I), and aqua(nitrato-κ2 O,O′)[N′-(pyri­din-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O](thiocyanato-κN)neo­dym­ium(III) nitrate 2.33-hydrate, [Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2O, (II), are reported. The Pr3+ ion in (I) is coordinated by two N,N,O-tridentate N′-(pyridin-2-ylmethylidene)benzohydrazide (pbh) ligands and three N-bonded thio­cyanate ions to generate an irregular PrN7O2 coordination polyhedron. The Nd3+ ion in (II) is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thio­cyanate ion, a bidentate nitrate ion and a water mol­ecule to generate a distorted NdN5O5 bicapped square anti­prism. The crystal structures of (I) and (II) feature numerous hydrogen bonds, which lead to the formation of three-dimensional networks in each case. PMID:26958385

  15. A robust one-compartment fuel cell with a polynuclear cyanide complex as a cathode for utilizing H2O2 as a sustainable fuel at ambient conditions.

    PubMed

    Yamada, Yusuke; Yoneda, Masaki; Fukuzumi, Shunichi

    2013-08-26

    A robust one-compartment H2O2 fuel cell, which operates without membranes at room temperature, has been constructed by using a series of polynuclear cyanide complexes that contain Fe, Co, Mn, and Cr as cathodes, in sharp contrast to conventional H2 and MeOH fuel cells, which require membranes and high temperatures. A high open-circuit potential of 0.68 V was achieved by using Fe3[{Co(III)(CN)6}2] on a carbon cloth as the cathode and a Ni mesh as the anode of a H2O2 fuel cell by using an aqueous solution of H2O2 (0.30  M, pH 3) with a maximum power density of 0.45 mW cm(-2). The open-circuit potential and maximum power density of the H2O2 fuel cell were further increased to 0.78 V and 1.2 mW cm(-2), respectively, by operation under these conditions at pH 1. No catalytic activity of Co3[{Co(III)(CN)6}2] and Co3[{Fe(III)(CN)6}2] towards H2O2 reduction suggests that the N-bound Fe ions are active species for H2O2 reduction. H2O2 fuel cells that used Fe3[{Mn(III)(CN)6}2] and Fe3[{Cr(III)(CN)6}2] as the cathode exhibited lower performance compared with that using Fe3[{Co(III)(CN)6}2] as a cathode, because ligand isomerization of Fe3[{M(III)(CN)6}2] into (FeM2)[{Fe(II)(CN)6}2] (M = Cr or Mn) occurred to form inactive Fe-C bonds under ambient conditions, whereas no ligand isomerization of Fe3[{Co(III)(CN)6}2] occurred under the same reaction conditions. The importance of stable Fe(2+)-N bonds was further indicated by the high performance of the H2O2 fuel cells with Fe3[{Ir(III)(CN)6}2] and Fe3[{Rh(III)(CN)6}2], which also contained stable Fe(2+)-N bonds. The stable Fe(2+)-N bonds in Fe3[{Co(III)(CN)6}2], which lead to high activity for the electrocatalytic reduction of H2O2, allow Fe3[{Co(III)(CN)6}2] to act as a superior cathode in one-compartment H2O2 fuel cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Role of calreticulin in the sensitivity of myocardiac H9c2 cells to oxidative stress caused by hydrogen peroxide.

    PubMed

    Ihara, Yoshito; Urata, Yoshishige; Goto, Shinji; Kondo, Takahito

    2006-01-01

    Calreticulin (CRT), a Ca2+-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac apoptosis in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In the present study, the effect of overexpression of CRT on susceptibility to apoptosis under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. Under oxidative stress due to H2O2, the CRT-overexpressing cells were highly susceptible to apoptosis compared with controls. In the overexpressing cells, the levels of cytoplasmic free Ca2+ ([Ca2+]i) were significantly increased by H2O2, whereas in controls, only a slight increase was observed. The H2O2-induced apoptosis was enhanced by the increase in [Ca2+]i caused by thapsigargin in control cells but was suppressed by BAPTA-AM, a cell-permeable Ca2+ chelator in the CRT-overexpressing cells, indicating the importance of the level of [Ca2+]i in the sensitivity to H2O2-induced apoptosis. Suppression of CRT by the introduction of the antisense cDNA of CRT enhanced cytoprotection against oxidative stress compared with controls. Furthermore, we found that the levels of activity of calpain and caspase-12 were elevated through the regulation of [Ca2+]i in the CRT-overexpressing cells treated with H2O2 compared with controls. Thus we conclude that the level of CRT regulates the sensitivity to apoptosis under oxidative stress due to H2O2 through a change in Ca2+ homeostasis and the regulation of the Ca2+-calpain-caspase-12 pathway in myocardiac cells.

  17. Omeprazole induces heme oxygenase-1 in fetal human pulmonary microvascular endothelial cells via hydrogen peroxide-independent Nrf2 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Ananddeep; Zhang, Shaojie; Shrestha, Amrit

    Omeprazole (OM) is an aryl hydrocarbon receptor (AhR) agonist and a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Recently, we showed that OM induces NAD (P) H quinone oxidoreductase-1 (NQO1) via nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent mechanism. Heme oxygenase-1 (HO-1) is another cytoprotective and antioxidant enzyme that is regulated by Nrf2. Whether OM induces HO-1 in fetal human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce HO-1 expression via Nrf2 in HPMEC. OM induced HO-1 mRNA and protein expression in a dose-dependent manner.more » siRNA-mediated knockdown of AhR failed to abrogate, whereas knockdown of Nrf2 abrogated HO-1 induction by OM. To identify the underlying molecular mechanisms, we determined the effects of OM on cellular hydrogen peroxide (H{sub 2}O{sub 2}) levels since oxidative stress mediated by the latter is known to activate Nrf2. Interestingly, the concentration at which OM induced HO-1 also increased H{sub 2}O{sub 2} levels. Furthermore, H{sub 2}O{sub 2} independently augmented HO-1 expression. Although N-acetyl cysteine (NAC) significantly decreased H{sub 2}O{sub 2} levels in OM-treated cells, we observed that OM further increased HO-1 mRNA and protein expression in NAC-pretreated compared to vehicle-pretreated cells, suggesting that OM induces HO-1 via H{sub 2}O{sub 2}-independent mechanisms. In conclusion, we provide evidence that OM transcriptionally induces HO-1 via AhR - and H{sub 2}O{sub 2} - independent, but Nrf2 - dependent mechanisms. These results have important implications for human disorders where Nrf2 and HO-1 play a beneficial role. - Highlights: • Omeprazole induces HO-1 in human fetal lung cells. • AhR deficiency fails to abrogate omeprazole-mediated induction of HO-1. • Nrf2 knockdown abrogates omeprazole-mediated HO-1 induction in human lung cells. • Hydrogen peroxide depletion

  18. Pim-2 protects H9c2 cardiomyocytes from hypoxia/reoxygenation-induced apoptosis via downregulation of Bim expression.

    PubMed

    Xu, Yan; Xing, Yawei; Xu, Yanjie; Huang, Chahua; Bao, Huihui; Hong, Kui; Cheng, Xiaoshu

    2016-12-01

    We know that silencing Bim, a pro-apoptosis protein, significantly attenuates glucose and oxygen-deprived induced apoptosis in cardiomyocytes. However, the mechanisms underlying the regulation of the Bim activation in the heart have remained unknown. Pim-2 is one of three Pim serine/threonine kinase family members thought to be involved in cell survival and proliferation. H9c2 cardiomyocytes were subjected to a hypoxia/reoxygenation (H/R) condition in vitro, mimicking ischemic/reperfusion injury in vivo. H/R augmented the expression of Bim, Cyt C, and Pim-2 and induced H9c2 cell apoptosis. Overexpression of Pim-2 attenuated apoptosis which induced by H/R in H9c2 cells, via downregulation of Bim and Cyt C expression. Silencing of Pim-2 promoted H/R-induced apoptosis via upregulation of Bim and Cyt C expression. Co-IP revealed the interaction between Pim-2 and Bim protein, with Bim Ser 65 phosphorylated by Pim-2. Furthermore, blocking proteasome activity by MG132 prevented Bim degradation, and Bim S65A mutation could reverse the anti-apoptotic role of Pim-2 which induced by H/R. These data demonstrated that Pim-2 is a novel Bim-interacting protein, which negatively regulates Bim degradation and protects H9c2 cardiomyocytes from H/R-induced apoptosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Sustaining 1,2-Dichloroethane Degradation in Nanoscale Zero-Valent Iron induced Fenton system by using Sequential H2O2 Addition at Natural pH

    NASA Astrophysics Data System (ADS)

    Phenrat, T.; Le, T. S. T.

    2017-12-01

    1,2-Dichloroethane (1,2-DCA) is a prevalent subsurface contaminant found in groundwater and soil around the world. Nanoscale zero-valent iron (NZVI) is a promising in situ remediation agent for chlorinated organics. Nevertheless, 1,2-DCA is recalcitrant to reductive dechlorination using NZVI. Chemical oxidation using Fenton's reaction with conventional Fe2+ is a valid option for 1,2-DCA remediation with a major technical challenge, i.e. aquifer acidification is needed to maintain Fe2+ for catalytic reaction. In this work, NZVI Fenton's process at neutral pH was applied to degrade 1,2-DCA at high concentration (2,000 mg/L) representing dissolved 1,2-DCA concentration close to non-aqueous phase liquid source zone. Instead of using acidification to maintain dissolved Fe2+ concentration, NZVI Fenton's process is self-catalytic based on oxidative dissolution of NZVI in the present of H2O2. Interfacial H+ is produced at NZVI surface to provide appropriate local pH which continuously releases Fe2+ for Fenton's reaction. Approximately, 87% of 1,2-DCA was degraded at neutral pH with the pseudo first-order rate constant of 0.98 hour-1 using 10 g/L of NZVI and 200 mM of H2O2. However, the reaction was prohibited quickly within 3 hours presumably due to the rapid depletion of H2O2. The application of sequential H2O2 addition provided a better approach to prevent rapid inhibition via controlling the H2O2 concentration in the system to be sufficient but not excess, thus resulting in the higher degradation efficiency (the pseudo first-order rate constant of 0.49 hour-1 and 99 % degradation in 8 hours). Using NZVI with sequential H2O2 addition was also successful in degrading 1,2-DCA sorbed on to soil, yielding 99% removal of 1,2-DCA within 16 hours at the rate constant of 0.23 hour-1, around two times slower than in the system without soil presumably due to rate-limited 1,2-DCA desorption from soil. Mechanistic understanding of how sequential addition of H2O2, in comparison to

  20. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    PubMed

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  1. Neuroprotective Properties of Compounds Extracted from Dianthus superbus L. against Glutamate-induced Cell Death in HT22 Cells

    PubMed Central

    Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2016-01-01

    Background: Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. Objective: In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. Materials and Methods: New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. Conclusion: In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. SUMMARY D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3

  2. Photoionization-induced water migration in the amide group of trans-acetanilide-(H2O)1 in the gas phase.

    PubMed

    Sakota, Kenji; Harada, Satoshi; Shimazaki, Yuiga; Sekiya, Hiroshi

    2011-02-10

    IR-dip spectra of trans-acetanilide-water 1:1 cluster, AA-(H(2)O)(1), have been measured for the S(0) and D(0) state in the gas phase. Two structural isomers, where a water molecule binds to the NH group or the CO group of AA, AA(NH)-(H(2)O)(1) and AA(CO)-(H(2)O)(1), are identified in the S(0) state. One-color resonance-enhanced two-photon ionization, (1 + 1) RE2PI, of AA(NH)-(H(2)O)(1) via the S(1)-S(0) origin generates [AA(NH)-(H(2)O)(1)](+) in the D(0) state, however, photoionization of [AA(CO)-(H(2)O)(1)] does not produce [AA(CO)-(H(2)O)(1)](+), leading to [AA(NH)-(H(2)O)(1)](+). This observation explicitly indicates that the water molecule in [AA-(H(2)O)(1)](+) migrates from the CO group to the NH group in the D(0) state. The reorganization of the charge distribution from the neutral to the D(0) state of AA induces the repulsive force between the water molecule and the CO group of AA(+), which is the trigger of the water migration in [AA-(H(2)O)(1)](+).

  3. Resveratrol prevents doxorubicin-induced cardiotoxicity in H9c2 cells through the inhibition of endoplasmic reticulum stress and the activation of the Sirt1 pathway.

    PubMed

    Lou, Yu; Wang, Zhen; Xu, Yi; Zhou, Ping; Cao, Junxian; Li, Yuanshi; Chen, Yeping; Sun, Junfeng; Fu, Lu

    2015-09-01

    Treatment with doxorubicin (DOX) is one of the major causes of chemotherapy-induced cardiotoxicity and is therefore, the principal limiting factor in the effectiveness of chemotherapy for cancer patients. DOX‑induced heart failure is thought to result from endoplasmic reticulum (ER) stress and cardiomyocyte apoptosis. Resveratrol (RV), a polyphenol antioxidant found in red wine, has been shown to play a cardioprotective role. The aim of the present study was to examine the effects of RV on DOX‑induced cardiotoxicity in H9c2 cells. We hypothesized that RV would protect H9c2 cells against DOX‑induced ER stress and subsequent cell death through the activation of the Sirt1 pathway. Our results demonstrated that the decrease observed in the viability of the H9c2 cells following exposure to DOX was accompanied by a significant increase in the expression of the ER stress‑related proteins, glucose‑regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP). However, we found that RV downregulated the expression of ER stress marker protein in the presence of DOX and restored the viability of the H9c2 cells. Exposure to RV or DOX alone only slightly increased the protein expression of Sirt1, whereas a significant increase in Sirt1 protein levels was observed in the cells treated with both RV and DOX. The Sirt1 inhibitor, nicotinamide (NIC), partially neutralized the effects of RV on the expression of Sirt1 in the DOX‑treated cells and completely abolished the effects of RV on the expression of GRP78 and CHOP. The findings of our study suggest that RV protects H9c2 cells against DOX‑induced ER stress through ER stabilization, and more specifically through the activation of the Sirt1 pathway, thereby leading to cardiac cell survival.

  4. Sulforaphane reduction of testicular apoptotic cell death in diabetic mice is associated with the upregulation of Nrf2 expression and function.

    PubMed

    Wang, Yonggang; Zhang, Zhiguo; Guo, Weiying; Sun, Weixia; Miao, Xiao; Wu, Hao; Cong, Xianling; Wintergerst, Kupper A; Kong, Xiangbo; Cai, Lu

    2014-07-01

    Diabetes-induced testicular cell death is due predominantly to oxidative stress. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an important transcription factor in controlling the antioxidative system and is inducible by sulforaphane (SFN). To test whether SFN prevents diabetes-induced testicular cell death, an insulin-defective stage of type 2 diabetes (IDS-T2DM) was induced in mice. This was accomplished by feeding them a high-fat diet (HFD) for 3 mo to induce insulin resistance and then giving one intraperitoneal injection of streptozotocin to induce hyperglycemia while age-matched control mice were fed a normal diet (ND). IDS-T2DM and ND-fed control mice were then further subdivided into those with or without 4-mo SFN treatment. IDS-T2DM induced significant increases in testicular cell death presumably through receptor and mitochondrial pathways, shown by increased ratio of Bax/Bcl2 expression and cleavage of caspase-3 and caspase-8 without significant change of endoplasmic reticulum stress. Diabetes also significantly increased testicular oxidative damage and inflammation. All of these diabetic effects were significantly prevented by SFN treatment with upregulated Nrf2 expression. These results suggest that IDS-T2DM induces testicular cell death presumably through caspase-8 activation and mitochondria-mediated cell death pathways and also by significantly downregulating testicular Nrf2 expression and function. SFN upregulates testicular Nrf2 expression and its target antioxidant expression, which was associated with significant protection of the testis from IDS-T2DM-induced germ cell death. Copyright © 2014 the American Physiological Society.

  5. TES/Aura L2 Water Vapor (H2O) Limb V6 (TL2H2OL)

    Atmospheric Science Data Center

    2018-03-01

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access: OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  6. Suppressors of Superoxide-H2O2 Production at Site IQ of Mitochondrial Complex I Protect against Stem Cell Hyperplasia and Ischemia-Reperfusion Injury.

    PubMed

    Brand, Martin D; Goncalves, Renata L S; Orr, Adam L; Vargas, Leonardo; Gerencser, Akos A; Borch Jensen, Martin; Wang, Yves T; Melov, Simon; Turk, Carolina N; Matzen, Jason T; Dardov, Victoria J; Petrassi, H Michael; Meeusen, Shelly L; Perevoshchikova, Irina V; Jasper, Heinrich; Brookes, Paul S; Ainscow, Edward K

    2016-10-11

    Using high-throughput screening we identified small molecules that suppress superoxide and/or H 2 O 2 production during reverse electron transport through mitochondrial respiratory complex I (site I Q ) without affecting oxidative phosphorylation (suppressors of site I Q electron leak, "S1QELs"). S1QELs diminished endogenous oxidative damage in primary astrocytes cultured at ambient or low oxygen tension, showing that site I Q is a normal contributor to mitochondrial superoxide-H 2 O 2 production in cells. They diminished stem cell hyperplasia in Drosophila intestine in vivo and caspase activation in a cardiomyocyte cell model driven by endoplasmic reticulum stress, showing that superoxide-H 2 O 2 production by site I Q  is involved in cellular stress signaling. They protected against ischemia-reperfusion injury in perfused mouse heart, showing directly that superoxide-H 2 O 2 production by site I Q is a major contributor to this pathology. S1QELs are tools for assessing the contribution of site I Q to cell physiology and pathology and have great potential as therapeutic leads. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Compartmentalized oxidative stress in dopaminergic cell death induced by pesticides and complex I inhibitors: Distinct roles of superoxide anion and superoxide dismutases

    PubMed Central

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Pickett, Chillian; Sumin, Li; Jones, Jocelyn; Chen, Han; Webb, Brian; Choi, Jae; Zhou, You; Zimmerman, Matthew C.; Franco, Rodrigo

    2013-01-01

    The loss of dopaminergic neurons induced by the parkinsonian toxins paraquat, rotenone and 1-methyl-4-phenylpyridinium (MPP+) is associated with oxidative stress. However, controversial reports exist regarding the source/compartmentalization of reactive oxygen species (ROS) generation and its exact role in cell death. We aimed to determine in detail the role of superoxide anion (O2•−), oxidative stress and their subcellular compartmentalization in dopaminergic cell death induced by parkinsonian toxins. Oxidative stress and ROS formation was determined in the cytosol, intermembrane (IMS) and mitochondrial matrix compartments, using dihydroethidine derivatives, the redox sensor roGFP, as well as electron paramagnetic resonance spectroscopy. Paraquat induced an increase in ROS and oxidative stress in both the cytosol and mitochondrial matrix prior to cell death. MPP+ and rotenone primarily induced an increase in ROS and oxidative stress in the mitochondrial matrix. No oxidative stress was detected at the level of the IMS. In contrast to previous studies, overexpression of manganese superoxide dismutase (MnSOD) or copper/zinc SOD (CuZnSOD) had no effect on ROS steady state levels, lipid peroxidation, loss of mitochondrial membrane potential (ΔΨm) and dopaminergic cell death induced by MPP+ or rotenone. In contrast, paraquat-induced oxidative stress and cell death were selectively reduced by MnSOD overexpression, but not by CuZnSOD or manganese-porphyrins. However, MnSOD also failed to prevent ΔΨm loss. Finally, paraquat, but not MPP+ or rotenone, induced the transcriptional activation the redox-sensitive antioxidant response elements (ARE) and nuclear factor kappa-B (NF-κB). These results demonstrate a selective role of mitochondrial O2•− in dopaminergic cell death induced by paraquat, and show that toxicity induced by the complex I inhibitors rotenone and MPP+ does not depend directly on mitochondrial O2•− formation. PMID:23602909

  8. Candidate Water Vapor Lines to Locate the H2O Snowline through High-dispersion Spectroscopic Observations. III. Submillimeter H2 16O and H2 18O Lines

    NASA Astrophysics Data System (ADS)

    Notsu, Shota; Nomura, Hideko; Walsh, Catherine; Honda, Mitsuhiko; Hirota, Tomoya; Akiyama, Eiji; Millar, T. J.

    2018-03-01

    In this paper, we extend the results presented in our former papers on using ortho-{{{H}}}2{}16{{O}} line profiles to constrain the location of the H2O snowline in T Tauri and Herbig Ae disks, to include submillimeter para-{{{H}}}2{}16{{O}} and ortho- and para-{{{H}}}2{}18{{O}} lines. Since the number densities of the ortho- and para-{{{H}}}2{}18{{O}} molecules are about 560 times smaller than their 16O analogs, they trace deeper into the disk than the ortho-{{{H}}}2{}16{{O}} lines (down to z = 0, i.e., the midplane). Thus these {{{H}}}2{}18{{O}} lines are potentially better probes of the position of the H2O snowline at the disk midplane, depending on the dust optical depth. The values of the Einstein A coefficients of submillimeter candidate water lines tend to be lower (typically <10‑4 s‑1) than infrared candidate water lines. Thus in the submillimeter candidate water line cases, the local intensity from the outer optically thin region in the disk is around 104 times smaller than that in the infrared candidate water line cases. Therefore, in the submillimeter lines, especially {{{H}}}2{}18{{O}} and para-{{{H}}}2{}16{{O}} lines with relatively lower upper state energies (∼a few 100 K) can also locate the position of the H2O snowline. We also investigate the possibility of future observations with ALMA to identify the position of the water snowline. There are several candidate water lines that trace the hot water gas inside the H2O snowline in ALMA Bands 5–10.

  9. Tailoring of TiO2 films by H2SO4 treatment and UV irradiation to improve anticoagulant ability and endothelial cell compatibility.

    PubMed

    Liao, Yuzhen; Li, Linhua; Chen, Jiang; Yang, Ping; Zhao, Ansha; Sun, Hong; Huang, Nan

    2017-07-01

    Surfaces with dual functions that simultaneously exhibit good anticoagulant ability and endothelial cell (EC) compatibility are desirable for blood contact materials. However, these dual functions have rarely been achieved by inorganic materials. In this study, titanium dioxide (TiO 2 ) films were treated by sulphuric acid (H 2 SO 4 ) and ultraviolet (UV) irradiation successively (TiO 2 H 2 SO 4 -UV), resulting in good anticoagulant ability and EC compatibility simultaneously. We found that UV irradiation improved the anticoagulant ability of TiO 2 films significantly while enhancing EC compatibility, though not significantly. The enhanced anticoagulant ability could be related to the oxidation of surface-adsorbed hydrocarbons and increased hydrophilicity. The H 2 SO 4 treatment improved the anticoagulant ability of TiO 2 films slightly, while UV irradiation improved the anticoagulant ability strongly. The enhanced EC compatibility could be related to the increased surface roughness and positive charges on the surface of the TiO 2 films. Furthermore, the time-dependent degradation of the enhanced EC compatibility and anticoagulant ability of TiO 2 H 2 SO 4 -UV was observed. In summary, TiO 2 H 2 SO 4 -UV expressed both excellent anticoagulant ability and good EC compatibility at the same time, which could be desirable for blood contact materials. However, the compatibility of TiO 2 H 2 SO 4 -UV with smooth muscle cells (SMCs) and macrophages was also improved. More effort is still needed to selectively improve EC compatibility on TiO 2 films for better re-endothelialization. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The regulated in development and DNA damage response 2 (REDD2) gene mediates human monocyte cell death through a reduction in thioredoxin-1 expression.

    PubMed

    Imen, Jguirim-Souissi; Billiet, Ludivine; Cuaz-Pérolin, Clarisse; Michaud, Nadège; Rouis, Mustapha

    2009-05-15

    In a previous study, we identified the regulated in development and DNA damage response 2 (REDD2) gene as a highly expressed gene in human atherosclerotic lesions in comparison to normal artery, as well as in cultured human macrophages, and showed its implication in oxidized low-density lipoprotein (LDL)-induced macrophage death sensitivity. In this article, we attempt to identify the mechanism by which REDD2 induces such a phenomenon. Transient transfection of U-937 monocytic cells with a pCI.CMV.REDD2 expression vector increased by approximately twofold the mRNA levels of REDD2 in comparison to control cells transfected with pCI.CMV.GFP. Reactive oxygen species (ROS) production was significantly induced in REDD2-transfected cells compared with control cells (157+/-48 and 100+/-8 arbitrary units/mg cell protein, respectively; p<0.05). Moreover, a significant increase in parameters known to reflect the oxidative modifications of LDL was observed. Among enzymes involved in ROS production or degradation, we found a specific reduction in thioredoxin-1 (Trx-1) mRNA ( approximately 52+/-7% decrease, p<0.01 vs control cells) and protein ( approximately 60+/-4% decrease, p<0.001 vs control cells) levels in cells overexpressing REDD2 in comparison to control cells. In contrast, transfection of U-937 cells with siRNA against REDD2 decreased the mRNA levels of REDD2 by approximately 60% and increased Trx-1 mRNA and protein levels. Moreover, we observed no or a moderate increase in Bax (proapoptotic) and a significant decrease in Bcl2 (antiapoptotic) gene expression in cells that overexpress REDD2 compared to control cells. In addition, we showed that Trx-1 mRNA and protein levels were increased at low H(2)O(2) doses and decreased at higher doses. Interestingly, macrophages isolated from human atherosclerotic lesions differentially express REDD2 and Trx-1. Indeed, in certain patients, levels of REDD2 mRNA were low and those of Trx-1 mRNA were high. In contrast, in other

  11. TES/Aura L2 Water Vapor (H2O) Limb V6 (TL2H2OLS)

    Atmospheric Science Data Center

    2018-03-01

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access:  OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  12. Hypoxia and H2O2 Dual-Sensitive Vesicles for Enhanced Glucose-Responsive Insulin Delivery.

    PubMed

    Yu, Jicheng; Qian, Chenggen; Zhang, Yuqi; Cui, Zheng; Zhu, Yong; Shen, Qundong; Ligler, Frances S; Buse, John B; Gu, Zhen

    2017-02-08

    A glucose-responsive closed-loop insulin delivery system mimicking pancreas activity without long-term side effect has the potential to improve diabetic patients' health and quality of life. Here, we developed a novel glucose-responsive insulin delivery device using a painless microneedle-array patch containing insulin-loaded vesicles. Formed by self-assembly of hypoxia and H 2 O 2 dual-sensitive diblock copolymer, the glucose-responsive polymersome-based vesicles (d-GRPs) can disassociate and subsequently release insulin triggered by H 2 O 2 and hypoxia generated during glucose oxidation catalyzed by glucose specific enzyme. Moreover, the d-GRPs were able to eliminate the excess H 2 O 2 , which may lead to free radical-induced damage to skin tissue during the long-term usage and reduce the activity of GOx. In vivo experiments indicated that this smart insulin patch could efficiently regulate the blood glucose in the chemically induced type 1 diabetic mice for 10 h.

  13. Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z 2-4

    NASA Astrophysics Data System (ADS)

    Yang, C.; Omont, A.; Beelen, A.; González-Alfonso, E.; Neri, R.; Gao, Y.; van der Werf, P.; Weiß, A.; Gavazzi, R.; Falstad, N.; Baker, A. J.; Bussmann, R. S.; Cooray, A.; Cox, P.; Dannerbauer, H.; Dye, S.; Guélin, M.; Ivison, R.; Krips, M.; Lehnert, M.; Michałowski, M. J.; Riechers, D. A.; Spaans, M.; Valiante, E.

    2016-11-01

    We report rest-frame submillimeter H2O emission line observations of 11 ultra- or hyper-luminous infrared galaxies (ULIRGs or HyLIRGs) at z 2-4 selected among the brightest lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Using the IRAM NOrthern Extended Millimeter Array (NOEMA), we have detected 14 new H2O emission lines. These include five 321-312ortho-H2O lines (Eup/k = 305 K) and nine J = 2 para-H2O lines, either 202-111(Eup/k = 101 K) or 211-202(Eup/k = 137 K). The apparent luminosities of the H2O emission lines are μLH2O 6-21 × 108 L⊙ (3 <μ< 15, where μ is the lens magnification factor), with velocity-integrated line fluxes ranging from 4-15 Jy km s-1. We have also observed CO emission lines using EMIR on the IRAM 30 m telescope in seven sources (most of those have not yet had their CO emission lines observed). The velocity widths for CO and H2O lines are found to be similar, generally within 1σ errors in the same source. With almost comparable integrated flux densities to those of the high-J CO line (ratios range from 0.4 to 1.1), H2O is found to be among the strongest molecular emitters in high-redshift Hy/ULIRGs. We also confirm our previously found correlation between luminosity of H2O (LH2O) and infrared (LIR) that LH2O LIR1.1-1.2, with ournew detections. This correlation could be explained by a dominant role of far-infrared pumping in the H2O excitation. Modelling reveals that the far-infrared radiation fields have warm dust temperature Twarm 45-75 K, H2O column density per unit velocity interval NH2O /ΔV ≳ 0.3 × 1015 cm-2 km-1 s and 100 μm continuum opacity τ100> 1 (optically thick), indicating that H2O is likely to trace highly obscured warm dense gas. However, further observations of J ≥ 4 H2O lines are needed to better constrain the continuum optical depth and other physical conditions of the molecular gas and dust. We have also detected H2O+ emission in three sources. A tight correlation

  14. Studies of proton irradiated H2O + CO2 and H2O + CO ices and analysis of synthesized molecules

    NASA Technical Reports Server (NTRS)

    Moore, M. H.; Khanna, R.; Donn, B.

    1991-01-01

    Infrared spectra of H2O + CO2 and H2O + CO ices before and after proton irradiation showed that a major reaction in both mixtures was the interconversion of CO2 yields CO. Radiation synthesized organic compounds such as carbonic acid were identified in the H2O + CO2 ice. Different chemical pathways dominate in the H2O + CO ice in which formaldehyde, methanol, ethanol, and methane were identified. Sublimed material was also analyzed using a mass spectrometer. Implications of these results are discussed in reference to comets.

  15. NADPH Oxidase Activation Contributes to Heavy Ion Irradiation–Induced Cell Death

    PubMed Central

    Wang, Yupei; Liu, Qing; Zhao, Weiping; Zhou, Xin; Miao, Guoying; Sun, Chao

    2017-01-01

    Increased oxidative stress plays an important role in heavy ion radiation–induced cell death. The mechanism involved in the generation of elevated reactive oxygen species (ROS) is not fully illustrated. Here we show that NADPH oxidase activation is closely related to heavy ion radiation–induced cell death via excessive ROS generation. Cell death and cellular ROS can be greatly reduced in irradiated cancer cells with the preincubation of diphenyleneiodium, an inhibitor of NADPH oxidase. Most of the NADPH oxidase (NOX) family proteins (NOX1, NOX2, NOX3, NOX4, and NOX5) showed increased expression after heavy ion irradiation. Meanwhile, the cytoplasmic subunit p47phox was translocated to the cell membrane and localized with NOX2 to form reactive NADPH oxidase. Our data suggest for the first time that ROS generation, as mediated by NADPH oxidase activation, could be an important contributor to heavy ion irradiation–induced cell death. PMID:28473742

  16. Endothelium-derived hyperpolarizing factor and protein kinase G Iα activation: H2O2 versus S-nitrosothiols.

    PubMed

    Bautista-Niño, Paula K; van der Stel, Marien; Batenburg, Wendy W; de Vries, René; Roks, Anton J M; Danser, A H Jan

    2018-05-15

    Protein kinase G (PKG) Iα mediates the cyclic guanosine monophosphate-mediated vasodilatory effects induced by NO. Endothelium-derived hyperpolarizing factors (EDHFs), like H 2 O 2 can activate PKGIα in a cyclic guanosine monophosphate-independent manner, but whether this is true for all EDHFs (e.g., S-nitrosothiols) is unknown. Here, we investigated the contribution of PKGIα to bradykinin-, H 2 O 2 -, L-S-nitrosocysteine-, and light-induced relaxation in porcine coronary arteries, making use of the fact that thioredoxin reductase inhibition with auranofin or 1-chloro-2,4-dinitrobenzene potentiates PKGIα. Thioredoxin reductase inhibition potentiated bradykinin and H 2 O 2 , but not L-S-nitrosocysteine or light. The relaxations by the latter 2 and bradykinin, but not those by H 2 O 2 , were prevented by the soluble guanylyl cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Yet, after S-nitrosothiol depletion with ethacrynic acid, thioredoxin reductase inhibition also potentiated light-induced relaxation, and this was prevented by the Na + -K + ATPase inhibitor ouabain. This indicates that photorelaxation depends on sGC activation by S-nitrosothiols, while only after S-nitrosothiol depletion oxidized PKGIα comes into play, and acts via Na + -K + ATPase. In conclusion, both bradykinin- and light-induced relaxation of porcine coronary arteries depend, at least partially, on oxidized PKGIα, and this does not involve sGC. H 2 O 2 also acts via oxidized PKGIα in an sGC-independent manner. Yet, S-nitrosothiol-induced relaxation is PKGIα-independent. Clearly, PKG activation does not contribute universally to all EDHF responses, and targeting PKGIα may only mimick EDHF under certain conditions. It is therefore unlikely that PKGIα activators will be universal vasodilators. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Renal Cell Carcinoma Programmed Death-ligand 1, a New Direct Target of Hypoxia-inducible Factor-2 Alpha, is Regulated by von Hippel-Lindau Gene Mutation Status.

    PubMed

    Messai, Yosra; Gad, Sophie; Noman, Muhammad Zaeem; Le Teuff, Gwenael; Couve, Sophie; Janji, Bassam; Kammerer, Solenne Florence; Rioux-Leclerc, Nathalie; Hasmim, Meriem; Ferlicot, Sophie; Baud, Véronique; Mejean, Arnaud; Mole, David Robert; Richard, Stéphane; Eggermont, Alexander M M; Albiges, Laurence; Mami-Chouaib, Fathia; Escudier, Bernard; Chouaib, Salem

    2016-10-01

    Clear cell renal cell carcinomas (ccRCC) frequently display a loss of function of the von Hippel-Lindau (VHL) gene. To elucidate the putative relationship between VHL mutation status and immune checkpoint ligand programmed death-ligand 1 (PD-L1) expression. A series of 32 renal tumors composed of 11 VHL tumor-associated and 21 sporadic RCCs were used to evaluate PD-L1 expression levels after sequencing of the three exons and exon-intron junctions of the VHL gene. The 786-O, A498, and RCC4 cell lines were used to investigate the mechanisms of PD-L1 regulation. Fisher's exact test was used for VHL mutation and Kruskal-Wallis test for PD-L1 expression. If no covariate accounted for the association of VHL and PD-L1, then a Kruskal-Wallis test was used; otherwise Cochran-Mantel-Haenzsel test was used. We also used the Fligner-Policello test to compare two medians when the distributions had different dispersions. We demonstrated that tumors from ccRCC patients with VHL biallelic inactivation (ie, loss of function) display a significant increase in PD-L1 expression compared with ccRCC tumors carrying one VHL wild-type allele. Using the inducible VHL 786-O-derived cell lines with varying hypoxia-inducible factor-2 alpha (HIF-2α) stabilization levels, we showed that PD-L1 expression levels positively correlate with VHL mutation and HIF-2α expression. Targeting HIF-2α decreased PD-L1, while HIF-2α overexpression increased PD-L1 mRNA and protein levels in ccRCC cells. Interestingly, chromatin immunoprecipitation and luciferase assays revealed a direct binding of HIF-2α to a transcriptionally active hypoxia-response element in the human PD-L1 proximal promoter in 786-O cells. Our work provides the first evidence that VHL mutations positively correlate with PD-L1 expression in ccRCC and may influence the response to ccRCC anti-PD-L1/PD-1 immunotherapy. We investigated the relationship between von Hippel-Lindau mutations and programmed death-ligand 1 expression. We

  18. [Mechanism and performance of styrene oxidation by O3/H2O2].

    PubMed

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  19. LiOH - H2O2 - H2O trinary system study for the selection of optimal conditions of lithium peroxide synthesis

    NASA Astrophysics Data System (ADS)

    Nefedov, R. A.; Ferapontov, Yu A.; Kozlova, N. P.

    2016-01-01

    Using solubility method the decay kinetics of peroxide products contained in liquid phase of LiOH - H2O2 - H2O trinary system with 2 to 6% by wt hydrogen peroxide content in liquid phase in 21 to 33 °C temperature range has been studied. Conducted studies have allowed to determine temperature and concentration limits of solid phase existence of Li2O2·H2O content, distinctness of which has been confirmed using chemical and qualitative X- ray phase analysis. Stabilizing effect of solid phase of Li2O2·H2O content on hydrogen peroxide decay contained in liquid phase of LiOH - H2O2 - H2O trinary system under conditions of experiments conducted has been shown.

  20. Photodegradation of the antineoplastic cyclophosphamide: a comparative study of the efficiencies of UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2 processes.

    PubMed

    Lutterbeck, Carlos Alexandre; Machado, Ênio Leandro; Kümmerer, Klaus

    2015-02-01

    Anticancer drugs are harmful substances that can have carcinogenic, mutagenic, teratogenic, genotoxic, and cytotoxic effects even at low concentrations. More than 50 years after its introduction, the alkylating agent cyclophosphamide (CP) is still one of the most consumed anticancer drug worldwide. CP has been detected in water bodies in several studies and is known as being persistent in the aquatic environment. As the traditional water and wastewater treatment technologies are not able to remove CP from the water, different treatment options such as advanced oxidation processes (AOPs) are under discussion to eliminate these compounds. The present study investigated the degradation of CP by three different AOPs: UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. The light source was a Hg medium-pressure lamp. Prescreening tests were carried out and afterwards experiments based on the optimized conditions were performed. The primary elimination of the parent compounds and the detection of transformation products (TPs) were monitored with LC-UV-MS/MS analysis, whereas the degree of mineralization was monitored by measuring the dissolved organic carbon (DOC). Ecotoxicological assays were carried out with the luminescent bacteria Vibrio fischeri. CP was completely degraded in all treatments and UV/Fe(2+)/H2O2 was the fastest process, followed by UV/H2O2 and UV/TiO2. All the reactions obeyed pseudo-first order kinetics. Considering the mineralization UV/Fe(2+)/H2O2 and UV/TiO2 were the most efficient process with mineralization degrees higher than 85%, whereas UV/H2O2 achieved 72.5% of DOC removal. Five transformation products were formed during the reactions and identified. None of them showed significant toxicity against V. fischeri. Copyright © 2014 Elsevier Ltd. All rights reserved.