Sample records for h2o3 comportamento termico

  1. Influence of the Organic Species and Oxoanion in the Synthesis of two Uranyl Sulfate Hydrates, (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 ­(H 2 O)]·7H 2 O and (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 (H 2 O)]·4H 2 O, and a Uranyl Selenate-Selenite [C 5 H 6 N][(UO 2 )(SeO 4 )(HSeO 3 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Wylie, Ernest M.; Burns, Peter C.

    2012-08-08

    Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)]·7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)]·4H2O (NDUS1), and one uranyl selenate-selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L-cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4)more » Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two-dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two-dimensional uranyl selenate-selenite sheets with a U/Se ratio of 1/2. In-situ reaction of the L-cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L-cystine, balancing the charge of the sheets.« less

  2. Expansion of antimonato polyoxovanadates with transition metal complexes: (Co(N3C5H15)2)2[{Co(N3C5H15)2}V15Sb6O42(H2O)]·5H2O and (Ni(N3C5H15)2)2[{Ni(N3C5H15)2}V15Sb6O42(H2O)]·8H2O.

    PubMed

    Antonova, Elena; Näther, Christian; Kögerler, Paul; Bensch, Wolfgang

    2012-02-20

    Two new polyoxovanadates (Co(N(3)C(5)H(15))(2))(2)[{Co(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·5H(2)O (1) and (Ni(N(3)C(5)H(15))(2))(2)[{Ni(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·8H(2)O (2) (N(3)C(5)H(15) = N-(2-aminoethyl)-1,3-propanediamine) were synthesized under solvothermal conditions and structurally characterized. In both structures the [V(15)Sb(6)O(42)(H(2)O)](6-) shell displays the main structural motif, which is strongly related to the {V(18)O(42)} archetype cluster. Both compounds crystallize in the triclinic space group P1 with a = 14.3438(4), b = 16.6471(6), c = 18.9186(6) Å, α = 87.291(3)°, β = 83.340(3)°, γ = 78.890(3)°, and V = 4401.4(2) Å(3) (1) and a = 14.5697(13), b = 15.8523(16), c = 20.2411(18) Å, α = 86.702(11)°, β = 84.957(11)°, γ = 76.941(11)°, and V = 4533.0(7) Å(3) (2). In the structure of 1 the [V(15)Sb(6)O(42)(H(2)O)](6-) cluster anion is bound to a [Co(N(3)C(5)H(15))(2)](2+) complex via a terminal oxygen atom. In the Co(2+)-centered complex, one of the amine ligands coordinates in tridentate mode and the second one in bidentate mode to form a strongly distorted CoN(5)O octahedron. Similarly, in compound 2 an analogous NiN(5)O complex is joined to the [V(15)Sb(6)O(42)(H(2)O)](6-) anion via the same attachment mode. A remarkable difference between the two compounds is the orientation of the noncoordinated propylamine group leading to intermolecular Sb···O contacts in 1 and to Sb···N interactions in 2. In the solid-state lattices of 1 and 2, two additional [M(N(3)C(5)H(15))(2)](2+) complexes act as countercations and are located between the [{M(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)](4-) anions. Between the anions and cations strong N-H···O hydrogen bonds are observed. In both compounds the clusters are stacked along the b axis in an ABAB fashion with cations and water molecules occupying the space between the clusters. Magnetic characterization demonstrates that the Ni(2+) and Co(2+) cations do not

  3. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3).

    PubMed

    Srithep, Sirinthip; Phattarapattamawong, Songkeart

    2017-06-01

    The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H 2 O 2 , UV/O 3 , and UV/H 2 O 2 /O 3 ) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H 2 O 2 /O 3 was the most effective process for removing HAN precursors, followed by UV/H 2 O 2 , and UV/O 3 , respectively. For 20min contact time, the UV/H 2 O 2 /O 3 , UV/H 2 O 2 , and UV/O 3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL -1 in UV/O 3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H 2 O 2 , and UV/H 2 O 2 /O 3 ), except for the UV/O 3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k' DCANFP ) by the UV/H 2 O 2 /O 3 , UV/H 2 O 2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O 3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k' DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Luminescence Spectroscopy and Crystal Field Simulations of Europium Propylenediphosphonate EuH[O 3P(CH 2) 3PO 3] and Europium Glutarate [Eu(H 2O)] 2[O 2C(CH 2) 3CO 2] 3·4H 2O

    NASA Astrophysics Data System (ADS)

    Serpaggi, F.; Férey, G.; Antic-Fidancev, E.

    1999-12-01

    The results of investigations on the photoluminescence of two europium hybrid compounds, EuH[O3P(CH2)3PO3] (Eu[diph]) and [Eu(H2O)]2[O2C(CH2)3CO2]3·4H2O (Eu[glut]), are presented. In both compounds one local environment is found for the rare earth (Re) ion and the symmetry of the Re polyhedron is low (Cs) as evidenced by the Eu3+ luminescence studies. The electrostatic crystal field (cf) parameters of the 7F multiplet are obtained by the application of the phenomenological cf theory. The simulations using C2v symmetry for the rare earth ion give good agreement between the calculated and the experimental 7F0-4 energy level schemes. The observed optical data are discussed in relation to the crystal structure of the compounds.

  5. Two mixed-ligand lanthanide–hydrazone complexes: [Pr(NCS)3(pbh)2H2O and [Nd(NCS)(NO3)(pbh)2(H2O)]NO3·2.33H2O [pbh is N′-(pyridin-2-ylmethylidene)benzo­hydrazide, C13H11N3O

    PubMed Central

    Paschalidis, Damianos G.; Harrison, William T. A.

    2016-01-01

    The gel-mediated syntheses and crystal structures of [N′-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O]tris(thiocyanato-κN)praseodymium(III) mono­hydrate, [Pr(NCS)3(C13H11N3O)2H2O, (I), and aqua(nitrato-κ2 O,O′)[N′-(pyri­din-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O](thiocyanato-κN)neo­dym­ium(III) nitrate 2.33-hydrate, [Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2O, (II), are reported. The Pr3+ ion in (I) is coordinated by two N,N,O-tridentate N′-(pyridin-2-ylmethylidene)benzohydrazide (pbh) ligands and three N-bonded thio­cyanate ions to generate an irregular PrN7O2 coordination polyhedron. The Nd3+ ion in (II) is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thio­cyanate ion, a bidentate nitrate ion and a water mol­ecule to generate a distorted NdN5O5 bicapped square anti­prism. The crystal structures of (I) and (II) feature numerous hydrogen bonds, which lead to the formation of three-dimensional networks in each case. PMID:26958385

  6. Reactions of CH3SH and CH3SSCH3 with gas-phase hydrated radical anions (H2O)n(•-), CO2(•-)(H2O)n, and O2(•-)(H2O)n.

    PubMed

    Höckendorf, Robert F; Hao, Qiang; Sun, Zheng; Fox-Beyer, Brigitte S; Cao, Yali; Balaj, O Petru; Bondybey, Vladimir E; Siu, Chi-Kit; Beyer, Martin K

    2012-04-19

    The chemistry of (H(2)O)(n)(•-), CO(2)(•-)(H(2)O)(n), and O(2)(•-)(H(2)O)(n) with small sulfur-containing molecules was studied in the gas phase by Fourier transform ion cyclotron resonance mass spectrometry. With hydrated electrons and hydrated carbon dioxide radical anions, two reactions with relevance for biological radiation damage were observed, cleavage of the disulfide bond of CH(3)SSCH(3) and activation of the thiol group of CH(3)SH. No reactions were observed with CH(3)SCH(3). The hydrated superoxide radical anion, usually viewed as major source of oxidative stress, did not react with any of the compounds. Nanocalorimetry and quantum chemical calculations give a consistent picture of the reaction mechanism. The results indicate that the conversion of e(-) and CO(2)(•-) to O(2)(•-) deactivates highly reactive species and may actually reduce oxidative stress. For reactions of (H(2)O)(n)(•-) with CH(3)SH as well as CO(2)(•-)(H(2)O)(n) with CH(3)SSCH(3), the reaction products in the gas phase are different from those reported in the literature from pulse radiolysis studies. This observation is rationalized with the reduced cage effect in reactions of gas-phase clusters. © 2012 American Chemical Society

  7. Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad; Tahir, Beenish; Saidina Amin, Nor Aishah; Alias, Hajar

    2016-12-01

    Photocatalytic CO2 reduction by H2O and/or H2 reductant to selective fuels over Cu-promoted In2O3/TiO2 photocatalyst has been investigated. The samples, prepared via a simple and direct sol-gel method, were characterized by XRD, SEM, TEM, XPS, N2 adsorption-desorption, UV-vis diffuse reflectance, Raman and PL spectroscopy. Cu and In loaded into TiO2, oxidized as Cu2+ and In3+, promoted efficient separation of photo-generated electron/hole pairs (e-/h+). The results indicate that the reduction rate of CO2 by H2O to CH4 approached to 181 μmol g-1 h-1 using 0.5% Cu-3% In2O3/TiO2 catalyst, a 1.53 fold higher than the production rate over the 3% In2O3/TiO2 and 5 times the amount produced over the pure TiO2. In addition, Cu was found to promote efficient production of CH3OH and yield rate reached to 68 μmol g-1 h-1 over 1% Cu-3% In2O3/TiO2 catalyst. This improvement was attributed to charge transfer property and suppressed recombination rate by Cu-metal. More importantly, H2 reductant was less favorable for CH4 production, yet a significant amount of CH4 and CH3OH were obtained using a mixture of H2O/H2 reductant. Therefore, Cu-loaded In2O3/TiO2 catalyst has shown to be capable for methanol production, whereas product selectivity was greatly depending on the amount of Cu-loading and the type of reductant. A photocatalytic reaction mechanism was proposed to understand the experimental results over the Cu-loaded In2O3/TiO2 catalyst.

  8. [Mechanism and performance of styrene oxidation by O3/H2O2].

    PubMed

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  9. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    PubMed Central

    Yang, Jingbin; Li, Dongxu; Fang, Yuan

    2017-01-01

    C-A-S-H (CaO-Al2O3-SiO2-H2O) and N-A-S-H (Na2O-Al2O3-SiO2-H2O) have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O)/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH)2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH)2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali-activated materials. PMID

  10. The catalytic effects of H2CO3, CH3COOH, HCOOH and H2O on the addition reaction of CH2OO + H2O → CH2(OH)OOH

    NASA Astrophysics Data System (ADS)

    Zhang, Tianlei; Lan, Xinguang; Wang, Rui; Roy, Soumendra; Qiao, Zhangyu; Lu, Yousong; Wang, Zhuqing

    2018-07-01

    The addition reaction of CH2OO + H2O → CH2(OH)OOH without and with X (X = H2CO3, CH3COOH and HCOOH) and H2O was studied at CCSD(T)/6-311+ G(3df,2dp)//B3LYP/6-311+G(2d,2p) level of theory. Our results show that X can catalyse CH2OO + H2O → CH2(OH)OOH reaction both by increasing the number of rings, and by adding the size of the ring in which ring enlargement by COOH moiety of X inserting into CH2OO...H2O is favourable one. Water-assisted CH2OO + H2O → CH2(OH)OOH can occur by H2O moiety of (H2O)2 or the whole (H2O)2 forming cyclic structure with CH2OO, where the latter form is more favourable. Because the concentration of H2CO3 is unknown, the influence of CH3COOH, HCOOH and H2O were calculated within 0-30 km altitude of the Earth's atmosphere. The results calculated within 0-5 km altitude show that H2O and HCOOH have obvious effect on enhancing the rate with the enhancement factors are, respectively, 62.47%-77.26% and 0.04%-1.76%. Within 5-30 km altitude, HCOOH has obvious effect on enhancing the title rate with the enhancement factor of 2.69%-98.28%. However, compared with the reaction of CH2OO + HCOOH, the rate of CH2OO...H2O + HCOOH is much slower.

  11. Hydrothermal Syntheses and Structures of Three-Dimensional Oxo-fluorovanadium Phosphates: [H 2N(C 2H 4) 2NH 2] 0.5[(VO) 4V(HPO 4) 2(PO 4) 2F 2(H 2O) 4] · 2H 2O and K 2[(VO) 3(PO 4) 2F 2(H 2O)] · H 2O

    NASA Astrophysics Data System (ADS)

    Bonavia, Grant; Haushalter, R. C.; Zubieta, Jon

    1996-11-01

    The hydrothermal reactions of FPO3H2with vanadium oxides result in the incorporation of fluoride into V-P-O frameworks as a consequence of metal-mediated hydrolysis of the fluorophosphoric acid to produce F-and PO3-4. By exploiting this convenient source of F-, two 3-dimensional oxo-fluorovanadium phosphate phases were isolated, [H2N(C2H4)2NH2]0.5[(VO)4V(HOP4)2(PO4)2F2(H2O)4) · 2H2O (1 · 2H2O) and K2[(VO)3(PO4)2F2(H2O)] · H2O (2 · H2O). Both anionic frameworks contain (VIVO)-F--phosphate layers, with confacial bioctahedral {(VIVO)2FO6} units as the fundamental motif. In the case of 1, the layers are linked through {VIIIO6} octahedra, while for 2 the interlayer connectivity is provided by edge-sharing {(VIVO)2F2O6} units. Crystal data are 1 · 2H2O, CH10FN0.5O13P2V2.5, monoclinicC2/m,a= 18.425(4) Å,c= 8.954(2) Å, β = 93.69(2)0,V= 1221.1(4) Å3,Z= 4,Dcalc= 2.423 g cm-3; 2 · H2O, H4F2K2O13P2V3, triclinicPoverline1,a= 7.298(1) Å,b= 8.929(2) Å,c = 10.090(2) Å, α = 104.50(2)0, β = 100.39(2)0, δ = 92.13(2)0,V= 623.8(3) Å3,Z= 2,Dcalc= 2.891 g cm-3.

  12. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  13. Synthesis and structure of heptaaqua(nitrilotris(methylenephosphonato))(dibarium)sodium monohydrate [Na(H{sub 2}O){sub 3}(μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(μ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somov, N. V., E-mail: somov@phys.unn.ru; Chausov, F. F., E-mail: xps@ftiudm.ru; Zakirova, R. M., E-mail: ftt@udsu.ru

    Crystals of the monohydrate form of heptaaqua(nitrilotris(methylenephosphonato))(dibarium) sodium [Na(H{sub 2}O{sub )3}(µ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(µ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O are obtained; space group P2{sub 1}/c, Z = 4; a = 13.9117(10) Å, b = 11.54030(10) Å, and c = 24.1784(17) Å, ß = 148.785(18)°. The Na atom is coordinated octahedrally by one oxygen atom of a phosphonate group and five water molecules, including two bridging molecules. Ba atoms occupy two inequivalent crystallographic positions with coordination number eight and nine. The coordination spheres of both Ba atoms include two water molecules. Each ligand is bound to one Namore » atom and five Ba atoms forming three Ba–O–P–O and five Ba–O–P–C–N–C–P–O chelate cycles. In addition to the coordination bonds, molecules, including the solvate water molecule, are involved in hydrogen bonds in the crystal packing.« less

  14. Insertion of bentonite with Organometallic [Fe3O(OOC6H5)6(H2O)3(NO3).nH2O] as Adsorbent of Congo Red

    NASA Astrophysics Data System (ADS)

    Said, Muhammad; Paluta Utami, Hasja; Hayati, Ferlina

    2018-01-01

    The adsorption of Congo red using bentonite inserted organometallic has been investigated. The insertion bentonite was characterized using FT-IR Spectrophotometer, XRD and XRF analysis. The FT-IR characterization showed the higher intensity of peak wavenumber at 470.6 cm-1 for Fe3O on the ratio 1:3. While the XRD characterization showed the shift of diffraction angle of 2θ was 5.2° and has a basal spacing of 16.8 Å. In the XRF characterization, the insertion process of organometallic occurred optimally with the percentage of metal oxide reached 71.75 %. The adsorption process of bentonite inserted organometallic compound [Fe3O(OOC6H5)6(H2O)3(NO3)·nH2O] showed the adsorption rate (k) is 0.050 min-1, the largest adsorption capacity (b) at 70°C is 4.48 mol/g, the largest adsorption energy at temperature 30°C which is 6.4 kJ/mol Organometallic compounds. The value of the enthalpy (ΔH) and entropy (ΔS) decreased with increasing concentrations of the Congo red. Effect of pH on the adsorption on at pH 3 shows the biggest of number Congo red absorbed is 19.52 mg/L for insertion of bentonite.

  15. 3-Methyl-7-(2-thienyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione: pi-stacked bilayers built from N-H...O, C-H...O and C-H...pi hydrogen bonds.

    PubMed

    Trilleras, Jorge; Quiroga, Jairo; Cobo, Justo; Glidewell, Christopher

    2009-06-01

    In the title compound, C(12)H(9)N(3)O(2)S, the thienyl substituent is disordered over two sets of sites with occupancies of 0.749 (3) and 0.251 (3). A combination of N-H...O, C-H...O and C-H...pi hydrogen bonds links the molecules into bilayers and these bilayers are themselves linked into a continuous structure by pi-pi stacking interactions.

  16. Interhemispheric differences in polar stratospheric HNO3, H2O, ClO, and O3

    NASA Technical Reports Server (NTRS)

    Santee, M. L.; Read, W. G.; Waters, J. W.; Froidevaux, L.; Manney, G. L.; Flower, D. A.; Jarnot, R. F.; Harwood, R. S.; Peckham, G. E.

    1995-01-01

    Simultaneous global measurements of nitric acid (HNO3), water (H2O), chlorine monoxide (ClO), and ozone (O3) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO3 was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H2O after mid-July. By mid-August, near the time of peak ClO, abundances of gas-phase HNO3 and H2O were extremely low. The concentrations of HNO3 and H2O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO3 or H2O were observed in the 1992-1993 Arctic winter vortex. Although ClO was enhanced over the Arctic as it was over the Antarctic, Arctic O3 depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone 'hole' is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.

  17. Spectroscopic properties of morin in various CH3OH-H2O and CH3CN-H2O mixed solvents.

    PubMed

    Park, Hyoung-Ryun; Im, Seo-Eun; Seo, Jung-Ja; Kim, Bong-Gon; Yoon, Jin Ah; Bark, Ki-Min

    2015-01-01

    The specific fluorescence properties of morin (3,2',4',5,7-pentahydroxyflavone) were studied in various CH3OH-H2O and CH3CN-H2O mixed solvents. Although the dihedral angle is large in the S0 state, morin has an almost planar molecular structure in the S1 state owing to the very low rotational energy barrier around the interring bond between B and the A, C ring. The excited state intramolecular proton transfer (ESIPT) at the S1 state cannot occur immediately after excitation, S1 → S0 fluorescence can be observed. Two conformers, Morin A and B have been known. At the CH3OH-H2O, Morin B will be the principal species but at the CH3CN-H2O, Morin A is the principal species. At the CH3OH-H2O, owing to the large Franck-Condon (FC) factor for S2 → S1 internal convernal (IC) and flexible molecular structure, only S1 → S0 fluorescence was exhibited. At the CH3CN-H2O, as the FC factor for S2 → S1 IC is small and molecular structure is rigid, S2 → S0 and S1 → S0 dual fluorescence was observed. This abnormal fluorescence property was further supported by the small pK1 value, effective delocalization of the lone pair electrons of C(2')-OH to the A, C ring, and a theoretical calculation. © 2014 The American Society of Photobiology.

  18. Nqrs Data for H6I3InO12 [I3InO3(H2O)] (Subst. No. 2289)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for H6I3InO12 [I3InO3(H2O)] (Subst. No. 2289)

  19. Ground and excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters: Insight into the electronic structure of the [Fe(H2O)6]2+ – [Fe(H2O)6]3+ complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miliordos, Evangelos; Xantheas, Sotiris S.

    We report the ground and low lying electronically excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters using multi-configuration electronic structure theory. In particular, we have constructed the Potential Energy Curves (PECs) with respect to the iron-oxygen distance when removing all water ligands at the same time from the cluster minima and established their correlation to the long range dissociation channels. Due to the fact that both the second and third ionization potentials of iron are larger than the one for water, the ground state products asymptotically correlate with dissociation channels that are repulsive in nature at large separations as theymore » contain at least one H2O+ fragment and a positive metal center. The most stable equilibrium structures emanate – via intersections and/or avoided crossings – from the channels consisting of the lowest electronic states of Fe2+(5D; 3d6) or Fe3+(6S; 3d5) and six neutral water molecules. Upon hydration, the ground state of Fe2+(H2O)6 is a triply (5Tg) degenerate one with the doubly (5Eg) degenerate state lying slightly higher in energy. Similarly, Fe3+(H2O)6 has a ground state of 6Ag symmetry under Th symmetry. We furthermore examine a multitude of electronically excited states of many possible spin multiplicities, and report the optimized geometries for several selected states. The PECs for those cases are characterized by a high density of states. Focusing on the ground and the first few excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters, we studied their mutual interaction in the gas phase. We obtained the optimal geometries of the Fe2+(H2O)6 – Fe3+(H2O)6 gas phase complex for different Fe–Fe distances. For distances shorter than 6.0 Å, the water molecules in the respective first solvation shells located between the two metal centers were found to interact via weak hydrogen bonds. We examined a total of ten electronic states for this complex, including those corresponding to the

  20. Ilyukhinite (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)23H2O, a New Mineral of the Eudialyte Group

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Rastsvetaeva, R. K.; Rozenberg, K. A.; Aksenov, S. M.; Pekov, I. V.; Belakovsky, D. I.; Kristiansen, R.; Van, K. V.

    2017-12-01

    A new eudialyte-group mineral, ilyukhinite, ideally (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2 · 3H2O, has been found in peralkaline pegmatite at Mt. Kukisvumchorr, Khibiny alkaline pluton, Kola Peninsula, Russia. It occurs as brownish orange, with vitreous luster anhedral grains up to 1 mm across in hydrothermally altered peralkaline rock, in association with aegirine, murmanite, albite, microcline, rhabdophane-(Ce), fluorite, sphalerite and molybdenite. The Mohs hardness is 5; cleavage is not observed. D meas 2.67(2), D calc 2.703 g/cm3. Ilyukhinite is optically uniaxial (-): ω = 1.585(2), ɛ = 1.584(2). The IR spectrum is given. The average chemical composition of ilyukhinite (wt %; electron microprobe, ranges given in parentheses; H2O determined by gas chromatography) is as follows: 3.07 (3.63-4.43) Na2O, 0.32 (0.28-0.52) K2O, 10.63 (10.26-10.90) CaO, 3.06 (2.74-3.22) MnO, 1.15 (0.93-1.37) FeO, 0.79 (0.51-0.89) La2O3, 1.21 (0.97-1.44) Ce2O3, 0.41 (0.30-0.56) Nd2O3, 0.90 (0.77-1.12) TiO2, 10.94 (10.15-11.21) ZrO2, 1.40 (0.76-1.68) Nb2O5, 51.24 (49.98-52.28) SiO2, 1.14 (0.89-1.37) SO3, 0.27 (0.19—0.38) Cl, 10.9(5 )H2O,-0.06-O = C1, total is 98.27. The empirical formula is H36.04(Na3.82K0.20)(Ca5.65Ce0.22La0.14Nd0.07)(Mn1.285Fe0.48)(Zr2.645Ti0.34)Nb0.31Si25.41S0.42Cl0.23O86.82. The crystal structure has been solved ( R = 0.046). Ilyukhinite is trigonal, R3 m; a = 14.1695(6) Å, b = 31.026(1) Å, V = 5394.7(7) Å3, Z = 3. The strongest XRD reflections [ d, Å (I, %) ( hkl)] are 11.44 (82) (101), 7.09 (70) (110), 6.02 (44) (021), 4.371 (89) 205), 3.805 (47) (303, 033), 3.376 (41) (131), 2.985 (100) (315, 128), 2.852 (92) (404). Ilyukhinite was named in memory of Vladimir V. Ilyukhin (1934-1982), an outstanding Soviet crystallographer. The type specimen of ilyukhinite has been deposited in the collection of the Natural History Museum, University of Oslo, Norway.

  1. Crystal and molecular structure of Sr{sub 2}(Edta) . 5H{sub 2}O, Sr{sub 2}(H{sub 2}Edta)(HCO{sub 3}){sub 2} . 4H{sub 2}O, and Sr{sub 2}(H{sub 2}Edta)Cl{sub 2} . 5H{sub 2}O strontium ethylenediaminetetraacetates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakova, I. N., E-mail: polyakova@igic.ras.ru; Poznyak, A. L.; Sergienko, V. S.

    2009-03-15

    Three Sr{sup 2+} compounds with the Edta{sup 4-} and H{sub 2}Edta{sup 2-} ligands-Sr{sub 2}(Edta) . 5H{sub 2}O (I), Sr{sub 2}(H{sub 2}Edta)(HCO{sub 3}){sub 2} . 4H{sub 2}O (II), and Sr{sub 2}(H{sub 2}Edta)Cl{sub 2} . 5H{sub 2}O (III)-are synthesized, and their crystal structures are studied. In I, the Sr(1) atom is coordinated by the hexadentate Edta{sup 4-} ligand following the 2N + 4O pattern and by two O atoms of the neighboring ligands, which affords the formation of zigzag chains. The Sr(2) atom forms bonds with O atoms of five water molecules and attaches itself to a chain via bonds with threemore » O atoms of the Edta{sup 4-} ligands. The Sr(1)-O and Sr(2)-O bond lengths fall in the ranges 2.520(2)-2.656(3) and 2.527(3)-2.683(2) A, respectively. The Sr(1)-N bonds are 2.702(3) and 2.743(3) A long. In II and III, the H{sub 2}Edta{sup 2-} anions have a centrosymmetric structure with the trans configuration of the planar ethylenediamine fragment. The N atoms are blocked by acid protons. In II, the environment of the Sr atom is formed by six O atoms of three H{sub 2}Edta ligands, two O atoms of water molecules, and an O atom of the bicarbonate ion, which is disordered over two positions. In III, the environment of the Sr atom includes six O atoms of four H{sub 2}Edta{sup 2-} ligands and three O atoms of water molecules. The coordination number of the Sr atoms is equal to 8 + 1. In II and III, the main bonds fall in the ranges 2.534(3)-2.732(2) and 2.482(2)-2.746(3) A, whereas the ninth bond is elongated to 2.937(3) and 3.055(3) A, respectively. In II, all the structural elements are linked into wavy layers. The O-H-O interactions contribute to the stabilization of the layer and link neighboring layers. In III, hydrated Sr{sup 2+} cations and H{sub 2}Edta{sup -} anions form a three-dimensional [Sr{sub 2}(H{sub 2}Edta)(H{sub 2}O){sub 3}]{sub n}{sup 2n+} framework. The Cl{sup -} anions are fixed in channels of the framework by hydrogen bonds with four water

  2. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  3. Fe{sub 2}O{sub 3}-Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses as lithium-free nonsilicate pH responsive glasses – Compatibility between pH responsivity and hydrophobicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Tadanori, E-mail: hasimoto@chem.mie-u.ac.jp; Hamajima, Mitsuaki; Ohta, Honami

    Highlights: • Fe{sub 2}O{sub 3}-rich FeBiB glasses show high pH sensitivity and short pH response time. • Bi{sub 2}O{sub 3}-rich FeBiB glasses show relatively high contact angle for water. • FeBiB glasses are lithium-free nonsilicate pH responsive ones. • pH responsivity and hydrophobicity are obtained for optimum glass compositions. - Abstract: Lithium silicate-based glasses have widely been used as commercially available pH glass electrodes. It was revealed that Ti{sup 3+}-containing titanophosphate (TiO{sub 2}-P{sub 2}O{sub 5}, TP) glasses are pH responsive as lithium-free nonsilicate glasses for the first time. TP glasses with the compatibility between pH responsivity and self-cleaning property weremore » obtained by the sequential post-annealing (oxidation and reduction) of as-prepared glasses. Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} (BiB) glasses are relatively hydrophobic and are expected to show anti-fouling effect. They are unsuitable for pH responsive glasses, because they have high electrical resistivity. In the present study, xFe{sub 2}O{sub 3}·yBi{sub 2}O{sub 3}·(100 − x − y)B{sub 2}O{sub 3} glasses (xFeyBiB, x = 0–20 mol%, y = 20–80 mol%) glasses were selected as new pH responsive glasses with hydrophobicity, because Fe{sub 2}O{sub 3} is a representative component for causing hopping conduction to the glasses. BiB glass did not show pH responsivity, whereas xFeyBiB glasses showed good pH responsivity. xFeyBiB glasses are lithium-free nonsilicate pH responsive ones as well as TP glasses. The electrical resistivity and pH response time decreased with increasing Fe{sub 2}O{sub 3} content. The pH repeatability for standard solutions increased with increasing Bi{sub 2}O{sub 3} content. Silicate glass (20Fe70BiSi) showed better pH responsivity but lower contact angle than those of borate glass (20Fe70BiB). pH sensitivity increased in order of TP glasses (about 80%), xFeyBiB glasses (about 90%) and commercial pH responsive glass (about 100

  4. Topology-energy relationships and lowest energy configurations for pentagonal dodecahedral (H2O)20X clusters, X=empty, H2O, NH3, H3O+: The importance of O-topology

    NASA Astrophysics Data System (ADS)

    Anick, David J.

    2010-04-01

    For (H2O)20X water clusters consisting of X enclosed by the 512 dodecahedral cage, X=empty, H2O, NH3, and H3O+, databases are made consisting of 55-82 isomers optimized via B3LYP/6-311++G∗∗. Correlations are explored between ground state electronic energy (Ee) or electronic energy plus zero point energy (Ee+ZPE) and the clusters' topology, defined as the set of directed H-bonds. Linear regression is done to identify topological features that correlate with cluster energy. For each X, variables are found that account for 99% of the variance in Ee and predict it with a rms error under 0.2 kcal/mol. The method of analysis emphasizes the importance of an intermediate level of structure, the "O-topology," consisting of O-types and a list of O pairs that are bonded but omitting H-bond directions, as a device to organize the databases and reduce the number of structures one needs to consider. Relevant variables include three parameters, which count the number of H-bonds having particular donor and acceptor types; |M|2, where M is the cluster's vector dipole moment; and the projection of M onto the symmetry axis of X. Scatter diagrams for Ee or Ee+ZPE versus |M| show that clusters fall naturally into "families" defined by the values of certain discrete parameters, the "major parameters," for each X. Combining "family" analysis and O-topologies, a small group of clusters is identified for each X that are candidates to be the global minimum, and the minimum is determined. For X=H3O+, one cluster with central hydronium lies just 2.08 kcal/mol above the lowest isomer with surface hydronium. Implications of the methodology for dodecahedral (H2O)20(NH4+) and (H2O)20(NH4+)(OH-) are discussed, and new lower energy isomers are found. For MP2/TZVP, the lowest-energy (H2O)20(NH4+) isomer features a trifurcated H-bond. The results suggest a much more efficient and comprehensive way of seeking low-energy water cluster geometries that may have wide applicability.

  5. Topology-energy relationships and lowest energy configurations for pentagonal dodecahedral (H2O)20X clusters, X = empty, H2O, NH3, H3O+: the importance of O-topology.

    PubMed

    Anick, David J

    2010-04-28

    For (H(2)O)(20)X water clusters consisting of X enclosed by the 5(12) dodecahedral cage, X = empty, H(2)O, NH(3), and H(3)O(+), databases are made consisting of 55-82 isomers optimized via B3LYP/6-311++G(**). Correlations are explored between ground state electronic energy (Ee) or electronic energy plus zero point energy (Ee+ZPE) and the clusters' topology, defined as the set of directed H-bonds. Linear regression is done to identify topological features that correlate with cluster energy. For each X, variables are found that account for 99% of the variance in Ee and predict it with a rms error under 0.2 kcal/mol. The method of analysis emphasizes the importance of an intermediate level of structure, the "O-topology," consisting of O-types and a list of O pairs that are bonded but omitting H-bond directions, as a device to organize the databases and reduce the number of structures one needs to consider. Relevant variables include three parameters, which count the number of H-bonds having particular donor and acceptor types; absolute value(M)(2), where M is the cluster's vector dipole moment; and the projection of M onto the symmetry axis of X. Scatter diagrams for Ee or Ee+ZPE versus absolute value(M) show that clusters fall naturally into "families" defined by the values of certain discrete parameters, the "major parameters," for each X. Combining "family" analysis and O-topologies, a small group of clusters is identified for each X that are candidates to be the global minimum, and the minimum is determined. For X = H(3)O(+), one cluster with central hydronium lies just 2.08 kcal/mol above the lowest isomer with surface hydronium. Implications of the methodology for dodecahedral (H(2)O)(20)(NH(4)(+)) and (H(2)O)(20)(NH(4)(+))(OH(-)) are discussed, and new lower energy isomers are found. For MP2/TZVP, the lowest-energy (H(2)O)(20)(NH(4)(+)) isomer features a trifurcated H-bond. The results suggest a much more efficient and comprehensive way of seeking low

  6. Abatement of Polychoro-1,3-butadienes in Aqueous Solution by Ozone, UV Photolysis, and Advanced Oxidation Processes (O3/H2O2 and UV/H2O2).

    PubMed

    Lee, Minju; Merle, Tony; Rentsch, Daniel; Canonica, Silvio; von Gunten, Urs

    2017-01-03

    The abatement of 9 polychloro-1,3-butadienes (CBDs) in aqueous solution by ozone, UV-C(254 nm) photolysis, and the corresponding advanced oxidation processes (AOPs) (i.e., O 3 /H 2 O 2 and UV/H 2 O 2 ) was investigated. The following parameters were determined for 9 CBDs: second-order rate constants for the reactions of CBDs with ozone (k O 3 ) (<0.1-7.9 × 10 3 M -1 s -1 ) or with hydroxyl radicals (k • OH ) (0.9 × 10 9 - 6.5 × 10 9 M -1 s -1 ), photon fluence-based rate constants (k') (210-2730 m 2 einstein -1 ), and quantum yields (Φ) (0.03-0.95 mol einstein -1 ). During ozonation of CBDs in a natural groundwater, appreciable abatements (>50% at specific ozone doses of 0.5 gO 3 /gDOC to ∼100% at ≥1.0 gO 3 /gDOC) were achieved for tetra-CBDs followed by (Z)-1,1,2,3,4-penta-CBD and hexa-CBD. This is consistent with the magnitude of the determined k O 3 and k • OH . The formation of bromate, a potentially carcinogenic ozonation byproduct, could be significantly reduced by addition of H 2 O 2 . For a typical UV disinfection dose (400 J/m 2 ), various extents of phototransformations (10-90%) could be achieved. However, the efficient formation of photoisomers from CBDs with E/Z configuration must be taken into account because of their potential residual toxicity. Under UV-C(254 nm) photolysis conditions, no significant effect of H 2 O 2 addition on CBDs abatement was observed due to an efficient direct phototransformation of CBDs.

  7. A novel amido-pyrophosphate Mn(II) chelate complex with the synthetic ligand O{P(O)[NHC(CH3)3]2}2 (L): [Mn(L)2{OC(H)N(CH3)2}2]Cl2·2H2O.

    PubMed

    Tarahhomi, Atekeh; Pourayoubi, Mehrdad; Fejfarová, Karla; Dušek, Michal

    2013-03-01

    The title complex, trans-bis(dimethylformamide-κO)bis{N,N'-N'',N'''-tetra-tert-butyl[oxybis(phosphonic diamide-κO)]}manganese(II) dichloride dihydrate, [Mn(C16H40N4O3P2)2(C3H7NO)2]Cl2·2H2O, is the first example of a bis-chelate amido-pyrophosphate (pyrophosphoramide) complex containing an O[P(O)(NH)2]2 fragment. Its asymmetric unit contains half of the complex dication, one chloride anion and one water molecule. The Mn(II) atom, located on an inversion centre, is octahedrally coordinated, with a slight elongation towards the monodentate dimethylformamide ligand. Structural features of the title complex, such as the P=O bond lengths and the planarity of the chelate ring, are compared with those of previously reported complexes with six-membered chelates involving the fragments C(O)NHP(O), (X)NP(O) [X = C(O), C(S), S(O)2 and P(O)] and O[P(O)(N)2]2. This analysis shows that the six-membered chelate rings are less puckered in pyrophosphoramide complexes containing a P(O)OP(O) skeleton, such as the title compound. The extended structure of the title complex involves a linear aggregate mediated by N-H...O and N-H...Cl hydrogen bonds, in which the chloride anion is an acceptor in two additional O-H...Cl hydrogen bonds.

  8. Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2).

    PubMed

    Oh, Byung-Taek; Seo, Young-Suk; Sudhakar, Dega; Choe, Ji-Hyun; Lee, Sang-Myeong; Park, Youn-Jong; Cho, Min

    2014-08-30

    The presence of endotoxin in water environments may pose a serious public health hazard. We investigated the effectiveness of advanced oxidative processes (AOP: O3/H2O2 and UV/H2O2) in the oxidative degradation of endotoxin. In addition, we measured the release of endotoxin from Escherichia coli following typical disinfection methods, such as chlorine, ozone alone and UV, and compared it with the use of AOPs. Finally, we tested the AOP-treated samples in their ability to induce tumor necrosis factor alpha (TNF-α) in mouse peritoneal macrophages. The production of hydroxyl radical in AOPs showed superior ability to degrade endotoxin in buffered solution, as well as water samples from Korean water treatment facilities, with the ozone/H2O2 being more efficient compared to UV/H2O2. In addition, the AOPs proved effective not only in eliminating E. coli in the samples, but also in endotoxin degradation, while the standard disinfection methods lead to the release of endotoxin following the bacteria destruction. Furthermore, in the experiments with macrophages, the AOPs-deactivated endotoxin lead to the smallest induction of TNF-α, which shows the loss of inflammation activity, compared to ozone treatment alone. In conclusion, these results suggest that AOPs offer an effective and mild method for endotoxin degradation in the water systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A neodymium(III)-ammonium complex involving oxalate and carbonate ligands: (NH4)2[Nd2(C2O4)3(CO3)(H2O)].H2O.

    PubMed

    Trombe, Jean-Christian; Galy, Jean; Enjalbert, Renée

    2002-10-01

    The title compound, diammonium aqua-mu-carbonato-tri-mu-oxalato-dineodymium(III) hydrate, (NH(4))(2)[Nd(2)(CO(3))(C(2)O(4))(3)(H(2)O)].H(2)O, involving the two ligands oxalate and carbonate, has been prepared hydrothermally as single crystals. The Nd atoms form a tetranuclear unit across the inversion centre at (1/2, 1/2, 1/2). Starting from this tetranuclear unit, the oxalate ligands serve to develop a three-dimensional network. The carbonate group acts as a bis-chelating ligand to two Nd atoms, and is monodentate to a third Nd atom. The oxalate groups are all bis-chelating. The two independent Nd atoms are ninefold coordinated and the coordination polyhedron of these atoms is a distorted monocapped antiprism.

  10. Etude des mécanismes d'ionisation de H{2}O par interaction He^{*}(2 ^1S, 2 ^3S)/Ne^{*}(^3P{0}, ^3P{2})+H{2}O

    NASA Astrophysics Data System (ADS)

    Le Nadan, André; Sinou, Guillaume; Tuffin, Firmin

    1993-06-01

    Experimental observations of Penning ionisation of H{2}O by the helium metastables 21S and 23S and by the neon metastables ^3P{0} and ^3P{2} are reported. The kinetic energies of the ions created during the collision process (both parent and fragment) are analysed. Certain particularities of the experimental results are explained by involving the hypothesis of transfers of vibrational energy to kinetic energy. Furthermore, the forms of the energy distributions of the fragment ions are explained by th predissociation of the ^2B{2} state of H{2}O+. Nous avons étudié l'ionisation Penning de H{2}O par des métastables 21S et 23S de l'hélium, ainsi que ^3P{0} et ^3P{2} du néon. Nous avons analysé l'énergie cinétique des ions créés au cours de la collision (parents et fragments). Afin d'interpréter certaines particularités expérimentales, l'hypothèse de transferts d'énergie de vibration en énergie cinétique est proposées. Par ailleurs, les caractéristiques des distributions en énergie des ions fragments sont expliquées par la prédissociation de l'état ^2B{2} de H{2}O+.

  11. Co3(PO4)2·4H2O

    PubMed Central

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·4H2O, tricobalt(II) bis­[ortho­phosphate(V)] tetra­hydrate, were obtained under hydro­thermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO4)2·4H2O (mineral name hopeite) and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetra­hedral coordination, while the second, located on a mirror plane, has a distorted octa­hedral coordination environment. The tetra­hedrally coordinated Co2+ is bonded to four O atoms of four PO4 3− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water mol­ecules (two of which are located on mirror planes), forming a framework structure. In addition, hydrogen bonds of the type O—H⋯O are present throughout the crystal structure. PMID:21200978

  12. Two new three-dimensional zinc phosphites templated by piperazine: [H2pip][Zn3(HPO3)4(H2O)2] and K[H2pip]0.5[Zn3(HPO3)4

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Wang, Guo-Ming; Wang, Zong-Hua; Wang, Ying-Xia; Lin, Jian-Hua

    2014-01-01

    Two three-dimensional open-framework zinc phosphites with the same organically templated, [H2pip][Zn3(HPO3)4(H2O)2] (1) and K[H2pip]0.5[Zn3(HPO3)4] (2) (pip = piperazine), have been solvothermally synthesized and structurally characterized by IR, elemental analysis, thermogravimetric analysis, powder and single-crystal X-ray diffractions. Compound 1 consists of ZnO4 tetrahedra, [HPO3] pseudopyramids and [ZnO4(H2O)2] octahedra, which are linked through their vertexes to generate three-dimensional architecture with intersecting 8-membered channels along the [1 0 0], [0 0 1] and [1 0 1] directions. Compound 2 is constructed from strictly alternating ZnO4 tetrahedra and [HPO3] pseudopyramids, and exhibits (3,4)-connected inorganic framework with 8-, and 12-membered channels, in which the K+ and diprotonated H2pip2+ extra-framework cations reside, respectively. The coexistence of inorganic K+ and organic piperazine mixed templates in the structure is unique and, to the best of our knowledge, firstly observed in metal-phosphite materials. In addition, the participation of left-handed and right-handed helical chains in construction of the puckered 4.82 sheet structure in 2 is also noteworthy.

  13. Structurally characterized 1,1,3,3-tetramethylguanidine solvated magnesium aryloxide complexes: [Mg(mu-OEt)(DBP)(H-TMG)]2, [Mg(mu-OBc)(DBP)(H-TMG)]2, [Mg(mu-TMBA)(DBP)(H-TMG)]2, [Mg(mu-DPP)(DBP)(H-TMG)]2, [Mg(BMP)2(H-TMG)2], [Mg(O-2,6-Ph2C6H3)2 (H-TMG)2].

    PubMed

    Monegan, Jessie D; Bunge, Scott D

    2009-04-06

    The synthesis and structural characterization of several 1,1,3,3-tetramethylguanidine (H-TMG) solvated magnesium aryloxide complexes are reported. Bu(2)Mg was successfully reacted with H-TMG, HOC(6)H(3)(CMe(3))(2)-2,6 (H-DBP), and either ethanol, a carboxylic acid, or diphenyl phosphate in a 1:1 ratio to yield the corresponding [Mg(mu-L)(DBP)(H-TMG)](2) where L = OCH(2)CH(3) (OEt, 1), O(2)CC(CH(3))(3) (OBc, 2), O(2)C(C(6)H(2)-2,4,6-(CH(3))(3)) (TMBA, 3), or O(2)P(OC(6)H(5))(2) (DPP, 4). Bu(2)Mg was also reacted with two equivalents of H-TMG and HOC(6)H(3)(CMe(3))-2-(CH(3))-6 (BMP) or HO-2,6-Ph(2)C(6)H(3) to yield [Mg(BMP)(2)(H-TMG)(2)] (5) and [Mg(O-2,6-Ph(2)C(6)H(3))(2)(H-TMG)(2)] (6). Compounds 1-6 were characterized by single-crystal X-ray diffraction. Polymerization of l- and rac-lactide with 1 was found to generate polylactide (PLA). A discussion concerning the relevance of compounds 2 - 4 to the structure of Mg-activated phosphatase enzymes is also provided. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and (1)H, (13)C and (31)P NMR studies.

  14. Characterization of supramolecular (H2O)18 water morphology and water-methanol (H2O)15(CH3OH)3 clusters in a novel phosphorus functionalized trimeric amino acid host.

    PubMed

    Raghuraman, Kannan; Katti, Kavita K; Barbour, Leonard J; Pillarsetty, Nagavarakishore; Barnes, Charles L; Katti, Kattesh V

    2003-06-11

    Phosphorus functionalized trimeric alanine compounds (l)- and (d)-P(CH(2)NHCH(CH(3))COOH)(3) 2 are prepared in 90% yields by the Mannich reaction of Tris(hydroxymethyl)phosphine 1 with (l)- or (d)- Alanine in aqueous media. The hydration properties of (l)-2 and (d)-2 in water and water-methanol mixtures are described. The crystal structure analysis of (l)-2.4H(2)O, reveals that the alanine molecules pack to form two-dimensional bilayers running parallel to (001). The layered structural motif depicts two closely packed monolayers of 2 each oriented with its phosphorus atoms projected at the center of the bilayer and adjacent monolayers are held together by hydrogen bonds between amine and carboxylate groups. The water bilayers are juxtaposed with the H-bonded alanine trimers leading to 18-membered (H(2)O)(18) water rings. Exposure of aqueous solution of (l)-2 and (d)-2 to methanol vapors resulted in closely packed (l)-2 and (d)-2 solvated with mixed water-methanol (H(2)O)(15)(CH(3)OH)(3) clusters. The O-O distances in the mixed methanol-water clusters of (l)-2.3H(2)O.CH(3)OH and (d)-2.3H(2)O.CH(3)OH (O-O(average) = 2.857 A) are nearly identical to the O-O distance observed in the supramolecular (H(2)O)(18) water structure (O-O(average) = 2.859 A) implying the retention of the hydrogen bonded structure in water despite the accommodation of hydrophobic methanol groups within the supramolecular (H(2)O)(15)(CH(3)OH)(3) framework. The O-O distances in (l)-2.3H(2)O.CH(3)OH and (d)-2.3H(2)O.CH(3)OH and in (H(2)O)(18) are very close to the O-O distance reported for liquid water (2.85 A).

  15. Low-Lying Energy Isomers and Global Minima of Aqueous Nanoclusters: Structures and Spectroscopic Features of the Pentagonal Dodecahedron (H2O)20 and (H3O)+(H2O)20

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xantheas, Sotiris S.

    We rely on a hierarchy of methods to identify the low-lying isomers for the pentagonal dodecahedron (H2O)20 and the H3O+(H2O)20 clusters. Initial screening of isomers was performed with classical potentials [TIP4P, TTM2-F, TTM2.1-F for (H2O)20 and ASP for H3O+(H2O)20] and the networks obtained with those potentials were subsequently reoptimized at the DFT (B3LYP) and MP2 levels of theory. For the pentagonal dodecahedron (H2O)20 it was found that DFT (B3LYP) and MP2 produced the same global minimum. However, this was not the case for the H3O+(H2O)20 cluster, for which MP2 produced a different network for the global minimum when compared tomore » DFT (B3LYP). All low-lying minima of H3O+(H2O)20 correspond to hydrogen bonding networks having 9 ''free'' OH bonds and the hydronium ion on the surface of the cluster. The fact that DFT (B3LYP) and MP2 produce different results and issues related to the use of a smaller basis set, explains the discrepancy between the current results and the structure previously suggested [Science 304, 1137 (2004)] for the global minimum of the H3O+(H2O)20 cluster. Additionally, the IR spectra of the MP2 global minimum are closer to the experimentally measured ones than the spectra of the previously suggested DFT global minimum. The latter exhibit additional bands in the most red-shifted region of the OH stretching vibrations (corresponding to the ''fingerprint'' of the underlying hydrogen bonding network), which are absent from both the experimental as well as the spectra of the new structure suggested for the global minimum of this cluster.« less

  16. Degradation mechanism of alachlor during direct ozonation and O(3)/H(2)O(2) advanced oxidation process.

    PubMed

    Qiang, Zhimin; Liu, Chao; Dong, Bingzhi; Zhang, Yalei

    2010-01-01

    The degradation of alachlor by direct ozonation and advanced oxidation process O(3)/H(2)O(2) was investigated in this study with focus on identification of degradation byproducts. The second-order reaction rate constant between ozone and alachlor was determined to be 2.5+/-0.1M(-1)s(-1) at pH 7.0 and 20 degrees C. Twelve and eight high-molecular-weight byproducts (with the benzene ring intact) from alachlor degradation were identified during direct ozonation and O(3)/H(2)O(2), respectively. The common degradation byproducts included N-(2,6-diethylphenyl)-methyleneamine, 8-ethyl-3,4-dihydro-quinoline, 8-ethyl-quinoline, 1-chloroacetyl-2-hydro-3-ketone-7-acetyl-indole, 2-chloro-2',6'-diacetyl-N-(methoxymethyl)acetanilide, 2-chloro-2'-acetyl-6'-ethyl-N-(methoxymethyl)-acetanilide, and two hydroxylated alachlor isomers. In direct ozonation, four more byproducts were also identified including 1-chloroacetyl-2,3-dihydro-7-ethyl-indole, 2-chloro-2',6'-ethyl-acetanilide, 2-chloro-2',6'-acetyl-acetanilide and 2-chloro-2'-ethyl-6'-acetyl-N-(methoxymethyl)-acetanilide. Degradation of alachlor by O(3) and O(3)/H(2)O(2) also led to the formation of low-molecular-weight byproducts including formic, acetic, propionic, monochloroacetic and oxalic acids as well as chloride ion (only detected in O(3)/H(2)O(2)). Nitrite and nitrate formation was negligible. Alachlor degradation occurred via oxidation of the arylethyl group, N-dealkylation, cyclization and cleavage of benzene ring. After O(3) or O(3)/H(2)O(2) treatment, the toxicity of alachlor solution examined by the Daphnia magna bioassay was slightly reduced. 2009 Elsevier Ltd. All rights reserved.

  17. Synthesis, structure, and properties of nickel complexes with nitrilotris(methylenephosphonic acid) [Ni(H{sub 2}O)3N(CH2PO{sub 3}H){sub 3}] and Na{sub 4}[Ni(H{sub 2}O)N(CH{sub 2}PO{sub 3}){sub 3}] ∙ 11H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somov, N. V., E-mail: somov@phys.unn.ru; Chausov, F. F., E-mail: chaus@yandex.ru; Zakirova, R. M.

    2016-03-15

    Nitrilotris(methylenephosphonato)triaquanickel and tetrasodium nitrilotris(methylenephosphonato) aquanickelate undecahydrate were synthesized and characterized. The crystal of [Ni(H{sub 2}O){sub 3}N(CH{sub 2}PO{sub 3}H){sub 3}] is composed of linear coordination polymers and belongs to sp. gr. P2{sub 1}/c, Z = 4, a = 9.17120(10) Å, b = 16.05700(10) Å, c = 9.70890(10) Å, β = 115.830(2)°. The Ni atom is in an octahedral coordination formed by two oxygen atoms of one phosphonate ligand, one oxygen atom of another ligand molecule, and three water molecules in a meridional configuration. The crystal of Na{sub 4}[Ni(H{sub 2}O)N(CH{sub 2}PO{sub 3}){sub 3}] ∙ 11H{sub 2}O has an island dimeric chelate structuremore » and belongs to sp. gr. C2/c, Z = 8, a = 18.7152(2) Å, b = 12.05510(10) Å, c = 21.1266(2) Å, β = 104.4960(10)°. The Ni atom has a slightly distorted octahedral coordination involving one nitrogen atom and closes three five-membered N–C–P–O–Ni rings sharing the Ni–N bond.« less

  18. Synthesis and X-ray Crystallography of [Mg(H2O)6][AnO2(C2H5COO)3]2 (An = U, Np, or Pu).

    PubMed

    Serezhkin, Viktor N; Grigoriev, Mikhail S; Abdulmyanov, Aleksey R; Fedoseev, Aleksandr M; Savchenkov, Anton V; Serezhkina, Larisa B

    2016-08-01

    Synthesis and X-ray crystallography of single crystals of [Mg(H2O)6][AnO2(C2H5COO)3]2, where An = U (I), Np (II), or Pu (III), are reported. Compounds I-III are isostructural and crystallize in the trigonal crystal system. The structures of I-III are built of hydrated magnesium cations [Mg(H2O)6](2+) and mononuclear [AnO2(C2H5COO)3](-) complexes, which belong to the AB(01)3 crystallochemical group of uranyl complexes (A = AnO2(2+), B(01) = C2H5COO(-)). Peculiarities of intermolecular interactions in the structures of [Mg(H2O)6][UO2(L)3]2 complexes depending on the carboxylate ion L (acetate, propionate, or n-butyrate) are investigated using the method of molecular Voronoi-Dirichlet polyhedra. Actinide contraction in the series of U(VI)-Np(VI)-Pu(VI) in compounds I-III is reflected in a decrease in the mean An═O bond lengths and in the volume and sphericity degree of Voronoi-Dirichlet polyhedra of An atoms.

  19. Lanthanite-(Nd), Nd2(CO3)3·8H2O

    PubMed Central

    Morrison, Shaunna M.; Andrade, Marcelo B.; Wenz, Michelle D.; Domanik, Kenneth J.; Downs, Robert T.

    2013-01-01

    Lanthanite-(Nd), ideally Nd2(CO3)3·8H2O [dineodymium(III) tricarbonate octa­hydrate], is a member of the lanthanite mineral group characterized by the general formula REE 2(CO3)3·8H2O, where REE is a 10-coordinated rare earth element. Based on single-crystal X-ray diffraction of a natural sample from Mitsukoshi, Hizen-cho, Karatsu City, Saga Prefecture, Japan, this study presents the first structure determination of lanthanite-(Nd). Its structure is very similar to that of other members of the lanthanite group. It is composed of infinite sheets made up of corner- and edge-sharing of two NdO10-polyhedra (both with site symmetry ..2) and two carbonate triangles (site symmetries ..2 and 1) parallel to the ab plane, and stacked perpendicular to c. These layers are linked to one another only through hydrogen bonding involving the water mol­ecules. PMID:23476479

  20. Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang

    2014-01-01

    The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2 solutions is governed by coordination competition of Cl− and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+ both in a tetra­hedral coordination with Cl− and in an octa­hedral environment defined by five water mol­ecules and one Cl− shared with the [ZnCl4]2− unit. Thus, these two different types of Zn2+ cations form isolated units with composition [Zn2Cl4(H2O)5] (penta­aqua-μ-chlorido-tri­chlorido­di­zinc). The trihydrate {hexa­aqua­zinc tetra­chlorido­zinc, [Zn(H2O)6][ZnCl4]}, consists of three different Zn2+ cations, one of which is tetra­hedrally coordinated by four Cl− anions. The two other Zn2+ cations are each located on an inversion centre and are octa­hedrally surrounded by water mol­ecules. The [ZnCl4] tetra­hedra and [Zn(H2O)6] octa­hedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexa­aqua­zinc tetra­chlorido­zinc trihydrate, [Zn(H2O)6][ZnCl4]·3H2O}, consists of isolated octa­hedral [Zn(H2O)6] and tetra­hedral [ZnCl4] units, as well as additional lattice water mol­ecules. O—H⋯O hydrogen bonds between the water mol­ecules as donor and ZnCl4 tetra­hedra and water mol­ecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures. PMID:25552980

  1. Crystal structures of Sr(ClO4)2·3H2O, Sr(ClO4)2·4H2O and Sr(ClO4)2·9H2O

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang

    2014-01-01

    The title compounds, strontium perchlorate trihydrate {di-μ-aqua-aquadi-μ-perchlorato-strontium, [Sr(ClO4)2(H2O)3]n}, strontium perchlorate tetra­hydrate {di-μ-aqua-bis­(tri­aqua­diperchloratostrontium), [Sr2(ClO4)4(H2O)8]} and strontium perchlorate nona­hydrate {hepta­aqua­diperchloratostrontium dihydrate, [Sr(ClO4)2(H2O)7]·2H2O}, were crystallized at low temperatures according to the solid–liquid phase diagram. The structures of the tri- and tetra­hydrate consist of Sr2+ cations coordinated by five water mol­ecules and four O atoms of four perchlorate tetra­hedra in a distorted tricapped trigonal–prismatic coordination mode. The asymmetric unit of the trihydrate contains two formula units. Two [SrO9] polyhedra in the trihydrate are connected by sharing water mol­ecules and thus forming chains parallel to [100]. In the tetra­hydrate, dimers of two [SrO9] polyhedra connected by two sharing water mol­ecules are formed. The structure of the nona­hydrate contains one Sr2+ cation coordinated by seven water mol­ecules and by two O atoms of two perchlorate tetra­hedra (point group symmetry ..m), forming a tricapped trigonal prism (point group symmetry m2m). The structure contains additional non-coordinating water mol­ecules, which are located on twofold rotation axes. O—H⋯O hydrogen bonds between the water mol­ecules as donor and ClO4 tetra­hedra and water mol­ecules as acceptor groups lead to the formation of a three-dimensional network in each of the three structures. PMID:25552979

  2. [{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20]36-: a molecular quantum spin icosidodecahedron.

    PubMed

    Botar, Bogdan; Kögerler, Paul; Hill, Craig L

    2005-07-07

    Self-assembly of aqueous solutions of molybdate and vanadate under reducing, mildly acidic conditions results in a polyoxomolybdate-based {Mo72V30} cluster compound Na8K16(VO)(H2O)5[K10 subset{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20].150H2O, 1, a quantum spin-based Keplerate structure.

  3. Proton transfer reactions and dynamics in CH(3)OH-H(3)O(+)-H(2)O complexes.

    PubMed

    Sagarik, Kritsana; Chaiwongwattana, Sermsiri; Vchirawongkwin, Viwat; Prueksaaroon, Supakit

    2010-01-28

    Proton transfer reactions and dynamics in hydrated complexes formed from CH(3)OH, H(3)O(+) and H(2)O were studied using theoretical methods. The investigations began with searching for equilibrium structures at low hydration levels using the DFT method, from which active H-bonds in the gas phase and continuum aqueous solution were characterized and analyzed. Based on the asymmetric stretching coordinates (Deltad(DA)), four H-bond complexes were identified as potential transition states, in which the most active unit is represented by an excess proton nearly equally shared between CH(3)OH and H(2)O. These cannot be definitive due to the lack of asymmetric O-H stretching frequencies (nu(OH)) which are spectral signatures of transferring protons. Born-Oppenheimer molecular dynamics (BOMD) simulations revealed that, when the thermal energy fluctuations and dynamics were included in the model calculations, the spectral signatures at nu(OH) approximately 1000 cm(-1) appeared. In continuum aqueous solution, the H-bond complex with incomplete water coordination at charged species turned out to be the only active transition state. Based on the assumption that the thermal energy fluctuations and dynamics could temporarily break the H-bonds linking the transition state complex and water molecules in the second hydration shell, elementary reactions of proton transfer were proposed. The present study showed that, due to the coupling among various vibrational modes, the discussions on proton transfer reactions cannot be made based solely on static proton transfer potentials. Inclusion of thermal energy fluctuations and dynamics in the model calculations, as in the case of BOMD simulations, together with systematic IR spectral analyses, have been proved to be the most appropriate theoretical approaches.

  4. Anionic ordering and thermal properties of FeF3·3H2O.

    PubMed

    Burbano, Mario; Duttine, Mathieu; Borkiewicz, Olaf; Wattiaux, Alain; Demourgues, Alain; Salanne, Mathieu; Groult, Henri; Dambournet, Damien

    2015-10-05

    Iron fluoride trihydrate can be used to prepare iron hydroxyfluoride with the hexagonal-tungsten-bronze (HTB) type structure, a potential cathode material for batteries. To understand this phase transformation, a structural description of β-FeF3·3H2O is first performed by means of DFT calculations and Mössbauer spectroscopy. The structure of this compound consists of infinite chains of [FeF6]n and [FeF2(H2O)4]n. The decomposition of FeF3·3H2O induces a collapse and condensation of these chains, which lead to the stabilization, under specific conditions, of a hydroxyfluoride network FeF3-x(OH)x with the HTB structure. The release of H2O and HF was monitored by thermal analysis and physical characterizations during the decomposition of FeF3·3H2O. An average distribution of FeF4(OH)2 distorted octahedra in HTB-FeF3-x(OH)x was obtained subsequent to the thermal hydrolysis/olation of equatorial anionic positions involving F(-) and H2O. This study provides a clear understanding of the structure and thermal properties of FeF3·3H2O, a material that can potentially bridge the recycling of pickling sludge from the steel industry by preparing battery electrodes.

  5. Expanding the remarkable structural diversity of uranyl tellurites: hydrothermal preparation and structures of K[UO(2)Te(2)O(5)(OH)], Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O, beta-Tl(2)[UO(2)(TeO(3))(2)], and Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2).

    PubMed

    Almond, Philip M; Albrecht-Schmitt, Thomas E

    2002-10-21

    The reactions of UO(2)(C(2)H(3)O(2))(2).2H(2)O with K(2)TeO(3).H(2)O, Na(2)TeO(3) and TlCl, or Na(2)TeO(3) and Sr(OH)(2).8H(2)O under mild hydrothermal conditions yield K[UO(2)Te(2)O(5)(OH)] (1), Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O (2) and beta-Tl(2)[UO(2)(TeO(3))(2)] (3), or Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2) (4), respectively. The structure of 1 consists of tetragonal bipyramidal U(VI) centers that are bound by terminal oxo groups and tellurite anions. These UO(6) units span between one-dimensional chains of corner-sharing, square pyramidal TeO(4) polyhedra to create two-dimensional layers. Alternating corner-shared oxygen atoms in the tellurium oxide chains are protonated to create short/long bonding patterns. The one-dimensional chains of corner-sharing TeO(4) units found in 1 are also present in 2. However, in 2 there are two distinct chains present, one where alternating corner-shared oxygen atoms are protonated, and one where the chains are unprotonated. The uranyl moieties in 2 are bound by five oxygen atoms from the tellurite chains to create seven-coordinate pentagonal bipyramidal U(VI). The structures of 3 and 4 both contain one-dimensional [UO(2)(TeO(3))(2)](2-) chains constructed from tetragonal bipyramidal U(VI) centers that are bridged by tellurite anions. The chains differ between 3 and 4 in that all of the pyramidal tellurite anions in 3 have the same orientation, whereas the tellurite anions in 4 have opposite orientations on each side of the chain. In 4, there are also additional isolated TeO(3)(2-) anions present. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 7.9993(5) A, b = 8.7416(6) A, c = 11.4413(8) A, Z = 4; 2, orthorhombic, space group Pbam, a = 10.0623(8) A, b = 23.024(2) A, c = 7.9389(6) A, Z = 4; 3, monoclinic, space group P2(1)/n, a = 5.4766(4) A, b = 8.2348(6) A, c = 20.849(3) A, beta = 92.329(1) degrees, Z = 4; 4, monoclinic, space group C2/c, a = 20.546(1) A, b = 5.6571(3) A, c = 13.0979(8) A, beta

  6. Design and syntheses of hybrid metal-organic materials based on K3[M(C2O4)33H2O [M(III)=Fe, Al, Cr] metallotectons

    NASA Astrophysics Data System (ADS)

    Sun, Yayong; Zong, Yingxia; Ma, Haoran; Zhang, Ao; Liu, Kang; Wang, Debao; Wang, Wenqiang; Wang, Lei

    2016-05-01

    By using K3[M(C2O4)33H2O [M(III)=Fe, Al, Cr] (C2O42-=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C2O4)2(H2O)2}2]·(H-L1)2·H2O 1, [Fe(C2O4)Cl2]·(H2-L2)0.5·(L2)0.5·H2O 2, [{Fe(C2O4)1.5Cl2}2]·(H-L3)43, [Fe2(C2O4)Cl8]·(H2-L4)2·2H2O 4, K[Al(C2O4)3]·(H2-L5)·2H2O 5, K[Al(C2O4)3]·(H-L6)2·2H2O 6, K[Cr(C2O4)32H2O 7, Na[Fe(C2O4)3]·(H-L6)2·2H2O 8 (with L1=4-dimethylaminopyridine, L2=2,3,5,6-tetramethylpyrazine, L3=2-aminobenzimidazole, L4=1,4-bis-(1H-imidazol-1-yl)benzene, L5=1,4-bis((2-methylimidazol-1-yl)methyl)benzene, L6=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C2O4)2(H2O)2]- unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C2O4)Cl2]- anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe2(C2O4)3Cl4]4- unit. Compound 4 features distinct [Fe2(C2O4)Cl8]4- units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C2O4)3]3- units and K+ cations. The 1D chains are further extended into 3D antionic H-bonded framework through O-H···O H-bonds. Compounds 6-8 show 2D [KAl(C2O4)3]2- layer, [KCr(C2O4)3]2- layer and [NaFe(C2O4)3]2- layer, respectively.

  7. High-throughput and in situ EDXRD investigation on the formation of two new metal aminoethylphosphonates - Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) and Ca(OH)(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3}){center_dot}2H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Corinna; Feyand, Mark; Rothkirch, Andre

    2012-04-15

    The system Ca{sup 2+}/2-aminoethylphosphonic acid/H{sub 2}O/NaOH was systematically investigated using high-throughput methods. The experiments led to one new compound Ca(O{sub 3}PC{sub 2} H{sub 4}NH{sub 2}) (1) and the crystal structure was determined using in house X-ray powder diffraction data (monoclinic, P2{sub 1}/c, a=9.7753(3), b=6.4931(2), c=8.4473(2) A, {beta}=106.46(2) Degree-Sign , V=514.20(2) A{sup 3}, Z=4). The formation of 1 was investigated by in situ energy dispersive X-ray diffraction measurements (EDXRD) at beamline F3 at HASYLAB (light source DORIS III), DESY, Hamburg. An intermediate, Ca(OH)(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3}){center_dot}2H{sub 2}O (2), was observed and could be isolated from the reaction mixture at ambientmore » temperatures by quenching the reaction. The crystal structure of 2 was determined from XRPD data using synchrotron radiation (monoclinic, P2{sub 1}/m, a=11.2193(7), b=7.1488(3), c=5.0635(2) A, {beta}=100.13(4) Degree-Sign , V=399.78(3) A{sup 3}, Z=2). - Graphical abstarct: The detailed in situ energy dispersive X-ray diffraction (EDXRD) investigation on the formation of the new inorganic-organic hybrid compound Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) leads to the discovery of a new crystalline intermediate phase. Both crystal structures were elucidated using X-ray powder diffraction data. Highlights: Black-Right-Pointing-Pointer High-throughput investigation led to new metal aminoethylphosphonate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}). Black-Right-Pointing-Pointer The formation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) was followed by in situ EDXRD measurements. Black-Right-Pointing-Pointer The crystalline intermediate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was discovered. Black-Right-Pointing-Pointer Isolation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was accomplished by quenching experiments. Black-Right-Pointing-Pointer The structures were determined using X

  8. Metabolism of D-[1-3H]glucose, D-[2-3H]glucose, D-[5-3H]glucose, D-[6-3H]glucose and D-[U-14C]glucose by rat and human erythrocytes incubated in the presence of H2O or D2O.

    PubMed

    Conget, I; Malaisse, W J

    1995-02-01

    The present study investigates whether heavy water affects the efficiency of 3HOH production from D-[1-3H]glucose, D-[2-3H]glucose, D-[5-3H]glucose and D-[6-3H]glucose relative to the total generation of tritiated metabolites produced by either rat or human erythrocytes. The relative 3HOH yield was close to 95% with D-[5-3H]glucose, 72% with D-[2-3H]glucose, 22-32% with D-[1-3H]glucose, and only 12% with D-[6-3H]glucose. In the latter case, the comparison of the specific radioactivity of intracellular and extracellular acidic metabolites, expressed relative to that of 14C-labelled metabolites produced from D-[U-14C]glucose, indicated that the generation of 3HOH from D-[6-3H]glucose occurs at distal metabolic steps, such as the partial reversion of the pyruvate kinase reaction or the interconversion of pyruvate and L-alanine in the reaction catalysed by glutamate-pyruvate transaminase. As a rule, the substitution of H2O by D2O only caused minor to negligible changes in the relative 3HOH yield. This implies that the unexpectedly high deuteration of 13C-labelled D-glucose metabolites recently documented in erythrocytes exposed to D2O cannot be attributed to any major interference of heavy water with factors regulating both the deuteration and detritiation efficiency, such as the enzyme-to-enzyme tunnelling of specific glycolytic intermediates.

  9. Effect of substituent groups (R= sbnd CH3, sbnd Br and sbnd CF3) on the structure, stability and redox property of [Cr(R-pic)2(H2O)2]NO3·H2O complexes

    NASA Astrophysics Data System (ADS)

    Chai, Jie; Liu, Yanfei; Liu, Bin; Yang, Binsheng

    2017-12-01

    Complexes [Cr(3-CH3-pic)2(H2O)2]NO3·H2O (1), [Cr(5-Br-pic)2(H2O)2]NO3·H2O (2) and [Cr(5-CF3-pic)2(H2O)2]NO3·H2O (3) were synthesized (pic = pyridine-2-carboxylic acid) and characterized by X-ray crystal diffraction. Crystal structure indicates that two bidentate ligands occupy equatorial position and two H2O occupy axial positions in trans-configuration. (i) Decomposition of complexes 1, 2 and 3 in different medium (phosphate buffered saline (PBS), apo-ovotransferrin (apootf) and EDTA) indicates that decomposition rate constants of these complexes follow the sequence of 1 < 2 < 3. (ii) The redox potential of Cr(III)/Cr(II) by cyclic voltammetry follows the sequence of 1 (-1.20 V) > 3 (-1.29 V) > 2 (-1.31 V). (iii) In addition, ·OH-generation of the new synthesized complexes was determined by Fenton-like reaction in comparison with Cr(pic)3, and it may be related to the reduction potential of the complexes. (iv) Moreover, Hammett substituent constants σp (inductive) and σm (resonance) (R = 3-CH3, 5-Br, 5-CF3) were introduced to evaluate the impact of substituent groups on the bond length and decomposition kinetics. The substituent group on the ligand has great effect on the properties of the complexes.

  10. Excision of uranium oxide chains and ribbons in the novel one-dimensional uranyl iodates K(2)[(UO(2))3(IO(3))(4)O(2)] and Ba[(UO(2)2(IO(3))(2)O(2)](H(2)O).

    PubMed

    Bean, A C; Ruf, M; Albrecht-Schmitt, T E

    2001-07-30

    The alkali metal and alkaline-earth metal uranyl iodates K(2)[(UO(2))(3)(IO(3))(4)O(2)] and Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) have been prepared from the hydrothermal reactions of KCl or BaCl(2) with UO(3) and I(2)O(5) at 425 and 180 degrees C, respectively. While K(2)[(UO(2))(3)(IO(3))(4)O(2)] can be synthesized under both mild and supercritical conditions, the yield increases from <5% to 73% as the temperature is raised from 180 to 425 degrees C. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), however, has only been isolated from reactions performed in the mild temperature regime. Thermal measurements (DSC) indicate that K(2)[(UO(2))(3)(IO(3))(4)O(2)] is more stable than Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) and that both compounds decompose through thermal disproportionation at 579 and 575 degrees C, respectively. The difference in the thermal behavior of these compounds provides a basis for the divergence of their preparation temperatures. The structure of K(2)[(UO(2))(3)(IO(3))(4)O(2)] is composed of [(UO(2))(3)(IO(3))(4)O(2)](2)(-) chains built from the edge-sharing UO(7) pentagonal bipyramids and UO(6) octahedra. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) consists of one-dimensional [(UO(2))(2)(IO(3))(2)O(2)](2)(-) ribbons formed from the edge sharing of distorted UO(7) pentagonal bipyramids. In both compounds the iodate groups occur in both bridging and monodentate binding modes and further serve to terminate the edges of the uranium oxide chains. The K(+) or Ba(2+) cations separate the chains or ribbons in these compounds forming bonds with terminal oxygen atoms from the iodate ligands. Crystallographic data: K(2)[(UO(2))(3)(IO(3))(4)O(2)], triclinic, space group P_1, a = 7.0372(5) A, b = 7.7727(5) A, c = 8.9851(6) A, alpha = 93.386(1) degrees, beta = 105.668(1) degrees, gamma = 91.339(1) degrees, Z = 1; Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), monoclinic, space group P2(1)/c, a = 8.062(4) A, b = 6.940(3) A, c = 21.67(1), beta= 98.05(1) degrees, Z = 4.

  11. Anionic ordering and thermal properties of FeF 3·3H 2O

    DOE PAGES

    Burbano, Mario; Duttine, Mathieu; Borkiewicz, Olaf; ...

    2015-09-17

    In this study, iron fluoride tri-hydrate can be used to prepare iron hydroxyfluoride with the Hexagonal-Tungsten-Bronze (HTB) type structure, a potential cathode material for batteries. To understand this phase transformation, a structural description of β-FeF 3·3H 2O is first performed by means of DFT calculations and Mössbauer spectroscopy. The structure of this compound consists of infinite chains of [FeF 6]n and [FeF 2(H2O) 4] n. The decomposition of FeF 3·3H 2O induces a collapse and condensation of these chains, which lead to the stabilization, under specific conditions, of a hydroxyfluoride network FeF 3-x(OH) x with the HTB structure. The releasemore » of H 2O and HF was monitored by thermal analysis and physical characterizations during the decomposition of FeF 3·3H 2O. An average distribution of FeF 4(OH) 2 distorted octahedra in HTB-FeF 3-x(OH) x was obtained subsequent to the thermal hydrolysis/olation of equatorial anionic positions involving F- and H 2O. This study provides a clear understanding of the structure and thermal properties of FeF 3·3H 2O, a material that can potentially bridge the recycling of pickling sludge from the steel industry by preparing battery electrodes.« less

  12. Adsorption of H2O, H2, O2, CO, NO, and CO2 on graphene/g-C3N4 nanocomposite investigated by density functional theory

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Zhang; Bandaru, Sateesh; Liu, Jin; Li, Li-Li; Wang, Zhenling

    2018-02-01

    Motivated by the photocatalytic reactions of small molecules on g-C3N4 by these insights, we sought to explore the adsorption of H2O and CO2 molecules on the graphene side and H2O, H2, O2, CO, NO, and CO2 molecules on the g-C3N4 side of hybrid g-C3N4/graphene nanocomposite using first-principles calculations. The atomic structure and electronic properties of hybrid g-C3N4/graphene nanocomposite is explored. The adsorption of small molecules on graphene/g-C3N4 nanocomposite is thoroughly investigated. The computational studies revels that all small molecules on graphene/g-C3N4 nanocomposite are the physisorption. The adsorption characteristics of H2O and CO2 molecules on the graphene side are similar to that on graphene. The adsorption of H2O, H2, O2, CO, NO, and CO2 molecules on the g-C3N4 side always leads to a buckle structure of graphene/g-C3N4 nanocomposite. Graphene as a substrate can significantly relax the buckle degree of g-C3N4 in g-C3N4/graphene nanocomposite.

  13. Crystal structures of hydrates of simple inorganic salts. III. Water-rich aluminium halide hydrates: AlCl3 · 15H2O, AlBr3 · 15H2O, AlI3 · 15H2O, AlI3 · 17H2O and AlBr3 · 9H2O.

    PubMed

    Schmidt, Horst; Hennings, Erik; Voigt, Wolfgang

    2014-09-01

    Water-rich aluminium halide hydrate structures are not known in the literature. The highest known water content per Al atom is nine for the perchlorate and fluoride. The nonahydrate of aluminium bromide, stable pentadecahydrates of aluminium chloride, bromide and iodide, and a metastable heptadecahydrate of the iodide have now been crystallized from low-temperature solutions. The structures of these hydrates were determined and are discussed in terms of the development of cation hydration spheres. The pentadecahydrate of the chloride and bromide are isostructural. In AlI(3) · 15H2O, half of the Al(3+) cations are surrounded by two complete hydration spheres, with six H2O in the primary and 12 in the secondary. For the heptadecahydrate of aluminium iodide, this hydration was found for every Al(3+).

  14. Syntheses and characterization of phosphonates and diphosphonates of molybdenum, A4[(MoO3)5(O3PR)2]·xH2O, A2[Mo2O5(O3PR)2] and A2[Mo2O5(O3P-R-PO3)] (A = K, Rb, Cs, Tl, NH4).

    PubMed

    Elias Jesu Packiam, D; Vidyasagar, Kanamaluru

    2017-11-28

    Twenty new molybdenum phosphonates and diphosphonates have been synthesized and structurally characterized by single crystal and powder X-ray diffraction, CHN analyses, spectroscopic and thermal studies. Four of them are molecular phenyl- and benzyl-phosphonates containing discrete [(MoO 3 ) 5 (O 3 PR) 2 ] 4- (R = Ph or CH 2 Ph) cyclic anions. The sixteen non-molecular compounds are layered isostructural phenylphosphonates, A 2 [Mo 2 O 5 (O 3 PPh) 2 ] (A = NH 4 , Tl, Rb, Cs) and K 1.5 (H 3 O) 0.5 [Mo 2 O 5 (O 3 PPh) 2 ] and the corresponding diphosphonate compounds with pillared anionic layers, A 2 [Mo 2 O 5 (O 3 P(CH 2 ) 3 PO 3 )], A 2 [Mo 2 O 5 (O 3 P(CH 2 ) 4 PO 3 )] and A 2 [Mo 2 O 5 (O 3 P(C 6 H 4 )PO 3 )]. The A + ions reside in the interlayer region as well as in the cavities within the anionic layers.

  15. Interstellar H3O(+) and its relation to the O2 and H2O abundances

    NASA Astrophysics Data System (ADS)

    Phillips, T. G.; van Dishoeck, Ewine F.; Keene, Jocelyn

    1992-11-01

    An interstellar medium study of the three reasonably accessible low-lying submillimeter lines of the H3O(+) molecular ion at 396, 364, and 307 GHz is presented. An analysis of the H3O(+) line ratios shows that under high density (about 10 exp 6 - 10 exp 7/cu cm) and high-temperature (greater than about 50 K), the 396 GHz line is about a factor of two stronger than the 364 GHz line, with the 307 GHz line much weaker. For lower densities, the excitation of the 364 GHz line can be very sensitive to dust radiation pumping, and it is shown that this is the case in Sgr B2, resulting in the 364 GHz line being a factor of 2-3 stronger than the 396 GHz line. Under almost all conditions, the 307 GHz line is weak, the exception being for densities greater than about 10 exp 7/cu cm.

  16. The reaction of O(1 D) with H2O and the reaction of OH with C3H6

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Heicklen, J.

    1972-01-01

    The N2O was photolyzed at 2139 A to produce O(1 D) atoms in the presence of H2O and CO. The O(1 D) atoms react with H2O to produce HO radicals, as measured by CO2 production from the reaction of OH with CO. The relative rate constant for O(1 D) removal by H2O compared to that by N2O is 2.1. In the presence of C3H6, the OH can be removed by reaction with either CO or C3H6.

  17. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    NASA Astrophysics Data System (ADS)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  18. Radical-molecule reaction C3H+H2O: a mechanistic study.

    PubMed

    Dong, Hao; Ding, Yi-Hong; Sun, Chia-Chung

    2005-02-08

    Despite the importance of the C(3)H radical in both combustion and interstellar space, the reactions of C(3)H toward stable molecules have never been studied. In this paper, we report our detailed mechanistic study on the radical-molecule reaction C(3)H+H(2)O at the Becke's three parameter Lee-Yang-Parr-B3LYP6-311G(d,p) and coupled cluster with single, double, and triple excitations-CCSD(T)6-311G(2d,p) (single-point) levels. It is shown that the C(3)H+H(2)O reaction initially favors formation of the carbene-insertion intermediates HCCCHOH (1a,1b) rather than the direct H- or OH-abstraction process. Subsequently, the isomers (1a,1b) can undergo a direct H- extrusion to form the well-known product propynal HCCCHO (P(5)). Highly competitively, (1a,1b) can take the successive 1,4- and 1,2-H-shift interconversion to isomer H(2)CCCHO(2a,2b) and then to isomer H(2)CCHCO(3a,3b), which can finally take a direct C-C bond cleavage to give product C(2)H(3) and CO (P(1)). The other products are kinetically much less feasible. With the overall entrance barrier 10.6 kcal/mol, the title reaction can be important in postburning processes. Particularly, our calculations suggest that the title reaction may play a role in the formation of the intriguing interstellar molecule, propynal HCCCHO. The calculated results will also be useful for the analogous C(3)H reactions such as with ammonia and alkanes.

  19. Synthesis, DFT calculations of structure, vibrational and thermal decomposition studies of the metal complex Pb[Mn(C3H2O4)2(H2O)2].

    PubMed

    Gil, Diego M; Carbonio, Raúl E; Gómez, María Inés

    2015-04-15

    The metallo-organic complex Pb[Mn(C3H2O4)2(H2O)2] was synthesized and characterized by IR and Raman spectroscopy and powder X-ray diffraction methods. The cell parameters for the complex were determined from powder X-ray diffraction using the autoindexing program TREOR, and refined by the Le Bail method with the Fullprof program. A hexagonal unit cell was determined with a=b=13.8366(7)Å, c=9.1454(1)Å, γ=120°. The DFT calculated geometry of the complex anion [Mn(C3H2O4)2(H2O)2](2-) is very close to the experimental data reported for similar systems. The IR and Raman spectra and the thermal analysis of the complex indicate that only one type of water molecules is present in the structure. The thermal decomposition of Pb[Mn(C3H2O4)2(H2O)2] at 700 °C in air produces PbO and Pb2MnO4 as final products. The crystal structure of the mixed oxide is very similar to that reported for Pb3O4. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Crystal Structures and Thermal Properties of Two Transition-Metal Compounds {[Ni(DNI)2(H2O)3][Ni(DNI)2 (H2O)4]}·6H2O and Pb(DNI)2(H2O)4 (DNI = 2,4-Dinitroimidazolate)

    PubMed Central

    Zhang, Guo-Fang; Cai, Mei-Yu; Jing, Ping; He, Chong; Li, Ping; Zhao, Feng-Qi; Li, Ji-Zhen; Fan, Xue-Zhong; Ng, Seik Weng

    2010-01-01

    Two transition-metal compounds derived from 2,4-dinitroimidazole, {[Ni(DNI)2(H2O)3][Ni(DNI)2 (H2O)4]}·6H2O, 1, and Pb(DNI)2(H2O)4, 2, were characterized by elemental analysis, FT-IR, TG-DSC and X-ray single-crystal diffraction analysis. Crystal data for 1: monoclinic, space group C2/c, a = 26.826(3), b = 7.7199(10), c = 18.579(2) Å, β = 111.241(2)° and Z = 4; 2: monoclinic, space group C2/c, a = 6.5347(6), b = 17.1727(17), c = 14.1011(14) Å, β = 97.7248(10) and Z = 4. Compound 1 contains two isolated nickel centers in its structure, one being six-coordinate and another five-coordinate. The structure of 2 contains a lead (II) center surrounded by two chelating DNI ligands and four water molecules in distorted square-antiprism geometry. The abundant hydrogen bonds in two compounds link the molecules into three-dimensional network and stabilize the molecules. The TG-DSC analysis reveals that the first step is the loss of water molecules and the final residue is the corresponding metal oxides and carbon. PMID:20526419

  1. Incorporation of μ3-CO3 into an MnIII/MnIV Mn12 cluster: {[(cyclam)MnIV(μ-O)2MnIII(H2O)(μ-OH)]6(μ3-CO3)2}Cl8·24H2O

    PubMed Central

    Levaton, Ben B.; Olmstead, Marilyn M.

    2010-01-01

    The centrosymmetric title cluster, hexa­aquadi-μ3-carbonato-hexa­cyclamhexa-μ2-hydroxido-dodeca-μ2-oxido-hexa­mang­an­ese(IV)hexa­manganese(III) octa­chloride tetra­cosa­hydrate, [Mn12(CO3)2O12(OH)6(C10H24N4)6(H2O)6]Cl8·24H2O, has two μ3-CO3 groups that not only bridge octahedrally coordinated MnIII ions but also act as acceptors to two different kinds of hydrogen bonds. The carbonate anion is planar within experimental error and has an average C—O distance of 1.294 (4) Å. The crystal packing is stabilized by O—H⋯Cl, O—H⋯O, N—H⋯Cl and N—H⋯O hydrogen bonds. Two of the four independent chloride ions are disordered over five positions, and eight of the 12 independent water mol­ecules are disordered over 21 positions. PMID:21587382

  2. H2O Paradox and its Implications on H2O in Moon

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue

    2017-04-01

    The concentration of H2O in the mantle of a planetary body plays a significant role in the viscosity and partial melting and hence the convection and evolution of the planetary body. Even though the composition of the primitive terrestrial mantle (PTM) is thought to be well known [1-2], the concentration of H2O in PTM remains paradoxial because different methods of estimation give different results [3]: Using H2O/Ce ratio in MORB and OIB and Ce concentration in PTM, the H2O concentration in PTM would be (300÷×1.5) ppm; using mass balance by adding surface water to the mantle [3-4], H2O concentration in PTM would be (900÷×1.3) ppm [2-3]. The inconsistency based on these two seemingly reliable methods is referred to as the H2O paradox [3]. For Moon, H2O contents in the primitive lunar mantle (PLM) estimated from H2O in plagioclase in lunar anorthosite and that from H2O/Ce ratio in melt inclusions are roughly consistent at ˜110 ppm [5-6] even though there is still debate about the volatile depletion trend [7]. One possible solution to the H2O paradox in PTM is to assume that early Earth experienced whole mantle degassing, which lowered the H2O/Ce ratio in the whole mantle but without depleting Ce in the mantle. The second possible solution is that some deep Earth reservoirs with high H2O/Ce ratios have not been sampled by MORB and OIB. Candidates include the transition zone [8] and the D" layer. The third possible solution is that ocean water only partially originated from mantle degassing, but partially from extraterrestrial sources such as comets [9-10]. At present, there is not enough information to determine which scenario is the answer to the H2O paradox. On the other hand, each scenario would have its own implications to H2O in PLM. If the first scenario applies to Moon, because degassed H2O or H2 would have escaped from the lunar surface, the very early lunar mantle could have much higher H2O [11] than that obtained using the H2O/Ce ratio method. The

  3. 40 CFR 721.10356 - Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-. 721.10356 Section 721.10356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  4. 40 CFR 721.10356 - Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-. 721.10356 Section 721.10356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  5. 40 CFR 721.10356 - Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-. 721.10356 Section 721.10356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  6. Infrared photodissociation spectroscopy of H(+)(H2O)6·M(m) (M = Ne, Ar, Kr, Xe, H2, N2, and CH4): messenger-dependent balance between H3O(+) and H5O2(+) core isomers.

    PubMed

    Mizuse, Kenta; Fujii, Asuka

    2011-04-21

    Although messenger mediated spectroscopy is a widely-used technique to study gas phase ionic species, effects of messengers themselves are not necessarily clear. In this study, we report infrared photodissociation spectroscopy of H(+)(H(2)O)(6)·M(m) (M = Ne, Ar, Kr, Xe, H(2), N(2), and CH(4)) in the OH stretch region to investigate messenger(M)-dependent cluster structures of the H(+)(H(2)O)(6) moiety. The H(+)(H(2)O)(6), the protonated water hexamer, is the smallest system in which both the H(3)O(+) (Eigen) and H(5)O(2)(+) (Zundel) hydrated proton motifs coexist. All the spectra show narrower band widths reflecting reduced internal energy (lower vibrational temperature) in comparison with bare H(+)(H(2)O)(6). The Xe-, CH(4)-, and N(2)-mediated spectra show additional band features due to the relatively strong perturbation of the messenger. The observed band patterns in the Ar-, Kr-, Xe-, N(2)-, and CH(4)-mediated spectra are attributed mainly to the "Zundel" type isomer, which is more stable. On the other hand, the Ne- and H(2)-mediated spectra are accounted for by a mixture of the "Eigen" and "Zundel" types, like that of bare H(+)(H(2)O)(6). These results suggest that a messenger sometimes imposes unexpected isomer-selectivity even though it has been thought to be inert. Plausible origins of the isomer-selectivity are also discussed.

  7. Synthesis, structure, and characterization of a new sandwich-type arsenotungstocerate, [As 2W 18Ce 3O 71(H 2O) 3] 12-

    NASA Astrophysics Data System (ADS)

    Alizadeh, M. H.; Eshtiagh-Hosseini, H.; Khoshnavazi, R.

    2004-01-01

    The rational synthesis of the new sandwich-type arsenotungstocerate [As 2W 18Ce 3O 71(H 2O) 3] 12- is reported for the first time by reaction of the trivacant lacunary species A-α-[AsW 9O 34] 9- with appropriate Ce IV. The single crystal structure analysis was carried out on K 7(H 3O) 5[As 2W 18Ce 3O 71(H 2O) 3]·9H 2O; H 39As 2Ce 3K 7O 88W 18; ( 2) which crystallizes in triclinic system, space group P overline1 with a=11.615(5) Å, b=17.638(7) Å, c=19.448(8) Å, α=73.643(7)°, β=88.799(7)°, γ=88.078(7)° and Z=2. The anion consists on two lacunary A-α-[AsW 9O 34] 9- Keggin moieties linked via a (H 2OCeO) 3 belt leading to a sandwich-type structure. Each cerium atom adopts tri-capped trigonal-prismatic coordination achieved by two terminal oxygen of an edge shared paired of WO 6 octahedra to each A-α-AsW 9O 349- moiety and two oxygen from the belt and the cap by one μ 3-O (As, W 2) to each A-α-AsW 9O 349- moiety and one external water ligand. The Ce-O bond lengths average in CeO 6 group, Ce-O(As, W 2) and Ce-O(nW) are 2.300(9), 2.887(3) and 2.682(5) Å, respectively. The acid/base titration curve reveals that the anion has two different titrable protons.

  8. Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: Minimization of oxygen evolution

    NASA Astrophysics Data System (ADS)

    Amirfakhri, Seyed Javad; Meunier, Jean-Luc; Berk, Dimitrios

    2014-12-01

    The catalytic activity of LaNiO3 toward H2O2 reduction reaction (HPRR), with a potential application in the cathode side of fuel cells, is studied in alkaline, neutral and acidic solutions by rotating disk electrode. The LaNiO3 particles synthesised by citrate-based sol-gel method have sizes between 30 and 70 nm with an active specific surface area of 1.26 ± 0.05 m2 g-1. LaNiO3 shows high catalytic activity toward HPRR in 0.1 M KOH solution with an exchange current density based on the active surface area (j0A) of (7.4 ± 1) × 10-6 A cm-2 which is noticeably higher than the j0A of N-doped graphene. The analysis of kinetic parameters suggests that the direct reduction of H2O2, H2O2 decomposition, O2 reduction and O2 desorption occur through HPRR on this catalyst. In order to control and minimize oxygen evolution from the electrode surface, the effects of catalyst loading, bulk concentration of H2O2, and using a mixture of LaNiO3 and N-doped graphene are studied. Although the mechanism of HPRR is independent of the aforementioned operating conditions, gas evolution decreases by increasing the catalyst loading, decreasing the bulk concentration of H2O2, and addition of N-doped graphene to LaNiO3.

  9. Energetics of the O-H bond and of intramolecular hydrogen bonding in HOC6H4C(O)Y (Y = H, CH3, CH2CH=CH2, C[triple bond]CH, CH2F, NH2, NHCH3, NO2, OH, OCH3, OCN, CN, F, Cl, SH, and SCH3) compounds.

    PubMed

    Bernardes, Carlos E S; Minas da Piedade, Manuel E

    2008-10-09

    The energetics of the phenolic O-H bond in a series of 2- and 4-HOC 6H 4C(O)Y (Y = H, CH3, CH 2CH=CH2, C[triple bond]CH, CH2F, NH2, NHCH 3, NO2, OH, OCH3, OCN, CN, F, Cl, SH, and SCH3) compounds and of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y, was investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of 2-hydroxybenzaldehyde (2HBA), 4-hydroxybenzaldehyde (4HBA), 2'-hydroxyacetophenone (2HAP), 2-hydroxybenzamide (2HBM), and 4-hydroxybenzamide (4HBM), at 298.15 K, were determined by micro- or macrocombustion calorimetry. The corresponding enthalpies of vaporization or sublimation were also measured by Calvet drop-calorimetry and Knudsen effusion measurements. The combination of the obtained experimental data led to Delta f H m (o)(2HBA, g) = -238.3 +/- 2.5 kJ.mol (-1), DeltafHm(o)(4HBA, g) = -220.3 +/- 2.0 kJ.mol(-1), Delta f H m (o)(2HAP, g) = -291.8 +/- 2.1 kJ.mol(-1), DeltafHm(o)(2HBM, g) = -304.8 +/- 1.5 kJ.mol (-1), and DeltafHm(o) (4HBM, g) = -278.4 +/- 2.4 kJ.mol (-1). These values, were used to assess the predictions of the B3LYP/6-31G(d,p), B3LYP/6-311+G(d,p), B3LYP/aug-cc-pVDZ, B3P86/6-31G(d,p), B3P86/6-311+G(d,p), B3P86/aug-cc-pVDZ, and CBS-QB3 methods, for the enthalpies of a series of isodesmic gas phase reactions. In general, the CBS-QB3 method was able to reproduce the experimental enthalpies of reaction within their uncertainties. The B3LYP/6-311+G(d,p) method, with a slightly poorer accuracy than the CBS-QB3 approach, achieved the best performance of the tested DFT models. It was further used to analyze the trends of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y evaluated by the ortho-para method and to compare the energetics of the phenolic O-H bond in 2- and 4-HOC 6H 4C(O)Y compounds. It was concluded that the O-H bond "strength" is systematically larger for 2-hydroxybenzoyl than for the corresponding 4-hydroxybenzoyl isomers mainly due to the presence of

  10. Ab Initio Reaction Kinetics of CH 3 O$$\\dot{C}$$(=O) and $$\\dot{C}$$H 2 OC(=O)H Radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Ting; Yang, Xueliang; Ju, Yiguang

    The dissociation and isomerization kinetics of the methyl ester combustion intermediates methoxycarbonyl radical (CH3Omore » $$\\dot{C}$$(=O)) and (formyloxy)methyl radical ($$\\dot{C}$$H2OC(=O)H) are investigated theoretically using high-level ab initio methods and Rice–Ramsperger–Kassel–Marcus (RRKM)/master equation (ME) theory. Geometries obtained at the hybrid density functional theory (DFT) and coupled cluster singles and doubles with perturbative triples correction (CCSD(T)) levels of theory are found to be similar. We employ high-level ab initio wave function methods to refine the potential energy surface: CCSD(T), multireference singles and doubles configuration interaction (MRSDCI) with the Davidson–Silver (DS) correction, and multireference averaged coupled-pair functional (MRACPF2) theory. MRSDCI+DS and MRACPF2 capture the multiconfigurational character of transition states (TSs) and predict lower barrier heights than CCSD(T). The temperature- and pressure-dependent rate coefficients are computed using RRKM/ME theory in the temperature range 300–2500 K and a pressure range of 0.01 atm to the high-pressure limit, which are then fitted to modified Arrhenius expressions. Dissociation of CH3O$$\\dot{C}$$(=O) to $$\\dot{C}$$H3 and CO2 is predicted to be much faster than dissociating to CH3$$\\dot{O}$$ and CO, consistent with its greater exothermicity. Isomerization between CH3O$$\\dot{C}$$(=O) and $$\\dot{C}$$H2OC(=O)H is predicted to be the slowest among the studied reactions and rarely happens even at high temperature and high pressure, suggesting the decomposition pathways of the two radicals are not strongly coupled. The predicted rate coefficients and branching fractions at finite pressures differ significantly from the corresponding high-pressure-limit results, especially at relatively high temperatures. Finally, because it is one of the most important CH3$$\\dot{O}$$ removal mechanisms under atmospheric conditions, the reaction kinetics of

  11. Reactivity of Cyclopentadienyl Molybdenum Compounds towards Formic Acid: Structural Characterization of CpMo(PMe3)(CO)2H, CpMo(PMe3)2(CO)H, [CpMo(μ-O)(μ-O2CH)]2, and [Cp*Mo(μ-O)(μ-O2CH)]2.

    PubMed

    Neary, Michelle C; Parkin, Gerard

    2017-02-06

    The molecular structures of CpMo(PMe 3 )(CO) 2 H and CpMo(PMe 3 ) 2 (CO)H have been determined by X-ray diffraction, thereby revealing four-legged piano-stool structures in which the hydride ligand is trans to CO. However, in view of the different nature of the four basal ligands, the geometries of CpMo(PMe 3 )(CO) 2 H and CpMo(PMe 3 ) 2 (CO)H deviate from that of an idealized four-legged piano stool, such that the two ligands that are orthogonal to the trans H-Mo-CO moiety are displaced towards the hydride ligand. While Cp R Mo(PMe 3 ) 3-x (CO) x H (Cp R = Cp, Cp*; x = 1, 2, 3) are catalysts for the release of H 2 from formic acid, the carbonyl derivatives, Cp R Mo(CO) 3 H, are also observed to form dinuclear formate compounds, namely, [Cp R Mo(μ-O)(μ-O 2 CH)] 2 . The nature of the Mo···Mo interactions in [CpMo(μ-O)(μ-O 2 CH)] 2 and [Cp*Mo(μ-O)(μ-O 2 CH)] 2 have been addressed computationally. In this regard, the two highest occupied molecular orbitals of [CpMo(μ-O)(μ-O 2 CH)] 2 correspond to metal-based δ* (HOMO) and σ (HOMO-1) orbitals. The σ 2 δ* 2 configuration thus corresponds to a formal direct Mo-Mo bond order of zero. The preferential occupation of the δ* orbital rather than the δ orbital is a consequence of the interaction of the latter orbital with p orbitals of the bridging oxo ligands. In essence, lone-pair donation from oxygen increases the electron count so that the molybdenum centers can achieve an 18-electron configuration without the existence of a Mo-Mo bond, whereas a Mo═Mo double bond is required in the absence of lone-pair donation.

  12. Description and crystal structure of albrechtschraufite, MgCa4F2[UO2(CO3)3]2ṡ17-18H2O

    NASA Astrophysics Data System (ADS)

    Mereiter, Kurt

    2013-04-01

    Albrechtschraufite, MgCa4F2[UO2(CO3)3]2ṡ17-18H2O, triclinic, space group Pī, a = 13.569(2), b = 13.419(2), c = 11.622(2) Å, α = 115.82(1), β = 107.61(1), γ = 92.84(1)° (structural unit cell, not reduced), V = 1774.6(5) Å3, Z = 2, D c = 2.69 g/cm3 (for 17.5 H2O), is a mineral that was found in small amounts with schröckingerite, NaCa3F[UO2(CO3)3](SO4)ṡ10H2O, on a museum specimen of uranium ore from Joachimsthal (Jáchymov), Czech Republic. The mineral forms small grain-like subhedral crystals (≤ 0.2 mm) that resemble in appearance liebigite, Ca2[UO2(CO3)3]ṡ ~ 11H2O. Colour pale yellow-green, luster vitreous, transparent, pale bluish green fluorescence under ultraviolet light. Optical data: Biaxial negative, nX = 1.511(2), nY = 1.550(2), nZ = 1.566(2), 2 V = 65(1)° ( λ = 589 nm), r < v weak. After qualitative tests had shown the presence of Ca, U, Mg, CO2 and H2O, the chemical formula was determined by a crystal structure analysis based on X-ray four-circle diffractometer data. The structure was later on refined with data from a CCD diffractometer to R1 = 0.0206 and wR2 = 0.0429 for 9,236 independent observed reflections. The crystal structure contains two independent [UO2(CO3)3]4- anions of which one is bonded to two Mg and six Ca while the second is bonded to only one Mg and three Ca. Magnesium forms a MgF2(Ocarbonate)3(H2O) octahedron that is linked via the F atoms with three Ca atoms so as to provide each F atom with a flat pyramidal coordination by one Mg and two Ca. Calcium is 7- and 8-coordinate forming CaFO6, CaF2O2(H2O)4, CaFO3(H2O)4 and CaO2(H2O)6 coordination polyhedra. The crystal structure is built up from MgCa3F2[UO2(CO3)3]ṡ8H2O layers parallel to (001) which are linked by Ca[UO2(CO3)3]ṡ5H2O moieties into a framework of the composition MgCa4F2[UO2(CO3)3]ṡ13H2O. Five additional water molecules are located in voids of the framework and show large displacement parameters. One of the water positions is partly vacant, leading to a

  13. Decomposition of 3,5-dinitrobenzamide in aqueous solution during UV/H2O2 and UV/TiO2 oxidation processes.

    PubMed

    Yan, Yingjie; Liao, Qi-Nan; Ji, Feng; Wang, Wei; Yuan, Shoujun; Hu, Zhen-Hu

    2017-02-01

    3,5-Dinitrobenzamide has been widely used as a feed additive to control coccidiosis in poultry, and part of the added 3,5-dinitrobenzamide is excreted into wastewater and surface water. The removal of 3,5-dinitrobenzamide from wastewater and surface water has not been reported in previous studies. Highly reactive hydroxyl radicals from UV/hydrogen peroxide (H 2 O 2 ) and UV/titanium dioxide (TiO 2 ) advanced oxidation processes (AOPs) can decompose organic contaminants efficiently. In this study, the decomposition of 3,5-dinitrobenzamide in aqueous solution during UV/H 2 O 2 and UV/TiO 2 oxidation processes was investigated. The decomposition of 3,5-dinitrobenzamide fits well with a fluence-based pseudo-first-order kinetics model. The decomposition in both two oxidation processes was affected by solution pH, and was inhibited under alkaline conditions. Inorganic anions such as NO 3 - , Cl - , SO 4 2- , HCO 3 - , and CO 3 2- inhibited the degradation of 3,5-dinitrobenzamide during the UV/H 2 O 2 and UV/TiO 2 oxidation processes. After complete decomposition in both oxidation processes, approximately 50% of 3,5-dinitrobenzamide was decomposed into organic intermediates, and the rest was mineralized to CO 2 , H 2 O, and other inorganic anions. Ions such as NH 4 + , NO 3 - , and NO 2 - were released into aqueous solution during the degradation. The primary decomposition products of 3,5-dinitrobenzamide were identified using time-of-flight mass spectrometry (LCMS-IT-TOF). Based on these products and ions release, a possible decomposition pathway of 3,5-dinitrobenzamide in both UV/H 2 O 2 and UV/TiO 2 processes was proposed.

  14. Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Wang, Hongbo; Zeuschner, Janek; Eremets, Mikhail; Troyan, Ivan; Willams, Jonathan

    2016-01-01

    Carbonic acid (H2CO3) forms in small amounts when CO2 dissolves in H2O, yet decomposes rapidly under ambient conditions of temperature and pressure. Despite its fleeting existence, H2CO3 plays an important role in the global carbon cycle and in biological carbonate-containing systems. The short lifetime in water and presumed low concentration under all terrestrial conditions has stifled study of this fundamental species. Here, we have examined CO2/H2O mixtures under conditions of high pressure and high temperature to explore the potential for reaction to H2CO3 inside celestial bodies. We present a novel method to prepare solid H2CO3 by heating CO2/H2O mixtures at high pressure with a CO2 laser. Furthermore, we found that, contrary to present understanding, neutral H2CO3 is a significant component in aqueous CO2 solutions above 2.4 GPa and 110 °C as identified by IR-absorption and Raman spectroscopy. This is highly significant for speciation of deep C-O-H fluids with potential consequences for fluid-carbonate-bearing rock interactions. As conditions inside subduction zones on Earth appear to be most favorable for production of aqueous H2CO3, a role in subduction related phenomena is inferred.

  15. Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature.

    PubMed

    Wang, Hongbo; Zeuschner, Janek; Eremets, Mikhail; Troyan, Ivan; Willams, Jonathan

    2016-01-27

    Carbonic acid (H2CO3) forms in small amounts when CO2 dissolves in H2O, yet decomposes rapidly under ambient conditions of temperature and pressure. Despite its fleeting existence, H2CO3 plays an important role in the global carbon cycle and in biological carbonate-containing systems. The short lifetime in water and presumed low concentration under all terrestrial conditions has stifled study of this fundamental species. Here, we have examined CO2/H2O mixtures under conditions of high pressure and high temperature to explore the potential for reaction to H2CO3 inside celestial bodies. We present a novel method to prepare solid H2CO3 by heating CO2/H2O mixtures at high pressure with a CO2 laser. Furthermore, we found that, contrary to present understanding, neutral H2CO3 is a significant component in aqueous CO2 solutions above 2.4 GPa and 110 °C as identified by IR-absorption and Raman spectroscopy. This is highly significant for speciation of deep C-O-H fluids with potential consequences for fluid-carbonate-bearing rock interactions. As conditions inside subduction zones on Earth appear to be most favorable for production of aqueous H2CO3, a role in subduction related phenomena is inferred.

  16. Syntheses, crystal structures and optical spectroscopy of Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazmierczak, Karolina; Hoeppe, Henning A., E-mail: henning@ak-hoeppe.d

    2011-05-15

    The lanthanide sulphate octahydrates Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) and the respective tetrahydrate Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O were obtained by evaporation of aqueous reaction mixtures of trivalent rare earth oxides and sulphuric acid at 300 K. Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) crystallise in space group C2/c (Z=4, a{sub Ho}=13.4421(4) A, b{sub Ho}=6.6745(2) A, c{sub Ho}=18.1642(5) A, {beta}{sub Ho}=102.006(1) A{sup 3} and a{sub Tm}=13.4118(14) A, b{sub Tm}=6.6402(6) A, c{sub Tm}=18.1040(16) A, {beta}{sub Tm}=101.980(8) A{sup 3}), Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O adopts space group P2{sub 1}/n (a=13.051(3) A, b=7.2047(14) A, c=13.316(3) A, {beta}=92.55(3) A{sup 3}). The vibrationalmore » and optical spectra of Ho{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O are also reported. -- Graphical abstract: In the lanthanide sulphate octahydrates the cations form slightly undulated layers. Between the layers are voids in which sulphate tetrahedra and water molecules are located. The holmium compound exhibits an Alexandrite effect. Display Omitted Highlights: {yields} Determination of the optimum conditions for the growth of single-crystals of Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O. {yields} Single-crystal structure elucidation of Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) including hydrogen bonds. {yields} Single-crystal structure determination of Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O including hydrogen bonds. {yields} UV-vis spectra of Ho{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O recorded and interpreted: Assignation of bands and clarification of the Alexandrite effect of the Ho compound. {yields} IR and Raman spectra of Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O recorded and interpreted.« less

  17. Borate mineral assemblages in the system Na2OCaOMgOB2O3H2O

    USGS Publications Warehouse

    Christ, C.L.; Truesdell, A.H.; Erd, Richard C.

    1967-01-01

    he significant known hydrated borate mineral assemblages (principally of the western United States) in the system Na2OCaOz.sbnd;MgOB2O3H2O are expressible in three ternary composition diagrams. Phase rule interpretation of the diagrams is consistent with observation, if the activity of H2O is generally considered to be determined by the geologic environment. The absence of conflicting tie-lines on a diagram indicates that the several mineral assemblages of the diagram were formed under relatively narrow ranges of temperature and pressure. The known structural as well as empirical formulas for the minerals are listed, and the more recent (since 1960) crystal structure findings are discussed briefly. Schematic Gibbs free energy-composition diagrams based on known solubility-temperature relations in the systems Na2B4O7-H2O and Na2B4O7-NaCl-H2O, are highly useful in the interpretation and prediction of the stability relations in these systems; in particular these diagrams indicate clearly that tincalconite, although geologically important, is everywhere a metastable phase. Crystal-chemical considerations indicate that the same thermodynamic and kinetic behavior observed in the Na2B4O7-H2O system will hold in the Ca2B6O11-H2O system. This conclusion is confirmed by the petrologic evidence. The chemical relations among the mineral assemblages of a ternary diagram are expressed by a schematic "activity-activity" diagram. These activity-activity diagrams permit the tracing-out of the paragenetic sequences as a function of changing cation and H2O activities. ?? 1967.

  18. Reactivity of cyclopentadienyl molybdenum compounds towards formic acid: Structural characterization of CpMo(PMe 3)(CO) 2H, CpMo(PMe 3) 2(CO)H, [CpMo(μ-O)(μ-O 2CH)] 2, and [Cp*Mo(μ-O)(μ-O 2CH)] 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neary, Michelle C.; Parkin, Gerard

    Here, the molecular structures of CpMo(PMe 3)(CO) 2H and CpMo(PMe 3) 2(CO)H have been determined by X-ray diffraction, thereby revealing four-legged piano-stool structures in which the hydride ligand is trans to CO. However, in view of the different nature of the four basal ligands, the geometries of CpMo(PMe 3)(CO) 2H and CpMo(PMe 3) 2(CO)H deviate from that of an idealized four-legged piano stool, such that the two ligands that are orthogonal to the trans H–Mo–CO moiety are displaced towards the hydride ligand. While CpRMo(PMe 3) 3–x(CO) xH (Cp R = Cp, Cp*; x = 1, 2, 3) are catalysts formore » the release of H 2 from formic acid, the carbonyl derivatives, CpRMo(CO)3H, are also observed to form dinuclear formate compounds, namely, [Cp RMo(μ-O)(μ-O 2CH)] 2. The nature of the Mo···Mo interactions in [CpMo(μ-O)(μ-O 2CH)] 2 and [Cp*Mo(μ-O)(μ-O 2CH)] 2 have been addressed computationally. In this regard, the two highest occupied molecular orbitals of [CpMo(μ-O)(μ-O 2CH)] 2 correspond to metal-based δ* (HOMO) and σ (HOMO–1) orbitals. The σ 2δ *2 configuration thus corresponds to a formal direct Mo–Mo bond order of zero. The preferential occupation of the δ* orbital rather than the δ orbital is a consequence of the interaction of the latter orbital with p orbitals of the bridging oxo ligands. In essence, lone-pair donation from oxygen increases the electron count so that the molybdenum centers can achieve an 18-electron configuration without the existence of a Mo–Mo bond, whereas a Mo=Mo double bond is required in the absence of lone-pair donation.« less

  19. Reactivity of cyclopentadienyl molybdenum compounds towards formic acid: Structural characterization of CpMo(PMe 3)(CO) 2H, CpMo(PMe 3) 2(CO)H, [CpMo(μ-O)(μ-O 2CH)] 2, and [Cp*Mo(μ-O)(μ-O 2CH)] 2

    DOE PAGES

    Neary, Michelle C.; Parkin, Gerard

    2017-01-19

    Here, the molecular structures of CpMo(PMe 3)(CO) 2H and CpMo(PMe 3) 2(CO)H have been determined by X-ray diffraction, thereby revealing four-legged piano-stool structures in which the hydride ligand is trans to CO. However, in view of the different nature of the four basal ligands, the geometries of CpMo(PMe 3)(CO) 2H and CpMo(PMe 3) 2(CO)H deviate from that of an idealized four-legged piano stool, such that the two ligands that are orthogonal to the trans H–Mo–CO moiety are displaced towards the hydride ligand. While CpRMo(PMe 3) 3–x(CO) xH (Cp R = Cp, Cp*; x = 1, 2, 3) are catalysts formore » the release of H 2 from formic acid, the carbonyl derivatives, CpRMo(CO)3H, are also observed to form dinuclear formate compounds, namely, [Cp RMo(μ-O)(μ-O 2CH)] 2. The nature of the Mo···Mo interactions in [CpMo(μ-O)(μ-O 2CH)] 2 and [Cp*Mo(μ-O)(μ-O 2CH)] 2 have been addressed computationally. In this regard, the two highest occupied molecular orbitals of [CpMo(μ-O)(μ-O 2CH)] 2 correspond to metal-based δ* (HOMO) and σ (HOMO–1) orbitals. The σ 2δ *2 configuration thus corresponds to a formal direct Mo–Mo bond order of zero. The preferential occupation of the δ* orbital rather than the δ orbital is a consequence of the interaction of the latter orbital with p orbitals of the bridging oxo ligands. In essence, lone-pair donation from oxygen increases the electron count so that the molybdenum centers can achieve an 18-electron configuration without the existence of a Mo–Mo bond, whereas a Mo=Mo double bond is required in the absence of lone-pair donation.« less

  20. Cesium and strontium ion exchange on the framework titanium silicate M2Ti2O3SiO4.nH2O (M = H, Na).

    PubMed

    Solbrå, S; Allison, N; Waite, S; Mikhalovsky, S V; Bortun, A I; Bortun, L N; Clearfield, A

    2001-02-01

    The ion exchange properties of the titanium silicate, M2Ti2O3SiO4.nH2O (M = H, Na), toward stable and radioactive 137Cs+ and 89Sr2+, have been examined. By studying the cesium and strontium uptake in the presence of NaNO3, CaCl2, NaOH, and HNO3 (in the range of 0.01-6 M) the sodium titanium silicate was found to be an efficient Cs+ ion exchanger in acid, neutral, and alkaline media and an efficient Sr2+ ion exchanger in neutral and alkaline media, which makes it promising for treatment of contaminated environmental media and biological systems.

  1. Melting and subsolidus reactions in the system K2O-CaO-Al2O3-SiO2-H2O

    NASA Astrophysics Data System (ADS)

    Johannes, Wilhelm

    1980-09-01

    Beginning of melting and subsolidus relationships in the system K2O-CaO-Al2O3-SiO2-H2O have been experimentally investigated at pressures up to 20 kbars. The equilibria discussed involve the phases anorthite, sanidine, zoisite, muscovite, quartz, kyanite, gas, and melt and two invariant points: Point [Ky] with the phases An, Or, Zo, Ms, Qz, Vapor, and Melt; point [Or] with An, Zo, Ms, Ky, Qz, Vapor, and Melt. The invariant point [Ky] at 675° C and 8.7 kbars marks the lowest solidus temperature of the system investigated. At pressures above this point the hydrated phases zoisite and muscovite are liquidus phases and the solidus temperatures increase with increasing pressure. At 20 kbars beginning of melting occurs at 740 °C. The solidus temperatures of the quinary system K2O-CaO-Al2O3-SiO2-H2O are almost 60° C (at 20 kbars) and 170° C (at 2kbars) below those of the limiting quaternary system CaO-Al2O3-SiO2-H2O. The maximum water pressure at which anorthite is stable is lowered from 14 to 8.7 kbars in the presence of sanidine. The stability limits of anorthite+ vapor and anorthite+sanidine+vapor at temperatures below 700° C are almost parallel and do not intersect. In the wide temperature — pressure range at pressures above the reaction An+Or+Vapor = Zo+Ms+Qz and temperatures below the melting curve of Zo+Ms+Ky+Qz+Vapor, the feldspar assemblage anorthite+sanidine is replaced by the hydrated phases zoisite and muscovite plus quartz. CaO-Al2O3-SiO2-H2O. Knowledge of the melting relationships involving the minerals zoisite and muscovite contributes to our understanding of the melting processes occuring in the deeper parts of the crust. Beginning of melting in granites and granodiorites depends on the composition of plagioclase. The solidus temperatures of all granites and granodiorites containing plagioclases of intermediate composition are higher than those of the Ca-free alkali feldspar granite system and below those of the Na-free system discussed in this

  2. Organic Contaminant Abatement in Reclaimed Water by UV/H2O2 and a Combined Process Consisting of O3/H2O2 Followed by UV/H2O2: Prediction of Abatement Efficiency, Energy Consumption, and Byproduct Formation.

    PubMed

    Lee, Yunho; Gerrity, Daniel; Lee, Minju; Gamage, Sujanie; Pisarenko, Aleksey; Trenholm, Rebecca A; Canonica, Silvio; Snyder, Shane A; von Gunten, Urs

    2016-04-05

    UV/H2O2 processes can be applied to improve the quality of effluents from municipal wastewater treatment plants by attenuating trace organic contaminants (micropollutants). This study presents a kinetic model based on UV photolysis parameters, including UV absorption rate and quantum yield, and hydroxyl radical (·OH) oxidation parameters, including second-order rate constants for ·OH reactions and steady-state ·OH concentrations, that can be used to predict micropollutant abatement in wastewater. The UV/H2O2 kinetic model successfully predicted the abatement efficiencies of 16 target micropollutants in bench-scale UV and UV/H2O2 experiments in 10 secondary wastewater effluents. The model was then used to calculate the electric energies required to achieve specific levels of micropollutant abatement in several advanced wastewater treatment scenarios using various combinations of ozone, UV, and H2O2. UV/H2O2 is more energy-intensive than ozonation for abatement of most micropollutants. Nevertheless, UV/H2O2 is not limited by the formation of N-nitrosodimethylamine (NDMA) and bromate whereas ozonation may produce significant concentrations of these oxidation byproducts, as observed in some of the tested wastewater effluents. The combined process of O3/H2O2 followed by UV/H2O2, which may be warranted in some potable reuse applications, can achieve superior micropollutant abatement with reduced energy consumption compared to UV/H2O2 and reduced oxidation byproduct formation (i.e., NDMA and/or bromate) compared to conventional ozonation.

  3. Two basic bismuth nitrates: [Bi6O6(OH)2](NO3)4 · 2H2O with superior photodegradation activity for rhodamine B and [Bi6O5(OH)3](NO3)5 · 3H2O with ultrahigh adsorption capacity for methyl orange

    NASA Astrophysics Data System (ADS)

    Pang, Jiawei; Han, Qiaofeng; Liu, Weiqi; Shen, Zichen; Wang, Xin; Zhu, Junwu

    2017-11-01

    A novel basic bismuth nitrate, [Bi6O6(OH)2](NO3)4·2H2O (denoted as BiON-4N), was easily obtained at room temperature in the existence of 2-methoxyethanol (CH3OCH2CH2OH; 2ME) with a pH value ranging from 4.5 to 7.0. The morphology of BiON-4N could be easily tailored by changing the variety and amount of bases like urea, hexamethylenetetramine (HMTA), NaOH and NH3·H2O. When the solution pH was decreased lower than 4.5, another basic bismuth nitrate, [Bi6O5(OH)3](NO3)5·3H2O (denoted as BiON-5N), could be synthesized. Among those, BiON-4N nanoparticles obtained with 40 mmol of HMTA exhibited superior photocatalytic activity for rhodamine B (RhB) degradation with an efficiency of 100% within 4 min of UV light irradiation, which was much higher than that of commercial TiO2 (P25). The excellent photocatalytic performance of BiON-4N was mainly attributed to higher surface area (13.1 m2 g-1) in comparison with other basic bismuth nitrates. Furthermore, the as-prepared BiON-5N revealed excellent adsorption performance for the anions like methyl orange (MO) and K2Cr2O7, and especially for MO, the maximum adsorption capacity arrived up to 730 mg g-1, which should be relevant to highly positively charged surface. This work provides a new strategy for developing bismuth-based nanomaterials in the big bismuth family as potential photocatalyst and adsorbent for the removal of dyes and contaminants.

  4. Cross sections for Scattering and Mobility of OH- and H3 O+ ions in H2 O

    NASA Astrophysics Data System (ADS)

    Petrovic, Zoran; Stojanovic, Vladimir; Maric, Dragana; Jovanovic, Jasmina

    2016-05-01

    Modelling of plasmas in liquids and in biological and medical applications requires data for scattering of all charged and energetic particles in water vapour. We present swarm parameters for OH- and H3 O+, as representatives of principal negative and positive ions at low pressures in an attempt to provide the data that are not yet available. We applied Denpoh-Nanbu procedure to calculate cross section sets for collisions of OH- and H3 O+ ions with H2 O molecule. Swarm parameters for OH- and H3 O+ ions in H2 O are calculated by using a well tested Monte Carlo code for a range of E / N(E -electric field, N-gas density) at temperature T = 295 K, in the low pressure limit. Non-conservative processes were shown to strongly influence the transport properties even for OH- ions above the average energy of 0.2 eV(E / N >200 Td). The data are valid for low pressure water vapour or small amounts in mixtures. They will provide a basis for calculating properties of ion-water molecule clusters that are most commonly found at higher pressures and for modelling of discharges in liquids. Acknowledgment to Ministry of Education, Science and Technology of Serbia.

  5. Variable dimensionality and framework found in a series of quaternary zinc selenites, A{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}·xH{sub 2}O (A = Na, Rb, and Cs; 0≤x≤1) and Cs{sub 2}Zn{sub 2}(SeO{sub 3}){sub 32H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Minfeng; Jo, Hongil; Oh, Seung-Jin

    Five new alkali metal zinc selenites, A{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}·xH{sub 2}O (A = Na, Rb, and Cs; 0≤x≤1) and Cs{sub 2}Zn{sub 2}(SeO{sub 3}){sub 32H{sub 2}O have been synthesized by heating a mixture of ZnO, SeO{sub 2} and A{sub 2}CO{sub 3} (A = Na, Rb, and Cs), and characterized by X-ray diffraction (XRD) and spectroscopic analyses techniques. All of the reported materials revealed a rich structural chemistry with different frameworks and connection modes of Zn{sup 2+}. While Rb{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4} and Cs{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}·H{sub 2}O revealed three-dimensional frameworks consisting of isolated ZnO{sub 4} tetrahedra and SeO{submore » 3} polyhedra, Na{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}, Cs{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}, and Cs{sub 2}Zn{sub 2}(SeO{sub 3}){sub 32H{sub 2}O contained two-dimensional [Zn{sub 3}(SeO{sub 3}){sub 4}]{sup 2-} layers. Specifically, whereas isolated ZnO{sub 4} tetrahedra and SeO{sub 3} polyhedra are arranged into two-dimensional [Zn{sub 3}(SeO{sub 3}){sub 4}]{sup 2-} layers in two cesium compounds, circular [Zn{sub 3}O{sub 10}]{sup 14-} chains and SeO{sub 3} linkers are formed in two-dimensional [Zn{sub 3}(SeO{sub 3}){sub 4}]{sup 2-} layers in Na{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}. Close structural examinations suggest that the size of alkali metal is significant in determining the framework geometry as well as connection modes of transition metal cations. - Graphical abstract: Variable dimensions and frameworks were found in a series of quaternary zinc selenites, A{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4} (A = Na, Rb and Cs). - Highlights: • Five novel quaternary zinc selenites are synthesized. • All the selenites with different structures contain polarizable d{sup 10} and lone pair cations. • The size of alkali metal cations is significant in determining the framework geometry.« less

  6. Vibrational energy transfer and relaxation in O2 and H2O.

    PubMed

    Huestis, David L

    2006-06-01

    Near-resonant vibrational energy exchange between oxygen and water molecules is an important process in the Earth's atmosphere, combustion chemistry, and the chemical oxygen iodine laser (COIL). The reactions in question are (1) O2(1) + O2(0) --> O2(0) + O2(0); (2) O2(1) + H2O(000) --> O2(0) + H2O(000); (3) O2(1) + H2O(000) <--> O2(0) + H2O(010); (4) H2O(010) + H2O(000) --> H2O(000) + H2O(000); and (5) H2O(010) + O2(0) --> H2O(000) + O2(0). Reanalysis of the data available in the chemical kinetics literature provides reliable values for rate coefficients for reactions 1 and 4 and strong evidence that reactions 2 and 5 are slow in comparison with reaction 3. Analytical solution of the chemical rate equations shows that previous attempts to measure the rate of reaction 3 are unreliable unless the water mole fraction is higher than 1%. Reanalysis of data from the only experiment satisfying this constraint provides a rate coefficient of (5.5 +/- 0.4) x 10(-13) cm3/s at room temperature, between the values favored by the atmospheric and laser modeling communities.

  7. Polytherm of the CO(NH2)2-KNO3-H2O phase diagram

    NASA Astrophysics Data System (ADS)

    Yulina, I. V.; Trunin, A. S.

    2017-05-01

    The crystallization polytherm of the ternary CO(NH2)2-KNO3-H2O system is plotted for the first time via visual polythermal analysis and calculating ternary eutonics characteristics from data on the boundary elements of two-component systems. The ternary eutonics modeling error does not exceed 3.5%. In addition to the crystallization fields of individual components, the field of the redox reaction that occurs in the system between potassium nitrate and carbamide is shown in the CO(NH2)2-KNO3-H2O diagram by a dashed outline.

  8. Polyoxometal cations within polyoxometalate anions. Seven-coordinate uranium and zirconium heteroatom groups in [(UO2)12(μ3-O)4(μ2-H2O)12(P2W15O56)4]32- and [Zr4(μ3-O)22-OH)2(H2O)4 (P2W16O59)2]14-

    NASA Astrophysics Data System (ADS)

    Gaunt, Andrew J.; May, Iain; Collison, David; Travis Holman, K.; Pope, Michael T.

    2003-08-01

    Two new composite polyoxotungstate anions with unprecedented structural features, [(UO2)12(μ3-O)4(μ2-H2O)12(P2W15O56)4]32- (1) and [Zr4(μ3-O)22-OH)2(H2O)4 (P2W16O59)2]14- (2) contain polyoxo-uranium and -zirconium clusters as bridging units. The anions are synthesized by reaction of Na12[P2W15O56] with solutions of UO2(NO3)2 and ZrCl4. The structure of 1 in the sodium salt contains four [P2W15O56]12- anions assembled into an overall tetrahedral cluster by means of trigonal bridging groups formed by three equatorial-edge-shared UO7 pentagonal bipyramids. The structure of anion 2 consists of a centrosymmetric assembly of two [P2W16O59]12- anions linked by a {Zr4O2(OH)2(H2O)4}10+ cluster. Both complexes in solution yield the expected two-line 31P-NMR spectra with chemical shifts of -2.95, -13.58 and -6.45, -13.69 ppm, respectively.

  9. Degradation of nitrobenzene wastewater in an acidic environment by Ti(IV)/H2O2/O3 in a rotating packed bed.

    PubMed

    Yang, Peizhen; Luo, Shuai; Liu, Youzhi; Jiao, Weizhou

    2018-06-23

    The rotating packed bed (RPB) as a continuous flow reactor performs very well in degradation of nitrobenzene wastewater. In this study, acidic nitrobenzene wastewater was degraded using ozone (O 3 ) combined with hydrogen peroxide and titanium ions (Ti(IV)/H 2 O 2 /O 3 ) or using only H 2 O 2 /O 3 in a RPB. The degradation efficiency of nitrobenzene by Ti(IV)/H 2 O 2 /O 3 is roughly 16.84% higher than that by H 2 O 2 /O 3 , and it reaches as high as 94.64% in 30 min at a H 2 O 2 /O 3 molar ratio of 0.48. It is also found that the degradation efficiency of nitrobenzene is significantly affected by the high gravity factor, H 2 O 2 /O 3 molar ratio, and Ti(IV) concentration, and it reaches a maximum at a high gravity factor of 40, a Ti(IV) concentration of 0.50 mmol/L, a pH of 4.0, a H 2 O 2 /O 3 molar ratio of 0.48, a liquid flow rate of 120 L/h, and an initial nitrobenzene concentration of 1.22 mmol/L. Both direct ozonation and indirect ozonation are involved in the reaction of O 3 with organic pollutants. The indirect ozonation due to the addition of different amounts of tert-butanol (·OH scavenger) in the system accounts for 84.31% of the degradation efficiency of nitrobenzene, indicating that the nitrobenzene is dominantly oxidized by ·OH generated in the RPB-Ti(IV)/H 2 O 2 /O 3 process. Furthermore, the possible oxidative degradation mechanisms are also proposed to better understand the role of RPB in the removal of pollutants. Graphical abstract ᅟ.

  10. The interstellar chemistry of H2C3O isomers

    PubMed Central

    Loison, Jean-Christophe; Agúndez, Marcelino; Marcelino, Núria; Wakelam, Valentine; Hickson, Kevin M.; Cernicharo, José; Gerin, Maryvonne; Roueff, Evelyne; Guélin, Michel

    2016-01-01

    We present the detection of two H2C3O isomers, propynal and cyclopropenone, toward various starless cores and molecular clouds, together with upper limits for the third isomer propadienone. We review the processes controlling the abundances of H2C3O isomers in interstellar media showing that the reactions involved are gas-phase ones. We show that the abundances of these species are controlled by kinetic rather than thermodynamic effects. PMID:27013768

  11. Syntheses, crystal structures, and magnetic properties of the oxalato-bridged mixed-valence complexes (FeII(bpm)3]2[FeIII2(ox)5].8H2O and FeII(bpm)3Na(H2O)2Fe(ox)(3).4H2O (bpm = 2,2'-bipyrimidine).

    PubMed

    Armentano, D; De Munno, G; Faus, J; Lloret, F; Julve, M

    2001-02-12

    The preparation and crystal structures of two oxalato-bridged FeII-FeIII mixed-valence compounds, [FeII(bpm)3]2[FeIII2(ox)5].8H2O (1) and FeII(bpm)3Na(H2O)2FeIII(ox)(3).4H2O (2) (bpm = 2,2'-bipyrimidine; ox = oxalate dianion) are reported here. Complex 1 crystallizes in the triclinic system, space group P1, with a = 10.998(2) A, b = 13.073(3) A, c = 13.308(3) A, alpha = 101.95(2) degrees, beta = 109.20(2) degrees, gamma = 99.89(2) degrees, and Z = 1. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 12.609(2) A, b = 19.670(5) A, c = 15.843(3) A, beta = 99.46(1) degrees, and Z = 4. The structure of complex 1 consists of centrosymmetric oxalato-bridged dinuclear high-spin iron(III) [Fe2(ox)5]2- anions, tris-chelated low-spin iron(II) [Fe(bpm)3]2+ cations, and lattice water molecules. The iron atoms are hexacoordinated: six oxygen atoms (iron(III)) from two bidentate and one bisbidentate oxalato ligands and six nitrogen atoms (iron(II)) from three bidentate bpm groups. The Fe(III)-O(ox) and Fe(II)-N(bpm) bond distances vary in the ranges 1.967(3)-2.099(3) and 1.967(4)-1.995(3) A, respectively. The iron(III)-iron(III) separation across the bridging oxalato is 5.449(2) A, whereas the shortest intermolecular iron(III)-iron(II) distance is 6.841(2) A. The structure of complex 2 consists of neutral heterotrinuclear Fe(bpm)2Na(H2O)2Fe(ox)3 units and water molecules of crystallization. The tris-chelated low-spin iron(II) ([Fe(bpm)3]2+) and high-spin iron(III) ([Fe(ox)3]3-) entities act as bidentate ligands (through two bpm-nitrogen and two oxalato-oxygen atoms, respectively) toward the univalent sodium cation, yielding the trinuclear (bpm)2Fe(II)-bpm-Na(I)-ox-Fe(III)(ox)2 complex. Two cis-coordinated water molecules complete the distorted octahedral surrounding of the sodium atom. The ranges of the Fe(II)-N(bpm) and Fe(III)-O(ox) bond distances [1.968(6)-1.993(5) and 1.992(6)-2.024(6) A, respectively] compare well with those observed in 1. The Na

  12. Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature

    PubMed Central

    Wang, Hongbo; Zeuschner, Janek; Eremets, Mikhail; Troyan, Ivan; Willams, Jonathan

    2016-01-01

    Carbonic acid (H2CO3) forms in small amounts when CO2 dissolves in H2O, yet decomposes rapidly under ambient conditions of temperature and pressure. Despite its fleeting existence, H2CO3 plays an important role in the global carbon cycle and in biological carbonate-containing systems. The short lifetime in water and presumed low concentration under all terrestrial conditions has stifled study of this fundamental species. Here, we have examined CO2/H2O mixtures under conditions of high pressure and high temperature to explore the potential for reaction to H2CO3 inside celestial bodies. We present a novel method to prepare solid H2CO3 by heating CO2/H2O mixtures at high pressure with a CO2 laser. Furthermore, we found that, contrary to present understanding, neutral H2CO3 is a significant component in aqueous CO2 solutions above 2.4 GPa and 110 °C as identified by IR-absorption and Raman spectroscopy. This is highly significant for speciation of deep C–O–H fluids with potential consequences for fluid-carbonate-bearing rock interactions. As conditions inside subduction zones on Earth appear to be most favorable for production of aqueous H2CO3, a role in subduction related phenomena is inferred. PMID:26813580

  13. Ab initio and transition state theory study of the OH + HO2H2O + O2(3Σg-)/O2(1Δg) reactions: yield and role of O2(1Δg) in H2O2 decomposition and in combustion of H2.

    PubMed

    Monge-Palacios, M; Sarathy, S Mani

    2018-02-07

    Reactions of hydroxyl (OH) and hydroperoxyl (HO 2 ) are important for governing the reactivity of combustion systems. We performed post-CCSD(T) ab initio calculations at the W3X-L//CCSD = FC/cc-pVTZ level to explore the triplet ground-state and singlet excited-state potential energy surfaces of the OH + HO 2H 2 O + O 2 ( 3 Σ g - )/O 2 ( 1 Δ g ) reactions. Using microcanonical and multistructural canonical transition state theories, we calculated the rate constant for the triplet and singlet channels over the temperature range 200-2500 K, represented by k(T) = 3.08 × 10 12 T 0.07  exp(1151/RT) + 8.00 × 10 12 T 0.32  exp(-6896/RT) and k(T) = 2.14 × 10 6 T 1.65  exp(-2180/RT) in cm 3 mol -1 s -1 , respectively. The branching ratios show that the yield of singlet excited oxygen is small (<0.5% below 1000 K). To ascertain the importance of singlet oxygen channel, our new kinetic information was implemented into the kinetic model for hydrogen combustion recently updated by Konnov (Combust. Flame, 2015, 162, 3755-3772). The updated kinetic model was used to perform H 2 O 2 thermal decomposition simulations for comparison against shock tube experiments performed by Hong et al. (Proc. Combust. Inst., 2013, 34, 565-571), and to estimate flame speeds and ignition delay times in H 2 mixtures. The simulation predicted a larger amount of O 2 ( 1 Δ g ) in H 2 O 2 decomposition than that predicted by Konnov's original model. These differences in the O 2 ( 1 Δ g ) yield are due to the use of a higher ab initio level and a more sophisticated methodology to compute the rate constant than those used in previous studies, thereby predicting a significantly larger rate constant. No effect was observed on the rate of the H 2 O 2 decomposition and on the flame speeds and ignition delay times of different H 2 -oxidizer mixtures. However, if the oxidizer is seeded with O 3 , small differences appear in the flame speed. Given that O 2 ( 1 Δ g ) is much more reactive than O

  14. Synthesis and characterization of two novel inorganic/organic hybrid materials based on polyoxomolybdate clusters: (C5H5N5)2(C5H6N5)4[(HAsO4)2Mo6O18]·11H2O and Na2(Himi)3[SeMo6O21(CH3COO)3]·6H2O

    NASA Astrophysics Data System (ADS)

    Ayed, Meriem; Mestiri, Imen; Ayed, Brahim; Haddad, Amor

    2017-01-01

    Two new organic-inorganic hybrid compound, (C5H5N5)2(C5H6N5)4[(HAsO4)2Mo6O18]·11H2O (I) and Na2(Himi)3[SeMo6O21(CH3COO)3]·6H2O (II) were synthesized and structurally characterized by scanning electron microscopy (SEM), elemental analyses, FTIR, UV spectroscopy, thermal stability analysis, XRD and single crystal X-ray diffraction. Crystal data: (I) triclinic system, space group P-1, a = 11,217 (9) Å, b = 11,637 (8) Å, c = 14,919 (8) Å, α = 70,90 (5)°, β = 70,83 (2)°, γ = 62,00(1)° and Z = 1; (II) triclinic system, space group P-1, a = 10.6740(1) Å, b = 10.6740(1) Å, c = 20.0570(1) Å, α = 76.285(1)°, β = 82.198(2)°, γ = 87.075(1)°, Z = 1. The crystal structure of (I) can be described by infinite polyanions [(HAsO4)2Mo6O18]4- organized with water molecules in layers parallel to the c-direction; adjacent layers are further joined up by hydrogen bonding interactions with organic groups which were associated in chains spreading along the b-direction. The structure of (II) consists of functionalized selenomolybdate clusters [SeMo6O21(CH3COO)3]5-, protonated imidazole cations, sodium ions and lattice water molecules, which are held together to generate a three-dimensional supramolecular network via hydrogen-bonding interaction. Furthermore, the electrochemical properties of these compounds have been studied.

  15. Nqrs Data for H4I3Li2NO9 [H4INO3·2(ILiO3)] (Subst. No. 2278)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for H4I3Li2NO9 [H4INO3·2(ILiO3)] (Subst. No. 2278)

  16. Chanabayaite, Cu2(N3C2H2)Cl(NH3,Cl,H2O,□)4, a new mineral containing triazolate anion

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Zubkova, N. V.; Möhn, G.; Pekov, I. V.; Pushcharovsky, D. Yu.; Zadov, A. E.

    2015-12-01

    A new mineral, chanabayaite, has been discovered at a guano deposit located at Mt. Pabellón de Pica near the village of Chanabaya, Iquique Province, Tarapacá region, Chile. It is associated with salammoniac, halite, joanneumite, nitratine and earlier chalcopyrite. Chanabayaite occurs as blue translucent imperfect prismatic crystals, up to 0.05 × 0.1 × 0.5 mm in size, and their radial aggregates. Chanabayaite is brittle, with a Mohs' hardness of 2. The cleavage is perfect on (001) and imperfect on (100) and (010). D meas = 1.48(2) g/cm3, D calc = 1.464 g/cm3. The mineral is optically biaxial (-), α = 1.561(2), β = 1.615(3), γ = 1.620(2), 2 V meas = 25(10)°, 2 V calc = 33°. Pleochroism is strong, Z ≈ Y (deep blue) ≫ X (pale blue with gray tint). IR spectrum is given. The chemical composition (electron microprobe data for Cu, Fe and Cl; gas chromatography data for H, N, C and O) is as follows (wt %): 32.23 Cu, 1.14 Fe, 16.13 Cl, 3.1 H, 29.9 N, 12.2 C, 3.4 O, total is 98.1. The empirical formula is ( Z = 4): Cu1.92Fe0.08Cl1.72N8.09C3.85H11.66O0.81. The structural model was based on the single-crystal X-ray diffraction data ( R = 0.1627). Chanabayaite is orthorhombic, space group Imma, a = 19.484(3), b = 7.2136(10), c = 11.999(4) Å, V = 1686.5(7) Å3, Z = 2. In chanabayaite, chains of the corner-sharing Cu(l)-centered octahedra and single Cu(2)-centered octahedra are linked via 1,2,4-triazolate anions C2N3H2 -. NH3 and Cl- are additional ligands coordinating Cu2+. Chanabayaite is a transformational mineral species formed by leaching of Na and one third of Cl and partial dehydration of the protophase Na2Cu2Cl3(N3C2H2)2(NH3)2 • 4H2O. The strongest reflections in the powder X-ray diffraction pattern [ d, Å ( I, %) ( hkl)] are detected: 10.19 (100) (101), 6.189 (40) (011), 5.729 (23) (301), 5.216 (75) (211, 202), 4.964 (20) (400), 2.830 (20) (602, 413, 503), 2.611 (24) (123, 422, 404).

  17. Density functional theory study of 3R- and 2H-CuAlO2 under pressure

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Jun; Liu, Zheng-Tang; Feng, Li-Ping; Tian, Hao; Liu, Wen-Ting; Yan, Feng

    2010-10-01

    We present a first-principles density-functional theory based study of the impact of pressure on the structural and elastic properties of bulk 3R- and 2H-CuAlO2. The ground state properties of 3R- and 2H-CuAlO2 are obtained, which are in good agreement with previous experimental and theoretical data. The analysis of enthalpy variation with pressure indicates the phase transition pressure between 3R and 2H is 15.4 GPa. The independent elastic constants of 3R- and 2H-CuAlO2 are calculated. As the applied pressure increases, the calculations show the presences of mechanical instability at 26.2 and 27.8 GPa for 3R- and 2H-CuAlO2, which are possibly related with the phase transitions.

  18. Kamarizaite, Fe{3/3+}(AsO4)2(OH)3 · 3H2O, a new mineral species, arsenate analogue of tinticite

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Pekov, I. V.; Möckel, S.; Mukhanova, A. A.; Belakovsky, D. I.; Levitskaya, L. A.; Bekenova, G. K.

    2010-12-01

    Kamarizaite, a new mineral species, has been identified in the dump of the Kamariza Mine, Lavrion mining district, Attica Region, Greece, in association with goethite, scorodite, and jarosite. It was named after type locality. Kamarizaite occurs as fine-grained monomineralic aggregates (up to 3 cm across) composed of platy crystals up to 1 μm in size and submicron kidney-shaped segregations. The new mineral is yellow to beige, with light yellow streak. The Mohs hardness is about 3. No cleavage is observed. The density measured by hydrostatic weighing is 3.16(1) g/cm3, and the calculated density is 3.12 g/cm3. The wavenumbers of absorption bands in the IR spectrum of kamarizaite are (cm-1; s is strong band, w is weak band): 3552, 3315s, 3115, 1650w, 1620w, 1089, 911s, 888s, 870, 835s, 808s, 614w, 540, 500, 478, 429. According to TG and IR data, complete dehydration and dehydroxylation in vacuum (with a weight loss of 15.3(1)%) occurs in the temperature range 110-420°C. Mössbauer data indicate that all iron in kamarizaite is octahedrally coordinated Fe3+. Kamarizaite is optically biaxial, positive: n min = 1.825, n max = 1.835, n mean = 1.83(1) (for a fine-grained aggregate). The chemical composition of kamarizaite (electron microprobe, average of four point analyses) is as follows, wt %: 0.35 CaO, 41.78 Fe2O3, 39.89 As2O5, 1.49 SO3, 15.3 H2O (from TG data); the total is 98.81. The empirical formula calculated on the basis of (AsO4,SO4)2 is Ca0.03Fe{2.86/3+} (AsO4)1.90(SO4)0.10(OH)2.74 · 3.27H2O. The idealized formula is Fe{3/3+}(AsO4)2(OH)3 · 3H2O. Kamarizaite is an arsenate analogue of orthorhombic tinticite, space group Pccm, Pcc2, Pcmm, Pcm21, or Pc2 m; a = 21.32(1), b = 13.666(6), c =15.80(1) Å, V= 4603.29(5) Å3, Z= 16. The strongest reflections of the X-ray powder diffraction pattern [ bar d , Å ( I, %) ( hkl)] are: 6.61 (37) (112, 120), 5.85 (52) (311), 3.947 (100) (004, 032, 511), 3.396 (37) (133, 431), 3.332 (60) (314), 3.085 (58) (621, 414, 324

  19. Noteworthy performance of La(1-x)Ca(x)MnO3 perovskites in generating H2 and CO by the thermochemical splitting of H2O and CO2.

    PubMed

    Dey, Sunita; Naidu, B S; Govindaraj, A; Rao, C N R

    2015-01-07

    Perovskite oxides of the composition La1-xCaxMnO3 (LCM) have been investigated for the thermochemical splitting of H2O and CO2 to produce H2 and CO, respectively. The study was carried out in comparison with La1-xSrxMnO3, CeO2 and other oxides. The LCM system exhibits superior characteristics in high-temperature evolution of oxygen, and in reducing CO2 to CO and H2O to H2. The best results were obtained with La0.5Ca0.5MnO3 whose performance is noteworthy compared to that of other oxides including ceria. The orthorhombic structure of LCM seems to be a crucial factor.

  20. Comparison of O2 and H2O as oxygen source for homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Konishi, Keita; Goto, Ken; Togashi, Rie; Murakami, Hisashi; Higashiwaki, Masataka; Kuramata, Akito; Yamakoshi, Shigenobu; Monemar, Bo; Kumagai, Yoshinao

    2018-06-01

    Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy (HVPE) using O2 or H2O as an oxygen source was investigated by thermodynamic analysis, and compared with measured properties after growth. The thermodynamic analysis revealed that Ga2O3 growth is expected even at 1000 °C using both oxygen sources due to positive driving forces for Ga2O3 deposition. The experimental results for homoepitaxial growth on (0 0 1) β-Ga2O3 substrates showed that the surfaces of the layers grown with H2O were smoother than those grown with O2, although the growth rate with H2O was approximately half that with O2. However, in the homoepitaxial layer grown using H2O, incorporation of Si impurities with a concentration almost equal to the effective donor concentration (2 × 1016 cm-3) was confirmed, which was caused by decomposition of the quartz glass reactor due to the presence of hydrogen in the system.

  1. Site-specific vibrational spectral signatures of water molecules in the magic H3O+(H2O)20 and Cs+(H2O)20 clusters

    PubMed Central

    Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.; Johnson, Mark A.; Heine, Nadja; Gewinner, Sandy; Schöllkopf, Wieland; Esser, Tim K.; Fagiani, Matias R.; Knorke, Harald; Asmis, Knut R.

    2014-01-01

    Theoretical models of proton hydration with tens of water molecules indicate that the excess proton is embedded on the surface of clathrate-like cage structures with one or two water molecules in the interior. The evidence for these structures has been indirect, however, because the experimental spectra in the critical H-bonding region of the OH stretching vibrations have been too diffuse to provide band patterns that distinguish between candidate structures predicted theoretically. Here we exploit the slow cooling afforded by cryogenic ion trapping, along with isotopic substitution, to quench water clusters attached to the H3O+ and Cs+ ions into structures that yield well-resolved vibrational bands over the entire 215- to 3,800-cm−1 range. The magic H3O+(H2O)20 cluster yields particularly clear spectral signatures that can, with the aid of ab initio predictions, be traced to specific classes of network sites in the predicted pentagonal dodecahedron H-bonded cage with the hydronium ion residing on the surface. PMID:25489068

  2. Site-specific vibrational spectral signatures of water molecules in the magic H 3O +(H 2O) 20 and Cs +(H 2O) 20 clusters

    DOE PAGES

    Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.; ...

    2014-12-08

    Here, theoretical models of proton hydration with tens of water molecules indicate that the excess proton is embedded on the surface of clathrate-like cage structures with one or two water molecules in the interior. The evidence for these structures has been indirect, however, because the experimental spectra in the critical H-bonding region of the OH stretching vibrations have been too diffuse to provide band patterns that distinguish between candidate structures predicted theoretically. Here we exploit the slow cooling afforded by cryogenic ion trapping, along with isotopic substitution, to quench water clusters attached to the H 3O + and Cs +more » ions into structures that yield well-resolved vibrational bands over the entire 215- to 3,800-cm -1 range. The magic H 3O +(H 2O) 20 cluster yields particularly clear spectral signatures that can, with the aid of ab initio predictions, be traced to specific classes of network sites in the predicted pentagonal dodecahedron H-bonded cage with the hydronium ion residing on the surface.« less

  3. Attikaite, Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O, a new mineral species

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Pekov, I. V.; Zadov, A. E.

    2007-12-01

    Attikaite, a new mineral species, has been found together with arsenocrandalite, arsenogoyazite, conichalcite, olivenite, philipsbornite, azurite, malachite, carminite, beudantite, goethite, quartz, and allophane at the Christina Mine No. 132, Kamareza, Lavrion District, Attiki Prefecture (Attika), Greece. The mineral is named after the type locality. It forms spheroidal segregations (up to 0.3 mm in diameter) consisting of thin flexible crystals up to 3 × 20 × 80 μm in size. Its color is light blue to greenish blue, with a pale blue streak. The Mohs’ hardness is 2 to 2.5. The cleavage is eminent mica-like parallel to {001}. The density is 3.2(2) g/cm3 (measured in heavy liquids) and 3.356 g/cm3 (calculated). The wave numbers of the absorption bands in the infrared spectrum of attikaite are (cm-1; sh is shoulder; w is a weak band): 3525 sh, 3425, 3180, 1642, 1120 w, 1070 w, 1035 w, 900 sh, 874, 833, 820, 690 w, 645 w, 600 sh, 555, 486, 458, and 397. Attikaite is optically biaxial, negative, α = 1.642(2), β = γ = 1.644(2) ( X = c) 2 V means = 10(8)°, and 2 V calc = 0°. The new mineral is microscopically colorless and nonpleochroic. The chemical composition (electron microprobe, average over 4 point analyses, wt %) is: 0.17 MgO, 17.48 CaO, 0.12 FeO, 16.28 CuO, 10.61 Al2O3, 0.89 P2O5, 45.45 As2O5, 1.39 SO3, and H2O (by difference) 7.61, where the total is 100.00. The empirical formula calculated on the basis of (O,OH,H2O)22 is: Ca2.94Cu{1.93/2+} Al1.97Mg0.04Fe{0.02/2+} [(As3.74S0.16P0.12)Σ4.02O16.08](OH)3.87 · 2.05H2 O. The simplified formula is Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O. Attikaite is orthorhombic, space group Pban, Pbam or Pba2; the unit-cell dimensions are a = 10.01(1), b = 8.199(5), c = 22.78(1) Å, V = 1870(3) Å3, and Z = 4. In the result of the ignition of attikaite for 30 to 35 min at 128 140°, the H2O bands in the IR spectrum disappear, while the OH-group band is not modified; the weight loss is 4.3%, which approximately corresponds to two H2O

  4. Crystal chemistry of hydrous phases in the Al2O3-Fe2O3-H2O system: implications for water cycle in the deep lower mantle

    NASA Astrophysics Data System (ADS)

    Zhang, L.

    2016-12-01

    Hydrous minerals play an important role in the transportation and storage of water in the Earth's interior. Recently a pyrite-structured iron oxide (FeO2) (P-phase) was found stable at 76 GPa and 1800 K [1] and this discovery has brought new insights into the H2-O2 cycles in the deep mantle. In this study, we perform in situ synchrotron X-ray experiments in the Al2O3-Fe2O3-H2O system in a laser-heated diamond anvil cell (DAC) at P-T conditions in the deep lower mantle. The new results added more complexity to the H2-O2/H2O cycles in the deep lower mantle. The symmetry and unit-cell parameters of each phase in the run products were determined using the multigrain approach [2]. On the other hand, the d-H solid solution AlOOH-MgSiO2(OH)2 is the stable hydrous phase coexisting with bridgmanite or post-perovskite under equilibrium P-T conditions to the deepest lower mantle [3]. The detailed crystal chemistry of the newly found hydrous phases and its relations to the d-H phase have been investigated using both first-principles calculations and experiments, providing new understanding to the hydration mechanism and water storage in the deep mantle. It is worth mentioning that recent development in high pressure multigrain method has realized separation of each individual phase in a multiphase assemblage and even allowed in situ crystal structure determination of a minor phase in the assemblage contained in a DAC [4]. [1] Q. Hu, D. Y. Kim, W. Yang, L. Yang, Y. Meng, L. Zhang, and H. K. Mao, Nature 534, 241 (2016). [2] H. O. Sørensen et al., Zeitschrift für Kristallographie 227, 63 (2012). [3] I. Ohira, E. Ohtani, T. Sakai, M. Miyahara, N. Hirao, Y. Ohishi, and M. Nishijima, Earth and Planetary Science Letters 401, 12 (2014). [4] L. Zhang, D. Popov, Y. Meng, J. Wang, C. Ji, B. Li, and H.-k. Mao, American Mineralogist 101, 231 (2016).

  5. H+, O2+, O3+ and high resolution PIXE spectra of Yb2O3

    NASA Astrophysics Data System (ADS)

    Chaves, P. C.; Reis, M. A.

    2017-11-01

    The number of X-ray spectrometry systems having energy resolution of the order of 10 eV, or less, has increasing recently, included already energy dispersive systems (EDS). Access to previous unseen spectra details and enhanced information including speciation, becomes more common and available. Analysis of high resolution EDS PIXE spectra is, nevertheless a complex task due to the need to carefully account for contributions from minor and satellite transitions. In this work, a pure Yb2O3 sample was irradiated at the HRHE-PIXE setup of C2TN, and simultaneous CdTe and X-ray Microcalorimeter Spectrometer (XMS) spectra were collected. The L-shell spectrum of Yb emitted during irradiations using H+ , O2+ and O3+ ions in the energy range from 1.0 to 6.5 MeV was studied. Measured L X-ray spectra were analysed taking into account the effects of the multiple ionization in the L and M shells. All spectra were analysed using the DT2 code, which allows to include in the fitting model diagram lines as well as multi-ionization satellites and any other contributions. In this communication we present the results and discuss details and problems related to the transition energies, intensity, line width data, and multiple ionization satellites.

  6. A First Principles Study of H2 Adsorption on LaNiO3(001) Surfaces

    PubMed Central

    Pan, Changchang; Chen, Yuhong; Wu, Na; Zhang, Meiling; Yuan, Lihua; Zhang, Cairong

    2017-01-01

    The adsorption of H2 on LaNiO3 was investigated using density functional theory (DFT) calculations. The adsorption sites, adsorption energy, and electronic structure of LaNiO3(001)/H2 systems were calculated and indicated through the calculated surface energy that the (001) surface was the most stable surface. By looking at optimized structure, adsorption energy and dissociation energy, we found that there were three types of adsorption on the surface. First, H2 molecules completely dissociate and then tend to bind with the O atoms, forming two –OH bonds. Second, H2 molecules partially dissociate with the H atoms bonding to the same O atom to form one H2O molecule. These two types are chemical adsorption modes; however, the physical adsorption of H2 molecules can also occur. When analyzing the electron structure of the H2O molecule formed by the partial dissociation of the H2 molecule and the surface O atom, we found that the interaction between H2O and the (001) surface was weaker, thus, H2O was easier to separate from the surface to create an O vacancy. On the (001) surface, a supercell was constructed to accurately study the most stable adsorption site. The results from analyses of the charge population; electron localization function; and density of the states indicated that the dissociated H and O atoms form a typical covalent bond and that the interaction between the H2 molecule and surface is mainly due to the overlap-hybridization among the H 1s, O 2s, and O 2p states. Therefore, the conductivity of LaNiO3(001)/H2 is stronger after adsorption and furthermore, the conductivity of the LaNiO3 surface is better than that of the LaFeO3 surface. PMID:28772396

  7. A new Pu(iii) coordination geometry in (C5H5NBr)2[PuCl3(H2O)5]·2Cl·2H2O as obtained via supramolecular assembly in aqueous, high chloride media.

    PubMed

    Surbella, Robert G; Ducati, Lucas C; Pellegrini, Kristi L; McNamara, Bruce K; Autschbach, Jochen; Schwantes, Jon M; Cahill, Christopher L

    2017-09-28

    Crystals of a hydrated Pu(iii) chloride, (C 5 H 5 NBr) 2 [PuCl 3 (H 2 O) 5 ]·2Cl·2H 2 O, were grown via slow evaporation from acidic aqueous, high chloride media. X-ray diffraction data reveals the neutral [PuCl 3 (H 2 O) 5 ] tecton is assembled via charge assisted hydrogen and halogen bonds donated by 4-bromopyridinium cations and a series of inter-tecton hydrogen bonds.

  8. X-ray investigation of molten crystal hydrates H2SO4(nH2O) and HNO3(nH2O)

    NASA Technical Reports Server (NTRS)

    Romanova, A. V.; Skryshevskiy, A. F.

    1979-01-01

    Integral analysis of the intensity of the electron density distribution curve in molten crystal hydrates provided by X-ray analysis, permits the following conclusions on the structure of the complex SO and NO ions, and the short-range order in the structure of the solution. The SO4 ion in the solution has a tetrahedral structure with an S to O distance equal to 1.5 A. For the NO3 in the solution, a planar triangular shape is probable, with an N to O distance equal to 1.2 A. Preferential distances between each of the oxygens of the SO ion and the nearest molecules of water proved near to the corresponding distances in solid crystal hydrates. For an (H2SO4)(H2O) solution, the average number of water molecules surrounding each oxygen atom of the SO4 (--) ion was on the order of 1.3 molecules. Hence the preferential distances between the water molecules and the oxygen atoms of the SO ion, and the preference of their mutual position, correspond to the fixed position of these same elements of the structure in the solid crystal hydrate.

  9. Phase Equilibria and Transport Properties in the Systems AgNO3/RCN/H2O. R = CH3, C2H5, C3H7, C4H,, C6H5, and C6H5CH2

    NASA Astrophysics Data System (ADS)

    Das, Surjya P.; Wittekopf, Burghard; Weil, Konrad G.

    1988-11-01

    Silver nitrate can form homogeneous liquid phases with some organic nitriles and water, even when there is no miscibility between the pure liquid components. We determined the shapes of the single phase regions in the ternary phase diagram for the following systems: silver nitrate /RCN /H2O with R =CH3, C3H7, C6H5, and C6H5CH2 at room temperature and for R =C6H5 also at 60 °C and O °C. Furthermore we studied kinematic viscosities, electrical conductivities, and densities of mixtures containing silver nitrate, RCN, and water with the mole ratios X /4 /1 (0.2≦ X ≦S 3.4). In these cases also R = C2H5 and C4H9 were studied. The organic nitriles show different dependences of viscosity and conductivity on the silver nitrate content from the aliphatic ones.

  10. Electron-temperature dependence of the recombination of H3O+(H2O)n ions with electrons

    NASA Technical Reports Server (NTRS)

    Johnsen, R.

    1993-01-01

    The T(e) dependence of the recombination of H3O+(H2O)n cluster-ions with electrons has been measured in an afterglow experiment in which the electrons were heated by a radio-frequency electric field. The recombination coefficients were found to vary with T(e) as about T(e) exp -1/2 in better agreement with theoretical expectations than earlier results of microwave-afterglow measurements.

  11. Synthesis of cationic iridium(I) complexes of water-soluble phosphine ligands, [Ir(CO)(TPPMS){sub 3}]CF{sub 3}SO{sub 3}, [Ir(CO)(H{sub 2}O)(TPPTS){sub 2}]CF{sub 3}SO{sub 3}, and [Ir(CO){sub 2}(TPPMS){sub 3}]ClO{sub 4} (TPPMS = PPh{sub 2}(m-C{sub 6}H{sub 4}SO{sub 3}K), TPPTS = P(m-C{sub 6}H{sub 4}SO{sub 3}Na){sub 3})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paterniti, D.P.; Francisco, L.W.; Atwood, J.D.

    Several new water-soluble iridium(I) complexes were synthesized and their reactivities with small molecules (H{sub 2} or CO) in polar solvents (DMSO or H{sub 2}O) examined. Reaction of H{sub 2} with [Ir(CO)(TPPMS){sub 3}]CF{sub 3}SO{sub 3} (TPPMS = P(C{sub 6}H{sub 5}){sub 2}(m-C{sub 6}H{sub 4}SO{sub 3}K)) in DMSO or H{sub 2}O produces [cis,mer-Ir(CO)(H){sub 2}(TPPMS){sub 3}]CF{sub 3}SO{sub 3}, while the reaction of CO with [Ir(CO)(TPPMS){sub 3}]-CF{sub 3}SO{sub 3} in water yields [Ir(CO){sub 2}(TPPMS){sub 3}]CF{sub 3}SO{sub 3}. Carbonylation of [Ir(CO){sub 2}(TPPMS){sub 3}]ClO{sub 4} in DMSO produces [Ir(CO){sub 3}(TPPMS){sub 2}]ClO{sub 4} and TPPMS; no reaction is observed in H{sub 2}O. Hydrogenation of [Ir(CO){sub 2}(TPPMS){sub 3}]ClO{sub 4}more » in DMSO or H{sub 2}O yields [cis,mer-Ir(CO)(H){sub 2}(TPPMS){sub 3}]ClO{sub 4}, while reaction of H{sub 2} with an aqueous solution of [Ir(CO)(H{sub 2}O)(TPPTS){sub 2}]CF{sub 3}SO{sub 3} produces [Ir(CO)(H{sub 2}O)(H){sub 2}(TPPTS){sub 2}]CF{sub 3}SO{sub 3}. Reaction of trans-Ir(CO)ClL{sub 2} (L = TPPMS or TPPTS) with excess L in H{sub 2}O produces [Ir(CO)L{sub 3}]Cl, while no reaction occurs in DMSO, [Ir(CO){sub 3}(TPPMS){sub 2}]Cl reacts irreversibly with TPPMS in H{sub 2}O to produce [Ir(CO){sub 2}-(TPPMS){sub 3}]Cl.« less

  12. Stibiconite (Sb3O6OH), senarmontite (Sb2O3) and valentinite (Sb2O3): Dissolution rates at pH 2-11 and isoelectric points

    NASA Astrophysics Data System (ADS)

    Biver, M.; Shotyk, W.

    2013-05-01

    Batch reactor experiments were carried out in order to derive rate laws for the proton promoted dissolution of the main natural antimony oxide phases, namely stibiconite (idealized composition SbSb2O6OH), senarmontite (cubic Sb2O3) and (metastable) valentinite (orthorhombic Sb2O3) over the range 2 ⩽ pH ⩽ 11, under standard conditions and ionic strength I = 0.01 mol l-1. The rates of antimony release by stibiconite were r = (2.2 ± 0.2) × 10-9 a(H+)0.11±0.01 mol m-2 s-1 for 2.00 ⩽ pH ⩽ 4.74 and r = (4.3 ± 0.2) × 10-10 a(H+)-0.030±0.003 mol m-2 s-1 for 4.74 ⩽ pH ⩽ 10.54. The rates of dissolution of senarmontite were r = (5.3 ± 2.2) × 10-7 a(H+)0.54±0.05 mol m-2 s-1 for 2.00 ⩽ pH ⩽ 6.93 and r = (1.4 ± 0.3) × 10-14 a(H+)-0.53±0.07 mol m-2 s-1 for 6.93 ⩽ pH ⩽ 10.83. The rates of dissolution of valentinite were r = (6.3 ± 0.2) × 10-8 a(H+)0.052±0.003 mol m-2 s-1 for 1.97 ⩽ pH ⩽ 6.85. Above pH = 6.85, valentinite was found to dissolve at a constant rate of r = (2.79 ± 0.05) × 10-8 mol m-2 s-1. Activation energies were determined at selected pH values in the acidic and basic domain, over the temperature range 25-50 °C. The values for stibiconite are -10.6 ± 1.9 kJ mol-1 (pH = 2.00) and 53 ± 14 kJ mol-1 (pH = 8.7). For senarmontite, we found 46.6 ± 4.7 kJ mol-1 (pH = 3.0) and 68.1 ± 6.1 kJ mol-1 (pH = 9.9) and for valentinite 41.9 ± 1.1 kJ mol-1 (pH = 3.0) and 39.0 ± 4.6 kJ mol-1 (pH = 9.9). These activation energies are interpreted in the text. The solubility of stibiconite at 25 °C in the pH domain from 2 to 10 was determined; solubilities decrease from 452.0 μg l-1 (as Sb) at pH = 2.00 to 153.2 μg l-1 at pH = 7.55 and increase again in the basic region, up to 176.6 μg l-1 at pH = 9.92. A graphical synopsis of all the kinetic results, including those of stibnite (Sb2S3) from earlier work, is presented. This allows an easy comparison between the dissolution rates of stibnite and the minerals examined in the present work

  13. Herschel Survey of Galactic OH+, H2O+, and H3O+: Probing the Molecular Hydrogen Fraction and Cosmic-Ray Ionization Rate

    NASA Astrophysics Data System (ADS)

    Indriolo, Nick; Neufeld, D. A.; Gerin, M.; Schilke, P.; Benz, A. O.; Winkel, B.; Menten, K. M.; Chambers, E. T.; Black, John H.; Bruderer, S.; Falgarone, E.; Godard, B.; Goicoechea, J. R.; Gupta, H.; Lis, D. C.; Ossenkopf, V.; Persson, C. M.; Sonnentrucker, P.; van der Tak, F. F. S.; van Dishoeck, E. F.; Wolfire, Mark G.; Wyrowski, F.

    2015-02-01

    In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen-bearing ions OH+, H2O+, and H3O+ begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H2. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (ζH) and molecular hydrogen fraction (f_H_2). We present observations targeting transitions of OH+, H2O+, and H3O+ made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH+ and H2O+ are detected in absorption in multiple velocity components along every sight line, but H3O+ is only detected along 7 sight lines. From the molecular abundances we compute f_H_2 in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042 ± 0.018. This confirms previous findings that OH+ and H2O+ primarily reside in gas with low H2 fractions. We also infer ζH throughout our sample, and find a lognormal distribution with mean log (ζH) = -15.75 (ζH = 1.78 × 10-16 s-1) and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H_3^+ observations. Ionization rates in the Galactic center tend to be 10-100 times larger than found in the Galactic disk, also in accord with prior studies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  14. Field induced 4f5d [Re(salen)]2O3[Dy(hfac)3(H2O)]2 single molecule magnet.

    PubMed

    Pointillart, Fabrice; Bernot, K; Sessoli, R; Gatteschi, D

    2010-05-03

    The reaction between the mononuclear [ReO(salen)(OMe)] (salen(2-) = N,N'-ethan-1,2-diylbis(salicylidenamine) dianion) and Dy(hfac)(3).2H(2)O (hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate anion) complexes lead to the formation of a compound with the formula {[Re(salen)](2)O(3)[Dy(hfac)(3)(H(2)O)](2)}(CHCl(3))(2)(CH(2)Cl(2))(2) noted (Dy(2)Re(2)). This compound has been characterized by single crystal and powder X-ray diffraction and has been found isostructural to the Y(III) derivative (Y(2)Re(2)) that we previously reported. The cyclic voltammetry demonstrates the redox activity of the system. The characterization of both static and dynamic magnetic properties is reported. Static magnetic data has been analyzed after the cancellation of the crystal field contribution by two different methods. Weak ferromagnetic exchange interactions between the Dy(III) ions are highlighted. The compound Dy(2)Re(2) displays slow relaxation of the magnetization when an external magnetic field is applied. Alternating current susceptibility shows a thermally activated behavior with pre-exponential factors of 7.13 (+/-0.10) x 10(-6) and 5.76 (+/-0.27) x 10(-7) s, and energy barriers of 4.19 (+/-0.02) and 8.52 (+/-0.55) K respectively for low and high temperature regimes.

  15. Herschel/HIFI observations of CO, H2O and NH3 in Monoceros R2

    NASA Astrophysics Data System (ADS)

    Pilleri, P.; Fuente, A.; Cernicharo, J.; Ossenkopf, V.; Berné, O.; Gerin, M.; Pety, J.; Goicoechea, J. R.; Rizzo, J. R.; Montillaud, J.; González-García, M.; Joblin, C.; Le Bourlot, J.; Le Petit, F.; Kramer, C.

    2012-08-01

    Context. Mon R2, at a distance of 830 pc, is the only ultracompact H ii region (UCH ii) where the associated photon-dominated region (PDR) can be resolved with Herschel. Owing to its brightness and proximity, it is one of the best-suited sources for investigating the chemistry and physics of highly UV-irradiated PDRs. Aims: Our goal is to estimate the abundance of H2O and NH3 in this region and investigate their origin. Methods: We present new observations ([C ii], 12CO, 13CO, C18O, o-H2O, p-H2O, o-H_218O and o-NH3) obtained with the HIFI instrument onboard Herschel and the IRAM-30 m telescope. We investigated the physical conditions in which these lines arise by analyzing their velocity structure and spatial variations. Using a large velocity gradient approach, we modeled the line intensities and derived an average abundance of H2O and NH3 across the region. Finally, we modeled the line profiles with a non-local radiative transfer model and compared these results with the abundance predicted by the Meudon PDR code. Results: The variations of the line profiles and intensities indicate complex geometrical and kinematical patterns. In several tracers ([C ii], CO 9 → 8 and H2O) the line profiles vary significantly with position and have broader line widths toward the H ii region. The H2O lines present strong self-absorption at the ambient velocity and emission in high-velocity wings toward the H ii region. The emission in the o-H_218O ground state line reaches its maximum value around the H ii region, has smaller linewidths and peaks at the velocity of the ambient cloud. Its spatial distribution shows that the o-H_218O emission arises in the PDR surrounding the H ii region. By modeling the o-H_218O emission and assuming the standard [16O] / [18O] = 500, we derive a mean abundance of o-H2O of ~10-8 relative to H2. The ortho-H2O abundance, however, is larger (~1 × 10-7) in the high-velocity wings detected toward the H ii region. Possible explanations for this larger

  16. Synthesis and characterization of two layered aluminophosphates, ( T) 2HAl 2P 3O 12 ( T=2-BuNH 3+) and ( T)H 2Al 2P 3O 12 ( T=pyH +)

    NASA Astrophysics Data System (ADS)

    Chippindale, Ann M.; Powell, Anthony V.; Bull, Lucy M.; Jones, Richard H.; Cheetham, Anthony K.; Thomas, John M.; Xu, Ruren

    1992-01-01

    Two new aluminophosphates, ( T) 2HAl 2P 3O 12 ( T=2-BuNH 3+) ( I) and ( T)H 2Al 2P 3O 12 ( T=pyH +) ( II) with the same framework stoichiometry but different layer structures have been prepared under nonaqueous conditions and the structures determined by single-crystal X-ray diffraction. Compound ( I) crystallizes in the monoclinic space group P2 1/ c ( Z=4), with lattice parameters a=9.261(1) b=8.365(6), c=27.119(4) Å, β=91.50(1)δ, and V=2100.1 Å 3 ( R=0.072 and R w=0.090). The structure consists of Al-and P-centered tetrahedra linked to form layers. Protonated 2-butylamine molecules are located in the interlayer spaces and hydrogen bonded to the layers through NH 3+ groups. Weak hydrophobic van der Waals' interactions between alkyl groups of the 2-BuNH 3+ cations hold the layers together. Compound ( II) crystallizes in the triclinic space group P-1 ( Z=2), with a=8.574(2), b=8.631(3), c=10.371(2) Å, α=81.84(3), β=87.53(2), γ=69.07(2)δ, and V=709.49Å 3 ( R=0.039 and R w=0.052). The structure contains tetrahedrally coordinated P atoms and both tetrahedral and trigonal pyramidal Al atoms linked to form layers which are held together through hydrogen bonding, creating cavities in which pyH + cations reside.

  17. Dehydration of glucose to 5-hydroxymethylfurfural by a core-shell Fe3O4@SiO2-SO3H magnetic nanoparticle catalyst

    USDA-ARS?s Scientific Manuscript database

    This paper discusses the potential use of (Fe3O4@SiO2-SO3H) nanoparticle catalyst for the dehydration of glucose into 5-hydroxymethylfurfural (HMF). A magnetically recoverable (Fe3O4@SiO2-SO3H) nanoparticle catalyst was successfully prepared by supporting sulfonic acid groups (SO3H) on the surface o...

  18. Oxidant effect of La(NO3)3·6H2O solution on the crystalline characteristics of nanocrystalline ZrO2 films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Oh, Nam Khen; Kim, Jin-Tae; Kang, Goru; An, Jong-Ki; Nam, Minwoo; Kim, So Yeon; Park, In-Sung; Yun, Ju-Young

    2017-02-01

    Nanocrystalline ZrO2 films were synthesized by atomic layer deposition method using CpZr[N(CH3)2]3 (Cp = C5H5) as the metal precursor and La(NO3)3·6H2O solution as the oxygen source. La element in the deposited ZrO2 films could not be detected as its content was below the resolution limit of the X-ray photoelectron spectroscopy. The alternative introduction of La(NO3)3·6H2O solution to conventionally used H2O as the oxidant effectively altered the crystalline structure, grain size, and surface roughness of the grown ZrO2 films. Specifically, the crystalline structure of the ZrO2 film changed from a mixture of tetragonal and monoclinic phases to monoclinic phase. The average grain size also increased, and the resulting film surface became rougher. The average grain sizes of the ZrO2 films prepared from La(NO3)3·6H2O solution at concentrations of 10, 20, 30, and 40% were 280, 256, 208, and 200 nm, respectively, whereas that prepared using H2O oxidant was 142 nm. However, the concentration of La(NO3)3·6H2O solution minimally influenced the crystalline characteristics of the nanocrystalline ZrO2 films i.e., the crystalline structure, grain size, and surface roughness except for crystallite size.

  19. Copper(II) ion catalytic oxidation of o-phenylenediamine and characterization, X-ray crystal structure and solution studies of the final product [DAPH][H3O][Cu(dipic)23H2O

    NASA Astrophysics Data System (ADS)

    Ghasemi, Khaled; Rezvani, Ali Reza; Shokrollahi, Ardeshir; Abdul Razak, Ibrahim; Refahi, Masoud; Moghimi, Abolghasem; Rosli, Mohd Mustaqim

    2015-09-01

    The complex [DAPH][H3O][Cu(dipic)23H2O, (1) (dipicH2 = 2,6-pyridinedicarboxylic acid and DAP = 2,3-diaminophenazine) was prepared from the reaction of Cu(NO3)2·2H2O with mixture of o-phenylenediamine (OPD) and 2,6-pyridinedicarboxylic acid in water. The complex was characterized by FTIR, elemental analysis, UV-Vis and the single-crystal X-ray diffraction. The crystal system is monoclinic with the space group P21/c. This complex is stabilized in the solid state by an extensive network of hydrogen bonds between crystallized water, anionic and cationic fragments, which form a three-dimensional network. Furthermore, hydrogen bonds, π⋯π and Csbnd O⋯π stacking interactions seem to be effective in stabilizing the crystal structures. The protonation constants of dipic (L) and DAP (Q), the equilibrium constants for the dipic-DAP proton transfer system and the stoichiometry and stability constants of binary complexes including each of ligands (dipic, DAP) in presence Cu2+ ion, ternary complexes including, both of ligands (dipic-DAP) in presence of metal ion were calculated in aqueous solutions by potentiometric pH titration method using the Hyperquad2008 program. The stoichiometry of the most complexes species in solution was found to be very similar to the solid-state of cited metal ion complex.

  20. Design and syntheses of hybrid metal–organic materials based on K{sub 3}[M(C{sub 2}O{sub 4}){sub 3}]·3H{sub 2}O [M(III)=Fe, Al, Cr] metallotectons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yayong; Zong, Yingxia; Ma, Haoran

    2016-05-15

    By using K{sub 3}[M(C{sub 2}O{sub 4}){sub 3}]·3H{sub 2}O [M(III)=Fe, Al, Cr] (C{sub 2}O{sub 4}{sup 2−}=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C_2O_4)_2(H_2O)_2}{sub 2}]·(H–L{sub 1}){sub 2H{sub 2}O 1, [Fe(C{sub 2}O{sub 4})Cl{sub 2}]·(H{sub 2}–L{sub 2}){sub 0.5}·(L{sub 2}){sub 0.5}·H{sub 2}O 2, [{Fe(C_2O_4)_1_._5Cl_2}{sub 2}]·(H–L{sub 3}){sub 4}3, [Fe{sub 2}(C{sub 2}O{sub 4})Cl{sub 8}]·(H{sub 2}–L{sub 4}){sub 22H{sub 2}O 4, K[Al(C{sub 2}O{sub 4}){sub 3}]·(H{sub 2}–L{sub 5})·2H{sub 2}O 5, K[Al(C{sub 2}O{sub 4}){sub 3}]·(H–L{sub 6}){sub 22H{sub 2}O 6, K[Cr(C{sub 2}O{sub 4}){sub 3}]·2H{sub 2}O 7, Na[Fe(C{sub 2}O{sub 4}){sub 3}]·(H–L{sub 6}){sub 22H{sub 2}O 8 (with L{sub 1}=4-dimethylaminopyridine, L{sub 2}=2,3,5,6-tetramethylpyrazine, L{sub 3}=2-aminobenzimidazole, L{sub 4}=1,4-bis-(1H-imidazol-1-yl)benzene, L{sub 5}=1,4-bis((2-methylimidazol-1-yl)methyl)benzene,more » L{sub 6}=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C{sub 2}O{sub 4}){sub 2}(H{sub 2}O){sub 2}]{sup −} unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C{sub 2}O{sub 4})Cl{sub 2}]{sup -} anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe{sub 2}(C{sub 2}O{sub 4}){sub 3}Cl{sub 4}]{sup 4−} unit. Compound 4 features distinct [Fe{sub 2}(C{sub 2}O{sub 4})Cl{sub 8}]{sup 4−} units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C{sub 2}O{sub 4}){sub 3}]{sup 3−} units and K{sup +} cations. The 1D chains are further extended into 3D antionic H-bonded framework through O–H···O H-bonds. Compounds 6–8 show 2D [KAl

  1. Hydrothermal synthesis of 4ZnO·B2O3·H2O:Ln3 + (Ln = Eu, Tb) phosphors: Morphology-tunable and luminescence properties

    NASA Astrophysics Data System (ADS)

    Cao, Shiwei; Jiao, Yang; Han, Weifang; Ge, Chunhua; Song, Bo; Wang, Jie; Zhang, Xiangdong

    2018-02-01

    4ZnO·B2O3·H2O:Ln3 + (Ln = Eu, Tb) phosphors with different morphologies have been successfully synthesized via one-step hydrothermal method through regulating the molar amount of Eu3 + and Tb3 +. Comprehensive scanning electron microscopy (SEM), X-ray diffraction (XRD) Fourier transform infrared spectrum (FT-IR) and inductively coupled plasma atomic emission spectrometer (ICP-AES) characterizations all confirm that obtained products are 4ZnO·B2O3·H2O:Ln3 + (Ln = Eu, Tb). The experimental results displayed that the morphology and photoluminescence of compounds is regularly changed with increased the molar amount of rare earth ions. For the Eu3 +-doped, Tb3 +-doped and Eu3 +/Tb3 + co-doped 4ZnO·B2O3·H2O phosphors of morphologies, the rod-like structures gradually changed to flower-like structures, fine wire-like structure and hybrid structure, respectively. To their photoluminescence, the Eu3 + shows a red emission (615 nm); the Tb3 + shows a green emission (545 nm); for the Eu3 +/Tb3 + co-doped 4ZnO·B2O3·H2O phosphors, a combination of blue (5d-4f of Eu2 +), green (5D4-7F5 of Tb3 +) and red (5D0-7F2 of Eu3 +) emissions emerges to achieve white emission. In addition, the energy transfer among Eu3 +, Eu2 + and Tb3 + ions was also discussed.

  2. Hydrothermal synthesis of 4ZnO·B2O3·H2O:Ln3+ (Ln=Eu, Tb) phosphors: Morphology-tunable and luminescence properties.

    PubMed

    Cao, Shiwei; Jiao, Yang; Han, Weifang; Ge, Chunhua; Song, Bo; Wang, Jie; Zhang, Xiangdong

    2018-02-05

    4ZnO·B 2 O 3 ·H 2 O:Ln 3+ (Ln=Eu, Tb) phosphors with different morphologies have been successfully synthesized via one-step hydrothermal method through regulating the molar amount of Eu 3+ and Tb 3+ . Comprehensive scanning electron microscopy (SEM), X-ray diffraction (XRD) Fourier transform infrared spectrum (FT-IR) and inductively coupled plasma atomic emission spectrometer (ICP-AES) characterizations all confirm that obtained products are 4ZnO·B 2 O 3 ·H 2 O:Ln 3+ (Ln=Eu, Tb). The experimental results displayed that the morphology and photoluminescence of compounds is regularly changed with increased the molar amount of rare earth ions. For the Eu 3+ -doped, Tb 3+ -doped and Eu 3+ /Tb 3+ co-doped 4ZnO·B 2 O 3 ·H 2 O phosphors of morphologies, the rod-like structures gradually changed to flower-like structures, fine wire-like structure and hybrid structure, respectively. To their photoluminescence, the Eu 3+ shows a red emission (615nm); the Tb 3+ shows a green emission (545nm); for the Eu 3+ /Tb 3+ co-doped 4ZnO·B 2 O 3 ·H 2 O phosphors, a combination of blue (5d-4f of Eu 2+ ), green ( 5 D 4 - 7 F 5 of Tb 3+ ) and red ( 5 D 0 - 7 F 2 of Eu 3+ ) emissions emerges to achieve white emission. In addition, the energy transfer among Eu 3+ , Eu 2+ and Tb 3+ ions was also discussed. Copyright © 2017. Published by Elsevier B.V.

  3. Physical-chemical examination of the N2O3-SO3-H2O system

    NASA Technical Reports Server (NTRS)

    Linstroem, C.; Malyska, G.

    1977-01-01

    It was found that when (NO)HSO4 is added to absolute H2SO4, specific conductivity rises sharply, possibly due to an increase in mutual interionic effects and viscosity as the (NO)HSO4 concentration rises. The addition of SO3 to the solution yielded a precipitate; a combination of analysis, IR spectroscopy and X-ray diffraction techniques indicated that this precipitate was (NO)HS2O7.

  4. Structural, electronic properties and stability of metatitanic acid (H 2TiO 3) nanotubes

    NASA Astrophysics Data System (ADS)

    Enyashin, A. N.; Denisova, T. A.; Ivanovskii, A. L.

    2009-12-01

    Quite recently, metatitanic acid (H 2TiO 3) has been successfully prepared, which extended the family of known titanic acids H 2Ti nO 2n+1 ( n = 2, 3 and 4). Here the atomic models for nanotubes (NTs) of metatitanic acid are designed and their cohesive and electronic properties are considered depending on their chirality and radii by means of density-functional theory-tight-binding (DFTB) method. Our main findings are that the proposed H 2TiO 3 tubes are stable and that all these NTs will be the insulators (independently from their chirality and the diameters) with forbidden gaps at about ˜4.6 eV. We have found also that aforementioned properties of predicted H 2TiO 3 NTs are very similar with those of recently prepared fabricated nanotubes of polytitanic acids; thus, it is possible to expect that the proposed H 2TiO 3 tubular materials may be fabricated.

  5. Exploration of H2O-CO2 Solubility in Alkali Basalt at low-H2O

    NASA Astrophysics Data System (ADS)

    Roggensack, K.; Allison, C. M.; Clarke, A. B.

    2017-12-01

    A number of recent experimental studies have found conflicting evidence for and against the influence of H2O on CO2 solubility in basalt and alkali-rich mafic magma (e.g. Behrens et al., 2009; Shishkina et al., 2010;2014; Iacono-Marziano et al., 2012). Some of the uncertainty is due to the error with spectroscopic determination (FTIR) of carbon and the challenge of controlling H2O abundance in experiments. It's been widely observed that even experimental capsules without added H2O may produce hydrous glasses containing several wt.% H2O. We conducted fluid-saturated, mixed-fluid (H2O-CO2) experiments to determine the solubility in alkali basalt with particular emphasis on conditions at low-H2O. To limit possible H2O contamination, materials were dried prior to loading and experimental capsules were sealed under vacuum. Experiments were run using a piston-cylinder, in Pt (pre-soaked in Fe) or AuPd capsules and operating at pressures from 400 to 600 MPa. Post-run the capsules were punctured under vacuum and fluids were condensed, separated, and measured by mercury manometry. A comparison between two experiments run at the same temperature and pressure conditions but with different fluid compositions illustrates the correlation between carbonate and H2O solubility. Uncertainties associated with using concentrations calculated from FTIR data can be reduced by directly comparing analyses on wafers of similar thickness. We observe that the experiment with greater H2O absorbance also has a higher carbonate absorbance than the experiment with lower H2O absorbance. Since the experiments were run at the same pressure, the experiment with more water-rich fluid, and higher dissolved H2O, has lower CO2 fugacity, but surprisingly has higher dissolved CO2 content. Overall, the results show two distinct trends. Experiments conducted at low-H2O (0.5 to 0.8 wt.%) show lower dissolved CO2 than those conducted at moderate-H2O (2 to 3 wt.%) at similar CO2 fugacity. These data show that

  6. Synthesis, crystal structure, and spectroscopic characterization of trans-bis[(mu-1,3-bis(4-pyridyl)propane)(mu-(3-thiopheneacetate-O))(3-thiopheneacetate-O)]dicopper(II), [[Cu2(O2CCH2C4H3S)4mu-(BPP)2

    PubMed

    Marinho, Maria Vanda; Yoshida, Maria Irene; Guedes, Kassilio J; Krambrock, Klaus; Bortoluzzi, Adailton J; Hörner, Manfredo; Machado, Flávia C; Teles, Wagner M

    2004-02-23

    From the reaction between a dinuclear paddle-wheel carboxylate, namely [Cu2mu-(O2CCH2C4H3S)4] (1), and the flexible ligand 1,3-bis(4-pyridyl)propane (BPP) a neutral 2-D coordination polymer [[Cu2(O2CCH2C4H3S)4mu-(BPP)2

  7. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O3/H2O2), and an electro-peroxone process.

    PubMed

    Wang, Huijiao; Zhan, Juhong; Yao, Weikun; Wang, Bin; Deng, Shubo; Huang, Jun; Yu, Gang; Wang, Yujue

    2018-03-01

    Pharmaceutical abatement in a groundwater (GW), surface water (SW), and secondary effluent (SE) by conventional ozonation, the conventional peroxone (O 3 /H 2 O 2 ), and the electro-peroxone (E-peroxone) processes was compared in batch tests. SE had significantly more fast-reacting dissolved organic matter (DOM) moieties than GW and SW. Therefore, O 3 decomposed much faster in SE than in GW and SW. At specific ozone doses of 0.5-1.5 mg O 3 /mg dissolved organic carbon (DOC), the application of O 3 /H 2 O 2 and E-peroxone process (by adding external H 2 O 2 stocks or in-situ generating H 2 O 2 from cathodic O 2 reduction during ozonation) similarly enhanced the OH yield from O 3 decomposition by ∼5-12% and 5-7% in GW and SW, respectively, compared to conventional ozonation. In contrast, due to the slower reaction kinetics of O 3 with H 2 O 2 than O 3 with fast-reacting DOM moieties, the addition or electro-generation of H 2 O 2 hardly increased the OH yield (<4% increases) in SE. Corresponding to the changes in the OH yields, the abatement efficiencies of ozone-resistant pharmaceuticals (ibuprofen and clofibric acid) increased evidently in GW (up to ∼14-18% at a specific ozone dose of 1.5 mg O 3 /mg DOC), moderately in SW (up to 6-10% at 0.5 mg O 3 /mg DOC), and negligibly in SE during the O 3 /H 2 O 2 and E-peroxone treatment compared to conventional ozonation. These results indicate that similar to the conventional O 3 /H 2 O 2 process, the E-peroxone process can more pronouncedly enhance O 3 transformation to OH, and thus increase the abatement efficiency of ozone-resistant pharmaceuticals in water matrices exerting relatively high ozone stability (e.g., groundwater and surface water with low DOM contents). Therefore, by installing electrodes in existing ozone reactors, the E-peroxone process may provide a convenient way to enhance pharmaceutical abatement in drinking water applications, where groundwater and surface water with low DOM contents are used as

  8. A variable Ag-Cr-Oxalate channel lattice: [M(x)Ag(0.5)(-)(x)(H(2)O)(3)]@[Ag(2.5)Cr(C(2)O(4))(3)], M = K, Cs, Ag.

    PubMed

    Dean, Philip A W; Craig, Don; Dance, Ian; Russell, Vanessa; Scudder, Marcia

    2004-01-26

    Reaction of aqueous AgNO(3) with aqueous M(3)[Cr(ox)(3)] in >or=3:1 molar ratio causes the rapid growth of large, cherry-black, light-stable crystals which are not Ag(3)[Cr(ox)(3)], but [M(0.5)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)] (ox(2)(-) = oxalate, C(2)O(4)(2)(-); M = Na, K, Cs, Ag, or mixtures of Ag and a group 1 element). The structure of these crystals contains an invariant channeled framework, with composition [[Ag(2.5)Cr(ox)(3)](-)(0.5)]( infinity ), constructed with [Cr(ox)(3)] coordination units linked by Ag atoms through centrosymmetric [Cr-O(2)C(2)O(2)-Ag](2) double bridges. The framework composition [Ag(2.5)Cr(ox)(3)](-)(0.5) occurs because one Ag is located on a 2-fold axis. Within the channels there is a well-defined and ordered set of six water molecules, strongly hydrogen bonded to each other and some of the oxalate O atoms. This invariant channel plus water structure accommodates group 1 cations, and/or Ag cations, in different locations and in variable proportions, but always coordinated by channel water and some oxalate O atoms. The general formulation of these crystals is therefore [M(x)Ag(0.5-x)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)]. Five different crystals with this structure are reported, with compositions 1 Ag(0.5)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 2 Cs(0.19)Ag(0.31)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 3 K(0.28)Ag(0.22)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 4 Cs(0.41)Ag(0.09)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), and 5 Cs(0.43)Ag(0.07) [Ag(2.5)Cr(ox)(3)](H(2)O)(3). All crystallize in space group C2/c, with a approximately 18.4, b approximately 14.6, c approximately 12.3 A, beta approximately 113 degrees. Pure Ag(3)[Cr(ox)(3)](H(2)O)(3), which has the same crystal structure (1), was obtained from water by treating Li(3)[Cr(ox)(3)] with excess AgNO(3). Complete dehydration of all of these compounds occurs between 30 and 100 degrees C, with loss of diffraction, but rehydration by exposure to H(2)O(g) at ambient temperature leads to recovery of the original diffraction pattern. In single

  9. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Ertl, G.; Alefeld, G.; Youdelis, W.; Radd, H.; Oertle, G.; Siegel, Edward

    2011-03-01

    "H2O H2O everywhere; ne'er a drop to drink"[Coleridge(1798)]; now: "H2 H2 everywhere; STILL ne'er a drop to drink": ONLY H2 (or methane CH4) can be FLYING-WATER(F-W) chemical-rain-in-pipelines Hindenberg-effect (H2-UP;H2O-DOWN): {O/H2O}=[16]/[18] 90 % ; O already in air uphill; NO H2O pumping need! In global-warming driven H2O-starved glacial-melting world, rescue is possible ONLY by Siegel [{3rd Intl. Conf. Alt.-Energy }(1980)-vol.5/p.459!!!] Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating-system. Rosenfeld[Science 315,1396(3/9/2007)]-Biello [Sci.Am.(3/9/2007)] crucial geomorph-ology which ONLY maximal-buoyancy H2 can exploit, to again make "Mountains into Fountains", ``upthrust rocks trapping the clouds to precipitate their rain/snow/H2O'': "terraforming"(and ocean-rebasificaton!!!) Siegel proprietary magnetic-hydrogen-valve (MHV) permits H2 flow in already in-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Science 300,1740(2003)] dire warning of global-pandemics (cancers/ blindness/famine) Hydrogen-economy CATASTROPHIC H2 ozone-layer destruction sobering cavat to dangerous H2-automotion-economy panacea hype!!!

  10. The crystal structure of galgenbergite-(Ce), CaCe2(CO3)4•H2O

    NASA Astrophysics Data System (ADS)

    Walter, Franz; Bojar, Hans-Peter; Hollerer, Christine E.; Mereiter, Kurt

    2013-04-01

    Galgenbergite-(Ce) from the type locality, the railroad tunnel Galgenberg between Leoben and St. Michael, Styria, Austria, was investigated. There it occurs in small fissures of an albite-chlorite schist as very thin tabular crystals building rosette-shaped aggregates associated with siderite, ancylite-(Ce), pyrite and calcite. Electron microprobe analyses gave CaO 9.49, Ce2O3 28.95, La2O3 11.70, Nd2O3 11.86, Pr2O3 3.48, CO2 30.00, H2O 3.07, total 98.55 wt.%. CO2 and H2O calculated by stoichiometry. The empirical formula (based on Ca + REE ∑3.0) is C{{a}_{1.00 }}{{( {C{{e}_{1.04 }}L{{a}_{0.42 }}N{{d}_{0.42 }}P{{r}_{0.12 }}} )}_{2.00 }}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O , and the simplified formula is CaC{{e}_2}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O . According to X-ray single crystal diffraction galgenbergite-(Ce) is triclinic, space group Poverline{1},a=6.3916(5) , b = 6.4005(4), c = 12.3898(9) Å, α = 100.884(4), β = 96.525(4), γ = 100.492(4)°, V = 483.64(6) Å3, Z = 2. The eight strongest lines in the powder X-ray diffraction pattern are [ d calc in Å/( I)/ hkl]: 5.052/(100)/011; 3.011/(70)/0-22; 3.006/(66)/004; 5.899/(59)/-101; 3.900/(51)/1-12; 3.125/(46)/-201; 2.526/(42)/022; 4.694/(38)/-102. The infrared absorption spectrum reveals H2O (OH-stretching mode at 3,489 cm-1, HOH bending mode at 1,607 cm-1) and indicates the presence of distinctly non-equivalent CO3-groups by double and quadruple peaks of their ν1, ν2, ν3 and ν4 modes. The crystal structure of galgenbergite-(Ce) was refined with X-ray single crystal data to R1 = 0.019 for 2,448 unique reflections ( I > 2 σ( I)) and 193 parameters. The three cation sites of the structure Ca(1), Ce(2) and Ce(3) have a modest mixed site occupation by Ca and small amount of REE (Ce, La, Pr, Nd) and vice versa. The structure is based on double layers parallel to (001), which are composed of Ca(1)Ce(2)(CO3)2 single layers with an ordered chessboard like arrangement of Ca and Ce, and with a roof tile

  11. A Novel Coordination Polymer Constructed by Hetero-Metal Ions and 2,3-Pyridine Dicarboxylic Acid: Synthesis and Structure of [NiNa2(PDC)2(μ-H2O)(H2O)2] n

    NASA Astrophysics Data System (ADS)

    Dou, Ming-Yu; Lu, Jing

    2017-12-01

    A novel coordination polymer containing hetero-metal ions, [NiNa2(PDC)2(μ-H2O)(H2O)2] n , where PDC is 2,3-pyridine dicarboxylate ion, has been synthesized. In the structure, the PDC ligand chelates and bridges two Ni(II) and two Na(I) centers. Two kinds of metal centers are connected by μ4-PDC and μ2-H2O to form 2D coordination layers. Hydrogen bonds between coordination water molecules and carboxylate oxygen atoms further link these 2D coordination layers to form 3D supramolecular network.

  12. Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5

    USGS Publications Warehouse

    Majzlan, J.; Navrotsky, A.; McCleskey, R. Blaine; Alpers, Charles N.

    2006-01-01

    Enthalpies of formation of ferricopiapite [nominally Fe4.67(SO4)6(OH)2 (H2O)20]. coquimbite [Fe2(SO4)3(H2O)9], rhomboclase [(H3O)Fe(SO4)2 (H2O)3], and Fe2(SO4)3(H2O)5 were measured by acid (5 N HCl) solution calorimetry. The samples were characterized by wet chemical analyses and synchrotron powder X-ray diffraction (XRD). The refinement of XRD patterns gave lattice parameters, atomic positions, thermal factors, and occupancies of the sites. The calculated formulae differ slightly from the nominal compositions: Fe4.78(SO4)6 (OH)2.34(H2O)20.71 (ferricopiapite), (Fe1.47Al0.53)(SO4)3 (H2O)9.65 (coquimbite), (H3O)1.34Fe(SO4)2.17 (H2O)3.06 (rhomboclase), and Fe2(SO4)3 (H2O)5.03. All thermodynamic data are given per mole of these formulae. The measured standard enthalpies (in kJ/mol) of formation from the elements (crystalline Fe, Al, S, and ideal gases O2 and H2) at T = 298.15 K are -4115.8??4.1 [Fe2(SO4)3 (H2O)5.03], -12045.1??9.2 (ferricopiapite), -5738.4??3.3 (coquimbite), and -3201.1??2.6 (rhomboclase). Standard entropy (S??) was estimated as a sum of entropies of oxide, hydroxide, and sulfate components. The estimated S?? (in J/mol.K) values for the iron sulfates are 488.2 [Fe2(SO4)3 (H2O)5.03], 1449.2 (ferricopiapite), 638.3 (coquimbite), and 380.1 (rhomboclase). The calculated Gibbs free energies of formation (in kJ/mol) are -3499.7??4.2 [Fe2(SO4)3 (H2O)5.03], -10089.8??9.3 (ferricopiapite), -4845.6??3.3 (coquimbite), and -2688.0??2.7 (rhomboclase). These results combined with other available thermodynamic data allow construction of mineral stability diagrams in the FeIII2(SO4)3-FeII SO4-H2O system. One such diagram is provided, indicating that the order of stability of ferric sulfate minerals with decreasing pH in the range of 1.5 to -0.5 is: hydronium jarosite, ferricopiapite, and rhomboclase. ?? 2006 E. Schweizerbart'sche Verlagsbuchhandlung.

  13. Large hydrogen-bonded pre-nucleation (HSO4-)(H2SO4)m(H2O)k and (HSO4-)(NH3)(H2SO4)m(H2O)k clusters in the earth's atmosphere.

    PubMed

    Herb, Jason; Xu, Yisheng; Yu, Fangqun; Nadykto, A B

    2013-01-10

    The importance of pre-nucleation cluster stability as the key parameter controlling nucleation of atmospheric airborne ions is well-established. In this Article, large ternary ionic (HSO(4)(-))(H(2)SO(4))(m)(NH(3))(H(2)O)(n) clusters have been studied using Density Functional Theory (DFT) and composite ab initio methods. Twenty classes of clusters have been investigated, and thermochemical properties of common atmospheric (HSO(4)(-))(H(2)SO(4))(m)(NH(3))(0)(H(2)O)(k) and (HSO(4)(-))(H(2)SO(4))(m)(NH(3))(1)(H(2)O)(n) clusters (with m, k, and n up to 3) have been obtained. A large amount of new themochemical and structural data ready-to-use for constraining kinetic nucleation models has been reported. We have performed a comprehensive thermochemical analysis of the obtained data and have investigated the impacts of ammonia and negatively charged bisulfate ion on stability of binary clusters in some detail. The comparison of theoretical predictions and experiments shows that the PW91PW91/6-311++G(3df,3pd) results are in very good agreement with both experimental data and high level ab initio CCSD(T)/CBS values and suggest that the PW91PW91/6-311++G(3df,3pd) method is a viable alternative to higher level ab initio methods in studying large pre-nucleation clusters, for which the higher level computations are prohibitively expensive. The uncertainties in both theory and experiments have been investigated, and possible ways of their reduction have been proposed.

  14. First identification and thermodynamic characterization of the ternary U(VI) species, UO2(O2)(CO3)2(4-), in UO2-H2O2-K2CO3 solutions.

    PubMed

    Goff, George S; Brodnax, Lia F; Cisneros, Michael R; Peper, Shane M; Field, Stephanie E; Scott, Brian L; Runde, Wolfgang H

    2008-03-17

    In alkaline carbonate solutions, hydrogen peroxide can selectively replace one of the carbonate ligands in UO2(CO3)3(4-) to form the ternary mixed U(VI) peroxo-carbonato species UO2(O2)(CO3)2(4-). Orange rectangular plates of K4[UO2(CO3)2(O2)].H2O were isolated and characterized by single crystal X-ray diffraction studies. Crystallographic data: monoclinic, space group P2(1)/ n, a = 6.9670(14) A, b = 9.2158(10) A, c = 18.052(4) A, Z = 4. Spectrophotometric titrations with H 2O 2 were performed in 0.5 M K 2CO 3, with UO2(O2)(CO3)2(4-) concentrations ranging from 0.1 to 0.55 mM. The molar absorptivities (M(-1) cm(-1)) for UO2(CO3)3(4-) and UO2(O2)(CO3)2(4-) were determined to be 23.3 +/- 0.3 at 448.5 nm and 1022.7 +/- 19.0 at 347.5 nm, respectively. Stoichiometric analyses coupled with spectroscopic comparisons between solution and solid state indicate that the stable solution species is UO2(O2)(CO3)2(4-), which has an apparent formation constant of log K' = 4.70 +/- 0.02 relative to the tris-carbonato complex.

  15. Crystal structure of [NaZn(BTC)(H2O)4]·1.5H2O (BTC = benzene-1,3,5-tri-carb-oxy-l-ate): a heterometallic coordination compound.

    PubMed

    Ni, Min; Li, Quanle; Chen, Hao; Li, Shengqing

    2015-07-01

    The title coordination polymer, poly[[μ-aqua-tri-aqua-(μ3-benzene-1,3,5-tri-carboxyl-ato)sodiumzinc] sesquihydrate], {[NaZn(C9H3O6)(H2O)4]·1.5H2O} n , was obtained in ionic liquid microemulsion at room temperture by the reaction of benzene-1,3,5-tri-carb-oxy-lic acid (H3BTC) with Zn(NO3)2·6H2O in the presence of NaOH. The asymmetric unit comprises two Na(+) ions (each located on an inversion centre), one Zn(2+) ion, one BTC ligand, four coordinating water mol-ecules and two solvent water molecules, one of which is disordered about an inversion centre and shows half-occupation. The Zn(2+) cation is five-coordinated by two carboxyl-ate O atoms from two different BTC ligands and three coordinating H2O mol-ecules; the Zn-O bond lengths are in the range 1.975 (2)-2.058 (3) Å. The Na(+) cations are six-coordinated but have different arrangements of the ligands: one is bound to two carboxyl-ate O atoms of two BTC ligands and four O atoms from four coordinating H2O mol-ecules while the other is bound by four carboxyl-ate O atoms from four BTC linkers and two O atoms of coordinating H2O mol-ecules. The completely deprotonated BTC ligand acts as a bridging ligand binding the Zn(2+) atom and Na(+) ions, forming a layered structure extending parallel to (100). An intricate network of O-H⋯O hydrogen bonds is present within and between the layers.

  16. The performance and decolourization kinetics of O3/H2O2 oxidation of reactive green 19 dye in wastewater

    NASA Astrophysics Data System (ADS)

    Sabri, S. N.; Abidin, C. Z. A.; Fahmi; Kow, S. H.; Razali, N. A.

    2018-03-01

    The degradations characteristic of azo dye Reactive Green 19 (RG19) was investigated using advanced oxidation process (AOPs). It was evaluated based on colour and chemical oxygen demand (COD) removal. The effect of operational parameters such as initial dye concentration, initial dosage of hydrogen peroxide (H2O2), contact time, and pH was also being studied. The samples were treated by ozonation (O3) and peroxone O3/H2O2 process. Advanced oxidation processes (AOPs) involve two stages of oxidation; firstly is the formation of strong oxidant and secondly the reaction of organic contaminants in water. In addition, the term advanced oxidation is referring to the processes in which oxidation of organic contaminants occurs primarily through reactions with hydroxyl radicals. There are several analyses that use to determine the efficiency of the treatment process, which are UV-Vis absorption spectra, COD, Fourier Transform Infrared (FT-IR), and pH. The results demonstrated that the ozone oxidation was efficient in decolourization and good in mineralization, based on the reduction of colour and COD. Additionally, results indicate that H2O2 is able to perform better than ozonation in order to decolourize the dye wastewater with 0.5 mL H2O2/L dye dosage of H2O2 at different initial concentration, initial pH, with contact time.

  17. Structure and vibrational properties of the dominant O-H center in β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Weiser, Philip; Stavola, Michael; Fowler, W. Beall; Qin, Ying; Pearton, Stephen

    2018-06-01

    Hydrogen has a strong influence on the electrical properties of transparent conducting oxides where it can give rise to shallow donors and can passivate deep compensating defects. We have carried out infrared absorption experiments on H- and D-doped β-Ga2O3 that involve temperature- and polarization-dependent effects as well as relative H- and D-concentrations to probe the defect structures that hydrogen can form. The results of analysis of these data, coupled with detailed theoretical calculations, show that the dominant O-H vibrational line observed at 3437 cm-1 for hydrogenated Ga2O3 is due to a relaxed VGa-2H center.

  18. Ordered bimetallic ferromagnets of chromium(III): [Cr(NH 3) 6][Cr(CN) 6], [Cr(H 2O)(NH 3) 5][Cr(CN) 6], and trans-[Cr(en) 2(H 2O) 2]trans-[Cr(en) 2(OH)F] 2(CIO 4) 5·2H 2O

    NASA Astrophysics Data System (ADS)

    Burriel, Ramón; Casabó, Jaime; Pons, Josefina; Carnegie, David W.; Carlin, Richard L.

    1985-07-01

    The magnetic bahavior of the isomorphous compounds [Cr(NH 3) 6][Cr(CN) 6] and [Cr(H 2O)(NH 3) 5][Cr(CN) 6] has been studied by means of zero-field susceptibility measurements. The materials order ferromagnetically at 0.60 and 0.38K, respectively. The compounds behave as examples of the ferromagnetic ( S=3/2) Heisenberg body-center-cubic lattice. The susceptibilities have been analyzed and compared to the Padé approximants of the high-temperature series expansion for this model, a remarkably good fit being obtained with exchange constants 0.042 and 0.022 K, respectively. Another bimetallic substance, trans-[Cr(en) 2(H 2O) 2] trans-[Cr(en) 2(OH)F] 2(CIO 4) 5·2H 2O, with a dominant Heisenberg ferromagnetic interaction J/ kB=0.122 K in one dimension, orders antiferromagnetically at 0.14 K due to a weaker interchain interaction with exchange constant z‧ J‧/ kB=-0.019 K. The three sets of measurements have been carried out on powdered samples for which demagnetization effects are important. The exchange interactions are remarkably weak for such concentrated magnetic materials, yet they are stronger than those found in a number of other such Cr/Cr compounds.

  19. Comparison of photo-Fenton, O3/H2O2/UV and photocatalytic processes for the treatment of gray water.

    PubMed

    Hassanshahi, Nahid; Karimi-Jashni, Ayoub

    2018-06-21

    This research was carried out to compare and optimize the gray water treatment performance by the photo-Fenton, photocatalysis and ozone/H 2 O 2 /UV processes. Experimental design and optimization were carried out using Central Composite Design of Response Surface Methodology. The results of experiments showed that the most effective and influencing factors in photo-Fenton process were H 2 O 2 /Fe 2+ ratio, in ozone/H 2 O 2 /UV experiment were O 3 concentration, H 2 O 2 concentration, reaction time and pH and in photocatalytic process were TiO 2 concentration, pH and reaction time. The highest COD removal in photo-Fenton, ozone/H 2 O 2 /UV and photocatalytic process were 90%, 92% and 55%, respectively. The results were analyzed by design expert software and for all three processes second-order models were proposed to simulate the COD removal efficiency. In conclusion the ozone/H 2 O 2 /UV process is recommended for the treatment of gray water, since it was able to remove both COD and turbidity by 92% and 93%, respectively. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Evaluation of the solubility constants of the hydrated solid phases in the H2O-Al2O3-SO3 ternary system

    NASA Astrophysics Data System (ADS)

    Teyssier, A.; Lagneau, V.; Schmitt, J. M.; Counioux, J. J.; Goutaudier, C.

    2017-04-01

    During the acid processing of aluminosilicate ores, the precipitation of a solid phase principally consisting of hydrated aluminium hydroxysulfates may be observed. The experimental study of the H2O-Al2O3-SO3 ternary system at 25 ∘C and 101 kPa enabled to describe the solid-liquid equilibra and to identify the nature, the composition and the solubility of the solid phases which may form during the acid leaching. To predict the appearance of these aluminium hydroxysulfates in more complex systems, their solubility constants were calculated by modelling the experimental solubility results, using a geochemical reaction modelling software, CHESS. A model for non-ideality correction, based on the B-dot equation, was used as it was suitable for the considered ion concentration range. The solubility constants of three out of four solid phases were calculated: 104.08 for jurbanite (Al(SO4)(OH).5H2O), 1028.09 for the solid T (Al8(SO4)5(OH)14.34H2O) and 1027.28 for the solid V (Al10(SO4)3(OH)24.20H2O). However the activity correction model was not suitable to determine the solubility constant of alunogen (Al2(SO4)3.15.8H2O), as the ion concentrations of the mixtures were too high and beyond the allowable limits of the model. Another ionic activity correction model, based on the Pitzer equation for example, must be applied to calculate the solubility constant of alunogen.

  1. Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts.

    PubMed

    Chen, Wei-Cheng; Hsieh, Shih-Rong; Chiu, Chun-Hwei; Hsu, Ban-Dar; Liou, Ying-Ming

    2014-06-09

    Epigallocatechin-3-gallate (EGCG) has been documented for its beneficial effects protecting oxidative stress to cardiac cells. Previously, we have shown the EGCG-mediated cardiac protection by attenuating reactive oxygen species and cytosolic Ca2+ in cardiac cells during oxidative stress and myocardial ischemia. Here, we aimed to seek a deeper elucidation of the molecular anti-oxidative capabilities of EGCG in an H2O2-induced oxidative stress model of myocardial ischemia injury using H9c2 rat cardiomyoblasts. Proteomics analysis was used to determine the differential expression of proteins in H9c2 cells cultured in the conditions of control, 400 μM H2O2 exposure for 30 min with and/or without 10 to 20 μM EGCG pre-treatment. In this model, eight proteins associated with energy metabolism, mitochondrial electron transfer, redox regulation, signal transduction, and RNA binding were identified to take part in EGCG-ameliorating H2O2-induced injury in H9c2 cells. H2O2 exposure increased oxidative stress evidenced by increases in reactive oxygen species and cytosolic Ca2+ overload, increases in glycolytic protein, α-enolase, decreases in antioxidant protein, peroxiredoxin-4, as well as decreases in mitochondrial proteins, including aldehyde dehydrogenase-2, ornithine aminotransferase, and succinate dehydrogenase ubiquinone flavoprotein subunit. All of these effects were reversed by EGCG pre-treatment. In addition, EGCG attenuated the H2O2-induced increases of Type II inositol 3, 4-bisphosphate 4-phosphatase and relieved its subsequent inhibition of the downstream signalling for Akt and glycogen synthase kinase-3β (GSK-3β)/cyclin D1 in H9c2 cells. Pre-treatment with EGCG or GSK-3β inhibitor (SB 216763) significantly improved the H2O2-induced suppression on cell viability, phosphorylation of pAkt (S473) and pGSK-3β (S9), and level of cyclin D1 in cells. Collectively, these findings suggest that EGCG blunts the H2O2-induced oxidative effect on the Akt activity

  2. Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts

    PubMed Central

    2014-01-01

    Background Epigallocatechin-3-gallate (EGCG) has been documented for its beneficial effects protecting oxidative stress to cardiac cells. Previously, we have shown the EGCG-mediated cardiac protection by attenuating reactive oxygen species and cytosolic Ca2+ in cardiac cells during oxidative stress and myocardial ischemia. Here, we aimed to seek a deeper elucidation of the molecular anti-oxidative capabilities of EGCG in an H2O2-induced oxidative stress model of myocardial ischemia injury using H9c2 rat cardiomyoblasts. Results Proteomics analysis was used to determine the differential expression of proteins in H9c2 cells cultured in the conditions of control, 400 μM H2O2 exposure for 30 min with and/or without 10 to 20 μM EGCG pre-treatment. In this model, eight proteins associated with energy metabolism, mitochondrial electron transfer, redox regulation, signal transduction, and RNA binding were identified to take part in EGCG-ameliorating H2O2-induced injury in H9c2 cells. H2O2 exposure increased oxidative stress evidenced by increases in reactive oxygen species and cytosolic Ca2+ overload, increases in glycolytic protein, α-enolase, decreases in antioxidant protein, peroxiredoxin-4, as well as decreases in mitochondrial proteins, including aldehyde dehydrogenase-2, ornithine aminotransferase, and succinate dehydrogenase ubiquinone flavoprotein subunit. All of these effects were reversed by EGCG pre-treatment. In addition, EGCG attenuated the H2O2-induced increases of Type II inositol 3, 4-bisphosphate 4-phosphatase and relieved its subsequent inhibition of the downstream signalling for Akt and glycogen synthase kinase-3β (GSK-3β)/cyclin D1 in H9c2 cells. Pre-treatment with EGCG or GSK-3β inhibitor (SB 216763) significantly improved the H2O2-induced suppression on cell viability, phosphorylation of pAkt (S473) and pGSK-3β (S9), and level of cyclin D1 in cells. Conclusions Collectively, these findings suggest that EGCG blunts the H2O2-induced oxidative

  3. SMA observations of the W3(OH) complex: Dynamical differentiation between W3(H2O) and W3(OH)

    NASA Astrophysics Data System (ADS)

    Qin, Sheng-Li; Schilke, Peter; Wu, Jingwen; Liu, Tie; Wu, Yuefang; Sánchez-Monge, Álvaro; Liu, Ying

    2016-03-01

    We present Submillimeter Array observations of the HCN (3-2) and HCO+ (3-2) molecular lines towards the W3(H2O) and W3(OH) star-forming complexes. Infall and outflow motions in the W3(H2O) have been characterized by observing HCN and HCO+ transitions. High-velocity blue/red-shifted emission, tracing the outflow, show multiple knots, which might originate in episodic and precessing outflows. `Blue-peaked' line profiles indicate that gas is infalling on to the W3(H2O) dust core. The measured large mass accretion rate, 2.3 × 10-3 M⊙ yr-1, together with the small free-fall time-scale, 5 × 103 yr, suggest W3(H2O) is in an early evolutionary stage of the process of formation of high-mass stars. For the W3(OH), a two-layer model fit to the HCN and HCO+ spectral lines and Spizter/Infrared Array Camera (IRAC) images support that the W3(OH) H II region is expanding and interacting with the ambient gas, with the shocked neutral gas being expanding with an expansion time-scale of 6.4 × 103 yr. The observations suggest different kinematical time-scales and dynamical states for the W3(H2O) and W3(OH).

  4. The effect of H2O on the adsorption of NO2 on γ-Al2O3: an in situ FTIR/MS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szanyi, Janos; Kwak, Ja Hun; Chimentao, Ricardo J.

    2007-02-15

    The effect of water on the adsorption of NO2 onto a γ-Al2O3 catalyst support surface was investigated using Fourier transform infrared spectroscopy (FTIR) and mass spectrometry (MS). Upon room temperature exposure of the alumina surface to small amounts of NO2, nitrites and nitrates are formed, and at higher NO2 doses only nitrates are observed. The surface nitrates formed were of bridging monodentate, bridging bidentate, and monodentate configuration. At elevated NO2 pressures, the surface hydroxyls were consumed in their reaction with NO2 giving primarily bridge-bound nitrates. A significant amount of weakly adsorbed N2O3 was seen as well. Exposure of the NO2-saturatedmore » γ-Al2O3 surface to H2O resulted in the desorption of some NO2 + NO as H2O interacted with the weakly-held N2O3, while the bridging monodentate surface nitrates converted into monodentate nitrates. The conversion of these oxide-bound nitrates to water-solvated nitrates was observed at high water doses when the presence of liquid-like water is expected on the surface. The addition of H2O to the NO2-saturated γ-Al2O3 did not affect the amount of NOx strongly adsorbed on the support surface. In particular, no NOx desorption was observed when the NO2-saturated sample was heated to 573K prior to room temperature H2O exposure. The effect of water is completely reversible; i.e., during TPD experiments following NO2 and H2O coadsorption, the same IR spectra were observed at temperatures above that required for H2O desorption as seen for NO2 adsorption only experiments.« less

  5. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks.

    PubMed

    Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing

    2015-01-01

    In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.

  6. Crystal structure of triaquamaleatostrontium(II) monohydrate, [Sr(C{sub 4}H{sub 2}O{sub 4})(OH{sub 2}{sub 3}) {center_dot}] H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz de Delgado, G.; Parra, P.P.; Briceno, A.

    1995-05-01

    (Sr(C{sub 4}H{sub 2}O{sub 4})(OH{sub 2}{sub 3}) {center_dot} H{sub 2}O is monoclinic, P2{sub 1}/n, with a = 11.476(2), b = 7.027(1), c = 12.344(2) {angstrom}, {beta} = 115.74(3){degrees}, V= 896.67 {angstrom}{sup 3}, Z = 4. The Sr atom is surrounded by nine oxygen atoms which come from four different maleate anions and three water molecules. The Sr-O distances range from 2.546(2) to 2.808(2) {angstrom}. The C-O distances are equal within the standard deviation 1.263(3) to 1.258(3) {angstrom}). In the maleate anion, the planes that contain the carboxylate groups form an angle of 74.44(9){degrees}. Both carboxylate groups deviate significantly from planarity. Themore » different coordination modes of the carboxylate group and the extensive hydrogen bonding present are responsible for the polymeric nature of the structure.« less

  7. Axial zero-field splitting in mononuclear Co(ii) 2-N substituted N-confused porphyrin: Co(2-NC3H5-21-Y-CH2C6H4CH3-NCTPP)Cl (Y = o, m, p) and Co(2-NC3H5-21-CH2C6H5-NCTPP)Cl.

    PubMed

    Lai, Ya-Yuan; Chang, Yu-Chang; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu

    2016-03-21

    The inner C-benzyl- and C-o-xylyl (or m-xylyl, p-xylyl)-substituted cobalt(ii) complexes of a 2-N-substituted N-confused porphyrin were synthesized from the reaction of 2-NC3H5NCTPPH (1) and CoCl2·6H2O in toluene (or o-xylene, m-xylene, p-xylene). The crystal structures of diamagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-hydrogen-21-carbaporphyrinato-N,N',N'')zinc(ii) [Zn(2-NC3H5-21-H-NCTPP)Cl; 3 ] and paramagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-benzyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-CH2C6H5NCTPP)Cl; 7], and chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-Y-xylyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-Y-CH2C6H4CH3NCTPP)Cl] [Y = o (8), m (9), p (10)] were determined. The coordination sphere around the Zn(2+) (or Co(2+)) ion in 3 (or 7-10) is a distorted tetrahedron (DT). The free energy of activation at the coalescence temperature Tc for the exchange of phenyl ortho protons o-H (26) with o-H (22) in 3 in a CDCl3 solvent is found to be ΔG = 61.4 kJ mol(-1) through (1)H NMR temperature-dependent measurements. The axial zero-field splitting parameter |D| was found to vary from 35.6 cm(-1) in 7 (or 30.7 cm(-1) in 8) to 42.0 cm(-1) in 9 and 46.9 cm(-1) in 10 through paramagnetic susceptibility measurements. The magnitude of |D| can be related to the coordination sphere at the cobalt sites.

  8. High pressure Raman spectroscopy of H2O-CH3OH mixtures.

    PubMed

    Hsieh, Wen-Pin; Chien, Yu-Hsiang

    2015-02-23

    Complex intra-molecular interactions and the hydrogen-bonding network in H2O-volatile mixtures play critical roles in many dynamics processes in physical chemistry, biology, and Earth and planetary sciences. We used high pressure Raman spectroscopy to study the pressure evolution of vibrational frequencies and bonding behavior in H2O-CH3OH mixtures. We found that the presence of low CH3OH content in H2O increases the transition pressure where water crystallizes to ice VI, but does not significantly change the pressure where ice VI transforms to ice VII. Furthermore, the stiffening rates of C-H stretching frequencies dω/dP in CH3OH significantly decrease upon the crystallization of water, and the softening rates of the O-H stretching frequencies of ice VII are suppressed over a narrow pressure range, after which the frequencies of these modes shift with pressure in ways similar to pure CH3OH and ice VII, respectively. Such complex pressure evolution of Raman frequencies along with pronounced variations in Raman intensities of CH3OH within the sample, and the hysteresis of the water-ice VI phase transition suggest pressure-induced segregation of low content CH3OH from ice VII. These findings indicate the significant influence of volatiles on the crystallization of sub-surface ocean and thermal evolution within large icy planets and satellites.

  9. A second polymorph with composition Co3(PO4)2·H2O

    PubMed Central

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·H2O, tricobalt(II) bis­[ortho­phosphate(V)] monohydrate, were obtained under hydro­thermal conditions. The compound is the second polymorph of this composition and is isotypic with its zinc analogue, Zn3(PO4)2·H2O. Three independent Co2+ cations are bridged by two independent orthophosphate anions. Two of the metal cations exhibit a distorted tetra­hedral coordination while the third exhibits a considerably distorted [5 + 1] octa­hedral coordination environment with one very long Co—O distance of 2.416 (3) Å. The former cations are bonded to four different phosphate anions, and the latter cation is bonded to four anions (one of which is bidentate) and one water mol­ecule, leading to a framework structure. Additional hydrogen bonds of the type O—H⋯O stabilize this arrangement. PMID:21200979

  10. Crystal structure, quantum mechanical investigation, IR and NMR spectroscopy of two new organic perchlorates: (C6H18N3)·(ClO4)3H2O (I) and (C9H11N2)·ClO4(II)

    NASA Astrophysics Data System (ADS)

    Bayar, I.; Khedhiri, L.; Soudani, S.; Lefebvre, F.; Ferretti, V.; Ben Nasr, C.

    2018-06-01

    The reaction of perchloric acid with 1-(2-aminoethyl)piperazine or 5,6-dimethyl-benzimidazole results in the formation of 1-(2-amonioethyl)piperazine-1,4-dium triperchlorate hydrate (C6H18N3)·(ClO4)3·H2O (I) or 5,6-dimethyl-benzylimidazolium perchlorate (C9H11N2)·ClO4(II). Both compounds were fully structurally characterized including single crystal X-ray diffraction analysis. Compound (I) crystallizes in the centrosymmetric triclinic space group P 1 bar with the lattice parameters a = 7.455 (2), b = 10.462 (2), c = 10.824 (2) Å, α = 80.832 (2), β = 88.243 (2), γ = 88.160 (2) °, Z = 2 and V = 832.77 (3) Å3. Compound (II) has been found to belong to the P21/c space group of the monoclinic system, with a = 7.590 (3), b = 9.266 (3), c = 16.503 (6) Å, β = 107.38 (2) °, V = 1107.69 (7) Å3 and Z = 4. The structures of (I) and (II) consist of slightly distorted [ClO4]- tetrahedra anions and 1-(2-amonioethyl)piperazine-1,4-dium trication (I) or 5,6-dimethyl-benzylimidazolium cations (II) and additionally a lattice water in (I). The crystal structures of (I) and (II) exhibit complex three-dimensional networks of H-bonds connecting all their components. In the atomic arrangement of (I), the ClO4- anions form corrugated chains, while in (II) the atomic arrangement exhibits wide pseudo-hexagonal channels of ClO4 tetrahedra including the organic entities. The lattice water serves as a link between pairs of cations and pairs of anions via several Osbnd H⋯O and N-H⋯O interactions in compound (I). The vibrational absorption bands were identified by infrared spectroscopy. These compounds were also investigated by solid-state 13C, 35Cl and 15N NMR spectroscopy. DFT calculations allowed the attribution of the IR and NMR bands. Intermolecular interactions were investigated by Hirshfeld surfaces. Electronic properties such as HOMO and LUMO energies were derived.

  11. Synthesis and structure of cesium complexes of nitrilotris(methylenephosphonic) acid [Cs-μ6-NH(CH2PO3)3H4] and [Cs2-μ10-NH(CH2PO3H)3] · H2O

    NASA Astrophysics Data System (ADS)

    Somov, N. V.; Chausov, F. F.; Zakirov, R. M.

    2017-07-01

    3D coordination polymers cesium nitrilotris(methylenephosphonate) and dicesium nitrilotris( methylenephosphonate) are synthesized and their crystal structure is determined. In the crystal of [Cs-μ6-NH(CH2PO3)3H4] (space group P, Z = 2), cesium atoms occupy two crystallographically inequivalent positions with c.n. = 10 and c.n. = 14. The phosphonate ligand plays the bridging function; its denticity is nine. The crystal packing consists of alternating layers of Cs atoms in different environments with layers of ligand molecules between them. A ligand is bound to three Cs atoms of one layer and three Cs atoms of another layer. In the crystal of [Cs2-μ10-NH(CH2PO3H)3] · H2O (space group P, Z = 2), the complex has a dimeric structure: the bridging phosphonate ligand coordinates Cs to form a three-dimensional Cs4O6 cluster. The denticity of the ligand is equal to nine; the coordination numbers of cesium atoms are seven and nine. Two-dimensional corrugated layers of Cs4O6 clusters lie in the (002) plane, and layers of ligand molecules are located between them. Each ligand molecule coordinates eight Cs atoms of one layer and two Cs atoms of the neighboring layer.

  12. Three new d10 transition metal selenites containing PO4 tetrahedron: Cd7(HPO4)2(PO4)2(SeO3)2, Cd6(PO4)1.34(SeO3)4.66 and Zn3(HPO4)(SeO3)2(H2O)

    NASA Astrophysics Data System (ADS)

    Ma, Yun-Xiang; Gong, Ya-Ping; Hu, Chun-li; Mao, Jiang-Gao; Kong, Fang

    2018-06-01

    Three new d10 transition metal selenites containing PO4 tetrahedron, namely, Cd7(HPO4)2(PO4)2(SeO3)2 (1), Cd6(PO4)1.34(SeO3)4.66 (2) and Zn3(HPO4)(SeO3)2(H2O) (3), have been synthesized by hydrothermal reaction. They feature three different structural types. Compound 1 exhibits a novel 3D network composed of 3D cadmium selenite open framework with phosphate groups filled in the 1D helical tunnels. The structure of compound 2 displays a new 3D framework consisted of 2D cadmium oxide layers bridged by SeO3 and PO4 groups. Compound 3 is isostructural with the reported solids of Co3(SeO3)3-x(PO3OH)x(H2O) when x is equal to 1.0. Its structure could be viewed as a 3D zinc oxide open skeleton with SeO3 and HPO4 polyhedra attached on the wall of the tunnels. They represent the only examples in metal selenite phosphates in addition to the above cobalt compounds. Optical diffuse reflectance spectra revealed that these solids are insulators, which are consistent with the results of band structure computations based on DFT algorithm.

  13. Reduction Mechanisms of Cu2+-Doped Na2O-Al2O3-SiO2 Glasses during Heating in H2 Gas.

    PubMed

    Nogami, Masayuki; Quang, Vu Xuan; Ohki, Shinobu; Deguchi, Kenzo; Shimizu, Tadashi

    2018-01-25

    Controlling valence state of metal ions that are doped in materials has been widely applied for turning optical properties. Even though hydrogen has been proven effective to reduce metal ions because of its strong reducing capability, few comprehensive studies focus on practical applications because of the low diffusion rate of hydrogen in solids and the limited reaction near sample surfaces. Here, we investigated the reactions of hydrogen with Cu 2+ -doped Na 2 O-Al 2 O 3 -SiO 2 glass and found that a completely different reduction from results reported so far occurs, which is dominated by the Al/Na concentration ratio. For Al/Na < 1, Cu 2+ ions were reduced via hydrogen to metallic Cu, distributing in glass body. For Al/Na > 1, on the other hand, the reduction of Cu 2+ ions occurred simultaneously with the formation of OH bonds, whereas the reduced Cu metal moved outward and formed a metallic film on glass surface. The NMR and Fourier transform infrared results indicated that the Cu 2+ ions were surrounded by Al 3+ ions that formed AlO 4 , distorted AlO 4 , and AlO 5 units. The diffused H 2 gas reacted with the Al-O - ···Cu + units, forming Al-OH and metallic Cu, the latter of which moved freely toward glass surface and in return enhanced H 2 diffusion.

  14. Controlled precipitation of nesquehonite (MgCO 3·3H 2O) by the reaction of MgCl 2 with (NH 4) 2CO 3

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Li, Zhibao; Demopoulos, George P.

    2008-03-01

    In this study, homogeneous (unseeded) precipitation of nesquehonite (MgCO 3·3H 2O) by the reaction of MgCl 2 with (NH 4) 2CO 3 in supersaturated solutions was investigated. Factors that influence the precipitation of MgCO 3·3H 2O, such as reaction temperature, initial concentration, stirring speed, titration speed, equilibration time, have been studied. SEM images and particle size distribution show that the temperature, initial concentration and titration speed have significant effect on nesquehonite's crystal morphology and particle size. In addition, stirring speed and equilibration time also have some influence on its properties. X-ray powder diffraction (XRD) results show that the obtained crystals compositions are greatly affected by the reaction temperature. With the morphological transformation, their corresponding composition also change from MgCO 3· xH 2O to Mg 5(CO 3) 4(OH) 2·4H 2O in the interval of 288-333 K. With the optimization of operating conditions, the crystals can grow up to a length of about 40 μm and a width of 5 μm, indicating good filtration properties. High-purity nesquehonite obtained in this study was calcined to produce highly pure MgO at 1073 K as shown by XRD results.

  15. Effect of H2O on the morphological changes of KNO3 formed on K2O/Al2O3 NOx storage materials: Fourier transform infra-red (FTIR) and time-resolved x-ray diffraction (TR-XRD) studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos

    Based on combined FTIR and XRD studies, we report here that H2O induces a morphological change of KNO3 species formed on model K2O/Al2O3 NOx storage-reduction catalysts. Specifically as evidenced by FTIR, the contact of H2O with NO2 pre-adsorbed on K2O/Al2O3 promotes the transformation from bidentate (surface-like) KNO3 species to ionic (bulk-like) ones irrespective of K loadings. Once H2O is removed from the sample, a reversible transformation into bidentate KNO3 is observed, demonstrating a significant dependence of H2O on such morphological changes. TR-XRD results show the formation of two different types of bulk KNO3 phases (orthorhomobic and rhombohedral) in an as-impregnatedmore » sample. Once H2O begins to desorb above 400 K, the former is transformed into the latter, resulting in the existence of only the rhombohedral KNO3 phase. On the basis of consistent FTIR and TR-XRD results, we propose a model for the morphological changes of KNO3 species with respect to NO2 adsorption/desorption, H2O and/or heat treatments. Compared with the BaO/Al2O3 system, K2O/Al2O3 shows some similarities with respect to the formation of bulk nitrates upon H2O contact. However, there are significant differences that originate from the lower melting temperature of KNO3 relative to Ba(NO3)2.« less

  16. Geometry of α-Cr2O3(0001) as a Function of H2O Partial Pressure

    PubMed Central

    2015-01-01

    Surface X-ray diffraction has been employed to elucidate the surface structure of α-Cr2O3(0001) as a function of water partial pressure at room temperature. In ultra high vacuum, following exposure to ∼2000 Langmuir of H2O, the surface is found to be terminated by a partially occupied double layer of chromium atoms. No evidence of adsorbed OH/H2O is found, which is likely due to either adsorption at minority sites, or X-ray induced desorption. At a water partial pressure of ∼30 mbar, a single OH/H2O species is found to be bound atop each surface Cr atom. This adsorption geometry does not agree with that predicted by ab initio calculations, which may be a result of some differences between the experimental conditions and those modeled. PMID:26877825

  17. Porosity and thermal collapse measurements of H2O, CH3OH, CO2, and H2O:CO2 ices.

    PubMed

    Isokoski, K; Bossa, J-B; Triemstra, T; Linnartz, H

    2014-02-28

    The majority of astronomical and laboratory based studies of interstellar ices have been focusing on ice constituents. Ice structure is a much less studied topic. Particularly the amount of porosity is an ongoing point of discussion. A porous ice offers more surface area than a compact ice, for reactions that are fully surface driven. In this paper we discuss the amount of compaction for four different ices--H2O, CH3OH, CO2 and mixed H2O : CO2 = 2 : 1--upon heating over an astronomically relevant temperature regime. Laser interference and Fourier transform infrared spectroscopy are used to confirm that for amorphous solid water the full signal loss of dangling OH bonds is not a proof for full compaction. These data are compared with the first compaction results for pure CH3OH, pure CO2 and mixed H2O : CO2 = 2 : 1 ice. Here we find that thermal segregation benefits from a higher degree of porosity.

  18. VAPOR PRESSURES, LIQUID MOLAR VOLUMES, VAPOR NON- IDEALITIES, AND CRITICAL PROPERTIES OF SOME FLUORINATED ETHERS: CF3OCF2OCF3, CF3OCF2 CF2H, c-CF2CF2CF2O, CF3OCF2H, AND CF3OCH3; AND OF CCl3F AND CF2ClH

    EPA Science Inventory

    Vapor pressures, compressibilities, expansivities, and molar volumes of the liquid phase have been measured between room temperature and the critical temperature for a series of fluorinated ethers: CF3OCF2OCF3, CF3OCF2CF2H, c-CF2CF2CF2O, CF3OCF2H, and CF3OCH3. Vapor-phase non-ide...

  19. Facile synthesis of morphology-controlled Co3O4 nanostructures through solvothermal method with enhanced catalytic activity for H2O2 electroreduction

    NASA Astrophysics Data System (ADS)

    Cheng, Kui; Cao, Dianxue; Yang, Fan; Xu, Yang; Sun, Gaohui; Ye, Ke; Yin, Jinling; Wang, Guiling

    2014-05-01

    Hydrogen peroxide (H2O2) replaced oxygen (O2) as oxidant has been widely investigated due to its faster reduction kinetics, easier storage and handling than gaseous oxygen. The main challenge of using H2O2 as oxidant is the chemical decomposition. In this article, by using different C2H5OH/H2O volume ratio as the solvent, Co3O4 with different morphologies (nanosheet, nanowire, ultrafine nanowire net, nanobelts, and honeycomb-like) direct growth on Ni foam are synthesized via a simple solvothermal method for the first time. Results show that the introduction of ethanol could obviously improve the catalytic performance toward H2O2 electroreduction. The sample prepared in the solution with the C2H5OH/H2O volume ratio of 1:2 shows the best catalytic performance among the five samples and a current density of 0.214 A cm-2 is observed in 3.0 mol L-1 KOH + 0.5 mol L-1 H2O2 at -0.4 V (vs. Ag/AgCl KCl), which is much larger than that on the other metal oxides reported previously, almost comparable with the precious metals. This electrode of Co3O4 directly grown on Ni foam has superior mass transport property, which combining with its low-cost and facile preparation, make it a promising electrode for fuel cell using H2O2 as the oxidant.

  20. Photocatalytic self-cleaning transparent 2Bi2O3-B2O3 glass ceramics

    NASA Astrophysics Data System (ADS)

    Sharma, Sumeet Kumar; Singh, V. P.; Chauhan, Vishal S.; Kushwaha, H. S.; Vaish, Rahul

    2017-09-01

    Photocatalytic response of as-quenched and heat-treated 2Bi2O3-B2O3 glasses was studied. X ray diffraction reveals that the controlled heat treatment of glasses at 380 °C for 1 h, 2 h, and 3 h shows the formation of Bi4B2O9 crystals embedded in 2Bi2O3-B2O3 the host glass matrix. Scanning electron microscopic images reveal the presence of nanocrystallization in as-quenched glass. Significant photocatalytic activities were observed in as-quenched transparent glass. Photocatalytic activities were studied using the degradation of Resazurin as well as pharmaceutical 17 β-Estradiol under UV irradiation. Measurement of contact angle shows enhanced hydrophilicity with the increase in crystallization of the samples. Further, for as quenched 2Bi2O3-B2O3 glass ceramic, under UV irradiation, the water contact angle decreased from 92.7° to 39.5° and the sample surface transformed from hydrophobic to hydrophilic. Effective photocatalytic performance along with photoinduced hydrophilicity promotes 2Bi2O3-B2O3 glass ceramics in self-cleaning applications.

  1. New metal-organic frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2] . 4H2O

    NASA Astrophysics Data System (ADS)

    Weng, Sheng-Feng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-04-01

    Two novel materials, [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La(1a), Ce(1b)) and [Ce2(C2O4)(C6H6O7)2] . 4H2O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1¯ (No. 2); compound 2 crystallized in monoclinic space group P21/c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of CuII ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d1 excited state and two levels of the 4f1 ground state (2F5/2 and 2F7/2). Compounds 1b and 2 containing CeIII ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers.

  2. Hilarionite, Fe{2/3+}(SO4)(AsO4)(OH) · 6H2O, a new supergene mineral from Lavrion, Greece

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Chukanov, N. V.; Yapaskurt, V. O.; Rusakov, V. S.; Belakovsky, D. I.; Turchkova, A. G.; Voudouris, P.; Magganas, A.; Katerinopoulos, A.

    2014-12-01

    A new mineral, hilarionite, ideally Fe{2/3+} (SO4)(AsO4)(OH) · 6H2O, has been found in the Hilarion Mine, Agios Konstantinos, Kamariza, Lavrion district, Attiki Prefecture, Greece. It was formed in the oxidation zone of a sulfide-rich orebody in association with goethite, gypsum, bukovskyite, jarosite, melanterite, chalcanthite, allophane, and azurite. Hilarionite occurs as light green (typically with an olive or grayish tint) to light yellowish green spherulites (up to 1 mm in size) and bunches of prismatic to acicular "individuals" up to 0.5 mm long that are in fact near-parallel or divergent aggregates of very thin, curved fibers up to 0.3 mm long and usually lesser than 2 μm thick. The luster is silky to vitreous. The Mohs' hardness is ca. 2. Hilarionite is ductile, its "individuals" are flexible and inelastic; fracture is uneven or splintery. D(meas) = 2.40(5), D(calc) = 2.486 g/cm3. IR spectrum shows the presence of arsenate and sulfate groups and H2O molecules in significant amounts. The Mössbauer spectrum indicates the presence of Fe3+ at two six-fold coordinated sites and the absence of Fe2+. Hilarionite is optically biaxial (+), α = 1.575(2), γ = 1.64(2), 2 V is large. The chemical composition (electron microprobe, average of 7 point analyses; H2O determined by modified Penfield method) is as follows, wt %: 0.03 MnO, 0.18 CuO, 0.17 ZnO, 33.83 Fe2O3, 0.22 P2O5, 18.92 As2O5, 22.19 SO3, 26.3 H2O, total is 101.82%. The empirical formula calculated on the basis of 15 O is: (Fe{1.90/3+}Cu0.01Zn0.01)Σ1.92[(SO4)1.24(AsO4)0.74(PO4)0.01]Σ1.99(OH)1.01 · 6.03H2O. The X-ray powder diffraction data show close structural relationship of hilarionite and kaňkite, Fe{2/3+}(AsO4)2 · 7H2O. Hilarionite is monoclinic, space group C2/ m, Cm or C2, a = 18.53(4), b = 17.43(3), c = 7.56(1) Å, β = 94.06(15)°, V = 2436(3) Å3, Z = 8. The strongest reflections in the X-ray powder diffraction pattern ( d, Å- I[ hkl]) are: 12.66-100[110], , 5.00-10[22l], , 4

  3. Thermodynamic data of lawsonite and zoisite in the system CaO-Al2O3-SiO2-H2O based on experimental phase equilibria and calorimetric work

    NASA Astrophysics Data System (ADS)

    Grevel, Klaus-Dieter; Schoenitz, Mirko; Skrok, Volker; Navrotsky, Alexandra; Schreyer, Werner

    2001-08-01

    The enthalpy of drop-solution in molten 2PbO.B2O3 of synthetic and natural lawsonite, CaAl2(Si2O7)(OH)2.H2O, was measured by high-temperature oxide melt calorimetry. The enthalpy of formation determined for the synthetic material is ΔfHOxides=-168.7+/-3.4 kJ mol-1, or ΔfH0298=-4,872.5+/-4.0 kJ mol-1. These values are in reasonable agreement with previously published data, although previous calorimetric work yielded slightly more exothermic data and optimisation methods resulted in slightly less exothermic values. The equilibrium conditions for the dehydration of lawsonite to zoisite, kyanite and quartz/coesite at pressures and temperatures up to 5 GPa and 850 °C were determined by piston cylinder experiments. These results, other recent phase equilibrium data, and new calorimetric and thermophysical data for lawsonite and zoisite, Ca2Al3(SiO4)(Si2O7)O(OH), were used to constrain a mathematical programming analysis of the thermodynamic data for these two minerals in the chemical system CaO-Al2O3-SiO2-H2O (CASH). The following data for lawsonite and zoisite were obtained: ΔfH0298 (lawsonite)=-4,865.68 kJ mol-1 , S0298 (lawsonite)=229.27 J K-1 mol-1 , ΔfH0298 (zoisite)=-6,888.99 kJ mol-1 , S0298 (zoisite)=297.71 J K-1 mol-1 . Additionally, a recalculation of the bulk modulus of lawsonite yielded K=120.7 GPa, which is in good agreement with recent experimental work.

  4. Reaction paths in the system Al 2O 3-hBN-Y

    NASA Astrophysics Data System (ADS)

    Reichert, K.; Oreshina, O.; Cremer, R.; Neuschütz, D.

    2001-07-01

    As part of the investigations on the suitability of a new concept for a tailored fiber-matrix interface in sapphire fiber reinforced NiAl matrix composites for application as a high-temperature structural material, the interfacial reactions in the system alumina-hexagonal boron nitride-yttrium (Al 2O 3-hBN-Y) have been examined in the temperature range of 1100-1300°C. For this, alumina substrates were coated with hBN by means of CVD and subsequently with sputter deposited yttrium. Afterwards the samples were annealed for up to 16 h under inert atmosphere. Grazing incidence X-ray diffraction (GIXRD) served to analyze the phases formed by diffusion processes in the reaction zone. The peak intensities in these diffraction patterns were used to evaluate the sequence of phases formed due to diffusion and reaction. After the initial formation of YN and YB 2, the phases Y 2O 3, Al 2Y, and YB 4 were observed. Even longer annealing times or higher temperatures, respectively, led to the formation of the ternary oxides YAlO 3 and Y 3Al 5O 12 as well as metallic aluminum.

  5. Understanding Complex Tribofilms by Means of H3BO3-B2O3 Model Glasses.

    PubMed

    Spadaro, F; Rossi, A; Ramakrishna, Shivaprakash N; Lainé, E; Woodward, P; Spencer, N D

    2018-02-13

    The discovery of the spontaneous reaction of boric oxides with moisture in the air to form lubricious H 3 BO 3 films has led to great interest in the tribology of boron compounds in general. Despite this, a study of the growth kinetics of H 3 BO 3 on a B 2 O 3 substrate under controlled relative humidity (RH) has not yet been reported in the literature. Here, we describe the tribological properties of H 3 BO 3 -B 2 O 3 glass systems after aging under controlled RH over different lengths of time. A series of tribological tests has been performed applying a normal load of 15 N, at both room temperature and 100 °C in YUBASE 4 oil. In addition, the cause of H 3 BO 3 film failure under high-pressure and high-temperature conditions has been studied to find out whether the temperature, the tribostress, or both influence the removal of the lubricious film from the contact points. The following techniques were exploited: confocal Raman spectroscopy to characterize the structure and chemical nature of the glass systems, environmental scanning electron microscopy to examine the morphology of the H 3 BO 3 films developed, atomic force microscopy to monitor changes in roughness as a consequence of the air exposure, focused-ion-beam scanning electron microscopy to measure the average thickness of the H 3 BO 3 films grown over various times on B 2 O 3 glass substrates and to reveal the morphology of the sample in the vertical section, tribological tests to shed light on the system's lubricating properties, and finally small-area X-ray photoelectron spectroscopy to investigate the composition of the transfer film formed on the steel ball while tribotesting.

  6. Tris(5,6-dimethyl-1H-benzimidazole-κN(3))(pyridine-2,6-dicarboxyl-ato-κ(3)O(2),N,O(6))nickel(II).

    PubMed

    Li, Yue-Hua; Li, Feng-Feng; Liu, Xin-Hua; Zhao, Ling-Yan

    2012-06-01

    The title mononuclear complex, [Ni(C(7)H(3)NO(4))(C(9)H(10)N(2))(3)], shows a central Ni(II) atom which is coordinated by two carboxyl-ate O atoms and the N atom from a pyridine-2,6-dicarboxyl-ate ligand and by three N atoms from different 5,6-dimethyl-1H--benzimidazole ligands in a distorted octa-hedral geometry. The crystal structure shows intermolecular N-H⋯O hydrogen bonds.

  7. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Lyons, M.; Siegel, E.

    2010-03-01

    ``Water water everywhere; ne'er a drop to drink''[Coleridg(1798)]; now:``Hydrogen hydrogen everywhere;STILL ne'er a drop to drink'': ONLY H2 can be ``FLYING-WATER''/``chemical-rain-in-pipelines''/ ``Hindenberg-effect (H2-UP;H2O-DOWN): atomic-weights ratio: O/H2O=[16]/[18]˜90%; O already in air uphill; NO H2O pumping need! In water-starved glacial-melting world, rescue ONLY by Siegel[3rd Intl.Conf.Alt.Energy,Hemisphere/Springer(1980)- vol.5/ p.459]Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating- system. Rosenfeld[Sci.315,1396(3/9/2007)]-Biello[Sci.Am.(3/9/ 2007)]crucial geomorphology which ONLY maximal-buoyancy light- est-element H2 can exploit, to again make ``Mountains into Fount- ains": Siegel ``terra-forming''(and ocean-rebasificaton!!!) long pre-``Holdren''-``Ciccerine" ``geo-enginering'', only via Siegel proprietary magnetic-hydrogen-valve permits H2 flow in already in-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Sci.300,1740(03)]global-pandemics (cancers/blindness/famine)dire-warning about H2-(ALONE)economy CATASTROPHIC H2 ozone-layer destruction sobering cavat to dangerous H2-automotion-economy panacea hype!

  8. The interface of SrTiO3 and H2O from density functional theory molecular dynamics

    PubMed Central

    Spijker, P.; Foster, A. S.

    2016-01-01

    We use dispersion-corrected density functional theory molecular dynamics simulations to predict the ionic, electronic and vibrational properties of the SrTiO3/H2O solid–liquid interface. Approximately 50% of surface oxygens on the planar SrO termination are hydroxylated at all studied levels of water coverage, the corresponding number being 15% for the planar TiO2 termination and 5% on the stepped TiO2-terminated surface. The lateral ordering of the hydration structure is largely controlled by covalent-like surface cation to H2O bonding and surface corrugation. We find a featureless electronic density of states in and around the band gap energy region at the solid–liquid interface. The vibrational spectrum indicates redshifting of the O–H stretching band due to surface-to-liquid hydrogen bonding and blueshifting due to high-frequency stretching vibrations of OH fragments within the liquid, as well as strong suppression of the OH stretching band on the stepped surface. We find highly varying rates of proton transfer above different SrTiO3 surfaces, owing to differences in hydrogen bond strength and the degree of dissociation of incident water. Trends in proton dynamics and the mode of H2O adsorption among studied surfaces can be explained by the differential ionicity of the Ti–O and Sr–O bonds in the SrTiO3 crystal. PMID:27713660

  9. Engineering epitaxial γ-Al2O3 gate dielectric films on 4H-SiC

    NASA Astrophysics Data System (ADS)

    Tanner, Carey M.; Toney, Michael F.; Lu, Jun; Blom, Hans-Olof; Sawkar-Mathur, Monica; Tafesse, Melat A.; Chang, Jane P.

    2007-11-01

    The formation of epitaxial γ-Al2O3 thin films on 4H-SiC was found to be strongly dependent on the film thickness. An abrupt interface was observed in films up to 200 Å thick with an epitaxial relationship of γ-Al2O3(111)‖4H-SiC(0001) and γ-Al2O3(44¯0)‖4H-SiC(112¯0). The in-plane alignment between the film and the substrate is nearly complete for γ-Al2O3 films up to 115 Å thick, but quickly diminishes in thicker films. The films are found to be slightly strained laterally in tension; the strain increases with thickness and then decreases in films thicker than 200 Å, indicating strain relaxation which is accompanied by increased misorientation. By controlling the structure of ultrathin Al2O3 films, metal-oxide-semiconductor capacitors with Al2O3 gate dielectrics on 4H-SiC were found to have a very low leakage current density, suggesting suitability of Al2O3 for SiC device integration.

  10. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT ETERNAL Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Wignall, J.; Lyons, Marv; Ertl, G.; Alefeld, Georg; Youdelis, W.; Radd, H.; Oertle, G.; Siegel, Edward

    2013-03-01

    ''H2O H2O everywhere; ne'er a drop to drink''[Coleridge(1798)] now: ''H2 H2 everywhere; STILL ne'er a drop to drink'': ONLY H2 (or methane CH4) can be FLYING-WATER(F-W) chemical-rain-in-pipelines Hindenberg-effect (H2-UP;H2O-DOWN): { ∖{}O/H2O{ ∖}} =[16]/[18] ∖sim 90{ ∖%} O already in air uphill; NO H2O pumping need! In global-warming driven H2O-starved glacial-melting world, rescue is possible ONLY by Siegel [ ∖underline {3rd Intl. Conf. Alt.-Energy }(1980)-vol.5/p.459!!!] Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating-system. Rosenfeld[Science 315,1396(3/9/2007)]-Biello [Sci.Am.(3/9 /2007)] crucial geomorphology which ONLY maximal-buoyancy H2 can exploit, to again make ''Mountains into Fountains'', ``upthrust rocks trapping the clouds to precipitate their rain/snow/H2O'': ''terraforming''(and ocean-rebasificaton!!!) ONLY VIA Siegel[APS March MTGS.:1960s-2000ss) DIFFUSIVE-MAGNETORESISTANCE (DMR) proprietary MAGNETIC-HYDROGEN-VALVE(MHV) ALL-IMPORTANT PRECLUDED RADIAL-diffusion, permitting ONLY AXIAL-H2-BALLISTIC-flow (``G.A''.''/DoE''/''Terrapower''/''Intellectual-Ventures''/ ''Gileland''/ ''Myhrvold''/''Gates'' ``ARCHIMEDES'') in ALREADY IN-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Science 300,1740(2003)] dire warning of global-pandemics (cancers/ blindness/ famine)

  11. On the role of the termolecular reactions 2O2 + H22HO2 and 2O2 + H2H + HO2 + O2 in formation of the first radicals in hydrogen combustion: ab initio predictions of energy barriers.

    PubMed

    Monge-Palacios, M; Rafatijo, Homayoon

    2017-01-18

    We have investigated the role of termolecular reactions in the early chemistry of hydrogen combustion. We performed molecular chemical dynamics simulations using ReaxFF in LAMMPS to identify potential initial reactions for a 1 : 4 mixture of H 2  : O 2 in the NVT ensemble at density 276.3 kg m -3 and ∼3000 K (∼4000 atm) and ∼4000 K (∼5000 atm), and then characterized the saddle points for those reactions using ab initio methods: CCSD(T) = FC/cc-pVTZ//MP2/6-31G, CCSD(T) = FULL/aug-cc-pVTZ//CCSD = FC/cc-pVTZ and CASSCF MP2/6-31G//MP2/6-31G. The main initial reaction is H 2 + O 2H + HO 2 , frequently occurring in the presence of a second O 2 as a third body; that is, 2O 2 + H 2H + HO 2 + O 2 . The second most frequent reaction is 2O 2 + H 22HO 2 . We found three saddle points on the triplet PES of these termolecular reactions: one for 2O 2 + H 2H + HO 2 + O 2 and two for 2O 2 + H 22HO 2 . In the latter case, one has a symmetric structure consistent with simultaneous formation of two HO 2 and the other corresponds to a bimolecular reaction between O 2 and H 2 that is "interrupted" by a second O 2 before going to completion. The classical barrier height of the symmetric saddle point for 2O 2 + H 22HO 2 is 49.8 kcal mol -1 . The barrier to H 2 + O 2H + HO 2 is 58.9 kcal mol -1 . The termolecular reaction will be competitive with H 2 + O 2H + HO 2 only at sufficiently high pressures.

  12. Neuroligin-3 protects retinal cells from H2O2-induced cell death via activation of Nrf2 signaling.

    PubMed

    Li, Xiu-Miao; Huang, Dan; Yu, Qing; Yang, Jian; Yao, Jin

    2018-05-25

    Intensified oxidative stress can cause severe damage to human retinal pigment epithelium (RPE) cells and retinal ganglion cells (RGCs). The potential effect of neuroligin-3 (NLGN3) against the process is studied here. Our results show that NLGN3 efficiently inhibited hydrogen peroxide (H 2 O 2 )-induced death and apoptosis in human RPE cells and RGCs. H 2 O 2 -induced reactive oxygen species (ROS) production, lipid peroxidation and DNA damage in retinal cells were alleviated by NLGN3. NLGN3 activated nuclear-factor-E2-related factor 2 (Nrf2) signaling, enabling Nrf2 protein stabilization, nuclear translocation and expression of key anti-oxidant enzymes (HO1, NOQ1 and GCLC) in RPE cells and RGCs. Further results demonstrate that NLGN3 activated Akt-mTORC1 signaling in retinal cells. Conversely, Akt-mTORC1 inhibitors (RAD001 and LY294002) reduced NLGN3-induced HO1, NOQ1 and GCLC mRNA expression. Significantly, Nrf2 silencing by targeted shRNAs reversed NLGN3-induced retinal cytoprotection against H 2 O 2 . We conclude that NLGN3 activates Nrf2 signaling to protect human retinal cells from H 2 O 2 . NLGN3 could be further tested as a valuable retinal protection agent. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Arsenite oxidation by H 2O 2 in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pettine, Maurizio; Campanella, Luigi; Millero, Frank J.

    1999-09-01

    The rates of the oxidation of As( III) with H 2O 2 were measured in NaCl solutions as a function of pH (7.5-10.3), temperature (10-50C) and ionic strength ( I = 0.01-4). The rate of the oxidation of As( III) with H 2O 2 can be described by the general expression: d[As( III)]/ dt = k[As( III)] [H 2O 2] where k (mol/L -1 min -1) can be determined from (σ = ±0.12) log k=5.29+1.41 pH-0.57 I+1.40 I0.5-4898/ T. The effect of pH on the rates indicates that the reaction is due to AsO( OH) 2-+ H2O2k 1→productsAsO2( OH) 2-+ H2O2k 2→products, AsO33-+ H2O2k 3→products where k = k1 α AsO(OH) 2- + k2 α AsO 2(OH) 2- + k3 α AsO 3 3- and α i are the molar fraction of species i. The values of k1 = 42 ± 20, k2 = (8 ± 1) × 10 4, and k3 = (72 ± 18) × 10 6 mol/L -1 min -1 were found at 25C and I = 0.01 mol/L. The undissociated As(OH) 3 does not react with H 2O 2. The effect of ionic strength on the rate constants has been attributed to the effect of ionic strength on the speciation of As( III). The rate expression has been shown to be valid for NaClO 4 solutions, northern Adriatic sea waters, and Tiber River waters. The cations Fe 2+ and Cu 2+ were found to exert a catalytic effect on the rates. Cu 2+ plays a role at concentration levels (>0.1 μmol/L) which are typical of polluted aquatic systems, while Fe 2+ is important at levels which may be found in lacustrine environments (>5-10 μmol/L). The reaction of As( III) with H 2O 2 may play a role in marine and lacustrine surface waters limiting the accumulation of As( III) resulting from biologically mediated reduction processes of As( V).

  14. Synthesis, structure, and catalytic performance in cyclooctene epoxidation of a molybdenum oxide/bipyridine hybrid material: {[MoO3(bipy)][MoO3(H2O)]}n.

    PubMed

    Abrantes, Marta; Amarante, Tatiana R; Antunes, Margarida M; Gago, Sandra; Paz, Filipe A Almeida; Margiolaki, Irene; Rodrigues, Alírio E; Pillinger, Martyn; Valente, Anabela A; Gonçalves, Isabel S

    2010-08-02

    The reaction of [MoO(2)Cl(2)(bipy)] (1) (bipy = 2,2'-bipyridine) with water in a Teflon-lined stainless steel autoclave (100 degrees C, 19 h), in an open reflux system with oil bath heating (12 h) or in a microwave synthesis system (120 degrees C, 4 h), gave the molybdenum oxide/bipyridine hybrid material {[MoO(3)(bipy)][MoO(3)(H(2)O)]}(n) (2) as a microcrystalline powder in yields of 72-92%. The crystal structure of 2 determined from synchrotron X-ray powder diffraction data is composed of two distinct neutral one-dimensional polymers: an organic-inorganic polymer, [MoO(3)(bipy)](n), and a purely inorganic chain, [MoO(3)(H(2)O)](n), which are interconnected by O-H...O hydrogen bonding interactions. Compound 2 is a moderately active, stable, and selective catalyst for the epoxidation of cis-cyclooctene at 55 degrees C with tert-butylhydroperoxide (tBuOOH, 5.5 M in decane or 70% aqueous) as the oxidant. Biphasic solid-liquid or triphasic solid-organic-aqueous mixtures are formed, and 1,2-epoxycyclooctane is the only reaction product. When n-hexane is employed as a cosolvent and tBuOOH(decane) is the oxidant, the catalytic reaction is heterogeneous in nature, and the solid catalyst can be recycled and reused without a loss of activity. For comparison, the catalytic performance of the precursor 1 was also investigated. The IR spectra of solids recovered after catalysis indicate that 1 transforms into the organic-inorganic polymer [MoO(3)(bipy)] when the oxidant is tBuOOH(decane) and compound 2 when the oxidant is 70% aqueous tBuOOH.

  15. Magnetocaloric effect in gadolinium-oxalate framework Gd{sub 2}(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 6}⋅(0{sub ⋅}6H{sub 2}O)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibille, Romain, E-mail: rom.sibille@gmail.com; Didelot, Emilie; Mazet, Thomas

    2014-12-01

    Magnetic refrigerants incorporating Gd{sup 3+} ions and light organic ligands offer a good balance between isolation of the magnetic centers and their density. We synthesized the framework material Gd{sub 2}(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 6}⋅0.6H{sub 2}O by a hydrothermal route and characterized its structure. The honeycomb lattice of Gd{sup 3+} ions interlinked by oxalate ligands in the (a,c) plane ensures their decoupling in terms of magnetic exchange interactions. This is corroborated by magnetic measurements indicating negligible interactions between the Gd{sup 3+} ions in this material. The magnetocaloric effect was evaluated from isothermal magnetization measurements. The maximum entropy change −ΔS{sub M}{supmore » max} reaches 75.9 mJ cm{sup −3} K{sup −1} (around 2 K) for a moderate field change (2 T)« less

  16. Methanesulfonates of high-valent metals: syntheses and structural features of MoO2(CH3SO3)2, UO2(CH3SO3)2, ReO3(CH3SO3), VO(CH3SO3)2, and V2O3(CH3SO3)4 and their thermal decomposition under N2 and O2 atmosphere.

    PubMed

    Betke, Ulf; Neuschulz, Kai; Wickleder, Mathias S

    2011-11-04

    Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO(3), UO(2)(CH(3)COO)(22H(2)O, Re(2)O(7)(H(2)O)(2), and V(2)O(5) with CH(3)SO(3)H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO(2)(CH(3)SO(3))(2) (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm(3), Z=8) contains [MoO(2)] moieties connected by [CH(3)SO(3)] ions to form layers parallel to (100). UO(2)(CH(3)SO(3))(2) (P2(1)/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1)°, V=1.8937(3) nm(3), Z=8) consists of linear UO(2)(2+) ions coordinated by five [CH(3)SO(3)] ions, forming a layer structure. VO(CH(3)SO(3))(2) (P2(1)/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1)°, V=0.8290(2) nm(3), Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO(3)(CH(3)SO(3)) (P1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2)°, V=1.1523(4) nm(3), Z=8) a chain structure exhibiting infinite O-[ReO(2)]-O-[ReO(2)]-O chains is formed. Each [ReO(2)]-O-[ReO(2)] unit is coordinated by two bidentate [CH(3)SO(3)] ions. V(2)O(3)(CH(3)SO(3))(4) (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm(3), Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH(3)SO(3)] ligands. Additional methanesulfonate ions connect the [V(2)O(3)] groups along [001]. Thermal decomposition of the compounds was monitored under N(2) and O(2) atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N(2) the decomposition proceeds with reduction of the metal leading to the oxides MoO(2), U(3)O(7), V(4)O(7), and VO(2); for MoO(2)(CH(3)SO(3))(2), a small amount of MoS(2) is formed. If the thermal decomposition is carried out in a atmosphere of O(2) the oxides MoO(3) and V(2)O(5) are formed. Copyright

  17. Enhancement of CO Evolution by Modification of Ga2O3 with Rare-Earth Elements for the Photocatalytic Conversion of CO2 by H2O.

    PubMed

    Tatsumi, Hiroyuki; Teramura, Kentaro; Huang, Zeai; Wang, Zheng; Asakura, Hiroyuki; Hosokawa, Saburo; Tanaka, Tsunehiro

    2017-12-12

    Modification of the surface of Ga 2 O 3 with rare-earth elements enhanced the evolution of CO as a reduction product in the photocatalytic conversion of CO 2 using H 2 O as an electron donor under UV irradiation in aqueous NaHCO 3 as a pH buffer, with the rare-earth species functioning as a CO 2 capture and storage material. Isotope experiments using 13 CO 2 as a substrate clearly revealed that CO was generated from the introduced gaseous CO 2 . In the presence of the NaHCO 3 additive, the rare-earth (RE) species on the Ga 2 O 3 surface are transformed into carbonate hydrates (RE 2 (CO 3 ) 3 ·nH 2 O) and/or hydroxycarbonates (RE 2 (OH) 2(3-x) (CO 3 ) x ) which are decomposed upon photoirradiation. Consequently, Ag-loaded Yb-modified Ga 2 O 3 exhibits much higher activity (209 μmol h -1 of CO) than the pristine Ag-loaded Ga 2 O 3 . The further modification of the surface of the Yb-modified Ga 2 O 3 with Zn afforded a selectivity toward CO evolution of 80%. Thus, we successfully achieved an efficient Ag-loaded Yb- and Zn-modified Ga 2 O 3 photocatalyst with high activity and controllable selectivity, suitable for use in artificial photosynthesis.

  18. Oxygen isotope fractionation in the CaCO3-DIC-H2O system

    NASA Astrophysics Data System (ADS)

    Devriendt, Laurent S.; Watkins, James M.; McGregor, Helen V.

    2017-10-01

    The oxygen isotope ratio (δ18O) of inorganic and biogenic carbonates is widely used to reconstruct past environments. However, the oxygen isotope exchange between CaCO3 and H2O rarely reaches equilibrium and kinetic isotope effects (KIE) commonly complicate paleoclimate reconstructions. We present a comprehensive model of kinetic and equilibrium oxygen isotope fractionation between CaCO3 and water (αc/w) that accounts for fractionation between both (a) CaCO3 and the CO32- pool (α c / CO32-) , and (b) CO32- and water (α CO32- / w) , as a function of temperature, pH, salinity, calcite saturation state (Ω), the residence time of the dissolved inorganic carbon (DIC) in solution, and the activity of the enzyme carbonic anhydrase. The model results suggest that: (1) The equilibrium αc/w is only approached in solutions with low Ω (i.e. close to 1) and low ionic strength such as in the cave system of Devils Hole, Nevada. (2) The sensitivity of αc/w to the solution pH and/or the mineral growth rate depends on the level of isotopic equilibration between the CO32- pool and water. When the CO32- pool approaches isotopic equilibrium with water, small negative pH and/or growth rate effects on αc/w of about 1-2‰ occur where these parameters covary with Ω. In contrast, isotopic disequilibrium between CO32- and water leads to strong (>2‰) positive or negative pH and growth rate effects on α CO32-/ w (and αc/w) due to the isotopic imprint of oxygen atoms derived from HCO3-, CO2, H2O and/or OH-. (3) The temperature sensitivity of αc/w originates from the negative effect of temperature on α CO32-/ w and is expected to deviate from the commonly accepted value (-0.22 ± 0.02‰/°C between 0 and 30 °C; Kim and O'Neil, 1997) when the CO32- pool is not in isotopic equilibrium with water. (4) The model suggests that the δ18O of planktic and benthic foraminifers reflects a quantitative precipitation of DIC in isotopic equilibrium with a high-pH calcifying fluid, leading

  19. Experimental Determination of Solubilities of Tri-calcium Di-Citrate Tetrahydrate [Ca 3[C 3H 5O(COO) 3] 2•4H 2O] Earlandite in NaCl and MgCl 2 Solutions to High Ionic Strengths and Its Pitzer Model: Applications to Nuclear Waste Isolation and Other Low Temperature Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yongliang; Kirkes, Leslie Dawn; Westfall, Terry

    In this study, solubility measurements on tri-calcium di-citrate tetrahydrate [Ca 3[C 3H 5O(COO) 3]2•4H 2O, abbreviated as Ca 3[Citrate] 2•4H 2O] as a function of ionic strength are conducted in NaCl solutions up to I = 5.0 mol•kg –1 and in MgCl 2 solutions up to I = 7.5 mol•kg –1, at room temperature (22.5 ± 0.5°C). The solubility constant (log Kmore » $$0\\atop{sp}$$) for Ca 3[Citrate] 2•4H 2O and formation constant (logβ$$0\\atop{1}$$) for Ca[C 3H 5O(COO) 3] –Ca 3[C 3H 5O(COO) 3] 2•4H 2O (earlandite) = 3Ca 2+ + 2[C 3H 5O(COO) 3] 3– + 4H 2O (1) Ca 2+ + [C 3H 5O(COO) 3] 3– = Ca[C 3H 5O(COO) 3] – (2) are determined as –18.11 ± 0.05 and 4.97 ± 0.05, respectively, based on the Pitzer model with a set of Pitzer parameters describing the specific interactions in NaCl and M gCl 2 media.« less

  20. Metastable α-AgVO3 microrods as peroxidase mimetics for colorimetric determination of H2O2.

    PubMed

    Wang, Yi; Zhang, Dun; Wang, Jin

    2017-12-01

    Single phase metastable α-AgVO 3 microrods with high crystallinity, tetragonal rod-like microstructure, uniform particle size distribution, and good dispersion were synthesized by direct coprecipitation at room temperature. They are shown to be viable peroxidase mimics that catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of H 2 O 2 . Kinetic analysis indicated typical Michaelis-Menten catalytic behavior. The findings were used to design a colorimetric assay for H 2 O 2 , best measured at 652 nm. The method has a linear response in the 60 to 200 μM H 2 O 2 concentration range, with a 2 μM detection limit. Benefitting from the chemical stability of the microrods, the method is well reproducible. It also is easily performed and highly specific. Graphic abstract Single phase metastable α-AgVO 3 microrods with high crystallinity, tetragonal rod-like microstructure, uniform particle size distribution, and good dispersion can efficiently catalyze the oxidation reaction of peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H 2 O 2 to produce a blue color change.

  1. Influence of Background H2O on the Collision-Induced Dissociation Products Generated from [UO2NO3]+

    NASA Astrophysics Data System (ADS)

    Van Stipdonk, Michael J.; Iacovino, Anna; Tatosian, Irena

    2018-04-01

    Developing a comprehensive understanding of the reactivity of uranium-containing species remains an important goal in areas ranging from the development of nuclear fuel processing methods to studies of the migration and fate of the element in the environment. Electrospray ionization (ESI) is an effective way to generate gas-phase complexes containing uranium for subsequent studies of intrinsic structure and reactivity. Recent experiments by our group have demonstrated that the relatively low levels of residual H2O in a 2-D, linear ion trap (LIT) make it possible to examine fragmentation pathways and reactions not observed in earlier studies conducted with 3-D ion traps (Van Stipdonk et al. J. Am. Soc. Mass Spectrom. 14, 1205-1214, 2003). In the present study, we revisited the dissociation of complexes composed of uranyl nitrate cation [UVIO2(NO3)]+ coordinated by alcohol ligands (methanol and ethanol) using the 2-D LIT. With relatively low levels of background H2O, collision-induced dissociation (CID) of [UVIO2(NO3)]+ primarily creates [UO2(O2)]+ by the ejection of NO. However, CID (using He as collision gas) of [UVIO2(NO3)]+ creates [UO2(H2O)]+ and UO2 + when the 2-D LIT is used with higher levels of background H2O. Based on the results presented here, we propose that product ion spectrum in the previous experiments was the result of a two-step process: initial formation of [UVIO2(O2)]+ followed by rapid exchange of O2 for H2O by ion-molecule reaction. Our experiments illustrate the impact of residual H2O in ion trap instruments on the product ions generated by CID and provide a more accurate description of the intrinsic dissociation pathway for [UVIO2(NO3)]+. [Figure not available: see fulltext.

  2. Synthesis, spectral and antifungal analysis of diaryldithiophosphates of mono- and dibutyltin(IV): x-ray structure of [{(3,5-CH3)2C6H3O)2PS2}2Sn(nBu)2].

    PubMed

    Syed, Atiya; Khajuria, Ruchi; Kumar, Sandeep; Jassal, Amanpreet Kaur; Hundal, Maninder S; Pandey, Sushil K

    2014-01-01

    Diaryldithiophosphate complexes of mono- and dibutyltin(IV) corresponding to [(ArO)(2)PS(2)(n)Sn(nBu)xCl(4-x-n)] (Ar = o-CH(3)C(6)H(4), m-CH(3)C(6)H(4), p-CH(3)C(6)H(4), 4-Cl-3-CH(3)C(6)H(3), (3,5-CH(3))(2)C(6)H(3); n = 1, 2 for x = 1 and n = 2 for x = 2) were successfully isolated and characterized by elemental analyses, IR, multinuclear NMR ((1)H, (13)C, (31)P and (119)Sn) spectroscopy and X-ray analysis. The thermal properties of the complex [(3,5-CH(3))(2)C(6)H(3)O(2)PS(2)](2)Sn(nBu)(2) (12) have been examined by combined DTA/ DTG thermal analyses. Single crystal X-ray analysis of [(3,5-CH(3))(2)C(6)H(3)O(2)PS(2)](2)S(n)(nBu)(2) (12) revealed that two diaryldithiophosphate ions are coordinated to tin atom in an anisobidentate fashion through the sulfur atoms of each dithiophosphate moiety leading to distorted skew-trapezoidal bipyramidal geometry. The antifungal activity depicts that these complexes are active against fungus Penicillium chrysogenium.

  3. Reaction of N2O5 with H2O on carbonaceous surfaces

    NASA Technical Reports Server (NTRS)

    Brouwer, L.; Rossi, M. J.; Golden, D. M.

    1986-01-01

    The heterogeneous reaction of N2O5 with commercially available ground charcoal in the absence of H2O revealed a physisorption process (gamma = 0.003), together with a redox reaction generating mostly NO. Slow HNO3 formation was the result of the interaction of N2O5 with H2O that was still adsorbed after prolonged pumping at 0.0001 torr. In the presence of H2O, the same processes with gamma = 0.005 are observed. The redox reaction dominates in the early stages of the reaction, whereas the hydrolysis gains importance later at the expense of the redox reaction. The rate law for HNO3 generation was found to be d(HNO3)/dt = k(bi)(H2O)(N2O5) with k(bi), the effective bimolecular rate constants, for 10 mg of carbon being (1.6 + or - 0.3) x 10 to the -13th cu cm/s.

  4. Quantum chemical study of the mechanism of reaction between NH (X 3sigma-) and H2, H2O, and CO2 under combustion conditions.

    PubMed

    Mackie, John C; Bacskay, George B

    2005-12-29

    Reactions of ground-state NH (3sigma-) radicals with H2, H2O, and CO2 have been investigated quantum chemically, whereby the stationary points of the appropriate reaction potential energy surfaces, that is, reactants, products, intermediates, and transition states, have been identified at the G3//B3LYP level of theory. Reaction between NH and H2 takes place via a simple abstraction transition state, and the rate coefficient for this reaction as derived from the quantum chemical calculations, k(NH + H2) = (1.1 x 10(14)) exp(-20.9 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K, is found to be in good agreement with experiment. For reaction between triplet NH and H2O, no stable intermediates were located on the triplet reaction surface although several stable species were found on the singlet surface. No intersystem crossing seam between triplet NH + H2O and singlet HNO + H2 (the products of lowest energy) was found; hence there is no evidence to support the existence of a low-energy pathway to these products. A rate coefficient of k(NH + H2O) = (6.1 x 10(13)) exp(-32.8 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K for the reaction NH (3sigma-) + H2O --> NH2 (2B) + OH (2pi) was derived from the quantum chemical results. The reverse rate coefficient, calculated via the equilibrium constant, is in agreement with values used in modeling the thermal de-NO(x) process. For the reaction between triplet NH and CO2, several stable intermediates on both triplet and singlet reaction surfaces were located. Although a pathway from triplet NH + CO2 to singlet HNO + CO involving intersystem crossing in an HN-CO2 adduct was discovered, no pathway of sufficiently low activation energy was discovered to compare with that found in an earlier experiment [Rohrig, M.; Wagner, H. G. Proc. Combust. Inst. 1994, 25, 993.].

  5. U3Si2 behavior in H2O: Part I, flowing steam and the effect of hydrogen

    NASA Astrophysics Data System (ADS)

    Wood, E. Sooby; White, J. T.; Grote, C. J.; Nelson, A. T.

    2018-04-01

    Recent interest in U3Si2 as an advanced light water reactor fuel has driven assessment of numerous properties, but characterization of its response to H2O environments is absent from the literature. The behavior of U3Si2 in H2O containing atmospheres is investigated and presented in a two-part series of articles aimed to understand the degradation mechanism of U3Si2 in H2O. Reported here are thermogravimetric data for U3Si2 exposed to flowing steam at 250-470 °C. Additionally the response of U3Si2 to flowing Ar-6% H2 from 350 to 400 °C is presented. Microstructural degradation is observed following hours of exposure at 350 °C in steam. U3Si2 undergoes pulverization on the timescale of minutes when temperatures are increased above 400 °C. This mechanism is accelerated in flowing Ar-H2 at the same temperatures.

  6. Partial phase diagram for the system NH3-H2O - The water-rich region

    NASA Technical Reports Server (NTRS)

    Johnson, M. L.; Schwake, A.; Nicol, M.

    1984-01-01

    Phase boundaries of the H2O-NH3 system for (NH3)/x/(H2O)/1-x/ have been determined with diamond-anvil cells for mixtures in two composition ranges: (1) for x in the range from 0 to 0.3, at pressures up to 4 GPa at 21 C, and (2) for x in the range from 0.46 to 0.50, at pressures up to 5 GPa from 150 to 400 K. Phases were identified visually with a microscope and polarized optics. The NH3.2(H2O) phase is strongly anisotropic with a much smaller refractive index than that of ice VII and cracks in two nonperpendicular networks. NH3.H2O has a refractive index closer to that of Ice VII and does not appear to form cracks. Both phases are colorless. Phase boundaries were determined on both increasing and decreasing pressures, and compositions of the ammonia ices were determined by estimating relative amounts of water and ammonia ices at known overall compositions. For low-ammonia compositions (x equal to or less than 0.15), the following assemblages succedd one another as pressure increases: liquid; liquid and Ice VI (at 1.0 + GPa); liquid and Ice VII (at 2.1 GPa); Ice VII and NH3.H2O (at 3.5 GPa). For x in the range from 0.15 to 0.30, the water ice and liquid fields are replaced by the NH3.2(H2O) and liquid field at pressures down to 1.0 GPa and lower.

  7. Graphene assisted effective hole-extraction on In2O3:H/CH3NH3PbI3 interface: Studied by modulated surface spectroscopy

    NASA Astrophysics Data System (ADS)

    Vinoth Kumar, Sri Hari Bharath; Muydinov, Ruslan; Kol'tsova, Tat‘yana; Erfurt, Darja; Steigert, Alexander; Tolochko, Oleg; Szyszka, Bernd

    2018-01-01

    Charge separation in CH3NH3PbI3 (MAPbI3) films deposited on a hydrogen doped indium oxide (In2O3:H) photoelectrode was investigated by modulated surface photovoltage (SPV) spectroscopy in a fixed capacitor arrangement. It was found that In2O3:H reproducibly extracts photogenerated-holes from MAPbI3 films. The oxygen-plasma treatment of the In2O3:H surface is suggested to be a reason for this phenomenon. Introducing graphene interlayer increased charge separation nearly 6 times as compared to that on the In2O3:H/MAPbI3 interface. Furthermore, it is confirmed by SPV spectroscopy that the defects of the MAPbI3 interface are passivated by graphene.

  8. DFT study of uranyl peroxo complexes with H2O, F-, OH-, CO3(2-), and NO3(-).

    PubMed

    Odoh, Samuel O; Schreckenbach, Georg

    2013-05-06

    The structural and electronic properties of monoperoxo and diperoxo uranyl complexes with aquo, fluoride, hydroxo, carbonate, and nitrate ligands have been studied using scalar relativistic density functional theory (DFT). Only the complexes in which the peroxo ligands are coordinated to the uranyl moiety in a bidentate mode were considered. The calculated binding energies confirm that the affinity of the peroxo ligand for the uranyl group far exceeds that of the F(-), OH(-), CO3(2-), NO3(-), and H2O ligands. The formation of the monoperoxo complexes from UO2(H2O)5(2+) and HO2(-) were found to be exothermic in solution. In contrast, the formation of the monouranyl-diperoxo, UO2(O2)2X2(4-) or UO2(O2)2X(4-/3-) (where X is any of F(-), OH(-), CO3(2-), or NO3(-)), complexes were all found to be endothermic in aqueous solution. This suggests that the monoperoxo species are the terminal monouranyl peroxo complexes in solution, in agreement with recent experimental work. Overall, we find that the properties of the uranyl-peroxo complexes conform to well-known trends: the coordination of the peroxo ligand weakens the U-O(yl) bonds, stabilizes the σ(d) orbitals and causes a mixing between the uranyl π- and peroxo σ- and π-orbitals. The weakening of the U-O(yl) bonds upon peroxide coordination results in uranyl stretching vibrational frequencies that are much lower than those obtained after the coordination of carbonato or hydroxo ligands.

  9. Siudaite, Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O: a new eudialyte-group mineral from the Khibiny alkaline massif, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Kruszewski, Łukasz; Aksenov, Sergey M.; Rusakov, Vyacheslav S.; Britvin, Sergey N.; Vozchikova, Svetlana A.

    2018-03-01

    The new eudialyte-group mineral siudaite, ideally Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O, was discovered in a peralkaline pegmatite situated at the Eveslogchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia. The associated minerals are aegirine, albite, microcline, nepheline, astrophyllite, and loparite-(Ce). Siudaite forms yellow to brownish-yellow equant anhedral grains up to 1.5 cm across. Its lustre is vitreous, and the streak is white. Cleavage is none observed. The Mohs' hardness is 4½. Density measured by hydrostatic weighing is 2.96(1) g/cm3. Density calculated using the empirical formula is equal to 2.973 g/cm3. Siudaite is nonpleochroic, optically uniaxial, negative, with ω = 1.635(1) and ɛ = 1.626(1) (λ = 589 nm). The IR spectrum is given. The chemical composition of siudaite is (wt%; electron microprobe, H2O determined by HCN analysis): Na2O 8.40, K2O 0.62, CaO 9.81, La2O3 1.03, Ce2O3 1.62, Pr2O3 0.21, Nd2O3 0.29, MnO 6.45, Fe2O3 4.51. TiO2 0.54, ZrO2 11.67, HfO2 0.29, Nb2O5 2.76, SiO2 47.20, Cl 0.54, H2O 3.5, -O = Cl - 0.12, total 99.32. According to Mössbauer spectroscopy data, all iron is trivalent. The empirical formula (based on 24.5 Si atoms pfu, in accordance with structural data) is [Na7.57(H2O)1.43]Σ9(Mn1.11Na0.88Ce0.31La0.20Nd0.05Pr0.04K0.41)Σ3(H2O)1.8(Ca5.46Mn0.54)Σ6(Fe3+ 1.76Mn2+ 1.19)Σ2.95Nb0.65(Ti0.20Si0.50)Σ0.71(Zr2.95Hf0.04Ti0.01)Σ3Si24.00Cl0.47O70(OH)2Cl0.47·1.82H2O. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3m, with a = 14.1885(26) Å, c = 29.831(7) Å, V = 5200.8(23) Å3 and Z = 3. Siudaite is chemically related to georgbarsanovite and is its analogue with Fe3+-dominant M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.38 (60) (-114), 4.29 (55) (-225), 3.389 (47) (131), 3.191 (63) (-228). 2.963 (100) (4-15), 2.843 (99) (-444), 2.577 (49) (3-39). Siudaite is named after the Polish

  10. SMA OBSERVATIONS OF THE W3(OH) COMPLEX: PHYSICAL AND CHEMICAL DIFFERENTIATION BETWEEN W3(H{sub 2}O) AND W3(OH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Sheng-Li; Schilke, Peter; Sánchez-Monge, Álvaro

    2015-04-10

    We report on the Submillimeter Array (SMA) observations of molecular lines at 270 GHz toward the W3(OH) and W3(H{sub 2}O) complex. Although previous observations already resolved the W3(H{sub 2}O) into two or three sub-components, the physical and chemical properties of the two sources are not well constrained. Our SMA observations clearly resolved the W3(OH) and W3(H{sub 2}O) continuum cores. Taking advantage of the line fitting tool XCLASS, we identified and modeled a rich molecular spectrum in this complex, including multiple CH{sub 3}CN and CH{sub 3}OH transitions in both cores. HDO, C{sub 2}H{sub 5}CN, O{sup 13}CS, and vibrationally excited lines ofmore » HCN, CH{sub 3}CN, and CH{sub 3}OCHO were only detected in W3(H{sub 2}O). We calculate gas temperatures and column densities for both cores. The results show that W3(H{sub 2}O) has higher gas temperatures and larger column densities than W3(OH) as previously observed, suggesting physical and chemical differences between the two cores. We compare the molecular abundances in W3(H{sub 2}O) to those in the Sgr B2(N) hot core, the Orion KL hot core, and the Orion Compact Ridge, and discuss the chemical origin of specific species. An east–west velocity gradient is seen in W3(H{sub 2}O), and the extension is consistent with the bipolar outflow orientation traced by water masers and radio jets. A north–south velocity gradient across W3(OH) is also observed. However, with current observations we cannot be assured whether the velocity gradients are caused by rotation, outflow, or radial velocity differences of the sub-components of W3(OH)« less

  11. A new method for CH3O2 and C2H5O2 radical detection and kinetic studies of the CH3O2 self-reaction in HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)

    NASA Astrophysics Data System (ADS)

    Onel, L. C.; Brennan, A.; Ingham, T.; Kirk, D.; Leggott, A.; Seakins, P. W.; Whalley, L.; Heard, D. E.

    2016-12-01

    Peroxy (RO2) radicals such as methylperoxy (CH3O2) and ethylperoxy (C2H5O2) are significant atmospheric species in the ozone formation in the presence of NO. At low concentrations of NO, the self-reaction of RO2 and RO2 + HO2 are important radical termination reactions. Despite their importance, at present typically only the sum of RO2 is measured in the atmosphere, making no distinction between different RO2 species.A new method has been developed for the direct detection of CH3O2 and C2H5O2 by FAGE (Fluorescence Assay by Gas Expansion) by titrating the peroxy radicals to RO (R = CH3 and C2H5) by reaction with NO and then detecting the resultant RO by laser induced fluorescence. The method has the potential to directly measure atmospheric levels of CH3O2 and potentially other RO2 species. The limit of detection is 3.8 × 108 molecule cm-3 for CH3O2 and 4.9 × 109 molecule cm-3 for C2H5O2 for a signal-to-noise ratio of 2 and a 4 min averaging time. The method has been used for time-resolved monitoring of CH3O2 during its self-reaction within HIRAC at 1 bar and at room temperature to determine a rate coefficient that is lower than the range of the previous results obtained by UV absorption measurements (http://iupac.pole-ether.fr/). A range of products of the CH3O2 self-reaction were also observed for the two reaction channels, (a) leading to formaldehyde and methanol and (b) forming methoxy (CH3O) radicals, over a range of temperatures from 296 - 340 K: CH3O and HO2 radicals (from reaction of CH3O + O2) were monitored by FAGE, formaldehyde was measured by FAGE and FTIR, and methanol was observed by FTIR. Good agreement was observed between the FTIR and FAGE measurements of formaldehyde. Using the concentrations of methanol and formaldehyde, the branching ratios at room temperature have been determined and are in very good agreement with the values recommended by IUPAC. Little temperature dependence of the branching ratios has been observed from 296 K to 340 K.

  12. Frequency Comb Assisted IR Measurements of H_3^+, H_2D^+ and D_2H^+ Transitions

    NASA Astrophysics Data System (ADS)

    Jusko, Pavol; Asvany, Oskar; Schlemmer, Stephan

    2016-06-01

    We present recent measurements of the fundamental transitions of H_3^+, H_2D^+ and D_2H^+ in a 4 K 22-pole trap by action spectroscopic techniques. Either Laser Induced Inhibition of Cluster Growth (He attachment at T≈4 K), endothermic reaction of H_3^+ with O_2, or deuterium exchange has been used as measurement scheme. We used a 3 μm optical parametric oscillator coupled to a frequency comb in order to achieve accuracy generally below 1 MHz. Five transitions of H_3^+, eleven of H_2D^+ and ten of D_2H^+ were recorder in our spectral range. We compare our H_3^+ results with two previous frequency comb assisted works. Moreover, accurate determination of the frequency allows us to predict pure rotational transitions for H_2D^+ and D_2H^+ in the THz range. P. Jusko, C. Konietzko, S. Schlemmer, O. Asvany, J. Mol. Spec. 319 (2016) 55 O. Asvany, S. Brünken, L. Kluge, S. Schlemmer, Appl. Phys. B 114 (2014) 203 O. Asvany, J. Krieg, S. Schlemmer, Rev. Sci. Instr. 83 (2012) 093110 J.N. Hodges, A.J. Perry, P.A. Jenkins, B.M. Siller, B.J. McCall, J. Chem. Phys. 139 (2013) 164201 H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, J.-T. Shy, Phys. Rev. Lett. 109 (2012) 263002

  13. Studies of dispersion energy in hydrogen-bonded systems. H2O-HOH, H2O-HF, H3N-HF, HF-HF

    NASA Astrophysics Data System (ADS)

    Szcześniak, M. M.; Scheiner, Steve

    1984-02-01

    Dispersion energy is calculated in the systems H2O-HOH, H2O-HF, H3N-HF, and HF-HF as a function of the intermolecular separation using a variety of methods. M≂ller-Plesset perturbation theory to second and third orders is applied in conjunction with polarized basis sets of 6-311G** type and with an extended basis set including a second set of polarization functions (DZ+2P). These results are compared to a multipole expansion of the dispersion energy, based on the Unsöld approximation, carried out to the inverse tenth power of the intermolecular distance. Pairwise evaluation is also carried out using both atom-atom and bond-bond formulations. The MP3/6-311G** results are in generally excellent accord with the leading R-6 term of the multipole expansion. This expansion, if carried out to the R-10 term, reproduces extremely well previously reported dispersion energies calculated via variation-perturbation theory. Little damping of the expansion is required for intermolecular distances equal to or greater than the equilibrium separation. Although the asymptotic behavior of the MP2 dispersion energy is somewhat different than that of the other methods, augmentation of the basis set by a second diffuse set of d functions leads to quite good agreement in the vicinity of the minima. Both the atom-atom and bond-bond parametrization schemes are in good qualitative agreement with the other methods tested. All approaches produce similar dependence of the dispersion energy upon the angular orientation between the two molecules involved in the H bond.

  14. Topologically identical, but geometrically isomeric layers in hydrous α-, β-Rb[UO2(AsO3OH)(AsO2(OH)2)]·H2O and anhydrous Rb[UO2(AsO3OH)(AsO2(OH)2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Na; Klepov, Vladislav V.; Villa, Eric M.

    The hydrothermal reaction of uranyl nitrate with rubidium nitrate and arsenic (III) oxide results in the formation of polymorphic α- and β-Rb[UO2(AsO3OH)(AsO2(OH)2)]·H2O (α-, β-RbUAs) and the anhydrous phase Rb[UO2(AsO3OH)(AsO2(OH)2)] (RbUAs). These phases were structurally, chemically and spectroscopically characterized. The structures of all three compounds are based upon topologically identical, but geometrically isomeric layers. The layers are linked with each other by means of the Rb cations and hydrogen bonding. Dehydration experiments demonstrate that water deintercalation from hydrous α- and β-RbUAs yields anhydrous RbUAs via topotactic reactions.

  15. U 3Si 2 behavior in H 2O: Part I, flowing steam and the effect of hydrogen

    DOE PAGES

    Wood, Elizabeth Sooby; White, Joshua Taylor; Grote, Christopher John; ...

    2018-01-17

    Recent interest in U 3Si 2 as an advanced light water reactor fuel has driven assessment of numerous properties, but characterization of its response to H 2O environments is absent from the literature. The behavior of U 3Si 2 in H 2O containing atmospheres is investigated and presented in a two-part series of articles aimed to understand the degradation mechanism of U 3Si 2 in H 2O. Reported here are thermogravimetric data for U 3Si 2 exposed to flowing steam at 250–470 °C. Additionally the response of U 3Si 2 to flowing Ar-6% H 2 from 350 to 400 °Cmore » is presented. Microstructural degradation is observed following hours of exposure at 350 °C in steam. U 3Si 2 undergoes pulverization on the timescale of minutes when temperatures are increased above 400 °C. In conclusion, this mechanism is accelerated in flowing Ar-H 2 at the same temperatures.« less

  16. U 3Si 2 behavior in H 2O: Part I, flowing steam and the effect of hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Elizabeth Sooby; White, Joshua Taylor; Grote, Christopher John

    Recent interest in U 3Si 2 as an advanced light water reactor fuel has driven assessment of numerous properties, but characterization of its response to H 2O environments is absent from the literature. The behavior of U 3Si 2 in H 2O containing atmospheres is investigated and presented in a two-part series of articles aimed to understand the degradation mechanism of U 3Si 2 in H 2O. Reported here are thermogravimetric data for U 3Si 2 exposed to flowing steam at 250–470 °C. Additionally the response of U 3Si 2 to flowing Ar-6% H 2 from 350 to 400 °Cmore » is presented. Microstructural degradation is observed following hours of exposure at 350 °C in steam. U 3Si 2 undergoes pulverization on the timescale of minutes when temperatures are increased above 400 °C. In conclusion, this mechanism is accelerated in flowing Ar-H 2 at the same temperatures.« less

  17. Heat-Storage Modules Containing LiNO3-3H2O and Graphite Foam

    NASA Technical Reports Server (NTRS)

    Bootle, John

    2008-01-01

    A heat-storage module based on a commercial open-cell graphite foam (Poco-Foam or equivalent) imbued with lithium nitrate trihydrate (LiNO3-3H2O) has been developed as a prototype of other such modules for use as short-term heat sources or heat sinks in the temperature range of approximately 28 to 30 C. In this module, the LiNO3-3H2O serves as a phase-change heat-storage material and the graphite foam as thermally conductive filler for transferring heat to or from the phase-change material. In comparison with typical prior heat-storage modules in which paraffins are the phase-change materials and aluminum fins are the thermally conductive fillers, this module has more than twice the heat-storage capacity per unit volume.

  18. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2, treatment for removal of clofibric acid from aqueous solution.

    PubMed

    Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei

    2011-07-01

    Clofibric acid (CA), a metabolite of lipid regulators, was investigated in ultra-pure water and sewage treatment plant (STP) effluent at 10 degrees C under UV, vacuum UV (VUV), UV/H2O2 and VUV/H2O2 processes. The influences of NO3-, HCO3- and humic acid (HA) on CA photolysis in all processes were examined. The results showed that all the experimental data well fitted the pseudo-first-order kinetic model, and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated accordingly. Direct photolysis of CA through UV irradiation was the main process, compared with the indirect oxidation of CA due to the slight generation of hydroxyl radicals dissociated from water molecules under UV irradiation below 200 nm monochromatic wavelength emission. In contrast, indirect oxidation was the main CA degradation mechanism in UV/H2O2 and VUV/H2O2, and VUV/H2O2 was the most effective process for CA degradation. The addition of 20 mg L(-1) HA could significantly inhibit CA degradation, whereas, except for UV irradiation, the inhibitive effects of NO3- and HCO3- (1.0 x 10(-3) and 0.1 mol L(-1), respectively) on CA degradation were observed in all processes, and their adverse effects were more significant in UV/H2O2 and VUV/H2O2 processes, particularly at the high NO3- and HCO3- concentrations. The degradation rate decreased 1.8-4.9-fold when these processes were applied to a real STP effluent owing to the presence of complex constituents. Of the four processes, VUV/H2O2 was the most effective, and the CA removal efficiency reached over 99% after 40 min in contrast to 80 min in both the UV/H2O2 and VUV processes and 240 min in the UV process.

  19. Kinetics of Al + H2O reaction: theoretical study.

    PubMed

    Sharipov, Alexander; Titova, Nataliya; Starik, Alexander

    2011-05-05

    Quantum chemical calculations were carried out to study the reaction of Al atom in the ground electronic state with H(2)O molecule. Examination of the potential energy surface revealed that the Al + H(2)O → AlO + H(2) reaction must be treated as a complex process involving two steps: Al + H(2)O → AlOH + H and AlOH + H → AlO + H(2). Activation barriers for these elementary reaction channels were calculated at B3LYP/6-311+G(3df,2p), CBS-QB3, and G3 levels of theory, and appropriate rate constants were estimated by using a canonical variational theory. Theoretical analysis exhibited that the rate constant for the Al + H(2)O → products reaction measured by McClean et al. must be associated with the Al + H(2)O → AlOH + H reaction path only. The process of direct HAlOH formation was found to be negligible at a pressure smaller than 100 atm.

  20. 1-(2-Cyano­ethyl)-2-(2-pyrid­yl)-1H,3H-benzimidazol-3-ium perchlorate

    PubMed Central

    Li, Yan; Tang, Xiaoliang; Chen, Jiayu; Wu, Daxiang; Liu, Weisheng

    2010-01-01

    The title compound, C15H13N4 +·ClO4 −, comprises a nonplanar 1-(2-cyano­ethyl)-2-(2-pyrid­yl)-1H,3H-benzimidazol-3-ium cation [dihedral angle between the imidazole and pyridine rings = 22.5 (8)°] and a perchlorate anion. The cation is formed by protonation of the N atom of the benzimidazole ring. A charged N—H⋯O hydrogen bond connects the anion and cation, and inter­molecular C—H⋯O and C—H⋯N inter­actions contribute to the crystal packing. PMID:21579831

  1. Correlation between oxygen stoichiometry, structure, and opto-electrical properties in amorphous In2O3:H films

    NASA Astrophysics Data System (ADS)

    Koida, Takashi; Shibata, Hajime; Kondo, Michio; Tsutsumi, Koichi; Sakaguchi, Akio; Suzuki, Michio; Fujiwara, Hiroyuki

    2012-03-01

    We have characterized amorphous In2O3:H (H : ˜4 at.%) transparent conducting films by Rutherford backscattering spectrometry (RBS), thermal desorption spectroscopy, spectroscopic ellipsometry, and Hall measurements. The amorphous In2O3:H films have been fabricated at room temperature by sputtering of an In2O3 ceramic target under Ar, O2, and H2O vapor with variation of a flow ratio r(O2) = O2/(O2+Ar). We observe (i) signals originating from Ar in RBS spectra for all the films and (ii) desorption of H2O and Ar gases during post thermal annealing of the films. Furthermore, O2 desorption together with H2O and Ar is observed for the films grown at r(O2) > 0.375%, whereas In desorption together with H2O and Ar is observed for the films grown at r(O2) < 0.375%. These results suggest that the films have void and/or multi-vacancy rich structures inside the amorphous network, and the variety of atoms, such as Ar, H2O, and weakly bonded O and In, is present in the void structures for the films grown at O2-rich and O2-poor conditions, respectively. Corresponding to the structural changes, optical and electrical properties also change at r(O2) = 0.375%. For the films grown at r(O2) < 0.375%, we observe a broad absorption in the visible wavelengths that cannot be explained by free carrier absorption. In this film, the carrier mobility reduces rapidly with increasing carrier density. Analysis of spectroscopic ellipsometry and Hall measurements reveals that a large decrease in mobility is due to a large increase in carrier effective mass, in addition to the effect of ionized impurity scattering. In this article, we discuss the optical and transport properties with the variation of oxygen stoichiometry and microscopic structures in the amorphous In2O3:H films.

  2. I + (H2O)2 → HI + (H2O)OH Forward and Reverse Reactions. CCSD(T) Studies Including Spin-Orbit Coupling.

    PubMed

    Wang, Hui; Li, Guoliang; Li, Qian-Shu; Xie, Yaoming; Schaefer, Henry F

    2016-03-03

    The potential energy profile for the atomic iodine plus water dimer reaction I + (H2O)2 → HI + (H2O)OH has been explored using the "Gold Standard" CCSD(T) method with quadruple-ζ correlation-consistent basis sets. The corresponding information for the reverse reaction HI + (H2O)OH → I + (H2O)2 is also derived. Both zero-point vibrational energies (ZPVEs) and spin-orbit (SO) coupling are considered, and these notably alter the classical energetics. On the basis of the CCSD(T)/cc-pVQZ-PP results, including ZPVE and SO coupling, the forward reaction is found to be endothermic by 47.4 kcal/mol, implying a significant exothermicity for the reverse reaction. The entrance complex I···(H2O)2 is bound by 1.8 kcal/mol, and this dissociation energy is significantly affected by SO coupling. The reaction barrier lies 45.1 kcal/mol higher than the reactants. The exit complex HI···(H2O)OH is bound by 3.0 kcal/mol relative to the asymptotic limit. At every level of theory, the reverse reaction HI + (H2O)OH → I + (H2O)2 proceeds without a barrier. Compared with the analogous water monomer reaction I + H2O → HI + OH, the additional water molecule reduces the relative energies of the entrance stationary point, transition state, and exit complex by 3-5 kcal/mol. The I + (H2O)2 reaction is related to the valence isoelectronic bromine and chlorine reactions but is distinctly different from the F + (H2O)2 system.

  3. Scalable cross-point resistive switching memory and mechanism through an understanding of H2O2/glucose sensing using an IrOx/Al2O3/W structure.

    PubMed

    Chakrabarti, Somsubhra; Maikap, Siddheswar; Samanta, Subhranu; Jana, Surajit; Roy, Anisha; Qiu, Jian-Tai

    2017-10-04

    The resistive switching characteristics of a scalable IrO x /Al 2 O 3 /W cross-point structure and its mechanism for pH/H 2 O 2 sensing along with glucose detection have been investigated for the first time. Porous IrO x and Ir 3+ /Ir 4+ oxidation states are observed via high-resolution transmission electron microscope, field-emission scanning electron spectroscopy, and X-ray photo-electron spectroscopy. The 20 nm-thick IrO x devices in sidewall contact show consecutive long dc cycles at a low current compliance (CC) of 10 μA, multi-level operation with CC varying from 10 μA to 100 μA, and long program/erase endurance of >10 9 cycles with 100 ns pulse width. IrO x with a thickness of 2 nm in the IrO x /Al 2 O 3 /SiO 2 /p-Si structure has shown super-Nernstian pH sensitivity of 115 mV per pH, and detection of H 2 O 2 over the range of 1-100 nM is also achieved owing to the porous and reduction-oxidation (redox) characteristics of the IrO x membrane, whereas a pure Al 2 O 3 /SiO 2 membrane does not show H 2 O 2 sensing. A simulation based on Schottky, hopping, and Fowler-Nordheim tunneling conduction, and a redox reaction, is proposed. The experimental I-V curve matches very well with simulation. The resistive switching mechanism is owing to O 2- ion migration, and the redox reaction of Ir 3+ /Ir 4+ at the IrO x /Al 2 O 3 interface through H 2 O 2 sensing as well as Schottky barrier height modulation is responsible. Glucose at a low concentration of 10 pM is detected using a completely new process in the IrO x /Al 2 O 3 /W cross-point structure. Therefore, this cross-point memory shows a method for low cost, scalable, memory with low current, multi-level operation, which will be useful for future highly dense three-dimensional (3D) memory and as a bio-sensor for the future diagnosis of human diseases.

  4. Compressibility and thermal expansion of hydrous ringwoodite with 2.5(3) wt% H[subscript 2]O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Yu; Brown, David A.; Smyth, Joseph R.

    Ringwoodite ({gamma}-Mg{sub 2}SiO{sub 4}) is the stable polymorph of olivine in the transition zone between 525-660 km depth, and can incorporate weight percent amounts of H{sub 2}O as hydroxyl, with charge compensated mainly by Mg vacancies (Mg{sup 2+} = 2H{sup +}), but also possibly as (Si{sup 4+} = 4H{sup +} and Mg{sup 2+} + 2H{sup +} = Si{sup 4+}). We synthesized pure Mg ringwoodite containing 2.5(3) wt% H{sub 2}O, measured by secondary ion mass spectrometry (SIMS), and determined its compressibility at 300 K by single-crystal and powder X-ray diffraction (XRD), as well as its thermal expansion behavior between 140 andmore » 740 K at room pressure. A third-order Birch-Murnaghan equation of state (BM3 EOS) fits values of the isothermal bulk modulus K{sub T0} = 159(7) GPa and (dK{sub T}/dP){sub P = 0} = K' = 6.7(7) for single-crystal XRD; K{sub T0} = 161(4) GPa and K' = 5.4(6) for powder XRD, with K{sub T0} = 160(2) GPa and K' = 6.2(3) for the combined data sets. At room pressure, hydrous ringwoodite breaks down by an irreversible unit-cell expansion above 586 K, which may be related to dehydration and changes in the disorder mechanisms. Single-crystal intensity data were collected at various temperatures up to 736 K, and show that the cell volume V(cell) has a mean thermal expansion coefficient {alpha}{sub V0} of 40(4) x 10{sup -6}/K (143-736 K), and 29(2) x 10{sup -6}/K (143-586 K before irreversible expansion). V(Mg) have {alpha}{sub 0} values of 41(3) x 10{sup -6}/K (143-736 K), and V(Si) has {alpha}{sub 0} values of 20(3) x 10{sup -6}/K (143-586 K) and 132(4) x 10{sup -6}K (586-736 K). Based on the experimental data and previous work from {sup 29}Si NMR, we propose that during the irreversible expansion, a small amount of H{sup +} cations in Mg sites transfer to Si sites without changing the cubic spinel structure of ringwoodite, and the substituted Si{sup 4+} cations move to the normally vacant octahedral site at (1/2, 1/2, 0). Including new SIMS data on

  5. The TAED/H2O2/NaHCO3 system as an approach to low-temperature and near-neutral pH bleaching of cotton.

    PubMed

    Long, Xiaoxia; Xu, Changhai; Du, Jinmei; Fu, Shaohai

    2013-06-05

    A low-temperature and near-neutral pH bleaching system was conceived for cotton by incorporating TAED, H2O2 and NaHCO3. The TAED/H2O2/NaHCO3 system was investigated and optimized for bleaching of cotton using a central composite design (CCD) combined with response surface methodology (RSM). CCD experimental data were fitted to create a response surface quadratic model (RSQM) describing the degree of whiteness of bleached cotton fabric. Analysis of variance for the RSQM revealed that temperature was the most significant variable, followed by [TAED] and time, while [NaHCO3] was insignificant. An effective system was conducted by adding 5.75 g L(-1) TAED together with H2O2 and NaHCO3 at a molar ratio of 1:2.4:2.8 and applied to bleaching of cotton at 70 °C for 40 min. Compared to a commercial bleaching method, the TAED/H2O2/NaHCO3 system provided cotton with comparable degree of whiteness, slightly inferior water absorbency and acceptable dyeability, but had competitive advantage in protecting cotton from severe chemical damage in bleaching. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Tris(5,6-dimethyl-1H-benzimidazole-κN 3)(pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)nickel(II)

    PubMed Central

    Li, Yue-Hua; Li, Feng-Feng; Liu, Xin-Hua; Zhao, Ling-Yan

    2012-01-01

    The title mononuclear complex, [Ni(C7H3NO4)(C9H10N2)3], shows a central NiII atom which is coordinated by two carboxyl­ate O atoms and the N atom from a pyridine-2,6-dicarboxyl­ate ligand and by three N atoms from different 5,6-dimethyl-1H-­benzimidazole ligands in a distorted octa­hedral geometry. The crystal structure shows intermolecular N—H⋯O hydrogen bonds. PMID:22719301

  7. Hygroscopic La[B{sub 5}O{sub 8}(OH)]NO{sub 32H{sub 2}O: Insight into the evolution of borate fundamental building blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Biao-Chun, E-mail: zhaobiaochun@sohu.com; Sun, Wei, E-mail: 421221789@qq.com; Ren, Wei-Jian, E-mail: 935428502@qq.com

    2013-10-15

    Borates have exceptionally diverse fundamental building blocks (FBBs), but factors controlling the formation of borate FBBs are poorly understood. The title compound La[B{sub 5}O{sub 8}(OH)]NO{sub 32H{sub 2}O crystallizes in the space group P2{sub 1}/n with a=6.5396(12) Å, b=15.550(3) Å, c=10.6719(19) Å, β=90.44(1)° and Z=4 at 173(2) K. Its structure has been refined from single-crystal X-ray diffraction data to R{sub 1}=0.049 (for 2465) and wR{sub 2}=0.173 (for 2459 I>2σ(I)). This structure analysis and first-principles calculations show that the change of the FBB from 3Δ2□ in the title compound to 2Δ3□ in La[B{sub 5}O{sub 8}(OH)(H{sub 2}O)]NO{sub 32H{sub 2}O is accompanied by amore » rotation of the NO{sub 3} group. FTIR, Rietveld and thermal analysis results show that the hygroscopic title compound is partially changed to La[B{sub 5}O{sub 8}(OH)(H{sub 2}O)]NO{sub 32H{sub 2}O, with the conversion of [BO{sub 3}] to [BO{sub 3}(H{sub 2}O)] by water absorption. - Graphical abstract: The change of fundamental building blocks from La[B{sub 5}O{sub 8}(OH)]NO{sub 32H{sub 2}O to La[B{sub 5}O{sub 8}(OH)(H{sub 2}O)]NO{sub 32H{sub 2}O is accompanied by a rotation of the NO{sub 3} group . Display Omitted - Highlights: • Synthesis of a new hydrous lanthanum polyborate nitrate. • Single-crystal XRD structure with the 3Δ2⎕ FBB and an oriented NO{sub 3} group. • DFT calculations locate the H positions in three lanthanide polyborate nitrates. • Rietveld, FTIR and DFT results show hygroscopicity changes the FBBs.« less

  8. Mixed-metal uranium(VI) iodates: hydrothermal syntheses, structures, and reactivity of Rb[UO(2)(CrO(4))(IO(3))(H(2)O)], A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K, Rb, Cs), and K(2)[UO(2)(MoO(4))(IO(3))(2)].

    PubMed

    Sykora, Richard E; McDaniel, Steven M; Wells, Daniel M; Albrecht-Schmitt, Thomas E

    2002-10-07

    The reactions of the molecular transition metal iodates A[CrO(3)(IO(3))] (A = K, Rb, Cs) with UO(3) under mild hydrothermal conditions provide access to four new, one-dimensional, uranyl chromatoiodates, Rb[UO(2)(CrO(4))(IO(3))(H(2)O)] (1) and A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K (2), Rb (3), Cs (4)). Under basic conditions, MoO(3), UO(3), and KIO(4) can be reacted to form K(2)[UO(2)(MoO(4))(IO(3))(2)] (5), which is isostructural with 2 and 3. The structure of 1 consists of one-dimensional[UO(2)(CrO(4))(IO(3))(H(2)O)](-) ribbons that contain uranyl moieties bound by bridging chromate and iodate anions as well as a terminal water molecule to create [UO(7)] pentagonal bipyramidal environments around the U(VI) centers. These ribbons are separated from one another by Rb(+) cations. When the iodate content is increased in the hydrothermal reactions, the terminal water molecule is replaced by a monodentate iodate anion to yield 2-4. These ribbons can be further modified by replacing tetrahedral chromate anions with MoO(4)(2)(-) anions to yield isostructural, one-dimensional [UO(2)(MoO(4))(IO(3))(2)](2)(-) ribbons. Crystallographic data: 1, triclinic, space group P(-)1, a = 7.3133(5) A, b = 8.0561(6) A, c = 8.4870(6) A, alpha = 88.740(1) degrees, beta = 87.075(1) degrees, gamma = 71.672(1) degrees, Z = 2; 2, monoclinic, space group P2(1)/c, a = 11.1337(5) A, b = 7.2884(4) A, c = 15.5661(7) A, beta = 107.977(1) degrees, Z = 4; 3, monoclinic, space group P2(1)/c, a = 11.3463(6) A, b = 7.3263(4) A, c = 15.9332(8) A, beta = 108.173(1) degrees, Z = 4; 4, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4; 5, monoclinic, space group P2(1)/c, a = 11.3717(6) A, b = 7.2903(4) A, c = 15.7122(8) A, beta = 108.167(1) degrees, Z = 4.

  9. (C6N2H16)[Co(H2O)6](SO4)2.2H2O: A new hybrid material based on sulfate templated by diprotonated trans-1,4-diaminocyclohexane

    NASA Astrophysics Data System (ADS)

    Hamdi, N.; Ngopoh, F. A. I.; da Silva, I.; El Bali, B.; Lachkar, M.

    2018-03-01

    Employing trans-1,4-diaminocyclohexane (DACH) as template, the new hybrid sulphate (C6N2H16)[Co(H2O)6](SO4)2.2H2O was prepared in solution. Single-crystal X-ray diffraction analysis shows that it crystallizes in the monoclinic system (S.G.: P 21/n), with the following unit-cell parameters (Å,°): a = 6.2897(2), b = 12.3716(6), c = 13.1996(4), β = 98.091(3) V = 1016.89(7) Å3, Z = 4. Its 3D crystal structure is made upon isolated [Co(H2O)6] octahedra, regular [SO4] tetrahedra, protonated DACH and free H2O molecules, which interact through N-H···O and O-H···O hydrogen bonds. The Fourier transform infrared result exhibits bands corresponding to the vibrations of DACH, sulfate group and water molecules. The thermal decomposition of the phase consists mainly in the loss of the organic moiety and one sulfate group, leading thus to the formation of anhydrous cobalt sulfate.

  10. DFT studies on H 2O adsorption and its effect on CO oxidation over spinel Co 3O 4 (110) surface

    NASA Astrophysics Data System (ADS)

    Xu, Xiang Lan; Li, Jun Qian

    2011-12-01

    Adsorption of H2O and its effect on CO oxidation over spinel Co3O4 (110) surface were studied by density functional theory calculations. H2O is adsorbed favorably at the octahedral cobalt (Cooct) site through O atom on the surface. Hydrogen bonding interaction between 1s orbitals of H atoms in H2O and the 2p orbitals of surface active oxygen sites plays a key role for H2O adsorption. The inhibition effect of H2O adsorption on the CO oxidation over the surfaces is attributed to the competition between H2O and CO molecules for the surface twofold coordinated oxygen site.

  11. Method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H (tritium) concentrations of xylem waters and subsurface waters using time series sampling

    DOEpatents

    Smith, Brian; Menchaca, Leticia

    1999-01-01

    A method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H concentrations of xylem and subsurface waters using time series sampling, insulating sampling chambers, and combined .sup.18 O/.sup.16 O, .sup.2 H/.sup.1 H and .sup.3 H concentration data on transpired water. The method involves collecting water samples transpired from living plants and correcting the measured isotopic compositions of oxygen (.sup.18 O/.sup.16 O) and hydrogen (.sup.2 H/.sup.1 H and/or .sup.3 H concentrations) to account for evaporative isotopic fractionation in the leafy material of the plant.

  12. Physical chemistry of the H2SO4/HNO3/H2O system - Implications for polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Molina, M. J.; Zhang, R.; Wooldridge, P. J.; Mcmahon, J. R.; Kim, J. E.; Chang, H. Y.; Beyer, K. D.

    1993-01-01

    Polar stratospheric clouds (PSCs) play a key role in stratospheric ozone depletion. Surface-catalyzed reactions on PSC particles generate chlorine compounds that photolyze readily to yield chlorine radicals, which in turn destroy ozone very efficiently. The most prevalent PSCs form at temperatures several degrees above the ice frost point and are believed to consist of HNO3 hydrates; however, their formation mechanism is unclear. Results of laboratory experiments are presented which indicate that the background stratospheric H2SO4/H2O aerosols provide an essential link in this mechanism: These liquid aerosols absorb significant amounts of HNO3 vapor, leading most likely to the crystallization of nitric acid trihydrate (NAT). The frozen particles then grow to form PSCs by condensation of additional amounts of HNO3 and H2O vapor. Furthermore, reaction probability measurements reveal that the chlorine radical precursors are formed readily at polar stratospheric temperatures not just on NAT and ice crystals, but also on liquid H2SO4 solutions and on solid H2SO4 hydrates. These results imply that the chlorine activation efficiency of the aerosol particles increases rapidly as the temperature approaches the ice frost point regardless of the phase or composition of the particles.

  13. Zincobotryogen, ZnFe3+(SO4)2(OH)ṡ7H2O: validation as a mineral species and new data

    NASA Astrophysics Data System (ADS)

    Yang, Zhuming; Giester, Gerald; Mao, Qian; Ma, Yuguang; Zhang, Di; Li, He

    2017-06-01

    Zincobotryogen occurs in the oxidation zone of the Xitieshan lead-zinc deposit, Qinghai, China. The mineral is associated with jarosite, copiapite, zincocopiapite, and quartz. The mineral forms prismatic crystals, 0.05 to 2 mm in size. It is optically positive (2Vcalc = 54.1°), with Z ‖ b and X ∧ c = 10°. The elongation is negative. The refractive indices are n α = 1.542(5), n β = 1.551(5), n γ = 1.587(5). The pleochroism scheme is X = colorless, Y = light yellow, Z = yellow. Microprobe analysis gave (in wt%): SO3 = 38.04, Al2O3 = 0.04, Fe2O3 = 18.46, ZnO = 13.75, MgO = 1.52, MnO = 1.23, H2O = 31.06 (by calculation), Total = 104.10. The simplified formula is (Zn,Mg)Fe3+(SO4)2(OH)ṡ7H2O. The mineral is monoclinic, P121/ n1, a = 10.504(2), b = 17.801(4), c = 7.1263(14) Å, and β = 100.08(3)°, V = 1311.9(5) Å3, Z = 4. The strongest lines in the powder X-ray diffraction pattern d(I)( hkl) are: 8.92 (100)(110), 6.32 (77)(-101), 5.56 (23)(021), 4.08 (22)(-221),3.21 (31)(231), 3.03 (34)(032), 2.77 (22)(042). The crystal structure was refined using 2816 unique reflections to R1( F) = 0.0355 and wR2( F 2) = 0.0651. The refined formula is (Zn0.84Mg0.16)Fe3+(SO4)2(OH)ṡ7H2O. The atomic arrangement is characterized by chains with composition [Fe3+(SO4)2(OH)(H2O)]2- and 7 Å repeat distance running parallel to the c-axis. The chain links to a [ MO(H2O)5] octahedron ( M = Zn, Mg) and an unshared H2O molecule, and forms a larger chain building module with composition [ M 2+Fe3+(SO4)2(OH)(H2O)6(H2O)]. The inter-chain module linkage involves only hydrogen bonding.

  14. Uptake of methanol on mixed HNO3/H2O clusters: An absolute pickup cross section

    NASA Astrophysics Data System (ADS)

    Pysanenko, A.; Lengyel, J.; Fárník, M.

    2018-04-01

    The uptake of atmospheric oxidized organics on acid clusters is relevant for atmospheric new particle formation. We investigate the pickup of methanol (CH3OH) on mixed nitric acid-water clusters (HNO3)M(H2O)N by a combination of mass spectrometry and cluster velocity measurements in a molecular beam. The mass spectra of the mixed clusters exhibit (HNO3)m(H2O)nH+ series with m = 0-3 and n = 0-12. In addition, CH3OH.(HNO3)m(H2O)nH+ series with very similar patterns appear in the spectra after the methanol pickup. The velocity measurements prove that the undoped (HNO3)m(H2O)nH+ mass peaks in the pickup spectra originate from the neutral (HNO3)M(H2O)N clusters which have not picked up any CH3OH molecule, i.e., methanol has not evaporated upon the ionization. Thus the fraction of the doped clusters can be determined and the mean pickup cross section can be estimated, yielding σs ¯ ≈ 20 Å2. This is compared to the lower estimate of the mean geometrical cross section σg ¯ ≈ 60 Å2 obtained from the theoretical cluster geometries. Thus the "size" of the cluster corresponding to the methanol pickup is at least 3-times smaller than its geometrical size. We have introduced a method which can yield the absolute pickup cross sections relevant to the generation and growth of atmospheric aerosols, as illustrated in the example of methanol and nitric acid clusters.

  15. Dynamic aggregation of the mid-sized gadolinium complex {Ph4[Gd(DTTA)(H2O)2](-)3}.

    PubMed

    Jaccard, Hugues; Miéville, Pascal; Cannizzo, Caroline; Mayer, Cédric R; Helm, Lothar

    2014-02-01

    A compound binding three Gd(3+) ions, {Ph4[Gd(DTTA)(H2O)2](-) 3} (where H5DTTA is diethylenetriaminetetraacetic acid), has been synthesized around a hydrophobic center made up of four phenyl rings. In aqueous solution the molecules start to self-aggregate at concentrations well below 1 mM as shown by the increase of rotational correlation times and by the decrease of the translational self-diffusion constant. NMR spectra recorded in aqueous solution of the diamagnetic analogue {Ph4[Y(DTTA)(H2O)2](-)3} show that the aggregation is dynamic and due to intermolecular π-stacking interactions between the hydrophobic aromatic centers. From estimations of effective radii, it can be concluded that the aggregates are composed of two to three monomers. The paramagnetic {Ph4[Gd(DTTA)(H2O)2](-)3} exhibits concentration-dependent (1)H NMR relaxivities with high values of approximately 50 mM(-1) s(-1) (30 MHz, 25 °C) at gadolinium concentrations above 20 mM. A combined analysis of (1)H NMR dispersion profiles measured at different concentrations of the compound and (17)O NMR data measured at various temperatures was performed using different theoretical approaches. The fitted parameters showed that the increase in relaxivity with increasing concentration of the compound is due to slower global rotational motion and an increase of the Lipari-Szabo order parameter S(2).

  16. X-ray diffraction analysis of 4- and 4'-substituted C n H2 n + 1O-C6H3(OH)-CH=N-C6H4-C m H2 m + 1 ( n/ m = 2/1 and 3/4) salicylideneanilines

    NASA Astrophysics Data System (ADS)

    Kuz'mina, L. G.; Navasardyan, M. A.; Mikhailov, A. A.

    2017-11-01

    X-ray diffraction study of two crystalline modifications of C2H5O-C6H3(OH)-CH=N-C6H4-CH3 ( 1a, sp. gr. P21/ n, and 1b, sp. gr. C2/c) and C3H7O-C6H3(OH)-CH=N-C6H4-C4H9 ( 2, sp. gr. P212121) has been performed. The 1a crystal structure contains two independent molecules. The molecules are conformationally nonrigid with respect to the mutual rotation of benzene rings; the dihedral angles between their planes are 29.19° and 26.00° in the independent molecules of 1a, 18.72° in the molecule of 1b, and 50.35° in the molecule of 2. The crystal packing of the compounds is discussed.

  17. Thermal decomposition of europium sulfates Eu2(SO4)3·8H2O and EuSO4

    NASA Astrophysics Data System (ADS)

    Denisenko, Yu. G.; Khritokhin, N. A.; Andreev, O. V.; Basova, S. A.; Sal'nikova, E. I.; Polkovnikov, A. A.

    2017-11-01

    Reactions of europium sulfates Eu2(SO4)3·8H2O and EuSO4 complete decomposition were studied by Simultaneous Thermal Analysis. It was revealed that one-step dehydratation of Eu2(SO4)3·8H2O crystallohydrate is accompanied by the formation of amorphous anhydrous europium sulfate Eu2(SO4)3. Crystallization of amorphous europium (III) sulfate occurs at 381.1 °C (in argon) and 391.3 °C (in air). The average enthalpy values for dehydratation reaction of Eu2(SO4)3·8H2O (ΔH° = 141.1 kJ/mol), decomposition reactions of Eu2(SO4)3H = 463.1 kJ/mol), Eu2O2SO4 (ΔH = 378.4 kJ/mol) and EuSO4 (ΔH = 124.1 kJ/mol) were determined. The step process mechanisms of thermal decomposition of europium (III) sulfate in air and europium (II) sulfate in inert atmosphere were established and justified. The kinetic parameters of complete thermal decomposition of europium (III) sulfate octahydrate were calculated by Kissinger model. The standard enthalpies of compound formation were calculated using thermal effects and formation enthalpy data for binary compounds.

  18. Melatonin partially protects 661W cells from H2O2-induced death by inhibiting Fas/FasL-caspase-3.

    PubMed

    Sánchez-Bretaño, Aída; Baba, Kenkichi; Janjua, Uzair; Piano, Ilaria; Gargini, Claudia; Tosini, Gianluca

    2017-01-01

    Previous studies have shown that melatonin (MEL) signaling is involved in the modulation of photoreceptor viability during aging. Recent work by our laboratory suggested that MEL may protect cones by modulating the Fas/FasL-caspase-3 pathway. In this study, we first investigated the presence of MEL receptors (MT 1 and MT 2 ) in 661W cells, then whether MEL can prevent H 2 O 2 -induced cell death, and last, through which pathway MEL confers protection. The mRNA and proteins of the MEL receptors were detected with quantitative PCR (q-PCR) and immunocytochemistry, respectively. To test the protective effect of MEL, 661W cells were treated with H 2 O 2 for 2 h in the presence or absence of MEL, a MEL agonist, and an antagonist. To study the pathways involved in H 2 O 2 -mediated cell death, a Fas/FasL antagonist was used before the exposure to H 2 O 2 . Finally, Fas/FasL and caspase-3 mRNA was analyzed with q-PCR and immunocytochemistry in cells treated with H 2 O 2 and/or MEL. Cell viability was analyzed by using Trypan Blue. Both MEL receptors (MT 1 and MT 2 ) were detected at the mRNA and protein levels in 661W cells. MEL partially prevented H 2 O 2 -mediated cell death (20-25%). This effect was replicated with IIK7 (a melatonin receptor agonist) when used at a concentration of 1 µM. Preincubation with luzindole (a melatonin receptor antagonist) blocked MEL protection. Kp7-6, an antagonist of Fas/FasL, blocked cell death caused by H 2 O 2 similarly to what was observed for MEL. Fas, FasL, and caspase-3 expression was increased in cells treated with H 2 O 2 , and this effect was prevented by MEL. Finally, MEL treatment partially prevented the activation of caspase-3 caused by H 2 O 2 . The results demonstrate that MEL receptors are present and functional in 661W cells. MEL can prevent photoreceptor cell death induced by H 2 O 2 via the inhibition of the proapoptotic pathway Fas/FasL-caspase-3.

  19. A simple hydrogen-bonded chain in (3Z)-3-{1-[(5-phenyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one, and a hydrogen-bonded ribbon of centrosymmetric rings in the self-assembled adduct (3Z)-3-{1-[(5-methyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one-6-(2-hydroxyethyl)-2,5-dimethylpyrazolo[1,5-a]pyrimidin-7(4H)-one (1/1).

    PubMed

    Quiroga, Jairo; Portilla, Jaime; Cobo, Justo; Glidewell, Christopher

    2010-01-01

    (3Z)-3-{1-[(5-Phenyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one, C(15)H(15)N(3)O(2), (I), and the stoichiometric adduct (3Z)-3-{1-[(5-methyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one-6-(2-hydroxyethyl)-2,5-dimethylpyrazolo[1,5-a]pyrimidin-7(4H)-one (1/1), C(10)H(13)N(3)O(2).C(10)H(13)N(3)O(2), (II), in which the two components have the same composition but different constitutions, are formed in the reactions of 2-acetyl-4-butyrolactone with 5-amino-3-phenyl-1H-pyrazole and 5-amino-3-methyl-1H-pyrazole, respectively. In each compound, the furanone component contains an intramolecular N-H...O hydrogen bond. The molecules of (I) are linked into a chain by a single intermolecular N-H...O hydrogen bond, while in (II), a combination of one O-H...N hydrogen bond, within the selected asymmetric unit, and two N-H...O hydrogen bonds link the molecular components into a ribbon containing alternating centrosymmetric R(4)(4)(20) and R(6)(6)(22) rings.

  20. Solid-State Synthesis and Structure of the Enigmatic Ammonium Octaborate: (NH4)2[B7O9(OH)5]·3/4B(OH)3·5/4H2O.

    PubMed

    Neiner, Doinita; Sevryugina, Yulia V; Schubert, David M

    2016-09-06

    The compound known since the 19th century as ammonium octaborate was structurally characterized revealing the ammonium salt of the ribbon isomer of the heptaborate anion, [B7O9(OH)5](2-), with boric acid and water molecules. Of composition (NH4)2B7.75O12.63·4.88H2O, it approximates the classical ammonium octaborate composition (NH4)2B8O13·6H2O and has the structural formula {(NH4)2[B7O9(OH)5]}4·3B(OH)3·5H2O. It spontaneously forms at room temperature in solid-state mixtures of ammonium tetraborate and ammonium pentaborate. It crystallizes in the monoclinic space group P21/c with a = 11.4137(2) Å, b = 11.8877(2) Å, c = 23.4459(3) Å, β = 90.092(1)°, V = 3181.19(8) Å(3), and Z = 2 and contains well-ordered ammonium cations and [B7O9(OH)5](2-) anions and disordered B(OH)3 and H2O molecules linked by extensive H bonding. Expeditious solid-state formation of the heptaborate anion under ambient conditions has important implications for development of practical syntheses of industrially useful borates.

  1. D/H fractionation in the H2-H2O system at supercritical water conditions: Compositional and hydrogen bonding effects

    NASA Astrophysics Data System (ADS)

    Foustoukos, Dionysis I.; Mysen, Bjorn O.

    2012-06-01

    A series of experiments has been conducted in the H2-D2-D2O-H2O-Ti-TiO2 system at temperatures ranging from 300 to 800 °C and pressures between ∼0.3 and 1.3 GPa in a hydrothermal diamond anvil cell, utilizing Raman spectroscopy as a quantitative tool to explore the relative distribution of hydrogen and deuterium isotopologues of the H2 and H2O in supercritical fluids. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (3-9 h) in the diamond cell, leading to formation of H2, D2, HD, and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in situ and at ambient conditions on quenched samples indicate significant differences from the theoretical estimates of the equilibrium thermodynamic properties of the H-D exchange reactions. In fact, the estimated enthalpy for the H2(aq)-D2(aq) disproportionation reaction (ΔHrxn) is about -3.4 kcal/mol, which differs greatly from the +0.16 kcal/mol predicted for the exchange reaction in the gas phase by statistical mechanics models. The exothermic behavior of the exchange reaction implies enhanced stability of H2 and D2 relative to HD. Accordingly, the significant energy difference of the internal H2(aq)-D2(aq)-HD(aq) equilibrium translates to strong differences of the fractionation effects between the H2O-H2 and D2O-D2 isotope exchange relationships. The D/H fractionation factors between H2O-H2(aq) and D2O-D2(aq) differ by 365‰ in the 600-800 °C temperature range, and are indicative of the greater effect of D2O contribution to the δD isotopic composition of supercritical fluids. The negative ΔHrxn values for the H2(aq)-D2(aq)-HD(aq) equilibrium and the apparent decrease of the equilibrium constant with increasing temperature might be because of differences of the Henry’s law constant between the H- and D-bearing species dissolved in supercritical aqueous solutions. Such effects may be attributed to the stronger hydrogen bonding in the O-H⋯O relative to the

  2. A novel highly efficient adsorbent {[Co4(L)23-OH)2(H2O)3(4,4‧-bipy)2]·(H2O)2}n: Synthesis, crystal structure, magnetic and arsenic (V) absorption capacity

    NASA Astrophysics Data System (ADS)

    Zhang, Chong; Xiao, Yu; Qin, Yan; Sun, Quanchun; Zhang, Shuhua

    2018-05-01

    A novel highly efficient adsorbent-microporous tetranuclear Co(II)-based polymer, {[Co4(L)23-OH)2(H2O)3(4,4‧-bipy)2]·(H2O)2}n (1, H3L = 4-(N,N‧-bis(4-carboxybenzyl)amino) benzenesulfonic acid, 4,4‧-bipy = 4,4‧-bipyridine), was hydrothermally synthesized. The complex 1 is a metal-organic framework (MOF) material which was characterized by single-crystal X-ray diffraction, BET and platon software. Co-MOF (complex 1) reveals excellent adsorption property. The capacity of Co-MOF to remove arsenic As(V) from sodium arsenate aqueous solutions was investigated (The form of As(V) is AsO43-). The experimental results showed that Co-MOF had a higher stable and relatively high As(V) removal rate (> 98%) at pH 4-10. The adsorption kinetics followed a pseudo-second-order kinetic model, and the adsorption isotherm followed the Langmuir equation. Co-MOF exhibits a very high adsorption capacity of As(V) in aqueous solution (Qmax of 96.08 mg/g). Finally, the optimal adsorption conditions for the model were obtained through a Box-Behnken response surface experiment which was designed with adsorption time, dose, temperature and rotational speed of the shaker as the influencing factors to determine two-factor interaction effects. Co-MOF was further characterized using FTIR, PXRD, X-ray photoelectron spectroscopy before and after adsorption As (V). The magnetism of Co-MOF was also discussed.

  3. H-TiO(2) @MnO(2) //H-TiO(2) @C core-shell nanowires for high performance and flexible asymmetric supercapacitors.

    PubMed

    Lu, Xihong; Yu, Minghao; Wang, Gongming; Zhai, Teng; Xie, Shilei; Ling, Yichuan; Tong, Yexiang; Li, Yat

    2013-01-11

    A flexible solid-state asymmetric supercapacitor device with H-TiO(2) @MnO(2) core-shell NWs as the positive electrode and H-TiO(2) @C core-shell NWs as the negative electrode is developed. This device operates in a 1.8 V voltage window and is able to deliver a high specific capacitance of 139.6 F g(-1) and maximum volumetric energy density of 0.30 mWh cm(-3) with excellent cycling performance and good flexibility. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Suggestion for search of cyclopropenone (c-C3H2O) in a cosmic object

    NASA Astrophysics Data System (ADS)

    Sharma, M. K.; Sharma, M.; Chandra, S.

    2017-03-01

    Following Minimum Energy Principle, out of the three isomers of chemical formula C3H2O, the cyclopropenone (c-C3H2O) is the most stable and therefore may be the most abundant and easily detectable in a cosmic object. The cyclopropenone is detected in Sgr B2(N). Owing to half-spin of each of two hydrogen atoms, the c-C3H2O has two distinct ortho and para species. Using the rotational and centrifugal distortion constants along with the electric dipole moment, we have calculated energies of 100 rotational levels of each of the ortho and para species of c-C3H2O and the Einstein A-coefficients for radiative transitions between the levels. The values of Einstein A-coefficients along with the scaled values for collisional rate coefficients are used for solving a set of statistical equilibrium equations coupled with the equations of radiative transfer. Brightness temperatures of seven rotational transitions of each of the ortho and para species of c-C3H2O are investigated. Out of fourteen transitions, seven are found to show anomalous absorption and rest seven are found to show emission feature. We find that the transitions 110 -111 (1.544 GHz) may play important role in identification of cyclopropenone in a cosmic object.

  5. Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z 2-4

    NASA Astrophysics Data System (ADS)

    Yang, C.; Omont, A.; Beelen, A.; González-Alfonso, E.; Neri, R.; Gao, Y.; van der Werf, P.; Weiß, A.; Gavazzi, R.; Falstad, N.; Baker, A. J.; Bussmann, R. S.; Cooray, A.; Cox, P.; Dannerbauer, H.; Dye, S.; Guélin, M.; Ivison, R.; Krips, M.; Lehnert, M.; Michałowski, M. J.; Riechers, D. A.; Spaans, M.; Valiante, E.

    2016-11-01

    We report rest-frame submillimeter H2O emission line observations of 11 ultra- or hyper-luminous infrared galaxies (ULIRGs or HyLIRGs) at z 2-4 selected among the brightest lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Using the IRAM NOrthern Extended Millimeter Array (NOEMA), we have detected 14 new H2O emission lines. These include five 321-312ortho-H2O lines (Eup/k = 305 K) and nine J = 2 para-H2O lines, either 202-111(Eup/k = 101 K) or 211-202(Eup/k = 137 K). The apparent luminosities of the H2O emission lines are μLH2O 6-21 × 108 L⊙ (3 <μ< 15, where μ is the lens magnification factor), with velocity-integrated line fluxes ranging from 4-15 Jy km s-1. We have also observed CO emission lines using EMIR on the IRAM 30 m telescope in seven sources (most of those have not yet had their CO emission lines observed). The velocity widths for CO and H2O lines are found to be similar, generally within 1σ errors in the same source. With almost comparable integrated flux densities to those of the high-J CO line (ratios range from 0.4 to 1.1), H2O is found to be among the strongest molecular emitters in high-redshift Hy/ULIRGs. We also confirm our previously found correlation between luminosity of H2O (LH2O) and infrared (LIR) that LH2O LIR1.1-1.2, with ournew detections. This correlation could be explained by a dominant role of far-infrared pumping in the H2O excitation. Modelling reveals that the far-infrared radiation fields have warm dust temperature Twarm 45-75 K, H2O column density per unit velocity interval NH2O /ΔV ≳ 0.3 × 1015 cm-2 km-1 s and 100 μm continuum opacity τ100> 1 (optically thick), indicating that H2O is likely to trace highly obscured warm dense gas. However, further observations of J ≥ 4 H2O lines are needed to better constrain the continuum optical depth and other physical conditions of the molecular gas and dust. We have also detected H2O+ emission in three sources. A tight correlation

  6. Optical characterization of Tm(3+) doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2.

    PubMed

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-08-10

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd-Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm(3+) ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH(-) absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10(-21) cm(2)) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm(3+): (4)F3 → (3)H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation ((3)H6 + (3)H4 → (3)F4 + (3)F4) rate. Our results suggest that the Tm(3+) doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system.

  7. Optical characterization of Tm3+ doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2

    PubMed Central

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-01-01

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd–Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm3+ ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH− absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10−21 cm2) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm3+: 4F3 → 3H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation (3H6 + 3H4 → 3F4 + 3F4) rate. Our results suggest that the Tm3+ doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system. PMID:27506152

  8. Synthesis, Structures, and Vibrational Spectroscopy of the Two-Dimensional Iodates Ln(IO) 3 and Ln(IO 3) 3(H 2O) ( Ln-Yb,Lu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assefa, Zerihun; Ling, Jie; Haire, Richard

    2006-01-01

    The reaction of Lu3+ or Yb3+ and H5IO6 in aqueous media at 180 C leads to the formation of Yb(IO3)3(H2O) or Lu(IO3)3(H2O), respectively, while the reaction of Yb metal with H5IO6 under similar reaction conditions gives rise to the anhydrous iodate, Yb(IO3)3. Under supercritical conditions Lu3+ reacts with HIO3 and KIO4 to yield the isostructural Lu(IO3)3. The structures have been determined by single-crystal X-ray diffraction. Crystallographic data are (MoKa, {lambda}=0.71073 {angstrom}): Yb(IO3)3, monoclinic, space group P21/n, a=8.6664(9) {angstrom}, b=5.9904(6) {angstrom}, c=14.8826(15) {angstrom}, {beta}=96.931(2){sup o}, V=766.99(13), Z=4, R(F)=4.23% for 114 parameters with 1880 reflections with I>2s(I); Lu(IO3)3, monoclinic, space group P21/n,more » a=8.6410(9), b=5.9961(6), c=14.8782(16) {angstrom}, {beta}=97.028(2){sup o}, V=765.08(14), Z=4, R(F)=2.65% for 119 parameters with 1756 reflections with I>2s(I); Yb(IO3)3(H2O), monoclinic, space group C2/c, a=27.2476(15), b=5.6296(3), c=12.0157(7) {angstrom}, {beta}=98.636(1){sup o}, V=1822.2(2), Z=8, R(F)=1.51% for 128 parameters with 2250 reflections with I>2s(I); Lu(IO3)3(H2O), monoclinic, space group C2/c, a=27.258(4), b=5.6251(7), c=12.0006(16) {angstrom}, {beta}=98.704(2){sup o}, V=1818.8(4), Z=8, R(F)=1.98% for 128 parameters with 2242 reflections with I>2s(I). The f elements in all of the compounds are found in seven-coordinate environments and bridged with monodentate, bidentate, or tridentate iodate anions. Both Lu(IO3)3(H2O) and Yb(IO3)3(H2O) display distinctively different vibrational profiles from their respective anhydrous analogs. Hence, the Raman profile can be used as a complementary diagnostic tool to discern the different structural motifs of the compounds.« less

  9. Modeling Closed Equilibrium Systems of H2O-Dissolved CO2-Solid CaCO3.

    PubMed

    Tenno, Toomas; Uiga, Kalev; Mashirin, Alexsey; Zekker, Ivar; Rikmann, Ergo

    2017-04-27

    In many places in the world, including North Estonia, the bedrock is limestone, which consists mainly of CaCO 3 . Equilibrium processes in water involving dissolved CO 2 and solid CaCO 3 play a vital role in many biological and technological systems. The solubility of CaCO 3 in water is relatively low. Depending on the concentration of dissolved CO 2 , the solubility of CaCO 3 changes, which determines several important ground- and wastewater parameters, for example, Ca 2+ concentration and pH. The distribution of ions and molecules in the closed system solid H 2 O-dissolved CO 2 -solid CaCO 3 is described in terms of a structural scheme. Mathematical models were developed for the calculation of pH and concentrations of ions and molecules (Ca 2+ , CO 3 2- , HCO 3 - , H 2 CO 3 , CO 2 , H + , and OH - ) in the closed equilibrium system at different initial concentrations of CO 2 in the water phase using an iteration method. The developed models were then experimentally validated.

  10. A Computational Investigation of the Oxidative Deboronation of BoroGlycine, H2N–CH2–B(OH)2, Using H2O and H2O2

    PubMed Central

    Larkin, Joseph D.; Markham, George D.; Milkevitch, Matt; Brooks, Bernard R.; Bock, Charles W.

    2014-01-01

    We report results from a computational investigation of the oxidative deboronation of BoroGlycine, H2N–CH2–B(OH)2, using H2O and H2O2 as the reactive oxygen species (ROS) to yield aminomethanol, H2N–CH2–OH; these results complement our study on the protodeboronation of BoroGlycine to produce methylamine, H2N–CH3 (Larkin et al. J. Phys. Chem. A, 111, 6489–6500, 2007). Second-order Møller-Plesset (MP2) perturbation theory with Dunning-Woon correlation-consistent (cc) basis sets were used for the calculations with comparisons made to results from Density Functional Theory (DFT) at the PBE1PBE/6-311++G(d,p)(cc-pVDZ) levels. The effects of a bulk aqueous environment were also incorporated into the calculations employing PCM and CPCM methodology. Using H2O as the ROS, the reaction H2O + H2N–CH2–B(OH)2H2N–CH2–OH + H–B(OH)2 was calculated to be endothermic, the value of ΔH2980 was +12.0 kcal/mol at the MP2(FC)/cc-pVTZ computational level in vacuo and +13.7 kcal/mol in PCM aqueous media; the corresponding value for the activation barrier, ΔH‡, was +94.3 kcal/mol relative to the separated reactants in vacuo and +89.9 kcal/mol in PCM aqueous media. In contrast, the reaction H2O2 + H2N–CH2–B(OH)2H2N–CH2–OH + B(OH)3 was calculated to be highly exothermic with a ΔH2980 value of −100.9 kcal/mol at the MP2(FC)/cc-pVTZ computational level in vacuo and −99.6 kcal/mol in CPCM aqueous media; the highest-energy transition state for the multi-step process associated with this reaction involved the rearrangement of H2N–CH2–B(OH)(OOH) to H2N–CH2–O–B(OH)2 with a ΔH‡ value of +23.2 kcal/mol in vacuo relative to the separated reactants. These computational results for BoroGlycine are in accord with the experimental observations for the deboronation of the FDA approved anti-cancer drug Bortezomib (Velcade™, PS-341) where it was found to be the principle deactivation pathway. (Labutti et al. Chem. Res. Toxicol., 19, 539–546

  11. DFT studies of elemental mercury oxidation mechanism by gaseous advanced oxidation method: Co-interaction with H2O2 on Fe3O4 (111) surface

    NASA Astrophysics Data System (ADS)

    Zhou, Changsong; Song, Zijian; Zhang, Zhiyue; Yang, Hongmin; Wang, Ben; Yu, Jie; Sun, Lushi

    2017-12-01

    Density functional theory calculations have been carried out for H2O2 and Hg0 co-interaction on Fe3O4 (111) surface. On the Fetet1-terminated Fe3O4 (111) surface, the most favored configurations are H2O2 decomposition and produce two OH groups, which have strong interaction with Hg atom to form an OHsbnd Hgsbnd OH intermediate. The adsorbed OHsbnd Hgsbnd OH is stable and hardly detaches from the catalyst surface due to the highly endothermic process. A large amount of electron transfer has been found from Hg to the produced OH groups and has little irreversible effect on the Fe3O4 (111) surface. On the Feoct2-terminated Fe3O4 (111) surface, the Feoct2 site is more active than Fetet1 site. H2O2 decomposition and Hg0 oxidation processes are more likely to occur due to that the Feoct2 site both contains Fe2+ and Fe3+ cations. The calculations reveal that Hg0 oxidation by the OH radical produced from H2O2 is energetically favored. Additionally, Hg0 and H2O2 co-interaction mechanism on the Fe3O4 (111) interface has been investigated on the basis of partial local density of state calculation.

  12. [(H2O)(terpy)Mn(μ-O)2Mn(terpy)(OH2)](NO3)3 (terpy = 2,2′:6,2″-terpyridine) and its relevance to the oxygen-evolving complex of photosystem II examined through pH dependent cyclic voltametry

    PubMed Central

    Cady, Clyde W.; Shinopoulos, Katherine E.; Crabtree, Robert H.; Brudvig, Gary W.

    2010-01-01

    Photosynthetic water oxidation occurs naturally at a tetranuclear manganese center in the photosystem II protein complex. Synthetically mimicking this tetramanganese center, known as the oxygen-evolving complex (OEC), has been an ongoing challenge of bioinorganic chemistry. Most past efforts have centered on water-oxidation catalysis using chemical oxidants. However, solar energy applications have drawn attention to electrochemical methods. In this paper, we examine the electrochemical behavior of the biomimetic water-oxidation catalyst [(H2O)(terpy)Mn(μ-O)2Mn(terpy)(H2O)](NO3)3 [terpy = 2,2′:6′,2″-terpyridine] (1) in water under a variety of pH and buffered conditions and in the presence of acetate that binds to 1 in place of one of the terminal water ligands. These experiments will show that 1 not only exhibits proton-coupled electron-transfer reactivity analogous to the OEC, but also may be capable of electrochemical oxidation of water to oxygen. PMID:20372724

  13. A Sequential Method to Prepare Polymorphs and Solvatomorphs of [Fe(1,3-bpp)2 ](ClO4 )2 ⋅nH2 O (n=0, 1, 2) with Varying Spin-Crossover Behaviour.

    PubMed

    Bartual-Murgui, Carlos; Codina, Carlota; Roubeau, Olivier; Aromí, Guillem

    2016-08-26

    Two polymorphs of the spin crossover (SCO) compound [Fe(1,3-bpp)2 ](ClO4 )2 (1 and 2; 1,3-bpp=2-(pyrazol-1-yl)-6-(pyrazol-3-yl)pyridine) were prepared using a novel, stepwise procedure. Crystals of 1 deposit from dry solvents, while 2 is obtained from a solid-state procedure, by sequentially removing lattice H2 O molecules from the solvatomorph [Fe(1,3-bpp)2 ](ClO4 )22H2 O (22H2 O), using single-crystal-to-single-crystal (SCSC) transformations. Hydrate 22H2 O is obtained through the same reaction as 1, now with 2.5 % of water added. Compounds 2 and 22H2 O are unstable in the atmosphere and absorb or lose one equivalent of water, respectively, to both yield the stable solvatomorph [Fe(1,3-bpp)2 ](ClO4 )2H2 O (2H2 O), also following SCSC processes. The four derivatives have been characterised by single-crystal X-ray diffraction (SCXRD). Furthermore, the homogeneity of the various compounds as well as their SCSC interconversions have been confirmed by powder X-ray diffraction (PXRD). Polymorphs 1 and 2 exhibit abrupt SCO behaviour near room temperature with T1/2↑ =279/316 K and T1/2↓ =276/314 K (near 40 K of shift) and different cooperativity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Remarkably high apparent quantum yield of the overall photocatalytic H2O splitting achieved by utilizing Zn ion added Ga2O3 prepared using dilute CaCl2 solution.

    PubMed

    Sakata, Yoshihisa; Hayashi, Takuya; Yasunaga, Ryō; Yanaga, Nobuyuki; Imamura, Hayao

    2015-08-21

    Remarkably high photocatalytic activity for the overall H2O splitting, where the activity was 32 mmol h(-1) for H2 production and 16 mmol h(-1) for O2 production under irradiation from a 450 W high-pressure Hg lamp and the apparent quantum yield (AQY) was 71% under irradiation at 254 nm, was achieved by utilizing a Rh(0.5)Cr(1.5)O3(Rh; 0.5 wt%)/Zn(3 mol%)-Ga2O3 photocatalyst when Ga2O3 was prepared using dilute CaCl2 aqueous solution having a concentration of 0.001 mol l(-1).

  15. Reflected shock tube studies of high-temperature rate constants for OH + CH4 --> CH3 + H2O and CH3 + NO2 --> CH3O + NO.

    PubMed

    Srinivasan, N K; Su, M-C; Sutherland, J W; Michael, J V

    2005-03-10

    The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm has been used to study the reactions OH + CH(4) --> CH(3) + H(2)O and CH(3) + NO(2) --> CH(3)O + NO. Over the temperature range 840-2025 K, the rate constants for the first reaction can be represented by the Arrhenius expression k = (9.52 +/- 1.62) x 10(-11) exp[(-4134 +/- 222 K)/T] cm(3) molecule(-1) s(-1). Since this reaction is important in both combustion and atmospheric chemistry, there have been many prior investigations with a variety of techniques. The present results extend the temperature range by 500 K and have been combined with the most accurate earlier studies to derive an evaluation over the extended temperature range 195-2025 K. A three-parameter expression describes the rate behavior over this temperature range, k = (1.66 x 10(-18))T(2.182) exp[(-1231 K)/T] cm(3) molecule(-1) s(-1). Previous theoretical studies are discussed, and the present evaluation is compared to earlier theoretical estimates. Since CH(3) radicals are a product of the reaction and could cause secondary perturbations in rate constant determinations, the second reaction was studied by OH radical production from the fast reactions CH(3)O --> CH(2)O + H and H + NO(2) --> OH + NO. The measured rate constant is 2.26 x 10(-11) cm(3) molecule(-1) s(-1) and is not dependent on temperature from 233 to 1700 K within experimental error.

  16. Cr6+-containing phases in the system CaO-Al2O3-CrO42--H2O at 23 °C

    NASA Astrophysics Data System (ADS)

    Pöllmann, Herbert; Auer, Stephan

    2012-01-01

    Synthesis and investigation of lamellar calcium aluminium hydroxy salts was performed to study the incorporation of chromate ions in the interlayer of lamellar calcium aluminium hydroxy salts. Different AFm-phases (calcium aluminate hydrate with alumina, ferric oxide, mono-anion phase) containing chromate were synthesized. These AFm-phases belong to the group of layered double hydroxides (LDHs). 3CaO·Al2O3·CaCrO4·nH2O and C3A·1/2Ca(OH)2·1/2CaCrO4·12H2O were obtained as pure phases and their different distinct interlayer water contents and properties determined. Solid solution of chromate-containing phases and tetracalcium-aluminate-hydrate (TCAH) were studied. The uptake of chromate into TCAH from solutions was proven. Chromate contents in solution decrease to <0.2 mg/l.

  17. 1H,1H,5H-Perfluoropentyl-1,1,2,2-tetrafluoroethylether as a co-solvent for high voltage LiNi1/3Co1/3Mn1/3O2/graphite cells

    NASA Astrophysics Data System (ADS)

    Wang, Chengyun; Zuo, Xiaoxi; Zhao, Minkai; Xiao, Xin; Yu, Le; Nan, Junmin

    2016-03-01

    1H,1H,5H-Perfluoropentyl-1,1,2,2-tetrafluoroethylether (F-EAE) mixed with ethylene carbonate (EC), diethyl carbonate (DEC), and lithium hexafluorophosphate (LiPF6) is evaluated as a co-solvent high-potential electrolyte of LiNi1/3Co1/3Mn1/3O2/graphite batteries. Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) indicate that the EC/DEC-based electrolyte with F-EAE possesses a high oxidation potential (>5.2 V vs. Li/Li+) and excellent film-forming characteristics. With 40 wt% F-EAE in the electrolyte, the capacity retention of the LiNi1/3Co1/3Mn1/3O2/graphite pouch cells that are cycled between 3.0 and 4.5 V is significantly improved from 28.8% to 86.8% after 100 cycles. In addition, electrochemical impedance spectroscopy (EIS) of three-electrode pouch cells, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) are used to characterize the effects of F-EAE on the enhanced capacity retention. It is demonstrated that F-EAE facilitates the formation of a stable surface electrolyte interface (SEI) layer with low impedance on the anode and effectively suppresses an increase in the charge-transfer resistance on the cathode. These results suggest that F-EAE can serve as an alternative electrolyte solvent for 4.5 V high voltage rechargeable lithium-ion batteries.

  18. Fixation of CO2 in bi-layered coordination networks of zinc tetra(4-carboxyphenyl)porphyrin with multi-component [Pr2Na3(NO3)(H2O)3] connectors.

    PubMed

    Nandi, Goutam; Goldberg, Israel

    2014-11-14

    CO2 is fixed in a rare μ2-η bridging mode by bi-layered coordination networks of ZnTCPP tessellated along the four equatorial directions by [Pr2Na3(NO3)(H2O)3](8+) connecting clusters in a 2 : 1 ratio (1), but not in the isomorphous free-base porphyrin analogue [(TCPPH2)2(Pr2Na3(NO3)(H2O)3)]n (2), revealing the crucial role of the zinc metal in this process.

  19. Rethinking Sensitized Luminescence in Lanthanide Coordination Polymers and MOFs: Band Sensitization and Water Enhanced Eu Luminescence in [Ln(C15H9O5)3(H2O)3]n (Ln = Eu, Tb).

    PubMed

    Einkauf, Jeffrey D; Kelley, Tanya T; Chan, Benny C; de Lill, Daniel T

    2016-08-15

    A coordination polymer [Ln(C15H9O9)3(H2O)3]n (1-Ln = Eu(III), Tb(III)) assembled from benzophenonedicarboxylate was synthesized and characterized. The organic component is shown to sensitize lanthanide-based emission in both compounds, with quantum yields of 36% (Eu) and 6% (Tb). Luminescence of lanthanide coordination polymers is currently described from a molecular approach. This methodology fails to explain the luminescence of this system. It was found that the band structure of the organic component rather than the molecular triplet state was able to explain the observed luminescence. Deuterated (Ln(C15H9O9)3(D2O)3) and dehydrated (Ln(C15H9O9)3) analogues were also studied. When bound H2O was replaced by D2O, lifetime and emission increased as expected. Upon dehydration, lifetimes increased again, but emission of 1-Eu unexpectedly decreased. This reduction is reasoned through an unprecedented enhancement effect of the compound's luminescence by the OH/OD oscillators in the organic-to-Eu(III) energy transfer process.

  20. Synthesis, characterization and biological study on Cr(3+), ZrO(2+), HfO(2+) and UO(2)(2+) complexes of oxalohydrazide and bis(3-hydroxyimino)butan-2-ylidene)-oxalohydrazide.

    PubMed

    El-Asmy, A A; El-Gammal, O A; Radwan, H A

    2010-09-01

    Cr(3+), ZrO(2+), HfO(2+) and UO(2)(2+) complexes of oxalohydrazide (H(2)L(1)) and oxalyl bis(diacetylmonoxime hydrazone) [its IUPAC name is oxalyl bis(3-hydroxyimino)butan-2-ylidene)oxalohydrazide] (H(4)L(2)) have been synthesized and characterized by partial elemental analysis, spectral (IR; electronic), thermal and magnetic measurements. [Cr(L(1))(H(2)O)(3)(Cl)].H(2)O, [ZrO(HL(1))(2)].C(2)H(5)OH, [UO(2)(L(1))(H(2)O)(2)] [ZrO(H(3)L(2))(Cl)](2).2H(2)O, [HfO(H(3)L(2))(Cl)](2).2H(2)O and [UO(2)(H(2)L(2))].2H(2)O have been suggested. H(2)L(1) behaves as a monobasic or dibasic bidentate ligand while H(4)L(2) acts as a tetrabasic octadentate with the two metal centers. The molecular modeling of the two ligands have been drawn and their molecular parameters were calculated. Examination of the DNA degradation of H(2)L(1) and H(4)L(2) as well as their complexes revealed that direct contact of [ZrO(H(3)L(2))(Cl)](2).2H(2)O or [HfO(H(3)L(2))(Cl)](2).2H(2)O degrading the DNA of Eukaryotic subject. The ligands and their metal complexes were tested against Gram's positive Bacillus thuringiensis (BT) and Gram's negative (Escherichia coli) bacteria. All compounds have small inhibitory effects. Copyright 2010 Elsevier B.V. All rights reserved.

  1. 5-AIQ inhibits H2O2-induced apoptosis through reactive oxygen species scavenging and Akt/GSK-3β signaling pathway in H9c2 cardiomyocytes.

    PubMed

    Park, Eun-Seok; Kang, Jun Chul; Kang, Do-Hyun; Jang, Yong Chang; Yi, Kyu Yang; Chung, Hun-Jong; Park, Jong Seok; Kim, Bokyung; Feng, Zhong-Ping; Shin, Hwa-Sup

    2013-04-01

    Poly(adenosine 5'-diphosphate ribose) polymerase (PARP) is a nuclear enzyme activated by DNA strand breaks and plays an important role in the tissue injury associated with ischemia and reperfusion. The aim of the present study was to investigate the protective effect of 5-aminoisoquinolinone (5-AIQ), a PARP inhibitor, against oxidative stress-induced apoptosis in H9c2 cardiomyocytes. 5-AIQ pretreatment significantly protected against H2O2-induced cell death, as determined by the XTT assay, cell counting, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and Western blot analysis of apoptosis-related proteins such as caspase-3, Bax, and Bcl-2. Upregulation of antioxidant enzymes such as manganese superoxide dismutase and catalase accompanied the protective effect of 5-AIQ on H2O2-induced cell death. Our data also showed that 5-AIQ pretreatment protected H9c2 cells from H2O2-induced apoptosis by triggering activation of Akt and glycogen synthase kinase-3β (GSK-3β), and that the protective effect of 5-AIQ was diminished by the PI3K inhibitor LY294002 at a concentration that effectively abolished 5-AIQ-induced Akt and GSK-3β activation. In addition, inhibiting the Akt/GSK-3β pathway by LY294002 significantly attenuated the 5-AIQ-mediated decrease in cleaved caspase-3 and Bax activation and H9c2 cell apoptosis induction. Taken together, these results demonstrate that 5-AIQ prevents H2O2-induced apoptosis in H9c2 cells by reducing intracellular reactive oxygen species production, regulating apoptosis-related proteins, and activating the Akt/GSK-3β pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Syntheses and crystal structures of two new hydrated borates, Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}] and Pb[B{sub 5}O{sub 8}(OH)].1.5H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Xuean; Zhao Yinghua; Chang Xinan

    Two new hydrated borates, Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}] and Pb[B{sub 5}O{sub 8}(OH)].1.5H{sub 2}O, have been prepared by hydrothermal reactions at 170 {sup o}C. Single-crystal X-ray structural analyses showed that Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}] crystallizes in a non-centrosymmetric space group R32 with a=8.006(2) A, c=17.751(2) A, Z=3 and Pb[B{sub 5}O{sub 8}(OH)].1.5H{sub 2}O in a triclinic space group P1-bar with a=6.656(2) A, b=6.714(2) A, c=10.701(2) A, {alpha}=99.07(2){sup o}, {beta}=93.67(2){sup o}, {gamma}=118.87(1){sup o}, Z=2. Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}] represents a new structure type in which Zn-centered tetrahedra are connected via common vertices leading to helical ribbons {submore » {infinity}} {sup 1}[Zn{sub 8}O{sub 15}(OH){sub 3}]{sup 17-} that pack side by side and are further condensed through sharing oxygen atoms to form a three-dimensional {sub {infinity}} {sup 3}[Zn{sub 8}O{sub 11}(OH){sub 3}]{sup 9-} framework. The boron atoms are incorporated into the channels in the framework to complete the final structure. Pb[B{sub 5}O{sub 8}(OH)].1.5H{sub 2}O is a layered compound containing double ring [B{sub 5}O{sub 8}(OH)]{sup 2-} building units that share exocyclic oxygen atoms to form a two-dimensional layer. Symmetry-center-related layers are stacked along the c-axis and held together by interlayer Pb{sup 2+} ions and water molecules via electrostatic and hydrogen bonding interactions. The IR spectra further confirmed the existence of both triangular BO{sub 3} and OH groups in Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}], and BO{sub 3}, BO{sub 4}, OH groups as well as guest water molecules in Pb[B{sub 5}O{sub 8}(OH)].1.5H{sub 2}O. -- Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}] represents a new structure type in which Zn-centered tetrahedra are connected via common vertices to form a three-dimensional framework. The boron atoms are incorporated into the channels in the framework to

  3. Bi2O3 cocatalyst improving photocatalytic hydrogen evolution performance of TiO2

    NASA Astrophysics Data System (ADS)

    Xu, Difa; Hai, Yang; Zhang, Xiangchao; Zhang, Shiying; He, Rongan

    2017-04-01

    Photocatalytic hydrogen production using water splitting is of potential importance from the viewpoint of renewable energy development. Herein, Bi2O3-TiO2 composite photocatalysts presented as Bi-Bi2O3-anatase-rutile TiO2 multijunction were first fabricated by a simple impregnation-calcination method using Bi2O3 as H2-production cocatalysts. The obtained multijunction samples exhibit an obvious enhancement in photocatalytic H2 evolution activity in the presence of glycerol. The effect of Bi2O3 amount on H2-evolution activity of TiO2 was investigated and the optimal Bi2O3 content was found to be 0.89 mol%, achieving a H2-production rate of 920 μmol h-1, exceeding that of pure TiO2 by more than 73 times. The enhanced mechanism of photocatalytic H2-evolution activity is proposed. This study will provide new insight into the design and fabrication of TiO2-based hydrogen-production photocatalysts using low-cost Bi2O3 as cocatalyst.

  4. Synthesis and characterization of polymer eight-coordinate (enH 2)[Y III(pdta)(H 2O)] 2·10H 2O as well as the interaction of [Y III(pdta)(H 2O)] 22- with BSA

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Jun; Wang, Xin; Liu, Bing-Mi; He, Ling-Ling; Xu, Shu-Kun

    2010-12-01

    The eight-coordinate (enH 2)[Y III(pdta)(H 2O)] 2·10H 2O (en = ethylenediamine and H 4pdta = 1,3-propylenediamine- N, N, N', N'-tetraacetic acid) was synthesized, meanwhile its molecular and crystal structures were determined by single-crystal X-ray diffraction technology. The interaction between [Y III(pdta)(H 2O)] 22- and bovine serum albumin (BSA) was investigated by UV-vis and fluorescence spectra. The results indicate that [Y III(pdta)(H 2O)] 22- quenched effectively the intrinsic fluorescence of BSA via a static quenching process with the binding constant ( Ka) of the order of 10 4. Meanwhile, the binding and damaging sites to BSA molecules were also estimated by synchronous fluorescence. Results indicate that the hydrophobic environments around Trp and Tyr residues were all slightly changed. The thermodynamic parameters (Δ G = -25.20 kJ mol -1, Δ H = -26.57 kJ mol -1 and Δ S = -4.58 J mol -1 K -1) showed that the reaction was spontaneous and exothermic. What is more, both Δ H and Δ S were negative values indicated that hydrogen bond and Van der Waals forces were the predominant intermolecular forces between [Y III(pdta)(H 2O)] 22- and BSA.

  5. An Investigation of Armenite, BaCa2Al6Si9O302H2O.H2O Molecules and H Bonding in Microporous Silicates

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Gatta, G.; Xue, X.; McIntyre, G.

    2012-12-01

    The crystal chemistry of armenite, ideally BaCa2Al6Si9O30.2H2O, a double-ring structure belonging to the milarite group, was studied to better understand the nature of extra-framework "Ca-oxygen-anion-H2O-molecule quasi-clusters" and H bonding behavior in microporous silicates. Neutron and X-ray single-crystal diffraction and IR powder and 1H NMR spectroscopic measurements were made. Four crystallographically independent Ca and H2O molecule sites were refined from the diffraction data, whereby both sites appear to have partial occupancies such that locally a Ca atom can have only a single H2O molecule bonded to it through an ion-dipole interaction. The Ca cation is further bonded to six O atoms of the framework forming a quasi cluster around it. The neutron results give the first static description of the protons in armenite, allowing bond distances and angles relating to the H2O molecules and H bonds to be determined. The IR spectrum of armenite is characterized in the OH-stretching region at RT by two broad bands at roughly 3470 and 3410 cm-1 and by a single H2O bending mode at 1654 cm-1. At 10 K four intense OH bands are located at 3479, 3454, 3401 and 3384 cm-1 and two H2O bending modes at 1650 and 1606 cm-1. The 1H MAS NMR spectrum shows a single strong resonance near 5.3 ppm and a smaller one near 2.7 ppm. The former can be assigned to H2O molecules bonded to Ca and the latter to weakly bonded H2O located at a site at the center of the structural double ring and it is partially occupied. The nature of H bonding in the microporous Ca-bearing zeolites scolecite, wairakite and epistilbite are also analyzed. The average OH stretching wavenumber shown by the IR spectra of armenite (~3435 cm-1) and scolecite (~3430 cm-1) are similar, while the average OH wavenumbers for wairakite (~3475 cm-1) and epistilbite (~3500 cm-1) are greater. In all cases the average OH stretching wavenumber is more similar to that of liquid water (~3400 cm-1) than of ice (~3220 cm-1). The

  6. Air-surface exchange of H2O, CO2, and O3 at a tallgrass prairie in relation to remotely sensed vegetation indices

    NASA Technical Reports Server (NTRS)

    Gao, W.; Wesely, M. L.; Cook, D. R.; Hart, R. L.

    1992-01-01

    Parameters derived from eddy correlation measurements of the air-surface exchange rates of H2O, CO2, and O3 over a tallgrass prairie are examined in terms of their relationships with spectral reflectance data remotely sensed from aircraft and satellites during the four 1987 intensive field campaigns of the First ISLSCP Field Experiment (FIFE). The surface conductances were strongly modulated by photosynthetically active radiation received at the surface when the grass was green and well watered; mesophyll resistances were large for CO2 but negligible for H2O and O3.

  7. Emission analysis of Tb3+ -and Sm3+ -ion-doped (Li2 O/Na2 O/K2 O) and (Li2 O + Na2 O/Li2 O + K2 O/K2 O + Na2 O)-modified borosilicate glasses.

    PubMed

    Naveen Kumar Reddy, B; Sailaja, S; Thyagarajan, K; Jho, Young Dahl; Sudhakar Reddy, B

    2018-05-01

    Four series of borosilicate glasses modified by alkali oxides and doped with Tb 3+ and Sm 3+ ions were prepared using the conventional melt quenching technique, with the chemical composition 74.5B 2 O 3 + 10SiO 2 + 5MgO + R + 0.5(Tb 2 O 3 /Sm 2 O 3 ) [where R = 10(Li 2 O /Na 2 O/K 2 O) for series A and C, and R = 5(Li 2 O + Na 2 O/Li 2 O + K 2 O/K 2 O + Na 2 O) for series B and D]. The X-ray diffraction (XRD) patterns of all the prepared glasses indicate their amorphous nature. The spectroscopic properties of the prepared glasses were studied by optical absorption analysis, photoluminescence excitation (PLE) and photoluminescence (PL) analysis. A green emission corresponding to the 5 D 4 → 7 F 5 (543 nm) transition of the Tb 3+ ions was registered under excitation at 379 nm for series A and B glasses. The emission spectra of the Sm 3+ ions with the series C and D glasses showed strong reddish-orange emission at 600 nm ( 4 G 5/2 → 6 H 7/2 ) with an excitation wavelength λ exci = 404 nm ( 6 H 5/2 → 4 F 7/2 ). Furthermore, the change in the luminescence intensity with the addition of an alkali oxide and combinations of these alkali oxides to borosilicate glasses doped with Tb 3+ and Sm 3+ ions was studied to optimize the potential alkali-oxide-modified borosilicate glass. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Growth Oscillatory Zoning in Erythrite, Ideally Co3(AsO4)2·8H2O: Structural Variations in Vivianite-Group Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.; Dhaliwal, Inayat

    The crystal structure of an oscillatory zoned erythrite sample from Aghbar mine, Bou Azzer, Morocco, was refined using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data, Rietveld refinement, space group C2/m, and Z = 2. The crystal contains two sets of oscillatory zones that appear to have developed during epitaxial growth. The unit-cell parameters obtained are a = 10.24799(3) Å, b = 13.42490(7) Å, c = 4.755885(8) Å, β = 105.1116(3)°, and V = 631.680(4) Å3. The empirical formula for erythrite, obtained with electron-probe micro-analysis (EPMA), is [Co2.78Zn0.11Ni0.07Fe0.04]Σ3.00(AsO4)2·8H2O. Erythrite belongs to the vivianite-type structure that contains M1O2(H2O)4 octahedra and M22O6(H2O)4 octahedralmore » dimers that are linked by TO4 (T5+ = As or P) tetrahedra to form complex layers parallel to the (010) plane. These layers are connected by hydrogen bonds. The average [6] = 2.122(1) Å and average [6] = 2.088(1) Å. With space group C2/m, there are two solid solutions: M3(AsO4)2·8H2O and M3(PO4)2·8H2O where M2+ = Mg, Fe, Co, Ni, or Zn. In these As- and P-series, using data from this study and from the literature, we find that their structural parameters evolve linearly with V and in a nearly parallel manner despite of the large difference in size between P5+ (0.170 Å) and As5+ (0.355 Å) cations. Average [4], [6], and [6] distances increase linearly with V. The average distance is affected by M atoms, whereas the average distance is unaffected because it contains shorter and stronger P–O bonds. Although As- and P-series occur naturally, there is no structural reason why similar V-series vivianite-group minerals do not occur naturally or cannot be synthesized.« less

  9. Photomagnetic switching of heterometallic complexes [M(dmf)4(H2O)3(mu-CN)Fe(CN)5].H2O (M=Nd, La, Gd, Y) analyzed by single-crystal X-ray diffraction and ab initio theory.

    PubMed

    Svendsen, Helle; Overgaard, Jacob; Chevallier, Marie A; Collet, Eric; Chen, Yu-Sheng; Jensen, Frank; Iversen, Bo B

    2010-06-25

    Single-crystal X-ray diffraction measurements have been carried out on [Nd(dmf)(4)(H(2)O)(3)(mu-CN)Fe(CN)(5)].H(2)O (1; dmf=dimethylformamide), [Nd(dmf)(4)(H(2)O)(3)(mu-CN)Co(CN)(5)].H(2)O (2), [La(dmf)(4)(H(2)O)(3)(mu-CN)Fe(CN)(5)].H(2)O (3), [Gd(dmf)(4)(H(2)O)(3)(mu-CN)Fe(CN)(5)].H(2)O (4), and [Y(dmf)(4)(H(2)O)(3)(mu-CN)Fe(CN)(5)].H(2)O (5), at 15(2) K with and without UV illumination of the crystals. Significant changes in unit-cell parameters were observed for all the iron-containing complexes, whereas 2 showed no response to UV illumination. Photoexcited crystal structures have been determined for 1, 3, and 4 based on refinements of two-conformer models, and excited-state occupancies of 78.6(1), 84(6), and 86.6(7)% were reached, respectively. Significant bond-length changes were observed for the Fe-ligand bonds (up to 0.19 A), the cyano bonds (up to 0.09 A), and the lanthanide-ligand bonds (up to 0.10 A). Ab initio theoretical calculations were carried out for the experimental ground-state geometry of 1 to understand the electronic structure changes upon UV illumination. The calculations suggest that UV illumination gives a charge transfer from the cyano groups on the iron atom to the lanthanide ion moiety, {Nd(dmf)(4)(H(2)O)(3)}, with a distance of approximately 6 A from the iron atom. The charge transfer is accompanied by a reorganization of the spin state on the {Fe(CN)(6)} complex, and a change in geometry that produces a metastable charge-transfer state with an increased number of unpaired electrons, thus accounting for the observed photomagnetic effect.

  10. Morphology-controlled synthesis of α-Fe 2O 3 nanostructures with magnetic property and excellent electrocatalytic activity for H 2O 2

    NASA Astrophysics Data System (ADS)

    Li, Xiyan; Lei, Yongqian; Li, Xiaona; Song, Shuyan; Wang, Cheng; Zhang, Hongjie

    2011-12-01

    α-Fe 2O 3 nanocrystals (NCs) with different morphologies are successfully synthesized via a facile template-free hydrothermal route. By simply changing the volume ratio of ethanol to water, we obtained three different α-Fe 2O 3 nanostructures of rhombohedra, truncated rhombohedra and hexagonal sheet. The morphologies and structures of the as-obtained products have been confirmed by varieties of characterizations such as X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The influences of the experimental conditions, such as the amount of NaOH and reaction temperature on the morphologies of the as-prepared α-Fe 2O 3 NCs, have been well investigated. Additionally, magnetic investigations show that the as-obtained α-Fe 2O 3 nanostructures show structure-dependent magnetic properties. Furthermore, the electrochemical experiments indicate that the as-prepared α-Fe 2O 3 hexagonal sheets exhibit strong electrocatalytic reduction activity for H 2O 2.

  11. Assembly of flexible CoMoO4@NiMoO4·xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors

    PubMed Central

    Wang, Jing; Zhang, Leipeng; Liu, Xusong; Zhang, Xiang; Tian, Yanlong; Liu, Xiaoxu; Zhao, Jiupeng; Li, Yao

    2017-01-01

    In this work, CoMoO4@NiMoO4·xH2O core-shell heterostructure electrode is directly grown on carbon fabric (CF) via a feasible hydrothermal procedure with CoMoO4 nanowires (NWs) as the core and NiMoO4 nanosheets (NSs) as the shell. This core-shell heterostructure could provide fast ion and electron transfer, a large number of active sites, and good strain accommodation. As a result, the CoMoO4@NiMoO4·xH2O electrode yields high-capacitance performance with a high specific capacitance of 1582 F g−1, good cycling stability with the capacitance retention of 97.1% after 3000 cycles and good rate capability. The electrode also shows excellent mechanical flexibility. Also, a flexible Fe2O3 nanorods/CF electrode with enhanced electrochemical performance was prepared. A solid-state asymmetric supercapacitor device is successfully fabricated by using flexible CoMoO4@NiMoO4·xH2O as the positive electrode and Fe2O3 as the negative electrode. The asymmetric supercapacitor with a maximum voltage of 1.6 V demonstrates high specific energy (41.8 Wh kg−1 at 700 W kg−1), high power density (12000 W kg−1 at 26.7 Wh kg−1), and excellent cycle ability with the capacitance retention of 89.3% after 5000 cycles (at the current density of 3A g−1). PMID:28106170

  12. Phase change of hydromagnesite, Mg5(CO3)4(OH)2 4H2O by thermal decomposition

    NASA Astrophysics Data System (ADS)

    Yamamoto, G. I.; Kyono, A.; Tamura, T.

    2017-12-01

    In recent years, the global warming is the most important environment problem, and thus attempts of CO2 geological storage have been made to remove carbon dioxide from the atmosphere all over the world (XUE and Nakao 2008). Regarding mineral CO2 sequestration, CO2 is chemically stored in solid carbonates by carbonation of minerals. Magnesium and calcium carbonates have long been known as a good CO2 storage. Hydrous magnesium carbonates can be, however, considered as much better candidates for CO2 storage because they precipitate easily from aqueous solutions. The typical hydrous magnesium carbonates are nesquehonite, MgCO3 3H2O and hydromagnesite, Mg5(CO3)4(OH)2 4H2O. Concerning their thermal properties, the former has been studied in detail, whereas, the latter is not enough. In this study, we performed in-site high-temperature X-ray diffraction (XRD) and thermogravimetric and differential thermal (TG-DTA) analyses to reveal the phase change of hydromagnesite at high temperature. The high-temperature XRD and TG-DTA were measured up to 320 oC and 550 oC, respectively. The results of in-site high-temperature XRD showed that, no significant change was observed up to 170 oC. With increasing temperature, the intensities of started to decrease at 200 oC, and all peaks disappeared at 290 oC. Above the temperature of the decomposition a few peaks corresponding to periclase appeared. The results of TG-DTA clearly showed that there were two weight loss steps in the temperature range of 200 to 340 oC and 340 to 500 oC, which correspond to the dehydration and decarbonation of hydromagnesite, respectively. These weight losses were accompanied by the endothermic maxima in the DTA. The dihydroxylation of hydromagnesite is spread over the two steps. Therefore, hydromagnesite decomposes into periclase, carbon dioxide, and water without passing through magnesite around 300 oC as following reaction: Mg5(CO3)4(OH)2 4H2O → 5MgO + 4CO2 + 5H2O.

  13. Association studies to transporting proteins of fac-ReI(CO)3(pterin)(H2O) complex.

    PubMed

    Ragone, Fabricio; Saavedra, Héctor H Martínez; García, Pablo F; Wolcan, Ezequiel; Argüello, Gerardo A; Ruiz, Gustavo T

    2017-01-01

    A new synthetic route to acquire the water soluble complex fac-Re I (CO) 3 (pterin)(H 2 O) was carried out in aqueous solution. The complex has been obtained with success via the fac-[Re I (CO) 3 (H 2 O) 3 ]Cl precursor complex. Re I (CO) 3 (pterin)(H 2 O) has been found to bind strongly with bovine and human serum albumins (BSA and HSA) with intrinsic-binding constants, K b , of 6.5 × 10 5 M -1 and 5.6 × 10 5 M -1 at 310 K, respectively. The interactions of serum albumins with Re I (CO) 3 (pterin)(H 2 O) were evaluated employing UV-vis fluorescence and absorption spectroscopy and circular dichroism. The results suggest that the serum albumins-Re I (CO) 3 (pterin)(H 2 O) interactions occurred in the domain IIA-binding pocket without loss of helical stability of the proteins. The comparison of the fluorescence quenching of BSA and HSA due to the binding to the Re(I) complex suggested that local interaction around the Trp 214 residue had taken place. The analysis of the thermodynamic parameters ΔG 0 , ΔH 0 , and ΔS 0 indicated that the hydrophobic interactions played a major role in both HSA-Re(I) and BSA-Re(I) association processes. All these experimental results suggest that these proteins can be considered as good carriers for transportation of Re I (CO) 3 (pterin)(H 2 O) complex. This is of significant importance in relation to the use of this Re(I) complex in several biomedical fields, such as photodynamic therapy and radiopharmacy.

  14. The Cheshire-cat-like Behavior of 2nu(sub 3) Overtone of Co2 near 2.134 micron: NIR Lab Spectra of Solid CO2 in H2O and CH3OH

    NASA Technical Reports Server (NTRS)

    Bernstein, Max; Sandford, Scott; Cruikshank, Dale

    2005-01-01

    Infrared (IR) spectra have demonstrated that solid H2O is very common in the outer Solar System, and solid carbon dioxide (CO2) has been detected on icy satellites, comets, and planetismals throughout the outer Solar System. In such environments, CO2 and H2O must sometimes be mixed at a molecular level, changing their IR absorption features. In fact, the IR spectra of CO2-H2O mixtures are not equivalent to a linear combination of the spectra of the pure materials. Laboratory IR spectra of pure CO2 and H2O have been published but a lack of near-IR spectra of CO2-H2O mixtures has made the interpretation of outer Solar System spectra more difficult. We present near infrared (IR) spectra of CO2 in H2O and in CH3OH compared to that of pure solid CO2 and find significant differences. Peaks not present in either pure H2O or pure CO2 spectra become evident. First, the CO2 (2nu(sub 3)) overtone near 2.134 micron (4685/ cm) that is not seen in pure solid CO2 is prominent in the spectrum of a CO2/H2O = 25 mixture. Second, a 2.74 micron (3650/ cm) dangling OH feature of water (and a potentially related peak at 1.89 micron) appear in the spectra of CO2-H2O ice mixtures, but may not be specific to the presence of CO2. Other CO2 peaks display shifts in position and increased width because of intermolecular interactions with water. Changes in CO2 peak positions and profiles on warming of a CO2/H2O = 5 mixture are consistent with 'segregation' of the ice into nearly pure separate components. Absolute strengths for absorptions of CO2 in solid H2O are estimated. Similar results are observed for CO2 in solid CH3OH. Since the CO2 ( 2nu(sub 3)) overtone near 2.134 micron (4685/ cm) is not present in pure CO2 but prominent in mixtures it may be a good observational indicator of whether solid CO2 is a pure material or intimately mixed with other molecules. Significant changes in the near IR spectrum of solid CO2 in the presence of H2O and CH3OH means that the abundance of solid CO2 in the

  15. 5-AIQ inhibits H{sub 2}O{sub 2}-induced apoptosis through reactive oxygen species scavenging and Akt/GSK-3β signaling pathway in H9c2 cardiomyocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Eun-Seok; Kang, Jun Chul; Kang, Do-Hyun

    2013-04-01

    Poly(adenosine 5′-diphosphate ribose) polymerase (PARP) is a nuclear enzyme activated by DNA strand breaks and plays an important role in the tissue injury associated with ischemia and reperfusion. The aim of the present study was to investigate the protective effect of 5-aminoisoquinolinone (5-AIQ), a PARP inhibitor, against oxidative stress-induced apoptosis in H9c2 cardiomyocytes. 5-AIQ pretreatment significantly protected against H{sub 2}O{sub 2}-induced cell death, as determined by the XTT assay, cell counting, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and Western blot analysis of apoptosis-related proteins such as caspase-3, Bax, and Bcl-2. Upregulation of antioxidant enzymes such as manganese superoxidemore » dismutase and catalase accompanied the protective effect of 5-AIQ on H{sub 2}O{sub 2}-induced cell death. Our data also showed that 5-AIQ pretreatment protected H9c2 cells from H{sub 2}O{sub 2}-induced apoptosis by triggering activation of Akt and glycogen synthase kinase-3β (GSK-3β), and that the protective effect of 5-AIQ was diminished by the PI3K inhibitor LY294002 at a concentration that effectively abolished 5-AIQ-induced Akt and GSK-3β activation. In addition, inhibiting the Akt/GSK-3β pathway by LY294002 significantly attenuated the 5-AIQ-mediated decrease in cleaved caspase-3 and Bax activation and H9c2 cell apoptosis induction. Taken together, these results demonstrate that 5-AIQ prevents H{sub 2}O{sub 2}-induced apoptosis in H9c2 cells by reducing intracellular reactive oxygen species production, regulating apoptosis-related proteins, and activating the Akt/GSK-3β pathway. - Highlights: ► 5-AIQ, a PARP inhibitor, decreased H{sub 2}O{sub 2}-induced H9c2 cell death and apoptosis. ► 5-AIQ upregulated antioxidant Mn-SOD and catalase, while decreasing ROS production. ► 5-AIQ decreased H{sub 2}O{sub 2}-induced increase in cleaved caspase-3 and Bax and decrease in Bcl2. ► 5-AIQ activated Akt and

  16. Low levels of iron enhance UV/H2O2 efficiency at neutral pH.

    PubMed

    Ulliman, Sydney L; McKay, Garrett; Rosario-Ortiz, Fernando L; Linden, Karl G

    2018-03-01

    While the presence of iron is generally not seen as favorable for UV-based treatment systems due to lamp fouling and decreased UV transmittance, we show that low levels of iron can lead to improvements in the abatement of chemicals in the UV-hydrogen peroxide advanced oxidation process. The oxidation potential of an iron-assisted UV/H 2 O 2 (UV 254  + H 2 O 2  + iron) process was evaluated at neutral pH using iron levels below USEPA secondary drinking water standards (<0.3 mg/L). Para-chlorobenzoic acid (pCBA) was used as a hydroxyl radical (HO) probe to quantify HO steady state concentrations. Compounds degraded by different mechanisms including, carbamazepine (CBZ, HO oxidation) and N-nitrosodimethylamine (NDMA, direct photolysis), were used to investigate the effect of iron on compound degradation for UV/H 2 O 2 systems. The effects of iron species (Fe 2+ and Fe 3+ ), iron concentration (0-0.3 mg/L), H 2 O 2 concentration (0-10 mg/L) and background water matrix (low-carbon tap (LCT) and well water) on HO production and compound removal were examined. Iron-assisted UV/H 2 O 2 efficiency was most influenced by the target chemical and the water matrix. Added iron to UV/H 2 O 2 was shown to increase the steady-state HO concentration by approximately 25% in all well water scenarios. While CBZ removal was unchanged by iron addition, 0.3 mg/L iron improved NDMA removal rates in both LCT and well water matrices by 15.1% and 4.6% respectively. Furthermore, the combination of UV/Fe without H 2 O 2 was also shown to enhance NDMA removal when compared to UV photolysis alone indicating the presence of degradation pathways other than HO oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Removing polysaccharides-and saccharides-related coloring impurities in alkyl polyglycosides by bleaching with the H2O2/TAED/NaHCO3 system.

    PubMed

    Yanmei, Liu; Jinliang, Tao; Jiao, Sun; Wenyi, Chen

    2014-11-04

    The effect of H2O2/TAED/NaHCO3 system, namely NaHCO3 as alkaline agent with the (tetra acetyl ethylene diamine (TAED)) TAED-activated peroxide system, bleaching of alkyl polyglycosides solution was studied by spectrophotometry. The results showed that the optimal bleaching conditions about H2O2/TAED/NaHCO3 system bleaching of alkyl polyglycosides solution were as follows: molar ratio of TAED to H2O2 was 0.06, addition of H2O2 was 8.6%, addition of NaHCO3 was 3.2%, bleaching temperature of 50-65 °C, addition of MgO was 0.13%, and bleaching time was 8h. If too much amount of NaHCO3 was added to the system and maintained alkaline pH, the bleaching effect would be greatly reduced. Fixing molar ratio of TAED to H2O2 and increasing the amount of H2O2 were beneficial to improve the whiteness of alkyl polyglycosides, but adding too much amount of H2O2 would reduce the transparency. In the TAED-activated peroxide system, NaHCO3 as alkaline agent and buffer agent, could overcome the disadvantage of producing black precipitates when NaOH as alkaline agent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Evolution of resistive switching mechanism through H2O2 sensing by using TaOx-based material in W/Al2O3/TaOx/TiN structure

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Somsubhra; Panja, Rajeswar; Roy, Sourav; Roy, Anisha; Samanta, Subhranu; Dutta, Mrinmoy; Ginnaram, Sreekanth; Maikap, Siddheswar; Cheng, Hsin-Ming; Tsai, Ling-Na; Chang, Ya-Ling; Mahapatra, Rajat; Jana, Debanjan; Qiu, Jian-Tai; Yang, Jer-Ren

    2018-03-01

    Understanding of resistive switching mechanism through H2O2 sensing and improvement of switching characteristics by using TaOx-based material in W/Al2O3/TaOx/TiN structure have been reported for the first time. Existence of amorphous Al2O3/TaOx layer in the RRAM devices has been confirmed by transmission electron microscopy. By analyzing the oxidation states of Ta2+/Ta5+ for TaOx switching material and W0/W6+ for WOx layer at the W/TaOx interface through X-ray photoelectron spectroscopy and H2O2 sensing, the reduction-oxidation mechanism under Set/Reset occurs only in the TaOx layer for the W/Al2O3/TaOx/TiN structures. This leads to higher Schottky barrier height at the W/Al2O3 interface (0.54 eV vs. 0.46 eV), higher resistance ratio, and long program/erase endurance of >108 cycles with 100 ns pulse width at a low operation current of 30 μA. Stable retention of more than 104 s at 85 °C is also obtained. Using conduction mechanism and reduction-oxidation reaction, current-voltage characteristic has been simulated. Both TaOx and WOx membranes have high pH sensitivity values of 47.65 mV/pH and 49.25 mV/pH, respectively. Those membranes can also sense H2O2 with a low concentration of 1 nM in an electrolyte-insulator-semiconductor structure because of catalytic activity, while the Al2O3 membrane does not show sensing. The TaOx material in W/Al2O3/TaOx/TiN structure does not show only a path towards high dense, small size memory application with understanding of switching mechanism but also can be used for H2O2 sensors.

  19. Fabrication and assembly of two-dimensional TiO2/WO3·H2O heterostructures with type II band alignment for enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Wang, Yun; Zhou, Xiaofang; Zheng, Xiaoli; Xu, Qun; Chen, Zhimin; Ren, Yumei; Yan, Bo

    2017-05-01

    The recombination of photo-induced charges is one of the main issues to limit the large-scale applications in photocatalysis and photoelectrocatalysis. To improve the charge separation, we fabricate a novel type II 2D ultrathin TiO2/WO3·H2O heterostructures with the assistance of supercritical CO2 (SC CO2) in this work. The as-fabricated heterostructures possess high photocatalytic activity for the degradation of methyl orange(MO) and high photocurrent response under simulated solar light (AM 1.5). For the TiO2/WO3·H2O heterostructures, the MO solution could be degraded by 95.5% in 150 min, and the photocurrent density reaches to 6.5 μA cm-2, exhibiting a significant enhancement compared with pure TiO2 and WO3·H2O nanosheets.

  20. Mesospheric H2O Concentrations Retrieved from SABER/TIMED Measurements

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Marshall, B. T.; Garcia-Comas, M.; Kutepov, A. A.; Lopez-Puertas, M.; Manuilova, R. O.; Yankovsky, V.A.; Goldberg, R. A.; Gordley, L. L.; Petelin, S.; hide

    2008-01-01

    The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The H2O concentrations are retrieved from 6.3 micron band radiances. The populations of H2O(v2) vibrational levels are in non-Local Thermodynamic Equilibrium (non-LTE) above approximately 55 km altitude and the interpretation of 6.3 micron radiance requires utilizing non-LTE H2O model that includes various energy exchange processes in the system of H2O vibrational levels coupled with O2, N2, and CO2 vibrational levels. We incorporated these processes including kinetics of O2/O3 photolysis products to our research non-LTE H2O model and applied it for the development and optimization of SABER operational model. The latter has been validated using simultaneous SCISAT1/ACE occultation measurements. This helped us to estimate CO2(020)-O2(X,v=I), O2(X,v=I)- H2O(010), and O2(X,v=1) O rates at mesopause temperatures that is critical for an adequate interpretation of non-LTE H2O radiances in the MLT. The first distributions of seasonal and meridional H2O concentrations retrieved from SABER 6.3 micron radiances applying an updated non-LTE H2O model are demonstrated and discussed.

  1. Syntheses, structures, and vibrational spectroscopy of the two-dimensional iodates Ln(IO 3) 3 and Ln(IO 3) 3(H 2O) ( Lndbnd Yb, Lu)

    NASA Astrophysics Data System (ADS)

    Assefa, Zerihun; Ling, Jie; Haire, Richard G.; Albrecht-Schmitt, Thomas E.; Sykora, Richard E.

    2006-12-01

    The reaction of Lu 3+ or Yb 3+ and H 5IO 6 in aqueous media at 180 °C leads to the formation of Yb(IO 3) 3(H 2O) or Lu(IO 3) 3(H 2O), respectively, while the reaction of Yb metal with H 5IO 6 under similar reaction conditions gives rise to the anhydrous iodate, Yb(IO 3) 3. Under supercritical conditions Lu 3+ reacts with HIO 3 and KIO 4 to yield the isostructural Lu(IO 3) 3. The structures have been determined by single-crystal X-ray diffraction. Crystallographic data are (Mo Kα, λ=0.71073 Å): Yb(IO 3) 3, monoclinic, space group P2 1/ n, a=8.6664(9) Å, b=5.9904(6) Å, c=14.8826(15) Å, β=96.931(2)°, V=766.99(13), Z=4, R( F)=4.23% for 114 parameters with 1880 reflections with I>2 σ( I); Lu(IO 3) 3, monoclinic, space group P2 1/ n, a=8.6410(9), b=5.9961(6), c=14.8782(16) Å, β=97.028(2)°, V=765.08(14), Z=4, R( F)=2.65% for 119 parameters with 1756 reflections with I>2 σ( I); Yb(IO 3) 3(H 2O), monoclinic, space group C2/ c, a=27.2476(15), b=5.6296(3), c=12.0157(7) Å, β=98.636(1)°, V=1822.2(2), Z=8, R( F)=1.51% for 128 parameters with 2250 reflections with I>2 σ( I); Lu(IO 3) 3(H 2O), monoclinic, space group C2/ c, a=27.258(4), b=5.6251(7), c=12.0006(16) Å, β=98.704(2)°, V=1818.8(4), Z=8, R( F)=1.98% for 128 parameters with 2242 reflections with I>2 σ( I). The f elements in all of the compounds are found in seven-coordinate environments and bridged with monodentate, bidentate, or tridentate iodate anions. Both Lu(IO 3) 3(H 2O) and Yb(IO 3) 3(H 2O) display distinctively different vibrational profiles from their respective anhydrous analogs. Hence, the Raman profile can be used as a complementary diagnostic tool to discern the different structural motifs of the compounds.

  2. The Tick-Over Theory Revisited: Formation and Regulation of the Soluble Alternative Complement C3 Convertase (C3(H2O)Bb)

    PubMed Central

    Bexborn, Fredrik; Andersson, Per Ola; Chen, Hui; Nilsson, Bo; Ekdahl, Kristina N.

    2009-01-01

    The molecular interactions between the components of the C3 convertase of the alternative pathway (AP) of complement and its regulators, in both surface-bound and fluid-phase form, are still incompletely understood. The fact that the AP convertase is labile makes studies difficult to perform. According to the so called tick-over theory, hydrolyzed C3, called C3(H2O), forms the initial convertase in fluid phase together with factor B. In the present study, we have applied western blot analysis and ELISA together with fluorescence resonance energy transfer (FRET) to study the formation of the fluid-phase AP convertases C3(H2O)Bb and C3bBb and their regulation by factor H and factor I at specific time points and, with FRET, in real time. In our hands, factor B showed a higher affinity for C3(H2O) than for C3b, although in both cases it was readily activated to Bb. However, the convertase activity of C3bBb was approximately twice that of C3(H2O)Bb, as monitored by the generation of C3a. But in contrast, the C3(H2O)Bb convertase was more resistant to inactivation by factor H and factor I than was the C3bBb convertase. Under conditions that totally inactivated C3bBb, C3(H2O)Bb still retained approximately 25% of its initial activity. PMID:18096230

  3. The tick-over theory revisited: formation and regulation of the soluble alternative complement C3 convertase (C3(H2O)Bb).

    PubMed

    Bexborn, Fredrik; Andersson, Per Ola; Chen, Hui; Nilsson, Bo; Ekdahl, Kristina N

    2008-04-01

    The molecular interactions between the components of the C3 convertase of the alternative pathway (AP) of complement and its regulators, in both surface-bound and fluid-phase form, are still incompletely understood. The fact that the AP convertase is labile makes studies difficult to perform. According to the so called tick-over theory, hydrolyzed C3, called C3(H(2)O), forms the initial convertase in fluid phase together with factor B. In the present study, we have applied western blot analysis and ELISA together with fluorescence resonance energy transfer (FRET) to study the formation of the fluid-phase AP convertases C3(H(2)O)Bb and C3bBb and their regulation by factor H and factor I at specific time points and, with FRET, in real time. In our hands, factor B showed a higher affinity for C3(H(2)O) than for C3b, although in both cases it was readily activated to Bb. However, the convertase activity of C3bBb was approximately twice that of C3(H(2)O)Bb, as monitored by the generation of C3a. But in contrast, the C3(H(2)O)Bb convertase was more resistant to inactivation by factor H and factor I than was the C3bBb convertase. Under conditions that totally inactivated C3bBb, C3(H(2)O)Bb still retained approximately 25% of its initial activity.

  4. Preparation, Characterization, and Structure of Two Layered Molybdenum(VI) Phosphates: KMo(H 2O)O 2PO 4 and NH 4Mo(H 2O)O 2PO 4

    NASA Astrophysics Data System (ADS)

    Millini, Roberto; Carati, Angela

    1995-08-01

    New layered Mo(VI) compounds, KMo(H 2O)O 2PO 4 (I) and NH 4Mo(H 2O)O 2PO 4 (II), were synthesized hydrothermally and their structures were determined from single-crystal X-ray analysis. Compounds (I) and (II) are isostructural and crystallize in the monoclinic P2 1/ n space group with a = 12.353(3), b = 8.623(2), c = 5.841(1) Å, β = 102.78(1)°, V = 606.8(2) Å 3, Z = 4, and R = 0.027 ( Rw = 0.030) for compound (I) and a = 12.435(3), b = 8.761(2), c = 6.015(1), β = 103.45(1)°, V = 637.3(2) Å 3, Z = 4, and R = 0.040 ( Rw = 0.041) for compound (II). The structure consists of layers built up of eight- and four-membered rings resulting from the alternation of corner-sharing [MoO 6] octahedra and [PO 4] tetrahedra. The layers stack along the (1¯01) direction by intercalating K and NH 4 ions.

  5. One-pot chemoselective synthesis of novel pyrrole-substituted pyrido [2,3-d]pyrimidines using [γ-Fe2O3@HAp-SO3H] as an efficient nanocatalyst

    NASA Astrophysics Data System (ADS)

    Jahanshahi, Parivash; Mamaghani, Manouchehr; Haghbin, Fereshteh; Nia, Roghayeh Hossein; Rassa, Mehdi

    2018-03-01

    Novel (1-methyl-1H-pyrrol-2-yl)-[2,3-d]pyrimidine derivatives were synthesized chemoselectively in good to high yields (81-90%) and short reaction times (7-14 min) by hydroxyapatite-encapsulated-γ-Fe2O3 supported sulfonic acid ([γ-Fe2O3@HAp-SO3H]) catalyzed condensation of 3-(1-methyl-1H-pyrrol-2-yl)-3-oxopropanenitrile, 6-amino-2-(alkylthio)pyrimidin-4(3H)-one and various aromatic aldehydes. The easy work-up of the products, rapidity, high efficiency and recyclability of the catalyst are advantages of this protocol. The antibacterial activity of the newly synthesized products was investigated. Some of the products showed encouraging activity.

  6. Isotope analysis of diamond-surface passivation effect of high-temperature H{sub 2}O-grown atomic layer deposition-Al{sub 2}O{sub 3} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiraiwa, Atsushi, E-mail: hiraiwa@aoni.waseda.jp, E-mail: qs4a-hriw@asahi-net.or.jp; Saito, Tatsuya; Matsumura, Daisuke

    2015-06-07

    The Al{sub 2}O{sub 3} film formed using an atomic layer deposition (ALD) method with trimethylaluminum as Al precursor and H{sub 2}O as oxidant at a high temperature (450 °C) effectively passivates the p-type surface conduction (SC) layer specific to a hydrogen-terminated diamond surface, leading to a successful operation of diamond SC field-effect transistors at 400 °C. In order to investigate this excellent passivation effect, we carried out an isotope analysis using D{sub 2}O instead of H{sub 2}O in the ALD and found that the Al{sub 2}O{sub 3} film formed at a conventional temperature (100 °C) incorporates 50 times more CH{sub 3} groups thanmore » the high-temperature film. This CH{sub 3} is supposed to dissociate from the film when heated afterwards at a higher temperature (550 °C) and causes peeling patterns on the H-terminated surface. The high-temperature film is free from this problem and has the largest mass density and dielectric constant among those investigated in this study. The isotope analysis also unveiled a relatively active H-exchange reaction between the diamond H-termination and H{sub 2}O oxidant during the high-temperature ALD, the SC still being kept intact. This dynamic and yet steady H termination is realized by the suppressed oxidation due to the endothermic reaction with H{sub 2}O. Additionally, we not only observed the kinetic isotope effect in the form of reduced growth rate of D{sub 2}O-oxidant ALD but found that the mass density and dielectric constant of D{sub 2}O-grown Al{sub 2}O{sub 3} films are smaller than those of H{sub 2}O-grown films. This is a new type of isotope effect, which is not caused by the presence of isotopes in the films unlike the traditional isotope effects that originate from the presence of isotopes itself. Hence, the high-temperature ALD is very effective in forming Al{sub 2}O{sub 3} films as a passivation and/or gate-insulation layer of high-temperature-operation diamond SC devices, and the

  7. Magnetic Ordering of Antiferromagnetic Trimer System 23CuCl2·2H2O

    NASA Astrophysics Data System (ADS)

    Sanda, M.; Kubo, K.; Asano, T.; Morodomi, H.; Inagaki, Y.; Kawae, T.; Wang, J.; Matsuo, A.; Kindo, K.; Sato, T. J.

    2012-12-01

    In this paper, we present the magnetic properties of 23CuCl2·2H2O (b = betaine, C5H11NO2). 23CuCl2·2H2O is the first model substance for a two-dimensional S = 1/2 orthogonal antiferromagnetic trimer system. We have performed magnetic susceptibility, magnetization curve, and specific heat under extreme conditions: low temperatures and high magnetic fields in this system. The experimental results indicate that this substance is a magnetically S = 1/2 antiferromagnetic trimer system. The magnetization also shows one-third of the saturation value (MS ~ 3.2μB/f.u.) between 5 and 14T The specific heat in a zero field shows a sharp peak at 1.38K corresponding to a long-range magnetic ordering, TN. As the magnetic field increases, the TN shifts remarkably to a lower temperature and is suppressed. Above 5T, the specific heat has no anomaly down to 150mK In the plateau region with an energy gap, the magnetic ordering seems to be disappeared.

  8. Zn0-CNTs-Fe3O4 catalytic in situ generation of H2O2 for heterogeneous Fenton degradation of 4-chlorophenol.

    PubMed

    Yang, Zhao; Gong, Xiao-Bo; Peng, Lin; Yang, Dan; Liu, Yong

    2018-06-04

    A novel Zn 0 -CNTs-Fe 3 O 4 composite was synthesized by the chemical co-precipitation combined with high sintering process at nitrogen atmosphere. The as-prepared composite was characterized by SEM, EDS, XRD, XPS, VSM and N 2 adsorption/desorption experiments. A novel heterogeneous Fenton-like system, composed of Zn 0 -CNTs-Fe 3 O 4 composite and dissolved oxygen (O 2 ) in solution, which can in situ generate H 2 O 2 and OH, was used for the degradation of 4-chlorophenol (4-CP). The influences of various operational parameters, including the initial pH, dosage of Zn 0 -CNTs-Fe 3 O 4 and initial concentration of 4-CP on the removal of 4-CP were investigated. The removal efficiencies of 4-CP and total organic carbon (TOC) were 99% and 57%, respectively, at the initial pH of 1.5, Zn 0 -CNTs-Fe 3 O 4 dosage of 2 g/L, 4-CP initial concentration of 50 mg/L and oxygen flow rate of 400 mL/min. Based on the results of the radical scavenger effect study, the hydroxyl radical was considered as the main reactive oxidants in Zn 0 -CNTs-Fe 3 O 4 /O 2 system and a possible degradation pathway of 4-CP was proposed. Copyright © 2018. Published by Elsevier Ltd.

  9. Mineral-solution equilibria—III. The system Na 2OAl 2O 3SiO 2H 2OHCl

    NASA Astrophysics Data System (ADS)

    Popp, Robert K.; Frantz, John D.

    1980-07-01

    Chemical equilibrium between sodium-aluminum silicate minerals and chloride bearing fluid has been experimentally determined in the range 500-700°C at 1 kbar, using rapid-quench hydrothermal methods and two modifications of the Ag + AgCl acid buffer technique. The temperature dependence of the thermodynamic equilibrium constant ( K) for the reaction NaAlSi 3O 8 + HCl o = NaCl o + 1/2Al 2SiO 5, + 5/2SiO 2 + 1/2H 2O Albite Andalusite Qtz. K = (a NaCl o) /(a H 2O ) 1/2/(a HCl o) can be described by the following equation: log k = -4.437 + 5205.6/ T( K) The data from this study are consistent with experimental results reported by MONTOYA and HEMLEY (1975) for lower temperature equilibria defined by the assemblages albite + paragonite + quartz + fluid and paragonite + andalusite + quartz + fluid. Values of the equilibrium constants for the above reactions were used to estimate the difference in Gibbs free energy of formation between NaCl o and HCl o in the range 400-700°C and 1-2 kbar. Similar calculations using data from phase equilibrium studies reported in the literature were made to determine the difference in Gibbs free energy of formation between KCl o and HCl o. These data permit modelling of the chemical interaction between muscovite + kspar + paragonite + albite + quartz assemblages and chloride-bearing hydrothermal fluids.

  10. Bulk Kosterlitz-Thouless Type Molecular Superconductor β″-(BEDT-TTF)2[(H2O)(NH4)2Cr(C2O4)3]·18-crown-6.

    PubMed

    Martin, Lee; Lopez, Jordan R; Akutsu, Hiroki; Nakazawa, Yasuhiro; Imajo, Shusaku

    2017-11-20

    A new molecular superconductor, β″-(BEDT-TTF) 2 [(H 2 O)(NH 4 ) 2 Cr(C 2 O 4 ) 3 ]·18-crown-6, has been synthesized from the organic donor molecule BEDT-TTF with the anion Cr(C 2 O 4 ) 3 3- . The crystal structure consists of conducting organic layers of BEDT-TTF molecules which adopt the β″ packing motif (layer A), layers of NH 4 + and Λ-Cr(C 2 O 4 ) 3 3- (layer B), layers of (H 2 O)(NH 4 )18-crown-6 (layer C), and layers of NH 4 + and Δ-Cr(C 2 O 4 ) 3 3- (layer D) which produce a superstructure with a repeating pattern of ABCDABCDA. As a result of this packing arrangement, this is the 2D superconductor with the widest gap between conducting layers where only a single donor packing motif is present (β″). Superconducting critical temperatures at ambient pressure observed by electrical transport and magnetic measurements are 4.0-4.9 and 2.5 K, respectively. The strong 2D nature of this system, the broad transition to T zero at 1.8K, and the transition of α of V ∝ I α from 1 to 3 on I-V curves strongly suggest that the superconducting transition is very close to a Kosterlitz-Thouless transition. The magnetic field dependence of the superconducting critical temperature parallel to the conducting plane gives an upper critical field μ 0 H c2∥ > 8 T, which is over the calculated Pauli-Clogston limit for this material.

  11. Magneto-optical investigation of MgSO3·6H2O with polarized light

    NASA Astrophysics Data System (ADS)

    Petkova, P.

    2017-10-01

    The crystals of magnesium sulphite hexahydrate (MgSO3·6H2O) belong to point group C3 (no center of symmetry). They possess gyrotropy and nonlinear optical properties. The refractive index no and ne, the angle of Faraday rotation φ(λ), the Verdet constant V(λ), the magneto-optic anomaly factor γ(λ) and the density of oscillators N of MgSO3·6H2O single crystals have been studied in the present work. The investigations were carried out in the spectral range 300 - 800 nm with linear polarized light E ⃗ ⊥ c ̅ , E ⃗ | | c ̅ (c ̅ is the optical axis of MgSO3·6H2O) propagated in the direction (10 1 ̅ 0) .

  12. The Stability of Hydrous Silicates in Earth's Lower Mantle: Experimental constraints from the System MgO-Al2O3-SiO2-H2O

    NASA Astrophysics Data System (ADS)

    Walter, M. J.; Thomson, A. R.; Wang, W.; Lord, O. T.; Kleppe, A. K.; Ross, J.; Kohn, S. C.

    2014-12-01

    Laser-heated diamond anvil cell experiments were performed at pressures from ~ 30 to 125 GPa on bulk compositions in the system MgO-Al2O3-SiO2-H2O (MASH) to constrain the stability of hydrous phases in Earth's lower mantle. Phase identification in run products by synchrotron powder diffraction reveals a consistent set of stability relations for the high-pressure, dense hydrous silicate phases D and H. Experiments show that aluminous phase D is stable to ~ 55 GPa. Aluminous phase H becomes stable at ~ 40 GPa and remains stable to higher pressures throughout the lower mantle depth range in both model peridotitic and basaltic lithologies. Preliminary FEG-probe analyses indicate that Phase H is alumina-rich at ~ 50 GPa, with only 5 to 10 wt% each of MgO and SiO2. Variations in ambient unit cell volumes show that Mg-perovskite becomes more aluminous with pressure throughout the pressure range studied, and that Phase H may become more Mg- and Si-rich with pressure. We also find that at pressures above ~ 90 GPa stishovite is replaced in Si-rich compositions by seifertite, at which point there is a corresponding increase in the Al-content of phase H. The melting curves of MASH compositions have been determined using thermal perturbations in power versus temperature curves, and are observed to be shallow with dT/dP slopes of ~ 4K/GPa. Our results show that hydrated peridotitic or basaltic compositions in the lower mantle should be partially molten at all depths along an adiabatic mantle geotherm. Aluminous Phase H will be stable in colder, hydrated subducting slabs, potentially to the core-mantle boundary. Thus, aluminous phase H is the primary vessel for transport of hydrogen to the deepest mantle, but hydrous silicate melt will be the host of hydrogen at ambient mantle temperatures.

  13. [Influences of R2O-Al2O3-B2O3-SiO2 system glass and superfine alpha-Al2O3 on the sintering and phase transition of hydroxyapatite ceramics].

    PubMed

    Wang, Zhiqiang; Chen, Xiaoxu; Cai, Yingji; Lü, Bingling

    2003-06-01

    The effects of R2O-Al2O3-B2O3-SiO2 system glass and superfine alpha-Al2O3 on the sintering and phase transition of hydroxyapatite (HAP) ceramics were assessed. The results showed that alpha-Al2O3 impeded the sintering of HAP and raised the sintering temperature. When glass and alpha-Al2O3 were used together to reinforce HAP ceramics, better results could be obtained; the bending strength of multiphase HAP ceramics approached 106 MPa when 10% (wt) alpha-Al2O3 and 20%(wt) glass were used and sintered at 1200 for 1 h.

  14. Magnetic properties of TM3[Cr(CN)6]2.n H2O

    NASA Astrophysics Data System (ADS)

    Zentková, M.; Mihalik, M.; Ková, J.; Zentko, A.; Mitróová, Z.; Lukáová, M.; Kaveanský, V.; Kiss, L. F.

    2006-01-01

    Magnetization measurements performed on Prussian blue analogs TM2+3[CrIII(CN)6]2.n H2O (TM = Cr, Mn, Fe, Co, Ni, Cu) confirmed the dual character of the exchange interaction (antiferromagnetic AFM and ferromagnetic FM) in this system. AFM interaction dominates for the Cr2+ sample and with rising atomic number Z the FM interaction becomes more important reaching pure FM character for the Cu2+ sample.

  15. Development of an E-H2O2/TiO2 photoelectrocatalytic oxidation system for water and wastewater treatment.

    PubMed

    Li, X Z; Liu, H S

    2005-06-15

    In this study, an innovative E-H2O2/TiO2 (E-H2O2 = electrogenerated hydrogen peroxide) photoelectrocatalytic (PEC) oxidation system was successfully developed for water and wastewater treatment. A TiO2/Ti mesh electrode was applied in this photoreactor as the anode to conduct PEC oxidation, and a reticulated vitreous carbon (RVC) electrode was used as the cathode to electrogenerate hydrogen peroxide simultaneously. The TiO2/Ti mesh electrode was prepared with a modified anodic oxidation process in a quadrielectrolyte (H2SO4-H3PO4-H2O2-HF) solution. The crystal structure, surface morphology, and film thickness of the TiO2/Ti mesh electrode were characterized by X-ray diffraction and scanning electron microscopy. The analytical results showed that a honeycomb-type anatase film with a thickness of 5 microm was formed. Photocatalytic oxidation (PC) and PEC oxidation of 2,4,6-trichlorophenol (TCP) in an aqueous solution were performed under various experimental conditions. Experimental results showed that the TiO2/Ti electrode, anodized in the H2SO4-H3PO4-H2O2-HF solution, had higher photocatalytic activity than the TiO2/Ti electrode anodized in the H2SO4 solution. It was found that the maximum applied potential would be around 2.5 V, corresponding to an optimum applied current density of 50 microA cm(-2) under UV-A illumination. The experiments confirmed that the E-H2O2 on the RVC electrode can significantly enhance the PEC oxidation of TCP in aqueous solution. The rate of TCP degradation in such an E-H2O2-assisted TiO2 PEC reaction was 5.0 times that of the TiO2 PC reaction and 2.3 times that of the TiO2 PEC reaction. The variation of pH during the E-H2O2-assisted TiO2 PEC reaction, affected by individual reactions, was also investigated. It was found that pH was well maintained during the TCP degradation in such an E-H2O2/TiO2 reaction system. This is beneficial to TCP degradation in an aqueous solution.

  16. A convective study of Al2O3-H2O and Cu- H2O nano-liquid films sprayed over a stretching cylinder with viscous dissipation

    NASA Astrophysics Data System (ADS)

    Alshomrani, Ali Saleh; Gul, Taza

    2017-11-01

    This study is related with the analysis of spray distribution considering a nanofluid thin layer over the slippery and stretching surface of a cylinder with thermal radiation. The distribution of the spray rate is designated as a function of the nanolayer thickness. The applied temperature used during spray phenomenon has been assumed as a reference temperature with the addition of the viscous dissipation term. The diverse behavior of the thermal radiation with magnetic and chemical reaction has been cautiously observed, which has consequences in causing variations in the spray distribution and heat transmission. Nanofluids have been used as water-based like Al2O3-H2O, Cu- H2O and have been examined under the consideration of momentum and thermal slip boundary conditions. The basic equations have been transformed into a set of nonlinear equations by using suitable variables for alteration. The approximate results of the problem have been achieved by using the optimal approach of the Homotopy Analysis Method (HAM). We demonstrate our results with the help of the numerical (ND-Solve) method. In addition, we found a close agreement of the two methods which is confirmed through graphs and tables. The rate of the spray pattern under the applied pressure term has also been obtained. The maximum cooling performance has been obtained by using the Cu water with the small values of the magnetic parameter and alumina for large values of the magnetic parameter. The outcomes of the Cu-water and Al2O3-H2O nanofluids have been linked to the published results in the literature. The impact of the physical parameters, like the skin friction coefficient, and the local Nusselt number have also been observed and compared with the published work. The momentum slip and thermal slip parameters, thermal radiation parameter, magnetic parameter and heat generation/absorption parameter effects on the spray rate have been calculated and discussed.

  17. (1→3)-β-d-Glucan oligosaccharides monomers purification and its H2O2 induction effect study.

    PubMed

    Fu, Yunbin; Wang, Mengyu; Wang, Wenxia; Tuo, Yaqin; Guo, Zhimou; Du, Yuguang; Yin, Heng

    2015-11-01

    In order to produce highly purified (1→3)-β-d-glucan oligosaccharides ((1→3)-β-d-GOS) monomers, a hydrophilic interaction liquid chromatography (HILIC) system with X-Amide stationary phase was performed. Nine (1→3)-β-d-GOS monomers with degree of polymerization (DP) from 2 to 10 were successfully separated. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) demonstrated that these monomers were with high purity. Furthermore, a hydrogen peroxide (H2O2) online detection method was established to monitor H2O2 releases in tobacco cells. This is the first report on nine consecutive (1→3)-β-d-GOS monomers purification and its effect upon H2O2-releasing in plants. It was found that (1→3)-β-d-GOS monomers with higher DP induced stronger defense responses in plants, which will pave the way for elucidating the relationship between (1→3)-β-d-GOS and biological activities. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Isotope exchange in reactions between D2O and size-selected ionic water clusters containing pyridine, H+ (pyridine)m(H2O)n.

    PubMed

    Ryding, Mauritz Johan; Zatula, Alexey S; Andersson, Patrik Urban; Uggerud, Einar

    2011-01-28

    Pyridine containing water clusters, H(+)(pyridine)(m)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. In the experiments, H(+)(pyridine)(m)(H(2)O)(n) with m = 1-4 and n = 0-80 are observed. For the cluster distributions observed, there are no magic numbers, neither in the abundance spectra, nor in the evaporation spectra from size selected clusters. Experiments with size-selected clusters H(+)(pyridine)(m)(H(2)O)(n), with m = 0-3, reacting with D(2)O at a center-of-mass energy of 0.1 eV were also performed. The cross-sections for H/D isotope exchange depend mainly on the number of water molecules in the cluster and not on the number of pyridine molecules. Clusters having only one pyridine molecule undergo D(2)O/H(2)O ligand exchange, while H(+)(pyridine)(m)(H(2)O)(n), with m = 2, 3, exhibit significant H/D scrambling. These results are rationalized by quantum chemical calculations (B3LYP and MP2) for H(+)(pyridine)(1)(H(2)O)(n) and H(+)(pyridine)(2)(H(2)O)(n), with n = 1-6. In clusters containing one pyridine, the water molecules form an interconnected network of hydrogen bonds associated with the pyridinium ion via a single hydrogen bond. For clusters containing two pyridines, the two pyridine molecules are completely separated by the water molecules, with each pyridine being positioned diametrically opposite within the cluster. In agreement with experimental observations, these calculations suggest a "see-saw mechanism" for pendular proton transfer between the two pyridines in H(+)(pyridine)(2)(H(2)O)(n) clusters.

  19. Speciated Monitoring of Gas-Phase Organic Peroxy Radicals by Chemical Ionization Mass Spectrometry: Cross-Reactions between CH3O2, CH3(CO)O2, (CH3)3CO2, and c-C6H11O2.

    PubMed

    Nozière, Barbara; Hanson, David R

    2017-11-09

    Organic peroxy radicals ("RO 2 ", with R organic) are key intermediates in most oxygen-rich systems, where organic compounds are oxidized (natural environment, flames, combustion engines, living organisms, etc). But, until recently, techniques able to monitor simultaneously and distinguish between RO 2 species ("speciated" detection) have been scarce, which has limited the understanding of complex systems containing these radicals. Mass spectrometry using proton transfer ionization has been shown previously to detect individual gas-phase RO 2 separately. In this work, we illustrate its ability to speciate and monitor several RO 2 simultaneously by investigating reactions involving CH 3 O 2 , CH 3 C(O)O 2 , c-C 6 H 11 O 2 , and (CH 3 ) 3 CO 2 . The detection sensitivity of each of these radicals was estimated by titration with NO to between 50 and 1000 Hz/ppb, with a factor from 3 to 5 of uncertainties, mostly due to the uncertainties in knowing the amounts of added NO. With this, the RO 2 concentration in the reactor was estimated between 1 × 10 10 and 1 × 10 12 molecules cm -3 . When adding a second radical species to the reactor, the kinetics of the cross-reaction could be studied directly from the decay of the first radical. The time-evolution of two and sometimes three different RO 2 was followed simultaneously, as the CH 3 O 2 produced in further reaction steps was also detected in some systems. The rate coefficients obtained are (in molecule -1 cm 3 s -1 ): k CH3O2+CH3C(O)O2 = 1.2 × 10 -11 , k CH3O2+t-butylO2 = 3.0 × 10 -15 , k c-hexylO2+CH3O2 = 1.2 × 10 -13 , k t-butylO2+CH3C(O)O2 = 3.7 × 10 -14 , and k c-hexylO2+t-butylO2 = 1.5 × 10 -15 . In spite of their good comparison with the literature and good reproducibility, large uncertainties (×5/5) are recommended on these results because of those in the detection sensitivities. This work is a first illustration of the potential applications of this technique for the investigation of organic radicals in

  20. Visible spectrum photofragmentation of O{sub 3}{sup −}(H{sub 2}O){sub n}, n ≤ 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, Julia H.; Lineberger, W. Carl, E-mail: wcl@jila.colorado.edu

    2014-10-21

    Photofragmentation of ozonide solvated in water clusters, O{sub 3}{sup −}(H{sub 2}O){sub n}, n ≤ 16, has been studied as a function of photon energy as well as the degree of solvation. Using mass selection, the effect of the presence of the solvent molecule on the O{sub 3}{sup −} photodissociation process is assessed one solvent molecule at a time. The O{sub 3}{sup −} acts as a visible light chromophore within the water cluster, namely the O{sub 3}{sup −}(H{sub 2}O) total photodissociation cross-section exhibits generally the same photon energy dependence as isolated O{sub 3}{sup −} throughout the visible wavelength range studied (430–620more » nm). With the addition of a single solvent molecule, new photodissociation pathways are opened, including the production of recombined O{sub 3}{sup −}. As the degree of solvation of the parent anion increases, recombination to O{sub 3}{sup −}-based products accounts for close to 40% of photoproducts by n = 16. The remainder of the photoproducts exist as O{sup −}-based; no O{sub 2}{sup −}-based products are observed. Upper bounds on the O{sub 3}{sup −} solvation energy (530 meV) and the O{sup −}-OO bond dissociation energy in the cluster (1.06 eV) are derived.« less

  1. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li{sub 2}SiO{sub 3}) hollow spheres: II-Textural analysis and CO{sub 2}-H{sub 2}O sorption evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Landeros, Jose; Gomez-Yanez, Carlos; Pfeiffer, Heriberto, E-mail: pfeiffer@iim.unam.mx

    In a previous work, the synthesis and structural-microstructural characterization of different nanocrystalline lithium metasilicate (Li{sub 2}SiO{sub 3}) samples were performed. Then, in this work, initially, a textural analysis was performed over the same samples. Li{sub 2}SiO{sub 3} samples prepared with a non-ionic surfactant (TRITON X-114) presented the best textural properties. Therefore, this sample was selected to evaluate its water vapor (H{sub 2}O) and carbon dioxide (CO{sub 2}) sorption properties. Sorption experiments were performed at low temperatures (30-80 deg. C) in presence of water vapor using N{sub 2} or CO{sub 2} as carrier gases. Results clearly evidenced that CO{sub 2} sorptionmore » on these materials is highly improved by H{sub 2}O vapor, and of course, textural properties enhanced the H{sub 2}O-CO{sub 2} sorption efficiency, in comparison with the solid-state reference sample. - Graphical abstract: Li{sub 2}SiO{sub 3} varied significantly its capacity of CO{sub 2} absorption as a function of the microstructural properties and by the water presence. Highlights: > We studied the CO{sub 2} absorption on different Li{sub 2}SiO{sub 3} samples in presence of H{sub 2}O vapor. > It was proved that CO{sub 2} absorption on Li{sub 2}SiO{sub 3} is controlled by different factors. > Li{sub 2}SiO{sub 3} with a porous microstructure produces a higher CO{sub 2} absorption. > H{sub 2}O vapor favors the CO{sub 2} absorption on Li{sub 2}SiO{sub 3} due to a surface hydroxylation.« less

  2. Fine-structure relaxation of O(3P) induced by collisions with He, H and H2

    NASA Astrophysics Data System (ADS)

    Lique, F.; Kłos, J.; Alexander, M. H.; Le Picard, S. D.; Dagdigian, P. J.

    2018-02-01

    The excitation of fine-structure levels of O(3P) by collisions is an important cooling process in the interstellar medium (ISM). We investigate here spin-orbit (de-)excitation of O(3Pj, j = 0, 1, 2) induced by collisions with He, H and H2 based on quantum scattering calculations of the relevant rate coefficients in the 10-1000 K temperature range. The underlying potential energy surfaces are derived from highly correlated abinitio calculations. Significant differences were found with the rate coefficients currently used in astrophysical applications. In particular, our new rate coefficients for collisions with H are up to a factor of 5 lower. Radiative transfer computations allow the assessment of the astrophysical impact of these new rate coefficients. In the case of molecular clouds, the new data are found to increase slightly the flux of the 3P1 → 3P2, while decreasing the flux of the 3P0 → 3P1 line. In the case of atomic clouds, the flux of both lines is predicted to decrease. The new rate coefficients are expected to impact significantly the modelling of cooling in astrophysical environments while also allowing new insights into oxygen chemistry in the ISM.

  3. Cross section data sets for electron collisions with H2, O2, CO, CO2, N2O and H2O

    NASA Astrophysics Data System (ADS)

    Anzai, K.; Kato, H.; Hoshino, M.; Tanaka, H.; Itikawa, Y.; Campbell, L.; Brunger, M. J.; Buckman, S. J.; Cho, H.; Blanco, F.; Garcia, G.; Limão-Vieira, P.; Ingólfsson, O.

    2012-02-01

    We review earlier cross section data sets for electron-collisions with H2, O2, CO, CO2, H2O and N2O, updated here by experimental results for their electronic states. Based on our recent measurements of differential cross sections for the electronic states of those molecules, integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis and then assessed against theory (BE f-scaling [Y.-K. Kim, J. Chem. Phys. 126, 064305 (2007)]). As they now represent benchmark electronic state cross sections, those ICSs for the above molecules are added into the original cross section sets taken from the data reviews for H2, O2, CO2 and H2O (the Itikawa group), and for CO and N2O (the Zecca group).

  4. Thermoluminescence and optically stimulated luminescence properties of Dy3+-doped CaO-Al2O3-B2O3-based glasses

    NASA Astrophysics Data System (ADS)

    Yahaba, T.; Fujimoto, Y.; Yanagida, T.; Koshimizu, M.; Tanaka, H.; Saeki, K.; Asai, K.

    2017-02-01

    We developed Dy3+-doped CaO-Al2O3-B2O3 based glasses with Dy concentrations of 0.5, 1.0, and 2.0 mol% using a melt-quenching technique. The as-synthesized glasses were applicable as materials exhibiting thermoluminescence (TL) and optically stimulated luminescence (OSL). The optical and radiation response properties of the glasses were characterized. In the photoluminescence (PL) spectra, two emission bands due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ were observed at 480 and 580 nm. In the OSL spectra, the emission band due to the 4F9/2 → 6H15/2 transition of Dy3+ was observed. Excellent TL and OSL responses were observed for dose ranges of 0.1-90 Gy. In addition, TL fading behavior was better than that of OSL in term of the long-time storage. These results indicate that the Dy3+-doped CaO-Al2O3-B2O3-based glasses are applicable as TL materials.

  5. Low Temperature Synthesized H2Ti3O7 Nanotubes with a High CO2 Adsorption Property by Amine Modification.

    PubMed

    Ota, Misaki; Hirota, Yuichiro; Uchida, Yoshiaki; Sakamoto, Yasuhiro; Nishiyama, Norikazu

    2018-06-12

    Carbon dioxide (CO 2 ) capture and storage (CCS) technologies have been attracting attention in terms of tackling with global warming. To date, various CO 2 capture technologies including solvents, membranes, cryogenics, and solid adsorbents have been proposed. Currently, a liquid adsorption method for CO 2 using amine solution (monoethanolamine) has been practically used. However, this liquid phase CO 2 adsorption process requires heat regeneration, and it can cause many problems such as corrosion of equipment and degradation of the solution. Meanwhile, solid adsorption methods using porous materials are more advantageous over the liquid method at these points. In this context, we here evaluated if hydrogen titanate (H 2 Ti 3 O 7 ) nanotubes and the surface modification effectively capture CO 2 . For this aim, we first developed a facile synthesis method of H 2 Ti 3 O 7 nanotubes different from any conventional methods. Briefly, they were converted from the precursors-amorphous TiO 2 nanoparticles at room temperature (25 °C). We then determined the outer and the inner diameters of the H 2 Ti 3 O 7 nanotubes as 3.0 and 0.7 nm, respectively. It revealed that both values were much smaller than the reported ones; thus the specific surface area showed the highest value (735 m 2 /g). Next, the outer surface of H 2 Ti 3 O 7 nanotubes was modified using ethylenediamine to examine if CO 2 adsorption capacity increases. The ethylendiamine-modified H 2 Ti 3 O 7 nanotubes showed a higher CO 2 adsorption capacity (50 cm 3 /g at 0 °C, 100 kPa). We finally concluded that the higher CO 2 adsorption capacity could be explained, not only by the high specific surface area of the nanotubes but also by tripartite hydrogen bonding interactions among amines, CO 2 , and OH groups on the surface of H 2 Ti 3 O 7 .

  6. Topologically identical, but geometrically isomeric layers in hydrous α-, β-Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O and anhydrous Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Na; Klepov, Vladislav V.; Villa, Eric M.

    2014-07-01

    The hydrothermal reaction of uranyl nitrate with rubidium nitrate and arsenic (III) oxide results in the formation of polymorphic α- and β-Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O (α-, β-RbUAs) and the anhydrous phase Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})] (RbUAs). These phases were structurally, chemically and spectroscopically characterized. The structures of all three compounds are based upon topologically identical, but geometrically isomeric layers. The layers are linked with each other by means of the Rb cations and hydrogen bonding. Dehydration experiments demonstrate that water deintercalation from hydrous α- and β-RbUAs yields anhydrous RbUAs via topotactic reactions. - Graphical abstract: Three differentmore » layer geometries observed in the structures of Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})] and α- and β- Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O. Two different coordination environments of uranium polyhedra (types I and II) are shown schematically on the top of the figure. - Highlights: • Three new uranyl arsenates were synthesized from the hydrothermal reactions. • The phases consist of the topologically identical but geometrically different layers. • Topotactic transitions were observed in the processes of mono-hyrates dehydration.« less

  7. Comparative effect of simulated solar light, UV, UV/H2O2 and photo-Fenton treatment (UV-Vis/H2O2/Fe2+,3+) in the Escherichia coli inactivation in artificial seawater.

    PubMed

    Rubio, D; Nebot, E; Casanueva, J F; Pulgarin, C

    2013-10-15

    Innovative disinfection technologies are being studied for seawater, seeking a viable alternative to chlorination. This study proposes the use of H2O2/UV254 and photo-Fenton as disinfection treatment in seawater. The irradiations were carried out using a sunlight simulator (Suntest) and a cylindrical UV reactor. The efficiency of the treatment was compared for Milli-Q water, Leman Lake water and artificial seawater. The presence of bicarbonates and organic matter was investigated in order to evaluate possible effects on the photo-Fenton disinfection treatment. The photo-Fenton treatment, employing 1 mg L(-1) Fe(2+) and 10 mg L(-1) of H2O2, led to the fastest bacterial inactivation kinetics. Using H2O2/UV254 high disinfection rates were obtained similar to those obtained with photo-Fenton under UV254 light. In Milli-Q water, the rate of inactivation for Escherichia coli was higher than in Leman Lake water and seawater due to the lack of inorganic ions affecting negatively bacteria inactivation. The presence of bicarbonate showed scavenging of the OH(•) radicals generated in the treatment of photo-Fenton and H2O2/UV254. Despite the negative effect of inorganic ions, especially HCO3(-), the disinfection treatments with AOPs in lake water and seawater improved significantly the disinfection compared to light alone (simulated sunlight and UV254). In the treatment of photo-Fenton with simulated sunlight, dissolved organic matter had a beneficial effect by increasing the rate of inactivation. This is associated with the formation of Fe(3+)-organo photosensitive complexes leading to the formation of ROS able to inactivate bacteria. This effect was not observed in the photo-Fenton with UV254. Growth of E. coli surviving in seawater was observed 24 and 48 h after treatment with UV light. However, growth of surviving bacteria was not detected after photo-Fenton with UV254 and H2O2/UV254 treatments. This study suggests H2O2/UV254 and photo-Fenton treatments for the

  8. A three-dimensional coordination polymer based on 1,2,3-triazole-4,5-dicarboxylic acid (H{sub 3}tda): ([Cd{sub 12}(tda){sub 8}(H{sub 2}O){sub 11}] · (H{sub 2}O)6.25){sub n}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xin-Hui, E-mail: iamxhzhou@njupt.edu.cn; Chen, Qiang

    The title coordination polymer ([Cd{sub 12}(tda){sub 8}(H{sub 2}O){sub 11}] · (H{sub 2}O){sub 6.25}){sub n} (H{sub 3}tda = 1,2,3-triazole-4,5-dicarboxylic acid), has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complex crystallizes in orthorhombic sp. gr. Pmn2{sub 1} with Z = 4. The Cd{sub 2} unit doublebridged by one carboxylate oxygen atom and two neighboring nitrogen atoms from the tda{sup 3–} ligands are linked by the tda{sup 3–}ligands to lead to the 2D (4,4) network in the ac plane. The almost coplanar Cd{sub 2}(μ{sub 5}-tda){sub 2} unit comprised of two Cd ions double-bridged by two tda{sup 3–} ligands through themore » neighboring nitrogen atoms is connected with the other four Cd{sub 2}(μ{sub 5}-tda){sub 2} units form the undulating 2D network in the ac plane. The (4,4) networks and undulating 2D networks are alternatively connected along the b axis by the tda{sup 3–} ligands coordinating to the Cd ions to form the 3D framework.« less

  9. H2O2 Synthesis Induced by Irradiation of H2O with Energetic H(+) and Ar(+) Ions at Various Temperatures

    NASA Technical Reports Server (NTRS)

    Baragiola, R. A.; Loeffler, M. J.; Raut, U.; Vidal, R. A.; Carlson, R. W.

    2004-01-01

    The detection of H2O2 on Jupiter's icy satellite Europa by the Galileo NIMS instrument presented a strong evidence for the importance of radiation effects on icy surfaces. A few experiments have investigated whether solar flux of protons incident on Europa ice could cause a significant if any H2O2 production. These published results differ as to whether H2O2 can be formed by ions impacting water at temperatures near 80 K, which are appropriate to Europa. This discrepancy may be a result of the use of different incident ion energies, different vacuum conditions, or different ways of processing the data. The latter possibility comes about from the difficulty of identifying the 3.5 m peroxide OH band on the long wavelength wing of the much stronger water 3.1 m band. The problem is aggravated by using straight line baselines to represent the water OH band with a curvature, in the region of the peroxide band, that increases with temperature. To overcome this problem, we use polynomial baselines that provide good fits to the water band and its derivative.

  10. Self-encapsulation of [MII(phen)2(H2O)2]2+ (M=Co, Zn) in one-dimensional nanochannels of [MII(H2O)6(BTC)2]4- (M=Co, Cu, Mn): a high HQ/CAT ratio catalyst for hydroxylation of phenols.

    PubMed

    Bi, Jianhong; Kong, Lingtao; Huang, Zixiang; Liu, Jinhuai

    2008-06-02

    Four novel three-dimensional (3D) microporous supramolecular compounds containing nanosized channels, namely, [Co(phen)2(H2O)2]2[Co(H2O)6].2BTC.21.5H2O (1), [Co(phen)2(H2O)2]2[Cu(H2O)6].2BTC.21.5H2O (2), [Co(phen)2(H2O)2]2[Mn(H2O)6].2BTC.18H2O (3), and [Zn(phen)2(H2O)2]2[Mn(H2O)6].2BTC.22.5H2O (4), were synthesized from 1,3,5-benzenetricarboxylate (BTC), 1,10-phenanthroline (phen), and the transition-metal salt(s) by self-assembly. Single-crystal X-ray structural analysis showed that the resulting 3D microporous supramolecular frameworks consist of a two-dimensional (2D) hydrogen-bonded host framework of [MII(H2O)6(BTC)2]4- (M=Co for 1, Cu for 2, Mn for 3, 4) with rectangular-shaped cavities containing [MII(phen)2(H2O)2]2+ (M=Co for 1-3, Zn for 4) guests. The guest complex is encapsulated in the 2D hydrogen-bonded host framework by hydrogen bonding and aromatic pi-pi stacking interactions, forming the 3D hydrogen-bonded framework. The catalytic activities of 1, 2, 3, and 4 were studied using hydroxylation of phenols with 30% aqueous H2O2 as a test reaction. The compounds displayed a good phenol conversion ratio and excellent channel selectivity in the hydroxylation reaction, with a maximum hydroquinone (HQ)/catechol (CAT) ratio of 3.9.

  11. Removal of arsenic from water by Friedel's salt (FS: 3CaO·Al2O3·CaCl2·10H2O).

    PubMed

    Zhang, Danni; Jia, Yongfeng; Ma, Jiayu; Li, Zhibao

    2011-11-15

    Low levels of arsenic can be effectively removed from water by adsorption onto various materials and searching for low-cost, high-efficiency new adsorbents has been a hot topic in recent years. In the present study, the performance of Friedel's salt (FS: 3CaO·Al(2)O(3)·CaCl(2)·10H(2)O), a layered double hydroxide (LDHs), as an adsorbent for arsenic removal from aqueous solution was investigated. Friedel's salt was synthesized at lower temperature (50°C) compared to traditional autoclave methods by reaction of calcium chloride with sodium aluminate. Kinetic study revealed that adsorption of arsenate by Friedel's salt was fast in the first 12h and equilibrium was achieved within 48 h. The adsorption kinetics are well described by second-order Lageren equation. The adsorption capacity of the synthesized sorbent for arsenate at pH 4 and 7 calculated from Langmuir adsorption isotherms was 11.85 and 7.80 mg/g, respectively. Phosphate and silicate markedly decreased the removal of arsenate, especially at higher pH, but sulfate was found to suppress arsenate adsorption at lower pH and the adverse effect was disappeared at pH ≥ 6. Common metal cations (Ca(2+), Mg(2+)) enhanced arsenate adsorption. The results suggest that Friedel's salt is a potential cost-effective adsorbent for arsenate removal in water treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Adsorption, Desorption, and Displacement Kinetics of H2O and CO2 on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; Li, Zhenjun; Chen, Long

    The adsorption, desorption, and displacement kinetics of H2O and CO2 on TiO2(110) are investigated using temperature programmed desorption (TPD) and molecular beam techniques. The TPD spectra for both H2O and CO2 have well-resolved peaks corresponding to desorption from bridge-bonded oxygen (BBO), Ti, and oxygen vacancies (VO) sites in order of increasing peak temperature. Analysis of the saturated monolayer peak for both species reveals that the corresponding adsorption energies on all sites are greater for H2O and for CO2. Sequential dosing of H2O and CO2 reveals that, independent of the dose order, H2O molecules will displace CO2 in order to occupymore » the highest energy binding sites available. Isothermal experiments show that the displacement of CO2 by H2O occurs between 75 and 80 K. Further analysis shows that a ratio of 4 H2O to 3 CO2 molecules is needed to displace CO2 from the TiO2(110) surface.« less

  13. Syntheses and structural characterization of vanado-tellurites and vanadyl-selenites: SrVTeO{sub 5}(OH), Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}, Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O and Ba{sub 2}VSe{sub 3}O{sub 10}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konatham, Satish; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    Four new quaternary vanado-tellurites and vanadyl-selenites, namely, SrVTeO{sub 5}(OH)(1), Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}(2), Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O(3) and Ba{sub 2}VSe{sub 3}O{sub 10}(4) have been synthesized and structurally characterized by single crystal X-ray diffraction. The oxidation state of vanadium is +5 in tellurites 1 and 2 and +4 in selenites 3 and 4. The structures of SrVTeO{sub 5}(OH)(1) and Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}(2) compounds consist of (VTeO{sub 5}(OH)){sup 2-} and (V{sub 2}Te{sub 2}O{sub 11}){sup 4-}anionic chains respectively, which are built from tetrahedral VO{sub 4} and disphenoidal TeO{sub 4} moieties. Similarly the structures of Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O(3)more » and Ba{sub 2}VSe{sub 3}O{sub 10}(4) respectively contain (VSe{sub 2}O{sub 7}){sup 2-} and (VSe{sub 3}O{sub 10}){sup 4-} anionic chains, which are made up of octahedral VO{sub 6} and pyramidal SeO{sub 3} units. Compounds 1 and 3 have been characterized by thermogravimetric and infrared spectroscopic methods. Compounds 1 and 2 are wide band gap semiconductors. - Graphical abstract: Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O and Ba{sub 2}VSe{sub 3}O{sub 10} compounds contain (VSe{sub 2}O{sub 7}){sup 2-} and (VSe{sub 3}O{sub 10}){sup 4-} chains. - Highlights: • Four new vanado-tellurites and vanadyl-selenites are synthesized. • Their structural features are different. • The vanado-tellurites are wide band gap semiconductors.« less

  14. Promotion effect of H2 on ethanol oxidation and NOx reduction with ethanol over Ag/Al2O3 catalyst.

    PubMed

    Yu, Yunbo; Li, Yi; Zhang, Xiuli; Deng, Hua; He, Hong; Li, Yuyang

    2015-01-06

    The catalytic partial oxidation of ethanol and selective catalytic reduction of NOx with ethanol (ethanol-SCR) over Ag/Al2O3 were studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS). The intermediates were identified by PIMS and their photoionization efficiency (PIE) spectra. The results indicate that H2 promotes the partial oxidation of ethanol to acetaldehyde over Ag/Al2O3, while the simultaneously occurring processes of dehydration and dehydrogenation were inhibited. H2 addition favors the formation of ammonia during ethanol-SCR over Ag/Al2O3, the occurrence of which creates an effective pathway for NOx reduction by direct reaction with NH3. Simultaneously, the enhancement of the formation of ammonia benefits its reaction with surface enolic species, resulting in producing -NCO species again, leading to enhancement of ethanol-SCR over Ag/Al2O3 by H2. Using VUV-PIMS, the reactive vinyloxy radical was observed in the gas phase during the NOx reduction by ethanol for the first time, particularly in the presence of H2. Identification of such a reaction occurring in the gas phase may be crucial for understanding the reaction pathway of HC-SCR over Ag/Al2O3.

  15. New Optical Constants for Amorphous and Crystalline H2O-ice and H2O-mixtures.

    NASA Technical Reports Server (NTRS)

    Mastrapa, Rachel; Bernstein, Max; Sandford, Scott

    2006-01-01

    We will present the products of new laboratory measurements of ices relevant to Trans-Neptunian Objects. We have calculated the real and imaginary indices of refraction for amorphous and crystalline H2O-ice and also H2O-rich ices containing other molecular species. We create ice samples by condensing gases onto a cold substrate. We measure the thickness of the sample by reflecting a He-Ne laser off of the sample and counting interference fringes as it grows. We then collect transmission spectra of the samples in the wavelength range from 0.7-22 micrometers. Using the thickness and the transmission spectra of the ice we calculate the imaginary part of the index of refraction. We then use a Kramers-Kronig calculation to calculate the real part of the index of refraction (Berland et al. 1994; Hudgins et al. 1993). These optical constants can then be used to create model spectra for comparison to spectra from Solar System objects, including TNOs. We will summarize the difference between the amorphous and crystalline H2O-ice spectra. These changes include weakening of features and shifting of features to shorter wavelength. One important result is that the 2 pm feature is stronger in amorphous H2O ice than it is in crystalline H2O-ice. We will also discuss the changes seen when H2O is mixed with other components, including CO2, CH4, HCN, and NH3 (Bernstein et al. 2005; Bernstein et al. 2006).

  16. Transfer of a proton between H2 and O2.

    PubMed

    Kluge, Lars; Gärtner, Sabrina; Brünken, Sandra; Asvany, Oskar; Gerlich, Dieter; Schlemmer, Stephan

    2012-11-13

    The proton affinities of hydrogen and oxygen are very similar. Therefore, it has been discussed that the proton transfer from the omnipresent H(3)(+) to molecular oxygen in the near thermoneutral reaction H(3)(+) + O(2) <--> O(2)H(+) + H(2) effectively binds the interstellar oxygen in O(2)H(+). In this work, the proton transfer reaction has been investigated in a low-temperature 22-pole ion trap from almost room temperature (280 K) down to the lowest possible temperature limited by freeze out of oxygen gas (about 40 K at a low pressure). The Arrhenius behaviour of the rate coefficient for the forward reaction shows that it is subject to an activation energy of E(A)/k=113 K. Thus, the forward reaction can proceed only in higher temperature molecular clouds. Applying laser-induced reactions to the given reaction (in the backward direction), a preliminary search for spectroscopic signatures of O(2)H(+) in the infrared was unsuccessful, whereas the forward reaction has been successfully used to probe the population of the lowest ortho and para levels of H(3)(+).

  17. New family of lanthanide-based inorganic-organic hybrid frameworks: Ln2(OH)4[O3S(CH2)nSO32H2O (Ln = La, Ce, Pr, Nd, Sm; n = 3, 4) and their derivatives.

    PubMed

    Liang, Jianbo; Ma, Renzhi; Ebina, Yasuo; Geng, Fengxia; Sasaki, Takayoshi

    2013-02-18

    We report the synthesis and structure characterization of a new family of lanthanide-based inorganic-organic hybrid frameworks, Ln(2)(OH)(4)[O(3)S(CH(2))(n)SO(3)]·2H(2)O (Ln = La, Ce, Pr, Nd, Sm; n = 3, 4), and their oxide derivatives. Highly crystallized samples were synthesized by homogeneous precipitation of Ln(3+) ions from a solution containing α,ω-organodisulfonate salts promoted by slow hydrolysis of hexamethylenetetramine. The crystal structure solved from powder X-ray diffraction data revealed that this material comprises two-dimensional cationic lanthanide hydroxide {[Ln(OH)(2)(H(2)O)](+)}(∞) layers, which are cross-linked by α,ω-organodisulfonate ligands into a three-dimensional pillared framework. This hybrid framework can be regarded as a derivative of UCl(3)-type Ln(OH)(3) involving penetration of organic chains into two {LnO(9)} polyhedra. Substitutional modification of the lanthanide coordination promotes a 2D arrangement of the {LnO(9)} polyhedra. A new hybrid oxide, Ln(2)O(2)[O(3)S(CH(2))(n)SO(3)], which is supposed to consist of alternating {[Ln(2)O(2)](2+)}(∞) layers and α,ω-organodisulfonate ligands, can be derived from the hydroxide form upon dehydration/dehydroxylation. These hybrid frameworks provide new opportunities to engineer the interlayer chemistry of layered structures and achieve advanced functionalities coupled with the advantages of lanthanide elements.

  18. One-dimensional ferromagnetic array compound [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate)

    NASA Astrophysics Data System (ADS)

    Honda, Zentaro; Nomoto, Naoyuki; Fujihara, Takashi; Hagiwara, Masayuki; Kida, Takanori; Sawada, Yuya; Fukuda, Takeshi; Kamata, Norihiko

    2018-06-01

    We report on the syntheses, crystal structure, and magnetic properties of the transition metal coordination polymer [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate) in which CoO6 octahedra are linked through their edges, forming one-dimensional (1D) Co(II) arrays running along the crystal a-axis. These arrays are further perpendicularly bridged by SBA ligand to construct a three-dimensional framework. Its magnetic properties have been investigated, and ferromagnetic interactions within the arrays have been found. From heat capacity measurements, we have found that this compound exhibits a three-dimensional ferromagnetic phase transition at TC = 1.54 K, and the specific heat just above TC shows a Schottky anomaly which originates from an energy gap caused by uniaxial magnetic anisotropy. These results suggest that [Co3(SBA)2(OH)2(H2O)2]n consists of weakly coupled 1D ferromagnetic Ising arrays.

  19. Stratospheric O3, H2O, and HDO distributions from balloon-based far-infrared observations

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Guo, J.; Carli, B.; Mencaraglia, F.; Bonetti, A.

    1987-01-01

    Limb thermal emission spectra of the earth's stratosphere in the FIR obtained as part of the Balloon Intercomparison Campaign (BIC), have been analyzed for retrieval of trace constituent distributions. The observations analyzed here were made with a balloon-borne high-resolution Michelson interferometer operating in the 20-100/cm region, with an unapodized spectral resolution of 0.0033/cm. In this paper the vertical profiles of O3, H2O, and HDO retrieved from the observed spectra are presented and compared with the results from other BIC experiments. The retrieved profiles are found to be in good agreement with other measurements. The measurement of the HDO profile provides information about the sources of stratospheric water vapor. The variation of the D/H ratio of water vapor is derived from an analysis of HDO and H2O lines observed in the FIR spectra and is compared with the available measurements in the literature.

  20. Detection of pH and Enzyme-Free H2O2 Sensing Mechanism by Using GdO x Membrane in Electrolyte-Insulator-Semiconductor Structure.

    PubMed

    Kumar, Pankaj; Maikap, Siddheswar; Qiu, Jian-Tai; Jana, Surajit; Roy, Anisha; Singh, Kanishk; Cheng, Hsin-Ming; Chang, Mu-Tung; Mahapatra, Rajat; Chiu, Hsien-Chin; Yang, Jer-Ren

    2016-12-01

    A 15-nm-thick GdO x membrane in an electrolyte-insulator-semiconductor (EIS) structure shows a higher pH sensitivity of 54.2 mV/pH and enzyme-free hydrogen peroxide (H2O2) detection than those of the bare SiO2 and 3-nm-thick GdO x membranes for the first time. Polycrystalline grain and higher Gd content of the thicker GdO x films are confirmed by transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS), respectively. In a thicker GdO x membrane, polycrystalline grain has lower energy gap and Gd(2+) oxidation states lead to change Gd(3+) states in the presence of H2O2, which are confirmed by electron energy loss spectroscopy (EELS). The oxidation/reduction (redox) properties of thicker GdO x membrane with higher Gd content are responsible for detecting H2O2 whereas both bare SiO2 and thinner GdO x membranes do not show sensing. A low detection limit of 1 μM is obtained due to strong catalytic activity of Gd. The reference voltage shift increases with increase of the H2O2 concentration from 1 to 200 μM owing to more generation of Gd(3+) ions, and the H2O2 sensing mechanism has been explained as well.

  1. Stepwise formation of H3O(+)(H2O)n in an ion drift tube: Empirical effective temperature of association/dissociation reaction equilibrium in an electric field.

    PubMed

    Nakai, Yoichi; Hidaka, Hiroshi; Watanabe, Naoki; Kojima, Takao M

    2016-06-14

    We measured equilibrium constants for H3O(+)(H2O)n-1 + H2O↔H3O(+)(H2O)n (n = 4-9) reactions taking place in an ion drift tube with various applied electric fields at gas temperatures of 238-330 K. The zero-field reaction equilibrium constants were determined by extrapolation of those obtained at non-zero electric fields. From the zero-field reaction equilibrium constants, the standard enthalpy and entropy changes, ΔHn,n-1 (0) and ΔSn,n-1 (0), of stepwise association for n = 4-8 were derived and were in reasonable agreement with those measured in previous studies. We also examined the electric field dependence of the reaction equilibrium constants at non-zero electric fields for n = 4-8. An effective temperature for the reaction equilibrium constants at non-zero electric field was empirically obtained using a parameter describing the electric field dependence of the reaction equilibrium constants. Furthermore, the size dependence of the parameter was thought to reflect the evolution of the hydrogen-bond structure of H3O(+)(H2O)n with the cluster size. The reflection of structural information in the electric field dependence of the reaction equilibria is particularly noteworthy.

  2. Removal of petroleum hydrocarbons from contaminated groundwater by the combined technique of adsorption onto perlite followed by the O3/H2O2 process.

    PubMed

    Moussavi, Gholamreza; Bagheri, Amir

    2012-09-01

    Groundwater contaminated with petroleum hydrocarbons was treated using a combined system of adsorption onto powdered expanded perlite (PEP) followed by the O3/H2O2 process. The pretreatment investigations indicated a high capacity for PEP to remove petroleum hydrocarbons from the contaminated water. An experimental total petroleum hydrocarbon (TPH) adsorption capacity of 275 mg/g PEP was obtained at the natural pH of water. The experimental data fit best with the Freundlich isotherm model and pseudo-second-order adsorption model. The second phase of the experiment evaluated the performance of the O3/H2O2 process in the removal of residual TPH from pretreated water and compared the results with that of raw water. The O3/H202 process attained a maximum TPH removal rate for the pretreated water after 70 min, when 93% of the residual TPH in the effluent of the adsorption system was removed. Overall, the combination of adsorption onto PEP for 100 min and the subsequent treatment with the O3/H2O2 process for 70min eliminated over 99% of the TPH of highly petroleum-contaminated groundwater, with initial values of 162 mg/L. Therefore, we can conclude that the developed treatment system is an appropriate method of remediation for petroleum-contaminated waters.

  3. U 3Si 2 behavior in H 2O environments: Part II, pressurized water with controlled redox chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Andrew Thomas; Migdisov, Artaches; Wood, Elizabeth Sooby

    Recent interest in U 3Si 2 as an advanced light water reactor fuel has driven assessment of numerous properties, but characterization of its response to H 2O environments is sparse in available literature. The behavior of U 3Si 2 in H 2O containing atmospheres is investigated and presented in a two-part series of articles. This work examines the behavior of U 3Si 2 following exposure to pressurized H 2O at temperatures from 300 to 350 °C. Testing was performed using two autoclave configurations and multiple redox conditions. Use of solid state buffers to attain a controlled water chemistry is alsomore » presented as a means to test actinide-bearing systems. Buffers were used to vary the hydrogen concentration between 1 and 30 parts per million H 2. Testing included UN, U 3Si 5, and UO 2. Both UN and U 3Si 5 were found to rapidly pulverize in less than 5 h at 300 °C. Uranium dioxide was included as a control for the autoclave system, and was found to be minimally impacted by exposure to pressurized water at the conditions tested for extended time periods. Testing of U 3Si 2 at 300 °C found reasonable stability through 30 days in 1–5 ppm H 2. However, pulverization was observed following 35 days. The redox condition of testing strongly affected pulverization. Characterization of the resulting microstructures suggests that the mechanism responsible for pulverization under more strongly reducing conditions differs from that previously identified. Hydride formation is hypothesized to drive this transition. In conclusion, testing performed at 350 °C resulted in rapid pulverization of U 3Si 2 in under 50 h.« less

  4. U 3Si 2 behavior in H 2O environments: Part II, pressurized water with controlled redox chemistry

    DOE PAGES

    Nelson, Andrew Thomas; Migdisov, Artaches; Wood, Elizabeth Sooby; ...

    2017-12-16

    Recent interest in U 3Si 2 as an advanced light water reactor fuel has driven assessment of numerous properties, but characterization of its response to H 2O environments is sparse in available literature. The behavior of U 3Si 2 in H 2O containing atmospheres is investigated and presented in a two-part series of articles. This work examines the behavior of U 3Si 2 following exposure to pressurized H 2O at temperatures from 300 to 350 °C. Testing was performed using two autoclave configurations and multiple redox conditions. Use of solid state buffers to attain a controlled water chemistry is alsomore » presented as a means to test actinide-bearing systems. Buffers were used to vary the hydrogen concentration between 1 and 30 parts per million H 2. Testing included UN, U 3Si 5, and UO 2. Both UN and U 3Si 5 were found to rapidly pulverize in less than 5 h at 300 °C. Uranium dioxide was included as a control for the autoclave system, and was found to be minimally impacted by exposure to pressurized water at the conditions tested for extended time periods. Testing of U 3Si 2 at 300 °C found reasonable stability through 30 days in 1–5 ppm H 2. However, pulverization was observed following 35 days. The redox condition of testing strongly affected pulverization. Characterization of the resulting microstructures suggests that the mechanism responsible for pulverization under more strongly reducing conditions differs from that previously identified. Hydride formation is hypothesized to drive this transition. In conclusion, testing performed at 350 °C resulted in rapid pulverization of U 3Si 2 in under 50 h.« less

  5. U3Si2 behavior in H2O environments: Part II, pressurized water with controlled redox chemistry

    NASA Astrophysics Data System (ADS)

    Nelson, A. T.; Migdisov, A.; Wood, E. Sooby; Grote, C. J.

    2018-03-01

    Recent interest in U3Si2 as an advanced light water reactor fuel has driven assessment of numerous properties, but characterization of its response to H2O environments is sparse in available literature. The behavior of U3Si2 in H2O containing atmospheres is investigated and presented in a two-part series of articles. This work examines the behavior of U3Si2 following exposure to pressurized H2O at temperatures from 300 to 350 °C. Testing was performed using two autoclave configurations and multiple redox conditions. Use of solid state buffers to attain a controlled water chemistry is also presented as a means to test actinide-bearing systems. Buffers were used to vary the hydrogen concentration between 1 and 30 parts per million H2. Testing included UN, U3Si5, and UO2. Both UN and U3Si5 were found to rapidly pulverize in less than 50 h at 300 °C. Uranium dioxide was included as a control for the autoclave system, and was found to be minimally impacted by exposure to pressurized water at the conditions tested for extended time periods. Testing of U3Si2 at 300 °C found reasonable stability through 30 days in 1-5 ppm H2. However, pulverization was observed following 35 days. The redox condition of testing strongly affected pulverization. Characterization of the resulting microstructures suggests that the mechanism responsible for pulverization under more strongly reducing conditions differs from that previously identified. Hydride formation is hypothesized to drive this transition. Testing performed at 350 °C resulted in rapid pulverization of U3Si2 in under 50 h.

  6. Implications of the (H2O)n + CO ↔ trans-HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions for primordial atmospheres of Venus and Earth

    NASA Astrophysics Data System (ADS)

    Vichietti, R. M.; Spada, R. F. K.; da Silva, A. B. F.; Machado, F. B. C.; Haiduke, R. L. A.

    2018-04-01

    The forward and backward (H2O)n + CO ↔ HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions were studied in order to furnish trustworthy thermochemical and kinetic data. Stationary point structures involved in these chemical processes were achieved at the B2PLYP/cc-pVTZ level so that the corresponding vibrational frequencies, zero-point energies, and thermal corrections were scaled to consider anharmonicity effects. A complete basis set extrapolation was also employed with the CCSD(T) method in order to improve electronic energy descriptions and providing therefore more accurate results for enthalpies, Gibbs energies, and rate constants. Forward and backward rate constants were encountered at the high-pressure limit between 200 and 4000 K. In turn, modified Arrhenius' equations were fitted from these rate constants (between 700 and 4000 K). Next, considering physical and chemical conditions that have supposedly prevailed on primitive atmospheres of Venus and Earth, our main results indicate that 85-88 per cent of all water forms on these atmospheres were monomers, whereas (H2O)2 and (H2O)3 complexes would represent 12-15 and ˜0 per cent, respectively. Besides, we estimate that Earth's and Venus' primitive atmospheres could have been composed by ˜0.001-0.003 per cent of HCOOH when their temperatures were around 1000-2000 K. Finally, the water loss process on Venus may have occurred by a mechanism that includes the formic acid as intermediate species.

  7. Slow spin relaxation induced by magnetic field in [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O.

    PubMed

    Vrábel, P; Orendáč, M; Orendáčová, A; Čižmár, E; Tarasenko, R; Zvyagin, S; Wosnitza, J; Prokleška, J; Sechovský, V; Pavlík, V; Gao, S

    2013-05-08

    We report on a comprehensive investigation of the magnetic properties of [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O (bpdo=4, 4'-bipyridine-N,N'-dioxide) by use of electron paramagnetic resonance, magnetization, specific heat and susceptibility measurements. The studied material was identified as a magnet with an effective spin S = 1/2 and a weak exchange interaction J/kB = 25 mK. The ac susceptibility studies conducted at audio frequencies and at temperatures from 1.8 to 9 K revealed that the application of a static magnetic field induces a slow spin relaxation. It is suggested that the relaxation in the magnetic field appears due to an Orbach-like process between the two lowest doublet energy states of the magnetic Nd(3+) ion. The appearance of the slow relaxation in a magnetic field cannot be associated with a resonant phonon trapping. The obtained results suggest that the relaxation is influenced by nuclear spin driven quantum tunnelling which is suppressed by external magnetic field.

  8. Design of plasmonic Ag-TiO2/H3PW12O40 composite film with enhanced sunlight photocatalytic activity towards o-chlorophenol degradation.

    PubMed

    Lu, Nan; Wang, Yaqi; Ning, Shiqi; Zhao, Wenjing; Qian, Min; Ma, Ying; Wang, Jia; Fan, Lingyun; Guan, Jiunian; Yuan, Xing

    2017-12-11

    A series of plasmonic Ag-TiO 2 /H 3 PW 12 O 40 composite films were fabricated and immobilized by validated preparation technique. The chemical composition and phase, optical, SPR effect and pore-structure properties together with the morphology of as-prepared composite film are well-characterized. The multi-synergies of as-prepared composite films were gained by combined action of electron-capture action via H 3 PW 12 O 40 , visible-response induced by Ag, and Schottky-junction formed between TiO 2 -Ag. Under simulated sunlight, the maximal K app of o-chlorophenol (o-CP) reached 0.0075 min -1 which was 3.95-fold larger than that of TiO 2 film, while it was restrained obviously under acid condition. In the photocatalytic degradation process, ·OH and ·O 2 - attacked preferentially ortho and para position of o-CP molecule, and accordingly the specific degradation pathways were speculated. The novel composite film exhibited an excellent applicability due to self-regeneration of H 3 PW 12 O 40 , well-protection of metal Ag° and favorable immobilization.

  9. Effect of pH on particles size and gas sensing properties of In2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Anand, Kanica; Thangaraj, Rengasamy; Singh, Ravi Chand

    2016-05-01

    In this work, indium oxide (In2O3) nanoparticles have been synthesized by co-precipitation method and the effect of pH on the structural and sensor response values of In2O3 nanoparticles has been reported. X-ray diffraction pattern (XRD) revealed the formation of cubic phase In2O3 nanoparticles. FESEM results indicate the formation of nearly spherical shape In2O3 nanoparticles. The band gap energy value changed with change in pH value and found to have highest value at pH 9. Indium oxide nanoparticles thus prepared were deposited as thick films on alumina substrates to act as gas sensors and their sensing response to ethanol vapors and LPG at 50 ppm was investigated at different operating temperatures. It has been observed that all sensors exhibited optimum response at 300°C towards ethanol and at 400°C towards LPG. In2O3 nanoparticles prepared at pH 9, being smallest in size as compared to other, exhibit highest sensor response (SR).

  10. Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system

    NASA Astrophysics Data System (ADS)

    Marion, Giles M.

    2001-06-01

    Carbonate minerals have played an important role in the geochemical evolution of Earth, and may have also played an important role in the geochemical evolution of Mars and Europa. Several models have been published in recent years that describe chloride and sulfate mineral solubilities in concentrated brines using the Pitzer equations. Few of these models are parameterized for subzero temperatures, and those that are do not include carbonate chemistry. The objectives of this work are to estimate Pitzer-equation bicarbonate-carbonate parameters and carbonate mineral solubility products and to incorporate them into the FREZCHEM model to predict carbonate mineral solubilities in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system at low temperatures (≤25°C) with a special focus on subzero temperatures. Most of the Pitzer-equation parameters and equilibrium constants are taken from the literature and extrapolated into the subzero temperature range. Solubility products for 14 sodium, potassium, magnesium, and calcium bicarbonate and carbonate minerals are included in the model. Most of the experimental data are at temperatures ≥ -8°C; only for the NaHCO 3-NaCl-H 2O and Na 2CO 3-NaCl-H 2O systems are there bicarbonate and carbonate data to temperatures as low as -21.6°C. In general, the fit of the model to the experimental data is good. For example, calculated eutectic temperatures and compositions for NaHCO 3, Na 2CO 3, and their mixtures with NaCl and Na 2SO 4 salts are in good agreement with experimental data to temperatures as low as -21.6°C. Application of the model to eight saline, alkaline carbonate waters give predicted pHs ranging from 9.2 to 10.2, in comparison with measured pHs that range from 8.7 to 10.2. The model suggests that the CaCO 3 mineral that precipitates during seawater freezing is probably calcite and not ikaite. The model demonstrates that a proposed salt assemblage for the icy surface of Europa consisting of highly hydrated MgSO 4

  11. Chlorogenic acid analogues from Gynura nepalensis protect H9c2 cardiomyoblasts against H2O2-induced apoptosis

    PubMed Central

    Yu, Bang-wei; Li, Jin-long; Guo, Bin-bin; Fan, Hui-min; Zhao, Wei-min; Wang, He-yao

    2016-01-01

    Aim: Chlorogenic acid has shown protective effect on cardiomyocytes against oxidative stress-induced damage. Herein, we evaluated nine caffeoylquinic acid analogues (1–9) isolated from the leaves of Gynura nepalensis for their protective effect against H2O2-induced H9c2 cardiomyoblast damage and explored the underlying mechanisms. Methods: H9c2 cardiomyoblasts were exposed to H2O2 (0.3 mmol/L) for 3 h, and cell viability was detected with MTT assay. Hoechst 33342 staining was performed to evaluate cell apoptosis. MMPs (mitochondrial membrane potentials) were measured using a JC-1 assay kit, and ROS (reactive oxygen species) generation was measured using CM-H2 DCFDA. The expression levels of relevant proteins were detected using Western blot analysis. Results: Exposure to H2O2 markedly decreased the viability of H9c2 cells and catalase activity, and increased LDH release and intracellular ROS production; accompanied by a loss of MMP and increased apoptotic rate. Among the 9 chlorogenic acid analogues as well as the positive control drug epigallocatechin gallate (EGCG) tested, compound 6 (3,5-dicaffeoylquinic acid ethyl ester) was the most effective in protecting H9c2 cells from H2O2-induced cell death. Pretreatment with compound 6 (1.56–100 μmol/L) dose-dependently alleviated all the H2O2-induced detrimental effects. Moreover, exposure to H2O2 significantly increased the levels of Bax, p53, cleaved caspase-8, and cleaved caspase-9, and decreased the level of Bcl-2, resulting in cell apoptosis. Exposure to H2O2 also significantly increased the phosphorylation of p38, JNK and ERK in the H9c2 cells. Pretreatment with compound 6 (12.5 and 25 μmol/L) dose-dependently inhibited the H2O2-induced increase in the level of cleaved caspase-9 but not of cleaved caspase-8. It also dose-dependently suppressed the H2O2-induced phosphorylation of JNK and ERK but not that of p38. Conclusion: Compound 6 isolated from the leaves of Gynura nepalensis potently protects H9c2

  12. Symmetry and topology code of the cluster self-assembly of framework MT structures of alumophosphates AlPO4(H2O)2 (metavariscite and variscite) and Al2(PO4)2(H2O)3 (APC)

    NASA Astrophysics Data System (ADS)

    Ilyushin, G. D.; Blatov, V. A.

    2017-03-01

    The supramolecular chemistry of alumophosphates, which form framework 3D MT structures from polyhedral AlO4(H2O)2 clusters with octahedral O coordination (of M polyhedra) and PO4 and AlO4 with tetrahedral O coordination (of T polyhedra), is considered. A combinatorial-topological modeling of the formation of possible types of linear (six types) and ring (two types) tetrapolyhedral cluster precursors M2T2 from MT monomers is carried out. Different versions of chain formation from linked (MT)2 rings (six types) are considered. The model, which has a universal character, has been used to simulate the cluster selfassembly of the crystal structure of AlPO4(H2O)2 minerals (metavariscite, m-VAR, and variscite, VAR) and zeolite [Al2(PO4)2(H2O)2] · H2O (APC). A tetrapolyhedral linear precursor is established for m-VAR and a ring precursor (MT)2 is established for VAR and APC. The symmetry and topology code of the processes of crystal structure self-assembly from cluster precursors is completely reconstructed. The functional role of the O-H···O hydrogen bonds is considered for the first time. The cluster self-assembly model explains the specific features of the morphogenesis of single crystals: m-VAR prisms, flattened VAR octahedra, and needleshaped APC square-base prisms.

  13. Enhancement of a-Si:H solar cell efficiency by Y2O3 : Yb3+, Er3+ near infrared spectral upconverter

    NASA Astrophysics Data System (ADS)

    Markose, Kurias K.; Anjana, R.; Subha, P. P.; Antony, Aldrin; Jayaraj, M. K.

    2016-09-01

    The optical properties of Yb3+/Er3+ doped Y2O3 upconversion phosphor and the enhancement of efficiency of a-Si:H solar cell on incorporation of upconverter are investigated. The Y2O3 host material has high corrosion resistance, thermal stability, chemical stability, low toxicity and relatively low phonon energy (≈ 500 cm-1). Y2O3:Yb3+ (x %): Er3+ (y %) upconversion nanophosphors with different dopant concentrations were synthesized via simple hydrothermal method followed by a heat treatment at 1200°C for 12 hrs. Highly crystalline, quasi-spherical, body centered cubic Y2O3 structure was obtained. The structure, phase and morphology of the nanocrystals were determined using x-ray diffraction and SEM. Following pumping at 980 nm two dominant emission bands were observed at about 550 nm(green) and 660 nm(red), corresponding to 2H11/2, 4S3/2 -> 4I15/2 and 4F9/2 -> 4I15/2 transitions respectively. The dependence of emission intensity on pump power shows that the mechanism involved is two photon absorption. The upconversion phosphor along with a binder is coupled behind the a-Si:H solar cell which absorbs transmitted sub-band-gap photons and emits back the upconverted visible light which can be absorbed by the solar cell. Under suitable intensity of illumination the solar cell short circuit current is found to be increased on adding the upconversion layer.

  14. The mid-IR Absorption Cross Sections of α- and β-NAT (HNO3 · 3H2O) in the range 170 to 185 K and of metastable NAD (HNO3 · 2H2O) in the range 172 to 182 K

    NASA Astrophysics Data System (ADS)

    Iannarelli, R.; Rossi, M. J.

    2015-11-01

    Growth and Fourier transform infrared (FTIR) absorption in transmission of the title nitric acid hydrates have been performed in a stirred flow reactor (SFR) under tight control of the H2O and HNO3 deposition conditions affording a closed mass balance of the binary mixture. The gas and condensed phases have been simultaneously monitored using residual gas mass spectrometry and FTIR absorption spectroscopy, respectively. Barrierless nucleation of the metastable phases of both α-NAT (nitric acid trihydrate) and NAD (nitric acid dihydrate) has been observed when HNO3 was admitted to the SFR in the presence of a macroscopic thin film of pure H2O ice of typically 1 µm thickness. The stable β-NAT phase was spontaneously formed from the precursor α-NAT phase through irreversible thermal rearrangement beginning at 185 K. This facile growth scheme of nitric acid hydrates requires the presence of H2O ice at thicknesses in excess of approximately hundred nanometers. Absolute absorption cross sections in the mid-IR spectral range (700-4000 cm-1) of all three title compounds have been obtained after spectral subtraction of excess pure ice at temperatures characteristic of the upper troposphere/lower stratosphere. Prominent IR absorption frequencies correspond to the antisymmetric nitrate stretch vibration (ν3(NO3-)) in the range 1300 to 1420 cm-1 and the bands of hydrated protons in the range 1670 to 1850 cm-1 in addition to the antisymmetric O-H stretch vibration of bound H2O in the range 3380 to 3430 cm-1 for NAT.

  15. Structure of H2Ti3O7 and its evolution during sodium insertion as anode for Na ion batteries.

    PubMed

    Eguía-Barrio, Aitor; Castillo-Martínez, Elizabeth; Zarrabeitia, Maider; Muñoz-Márquez, Miguel A; Casas-Cabanas, Montse; Rojo, Teófilo

    2015-03-14

    H2Ti3O7 was prepared as a single phase material by ionic exchange from Na2Ti3O7. The complete ionic exchange was confirmed by (1)H and (23)Na solid state Nuclear Magnetic Resonance (NMR). The atomic positions of H2Ti3O7 were obtained from the Rietveld refinement of powder X-ray diffraction (PXRD) and neutron diffraction experimental data, the latter collected at two different wavelengths to precisely determine the hydrogen atomic positions in the structure. All H(+) cations are hydrogen bonded to two adjacent [Ti3O7](2-) layers leading to the gliding of the layers and lattice centring with respect to the parent Na2Ti3O7. In contrast with a previous report where protons were located in two different positions of H2Ti3O7, 3 types of proton positions were found. Two of the three types of proton are bonded to the only oxygen linked to a single titanium atom forming an H-O-H angle close to that of the water molecule. H2Ti3O7 is able to electrochemically insert Na(+). The electrochemical insertion of sodium into H2Ti3O7 starts with a solid solution regime of the C-centred phase. Then, between 0.6 and 1.2 inserted Na(+) the reaction proceeds through a two phase reaction and a plateau at 1.3 V vs. Na(+)/Na is observed in the voltage-composition curve. The second phase resembles the primitive Na2Ti3O7 cell as detected by in situ PXRD. Upon oxidation, from 0.9 to 2.2 V, the PXRD pattern remains mostly unchanged probably due to H(+) removal instead of Na(+), with the capacity quickly fading upon cycling. Conditioning H2Ti3O7 for two cycles at 0.9-2.2 V before cycling in the 0.05-1.6 V range yields similar specific capacity and better retention than the original Na2Ti3O7 in the same voltage range.

  16. H2O2 dynamics in the malaria parasite Plasmodium falciparum

    PubMed Central

    Rahbari, Mahsa; Bogeski, Ivan

    2017-01-01

    Hydrogen peroxide is an important antimicrobial agent but is also crucially involved in redox signaling and pathogen-host cell interactions. As a basis for systematically investigating intracellular H2O2 dynamics and regulation in living malaria parasites, we established the genetically encoded fluorescent H2O2 sensors roGFP2-Orp1 and HyPer-3 in Plasmodium falciparum. Both ratiometric redox probes as well as the pH control SypHer were expressed in the cytosol of blood-stage parasites. Both redox sensors showed reproducible sensitivity towards H2O2 in the lower micromolar range in vitro and in the parasites. Due to the pH sensitivity of HyPer-3, we used parasites expressing roGFP2-Orp1 for evaluation of short-, medium-, and long-term effects of antimalarial drugs on H2O2 levels and detoxification in Plasmodium. None of the quinolines or artemisinins tested had detectable direct effects on the H2O2 homeostasis at pharmacologically relevant concentrations. However, pre-treatment of the cells with antimalarial drugs or heat shock led to a higher tolerance towards exogenous H2O2. The systematic evaluation and comparison of the two genetically encoded cytosolic H2O2 probes in malaria parasites provides a basis for studying parasite-host cell interactions or drug effects with spatio-temporal resolution while preserving cell integrity. PMID:28369083

  17. Felix Spectroscopy of Likely Astronomical Molecular Ions: HC_3O^+, C_2H_3CNH^+, and C_2H_5CNH^+

    NASA Astrophysics Data System (ADS)

    Thorwirth, Sven; Asvany, Oskar; Brünken, Sandra; Jusko, Pavol; Schlemmer, Stephan; Martin-Drumel, Marie-Aline; McCarthy, Michael C.

    2017-06-01

    Infrared signatures of three molecular ions of relevance to the interstellar medium and planetary atmospheres have been detected at the Free Electron Laser for Infrared eXperiments, FELIX, at Radboud University (Nijmegen, The Netherlands) in combination with the 4K FELion 22-pole ion trap facility. Mid-infrared vibrational modes of protonated tricarbon monoxide, HC_3O^+, protonated vinyl cyanide, C_2H_3CNH^+, and protonated ethyl cyanide, C_2H_5CNH^+, were detected using resonant photodissociation of the respective Ne-complexes by monitoring the depletion of their cluster mass signal as a function of wavenumber. The infrared fingerprints compare very favorably with results from high-level quantum-chemical calculations performed at the CCSD(T) level of theory.

  18. Synthesis and Absorption Properties of Hollow-spherical Dy2Cu2O5 via a Coordination Compound Method with [DyCu(3,4-pdc)2(OAc)(H2O)2]•10.5H2O Precursor.

    PubMed

    Liu, Xuanwen; You, Junhua; Wang, Renchao; Ni, Zhiyuan; Han, Fei; Jin, Lei; Ye, Zhiqi; Fang, Zhao; Guo, Rui

    2017-10-12

    Dy 2 Cu 2 O 5 nanoparticles with perovskite structures were synthesized via a simple solution method (SSM) and a coordination compound method (CCM) using [DyCu(3,4-pdc) 2 (OAc)(H 2 O) 2 ]•10.5H 2 O (pdc = 3,4-pyridinedicarboxylic acid) as precursor. The as-prepared samples were structurally characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), x-ray photoelectron spectroscopy (XPS) and standard Brunauer-Emmett-Teller (BET) methods. Compared to the aggregated hexahedral particles prepared by SSM, the Dy 2 Cu 2 O 5 of CCM showed hollow spherical morphology composed of nanoparticles with average diameters of 100-150 nm and a larger special surface area up to 36.5 m 2 /g. The maximum adsorption capacity (Q m ) of CCM for malachite green (MG) determined by the adsorption isotherms with different adsorbent dosages of 0.03-0.07 g, reached 5.54 g/g at room temperature. The thermodynamic parameters of adsorption process were estimated by the fittings of the isotherms at 298, 318, and 338 K, and the kinetic parameters were obtained from the time-dependent adsorption isotherms. The results revealed that the adsorption process followed a pseudo-second-order reaction. Finally, the adsorption mechanism was studied using a competitive ion (CI) experiments, and the highly efficient selective adsorption was achieved due to strong O-Cu and O-Dy coordination bonds between Dy 2 Cu 2 O 5 and MG.

  19. Hydrogen atom migration in the oxidation of aldehydes - O(3P) + H2CO

    NASA Technical Reports Server (NTRS)

    Dupuis, M.; Lester, W. A., Jr.

    1984-01-01

    An ab initio study of hydrogen atom migration in methylenebis(oxy)H2CO2(3B2) to form triplet formic acid HCOOH (3A1) is reported. From HF, MCHF, and CI calculated energy barriers, the activation energy is estimated to be no less than 30 kcal/mol. It is concluded that the hydrogen migration channel is not accessible in recent room temperature experiments on the O(3P) + H2CO reaction.

  20. Simulating equilibrium processes in the Ga(NO3)3-H2O-NaOH system

    NASA Astrophysics Data System (ADS)

    Fedorova, E. A.; Bakhteev, S. A.; Maskaeva, L. N.; Yusupov, R. A.; Markov, V. F.

    2016-06-01

    Equilibrium processes in the Ga(NO3)3-H2O-NaOH system are simulated with allowance for the formation of precipitates of various compositions using experimental data from potentiometric titration and theoretical studies. The values of the instability constants are calculated along with the stoichiometric compositions of the resulting compounds. It is found that pH ranges of 1.0 to 4.3 and 12.0 to 14.0 are best for the deposition of gallium chalcogenide films.

  1. KCd2[N(CN)2]5(H2O)4: an enmeshed honeycomb grid.

    PubMed

    Schlueter, John A; Geiser, Urs; Funk, Kylee A

    2008-02-01

    The title compound, poly[potassium [diaquapenta-micro(2)-dicyanamido-dicadmium(II)] dihydrate], {K[Cd(2)(C(2)N(3))(5)(H(2)O)(2)].2H(2)O}(n), contains two-dimensional anionic sheets of {[Cd(2){N(CN)(2)}(H(2)O)(2)](-)}(n) with a modified (6,3)-net (layer group cm2m, No. 35). Two sets of equivalent sheets interpenetrate orthogonally to form a tetragonal enmeshed grid.

  2. Metal-organic framework: Structure and magnetic properties of [Cu3(BTC)2 (L)x·(CuO)y]n (L=H2O, DMF)

    NASA Astrophysics Data System (ADS)

    da Silva, Gilvaldo G.; Machado, F. L. A.; Junior, S. Alves; Padrón-Hernández, E.

    2017-09-01

    The compounds [Cu3(BTC)2(L)x·(CuO)y], with BTC (benzene 1,3,5-tricarboxylate) and L (H2O or DMF) were prepared using electrochemical synthesis. Structural and morphologic characterizations were performed by X-ray diffraction and scanning electronic microscopy. The [Cu3(BTC)2 (L)x·(CuO)y] contain dimeric [Cu2(O2CR)]4 units with three possible spin configurations arising from Cu(II) 3d9 states and Cu-Cu δ bond. We observed an unusual very strong antiferromagnetic coupling in temperatures ranging from 100 K to 350 K for [Cu3(BTC)2.(H2O)3. (CuO)y]n. The inverse susceptibility versus temperature shows a linearity from 20 K up to 65 K fitting the Curie-Weiss law, for L = DMF. The CW X-band electron paramagnetic resonance spectroscopy (EPR) was important to explore the coordination state for DMF in the network. It was observed that DMF is located in an equatorial geometry of the coordination network experimenting interactions from the nitrogen and copper ions.

  3. Oxothiomolybdenum derivatives of the superlacunary crown heteropolyanion {P8W48}: structure of [K4{Mo4O4S4(H2O)3(OH)2}2(WO2)(P8W48O184)]30– and studies in solution.

    PubMed

    Korenev, Vladimir S; Floquet, Sébastien; Marrot, Jérôme; Haouas, Mohamed; Mbomekallé, Israël-Martyr; Taulelle, Francis; Sokolov, Maxim N; Fedin, Vladimir P; Cadot, Emmanuel

    2012-02-20

    Reaction of the cyclic lacunary [H(7)P(8)W(48)O(184)](33-) anion (noted P(8)W(48)) with the [Mo(2)S(2)O(2)(H(2)O)(6)](2+) oxothiocation led to two compounds, namely, [K(4){Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(WO(2))(P(8)W(48)O(184))](30-) (denoted 1) and [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) (denoted 2), which were characterized in the solid state and solution. In the solid state, the structure of [K(4){Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(WO(2))(P(8)W(48)O(184))](30-) reveals the presence of two disordered {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) "handles" connected on both sides of the P(8)W(48) ring. Such a disorder is consistent with the presence of two geometrical isomers where the relative disposition of the two {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) handles are arranged in a perpendicular or parallel mode. Such an interpretation is fully supported by (31)P and (183)W NMR solution studies. The relative stability of both geometrical isomers appears to be dependent upon the nature of the internal alkali cations, i.e., Na(+) vs K(+), and increased lability of the two {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) handles, compared to the oxo analogous, was clearly identified by significant broadening of the (31)P and (183)W NMR lines. Solution studies carried out by UV-vis spectroscopy showed that formation of the adduct [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) occurs in the 1.5-4.7 pH range and corresponds to a fast and quantitative condensation process. Furthermore, (31)P NMR titrations in solution reveal formation of the "monohandle" derivative [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(P(8)W(48)O(184))](38-) as an intermediate prior to formation of the "bishandle" derivatives. Furthermore, the electrochemical behavior of [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) was studied in aqueous medium and compared with the parent anion P(8)W(48).

  4. Studies of CW lasing action in CO2-CO, N2O-CO, CO2-H2O, and N2O-H2O mixtures pumped by blackbody radiation

    NASA Technical Reports Server (NTRS)

    Abel, Robert W.; Christiansen, Walter H.; Li, Jian-Guo

    1988-01-01

    A proof of principle experiment to evaluate the efficacy of CO and H2O in increasing the power output for N2O and CO2 lasing mixtures has been conducted and theoretically analyzed for a blackbody radiation-pumped laser. The results for N2O-CO, CO2-CO, N2O-H2O and CO2-H2O mixtures are presented. Additions of CO to the N2O lasant increased power up to 28 percent for N2O laser mixtures, whereas additions of CO to the CO2 lasant, and the addition of H2O to both the CO2 and N2O lasants, resulted in decreased output power.

  5. Emission analysis of RE3+ (RE = Sm, Dy):B2O3-TeO2-Li2O-AlF3 glasses.

    PubMed

    Raju, C Nageswara; Sailaja, S; Kumari, S Pavan; Dhoble, S J; Kumar, V Ramesh; Ramanaiah, M V; Reddy, B Sudhakar

    2013-01-01

    This article reports on the optical properties of 0.5% mol of Sm(3+), Dy(3+) ion-doped B2O3-TeO2-Li2O-AlF3 (LiAlFBT) glasses. The glass samples were characterized by optical absorption and emission spectra. Judd-Ofelt theory was applied to analyze the optical absorption spectra and calculate the intensity parameters and radiative properties of the emission transitions. The emission spectra of Sm(3+) and Dy(3+):LiAlFBT glasses showed a bright reddish-orange emission at 598 nm ((4)G5/2 → (6)H7/2) and an intense yellow emission at 574 nm ((4)F9/2 → (6)H13/2), respectively. Full width at half maximum (FWHM), stimulated emission cross section, gain bandwidth and optical gain values were also calculated to extend the applications of the Sm(3+) and Dy(3+):LiAlFBT glasses. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Nqrs Data for C26H38N2O3 (Subst. No. 1607)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C26H38N2O3 (Subst. No. 1607)

  7. Orientational disorder in sodium cadmium trifluoride trihydrate, NaCdF{sub 3}.3H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Robert W.; Mar, Arthur; Liu Jianjun

    2006-03-09

    Attempts to synthesize the hypothetical anhydrous fluoroperovskite NaCdF{sub 3}, which has been predicted to be stable, resulted instead in a hydrated fluoride of nominal composition NaCdF{sub 3}.3H{sub 2}O. It decomposes to sodium fluoride, cadmium fluoride, and water at 60deg. C. Its structure has been determined by single-crystal X-ray diffraction. Na{sub 0.92(2)}Cd{sub 1.08}F{sub 3.08}.2.92H{sub 2}O crystallizes in the cubic space group Fm3-bar m with a=8.2369(4)A and Z=4. The structure is based on the NaSbF{sub 6}-type (an ordered variant of the ReO{sub 3}-type) and features tilted sodium- and cadmium-centred octahedra that are linked by shared vertices to form a three-dimensional network. Substitutionalmore » disorder occurs on the nonmetal site, which is occupied by both F and O atoms, and on one of the metal sites, which is occupied by 92% Na and 8% Cd. A four-fold orientational disorder of the tilted octahedra is manifested as partial occupancy (25%) of the nonmetal site. A scheme to synthesize the anhydrous fluoride is presented.« less

  8. Influence of pH and europium concentration on the luminescent and morphological properties of Y2O3 powders

    NASA Astrophysics Data System (ADS)

    Esquivel-Castro, Tzipatly; Carrillo-Romo, Felipe de J.; Oliva-Uc, Jorge; García-Murillo, Antonieta; Hirata-Flores, Gustavo A.; Cayetano-Castro, Nicolás; De la Rosa, Elder; Morales-Ramírez, Angel de J.

    2015-10-01

    This work reports on the synthesis and characterization of Y2O3:Eu3+ powders obtained by the hydrothermal method. We studied the influence of different pH values (7-12) and Eu3+ concentrations (2.5-25 mol%) on the structural, morphological and luminescent characteristics of Y2O3:Eu3+ powders. The hydrothermal synthesis was performed at 200 °C for 12 h by employing Y2O3, HNO3, H2O and Eu (NO3)3 as precursors, in order to obtain two sets of samples. The first set of powders was obtained with different pH values and named Eu5PHx (x = 7, 8, 9, 10, 11, and 12), and the second set was obtained by using a constant pH = 7 with different Eu concentrations, named EuxPH7 (x = 2.5, 5, 8, 15, 20 and 25). The XRD spectra showed that the Y2O3:Eu3+ powders exhibited a cubic phase, regardless of the pH values and Eu3+ concentrations. The SEM observations indicated that pH influenced the morphology and size of phosphors; for instance, for pH = 7, hexagonal microplatelets were obtained, and microrods at pH values from 8 to 12. Doping Y2O3 with various Eu3+ concentrations (in mol%) also produced changes in morphology, in these cases, hexagonal microplatelets were obtained in the range of 2.5-5 mol%, and non uniform plates were observed at higher doping concentrations ranging from 8 to 25 mol%. According to our results, the microplatelets synthesized with a pH of 7 and an 8 mol% Eu3+ concentration presented the highest luminescence under excitation at 254 nm. All of these results indicate that our phosphors could be useful for applications of controlled drug delivery, photocatalysis and biolabeling.

  9. Three-dimensional WS2 nanosheet networks for H2O2 produced for cell signaling

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Quan, Yingzhou; Zhang, Yueyu; Jiang, Min; Al-Enizi, Abdullah M.; Kong, Biao; An, Tiance; Wang, Wenshuo; Xia, Limin; Gong, Xingao; Zheng, Gengfeng

    2016-03-01

    Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in living RAW 264.7 macrophage cells and neurons. First-principles calculations further demonstrate that the enhanced sensitivity of probing H2O2 is attributed to the efficient and spontaneous H2O2 adsorption on WS2 nanosheet edge sites. The combined features of 3D WS2 nanosheet networks suggest attractive new opportunities for exploring the physiological roles of reactive oxygen species like H2O2 in living systems.Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in

  10. [Ph(3)PCH(2)Ph](2)[Zn(3)(tp)(3)Cl(2)] and Ni(3)(tma)(2)(H(2)O)(8): two unusual claylike frameworks of metal-polycarboxylate coordination polymers (tp = terephthalate, tma = trimesate).

    PubMed

    Yang, Guo-Dong; Dai, Jing-Cao; Lian, Yun-Xia; Wu, Wen-Shi; Lin, Jian-Ming; Hu, Sheng-Min; Sheng, Tian-Lu; Fu, Zhi-Yong; Wu, Xin-Tao

    2007-09-17

    Two new compounds, [Ph3PCH2Ph]2[Zn3(tp)3Cl2] (1) and Ni3(tma)2(H2O)8 (2) (tp = terephthalate, tma = trimesate), are metal-polycarboxylate coordination polymers prepared by similar hydrothermal synthesis techniques. X-ray single-crystal structural analysis shows that both compounds crystallize in the 2D claylike lamellar architectures, in which 1 possesses the interlayer [Ph3PCH2Ph]+ exchangeable cation and has been confirmed by PXRD patterns. 1 (C74H56Cl2O12P2Zn3) belongs to monoclinic P21/c, Z = 2 (a = 18.956(1) A, b = 10.2697(5) A, c = 17.067(1) A, beta = 99.486(4) degrees ). 2 (C18H22O20Ni3) is attributed to triclinic P, Z = 1 (a = 6.6643(8) A, b = 9.622(1) A, c = 10.089(1) A, alpha = 112.675(2) degrees , beta = 94.007(1) degrees, gamma = 106.411(2) degrees ). Linear metal trinuclear clusters bridged by rigid linear tp ligands for 1 and trigonal tma ligands for 2 give rise to a novel 2D 6-linked (3,6) topological anionic network in 1 and an interesting 2D 3,6-linked molybdenite topological neutral network in 2, respectively. Both compounds exhibit intense fluorescent emission bands at 410 nm (lambda(exc) = 355 nm) for 1 and 398 nm (lambda(exc) = 300 nm) for 2 in the solid state at room temperature.

  11. Novel Process of Simultaneous Removal of Nitric Oxide and Sulfur Dioxide Using a Vacuum Ultraviolet (VUV)-Activated O2/H2O/H2O2 System in A Wet VUV-Spraying Reactor.

    PubMed

    Liu, Yangxian; Wang, Qian; Pan, Jianfeng

    2016-12-06

    A novel process for NO and SO 2 simultaneous removal using a vacuum ultraviolet (VUV, with 185 nm wavelength)-activated O 2 /H 2 O/H 2 O 2 system in a wet VUV-spraying reactor was developed. The influence of different process variables on NO and SO 2 removal was evaluated. Active species (O 3 and ·OH) and liquid products (SO 3 2- , NO 2 - , SO 4 2- , and NO 3 - ) were analyzed. The chemistry and routes of NO and SO 2 removal were investigated. The oxidation removal system exhibits excellent simultaneous removal capacity for NO and SO 2 , and a maximum removal of 96.8% for NO and complete SO 2 removal were obtained under optimized conditions. SO 2 reaches 100% removal efficiency under most of test conditions. NO removal is obviously affected by several process variables. Increasing VUV power, H 2 O 2 concentration, solution pH, liquid-to-gas ratio, and O 2 concentration greatly enhances NO removal. Increasing NO and SO 2 concentration obviously reduces NO removal. Temperature has a dual impact on NO removal, which has an optimal temperature of 318 K. Sulfuric acid and nitric acid are the main removal products of NO and SO 2 . NO removals by oxidation of O 3 , O·, and ·OH are the primary routes. NO removals by H 2 O 2 oxidation and VUV photolysis are the complementary routes. A potential scaled-up removal process was also proposed initially.

  12. Ab-initio study of the energetics and thermodynamics of the reaction CH3H + O( 3P) → CF3HO → CF3 + OH

    NASA Astrophysics Data System (ADS)

    Kreye, W. C.

    1996-07-01

    Ab-initio computations at 298.15 K were made of the activation quantities ΔH ‡, ΔS ‡, and ΔG ‡ and of the reaction quantities ΔHr and ΔSr for CF3H + O( 3P) → CF3HO → .CF3.OH. CF 3HO is the transition state (TS). GAUSSIAN92 was used and energies computed at a slightly modified Gaussian-2 level. Two potential surfaces for the TS had symmetries 3A' and 3A″. The two rate constants included a semi-classical, quantum-mechanical-tunneling transmission coefficient. The ab-initio ΔH ‡and ΔH r values were in excellent agreement (± 1 kcal/mol) with experiment; but the ΔS ‡, ΔG ‡, and ΔS r values yielded somewhat poorer agreement. Experimental and ab-initio structures were in excellent agreement.

  13. A nine-dimensional ab initio global potential energy surface for the H2O+ + H2H3O+ + H reaction

    NASA Astrophysics Data System (ADS)

    Li, Anyang; Guo, Hua

    2014-06-01

    An accurate full-dimensional global potential energy surface (PES) is developed for the title reaction. While the long-range interactions in the reactant asymptote are represented by an analytical expression, the interaction region of the PES is fit to more than 81 000 of ab initio points at the UCCSD(T)-F12b/AVTZ level using the permutation invariant polynomial neural network approach. Fully symmetric with respect to permutation of all four hydrogen atoms, the PES provides a faithful representation of the ab initio points, with a root mean square error of 1.8 meV or 15 cm-1. The reaction path for this exoergic reaction features an attractive and barrierless entrance channel, a submerged saddle point, a shallow H4O+ well, and a barrierless exit channel. The rate coefficients for the title reaction and kinetic isotope effect have been determined on this PES using quasi-classical trajectories, and they are in good agreement with available experimental data. It is further shown that the H2O+ rotational enhancement of reactivity observed experimentally can be traced to the submerged saddle point. Using our recently proposed Sudden Vector Projection model, we demonstrate that a rotational degree of freedom of the H2O+ reactant is strongly coupled with the reaction coordinate at this saddle point, thus unraveling the origin of the pronounced mode specificity in this reaction.

  14. Crystal structure of Rb{sub 2}Mn{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2}, a new representative of the family of hydrated diphosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiriukhina, G. V., E-mail: g-biralo@yandex.ru; Yakubovich, O. V.; Dimitrova, O. V.

    2016-09-15

    The crystal structure of Rb{sub 2}Mn{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2}, a new phase obtained in the form of single crystals under hydrothermal conditions in the MnCl{sub 2}–Rb{sub 3}PO{sub 4}–H{sub 2}O system, is determined by X-ray diffraction (Xcalibur-S-CCD diffractometer, R = 0.0270): a = 9.374(2), b = 8.367(2), c = 9.437(2) Å, ß = 99.12(2)°, space group P2{sub 1}/c, Z = 2, D{sub x} = 3.27 g/cm{sup 3}. A correlation between the unit-cell parameters and the size of cations forming the crystal structures of isostructural A{sub 2}M{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2} diphosphates (A = K, NH{sub 4},more » Rb, or Na; {sub M} = Mn, Fe, Co, or Ni) is revealed. It is shown that, due to the topological similarity, the structures of diphosphates and orthophosphates of the farringtonite structural type can undergo mutual transformations.« less

  15. CO2-assisted fabrication of novel heterostructures of h-MoO3/1T-MoS2 for enhanced photoelectrocatalytic performance

    NASA Astrophysics Data System (ADS)

    Zhu, Chuanhui; Xu, Qun; Liu, Wei; Ren, Yumei

    2017-12-01

    Combining the peculiar properties of different ingredients in one ultimate material is an efficient route to achieve the desired functional materials. Compared to 2H-MoS2, 1T-MoS2 nanosheets display the perfect performance of hydrogen evolution reaction (HER) because of the excellent electronic conductivity. However, how to further realize HER in the visual and near-infrared (NIR) region is a great challenge. Herein, we develop an efficient method to locally pattern h-MoO3 on the ultrathin metallic 1T-MoS2 nanosheets and obtain the novel heterostructures of h-MoO3/1T-MoS2. The enhanced photoelectrochemical performance of the as-prepared heterostructures has been demonstrated. Our study indicates it is originated from the synergistic effect between h-MoO3 and 1T-MoS2, i.e., the strong optical absorption of h-MoO3 in the visible and NIR region, the excellent electronic conductivity of 1T-MoS2 and as well as the efficient separation of the photo-induced carriers from the heterostructures.

  16. Crystal structure of the tri-ethyl-ammonium salt of 3-[(4-hy-droxy-3-meth-oxy-phen-yl)(4-hy-droxy-2-oxo-2H-chromen-3-yl)meth-yl]-2-oxo-2H-chromen-4-olate.

    PubMed

    Ikram, Muhammad; Rehman, Sadia; Khan, Afzal; Schulzke, Carola

    2018-03-01

    The reaction between 3,3'-[(3-meth-oxy-4-hy-droxy-phen-yl)methanedi-yl]bis-(4-hy-droxy-2 H -chromen-2-one) and tri-ethyl-amine in methanol yielded the title compound tri-ethyl-ammonium 3-[(4-hy-droxy-3-meth-oxy-phen-yl)(4-hy-droxy-2-oxo-2 H -chromen-3-yl)meth-yl]-2-oxo-2 H -chromen-4-olate, C 6 H 16 N + ·C 26 H 17 O 8 - or (NHEt 3 ) + (C 26 H 17 O 8 ) - , which crystallized directly from its methano-lic mother liquor. The non-deprotonated coumarol substituent shares its H atom with the deprotonated coumarolate substituent in a short negative charge-assisted hydrogen bond in which the freely refined H atom is moved from its parent O atom towards the acceptor O atom, elongating the covalent O-H bond to 1.18 (3) Å. The respective H atom can therefore be described as being shared by two alcohol O atoms, culminating in the formation of an eight-membered ring.

  17. Synthesis, structure and reactivity of rare-earth metallacarborane alkyls [η(1):η(5)-O(CH2)2C2B9H9]Ln(σ:η(1)-CH2C6H4-o-NMe2)(THF)2.

    PubMed

    Yang, Jingying; Xie, Zuowei

    2015-04-14

    Rare-earth metallacarborane alkyls can be stabilized by the incorporation of a functional sidearm into both π and σ ligands. Reaction of [Me3NH][7,8-O(CH2)2-7,8-C2B9H10] with one equiv. of Ln(CH2C6H4-o-NMe2)3 gave metallacarborane alkyls [η(1):η(5)-O(CH2)2C2B9H9]Ln(σ:η(1)-CH2C6H4-o-NMe2)(THF)2 (Ln = Y (), Gd (), Er ()) via alkane elimination. They represent the first examples of rare-earth metallacarborane alkyls. Treatment of with RN[double bond, length as m-dash]C[double bond, length as m-dash]NR (R = Cy, (i)Pr) or 2-benzoylpyridine afforded the corresponding mono-insertion products [η(1):η(5)-O(CH2)2C2B9H9]Y[η(2)-(RN)2C(CH2C6H4-o-NMe2)](DME) (R = Cy (), (i)Pr ()) or [η(1):η(5)-O(CH2)2C2B9H9]Y[C5H4NC(Ph)(CH2C6H4-o-NMe2)O](THF)2 (), respectively. Complex also reacted with ArNCO or ArNC (Ar = 2,6-diisopropylphenyl, 2,6-dimethylphenyl) to give di-insertion products [η(1):η(5)-O(CH2)2C2B9H9]Y[OC([double bond, length as m-dash]NC6H3Me2)N(C6H3Me2)C(CH2C6H4-o-NMe2)O](THF)2 () or [η(1):η(5)-O(CH2)2C2B9H9]Y[C([double bond, length as m-dash]NC6H3(i)Pr2)C([double bond, length as m-dash]NC6H3(i)Pr2)(CH2C6H4-o-NMe2)](DME) (). These results showed that the reactivity pattern of the Ln-C σ bond in rare-earth metallacarborane alkyls was dependent on the nature of the unsaturated organic molecules. New complexes were characterized by various spectroscopic techniques and elemental analysis. Some were further confirmed by single-crystal X-ray analysis.

  18. Comparison of the frequencies of NH3, CO2, H2O, N2O, CO, and CH4 as infrared calibration standards

    NASA Technical Reports Server (NTRS)

    Brown, L. R.; Toth, R. A.

    1985-01-01

    The absolute accuracies of infrared calibration standards for the line positions have been investigated using a 0.0056-kayser-resolution (unapodized) Fourier-transform spectrum recorded from 550 to 5000 kayser. The spectrum has been obtained using a multicell arrangement containing the various molecular species. Detailed comoparisons reveal that standards for CO2, CH4, and N2O obtained from laser research and NH3 from Fourier-transform spectrometer research are consistent within the accuracies of the present data (+ or 0.0001 kayser). However, certain N2O, H2O, and CO values in the 1100-to 2300 kayser region are systematically high by 0.0001 to 0.0004 kayser. Correction factors for the H2O and CO standards are obtained to bring these into agreement with the laser values. In addition, corrected values for the 2nu-2 and nu-1 bands of N2O at 9 microns are reported.

  19. Probing the kinetic energy-release dynamics of H-atom products from the gas-phase reaction of O(3P) with vinyl radical C2H3.

    PubMed

    Jang, Su-Chan; Choi, Jong-Ho

    2014-11-21

    The gas-phase radical-radical reaction dynamics of ground-state atomic oxygen O((3)P) with vinyl radicals C2H3 has been studied by combining the results of vacuum-ultraviolet laser-induced fluorescence spectroscopy in a crossed beam configuration with ab initio calculations. The two radical reactants O((3)P) and C2H3 were produced by photolysis of NO2 and supersonic flash pyrolysis of C2H3I, respectively. Doppler profile analysis of the kinetic energy release of the nascent H-atom products from the title reaction O((3)P) + C2H3H((2)S) + CH2CO (ketene) revealed that the average translational energy of the products and the average fraction of the total available energy were 7.03 ± 0.30 kcal mol(-1) and 7.2%. The empirical data combined with CBS-QB3 level ab initio theory and statistical calculations demonstrated that the title oxygen-hydrogen exchange reaction is a major reaction channel, through an addition-elimination mechanism involving the formation of a short-lived, dynamical complex on the doublet potential energy surface. On the basis of systematic comparison with several exchange reactions of hydrocarbon radicals, the observed kinetic energy release can be explained in terms of the weak impulse at the moment of decomposition in the loose transition state with a product-like geometry and a small reverse barrier along the exit channel.

  20. Water Ice Radiolytic O2, H2, and H2O2 Yields for Any Projectile Species, Energy, or Temperature: A Model for Icy Astrophysical Bodies

    NASA Astrophysics Data System (ADS)

    Teolis, B. D.; Plainaki, C.; Cassidy, T. A.; Raut, U.

    2017-10-01

    O2, H2, and H2O2 radiolysis from water ice is pervasive on icy astrophysical bodies, but the lack of a self-consistent, quantitative model of the yields of these water products versus irradiation projectile species and energy has been an obstacle to estimating the radiolytic oxidant sources to the surfaces and exospheres of these objects. A major challenge is the wide variation of O2 radiolysis yields between laboratory experiments, ranging over 4 orders of magnitude from 5 × 10-7 to 5 × 10-3 molecules/eV for different particles and energies. We revisit decades of laboratory data to solve this long-standing puzzle, finding an inverse projectile range dependence in the O2 yields, due to preferential O2 formation from an 30 Å thick oxygenated surface layer. Highly penetrating projectile ions and electrons with ranges ≳30 Å are therefore less efficient at producing O2 than slow/heavy ions and low-energy electrons (≲ 400 eV) which deposit most energy near the surface. Unlike O2, the H2O2 yields from penetrating projectiles fall within a comparatively narrow range of (0.1-6) × 10-3 molecules/eV and do not depend on range, suggesting that H2O2 forms deep in the ice uniformly along the projectile track, e.g., by reactions of OH radicals. We develop an analytical model for O2, H2, and H2O2 yields from pure water ice for electrons and singly charged ions of any mass and energy and apply the model to estimate possible O2 source rates on several icy satellites. The yields are upper limits for icy bodies on which surface impurities may be present.

  1. GaAs micromachining in the 1 H2SO4:1 H2O2:8 H2O system. From anisotropy to simulation

    NASA Astrophysics Data System (ADS)

    Tellier, C. R.

    2011-02-01

    The bulk micromachining on (010), (110) and (111)A GaAs substrates in the 1 H2SO4:1 H2O2:8 H2O system is investigated. Focus is placed on anisotropy of 3D etching shapes with a special emphasis on convex and concave undercuts which are of prime importance in the wet micromachining of mechanical structures. Etched structures exhibit curved contours and more and less rounded sidewalls showing that the anisotropy is of type 2. This anisotropy can be conveniently described by a kinematic and tensorial model. Hence, a database composed of dissolution constants is further determined from experiments. A self-elaborated simulator which works with the proposed database is used to derive theoretical 3D shapes. Simulated shapes agree well with observed shapes of microstructures. The successful simulations open up two important applications for MEMS: CAD of mask patterns and meshing of simulated shapes for FEM simulation tools.

  2. Cell-Cell Communication Between Fibroblast and 3T3-L1 Cells Under Co-culturing in Oxidative Stress Condition Induced by H2O2.

    PubMed

    Subramaniyan, Sivakumar Allur; Kim, Sidong; Hwang, Inho

    2016-10-01

    The present study was carried out to understand the interaction between fibroblast and 3T3-L1 preadipocyte cells under H 2 O 2 -induced oxidative stress condition. H 2 O 2 (40 μM) was added in co-culture and monoculture of fibroblast and 3T3-L1 cell. The cells in the lower well were harvested for analysis and the process was carried out for both cells. The cell growth, oxidative stress markers, and antioxidant enzymes were analyzed. Additionally, the mRNA expressions of caspase-3 and caspase-7 were selected for analysis of apoptotic pathways and TNF-α and NF-κB were analyzed for inflammatory pathways. The adipogenic marker such as adiponectin and PPAR-γ and collagen synthesis markers such as LOX and BMP-1 were analyzed in the co-culture of fibroblast and 3T3-L1 cells. Cell viability and antioxidant enzymes were significantly increased in the co-culture compared to the monoculture under stress condition. The apoptotic, inflammatory, adipogenic, and collagen-synthesized markers were significantly altered in H 2 O 2 -induced co-culture of fibroblast and 3T3-L1 cells when compared with the monoculture of H 2 O 2 -induced fibroblast and 3T3-L1 cells. In addition, the confocal microscopical investigation indicated that the co-culture of H 2 O 2 -induced 3T3-L1 and fibroblast cells increases collagen type I and type III expression. From our results, we suggested that co-culture of fat cell (3T3-L1) and fibroblast cells may influence/regulate each other and made the cells able to withstand against oxidative stress and aging. It is conceivable that the same mechanism might have been occurring from cell to cell while animals are stressed by various environmental conditions.

  3. Structure–property relations of orthorhombic [(CH{sub 3}){sub 3}NCH{sub 2}COO]{sub 2}(CuCl{sub 2}){sub 32H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haussühl, Eiken, E-mail: haussuehl@kristall.uni-frankfurt.de; Schreuer, Jürgen; Wiehl, Leonore

    2014-04-01

    Large single crystals of orthorhombic [(CH{sub 3}){sub 3}NCH{sub 2}COO]{sub 2}(CuCl{sub 2}){sub 32H{sub 2}O with dimensions up to 40×40×30 mm{sup 3} were grown from aqueous solutions. The elastic and piezoelastic coefficients were derived from ultrasonic resonance frequencies and their shifts upon variation of pressure, respectively, using the plate-resonance technique. Additionally, the coefficients of thermal expansion were determined between 95 K and 305 K by dilatometry. The elastic behaviour at ambient conditions is dominated by the 2-dimensional network of strong hydrogen bonds within the (001) plane leading to a corresponding pseudo-tetragonal anisotropy of the longitudinal elastic stiffness. The variation of elastic propertiesmore » with pressure, however, as well as the thermal expansion shows strong deviations from the pseudo-tetragonal symmetry. These deviations are probably correlated with tilts of the elongated tri-nuclear betaine–CuCl{sub 2}–water complexes. Neither the thermal expansion nor the specific heat capacity gives any hint on a phase transition in the investigated temperature range. - Graphical abstract: Single crystal of orthorhombic [(CH{sub 3}){sub 3}NCH{sub 2}COO]{sub 2}(CuCl{sub 2}){sub 32H{sub 2}O. - Highlights: • Large single crystals (40 ×40 ×30 mm{sup 3}) of [(CH{sub 3}){sub 3}NCH{sub 2}COO]{sub 2}(CuCl{sub 2}){sub 32H{sub 2}O were grown. • The elastic and piezoelastic coefficients were derived from ultrasonic resonance frequencies. • Thermal expansion (95 K–305 K) and heat capacity (113 K–323 K) were determined. • The orthorhombic structure shows pseudo-tetragonal elastic anisotropy at ambient conditions. • The crystal structure is stable in the investigated range (1–1600 bar, 95–303 K)« less

  4. The role of electric field in enhancing separation of gas molecules (H2S, CO2, H2O) on VIB modified g-C3N4 (0 0 1)

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Li, Penghui; Wei, Shiqian; Guo, Jiaxing; Dan, Meng; Zhou, Ying

    2018-07-01

    In this study, the first-principles calculations were performed to investigate the adsorption behaviors of gas molecules H2S, CO2 and H2O on Cr, Mo and W modified g-C3N4 (0 0 1) surface. The results show that H2S, CO2 and H2O are physically adsorbed on the pristine g-C3N4, while the adsorption becomes chemisorbed due to the introduction of transition metals which significantly improve the interfacial electron transfer and narrow the band gap of g-C3N4 (0 0 1). Furthermore, it is found that the adsorption behaviors can be greatly influenced by the applied electric field. The adsorption energy is generally arranged in the order of Eads(H2S) > Eads(H2O) > Eads(CO2), and W/g-C3N4 (0 0 1) exhibits the best separation capability. The study could provide a versatile approach to selectively capture and separate the mixed gases in the catalytic reactions by controlling the applied intensity of electric field.

  5. Crystal structures of [NEt3H]5[XCoIIW11O39]·3H2O (X = P or As)

    USGS Publications Warehouse

    Evans, H.T.; Weakley, T.J.R.; Jameson, G.B.

    1996-01-01

    The orthorhombic crystal structures of [NEt3H]5[XCoIIW11O39]·3H2O for X = P and As have been determined with data collected at room temperature, and for X = P at –100 °C, using Mo-Kα radiation. For the latter the space group is Pna21, a= 21.670(11), b= 14.805(4), c= 20.393(5)Å and Z= 4. The structure consists of chains of α-Keggin-type molecules joined by W–O–links aligned in the a-axis direction. The Co/W occupancy at the link is disordered, with 61% Co on one side and 39% on the other. Further probable disorder, by lamellar merohedral twinning on (001) and by misorientation of the triethylammonium ions, has obscured the ethyl groups and the water molecules. In polarized light the crystals are deep wine-red normal to the chains (in the b direction), but nearly colourless in the a and c directions. The structure of the arsenate is similar to that of the phosphate.

  6. Cosmetic wastewater treatment by the ZVI/H2O2 process.

    PubMed

    Bogacki, Jan; Marcinowski, Piotr; Zapałowska, Ewa; Maksymiec, Justyna; Naumczyk, Jeremi

    2017-10-01

    The ZVI/H 2 O 2 process was applied for cosmetic wastewater treatment. Two commercial zero-valent iron (ZVI) types with different granulations were chosen: Hepure Ferrox PRB and Hepure Ferrox Target. In addition, the pH and stirring method influence on ZVI/H 2 O 2 process efficiency was studied. During the ZVI and ZVI/H 2 O 2 processes, linear Fe ions concentration increase was observed. The addition of H 2 O 2 significantly accelerated the iron dissolution process. The highest COD removal was obtained using finer ZVI (Hepure Ferrox Target) for doses of reagents ZVI/H 2 O 2 1500/1600 mg/L, in a H 2 O 2 /COD weight ratio 2:1, at pH 3.0 with stirring on a magnetic stirrer. After 120 min of the process, 84.0% COD removal (from 796 to 127 mg/L) was achieved. It was found that the efficiency of the process depends, as in the case of the Fenton process, on the ratio of the reagents (ZVI/H 2 O 2 ) and their dose in relation to the COD (H 2 O 2 /COD) but does not depend on the dose of the iron itself. Statistical analysis confirms that COD removal efficiency depends primarily on H 2 O 2 /COD ratio and ZVI granulation, but ZVI dose influence is not statistically significant. The head space, solid-phase microextraction, gas chromatography, mass spectrometry results confirm high efficiency of the ZVI/H 2 O 2 process.

  7. The reactions of SO3 with HO2 radical and H2O...HO2 radical complex. Theoretical study on the atmospheric formation of HSO5 and H2SO4.

    PubMed

    Gonzalez, Javier; Torrent-Sucarrat, Miquel; Anglada, Josep M

    2010-03-07

    The influence of a single water molecule on the gas-phase reactivity of the HO(2) radical has been investigated by studying the reactions of SO(3) with the HO(2) radical and with the H(2)O...HO(2) radical complex. The naked reaction leads to the formation of the HSO(5) radical, with a computed binding energy of 13.81 kcal mol(-1). The reaction with the H(2)O...HO(2) radical complex can give two different products, namely (a) HSO(5) + H(2)O, which has a binding energy that is computed to be 4.76 kcal mol(-1) more stable than the SO(3) + H(2)O...HO(2) reactants (Delta(E + ZPE) at 0K) and an estimated branching ratio of about 34% at 298K and (b) sulfuric acid and the hydroperoxyl radical, which is computed to be 10.51 kcal mol(-1) below the energy of the reactants (Delta(E + ZPE) at 0K), with an estimated branching ratio of about 66% at 298K. The fact that one of the products is H(2)SO(4) may have relevance in the chemistry of the atmosphere. Interestingly, the water molecule acts as a catalyst, [as it occurs in (a)] or as a reactant [as it occurs in (b)]. For a sake of completeness we have also calculated the anharmonic vibrational frequencies for HO(2), HSO(5), the HSO(5)...H(2)O hydrogen bonded complex, H(2)SO(4), and two H(2)SO(4)...H(2)O complexes, in order to help with the possible experimental identification of some of these species.

  8. Probing the Release and Uptake of Water in α-MnO 2 · xH 2O

    DOE PAGES

    Yang, Zhenzhen; Ford, Denise C.; Park, Joong Sun; ...

    2016-12-27

    Alpha-MnO 2 is of interest as a cathode material for 3 V lithium batteries and as an electrode/electrocatalyst for higher energy, hybrid Li-ion/Li–O 2 systems. It has a structure with large tunnels that contain stabilizing cations such as Ba 2+, K + , NH 4 + , and H3O + (or water, H 2O). When stabilized by H 3O + /H 2O, the protons can be ion-exchanged with lithium to produce a Li 2O-stabilized α-MnO 2 structure. It has been speculated that the electrocatalytic process in Li–O 2 cells may be linked to the removal of lithium and oxygen frommore » the host α-MnO 2 structure during charge, and their reintroduction during discharge. In this investigation, hydrated α-MnO 2 was used, as a first step, to study the release and uptake of oxygen in α-MnO 2. Temperature-resolved in situ synchrotron X-ray diffraction (XRD) revealed a nonlinear, two-stage, volume change profile, which with the aide of X-ray absorption near-edge spectroscopy (XANES), redox titration, and density functional theory (DFT) calculations, is interpreted as the release of water from the α-MnO 2 tunnels. The two stages correspond to H 2O release from intercalated H 2O species at lower temperatures and H 3O + species at higher temperature. Thermogravimetric analysis confirmed the release of oxygen from α-MnO 2 in several stages during heating–including surface water, occluded water, and structural oxygen–and in situ UV resonance Raman spectroscopy corroborated the uptake and release of tunnel water by revealing small shifts in frequencies during the heating and cooling of α-MnO 2. Lastly, DFT calculations revealed the likelihood of disordered water species in binding sites in α-MnO 2 tunnels and a facile diffusion process.« less

  9. Tinnunculite, C5H4N4O3 · 2H2O: Occurrences on the Kola Peninsula and Redefinition and Validation as a Mineral Species

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Chukanov, N. V.; Yapaskurt, V. O.; Belakovskiy, D. I.; Lykova, I. S.; Zubkova, N. V.; Shcherbakova, E. P.; Britvin, S. N.; Chervonnyi, A. D.

    2017-12-01

    Based on a study of samples found in the Khibiny (Mt. Rasvumchorr: the holotype) and Lovozero (Mts Alluaiv and Vavnbed) alkaline complexes on the Kola Peninsula, Russia, tinnunculite was approved by the IMA Commission on New Minerals, Nomenclature, and Classification as a valid mineral species (IMA no. 2015-02la) and, taking into account a revisory examination of the original material from burnt dumps of coal mines in the southern Urals, it was redefined as crystalline uric acid dihydrate (UAD), C5H4N4O3 · 2H2O. Tinnunculite is poultry manure mineralized in biogeochemical systems, which could be defined as "guano microdeposits." The mineral occurs as prismatic or tabular crystals up to 0.01 × 0.1 × 0.2 mm in size and clusters of them, as well as crystalline or microglobular crusts. Tinnunculite is transparent or translucent, colorless, white, yellowish, reddish or pale lilac. Crystals show vitreous luster. The mineral is soft and brittle, with a distinct (010) cleavage. D calc = 1.68 g/cm3 (holotype). Tinnunculite is optically biaxial (-), α = 1.503(3), β = 1.712(3), γ = 1.74(1), 2 V obs = 40(10)°. The IR spectrum is given. The chemical composition of the holotype sample (electron microprobe data, content of H is calculated by UAD stoichiometry) is as follows, wt %: 37.5 O, 28.4 C, 27.0 N, 3.8 Hcalc, total 96.7. The empirical formula calculated on the basis of (C + N+ O) = 14 apfu is: C4.99H8N4.07O4.94. Tinnunculite is monoclinic, space group (by analogy with synthetic UAD) P21/ c. The unit cell parameters of the holotype sample (single crystal XRD data) are a = 7.37(4), b = 6.326(16), c = 17.59(4) Å, β = 90(1)°, V = 820(5) Å3, Z = 4. The strongest reflections in the XRD pattern ( d, Å- I[ hkl]) are 8.82-84[002], 5.97-15[011], 5.63-24[102̅, 102], 4.22-22[112], 3.24-27[114̅,114], 3.18-100[210], 3.12-44[211̅, 211], 2.576-14[024].

  10. Rb3In(H2O)Si5O13: a novel indium silicate with a CdSO4-topological-type structure.

    PubMed

    Hung, Ling-I; Wang, Sue-Lein; Chen, Chia-Yi; Chang, Bor-Chen; Lii, Kwang-Hwa

    2005-05-02

    A novel indium silicate, Rb3In(H2O)Si5O13, has been synthesized using a high-temperature, high-pressure hydrothermal method and characterized by single-crystal X-ray diffraction. The structure consists of five-membered rings of corner-sharing SiO4 tetrahedra connected via corner sharing to four adjacent five-membered rings to form a 3D silicate framework that belongs to the CdSO4 topological type. The InO6 octahedron shares five of its corners with five different SiO4 tetrahedra to form a 3D frame-work that delimits two types of channels to accommodate the rubidium cations. The sixth corner of InO6 is coordinated H2O. The structure is related to that of the titanium silicate ETS-10, and these are the only two metal silicates that have the CdSO4-topological-type structure. In addition, the crystal of Rb3In(H2O)Si5O13 shows an intense second harmonic generation signal. Crystal data: H2Rb3InSi5O14, monoclinic, space group Cc (No. 9), a = 9.0697(5) A, b = 11.5456(6) A, c = 13.9266(8) A, beta = 102.300(1) degrees, V = 1424.8(1) A3, and Z = 4.

  11. A global view of the extratropical tropopause transition layer from Atmospheric Chemistry Experiment Fourier Transform Spectrometer O3, H2O, and CO

    NASA Astrophysics Data System (ADS)

    Hegglin, M. I.; Boone, C. D.; Manney, G. L.; Walker, K. A.

    2009-04-01

    The global behavior of the extratropical tropopause transition layer (ExTL) is investigated using O3, H2O, and CO measurements from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on Canada's SCISAT-1 satellite obtained between February 2004 and May 2007. The ExTL depth is derived using H2O-O3 and CO-O3 correlations. The ExTL top derived from H2O-O3 shows an increase from roughly 1-1.5 km above the thermal tropopause in the subtropics to 3-4 km (2.5-3.5 km) in the north (south) polar region, implying somewhat weaker troposphere-stratosphere-transport in the Southern Hemisphere. The ExTL bottom extends ˜1 km below the thermal tropopause, indicating a persistent stratospheric influence on the troposphere at all latitudes. The ExTL top derived from the CO-O3 correlation is lower, at 2 km or ˜345 K (1.5 km or ˜335 K) in the Northern (Southern) Hemisphere. Its annual mean coincides with the relative temperature maximum just above the thermal tropopause. The vertical CO gradient maximizes at the thermal tropopause, indicating a local minimum in mixing within the tropopause region. The seasonal changes in and the scales of the vertical H2O gradients show a similar pattern as the static stability structure of the tropopause inversion layer (TIL), which provides observational support for the hypothesis that H2O plays a radiative role in forcing and maintaining the structure of the TIL.

  12. NH2Fe3O4@SiO2 supported peroxidase catalyzed H2O2 for degradation of endocrine disrupter from aqueous solution: Roles of active radicals and NOMs.

    PubMed

    Ai, Jing; Zhang, Weijun; Liao, Guiying; Xia, Hua; Wang, Dongsheng

    2017-11-01

    In this work, magnetic Fe 3 O 4 was utilized to immobilize horseradish peroxidase (IM-HRP) in order to improve its stability and reusability by crosslinking method process with glutaraldehyde. The physicochemical properties of NH 2 Fe 3 O 4 @SiO 2 and IM-HRP were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermo-gravimetric Analysis (TGA) and Transmission electron microscopy (TEM). The thermal stability of immobilized-HRP was considerably improved in comparison with free counterpart. The catalytic performance of IM-HRP for estrogens removal from aqueous solution was evaluated, it was found that the presence of natural organic matters (NOM) have no significant effects on E2 removal and the E2 enzyme-degradation reached around 80% when pH = 7.0 with 0.552 × 10 -3 ratio of IM-HRP/H 2 O 2. In addition, the active radicals responsible for estrogens degradation were identified with electro-spin resonance spectra (ESR). It was found that immobilization process on Fe 3 O 4 showed no adverse effects on catalytic performance on HRP, estrogens degradation could be fitted well with pseudo-second kinetic equation. Estrogens degradation efficiency was reduced in the presence of humic substances. Both O 2 - and OH were detected in IM-HRP catalyzed H 2 O 2 system and radicals quenching test indicated O 2 - played a more important role in estrogens removal. IM-HRP exhibited excellent stability and E2 removal efficiency could reach 45.41% after use seven times. Therefore, HRP enzymes immobilized on NH 2 Fe 3 O 4 @SiO 2 by cross-linking method in glutaraldehyde solutions was an effective way to improve stability and reusability of HRP, and which could avoid potential secondary pollution in water environment caused by free HRP after treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature

    PubMed Central

    2014-01-01

    In this paper, the moderately and lightly doped porous silicon nanowires (PSiNWs) were fabricated by the ‘one-pot procedure’ metal-assisted chemical etching (MACE) method in the HF/H2O2/AgNO3 system at room temperature. The effects of H2O2 concentration on the nanostructure of silicon nanowires (SiNWs) were investigated. The experimental results indicate that porous structure can be introduced by the addition of H2O2 and the pore structure could be controlled by adjusting the concentration of H2O2. The H2O2 species replaces Ag+ as the oxidant and the Ag nanoparticles work as catalyst during the etching. And the concentration of H2O2 influences the nucleation and motility of Ag particles, which leads to formation of different porous structure within the nanowires. A mechanism based on the lateral etching which is catalyzed by Ag particles under the motivation by H2O2 reduction is proposed to explain the PSiNWs formation. PMID:24910568

  14. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    PubMed

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  15. Photocrystallographic structure determination of a new geometric isomer of [Ru(NH3)4(H2O)(eta1-OSO)][MeC6H4SO3]2.

    PubMed

    Bowes, Katharine F; Cole, Jacqueline M; Husheer, Shamus L G; Raithby, Paul R; Savarese, Teresa L; Sparkes, Hazel A; Teat, Simon J; Warren, John E

    2006-06-21

    The structure of a new metastable geometric isomer of [Ru(NH3)4(H2O)(SO2)][MeC6H4SO3]2 in which the SO2 group is coordinated through a single oxygen in an eta1-OSO bonding mode has been determined at 13 K; the new isomer was obtained as a 36% component of the structure within a single crystal upon irradiation using a tungsten lamp.

  16. Middendorfite, K3Na2Mn5Si12(O,OH)36 · 2H2O, a new mineral species from the Khibiny pluton, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Chukanov, N. V.; Dubinchuk, V. T.; Zadov, A. E.

    2007-12-01

    Middendorfite, a new mineral species, has been found in a hydrothermal assemblage in Hilairite hyperperalkaline pegmatite at the Kirovsky Mine, Mount Kukisvumchorr apatite deposit, Khibiny alkaline pluton, Kola Peninsula, Russia. Microcline, sodalite, cancrisilite, aegirine, calcite, natrolite, fluorite, narsarsukite, labuntsovite-Mn, mangan-neptunite, and donnayite are associated minerals. Middendorfite occurs as rhombshaped lamellar and tabular crystals up to 0.1 × 0.2 × 0.4 mm in size, which are combined in worm-and fanlike segregations up to 1 mm in size. The color is dark to bright orange, with a yellowish streak and vitreous luster. The mineral is transparent. The cleavage (001) is perfect, micalike; the fracture is scaly; flakes are flexible but not elastic. The Mohs hardness is 3 to 3.5. Density is 2.60 g/cm3 (meas.) and 2.65 g/cm3 (calc.). Middendorfite is biaxial (-), α = 1.534, β = 1.562, and γ = 1.563; 2 V (meas.) = 10°. The mineral is pleochroic strongly from yellowish to colorless on X through brown on Y and to deep brown on Z. Optical orientation: X = c. The chemical composition (electron microprobe, H2O determined with Penfield method) is as follows (wt %): 4.55 Na2O, 10.16 K2O, 0.11 CaO, 0.18 MgO, 24.88 MnO, 0.68 FeO, 0.15 ZnO, 0.20 Al2O3, 50.87 SiO2, 0.17 TiO2, 0.23 F, 7.73 H2O; -O=F2-0.10, total is 99.81. The empirical formula calculated on the basis of (Si,Al)12(O,OH,F)36 is K3.04(Na2.07Ca0.03)Σ2.10(Mn4.95Fe0.13Mg0.06Ti0.03Zn0.03)Σ5.20(Si11.94Al0.06)Σ12O27.57(OH)8.26F0.17 · 1.92H2O. The simplified formula is K3Na2Mn5Si12(O,OH)36 · 2H2O. Middenforite is monoclinic, space group: P21/ m or P21. The unit cell dimensions are a = 12.55, b = 5.721, c = 26.86 Å; β = 114.04°, V = 1761 Å3, Z = 2. The strongest lines in the X-ray powder pattern [ d, Å, ( I)( hkl)] are: 12.28(100)(002), 4.31(81)(11overline 4 ), 3.555(62)(301, 212), 3.063(52)(008, 31overline 6 ), 2.840(90)(312, 021, 30overline 9 ), 2.634(88)(21overline 9 , 1.0.overline 1 0

  17. Interfacial contributions of H2O2 decomposition-induced reaction current on mesoporous Pt/TiO2 systems

    NASA Astrophysics Data System (ADS)

    Ray, Nathan J.; Styrov, Vladislav V.; Karpov, Eduard G.

    2017-12-01

    We report on conversion of energy released due to chemical reactions into current for the decomposition of aqueous hydrogen peroxide solution on single phases Pt and TiO2, in addition to Pt and TiO2 simultaneously. We observe that H2O2 decomposition-induced current on TiO2 drastically overshadows the current generated by H2O2 decomposition on Pt. Photo-effects avoided, H2O2 decomposition was found to yield a conversion efficiency of 10-3 electrons generated per H2O2 molecule. Further understanding of chemical reaction-induced current shows promise as a metric with which the surface reaction may be monitored and could be greatly extended into the field of analytical chemistry.

  18. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 2. The systems H(+)-HSO4(-)-SO4(2-)-H2O from 0 to 3 mol kg(-1) as a function of temperature and H(+)-NH4(+)-HSO4(-)-SO4)2-)-H2O from 0 to 6 mol kg(-1) at 25 °C using a Pitzer ion interaction model, and NH4HSO4-H2O and (NH4)3H(SO4)2-H2O over the entire concentration range.

    PubMed

    Clegg, S L; Wexler, A S

    2011-04-21

    A Pitzer ion interaction model has been applied to the systems H(2)SO(4)-H(2)O (0-3 mol kg(-1), 0-55 °C) and H(2)SO(4)-(NH(4))(2)SO(4)-H(2)O (0-6 mol kg(-1), 25 °C) for the calculation of apparent molar volume and density. The dissociation reaction HSO(4)(-)((aq)) ↔ H(+)((aq)) + SO(4)(2-)((aq)) is treated explicitly. Apparent molar volumes of the SO(4)(2-) ion at infinite dilution were obtained from part 1 of this work, (1) and the value for the bisulfate ion was determined in this study from 0 to 55 °C. In dilute solutions of both systems, the change in the degree of dissociation of the HSO(4)(-) ion with concentration results in much larger variations of the apparent molar volumes of the solutes than for conventional strong (fully dissociated) electrolytes. Densities and apparent molar volumes are tabulated. Apparent molar volumes calculated using the model are combined with other data for the solutes NH(4)HSO(4) and (NH(4))(3)H(SO(4))(2) at 25 °C to obtain apparent molar volumes and densities over the entire concentration range (including solutions supersaturated with respect to the salts).

  19. Simultaneous purifying of Hg0, SO2, and NOx from flue gas by Fe3+/H2O2: the performance and purifying mechanism.

    PubMed

    Xing, Yi; Li, Liuliu; Lu, Pei; Cui, Jiansheng; Li, Qianli; Yan, Bojun; Jiang, Bo; Wang, Mengsi

    2018-03-01

    Hg 0 , SO 2 , and NOx result in heavily global environmental pollution and serious health hazards. Up to now, how to efficiently remove mercury with SO 2 and NOx from flue gas is still a tough task. In this study, series of high oxidizing Fenton systems were employed to purify the pollutants. The experimental results showed that Fe 3+ /H 2 O 2 was more suitable to purify Hg 0 than Fe 2+ /H 2 O 2 and Cu 2+ /H 2 O 2. The optimal condition includes Fe 3+ concentration of 0.008 mol/L, Hg 0 inlet concentration of 40 μg/m 3 , solution temperature of 50 °C, pH of 3, H 2 O 2 concentration of 0.7 mol/L, and O 2 percentage of 6%. When SO 2 and NOx were taken into account under the optimal condition, Hg 0 removal efficiency could be enhanced to 91.11% while the removal efficiency of both NOx and SO 2 was slightly declined, which was consistent to the analysis of purifying mechanism. The removal efficiency of Hg 0 was stimulated by accelerating the conversion of Fe 2+ to Fe 3+ , which resulted from the existence of SO 2 and NOx. The results of this study suggested that simultaneously purifying Hg 0 , SO 2 , and NOx from flue gas is feasible.

  20. Impedance spectroscopy of V2O5-Bi2O3-BaTiO3 glass-ceramics

    NASA Astrophysics Data System (ADS)

    Al-syadi, Aref M.; Yousef, El Sayed; El-Desoky, M. M.; Al-Assiri, M. S.

    2013-12-01

    The glasses within composition as: (80 - x)V2O5/20Bi2O3/xBaTiO3 with x = 2.5, 5, 7.5 and 10 mol% have been prepared. The glass transition (Tg) increases with increasing BaTiO3 content. Synthesized glasses ceramic containing BaTi4O9, Ba3TiV4O15 nanoparticles of the order of 25-35 nm and 30-46 nm, respectively were estimated using XRD. The dielectric properties over wide ranges of frequencies and temperatures were investigated as a function of BaTiO3 content by impedance spectroscopy measurements. The hopping frequency, ωh, dielectric constant, ɛ', activation energies for the DC conduction, Eσ, the relaxation process, Ec, and stretched exponential parameter β of the glasses samples have been estimated. The, ωh,β, decrease from 51.63 to 0.31 × 106 (s-1), 0.84 to 0.79 with increasing BaTiO3 respectively. Otherwise, the Eσ, increase from 0.279 to 0.306 eV with increasing BaTiO3. The value of dielectric constant equal 9.5·103 for the 2.5BaTiO3/77.5V2O5/20Bi2O3 glasses-ceramic at 330 K for 1 KHz which is ten times larger than that of same glasses composition. Finally the relaxation properties of the investigated glasses are presented in the electric modulus formalism, where the relaxation time and the respective activation energy were determined.

  1. Fluoresence cross section of the H2O(+) A 2A1(0,7,0) produced through photoionization of H2O

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. Robert; Hwang, M. Y.

    1988-01-01

    The cross section for the production of the H2O(+) A 2A1(0,7,0) - X 2B1(0,0,0) fluorescence through photoionization of H2O was measured in the 14.5-20.5 eV region. The maximum quantum yield is 1.4 x 10 to the -3rd at 16.5 eV.

  2. Hydrothermal synthesis of mesoporous rod-like nanocrystalline vanadium oxide hydrate V{sub 3}O{sub 7}·H{sub 2}O from hydroquinone and V{sub 2}O{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mjejri, I.; Etteyeb, N.; Sediri, F., E-mail: faouzi.sediri@ipeit.rnu.tn

    2013-09-01

    Graphical abstract: - Highlights: • Rod-like nanocrystalline V{sub 3}O{sub 7}·H{sub 2}O has heen synthesized hydrothermally. • Molar ratio is key factor for structure and morphology. • Electrochemical properties were also studied. • CV has revealed reversible redox behavior with charge–discharge cycling. - Abstract: Rod-like nanocrystalline V{sub 3}O{sub 7}·H{sub 2}O has been synthesized hydrothermally via a simple and elegant route. Techniques X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS), UV–vis spectroscopy and nitrogen adsorption/desorption isotherms have been used to characterize the structure, morphology and composition of the materials.more » The as-prepared V{sub 3}O{sub 7}·H{sub 2}O nanorods are up to several of micrometers in length, about 130 nm in width and about 70 nm in thickness in average, respectively. Cyclic voltammetric characterization of thin films of V{sub 3}O{sub 7}·H{sub 2}O nanorods has revealed reversible redox behavior with charge–discharge cycling corresponding to the reversible lithium intercalation/deintercalation.« less

  3. Full-dimensional, high-level ab initio potential energy surfaces for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2} with application to hydrogen clathrate hydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homayoon, Zahra; Conte, Riccardo; Qu, Chen

    2015-08-28

    New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H{sub 2}(H{sub 2}O) two-body and H{sub 2}(H{sub 2}O){sub 2} three-body potentials. The database for H{sub 2}(H{sub 2}O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are comparedmore » to computationally faster ones obtained via “purified” symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H{sub 2}, H{sub 2}O, and (H{sub 2}O){sub 2}, to obtain full PESs for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2}. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H{sub 2}(H{sub 2}O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathrate hydrates, illustrated for H{sub 2}@(H{sub 2}O){sub 20}. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H{sub 2} from the calculated equilibrium structure.« less

  4. Cooperativity effect involving drug-DNA/RNA intermolecular interaction: A B3LYP-D3 and MP2 theoretical investigation on ketoprofen⋯cytosine⋯H2O system.

    PubMed

    Zhen, Jun-Ping; Wei, Xiao-Chun; Shi, Wen-Jing; Huang, Zhu-Yuan; Jin, Bo; Zhou, Yu-Kun

    2017-11-14

    In order to examine the origin of the drug action and design new DNA/RNA-targeted drugs, the cooperativity effect involving drug-DNA/RNA intermolecular interaction in ketoprofen⋯cytosine⋯H 2 O ternary system were investigated by the B3LYP, B3LYP-D3, and MP2 methods with the 6-311++G(2d,p) basis set. The thermodynamic cooperativity was also evaluated at 310.15 K. The N-H⋯O, O-H⋯O, O-H⋯N, C-H⋯N, and C-H⋯O H bonds coexist in ternary complexes. The intermolecular interactions obtained by B3LYP-D3 are close to those calculated by MP2. The steric effects and van der Waals interactions have little influence on the cooperativity effects. The anti-cooperativity effect in ket⋯cyt⋯H 2 O is far more notable than the cooperativity effect, and the stability of the cyclic structure with anti-cooperativity effect is higher than that of the linear structure with cooperativity effect, as is confirmed by the AIM (atoms in molecules) and RDG (reduced density gradient) analysis. Thus, it can be inferred that, in the presence of H 2 O, the anti-cooperativity effect plays a dominant role in the drug-DNA/RNA interaction, and the nature of the hydration in the binding of drugs to DNA/RNA bases is the H-bonding anti-cooperativity effect. Furthermore, the drug always links simultaneously with DNA/RNA base and H 2 O, and only in this way can the biological activity of drugs play a role. In most cases, the enthalpy change is the major factor driving the cooperativity, as is different from most of biomacromolecule complexes.

  5. Candidate Water Vapor Lines to Locate the H2O Snowline through High-dispersion Spectroscopic Observations. III. Submillimeter H2 16O and H2 18O Lines

    NASA Astrophysics Data System (ADS)

    Notsu, Shota; Nomura, Hideko; Walsh, Catherine; Honda, Mitsuhiko; Hirota, Tomoya; Akiyama, Eiji; Millar, T. J.

    2018-03-01

    In this paper, we extend the results presented in our former papers on using ortho-{{{H}}}2{}16{{O}} line profiles to constrain the location of the H2O snowline in T Tauri and Herbig Ae disks, to include submillimeter para-{{{H}}}2{}16{{O}} and ortho- and para-{{{H}}}2{}18{{O}} lines. Since the number densities of the ortho- and para-{{{H}}}2{}18{{O}} molecules are about 560 times smaller than their 16O analogs, they trace deeper into the disk than the ortho-{{{H}}}2{}16{{O}} lines (down to z = 0, i.e., the midplane). Thus these {{{H}}}2{}18{{O}} lines are potentially better probes of the position of the H2O snowline at the disk midplane, depending on the dust optical depth. The values of the Einstein A coefficients of submillimeter candidate water lines tend to be lower (typically <10‑4 s‑1) than infrared candidate water lines. Thus in the submillimeter candidate water line cases, the local intensity from the outer optically thin region in the disk is around 104 times smaller than that in the infrared candidate water line cases. Therefore, in the submillimeter lines, especially {{{H}}}2{}18{{O}} and para-{{{H}}}2{}16{{O}} lines with relatively lower upper state energies (∼a few 100 K) can also locate the position of the H2O snowline. We also investigate the possibility of future observations with ALMA to identify the position of the water snowline. There are several candidate water lines that trace the hot water gas inside the H2O snowline in ALMA Bands 5–10.

  6. Internally consistent thermodynamic data for high-pressure and ultrahigh-pressure phases in the system CaO-MgO-Al2O3-SiO2-H2O

    NASA Astrophysics Data System (ADS)

    Grevel, K. D.

    2008-12-01

    In order to enable reliable calculations of phase relations among high-pressure phases the Berman [1] data set was augmented by data for the high-pressure phases stishovite (stv), topaz-OH (toz-OH), phase pi (pi), Mg-staurolite (Mg-st), Mg-sursassite (Mg-sur), and Mg-chloritoid (Mg-cld) using a similar optimization technique as described by Berman et al. [2]. The data of several other phases of the system CaO-MgO- Al2O3-SiO2-H2O obtained in the Berman data base were slightly refined to keep the consistency to the reversal brackets and the originally measured data: andalusite (and), clinochlore (chl), coesite (cs), diaspore (dsp), kaolinite (kln), kyanite (ky), lawsonite (lws), pyrophyllite (prl), sillimanite (sil), zoisite (zo). CP-data were kept constant [1] or estimated [3]. phase; ΔfH0298 (kJ mol-1); S0298 (J K-1 mol-1); V0298 (J K-1 mol-1); v1×105 (bar-1); v2×1012 (bar-2); v3×105 (K-1); v4×108 (K-2) and; -2589.857; 91.47; 5.146; -0.0653; 0.000; 2.291; 0.170 chl; -8903.532; 437.92; 21.000; -0.1328; 3.837; 2.142; 0.962 Mg-cld; -3551.657; 142.20; 6.874; -0.0692; 0.000; 2.544; 0.000 cs; -907.510; 39.63; 2.064; -0.0998; 1.823; 0.620; 0.960 dsp; -999.115; 35.22; 1.776; -0.0719; 0.629; 3.245; 0.684 kln; -4119.400; 204.18; 9.952; -0.1200; 0.000; 3.200; 0.000 ky; -2593.767; 82.71; 4.408; -0.0593; 1.021; 1.730; 0.787 lws; -4866.665; 228.04; 10.155; -0.0825; 0.000; 3.339; 0.000 Mg-sur; -13907.329; 608.39; 26.888; -0.0826; 0.923; 3.187; 0.087 pi; -9586.742; 403.23; 18.559; -0.0678; 0.000; 2.254; 0.000 prl; -5640.501; 239.43; 12.782; -0.1800; 0.000; 2.621; 0.000 sil; -2586.169; 95.40; 4.984; -0.0601; 1.341; 1.138; 0.605 Mg-st; -24998.289; 944.53; 44.260; -0.0579; 0.000; 2.017; 0.000 stv; -870.861; 25.59; 1.401; -0.0318; 0.000; 1.849; 0.000 toz-OH; -2885.939; 117.40; 5.352; -0.0630; 0.000; 1.938; 0.000 zo; -6889.494; 297.20; 13.565; -0.0695; 0.000; 2.752; 0.000 References [1] R.G. Berman, J. Petrol., 1988, 29, 445 [2] R.G. Berman et al., J. Petrol., 1986, 27, 1331 [3] R

  7. Synthesis, structure, optical, photoluminescence and magnetic properties of K2[Co(C2O4)2(H2O)2]·4H2O

    NASA Astrophysics Data System (ADS)

    Narsimhulu, M.; Hussain, K. A.

    2018-06-01

    The synthesis, crystal structure, optical, photoluminescence and magnetic behaviour of potassium bis(oxalato)cobaltate(II)tertrahydrate{K2[Co(C2O4)2(H2O)2]·4H2O} are described. The compound was grown at room temperature from mixture of aqueous solutions by slow evaporation method. The X-ray crystallographic data showed that the compound belongs to the monoclinic crystal system with P21/n space group and Z = 4. The UV-visible diffuse absorbance spectra exhibited bands at 253, 285 and 541 nm in the visible and ultraviolet regions. The optical band gap of the compound was estimated as 3.4 eV. At room temperature, an intense photoluminescence was observed from this material around 392 nm when it excited at 254 nm. The variable temperature dc magnetic susceptibility measurements exposed paramagnetic behaviour at high temperatures and antiferromagnetic ordering at low temperatures.

  8. Structure and properties of hopeites (Mg xZn 1- x) 3(PO 4) 2 · 4H 2O

    NASA Astrophysics Data System (ADS)

    Haussühl, S.; Middendorf, B.; Dörffel, M.

    1991-07-01

    Mg-hopeites (Mg xZn 1- x) 3(PO 4) 2 · 4H 2O were prepared by crystallization from hot aqueous solutions (70°C). The structure of (Mg 0.206Zn 0.794) 3(PO 4) 2 · 4H 2O has been determined from 1612 unique reflections (MoKα, R = 0.033): Pnma, a1 = 10.594(2), a2 = 18.333(2), a3 = 5.029(2)Å, Z = 4, Dcalc = 2.943g cm -3. The structure resembles that of pure hopeite. However, the magnesium atoms occupy only the sixcoordinated site. The thermal behavior of hopeites is strongly influenced by the substitution of Zn by Mg. The dehydration range is shifted to higher temperatures with increasing Mg content. A strongly anisotropic thermal expansion was measured by X-ray diffraction in a temperature range of -40° to 50°C. Experiments to substitute Zn by Ca, Sr, and Ba in the hopeite failed. A hitherto unknown monoclinic phase with the composition BaZn 2(PO 4) 2 · H 2O and a1 = 4.707(2), a2 = 7.840(2), a3 = 8.061(3)Å, and α 2 = 88.99(4)° was found.

  9. Raman spectroscopy of the multianion mineral gartrellite-PbCu(Fe3+,Cu)(AsO4)2(OH,H2O)2

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Palmer, Sara J.

    2012-04-01

    The multianion mineral gartrellite PbCu(Fe3+,Cu)(AsO4)2(OH,H2O)2 has been studied by a combination of Raman and infrared spectroscopy. The vibrational spectra of two gartrellite samples from Durango and Ashburton Downs were compared. Gartrellite is one of the tsumcorite mineral group based upon arsenate and sulphate anions. Crystal symmetry is either triclinic in the case of an ordered occupation of two cationic sites, triclinic due to ordering of the H bonds in the case of species with 2 water molecules per formula unit, or monoclinic in the other cases. Characteristic Raman spectra of the minerals enable the assignment of the bands to specific vibrational modes. These spectra are related to the structure of gartrellite. The position of the hydroxyl and water stretching vibrations are related to the strength of the hydrogen bond formed between the OH unit and the AsO4 anion.

  10. Phase transition, crystal water and low thermal expansion behavior of Al{sub 22x}(ZrMg){sub x}W{sub 3}O{sub 12}·n(H{sub 2}O)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fang; Liu, Xiansheng; Song, Wenbo

    2014-10-15

    Al{sub 22x}(ZrMg){sub x}W{sub 3}O{sub 12} for 0≤x≤1.0 are synthesized to reduce the phase transition temperature of Al{sub 2}W{sub 3}O{sub 12}. It is found that the incorporation of (ZrMg){sup 6+} into the lattice of Al{sub 2}W{sub 3}O{sub 12} not only reduces its orthorhombic-to-monoclinic phase transition temperature but also elevates its softening temperature, broadening its applicable temperature range considerably. Al{sub 22x}(ZrMg){sub x}W{sub 3}O{sub 12} with x<0.5 exhibit low coefficients of thermal expansion (CTEs) and non-hygroscopicity, while those for x≥0.7 are obviously hygroscopic and the CETs decrease with increasing the content of (ZrMg){sup 6+} so that Al{sub 0.2}(ZrMg){sub 0.9}W{sub 3}O{sub 12} and ZrMgW{submore » 3}O{sub 12} exhibit negative thermal expansion. Temperature-dependent Raman spectroscopic study shows the hardening of W–O bonds above 373 K which is attributed to the release of crystal water. The effect of crystal water on the thermal expansion property is discussed based on the hydrogen bond between H in crystal water and electronegative O in Al(ZrMg)–O–W linkages. - Graphical abstract: (a and b) Temperature dependent Raman spectra of Al{sub 2−x}(ZrMg){sub x}W{sub 3}O{sub 12} (x=0.1, 0.2), (c and d) Building block of a unit cell of Al{sub 2−x}(ZrMg){sub x}W{sub 3}O{sub 12}·n(H{sub 2}O) and schematic showing the effect of crystal water on Al(Zr, Mg)–O–W linkages. - Highlights: • (ZrMg){sup 6+} reduces orthorhombic-to-monoclinic phase transition of Al{sub 2}W{sub 3}O{sub 12}. • The incorporation of (ZrMg){sup 6+} elevates the softening temperature of Al{sub 2}W{sub 3}O{sub 12}. • Al{sub 22x}(ZrMg){sub x}W{sub 3}O{sub 12} (x<0.5) exhibit low CTEs and non-hygroscopicity. • Al{sub 0.2}(ZrMg){sub 0.9}W{sub 3}O{sub 12}·0.8H{sub 2}O and ZrMgW{sub 3}O{sub 12}·2H{sub 2}O present NTE. • Hydrogen bond between H in H{sub 2}O and O in Al(ZrMg)–O–W affects thermal expansion.« less

  11. ULTRAVIOLET PHOTON-INDUCED SYNTHESIS AND TRAPPING OF H{sub 2}O{sub 2} AND O{sub 3} IN POROUS WATER ICE FILMS IN THE PRESENCE OF AMBIENT O{sub 2}: IMPLICATIONS FOR EXTRATERRESTRIAL ICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, J.; Raut, U.; Kim, J.-H.

    2011-09-01

    The mass uptake of ambient oxygen in nanoporous ice is enhanced by irradiation with 193 nm photons, due to conversion of O{sub 2} into H{sub 2}O{sub 2} and O{sub 3}, with an efficiency that increases with decreasing temperature. These findings show a new way to form H{sub 2}O{sub 2} and O{sub 3} on icy surfaces in the outer solar system at depths much larger than are accessible by typical ionizing radiation, with possible astrobiological implications.

  12. Spin-forbidden and spin-allowed cyclopropenone (c-H{sub 2}C{sub 3}O) formation in interstellar medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmadvand, Seyedsaeid; Zaari, Ryan R.; Varganov, Sergey A., E-mail: svarganov@unr.edu

    2014-11-10

    Three proposed mechanisms of cyclopropenone (c-H{sub 2}C{sub 3}O) formation from neutral species are studied using high-level electronic structure methods in combination with nonadiabatic transition state and collision theories to deduce the likelihood of each reaction mechanism under interstellar conditions. The spin-forbidden reaction involving the singlet electronic state of cyclopenylidene (c-C{sub 3}H{sub 2}) and the triplet state of atomic oxygen is studied using nonadiabatic transition state theory to predict the rate constant for c-H{sub 2}C{sub 3}O formation. The spin-allowed reactions of c-C{sub 3}H{sub 2} with molecular oxygen and acetylene with carbon monoxide were also investigated. The reaction involving the ground electronicmore » states of acetylene and carbon monoxide has a very large reaction barrier and is unlikely to contribute to c-H{sub 2}C{sub 3}O formation in interstellar medium. The spin-forbidden reaction of c-C{sub 3}H{sub 2} with atomic oxygen, despite the high probability of nonadiabatic transition between the triplet and singlet states, was found to have a very small rate constant due to the presence of a small (3.8 kcal mol{sup –1}) reaction barrier. In contrast, the spin-allowed reaction between c-C{sub 3}H{sub 2} and molecular oxygen is found to be barrierless, and therefore can be an important path to the formation of c-H{sub 2}C{sub 3}O molecule in interstellar environment.« less

  13. Microchannel Reactor System Design & Demonstration For On-Site H2O2 Production by Controlled H2/O2 Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeniyi Lawal

    whole industry as a result of our technology demonstration, our production concept is expected to save >5 trillion Btu/year of steam usage and >3 trillion Btu/year in electric power consumption. Our analysis also indicates >50 % reduction in waste disposal cost and ~10% reduction in feedstock energy. These savings translate to ~30% reduction in overall production and transportation costs for the $1B annual H2O2 market.« less

  14. Photoelectron spectroscopic study of the hydrated nucleoside anions: Uridine(-)(H(2)O)(n=0-2), cytidine(-)(H(2)O)(n=0-2), and thymidine(-)(H(2)O)(n=0,1).

    PubMed

    Li, Xiang; Wang, Haopeng; Bowen, Kit H

    2010-10-14

    The hydrated nucleoside anions, uridine(-)(H(2)O)(n=0-2), cytidine(-)(H(2)O)(n=0-2), and thymidine(-)(H(2)O)(n=0,1), have been prepared in beams and studied by anion photoelectron spectroscopy in order to investigate the effects of a microhydrated environment on parent nucleoside anions. Vertical detachment energies (VDEs) were measured for all eight anions, and from these, estimates were made for five sequential anion hydration energies. Excellent agreement was found between our measured VDE value for thymidine(-)(H(2)O)(1) and its calculated value in the companion article by S. Kim and H. F. Schaefer III.

  15. Photoelectron spectroscopic study of the hydrated nucleoside anions: Uridine-(H2O)n=0-2, cytidine-(H2O)n=0-2, and thymidine-(H2O)n=0,1

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Wang, Haopeng; Bowen, Kit H.

    2010-10-01

    The hydrated nucleoside anions, uridine-(H2O)n=0-2, cytidine-(H2O)n=0-2, and thymidine-(H2O)n=0,1, have been prepared in beams and studied by anion photoelectron spectroscopy in order to investigate the effects of a microhydrated environment on parent nucleoside anions. Vertical detachment energies (VDEs) were measured for all eight anions, and from these, estimates were made for five sequential anion hydration energies. Excellent agreement was found between our measured VDE value for thymidine-(H2O)1 and its calculated value in the companion article by S. Kim and H. F. Schaefer III.

  16. Structure of complexes of nitrilo tris methylene phosphonic acid with copper, [CuN(CH{sub 2}PO{sub 3}){sub 3}(H{sub 2}O){sub 3}] and Na{sub 4}[CuN(CH{sub 2}PO{sub 3}){sub 3}]{sub 2} · 19H{sub 2}O, as bactericides and inhibitors of scaling and corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somov, N. V., E-mail: somov@phys.unn.ru; Chausov, F. F., E-mail: chaus@uni.udm.ru

    2015-03-15

    Nitrilotris methylene phosphonate triaqua copper and octasodium bis(nitrilotris methylene phosphonate cuprate(II)) nonadecahydrate have been synthesized and investigated. [CuN(CH{sub 2}PO{sub 3}){sub 3}(H{sub 2}O){sub 3}] is crystallized in the sp. gr. P2{sub 1}/c, Z = 4, a = 9.2506(2) Å, b = 15.9815(2) Å, c = 9.5474(2) Å, β = 113.697(2)°. The copper atom is coordinated by oxygen atoms in the configuration of elongated octahedron; the ligand (of bridge type) links neighboring copper atoms. Na{sub 8}[CuN(CH{sub 2}PO{sub 3}){sub 3}]{sub 2} · 19H{sub 2}O is crystallized in the sp. gr. P2{sub 1}/c, Z = 2, a = 11.24550(10) Å, b = 17.38980(10) Å,more » c = 13.5852(2) Å, β = 127.8120(10)°. This complex is chelating; the copper atom closes three five-membered N-C-P-O-Cu cycles with a shared Cu-N bond. Copper is coordinated in a distorted trigonal-bipyramidal configuration.« less

  17. Infrared absorption of CH3OSO and CD3OSO radicals produced upon photolysis of CH3OS(O)Cl and CD3OS(O)Cl in p-H2 matrices.

    PubMed

    Lee, Yu-Fang; Kong, Lin-Jun; Lee, Yuan-Pern

    2012-03-28

    Irradiation at 239 ± 20 nm of a p-H(2) matrix containing methoxysulfinyl chloride, CH(3)OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to ν(1), CH(2) antisymmetric stretching), 2999.5 (ν(2), CH(3) antisymmetric stretching), 2950.4 (ν(3), CH(3) symmetric stretching), 1465.2 (ν(4), CH(2) scissoring), 1452.0 (ν(5), CH(3) deformation), 1417.8 (ν(6), CH(3) umbrella), 1165.2 (ν(7), CH(3) wagging), 1152.1 (ν(8), S=O stretching mixed with CH(3) rocking), 1147.8 (ν(9), S=O stretching mixed with CH(3) wagging), 989.7 (ν(10), C-O stretching), and 714.5 cm(-1) (ν(11), S-O stretching) modes of syn-CH(3)OSO. When CD(3)OS(O)Cl in a p-H(2) matrix was used, lines at 2275.9 (ν(1)), 2251.9 (ν(2)), 2083.3 (ν(3)), 1070.3 (ν(4)), 1056.0 (ν(5)), 1085.5 (ν(6)), 1159.7 (ν(7)), 920.1 (ν(8)), 889.0 (ν(9)), 976.9 (ν(10)), and 688.9 (ν(11)) cm(-1) appeared and are assigned to syn-CD(3)OSO; the mode numbers correspond to those used for syn-CH(3)OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86∕aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH(3)OSO near 2991, 2956, 1152, and 994 cm(-1) to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD(3)OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H(2) such that the Cl atom, produced via UV photodissociation of CH(3)OS(O)Cl in situ, might escape from the original cage to yield isolated CH(3)OSO radicals.

  18. Characterization of a real time H2O2 monitor for use in studies on H2O2 production by antibodies and cells.

    PubMed

    Sharma, Harish A; Balcavage, Walter X; Waite, Lee R; Johnson, Mary T; Nindl, Gabi

    2003-01-01

    It was recently shown that antibodies catalyze a reaction between water and ultraviolet light (UV) creating singlet oxygen and ultimately H2O2. Although the in vivo relevance of these antibody reactions is unclear, it is interesting that among a wide variety of non-antibody proteins tested, the T cell receptor is the only protein with similar capabilities. In clinical settings UV is believed to exert therapeutic effects by eliminating inflammatory epidermal T cells and we hypothesized that UV-triggered H2O2 production is involved in this process. To test the hypothesis we developed tools to study production of H2O2 by T cell receptors with the long-term goal of understanding, and improving, UV phototherapy. Here, we report the development of an inexpensive, real time H2O2 monitoring system having broad applicability. The detector is a Clark oxygen electrode (Pt, Ag/AgCl) modified to detect UV-driven H2O2 production. Modifications include painting the electrode black to minimize UV effects on the Ag/AgCl electrode and the use of hydrophilic, large pore Gelnots electrode membranes. Electrode current was converted to voltage and then amplified and recorded using a digital multimeter coupled to a PC. A reaction vessel with a quartz window was developed to maintain constant temperature while permitting UV irradiation of the samples. The sensitivity and specificity of the system and its use in cell-free and cell-based assays will be presented. In a cellfree system, production of H2O2 by CD3 antibodies was confirmed using our real time H2O2 monitoring method. Additionally we report the finding that splenocytes and Jurkat T cells also produce H2O2 when exposed to UV light.

  19. Co(II) and Ni(II) complexes based on anthraquinone-1,4,5,8-tetracarboxylic acid (H4AQTC): canted antiferromagnetism and slow magnetization relaxation in {[Co2(AQTC)(H2O)6]·6H2O}.

    PubMed

    Yan, Wei-Hong; Bao, Song-Song; Huang, Jian; Ren, Min; Sheng, Xiao-Li; Cai, Zhong-Sheng; Lu, Chang-Sheng; Meng, Qing-Jin; Zheng, Li-Min

    2013-06-21

    Three coordination polymers {[Co2(AQTC)(H2O)6]·6H2O}n (1), {[M2(AQTC)(bpym)(H2O)6]·6H2O}n (M = Co(2), Ni(3)) have been synthesized and structurally characterized, where H4AQTC is anthraquinone-1,4,5,8-tetracarboxylic acid and bpym is 2,2'-bipyrimidine. Complex 1 features a 3-D structure, where layers of Co2(AQTC) are cross-linked by Co-H2O chains. Complexes 2 and 3 are isostructural and display 1-D chain structures. The chains are connected through hydrogen-bonding interactions to form 3-D supramolecular structures. Magnetic properties of these complexes are investigated. Compound 1 shows canted antiferromagnetism and slow relaxation below 4.0 K. For complexes 2 and 3, dominant antiferromagnetic interactions are observed. The luminescent properties of the three complexes are investigated as well.

  20. The Formation and Spatiotemporal Progress of the pH Wave Induced by the Temperature Gradient in the Thin-Layer H2O2-Na2S2O3-H2SO4-CuSO4 Dynamical System.

    PubMed

    Jędrusiak, Mikołaj; Orlik, Marek

    2016-03-31

    The H2O2-S2O3(2-)-H(+)-Cu(2+) dynamical system exhibits sustained oscillations under flow conditions but reveals only a single initial peak of the indicator electrode potential and pH variation under batch isothermal conditions. Thus, in the latter case, there is no possibility of the coupling of the oscillations and diffusion which could lead to formation of sustained spatiotemporal patterns in this process. However, in the inhomogeneous temperature field, due to dependence of the local reaction kinetics on temperature, spatial inhomogeneities of pH distribution can develop which, in the presence of an appropriate indicator, thymol blue, manifest themselves as the color front traveling along the quasi-one-dimensional reactor. In this work, we describe the experimental conditions under which the above-mentioned phenomena can be observed and present their numerical model based on thermokinetic coupling and spatial coordinate introduced to earlier isothermal homogeneous kinetic mechanism.

  1. Gold(I) Complexes with N-Donor Ligands. 2.(1) Reactions of Ammonium Salts with [Au(acac-kappaC(2))(PR(3))] To Give [Au(NH(3))L](+), [(AuL)(2)(&mgr;(2)-NH(2))](+), [(AuL)(4)(&mgr;(4)-N)](+), or [(AuL)(3)(&mgr;(3)-O)](+). A New and Facile Synthesis of [Au(NH(3))(2)](+) Salts. Crystal Structure of [{AuP(C(6)H(4)OMe-4)(3)}(3)(&mgr;(3)-O)]CF(3)SO(3).

    PubMed

    Vicente, José; Chicote, María-Teresa; Guerrero, Rita; Jones, Peter G.; Ramírez De Arellano, M. Carmen

    1997-09-24

    The complexes [Au(acac-kappaC(2))(PR(3))] (acac = acetylacetonate, R = Ph, C(6)H(4)OMe-4) react with (NH(4))ClO(4) to give amminegold(I), [Au(NH(3))(PR(3))]ClO(4), amidogold(I), [(AuPR(3))(2)(&mgr;(2)-NH(2))]ClO(4), or nitridogold(I), [(AuPR(3))(4)(&mgr;(4)-N)]ClO(4), complexes, depending on the reaction conditions. Similarly, [Au(acac-kappaC(2))(PPh(3))] reacts with (NH(3)R')OTf (OTf = CF(3)SO(3)) (1:1) or with [H(3)N(CH(2))(2)NH(2)]OTf (1:1) to give (amine)gold(I) complexes [Au(NH(2)R')(PPh(3))]OTf (R' = Me, C(6)H(4)NO(2)-4) or [(AuPPh(3))(2){&mgr;(2)-H(2)N(CH(2))(2)NH(2)}](OTf)(2), respectively. The ammonium salts (NH(2)R'(2))OTf (R' = Et, Ph) react with [Au(acac-kappaC(2))(PR(3))] (R = Ph, C(6)H(4)OMe-4) (1:2) to give, after hydrolysis, the oxonium salts [(AuPR(3))(3)(&mgr;(3)-O)]OTf (R = Ph, C(6)H(4)OMe-4). When NH(3) is bubbled through a solution of [AuCl(tht)] (tht = tetrahydrothiophene), the complex [Au(NH(3))(2)]Cl precipitates. Addition of [Au(NH(3))(2)]Cl to a solution of AgClO(4) or TlOTf leads to the isolation of [Au(NH(3))(2)]ClO(4) or [Au(NH(3))(2)]OTf, respectively. The crystal structure of [(AuPR(3))(3)(&mgr;(3)-O)]OTf.Me(2)CO (R = C(6)H(4)OMe-4) has been determined: triclinic, space group P&onemacr;, a = 14.884(3) Å, b = 15.828(3) Å, c = 16.061(3) Å, alpha = 83.39(3) degrees, beta = 86.28(3) degrees, gamma = 65.54(3) degrees, R1 (wR2) = 0.0370 (0.0788). The [(AuPR(3))(3)(&mgr;(3)-O)](+) cation shows an essentially trigonal pyramidal array of three gold atoms and one oxygen atom with O-Au-P bond angles of ca. 175 degrees and Au.Au contacts in the range 2.9585(7)-3.0505(14) Å. These cations are linked into centrosymmetric dimers through two short Au.Au [2.9585(7), 3.0919(9) Å] contacts. The gold atoms of the dimer form a six-membered ring with a chair conformation.

  2. Effect of deuteration on hydrogen bonding: A comparative concentration dependent Raman and DFT study of pyridine in CH3OH and CD3OD and pyrimidine in H2O and D2O

    NASA Astrophysics Data System (ADS)

    Singh, Anurag; Gangopadhyay, Debraj; Popp, Jürgen; Singh, Ranjan K.

    2012-12-01

    The relative effect of hydrogen bonding of pyrimidine (Pyr) in H2O/D2O and pyridine (Py) in CH3OH/CD3OD has been analyzed using Raman Difference Spectroscopic (RDS) technique and DFT calculations. This study is focused on analyzing the concentration dependent variation of linewidth, peak position and intensity of ring breathing mode of Py and Pyr. The ring breathing mode of Pyr in H2O and D2O has three components; due to free Pyr, lighter complexes of mPyr + nH2O/D2O and heavier complexes of mPyr + nH2O/D2O. The pyridine molecules, however, show only two components in CH3OH and CD3OD. Of these two components, one corresponds to free Py and the other inhomogeneously broadened profile corresponds to all mPy + nCH3OH/CD3OD complexes. The variation of peak position and linewidth establishes the role of dipole moment of complexes and the diffusion in the mixture. In case of CD3OD solution splitting was observed in ˜1030 cm-1 band of Py, where an additional band at ˜1034 cm-1 appears at x(Py) ⩽ 0.4. However, this band remains single at all concentrations in case of CH3OH solvent.

  3. Endohedral complexes of fullerene-like silica molecules with H2O, CH4, and CH3NH2 molecules

    NASA Astrophysics Data System (ADS)

    Filonenko, O. V.; Lobanov, V. V.

    2013-07-01

    The possibility of formation of (SiO2)60@H2O, (SiO2)60@CH4, and (SiO2)60@CH3NH2 endohedral complexes was studied by the density functional (DFT) method (B3LYP exchange correlation functional, 6-31G** basis). The penetration of these molecules into the cavity of fullerene-like silica molecules is hindered by high activation barriers, which ensures the stability of the complexes formed during the synthesis of these molecules.

  4. La0.8Sr0.2Co0.8Ni0.2O3-δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells

    NASA Astrophysics Data System (ADS)

    Zheng, Haoyu; Tian, Yunfeng; Zhang, Lingling; Chi, Bo; Pu, Jian; Jian, Li

    2018-04-01

    High-temperature H2O/CO2 co-electrolysis through reversible solid oxide electrolysis cell (SOEC) provides potentially a feasible and eco-friendly way to convert electrical energy into chemicals stored in syngas. In this work, La0.8Sr0.2Co0.8Ni0.2O3-δ (LSCN) impregnated Gd0.1Ce0.9O1.95 (GDC)-(La0.8Sr0.2)0.95MnO3-δ (LSM) composite oxygen electrode is studied as high-performance electrode for H2O/CO2 co-electrolysis. The LSCN impregnated cell exhibits competitive performance with the peak power density of 1057 mW cm-2 at 800 °C in solid oxide fuel cell (SOFC) mode; in co-electrolysis mode, the current density can reach 1.60 A cm-2 at 1.5 V at 800 °C with H2O/CO2 ratio of 2/1. With LSCN nanoparticles dispersed on the surface of GDC-LSM to maximize the reaction active sites, the LSCN impregnated cell shows significant enhanced electrochemical performance at both SOEC and SOFC modes. The influence of feed gas composition (H2O-H2-CO2) and operating voltages on the performance of co-electrolysis are discussed in detail. The cell shows a very stable performance without obvious degradation for more than 100 h. Post-test characterization is analyzed in detail by multiple measurements.

  5. A new series of mixed oxalates MM'(C 2O 4) 3(H 2O) 3· nH 2O (M = Cd, Hg, Pb; M' = Zr, Hf) based on eight-fold coordinated metals: Synthesis, crystal structure from single-crystal and powder diffraction data and thermal behaviour

    NASA Astrophysics Data System (ADS)

    Gavilan, Elisabeth; Audebrand, Nathalie; Jeanneau, Erwann

    2007-11-01

    A new series of mixed oxalates MM'(C 2O 4) 3(H 2O) 3· nH 2O (M = Cd, Hg, Pb; M' = Zr, Hf) has been prepared. The crystal structures have been solved from single-crystal and powder diffraction data. The isotypical compounds crystallise with space group P2 1/ c (No. 14). The structures consist of honeycomb layers formed by eight-fold coordinated metals, in a distorted square-based antiprismatic conformation, connected together via oxalates which act as bidentate ligands and also as monodentate in a less-common μ3-bridging mode. Sheets are built from two shifted honeycomb layers and linked to each other through a hydrogen network. The resulting frameworks of the series display a compact two-dimensional arrangement of polyhedra MO 8 and M'O 8. Weakly-bonded water molecules are located between and within the sheets. Comparisons with the 3D open-framework structures of related metal oxalates are made. The dehydration processes occur in three or four steps. The final products are MO, M'O 2 and PbZrO 3 resulting from the sublimation of PbO in air. The size of PbZrO 3 crystallites, which are on average isotropic, has been evaluated to be 1055 Å from line-broadening analysis.

  6. O2(b1Σg+) Quenching by O2, CO2, H2O, and N2 at Temperatures of 300-800 K.

    PubMed

    Zagidullin, M V; Khvatov, N A; Medvedkov, I A; Tolstov, G I; Mebel, A M; Heaven, M C; Azyazov, V N

    2017-10-05

    Rate constants for the removal of O 2 (b 1 Σ g + ) by collisions with O 2 , N 2 , CO 2 , and H 2 O have been determined over the temperature range from 297 to 800 K. O 2 (b 1 Σ g + ) was excited by pulses from a tunable dye laser, and the deactivation kinetics were followed by observing the temporal behavior of the b 1 Σ g + -X 3 Σ g - fluorescence. The removal rate constants for CO 2 , N 2 , and H 2 O were not strongly dependent on temperature and could be represented by the expressions k CO2 = (1.18 ± 0.05) × 10 -17 × T 1.5 × exp[Formula: see text], k N2 = (8 ± 0.3) × 10 -20 × T 1.5 × exp[Formula: see text], and k H2O = (1.27 ± 0.08) × 10 -16 × T 1.5 × exp[Formula: see text] cm 3 molecule -1 s -1 . Rate constants for O 2 (b 1 Σ g + ) removal by O 2 (X), being orders of magnitude lower, demonstrated a sharp increase with temperature, represented by the fitted expression k O2 = (7.4 ± 0.8) × 10 -17 × T 0.5 × exp[Formula: see text] cm 3 molecule -1 s -1 . All of the rate constants measured at room temperature were found to be in good agreement with previously reported values.

  7. Study on the Visible-Light Photocatalytic Performance and Degradation Mechanism of Diclofenac Sodium under the System of Hetero-Structural CuBi2O4/Ag3PO4 with H2O2

    PubMed Central

    Chen, Xiaojuan; Li, Ning; Xu, Song; Cai, Yumin

    2018-01-01

    Two kinds of CuBi2O4/Ag3PO4 with different heterojunction structures were prepared based on the combination of hydrothermal and in-situ precipitation methods with surfactant additives (sodium citrate and sodium stearate), and their characteristics were systematically resolved by X-ray Diffraction (XRD), Brunauer–Emmett–Teller (BET), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope (SEM)/ High-resolution Transmission Electron Microscopy (HRTEM), UV-vis Diffuse Reflectance Spectra (DRS) and Photoluminescence (PL). Meanwhile, the photocatalytic properties of the catalysts were determined for diclofenac sodium (DS) degradation and the photocatalytic mechanism was also explored. The results indicate that both of the two kinds of CuBi2O4/Ag3PO4 exhibit higher photocatalytic efficiency, mineralization rate, and stability than that of pure CuBi2O4 or Ag3PO4. Moreover, the catalytic activity of CuBi2O4/Ag3PO4 can be further enhanced by adding H2O2. The free radical capture experiments show that in the pure CuBi2O4/Ag3PO4 photocatalytic system, the OH• and O2•− are the main species participating in DS degradation; however, in the CuBi2O4/Ag3PO4 photocatalytic system with H2O2, all OH•, h+, and O2•− take part in the DS degradation, and the contribution order is OH• > h+ > O2•−. Accordingly, the photocatalytic mechanism of CuBi2O4/Ag3PO4 could be explained by the Z-Scheme theory, while the catalysis of CuBi2O4/Ag3PO4 with H2O2 follows the heterojunction energy band theory. PMID:29597267

  8. H2O2 modulates the energetic metabolism of the cloud microbiome

    NASA Astrophysics Data System (ADS)

    Wirgot, Nolwenn; Vinatier, Virginie; Deguillaume, Laurent; Sancelme, Martine; Delort, Anne-Marie

    2017-12-01

    Chemical reactions in clouds lead to oxidation processes driven by radicals (mainly HO⚫, NO3⚫, or HO2⚫) or strong oxidants such as H2O2, O3, nitrate, and nitrite. Among those species, hydrogen peroxide plays a central role in the cloud chemistry by driving its oxidant capacity. In cloud droplets, H2O2 is transformed by microorganisms which are metabolically active. Biological activity can therefore impact the cloud oxidant capacity. The present article aims at highlighting the interactions between H2O2 and microorganisms within the cloud system. First, experiments were performed with selected strains studied as a reference isolated from clouds in microcosms designed to mimic the cloud chemical composition, including the presence of light and iron. Biotic and abiotic degradation rates of H2O2 were measured and results showed that biodegradation was the most efficient process together with the photo-Fenton process. H2O2 strongly impacted the microbial energetic state as shown by adenosine triphosphate (ATP) measurements in the presence and absence of H2O2. This ATP depletion was not due to the loss of cell viability. Secondly, correlation studies were performed based on real cloud measurements from 37 cloud samples collected at the PUY station (1465 m a.s.l., France). The results support a strong correlation between ATP and H2O2 concentrations and confirm that H2O2 modulates the energetic metabolism of the cloud microbiome. The modulation of microbial metabolism by H2O2 concentration could thus impact cloud chemistry, in particular the biotransformation rates of carbon compounds, and consequently can perturb the way the cloud system is modifying the global atmospheric chemistry.

  9. Syntheses, structures, and vibrational spectroscopy of the two-dimensional iodates Ln(IO{sub 3}){sub 3} and Ln(IO{sub 3}){sub 3}(H{sub 2}O) (Ln =Yb, Lu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assefa, Zerihun; Ling Jie; Haire, Richard G.

    2006-12-15

    The reaction of Lu{sup 3+} or Yb{sup 3+} and H{sub 5}IO{sub 6} in aqueous media at 180 {sup o}C leads to the formation of Yb(IO{sub 3}){sub 3}(H{sub 2}O) or Lu(IO{sub 3}){sub 3}(H{sub 2}O), respectively, while the reaction of Yb metal with H{sub 5}IO{sub 6} under similar reaction conditions gives rise to the anhydrous iodate, Yb(IO{sub 3}){sub 3}. Under supercritical conditions Lu{sup 3+} reacts with HIO{sub 3} and KIO{sub 4} to yield the isostructural Lu(IO{sub 3}){sub 3}. The structures have been determined by single-crystal X-ray diffraction. Crystallographic data are (MoK{alpha}, {lambda}=0.71073 A): Yb(IO{sub 3}){sub 3}, monoclinic, space group P2{sub 1}/n, a=8.6664(9)more » A, b=5.9904(6) A, c=14.8826(15) A, {beta}=96.931(2){sup o}, V=766.99(13), Z=4, R(F)=4.23% for 114 parameters with 1880 reflections with I>2{sigma}(I); Lu(IO{sub 3}){sub 3}, monoclinic, space group P2{sub 1}/n, a=8.6410(9), b=5.9961(6), c=14.8782(16) A, {beta}=97.028(2){sup o}, V=765.08(14), Z=4, R(F)=2.65% for 119 parameters with 1756 reflections with I>2{sigma}(I); Yb(IO{sub 3}){sub 3}(H{sub 2}O), monoclinic, space group C2/c, a=27.2476(15), b=5.6296(3), c=12.0157(7) A, {beta}=98.636(1){sup o}, V=1822.2(2), Z=8, R(F)=1.51% for 128 parameters with 2250 reflections with I>2{sigma}(I); Lu(IO{sub 3}){sub 3}(H{sub 2}O), monoclinic, space group C2/c, a=27.258(4), b=5.6251(7), c=12.0006(16) A, {beta}=98.704(2){sup o}, V=1818.8(4), Z=8, R(F)=1.98% for 128 parameters with 2242 reflections with I>2{sigma}(I). The f elements in all of the compounds are found in seven-coordinate environments and bridged with monodentate, bidentate, or tridentate iodate anions. Both Lu(IO{sub 3}){sub 3}(H and Yb(IO{sub 3}){sub 3}(H{sub 2}O) display distinctively different vibrational profiles from their respective anhydrous analogs. Hence, the Raman profile can be used as a complementary diagnostic tool to discern the different structural motifs of the compounds. - Graphical abstract: Four new metal iodates, Yb

  10. Infrared spectroscopy of solid normal hydrogen doped with CH3F and O2 at 4.2 K: CH3F:O2 complex and CH3F migration

    NASA Astrophysics Data System (ADS)

    Abouaf-Marguin, L.; Vasserot, A.-M.

    2011-04-01

    Double doping of solid normal hydrogen with CH3F and O2 at about 4.2 K gives evidence of (ortho-H2)n:CH3F clusters and of O2:CH3F complex formation. FTIR analysis of the time evolution of the spectra in the region of the v3 C-F stretching mode indicates that these clusters behave very differently from (ortho-H2)n:H2O clusters. The main point is the observed migration of CH3F molecules in solid para-H2 at 4.2 K which differs from that of H2O under identical experimental conditions. This is confirmed by an increase over time of the integrated intensity of the CH3F:O2 complex with a rate constant K = 2.7(2) . 10-4 s-1.

  11. Structure, ferroelectric ordering, and semiempirical quantum calculations of lanthanide based metal-organic framework: [Nd(C4H5O6)(C4H4O6)][3H2O

    NASA Astrophysics Data System (ADS)

    Ahmad, Bhat Zahoor; Want, Basharat

    2016-04-01

    We investigate the structure and ferroelectric behavior of a lanthanide based metal-organic framework (MOF), [Nd(C4H5O6)(C4H4O6)][3H2O]. X-ray crystal structure analyses reveal that it crystallizes in the P41212 space group with Nd centres, coordinated by nine oxygen atoms, forming a distorted capped square antiprismatic geometry. The molecules, bridged by tartrate ligands, form a 2D chiral structure. The 2D sheets are further linked into a 3D porous framework via strong hydrogen-bonding scheme (O-H…O2.113 Å). Dielectric studies reveal two anomalies at 295 K and 185 K. The former is a paraelectric-ferroelectric transition, and the later is attributed to the freezing down of the motion of the hydroxyl groups. The phase transition is of second order, and the spontaneous polarization in low temperature phase is attributed to the ordering of protons of hydroxyl groups. The dielectric nonlinearity parameters have been calculated using Landau- Devonshire phenomenological theory. In addition, the most recent semiempirical models, Sparkle/PM7, Sparkle/RM1, and Sparkle/AM1, are tested on the present system to assay the accuracy of semiempirical quantum approaches to predict the geometries of solid MOFs. Our results show that Sparkle/PM7 model is the most accurate to predict the unit cell structure and coordination polyhedron geometry. The semiempirical methods are also used to calculate different ground state molecular properties.

  12. Structure-property relations of orthorhombic [(CH3)3NCH2COO]2(CuCl2)3 · 2H2 O

    NASA Astrophysics Data System (ADS)

    Haussühl, Eiken; Schreuer, Jürgen; Wiehl, Leonore; Paulsen, Natalia

    2014-04-01

    Large single crystals of orthorhombic [(CH3)3NCH2COO]2(CuCl2)3 · 2H2 O with dimensions up to 40×40×30 mm3 were grown from aqueous solutions. The elastic and piezoelastic coefficients were derived from ultrasonic resonance frequencies and their shifts upon variation of pressure, respectively, using the plate-resonance technique. Additionally, the coefficients of thermal expansion were determined between 95 K and 305 K by dilatometry. The elastic behaviour at ambient conditions is dominated by the 2-dimensional network of strong hydrogen bonds within the (001) plane leading to a corresponding pseudo-tetragonal anisotropy of the longitudinal elastic stiffness. The variation of elastic properties with pressure, however, as well as the thermal expansion shows strong deviations from the pseudo-tetragonal symmetry. These deviations are probably correlated with tilts of the elongated tri-nuclear betaine-CuCl2-water complexes. Neither the thermal expansion nor the specific heat capacity gives any hint on a phase transition in the investigated temperature range.

  13. Synthesis and characterization of a pH-sensitive conjugate of isoniazid with Fe3O4@SiO2 magnetic nanoparticles.

    PubMed

    Sedlák, Miloš; Bhosale, Dattatry Shivajirao; Beneš, Ludvík; Palarčík, Jiří; Kalendová, Andrea; Královec, Karel; Imramovský, Aleš

    2013-08-15

    The Letter describes the preparation and characterization of a conjugate of isoniazid (INH) with magnetic nanoparticles Fe3O4@SiO2 115±60 nm in size. The INH molecules were attached to the surface of nanoparticles by a covalent pH-sensitive amidine bond. The conjugate was characterized by X-ray diffraction, SEM, dynamic light scattering, IR spectroscopy and microanalysis. The conjugate released isoniazid under in vitro conditions (pH=4; 37 °C; t1/2≈115 s). In addition, the cytotoxicity of the Fe3O4@SiO2-INH conjugate was evaluated in SK-BR-3 cells using the xCELLigence system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Catalytic ethanolysis and gasification of kraft lignin into aromatic alcohols and H2-rich gas over Rh supported on La2O3/CeO2-ZrO2.

    PubMed

    Yang, Jing; Zhao, Liang; Liu, Chunze; Wang, Yuanyuan; Dai, Liyi

    2016-10-01

    Efficient catalytic ethanolysis and gasification of kraft lignin were conducted over a versatile supported catalyst Rh/La2O3/CeO2-ZrO2 to give high-value aromatic alcohols and H2-rich gas. The removal of phenolic hydroxyl group was the most prevalent reaction, and importantly, almost no phenols, undesired char and saturating the aromatic ring were detected. Meanwhile, the feedstock and solvent both played key roles in H2 generation that contributed to the hydrodeoxygenation of liquid components and made the whole catalytic process out of H2 supply. Reusability tests of catalyst indicated that the crystalline phase transition and agglomeration of support, the loss of noble metal Rh and carbon deposition were the possible reasons for its deactivation in supercritical ethanol. Comparing with water, methanol and isopropanol system, ethanol was the only effective solvent for the depolymerization process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Jensenite, Cu3 Te (super 6+) O6 .2H2O, a new mineral species from the Centennial Eureka Mine, Tintic District, Juab County, Utah

    USGS Publications Warehouse

    Roberts, Andrew C.; Grice, Joel D.; Groat, Lee A.; Criddle, Alan J.; Gault, Robert A.; Erd, Richard C.; Moffatt, Elizabeth A.

    1996-01-01

    Jensenite, ideally Cu 3 Te (super 6+) O 6 .2H 2 O, is monoclinic, P2 1 /n (14), with unit-cell parameters refined from powder data: a 9.204(2), b 9.170(2), c 7.584(1) Aa, beta 102.32(3) degrees , V 625.3(3) Aa 3 , a:b:c 1.0037:1:0.8270, Z = 4. The strongest six reflections of the X-ray powder-diffraction pattern [d in Aa(I)(hkl)] are: 6.428(100)(101,110), 3.217(70)(202), 2.601(40)(202), 2.530(50)(230), 2.144(35)(331) and 1.750(35)(432). The mineral is found on the dumps of the Centennial Eureka mine, Juab County, Utah, where it occurs as isolated crystals or as groups of crystals on drusy white quartz. Associated minerals are mcalpineite, xocomecatlite and unnamed Cu(Mg,Cu,Fe,Zn) 2 Te (super 6+) O 6 .6H 2 O. Individual crystals of jensenite are subhedral to euhedral, and form simple rhombs that are nearly equant. Some crystals are slightly elongate [101], with a length-to-width ratio up to 2:1. The largest crystal is approximately 0.4 mm in size; the average size is between 0.1 and 0.2 mm. Cleavage {101} fair. Forms are: {101} major; {110} medium; {100} minor; {301}, {201}, {203}, {102}, {010} very small. The mineral is transparent, emerald green, with a less intense streak of the same color and an uneven fracture. Jensenite is adamantine, brittle and nonfluorescent; H (Mohs) 3-4; D (calc.) 4.78 for the idealized formula, 4.76 g/cm 3 for the empirical formula. In a polished section, jensenite is very weakly bireflectant and nonpleochroic. In reflected plane-polarized light in air, it is a nondescript grey, and in oil, it is a much darker grey in color with a brownish tint, with ubiquitous bright green internal reflections. Anisotropy is not detectable. Measured values of reflectance, in air and in oil, are tabulated. Electron-microprobe analyses yielded CuO 50.91, ZnO 0.31, TeO 3 38.91, H 2 O (calc.) [8.00], total [98.13] wt.%. The empirical formula, derived from crystal-structure analysis and electron-microprobe analyses, is (Cu (sub 2.92) Zn (sub 0.02) ) (sub

  16. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce, Nd.

    PubMed

    De Almeida, Lucie; Grandjean, Stéphane; Rivenet, Murielle; Patisson, Fabrice; Abraham, Francis

    2014-03-28

    New hydrazinium lanthanide oxalates N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce (Ce-HyOx) and Nd (Nd-HyOx), were synthesized by hydrothermal reaction at 150 °C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2₁/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Å, β = 116.638(4)°, V = 2021.4(7) Å(3), Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO9 and NdO8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm(-1) confirms the coordination of N2H5(+) to the metal. These polyhedra are connected through μ2 and μ3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-HyOx) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO2 and Ce(0.5)Nd(0.5)O(1.75) are formed at low temperature from Ce-HyOx and CeNd-HyOx, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxymonocyanamides Ln2O2CN2 are formed.

  17. Nqrs Data for C26H34N2O3V (Subst. No. 1601)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C26H34N2O3V (Subst. No. 1601)

  18. Complexes in the Photocatalytic Reaction of CO2 and H2O: Theoretical Studies

    PubMed Central

    Luo, Dongmei; Zhang, Ning; Hong, Sanguo; Wu, Huanwen; Liu, Zhihua

    2010-01-01

    Complexes (H2O/CO2, e–(H2O/CO2) and h+–(H2O/CO2)) in the reaction system of CO2 photoreduction with H2O were researched by B3LYP and MP2 methods along with natural bond orbital (NBO) analysis. Geometries of these complexes were optimized and frequencies analysis performed. H2O/CO2 captured photo-induced electron and hole produced e–(H2O/CO2) and h+–(H2O/CO2), respectively. The results revealed that CO2 and H2O molecules could be activated by the photo-induced electrons and holes, and each of these complexes possessed two isomers. Due to the effect of photo-induced electrons, the bond length of C=O and H-O were lengthened, while H-O bonds were shortened, influenced by holes. The infrared (IR) adsorption frequencies of these complexes were different from that of CO2 and H2O, which might be attributed to the synergistic effect and which could not be captured experimentally. PMID:21152274

  19. Electron Scattering and Doping Mechanisms in Solid-Phase-Crystallized In2O3:H Prepared by Atomic Layer Deposition.

    PubMed

    Macco, Bart; Knoops, Harm C M; Kessels, Wilhelmus M M

    2015-08-05

    Hydrogen-doped indium oxide (In2O3:H) has recently emerged as an enabling transparent conductive oxide for solar cells, in particular for silicon heterojunction solar cells because its high electron mobility (>100 cm(2)/(V s)) allows for a simultaneously high electrical conductivity and optical transparency. Here, we report on high-quality In2O3:H prepared by a low-temperature atomic layer deposition (ALD) process and present insights into the doping mechanism and the electron scattering processes that limit the carrier mobility in such films. The process consists of ALD of amorphous In2O3:H at 100 °C and subsequent solid-phase crystallization at 150-200 °C to obtain large-grained polycrystalline In2O3:H films. The changes in optoelectronic properties upon crystallization have been monitored both electrically by Hall measurements and optically by analysis of the Drude response. After crystallization, an excellent carrier mobility of 128 ± 4 cm(2)/(V s) can be obtained at a carrier density of 1.8 × 10(20) cm(-3), irrespective of the annealing temperature. Temperature-dependent Hall measurements have revealed that electron scattering is dominated by unavoidable phonon and ionized impurity scattering from singly charged H-donors. Extrinsic defect scattering related to material quality such as grain boundary and neutral impurity scattering was found to be negligible in crystallized films indicating that the carrier mobility is maximized. Furthermore, by comparison of the absolute H-concentration and the carrier density in crystallized films, it is deduced that <4% of the incorporated H is an active dopant in crystallized films. Therefore, it can be concluded that inactive H atoms do not (significantly) contribute to defect scattering, which potentially explains why In2O3:H films are capable of achieving a much higher carrier mobility than conventional In2O3:Sn (ITO).

  20. Optical and dielectric properties of isothermally crystallized nano-KNbO3 in Er3+-doped K2O-Nb2O5-SiO2 glasses.

    PubMed

    Chaliha, Reenamoni Saikia; Annapurna, K; Tarafder, Anal; Tiwari, V S; Gupta, P K; Karmakar, Basudeb

    2010-01-01

    Precursor glass of composition 25K(2)O-25Nb(2)O(5)-50SiO(2) (mol%) doped with Er(2)O(3) (0.5 wt% in excess) was isothermally crystallized at 800 degrees C for 0-100 h to obtain transparent KNbO(3) nanostructured glass-ceramics. XRD, FESEM, TEM, FTIRRS, dielectric constant, refractive index, absorption and fluorescence measurements were carried out to analyze the morphology, dielectric, structure and optical properties of the glass-ceramics. The crystallite size of KNbO(3) estimated from XRD and TEM is found to vary in the range 7-23 nm. A steep rise in the dielectric constant of glass-ceramics with heat-treatment time reveals the formation of ferroelectric nanocrystalline KNbO(3) phase. The measured visible photoluminescence spectra have exhibited green emission transitions of (2)H(11/2), (4)S(3/2)-->(4)I(15/2) upon excitation at 377 nm ((4)I(15/2)-->(4)G(11/2)) absorption band of Er(3+) ions. The near infrared (NIR) emission transition (4)I(13/2)-->(4)I(15/2) is detected around 1550 nm on excitation at 980 nm ((4)I(15/2)-->(4)I(11/2)) of absorption bands of Er(3+) ions. It is observed that photoluminescent intensity at 526 nm ((2)H(11/2)-->(4)I(15/2)), 550 nm ((4)S(3/2)-->(4)I(15/2)) and 1550 nm ((4)I(13/2)-->(4)I(15/2)) initially decrease and then gradually increase with increase in heat-treatment time. The measured lifetime (tau(f)) of the (4)I(13/2)-->(4)I(15/2) transition also possesses a similar trend. The measured absorption and fluorescence spectra reveal that the Er(3+) ions gradually enter into the KNbO(3) nanocrystals. Copyright 2009 Elsevier B.V. All rights reserved.

  1. A V(IV) Hydroxyhydrogenomonophosphate with an Intersecting Tunnel Structure: HK 4[V 10O 10(H 2O) 2(OH) 4(PO 4) 7]·9H 2O

    NASA Astrophysics Data System (ADS)

    Berrah, F.; Guesdon, A.; Leclaire, A.; Borel, M. M.; Provost, J.; Raveau, B.

    1999-12-01

    A V(IV) hydroxyhydrogenomonophosphate HK4[V10O10(H2O)2(OH)4(PO4)7]·9H2O has been obtained, using hydrothermal conditions. Its structure, closely related to that of (CH3)2NH2K4[V10O10(H2O)2(OH)4(PO4)7]·4H2O, differs from the latter by its I41/a space group (instead of P43). This difference corresponds to a "disordering" of the vanadium atoms, with respect to the dimethyl ammonium phase. It is shown that this disorder, which appears in the form of "V5O22" units distributed at random, does not affect the oxygen framework. The analysis of this complex structure shows that it can be described from the stacking along c of [V8P7O38(OH)4(H2O)2]∞ layers interconnected through layers of isolated VO6 octahedra. In this structure, built up of VO6, VO5OH, and VO4(OH)(H2O) octahedra, of VO4OH pyramids, and of PO4 tetrahedra, large "toffee" tunnels and smaller ones with a tulip-shape section are running along a (or b). The first ones are stuffed with H2O molecules forming aquo tubes, where protons are likely "delocalized," whereas the second ones are occupied by K+ cations.

  2. Ab initio Quantum Chemical Studies of Reactions in Astrophysical Ices. Reactions Involving CH3OH, CO2, CO, HNCO in H2CO/NH3/H2O Ices

    NASA Technical Reports Server (NTRS)

    Woon, David E.

    2006-01-01

    While reactions between closed shell molecules generally involve prohibitive barriers in the gas phase, prior experimental and theoretical studies have demonstrated that some of these reactions are significantly enhanced when confined within an icy grain mantle and can occur efficiently at temperatures below 100 K with no additional energy processing. The archetypal case is the reaction of formaldehyde (H2CO) and ammonia (NH3) to yield hydroxymethylamine (NH2CH2OH). In the present work we have characterized reactions involving methanol (CH3OH), carbon dioxide (CO2), carbon monoxide (CO), and isocyanic acid (HNCO) in search of other favorable cases. Most of the emphasis is on CH3OH, which was investigated in the two-body reaction with one H2CO and the three-body reaction with two H2CO molecules. The addition of a second H2CO to the product of the reaction between CH3OH and H2CO was also considered as an alternative route to longer polyoxymethylene polymers of the -CH2O- form. The reaction between HNCO and NH3 was studied to determine if it can compete against the barrierless charge transfer process that yields OCN(-) and NH4(+). Finally, the H2CO + NH3 reaction was revisited with additional benchmark calculations that confirm that little or no barrier is present when it occurs in ice.

  3. On the Formation of the C2H6O Isomers Ethanol (C2H5OH) and Dimethyl Ether (CH3OCH3) in Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Bergantini, Alexandre; Maksyutenko, Pavlo; Kaiser, Ralf I.

    2017-06-01

    The structural isomers ethanol (CH3CH2OH) and dimethyl ether (CH3OCH3) were detected in several low-, intermediate-, and high-mass star-forming regions, including Sgr B2, Orion, and W33A, with the relative abundance ratios of ethanol/dimethyl ether varying from about 0.03 to 3.4. Until now, no experimental data regarding the formation mechanisms and branching ratios of these two species in laboratory simulation experiments could be provided. Here, we exploit tunable photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) to detect and analyze the production of complex organic molecules (COMs) resulting from the exposure of water/methane (H2O/CH4) ices to energetic electrons. The main goal is to understand the formation mechanisms in star-forming regions of two C2H6O isomers: ethanol (CH3CH2OH) and dimethyl ether (CH3OCH3). The results show that the experimental branching ratios favor the synthesis of ethanol versus dimethyl ether (31 ± 11:1). This finding diverges from the abundances observed toward most star-forming regions, suggesting that production routes on interstellar grains to form dimethyl ether might be missing; alternatively, ethanol can be overproduced in the present simulation experiments, such as via radical-radical recombination pathways involving ethyl and hydroxyl radicals. Finally, the PI-ReTOF-MS data suggest the formation of methylacetylene (C3H4), ketene (CH2CO), propene (C3H6), vinyl alcohol (CH2CHOH), acetaldehyde (CH3CHO), and methyl hydroperoxide (CH3OOH), in addition to ethane (C2H6), methanol (CH3OH), and CO2 detected from infrared spectroscopy. The yield of all the confirmed species is also determined.

  4. Applications of molybdenum-95 NMR spectroscopy. 7. Studies of metal-metal bonded systems including aqueous molybdenum(IV) and molybdenum(V). Crystal and molecular structure of Na/sub 2/(Mo/sub 3/O/sub 4/((O/sub 2/CCH/sub 2/)/sub 2/NCH/sub 3/)/sub 3/). 7H/sub 2/O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghellar, S.F.; Hambley, T.W.; Brownlee, R.T.

    1983-03-23

    Solution /sup 95/Mo NMR studies are reported on spin-coupled polynuclear systems of Mo(V), Mo(IV), and Mo(II). Resonances occur at low fields compared to mononuclear species. The chemical shifts of the Mo(IV)-aquo ion in 4 M p-toluenesulfonic and methanesulfonic acid media and those of the Mo(IV) complexes containing oxalate, EDTA, and methyliminodiacetate ligands (whose solid-state structures are based on the (Mo/sub 3/O/sub 4/)/sup 4 +/ cluster) fall in the narrow range of 172 ppm spanning 990-1162 ppm. As the known chemical shift scale for the /sup 95/Mo nucleus covers 7000 ppm, this observation indicates that the /sup 95/Mo nucleus is inmore » a similar chemical environment in each of the species examined and, taken with published evidence, confirms formulation of the Mo(IV)-aquo ion as (Mo/sub 3/O/sub 4/(H/sub 2/O)/sub 9/)/sup 4 +/. Two resonances are detected in the above range for Mo(IV)/sub aq/ in 4 M hydrochloric acid and for ((Mo/sub 3/O/sub 4/)/sub 2/(PDTA)/sub 3/)/sup 4 -/. Additional resonances appear at 539-608 ppm in the methanesulfonic acid, hydrochloric acid, and EDTA systems when stored in air. These are assigned to (Mo/sup v//sub 2/O/sub 4/)/sup 2 +/-based species by comparison with the observed resonances of the Mo(V)-aquo ion, (Mo/sup v//sub 2/O/sub 4/(H/sub 2/O)/sub 6/)/sup 2 +/, in the relevant acid media and with (Mo/sup v//sub 2/O/sub 4/(EDTA))/sup 2 -/ in H/sub 2/O. The (Mo/sup v//sub 2/O/sub 4/(PDTA))/sup 2 -/ anion exhibits two resonances associated with inequivalent molybdenum sites. Resonances for (Mo/sup II//sub 2/(O/sub 2/CR)/sub 4/) (R = CF/sub 3/, n-Pr), which contain formal quadruple bonds, have been observed for the first time and are the most deshielded /sup 95/Mo NMR signals detected to date. The methyliminodiacetate complex, Na/sub 2/(Mo/sub 3/O/sub 4/((O/sub 2/CCH/sub 2/)/sub 2/NCH/sub 3/)/sub 3/).7H/sub 2/O, was isolated. Its crystal structure contains a discrete trinuclear (Mo/sup IV//sub 3/O/sub 4/((O/sub 2/CCH/sub 2

  5. Single-crystal EPR spectra of the first alternating bimetallic chain compound MnCu(obp)(H2O)3·H2O (obp=oxamido bis(n,n‧-propionato))

    NASA Astrophysics Data System (ADS)

    Gatteschi, Dante; Zanchini, Claudia; Kahn, Olivier; Pei, Yu

    1989-08-01

    Single-crystal EPR spectra of the heterobimetallic alternating double-chain compound MnCu(obp) (H 2O) 3·H 2O (obp=oxamido bis (N,N'-propionato)) were recorded in the 300-20 K range. Analysis of the spectra indicate a substantially dipolar-determined linewidth with enhancement of the secular term of the second moment due to spin diffusion effects. The anisotropic shifts in the resonance field observed in low-temperature spectra revealed that interchain interactions are relevant in determining the preferred spin orientations.

  6. Analysis of grain boundary phase devitrification of Y2O3- and Al2O3-doped Si3N4

    NASA Technical Reports Server (NTRS)

    Hench, L. L.; Vaidyanathan, P. N.

    1983-01-01

    The present study has the objective to show that a Fourier Transform IR (FTIR) spectrometer in a single-beam reflection mode can be used for direct comparison of fractured vs nonfractured Si3N4 surfaces. This can be done because the FTIR method permits a digital summation of nearly 1000 scans of the fracture surface. Commercial-grade Si3N4, Y2O3, and Al2O3 were used in the study. The samples were heat treated in a vacuum induction heating furnace at either 1000 C for 10 h or 1200 C for 10 h each. Use of Fourier transform IR reflection spectroscopic analysis and X-ray diffraction shows that 10 h at 1200 C is sufficient to devitrify the amorphous grain boundary phase of Si3N4 containing 15 percent Y2O3 + 2 percent Al2O3 densification aids.

  7. Phosphinodi(benzylsilane) PhP{(o-C6H4CH2)SiMe2H}2: a versatile "PSi2Hx" pincer-type ligand at ruthenium.

    PubMed

    Montiel-Palma, Virginia; Muñoz-Hernández, Miguel A; Cuevas-Chávez, Cynthia A; Vendier, Laure; Grellier, Mary; Sabo-Etienne, Sylviane

    2013-09-03

    The synthesis of the new phosphinodi(benzylsilane) compound PhP{(o-C6H4CH2)SiMe2H}2 (1) is achieved in a one-pot reaction from the corresponding phenylbis(o-tolylphosphine). Compound 1 acts as a pincer-type ligand capable of adopting different coordination modes at Ru through different extents of Si-H bond activation as demonstrated by a combination of X-ray diffraction analysis, density functional theory calculations, and multinuclear NMR spectroscopy. Reaction of 1 with RuH2(H2)2(PCy3)2 (2) yields quantitatively [RuH2{[η(2)-(HSiMe2)-CH2-o-C6H4]2PPh}(PCy3)] (3), a complex stabilized by two rare high order ε-agostic Si-H bonds and involved in terminal hydride/η(2)-Si-H exchange processes. A small free energy of reaction (ΔrG298 = +16.9 kJ mol(-1)) was computed for dihydrogen loss from 3 with concomitant formation of the 16-electron species [RuH{[η(2)-(HSiMe2)-CH2-o-C6H4]PPh[CH2-o-C6H4SiMe2]}(PCy3)] (4). Complex 4 features an unprecedented (29)Si NMR decoalescence process. The dehydrogenation process is fully reversible under standard conditions (1 bar, 298 K).

  8. Stratospheric H2O and HNO3 profiles derived from solar occultation measurements

    NASA Technical Reports Server (NTRS)

    Fischer, H.; Fergg, F.; Rabus, D.; Burkert, P.

    1985-01-01

    Compact two-channel radiometers for solar occultation experiments have been constructed in order to measure stratospheric trace gases. The instruments can be used as filter- or correlation-type radiometers, depending on the trace gas under investigation. Within the LIMS correlative measurement program, balloon flights were performed with a payload of up to four of these two-channel radiometers. From the filter-type measurements, profiles of the trace gases H2O and HNO3 are inferred for the height region between the tropopause and the balloon float level. The data evaluation also includes a comprehensive analysis of the error sources and their effect on the accuracy of the trace gas profiles. The derived H2O and HNO3 profiles are assessed against the observations of other authors and are discussed in the light of the trace gas distributions calcualted from photochemical models.

  9. Transcriptome Analysis of H2O2-Treated Wheat Seedlings Reveals a H2O2-Responsive Fatty Acid Desaturase Gene Participating in Powdery Mildew Resistance

    PubMed Central

    Tang, Lichuan; Zhao, Guangyao; Zhu, Mingzhu; Chu, Jinfang; Sun, Xiaohong; Wei, Bo; Zhang, Xiangqi; Jia, Jizeng; Mao, Long

    2011-01-01

    Hydrogen peroxide (H2O2) plays important roles in plant biotic and abiotic stress responses. However, the effect of H2O2 stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H2O2, we performed an mRNA tag analysis of wheat seedlings under 10 mM H2O2 treatment for 6 hour in one powdery mildew (PM) resistant (PmA) and two susceptible (Cha and Han) lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H2O2 responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, ‘transport’ activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H2O2-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H2O2-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt). Eight of these genes were found to be co-regulated by H2O2 and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS) to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H2O2 stress and uncovers potential links between H2O2 and Bgt responses, hence providing important candidate genes for the PM resistance in wheat. PMID:22174904

  10. Decreased N2O reduction by low soil pH causes high N2O emissions in a riparian ecosystem.

    PubMed

    Van den Heuvel, R N; Bakker, S E; Jetten, M S M; Hefting, M M

    2011-05-01

    Quantification of harmful nitrous oxide (N(2)O) emissions from soils is essential for mitigation measures. An important N(2)O producing and reducing process in soils is denitrification, which shows deceased rates at low pH. No clear relationship between N(2)O emissions and soil pH has yet been established because also the relative contribution of N(2)O as the denitrification end product decreases with pH. Our aim was to show the net effect of soil pH on N(2)O production and emission. Therefore, experiments were designed to investigate the effects of pH on NO(3)(-) reduction, N(2)O production and reduction and N(2) production in incubations with pH values set between 4 and 7. Furthermore, field measurements of soil pH and N(2)O emissions were carried out. In incubations, NO(3)(-) reduction and N(2) production rates increased with pH and net N(2)O production rate was highest at pH 5. N(2)O reduction to N(2) was halted until NO(3)(-) was depleted at low pH values, resulting in a built up of N(2)O. As a consequence, N(2)O:N(2) production ratio decreased exponentially with pH. N(2)O reduction appeared therefore more important than N(2)O production in explaining net N(2)O production rates. In the field, a negative exponential relationship for soil pH against N(2)O emissions was observed. Soil pH could therefore be used as a predictive tool for average N(2)O emissions in the studied ecosystem. The occurrence of low pH spots may explain N(2)O emission hotspot occurrence. Future studies should focus on the mechanism behind small scale soil pH variability and the effect of manipulating the pH of soils. © 2011 Blackwell Publishing Ltd.

  11. Photochemical Generation of H_{2}NCNX, H_{2}NNCX, H_{2}NC(NX) (x = O, s) in Low-Temperature Matrices

    NASA Astrophysics Data System (ADS)

    Voros, Tamas; Lajgut, Gyozo Gyorgy; Magyarfalvi, Gabor; Tarczay, Gyorgy

    2017-06-01

    The [NH_{2}, C, N, O] and the [NH_{2}, C, N, S] systems were investigated by quantum-chemical computations and matrix-isolation spectroscopic methods. The equilibrium structures of the isomers and their relative energies were determined by CCSD(T) method. This was followed by the computation of the harmonic and anharmonic vibrational wavenumbers, infrared intensities, relative Raman activities and UV excitation energies. These computed data were used to assist the identification of products obtained by UV laser photolysis of 3,4-diaminofurazan, 3,4-diaminothiadiazole and 1,2,4-thiadiazole-3,5-diamine in low-temperature Ar and Kr matrices. Experimentally, first the precursors were studied by matrix-isolation IR and UV spectroscopic methods. Based on these UV spectra, different wavelengths were selected for photolysis. The irradiations, carried out by a tunable UV laser-light source, resulted in the decomposition of the precursors, and in the appearance of new bands in the IR spectra. Some of these bands were assigned to cyanamide (H_{2}NCN) and its isomer, the carbodiimide molecule (HNCNH), generated from H_{2}NCN. By the analysis of the relative absorbance vs. photolysis time curves, the other bands were grouped to three different species both for the O- and the S-containing systems. In the case of the O-containing isomers, these bands were assigned to the H_{2}NNCO:H_{2}NCN, and H_{2}NCNO:H_{2}NCN complexes, and to the ring-structure H_{2}NC(NO) isomer. In a similar way, the complexes of H_{2}NNCS and H_{2}NCNS with the H_{2}NCN, and H_{2}NC(NS) were also identified. 1,2,4-thiadiazole-3,5-diamine was also investigated in similar way like the above mentioned precursors. The results of this study also support the identification of the new S-containing isomers. Except for H_{2}NNCO and H_{2}NCNS, these molecules were not identified previously. It is expected that at least some of these species, like the methyl isocyanate (CH_{3}CNO) isomer, are present and could be

  12. Laboratory IR Detection of H2O, CO2 in Ion-Irradiated Ices Relevant to Europa

    NASA Technical Reports Server (NTRS)

    Moore, Marla H.; Hudson, R. L.

    1999-01-01

    Hydrogen peroxide has been identified on Europa (Carlson et al. 1999) based in part on the 3.50 micron absorption feature observed in Galileo NIMS spectra. The observed feature was fitted with laboratory reflectance spectra of H2O + H2O2. Since condensed phase molecules on Europa (H2O, CO2, SO2, and H2O2) are bombarded with a significant flux of energetic particles (H(+), O(n+), S(n+) and e-), we examined the proton irradiation of H2O at 80 K and the conditions for the IR detection of H2O2 near 3.5 microns. Contrary to expectations, H2O2 was not detected if pure H2O ice was irradiated at 80 K. This was an unexpected result since, H2O2 was detected if pure H2O was irradiated at 18 K. We find, however, that if H2O ice contains either O2 or CO2 then H2O2 is detected after irradiation at 80 K (Moore and Hudson, 1999). The source of O2 for the H2O ice on Europa could come from surface interactions with the tenuous oxygen atmosphere, or from the bombardment of the surface by O(n+).

  13. Electrical Conductivity of Cancrinite-Type Na8 - 2 x Ca x [Al6Si6O24][CO3] · 2H2O ( x ≤ 0.03) Crystals

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2018-05-01

    The electrical conductivity of crystals of artificial cancrinite Na8 - 2 x Ca x [Al6Si6O24][CO3] · 2H2O ( x ≤ 0.03) has been studied in the temperature range of 498-604 K. These crystals were grown by hydrothermal synthesis on a seed in the Na2O-Al2O3-SiO2-H2O system ( t = 380-420°C, P = 3 × 107-9 × 107 Pa). The ionic conductivity of a single-crystal sample (sp. gr. P63), measured along the crystallographic axis c, is low: σ = 8 × 10-7 S/cm at 300°C. The electric transport activation energy is E a = 0.81 ± 0.05 eV. The relationship between the ionic conductivity and specific features of the atomic structure of cancrinites is discussed.

  14. Experimental and theoretical investigation of homogeneous gaseous reaction of CO2(g) + nH2O(g) + nNH3(g) → products (n = 1, 2).

    PubMed

    Li, Zhuangjie; Zhang, Baoquan

    2012-09-13

    Decreasing CO2 emissions into the atmosphere is key for reducing global warming. To facilitate the CO2 emission reduction efforts, our laboratory conducted experimental and theoretical investigations of the homogeneous gaseous reaction of CO2(g) + nH2O(g) + nNH3(g) → (NH4)HCO3(s)/(NH4)2CO3(s) (n = 1 and 2) using Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy and ab initio molecular orbital theory. Our FTIR-ATR experimental results indicate that (NH4)2CO3(s) and (NH4)HCO3(s) are formed as aerosol particulate matter when carbon dioxide reacts with ammonia and water in the gaseous phase at room temperature. Ab initio study of this chemical system suggested that the reaction may proceed through formation of NH3·H2O(g), NH3·CO2(g), and CO2·H2O(g) complexes. Subsequent complexes, NH3·H2O·CO2 and (NH3)2·H2O·CO2, can be formed by adding gaseous reactants to the NH3·H2O(g), NH3·CO2(g), and CO2·H2O(g) complexes, respectively. The NH3·H2O·CO2 and (NH3)2·H2O·CO2 complexes can then be rearranged to produce (NH4)HCO3 and (NH4)2CO3 as final products via a transition state, and the NH3 molecule acts as a medium accepting and donating hydrogen atoms in the rearrangement process. Our computational results also reveal that the presence of an additional water molecule can reduce the activation energy of the rearrangement process. The high activation energy predicted in the present work suggests that the reaction is kinetically not favored, and our experimental observation of (NH4)HCO3(s) and (NH4)2CO3(s) may be attributed to the high concentrations of reactants increasing the reaction rate of the title reactions in the reactor.

  15. Synthesis and physicochemical characterization of carbon backbone modified [Gd(TTDA)(H2O)]2- derivatives.

    PubMed

    Chang, Ya-Hui; Chen, Chiao-Yun; Singh, Gyan; Chen, Hsing-Yin; Liu, Gin-Chung; Goan, Yih-Gang; Aime, Silvio; Wang, Yun-Ming

    2011-02-21

    The present study was designed to exploit optimum lipophilicity and high water-exchange rate (k(ex)) on low molecular weight Gd(III) complexes to generate high bound relaxivity (r(1)(b)), upon binding to the lipophilic site of human serum albumin (HSA). Two new carbon backbone modified TTDA (3,6,10-tri(carboxymethyl)-3,6,10-triazadodecanedioic acid) derivatives, CB-TTDA and Bz-CB-TTDA, were synthesized. The complexes [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) both display high stability constant (log K(GdL) = 20.28 and 20.09, respectively). Furthermore, CB-TTDA (log K(Gd/Zn) = 4.22) and Bz-CB-TTDA (log K(Gd/Zn) = 4.12) exhibit superior selectivity of Gd(III) against Zn(II) than those of TTDA (log K(Gd/Zn) = 2.93), EPTPA-bz-NO(2) (log K(Gd/Zn) = 3.19), and DTPA (log K(Gd/Zn) = 3.76). However, the stability constant values of [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) are lower than that of MS-325. The parameters that affect proton relaxivity have been determined in a combined variable temperature (17)O NMR and NMRD study. The water exchange rates are comparable for the two complexes, 232 × 10(6) s(-1) for [Gd(CB-TTDA)(H(2)O)](2-) and 271 × 10(6) s(-1) for [Gd(Bz-CB-TTDA)(H(2)O)](2-). They are higher than those of [Gd(TTDA)(H(2)O)](2-) (146 × 10(6) s(-1)), [Gd(DTPA)(H(2)O)](2-) (4.1 × 10(6) s(-1)), and MS-325 (6.1 × 10(6) s(-1)). Elevated stability and water exchange rate indicate that the presence of cyclobutyl on the carbon backbone imparts rigidity and steric constraint to [Gd(CB-TTDA)(H(2)O)](2-)and [Gd(Bz-CB-TTDA)(H(2)O)](2-). In addition, the major objective for selecting the cyclobutyl is to tune the lipophilicity of [Gd(Bz-CB-TTDA)(H(2)O)](2-). The binding affinity of [Gd(Bz-CB-TTDA)(H(2)O)](2-) to HSA was evaluated by ultrafiltration study across a membrane with a 30 kDa MW cutoff, and the first three stepwise binding constants were determined by fitting the data to a stoichiometric model. The binding association constants (K

  16. Ab initio studies on Al(+)(H(2)O)(n), HAlOH(+)(H(2)O)(n-1), and the size-dependent H(2) elimination reaction.

    PubMed

    Siu, Chi-Kit; Liu, Zhi-Feng; Tse, John S

    2002-09-11

    We report computational studies on Al(+)(H(2)O)(n), and HAlOH(+)(H(2)O)(n-1), n = 6-14, by the density functional theory based ab initio molecular dynamics method, employing a planewave basis set with pseudopotentials, and also by conventional methods with Gaussian basis sets. The mechanism for the intracluster H(2) elimination reaction is explored. First, a new size-dependent insertion reaction for the transformation of Al(+)(H(2)O)(n), into HAlOH(+)(H(2)O)(n-1) is discovered for n > or = 8. This is because of the presence of a fairly stable six-water-ring structure in Al(+)(H(2)O)(n) with 12 members, including the Al(+). This structure promotes acidic dissociation and, for n > or = 8, leads to the insertion reaction. Gaussian based BPW91 and MP2 calculations with 6-31G* and 6-31G** basis sets confirmed the existence of such structures and located the transition structures for the insertion reaction. The calculated transition barrier is 10.0 kcal/mol for n = 9 and 7.1 kcal/mol for n = 8 at the MP2/6-31G** level, with zero-point energy corrections. Second, the experimentally observed size-dependent H(2) elimination reaction is related to the conformation of HAlOH(+)(H(2)O)(n-1), instead of Al(+)(H(2)O)(n). As n increases from 6 to 14, the structure of the HAlOH(+)(H(2)O)(n-1) cluster changes into a caged structure, with the Al-H bond buried inside, and protons produced in acidic dissociation could then travel through the H(2)O network to the vicinity of the Al-H bond and react with the hydride H to produce H(2). The structural transformation is completed at n = 13, coincident approximately with the onset of the H(2) elimination reaction. From constrained ab initio MD simulations, we estimated the free energy barrier for the H(2) elimination reaction to be 0.7 eV (16 kcal/mol) at n = 13, 1.5 eV (35 kcal/mol) at n = 12, and 4.5 eV (100 kcal/mol) at n = 8. The existence of transition structures for the H(2) elimination has also been verified by ab initio calculations

  17. Cutin monomers and surface wax constituents elicit H2O2 in conditioned cucumber hypocotyl segments and enhance the activity of other H2O2 elicitors

    PubMed

    Fauth; Schweizer; Buchala; Markstadter; Riederer; Kato; Kauss

    1998-08-01

    Hypocotyls from etiolated cucumber (Cucumis sativus L.) seedlings were gently abraded at their epidermal surface and cut segments were conditioned to develop competence for H2O2 elicitation. Alkaline hydrolysates of cutin from cucumber, tomato, and apple elicited H2O2 in such conditioned segments. The most active constituent of cucumber cutin was identified as dodecan-1-ol, a novel cutin monomer capable of forming hydrophobic terminal chains. Additionally, the cutin hydrolysates enhanced the activity of a fungal H2O2 elicitor, similar to cucumber surface wax, which contained newly identified alkan-1,3-diols. The specificity of elicitor and enhancement activity was further elaborated using some pure model compounds. Certain saturated hydroxy fatty acids were potent H2O2 elicitors as well as enhancers. Some unsaturated epoxy and hydroxy fatty acids were also excellent H2O2 elicitors but inhibited the fungal elicitor activity. Short-chain alkanols exhibited good elicitor and enhancer activity, whereas longer-chain alkan-1-ols were barely active. The enhancement effect was also observed for H2O2 elicitation by ergosterol and chitosan. The physiological significance of these observations might be that once the cuticle is degraded by fungal cutinase, the cutin monomers may act as H2O2 elicitors. Corrosion of cutin may also bring surface wax constituents in contact with protoplasts and enhance elicitation.

  18. A Computational Study of Chalcogen-containing H2 X…YF and (CH3 )2 X…YF (X=O, S, Se; Y=F, Cl, H) and Pnicogen-containing H3 X'…YF and (CH3 )3 X'…YF (X'=N, P, As) Complexes.

    PubMed

    McDowell, Sean A C; Buckingham, A David

    2018-04-20

    A computational study was undertaken for the model complexes H 2 X…YF and (CH 3 ) 2 X…YF (X=O, S, Se; Y=F, Cl, H), and H 3 X'…YF and (CH 3 ) 3 X'…YF (X'=N, P, As), at the MP2/6-311++G(d,p) level of theory. For H 2 X…YF and H 3 X'…YF, noncovalent interactions dominate the binding in order of increasing YF dipole moment, except for H 3 As…F 2 , and possibly H 3 As…ClF. However, for the methyl-substituted complexes (CH 3 ) 2 X…YF and (CH 3 ) 3 X'…YF the binding is especially strong for the complexes containing F 2 , implying significant chemical bonding between the interacting molecules. The relative stability of these complexes can be rationalized by the difference in the electronegativity of the X or X' and Y atoms. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of Er3+ concentration on the luminescence properties of Al2O3-ZrO2 powder

    NASA Astrophysics Data System (ADS)

    Clabel H., J. L.; Rivera, V. A. G.; Nogueira, I. C.; Leite, E. R.; Siu Li, M.; Marega, E.

    2016-12-01

    This manuscript reports on the effects of the luminescence properties of Er3+ on Al2O3-ZrO2 powder synthesized by the conventional solid-state method. The best conditions found for the calcinations were 1500 °C and 4 h. The structural dependence of the luminescence on Er3+:Al2O3-ZrO2 is associated with phase transformations of the Al2O3-ZrO2 host and presence of the OH group. Green and red emissions at room temperature from the 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 levels of Er3+ ions were observed under 482 nm pumping. The green-to-red emission intensity ratios and CIE chromaticity coordinates were determined from emission spectra for the evaluation of light emitted as a function of the Er3+ concentration. The Er3+ luminescence quenching due to group OH and variation in the Er3+ concentration plays an important role in the definition of the luminescent response.

  20. On the solvation of hydronium by carbon dioxide: Structural and infrared spectroscopic study of (H3O+)(CO2)n

    NASA Astrophysics Data System (ADS)

    Yang, Jianpeng; Kong, Xiangtao; Jiang, Ling

    2018-02-01

    Hydronium (H3O+) is the smallest member of protonated water. In this work, we use quantum chemical calculations to explore the solvation of H3O+ by adding one CO2 molecule at a time. The effect of stepwise solvation on infrared spectroscopy, structure, and energetics has been systematically studied. It has been found that the first solvation shell of H3O+ is completed at n = 6. Besides the hydrogen-bond interaction, the CCO2-OCO2 intermolecular interaction is also responsible for the stabilization of the larger clusters. The transfer of the proton from H3O+ onto CO2 with the formation of the OCOH+ moiety is not observed in the early stage of solvation process. Calculated IR spectra suggest that vibrational frequencies of H-bonded Osbnd H stretching would afford a sensitive probe for exploring the early stage solvation of hydronium by carbon dioxide. IR spectra for the (H3O+)(CO2)n (n = 1-7) clusters could be measured by the infrared photodissociation spectroscopic technique and thus provide a vivid physical picture about how carbon dioxide solvates the hydronium.

  1. The 2:1 salt-type adduct formed between 6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)-dione and piperidine: sheets containing 20 independent hydrogen bonds.

    PubMed

    Orozco, Fabián; Insuasty, Braulio; Cobo, Justo; Glidewell, Christopher

    2009-05-01

    The title compound, piperidinium 6-amino-3-methyl-5-nitroso-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ide 6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)-dione, C(5)H(12)N(+).C(5)H(5)N(4)O(3)(-).C(5)H(6)N(4)O(3), (I), crystallizes with Z' = 2 in the space group P1. There is an intramolecular N-H...O hydrogen bond in each pyrimidine unit and within the selected asymmetric unit the six independent components are linked by 11 hydrogen bonds, seven of the N-H...O type and four of the N-H...N type. These six-component aggregates are linked into sheets by five further hydrogen bonds, three of the N-H...O type and one each of the N-H...N and C-H...O types.

  2. Air Plasma-Sprayed La2Zr2O7-SrZrO3 Composite Thermal Barrier Coating Subjected to CaO-MgO-Al2O3-SiO2 (CMAS)

    NASA Astrophysics Data System (ADS)

    Cai, Lili; Ma, Wen; Ma, Bole; Guo, Feng; Chen, Weidong; Dong, Hongying; Shuang, Yingchai

    2017-08-01

    La2Zr2O7-SrZrO3 composite thermal barrier coatings (TBCs) were prepared by air plasma spray (APS). The La2Zr2O7-SrZrO3 composite TBCs covered with calcium-magnesium-aluminum-silicate (CMAS) powder, as well as the powder mixture of CMAS and spray-dried La2Zr2O7-SrZrO3 composite powder, were heat-treated at 1250 °C in air for 1, 4, 8, and 12 h. The phase constituents and microstructures of the reaction products were characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. Experimental results showed that the La2Zr2O7-SrZrO3 composite TBCs had higher CMAS resistance than 8YSZ coating. A dense new layer developed between CMAS and La2Zr2O7-SrZrO3 composite TBCs during interaction, and this new layer consisted mostly of apatite (Ca2La8(SiO4)6O2) and c-ZrO2. The newly developed layer effectively protected the La2Zr2O7-SrZrO3 composite TBCs from further CMAS attack.

  3. NH4+-NH3 removal from simulated wastewater using UV-TiO2 photocatalysis: effect of co-pollutants and pH.

    PubMed

    Vohra, M S; Selimuzzaman, S M; Al-Suwaiyan, M S

    2010-05-01

    The main objective of the present study was to investigate the efficiency of titanium dioxide (TiO2) assisted photocatalytic degradation (PCD) process for the removal of ammonium-ammonia (NH4(+)-NH3) from the aqueous phase and in the presence of co-pollutants thiosulfate (S2O3(2-)) and p-cresol (C6H4CH3OH) under varying mixed conditions. For the NH4(+)-NH3 only PCD experiments, results showed higher NH4 -NH3 removal at pH 12 compared to pH 7 and 10. For the binary NH4(+)-NH3/S2O3(2-) studies the respective results indicated a significant lowering in NH4(+)-NH3 PCD in the presence of S2O32- at pH 7/12 whereas at pH 10 a marked increase in NH4(+)-NH3 removal transpired. A similar trend was noted for the p-cresol/NH4(+)-NH3 binary system. Comparing findings from the binary (NH4(+)-NH3/S2O3(2-) and p-cresol/NH4(+)-NH3) and tertiary (NH4(+)-NH3/S2O3(2-)/p-cresol) systems, at pH 10, showed fastest NH4(+)-NH3 removal transpiring for the tertiary system as compared to the binary systems, whereas both the binary systems indicated comparable NH4(+)-NH3 removal trends. The respective details have been discussed.

  4. Descent without Modification? The Thermal Chemistry of H2O2 on Europa and Other Icy Worlds.

    PubMed

    Loeffler, Mark J; Hudson, Reggie L

    2015-06-01

    The strong oxidant H2O2 is known to exist in solid form on Europa and is suspected to exist on several other Solar System worlds at temperatures below 200 K. However, little is known of the thermal chemistry that H2O2 might induce under these conditions. Here, we report new laboratory results on the reactivity of solid H2O2 with eight different compounds in H2O-rich ices. Using infrared spectroscopy, we monitored compositional changes in ice mixtures during warming. The compounds CH4 (methane), C3H4 (propyne), CH3OH (methanol), and CH3CN (acetonitrile) were unaltered by the presence of H2O2 in ices, showing that exposure to either solid H2O2 or frozen H2O+H2O2 at cryogenic temperatures will not oxidize these organics, much less convert them to CO2. This contrasts strongly with the much greater reactivity of organics with H2O2 at higher temperatures, and particularly in the liquid and gas phases. Of the four inorganic compounds studied, CO, H2S, NH3, and SO2, only the last two reacted in ices containing H2O2, NH3 making NH4+ and SO2 making SO(4)2- by H+ and e- transfer, respectively. An important astrobiological conclusion is that formation of surface H2O2 on Europa and that molecule's downward movement with H2O-ice do not necessarily mean that all organics encountered in icy subsurface regions will be destroyed by H2O2 oxidation.

  5. Descent Without Modification? The Thermal Chemistry of H2O2 on Europa and Other Icy Worlds

    NASA Technical Reports Server (NTRS)

    Loeffler, Mark Josiah; Hudson, Reggie Lester

    2015-01-01

    The strong oxidant H2O2 is known to exist in solid form on Europa and is suspected to exist on several other Solar System worlds at temperatures below 200 K. However, little is known of the thermal chemistry that H2O2 might induce under these conditions. Here, we report new laboratory results on the reactivity of solid H2O2 with eight different compounds in H2O-rich ices. Using infrared spectroscopy, we monitored compositional changes in ice mixtures during warming. The compounds CH4 (methane), C3H4 (propyne), CH3OH (methanol), and CH3CN (acetonitrile) were unaltered by the presence of H2O2 in ices, showing that exposure to either solid H2O2 or frozen H2O+H2O2 at cryogenic temperatures will not oxidize these organics, much less convert them to CO2. This contrasts strongly with the much greater reactivity of organics with H2O2 at higher temperatures, and particularly in the liquid and gas phases. Of the four inorganic compounds studied, CO, H2S, NH3, and SO2, only the last two reacted in ices containing H2O2, NH3 making NHþ 4 and SO2 making SO2 4 by H+ and e - transfer, respectively. An important astrobiological conclusion is that formation of surface H2O2 on Europa and that molecule's downward movement with H2O-ice do not necessarily mean that all organics encountered in icy subsurface regions will be destroyed by H2O2 oxidation.

  6. A Novel Dimeric Ni-Substituted beta-Keggin Silicotungstate: Structure and Magnetic Properties of K(12)[{beta-SiNi(2)W(10)O(36)(OH)(2)(H(2)O)}(2)].20H(2)O.

    PubMed

    Kortz, Ulrich; Jeannin, Yves P.; Tézé, André; Hervé, Gilbert; Isber, Samih

    1999-08-09

    The novel dimeric polyoxometalate [{beta-SiNi(2)W(10)O(36)(OH)(2)(H(2)O)}(2)](12)(-) (1) has been synthesized and characterized by IR spectroscopy, polarography, elemental analysis, thermogravimetric analysis, and magnetic measurements. An X-ray single-crystal analysis was carried out on K(12)[{beta-SiNi(2)W(10)O(36)(OH)(2)(H(2)O)}(2)].20H(2)O, which crystallizes in the monoclinic system, space group P2(1)/n, with a = 13.701(4) Å, b = 24.448(11) Å, c = 13.995(5) Å, beta = 99.62(3) degrees, and Z = 4. The anion consists of two [beta-SiNi(2)W(10)O(36)(OH)(2)(H(2)O)] Keggin moieties linked via two OH bridging groups, leading to a planar Ni(2)(OH)(2) unit. The two half-units are related by an inversion center and each contain one Ni atom in the rotated triad. The formation of the new anion involves insertion, isomerization, and dimerization. Magnetic measurements show that the central Ni(4) unit exhibits ferromagnetic (J' = 4.14 cm(-)(1)) as well as weak antiferromagnetic (J = -0.65 cm(-)(1)) Ni-Ni exchange interactions.

  7. Synergistic effect of Au and Rh on SrTiO3 in significantly promoting visible-light-driven syngas production from CO2 and H2O.

    PubMed

    Li, Dewang; Ouyang, Shuxin; Xu, Hua; Lu, Da; Zhao, Ming; Zhang, Xueliang; Ye, Jinhua

    2016-05-01

    A novel photocatalyst constructed by Rh, Au, and SrTiO3 was developed to realize syngas photosynthesis from low-cost CO2 and H2O feedstock under visible-light irradiation. The synergistic effect of Rh and Au on SrTiO3 contributed to a 22- and 153-fold photoactivity magnification for syngas yield in contrast to Au@SrTiO3 and Rh@SrTiO3 samples, respectively.

  8. Microsolvation effect and hydrogen-bonding pattern of taurine-water TA-(H2O)n (n = 1-3) complexes.

    PubMed

    Dai, Yumei; Wang, Yuhua; Huang, Zhengguo; Wang, Hongke; Yu, Lei

    2012-01-01

    The microsolvation of taurine (TA) with one, two or three water molecules was investigated by a density functional theory (DFT) approach. Quantum theory of atoms in molecules (QTAIM) analyses were employed to elucidate the hydrogen bond (H-bond) interaction characteristics in TA-(H(2)O)(n) (n = 1-3) complexes. The results showed that the intramolecular H-bond formed between the hydroxyl and the N atom of TA are retained in most TA-(H(2)O)(n) (n = 1-3) complexes, and are strengthened via cooperative effects among multiple H-bonds from n = 1-3. A trend of proton transformation exists from the hydroxyl to the N atom, which finally results in the cleavage of the origin intramolecular H-bond and the formation of a new intramolecular H-bond between the amino and the O atom of TA. Therefore, the most stable TA-(H(2)O)(3) complex becomes a zwitterionic complex rather than a neutral type. A many-body interaction analysis showed that the major contributors to the binding energies for complexes are the two-body energies, while three-body energies and relaxation energies make significant contributions to the binding energies for some complexes, whereas the four-body energies are too small to be significant.

  9. Hydrothermal synthesis and photoluminescent properties of hierarchical GdPO4·H2O:Ln3+ (Ln3+ = Eu3+, Ce3+, Tb3+) flower-like clusters

    NASA Astrophysics Data System (ADS)

    Amurisana, Bao.; Zhiqiang, Song.; Haschaolu, O.; Yi, Chen; Tegus, O.

    2018-02-01

    3D hierarchical GdPO4·H2O:Ln3+ (Ln3+ = Eu3+, Ce3+, Tb3+) flower clusters were successfully prepared on glass slide substrate by a simple, economical hydrothermal process with the assistance of disodium ethylenediaminetetraacetic acid (Na2H2L, where L4- = (CH2COO)2N(CH2)2N(CH2COO)24-). In this process, Na2H2L was used as both a chelating agent and a structure-director. The hierarchical flower clusters have an average diameter of 7-12 μm and are composed of well-aligned microrods. The influence of the molar ratio of Na2H2L/Gd3+ and reaction time on the morphology was systematically studied. A possible crystal growth and formation mechanism of hierarchical flower clusters is proposed based on the evolution of morphology as a function of reaction time. The self-assembled GdPO4·H2O:Ln3+ superstructures exhibit strong orange-red (Eu3+, 5D0 → 7F1), green (Tb3+, 5D4 → 7F5) and near ultraviolet emissions (Ce3+, 5d → 7F5/2) under ultraviolet excitation, respectively. This study may provide a new channel for building hierarchically superstructued oxide micro/nanomaterials with optical and new properties.

  10. Photogeneration of H2O2 in SPEEK/PVA aqueous polymer solutions.

    PubMed

    Little, Brian K; Lockhart, PaviElle; Slaten, B L; Mills, G

    2013-05-23

    Photolysis of air-saturated aqueous solutions containing sulphonated poly(ether etherketone) and poly(vinyl alcohol) results in the generation of hydrogen peroxide. Consumption of oxygen and H2O2 formation are initially concurrent processes with a quantum yield of peroxide generation of 0.02 in stirred or unstirred solutions within the range of 7 ≤ pH ≤ 9. The results are rationalized in terms of O2 reduction by photogenerated α-hydroxy radicals of the polymeric ketone in competition with radical-radical processes that consume the macromolecular reducing agents. Generation of H2O2 is controlled by the photochemical transformation that produces the polymer radicals, which is most efficient in neutral and slightly alkaline solutions. Quenching of the excited state of the polyketone by both H3O(+) and OH(-) affect the yields of the reducing macromolecular radicals and of H2O2. Deprotonation of the α-hydroxy polymeric radicals at pH > 9 accelerate their decay and contribute to suppressing the peroxide yields in basic solutions. Maxima in [H2O2] are observed when illuminations are performed with static systems, where O2 reduction is faster than diffusion of oxygen into the solutions. Under such conditions H2O2 can compete with O2 for the reducing radicals resulting in a consumption of the peroxide.

  11. Sonocatalytic activity of a heterostructured β-Bi2O3/Bi2O2CO3 nanoplate in degradation of bisphenol A.

    PubMed

    Lee, Gooyong; Ibrahim, Shaliza; Kittappa, Shanmuga; Park, Heekyung; Park, Chang Min

    2018-06-01

    Novel heterostructured β-Bi 2 O 3 /Bi 2 O 2 CO 3 nanoplates (hBN) were synthesized to observe the sonocatalytic degradation of bisphenol A (BPA) (widely used as a model pollutant) under ultrasonic (US) irradiation. Prior to obtaining the hBN, the Bi 2 O 2 CO 3 micropowder precursor was prepared under hydrothermal conditions and then converted to hBN by increasing the calcination temperature to 300 °C. The synthesized hBN samples were characterized by field emission scanning electron microscope with energy dispersive X-ray analysis (FESEM/EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible spectrophotometer diffuse reflection spectroscopy (UV-vis DRS), and X-ray photoelectron spectroscopy (XPS). The hBN/US system exhibited greater sonocatalytic activity for the degradation of BPA than the US treatment with the single element bismuth oxide, β-Bi 2 O 3 prepared by annealing the Bi 2 O 2 CO 3 precursor at 400 °C for 1 h. The US frequency and US power intensity in the hBN/US system were the key operating parameters, which were responsible for the complete degradation of BPA during 6 h of reactions. The degradation efficiency of BPA under the US irradiation was positively correlated with the dose of hBN. Our findings indicate that heterostructured hBN can be used as an efficient sonocatalyst for the catalytic degradation of BPA in water and wastewater treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Urchin-Like Ni1/3Co2/3(CO3)1/2(OH)·0.11H2O for Ultrahigh-Rate Electrochemical Supercapacitors: Structural Evolution from Solid to Hollow.

    PubMed

    Wei, Wutao; Cui, Shizhong; Ding, Luoyi; Mi, Liwei; Chen, Weihua; Hu, Xianluo

    2017-11-22

    Portable electronics and electric or hybrid electric vehicles are developing in the trend of fast charge and long electric mileage, which ask us to design a novel electrode with sufficient electronic and ionic transport channels at the same time. Herein, we fabricate a uniform hollow-urchin-like Ni 1/3 Co 2/3 (CO 3 ) 1/2 (OH)·0.11H 2 O electrode material through an easy self-generated and resacrificial template method. The one-dimensional chain-like crystal structure unit containing the metallic bonding and the intercalated OH - and H 2 O endow this electrode material with abundant electronic and ionic transport channels. The hollow-urchin-like structure built by nanorods contributes to the large electrode-electrolyte contact area ensuring the supply of ions at high current. CNTs are employed to transport electrons between electrode material and current collector. The as-assembled NC-CNT-2//AC supercapacitor device exhibits a high specific capacitance of 108.3 F g -1 at 20 A g -1 , a capacitance retention ratio of 96.2% from 0.2 to 20 A g -1 , and long cycle life. Comprehensive investigations unambiguously highlight that the unique hollow-urchin-like Ni 1/3 Co 2/3 (CO 3 ) 1/2 (OH)·0.11H 2 O electrode material would be the right candidate for advanced next-generation supercapacitors.

  13. Synthesis of Acylated Xylan-Based Magnetic Fe3O4 Hydrogels and Their Application for H2O2 Detection

    PubMed Central

    Dai, Qing-Qing; Ren, Jun-Li; Peng, Feng; Chen, Xiao-Feng; Gao, Cun-Dian; Sun, Run-Cang

    2016-01-01

    Acylated xylan-based magnetic Fe3O4 nanocomposite hydrogels (ACX-MNP-gels) were prepared by fabricating Fe3O4 nanoctahedra in situ within a hydrogel matrix which was synthesized by the copolymerization of acylated xylan (ACX) with acrylamide and N-isopropylacrylamide under ultraviolet irradiation. The size of the Fe3O4 fabricated within the hydrogel matrix could be adjusted through controlling the crosslinking concentrations (C). The magnetic hydrogels showed desirable magnetic and mechanical properties, which were confirmed by XRD, Raman spectroscopy, physical property measurement system, SEM, TGA, and compression test. Moreover, the catalytic performance of the magnetic hydrogels was explored. The magnetic hydrogels (C = 7.5 wt %) presented excellent catalytic activity and provided a sensitive response to H2O2 detection even at a concentration level of 5 × 10−6 mol·L−1. This approach to preparing magnetic hydrogels loaded with Fe3O4 nanoparticles endows xylan-based hydrogels with new promising applications in biotechnology and environmental chemistry. PMID:28773811

  14. Evaluation of H2O2 and pH in exhaled breath condensate samples: methodical and physiological aspects.

    PubMed

    Knobloch, Henri; Becher, Gunther; Decker, Manfred; Reinhold, Petra

    2008-05-01

    This veterinary study is aimed at further standardization of H(2)O(2) and pH measurements in exhaled breath condensate (EBC). Data obtained in the study provide valuable information for many mammalian species including humans, and may help to avoid general pitfalls in interpretation of EBC data. EBC was sampled via the 'ECoScreen' in healthy calves (body weight 63-98 kg). Serum samples and condensates of ambient (indoor) air were collected in parallel. In the study on H(2)O(2), concentrations of H(2)O(2) in EBC, blood and ambient air were determined with the biosensor system 'ECoCheck'. In EBC, the concentration of H(2)O(2) was found to be dependent on food intake and increased significantly in the course of the day. Physiologically, lowest H(2)O(2) concentrations at 06:00 varied within the range 138-624 nmol l(-1) EBC or 0.10-0.94 nmol per 100 l exhaled breath and individual concentrations were significantly different indicating a remarkable intersubject variability. Highly reproducible results were seen within each subject (three different days within 4 weeks). No correlation existed between H(2)O(2) concentrations in EBC and blood, and EBC-H(2)O(2) was not influenced by variables of spontaneous breathing. Further results confirmed that standardization of H(2)O(2) measurements in EBC requires (1) the re-calculation of the concentration exhaled per 100 l exhaled breath (because the analyzed concentration in the liquid condensate underlies multiple methodological sources of variability given by the collection process), and (2) subtracting the concentration of inspired indoor H(2)O(2). In the study on pH use of the ISFET electrode (Sentron, the Netherlands) and a blood gas analyzer ABL 550 (Radiometer, Denmark) led to comparable results for EBC-pH (r=0.89, R(2)=79.3%, pH data in non-degassed EBC samples varied between 5.3 and 6.5, and were not significantly different between subjects, but were significantly higher in the evening compared

  15. Comparative study of diethyl phthalate degradation by UV/H2O2 and UV/TiO2: kinetics, mechanism, and effects of operational parameters.

    PubMed

    Song, Chengjie; Wang, Liping; Ren, Jie; Lv, Bo; Sun, Zhonghao; Yan, Jing; Li, Xinying; Liu, Jingjing

    2016-02-01

    The photodegradation of diethyl phthalate (DEP) by UV/H2O2 and UV/TiO2 is studied. The DEP degradation kinetics and multiple crucial factors effecting the clearance of DEP are investigated, including initial DEP concentration ([DEP]0), initial pH values (pH0), UV light intensity, anions (Cl(-), NO(3-), SO4 (2-), HCO3 (-), and CO3 (2-)), cations (Mg(2+), Ca(2+), Mn(2+), and Fe(3+)), and humic acid (HA). Total organic carbon (TOC) removal is tested by two treatments. And, cytotoxicity evolution of DEP degradation intermediates is detected. The relationship between molar ratio ([H2O2]/[DEP] or [TiO2]/[DEP]) and degradation kinetic constant (K) is also studied. And, the cytotoxicity tests of DEP and its degradation intermediates in UV/H2O2 and UV/TiO2 treatments are researched. The DEP removal efficiency of UV/H2O2 treatment is higher than UV/TiO2 treatment. The DEP degradation fitted a pseudo-first-order kinetic pattern under experimental conditions. The K linearly related with molar ratio in UV/H2O2 treatment while nature exponential relationship is observed in the case of UV/TiO2. However, K fitted corresponding trends better in H2O2 treatment than in TiO2 treatment. The Cl(-) is in favor of the DEP degradation in UV/H2O2 treatment; in contrast, it is disadvantageous to the DEP degradation in UV/TiO2 treatment. Other anions are all disadvantageous to the DEP degradation in two treatments. Fe(3+) promotes the degradation rates significantly. And, all other cations in question inhibit the degradation of DEP. HA hinders DEP degradation in two treatments. The intermediates of DEP degradation in UV/TiO2 treatment are less toxic to biological cell than that in UV/H2O2 treatment.

  16. Hydrothermal synthesis and structural characterization of an organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en){sub 2}(H{sub 2}O)]{sub 4}[Cu(en){sub 2}(H{sub 2}O){sub 2}][Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]·6H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yingjie; College of Medicine, Henan University, Kaifeng, Henan 475004; Cao, Jing

    An organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en){sub 2}(H{sub 2}O)]{sub 4}[Cu(en){sub 2}(H{sub 2}O){sub 2}][Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]·6H{sub 2}O (1) has been synthesized by reaction of Sb{sub 2}O{sub 3}, Na{sub 2}WO{sub 4}·2H{sub 2}O, CuCl{sub 22H{sub 2}O with en (en=ethanediamine) under hydrothermal conditions and structurally characterized by elemental analysis, inductively coupled plasma atomic emission spectrometry, IR spectrum and single-crystal X-ray diffraction. 1 displays a centric dimeric structure formed by two equivalent trivacant Keggin [α-SbW{sub 9}O{sub 33}]{sup 9−} subunits sandwiching a hexagonal (Cu{sub 2}Na{sub 4}) cluster. Moreover, those related hexagonal hexa-metal cluster sandwiched tungstoantimonates have been also summarized and compared. The variable-temperature magneticmore » measurements of 1 exhibit the weak ferromagnetic exchange interactions within the hexagonal (Cu{sub 2}Na{sub 4}) cluster mediated by the oxygen bridges. - Graphical abstract: An organic–inorganic hybrid (Cu{sub 2}Na{sub 4}) sandwiched tungstoantimonate [Cu(en){sub 2}(H{sub 2}O)]{sub 4}[Cu (en){sub 2}(H{sub 2}O){sub 2}][Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]·6H{sub 2}O was synthesized and magnetic properties was investigated. Display Omitted - Highlights: • Organic–inorganic hybrid sandwich-type tungstoantimonate. • (Cu{sub 2}Na{sub 4} sandwiched) tungstoantimonate [Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]{sup 10−}. • Ferromagnetic tungstoantimonate.« less

  17. Observation of H displacement and H2 elimination channels in the reaction of O(3P) with 1-butene from crossed beams and theoretical studies

    NASA Astrophysics Data System (ADS)

    Caracciolo, Adriana; Vanuzzo, Gianmarco; Balucani, Nadia; Stranges, Domenico; Cavallotti, Carlo; Casavecchia, Piergiorgio

    2017-09-01

    We report preliminary combined experimental/theoretical results on O(3P) + 1-butene reaction dynamics with focus on atomic hydrogen displacement and molecular hydrogen elimination channels. Dynamics and relative yield of the ethylvinoxy + H and ethylketene + H2 product channels are characterized in crossed beam experiments. Stationary points and energetics of triplet/singlet C4H8O potential energy surfaces (PESs) are calculated at CCSD(T)/CBS and CASPT2 level. O(3P) attack occurs on both unsaturated C-atoms with preference for the less substituted one leading, among other products, to C2H5CHCHO + H via an exit barrier on the triplet PES, and to C2H5CHCO + H2 via a very high exit barrier on the singlet PES following intersystem crossing.

  18. Tuning the conductance of H2O@C60 by position of the encapsulated H2O

    PubMed Central

    Zhu, Chengbo; Wang, Xiaolin

    2015-01-01

    The change of conductance of single-molecule junction in response to various external stimuli is the fundamental mechanism for the single-molecule electronic devices with multiple functionalities. We propose the concept that the conductance of molecular systems can be tuned from inside. The conductance is varied in C60 with encapsulated H2O, H2O@C60. The transport properties of the H2O@C60-based nanostructure sandwiched between electrodes are studied using first-principles calculations combined with the non-equilibrium Green’s function formalism. Our results show that the conductance of the H2O@C60 is sensitive to the position of the H2O and its dipole direction inside the cage with changes in conductance up to 20%. Our study paves a way for the H2O@C60 molecule to be a new platform for novel molecule-based electronics and sensors. PMID:26643873

  19. The effect of sulfate on aluminum concentrations in natural waters: some stability relations in the system Al2O3-SO3-H2O at 298 K

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    1982-01-01

    While gibbsite and kaolinite solubilities usually regulate aluminum concentrations in natural waters, the presence of sulfate can dramatically alter these solubilities under acidic conditions, where other, less soluble minerals can control the aqueous geochemistry of aluminum. The likely candidates include alunogen, Al2(SO4)3 ?? 17H2O, alunite, KAl3(SO4)2(OH)6, jurbanite, Al(SO4)(OH) ?? 5H2O, and basaluminite, Al4(SO4)(OH)10 ?? 5H2O. An examination of literature values shows that the log Ksp = -85.4 for alunite and log Ksp = -117.7 for basaluminite. In this report the log Ksp = -7.0 is estimated for alunogen and log Ksp = -17.8 is estimated for jurbanite. The solubility and stability relations among these four minerals and gibbsite are plotted as a function of pH and sulfate activity at 298 K. Alunogen is stable only at pH values too low for any natural waters (<0) and probably only forms as efflorescences from capillary films. Jurbanite is stable from pH < 0 up to the range of 3-5 depending on sulfate activity. Alunite is stable at higher pH values than jurbanite, up to 4-7 depending on sulfate activity. Above these pH limits gibbsite is the most stable phase. Basaluminite, although kinetically favored to precipitate, is metastable for all values of pH and sulfate activity. These equilibrium calculations predict that both sulfate and aluminum can be immobilized in acid waters by the precipitation of aluminum hydroxysulfate minerals. Considerable evidence supports the conclusion that the formation of insoluble aluminum hydroxy-sulfate minerals may be the cause of sulfate retention in soils and sediments, as suggested by Adams and Rawajfih (1977), instead of adsorption. ?? 1982.

  20. Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems.

    PubMed

    Garcia, J C; Oliveira, J L; Silva, A E C; Oliveira, C C; Nozaki, J; de Souza, N E

    2007-08-17

    This work investigated the treatability of real textile effluents using several systems involving advanced oxidation processes (AOPs) such as UV/H2O2, UV/TiO2, UV/TiO2/H2O2, and UV/Fe2+/H2O2. The efficiency of each technique was evaluated according to the reduction levels observed in the UV absorbance of the effluents, COD, and organic nitrogen reduction, as well as mineralization as indicated by the formation of ammonium, nitrate, and sulfate ions. The results indicate the association of TiO2 and H2O2 as the most efficient treatment for removing organic pollutants from textile effluents. In spite of their efficiency, Fenton reactions based treatment proved to be slower and exhibited more complicated kinetics than the ones using TiO2, which are pseudo-first-order reactions. Decolorization was fast and effective in all the experiments despite the fact that only H2O2 was used.

  1. Measurements of CH4, N2O, CO, H2O and O3 in the middle atmosphere by the ATMOS experiment on Spacelab 3

    NASA Technical Reports Server (NTRS)

    Gunson, M. R.; Farmer, C. B.; Norton, R. H.; Zander, R.; Rinsland, C. P.; Shaw, J. H.; Gao, Bo-Cai

    1989-01-01

    The volume mixing ratios of five minor gases (CH4, N2O, CO, H2O, and O3) were retrieved through the middle atmosphere from the analysis of 0.01/cm resolution infrared solar occultation spectra recorded near 28 N and 48 S latitudes with the ATMOS (Atmospheric Trace Molecule Spectroscopy) instrument, flown on board Spacelab 3. The results, which constitute the first simultaneous observations of continuous profiles through the middle atmosphere for these gases, are in general agreement with reported measurements from ground, balloon and satellite-based instruments for the same seasons. In detail, the vertical profiles of these gases show the effects of the upper and middle atmospheric transport patterns dominant during the season of these observations. The profiles inferred at different longitudes around 28 N suggest a near-uniform zonal distribution of these gases. Although based on fewer observations, the sunrise occultation measurements point to a larger variability in the vertical distribution of these gases at 48 S.

  2. Volume properties and refraction of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids lysine, threonine, and oxyproline (C60(C6H13N2O2)2, C60(C4H8NO3)2, and C60(C5H9NO2)2) at 25°C

    NASA Astrophysics Data System (ADS)

    Semenov, K. N.; Ivanova, N. M.; Charykov, N. A.; Keskinov, V. A.; Kalacheva, S. S.; Duryagina, N. N.; Garamova, P. V.; Kulenova, N. A.; Nabieva, A.

    2017-02-01

    Concentration dependences of the density of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids are studied by pycnometry. Concentration dependences of the average molar volumes and partial volumes of components (H2O and corresponding bisadducts) are calculated for C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems at 25°C. Concentration dependences of the indices of refraction of C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems are determined at 25°C. The concentration dependences of specific refraction and molar refraction of bisadducts and aqueous solutions of them are calculated.

  3. Quasi-Two-Dimensional h-BN/β-Ga2O3 Heterostructure Metal-Insulator-Semiconductor Field-Effect Transistor.

    PubMed

    Kim, Janghyuk; Mastro, Michael A; Tadjer, Marko J; Kim, Jihyun

    2017-06-28

    β-gallium oxide (β-Ga 2 O 3 ) and hexagonal boron nitride (h-BN) heterostructure-based quasi-two-dimensional metal-insulator-semiconductor field-effect transistors (MISFETs) were demonstrated by integrating mechanical exfoliation of (quasi)-two-dimensional materials with a dry transfer process, wherein nanothin flakes of β-Ga 2 O 3 and h-BN were utilized as the channel and gate dielectric, respectively, of the MISFET. The h-BN dielectric, which has an extraordinarily flat and clean surface, provides a minimal density of charged impurities on the interface between β-Ga 2 O 3 and h-BN, resulting in superior device performances (maximum transconductance, on/off ratio, subthreshold swing, and threshold voltage) compared to those of the conventional back-gated configurations. Also, double-gating of the fabricated device was demonstrated by biasing both top and bottom gates, achieving the modulation of the threshold voltage. This heterostructured wide-band-gap nanodevice shows a new route toward stable and high-power nanoelectronic devices.

  4. Rational Design of Multifunctional Fe@γ-Fe2 O3 @H-TiO2 Nanocomposites with Enhanced Magnetic and Photoconversion Effects for Wide Applications: From Photocatalysis to Imaging-Guided Photothermal Cancer Therapy.

    PubMed

    Wang, Meifang; Deng, Kerong; Lü, Wei; Deng, Xiaoran; Li, Kai; Shi, Yanshu; Ding, Binbin; Cheng, Ziyong; Xing, Bengang; Han, Gang; Hou, Zhiyao; Lin, Jun

    2018-03-01

    Titanium dioxide (TiO 2 ) has been widely investigated and used in many areas due to its high refractive index and ultraviolet light absorption, but the lack of absorption in the visible-near infrared (Vis-NIR) region limits its application. Herein, multifunctional Fe@γ-Fe 2 O 3 @H-TiO 2 nanocomposites (NCs) with multilayer-structure are synthesized by one-step hydrogen reduction, which show remarkably improved magnetic and photoconversion effects as a promising generalists for photocatalysis, bioimaging, and photothermal therapy (PTT). Hydrogenation is used to turn white TiO 2 in to hydrogenated TiO 2 (H-TiO 2 ), thus improving the absorption in the Vis-NIR region. Based on the excellent solar-driven photocatalytic activities of the H-TiO 2 shell, the Fe@γ-Fe 2 O 3 magnetic core is introduced to make it convenient for separating and recovering the catalytic agents. More importantly, Fe@γ-Fe 2 O 3 @H-TiO 2 NCs show enhanced photothermal conversion efficiency due to more circuit loops for electron transitions between H-TiO 2 and γ-Fe 2 O 3 , and the electronic structures of Fe@γ-Fe 2 O 3 @H-TiO 2 NCs are calculated using the Vienna ab initio simulation package based on the density functional theory to account for the results. The reported core-shell NCs can serve as an NIR-responsive photothermal agent for magnetic-targeted photothermal therapy and as a multimodal imaging probe for cancer including infrared photothermal imaging, magnetic resonance imaging, and photoacoustic imaging. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. ON THE REACTION OF COMPONENETS IN MeNO$sub 3$-UO$sub 2$(NO$sub 3$)$sub 2$- H$sub 2$O TYPE SYSTEMS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakimov, M.A.; Nosova, N.F.; Degtyarev, A.Ya.

    1963-01-01

    Solubility in ternary systems TlNO/sub 3/--UO/sub 2/(NO/sub 3/)/sub 2/-- H/sub 2/ O and CsNO/sub 3/--UO/sub 2/(NO/sub 3/)/sub 2/--H/sub 2/O at 0 to 25 c- C was studi ed by the isothermal method. The first system did not form solid phase compounds; the second system formed two compounds Cs/sub 2/UO/ sub 2/(NO/sub 3/)/sub 4/ and CsUO/sub 2/(NO/sub 3/)/sub 3/ at 25 c- and of water vapor pressure over the systems at 25 c- showed that water activity in the ternary systems at certain concentrations does not exceed the water activity in binary uranyl nitratewater system (at identical uranyl nitrate concentrations) confirmingmore » the observed complex formation in the solution. The mechanism of complex formation was analyzed and expanded for alkali metal - metal salt-complexing agent water systems. (R.V.J.)« less

  6. Neuroprotective Effect of CeO2@PAA-LXW7 Against H2O2-Induced Cytotoxicity in NGF-Differentiated PC12 Cells.

    PubMed

    Jia, Jingjing; Zhang, Ting; Chi, Jieshan; Liu, Xiaoma; Sun, Jingjing; Xie, Qizhi; Peng, Sijia; Li, Changyan; Yi, Li

    2018-06-07

    CeO 2 nanoparticles (nanoceria) have been used in many studies as a powerful free radical scavenger, and LXW7, a small-molecule peptide, can specifically target the integrin αvβ3, whose neuroprotective effects have also been demonstrated. The objective of this study is to observe the neuroprotective effect and potential mechanism of CeO 2 @PAA-LXW7, a new compound that couples CeO 2 @PAA (nanoceria modified with the functional group of polyacrylic acid) with LXW7 via a series of chemical reactions, in H 2 O 2 -induced NGF-differentiated PC12 cells. We examined the effects of LXW7, CeO 2 @PAA, and CeO 2 @PAA-LXW7 on the viability of primary hippocampal neurons and found that there was no significant difference under control conditions, but increased cellular viability was observed in the case of H 2 O 2 -induced injury. We used H 2 O 2 -induced NGF-differentiated PC12 cells as the classical injury model to investigate the neuroprotective effect of CeO 2 @PAA-LXW7. In this study, LXW7, CeO 2 @PAA, and CeO 2 @PAA-LXW7 inhibit H 2 O 2 -induced oxidative stress by reducing the production of reactive oxygen species (ROS) and regulating Bax/Bcl-2, cleaved caspase-3 and mitochondrial cytochrome C (cyto C) in the apoptotic signaling pathways. We found that the levels of phosphorylation of focal adhesion kinase (FAK) and of signal transducer and activator of transcription 3 (STAT3) increased significantly in H 2 O 2 -induced NGF-differentiated PC12 cells, whereas LXW7, CeO 2 @PAA, and CeO 2 @PAA-LXW7 suppressed the increase to different degrees. Among the abovementioned changes, the inhibitory effect of CeO 2 @PAA-LXW7 on H 2 O 2 -induced changes, including the increases in the levels of p-FAK and p-STAT3, is more obvious than that of LXW7 or CeO 2 @PAA alone. In summary, these results suggest that integrin signaling participates in the regulation of apoptosis via the regulation of ROS and of the apoptosis pathway in H 2 O 2 -induced NGF-differentiated PC12 cells. LXW7, CeO

  7. Degradation of crystal violet by an FeGAC/H2O2 process.

    PubMed

    Chen, Chiing-Chang; Chen, Wen-Ching; Chiou, Mei-Rung; Chen, Sheng-Wei; Chen, Yao Yin; Fan, Huan-Jung

    2011-11-30

    Because of the growing concern over highly contaminated crystal violet (CV) wastewater, an FeGAC/H(2)O(2) process was employed in this research to treat CV-contaminated wastewater. The experimental results indicated that the presence of iron oxide-coated granular activated carbon (FeGAC) greatly improved the oxidative ability of H(2)O(2) for the removal of CV. For instance, the removal efficiencies of H(2)O(2), GAC, FeGAC, GAC/H(2)O(2) and FeGAC/H(2)O(2) processes were 10%, 44%, 40%, 43% and 71%, respectively, at test conditions of pH 3 and 7.4mM H(2)O(2). FeGAC/H(2)O(2) combined both the advantages of FeGAC and H(2)O(2). FeGAC had a good CV adsorption ability and could effectively catalyze the hydrogen peroxide oxidation reaction. Factors (including pH, FeGAC dosage and H(2)O(2) dosage) affecting the removal of CV by FeGAC/H(2)O(2) were investigated in this research as well. In addition, the reaction intermediates were separated and identified using HPLC-ESI-MS. The N-demethylation step might be the main reaction pathway for the removal of CV. The reaction mechanisms for the process proposed in this research might be useful for future application of this technology to the removal of triphenylmethane (TPM) dyes. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Theoretical study of the promotional effect of ZrO2 on In2O3 catalyzed methanol synthesis from CO2 hydrogenation

    NASA Astrophysics Data System (ADS)

    Zhang, Minhua; Dou, Maobin; Yu, Yingzhe

    2018-03-01

    Methanol synthesis from CO2 hydrogenation on the ZrO2 doped In2O3(110) surface (Zr-In2O3(110)) with oxygen vacancy has been studied using the density functional theory calculations. The calculated results show that the doped ZrO2 species prohibits the excessive formation of oxygen vacancies and dissociation of H2 on In2O3 surface slightly, but enhances the adsorption of CO2 on both perfect and defective Zr-In2O3(110) surface. Methanol is formed via the HCOO route. The hydrogenation of CO2 to HCOO is both energetically and kinetically facile. The HCOO hydrogenates to polydentate H2CO (p-H2CO) species with an activation barrier of 0.75 eV. H3CO is produced from the hydrogenation of monodentate H2CO (mono-H2CO), transformation from p-H2CO with 0.82 eV reaction energy, with no barrier whether there is hydroxyl group between the mono-H2CO and the neighboring hydride or not. Methanol is the product of H3CO protonation with 0.75 eV barrier. The dissociation and protonation of CO2 are both energetically and kinetically prohibited on Zr-In2O3(110) surface. The doped ZrO2 species can further enhance the adsorption of all the intermediates involved in CO2 hydrogenation to methanol, activate the adsorbed CO2 and H2CO, and stabilize the HCOO, H2CO and H3CO, especially prohibit the dissociation of H2CO or the reaction of H2CO with neighboring hydride to form HCOO and gas phase H2. All these effects make the ZrO2 supported In2O3 catalyst exhibit higher activity and selectivity on methanol synthesis from CO2 hydrogenation.

  9. Thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap semiconductors SiC, GaN, and ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zheng; Lü, Tie-Yu; Wang, Hui-Qiong

    We have investigated the thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap(n-type) semiconductors SiC, GaN, and ZnO based on first-principles calculations and Boltzmann transport theory. Our results show that the thermoelectric performance increases from 3C to 6H, 4H, and 2H structures with an increase of hexagonality for SiC. However, for GaN and ZnO, their power factors show a very weak dependence on the polytype. Detailed analysis of the thermoelectric properties with respect to temperature and carrier concentration of 4H-SiC, 2H-GaN, and 2H-ZnO shows that the figure of merit of these three compounds increases with temperature,more » indicating the promising potential applications of these thermoelectric materials at high temperature. The significant difference of the polytype-dependent thermoelectric properties among SiC, GaN, and ZnO might be related to the competition between covalency and ionicity in these semiconductors. Our calculations may provide a new way to enhance the thermoelectric properties of wide-band-gap semiconductors through atomic structure design, especially hexagonality design for SiC.« less

  10. High-performance peroxidase mimics for rapid colorimetric detection of H2O2 and glucose derived from perylene diimides functionalized Co3O4 nanoparticles.

    PubMed

    Ding, Yanan; Chen, Miaomiao; Wu, Kaili; Chen, Mingxing; Sun, Lifang; Liu, Zhenxue; Shi, Zhiqiang; Liu, Qingyun

    2017-11-01

    N,N'-di-caboxy methyl perylene diimides (PDI), as one of the most promising functional materials in optional chemosensing, was first used to combine with Co 3 O 4 nanoparticles through a facile two-step hydrothermal method and obtain the PDI functionalized Co 3 O 4 nanocomposites (PDI-Co 3 O 4 NCs). PDI-Co 3 O 4 NCs were characterized by a series of technical analysis including transmission electron microscope (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), respectively. The experimental results indicated that the as-prepared PDI-Co 3 O 4 NCs possessed the higher peroxidase-like activity than that of Co 3 O 4 nanoparticles without PDI, and could rapidly catalyze oxidation reaction of the chromogenic substrate TMB in the presence of H 2 O 2 to a blue product (oxTMB) observed by the naked eye. The improved catalytic activity of PDI-Co 3 O 4 NCs for colorimetric reactions could be attributed to the synergistic effects of PDI and Co 3 O 4 nanoparticles. On the basis of these experimental results, a convenient colorimetric system based on PDI-Co 3 O 4 as enzyme mimic that is highly sensitive and selective was developed for glucose detection. Meanwhile, the electron transfer between H 2 O 2 and TMB was responsible for the oxidation of TMB. The present work demonstrates a general strategy for the design of organic molecules functionalized oxide for different applications, such as nanocatalysts, biosensors and nanomedicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Structural study of dehydration mechanisms of NH4Th(NO3)5·9H2O

    NASA Astrophysics Data System (ADS)

    Knyazev, A. V.; Komshina, M. E.; Baranov, E. V.; Savushkin, I. A.; Nipruk, O. V.; Lukoyanov, A. Yu.

    2017-12-01

    The new pentanitrate thorium compounds NH4Th(NO3)5·nH2O were synthesized and their crystal structures were determined by X-ray diffraction analysis: space group P21/n, a = 10.5476(5), b = 14.0444(7), c = 15.5287(8) Å, β = 109.4999(7)°, Z = 4; R = 0.0246 (NH4Th(NO3)5·9H2O); space group P212121, a = 8.7039(4), b = 11.9985(6), c = 16.3531(8) Å, Z = 4; R = 0.0259 (NH4Th(NO3)5·5H2O). Features of structural changes in the dehydration were revealed. Conditions of thermal decomposition of the thorium compound were established using differential scanning calorimetry. The compound was investigated by IR spectroscopy and its bands are assigned.

  12. Ionization of the group 3 metals La, Y and Sc in H2---O2---Ar flames

    NASA Astrophysics Data System (ADS)

    Patterson, Patricia M.; Goodings, John M.

    1995-09-01

    Four pairs of premixed, fuel-rich/fuel-lean (FR/FL; equivalence ratio [Phi] = 1.5/0.75). H2---O2---Ar flames at four temperatures in the range 1900-2425 K, all at atmospheric pressure, were doped with about 10-6 mole fraction of the group 3 metals La, Y and Sc using atomizer techniques. The metals produce solid particles in the flames and gaseous metallic species. The latter include free metallic atoms, A, near the flame reaction zone, but only the monoxide AO and the oxide-hydroxide OAOH further downstream at equilibrium; the [OAOH]/[AO] ratio varies in FR/FL flames. Metallic ions (<1% of the total metal) were observed by sampling a given flame along its axis through a nozzle into a mass spectrometer. All of the observed ions can be represented by an oxide ion series AO+·nH2O (n = 0-3 or more) although their actual structures may be different; e.g. A(OH)2+ for n = 1, interpreted as protonated OAOH. A major objective was to ascertain the ionization mechanism, principally that of La. The ionization appears to receive an initial boost from the exothermic chemi-ionization reaction of A with atomic O to produce AO+; further downstream, the ionization level is sustained by the thermal (collisional) ionization of AO to produce AO+ and/or the chemi-ionization of OAOH with H to produce A(OH)2+. The ions AO+, A(OH)2+ and higher hydrates are all rapidly equilibrated by three-body association reactions with water. Ions are lost by dissociative electron-ion recombination of A(OH)2+ and possibly higher hydrates. The chemical ionization of the metallic species by H3O+ was investigated by adding a small quantity of CH4 to the flames. The ion chemistry is discussed in detail. An estimate of the bond dissociation energy D0°(OLa---OH) = 408 ± 40 kJ mol-1 (4.23 ± 0.41 eV) was obtained.

  13. LiOH - H2O2 - H2O trinary system study for the selection of optimal conditions of lithium peroxide synthesis

    NASA Astrophysics Data System (ADS)

    Nefedov, R. A.; Ferapontov, Yu A.; Kozlova, N. P.

    2016-01-01

    Using solubility method the decay kinetics of peroxide products contained in liquid phase of LiOH - H2O2 - H2O trinary system with 2 to 6% by wt hydrogen peroxide content in liquid phase in 21 to 33 °C temperature range has been studied. Conducted studies have allowed to determine temperature and concentration limits of solid phase existence of Li2O2·H2O content, distinctness of which has been confirmed using chemical and qualitative X- ray phase analysis. Stabilizing effect of solid phase of Li2O2·H2O content on hydrogen peroxide decay contained in liquid phase of LiOH - H2O2 - H2O trinary system under conditions of experiments conducted has been shown.

  14. 2,3-Dimethyl-6-nitro-2H-indazole

    PubMed Central

    Chen, Yan; Fang, Zheng; Wei, Ping

    2009-01-01

    In the mol­ecule of the title compound, C9H9N3O2, the indazole ring system is almost planar [maximum deviation = 0.019 (3) Å for the C atom bearing the nitro group]. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into centrosymmetric dimers, forming R 2 2(18) ring motifs. Aromatic π–π contacts between indazole rings [centroid–centroid distances = 3.632 (1) and 3.705 (1) Å] may further stabilize the structure. PMID:21583483

  15. Studies of proton irradiated H2O + CO2 and H2O + CO ices and analysis of synthesized molecules

    NASA Technical Reports Server (NTRS)

    Moore, M. H.; Khanna, R.; Donn, B.

    1991-01-01

    Infrared spectra of H2O + CO2 and H2O + CO ices before and after proton irradiation showed that a major reaction in both mixtures was the interconversion of CO2 yields CO. Radiation synthesized organic compounds such as carbonic acid were identified in the H2O + CO2 ice. Different chemical pathways dominate in the H2O + CO ice in which formaldehyde, methanol, ethanol, and methane were identified. Sublimed material was also analyzed using a mass spectrometer. Implications of these results are discussed in reference to comets.

  16. Synthesis, crystal structure, thermal analysis and dielectric properties of Rb4(SO4)(HSO4)2(H3AsO4) compound

    NASA Astrophysics Data System (ADS)

    Belhaj Salah, M.; Nouiri, N.; Jaouadi, K.; Mhiri, T.; Zouari, N.

    2018-01-01

    A new inorganic Rb4(SO4)(HSO4)2(H3AsO4) compound was prepared. It was found to crystallize in the monoclinic system (P21 space group) with the following lattice parameters: a = 5868 (1) Å, b = 13,579(2) Å, c = 11,809 (3) Å and β = 94,737 (1)°. The structure is characterized by SO42-, HSO4- and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimmer (H(8)S(2)O4- … S(1)O42- and H(12)S(2)O4- … H3AsO4). These dimmers are interconnected by both hydrogen bonds O(14)sbnd H(14)· · ·O(4) and O(15)sbnd H(15)· · ·O(2). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4⋯H3AsO4 which are parallel to the ''a'',direction. The rubidium cations are coordinated by eight oxygen atoms with Rbsbnd O distance ranging from 2893(8) to 3.415(6) Å. The existence of Osbnd H and (S/As)sbnd O bonds in the structure at room temperature has been confirmed by IR and Raman spectroscopy in the frequency ranges 4000-400 cm-1and 1200 - 50 cm-1, respectively. Thermal analysis of Rb4(HSO4)(HSO4)2(H3AsO4) showed that the transformation to high temperature phase occurs at 407 K by one-step process. Thermal decomposition of the product takes place at much higher temperatures, with an onset of approximately 522 K. The first transition detected by differential scanning calorimetry (DSC) was also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The conductivity in the high temperature phase at 428 K is 1.04 × 10-3 Ω-1 cm-1, and the activation energy for the proton transport is 0.36 eV. The conductivity relaxation parameters associated with the high disorder protonic conduction have been examined from analysis of the M"/M"max spectrum measured in a wide temperature range. Transport properties of this material appear to be due to the proton hopping mechanism. The obtained results show that this transition is protonic by nature.

  17. Polymorph (C{sub 2}N{sub 2}H{sub 10}){sub 0.5}RE{sub 3}F{sub 10}·xH{sub 2}O (RE = Ho-Lu, Y) and REF{sub 3} nanocrystals: Hydrothermal synthesis, characterization and luminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Li-Ping; Zhang, Qiang; Yan, Bing, E-mail: byan@tongji.edu.cn

    Graphical abstract: A hydrothermal system is developed to prepare one new polymorph of (C{sub 2}N{sub 2}H{sub 10}){sub 0.5}RE{sub 3}F{sub 10}·xH{sub 2}O and known rare earth fluorides involving REF{sub 3} nanocrystals under mild condition. Highlights: ► A new polymorph of (C{sub 2}N{sub 2}H{sub 10}){sub 0.5}RE{sub 3}F{sub 10}·xH{sub 2}O has been synthesized. ► The RE{sup 3+} radius decides the shape evolution and phase control for REF{sub 3} NCs. ► The RE{sup 3+} radius has influence on the microstructure and morphology of REF{sub 3} NCs. -- Abstract: In this paper, a solvents-thermal system is developed to prepare one new polymorph of (C{sub 2}N{submore » 2}H{sub 10}){sub 0.5}Ho{sub 3}F{sub 10}·xH{sub 2}O and rare earth fluorides REF{sub 3} nanocrystals under mild condition. It is found that the ionic radius of RE{sup 3+} is the key factor responsible for the shape evolution and phase control for rare earth fluorides nanocrystals at selected temperatures, which has an influence on the microstructure and morphology of the products to some extent. With the increase of the atomic number, the shape of fluoride changes from hexagonal REF{sub 3} phase (RE = La, Sm) to orthorhombic REF{sub 3} phase (RE = Eu-Dy), and finally to diamond structure (C{sub 2}N{sub 2}H{sub 10}){sub 0.5}Ho{sub 3}F{sub 10}·xH{sub 2}O (RE = Ho, Er, Tm, Yb, Lu, Y). In addition, the characteristic energy level transition {sup 5}D{sub 0}–{sup 7}F{sub 1} of Eu{sup 3+} splits into 585 and 591 nm emission peaks, and the dominant peak is the orange emission at 591 nm.« less

  18. Odin observations of H2O and O2 in comets and interstellar clouds

    NASA Astrophysics Data System (ADS)

    Hjalmarson, Åke; Odin Team

    2002-11-01

    We here report on results from single-position observations, and in some cases also mapping, of the 557 GHz ortho-H2O line in several comets and in many interstellar molecular clouds by the Odin sub-millimetre wave spectroscopy satellite. The H2O production rates have been accurately determined in four comets, C/2001 A2 (LINEAR), 19P/Borrelly, C/2000 WM1 (LINEAR), and 153P/2002 C1 (Ikeya-Zhang). In comet Ikeya-Zhang our detection at a low level of the corresponding H218O emission line verifies the H2O production rate (which depends upon the assumed radiative and collisional excitation and also upon radiative transfer modelling) and is consistent with a nearly terrestrial 16O/18O-isotope ratio. In an astrobiological context, the cometary H2O production rates are especially important as reference levels for comparison with abundances of other molecules simultaneously observed with ground-based telescopes. In interstellar clouds the observed gas-phase H2O abundances (vs H2) range from 5×10-4 in the Orion KL outflow/shock region (where essentially all oxygen is locked up in H2O) to circa 10-8 in quiescent cloud regions (where H2O) is just one of many trace molecules). From an astrobiological point of view, the molecular abundances in star forming clouds are important in terms of initial conditions for the chemistry in proto-planetary disks ("proto-solar nebulae"), the formation sites of new planetary systems. In simultaneous observations, Odin has also detected the 572 GHz ortho-NH3 line in cold and warm clouds as well as in the Orion outflow and Bar/PDR regions (an area of increased ionisation caused by the intense UV flux from newly born massive stars). In other simultaneous observations, we have performed sensitive searches for O2 at 119 GHz. Although no detection can be reported as yet, the resulting very low abundance limits (<10-7) are very intriguing when they are compared with current "standard" model expectations, which fall in the range 10-5-10-4.

  19. Selective detection of Fe2+ by combination of CePO4:Tb3+ nanocrystal-H2O2 hybrid system with synchronous fluorescence scan technique.

    PubMed

    Chen, Hongqi; Ren, Jicun

    2012-04-21

    A new method for quenching kinetic discrimination of Fe(2+) and Fe(3+), and sensitive detection of trace amount of Fe(2+) was developed by using synchronous fluorescence scan technique. The principle of this assay is based on the quenching kinetic discrimination of Fe(2+) and Fe(3+) in CePO(4):Tb(3+) nanocrytals-H(2)O(2) hybrid system and the Fenton reaction between Fe(2+) and H(2)O(2). Stable, water-soluble and well-dispersible CePO(4):Tb(3+) nanocrystals were synthesized in aqueous solutions, and characterized by transmission electron microscopy (TEM) and electron diffraction spectroscopy (EDS). We found that both Fe(2+) and Fe(3+) could quench the synchronous fluorescence of CePO(4):Tb(3+) nanocrytals-H(2)O(2) system, but their quenching kinetics velocities were quite different. In the presence of Fe(3+), the synchronous fluorescent intensity was unchanged after only one minute, but in the presence of Fe(2+), the synchronous fluorescent intensity decreased slowly until 28 min later. The Fenton reaction between Fe(2+) and H(2)O(2) resulted in hydroxyl radicals which effectively quenched the synchronous fluorescence of the CePO(4):Tb(3+) nanocrystals due to the oxidation of Ce(3+) into Ce(4+) by hydroxyl radicals. Under optimum conditions, the linear range for Fe(2+) is 3 nM-2 μM, and the limit of detection is 2.0 nM. The method was used to analyze water samples.

  20. H2S adsorption and decomposition on the gradually reduced α-Fe2O3(001) surface: A DFT study

    NASA Astrophysics Data System (ADS)

    Lin, Changfeng; Qin, Wu; Dong, Changqing

    2016-11-01

    Reduction of iron based desulfurizer occurs during hot gas desulfurization process, which will affect the interaction between H2S and the desulfurizer surface. In this work, a detailed adsorption behavior and dissociation mechanism of H2S on the perfect and reduced α-Fe2O3(001) surfaces, as well as the correlation between the interaction characteristic and reduction degree of iron oxide, have been studied by using periodic density functional theory (DFT) calculations. Results demonstrate that H2S firstly chemisorbs on surface at relatively higher oxidation state (reduction degree χ < 33%), then dissociative adsorption occurs and becomes the main adsorption type after χ > 33%. Reduction of iron oxide benefits the H2S adsorption. Further, dissociation processes of H2S via molecular and dissociative adsorption were investigated. Results show that after reduction of Fe2O3 into the oxidation state around FeO and Fe, the reduced surface exhibits very strong catalytic capacity for H2S decomposition into S species. Meanwhile, the overall dissociation process on all surfaces is exothermic. These results provide a fundamental understanding of reduction effect of iron oxide on the interaction mechanism between H2S and desulfurizer surface, and indicate that rational control of reduction degree of desulfurizer is essential for optimizing the hot gas desulfurization process.

  1. Phase transition in lithium garnet oxide ionic conductors Li7La3Zr2O12: The role of Ta substitution and H2O/CO2 exposure

    NASA Astrophysics Data System (ADS)

    Wang, Yuxing; Lai, Wei

    2015-02-01

    High Li-content lithium garnet oxides are promising solid electrolyte materials for lithium batteries. Being the highest Li-content lithium garnet oxides, Li7La3Zr2O12 has been reported to crystallize in either the tetragonal or cubic phase with no consensus on the exact conditions under which these two phases are formed, which may be due to unintentional Al contamination and air exposure. In this work, the effects of Ta substitution and H2O/CO2 exposure have been studied under Al-contamination free conditions with minimal air exposure. We showed that 1) the Ta-substitution induced phase transition occurred through a two-phase mechanism and a minimum 0.6 mol of Ta substitution to Zr is needed to stabilize the cubic phase; 2) H2O and CO2 can individually induce the tetragonal-cubic phase transition in Li7La3Zr2O12 through proton exchange and Li extraction, respectively, which can have great influence on the transport properties of Li7La3Zr2O12.

  2. Effect of pH on particles size and gas sensing properties of In{sub 2}O{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, Kanica, E-mail: kanica.anand@yahoo.com; Thangaraj, Rengasamy; Singh, Ravi Chand

    In this work, indium oxide (In{sub 2}O{sub 3}) nanoparticles have been synthesized by co-precipitation method and the effect of pH on the structural and sensor response values of In{sub 2}O{sub 3} nanoparticles has been reported. X-ray diffraction pattern (XRD) revealed the formation of cubic phase In{sub 2}O{sub 3} nanoparticles. FESEM results indicate the formation of nearly spherical shape In{sub 2}O{sub 3} nanoparticles. The band gap energy value changed with change in pH value and found to have highest value at pH 9. Indium oxide nanoparticles thus prepared were deposited as thick films on alumina substrates to act as gas sensorsmore » and their sensing response to ethanol vapors and LPG at 50 ppm was investigated at different operating temperatures. It has been observed that all sensors exhibited optimum response at 300°C towards ethanol and at 400°C towards LPG. In{sub 2}O{sub 3} nanoparticles prepared at pH 9, being smallest in size as compared to other, exhibit highest sensor response (SR).« less

  3. D/H isotopic fractionation effects in the H2-H2O system: An in-situ experimental study at supercritical water conditions

    NASA Astrophysics Data System (ADS)

    Foustoukos, D.; Mysen, B. O.

    2011-12-01

    Understanding the effect of temperature on the relative distribution of volatiles in supercritical aqueous solutions is important to constrain elemental and isotopic partitioning/fractionation effects in systems applicable to planetary interiors where the temperature-pressure conditions are often beyond existing experimental or theoretical datasets. For example, very little exists for the fundamental equilibria between H2, D2 and HD (H2 + D2 = 2HD), which, in turn, constrains the internal D/H isotope exchange and the evolution of HD in H2-containing systems such as H2-CH4 and H2-H2O. Theoretical calculations considering the partition functions of the molecules predict that with temperature increase, the equilibrium constant of this reaction approximates values that correspond to the stochastic distribution of species. These calculations consider pure harmonic vibrational frequencies, which, however, do not apply to the diatomic molecule of hydrogen, especially because anharmonic oscillations are anticipated to become stronger at high temperatures. Published experimental data have been limited to conditions lower than 468°C with large uncertainties at elevated temperatures. To address the lack of experimental data, a series of hydrothermal diamond anvil experiments has been conducted utilizing vibrational spectroscopy as a novel quantitative method to explore the relative distribution of H- and D-bearing volatiles in the H2-D2-D2O-H2O-Ti-TiO2 system. The fundamentals of this methodology are based on the distinct Raman frequency shift resulting from deuterium substitution in the H-H and O-H bonds. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (for 3-9hrs) at 600-800°C and pressures of 0.5-1 GPa, leading to formation of H2, D2, HD and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in-situ and in the quenched gas phase, indicate a significant deviation from the theoretical estimate of the equilibrium

  4. Ices on Charon: Distribution of H2O and NH3 from New Horizons LEISA observations

    NASA Astrophysics Data System (ADS)

    Dalle Ore, C. Morea; Protopapa, S.; Cook, J. C.; Grundy, W. M.; Cruikshank, D. P.; Verbiscer, A. J.; Ennico, K.; Olkin, C. B.; Stern, S. A.; Weaver, H. A.; Young, L. A.; New Horizons Science Team

    2018-01-01

    Charon, the largest moon of Pluto, appeared as a fairly homogeneous, gray, icy world to New Horizons during closest approach on July 14th, 2015. Charon's sub-Pluto hemisphere was scanned by the Ralph/LEISA near-IR spectrograph providing an unprecedented opportunity to measure its surface composition. We apply a statistical clustering tool to identify spectrally distinct terrains and a radiative transfer approach to study the variations of the 2.0-μm H2O ice band. We map the distribution of the ices previously reported to be present on Charon's surface, namely H2O and the products of NH3 in H2O. We find that H2O ice is mostly in the crystalline phase, confirming previous studies. The regions with the darkest albedos show the strongest signature of amorphous-phase ice, although the crystalline component is still strong. The brighter albedo regions, often corresponding to crater ejecta blankets, are characterized by larger H2O grains, possibly an indication of a younger age. We observe two different behaviors for the two absorption bands representing NH3 in H2O. The 2.21-μm band tends to cluster more in the northern areas compared to the ∼2.01-μm band. Both bands are present in the brighter crater rays, but not all craters show both bands. The 2.21-μm band is also clearly present on the smaller moons Hydra and Nix. These results hint that different physical conditions may determine the appearance or absence of these two different forms of NH3 in H2O ice in the Pluto system. We also investigate the blue slope affecting the spectrum at wavelengths longer than ∼1.8 μm previously reported by several authors. We find that the slope is common among the objects in the Pluto system, Charon, the smaller moons Nix and Hydra, and the darkest terrains on Pluto. It also characterizes the analog ice tholin obtained from irradiation of Pluto-specific materials (a mixture of N2, CH4, and CO ices) in the laboratory. Our modeling results show that Pluto ice tholins are

  5. Stepwise mechanism and H2O-assisted hydrolysis in atomic layer deposition of SiO2 without a catalyst.

    PubMed

    Fang, Guo-Yong; Xu, Li-Na; Wang, Lai-Guo; Cao, Yan-Qiang; Wu, Di; Li, Ai-Dong

    2015-01-01

    Atomic layer deposition (ALD) is a powerful deposition technique for constructing uniform, conformal, and ultrathin films in microelectronics, photovoltaics, catalysis, energy storage, and conversion. The possible pathways for silicon dioxide (SiO2) ALD using silicon tetrachloride (SiCl4) and water (H2O) without a catalyst have been investigated by means of density functional theory calculations. The results show that the SiCl4 half-reaction is a rate-determining step of SiO2 ALD. It may proceed through a stepwise pathway, first forming a Si-O bond and then breaking Si-Cl/O-H bonds and forming a H-Cl bond. The H2O half-reaction may undergo hydrolysis and condensation processes, which are similar to conventional SiO2 chemical vapor deposition (CVD). In the H2O half-reaction, there are massive H2O molecules adsorbed on the surface, which can result in H2O-assisted hydrolysis of the Cl-terminated surface and accelerate the H2O half-reaction. These findings may be used to improve methods for the preparation of SiO2 ALD and H2O-based ALD of other oxides, such as Al2O3, TiO2, ZrO2, and HfO2.

  6. Stepwise mechanism and H2O-assisted hydrolysis in atomic layer deposition of SiO2 without a catalyst

    NASA Astrophysics Data System (ADS)

    Fang, Guo-Yong; Xu, Li-Na; Wang, Lai-Guo; Cao, Yan-Qiang; Wu, Di; Li, Ai-Dong

    2015-02-01

    Atomic layer deposition (ALD) is a powerful deposition technique for constructing uniform, conformal, and ultrathin films in microelectronics, photovoltaics, catalysis, energy storage, and conversion. The possible pathways for silicon dioxide (SiO2) ALD using silicon tetrachloride (SiCl4) and water (H2O) without a catalyst have been investigated by means of density functional theory calculations. The results show that the SiCl4 half-reaction is a rate-determining step of SiO2 ALD. It may proceed through a stepwise pathway, first forming a Si-O bond and then breaking Si-Cl/O-H bonds and forming a H-Cl bond. The H2O half-reaction may undergo hydrolysis and condensation processes, which are similar to conventional SiO2 chemical vapor deposition (CVD). In the H2O half-reaction, there are massive H2O molecules adsorbed on the surface, which can result in H2O-assisted hydrolysis of the Cl-terminated surface and accelerate the H2O half-reaction. These findings may be used to improve methods for the preparation of SiO2 ALD and H2O-based ALD of other oxides, such as Al2O3, TiO2, ZrO2, and HfO2.

  7. Theoretical study on the spectroscopic properties of CO3(*-).nH2O clusters: extrapolation to bulk.

    PubMed

    Pathak, Arup K; Mukherjee, Tulsi; Maity, Dilip K

    2008-10-24

    Vertical detachment energies (VDE) and UV/Vis absorption spectra of hydrated carbonate radical anion clusters, CO(3)(*-).nH(2)O (n=1-8), are determined by means of ab initio electronic structure theory. The VDE values of the hydrated clusters are calculated with second-order Moller-Plesset perturbation (MP2) and coupled cluster theory using the 6-311++G(d,p) set of basis functions. The bulk VDE value of an aqueous carbonate radical anion solution is predicted to be 10.6 eV from the calculated weighted average VDE values of the CO(3)(*-).nH(2)O clusters. UV/Vis absorption spectra of the hydrated clusters are calculated by means of time-dependent density functional theory using the Becke three-parameter nonlocal exchange and the Lee-Yang-Parr nonlocal correlation functional (B3LYP). The simulated UV/Vis spectrum of the CO(3)(*-).8H(2)O cluster is in excellent agreement with the reported experimental spectrum for CO(3)(*-) (aq), obtained based on pulse radiolysis experiments.

  8. Conductivity measurements on H 2O-bearing CO 2-rich fluids

    DOE PAGES

    Capobianco, Ryan M.; Miroslaw S. Gruszkiewicz; Bodnar, Robert J.; ...

    2014-09-10

    Recent studies report rapid corrosion of metals and carbonation of minerals in contact with carbon dioxide containing trace amounts of dissolved water. One explanation for this behavior is that addition of small amounts of H 2O to CO 2 leads to significant ionization within the fluid, thus promoting reactions at the fluid-solid interface analogous to corrosion associated with aqueous fluids. The extent of ionization in the bulk CO 2 fluid was determined using a flow-through conductivity cell capable of detecting very low conductivities. Experiments were conducted from 298 to 473 K and 7.39 to 20 MPa with H 2O concentrationsmore » up to ~1600 ppmw (xH 2O3.9 x 10 -3), corresponding to the H 2O solubility limit in liquid CO 2 at ambient temperature. All solutions showed conductivities <10 nS/cm, indicating that the solutions were essentially ion-free. Furthermore, this observation suggests that the observed corrosion and carbonation reactions are not the result of ionization in CO 2-rich bulk phase, but does not preclude ionization in the fluid at the fluid-solid interface.« less

  9. Short belt-like Ca 2 B 2 O 5 ·H 2 O nanostructures: Hydrothermal formation, FT-IR, thermal decomposition, and optical properties

    NASA Astrophysics Data System (ADS)

    Zhu, Wancheng; Zhang, Xiao; Wang, Xiaoli; Zhang, Heng; Zhang, Qiang; Xiang, Lan

    2011-10-01

    Uniform high crystallinity short belt-like Ca 2B 2OH 2O nanostructures (nanobelts) were facilely synthesized through a room temperature coprecipitation of CaCl 2, H 3BO 3, and NaOH solutions, followed by a mild hydrothermal treatment (180 °C, 12.0 h). By a preferential growth parallel to the (1 0 0) planes, Ca 2B 2OH 2O nanobelts with a length of 1-5 μm, a width of 100-400 nm, and a thickness of 55-90 nm were obtained. The calcination of the nanobelts at 500 °C for 2.0 h led to short Ca 2B 2O 5 nanobelts with well preserved 1D morphology. Calcination at 800 °C led to a mixture of Ca 2B 2O 5 and Ca 3B 2O 6. The products were with belt-like and quasi-polyhedron morphology, while they turned into pore-free micro-rod like and polyhedron morphology when the calcination was taken in the presence of NaCl. NaCl assisted high temperature calcination at 900 °C promoted the formation of Ca 3B 2O 6 in the products. When dispersed in deionized water or absolute ethanol, the Ca 2B 2OH 2O nanobelts and Ca 2B 2O 5 nanobelts showed good transparency from the ultraviolet to the visible region. The as-synthesized Ca 2B 2OH 2O and Ca 2B 2O 5 nanobelts can be employed as novel metal borate nanomaterials for further potential applications in the area of glass fibers, antiwear additive, ceramic coatings, and so on.

  10. High-Level ab initio electronic structure calculations of Water Clusters (H2O)16 and (H2O)17: a new global minimum for (H2O)16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Soohaeng; Apra, Edoardo; Zeng, Xiao Cheng

    The lowest-energy structures of water clusters (H2O)16 and (H2O)17 were revisited at the MP2 and CCSD(T) levels of theory. A new global minimum structure for (H2O)16 was found at the MP2 and CCSD(T) levels of theory and the effect of zero-point energy corrections on the relative stability of the low-lying minimum energy structures was assessed. For (H2O)17 the CCSD(T) calculations confirm the previously found at the MP2 level of theory "interior" arrangement (fully coordinated water molecule inside a spherical cluster) as the global minimum.

  11. High-Level ab-initio Electronic Structure Calculations of Water Clusters (H2O)16 and (H2O)17 : a New Global Minimum for (H2O)16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Soohaeng; Apra, Edoardo; Zeng, X.C.

    The lowest-energy structures of water clusters (H2O)16 and (H2O)17 were revisited at the MP2 and CCSD(T) levels of theory. A new global minimum structure for (H2O)16 was found at both the MP2 and CCSD(T) levels of theory, and the effect of zero-point energy corrections on the relative stability of the low-lying minimum energy structures was assessed. For (H2O)17, the CCSD(T) calculations confirm the previously found at the MP2 level of theory interior arrangement (fully coordinated water molecule inside a spherical cluster) as the global minimum

  12. Copper(II) perrhenate Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2}: Synthesis from isopropanol and CuReO{sub 4}, structure and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailova, D., E-mail: d.mikhailova@ifw-dresden.de; Institute for Complex Materials, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden; Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187 Dresden

    2015-12-15

    The crystal structure of Cu{sup +}Re{sup 7+}O{sub 4} is capable of a quasi-reversible incorporation of C{sub 3}H{sub 7}OH molecules. A room-temperature reaction between CuReO{sub 4} and C{sub 3}H{sub 7}OH under oxidizing conditions leads to the formation of a novel metal-organic hybrid compound Cu{sup 2+}(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2}. Upon heating under reducing conditions, this compound transforms back into CuReO{sub 4}, albeit with ReO{sub 2} and metallic Cu as by-products. The crystal structure of Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} solved from single-crystal X-ray diffraction (Pbca, a=10.005(3) Å, b=7.833(2) Å, and c=19.180(5) Å) reveals layers of corner-sharing CuO{sub 6}-octahedra andmore » ReO{sub 4}-tetrahedra, whereas isopropyl groups are attached to both sides of these layers, thus providing additional connections within the layers through hydrogen bonds. Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} is paramagnetic down to 4 K because the spatial arrangement of the Cu{sup 2+} half-filled orbitals prevents magnetic superexchange. The paramagnetic effective moment of 2.0(1) μ{sub B} is slightly above the spin-only value and typical for Cu{sup 2+} ions. - Highlights: • Novel Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} compound has a sequence of inorganic and organic layers. • Hydrogen bonds provide an additional bonding Isopropanol molecules serve as a reducing agent during decomposition. • No direct Cu-O-Re-O-Cu connections via d{sub x2-y2} orbital of Cu{sup 2+} explain paramagnetism. • Hydrogen bonds provide an additional bonding. • Isopropanol molecules serve as a reducing agent during decomposition.« less

  13. Hydrothermal Synthesis, Crystal Structure, and Photoluminescent Properties of Li[UO2(CH3COO)3]3[Co(H2O)6

    NASA Astrophysics Data System (ADS)

    AlDamen, Murad A.; Juwhari, Hassan K.; Al-zuheiri, Aya M.; Alnazer, Louy A.

    2017-12-01

    Single crystal of Li[UO2(CH3COO)3]3[Co(H2O)6] was prepared and found to crystallize in the monoclinic crystal system in the sp. gr. C2/ c, with Z = 2, and unit cell parameters a = 22.1857(15) Å, b = 13.6477(8) Å, c = 15.6921(10) Å, β = 117.842(9)°, V = 4201.3(4) Å3. The crystal was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The single crystal X-ray diffraction analysis revealed that the crystal has a lamellar structure in which a cobalt hydrate is sandwiched within the Li[UO2(CH3COO)3]3 2- chains. Furthermore, the room temperature photoluminescence spectrum of the complex was investigated in the solid state.

  14. The responses of the four main substitution mechanisms of H in olivine to H2O activity at 1050 °C and 3 GPa

    NASA Astrophysics Data System (ADS)

    Tollan, Peter M. E.; Smith, Rachel; O'Neill, Hugh St. C.; Hermann, Jörg

    2017-12-01

    The water solubility in olivine ({C}_{{H}_2O}) has been investigated at 1050 °C and 3 GPa as a function of water activity ({a}_{{H}_2O}) at subsolidus conditions in the piston-cylinder apparatus, with {a}_{{H}_2O} varied using H2O-NaCl fluids. Four sets of experiments were conducted to constrain the effect of {a}_{{H}_2O} on the four main substitution mechanisms. The experiments were designed to grow olivine in situ and thus achieve global equilibrium (G-type), as opposed to hydroxylating olivine with a pre-existing point-defect structure and impurity content (M-type). Olivine grains from the experiments were analysed with polarised and unpolarised FTIR spectroscopy, and where necessary, the spectra have been deconvoluted to quantify the contribution of each substitution mechanism. Olivine buffered with magnesiowüstite produced absorbance bands at high wavenumbers ranging from 3566 to 3612 cm-1. About 50% of the total absorbance was found parallel to the a-axis, 30% parallel to the b-axis and 20% parallel to the c-axis. The total absorbance and hence water concentration in olivine follows the relationship of {C}_{{H}_2O}∝ {a_{{H}_2O}}^2 , indicating that the investigated defect must involve four H atoms substituting for one Si atom (labelled as [Si]). Forsterite buffered with enstatite produced an absorbance band exclusively aligned parallel the c-axis at 3160 cm-1. The band position, polarisation and observed {C}_{{H}_2O}∝ {a}_{{H}_2O} are consistent with two H substituting for one Mg (labelled as [Mg]). Ti-doped, enstatite-buffered olivine displays absorption bands, and polarisation typical of Ti-clinohumite point defects where two H on the Si-site are charge-balanced by one Ti on a Mg-site (labelled as [Ti]). This is further supported by {C}_{{H}_2O}∝ {a}_{{H}_2O} and a 1:1 relationship of molar H2O and TiO2 in these experiments. Sc-doped, enstatite-buffered experiments display a main absorption band at 3355 cm-1 with {C}_{{H}_2O}∝ {a_{{H}_2O}}^{0

  15. Laser-diode-excited blue upconversion in Tm3+/Yb3+ -codoped TeO2-Ga2O3-R2O (R=Li, Na, K) glasses.

    PubMed

    Zhao, Chun; Zhang, Qinyuan; Yang, Gangfeng; Jiang, Zhonghong

    2008-01-01

    This paper reports on intense blue upconversion in Tm(3+)/Yb(3+) codoped TeO(2)-Ga(2)O(3)-R(2)O(R=Li, Na, K) glasses upon excitation with commercial available laser diode (LD). Effects of alkali ions on the Raman spectra, thermal stability and spectroscopic properties of the tellurite-gallium glasses have also been investigated. Energy transfer and the involved upconversion mechanisms have been discussed. Intense blue upconversion emission centered at 476 nm along with a weak red emission at 650 nm has been observed upon excitation of 977 nm LD, assigned to the transitions of 1G4-->3H6, and 1G4-->3H4 and/or 3F(2,3)-->3H6 of Tm(3+), respectively. The blue upconversion intensity has a cubelike dependence on incident pump laser power, indicating a three-photon process. However, a quadratic dependence of the 476 nm upconversion intensity on the incident pump laser power has been observed when samples under excitation of 808 nm LD due to a two-photon absorption process. Enhanced upconversion luminescence have been observed with replacing K(+) for Na(+) and Li(+).

  16. Modification of Ga2O3 by an Ag-Cr core-shell cocatalyst enhances photocatalytic CO evolution for the conversion of CO2 by H2O.

    PubMed

    Pang, Rui; Teramura, Kentaro; Tatsumi, Hiroyuki; Asakura, Hiroyuki; Hosokawa, Saburo; Tanaka, Tsunehiro

    2018-01-25

    A core-shell structure of Ag-Cr dual cocatalyst loaded-Ga 2 O 3 was found to significantly enhance the formation rate of CO and selectivity toward CO evolution for the photocatalytic conversion of CO 2 where H 2 O is used as an electron donor.

  17. Measurements and modeling of absorption by CO2 + H2O mixtures in the spectral region beyond the CO2 ν3-band head

    NASA Astrophysics Data System (ADS)

    Tran, H.; Turbet, M.; Chelin, P.; Landsheere, X.

    2018-05-01

    In this work, we measured the absorption by CO2 + H2O mixtures from 2400 to 2600 cm-1 which corresponds to the spectral region beyond the ν3 band head of CO2. Transmission spectra of CO2 mixed with water vapor were recorded with a high-resolution Fourier-transform spectrometer for various pressure, temperature and concentration conditions. The continuum absorption by CO2 due to the presence of water vapor was determined by subtracting from measured spectra the contribution of local lines of both species, that of the continuum of pure CO2 as well as of the self- and CO2-continua of water vapor induced by the H2O-H2O and H2O-CO2 interactions. The obtained results are in very good agreement with the unique previous measurement (in a narrower spectral range). They confirm that the H2O-continuum of CO2 is significantly larger than that observed for pure CO2. This continuum thus must be taken into account in radiative transfer calculations for media involving CO2+ H2O mixture. An empirical model, using sub-Lorentzian line shapes based on some temperature-dependent correction factors χ is proposed which enables an accurate description of the experimental results.

  18. Theoretical study of new potential semiconductor surfaces performance for dye sensitized solar cell usage: TiO2-B (001), (100) and H2Ti3O7 (100)

    NASA Astrophysics Data System (ADS)

    German, Estefania; Faccio, Ricardo; Mombrú, Álvaro W.

    2017-12-01

    Hydrogen titanate (H2Ti3O7) and TiO2-B polymorph are potential surfaces identified experimentally in the last years, which need to be analyzed. To study their performance as surfaces for dye sensitized solar cells (DSSC), a set of dye adsorption configurations were evaluated on them, as model dye the small and organic catechol molecule was used. We have calculated adsorption geometry, energy, electronic transfer from dye to semiconductor adsorbent and frontier orbitals by means of density functional theory (DFT). Results show that vacancy-like defected H2Ti3O7 (100) and TiO2-B (100) surfaces present favorable adsorption energies. Finally, an adequate energy level alignment make both surfaces prone to be adequate for direct electron transfer upon excitation, from catechol to the conduction band of the semiconductors, with bands located in the Visible region of the electromagnetic spectrum. Additionally, the band structure alignment indicates an increase in the open circuit voltage, in reference to I2/I3- redox pair potential. All these characteristics make hydrogen titanate (H2Ti3O7) and TiO2-B polymorph promising for DSSC applications.

  19. A novel organic–inorganic hybrid with Anderson type polyanions as building blocks: (C{sub 6}H{sub 10}N{sub 3}O{sub 2}){sub 2}Na(H{sub 2}O){sub 2}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]·6H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thabet, Safa, E-mail: safathabet@hotmail.fr; Ayed, Brahim, E-mail: brahimayed@yahoo.fr; Haddad, Amor

    Graphical abstract: Display Omitted Highlights: ► Synthesis of a novel inorganic–organic hybrid compound based on Anderson polyoxomolybdates. ► Characterization by X-ray diffraction, IR and UV–Vis spectroscopies of the new compound. ► Potential applications in catalysis, biochemical analysis and electrical conductivity of the organic–inorganic compound. -- Abstract: A new organic–inorganic hybrid compound based on Anderson polyoxomolybdates, (C{sub 6}H{sub 10}N{sub 3}O{sub 2}){sub 2}Na(H{sub 2}O){sub 2}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]·6H{sub 2}O (1) have been isolated by the conventional solution method and characterized by single-crystal X-ray diffraction, infrared, ultraviolet spectroscopy and Thermogravimetric Analysis (TGA). This compound crystallized in the triclinic system, space group P−1, withmore » a = 94.635(1) Å, b = 10.958(1) Å, c = 11.602(1) Å, α = 67.525(1)°, β = 71.049(1)°, γ = 70.124(1)° and Z = 1. The crystal structures of the compounds exhibit three-dimensional supramolecular assembly based on the extensive hydrogen bonding interactions between organic cations, sodium cations, water molecules and Anderson polyoxoanions. The infrared spectrum fully confirms the X-ray crystal structure and the UV spectrum of the title compound exhibits an absorption peak at 210 nm.« less

  20. pH-Dependence of Binding Constants and Desorption Rates of Phosphonate- and Hydroxamate-Anchored [Ru(bpy)3]2+ on TiO2 and WO3.

    PubMed

    Esarey, Samuel L; Bartlett, Bart M

    2018-04-17

    The binding constants and rate constants for desorption of the modified molecular dye [Ru(bpy) 3 ] 2+ anchored by either phosphonate or hydroxamate on the bipyridine ligand to anatase TiO 2 and WO 3 have been measured. In aqueous media at pH 1-10, repulsive electrostatic interactions between the negatively charged anchor and the negatively charged surface govern phosphonate desorption under neutral and basic conditions for TiO 2 anatase due to the high acidity of phosphonic acid (p K a,4 = 5.1). In contrast, the lower acidity of hydroxamate (p K a,1 = 6.5, p K a,2 = 9.1) leads to little change in adsorption/desorption properties as a function of pH from 1 to 7. The binding constant for hydroxamate is 10 3 in water, independent of pH in this range. These results are true for WO 3 as well, but are not reported at pH > 4 due to its Arrhenius acidity. Kinetics for desorption as a function of pH are reported, with a proposed mechanism for phosphonate desorption at high pH being the electrostatic repulsion of negative charges between the surface and the anionic anchor. Further, the hydroxamic acid anchor itself is likely the site of quasi-reversible redox activity in [Ru(bpy) 2 (2,2'-bpy-4,4'-(C(O)N(OH)) 2 )] 2+ , which does not lead to any measurable deterioration of the complex within 2 h of dark cyclic voltammogram scans in aqueous media. These results posit phosphonate as the preferred anchoring group under acidic conditions and hydroxamate for neutral/basic conditions.

  1. Vibrational Dynamics of Interfacial Water by Free Induction Decay Sum Frequency Generation (FID-SFG) at the Al2O3(1120)/H2O Interface.

    PubMed

    Boulesbaa, Abdelaziz; Borguet, Eric

    2014-02-06

    The dephasing dynamics of a vibrational coherence may reveal the interactions of chemical functional groups with their environment. To investigate this process at a surface, we employ free induction decay sum frequency generation (FID-SFG) to measure the time that it takes for free OH stretch oscillators at the charged (pH ≈ 13, KOH) interface of alumina/water (Al2O3/H2O) to lose their collective coherence. By employing noncollinear optical parametric amplification (NOPA) technology and nonlinear vibrational spectroscopy, we showed that the single free OH peak actually corresponds to two distinct oscillators oriented opposite to each other and measured the total dephasing time, T2, of the free OH stretch modes at the Al2O3/H2O interface with a sub-40 fs temporal resolution. Our results suggested that the free OH oscillators associated with interfacial water dephase on the time scale of 89.4 ± 6.9 fs, whereas the homogeneous dephasing of interfacial alumina hydroxyls is an order of magnitude slower.

  2. Enrichment of Sc2O3 and TiO2 from bauxite ore residues.

    PubMed

    Deng, Bona; Li, Guanghui; Luo, Jun; Ye, Qing; Liu, Mingxia; Peng, Zhiwei; Jiang, Tao

    2017-06-05

    As a major byproduct generated in the alumina industry, bauxite ore residue is an important reserve of scandium and titanium. In this study, the feasibility and mechanism of enriching Sc 2 O 3 and TiO 2 from a non-magnetic material, which was obtained from carbothermal reductive roasting and magnetic separation of bauxite ore residue, were investigated based on a two-step (acidic and alkali) leaching process. It was revealed that approximately 78% SiO 2 and 30-40% of CaO, FeO and Al 2 O 3 were removed from a non-magnetic material with 0.0134wt.% Sc 2 O 3 and 7.64wt.% TiO 2 by phosphoric acidic leaching, while about 95% Al 2 O 3 and P 2 O 5 were further leached by subsequent sodium hydroxide leaching of the upper-stream leach residue. A Sc 2 O 3 -, TiO 2 - rich material containing 0.044wt.% Sc 2 O 3 and 25.5wt.% TiO 2 was obtained, the recovery and the enrichment factor of Sc 2 O 3 and TiO 2 were about 85% and 5, respectively. The enrichment of Sc 2 O 3 was attributed to higher pH (>3.3) of phosphoric acid solution than its dissolution pH 0 , and the enrichment of TiO 2 was mainly associated with the insoluble perovskite (CaTiO 3 ) in the acidic solution at ambient temperature. As Sc 2 O 3 and TiO 2 cannot be dissolved in the alkali solution, they were further enriched in the leach residue. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Quasiparticle interfacial level alignment of highly hybridized frontier levels: H2O on TiO2(110).

    PubMed

    Migani, Annapaola; Mowbray, Duncan J; Zhao, Jin; Petek, Hrvoje

    2015-01-13

    Knowledge of the frontier levels' alignment prior to photoirradiation is necessary to achieve a complete quantitative description of H2O photocatalysis on TiO2(110). Although H2O on rutile TiO2(110) has been thoroughly studied both experimentally and theoretically, a quantitative value for the energy of the highest H2O occupied levels is still lacking. For experiment, this is due to the H2O levels being obscured by hybridization with TiO2(110) levels in the difference spectra obtained via ultraviolet photoemission spectroscopy (UPS). For theory, this is due to inherent difficulties in properly describing many-body effects at the H2O-TiO2(110) interface. Using the projected density of states (DOS) from state-of-the-art quasiparticle (QP) G0W0, we disentangle the adsorbate and surface contributions to the complex UPS spectra of H2O on TiO2(110). We perform this separation as a function of H2O coverage and dissociation on stoichiometric and reduced surfaces. Due to hybridization with the TiO2(110) surface, the H2O 3a1 and 1b1 levels are broadened into several peaks between 5 and 1 eV below the TiO2(110) valence band maximum (VBM). These peaks have both intermolecular and interfacial bonding and antibonding character. We find the highest occupied levels of H2O adsorbed intact and dissociated on stoichiometric TiO2(110) are 1.1 and 0.9 eV below the VBM. We also find a similar energy of 1.1 eV for the highest occupied levels of H2O when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than those estimated from UPS difference spectra, which are inconclusive in this energy region. Finally, we apply self-consistent QPGW (scQPGW1) to obtain the ionization potential of the H2O-TiO2(110) interface.

  4. Monitoring Observatinos of H2O and SiO Masers Toward Post-AGB Stars

    NASA Astrophysics Data System (ADS)

    Kim, Jaeheon; Cho, Se-Hyung; Yoon, Dong-Hwan

    2016-12-01

    We present the results of simultaneous monitoring observations of H_2O 6_{1,6}-5_{2,3} (22 GHz) and SiO J=1-0, 2-1, 3-2 maser lines (43, 86, 129 GHz) toward five post-AGB (candidate) stars, using the 21-m single-dish telescopes of the Korean VLBI Network. Depending on the target objects, 7 - 11 epochs of data were obtained. We detected both H_2O and SiO maser lines from four sources: OH16.1-0.3, OH38.10-0.13, OH65.5+1.3, and IRAS 19312+1950. We could not detect H_2O maser emission toward OH13.1+5.1 between the late OH/IR and post-AGB stage. The detected H_2O masers show typical double-peaked line profiles. The SiO masers from four sources, except IRAS 19312+1950, show the peaks around the stellar velocity as a single peak, whereas the SiO masers from IRAS 19312+1950 occur above the red peak of the H_2O maser. We analyzed the properties of detected maser lines, and investigated their evolutionary state through comparison with the full widths at zero power. The distribution of observed target sources was also investigated in the IRAS two-color diagram in relation with the evolutionary stage of post-AGB stars. From our analyses, the evolutionary sequence of observed sources is suggested as OH65.5+1.3 → OH13.1+5.1 → OH16.1-0.3 → OH38.10-0.13, except for IRAS 19312+1950. In addition, OH13.1+5.1 from which the H_2O maser has not been detected is suggested to be on the gateway toward the post-AGB stage. With respect to the enigmatic object, IRAS 19312+1950, we could not clearly figure out its nature. To properly explain the unusual phenomena of SiO and H_2O masers, it is essential to establish the relative locations and spatial distributions of two masers using VLBI technique. We also include the 1.2 - 160 μm spectral energy distribution using photometric data from the following surveys: 2MASS, WISE, MSX, IRAS, and AKARI (IRC and FIS). In addition, from the IRAS LRS spectra, we found that the depth of silicate absorption features shows significant variations

  5. H2O2 rejuvenation-mediated synthesis of stable mixed-morphology Ag3PO4 photocatalysts.

    PubMed

    Agbe, Henry; Raza, Nadeem; Dodoo-Arhin, David; Chauhan, Aditya; Kumar, Ramachandran Vasant

    2018-04-01

    Ag 3 PO 4 photocatalyst has attracted interest of the scientific community in recent times due to its reported high efficiency for water oxidation and dye degradation. However, Ag 3 PO 4 photo-corrodes if electron accepter such as AgNO 3 is not used as scavenger. Synthesis of efficient Ag 3 PO 4 followed by a simple protocol for regeneration of the photocatalyst is therefore a prerequisite for practical application. Herein, we present a facile method for the synthesis of a highly efficient Ag 3 PO 4 , whose photocatalytic efficiency was demonstrated using 3 different organic dyes: Methylene Blue (MB), Methyl orange (MO) and Rhodamine B (RhB) organic dyes for degradation tests. Approximately, 19 % of Ag 3 PO 4 is converted to Ag 0 after 4.30 hours of continuous UV-Vis irradiation in presence of MB organic dye. We have shown that the Ag/Ag 3 PO 4 composite can be rejuvenated by a simple chemical oxidation step after several cycles of photocatalysis tests. At an optimal pH of 6.5, a mixture of cubic, rhombic dodecahedron, nanosphere and nanocrystals morphologies of the photocatalyst was formed. H 2 O 2 served as the chemical oxidant to re-insert the surface metallic Ag into the Ag 3 PO 4 photocatalyst but also as the agent that can control morphology of the regenerated as-prepared photocatalyst without the need for any other morphology controlling Agent (MCA). Surprisingly, the as- regenerated Ag 3 PO 4 was found to have higher photocatalytic reactivity than the freshly made material and superior at least 17 times in comparison with the conventional Degussa TiO 2 , and some of TiO 2 composites tested in this work.

  6. Few-layered CoHPO4.3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Pang, Huan; Wang, Shaomei; Shao, Weifang; Zhao, Shanshan; Yan, Bo; Li, Xinran; Li, Sujuan; Chen, Jing; Du, Weimin

    2013-06-01

    Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance.Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01460f

  7. VizieR Online Data Catalog: H3O+ and D3O+ rota

    NASA Astrophysics Data System (ADS)

    Owens, A.; Yurchenko, S. N.; Polyansky, O. L.; Ovsyannikov, R. I.; Thiel, W.; Spirko, V.

    2018-01-01

    Given the astronomical relevance of H3O+, and a good set of accurately measured experimental data (Uy, White & Oka 1997JMoSp.183..240U; Araki, Ozeki & Saito 1999, Mol. Phys., 97, 177); Tang & Oka 1999JMoSp.196..120T ; Furuya & Saito 2005A&A...441.1039F; Yu et al. 2009ApJS..180..119Y; Yu & Pearson 2014ApJ...786..133Y), we find it worthwhile to carry out a comprehensive study of hydronium, H316O+ (also referred to as H3O+), and its two symmetric top isotopologues, H318O+ and D316O+. To do this we employ a highly accurate variational approach, which was recently applied to ammonia (Owens et al. 2015MNRAS.450.3191O). Like NH3 (Jansen, Bethlem & Ubachs 2014JChPh.140a0901J; Spirko 2014, J. Phys. Chem. Lett., 5, 919; Owens et al. 2015MNRAS.450.3191O), there is a possibility to find transitions with strongly anomalous sensitivities caused by the Δk=+/-3 interactions (see Papousek et al. 1986JMoSt.141..361P), which have not yet been considered. (11 data files).

  8. Microwave dielectric properties of CaCu3Ti4O12-Al2O3 composite

    NASA Astrophysics Data System (ADS)

    Rahman, Mohd Fariz Ab; Abu, Mohamad Johari; Karim, Saniah Ab; Zaman, Rosyaini Afindi; Ain, Mohd Fadzil; Ahmad, Zainal Arifin; Mohamed, Julie Juliewatty

    2016-07-01

    (1-x)CaCu3Ti4O12 + (x)Al2O3 composite (0 ≤ x ≤0.25) was prepared via conventional solid-state reaction method. The fabrication of sample was started with synthesizing stoichiometric CCTO from CaCO3, CuO and TiO2 powders, then wet-mixed in deionized water for 24 h. The process was continued with calcined CCTO powder at 900 °C for 12 h before sintered at 1040 °C for 10 h. Next, the calcined CCTO powder with different amount of Al2O3 were mixed for 24 h, then palletized and sintered at 1040 °C for 10. X-ray diffraction analysis on the sintered samples showed that CCTO powder was in a single phase, meanwhile the trace of secondary peaks which belong to CaAl2O4 and Corundum (Al2O3) could be observed in the other samples Scanning electron microscopy analysis showed that the grain size of the sample is firstly increased with addition of Al2O3 (x = 0.01), then become smaller with the x > 0.01. Microwave dielectric properties showed that the addition of Al2O3 (x = 0.01) was remarkably reduced the dielectric loss while slightly increased the dielectric permittivity. However, further addition of Al2O3 was reduced both dielectric loss and permittivity at least for an order of magnitude.

  9. Construction of New Coordination Polymers from 4'-(2,4-disulfophenyl)- 3,2':6'3"-terpyridine: Polymorphism, pH-dependent syntheses, structures, and properties

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Li, Chao-Jie; He, Jia-En; Chen, Yin-Yu; Zheng, Sheng-Run; Fan, Jun; Zhang, Wei-Guang

    2016-01-01

    Nine new coordination compounds, namely, [Co(HDSPTP)2(H2O)4]·4H2O (H2DSPTP=4'-(2,4-disulfophenyl)-3,2':6'3"-terpyridine, 1 and 2), {[Ni(DSPTP)(H2O)4]·3H2O}n (3), {[Cu(HDSPTP)2(H2O)3]·8H2O}n (4), {[Cu(HDSPTP)2(H2O)3]·6H2O}n (5), {[Cu(DSPTP)(H2O)2H2O}n (6), {[Zn(DSPTP)(H2O)22H2O}n (7), {[Cd(DSPTP)(H2O)22H2O}n (8), and [Ag2(DSPTP)(H2O)]n (9), were constructed based on a new ligand containing both terpyridyl and sulfo groups. The reactions of H2DSPTP with Co(NO3)2.6H2O resulted in two mononuclear complexes (compounds 1 and 2). They are polymorphisms that display different hydrogen bonding networks. They are selectively synthesized by altering the added alkalis. The reaction of H2DSPTP with Ni(NO3)2·6H2O resulted in a 1D "S-shaped" coordination chain (compound 3). The reactions of Cu(II) with H2DSPTP at different pH value resulted in the following three compounds: two kinds of 1D chains obtained at pH 3.0 and 4.0 for compounds 4 and 5, respectively, and a 3D framework based on binuclear ring units with 4-connected sra topology (Compound 6). The reactions of H2DSPTP with ds-block ions resulted in the following three compounds: a Zn(II) (compound 7) and a Cd(II) (compound 8) 3D frameworks with structures similar to that in compound 6, and a 3D framework based on tetranuclear Ag(I) SBUs with binodal (4,8)-connected flu type 3D framework topology. The structural diversity is mainly attributed to the rich coordination modes (from monodentate to μ7-mode) and conformations (cis-cis and cis-trans) of HDSPTP-/DSPTP2- ligands and the metal center and can be controllable synthesized by altering the alkalis, and pH value. Thermal stability of all compounds was performed, and the thermal behaviors of compounds 6 and 8 were further explored by PXRD. Compound 6 exhibits low thermal stability and undergo a crystalline-crystalline-amorphous phase transition as temperature increases from 25 °C to 200 °C, and show amorphous-crystalline phase transition when rehydrated

  10. Beneficial effects of substituting trivalent ions in the B-site of La0.5Sr0.5Mn1-xAxO3 (A = Al, Ga, Sc) on the thermochemical generation of CO and H2 from CO2 and H2O.

    PubMed

    Dey, Sunita; Naidu, B S; Rao, C N R

    2016-02-14

    The effect of substitution of Al(3+), Ga(3+) and Sc(3+) ions in the Mn(3+) site of La0.5Sr0.5MnO3 on the thermochemical splitting of CO2 to generate CO has been studied in detail. Both La0.5Sr0.5Mn1-xGaxO3 and La0.5Sr0.5Mn1-xScxO3 give high yields of O2 and generate CO more efficiently than La0.5Sr0.5Mn1-xAlxO3 or the parent La0.5Sr0.5MnO3. Substitution of even 5% Sc(3+) (x = 0.05) results in a remarkable improvement in performance. Thus La0.5Sr0.5Mn0.95Sc0.05O3 produces 417 μmol g(-1) of O2 and 545 μmol g(-1) of CO, respectively, i.e. 2 and 1.7 times more O2 and CO than La0.5Sr0.5MnO3. This manganite also generates H2 satisfactorily by the thermochemical splitting of H2O.

  11. Requirements for functional models of the iron hydrogenase active site: D2/H2O exchange activity in ((mu-SMe)(mu-pdt)[Fe(CO)2(PMe3)]2+)[BF4-].

    PubMed

    Georgakaki, Irene P; Miller, Matthew L; Darensbourg, Marcetta Y

    2003-04-21

    Hydrogen uptake in hydrogenase enzymes can be assayed by H/D exchange reactivity in H(2)/D(2)O or H(2)/D(2)/H(2)O mixtures. Diiron(I) complexes that serve as structural models for the active site of iron hydrogenase are not active in such isotope scrambling but serve as precursors to Fe(II)Fe(II) complexes that are functional models of [Fe]H(2)ase. Using the same experimental protocol as used previously for ((mu-H)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)(+)), 1-H(+) (Zhao et al. J. Am. Chem. Soc. 2001, 123, 9710), we now report the results of studies of ((mu-SMe)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)(+)), 1-SMe(+), toward H/D exchange. The 1-SMe(+) complex can take up H(2) and catalyze the H/D exchange reaction in D(2)/H(2)O mixtures under photolytic, CO-loss conditions. Unlike 1-H(+), it does not catalyze H(2)/D(2) scrambling under anhydrous conditions. The molecular structure of 1-SMe(+) involves an elongated Fe.Fe separation, 3.11 A, relative to 2.58 A in 1-H(+). It is proposed that the strong SMe(-) bridging ligand results in catalytic activity localized on a single Fe(II) center, a scenario that is also a prominent possibility for the enzyme active site. The single requirement is an open site on Fe(II) available for binding of D(2) (or H(2)), followed by deprotonation by the external base H(2)O (or D(2)O).

  12. A polysaccharide of Dendrobium officinale ameliorates H2O2-induced apoptosis in H9c2 cardiomyocytes via PI3K/AKT and MAPK pathways.

    PubMed

    Zhang, Jing-Yi; Guo, Ying; Si, Jin-Ping; Sun, Xiao-Bo; Sun, Gui-Bo; Liu, Jing-Jing

    2017-11-01

    Dendrobium officinale is one valuable traditional Chinese medicine, which has skyscraping medicinal value. Polysaccharide is the main active ingredient in D. officinale; its antioxidant activity is a hot research topic nowadays. Oxidative stress plays an important role in the pathological progress of a variety of cardiovascular disease, as one of key factors of cardiomyocyte apoptosis. This research adopts a model of H 2 O 2 induction-H9c2 cardiomyocytes apoptosis, aiming to study the effect of Dendrobium officinale Polysaccharide (DOP-GY) for cardiomyocyte apoptosis caused by oxidative stress and its possible mechanism. Our results showed that pretreatment of DOP-GY (low dose: 6.25μg/mL, medium dose: 12.5μg/mL, high dose: 25μg/mL) followed by a 2h incubation with 200μM H 2 O 2 elevated the survival rate, cutted the LDH leakage, reduced lipid peroxidation damage, improved the activity of the endogenous antioxidant enzymes. In addition, the pretreatment of DOP-GY significantly inhibited the production of ROS, declined of the mitochondrial membrane potential, down-regulated pro-apoptosis protein and up-regulated anti-apoptosis protein. The protective effect was correlated with the PI3K/Akt and MAPK signal pathway. Collectively, these observations suggest that DOY-GY has the potential to exert cardioprotective effects against H 2 O 2 -induced H9c2 cardiomyocyte apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Ab initio electron correlated studies on the intracluster reaction of NO+ (H2O)(n) → H3O+ (H2O)(n-2) (HONO) (n = 4 and 5).

    PubMed

    Asada, Toshio; Nagaoka, Masataka; Koseki, Shiro

    2011-01-28

    Hydrated nitrosonium ion clusters NO(+)(H(2)O)(n) (n = 4 and 5) were investigated by using MP2/aug-cc-pVTZ level of theory to clarify isomeric reaction pathways for formation of HONO and fully hydrated hydride ions. We found some new isomers and transition state structures in each hydration number, whose lowest activation energies of the intracluster reactions were found to be 4.1 and 3.4 kcal mol(-1) for n = 4 and n = 5, respectively. These thermodynamic properties and full quantum mechanical molecular dynamics simulation suggest that product isomers with HONO and fully hydrated hydride ions can be obtained at n = 4 and n = 5 in terms of excess hydration binding energies which can overcome these activation barriers.

  14. Fluid inclusion volatile analysis by gas chromatography with photoionization micro-thermal conductivity detectors: Applications to magmatic MoS 2 and other H 2O-CO 2 and H 2O-CH 4 fluids

    NASA Astrophysics Data System (ADS)

    Bray, C. J.; Spooner, E. T. C.

    1992-01-01

    Eighteen fluid inclusion volatile peaks have been detected and identified from 1-2 g samples (quartz) by gas chromatography using heated (~105°C) on-line crushing, helium carrier gas, a single porous polymer column (HayeSep R; 10' × 1/8″: 100/120#; Ni alloy tubing), two temperature programme conditions for separate sample aliquots, micro-thermal conductivity (TCD) and photoionization detectors (PID; 11.7 eV lamp), and off-line digital peak processing. In order of retention time these volatile peaks are: N 2, Ar, CO, CH 4, CO 2, C 2H 4, C 2H 6, C 2H 2, COS, C 3H 6, C 3H 8, C 3H 4 (propyne), H 2O (22.7 min at 80°C), SO 2, ± iso- C4H10 ± C4H8 (1-butene) ± CH3SH, C 4H 8 (iso-butylene), (?) C 4H 6 (1,3 butadiene) and ± n- C4H10 ± C4H8 (trans-2-butene) (80 and -70°C temperature programme conditions combined). H 2O is analysed directly. O 2 can be analysed cryogenically between N 2 and Ar, but has not been detected in natural samples to date in this study. H 2S, SO 2, NH 3, HCl, HCN, and H 2 ca nnot be analysed at present. Blanks determined by crushing heat-treated Brazilian quartz (800-900°C/4 h) are zero for 80°C temperature programme conditions, except for a large, unidentified peak at ~64 min, but contain H 2O, CO 2, and some low molecular weight hydrocarbons at -70°C temperature conditions due to cryogenic accumulation from the carrier gas and subsequent elution. TCD detection limits are ~30 ppm molar in inclusions; PID detection limits are ~ 1 ppm molar in inclusions and lower for unsaturated hydrocarbons (e.g., ~0.2 ppm for C 2H 4; ~ 1 ppb for C 2H 2; ~0.3 ppb for C 3H 6). Precisions (1σ) are ~ ±1-2% and ~ ± 13% for H 2O in terms of total moles detected; the latter value is equivalent to ±0.6 mol% at the 95 mol% H 2O level. Major fluid inclusion volatile species have been successfully analysed on a ~50 mg fluid inclusion section chip (~7 mm × ~10 mm × ~100 μm). Initial inclusion volatile analyses of fluids of interpreted magmatic origin from

  15. Structure and spectral features of H+(H2O)7: Eigen versus Zundel forms.

    PubMed

    Shin, Ilgyou; Park, Mina; Min, Seung Kyu; Lee, Eun Cheol; Suh, Seung Bum; Kim, Kwang S

    2006-12-21

    The two dimensional (2D) to three dimensional (3D) transition for the protonated water cluster has been controversial, in particular, for H(+)(H(2)O)(7). For H(+)(H(2)O)(7) the 3D structure is predicted to be lower in energy than the 2D structure at most levels of theory without zero-point energy (ZPE) correction. On the other hand, with ZPE correction it is predicted to be either 2D or 3D depending on the calculational levels. Although the ZPE correction favors the 3D structure at the level of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using the aug-cc-pVDZ basis set, the result based on the anharmonic zero-point vibrational energy correction favors the 2D structure. Therefore, the authors investigated the energies based on the complete basis set limit scheme (which we devised in an unbiased way) at the resolution of the identity approximation Moller-Plesset second order perturbation theory and CCSD(T) levels, and found that the 2D structure has the lowest energy for H(+)(H(2)O)(7) [though nearly isoenergetic to the 3D structure for D(+)(D(2)O)(7)]. This structure has the Zundel-type configuration, but it shows the quantum probabilistic distribution including some of the Eigen-type configuration. The vibrational spectra of MP2/aug-cc-pVDZ calculations and Car-Parrinello molecular dynamics simulations, taking into account the thermal and dynamic effects, show that the 2D Zundel-type form is in good agreement with experiments.

  16. Structure and spectral features of H+(H2O)7: Eigen versus Zundel forms

    NASA Astrophysics Data System (ADS)

    Shin, Ilgyou; Park, Mina; Min, Seung Kyu; Lee, Eun Cheol; Suh, Seung Bum; Kim, Kwang S.

    2006-12-01

    The two dimensional (2D) to three dimensional (3D) transition for the protonated water cluster has been controversial, in particular, for H+(H2O)7. For H+(H2O)7 the 3D structure is predicted to be lower in energy than the 2D structure at most levels of theory without zero-point energy (ZPE) correction. On the other hand, with ZPE correction it is predicted to be either 2D or 3D depending on the calculational levels. Although the ZPE correction favors the 3D structure at the level of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using the aug-cc-pVDZ basis set, the result based on the anharmonic zero-point vibrational energy correction favors the 2D structure. Therefore, the authors investigated the energies based on the complete basis set limit scheme (which we devised in an unbiased way) at the resolution of the identity approximation Møller-Plesset second order perturbation theory and CCSD(T) levels, and found that the 2D structure has the lowest energy for H+(H2O)7 [though nearly isoenergetic to the 3D structure for D+(D2O)7]. This structure has the Zundel-type configuration, but it shows the quantum probabilistic distribution including some of the Eigen-type configuration. The vibrational spectra of MP2/aug-cc-pVDZ calculations and Car-Parrinello molecular dynamics simulations, taking into account the thermal and dynamic effects, show that the 2D Zundel-type form is in good agreement with experiments.

  17. Kinetics of Valeric Acid Ketonization and Ketenization in Catalytic Pyrolysis on Nanosized SiO2 , γ-Al2 O3 , CeO2 /SiO2 , Al2 O3 /SiO2 and TiO2 /SiO2.

    PubMed

    Kulyk, Kostiantyn; Palianytsia, Borys; Alexander, John D; Azizova, Liana; Borysenko, Mykola; Kartel, Mykola; Larsson, Mats; Kulik, Tetiana

    2017-07-19

    Valeric acid is an important renewable platform chemical that can be produced efficiently from lignocellulosic biomass. Upgrading of valeric acid by catalytic pyrolysis has the potential to produce value added biofuels and chemicals on an industrial scale. Understanding the different mechanisms involved in the thermal transformations of valeric acid on the surface of nanometer-sized oxides is important for the development of efficient heterogeneously catalyzed pyrolytic conversion techniques. In this work, the thermal decomposition of valeric acid on the surface of nanoscale SiO 2 , γ-Al 2 O 3 , CeO 2 /SiO 2 , Al 2 O 3 /SiO 2 and TiO 2 /SiO 2 has been investigated by temperature-programmed desorption mass spectrometry (TPD MS). Fourier transform infrared spectroscopy (FTIR) has also been used to investigate the structure of valeric acid complexes on the oxide surfaces. Two main products of pyrolytic conversion were observed to be formed depending on the nano-catalyst used-dibutylketone and propylketene. Mechanisms of ketene and ketone formation from chemisorbed fragments of valeric acid are proposed and the kinetic parameters of the corresponding reactions were calculated. It was found that the activation energy of ketenization decreases in the order SiO 2 >γ-Al 2 O 3 >TiO 2 /SiO 2 >Al 2 O 3 /SiO 2 , and the activation energy of ketonization decreases in the order γ-Al 2 O 3 >CeO 2 /SiO 2 . Nano-oxide CeO 2 /SiO 2 was found to selectively catalyze the ketonization reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Quasiparticle Interfacial Level Alignment of Highly Hybridized Frontier Levels: H2O on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migani, Annapaola; Mowbray, Duncan J.; Zhao, Jin

    Knowledge of the frontier levels’ alignment prior to photoirradiation is necessary to achieve a complete quantitative description of H2O photocatalysis on TiO2(110). Although H2O on rutile TiO2(110) has been thoroughly studied both experimentally and theoretically, a quantitative value for the energy of the highest H2O occupied levels is still lacking. For experiment, this is due to the H2O levels being obscured by hybridization with TiO2(110) levels in the difference spectra obtained via ultraviolet photoemission spectroscopy (UPS). For theory, this is due to inherent difficulties in properly describing many-body effects at the H2O–TiO2(110) interface. Using the projected density of states (DOS)more » from state-of-the-art quasiparticle (QP) G0W0, we disentangle the adsorbate and surface contributions to the complex UPS spectra of H2O on TiO2(110). We perform this separation as a function of H2O coverage and dissociation on stoichiometric and reduced surfaces. Due to hybridization with the TiO2(110) surface, the H2O 3a1 and 1b1 levels are broadened into several peaks between 5 and 1 eV below the TiO2(110) valence band maximum (VBM). These peaks have both intermolecular and interfacial bonding and antibonding character. We find the highest occupied levels of H2O adsorbed intact and dissociated on stoichiometric TiO2(110) are 1.1 and 0.9 eV below the VBM. We also find a similar energy of 1.1 eV for the highest occupied levels of H2O when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than those estimated from UPS difference spectra, which are inconclusive in this energy region. Finally, we apply self-consistent QPGW (scQPGW1) to obtain the ionization potential of the H2O–TiO2(110) interface.« less

  19. Cr[(H3N-(CH2)2-PO3)(Cl)(H2O)]: X-ray single-crystal structure and magnetism of a polar organic-inorganic hybrid chromium(II) organophosphonate.

    PubMed

    Bauer, Elvira M; Bellitto, Carlo; Colapietro, Marcello; Portalone, Gustavo; Righini, Guido

    2003-10-06

    Cr[(H(3)N-(CH(2))(2)-PO(3))(Cl)(H(2)O)], a rare example of a polar organic-inorganic hybrid material containing Cr(2+), was prepared from CrCl(2), 2-aminoethylphosphonic acid, and urea in water and isolated as light-blue crystals. It crystallizes in the noncentrosymmetric monoclinic space group P2(1), with a = 5.249(1) A, b = 14.133(3) A, c = 5.275(1) A, and beta = 105.55(2) degrees. The inorganic layer of the hybrid network is formed by Cr(II) five-coordinated by three oxygen atoms from the phosphonates and one from the water molecule in a square pyramidal unit, whose apical position is occupied by the Cl(-) ion. Hydrogen bonds are established between the coordinating water molecule and the oxygen atoms of adjacent phosphonate ligands. The inorganic network is interspersed by ethylammonium groups, and the terminal ammonium moiety is linked to the apical Cl(-) ions through hydrogen bonds. Electrostatic interactions as well as hydrogen bonds and the coordinated chlorine atoms ensure the cohesion of the 3D structure. The lattice is polar (lack of inversion center), and this fact determines the magnetic behavior of the compound at low temperatures. The magnetic susceptibility data in the temperature range from 300 to 50 K show Curie-Weiss behavior, with C = 2.716 cm(3) K mol(-1) and the Weiss constant theta = -2.2 K. The corresponding effective magnetic moment of 4.7 mu(B) compares well with the expected value for Cr(2+) in d(4) high-spin configuration. A slight decrease of the chiT product versus T observed at temperatures below 50 K indicates nearest-neighbor antiferromagnetic exchange interactions. On cooling below T = 6 K, the magnetic susceptibility increases sharply up to a maximum at ca. 5 K and then decreases again. Below T = 6 K, hysteresis loops taken at different temperatures show that Cr[(H(3)N-(CH(2))(2)-PO(3))(Cl)(H(2)O)] behaves as a weak ferromagnet with the critical temperature T(N) at 5.5 K. The spin canting is responsible of the long-range magnetic

  20. Chemical dynamics simulations of the monohydrated OH-(H2O) + CH3I reaction. Atomic-level mechanisms and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Otto, Rico; Wester, Roland; Hase, William L.

    2015-06-01

    Direct dynamics simulations, with B97-1/ECP/d theory, were performed to study the role of microsolvation for the OH-(H2O) + CH3I reaction. The SN2 reaction dominates at all reactant collision energies, but at higher collision energies proton transfer to form CH2I-, and to a lesser extent CH2I- (H2O), becomes important. The SN2 reaction occurs by direct rebound and stripping mechanisms, and 28 different indirect atomistic mechanisms, with the latter dominating. Important components of the indirect mechanisms are the roundabout and formation of SN2 and proton transfer pre-reaction complexes and intermediates, including [CH3--I--OH]-. In contrast, for the unsolvated OH- + CH3I SN2 reaction, there are only seven indirect atomistic mechanisms and the direct mechanisms dominate. Overall, the simulation results for the OH-(H2O) + CH3IߙSN2 reaction are in good agreement with experiment with respect to reaction rate constant, product branching ratio, etc. Differences between simulation and experiment are present for the SN2 velocity scattering angle at high collision energies and the proton transfer probability at low collision energies. Equilibrium solvation by the H2O molecule is unimportant. The SN2 reaction is dominated by events in which H2O leaves the reactive system as CH3OH is formed or before CH3OH formation. Formation of solvated products is unimportant and participation of the (H2O)CH3OH---I- post-reaction complex for the SN2 reaction is negligible.